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Preface

In this 49th volume we continue to offer a good sample of the main streams of
current research on probability and stochastic processes, in particular those active
in France. All the contributions come from spontaneous submissions and their
diversity illustrates the good health of this branch of mathematics.

Since the publication of the 48th volume, we have received two sad pieces of
news:

Jacques Neveu, former professor at the Université Pierre et Marie Curie and
École Polytechnique, passed away on May 15, 2016. His influence on the strong
development of probability in France was huge. For details and testimonies, we
refer to “Hommages à Jacques Neveu”, a supplement to Matapli 112, 52 pp., 2017,
see the website http://smai.emath.fr/IMG/pdf/Matapli_J_Neveu.pdf.

Ron Getoor, professor at the University of California, San Diego, passed away on
October 28, 2017. He was a leader in the growth of probability theory. For details,
see the website https://www.math.ucsd.edu/memorials/ronald-getoor/.

Both of them published excellent books and contributions to The Séminaire. We
would like to remind the reader that the website of the Séminaire is http://sites.
mathdoc.fr/SemProba/ and that all the articles of the Séminaire from Volume I
(1967) to Volume XXXVI (2002) are freely accessible from the website http://www.
numdam.org/actas/SPS.

We thank the Cellule Math Doc for hosting these articles within the NUMDAM
project.

Versailles, France Catherine Donati-Martin
Vandoeuvre-lès-Nancy, France Antoine Lejay
Versailles, France Alain Rouault
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Chapter 1
Ornstein-Uhlenbeck Pinball
and the Poincaré Inequality
in a Punctured Domain

Emmnuel Boissard, Patrick Cattiaux, Arnaud Guillin, and Laurent Miclo

Abstract In this paper we study the Poincaré constant for the Gaussian measure
restricted to D = R

d −B where B is the disjoint union of bounded open sets. We
will mainly look at the case where the obstacles are Euclidean balls B(xi, ri ) with
radii ri , or hypercubes with vertices of length 2ri , and d ≥ 2. This will explain the
asymptotic behavior of a d-dimensional Ornstein-Uhlenbeck process in the presence
of obstacles with elastic normal reflections (the Ornstein-Uhlenbeck pinball).

Keywords Poincaré inequalities · Lyapunov functions · Hitting times ·
Obstacles

MSC 2010 26D10, 39B62, 47D07, 60G10, 60J60

1.1 Introduction

In order to understand the goal of the present paper let us start with a well known
question: how many non overlapping unit discs can be placed in a large square
S? This problem of discs packing has a very long history including the following
other question: is it possible to perform an algorithm yielding to a perfectly random
configuration of N such discs at a sufficiently quick rate (exponential for instance)?
This is one of the origin of the Metropolis algorithms as refereed in [16].

The meaning of perfectly random is the following: the configuration space for
the model is SN , describing the location of the N centers of the N discs B(xi, 1),
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2 E. Boissard et al.

but under the constraints d(xi, ∂S) ≥ 1 and for all i �= j , |xi − xj | ≥ 2. The
remaining domain D is quite complicated, and randomness is described by the
uniform measure on D.

The answer to the second question is positive, essentially thanks to compactness,
but the exponent in the exponential rate of convergence is strongly connected with
the Poincaré constant for the uniform measure on D which is, at the present stage,
far to be known (the only known upper bounds are disastrous).

One can of course ask the same questions replacing the square by the whole
Euclidean space, and the uniform measure by some natural probability measure, for
instance the Gaussian one. But this time even the finiteness of the Poincaré constant
is no more clear. A very partial study (N = 2, 3) of this problem is done in [15].

In all cases, the probability measure under study, and supported by the com-
plicated state space D is actually an invariant (even reversible) measure for some
Markovian dynamics, one can study by itself, and which furnishes a possible
algorithm. The boundary of D becomes a reflecting boundary for the dynamics.

In this paper we intend to study the asymptotic behavior of a d-dimensional
Ornstein-Uhlenbeck process in the presence of bounded obstacles with elastic
normal reflections (looking like a random pinball). The choice of an Ornstein-
Uhlenbeck (hence of an invariant measure of Gaussian type) is made for simplicity
as it captures already all the new difficulties of this setting, but a general gradient
drift diffusion process (satisfying an ordinary Poincaré inequality) could be consid-
ered.

Of course for the packing problem in the whole space the obstacles are not
bounded, but it seems interesting to look first at the present setting. Our model is
also motivated by others considerations we shall give later.

All over the paper we assume that d ≥ 2. We shall mainly consider the
case where the obstacles are non overlapping Euclidean balls or smoothed l∞
balls (hence smoothed hypercubes) of radius ri and centers (xi)1≤i≤N≤+∞, as
overlapping obstacles could produce disconnected domains and thus non uniqueness
of invariant measures (as well as no Poincaré inequality). We shall also look at
different forms of obstacles when it can enlighten the discussion.

To be more precise, consider for 1 ≤ N ≤ +∞, X = (xi)1≤i≤N≤+∞ a
locally finite collection of points, and (ri )1≤i≤N≤+∞ a collection of non negative
real numbers, satisfying

|xi − xj | > ri + rj for i �= j . (1.1)

The Ornstein-Uhlenbeck pinball will be given by the following stochastic differen-
tial system with reflection

{
dXt = dWt − λXt dt + ∑

i (Xt − xi) dL
i
t ,

Lit =
∫ t

0 1|Xs−xi |=ri dLis .
(1.2)
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Fig. 1.1 An Ornstein-Uhlenbeck particle in a billiard

Here W is a standard Wiener process and we assume that P(|X0 − xi | ≥
ri for all i) = 1. Li is the local time description of the elastic and normal reflection
of the process when it hits B(xi, ri ) (Fig. 1.1).

Existence and non explosion of the process, which is especially relevant forN =
+∞, will be discussed in Appendix 1. The process lives in

D̄ = R
d − {x ; |x − xi | < ri for some i} , (1.3)

that is, we have removed a collection of non overlapping balls (or more generally
non overlapping obstacles).

It is easily seen that the process admits an unique invariant (actually reversible)
probability measure μλ,X , which is simply the Gaussian measure restricted to D,
i.e.

μλ,X (dx) = Z−1
λ,X 1D(x) e

− λ |x|2 dx , (1.4)

where Zλ,X is of course a normalizing constant. Hence the process is positive
recurrent.

The question is to describe the rate of convergence for the distribution of the
process at time t to its equilibrium measure.

To this end we shall look at the Poincaré constant of μλ,X since it is well known
that this Poincaré constant captures the exponential rate of convergence to equilib-
rium for symmetric processes (see e.g. [14] lemma 2.14 and [6] theorem 2.1). Other
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functional inequalities (logarithmic Sobolev inequality, transportation inequality,
. . . ) could be equally considered and the techniques developed here could also prove
to be useful in these cases (for examples Lyapunov techniques have been introduced
in the study of Super Poincaré inequalities in [13], including logarithmic Sobolev
inequalities).

When the number of obstacles N is finite, one can see, using Down, Meyn and
Tweedie results [18] and some regularity results for the process following [9, 10],
that the process is exponentially ergodic. It follows from [6] theorem 2.1, that μλ,X
satisfies some Poincaré inequality, i.e. for all smooth f (defined on the whole Rd )

Varμλ,X (f ) ≤ CP (λ,X )

∫
|∇f |2 dμλ,X . (1.5)

But the above method furnishes non explicit bounds for the Poincaré constant
CP (λ,X ).

Our first goal is thus to obtain reasonable and explicit upper and lower bounds
for the Poincaré constant. Surprisingly enough (or not) the case of one hard obstacle
already contains non trivial features.

Our second goal is to look at the case of infinitely many obstacles, for which the
finiteness of the Poincaré constant is not even clear.

Part of the title of the paper is taken from a paper by Lieb et al. [26] which is one
of the very few papers dealing with Poincaré inequality in a sub-domain. Of course,
one cannot get any general result due to the fact that one can always remove an,
as small as we want, subset disconnecting the whole space; so that the remaining
sub-domain cannot satisfy some Poincaré inequality. Hence doing this breaks the
ergodicity of the process.

The method used in [26] relies on the extension of functions defined in D to the
whole space. But the inequality they obtain, involves the energy of this extension
(including the part inside Dc), so that it is not useful to get a quantitative rate of
convergence for our process.

Our model can be used (or modified) as a model for crowds displacements
(involving several particles in the obstacles environment). In particular the design
of small obstacles that should kill the Poincaré constant is interesting.

Let us now describe the main results and main methods contained in the paper.
First, it is easily seen, thanks to homogeneity, that

CP (λ,X ) = 1

λ
CP (1,

√
λX ) . (1.6)

where
√
λX is the homotetic of X , i.e. the collection of B(

√
λ xi,

√
λ ri). Hence

we have one degree of freedom in the use of all parameters. This homogeneity
property will be used in the paper to improve some bounds.
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The first section is peculiar. We look at a single spherical obstacle centered at the
origin. We show that the Poincaré constant is given by

CP (λ,B(0, r)) ≈ 1

λ
+ r2

d

i.e. is up to some universal constant the sum of the Poincaré constant of the Gaussian
distribution 1/2λ and the one of the uniform measure on the sphere of radius r i.e.
r2/d . For the process this reflects the fact that it hits a neighborhood of the origin
with an exponential rate given by λ but turns around the sphere with an exponential
rate given by r2/d . This is also in accordance with what is expected when λ→ +∞
(μλ,X is close to the uniform measure on the sphere) or r → 0 where the obstacle
disappears.

We also look at the usual perturbation method for Poincaré inequalities when the
center is no more located at the origin (see Propositions 1.2 and 1.3) with results
that are not entirely satisfactory. The result for the obstacle B(0, r) can be used,
through the decomposition of variance method, to obtain results for a general single
ball B(y, r). This is explained in Appendix 3.

The next two Sects. 1.3 and 1.4 are devoted to our main goals in the case of
spherical obstacles: obtain explicit controls for the Poincaré constant in the presence
of a single obstacle, extend it to a finite number of obstacles, prove that it is still finite
in the case of an infinite number of obstacles.

In Sect. 1.3 we develop a “local” Lyapunov method (in the spirit of [5]) around
the obstacle. Under a restriction to small sizes, it is possible to give some explicit
Lyapunov function. As in recent works [4, 7] the difficulty is then to piece together
the Lyapunov functions we may build near the obstacle and far from the obstacle
and the origin. Let us describe the main results and methods.

First we are able to find explicit Lyapunov functions in the neighborhood of the
obstacles provided

∀i , ri < r
√
λ = √

(d − 1)/2 − 2−
3
4 .

This implies some limitation for the dimension namely

d ≥ 7 .

If in addition the balls B(xi, ri + b(λ))) are non-overlapping (here b(λ) is some
explicit constant), then one obtains an explicit upper bound for the Poincaré
constant. This is explained in Sect. 1.3.2 in particular in Proposition 1.4.

The remaining of Sect. 1.3 is then dedicated to get rid of the dimension restriction
still for small obstacles i.e. provided

∀i , ri ≤ 1

2

√
(d − 1)/2 .
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In Sects. 1.3.3 and 1.3.4 we show how to control the variance of functions compactly
supported in the exterior of a large ball containing the origin. As a consequence we
get in Sects. 1.3.5 and 1.3.6 a general result for the Poincaré constant when there is
only one obstacle, gathering all what was done in these subsections and the previous
section.

Finally we prove the finiteness of the Poincaré constant for an infinite number
of small obstacles uniformly disconnected, that is such the distance between two
distinct obstacles is uniformly larger than some ε > 0 in Corollary 1.1. If we are not
able to give a precise description of the Poincaré constant in general, we can give
some provided all obstacles are far enough from the origin i.e. if

∀i , |xi|
√
λ > c

√
d

for some constant c (see Proposition 1.5 and the explanations at the beginning of
Sect. 1.3.7).

We close Sect. 1.3 by a subsection explaining what happens if we replace
Euclidean balls by hypercubes.

In Sect. 1.4 we use the results in [14] in order to build new Lyapunov functions
near the obstacles, this time without restriction on the radius. To this end, we study
in details how the process avoids a spherical obstacle, using stochastic calculus.
This allows us to build a new Lyapunov function near the obstacle, which is given
by some exponential moment of the time needed to go around the obstacle. Useful
results on the Laplace transform of exit times for some linear processes are recalled
in Appendix 2. This new Lyapunov function is then used in Sect. 1.4.2 to obtain
an upper estimate for the Poincaré constant in a shell around a spherical obstacle.
Together with the method in Sect. 1.3, we can then show (see Proposition 1.9) that
provided

∀i , |xi | > ri +m and ri >
1

2

for some large enough m the Poincaré constant is finite and obtain an upper bound
for it. Finally we can extend the result in the case of infinitely many large obstacles.
Hence Sects. 1.4 and 1.3 are complementary.

Gathering all this, we have the following key result: for a spherical obstacle
located far from the origin, the Poincaré constant does not depend on the radius
(contrary to what we conjectured in a previous version of this work). This result
allows us to show the following general result in the case of an infinite number of
spherical obstacles.

Theorem 1.1 Let X = (xi)1≤i<+∞ a locally finite collection of distinct points,
ordered such that |xi | ≤ |xi+1| for all i, and R = (ri)1≤i<+∞ a collection of non-
negative numbers. Assume that there exists ε > 0 with |xi − xj | > ri + rj + ε for
all i �= j .
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Then for any λ > 0, the measure μλ,X defined in (1.4) has a finite Poincaré
constant and the reflected Ornstein-Uhlenbeck process in D (defined in (1.3)) is
exponentially ergodic.

Section 1.5 is devoted to obtain lower bounds. We show in particular that if we
replace Euclidean balls by hypercubes, the situation is drastically changed since
each obstacle (in a particular configuration) gives some contribution ecr

2
where r

denotes the length of an edge of the hypercube. In particular large obstacles far
from the origin can make the Poincaré constant go to ∞. We give two approaches
of this result: one using exit times for the stochastic process, the second one using
isoperimetric ideas. The same isoperimetric ideas are used to give a lower bound
for the Poincaré constant in the case of spherical obstacles. To conclude the section
we show that replacing balls by some non convex small and far obstacles can kill
the exponential ergodicity. This situation is analogous to the one obtained with
“touching” spherical obstacles.

The conclusion is that, presumably for uniformly convex obstacles (with an
uniform curvature bounded from below uniformly in the location of the obstacles
too) a similar result as for spherical obstacles holds true and our method can be
used. The only difficulty is to find the good Lyapunov functions. A lack of uniform
convexity has some disastrous consequences on the Poincaré constant, even for
small and far obstacles.

Dedication During the revision of the paper, we learned about the death of Marc
Yor. Everybody knows what a tragedy it is for Probability theory. It turns out that
some beautiful results of Marc Yor on exit times for general squared radial Ornstein-
Uhlenbeck processes recalled in an Appendix, are crucial in the present paper.

1.2 Some Results When N = 1

1.2.1 The Case of One Centered Ball, i.e. y = 0

Assume N = 1 and the obstacle is the Euclidean ball B(y, r) with y = 0. In this
case μλ,X = ν0

λ,r is the standard Gaussian measure with variance 1
2λ restricted to

D = R
d − B(0, r). More generally we will denote by νyλ,r the Gaussian measure

with mean y and variance 1
2λ restricted to R

d − B(0, r).
μλ,X is spherically symmetric. Though it is not log-concave, its radial part,

proportional to

1ρ>r ρ
d−1 e−λ ρ2

is log concave in ρ so that we may use the results in [8], yielding
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Proposition 1.1 When X = B(0, r), the measure μλ,X satisfies a Poincaré
inequality (1.5) with

1

2

(
1

2λ
+ r2

d

)
≤ max

(
1

2λ
,
r2

d

)
≤ CP (λ,B(0, r)) ≤ 1

λ
+ r2

d
.

Proof For the upper bound, the only thing to do in view of [8] is to estimate E(ξ2)

where ξ is a random variable on R
+ with density

ρ �→ A−1
λ 1ρ>r ρ

d−1 e−λ ρ2
. (1.7)

But

Aλ =
∫ +∞

r

ρd−1 e−λ ρ2
dρ ≥ rd−2

∫ +∞

r

ρ e−λ ρ2
dρ = rd−2 e−λ r2

2λ
.

A simple integration by parts yields

E(ξ2) = d

2λ
+ rd e−λ r2

2 λAλ
≤ d

2λ
+ r2 .

The main result in [8] says that

CP (λ,B(0, r)) ≤ 13

d
E(ξ2) ,

hence the result with a constant 13.
Instead of directly using Bobkov’s result, one can look more carefully at its proof.

The first part of this proof consists in establishing a bound for the Poincaré constant
of the law given by (1.7). Here, again, we may apply Bakry-Emery criterion (which
holds true on an interval), which furnishes 1/(2λ). The second step uses the Poincaré
constant of the uniform measure on the unit sphere, i.e. 1/d , times the previous
bound for E(ξ2). Finally these two bounds have to be summed up, yielding the
result.

For the lower bound it is enough to consider the function f (z) = ∑d
j=1 zj .

Indeed, the energy of f is equal to d . Furthermore on one hand

Varμλ,X (f ) =
∫ +∞
r

ρd+1 e−λ ρ2
dρ∫ +∞

r ρd−1 e−λ ρ2
dρ

≥ r2 ,

while on the other hand, an integration by parts shows that

Varμλ,X (f ) = d

2λ
+ rd e−λr2

2λ
∫ +∞
r ρd−1 e−λ ρ2

dρ
≥ d

2λ

yielding the lower bound since the maximum is larger than the half sum.
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This result is satisfactory since we obtain the good order. Notice that when r goes
to 0 we recover (up to some universal constant) the Gaussian Poincaré constant,
and when λ goes to +∞ we recover (up to some universal constant) the Poincaré
constant of the uniform measure on the sphere rSd−1 which is the limiting measure
of μλ,X . Also notice that the obstacle is really an obstacle since the Poincaré
constant is larger than the Gaussian one.

Remark 1.1 It is immediate that the same upper bound is true (with the same proof)
for ν0

λ,r,R(dx) = Z−1
λ,r,R 1R>|x|>r e−λ |x|

2
i.e. the Gaussian measure restricted to a

spherical shell {R > |x| > r}. For the lower bound some extra work is necessary.

1.2.2 A First Estimate for a General y Using Perturbation

An intuitive idea to get estimates on the Poincaré constant relies on the Lyapunov
function method developed in [5] which requires a local Poincaré inequality usually
derived from Holley-Stroock perturbation’s argument. To be more precise, let us
introduce νyλ,r which is the Gaussian measure with mean −y ∈ R

d restricted to

R
d − B(0, r), and its natural generator

Ly = 1

2
Δ− λ 〈x + y,∇〉 .

If we consider the function x �→ h(x) = |y + x|2 we see that

Lyh(x) = d − 2λ|x + y|2 ≤ − λh(x) if |x| ≥ |y| + (d/λ)1/2 .

So we can use the method in [5]. Consider, for ε > 0, the ball

U = B
(

0,
(
|y| + (d/λ)1/2

)
∨ (r + ε)

)
.

h is a Lyapunov function satisfying

Lyh ≤ −λh+ d 1U .

Since Uc does not intersect the obstacle B(0, r), we may follow [14] and obtain that

CP (ν
y
λ,r) ≤

2

λ
+

(
2

λ
+ 2

)
CP (ν

y
λ,r , U + 1) ,

where CP (ν
y
λ,r , U + 1) is the Poincaré constant of the measure νyλ,r restricted to the

shell

S =
{
r < |x| < 1 +

((
|y| + (d/λ)1/2

)
∨ (r + ε)

)}
.
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Actually since hmay vanish, we first have to work with h+η for some small η (and
small changes in the constants) and then let η go to 0 for the dust to settle.

Now we apply Holley-Stroock perturbation argument. Indeed

ν
y
λ,r(dx) = C(y, λ) e−2λ 〈x,y〉 ν0

λ,r(dx)

for some constant C(y, λ). In restriction to the shell S, it is thus a logarithmically
bounded perturbation of ν0

λ,r with a logarithmic oscillation less than

4λ |y|
(

1 +
((

|y| + (d/λ)1/2
)
∨ (r + ε)

))

so that we have obtained

CP (λ,B(y, r)) ≤ 2

λ
+

(
2 + 2

λ

) (
1

λ
+ r2

d

)
e4λ |y| (1+((|y|+(d/λ)1/2)∨(r+ε))) .

The previous bound is bad for small λ’s but one can use the homogeneity
property (1.6), and finally, letting ε go to 0

Proposition 1.2 For a general y, the measure μλ,B(y,r) satisfies a Poincaré in-
equality (1.5) with

CP (λ,B(y, r)) ≤ 2

λ

(
1 + 2

(
1 + r2 λ

d

)
e

4
√
λ |y|

(
1+

(
|y|√λ+d1/2

)
∨r√λ

))
.

The previous result is not satisfactory for large values of |y|, r or λ. In addition
it is not possible to extend the method to more than one obstacle. Finally we have
some extra dimension dependence when y = 0 due to the exponential term. Our
aim will now be to improve this estimate.

Another possible way, in order to evaluate the Poincaré constant, is to write, for

g = f −
∫
f (x) e−λ〈x,y〉 ν0

λ,r (dx)∫
e−λ〈x,y〉 ν0

λ,r(dx)
, so that

∫
g(x) e−λ〈x,y〉 ν0

λ,r(dx) = 0

Varνyλ,r
(f ) ≤

∫
g2 dν

y
λ,r = C(λ, y, r)

∫ (
g e−λ〈x,y〉

)2
dν0

λ,r (1.8)

≤ C(λ, y, r) CP (λ,B(0, r))
∫ ∣∣∣∇ (

g e−λ〈x,y〉
)∣∣∣2 dν0

λ,r (1.9)

≤ 2CP (λ,B(0, r))

(∫
|∇g|2 dνyλ,r + λ2 |y|2

∫
g2 dν

y
λ,r

)
.

(1.10)
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It follows first that, provided 2CP (λ,B(0, r)) λ2 |y|2 ≤ 1
2 ,

∫
g2 dν

y
λ,r ≤ 4CP (λ,B(0, r))

∫
|∇g|2 dνyλ,r ,

and finally

Proposition 1.3 If 4 λ |y|2
(

1 + r2 λ
d

)
≤ 1, the measure μλ,X where X =

B(y, r) satisfies a Poincaré inequality (1.5) with

CP (λ,B(y, r)) ≤ 4

(
1

λ
+ r2

d

)
.

One can note that under the condition 4 λ |y|2
(

1 + r2 λ
d

)
≤ 1, Propositions 1.2

and 1.3 yield, up to some dimension dependent constant, similar bounds. Of course
the first proposition is more general.

1.3 Using Lyapunov Functions

In what we did previously we have used Lyapunov functions vanishing in a
neighborhood of the obstacle(s). Indeed a Lyapunov function (generally) has to
belong to the domain of the generator, in particular its normal derivative (generally)
has to vanish on the boundary of the obstacle. Since it seems that a squared distance
is a good candidate it is natural to look at the geodesic distance in the punctured
domain D (see [2] and also [23] for small time estimates of the density in this
situation). Unless differentiability problems (the distance is not everywhere C2) it
seems that this distance does not yield the appropriate estimate (calculations being
tedious).

Instead of trying to get a “global” Lyapunov function, we shall build “locally”
such functions.

In this section we consider the case 1 ≤ N ≤ +∞ i.e. we may consider as well
an infinite number of obstacles.

To be more precise, consider an open neighborhood (in D) U of the obstacles
and some smooth function χ supported in D such that 1Uc ≤ χ ≤ 1 (in particular
χ vanishes on the boundary of the obstacles). Let f be a smooth (compactly
supported) function and m be such that

∫
χ (f −m) dμλ,X = 0. Then

Varμλ,X (f ) ≤
∫
D
(f −m)2dμλ,X =

∫
U
(f −m)2dμλ,X +

∫
Uc
(f −m)2dμλ,X

≤
∫
U
(f −m)2dμλ,X +

∫
Rd

χ2 (f −m)2dμλ,X



12 E. Boissard et al.

≤
∫
U
(f −m)2 dμλ,X + 1

2λ

∫
Rd

|∇(χ (f −m))|2 dμλ,X

≤
∫
U
(f −m)2 dμλ,X + 1

λ

∫
D

(
|∇χ |2 (f −m)2 + χ2 |∇f |2

)
dμλ,X ,

where we have used that μλ,X is simply the Gaussian measure on the support of χ ,
introducing the Poincaré constant of the Gaussian 1/2λ. It follows

Varμλ,X (f ) ≤
∫
D

(f −m)2dμλ,X

≤
(

1 + ‖ ∇χ ‖2∞
λ

) ∫
U

(f −m)2 dμλ,X + 1

λ

∫
D

|∇f |2 dμλ,X .

(1.11)

We thus see that what we have to do is to get some bound for
∫
U (f −m)2 dμλ,X

in terms of the energy
∫
D
|∇f |2 dμλ,X for any smooth f which is exactly what is

done by finding a “local” Lyapunov function.

1.3.1 Two Useful Lemmas on Lyapunov Function Method

We may now present two particularly useful lemmas concerning Lyapunov function
method and localization. Let us begin by the following remark: in the previous
derivation assume that for some p > 1 and some constant C,

∫
U
(f −m)2dμλ,X ≤ λ

p ‖ ∇χ ‖2∞

∫
Rd

χ2 (f −m)2dμλ,X + C

∫
D

|∇f |2 dμλ,X .

(1.12)

Then, using the Poincaré inequality for the Gaussian measure, we have

∫
Rd

χ2 (f −m)2dμλ,X ≤ 1

λ

∫
Rd

(
|∇χ |2 (f −m)2 + χ2 |∇f |2

)
dμλ,X

≤ ‖ ∇χ ‖2∞
λ

∫
U
(f −m)2 dμλ,X + 1

λ

∫
D

|∇f |2 dμλ,X

≤ 1

p

∫
Rd

χ2 (f −m)2dμλ,X

+ 1

λ
(1 + C ‖ ∇χ ‖2∞)

∫
D

|∇f |2 dμλ,X
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so that
∫
Rd

χ2 (f −m)2dμλ,X ≤ p

(p − 1)λ
(1 + C ‖ ∇χ ‖2∞)

∫
D

|∇f |2 dμλ,X

and using (1.12)

∫
U
(f −m)2dμλ,X ≤

(
C + 1

(p − 1) ‖ ∇χ ‖2∞
(1 + C ‖ ∇χ ‖2∞)

) ∫
D

|∇f |2 dμλ,X

and finally

Lemma 1.1 If (1.12) holds for some smooth χ supported inD and such that 1Uc ≤
χ ≤ 1, then

Varμλ,X (f ) ≤ 1

p − 1

(
Cp + 1

‖ ∇χ ‖2∞
+ p(1 + C ‖ ∇χ ‖2∞)

λ

) ∫
D

|∇f |2 dμλ,X .

From now on we assume that ∂D is smooth enough and we denote by n the
normalized inward (pointing into D) normal vector field on ∂D.

Now recall the basic lemma used in [5, 14] we state here in a slightly more
general context (actually this lemma is more or less contained in [14] Remark 3.3)

Lemma 1.2 Let f be a smooth function with compact support in D̄ and W a
positive smooth function. Denote by μS

λ,X the trace (surface measure) on ∂D of
μλ,X . Then the following holds

∫
D

−LW
W

f 2 dμλ,X ≤ 1

2

∫
D

|∇f |2 dμλ,X + 1

2

∫
∂D

∂W

∂n

f 2

W
dμSλ,X .

Proof We recall the proof for the sake of completeness. Using the first Green
formula we have (recall that n is pointing inward)

∫
D

−2LW

W
f 2 dμλ,X =

∫
D

〈
∇
(
f 2

W

)
, ∇W

〉
dμλ,X +

∫
∂D

∂W

∂n

f 2

W
dμS

λ,X

= 2
∫
D

f

W
〈∇f,∇W 〉 dμλ,X −

∫
D

f 2

W2
|∇W |2 dμλ,X

+
∫
∂D

∂W

∂n

f 2

W
dμS

λ,X

= −
∫
D

∣∣∣∣ fW ∇W − ∇f
∣∣∣∣
2
dμλ,X +

∫
D

|∇f |2 dμλ,r

+
∫
∂D

∂W

∂n

f 2

W
dμS

λ,X .
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1.3.2 Localizing Around the Obstacles

From now on for simplicity we will assume that Dc = ∪i B(xi , ri) where the B’s
are non overlapping Euclidean balls. We shall indicate at the end how the results
extend to others situations, in particular to smoothed hypercubes.

We will construct first Lyapunov functions near the obstacles. Hence we will
build open neighborhoods Ui for each ball, and will assume that the Ui’s are non
overlapping sets too.

Not to introduce immediately too much notations, we shall write things for one
ball denoted by B(y, r). Let h > 0 and assume that one can find a Lyapunov
function W such that LW ≤ −θW for |x − y| ≤ r + 2h and ∂W/∂n ≤ 0 on
|x − y| = r . Choose some smooth function ψ such that 1{|x−y|≤r+2h} ≥ ψ ≥
1{|x−y|≤r+h} and, for some ε > 0,

‖ ∇ψ ‖∞≤ (1 + ε)/h .

Applying Lemma 1.2 to ψ f we obtain

∫
r<|x−y|<r+h

f 2 dμλ,X ≤
∫
r<|x−y|<r+2h

(ψ f )2 dμλ,X

≤ 1

θ

∫
r<|x−y|<r+2h

−LW
W

(ψ f )2 dμλ,X

≤ 1

θ

∫
r<|x−y|<r+2h

|∇f |2 dμλ,X

+ 1

θ

(
1 + ε

h

)2 ∫
r+h<|x−y|<r+2h

f 2 dμλ,X .

Me may of course let ε go to 0.
Next choose U = ∪i B(xi , ri + hi), 1D ≥ χ ≥ 1Uc and assume that the balls

B(xi, ri + 2hi) are non overlapping. Assume that one can find Lyapunov functions
Wi such thatLWi ≤ −θiWi for |x−xi | ≤ ri+2hi and ∂Wi/∂n ≤ 0 on |x−xi | = ri .
Let h = minhi , θ = min θi . Using a similar argument as before we may assume
that actually ‖ ∇χ ‖∞= 1

h
.

The previous inequality applied to f −m in each ball yields

∫
U

(f −m)2 dμλ,X ≤ 1

θ

∫
D

|∇f |2 dμλ,X + 1

θ h2

∫
Rd

χ (f −m)2 dμλ,X

(1.13)
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i.e. (1.12) is satisfied with

C = 1

θ
and p = λ θ h4 , (1.14)

provided the latter is larger than 1.
We may thus apply Lemma 1.1 and obtain

Lemma 1.3 Let h > 0 and θ > 0. Assume that for hi ≥ h the balls B(xi, ri + 2hi)
are non overlapping. Assume in addition that one can find Lyapunov functions Wi

such that LWi ≤ −θiWi for |x − xi | ≤ ri + 2hi , ∂Wi/∂n ≤ 0 on |x − xi | = ri ,
θi ≥ θ .

Then, provided λ θ h4 > 1,

Varμλ,X (f ) ≤ h2 (2 + (θ + λ) h2)

λ θ h4 − 1

∫
D

|∇f |2 dμλ,X .

Hence all we have to do is to find a “good” Lyapunov function.
For the moment, U will be an open ball centered at y. Without loss of generality

(if necessary) we may assume that y = (a, 0) for some a ∈ R
+, 0 being the

null vector of Rd−1. The (non normalized) normal vector field at the boundary of
B(y, r), pointing inwardD, is thus x − y = (x1 − a, x̄) ∈ R×R

d−1.
We shall exhibit some Lyapunov functionWy near the obstacle. For |x̄| ≤ r+2h

define

Wy(x
1, x̄) = (r + 2h+ ε)2 − |x̄|2 .

Then ∇Wy(x
1, x̄) = (0,−2x̄) and

∂Wy

∂n
(x1, x̄) = − 2|x̄|2

|x − y| ≤ 0 . (1.15)

Now LWy = −(d − 1) + 2 λ |x̄|2 so that LWy ≤ − 2 λWy provided

d − 1 ≥ 2 λ (r + 2h+ ε)2 . (1.16)

As before we may let ε go to 0 so that we obtain (1.13) with θ = 2λ and p =
2λ2 h4 > 1.

Choosing h = b/
√
λ, with p = 2b4 > 1, we see that we must have d ≥ 7 and

r
√
λ ≤ √

(d − 1)/2 − 2b. Finally we have shown

Proposition 1.4 Let b > 0 and r > 0 be such that 2b4 > 1 and r
√
λ ≤√

(d − 1)/2 − 2b, so that d ≥ 7.
Let Dc = ∪i B(xi , ri ) where ri ≤ r for all i. Assume that the balls B(xi, ri +

2b/
√
λ) are non overlapping.
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Then the measure μλ,X satisfies a Poincaré inequality (1.5) with

CP (λ,X ) ≤ 1

λ

b2(3b2 + 2)

2b4 − 1
.

The dimension dependence clearly indicates that, even for small r’s, we presum-
ably did not find the good Lyapunov function. However for large dimensions we see
that small enough obstacles do not alternate the finiteness of the Poincaré constant.

Also notice that if we define β = 2b
√

2√
d−1

the condition on r reads

r
√
λ ≤ (1−β)√(d − 1)/2 for some β such that 1 > β >

25/4

√
d − 1

. (1.17)

In the next three subsections we shall adapt the previous method in order to cover
all dimensions but for far enough obstacles.

1.3.3 Localizing Away from the Obstacles and the Origin

Consider now W(x) = |x|2 so that for 1 > η > 0,

LW(x) = d − 2λW(x) ≤ − 2λ (1 − η)W(x) for |x| ≥
√

d

2λη
.

We will obtain some Dirichlet-Poincaré bound, i.e. we look at functions g which are

smooth and compactly supported in |x| ≥
√

d
2λη (hence vanish on the boundary of

this large ball). But we also have to assume that no obstacle intersects the boundary
of this region of the space. Hence we have to replace the sphere {|x| = √

d/2λ η}
by some smooth hypersurface S such that S ⊂ D and

√
d/2λ η ≤ d(0, S) ≤

c
√
d/2λ η for some c > 1 and for all xi ∈ X , B(xi, ri + 3hi) ∩ S = ∅. We

also assume that the balls B(xi, ri + 3hi) are non overlapping.
It will be clear in what follows that such an S does exist, but for the moment the

existence of S is an assumption. The whole spaceD in thus divided in two connected
componentsD0 containing 0 and D∞ such that S is the boundary of both.

We consider now the xi ∈ X such that B(xi, ri + 3hi) ⊂ D∞, in particular |xi |
is large enough. We denote by X∞ this set.

Let g be compactly supported in D∞. For all 1 ≤ ε ≤ 2 we apply Lemma 1.2 in

Dε = D∞ ∩xi∈X∞ {|x − xi | ≥ ri + εhi} ,
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since the support of g does not intersect S, i.e.

∫
Dε

−LW
W

g2 dμλ,X ≤ 1

2

∫
Dε

|∇g|2 dμλ,X + 1

2

∫
∂Dε

∂W

∂n

g2

W
dμελ,X ,

where με
λ,X denotes the trace of μλ,X on the boundary ∂Dε .

It yields for all ε as before

∫
Dε

g2 dμλ,X ≤ 1

2λ (1 − η)

∫
Dε

−LW
W

g2 dμλ,X

≤ 1

4λ (1 − η)

∫
D1

|∇g|2 dμλ,X

+ 1

4λ (1 − η)

∫
∂Dε

∂W

∂n

g2

W
dμελ,X .

Remark that (1/W) | ∂W
∂n

|(x) ≤ 2/|x| so that we obtain

∫
D2

g2 dμλ,X

≤ 1

4λ (1 − η)

⎛
⎝∫

D1

|∇g|2 dμλ,X +
∑

xi∈X∞

2

(|xi| − ri − 2hi)

∫
|x−xi |=ri+εhi

g2 dμε
λ,X

)
.

Integrating the previous inequality with respect to ε for 1 ≤ ε ≤ 2 we obtain

Lemma 1.4 With the notations of this subsection, let g be a smooth function
compactly supported in D∞, then

∫
D2

g2 dμλ,X

≤ 1

4λ (1 − η)

⎛
⎝∫

D1

|∇g|2 dμλ,X +
∑

xi∈X∞

2

hi (|xi| − ri − 2hi)

∫
ri+hi≤|x−xi |≤ri+2 hi

g2 dμλ,X

)
.
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1.3.4 Localizing Away from the Origin for the Far Enough
Obstacles

Now we shall put together the previous two localization procedures.
Remark that, during the proof of Lemma 1.3 (more precisely with an immediate

modification), we have shown the following: provided we can find a Lyapunov
function in the neighborhood |x − y| ≤ r + 3h of the obstacle |x − y| ≥ r ,

∫
r<|x−y|<r+2h

f 2 dμλ,X ≤ 1

θ

∫
r<|x−y|<r+3h

|∇f |2 dμλ,X

+ 1

θ h2

∫
r+2h<|x−y|<r+3h

f 2 dμλ,X ,

so that using the Lyapunov function Wy in Sect. 1.3.2 (yielding θ = 2 λ) we have,
provided d − 1 ≥ 2λ (r + 3h)2,

∫
r<|x−y|<r+2h

f 2 dμλ,X ≤ 1

2λ

∫
r<|x−y|<r+3h

|∇f |2 dμλ,X (1.18)

+ 1

2λh2

∫
r+2h<|x−y|<r+3h

f 2 dμλ,X .

Hence we have to assume that, at least for the far enough obstacles, d − 1 ≥
2λ (ri + 3hi)2. At the same time, Lemma 1.4 shows that we have to choose hi as
large as possible. So in the sequel we choose

λ = 1 , b < 1 , hi = h = b

3

√
(d − 1)/2 , η = 1

2
.

In order to fulfill the conditions in the previous subsection, we have to assume
that for all far enough xi , (i.e. all xi such that |xi | > c

√
d +√

(d − 1)/2 for some
c ≥ 1)

ri ≤ (1 − b)
√
(d − 1)/2 .

We thus make the following assumption

Theorem 1.1 Ordering the xi’s such that |xi| ≤ |xi+1| for all i, we assume that
there exists some 0 ≤ n < +∞ such that ri ≤ (1 − b)

√
(d − 1)/2 for some b < 1

and all i ≥ n. In addition we assume that for i ≥ n the balls B(xi, ri + 3h) are non
overlapping.

Consider now the smallest c ≥ 1
h3

√
d

(this value will be explained below) such

that the open ball Bd = B(0, c
√
d) contains all the B(xi, ri + 1) for i < n. Bd

can contain or intersect only a finite number of balls B(xi, ri + h) for i ≥ n. If
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such a ball is included in Bd there is nothing to do. If such a ball intersects Bd but
is not contained in Bd we may smoothly deform the boundary of Bd in order to
push B(xi, ri + h) in the interior of the modified domain. We can do so for all balls
intersecting the boundary and in addition in a such a way that all othersB(xi, ri+3h)
are still in the exterior of the modified domain. The boundary of this deformation
of Bd is denoted by S and it is easily seen that with this construction we are in the
situation of the previous subsection.

From now on we use the notationD0, D∞ and Dε introduced therein.
Now for a smooth function g with compact support included in D∞, we denote

A =
∫
D∞−D2

g2 dμλ,X ,

B =
∫
D2

g2 dμλ,X ,

and

C =
∫
D∞

|∇g|2 dμλ,X .

According to (1.18) and to Lemma 1.4, we obtain (recall that λ = 1)

A ≤ 1

2

(
C + 1

h2 B

)
and B ≤ 1

2

(
C + 2

h c
√
d
A

)
.

Hence,

A ≤ 1

2

(
1 + 1

2 h2

)
C + 1

2 h3 c
√
d
A ,

and thanks to our choice of c we get finally

A ≤
(

1 + 1

2 h2

)
C , B ≤

(
1 + h2

)
C .

This yields

Lemma 1.5 Let 0 < b < 1 and h = b
3

√
(d − 1)/2. Assume that λ = 1, and

Assumption 1.1 is satisfied. Then, for all smooth function g, compactly supported in
D∞ (which depends on b), it holds

∫
g2 dμλ,X ≤ K

∫
|∇g|2 dμλ,X ,
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with

K = 2 + 1

2h2 + h2 .

1.3.5 Localizing Around the Origin for a Far Enough Single
Obstacle

Assume that N = 1 and that the single obstacle is far enough, i.e. n = 0 in
Assumption 1.1. Actually, in order to get explicit bounds, we shall take here for
D∞ the exterior of a large ball B(0, c

√
d) but assume that B(y, r + 3h) lies in the

complement of B(0, c
√
d + 1).

To get some bound for the Poincaré constant, it remains now to follow the method
in [5, 14]. Let f be a smooth function with compact support. Assume that we are in
the situation of Lemma 1.5 (in particular λ = 1).

Recall that μλ,X restricted to the ball {|x| ≤ c
√
d + 1} is just the Gaussian

measure restricted to the ball (since this ball does not intersect the obstacle), hence
satisfies a Poincaré inequality with a constant less than 1

2 . If

m =
∫
|x|≤c√d+1

f dμλ,X /μλ,X (|x| ≤ c
√
d + 1) ,

we have

Varμλ,X (f ) ≤
∫
D

(f −m)2dμλ,X

so that it is enough to control the second moment of f̄ = f −m.
We write

f̄ = χ f̄ + (1 − χ) f̄ = χf̄ + g

where χ is 1-Lipschitz and such that 1|x|≤c√d ≤ χ ≤ 1|x|≤c√d+1. g is thus

compactly supported in |x| ≥ c
√
d so that we may apply what precedes. In

particular

∫
D

f̄ 2 dμλ,X ≤ 2
∫
|x|≤c√d+1

f̄ 2 dμλ,X + 2
∫
D

g2 dμλ,X

≤
∫
|x|≤c√d+1

|∇f |2 dμλ,X + 2K
∫
D

|∇g|2 dμλ,X
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≤
∫
|x|≤c√d+1

|∇f |2 dμλ,X + 4K
∫
x∈D,|x|≥c√d

|∇f |2 dμλ,X

+4K
∫
c
√
d+1≥|x|≥c√d

f̄ 2 dμλ,X

≤ (1 + 2K)
∫
|x|≤c√d+1

|∇f |2 dμλ,X + 4K
∫
x∈D,|x|≥c√d

|∇f |2 dμλ,X

≤ (1 + 6K)
∫
D

|∇f |2 dμλ,X .

We have thus proved, using (1.6)

Proposition 1.5 Assume that N = 1. Let h = b
3

√
(d − 1)/2 and c > 1/(h3

√
d).

Assume that for some 0 < b < 1, we have r
√
λ ≤ (1 − b)

√
(d − 1)/2 and that

|y|√λ > 1 + c
√
d +√

(d − 1)/2.
Then the measure μλ,X satisfies a Poincaré inequality (1.5) with

CP (λ,B(y, r)) ≤ 1

λ
(1 + 6K) ,

with K = 2 + h2 + 1
2h2 .

The main interest of the previous proposition is that it shows that for a single far
enough small obstacle the Poincaré constant does not depend on the location of the
obstacle. We also have tried to trace a little bit the constants to show that we obtain
some tractable explicit upper bound, the final step being to optimize in b (left to the
reader).

1.3.6 A General Result for a Single Obstacle with Small Radius

We can gather together all the previous results in the case N = 1. For the sake of
simplicity the next theorem is not optimal, but readable.

Theorem 1.2 There exists some universal constant κ such that if

r
√
λ ≤ 1

2

√
(d − 1)/2 ,

the measure μλ,X where X = {y} is a singleton, satisfies a Poincaré inequal-
ity (1.5) with

CP (λ,B(y, r)) ≤ κ

λ
.
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Proof If d is big enough (d ≥ 33) we may use Proposition 1.4. If d ≤ 33 and |y|√λ
large, we may apply Proposition 1.5 with b = 1/(2

√
d − 1). Finally, if d ≤ 33 and

|y|√λ is small we may use Proposition 1.2.

Remark 1.2 In comparison with Proposition 1.4, we have spent a rather formidable
energy in order to cover the small dimension situation. But the alternate method we
have developed for large |y| will be useful in other contexts, in particular for an
infinite number of obstacles.

It is also worth noticing that we have used Proposition 1.2 that cannot be extended
to more than one obstacle.

1.3.7 The Case of Infinitely Many Obstacles

Now consider the case with more than obstacle. If we look at the localization
procedure in Sect. 1.3.5 we see that a key point is to get the value (or a bound)
for the Poincaré constant in a neighborhood of the origin. If all obstacle are far
enough we can mimic what is done in Sect. 1.3.5. But in general, the n introduced
in Assumption 1.1 is not equal to 0, so that we have to look at the Poincaré constant
in D0. Since this set is compact and with a smooth boundary, the finiteness of the
Poincaré constant is ensured, for instance by the Down-Meyn-Tweedie theory as we
indicate in the introduction.

Unfortunately it is very hard to get some explicit upper bound of this constant
depending on all points xi in X such that the obstacles B(xi, ri ) are subsets of D0.
Exactly the same problem occurs in [16] where the value of the Poincaré constant
(or the spectral gap) for the parameter ε (using the notations therein) is shown to be
quadratic in ε, but with an unknown constant pre-factor.

We can nevertheless mimic what we did in Sect. 1.3.5 replacing the value 1/2 by
the unknown Poincaré constant in D0. This yields

Theorem 1.3 For any 1 ≤ N ≤ +∞ (in particular N = +∞), under
Assumption 1.1, μλ,X satisfies a Poincaré inequality with constant CP (λ,X ) =
κ
λ
< +∞ where κ depends on n, d and the structure of the (finite) number of the

obstacles that are close to the origin.
More precisely, with the notations of Proposition 1.5, κ ≤ 4K + (2+ 4K)CP(n)

where CP (n) denotes the Poincaré constant in D0.

Corollary 1.1 Ordering the xi’s such that |xi | ≤ |xi+1| for all i, assume that there
exists some 0 ≤ n < +∞ such that ri ≤ (1 − b)

√
(d − 1)/2 for some b < 1

and all i ≥ n, and that in addition there exists ε > 0 such that for all pair i �= j ,
dist (B(xi, ri ), B(xj , rj )) ≥ ε.

Then CP (λ,X ) < +∞.
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Proof Take b′ = (
ε/2

√
(d − 1)/2

)∧b. The condition on the radii ri is still satisfied

replacing b by b′ while h = b′
3

√
(d − 1)/2 satisfies 6h ≤ ε. Hence the balls with

radii ri + 3h are non overlapping and we may apply the previous Theorem.

1.3.8 Others Obstacles Like Hypercubes

Replacing Euclidean balls by others geometries of obstacles requires first to find a
Lyapunov function in the neighborhood of each obstacle as in Sect. 1.3.2. We will
not discuss this in details here, but only consider the case where we replace the
Euclidean ball B(xi, ri ) by some hypercube, in a nice position.

Namely we consider the x’s such that x = xi + (z xi|xi | + yi) where yi belongs
to the hyperplane orthogonal to xi intersected with the d − 1 l∞ ball of radius ri
and z ∈ [−ri, ri ]. In other words we consider hypercubes in d dimensions such
that, first the line connecting the origin to the center of mass xi of the hypercube
is orthogonal to some face of the latter, second the hypercube is included in the
Euclidean ball B(xi, ri

√
d).

In this situation the function Wxi introduced in Sect. 1.3.2 (replacing y by xi) is
still a Lyapunov function with a non-positive normal derivative on the boundary of
the hypercube. The reader who is afraid by the singularities of the boundary can
“smooth the corners”.

The results in Sects. 1.3.6 and 1.3.7 easily extend, but this time with ri ≤ b for
some constant b independent of the dimension. Of course we have to assume that
all the obstacles are in the nice position described above.

1.4 General Spherical Obstacles Using Stochastic Calculus

As we have seen, provided we are able to find a good Lyapunov function near the
obstacles, we are able to control (even if not explicitly) the Poincaré constant in D.
The choice we made in the previous section implies a limitation for the radius of
the obstacles. What we shall do now is to find a new Lyapunov function near the
obstacles. This Lyapunov function will be built by trying to understand how fast the
process goes around the obstacles.

Indeed recall the following results on the exponential moments of hitting times
(see e.g.[14]).

Proposition 1.6 Let U be a bounded connected subset with smooth boundary of D
and TU denotes the hitting time of U .

• Assume that for some θ > 0 and all x ∈ D, Ex
(
eθ TU

)
< +∞. Define W(x) =

Ex

(
eθ TU

)
. Then W belongs to the domain of the generator L of the reflected
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Ornstein-Uhlenbeck process (in particular ∂W/∂n = 0 on ∂D), and satisfies
LW ≤ −θ W outside of U .

• For all x ∈ D,

Ex

(
eθ TU

)
< +∞ for all θ < θ(U), with θ(U) = μλ,X (U)

16CP (λ,X )
.

Actually, [14] only dealt with diffusion processes, without reflection. But the proof
of this Proposition lies on three facts which are still true here: the symmetry of
μλ,X , the existence of a density for the law at time t > 0 of the process starting
at any x, the results of Proposition 1.4 and Remark 1.6 in [12] which hold true for
general Markov processes with a square gradient operator.

Hence provided we can control exponential moments of hitting times, we can
build (non explicit) Lyapunov functions.

The discussion below is done for a single obstacle B(y, r). We shall conclude at
the end of the section for more than one obstacle.

1.4.1 The Rate of Rotation

To understand how fast the process goes around the obstacle, we introduce a new
stochastic process Yt which is just the reflected Ornstein-Uhlenbeck process in the
shell S = {r ≤ |x − y| ≤ r + q} for some positive q , i.e.

{
dYt = dWt − λYt dt + (Yt − y) dLt ,

Lt =
∫ t

0

(
1|Ys−y|=r − 1|Ys−y|=r+q

)
dLs.

(1.19)

Next as usual, we assume that y = (a, 0) and write the generic point of the
Euclidean space as x = (x1, x̄). Again n denotes the normal vector field (x1 −a, x̄)
(pointing either inward or outward), so that, for any nice function g, Ito formula
yields

g(Yt ) = g(Y0)+
∫ t

0
∇g(Ys).dWs +

∫ t

0
Lg(Ys)ds + r

∫ t

0

∂g

∂n
(Ys) dLs .

Finally we shall look at the process

Zt = arccos

⎛
⎝ Y 1

t − a√
|Ȳt |2 + (Y 1

t − a)2

⎞
⎠ = ϕ(Yt ) . (1.20)
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We can calculate

∇ϕ(x) =
(

−|x̄|
(x1 − a)2 + |x̄|2 ,

(x1 − a) x̄

|x̄| ((x1 − a)2 + |x̄|2)
)

so that
∂ϕ

∂n
(x) = 0 .

Consider

M = {−r − q ≤ x1 − a ≤ −r , x̄ = 0} .

If Y0 /∈ M , i.e. Z0 �= π , we may apply Ito-Tanaka formula up to time TM (the
first time Y. hits M) yielding for t < TM ,

Z2
t = Z2

0 +
∫ t

0
2Zs 〈∇ϕ(Ys), dWs〉 +

∫ t

0
|∇ϕ(Ys)|2 ds (1.21)

+
∫ t

0

Zs(2λ a |Ȳs | + (d − 2) (Y 1
s − a))

|Ȳs |2 + (Y 1
s − a)2

ds

= Z2
0 +

∫ t

0

2Zs(|Ȳs |2 + (Y 1
s − a)2

)1/2 dBs

+
∫ t

0

1 + Zs(2λ a |Ȳs | + (d − 2) (Y 1
s − a))

|Ȳs |2 + (Y 1
s − a)2

ds

where B. is a new standard Brownian motion. We have considered Z2 instead of Z
to kill the local time at 0 of Z. (since t < TM the local time of Z. at π does not
appear too).

Introduce the subset

K = {x1 − a < 0 , |x̄| ≤ η < r} ∩ S .

Since M ⊂ K we know that TK ≤ TM so that (1.21) holds for t ≤ TK . We want to
estimate TK by comparing Zt with a simpler diffusion process for which estimates
are easy to obtain (since they are known).

Set

A(t) =
∫ t

0

1(|Ȳs |2 + (Y 1
s − a)2

) ds ,

and A−1(t) the inverse of A(.). Notice that (t/(r + q)2) ≤ A(t) ≤ (t/r2) so that
r2t ≤ A−1(t) ≤ (r + q)2t .
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Define the time changed process Ỹt = YA−1(t) = (Ỹ 1
t , Ỹ

2
t ) and Ut = Z2

A−1(t)
.

Then for t < A(TM), U. satisfies

Ut = Z2
0 +

∫ t

0
2
√
Us dB̃s +

∫ t

0

(
1 +√

Us (2λ a|Ỹ 2
s | + (d − 2) (Ỹ 1

s − a))
)
ds ,

(1.22)

for some new Brownian motion B̃.. In order to compare U. with some CIR process
(see Appendix 2) we have to bound the drift term from below.

Remark that for a point ỹ ∈ Kc,

|ỹ2| =
√
(|ỹ2|)2 + (ỹ1 − a)2 sin(

√
u) ≥ r sin(

√
u) ≥ η r

π(r + q)

√
u .

Hence looking separately at the case ỹ1 − a > 0 and ỹ1 − a ≤ 0 it follows that the
drift term satisfies

1 +√
Us (2λ a|Ỹ 2

s | + (d − 2) (Ỹ 1
s − a)) ≥ 1 +

(
2λ a η r

π(r + q)
− (d − 2)(r + q)(2 −√

π)

π

)
Us .

Hence up to time TK , using standard comparison results for one dimensional
diffusions, we know that Ut ≥ Vt where

dVt = 2
√
Vt dB̃t + (1 + 2βVt)dt

i.e. V. is a generalized squared radial Ornstein-Uhlenbeck process, with

2β = 2λ a η r

π(r + q)
− (d − 2)(r + q)(2 −√

π)

π
(1.23)

provided β ≥ 0.
It follows that A(TK) is smaller than the first hitting time of π by V.. According

to (1.48) with δ = 1, we thus have

Ex(e
θTK ) < +∞ for all x ∈ S provided θ <

β

(r + q)2
.

It is thus tempting to define W(x) = Ex

(
eθ TK

)
, which satisfies LW = −θW in

S −K . This is not yet enough but will be useful (Fig. 1.2).
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y
s

K2

K1

Fig. 1.2 Rotation around the obstacle

1.4.2 The Poincaré Inequality in the Shell S

Using what precedes we shall prove the following first result.

Proposition 1.7 Let η, s, q be positive numbers such that η + s < r , s < q and β
given by (1.23) is positive. Assume that a > r + s + 1√

λ
.

Then, the (non normalized) restriction of μλ,r to the shell S = {r ≤ |x − y| ≤
r + q} satisfies a Poincaré inequality

∫
S

f 2 dμλ,r ≤ CP (λ, S)

∫
S

|∇f |2 dμλ,r + 1

μλ,r (S)

(∫
S

f dμλ,r

)2

where

CP (λ, S) ≤ 2(r + q)2

β
+ 2

λ

(
1 + (r + q)2

β s2

) (
2

λs2 + 5

2

)
.

Proof We shall use the results in the previous subsection. DefineW(x) = Ex

(
eθTK

)
for x ∈ S. Then W belongs to the domain of the generator of Y. (in particular the
normal derivative on the shell’s boundary vanishes) and satisfies LW = −θW in
S −K .

Consider now

K ′ =
{
x1 − a < 0 , |x̄| ≤ η + s < r

}
∩ S .
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Then as before, using [14] formula (2.14) (in the present framework of our reflected
Ornstein-Uhlenbeck process Y.), we have

CP (λ, S) ≤ 2

θ
+

(
2

θ s2 + 2

)
CP (K

′) . (1.24)

It remains to get some bound for CP (K ′).
Again we divideK ′ in two overlapping parts:

K ′
1 =

{
−r − q < −r − s < x1 − a < 0 , |x̄| ≤ η + s < r

}
∩ S

and

K ′
2 =

{
x1 − a < −r , |x̄| ≤ η + s < r

}
∩ S .

Note thatK ′
2 is convex. Hence the restriction of the Gaussian measure toK ′

2 satisfies
a Poincaré inequality with constant 1/2λ.

As before it is then sufficient to build some Lyapunov function in K ′
1. This time

we choose W(x) = (x1)2. Note that, on one hand, the normal derivative of W on
|x̄| = η + s is equal to 0, while on the other hand, the (non normalized) inward
normal derivative of W on |x − y| = r is equal to 2(x1 − a)x1. The latter is thus
negative provided x1 > 0, hence in particular if a > r + s.

In addition,

LW(x) = 1 − 2λ(x1)2 ≤ −λ(x1)2 in K ′
1 (1.25)

as soon as a > r + s + (1/
√
λ). Thus, as before we obtain

CP (K
′) ≤ 1

λ

(
2

λs2 + 5

2

)
.

Now let a′ > r ′ + s′ + 1, y ′ = (a′, 0), η′ + s′ < r ′. Define (a, r, s, q, η) =
1√
λ
(a′, r ′, c′, q ′, η′) so that a > r + s + 1√

λ
. Define S′ = {r ′ ≤ |x − y ′| ≤ r ′ + q ′}.

The homogeneity property (1.6) is still available in our situation yielding

CP (1, S′) = λCP (λ, S)

for all λ. β given by (1.23) can thus be written

2β = 2 a′ η′ r ′

π(r ′ + q ′)
− (d − 2)(r ′ + q ′)(2 −√

π)

π
√
λ

,
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and goes to a′ η′ r ′
π(r ′+q ′) as λ goes to infinity. Hence, letting λ go to infinity in

Proposition 1.7 we get

CP (1, S′) ≤ 2π(r ′ + q ′)3

a′η′ r ′
+ 2

(
1 + (r ′ + q ′)3

(r ′)2 a′ η′ (s′)2

) (
2

(s′)2
+ 5

2

)
. (1.26)

We have thus obtained

Proposition 1.8 Let s < q , and assume that a > r + s + 1. Let 0 < η < r − s.
Then, the (non normalized) restriction of μ1,r to the shell S = {r ≤ |x − y| ≤

r + q} satisfies a Poincaré inequality

∫
S

f 2 dμ1,r ≤ CP (1, S)
∫
S

|∇f |2 dμ1,r + 1

μ1,r (S)

(∫
S

f dμ1,r

)2

where CP (1, S) is given by 1.26 (without ′).

1.4.3 A New Estimate for an Obstacle Which Is Not too Close
to the Origin

We may use Proposition 1.8 to build a new Lyapunov function near the obstacle
when λ = 1.

In the situation of the proposition consider TS/2 the hitting time of the “half”
shell S′ = {r + (q/2) ≤ |x − y| ≤ r + q}. Then according to Proposition 1.6 we
may define W(x) = Ex

(
eθTS/2

)
which satisfies LW = −θW for x ∈ S − S′ and

∂W/∂n = 0 on |x − y| = r , provided

θ <
1

8CP (1, S)

μ1,r (S
′)

μ1,r (S)
. (1.27)

Now we can first apply Lemma 1.3 with 2h = q/2, provided θh4 > 1.
It remains to choose all parameters. All conditions are satisfied for instance if

q4

44

1

16CP (1, S)

μ1,r (S
′)

μ1,r(S)
> 1 . (1.28)

It is not too difficult to be convinced that the ratio of the two measures is uniformly
(in r and y) bounded from below, provided a− r − q > 1 (1 can be replaced by any
positive constant), i.e. provided the origin is far enough fromB(y, r+q). Indeed the
measure restricted to S is mainly concentrated near the point (a − r − q, 0) which
belongs to both S and S′.
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Now look at the bound in Proposition 1.8. If r is small (goes to 0), the bound
for a given a becomes very bad. Indeed, for 2/s2 to be nice, we have to choose s
bounded from below, so that q is bounded from below too and since η < r the term
governed by 1/aη explodes.

Hence we may choose r > (1 − b)
√
(d − 1)/2 in order to cover the case which

is not covered by Theorem 1.2, or simply r > 1
2 .

Now, we have clearly to choose q as small as possible, but satisfying (1.28). To
simplify choose s = 1/4 so that CP (1, S) ≤ c where c is less than C(1 + q3/a) for
some universal constant C. We see that for (1.28) to be satisfied we only need q to
be greater than an universal constant. Hence

Proposition 1.9 One can find universal constantsm > 0 and C such that, provided
|y| > r +m and r > 1

2 , CP (1, B(y, r)) ≤ C.

1.4.4 Finiteness of the Poincaré Constant for an Infinite
Number of Spherical Obstacles

Of course we can use the previous construction of a Lyapunov function near the far
enough obstacles together with the ideas of Sect. 1.3.7 to cover the case of infinitely
many obstacles. To this end, instead of using Lemma 1.3 we should also follow
what we have done in Sects. 1.3.3 and 1.3.4, i.e. replace 2λ (= 2 here) by θ defined
above in (1.18). But we have to be accurate when using Lyapunov functions near
the obstacles, that the enlargements we are using are non overlapping. In particular
q and s have to be smaller than the half of the distance between obstacles.

Theorem 1.4 Let X = (xi)1≤i<+∞ a locally finite collection of distinct points,
ordered such that |xi | ≤ |xi+1| for all i, and R = (ri)1≤i<+∞ a collection of non-
negative numbers. Assume that there exists ε > 0 with |xi − xj | > ri + rj + ε for
all i �= j . Define D = R

d − ∪i B(xi , ri ) (for d ≥ 2) where B(y, r) denotes the
Euclidean ball with center y and radius r .

Then for any λ > 0, the Gaussian measure μλ,X has a finite Poincaré constant
and the reflected Ornstein-Uhlenbeck process in D is exponentially ergodic.

Proof Since the conditions are still satisfied when dilating the space we may assume
that λ = 1.

As for the proof of Corollary 1.1 we shall use the Lyapunov functions near
the obstacles outside some large enough smooth subset containing the origin to be
determined during the proof.

For small obstacles (ri ≤ 1
2

√
d − 1 for instance) we use the Lyapunov function

in Sect. 1.3.4. For the large obstacles we use the one introduced in the previous
subsection. With the notations of Sect. 1.3.4, and still with hi = h, we obtain

A ≤ 1

θ

(
C + 1

h2B

)
, B ≤ 1

2

(
C + 2

α h
A

)
,

where α = min{i large ; |xi| − ri − 2h}.
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We have to choose h, q, s of order ε (up to well chosen constants), so that for
A and B to be controlled by C it is enough that h3 α ≥ c(1 + (1/ε2)) for a large
enough c.

But it is not difficult to see that |xi| − ri → +∞ as i → +∞, so that there
exists a large enough constant c > 0 such that |xi| − ri ≥ c(1+ (1/ε5)) and we can
conclude.

1.5 Lower Bounds for Non Spherical Obstacles

We obtained in the previous section that for far enough obstacles, the radii of the
obstacles do not really increase the value of the Poincaré constant. Hence, roughly
speaking, the only radius that really matters is the one of the obstacle containing
the origin if such an obstacle exits (of course we did not prove the result in this
so general form). But actually this property is strongly linked to the geometry of
the obstacle, and we shall see below that replacing spherical obstacles by other
geometries will drastically modify the result.

1.5.1 Lower Bounds for Hypercubes via Stochastic Calculus

Replace the ball {|x−y| < r} with y = (a, 0) (a ≥ 0) by an hypercube,Hr = {|x1−
a| < r , |xj | < r for j ≥ 2}. As we already said, we may “smooth the corners” for
the boundary to be smooth (replacing r by r + ε), so that existence, uniqueness and
properties of the reflected process are similar to those we have mentioned for the
disc.

Consider the process Xt starting from x = (a + r, 0). Denote by S(r) =
minj≥2 S

j (r), where Sj (r) is the exit time of [−r, r] by the coordinate Xj. . Up
to time S(r), the Xj. ’s (j ≥ 2) are Ornstein-Uhlenbeck processes, starting at 0,
X1
. is an Ornstein-Uhlenbeck process reflected on a + r , starting at a + r; and

all are independent. Of course S(r) = TUc(r) where the set U(r) = {x1 ≥
a + r ; maxj≥2 |xj | ≤ r}.

According to Proposition 1.6, if

E(a+r,0)
(
eθ S(r)

)
= +∞ then CP (λ,X ) ≥ μλ,X (Ucr )

16 θ
. (1.29)

But according to (1.47) and to the independence of the coordinates of the process,
this holds as soon as θ > (d−1)λ

eλr
2−1

. In particular since μλ,X (Uc(r)) ≥ 1
2 , we always

have
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Theorem 1.5 Let D = R
d −Hr where Hr is the hypercube described above. Then

there exists an universal constant C such that the Poincaré constant in D satisfies

CP (λ, r) ≥ C e(λr
2)

dλ
.

Recall that we have shown that for small enough obstacles (r of order a
dimension free constant) the Poincaré constant is bounded from above by some
κ/λ.

What is interesting here is that the lower bound does not depend on the location
of y. In particular consider the situation of Theorem 1.4 with an infinite number of
hypercubes as obstacles, in the position described in Sect. 1.3.8, i.e. the line joining
the origin to the center of mass of each hypercube is orthogonal to some face of the
latter. Of course for far enough obstacles the measure of Uci (ri ) will still be larger
than one half. So if we allow the existence of a sequence of radii going to infinity
the process is no more exponentially ergodic.

1.5.2 An Isoperimetric Approach for Hypercubes

In this subsection, we present another approach for getting lower bounds. The
easiest way to build functions allowing to see the lower bounds we have obtained
in the previous subsection, is first to look at indicator of sets, hence isoperimetric
bounds.

We define the Cheeger constantCC(λ, y, r) as the smallest constant such that for
all subset A ⊂ D with μλ,X (A) ≤ 1

2 ,

CC(λ, y, r) μ
S
λ,X (∂A) ≥ μλ,X (A) . (1.30)

Recall that μS
λ,X (∂A) denotes the surface measure of the boundary of A in D

defined as

lim inf
h→0

1

h
μλ,X (Ah/A)

where Ah denotes the Euclidean enlargement of A of size h. The important fact
here is that A is considered as a subset of D. In particular, if we denote by ∂Sr the
boundary of the square Sr in the plane R

2, A ∩ ∂Sr ⊂ D and so does not belong to
the boundary of A in D.

The Cheeger constant is related to the L
1 Poincaré inequality, and it is well

known that

CP ≤ 4C2
C , (1.31)
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while CP can be finite but CC infinite. Hence an upper bound for the Cheeger
constant will provide us with an upper bound for the Poincaré constant while a
lower bound can only be a hint.

1.5.2.1 Squared Obstacle

For simplicity we shall first assume that d = 2, and use the notation in Sect. 1.5.1.
Consider for a > 0, the subset A = {x1 ≥ a + r , |x2| ≤ r} with boundary
∂A = {x1 ≥ a + r , |x2| = r}.

Recall the basic inequalities, for 0 < b < c ≤ +∞,

b2

1 + 2b2

(
e− b2

b
− e− c2

c

)
≤

∫ c

b

e− u2
du ≤ 1

2b

(
e− b2 − e− c2

)
. (1.32)

It follows, for r
√
λ large enough (say larger than one)

μλ,X (A)

μS
λ,X (∂A)

=
(∫ +∞
a+r e

−λz2
dz

) (∫ +r
−r e

−λu2
du

)

2 e−λr2
(∫ +∞
a+r e−λz

2
dz

)

≥ 1

2
√
λ
eλr

2
(

1 − 1

r
√
λ
e−λr2

)
,

so that

CC(λ, y, r) ≥ 1

2
√
λ
eλr

2
(

1 − 1

r
√
λ
e−λr2

)
. (1.33)

Note that this lower bound is larger than the one obtained by combining Cheeger’s
inequality (1.31) and the lower bound for the Poincaré constant obtained in
Theorem 1.5, since this combination furnishes an explosion like eλr

2/2.
We strongly suspect, though we did not find a rigorous proof, that this set is

“almost” the isoperimetric set, in other words that, up to some universal constant, the
previous lower bound is also an upper bound for the Cheeger constant. In particular,
we believe that this upper bound (hence the upper bound for the Poincaré constant)
does not depend on a. Of course, since we know that the isoperimetric constant of
the Gaussian measure behaves like 1/

√
λ, isoperimetric sets for the restriction of the

Gaussian measure to D have some (usual) boundary part included in the boundary
of the obstacle and our guess reduces to the following statement: if r is large enough,
for any subset B ⊂ D with given Gaussian measure, the standard Gaussian measure
of the part of the usual boundary of B that does not intersect ∂D is greater or equal
to C e−r2

times the measure of the boundary intersecting ∂D.
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1.5.2.2 Hypercubes

Of course, what we have just done immediately extends to d dimensions, defining
A as A = {x1 ≥ a + r , |xi| ≤ r for all 2 ≤ i ≤ d} and furnishes exactly the same
bound as (1.33) replacing 2 by 2(d − 1), i.e. in dimension d

CC(λ, y, r) ≥ 1

2(d − 1)
√
λ
eλr

2
(

1 − 1

r
√
λ
e−λr2

)
. (1.34)

In order to get a lower bound for the Poincaré constant, inspired by what
precedes, we shall proceed as follows: denote by A(u) the set

A(u) = {x1 ≥ a + r , |xi | ≤ u for all 2 ≤ i ≤ d} ,

and for r > 1, choose a Lipschitz function f such that 1A(r−1) ≤ f ≤ 1A(r), for
instance f (x) = (1 − d(x,A(r − 1)))+.

If Zλ denotes the (inverse normalizing) constant in front of the exponential
density of the Gaussian kernel (notice that Zλ goes to 0 as λ goes to infinity), it
holds

Varμλ,X (f ) ≥ μλ,X (A(r − 1))− (
μλ,X (A(r))

)2

≥ Zλ

∫ +∞

a+r
e−λu2

du

((∫ r−1

−r+1
e−λu2

du

)d−1

−Zλ
(∫ r

−r
e−λu2

du

)2(d−1) ∫ +∞

a+r
e−λu2

du

)
,

so that, there exists some universal constant c such that, as soon as r
√
λ > c,

Varμ(f ) ≥ Zλ

2

∫ +∞

a+r
e−λu2

du

(∫ r−1

−r+1
e−λu2

du

)d−1

.

At the same time again if r
√
λ > c,

∫
|∇f |2 dμλ,X ≤

∫ (
1A(r) − 1A(r−1)

)
dμλ,X

≤ Zλ

(∫ +∞
a+r

e−λu2
du

)
e−λ(r−1)2

(r − 1)λ
(d − 1)

(∫ r

−r
e−λu2

du

)d−2
.
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It follows, using homogeneity again, that

CP (λ, y, r) ≥ 1

2

(
r
√
λ− 1

(d − 1)λ

)
e(r

√
λ−1)2

(∫ r√λ−1
−r√λ+1

e−u2
du

)d−1

(∫ r√λ
−r√λ e

−u2
du

)d−2

≥
(
r
√
λ− 1

(d − 1)λ

)
e(r

√
λ−1)2 1

4
√
π

(
1 − e−(r

√
λ−1)2

r
√
λ− 1

)d−2

. (1.35)

Notice that this lower bound is smaller (hence worse) than the one we obtained in
Theorem 1.5, and also contain an extra dimension dependent term (the last one).
But of course it is much easier to get.

Since 1 is arbitrary, we may replace r
√
λ− 1 by r

√
λ− ε for any 0 ≤ ε ≤ 1, the

price to pay being some extra factor ε2 in front of the lower bound for the Poincaré
constant.

1.5.3 Back to Spherical Obstacles: Another Lower Bound

It is tempting to develop the same approach in the case of spherical obstacles. First
assume λ = 1.

Introduce for 0 ≤ u ≤ r ,

A(u) = {x1 ≥ a , |x̄| ≤ u} ∩ D .

As before we consider, for ε < u, a function 1A(u−ε) ≤ f ≤ 1A(u) which is 1/ε-
Lipschitz. Then

Varμλ,X (f ) ≥ μλ,X (A(u− ε))− (
μλ,X (A(u))

)2

and
∫

|∇f |2 dμλ,X ≤ (1/ε2)
(
μλ,X (A(u))− μλ,X (A(u− ε))

)
,

with

μλ,X (A(u)) = Zλ σ(S
d−2)

∫ u

0

(∫ +∞

a+
√
r2−s2

e−t2 dt
)
sd−2 e−s2

ds ,
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and σ(Sd−2) is the Lebesgue measure of the unit sphere. It follows

(Zλ)
−1

∫
|∇f |2 dμλ,X ≤ (σ (Sd−2)/ε2)

∫ u

u−ε

(∫ +∞
a+

√
r2−s2

e−t2 dt
)
sd−2 e−s2

ds

≤ σ(Sd−2)

2ε2

∫ u

u−ε
sd−2

(a +
√
r2 − s2)

e−(a+
√
r2−s2)2 e−s2

ds

≤ σ(Sd−2) ud−2 e−(a2+r2)

2ε2 (a +
√
r2 − u2)

∫ u

u−ε
e−2a

√
r2−s2

ds .

To get a precise upper bound for the final integral, we perform the change of variable
v = √

r2 − s2 so that

∫ u

u−ε
e−2a

√
r2−s2

ds =
∫ √

r2−(u−ε)2
√
r2−u2

v√
r2 − v2

e−2av dv

≤
√
r2 − (u− ε)2

2a(u − ε)

(
e−2a

√
r2−u2 − e−2a

√
r2−(u−ε)2

)

≤
√
r2 − (u− ε)2

2a(u − ε)
e−2a

√
r2−(u−ε)2

(
e

2aε(2u−ε)√
r2−(u−ε)2+

√
r2−u2 − 1

)
.

Again for r ≥ c for some large enough c, and a +√
r2 − u2 ≥ 1, for u > 2ε,

Varμλ,X (f ) ≥ 1

2
μλ,X (A(u− ε))

≥ 1

2
Zλ σ(S

d−2) e−(a2+r2)
∫ u−ε

0

a +
√
r2 − s2

1 + 2(a +
√
r2 − s2)2

×sd−2 e−2a
√
r2−s2

ds

≥ 1

2
Zλ σ(S

d−2) e−(a2+r2)

∫ u−ε
u−2ε

a +
√
r2 − s2

1 + 2(a +
√
r2 − s2)2

×sd−2 e−2a
√
r2−s2

ds

≥ 1

2
Zλ σ(S

d−2) e−(a2+r2) a +
√
r2 − (u− ε)2

1 + 2(a +
√
r2 − (u− 2ε)2)2

(u− 2ε)d−2

∫ u−ε
u−2ε

e−2a
√
r2−s2

ds .
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The last integral is bounded from below by

∫ u−ε

u−2ε
e−2a

√
r2−s2

ds ≥
√
r2 − (u− ε)2

2a(u− ε)
e−2a

√
r2−(u−ε)2

×
(

1 − e

−2aε(2u−3ε)√
r2−(u−ε)2+

√
r2−(u−2ε)2

)

We thus deduce

CP (1, B(y, r)) ≥ ε2 (a +
√
r2 − u2)(a +√

r2 − (u− ε)2)

1 + 2(a +
√
r2 − (u− 2ε)2)2

(u− ε)d−2

ud−2 H ,

(1.36)

with

H = 1 − e

−2aε(2u−3ε)√
r2−(u−ε)2+

√
r2−(u−2ε)2

e

2aε(2u−ε)√
r2−(u−ε)2+

√
r2−u2 − 1

.

For small r (smaller than c
√
d − 1 for some small enough c) it is not difficult to

show that CP (1, B(y, r)) ≥ cd , and presumably cd can be chosen independently of
d , using again hitting times.

The bound (1.36) is not interesting if a � r , since in this case H is very small,
unless ε is small enough (of order at most r/a), so that the lower bound we obtain
goes to 0 with r/a. Hence we shall only look at the case where a/r ≤ C. Since
2ε < u < r , for H to be bounded from below by some universal constant, we see
that auε ≤ cr for some small enough universal constant c, so that we have to choose
u and ε of order

√
r/a. It is then not difficult to see that, combined with all what we

have done before, this will furnish the following type of lower bound

Proposition 1.10 There exists a constant Cd such that for all y and r ,

CP (λ,B(y, r)) ≥ Cd

λ

(
1 + r

|y| ∨ 1

)
.

Even for very large r’s, the previous method furnishes a dimension dependent
bound. Proposition 1.10 is interesting when the obstacle contains the origin, in
which case we have a linear dependence in r/|y|. Of course, when y = 0 we know
that the lower bound growths as r2. Also notice that for large a the previous lower
bound is similar to the upper bound we have obtained in the previous section.
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B
Dc

Fig. 1.3 A non convex obstacle Dc in gray. The trap B in lightgray

1.5.4 How to Kill the Poincaré Constant with Far But Small
Non Convex Obstacles

In a previous subsection we have seen that an infinity of appropriately oriented
squared obstacle with “centers” and radii going to infinity furnishes an infinite
Poincaré constant. We shall see here that if we break the convexity of the obstacle,
even small obstacles at infinity can kill the Poincaré constant.

For simplicity, we will assume that d = 2, and we shall look at λ = 1 with a
non-convex bounded obstacle, namely we consider

Dc = {0 ≤ y − x1 ≤ α ; |x2| ≤ α} ∪ {0 ≤ x1 − y ≤ α ; α
2
≤ |x2| ≤ α} .

We simply denote by μ the Gaussian measure restricted to D (Fig. 1.3).
As in the previous subsections we shall introduce some 2/α-Lipschitz function

f such that 1A ≤ f ≤ 1B with A = {0 ≤ x1 − y ≤ α
2 ; α

2 ≥ |x2|} and B = {0 ≤
x1 − y ≤ α ; α

2 ≥ |x2|}. Hence

Varμ(f ) ≥ μ(A)− (μ(B))2 and
∫

|∇f |2 dμ ≤ 4

α2 (μ(B)− μ(A)) .

In addition

μ(A) = Z1

(∫ y+ α
2

y

e−u2
du

) (∫ α
2

− α
2

e−v2
dv

)
,

μ(B) = Z1

(∫ y+α

y

e−u2
du

) (∫ α
2

− α
2

e−v2
dv

)
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so that

μ(A)

μ(B)
≥

∫ y+ α
2

y e−u2
du∫ y+α

y
e−u2

du
≥

y2

1+2y2

(
e−y2

y
− e

−(y+ α2 )2

y+ α
2

)

1
2y

(
e−y2 − e−(α+y)2

)

≥ 2y2

1 + 2y2

1 − e−α(y+ α
4 )

1 − e−α(2y+α)
, (1.37)

and

μ(A)

μ(B)− μ(A)
≥

∫ y+ α
2

y e−u2
du∫ y+α

y+ α
2
e−u2

du
≥

y2

1+2y2

(
e−y2

y
− e

−(y+ α2 )2
y+ α

2

)

1
2y

(
e−(y+ α

2 )
2 − e−(α+y)2

)

≥ 2y2

1 + 2y2

1 − e−α(y+ α
4 )

e−α(y+ α
4 ) − e−α(2y+α)

≥ 2y2eα(y+ α
4 )

1 + 2y2

1 − e−α(y+ α
4 )

1 − e−α(y+ 3α
4 )
. (1.38)

μ(B) goes to 0 as y → +∞ while there exists some constant c such that μ(A) ≥
c μ(B), provided α is fixed and y large enough (depending on α), in particular as
soon as αy → +∞. As previously we thus have for αy large enough, Varμ(f ) ≥
1
2 μ(A). Gathering all previous results, we thus get CP (μ) ≥ α2

8
μ(A)

μ(B)−μ(A) so that
CP (μ) explodes (at least) like eαy if αy → +∞. Hence, even a small non convex
obstacle going to infinity, makes the Poincaré constant explode.

More precisely consider an infinite number of such obstacles (O(yj , αj )) such
that one more time the convex face of the obstacle is orthogonal to the line joining
the origin to yj . If αj → 0 but αj |yj | → +∞, then the process is not exponentially
ergodic.

Actually it is not difficult to see, though the calculations are a little bit more
intricate, that the previous situation is similar to the case of two touching balls as in
Fig. 1.4.
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x1

x2

B

Fig. 1.4 Touching balls
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Appendix 1: Existence and Uniqueness of the Process

The main (actually unique) result of this section is the following (recall that the
notion of solution for a reflected system involves both X and the local times L, see
e.g. [9, 24])

Theorem 1.6 Assume (1.1). Then the system (1.2) has a unique (non explosive)
strong solution for any allowed starting point x. In addition μλ,X is the unique
invariant (actually symmetric) probability measure.

The remainder of this section is devoted to the proof of this result.
In the sequel we shall denote by L the (formal) infinitesimal generator

L = 1

2
Δ− λ 〈x,∇〉 , (1.39)

whose domain is some extension of the set of smooth functions f compactly
supported in D̄ such that for all i,

∂ f

∂ni
(y) = 0

at any y such that |y − xi | = ri , where ni denotes the normal vector field on the
sphere of center xi and radius ri .

We shall denote by D(L) this core.
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Finite Number of Obstacles

When N is finite, existence of a unique (strong) solution of (1.2) starting from any
point (belonging to D̄ for (1.2)), up to the explosion time, is standard (see e.g. [9]
for references) at least when the boundary of the obstacles is smooth. That is why
we have chosen to smooth the hypercubes when looking at this particular situation.
The only point is to show that the explosion time is almost surely infinite.

To this end, define

dN = max
i=1,...,N

|xi| , r = max
i=1,...,N

ri , (1.40)

and choose a smooth function hN such that hN ≥ 1 everywhere,

hN(x) = 1 if |x| < dN+2r , hN(x) = 1+|x|2 if |x| > dN+3r+1 . (1.41)

It is enough to remark that hN ∈ D(L) and satisfies

LhN ≤ − λhN , for |x| > dL = (d/2λ)
1
2 ∨ (dN + 3r + 1) . (1.42)

hN can thus play the role of a Lyapunov function for Hasminskii’s non explosion
test.

We can thus define for any x in D̄ the law Pt (x, dy) of the process at time t ,
Xt starting from x, as well as a Markov semi-group Pt acting on continuous and
bounded functions. It is known that, for all t > 0,

Pt (x, dy) = pt(x, y) dy

where pt ∈ C∞(D̄) (see [9, 10]). Furthermore, the density pt is everywhere
positive. This is a consequence of (1.1) (which implies in particular that D is path
connected) and standard tools about the support of the law of the whole process.
μλ,X is clearly a symmetric, hence invariant, probability measure. Uniqueness

follows from the previous regularity and positivity as usual. Let us denote by qt the
density of the law of Xt w.r.t. μλ,X i.e.

qt (x, y) = pt(x, y)
dx

dμλ,X
.

Application of the Chapman-Kolmogorov formula and standard regularization
arguments yield

q2t (x, x) =
∫
qt(x, y) qt(y, x) μλ,X (dy) =

∫
q2
t (x, y) μλ,X (dy) , (1.43)

thanks to symmetry, i.e. qt ∈ L
2(μλ,X ).
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Infinite Number of Obstacles

We now consider the case of infinitely many obstacles, still satisfying the non
overlapping condition (1.1), for the locally finite collection X . We can thus
construct the process up to exit times of an increasing sequence of relatively
compact open subsetsUn, each of which containing only a finite number of (closed)
obstacles, the remaining (closed) obstacles being included into (Ūn)c. The sequence
Tn of exit times ofUn is thus growing to the explosion time, but now it is much more
difficult to control this limit.

A standard way is to use Dirichlet forms theory. Namely let us consider

E (f ) =
∫

|∇f |2 dμλ,X (1.44)

defined for f which are smooth, bounded with bounded derivatives.
Our goal is to show that E is a conservative local Dirichlet form, so that one

can associate to E a stationary Hunt process (Yt )t≥0 which is a non exploding
diffusion process. This process coincides with X up to the exit time of Un for all
n, provided X0 has distribution μλ,X (exit time can be equal to 0). But, since
Yt − Y0 is an additive functional of finite energy, it can be decomposed (Lyons-
Zheng decomposition) for 0 ≤ t ≤ T into

Yt − Y0 = Mt + RMT
t

where M. (resp. RMT
. ) is a forward (resp. backward) L2 martingale with brackets

〈M〉t = 〈RMT 〉t = t , hence are Brownian motions. It follows that for any K > 0,

P

(
sup

t∈[0;T ]
|Yt | ≥ K

)
≤ P

(
sup

t∈[0;T ]
|Yt − Y0| ≥ K

2
or |Y0| ≥ K

2

)

≤ P

(
sup

t∈[0;T ]
|Mt | ≥ K

4

)
+ P

(
sup

t∈[0;T ]
|RMT

t | ≥
K

4

)

+P

(
|Y0| ≥ K

2

)

and Doob’s inequality allows us to conclude that the latter upper bound goes to 0
as K goes to infinity. It follows that the supremum of the exit times of the balls
B(0,K) is almost surely infinite, hence so does the supremum of the Tn’s, implying
that Y and X coincide up to any time and that X does not explode, when the initial
law is μλ,X .

Standard arguments (see [19]) imply that there is no explosion starting from quasi
every point x (i.e. all x’s not belonging to some polar set N , recall that here polar
sets coincide with sets of zero capacity), though here we only need that this property
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holds for μλ,X almost all x’s, which is an immediate consequence of disintegration
of the measure.

Now let x be some point in D, and choose a small ball B(x, ε) ⊂ D. If Py

denotes the law of X starting from y as usual, we have for all z ∈ B(x, ε),

Pz(sup
n
Tn < +∞) =

∫
|y−x|=ε

Py(sup
n
Tn < +∞) ηz(dy)

where ηz denotes the Pz law of Xτ with τ the exit time of B(x, ε) (that τ is almost
surely finite is well known and actually follows from the arguments below).

Up to the exit time of B(x, ε), X is just an Ornstein-Uhlenbeck process, so that
its law is equivalent to the one of the Brownian motion. For Brownian motion, it
is well known that τ is a.s. finite, that the exit measure (starting from z) is simply
the harmonic measure (related to z) on the sphere S(x, ε), hence is equivalent to the
surface measure σx . Thus the same properties hold true for our Ornstein-Uhlenbeck
process.

It follows that ηz is equivalent to the surface measure σx on the sphere S(x, ε),
so that ηz and ηx are equivalent.

(One can see e.g. [11] theorem 4.18 for much more sophisticated situations).
Choose z /∈ N . The previous formula shows that for ηz almost all y ∈ S(x, ε),

Py(supn Tn < +∞) = 0, so that the same holds ηx almost surely and finally
Px(supn Tn < +∞) = 0, showing that no explosion occurs starting from any point.

It remains to show that E is a conservative and local Dirichlet form. To this end
introduce the truncated form

En(f ) = 1

μλ,X (Un)

∫
Un

|∇f |2 dμλ,X (1.45)

corresponding to the reflected O-U process in Un with hard obstacles. It is not
difficult to see that we can build the open setsUn in such a way that ∂Un is smooth. It
thus follows that En is a conservative and local Dirichlet form, to which is associated
a non-exploding process Xn. The same reasoning as before shows that we can start
from any point x ∈ Un. We use the superscript n for the Markov law corresponding
to En

Let τK be the exit time from the ballB(0,K) and let nK be such that for n ≥ nK ,
B(0,K) ⊂ Un. All processesXn (n ≥ nK ), starting from x ∈ B(0,K), coincide up
to time τK (and coincide with the possibly exploding X). Now choose some initial
measure ν(dy) = u(y)dy where u is bounded and has compact support included
in B(0, R). Then ν is absolutely continuous with respect to μnλ,r and one can find
some constant C(K, ν) such that

‖ dν

dμn
λ,X

‖∞ ≤ C(K, ν) for all n ≥ nK .
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For any T > 0, it yields, using the Lyons-Zheng decomposition as before

Pν

(
sup

t∈[0;T ]
|Xnt | ≥ K

)
≤ C(K, ν)Pμnλ,r

(
sup

t∈[0;T ]
|Xnt −Xn0 | ≥

K

2
or |Xn0 | ≥

K

2

)

≤ C(K, ν)

(
Pμnλ,r

(
sup

t∈[0;T ]
|Mn

t | ≥
K

4

)

+Pμnλ,r

(
sup

t∈[0;T ]
|RMT,n

t | ≥ K

4

))

+C(K, ν)Pμnλ,r
(
|Xn0 | ≥

K

2

)

≤ C(K, ν)
(
C1 e

−C2K
2/T + μn

λ,X (Bc(0,K/2))
)

≤ C(K, ν)

(
C1 e

−C2K
2/T + μλ,X (Bc(0,K/2))

μλ,X (Un)

)

for well chosen universal constants C1, C2. It immediately follows that Pν(τK ≤ T )

(here we consider the process X) goes to 0 as K goes to +∞, so that the process
starting from ν does not explode. This is of course sufficient for our purpose, since
conservativeness follows by choosing a sequence νj converging to μλ,X .

Remark 1.3 Once the non explosion is proven, standard arguments show that the
process is Feller. Hence compact sets are closed petite sets in the terminology of
[17, 18]. We refer to the latter reference for a complete discussion.

Appendix 2: Useful Estimates for Exponential Moments
of Hitting Times

In this section we shall recall some estimates of exponential moments of hitting
times for some special linear processes. Denotes by S(r) the first exit time of the
symmetric interval [−r, r] for a one dimensional process.

For the linear Brownian motion it is well known, (see [27] Exercise 3.10) that

E0

(
eθ S(r)

)
= 1

cos(r
√

2θ)
< +∞

if and only if

θ ≤ π2

8 r2 .
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Surprisingly enough (at least for us) a precise description of the Laplace transform
of S(r) for the O-U process is very recent: it was first obtained in [21]. A simpler
proof is contained in [22] Theorem 3.1. The result reads as follows

Theorem 1.7 (See [21, 22]) If S(r) denotes the exit time from [−r, r] of a linear
O-U process with drift −λx (λ > 0), then for θ ≥ 0,

E0

(
e− θ S(r)

)
= 1

1F1

(
θ

2λ ,
1
2 , λ r

2
) ,

where 1F1 denotes the confluent hypergeometric function.

The function 1F1 is also denoted by Φ (in [21] for instance) or by M in [1] (where
it is called Kummer function) and is defined by

1F1(a, b, z) =
+∞∑
k=0

(a)k

(b)k

zk

k! where (a)k = a(a + 1) . . . (a + k − 1) , (a)0 = 1 .

(1.46)

In our case, b = 1
2 , so that 1F1 is an analytic function, as a function of both z and

θ . It follows that θ �→ E0
(
e− θ S(r)

)
can be extended, by analytic continuation, to

θ < 0 as long as λr2 is not a zero of 1F1(
θ

2λ ,
1
2 , .).

The zeros of the confluent hypergeometric function are difficult to study. Here
we are looking for the first negative real zero. For −1 < a < 0, b > 0, it is known
(and easy to see) that there exists only one such zero, denoted here by u. Indeed
1F1(a, b, 0) = 1 and all terms in the expansion (1.46) are negative for z > 0 except
the first one, implying that the function is decaying to −∞ as z → +∞. However,
an exact or an approximate expression for u are unknown (see the partial results of
Slater in [1, 28], or in [20]). Our situation however is simpler than the general one,
and we shall obtain a rough but sufficient bound.

First, comparing with the Brownian motion, we know that for all λ > 0 we must
have

−θ
λ

≤ π2

8(r
√
λ)2

.

So, if λ r2 > π2/8 and −θ/2λ ≥ 1/2, the Laplace transform (or the exponential
moment) is infinite. We may thus assume that −θ/2λ < 1/2.

Hence, for 1F1

(
θ

2λ ,
1
2 , λ r

2
)

to be negative it is enough that

1 <
−θ
λ

(
(λ r2)+

+∞∑
k=2

(1 + θ
2λ)(2 + θ

2λ) . . . (k − 1 + θ
2λ)

(1 + 1
2 )(2 + 1

2 ) . . . (k − 1 + 1
2 )

(λ r2)k

k!

)

<
−θ
λ

(+∞∑
k=1

(λ r2)k

k!

)
,
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i.e.

as soon as β = −θ > λ

eλ r
2 − 1

then E0

(
eβ S(r)

)
= +∞ . (1.47)

So there is a drastically different behavior between both processes.
Finally we shall also need estimates for a general CIR process or generalized

squared radial Ornstein-Uhlenbeck process, i.e. the solution of

dUt = 2
√
UtdBt + (δ + 2β Ut ) dt

when β > 0 and δ > 0. According to [21] Theorem 3, for θ > 0,

E0

(
e− θ S(u)

)
= eβ u

1F1

(
(θ+βδ)

2β , δ2 , β u
) . (1.48)

It follows that for 0 < θ < β δ, E0
(
eθ S(u)

)
< +∞.

Appendix 3: The Case N = 1: Another Estimate for a General
y Using Decomposition of Variance

A very usual method to deal with dimension controls is the decomposition of vari-
ance. This method can be used here in order to transfer the results of Proposition 1.1
to a non centered obstacle. Though the results are non optimal in many directions,
the method contains some interesting features.

In this section for simplicity we will first assume that λ = 1, and second that
d ≥ 3. Recall that we are looking here at the case of an unique spherical obstacle
B(y, r), so that we simply denote by μd,r the restricted Gaussian measure μλ,X .
Since we will use an induction procedure on the dimension d we explicitly make it
appear in the notation.

Using rotation invariance we may also assume that y = (a, 0) for some a ∈ R
+,

0 being the null vector of Rd−1. So, writing x = (u, x̄) ∈ R×R
d−1,

μd,r(du, dx̄) = ν0
d−1,R(u)(dx̄) μ1(du) ,

where ν0
d−1,R(u)(dx̄) is the d − 1 dimensional Gaussian measure restricted to

Bc(0, R(u)) as in Sect. 1.2.1 with R(u) =
√((

r2 − (u− a)2
)
+
)

and μ1 is the
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first marginal of μd,r given by

μ1(du) = γd−1(B
c(0, R(u)))

γd(Bc(y, r))
γ1(du) ,

γn denoting the n dimensional Gaussian measure cn e−|x|
2
dx.

The standard decomposition of variance tells us that for a nice f ,

Varμd,r (f ) =
∫ (

Varν0
d−1,R(u)

(f )
)
μ1(du)+ Varμ1(f̄ ) , (1.49)

where

f̄ (u) =
∫
f (u, x̄) ν0

d−1,R(u)(dx̄) .

According to Proposition 1.1, on one hand, it holds for all u,

Varν0
d−1,R(u)

(f ) ≤
(

1 + (r2 − (u− a)2)+
d − 1

) ∫
|∇x̄f |2 dν0

d−1,R(u) , (1.50)

so that

∫ (
Varν0

d−1,R(u)
(f )

)
μ1(du) ≤

(
1 + r2

d − 1

) ∫
|∇x̄f |2 dμd,r . (1.51)

On the other hand,μ1 is a logarithmically bounded perturbation of γ1 hence satisfies
some Poincaré inequality so that

Varμ1(f̄ ) ≤ C1

∫ ∣∣∣∣df̄du
∣∣∣∣
2

dμ1 . (1.52)

So we have first to get a correct bound for C1, second to understand what df̄
du

is.

A Bound for C1

Since μ1 is defined on the real line, upper and lower bounds for C1 may be obtained
by using Muckenhoupt bounds (see [3] Theorem 6.2.2). Unfortunately we were not
able to obtain the corresponding explicit expression in our situation as μ1 is not
sufficiently explicitly given to use Muckenhoupt criterion. So we shall give various
upper bounds using other tools.
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The usual Holley-Stroock perturbation argument combined with the Poincaré
inequality for γ1 imply that

C1 ≤ 1

2

supu {γd−1(B
c(0, R(u)))}

infu {γd−1(Bc(0, R(u)))} ≤ 1

2

∫ +∞
0 ρd−2 e−ρ2

dρ∫ +∞
r ρd−2 e−ρ2

dρ

= 1

2

(
1 +

∫ r
0 ρd−2 e−ρ2

dρ∫ +∞
r

ρd−2 e−ρ2
dρ

)
. (1.53)

Using the first inequality and the usual lower bound for the denominator, it follows
that

for all r > 0, C1 ≤ π(d−2)/2 er
2

rd−3 .

The function ρ �→ ρd−2 e−ρ2
increases up to its maximal value which is attained

for ρ2 = (d − 2)/2 and then decreases to 0. It follows, using the second form of the
inequality (1.53) that

• if r ≤
√
d−2

2 we have C1 ≤ 1
2 + r2, while

• if r ≥
√
d−2

2 we have

C1 ≤ 1

2
+

(
d − 2

2

) d−2
2

e−
d−2

2
er

2

rd−4
.

These bounds are quite bad for large r’s but do not depend on y.
Why is it bad? First for a = 0 (corresponding to the situation of Sect. 1.2.1) we

know that C1 ≤ 1+ r2

d
according to Proposition 1.1 applied to functions depending

on x1. Actually the calculations we have done in the proof of Proposition 1.1, are

unchanged for f (z) = z1, so that it is immediately seen that C1 ≥ max( 1
2 ,

r2

d
).

Intuitively the case a = 0 is the worst one, though we have no proof of this. We
can nevertheless give some hints.

The natural generator associated to μ1 is

L1 = d2

du2 −
(
u− d

du
log(γd−1(B

c(0, R(u))))

)
d

du

= d2

du2 − u
d

du
+ (u− a) (R(u))d−3 e−R2(u)∫ +∞

R(u)
ρd−2 e−ρ2

dρ
1|u−a|≤r

d

du
.

The additional drift term behaves badly for a ≤ u ≤ a + r , since in this case it
is larger than −u, while for u ≤ a it is smaller. In stochastic terms it means that
one can compare the induced process with the Ornstein-Uhlenbeck process except
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possibly for a ≤ u ≤ a + r . In analytic terms let us look for a Lyapunov function
for L1. As for the O-U generator the simplest one is g(u) = u �→ u2 for which

L1g ≤ 2 − 4u2 + 4u(u− a) 1a≤u≤a+r .

Remember that a ≥ r so that −au ≤ − 1
2 u

2. It follows

provided a ≥ r, L1g ≤ 2 − 2g . (1.54)

For |u| ≥ √
2 we then have L1g(u) ≤ − g(u), so that g is a Lyapunov function

outside the interval [−√
2,
√

2] and the restriction of μ1 to this interval coincides
(up to the constants) with the Gaussian law γ1 hence satisfies a Poincaré inequality
with constant 1

2 on this interval. According to the results in [5] we recalled in the
previous section, we thus have that C1 is bounded above by some universal constant
c.

We may gather our results

Lemma 1.6 The following upper bound holds for C1:

(1) (small obstacle) if r ≤
√
d−2

2 we have C1 ≤ 1
2 + r2,

(2) (far obstacle) if |y| > r +√
2, C1 ≤ c for some universal constant c,

(3) (centered obstacle) if y = 0, C1 ≤ 1 + r2

d
,

(4) in all other cases, there exists c(d) such that C1 ≤ c(d) er
2

rd−3 .

We conjecture that actually C1 ≤ C(1 + r2) for some universal constant C.

Remark 1.4 In a recent work [25], the authors obtain a much better upper bound in
case (4) (in fact a constant) when the origin belongs to the boundary of the ball and
d = 3. ♦

Controlling df̄

du

It remains to understand what df̄
du

is and to compute the integral of its square against
μ1.

Recall that

f̄ (u) =
∫
f (u, x̄) ν0

d−1,R(u)(dx̄) .
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Hence

f̄ (u) = 1|u−a|>r
∫
f (u, x̄) ν0

d−1,0(dx̄)

+1|u−a|≤r
∫
Sd−2

∫ +∞

R(u)

f (u, ρ θ)
ρd−2 e−ρ2

c(d) γd−1(Bc(0, R(u)))
dρ dθ ,

where dθ is the non-normalized surface measure on the unit sphere S
d−2 and c(d)

the normalization constant for the Gaussian measure. Hence, for |u − a| �= r we
have

d

du
f̄ (u) =

∫
∂f

∂x1
(u, x̄) ν0

d−1,R(u)(dx̄)

−1|u−a|≤r
∫
f (u, x̄)1|x̄|>R(u)

d
du
(γd−1(B

c(0, R(u))))

γ 2
d−1(B

c(0, R(u)))
γd−1(dx̄)

−1|u−a|≤r
R′(u) Rd−2(u) e−R2(u)

c(d) γd−1(Bc(0, R(u)))

∫
Sd−2

f (u,R(u) θ) dθ .

Notice that if f only depends on u, f̄ = f so that

d

du
f̄ (u) = ∂f

∂x1
(u) =

∫
∂f

∂x1
(u) ν0

d−1,R(u)(dx̄) ,

and thus the sum of the two remaining terms is equal to 0. Hence in computing
the sum of the two last terms, we may replace f by f − ∫

f (u, x̄) ν0
d−1,R(u)(dx̄)

or if one prefers, we may assume that the latter
∫
f (u, x̄) ν0

d−1,R(u)(dx̄) vanishes.
Observe that this change will not affect the gradient in the x̄ direction.

Assuming this, the second term becomes

−1|u−a|≤r
d
du (γd−1(B

c(0, R(u))))

γd−1(Bc(0, R(u)))

∫
f (u, x̄) ν0

d−1,R(u)(dx̄) = 0 .

We thus have using a scale change

df̄

du
=

∫
∂f

∂x1
(u, x̄)ν0

d−1,R(u)(dx̄)

− 1|u−a|≤r
R′(u) e−R2(u)

c(d) γd−1(Bc(0, R(u)))

∫
Sd−2(R(u))

f (u, θ) dθ .

Our goal is to control the last term using the gradient of f . One good way to do it is
to use the Green-Riemann formula, in a well adapted form. Indeed, let V be a vector



1 Poincaré in a Punctured Domain 51

field written as

V (x̄) = − ϕ(|x̄|)
|x̄|d−1 x̄ where ϕ(R(u)) = Rd−2(u) . (1.55)

This choice is motivated by the fact that the divergence, ∇.(x̄/|x̄|d−1) = 0 on the
whole Rd−1 − {0}.

Of course in what follows we may assume that R(u) > 0, so that all calculations
make sense. The Green-Riemann formula tells us that, denoting gu(x̄) = f (u, x̄),
for some well chosen ϕ

∫
Sd−2(R(u))

f (u, θ) dθ =
∫
Sd−2(R(u))

gu 〈V, (−x̄/|x̄|)〉 dθ

=
∫

1|x̄|≥R(u) ∇.(guV )(x̄) dx̄

= −
∫

1|x̄|≥R(u) 〈∇gu(x̄), (x̄/|x̄|d−1)〉ϕ(|x̄|) dx̄

−
∫

1|x̄|≥R(u) gu(x̄) (ϕ′(|x̄|)/|x̄|d−2) dx̄ .

Now we choose ϕ(s) = Rd−2(u) eR
2(u) e−s2

and recall that R′(u) = −((u −
a)/R(u))1|u−a|≤r . We have finally obtained

1|u−a|≤r
R′(u) e−R2(u)

c(d) γd−1(Bc(0, R(u)))

∫
Sd−2(R(u))

f (u, θ) dθ

= 1|u−a|≤r (u− a)Rd−3(u)

∫
〈∇x̄f (u, x̄), (x̄/|x̄|d−1)〉 ν0

d−1,R(u)(dx̄)

−1|u−a|≤r (u− a)Rd−3(u) 2
∫
(f (u, x̄)/|x̄|d−3) ν0

d−1,R(u)(dx̄) .

We will bound the above quantities for each fixed u. To control the first one we
use Cauchy-Schwarz inequality, while for the second one we use first Cauchy-
Schwarz inequality yielding a term containing

∫
f 2(u, x̄) ν0

d−1,R(u)(dx̄) and

then the Poincaré inequality for ν0
d−1,R(u) we obtained in Proposition 1.1, since∫

f (u, x̄) ν0
d−1,R(u)(dx̄) = 0. This yields

∣∣∣∣df̄du
∣∣∣∣ ≤

∫ ∣∣∣∣ ∂f∂x1

∣∣∣∣ ν0
d−1,R(u)(dx̄)

+ 2

(∫
|∇x̄f |2 ν0

d−1,R(u)(dx̄)

) 1
2

(A1(u)+ 2A2(u))
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where

A2
1(u) = |u− a|2 1|u−a|≤r R2d−6(u)

(∫
|x̄|4−2d ν0

d−1,R(u)(dx̄)

)
,

and

A2
2(u) = |u− a|2 1|u−a|≤r R2d−6(u)

(
1 + R2(u)

d − 1

) (∫
|x̄|6−2d ν0

d−1,R(u)(dx̄)

)
.

It follows

∫ ∣∣∣∣df̄du
∣∣∣∣
2

dμ1 ≤ 2
∫ ∣∣∣∣ ∂f∂x1

∣∣∣∣
2

μd,r(du, dx̄)

+ 4 sup
u
(A1(u)+ 2A2(u))

2
∫

|∇x̄f |2 μd,r(du, dx̄) .

It remains to study the final supremum.
Recalling that ν0

d−1,R(u) is the (normalized) Gaussian measure restricted to |x̄| ≥
R(u), we see that what we have to do is to get upper bounds for quantities like

∫ +∞

R

ρ−k e−ρ2
dρ

for k = d − 2 or k = d − 4, and a lower bound for

∫ +∞

R

ρd−2 e−ρ2
dρ .

It is easily seen that for k ∈ N,

∫ +∞

R

ρ−k e−ρ2
dρ ≤ 1

Rk+1

∫ +∞

R

ρ e−ρ2
dρ ≤ e−R2

2R1+k if R ≥ 1, (1.56)

∫ +∞

R

ρ−k e−ρ2
dρ ≤ 1

2e
+ 1

(k − 1)Rk−1 if R ≤ 1, k ≥ 2, (1.57)

∫ +∞

R

ρ−1 e−ρ2
dρ ≤ 1

2e
+ ln(1/R) if R ≤ 1, (1.58)

∫ +∞

R

e−ρ2
dρ ≤ 1 + 1

2e
if R ≤ 1, (1.59)

∫ +∞

R

ρ e−ρ2
dρ ≤ 1

2
if R ≤ 1, (1.60)
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∫ +∞

R

ρd−2 e−ρ2
dρ ≥ Rd−3

2 eR2 if R ≥ 1, (1.61)

∫ +∞

R

ρd−2 e−ρ2
dρ ≥ 1

2 e
if R ≤ 1. (1.62)

Applying the previous bounds first for k = d−2 (corresponding toA1) and k = d−4
(corresponding to A2), we obtain first for R(u) ≥ 1,

A2
1(u) ≤ r2 R−2(u) ≤ r2 ,

A2
2(u) ≤ r2

(
1 + R2(u)

d − 1

)
≤ r2

(
1 + r2

d − 1

)

while for R(u) ≤ 1,

A2
1(u) ≤ (1 + 2e) r2 ,

A2
2(u) ≤ 2 (1 + 2e) r2 ,

the latter bounds being obtained after discussing according to the dimension d =
3, 4, 5 or larger than 6.

Gathering all these results together we may state

Theorem 1.8 Assume d ≥ 3. There exists a function C(r, d) such that, for all y ∈
R
d ,

CP (1, y, r) ≤ C(r, d) .

Furthermore, there exists some universal constant c such that

C(r, d) ≤ C1(r) C2(r) ,

C1(r) being given in Lemma 1.6 and C2(r) satisfying

1. if r ≤ √
(d − 1)/2, C2(r) ≤ c (1 + r2),

2. if r ≥ 1, C2(r) ≤ c r2
(

1 + r2

d−1

)
.

Remark 1.5 The previous theorem is interesting as it shows that when N = 1, the
Poincaré constant is bounded uniformly in y and it furnishes some tractable bounds.

The method suffers nevertheless two defaults. First it does not work for d = 2, in
which case the conditioned measure does no more satisfy a Poincaré inequality.
More important for our purpose, the method does not extend to more than one
obstacle, unless the obstacles have a particular location.
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Chapter 2
A Probabilistic Look at Conservative
Growth-Fragmentation Equations

Florian Bouguet

Abstract In this note, we consider general growth-fragmentation equations from a
probabilistic point of view. Using Foster-Lyapunov techniques, we study the recur-
rence of the associated Markov process depending on the growth and fragmentation
rates. We prove the existence and uniqueness of its stationary distribution, and we
are able to derive precise bounds for its tails in the neighborhoods of both 0 and
+∞. This study is systematically compared to the results obtained so far in the
literature for this class of integro-differential equations.

Keywords Growth-fragmentation · Markov process · Stationary measure ·
Tail of distribution · Foster-Lyapunov criterion.

2.1 Introduction

In this work, we consider the growth and fragmentation of a population of microor-
ganisms (typically, bacteria or cells) through a structured quantity x which rules the
division. For instance, one can consider x to be the size of a bacterium. The bacteria
grow and, from time to time, split into two daughters. This behavior leads to an
integro-differential equation, which can also model numerous phenomena involving
fragmentation, like polymerization, network congestions or neurosciences. In the
context of a dividing population, we refer to [22, Chapter 4] for background
and biological motivations, and to [11, 21] for motivations in determining the
eigenelements of the equation, which correspond to the Malthusian parameter of
the population (see [22]). Regardless, if we denote by u(t, x) the concentration
of individuals of size x at time t , such dynamics lead to the following growth-
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fragmentation equation:

∂tu(t, x)+∂x[τ (x)u(t, x)]+β(x)u(t, x)= 2
∫ ∞

x

β(y)κ(x, y)u(t, y)dy, (2.1)

for x, t > 0, where τ and β are the respective growth rate and fragmentation rate
of the population, and κ is the fragmentation kernel (here we adopt the notation of
[7]). Not that because of the factor 2 in the right-hand side of (2.1), the mass of the
total particle system increases with time, so that this equation is not conservative.

The evolution of this population, or rather its probabilistic counterpart, has
also been widely studied for particular growth and division rates. In the context
of network congestions, this is known as the TCP window size process, which
received a lot of attention recently (see [1, 4, 8, 18]). Let us provide the probabilistic
interpretation of this mechanism. Consider a bacterium of size X, which grows
at rate τ and randomly splits at rate β following a kernel κ , as before. We shall
denote by Q(x, dy) := xκ(yx, x)dy to deal with the relative size of the daughters
compared to the mother’s, so that

∫ x

0
f (y)κ(y, x)dy =

∫ 1

0
f (xy)Q(x, dy).

We shall naturally assume that, for any x > 0,

∫ x

0
κ(y, x)dy =

∫ 1

0
Q(x, dy) = 1.

If we dismiss one of the two daughters and carry on the study only with the other
one, the growth and fragmentation of the population can also be modeled by a
piecewise deterministic Markov process (PDMP) (Xt)t≥0 with càdlàg trajectories
a.s. The dynamics of X are ruled by its infinitesimal generator, defined for any
function f in its domain D(L):

Lf (x) := τ (x)f ′(x)+ β(x)

∫ 1

0
[f (xy)− f (x)]Q(x, dy). (2.2)

We shall call X a cell process (not to be confused with a growth-fragmentation
process, see Remark 2.2). It is a Feller process, and we denote by (Pt )t≥0 its
semigroup (for reminders about Feller processes or PDMPs, see [9, 14]). If we
denote by μt = L (Xt) the probability law of Xt , the Kolmogorov’s forward
equation ∂t (Ptf ) = LPtf is the weak formulation of

∂tμt = L′μt , (2.3)
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where L′ is the adjoint operator of L in L2(L) where L stands for the Lebesgue
measure. Now, if μt admits a density u(t, ·) with respect to L, then (2.3) writes

∂tu(t, x)=L′u(t, x) = −∂x [τ(x)u(t, x)] − β(x)u(t, x) +
∫ ∞

x

β(y)κ(x, y)u(t, y)dy.

(2.4)

Note that (2.4) is the conservative version of (2.1), since for any t ≥ 0,∫∞
0 u(t, x)dx = 1, which comes from the fact that there is only one bacterium

at a time.

Remark 2.1 (Link with Biology) Working with the probabilistic version of the
problem allows us not to require the absolute continuity of μt nor Q(x, ·). This
is useful since many biological models set Q(x, ·) = δ1/2 (equal mitosis) or
Q(x, ·) = U ([0, 1]) (uniform mitosis). Note that biological models usually assume
that

∫ 1
0 yQ(x, dy) = 1/2, so that the mass of the mother is conserved after the

fragmentation, which is automatically satisfied for a symmetric division, but we do
not require this hypothesis in our study. We stress that it is possible to study both
daughters with a structure of random tree, as in [3, 5, 12], the latter also drawing a
bridge between the stochastic and deterministic viewpoints.

In the articles [2, 7, 11], the authors investigate the behavior of the first eigenvalue
and eigenfunction of (2.1), with a focus on the dependence on the growth rate τ
and the division rate β. Although it has been previously done for specific rates
(e.g. [15]), they work in the setting of general functions τ and β. The aim of
the present paper is to provide a probabilistic counterpart to the aforementioned
articles, by studying the Markov process (Xt)t≥0 generated by (2.2), and to explain
the assumptions for the well-posedness of the problem. We provide a probabilistic
justification to the links between the growth and fragmentation rates, with the help of
the renowned Foster-Lyapunov criterion. We shall also study the tails of distribution
of the stationary measure of the process when it exists. We will see that, although
the assumptions are similar, there is a difference between the tails of the stationary
distribution in the conservative case and in the non-conservative case.

Remark 2.2 (Cell Processes and Growth-Fragmentation Processes) The name cell
process comes from the paper [5], where the author provides a general construction
for the so-called growth-fragmentation processes, with the structure of branching
processes. This construction allows to study the family of all bacteria (or cells)
alive at time t . Let us stress that, in [5], the process is allowed to divide on a
dense set of times; the setting of PDMPs does not capture such a phenomenon,
but does not require the process X to converge a.s. at infinity. The construction of a
growth-fragmentation process is linked to the study of the non-conservative growth-
fragmentation equation (2.1), whereas our construction of the cell process enables
us to study the behavior of its conservative version (2.4). In Sect. 2.2, we shall
see that there is no major differences for the well-posedness of the equation in the
conservative and the non-conservative settings. However, the tails of the stationary
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distribution are rather different in the two frameworks, so the results of Sect. 2.3 are
to be compared to the computations of [2] when λ = 0. The Malthusian parameter
λ being the exponential growth rate of the mass of the population, it is clear that it
is null in the conservative case.

The rest of this paper is organized as follows: in Sect. 2.2, we study the Harris
recurrence ofX as well as the existence and uniqueness of its stationary distribution
π , and we compare our conditions to those of [7]. In Sect. 2.3, we study the moments
of π , we derive precise upper bounds for its tails of distribution in the neighborhoods
of both 0 and +∞ and we compare our conditions to those of [2].

2.2 Balance Between Growth and Fragmentation

To investigate the assumptions used in [7], we turn to the study of the Markov
process generated by (2.2). More precisely, we will provide a justification to the
balance between τ and β with the help of a Foster-Lyapunov criterion. Note that
we shall not require the fragmentation kernel Q(x, dy) to admit a density with
respect to the Lebesgue measure L(dy). Moreover, in order to be as general as
possible, we do not stick to the biological framework and thus do not assume that∫ 1

0 Q(x, dy) = 1/2, which will be (technically) replaced by Assumption 2.2.i)
below.

We start by stating general assumptions on the growth and fragmentation rates.

Assumption 2.1 (Behavior of τ and β) Assume that:

i) The functions β and τ are continuous, and τ is locally Lipschitz.
ii) For any x > 0, β(x), τ (x) > 0.

iii) There exist constants γ0, γ∞, ν0, ν∞ and β0, β∞, τ0, τ∞ > 0 such that

β(x) ∼
x→0

β0x
γ0 , β(x) ∼

x→∞ β∞xγ∞ , τ (x) ∼
x→0

τ0x
ν0 , τ (x) ∼

x→∞ τ∞xν∞ .

Note that, if τ and β satisfy Assumption 2.1, then Assumptions (2.18) and (2.19) in
[7] are fulfilled (by taking μ = |γ∞| or μ = |ν∞|, and r0 = |ν0| therein).

The following assumption concerns the expected behavior of the fragmentation,
and is easy to check in most cases, especially if Q(x, ·) does not depend on x. For
any a ∈ R, we define the moment of order a of Q(x, ·) by

Mx(a) :=
∫ 1

0
yaQ(x, dy), M(a) := sup

x>0
Mx(a).

Assumption 2.2 (Moments of Q) Assume that:

i) There exists a > 0 such that M(a) < 1.
ii) There exists b > 0 such that M(−b) < +∞.

iii) For any x > 0,Q(x, {1}) = 0.
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Note that, in particular, Assumption 2.2.i) and ii) imply that, for any x > 0,
Q(x, {1}) < 1 and Q(x, {0}) = 0. Assumption 2.2.iii) means that there are no
phantom jumps, i.e. divisions of the bacteria without loss of mass. It is easy to deal
with a process with phantom jumps with the following thinning technique: if X is
generated by (2.2) and Q admits the decomposition

Q(x, dy) = Q(x, {1})δ1 + (1 −Q(x, {1}))Q′(x, dy),

then notice that (2.2) writes

Lf (x) = τ (x)f ′(x)+ β ′(x)
∫ 1

0
[f (xy)− f (x)]Q′(x, dy),

with β ′(x) = (1 −Q(x, {1})β(x) and Q′(x, {1}) = 0.
Let us make another assumption, concerning the balance between the growth rate

and the fragmentation rate in the neighborhoods of 0 and +∞, which is fundamental
to obtain an interesting Markov process.

Assumption 2.3 (Balance of β and τ ) Assume that

γ0 > ν0 − 1, γ∞ > ν∞ − 1.

Let us mention that Assumptions 2.1.iii) and 2.3, could be replaced by integrabil-
ity conditions in the neighborhoods of 0 or +∞, see Assumptions (2.21) and (2.22)
in [7]. However, we make those hypotheses for the sake of simplicity, and for easier
comparisons of our results to [2, 7].

Remark 2.3 (The Critical Case) This remark concerns the whole paper, and may be
omitted at first reading. Throughout Sect. 2.2, we can weaken Assumption 2.3 with
the following:

i) Either

γ0 > ν0 − 1, or γ0 = ν0 − 1 and
b

M(−b)− 1
<
β0

τ0
. (2.5)

ii) Either

γ∞ > ν∞ − 1 or γ∞ = ν∞ − 1 and
a

1 −M(a)
<
τ∞
β∞

. (2.6)

Indeed, a careful reading of the proof of Theorem 2.4 shows that computations
are similar, and the only change lies in the coefficients in (2.13) and (2.14), which
are still negative under (2.5) and (2.6). This corresponds to the critical case of the
growth-fragmentation equations (see for instance [6, 10]).

However, the behavior of the tail of the stationary distribution changes radically
in the critical case. As a consequence, Sect. 2.3 is written in the framework of
Assumption 2.3 only. Indeed, it is crucial to be able to choose a as large as possible
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(which is ensured in Assumption 2.8), so that π admits moments of any order. This
is not possible under (2.6), since then

lim
a→+∞

a

1 −M(a)
= +∞,

so that the Foster-Lyapunov criterion does not apply and we expect the stationary
measure to have heavy tails.

Define V as a smooth, convex function on (0,∞) such that

V (x) =
{
x−b if x ∈ (0, 1],
xa if x ∈ [2,+∞),

(2.7)

where a and b satisfy Assumption 2.2. We can now state the main result of this
article.

Theorem 2.4 (Behavior of the Cell Process) Let X be a PDMP generated
by (2.2). If Assumptions 2.1–2.3 are in force, thenX is irreducible, Harris recurrent
and aperiodic, compact sets are petite for X, and the process possesses a unique
(up to a multiplicative constant) stationary measure π .

Moreover, if

b ≥ ν0 − 1, a ≥ −γ∞,

then X is positive Harris recurrent and π is a probability measure.
Furthermore, if

ν0 ≤ 1, γ∞ ≥ 0,

then X is exponentially ergodic in (1 + V )-norm.

Remark 2.4 (Link with the Conditions of [7]) We highlight the equivalence of
Assumption 2.3 and [7, Eq. (2.4) and (2.5)]. The condition [7, Eq. (2.6)] writes
in our context

∫ u

0
Q(x, dy) ≤ min

(
1, Cuγ̄

)
,

which is implied by Assumption 2.2.ii) together with the condition b ≥ ν0 − 1,
as soon as Q(x, ·) admits a density with respect to L. Let us also mention that
counterexamples for the existence of the stationary measure are provided in [11],
when β is constant and τ is affine.

Before proving Theorem 2.4, let us shortly present the Foster-Lyapunov criterion,
which is the main tool for our proof (the interested reader may find deeper insights
in [19] or [20]). The idea is to find a so-called Lyapunov function V controlling
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the excursions of X out of petite sets. Recall that a set K ⊆ R+ is petite if there
exists a probability distribution A over R+ and some non-trivial positive measure
ν over R+ such that, for any x ∈ K ,

∫∞
0 δxPtA (dt) ≥ ν. We produce here three

criteria, adapted from [20, Theorems 3.2, 4.2 and 6.1], which provide stronger and
stronger results. Recall that, for some norm-like function V , we define the V -norm
of a probability measure μ by

‖μ‖V := sup
|f |≤V

|μ(f )| = sup
|f |≤V

∣∣∣∣
∫
f dμ

∣∣∣∣ .

Theorem 2.5 (Foster-Lyapunov Criterion) Let X be a Markov process with
càdlàg trajectories a.s. Let V ≥ 1 be a continuous norm-like real-valued function.
Assume that compact sets of (0,+∞) are petite for X.

i) If there exist a compact set K and a positive constant α′ such that

LV ≤ α′1K,

then X is Harris recurrent and possesses a unique (up to a multiplicative
constant) stationary measure π .

ii) Moreover, if there exist a function f ≥ 1 and a positive constant α such that

LV ≤ −αf + α′1K,

then X is positive Harris recurrent, π is a probability measure and π(f ) <
+∞.

iii) Moreover, if f ≥ V , then X is exponentially ergodic and there exist C, v > 0
such that

‖μt − π‖1+V ≤ C(1 + μ0(V ))e
−vt .

Note that the exponential rate v provided in Theorem 2.5 is not explicit; if one
wants to obtain quantitative speeds of convergence, it is often useful to turn to ad hoc
coupling methods (see [4] for instance). Also, note that Assumption 2.2 is sufficient
but not necessary to derive ergodicity from a Foster-Lyapunov criterion, since we
only need the limits in (2.13) and (2.14) to be negative. Namely, we only ask the
fragmentation kernel Q(x, ·) to be not too close to 0 and 1, uniformly over x.

Remark 2.5 (Construction of V ) If we are able to prove a Foster-Lyapunov criterion
with a norm-like function V , we want to choose V as explosive as possible (i.e.
such that V (x) goes quickly to +∞ when x → 0 or x → +∞) to obtain better
bounds for the tail of π , since π(V ) is finite: this is the purpose of Sect. 2.3. If we
define V with (2.7), this choice brings us to choose a and b as large as possible in
Assumption 2.2. However, the larger a and b, the slower the convergence (because
of the term μ0(V )), so there is a balance to find here.
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For many particular cell processes, it is possible to build a Lyapunov function
of the form x �→ eθx , so that π admits exponential moments up to θ . We shall
use a similar function in Sect. 2.3 to obtain bounds for the tails of the stationary
distribution.

Proof (of Theorem 2.4) We denote by ϕz the unique maximal solution of ∂ty(t) =
τ (y(t)) with initial condition z, and let a, b > 0 be as in Assumption 2.2. Firstly,
we prove that compact sets are petite for (Xt)t≥0. Let z2 > z1 > z0 > 0 and
z ∈ [z0, z1]. Since τ > 0 on [z0, z2], the function ϕz is a diffeomorphism from
[0, ϕ−1

z (z2)] to [z, z2]; let t = ϕ−1
z0
(z2) be the maximum time for the flow to reach z2

from [z0, z1]. Denote by Xz the process generated by (2.2) such that L (X0) = δz,
and T zn the epoch of its nth jump. Let A = U ([0, t]). For any x ∈ [z1, z2], we have

∫ ∞

0
P(Xzs ≤ x)A (ds) ≥ 1

t

∫ t

0
P(Xzs ≤ x|T z1 > ϕ−1

z (z2))P(T
z
1 > ϕ−1

z (z2))ds

≥ P(T z1 > ϕ−1
z (z2))

t

∫ t

0
P(ϕz(s) ≤ x)ds

≥ P(T z1 > ϕ−1
z (z2))

t

∫ ϕ−1
z (x)

0
ds

≥ P(T z1 > ϕ−1
z (z2))

t

∫ x

z

(ϕ−1
z )′(u)du. (2.8)

Since β and τ are bounded on [z0, z2], the following inequalities hold:

P(T z1 > ϕ−1
z (z2)) = exp

(
−

∫ ϕ−1
z (z2)

0
β(ϕz(s))ds

)

= exp

(
−

∫ z2

z

β(u)(ϕ−1
z )′(u)du

)

≥ exp

(
−(z2 − z0) sup

[z0,z2]

(
β(ϕ−1

z )′
))

≥ exp

(
−(z2 − z0)

(
sup
[z0,z2]

β

)(
inf[z0,z2]

τ

)−1
)
,

since sup[z0,z2](ϕ
−1
z )′ = (

inf[z0,z2] τ
)−1

. Hence, there exists a constant C such
that, (2.8) writes, for x ∈ [z1, z2],

∫ ∞

0
P(Xzs ≤ x)A (ds) ≥ C(x − z1),
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which is also
∫ ∞

0
δzPsA (ds) ≥ CL[z1,z2],

where LK is the Lebesgue measure restricted to a Borelian set K . Hence, by
definition, [z0, z1] is a petite set for the process X.

Now, let us show that the process (Xt ) is L(0,∞)-irreducible with similar
arguments. Let z1 > z0 > 0 and z > 0. If z ≤ z0,

E

[∫ ∞

0
1{z0≤Xzt≤z1}dt

]
≥ P(T z1 > ϕ−1

z (z1))E

[∫ ∞

0
1{z0≤Xzt ≤z1}dt

∣∣∣∣ T z1 > ϕ−1
z (z1)

]

≥ exp

(
−(z1 − z0)

(
sup
[z0,z1]

β

)(
inf[z0,z1]

τ

)−1
)
ϕ−1
z0
(z1).

(2.9)

If z > z0, for any t0 > 0 and n ∈ N, the process Xz has a positive probability
of jumping n times before time t0. Recall that

∫ 1
0 y

aQ(x, dy) ≤ M(a) < 1. For
any n > (log(z) − log(z0)) log(M(a)−1)−1, let 0 < ε < za0 − (zM(a)n)a . By
continuity of (x, t) �→ ϕx(t), there exists t0 > 0 small enough such that, ∀(x, t) ∈
[0, z] × [0, t0],

ϕx(t)
a ≤ xa + ε

n+ 1
, E[(Xzt0)a |T zn ≤ t0] ≤ (zM(a)n)a + ε < za0 .

Then, using Markov’s inequality

P(Xzt0 ≤ z0|T zn ≤ t0 < T zn+1) ≥ 1 − E[(Xzt0)a |T zn ≤ t0 < T zn+1]
za0

> 0.

Then, P(Xzt0 ≤ z0) > 0 for any t0 small enough, and, using (2.9)

E

[∫ ∞

0
1{z0≤Xzt≤z1}dt

]
≥ E

[∫ ∞

t0

1{z0≤Xzt≤z1}dt
∣∣∣∣Xzt0 ≤ z0

]
P(Xzt0 ≤ z0)

≥ exp

(
−(z1 − z0)

(
sup
[z0,z1]

β

)(
inf[z0,z1]

τ

)−1
)

× ϕ−1
z0
(z1)P(X

z
t0
≤ z0)

> 0.

Aperiodicity is easily proven with similar arguments.
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We turn to the proof of the Lyapunov condition. For x ≥ 2, V (x) = xa and

LV (x) = a
τ(x)

x
V (x)+ β(x)

∫ 1

0
V (xy)Q(x, dy)− β(x)V (x)

≤
(
a
τ(x)

x
− β(x)

)
V (x)+ β(x)

∫ 1/x

0
(xy)−bQ(x, dy)

+ β(x)

∫ 2/x

1/x
2aQ(x, dy)+ β(x)

∫ 1

2/x
(xy)aQ(x, dy)

≤
(
a
τ(x)

x
− β(x)

)
V (x)+ β(x)

(
x−bMx(−b)+ 2a + xaMx(a)

)

≤
(
a
τ(x)

x
− β(x)

(
1 −Mx(a)− Mx(−b)

xbV (x)
− 2a

V (x)

))
V (x). (2.10)

For x ≤ 1, V (x) = x−b and

LV (x) =
(
−b τ(x)

x
+ β(x)(Mx(−b)− 1)

)
V (x). (2.11)

Combining γ∞ > ν∞ − 1 with Assumption 2.2.i), for x large enough we have

a
τ(x)

x
− β(x)

(
1 −Mx(a)− Mx(−b)

xbV (x)
− 2a

xV (x)

)

≤ a
τ(x)

x
− β(x) (1 −M(a)+ o(1)) ≤ 0.

Likewise, combining γ0 > ν0 − 1 with Assumption 2.2.ii),

−b τ(x)
x

+ β(x)(Mx(−b)− 1) ≤ −b τ(x)
x

+ β(x) (M(−b)− 1) ≤ 0

for x close enough to 0. Then, Theorem 2.5.i) entails that X is Harris recurrent, thus
admits a unique stationary measure (see for instance [17]).

Note that (2.10) writes

LV (x) ≤ −β∞(1 −M(a)+ o(1))xa+γ∞,

so that, if we can choose a ≥ −γ∞, then

lim
x→∞−β∞(1 −M(a)+ o(1))xa+γ∞ < 0.
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Likewise, (2.11) writes

LV (x) ≤ −(bτ0 + o(1))xν0−1−b, (2.12)

so, if b ≥ ν0 − 1, we get

lim
x→0

−(bτ0 + o(1))xν0−1−b < 0.

Then, there exist positive constants A,α, α′

LV ≤ −αf + α′1[1/A,A],

where f ≥ 1 is a smooth function, such that f (x) = xν0−1−b for x close to 0, and
f (x) = xa+γ∞ for x large enough. Then, Theorem 2.5.ii) ensures positive Harris
recurrence for X.

Now, if we assume γ∞ ≥ 0 and ν0 ≤ 1 in addition, then there exists α > 0 such
that

lim
x→+∞ a

τ(x)

x
− β(x)

(
1 −Mx(a)− Mx(−b)

xbV (x)
− 2a

xV (x)

)

≤ lim
x→+∞ a

τ(x)

x
− β(x) (1 −M(a)+ o(1)) ≤ −α, (2.13)

and

lim
x→0

−b τ(x)
x

+ β(x)(Mx(−b)− 1) ≤ lim
x→0

−b τ(x)
x

+ β(x) (M(−b)− 1) ≤ −α.
(2.14)

Combining (2.10) and (2.11) with (2.13) and (2.14) respectively, and since V is
bounded on [1, 2], there exist positive constants A,α′ such that

LV ≤ −αV + α′1[1/A,A].

The function V is thus a Lyapunov function, for which Theorem 2.5.iii) entails
exponential ergodicity for X.

2.3 Tails of the Stationary Distribution

In this section, we use, and reinforce when necessary, the results of Theorem 2.4 to
study the asymptotic behavior of the tails of distribution of the stationary measure π .
We will naturally divide this section into two parts, to study the behavior of π(dx)
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as x → 0 and as x → +∞. Hence, throughout this section, we shall assume that
X satisfies Assumptions 2.1–2.3. The key point is to use the fact that π(f ) < +∞
provided in the second part of Theorem 2.5. We recall that L stands for the Lebesgue
measure on R.

In order to compare our results to those of [2, Theorem 1.8], we consider the
same framework and make the following assumption:

Assumption 2.6 (Density ofQ and π) Assume that:

i) For any x > 0, Q(x, ·)� L and Q(x, dy) = q(y)dy, and there exist constants
q0, q1 ≥ 0 and μ0, μ1 > −1 such that

q(x) =
x→0

q0x
μ0 + o(xμ0), q(x) =

x→1
q1(1 − x)μ1 + o((1 − x)μ1).

ii) π � L and π(dx) = G(x)dx, and there exist constants G0,G∞, G̃∞ > 0 and
α0, α∞, α̃∞ ∈ R such that

G(x) ∼
x→0

G0x
α0, G(x) ∼

x→+∞ G∞xα∞ exp
(−G̃∞xα̃∞

)
.

We do not require the coefficients q0, q1 to be (strictly) positive, so that this
assumption can also cover the case Q(x, dy) = δr(dy) for 0 < r < 1, which
is widely used for modeling physical or biological situations. For the sake of
simplicity, the hypotheses concerning the density of π (resp.Q) in the neighborhood
of both 0 and +∞ (resp. 0 and 1) are gathered in Assumption 2.6, but it is clear that
we only need either the assumption on the left behavior or on the right behavior
to precise the fractional moments or the exponential moments of the stationary
distribution. In the same spirit, we could weakenQ(x, ·)� L intoQ(x, ·) admitting
a density with respect to L only in the neighborhoods of 0 and 1, bounded above
by q .

Remark 2.6 (Absolute Continuity of π) At first glance, Assumption 2.6.ii) may
seem disconcerting since π is unknown; this is the very goal of this section to study
its moments. However, for some models it is possible to prove the absolute continu-
ity of π , or even get a non-tractable formula for its density (see e.g. [4, 13, 16] for
the particular case of the TCP window size process). In such cases, the question of
existence of its moments is still not trivial. Still, Assumption 2.6.ii) is stated only to
make easier comparisons with the estimates obtained with deterministic methods,
and is not needed for the important results of the present paper. However, we stress
that Assumption 2.6.i) is in a way more fundamental, since it implies directly
Assumption 2.8, which is needed to study the behavior of π in the neighborhood
of +∞ (see Proposition 2.9).

Theorem 2.7 (Negative Moments of π) Let X be the PDMP generated by (2.2).
If Assumptions 2.1–2.3 hold, and if

b ≥ ν0 − 1, (2.15)
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then

∫ 1

0
xν0−1−bπ(dx) < +∞.

Moreover, if Assumption 2.6 holds and μ0 + 2 − ν0 > 0, then

α0 ≥ μ0 + 1 − ν0.

Proof The first part of the theorem is a straightforward consequence of (2.12).
Combining Assumption 2.2.ii) with Assumption 2.6.i), we naturally have to take

b < μ0 + 1. Thus, for any ε ∈ (0, μ0 + 1), we take b = μ0 + 1 − ε. Define V
with (2.7) as before, so that, for x ≤ 1, V (x) = x−μ0−1+ε and

LV (x) ≤
(
−b τ(x)

x
+ β(x)(M(−b)− 1)

)
V (x) ∼

x→0
−bτ0x

ν0−μ0−2+ε.

Applying Theorem 2.5.ii) with f (x) = xν0−μ0−2+ε , which tends to +∞ when
μ0 + 1 − ν0 > −1, we have π(f ) < +∞ so

∫ 1

0
xα0+ν0−μ0−2+εdx < +∞, α0 > 1 + μ0 − ν0 + ε,

for any ε > 0. Thus α0 ≥ μ0 + 1 − ν0.

Now, we turn to the study of the tail of distribution of π(dx) as x → +∞.
Since choosing a polynomial function as a Lyapunov function can only provide the
existence of moments for π , we need to introduce a more coercive function to study
in detail the behavior of its tail of distribution and get the existence of exponential
moments. We begin with the following assumption.

Assumption 2.8 (Uniform Asymptotic Bound of the Fragmentation) Let θ =
γ∞ + 1 − ν∞. Assume there exists 0 < C < 1 such that, for any ε > 0 and
0 < η < β∞(θτ∞)−1, there exists x0 > 0 such that

sup
x≥x0

∫ 1

0
y−ε exp

(
ηxθ(yθ − 1)

)
Q(x, dy) < 1 − C.

It is easy to understand this assumption if

Ṽ (x) = x−εeηxθ (2.16)
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and if L (Y (x)) = Q(x, .); then, Assumption 2.8 rewrites

sup
x≥x0

E[Ṽ (xY (x))]
Ṽ (x)

≤ 1 − C.

Once again, this is asking the fragmentation kernel to be not too close to 1. As we
will see, this is quite natural when Q has a regular behavior around 0 and 1.

Proposition 2.9 Assumption 2.8 holds for any C ∈ (0, 1) whenever Assump-
tion 2.6.i) holds.

Proof Define Ṽ as in (2.16) for x ≥ 1, larger than 1, and increasing and smooth on
R. For any (large) x > 0, for any (small) δ > 0,

E[Ṽ (xY (x))] = E[Ṽ (xY (x))|Y (x) ≤ 1 − δ]P(Y (x) ≤ 1 − δ)

+ E

[
Ṽ (xY (x))1{Y (x)>1−δ}

]

≤ Ṽ ((1 − δ)x)+ E

[
Ṽ (xY (x))1{Y (x)>1−δ}

]
. (2.17)

It is clear that, for δ < 1,

lim
x→+∞

Ṽ ((1 − δ)x)

Ṽ (x)
= lim

x→+∞(1 − δ)−ε exp
(−η(1 − (1 − δ)θ )xθ

) = 0.

On the other hand, using Hölder’s inequality with q > max(1,−1/μ1) and p−1 +
q−1 = 1, as well as a Taylor expansion, there exists some constant Cδ ≥ 1 such that

∫ 1

1−δ
Ṽ (xy)q1(1 − y)μ1dy = q1Ṽ (x)

∫ δ

0
exp

(
ηxθ ((1 − y)θ − 1)

)
yμ1(1 − y)−εdy

≤ q1

(1 − δ)ε

[∫ δ

0
yqμ1dy

]1/q

× Ṽ (x)

[∫ δ

0
exp

(
ηpxθ ((1 − y)θ − 1)

)
dy

]1/p

≤ CδṼ (x)

[∫ δ

0
exp

(−ηpθxθy) dy
]1/p

≤ CδṼ (x)

[
1 − exp

(−ηpθxθδ)
ηpθxθ

]1/p

.
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The term (ηpθxθ )−1(1 − exp
(−ηpθxθδ)) converges to 0 as x → +∞, so that, for

any C ∈ (0, 1), there exists x0 > 0 such that, for any x ≥ x0,

[
1 − exp

(−ηpθxθδ)
ηpθxθ

]1/p

≤ 1 − C

2Cδ
,

Ṽ ((1 − δ)x)

Ṽ (x)
≤ 1 − C

2
.

Plugging these bounds into (2.17) achieves the proof.

Now, we can characterize the weight of the asymptotic tail of π and recover [2,
Theorem 1.7].

Theorem 2.10 (Exponential Moments of π) Let X be the PDMP generated
by (2.2). If Assumptions 2.1–2.3 and 2.8 hold, then

∫ +∞

1
xν∞−1−ε exp

(
ηxθ

)
π(dx) < +∞, θ = γ∞+1−ν∞, η = Cβ∞

θτ∞
, ε > 0.

Moreover, if Assumption 2.6 is also in force, then either:

• α̃∞ > γ∞ + 1 − ν∞;
• α̃∞ = γ∞ + 1 − ν∞ and G̃∞ > Cβ∞((γ∞ + 1 − ν∞)τ∞)−1;
• α̃∞ = γ∞ + 1 − ν∞, G̃∞ = Cβ∞((γ∞ + 1 − ν∞)τ∞)−1 and α∞ ≥ −ν∞.

Remark 2.7 (Link with the Estimates of [2]) Note that the Assumption 2.3
and (2.15) correspond to the assumptions required for [2, Theorem 1.8] to hold,
with the correspondence

μ0 ↔ μ− 1, ν0 ↔ α0, μ0 + 2 − ν0 > 0 ↔ μ+ 1 − α0 > 0.

Actually, the authors also assume this strict inequality to prove the existence of the
stationary distribution, which we relax here, and we need it only in Theorem 2.15
to provide a lower bound for α0, which rules the tail of the stationary distribution in
the neighborhood of 0. By using Lyapunov methods, there is no hope in providing
an upper bound for α0, but we can see that this inequality is optimal by comparing
it to [2, Theorem 1.8] so that, in fact,

α0 = μ0 + 1 − ν0.

If ν0 > 1, we do not recover the same equivalents for the distribution of G around
0. This is linked to the fact that there is a phase transition in the non-conservative
equation at ν0 = 1, since the tail of G relies deeply on the function

Λ(x) =
∫ x

1

λ+ β(y)

τ (y)
dy,
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where λ is the Malthusian parameter of the equation, which is the growth of
the profiles of the integro-differential equation. However, we deal here with the
conservative case, for which this parameter is null. The bounds that we provide are
indeed consistent with the computations of the proof of [2, Theorem 1.8] in the case
λ = 0.

Concerning the estimates as x → +∞, as mentioned above, we can not recover
upper bounds, and then sharp estimates, for α∞,G∞, α̃∞ with Foster-Lyapunov
methods. From the proof of Theorem 2.10, it is clear that the parameters η and θ are
optimal if one wants to apply Theorem 2.5. Under second-order-type assumptions
like [2, Hypothesis 1.5], it is clear that

Λ(x) =
∫ x

1

β(y)

τ (y)
dy ∼

x→+∞
β∞

τ∞(γ∞ + 1 − ν∞)
xγ∞+1−ν∞ .

This explains the precise value of η, but we pay the price of having slightly less
general hypotheses about Q than [2] with a factor C arising from Assumption 2.8,
which leads to have no disjunction of cases for α∞. Also, since we deal with the
case λ = 0, the equivalent of the function Λ is different from the aforementioned
paper when γ∞ < 0, so that max{γ∞, 0} does not appear in our computations.

Proof (of Theorem 2.10) Let Ṽ be as in (2.16), that is

Ṽ (x) = x−εeηxθ ,

with η, θ given in Theorem 2.10. Then, following the computations of the proof of
Theorem 2.4, we get, for x > x0,

LṼ (x) ≤
(
ηθτ∞xθ−1+ν∞ − Cβ∞xγ∞ − ετ∞xν∞−1

)
(1 + o(1))Ṽ (x)

≤ −ετ∞xν∞−1(1 + o(1))Ṽ (x)

≤ −ετ∞
2
xν∞−1Ṽ (x).

Using Theorem 2.5.ii) with f (x) = xν∞−1Ṽ (x), the last inequality ensures that
∫ +∞

1
f (x)π(dx) < +∞.

Now, in the setting of Assumption 2.6, the following holds:

∫ +∞

1
f (x)π(dx) < +∞ ⇐⇒

∫ +∞

1
xν∞−1−ε+α∞ exp

(
ηxθ − G̃∞xα̃∞

)
dx < +∞.

(2.18)

It is clear then that the disjunction of cases of Theorem 2.10 is the only way for the
integral on the right-hand side of (2.18) to be finite.
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Chapter 3
Iterated Proportional Fitting Procedure
and Infinite Products of Stochastic
Matrices

J. Brossard and C. Leuridan

Abstract The iterative proportional fitting procedure (IPFP), introduced in 1937
by Kruithof, aims to adjust the elements of an array to satisfy specified row and
column sums. Thus, given a rectangular non-negative matrix X0 and two positive
marginals a and b, the algorithm generates a sequence of matrices (Xn)n≥0 starting
at X0, supposed to converge to a biproportional fitting, that is, to a matrix Y whose
marginals are a and b and of the form Y = D1X0D2, for some diagonal matrices
D1 and D2 with positive diagonal entries.

When a biproportional fitting does exist, it is unique and the sequence (Xn)n≥0
converges to it at an at least geometric rate. More generally, when there exists some
matrix with marginal a and b and with support included in the support of X0, the
sequence (Xn)n≥0 converges to the unique matrix whose marginals are a and b and
which can be written as a limit of matrices of the formD1X0D2.

In the opposite case (when there exists no matrix with marginals a and b whose
support is included in the support of X0), the sequence (Xn)n≥0 diverges but both
subsequences (X2n)n≥0 and (X2n+1)n≥0 converge.

In the present paper, we use a new method to prove again these results and
determine the two limit-points in the case of divergence. Our proof relies on a
new convergence theorem for backward infinite products · · ·M2M1 of stochastic
matricesMn, with diagonal entriesMn(i, i) bounded away from 0 and with bounded
ratios Mn(j, i)/Mn(i, j). This theorem generalizes Lorenz’ stabilization theorem.
We also provide an alternative proof of Touric and Nedić’s theorem on backward
infinite products of doubly-stochastic matrices, with diagonal entries bounded away
from 0. In both situations, we improve slightly the conclusion, since we establish not
only the convergence of the sequence (Mn · · ·M1)n≥0, but also its finite variation.
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3.1 Introduction

3.1.1 The Iterative Proportional Fitting Procedure

The aim of the iterative proportional fitting procedure is to find a non-negative
matrix with given row and columns sums and having zero entries at some given
places. Fix two integers p ≥ 2, q ≥ 2 (namely the sizes of the matrices to be
considered) and two vectors a = (a1, . . . , ap), b = (b1, . . . , bq) with positive
components such that a1+· · ·+ap = b1+· · ·+bq = 1 (namely the target marginals).
We assume that the common value of the sums a1 + · · · + ap and b1 + · · · + bq is
1 for convenience only, to enable probabilistic interpretations, but this is not a true
restriction.

We introduce the following notations for any p × q real matrix X:

X(i,+) =
q∑
j=1

X(i, j), X(+, j) =
p∑
i=1

X(i, j), X(+,+) =
p∑
i=1

q∑
j=1

X(i, j),

and we set Ri(X) = X(i,+)/ai , Cj (X) = X(+, j)/bj .
The IPFP has been introduced in 1937 by Kruithof (method of the double factors

in third appendix of [9]) to estimate telephone traffic between central stations. This
procedure starts from a p×q non-negative matrixX0 such that the sum of the entries
on each row or column is positive (so X0 has at least one positive entry on each row
or column) and works as follows.

• For each i ∈ [[1, p]], divide the row i of X0 by the positive number Ri(X0). This
yields a matrix X1 satisfying the same assumptions asX0 and having the desired
row-marginals.

• For each j ∈ [[1, q]], divide the column j of X1 by the positive number Cj(X1).
This yields a matrix X2 satisfying the same assumptions as X0 and having the
desired column-marginals.

• Repeat the operations above starting from X2 to get X3, X4, and so on.
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Let Mp,q(R+) be the set of all p × q matrices with non-negative entries, and

Γ0 := {X ∈ Mp,q(R+) : ∀i ∈ [[1, p]], X(i,+) > 0, ∀j ∈ [[1, q]], X(+, j) > 0},
Γ1 := {X ∈ Γ0 : X(+,+) = 1}
ΓR := Γ (a, ∗) = {X ∈ Γ0 : ∀i ∈ [[1, p]], X(i,+) = ai},
ΓC := Γ (∗, b) = {X ∈ Γ0 : ∀j ∈ [[1, q]], X(+, j) = bj },
Γ := Γ (a, b) = ΓR ∩ ΓC.

For every integerm ≥ 1, denote byΔm the set of all m×m diagonal matrices with
positive diagonal entries.

The IPFP consists in applying alternatively the transformations TR : Γ0 → ΓR
and TC : Γ0 → ΓC defined by

TR(X)(i, j) = Ri(X)
−1X(i, j) and TC(X)(i, j) = Cj(X)

−1X(i, j).

The homogeneity of the map TR shows that replacingX0 with X0(+,+)−1X0 does
not change the matrices Xn for n ≥ 1, so there is no restriction to assume that
X0 ∈ Γ1.

Note that ΓR and ΓC are subsets of Γ1 and are closed subsets of Mp,q(R+).
Therefore, if (Xn)n≥0 converges, its limit belongs to the set Γ . Furthermore, by
construction, the matrices Xn belong to the set

ΔpX0Δq = {D1X0D2 : D1 ∈ Δp,D2 ∈ Δq}
= {(αiX0(i, j)βj ) : (α1, . . . , αp) ∈ (R∗+)p, (β1, . . . , βq) ∈ (R∗+)q}.

According to the terminology used by Pretzel, we will say that X0 and Xn are
diagonally equivalent. In particular, the matrices Xn have by construction the same
support, where the support of a matrix X ∈ Mp,q(R+) is defined by

Supp(X) = {(i, j) ∈ [[1, p]] × [[1, q]] : X(i, j) > 0}.

For every limit point L of (Xn)n≥0, we get Supp(L) ⊂ Supp(X0) and this inclusion
may be strict. In particular, if (Xn)n≥0 converges, its limit belongs to the set

Γ (X0) := Γ (a, b,X0) = {S ∈ Γ : Supp(S) ⊂ Supp(X0)}.

When the set Γ (X0) is empty, the sequence (Xn)n≥0 cannot converge, and no
precise behavior was established until 2013, when Gietl and Reffel showed that
both subsequences (X2n)n≥0 and (X2n+1)n≥0 converge [7].
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In the opposite case, when Γ (a, b) contains some matrix with support included
in X0, various proofs of the convergence of (Xn)n≥0 are known (Bacharach [2] in
1965, Bregman [3] in 1967, Sinkhorn [13] in 1967, Csiszár [5] in 1975, Pretzel [11]
in 1980 and others (see [4] and [12] to get an exhaustive review). Moreover, the
limit can be described using some probabilistic tools that we introduce now.

3.1.2 Probabilistic Interpretations and Tools

At many places, we shall identify a, b and matrices X in Γ1 with the probability
measures on [[1, p]], [[1, q]] and [[1, p]] × [[1, q]] given by a({i}) = ai , b({j }) = bj
and X({(i, j)} = X(i, j). Through this identification, the set Γ1 can be seen as the
set of all probability measures on [[1, p]] × [[1, q]] whose marginals charge every
point; the set Γ can be seen as the set of all probability measures on [[1, p]]×[[1, q]]
having marginals a and b. This set is non-empty since it contains the probability
a ⊗ b.

The I -divergence, or Kullback-Leibler divergence, also called relative entropy,
plays a key role in the study of the iterative proportional fitting algorithm. For every
X and Y in Γ1, the relative entropy of Y with respect to X is

D(Y ||X) =
∑

(i,j)∈Supp(X)

Y (i, j) ln
Y (i, j)

X(i, j)
if Supp(Y ) ⊂ Supp(X),

and D(Y ||X) = +∞ otherwise, with the convention 0 ln 0 = 0. Although D is not
a distance, the quantity D(Y ||X) measures in some sense how much Y is far from
X since D(Y ||X) ≥ 0, with equality if and only if Y = X.

In 1968, Ireland and Kullback [8] gave an incomplete proof of the convergence
of (Xn)n≥0 when X0 is positive, relying on the properties of the I -divergence.
Yet, the I -divergence can be used to prove the convergence when the set Γ (X0)

is non-empty, and to determine the limit. The maps TR and TC can be viewed has
I -projections on ΓR and ΓC in the sense that for everyX ∈ Γ0, TR(X) (respectively
TC(X)) is the only matrix achieving the least upper bound ofD(Y ||X) over all Y in
ΓR (respectively ΓC).

In 1975, Csiszár established (theorem 3.2 in [5]) that, given a finite collection of
linear sets E1, . . . ,Ek of probability distributions on a finite set, and a distribution
R such that E1 ∩ . . .∩ Ek contains some probability distribution which is absolutely
continuous with regard to R, the sequence obtained from R by applying cyclically
the I -projections on E1, . . . ,Ek converges to the I -projection of R on E1 ∩ . . .∩Ek .
This result applies to our context (the finite set is [[1, p]] × [[1, q]], the linear sets
E1 and E2 are ΓR and ΓC ) and shows that if the set Γ = ΓR ∩ ΓC contains some
matrix with support included in X0, then (Xn)n≥0 converges to the I -projection of
X0 on Γ .
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3.2 Old and New Results

Since the behavior of the sequence (Xn)n≥0 depends only on the existence or the
non-existence of elements of Γ with support equal to or included in Supp(X0), we
state a criterion which determines in which case we are.

Consider two subsets A of [[1, p]] and B of [[1, q]] such that X0 is null on A×B.
Note Ac = [[1, p]] \A and Bc = [[1, q]] \ B. Then for every S ∈ Γ (X0),

a(A) =
∑
i∈A

ai =
∑

(i,j)∈A×Bc
S(i, j) ≤

∑
(i,j)∈[1,p]×Bc

S(i, j) =
∑
j∈Bc

bj = b(Bc).

If a(A) = b(Bc), S must be null on Ac × Bc. If a(A) > b(Bc), we get a
contradiction, so Γ (X0) is empty.

Actually, these causes of the non-existence of elements of Γ with support equal
to or included in Supp(X0) provide necessary and sufficient conditions. We give
two criterions, the first one was already stated by Bacharach [2]. Pukelsheim gave
a different formulation of these conditions in theorems 2 and 3 of [12]. We use a
different method, relying on the theory of linear system of inequalities, and give a
more precise statement, namely item 3 of critical case below.

Theorem 3.1 (Criteria to Distinguish the Cases)

1. (Case of incompatibility) The set Γ (X0) is empty if and only if there exist two
subsets A ⊂ [[1, p]] and B ⊂ [[1, q]] such that X0 is null on A× B and a(A) >
b(Bc).

2. (Critical case) Assume now that Γ (X0) is not empty. Then

a. There exists a matrix S0 ∈ Γ (X0) whose support contains the support of every
matrix in Γ (X0).

b. The support of S0 is strictly contained in Supp(X0) if and only if there exist
two non-empty subsets A of [[1, p]] and B of [[1, q]] such that a(A) = b(Bc)

and X0 is null on A× B but has a positive entry on Ac × Bc.
c. More precisely, the support of S0 is the complement in Supp(X0) of the union

of all products Ac ×Bc over all non-empty subsets A×B of [[1, p]] × [[1, q]]
such that X0 is null on A× B and a(A) = b(Bc).

Note that the assumption that X0 has at least a positive entry on each row or
column preventsA and B from being full whenX0 is null on A×B. The additional
condition a(A) > b(Bc) (or a(A) = b(Bc)) is equivalent to the condition a(A) +
b(B) > 1 (or a(A)+ b(B) = 1), so rows and column play a symmetric role.

The condition a(A) > b(Bc) and the positivity of all components of a and b
also prevent A and B from being empty. We will call cause of incompatibility any
(non-empty) block A × B ⊂ [[1, p]] × [[1, q]] such that X0 is null on A × B and
a(A) > b(Bc). If the set Γ (X0) is non-empty, we will call cause of criticality any
non-empty block A × B ⊂ [[1, p]] × [[1, q]] such that X0 is null on A × B and
a(A) = b(Bc).
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Given a convergent sequence (xn)n≥0 of vectors in some normed vector space
(E, || · ||), with limit � ∈ E, we will say that the rate of convergence is geometric
(respectively at least geometric) if 0 < limn ||xn − x∞||1/n < 1 (respectively
lim supn ||xn − x∞||1/n < 1).

We now describe the asymptotic behavior of sequence (Xn)n≥0 in each case. The
first case is already well-known.

Theorem 3.2 (Case of Fast Convergence) Assume that Γ contains some matrix
with same support as X0. Then

1. The sequences (Ri(X2n)n≥0) and (Cj (X2n+1)n≥0) converge to 1 at an at least
geometric rate.

2. The sequence (Xn)n≥0 converges to some matrixX∞ which has the same support
as X0. The rate of convergence is at least geometric.

3. The limit X∞ is the only matrix in Γ ∩ΔpX0Δq (in particular X0 and X∞ are
diagonally equivalent). It is also the unique matrix achieving the minimum of
D(Y ||X0) over all Y ∈ Γ (X0).

For example, if p = q = 2, a1 = b1 = 2/3, a2 = b2 = 1/3, and

X0 = 1

4

(
2 1
1 0

)
.

Then for every n ≥ 1, Xn or X#
n is equal to

1

3(2n − 1)

(
2n 2n − 2

2n − 1 0

)
,

depending on whether n is odd or even. The limit is

X∞ = 1

3

(
1 1
1 0

)
.

The second case is also well-known, except the fact that the quantitiesRi(X2n)−
1 and Cj(X2n+1)− 1 are o(n−1/2).

Theorem 3.3 (Case of Slow Convergence) Assume that Γ contains some matrix
with support included in Supp(X0) but contains no matrix with support equal to
Supp(X0). Then

1. The series

∑
n≥0

(Ri(X2n)− 1)2 and
∑
n≥0

(Cj (X2n+1)− 1)2

converge.
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2. The sequences (
√
n(Ri(Xn)− 1))n≥0 and (

√
n(Cj (Xn)− 1))n≥0 converge to 0.

In particular, the sequences (Ri(Xn))n≥0 and (Cj (Xn))n≥0 converge to 1.
3. The sequence (Xn)n≥0 converges to some matrixX∞ whose support contains the

support of every matrix in Γ (X0).
4. The limit X∞ is the unique matrix achieving the minimum of D(Y ||X0) over all
Y ∈ Γ (X0).

5. If (i, j) ∈ Supp(X0) \ Supp(X∞), the infinite product Ri(X0)Cj (X1)Ri(X2)

Cj (X3) · · · is infinite.

Actually the assumption that Γ contains no matrix with support equal to
Supp(X0) can be removed; but when this assumption fails, Theorem 3.2 applies, so
Theorem 3.3 brings nothing new. When this assumption holds, the last conclusion
of Theorem 3.3 shows that the rate of convergence cannot be in o(n−1−ε) for any
ε > 0.

However, a rate of convergence in Θ(n−1) is possible, and we do not know
whether other rates of slow convergence may occur. For example, consider p =
q = 2, a1 = a2 = b1 = b2 = 1/2, and

X0 = 1

3

(
1 1
1 0

)
.

Then for every n ≥ 1, Xn or X#
n is equal to

1

2n+ 2

(
1 n

n+ 1 0

)
,

depending on whether n is odd or even. The limit is

X∞ = 1

2

(
0 1
1 0

)
.

When Γ contains no matrix with support included in Supp(X0), we already know
by Gietl and Reffel’s theorem [7] that both sequences (X2n)n≥0 and (X2n+1)n≥0
converge. The convergence may be slow, so Aas gives in [1] an algorithm to fasten
the convergence. Aas’ algorithm finds and exploits the block structure associated
to the inconsistent problem of finding a non-negative matrix whose marginals are a
and b and whose support is contained in Supp(X0). The next two theorems give a
complete description of the two limit points and how to find them.

Theorem 3.4 (Case of Divergence) Assume that Γ contains no matrix with
support included in Supp(X0).
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Then there exist some positive integer r ≤ min(p, q), some partitions
{I1, . . . , Ir } of [[1, p]] and {J1, . . . , Jr } of [[1, q]] such that:

1. (Ri(X2n))n≥0 converges to λk = b(Jk)/a(Ik) whenever i ∈ Ik;
2. (Cj (X2n+1))n≥0 converges λ−1

k whenever j ∈ Jk;
3. Xn(i, j) = 0 for every n ≥ 0 whenever i ∈ Ik and j ∈ Jk′ with k < k′;
4. Xn(i, j)→ 0 as n→ +∞ at a geometric rate whenever i ∈ Ik and j ∈ Jk′ with
k > k′;

5. The sequence (X2n)n≥0 converges to the unique matrix achieving the minimum
of D(Y ||X0) over all Y ∈ Γ (a′, b,X0), where a′i/ai = λk whenever i ∈ Ik;

6. The sequence (X2n+1)n≥0 converges to the unique matrix achieving the minimum
of D(Y ||X0) over all Y ∈ Γ (a, b′,X0), where b′j /bj = λ−1

k whenever j ∈ Jk;
7. For every k ∈ [[1, r]], a′(Ik) = b(Jk) and a(Ik) = b′(Jk). Moreover, the support

of any matrix in Γ (a′, b,X0)∪Γ (a, b′,X0) is contained in I1×J1∪· · ·∪Ir×Jr .
8. Let D1 = Diag(a′1/a1, . . . , a

′
p/ap) and D2 = Diag(b1/b

′
1, . . . , bq/b

′
q). Then

for every S ∈ Γ (a, b′,X0), D1S = SD2 ∈ Γ (a′, b,X0), and all matrices in
Γ (a′, b,X0) can be written in this way.

For example, if p = q = 2, a1 = b1 = 1/3, a2 = b2 = 2/3, and

X0 = 1

3

(
1 1
1 0

)
.

Then for every n ≥ 1, Xn or X#
n is equal to

1

3(3 × 2n−1 − 1)

(
1 3 × 2n−1 − 2

2(3 × 2n−1 − 1) 0

)
,

depending on whether n is odd or even. We get a′1 = b′1 = 2/3 and a′2 = b′2 = 1/3
since the two limit points are

1

3

(
0 1
2 0

)
and

1

3

(
0 2
1 0

)
.

The symmetry in Theorem 3.4 shows that the limit points of (Xn)n≥0 would be
the same if we would applying TC first instead of TR .

Actually, the assumption that Γ (X0) is empty can be removed and it is not used
in the proof of Theorem 3.4. Indeed, when Γ (X0) is non-empty, the conclusions
still hold with r = 1 and λ1 = 1, but Theorem 3.4 brings nothing new in this case.

Theorem 3.4 does not indicate what the partitions {I1, . . . , Ir } and {J1, . . . , Jr }
are. Actually the integer r , the partitions {I1, . . . , Ir } and {J1, . . . , Jr } depend only
on a, b and on the support ofX0. and can be determined recursively as follows. This
gives a complete description of the two limit points mentioned in Theorem 3.4.
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Theorem 3.5 (Determining the Partitions in Case of Divergence) Keep the
assumption and the notations of Theorem 3.4. Fix k ∈ [[1, r]], set P = [[1, p]] \ (I1∪
. . . ∪ Ik−1), Q = [[1, q]] \ (J1 ∪ . . . ∪ Jk−1), and consider the restricted problem
associated to the marginals a(·|P) = (ai/a(P ))i∈P , b(·|Q) = (bj /b(Q))j∈Q and
to the initial condition (X0(i, j))(i,j)∈P×Q.

If k = r , this restricted problem admits some solution.
If k < r , the set Ak × Bk := Ik × (Q \ Jk) is a cause of incompatibility of

this restricted problem. More precisely, among all causes of incompatibility A× B

maximizing the ratio a(A)/b(Q \ B), it is the one which maximizes the set A and
minimizes the set B.

Note that if a cause of incompatibility A × B maximizes the ratio a(A)/b(Bc),
then it is maximal for the inclusion order. We now give an example to illustrate how
Theorem 3.5 enables us to determine the partitions {I1, . . . , Ir } and {J1, . . . , Jr }. In
the following array, the ∗ and 0 indicate the positive and the null entries in X0; the
last column and row indicate the target sums on each row and column.

∗ ∗ 0 0 0 0 0.25
0 ∗ ∗ 0 0 0 0.25
0 ∗ ∗ ∗ 0 0 0.25
∗ ∗ ∗ ∗ 0 ∗ 0.15
∗ 0 ∗ ∗ ∗ ∗ 0.10

0.05 0.05 0.1 0.2 0.2 0.4 1

We indicate below in underlined boldface characters some blocks A × B of zeroes
which are causes of incompatibility, and the corresponding ratios a(A)/b(Bc).

A = {1, 2, 3, 4}
B = {5}
a(A)

b(Bc)
= 0.9

0.8

∗ ∗ 0 0 0 0 0.25
0 ∗ ∗ 0 0 0 0.25
0 ∗ ∗ ∗ 0 0 0.25
∗ ∗ ∗ ∗ 0 ∗ 0.15
∗ 0 ∗ ∗ ∗ ∗ 0.10

0.05 0.05 0.1 0.2 0.2 0.4 1

A = {2, 3}
B = {1, 5, 6}
a(A)

b(Bc)
= 0.5

0.35

∗ ∗ 0 0 0 0 0.25
0 ∗ ∗ 0 0 0 0.25
0 ∗ ∗ ∗ 0 0 0.25
∗ ∗ ∗ ∗ 0 ∗ 0.15
∗ 0 ∗ ∗ ∗ ∗ 0.10

0.05 0.05 0.1 0.2 0.2 0.4 1
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A = {1}
B = {3, 4, 5, 6}
a(A)

b(Bc)
= 0.25

0.1

∗ ∗ 0 0 0 0 0.25
0 ∗ ∗ 0 0 0 0.25
0 ∗ ∗ ∗ 0 0 0.25
∗ ∗ ∗ ∗ 0 ∗ 0.15
∗ 0 ∗ ∗ ∗ ∗ 0.10

0.05 0.05 0.1 0.2 0.2 0.4 1

A = {1, 2}
B = {4, 5, 6}
a(A)

b(Bc)
= 0.5

0.2

∗ ∗ 0 0 0 0 0.25
0 ∗ ∗ 0 0 0 0.25
0 ∗ ∗ ∗ 0 0 0.25
∗ ∗ ∗ ∗ 0 ∗ 0.15
∗ 0 ∗ ∗ ∗ ∗ 0.10

0.05 0.05 0.1 0.2 0.2 0.4 1

One checks that the last two blocks are those which maximize the ratio a(A)/b(Bc).
Among these two blocks, the latter has a bigger A and a smaller B, so it is
A1 × B1. Therefore, I1 = {1, 2} and J1 = {1, 2, 3}, and we look at the restricted
problem associated to the marginals a(·|I c1 ), b(·|J c1 ) and to the initial condition
(X0(i, j))(i,j)∈I c1×J c1 . The dots below indicate the removed rows and columns.

· · · · · · ·
· · · · · · ·
· · · ∗ 0 0 0.5
· · · ∗ 0 ∗ 0.3
· · · ∗ ∗ ∗ 0.2

· · · 0.25 0.25 0.5 1

Two causes of incompatibility have to be considered, namely {3, 4}× {5} and {3}×
{5, 6}. The latter maximizes the ratio a(A)/b(J c1 \ B), so it is A2 × B2. Therefore,
I2 = {3} and J2 = {4}, and we look at the restricted problem below.

· · · · · · ·
· · · · · · ·
· · · · · · ·
· · · · 0 ∗ 0.6
· · · · ∗ ∗ 0.4

· · · · 0.33 0.67 1

This time, there is no cause of incompatibility, so r = 3, and the sets I3 = {4, 5},
J3 = {5, 6} contain all the remaining indices. We indicate below the block structure
defined by the partitions {I1, I2, I3} and {J1, J2, J3} (for readability, our example
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was chosen in such a way that each block is made of consecutive indices). By
Theorem 3.4, the limit of the sequence (X2n)n≥0 admits marginals a′ and b, its
support is included in Supp(X0) and also in (I1 × J1) ∪ (I2 × J2) ∪ (I3 × J3),
namely it solves the problem below.

∗ ∗ 0 0 0 0 0.1
0 ∗ ∗ 0 0 0 0.1
0 0 0 ∗ 0 0 0.2
0 0 0 0 0 ∗ 0.36
0 0 0 0 ∗ ∗ 0.24

0.05 0.05 0.1 0.2 0.2 0.4 1

We observe that each cause of incompatibility A× B related to the block structure,
namely I1×(J2∪J3) or (I1∪I2)×J3, becomes a cause of criticality with regard to the
margins a′ and b, namely a′(A) = b(Bc), so limn X2n has zeroes on Ac × Bc. This
statement fails for the “weaker” cause of incompatibility {1, 2, 3, 4} × {5}. Yet, it
still holds for the cause of incompatibility {1}×{3, 4, 5, 6}; this rare situation occurs
because there were two causes of incompatibility maximizing the ratio a(A)/b(Bc),
namely {1}×{3, 4, 5, 6} and {1, 2}×{4, 5, 6}. Hence limn X2n has another additional
zero at position (2, 2). We add dashlines below to make visible this refinement of
the block structure. Here, no minimization of I -divergence is required to get the
limit of (X2n)n≥0 since the set Γ (a′, b,X0) contains only one matrix, namely

0.05 0.05 0 0 0 0 0.1
0 0 0.1 0 0 0 0.1
0 0 0 .2 0 0 0.2
0 0 0 0 0 0.36 0.36
0 0 0 0 0.2 0.04 0.24

0.05 0.05 0.1 0.2 0.2 0.4 1

.

We note that the convergence of X2n(2, 2) to 0 is slow since

lim
n→+∞

X2n+2(2, 2)

X2n(2, 2)
= lim

n→+∞
1

R2(X2n)C2(X2n+1)
= 1

λ1λ
−1
1

= 1.

This is a typical situation in which the following observation is useful.

Theorem 3.6 The matrices limn X2n and limn X2n+1 have the same support Σ
and Σ is the union of the supports of all matrices in Γ (a′, b,X0) ∪ Γ (a, b′,X0).
Moreover, if X′

0 denotes the matrix obtained from X0 by setting to 0 all entries
outsideΣ , then the limit points provided by the IPFP starting from X0 and from X′

0
coincide.



86 J. Brossard and C. Leuridan

Aas mentions this fact (proposition 1 in [1]) as a result of Pretzel (last part
of theorem 1 in [11]), although Pretzel considers only the case where the set
Γ (a, b,X0) is not empty. We prove Theorem 3.6 by adapting Pretzel’s proof.

The set Σ can be determined by applying Theorem 3.1 (critical case, item (c)) to
the marginals a′ and b. The interest of Theorem 3.6 is that starting from X′

0 ensures
an at least geometric rate of convergence, since Theorem 3.2 applies when one
performs the IPFP on the marginals a′ and b (or a and b′) and the initial matrix X′

0.
That is why Aas investigates the inherent block structure. Actually, the splitting

considered by Aas is finer that the splitting provided by our Theorems 3.4 and 3.5;
in the example above, Aas would split I1 into {1, 2} and {3}, and J1 into {1} and {2}.
Up to this distinction, most of the statements provided by our Theorems 3.4 and 3.5
are explicitly or implicitly present in Aas’ paper, which focuses on an algorithmic
point of view.

The convergence of the sequences (X2n)n≥0 and (X2n+1)n≥0 was already
established by Gietl and Reffel [7] with the help of I -divergence. Our proof is
completely different (although I -divergence helps us to determine the limit points).
Our first step is to prove the convergence of the sequences (Ri(X2n))n≥0 and
(Cj (X2n+1))n≥0 by exploiting recursion relations involving stochastic matrices. The
proof relies on the next general result on infinite products of stochastic matrices.
Theorem 3.7 below will only be used to prove Theorems 3.4 and 3.5, so apart from
Lemma 3.1, Sect. 3.3 can be skipped if the reader is only interested by the new proof
of Theorems 3.1–3.3.

A sequence (xn)n≥0 of vectors in some normed vector space (E, || · ||) will be
said to have a finite variation if the series

∑
n ||xn+1 − xn|| converges. The finite

variation implies the convergence when (E, || · ||) is a Banach space, in particular
when E has a finite dimension.

Theorem 3.7 Let (Mn)n≥1 be some sequence of d× d stochastic matrices. Assume
that there exists some constants γ > 0, and ρ ≥ 1 such that for every n ≥ 1
and i, j in [[1, d]], Mn(i, i) ≥ γ and Mn(i, j) ≤ ρMn(j, i). Then the sequence
(Mn · · ·M1)n≥1 has a finite variation, so it converges to some stochastic matrix L.
Moreover, the series

∑
n Mn(i, j) and

∑
n Mn(j, i) converge whenever the rows of

L with indexes i and j are different.

An important literature deals with infinite products of stochastic matrices,
with various motivations: study of inhomogeneous Markov chains, of opinion
dynamics. . . See for example [14]. Backward infinite products converge much more
often than forward infinite products. Many theorems involve the ergodic coefficients
of stochastic matrices. For a d × d stochastic matrixM , the ergodic coefficient is

τ (M) = min
1≤i,i′≤d

d∑
j=1

min(M(i, j),M(i ′, j)) ∈ [0, 1].

The difference 1 − τ (M) is the maximal total variation distance between the lines
of M seen as probabilities on [[1, d]]. These theorems do not apply in our context.
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To our knowledge, Theorem 3.7 is new. The closest statements we found in the
literature are Lorenz’ stabilization theorem (theorem 2 of [10]) and a theorem of
Touri and Nedić on infinite product of bistochastic matrices (theorem 7 of [17],
relying on theorem 6 of [16]). The method we use to prove Theorem 3.7 is different
from theirs.

On the one hand, Theorem 3.7 provides a stronger conclusion (namely finite
variation and not only convergence) and has weaker assumptions than Lorenz’
stabilization theorem. Indeed, Lorenz assumes that each Mn has a positive diagonal
and a symmetric support, and that the entries of all matrices Mn are bounded below
by some δ > 0; this entails the assumptions of our Theorem 3.7, with γ = δ and
ρ = δ−1.

On the other hand, Lorenz’ stabilization theorem gives more precisions on the
limit L = limn→+∞Mn . . .M1. In particular, if the support ofMn does not depends
on n, then Lorenz shows that by applying a same permutation on the rows and on
the columns of L, one gets a block-diagonal matrix in which each diagonal block is
a consensus matrix, namely a stochastic matrix whose rows are all the same. This
additional conclusion does not hold anymore under our weaker assumptions. For
example, for every r ∈ [−1, 1], consider the stochastic matrix

M(r) = 1

2

(
1 + r 1 − r

1 − r 1 + r

)
.

One checks that for every r1 and r2 in [−1, 1],M(r2)M(r1) = M(r2r1). Let (rn)n≥1
be any sequence of numbers in ]0, 1] whose infinite product converges to some
� > 0. Then our assumptions hold with γ = 1/2 and ρ = 1 and the matricesM(rn)
have the same support. Yet, the limit of the productsM(rn) · · ·M(r1), namelyM(�),
has only positive coefficients and is not a consensus matrix.

Note also that, given an arbitrary sequence (Mn)n≥1 of stochastic matrices,
assuming only that the diagonal entries are bounded away from 0 does not ensure
the convergence of the infinite product · · ·M2M1. Indeed, consider the triangular
stochastic matrices

T0 =
⎛
⎝ 1 0 0

0 1 0
0 1/2 1/2

⎞
⎠ , T1 =

⎛
⎝ 1 0 0

0 1 0
1/2 0 1/2

⎞
⎠ .

A recursion shows that for every n ≥ 1 and (ε1, . . . , εn) ∈ {0, 1}n,

Tεn · · ·Tε1 =
⎛
⎝ 1 0 0

0 1 0
r 1 − 2−n − r 2−n

⎞
⎠ , where r =

n∑
k=1

εk

2n+1−k .

Hence, one sees that the infinite product · · · T0T1T0T1T0T1 diverges.
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Yet, for a sequence of doubly-stochastic matrices, it is sufficient to assume that
the diagonal entries are bounded away from 0. This result was proved by Touri
and Nedić (theorem 5 of [15] or theorem 7 of [17], relying on theorem 6 of [16]).
We provide a simpler proof and a slight improvement, showing that the sequence
(Mn . . .M1)n≥1 not only converges but also has a finite variation.

Theorem 3.8 Let (Mn)n≥1 be some sequence of d × d doubly-stochastic matrices.
Assume that there exists some constant γ > 0 such that for every n ≥ 1 and i
in [[1, d]], Mn(i, i) ≥ γ . Then the sequence (Mn . . .M1)n≥1 has a finite variation,
so it converges to some stochastic matrix L. Moreover, the series

∑
n Mn(i, j) and∑

n Mn(j, i) converge whenever the rows of L with indexes i and j are different.

Our proof relies on the following fact: for each column vector V ∈ Rd , set

D(V ) =
∑

1≤i,j≤d
|V (i)− V (j)| and ||V ||1 =

∑
1≤i≤d

|V (i)|.

We will call dispersion of V the quantity D(V ). Then, under the assumptions of
Theorem 3.8, the inequality

γ ||Mn+1 · · ·M1V −Mn · · ·M1V ||1 ≤ D(Mn · · ·M1V )−D(Mn+1 · · ·M1V ).

holds for every n ≥ 0.

3.3 Infinite Products of Stochastic Matrices

3.3.1 Proof of Theorem 3.7

We begin with an elementary lemma.

Lemma 3.1 LetM be anym×n stochastic matrix and V ∈ Rn be a column vector.
Denote by M the smallest entry of M , by V , V and diam(V ) = V − V the smallest
entry, the largest entry and the diameter of V . Then

MV ≥ (1 −M) V +M V ≥ V ,

MV ≤M V + (1 −M) V ≤ V ,

so

diam(MV ) ≤ (1 − 2M) diam(V ).
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Proof Call M(i, j) the entries of M and V (1), . . . , V (n) the entries of V . Let j1
and j2 be indexes such that V (j1) = V and V (j2) = V . Then for every i ∈ [[1,m]],

(MV )i =
∑
j �=j2

M(i, j)V (j)+M(i, j2)V (j2)

≥
∑
j �=j2

M(i, j)V +M(i, j2)V

= V +M(i, j2)(V − V )

≥ V +M (V − V )

≥ V .

The first inequality follows. Applying it to −V yields the second inequality.

The interesting case is when n ≥ 2, so M ≤ 1/2 and 1 − 2M ≥ 0. Yet, the
lemma and the proof above still apply when n = 1, since MV = MV = V = V in
this case.

We now restrict ourselves to square stochastic matrices. To every column vector
V ∈ Rd , we associate the column vector V ↑ ∈ Rd obtained by ordering the
components in non-decreasing order. In particular V ↑(1) = V and V ↑(d) = V .

In the next lemmas and corollary, we establish inequalities that will play a key
role in the proof of Theorem 3.7.

Lemma 3.2 Let M be some d × d stochastic matrix with diagonal entries bounded
below by some constant γ > 0, and V ∈ Rd be a column vector with components
in increasing order V (1) ≤ . . . ≤ V (d). Let σ be a permutation of [[1, d]] such that
(MV )(σ(1)) ≤ . . . ≤ (MV )(σ(d)). For every i ∈ [[1, d]], set

Ai =
i−1∑
j=1

M(σ(i), j) [V (i)− V (j)], Bi =
d∑

j=i+1

M(σ(i), j) [V (j)− V (i)],

with the natural conventionsA1 = Bd = 0. The following statements hold.

1. For every i ∈ [[1, d]], (MV )↑(i)− V ↑(i) = Bi − Ai .
2. All the terms in the sums defining Ai and Bi are non-negative.
3. Bi ≥ M(σ(i), σ (i)) [V (σ(i))−V (i)] ≥ γ [V (σ(i))−V (i)] whenever i < σ(i).
4. Let a < b in [[1, d]]. If the orbit O(a) of a associated to the permutation σ

contains some integer at least equal to b, then

V (b)− V (a) ≤ γ−1
∑

i∈O(a)∩[[1,b−1]]
Bi1[i<σ(i)] ≤ γ−1

∑
i∈O(a)∩[[1,b−1]]

Bi.
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5. One has

d∑
i=1

∣∣V (σ(i))− V (i)
∣∣ ≤ 2γ−1

d∑
i=1

Bi1[i<σ(i)] ≤ 2γ−1
d−1∑
i=1

Bi.

Proof By assumption,

(MV )↑(i)− V ↑(i) = (MV )(σ (i))− V (i) =
d∑
j=1

M(σ(i), j) [V (j)− V (i)] = −Ai + Bi,

which yields the first item. The next two items follow directly from the assumptions
V (1) ≤ . . . ≤ V (d) and M(j, j) ≥ γ for every j ∈ [[1, d]].

Under the assumptions of item 4, the integer n(a, b) = min{n ≥ 1 : σn(a) ≥ b}
is well-defined and

V (b)− V (a) ≤ V (σn(a,b)(a))− V (a)

≤
n(a,b)−1∑
k=0

[V (σk+1(a))− V (σk(a))]1σk(a)<σk+1(a)

≤ γ−1
n(a,b)−1∑
k=0

Bσk(a)1σk(a)<σk+1(a)

by item 3. Item 4 follows.
Since the sum of V (σ(i)) − V (i) over all i ∈ [[1, d]] is null and since V (1) ≤

. . . ≤ V (d), one has

d∑
i=1

∣∣V (σ(i))− V (i)
∣∣ = 2

d∑
i=1

(
V (σ(i))− V (i)

)
1[i<σ(i)] ≤ 2γ−1

d−1∑
i=1

Bi1[i<σ(i)],

by item 3. The proof is complete.

We denote by || · ||1 the norm on Rd defined as the sum of the absolute values of
the components.

Lemma 3.3 Keep the assumptions and the notations of Lemma 3.2. Assume that
there exists some constant ρ ≥ 1 such that for every i, j in [[1, d]], M(i, j) ≤
ρM(j, i). Set C = d(d − 1)max(γ−1, ρ). Then the following statements hold

1. For every i ∈ [[1, d]], Ai ≤ (i − 1)max(γ−1, ρ)(B1 + . . .+ Bi−1).
2. For everym ∈ [[1, d]], B1 + . . .+Bm ≤ (1+C+· · ·+Cm−1)||(MV )↑ −V ↑||1.
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Proof Given i ∈ [[2, d]] and j ∈ [[1, i − 1]], let us check that

Ai,j :=M(σ(i), j) [V (i)− V (j)] ≤ max(γ−1, ρ)(B1 + . . .+ Bi−1).

We distinguish two cases.

• If the orbit of some k ∈ [[1, j ]] contains some integer at least equal to i, then
inequality 4 of Lemma 3.2 applied with (a, b) = (k, i) yields

Ai,j ≤ V (i)− V (j) ≤ V (i)− V (k) ≤ γ−1
∑

z∈O(k)∩[[1,i−1]]
Bz.

• Otherwise, the orbit of every element of [[1, j ]] is contained in [[1, i − 1]], so the
orbit of every element of [[i, d]] is contained in [[j+1, d]]. In particular, the orbits
O(σ(i)) = O(i) andO(j) are disjoint. Applying inequality 3 and inequality 4 of
Lemma 3.2, once with (a, b) = (σ (i), i), once with (a, b) = (j, σ−1(j)) yields

Ai,j = M(σ(i), j) [V (i)− V (σ (i))] +M(σ(i), j) [V (σ (i))− V (σ−1(j))]
+M(σ(i), j) [V (σ−1(j)− V (j)]

≤ 1σ(i)<i [V (i)− V (σ (i))] + 1σ−1(j)<σ(i) ρM(j, σ (i))[V (σ (i))− V (σ−1(j))]
+1j<σ−1(j) [V (σ−1(j))− V (j)]

≤ γ−1
∑

z∈O(i)∩[[1,i−1]]
Bz + ρBσ−1(j) + γ−1

∑
z∈O(j)∩[[1,σ−1(j)−1]]

Bz

≤ max(γ−1, ρ)
∑

z∈[[1,i−1]]
Bz.

In both cases, we have got the inequality Ai,j ≤ max(γ−1, ρ)(B1 + . . . + Bi−1).
Summing over all j ∈ [[1, i − 1]] yields item 1.

Let m ∈ [[1, d]]. Equality (MV )↑(i)− V ↑(i) = Bi − Ai and item 1 yield

m∑
i=1

Bi ≤
m∑
i=1

|(MV )↑(i)− V ↑(i)| +
m∑
i=1

Ai

≤ ||(MV )↑ − V ↑||1 +
m∑
i=1

(i − 1)max(γ−1, ρ)(B1 + . . .+ Bi−1)

≤ ||(MV )↑ − V ↑||1 +
m∑
i=1

(d − 1)max(γ−1, ρ)(B1 + . . .+ Bm−1)

≤ ||(MV )↑ − V ↑||1 + C

m−1∑
i=1

Bi
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The particular case where m = 1 yields B1 ≤ ||(MV )↑ − V ↑||1. Item 2 follows by
induction.

Corollary 3.1 Let M be some d × d stochastic matrix with diagonal entries
bounded below by some γ > 0 Assume that there exists some constant ρ ≥ 1
such that for every n ≥ 1 and i, j in [[1, d]], M(i, j) ≤ ρM(j, i). Set C =
d(d − 1)max(γ−1, ρ). Then for any column V ∈ Rd the following statements
hold.

1. Fix m ∈ [[1, d]] and s ≥ 1 + (m− 1)max(γ−1, ρ).

m∑
i=1

s−i (MV )↑(i) ≥
m∑
i=1

s−iV ↑(i).

2. ||MV − V ||1 ≤ (2 + C + · · · + Cd−2)||(MV )↑ − V ↑||1.

Proof By applying a same permutation to the components of V , to the rows and to
the columns ofM , one may assume that V (1) ≤ . . . ≤ V (d). Let σ be a permutation
of [[1, d]] such that (MV )(σ(1)) ≤ . . . ≤ (MV )(σ(d)). Then Lemmas 3.2 and 3.3
apply.

For every i ∈ [[1,m]],

(MV )↑(i)− V ↑(i) = Bi − Ai ≥ Bi − (m− 1)max(γ−1, ρ)(B1 + . . .+ Bi−1).

Summing over i yields

m∑
i=1

s−i ((MV )↑(i)− V ↑(i)) ≥
m∑
j=1

s−jBj −
m∑
i=2

i−1∑
j=1

s−i (m− 1)max(γ−1, ρ)Bj

=
m∑
j=1

(
s−j − (m− 1)max(γ−1, ρ)

m∑
i=j+1

s−j
)
Bj

≥
m∑
j=1

(
s−j − (m− 1)max(γ−1, ρ)

s−(j+1)

1 − s−1

)
Bj

=
m∑
j=1

s−j

s − 1
[s − 1 − (m− 1)max(γ−1, ρ)] Bj

≥ 0.
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Furthermore, for every i ∈ [[1, d]],
∣∣(MV )(σ(i))− V (σ(i))

∣∣− ∣∣(MV )(σ(i))− V (i)
∣∣ ≤ ∣∣V (σ(i))− V (i)

∣∣.
Summing over i and using the last statements of Lemma 3.2 and Corollary 3.3 yield

||MV − V ||1 − ||(MV )↑ − V ↑||1 ≤
d∑
i=1

∣∣V (σ(i))− V (i)
∣∣

≤ 2γ−1
d−1∑
i=1

Bi

≤ (1 + C + · · · + Cd−2)||(MV )↑ − V ↑||1
The proof is complete.

We now derive the last step of the proof of Theorem 3.7. Indeed, applying the
next corollary to each vector of the canonical basis on Rd yields Theorem 3.7.

Corollary 3.2 Let (Mn)n≥1 be a sequence of d × d stochastic matrices. Assume
that there exists some constants γ > 0, and ρ ≥ 1 such that for every n ≥ 1 and i, j
in [[1, d]], Mn(i, i) ≥ γ and Mn(i, j) ≤ ρMn(j, i). For every column vector V ∈
Rd , the sequence of vectors (Vn)n≥0 := (Mn . . .M1V )n≥0 has a finite variation, so
it converges. Moreover, the series

∑
n Mn(i, j) and

∑
n Mn(j, i) converge whenever

the two sequences (Vn(i))n≥0 and (Vn(j))n≥0 have a different limit.

Proof Fix s ≥ 1+ (d− 1)max(γ−1, ρ). For each n, one can apply Corollary 3.1 to
the matrix Mn+1 and to the vector Vn.

Ifm ∈ [[1, d]], the sequence (s−1V
↑
n (1)+· · ·+s−mV ↑

n (m))n≥0 is non-decreasing
by Corollary 3.1 (first part) and bounded above by s−1V ↑(d) + · · · + s−mV ↑(d),
thanks to Lemma 3.1, so it has a finite variation and converges. By difference,
each sequence (V ↑

n (i))n≥0 has a finite variation. The convergence of the series∑
n ||V ↑

n+1 − V
↑
n ||1 follows, and also

∑
n ||Vn+1 − Vn||1 by Corollary 3.1 (second

part).
Call λ1 < . . . < λr the distinct values of limn→∞ Vn(i) for i ∈ [[1, d]]. For each

k ∈ [[1, r]], set Ik = {i ∈ [[1, d]] : limn→∞ Vn(i) = λk}, Jk = I1 ∪ . . . ∪ Ik and
call mk the size of Jk . Fix ε > 0 such that 2ε < γ min(λ2 − λ1, . . . , λr − λr−1), so
that the intervals [λk−ε, λk+ε] are pairwise disjoint. Then one can find some non-
negative integerN , such that Vn(i) ∈ [λk − ε, λk + ε] for every n ≥ N , k ∈ [[1, r]],
and i ∈ Ik .
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Given k ∈ [[1, r − 1]] and n ≥ N , we show below that

mk∑
i=1

s−i [V ↑
n+1(i)− V ↑

n (i)] ≥ (λk+1 − λk − 2ε)s−mk
∑
i∈Jk

∑
j∈J ck

Mn+1(i, j).

This inequality together with the convergence of the sequence (V
↑
n )n≥0 and

the inequalities Mn(j, i) ≤ ρMn(i, j) will yield the convergence of the series∑
n Mn(i, j) and

∑
n Mn(j, i) for every (i, j) ∈ Jk × J ck .

Fix n ≥ N and a permutation σ of [[1, d]] such that Vn+1(σ (1)) ≤ . . . ≤
Vn+1(σ (d)). Note that σ([[1,mk]]) = Jk .

The column vector Un defined by Un(j) = min(Vn(j), λk + ε) has the same mk
least components as Vn (corresponding to the indexes j ∈ Jk), so U↑

n have the same
mk first components as V ↑

n . Furthermore, Vn(j)−Un(j) ≥ λk+1−λk−2ε for every
j ∈ J ck . Hence, for every i ∈ [[1, d]],

V
↑
n+1(i)− (Mn+1Un)(σ (i)) = Vn+1(σ (i))− (Mn+1Un)(σ (i))

= (Mn+1Vn −Mn+1Un))(σ (i))

=
d∑
j=1

Mn+1(σ (i), j) (Vn(j)− Un(j))

≥ (λk+1 − λk − 2ε)
∑
j∈J ck

Mn+1(σ (i), j).

Fix s ≥ 1 + (mk − 1)max(γ−1, ρ). Then

mk∑
i=1

s−i
(
V
↑
n+1(i)− (Mn+1Un)(σ (i))

) ≥ (λk+1 − λk − 2ε)
mk∑
i=1

s−i
∑
j∈J ck

Mn+1(σ (i), j)

≥ (λk+1 − λk − 2ε) s−mk
mk∑
i=1

∑
j∈J ck

Mn+1(σ (i), j)

= (λk+1 − λk − 2ε) s−mk
∑
i∈Jk

∑
j∈J ck

Mn+1(i, j).
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But the rearrangement inequality1 and the first part of Corollary 3.1 yield

mk∑
i=1

s−i (Mn+1Un)(σ (i)) ≥
mk∑
i=1

s−i (Mn+1Un)
↑(i)

≥
mk∑
i=1

s−iU↑
n (i)

=
mk∑
i=1

s−iV ↑
n (i).

We get the desired inequality by additioning the last two inequalities.
The proof is complete.

3.3.2 Proof of Theorem 3.8

The proof we give is simpler than the proof of Theorem 3.7, although some
arguments are very similar. We begin with the key lemma.

Lemma 3.4 Let M be some d × d doubly-stochastic matrix with diagonal entries
bounded below by some constant γ > 0, and V ∈ Rd be any column vector. Call
dispersion of V the quantity

D(V ) =
∑

1≤i,j≤d
|V (i)− V (j)|.

Then D(V )−D(MV ) ≥ γ ||MV − V ||1.

Proof On the one hand, for every i and j in [[1, d]],

(MV )(i)− (MV )(j) =
∑

1≤k≤d
M(i, k)V (k)−

∑
1≤l≤d

M(j, l)V (l)

=
∑

1≤k,l≤d
M(i, k)M(j, l)(V (k)− V (l)),

1Namely
d∑
i=1

U↑(d + 1 − i)V ↑(i) ≤
d∑
i=1

U(i)V (i) ≤
d∑
i=1

U↑(i)V ↑(i) for every U and V in Rd .
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so

D(MV ) =
∑

1≤i,j≤d

∣∣∣ ∑
1≤k,l≤d

M(i, k)M(j, l)(V (k)− V (l))

∣∣∣.

On the other hand

D(V ) =
∑

1≤k,l≤d
|V (k)− V (l)|

=
∑

1≤i,j≤d

∑
1≤k,l≤d

M(i, k)M(j, l)|V (k)− V (l)|.

By difference, D(V ) − D(MV ) is the sum over all i and j in [[1, d]] of the non
negative quantities

Δ(i, j) =
∑

1≤k,l≤d
M(i, k)M(j, l)|V (k)− V (l)| −

∣∣∣ ∑
1≤k,l≤d

M(i, k)M(j, l)(V (k)− V (l))

∣∣∣.

Thus

D(V )−D(MV ) ≥
∑

1≤i≤d
Δ(i, i).

But for every i ∈ [[1, d]],

Δ(i, i) =
∑

1≤k,l≤d
M(i, k)M(i, l)|V (k)− V (l)| − 0

≥
∑

1≤k≤d
M(i, k)M(i, i)|V (k)− V (i)|

≥ γ
∑

1≤k≤d
M(i, k)|V (k)− V (i)|

≥ γ

∣∣∣ ∑
1≤k≤d

M(i, k)(V (k)− V (i))

∣∣∣
= γ |(MV )(i)− V (i)|.

The result follows.

We now derive the last step of the proof of Theorem 3.8. Indeed, applying the
next corollary to each vector of the canonical basis on Rd yields Theorem 3.8.
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Corollary 3.3 Let (Mn)n≥1 be any sequence of d × d bistochastic matrices with
diagonal entries bounded below by some γ > 0. For every column vector V ∈ Rd ,
the sequence (Vn)n≥0 := (Mn . . .M1V )n≥0 has a finite variation, so it converges.
Moreover, the series

∑
n Mn(i, j) and

∑
n Mn(j, i) converge whenever the two

sequences (Vn(i))n≥0 and (Vn(j))n≥0 have a different limit.

Proof Lemma 3.4 yields γ ||Vn+1 − Vn||1 ≤ D(Vn)−D(Vn+1) for every n ≥ 0. In
particular, the sequence ((D(Vn))n≥0 is non-increasing and bounded below by 0, so
it converges. The convergence of the series

∑
n ||Vn+1 − Vn||1 and the convergence

of the sequence (Vn)n≥0 follow.
Call λ1 < . . . < λr the distinct values of limn→∞ Vn(i) for i ∈ [[1, d]]. For each

k ∈ [[1, r]], set Ik = {i ∈ [[1, d]] : limn→∞ Vn(i) = λk}, and Jk = I1 ∪ . . . ∪ Ik .
The proof of the convergence of the series

∑
n Mn+1(i, j) for every (i, j) ∈

Jk × J ck . works like the proof of Corollary 3.2, with r replaced by 1, thanks to
Lemma 3.5 stated below, so the rearrangement inequality becomes an equality.

Using the equality

∑
(i,j)∈J ck×Jk

Mn+1(i, j) = |Jk| −
∑

(i,j)∈Jk×Jk
Mn+1(i, j) =

∑
(i,j)∈Jk×J ck

Mn+1(i, j),

we derive the convergence of the series
∑

n Mn+1(i, j) for every (i, j) ∈ J ck × Jk .
The proof is complete.

Lemma 3.5 LetM be some d×d doubly-stochastic matrix. Then for every column
vector V ∈ Rd and m ∈ [[1, d]]

m∑
i=1

(MV )↑(i) ≥
m∑
i=1

V ↑(i).

Proof By applying a same permutation to the columns ofM and to the components
of V , one may assume that V (1) ≤ . . . ≤ V (d). By applying a permutation to the
rows of M , one may assume also that (MV )(1) ≤ . . . ≤ (MV )(d). Since M is
doubly-stochastic, the real numbers

S(j) =
m∑
i=1

M(i, j) for j ∈ [[1, d]]

are in [0, 1] and add up to m. Moreover

m∑
i=1

(MV )(i) =
d∑
j=1

S(j)V (j).



98 J. Brossard and C. Leuridan

Hence

m∑
i=1

(MV )(i)−
m∑
j=1

V (j) =
d∑

j=m+1

S(j)V (j)+
m∑
j=1

(S(j)− 1)V (j)

≥
d∑

j=m+1

S(j)V (m)+
m∑
j=1

(S(j)− 1)V (m)

= 0.

We are done.

3.4 Proof of Theorem 3.1

3.4.1 Condition for the Non-existence of a Solution with
Support Included in Supp(X0)

We assume that Γ contains no matrix with support included in Supp(X0), namely
that the system

⎧⎪⎪⎨
⎪⎪⎩

∀i ∈ [[1, p]], X(i,+) = ai

∀j ∈ [[1, q]], X(+, j) = bj

∀(i, j) ∈ [[1, p]] × [[1, q]], X(i, j) ≥ 0
∀(i, j) ∈ Supp(X0)

c, X(i, j) = 0

is inconsistent.
This system can be seen as a system of linear inequalities of the form �(X) ≤ c

(where � is some linear form and c some constant) by splitting each equality
�(X) = c into the two inequalities �(X) ≤ c and �(X) ≥ c, and by transforming
each inequality �(X) ≥ c into the equivalent inequality −�(X) ≤ −c. But
theorem 4.2.3 in [18] (a consequence of Farkas’ or Fourier’s lemma) states that
a system of linear inequalities of the form �(X) ≤ c is inconsistent if and only if
some linear combination with non-negative weights of the linear inequalities yields
the inequality 0 ≤ −1.

Given such a linear combination, call αi,+, αi,−βj,+, βj,−, γi,j,+, γi,j,− the
weights associated to the inequalities X(i,+) ≤ ai , −X(i,+) ≤ −ai , X(+, j) ≤
bj , −X(+, j) ≤ −bj , X(i, j) ≤ 0, −X(i, j) ≤ 0. When (i, j) ∈ Supp(X0), the
inequalityX(i, j) ≤ 0 does not appear in the system, so we set γi,j,+ = 0. Then the
real numbers αi := αi,+ − αi,−, βj := βj,+ − βj,−, γi,j := γi,j,+ − γi,j,− satisfy
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the following conditions:

• for every (i, j) ∈ [[1, p]] × [[1, q]], αi + βj + γi,j = 0,

•
p∑
i=1

αiai +
q∑
j=1

βjbj = −1,

• γi,j ≤ 0 whenever (i, j) ∈ Supp(X0).

Let U and V be two random variables with respective laws

p∑
i=1

aiδαi and
q∑
j=1

bj δ−βj .

Then

∫
R

(
P [U > t] − P [V > t])dt = E[U ] − E[V ] =

p∑
i=1

αiai +
q∑
j=1

βj bj = −1 < 0,

so there exists some real number t such that P [U > t] − P [V > t] < 0. Consider
the sets A = {i ∈ [[1, p]] : αi ≤ t} and B = {j ∈ [[1, q]] : βj < −t}. Then for every
(i, j) ∈ A× B, −γi,j = αi + βj < 0, so (i, j) /∈ Supp(X0). In other words, X0 is
null on A× B. Moreover,

a(A)− b(Bc) =
∑
i∈A

ai −
∑
j∈Bc

bj = P [U ≤ t] − P [−V ≥ −t]

= P [V > t] − P [U > t] > 0.

Hence the block A× B is a cause of incompatibility. The proof is complete.

3.4.2 Condition for the Existence of Additional Zeroes Shared
by Every Solution in Γ (X0)

We now assume that Γ contains some matrix with support included in Supp(X0).
Using the convexity of Γ (X0), one can construct a matrix S0 ∈ Γ (X0) whose

support contains the support of every matrix in Γ (X0). This yields item (a).
We now prove items (b) and (c). The observations made in the introduction show

that Supp(S0) ⊂ Supp(X0) and that S0 is null on Ac×Bc wheneverA×B is a non-
empty subset of [[1, p]] × [[1, q]] such that X0 is null on A× B and a(A) = b(Bc).
This yields the ‘if’ part of item (b) and one inclusion in item (c).
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To prove the ‘only if’ part of item (b) and the reverse inclusion in item (c), fix
(i0, j0) ∈ Supp(X0) \ Supp(S0). Then for every p × q matrix X with real entries,

∀i ∈ [[1, p]], X(i,+) = ai

∀j ∈ [[1, q]], X(+, j) = bj

∀(i, j) ∈ [[1, p]] × [[1, q]], X(i, j) ≥ 0
∀(i, j) ∈ Supp(X0)

c, X(i, j) = 0

⎫⎪⎪⎬
⎪⎪⎭

%⇒ X(i0, j0) ≤ 0.

The system in the left-hand side of the implication is consistent since Γ (X0) is non-
empty by assumption. As before, the system at the left-hand side of the implication
can be seen as a system of linear inequalities of the form �(X) ≤ c.

We now use theorem 4.2.7 in [18] (a consequence of Farkas’ or Fourier’s lemma)
which states that any linear inequation which is a consequence of some consistent
system of linear inequalities of the form �(X) ≤ c can be deduced from the system
and from the inequality 0 ≤ 1 by linear combinations with non-negative weights.

Given such a linear combination, call αi,+, αi,−βj,+, βj,−, γi,j,+, γi,j,− and η the
weights associated to the inequalities X(i,+) ≤ ai , −X(i,+) ≤ −ai , X(+, j) ≤
bj , −X(+, j) ≤ −bj , X(i, j) ≤ 0, −X(i, j) ≤ 0, and 0 ≤ 1. When (i, j) ∈
Supp(X0), the inequality X(i, j) ≤ 0 does not appear in the system, so we set
γi,j,+ = 0. Then the real numbers αi := αi,+ − αi,−, βj := βj,+ − βj,−, γi,j :=
γi,j,+ − γi,j,− satisfy the following conditions.

• for every (i, j) ∈ [[1, p]] × [[1, q]], αi + βj + γi,j = δi,i0δj,j0 ,

•
p∑
i=1

αiai +
q∑
j=1

βjbj + η = 0.

• γi,j ≤ 0 whenever (i, j) ∈ Supp(X0),
• η ≥ 0

Let U and V be two random variables with respective laws

p∑
i=1

aiδαi and
q∑
j=1

bj δ−βj .

Then

∫
R

(
P [U > t] − P [V > t]) dt = E[U ] − E[V ] =

p∑
i=1

αiai +
q∑
j=1

βjbj = −η ≤ 0.

Set u0 = min(α1, . . . , αp) = ess infU and v0 = max(−β1, . . . ,−βq) = ess supV .
Then P [U > t] − P [V > t] ≥ 0 when t < u0 or t ≥ v0. Hence one can find
t ∈ [u0, v0[ such that P [U > t] − P [V > t] ≤ 0. Consider the sets A = {i ∈
[[1, p]] : αi ≤ t} and B = {j ∈ [[1, q]] : βj < −t}. For every (i, j) ∈ A × B,
γi,j = δi,i0δj,j0 − αi − βj > 0, so (i, j) /∈ Supp(X0). In other words, X0 is null on
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A× B. Moreover,

a(A) =
∑
i∈A

ai = P [U ≤ t] ≥ P [U = u0] > 0,

b(B) =
∑
j∈B

bj = P [−V < −t] ≥ P [V = v0] > 0,

so A and B are non-empty and

a(A)− b(Bc) = P [U ≤ t] − P [V ≤ t] = P [V > t] − P [U > t] ≥ 0.

The last inequality is necessarily an equality, since otherwise A × B would be a
cause of incompatibility. Hence a(A) = b(Bc), so A×B is cause of criticality. This
proves the ‘only if’ part of item (b).

We also know that (i0, j0) /∈ A × B since X0(i0, j0) > 0. If we knew that
(i0, j0) ∈ Ac × Bc, we would get the reverse inclusion in item (c). Unfortunately,
this statement may fail with the choice of t made above.

Assume, that (i0, j0) /∈ Ac×Bc. Since a(A) = b(Bc), the linear system defining
Γ (a, b,X0) can be split into three independent consistent subsystems, namely

∀(i, j) ∈ (A× B) ∪ (Ac × Bc),X(i, j) = 0

and the two systems

⎧⎪⎪⎨
⎪⎪⎩

∀i ∈ I, X(i, J ) = ai

∀j ∈ J, X(I, j) = bj

∀(i, j) ∈ I × J, X(i, j) ≥ 0
∀(i, j) ∈ (I × J ) \ Supp(X0), X(i, j) = 0

where the block I × J is either A× Bc or Ac × B.
If (i0, j0) /∈ Ac×Bc, then (i0, j0) belongs to one of these two blocks, say I1×J1.

Since a(I1) = b(J1) and since the equality X(i0, j0) = 0 is a consequence of the
consistent subsystem above with I×J = I1×J1, one can apply the proof of item (b)
to the marginals a(·|I1) and b(·|J1) and the restriction of X0 on I1 × J1. This yields
a subset A1 × B1 of I1 × J1 such that X0 is null on A1 × B1, a(A1) = b(Bc1), and
(i0, j0) /∈ A1 × B1.

If (i0, j0) ∈ Ac1 × Bc1, we are done. Otherwise, (i0, j0) belongs to one of the
two blocks A1 × Bc1 or Ac1 × B1, say I2 × J2, and the recursive construction goes
on. This construction necessarily stops after a finite number of steps and produces a
blockA′×B ′ on whichX0 is null, such that a(A′) = b(B ′c) and (i0, j0) ∈ A′c×B ′c.
Item (c) follows.
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3.5 Tools and Preliminary Results

3.5.1 Results on the Quantities Ri(X2n) and Cj(X2n+1)

Lemma 3.6 Let X ∈ Γ1. Then

q∑
i=1

aiRi(X) =
∑
i,j

X(i, j) =
∑
j

bj = 1

and for every j ∈ [[1, q]],

Cj(TR(X)) =
p∑
i=1

X(i, j)

bj
Ri(X)

−1.

When X ∈ ΓC , this equality expresses Cj (TR(X)) as a weighted (arithmetic) mean
of the quantities Ri(X)−1, with weights X(i, j)/bj .

For each X ∈ Γ1, call R(X) the column vector with components
R1(X), . . . , Rp(X) and C(X) the column vector with components C1(X), . . . ,

Cq(X). Set

R(X) = min
i
Ri (X), R(X) = max

i
Ri (X), C(X) = min

j
Cj (X), C(X) = max

i
Cj (X).

Corollary 3.4 The intervals

[C(X1)
−1, C(X1)

−1], [R(X2), R(X2)], [C(X3)
−1, C(X3)

−1], [R(X4), R(X4)], · · ·

contain 1 and form a non-increasing sequence.

In Lemma 3.6, one can invert the roles of the lines and the columns. Given X ∈
ΓC , the matrix TR(X) is in ΓR so the quantities Ri(TC(TR(X))) can be written
as weighted (arithmetic) means of the Cj(TR(X))−1. But the Cj(TR(X)) can be
written as a weighted (arithmetic) means of the quantities Rk(X)−1. Putting things
together, one gets weighted arithmetic means of weighted harmonic means. Next
lemma shows how to transform these into weighted arithmetic means by modifying
the weights.
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Lemma 3.7 Let X ∈ ΓC . Then R(TC(TR(X))) = P(X)R(X), where P(X) is the
p × p matrix given by

P(X)(i, k) =
q∑
j=1

TR(X)(i, j)TR(X)(k, j)

aibjCj (TR(X))
.

The matrix P(X) is stochastic. Moreover it satisfies for every i and k in [[1, p]],

P(X)(i, i) ≥ a

b C(TR(X))q

and

P(X)(k, i) ≤ a

a
P(X)(i, k).

Proof For every i ∈ [[1, p]],

Ri(TC(TR(X))) =
q∑
j=1

TR(X)(i, j)

ai

1

Cj (TR(X))
.

But the assumption X ∈ ΓC yields

1 = 1

bj

p∑
k=1

X(k, j) = 1

bj

p∑
k=1

TR(X)(k, j)Rk(X).

Hence,

Ri(TC(TR(X))) =
q∑
j=1

TR(X)(i, j)

ai

p∑
k=1

TR(X)(k, j)

bjCj (TR(X))
Rk(X).

These equalities can be written as R(TC(TR(X))) = P(X)R(X), where P(X)
is the p × p matrix whose entries are given in the statement of Lemma 3.7. By
construction, the entries of P(X) are non-negative and for every i ∈ [[1, p]],
p∑
k=1

P(X)(i, k) =
q∑
j=1

TR(X)(i, j)

aibjCj (TR(X))

p∑
k=1

TR(X)(k, j) =
q∑
j=1

TR(X)(i, j)

ai
= 1.

Moreover, since

q∑
j=1

TR(X)(i, j)
2 ≥ 1

q

( q∑
j=1

TR(X)(i, j)
)2 = a2

i

q
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we have

P(X)(i, i) ≥ 1

ai b C(TR(X))

q∑
j=1

TR(X)(i, j)
2

= ai

b C(TR(X)) q

≥ a

b C(TR(X)) q
.

The last inequality to be proved follows directly from the symmetry of the matrix
(aiP (X)(i, k))1≤i,k≤p.

3.5.2 A Function Associated to Each Element of Γ1

Definition 3.1 For everyX and S in Γ1, we set

FS(X) =
∏

(i,j)∈[[1,p]]×[[1,q]]
X(i, j)S(i,j),

with the convention 00 = 1.

We note that 0 ≤ FS(X) ≤ 1, and that FS(X) > 0 if and only if Supp(S) ⊂
Supp(X).

Lemma 3.8 Let S ∈ Γ1. For every X ∈ Γ1, FS(X) ≤ FS(S), with equality
if and only if X = S. Moreover, if Supp(S) ⊂ Supp(X), then D(S||X) =
ln(FS(S)/FS(X)).

Proof Assume that Supp(S) ⊂ Supp(X). The definition of FS and the arithmetic-
geometric inequality yield

FS(S)

FS(X)
=

∏
i,j

(X(i, j
S(i, j)

)S(i,j) ≤ ∑
i,j

S(i, j)
(X(i, j
S(i, j)

)
=

∑
i,j

X(i, j) = 1,

with equality if and only if X(i, j) = S(i, j) for every (i, j) ∈ Supp(S). The result
follows.

Lemma 3.9 Let X ∈ Γ1.

• For every S ∈ ΓR such that Supp(S) ⊂ Supp(X), one has FS(X) ≤ FS(TR(X)),
and the ratio FS(X)/FS(TR(X)) does not depend on S.

• For every S ∈ ΓC such that Supp(S) ⊂ Supp(X), one has FS(X) ≤ FS(TC(X)),
and the ratio FS(X)/FS(TC(X)) does not depend on S.
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Proof Let S ∈ ΓR. For every (i, j) ∈ Supp(X), X(i, j)/(TR(X))(i, j) = Ri(X) so
the arithmetic-geometric mean inequality yields

FS(X)

FS(TR(X))
=

∏
i,j

Ri(X)
Si,j =

∏
i

Ri(X)
ai ≤

∑
i

aiRi(X) =
∑
i,j

X(i, j) = 1.

The first statement follows. The second statement is proved in the same way.

Corollary 3.5 Assume that Γ (X0) is not empty. Then:

1. for every S ∈ Γ (X0), the sequence (FS(Xn))n≥0 is non-decreasing and bounded
above, so it converges;

2. for every (i, j) in the union of the supports Supp(S) over all S ∈ Γ (X0), the
sequence (Xn(i, j))n≥1 is bounded away from 0.

Proof Lemmas 3.8 and 3.9 yield the first item. Given S ∈ Γ (X0) and (i, j) ∈
Supp(S), we get for every n ≥ 0, Xn(i, j)S(i,j) ≥ FS(Xn) ≥ FS(X0) > 0. The
second item follows.

The first item of Corollary 3.5 will yield the first items of Theorem 3.3. The
second item of Corollary 3.5 is crucial to establish the geometric rate of convergence
in Theorem 3.2 and the convergence in Theorem 3.3.

3.6 Proof of Theorem 3.2

In this section, we assume that Γ contains some matrix having the same support
as X0, and we establish the convergences with at least geometric rate stated in
Theorem 3.2. The main tools are Lemma 3.1 and the second item of Corollary 3.5.
Corollary 3.5 shows that the non-zero entries of all matrices Xn are bounded below
by some positive real number γ . Therefore, the non-zero entries of all matrices
XnX

#
n are bounded below by γ 2. These matrix have the same support as X0X

#
0 .

By Lemma 3.7, for every n ≥ 1, R(X2n+2) = P(X2n)R(X2n), where P(X2n) is
a stochastic matrix given by

P(X2n)(i, i
′) =

q∑
j=1

X2n+1(i, j)X2n+1(i
′, j)

aibjCj (X2n+1)
.

These matrices have also the same support as X0X
#
0 . Moreover, by Lemma 3.7 and

Corollary 3.4,

P(X2n)(i, i
′) ≥ 1

a b C(X3)
(X2n+1X

#
2n+1)(i, i

′),

so the non-zero entries of P(X2n) are bounded below by γ 2/(a b C(X3)) > 0.
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We now define a binary relation on the set [[1, p]] by

iRi ′ ⇐⇒ X0X
#
0 (i, i

′) > 0 ⇐⇒ ∃j ∈ [[1, q]], X0(i, j)X0(i
′, j) > 0.

The matrixX0X
#
0 is symmetric with positive diagonal (since on each line,X0 has at

least a positive entry), so the relation R is symmetric and reflexive. Call I1, . . . , Ir
the connected components of the graph G associated to R, and d the maximum of
their diameters. For each k, set Jk = {j ∈ [[1, q]] : ∃i ∈ Ik : X0(i, j) > 0}.
Lemma 3.10 The sets J1, . . . , Jk form a partition of [[1, q]] and the support of X0
is contained in I1 × J1 ∪ · · · ∪ Ir × Jr . Therefore, the support ofX0X

#
0 is contained

in I1 × I1 ∪ · · · ∪ Ir × Ir , so one can get a block-diagonal matrix by permuting
suitably the lines of X0.

Proof By assumption, the sum of the entries of X0 on any row or any column is
positive. Given k ∈ [[1, r]] and i ∈ Ik , there exists j ∈ [[1, q]] such thatX0(i, j) > 0,
so Jk is not empty.

Fix now j ∈ [1, q]. There exists i ∈ [[1, p]] such that X0(i, j) > 0. Such an
i belongs to some connected component Ik , so j belongs Jk . If j also belongs to
Jk′ , then X0(i

′, j) > 0 for some i ′ ∈ Ik′ , so X0X
#
0 (i, i

′) ≥ X0(i, j)X0(i
′, j) > 0,

hence i and i ′ belong to the connected component of G, so k′ = k.
The other statements follow.

Lemma 3.11 For n ≥ 1, set P2n = P(X2n) and Mn = P2n+2d−2 · · ·P2n+2P2n.
Call c the minimum of all positive entries of all matrices P2n. Then c > 0, and for
every n ≥ 1, i ∈ Ik and i ′ ∈ Ik′ .

Mn(i, i
′) ≥ cd if k = k′.

Mn(i, i
′) = 0 if k �= k′.

Proof The positivity of c has already be proved at the beginning of the present
section. Moreover,Mn(i, i

′) is the sum of the products

P2n+2d−2(i, i1)P2n+2d−4(i1, i2) · · ·P2n+2(id−2, id−1)P2n(id−1, i
′).

over all (i1, . . . , id−1) in [[1, p]]d−1.
If k �= k′, all these products are 0, since no path can connect i and i ′ in the graph

G, so Mn(i, i
′) = 0.

If k = k′, one can find a path i = i0, . . . , i� = i ′ in the graph G, with length
� ≤ d . Setting i�+1 = . . . = id if � < d , we get

P2n+2d−2(i, i1)P2n+2d−4(i1, i2) · · ·P2n+2(id−2, id−1)P2n(id−1, i
′) ≥ cd.

The result follows.
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Keep the notations of the last lemma. Then R(X2n+2d ) = MnR(X2n) for every
n ≥ 1. For each k ∈ [[1, r]], Lemma 3.1 applied to the submatrix (Mn(i, i

′))i,i′∈Ik
and the vector RIk (X2n) = (Ri(X2n))i∈Ik yields

diam(RIk (X2n+2d )) ≤ (1 − cd) diam(RIk (X2n)).

But Lemma 3.1 applied to the submatrix (P (X2n)(i, i
′))i,i′∈Ik shows that the

intervals
[

min
i∈Ik

Ri(X2n),max
i∈Ik

Ri(X2n)
]

indexed by n ≥ 1 form a non-increasing sequence. Hence, each sequence (Ri(X2n))

tends to a limit which does not depend on i ∈ Ik , and the speed of convergence it at
least geometric.

Call λk this limit. By Lemma 3.10, we have for every n ≥ 1,

∑
i∈Ik

aiRi(X2n) =
∑

(i,j)∈Ik×Jk
X2n(i, j) =

∑
j∈Jk

X2n(+, j) =
∑
j∈Jk

bj

Passing to the limit yields

λk
∑
i∈Ik

ai =
∑
j∈Jk

bj ,

whereas the assumption that Γ contains some matrix S having the same support as
X0 yields

∑
i∈Ik

ai =
∑

(i,j)∈Ik×Jk
S(i, j) =

∑
j∈Jk

bj .

Thus λk = 1.
We have proved that each sequence (Ri(X2n))n≥0 tends to 1 with at least

geometric rate. The same arguments work for the sequences (Cj (X2n+1))n≥0.
Therefore, each infinite productRi(X0)Ri(X2) · · · or Cj(X1)Cj (X3) · · · converges
at an at least geometric rate. The convergence of the sequence (Xn)n≥0 with at a least
geometric rate follows.

Moreover, call αi and βj the inverses of the infinite products Ri(X0)Ri(X2) · · ·
and Cj (X1)Cj (X3) · · · and X∞ the limit of (Xn)n≥0. Then X∞(i, j) =
αiβjX0(i, j), so X∞ belongs to the set ΔpX0Δq . As noted in the introduction, we
have also X∞ ∈ Γ . It remains to prove that X∞ is the only matrix in Γ ∩ΔpX0Δq
and the only matrix which achieves the least upper bound of D(Y ||X0) over all
Y ∈ Γ (X0).



108 J. Brossard and C. Leuridan

Let EX0 be the vector space of all matrices in Mp,q(R) which are null on
Supp(X0)

c (which can be identified canonically with RSupp(X0)), and E+
X0

be the

convex subset of all non-negative matrices in EX0 . The subset E+∗
X0

of all matrices

in EX0 which are positive on Supp(X0)
c, is open in EX0 , dense in E+

X0
and contains

X∞. Consider the map fX0 from E+
X0

to R defined by

fX0(Y ) =
∑

(i,j)∈Supp(X0)

Y (i, j) ln
Y (i, j)

X0(i, j)
,

with the convention t ln t = 0. This map is strictly convex since the map t �→ t ln t
from R+ to R is. Its differential at any point Y ∈ E+∗

X0
is given by

dfX0(Y )(H) =
∑

(i,j)∈Supp(X0)

(
ln
Y (i, j)

X0(i, j)
+ 1

)
H(i, j).

Now, if Y0 is any matrix in Γ ∩ΔpX0Δq (including the matrix X∞), the quantities
ln(Y0(i, j)/X0(i, j)) can be written λi + μj . Thus for every matrix H ∈ E(X0)

with null row-sums and column-sums, dfX0(Y0)(H) = 0, hence the restriction of
fX0 to Γ (X0) has a strict global minimum at Y0. The proof is complete.

The Case of Positive Matrices
The proof of the convergence at an at least geometric rate can be notably simplified
when X0 has only positive entries. In this case, Fienberg [6] used geometric
arguments to prove the convergence of the iterated proportional fitting procedure
at an at least geometric rate. We sketch another proof using the observation made
by Fienberg that the ratios

Xn(i, j)Xn(i
′, j ′)

Xn(i, j ′)Xn(i ′, j)

are independent of n, since they are preserved by the transformations TR and TC .
Call κ the least of these positive constants. Using Corollary 3.4, one checks that
the average of the entries of Xn on each row or column remains bounded below by
some constant γ > 0. Thus for every location (i, j) and n ≥ 1, one can find two
indexes i ′ ∈ [[1, p]] and j ′ ∈ [[1, q]] such that Xn(i ′, j) ≥ γ and Xn(i, j ′) ≥ γ , so

Xn(i, j) ≥ Xn(i, j)Xn(i
′, j ′) ≥ κXn(i, j

′)Xn(i ′, j) ≥ κγ 2.

This shows that the entries of the matrices Xn remain bounded away from 0, so
the ratios Xn(i, j)/bj and Xn(i, j)/ai are bounded below by some constant c > 0
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independent of n ≥ 1, i and j . Set

ρn = R(Xn)

R(Xn)
if n is even, ρn = C(Xn)

C(Xn)
if n is odd.

For every n ≥ 1, the matrix (X2n(i, j)/bj )1≤i≤p,1≤j≤q is stochastic, so the
equalities

Cj(X2n+1) =
p∑
i=1

(X2n(i, j)/bj )Ri(X2n+1)
−1

and Lemma 3.1 yields C(X2n+1) ≥ R(X2n)
−1 and

C(X2n+1)− C(X2n+1) ≤ (1 − 2c)(R(X2n)
−1 − R(X2n)

−1).

Thus,

ρ2n+1 − 1 = C(X2n+1)− C(X2n+1)

C(X(2n+1))
≤ (1 − 2c)(ρ2n − 1).

We prove the inequality ρ2n − 1 ≤ (1 − 2c)(ρ2n−1 − 1) in the same way. Hence
ρn → 1 at an at least geometric rate. The result follows by Corollary 3.4.

3.7 Proof of Theorem 3.3

We now assume that Γ contains some matrix with support included in Supp(X0).

3.7.1 Asymptotic Behavior of the Sequences (R(Xn)) and
(C(Xn))

The first item of Corollary 3.5 yields the convergence of the infinite product

∏
i

Ri(X0)
ai ×

∏
j

Cj (X1)
bj ×

∏
i

Ri(X2)
ai ×

∏
j

Cj (X3)
bj × · · · .

Set g(t) = t − 1 − ln t for every t > 0. Using the equalities

∀n ≥ 1,
p∑
i=1

aiRi(X2n) =
q∑
j=1

bjCj (X2n−1) = 1,
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we derive the convergence of the series

∑
i

aig(Ri(X0))+
∑
j

bjg(Cj (X1))+
∑
i

aig(Ri(X2))+
∑
j

bjg(Cj (X3))+· · · .

But g is null at 1, positive everywhere else, and tends to infinity at 0+ and at +∞.
By positivity of the ai and bj , we get the convergence of all series

∑
n≥0

g(Ri(X2n)) and
∑
n≥0

g(Cj (X2n+1))

and therefore the convergence of all sequences (Ri(X2n))n≥0 and to (Cj (X2n+1))n≥0
towards 1. Hence, the series

∑
n(Ri(X2n) − 1)2 and

∑
n≥0(Cj (X2n+1) − 1)2

converge since g(t) ∼ (t − 1)2/2 as t → 1.
We now use a quantity introduced by Bregman [3] and called L1-error by

Pukelsheim [12]. For each X ∈ Γ1, set

e(X) =
p∑
i=1

∣∣∣
q∑
j=1

X(i, j)− ai

∣∣∣+
q∑
j=1

∣∣∣
p∑
i=1

X(i, j)− bj

∣∣∣

=
p∑
i=1

ai |Ri(X)− 1| +
q∑
j=1

bj |Cj (X)− 1|.

The convexity of the square function yields

e(X)2

2
≤

p∑
i=1

ai(Ri(X)− 1)2 +
q∑
j=1

bj (Cj (X)− 1)2.

Thus the series
∑
n e(Xn)

2 converges. But the sequence (e(Xn))n≥1 is non-
increasing (the proof of this fact is recalled below). Therefore, for every n ≥ 1,

0 ≤ n

2
e(Xn)

2 ≤
∑

n/2≤k≤n
e(Xk)

2.

Convergences ne(Xn)2 → 0,
√
n(Ri(Xn) − 1) → 0 and

√
n(Cj (Xn) − 1) → 0

follow.
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To check the monotonicity of (e(Xn))n≥1, note that TR(X) ∈ ΓR for every X ∈
ΓC , so

e(TR(X)) =
q∑
j=1

∣∣∣
p∑
i=1

X(i, j) Ri(X)
−1 − bj

∣∣∣

=
q∑
j=1

∣∣∣
p∑
i=1

X(i, j) (Ri(X)
−1 − 1)

∣∣∣

≤
p∑
i=1

q∑
j=1

X(i, j) |Ri(X)−1 − 1|

=
p∑
i=1

aiRi(X) |Ri(X)−1 − 1|

= e(X).

In the same way, e(TC(Y )) ≤ e(Y ) for every Y ∈ ΓR.

3.7.2 Convergence and Limit of (Xn)

Since Γ (X0) is not empty, we can fix a matrix S0 ∈ Γ (X0) whose support is
maximum, like in Theorem 3.1, critical case, item (a).

Let L be a limit point of the sequence (Xn)n≥0, so L is the limit of some
subsequence (Xϕ(n))n≥0. As noted in the introduction, Supp(L) ⊂ Supp(X0).
But for every i ∈ [[1, p]] and j ∈ [[1, q]], Ri(L) = limRi(Xϕ(n)) = 1 and
Cj(L) = limCj (Xϕ(n)) = 1. Hence L ∈ Γ (X0). Corollary 3.5 yields the inclusion
Supp(S0) ⊂ Supp(L) hence for every S ∈ Γ (X0), Supp(S) ⊂ Supp(S0) ⊂
Supp(L) ⊂ Supp(X0), so the quantities FS(X0) and FS(L) are positive.

By Lemma 3.9, the ratios FS(Xϕ(n))/FS(X0) do not depend on S ∈ Γ (X0), so
by continuity of FS , the ratio FS(L)/FS(X0) does not depend on S ∈ Γ (X0). But
by Lemma 3.8,

ln
FS(L)

FS(X0)
= ln

FS(S)

FS(X0)
− ln

FS(S)

FS(L)
= D(S||X0)−D(S||L),

and D(S||L) ≥ 0 with equality if and only if S = L. Therefore, L is the only
element achieving the greatest lower bound of D(S||X0) over all S ∈ Γ (X0).

L = arg min
S∈Γ (X0)

D(S||X0).



112 J. Brossard and C. Leuridan

We have proved the unicity of the limit point of the sequence (Xn)n≥0. By
compactness of Γ (X0), the convergence follows.

Remark 3.1 Actually, one has Supp(S0) = Supp(L). Indeed, Theorem 3.3 shows
that for every (i, j) ∈ Supp(X0) \ Supp(S0), Xn(i, j) → 0 as n → +∞. This fact
could be retrieved by using the same arguments as in the proof of Theorem 3.1 to
show that on the set Γ (X0), the linear form X �→ X(i0, j0) coincides with some
linear combination of the affine forms X �→ Ri(X) − 1, i ∈ [[1, p]], and X �→
Cj(X)− 1, j ∈ [[1, q]].

3.8 Proof of Theorems 3.4–3.6

We recall that neither proof below uses the assumption that Γ (X0) is empty.

3.8.1 Proof of Theorem 3.4

3.8.1.1 Convergence of the Sequences (R(X2n)) and (C(X2n+1))

By Lemma 3.7 and Corollary 3.4, we have for every n ≥ 1, R(X2n+2) =
P(X2n)R(X2n), where P(X2n) is a stochastic matrix such that for every i and k
in [[1, p]],

P(X2n)(i, i) ≥ a

b C(X2n+1)q
≥ a R(X2)

bq

and

P(X2n)(k, i) ≤ (a/a)P (X2n)(i, k).

The sequence (P (X2n))n≥0 satisfies the assumption of Corollary 3.2 and Theo-
rem 3.7, so any one of these two results ensures the convergence of the sequence
(R(X2n))n≥0. By Corollary 3.4, the entries of these vectors stay in the interval
[R(X2), R(X2)], so the limit of each entry is positive. The same arguments show
that the sequence (C(X2n+1))n≥0 also converges to some vector with positive
entries.

3.8.1.2 Relations Between the Components of the Limits, and Block
Structure

Call λ1 < . . . < λr the different values of the limits of the sequences (Ri(X2n))n≥0,
and μ1 > . . . > μs the different values of the limits of the sequences
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(Cj (X2n+1))n≥0. The values of these limits will be precised later. Consider the
sets

Ik = {i ∈ [[1, p]] : limRi(X2n) = λk} for k ∈ [[1, r]],

Jl = {j ∈ [[1, q]] : limCj (X2n+1) = μl} for l ∈ [[1, s]].

When (i, j) ∈ Ik×Jl , the sequence (Ri(X2n)Cj (X2n+1))n≥0 converges to λkμl .
If λkμl > 1, this entails the convergence to 0 of the sequence (Xn(i, j))n≥0 with
a geometric rate; and if λkμl < 1, this entails the nullity of all Xn(i, j) (otherwise
the sequence (Xn(i, j))n≥0 would go to infinity). But for all n ≥ 1, Ri(X2n) = 1
and Cj (X2n+1) = 1, so at least one entry of the matricesXn on each line or column
does not converge to 0. This forces the equalities s = r and μk = λ−1

k for every
k ∈ [[1, r]].

3.8.1.3 Convergence of the Sequences (X2n) and (X2n+1)

Let L be any limit point of the sequence (X2n)n≥0, so L is the limit of some
subsequence (X2ϕ(n))n≥0. By definition of a′, Ri(L) = limRi(X2ϕ(n)) = a′i/ai for
every i ∈ [[1, p]]. Moreover, Supp(L) ⊂ Supp(X0), so L belongs to Γ (a′, b,X0).

Like in Sect. 3.7.2, we check that the quantity

D(S||X0)−D(S||L) = ln(FS(L)/FS(X0))

does not depend on S ∈ Γ (a′, b,X0), so L is the unique matrix achieving the
greatest lower bound of D(S||X0) over all S ∈ Γ (a′, b,X0). The convergence of
(X2n)n≥0 follows by compactness of Γ (a′, b,X0).

By Lemma 3.9, the ratios FS(X2ϕ(n))/FS(X0) do not depend on S ∈ Γ (X0),
so by continuity of FS , the ratio FS(L)/FS(X0) The same arguments show that the
sequence (X2n+1)n≥0 converges to the unique matrix achieving the greatest lower
bound of D(S||X0) over all S ∈ Γ (a, b′,X0).

3.8.1.4 Formula for λk

We know that the sequence (Xn(i, j))n≥0 converges to 0 whenever i ∈ Ik and j ∈ Jl
with k �= l. Thus the support of L = limX2n is contained in I1 × J1 ∪ . . .∪ Ir × Jr .
But L belongs to Γ (a′, b,X0), so for every k ∈ [[1, r]]

λka(Ik) =
∑
i∈Ik

a′i =
∑

(i,j)∈Ik×Jk
L(i, j) =

∑
j∈Jk

bj = b(Jk).
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3.8.1.5 Properties of Matrices in Γ (a′, b, X0) and Γ (a′, b, X0)

Let S ∈ Γ (a, b′,X0).
Let k ∈ [[1, r − 1]], Ak = I1 ∪ · · · ∪ Ik and Bk = Jk+1 ∪ · · · ∪ Ir . We already

know that X0 is null on Ak × Bk , so S is also null on this set. Moreover, for every
l ∈ [[1, r]],

a(Il) = λ−1
l b(Jl) =

∑
j∈Jl

λ−1
l bj =

∑
j∈Jl

b′j = b′(Jl).

Summation over all l ∈ [[1, k]] yields a(Ak) = b′(Bck ). Hence by Theorem 3.1
(critical case), S is null on the set Ack × Bck = (Ik+1 ∪ · · · ∪ Ir )× (J1 ∪ · · · ∪ Jk).

This shows that the support of S is included in I1 ×J1 ∪· · ·∪ Ir ×Jr . This block
structure and the equalities a′i/ai = bj/b

′
j = λk whenever (i, j) ∈ Ik × Jk yield the

equalityD1S = SD2. This matrix has the same support as S. Moreover, its i-th row
is a′i/ai times the i-th row of S, so its i-th row-sum is a′i/ai × ai = a′i ; in the same
way its j -th column is bj/b′j times the j -th column of S, so its j -th column sum is
bj/b

′
j × b′j = bj . As symmetric conclusions hold for every matrix in Γ (a′, b,X0),

the proof is complete.

3.8.2 Proof of Theorem 3.5

Fix S ∈ Γ (a′, b,X0) (we know by Theorem 3.4 that this set is not empty). Let
k ∈ [[1, r]], P = [[1, p]] \ (I1 ∪ . . . ∪ Ik−1), Q = [[1, q]] \ (J1 ∪ . . . ∪ Jk−1).

If k = r , then P = Ir and Q = Jr . As a′i = aib(Jr)/a(Ir ) for every i ∈ Ir ,
we have a′(Ir ) = b(Jr) and a′i/a′(Ir ) = aib(Jr)/a(Ir) for every i ∈ Ir . Therefore,
the matrix (S(i, j)/a′(Ir )) is a solution of the restricted problem associated to the
marginals a(·|P) = (ai/a(Ir))i∈P , b(·|Q) = (bj /b(Q))j∈Q and to the initial
condition (X0(i, j))(i,j)∈P×Q.

If k < r , then P = Ik ∪ . . . ∪ Ir and Q = Jk ∪ . . . ∪ Jr . Let Ak = Ik and
Bk = Jk+1 ∪ . . . ∪ Jr . By Theorem 3.4, the matrix X0 is null on product Ak × Bk .
Moreover, the inequalities λ1 < . . . < λr and a(Il) > 0 for every l ∈ [[1, r]] yield

b(Q) =
r∑
l=k

b(Jl) =
r∑
l=k

λla(Il) > λk

r∑
l=k

a(Il) = λka(P ),

so

a(Ak|P)
b(Q \ Bk |Q) =

a(Ik)/a(P )

b(Jk)/b(Q)
= λ−1

k

b(Q)

a(P )
> 1.
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Hence Ak × Bk is a cause of incompatibility of the restricted problem associated to
the marginals a(·|P) = (ai/a(P ))i∈P , b(·|Q) = (bj/b(Q))j∈Q and to the initial
condition (X0(i, j))(i,j)∈P×Q.

Now, assume thatX0 is null on some subset A×B of P ×Q. Then S is also null
on A× B, so for every l ∈ [[k, r]],

λka(A∩Il) ≤ λla(A∩Il) = a′(A∩Il) = S((A∩Il)×((Q\B)∩Jl)) ≤ b((Q\B)∩Jl).

Summing this inequalities over all l ∈ [[k, r]] yields λka(A) ≤ b(Q \ B), so

a(A)

b(Q \ B) ≤ λ−1
k = a(Ik)

b(Ik)
= a(Ak)

b(Q \ Bk) .

Moreover, if equality holds in the last inequality, then for every l ∈ [[k, r]],

λka(A ∩ Il) = λla(A ∩ Il) = b((Q \ B) ∩ Jl).

This yields A ∩ Il = (Q \ B) ∩ Jl = ∅ for every l ∈ [[k + 1, r]], thus A ⊂ Ik = Ak
and Q \ B ⊂ Ik , namely B ⊃ Bk . The proof is complete.

3.8.3 Proof of Theorem 3.6

The proof relies the next two lemmas, from Pretzel, relying on notion of diagonal
equivalence. We provide proofs to keep the paper self-contained. The first one dif-
fers from Pretzel’s original proof. Recall that two matricesX and Y in Mp, q(R+)
are said to be diagonally equivalent if there exists D′ ∈ Δp and D′′ ∈ Δq such that
Y = D′XD′′. In particular, X and Y must have the same support to be diagonally
equivalent.

Lemma 3.12 (Property 1 of [11]) LetX and Y be in Mp, q(R+). IfX and Y are
diagonally equivalent and have the same marginals then X = Y .

Proof By assumption, Y = D′XD′′ for some D′ ∈ Δp and D′′ ∈ Δq . Call
α1, . . . , αp and β1, . . . , βq the diagonal entries of D′ and D′′. For every (i, j) ∈
[[1, p]] × [[1, q]], Y (i, j) = αiβjX(i, j), so

D(Y ||X) =
∑
i,j

Y (i, j)(lnαi + ln βj ) =
∑
i

Y (i,+) lnαi +
∑
j

Y (+, j) lnβj .

In the same way,

D(X||Y) =
∑
i,j

X(i, j)(ln(α−1
i
)+ ln(β−1

j
)) = −

∑
i

X(i,+) lnαi −
∑
j

X(+, j) lnβj .
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Since X and Y have the same marginals, the non-negative quantities D(Y |X) and
D(X|Y ) are opposite, so they are null. Hence X = Y .

Lemma 3.13 (Lemma 2 of [11]) Let X and Y be in Mp, q(R+). If Y has the
same support as X and is the limit of a some sequence (Yn)n≥0 of matrices which
are diagonally equivalent to X, then X and Y are diagonally equivalent.

Proof For each n ≥ 0, one can find some positive real numbers αn(1), . . . , αn(p)
and βn(1), . . . , βn(q) such that Yn(i, j) = αn(i)βn(j)X(i, j) for every (i, j) ∈
[[1, p]] × [[1, q]]. By assumption, the sequence (αn(i)βn(j))n≥0 converges to a
positive number whenever (i, j) ∈ Supp(X).

In a way similar to the beginning of the proof of Theorem 3.4, we define
a non-oriented graph G on [[1, p]] as follows: (i, i ′) is an edge if and only if
there exists some j ∈ [[1, q]] such that X(i, j)X(i ′, j) > 0. Then the sequence
(αn(i)/αn(i

′))n≥0 converges whenever i and i ′ belong to a same connected compo-
nent ofG.

Call I1, . . . , Ir the connected components of the graph G. For each k ∈ [[1, r]]
choose ik ∈ Ik and set Jk = {j ∈ [[1, q]] : ∃i ∈ Ik : X(i, j) > 0}. Then the sets
J1, . . . , Jk form a partition of [[1, q]] and the support of X is contained in I1 × J1 ∪
· · · ∪ Ir × Jr .

For every n ≥ 0, set α′n(i) = αn(i)/αn(ik) whenever i ∈ Ik and β ′n(j) =
βn(j)αn(ik)whenever j ∈ Jk . Then Yn(i, j) = α′n(i)β ′n(j)X(i, j) for every (i, j) ∈
[[1, p]]× ∈ [[1, q]]. Since all sequences (α′n(i))n≥0 and (β ′n(j))n≥0 converge to a
positive limit, we deduce that X and Y are diagonally equivalent.

We now prove Theorem 3.6.
Set Leven = limn X2n and Lodd = limn X2n+1. Letting n go to infinity in

the equality X2n+1 = TR(X2n) yields Lodd = D−1
1 Leven(i, j), where D1 =

Diag(a′1/a1, . . . , a
′
p/ap). We deduce that Leven and Lodd have the same support

Σ .
By Theorem 3.4, Leven is the only matrix achieving the minimum of D(Y ||X0)

over all Y ∈ Γ (a′, b,X0). Thus, by Theorem 3.3, Leven is also the limit of the
sequence provided by the IPFP performed with the marginals a′ and b and the initial
matrix X0, so Σ is the maximum of the supports of all matrices in Γ (a′, b,X0).

By construction, for each n ≥ 0, one can find D′
n ∈ Δp and D′′

n ∈ Δq such that
X2n = D′

nX0D
′′
n . Since D′

n and D′′
n are diagonal, (D′

nX
′
0D

′′
n)(i, j) = X2n(i, j)

whenever (i, j) ∈ Σ and (D′
nX

′
0D

′′
n)(i, j) = 0 whenever (i, j) ∈ Σc. Hence

limn D
′
nX

′
0D

′′
n = Leven since Σ = Supp(Leven). But X′

0 and Leven have the same
support, so they are diagonally equivalent by Lemma 3.13.

Call (X′
n)n≥0 (respectively (X′′

n)n≥1) the sequence provided by the IPFP per-
formed on the marginals a, b (respectively a′, b) and the initial matrix X′

0. Equiva-
lently, one could also start from X′

0(+,+)−1X′
0 to have an initial matrix in Γ1.
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Since Leven ∈ Γ (a′, b) and Supp(Leven) = Supp(X′
0), Theorem 3.2 applies,

so the limit L′′ = limn X
′′
n exists, L′′ belongs to Γ (a′, b) and L′′ is diagonally

equivalent to X′
0 and therefore to Leven. By Lemma 3.12, we get L′′ = Leven. Since

all matricesX′
n andX′′

n have the same supportΣ , contained in I1×J1∪· · ·∪I1×J1
by Theorem 3.4, a recursion shows that for every n ≥ 0, X′

2n = X′′
2n and X′

2n+1 =
D−1

1 X′′
2n+1. Hence limn X

′
2n = L′′ = Leven.

A similar proof works for Lodd and the set Γ (a, b′,X0).
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16. B. Touri, A. Nedić, On ergodicity, infinite flow and consensus in random models. IEEE Trans.
Autom. Control 56(7), 1593–1605 (2011)

17. B. Touri, A. Nedić, On backward product of stochastic matrices. Automatica 48(8), 1477–1488
(2012)

18. R. Webster, Convexity (Oxford University Press, Oxford, 1994)

http://wwwhome.ewi.utwente.nl/~ptdeboer/misc/kruithof-1937-translation.html
http://wwwhome.ewi.utwente.nl/~ptdeboer/misc/kruithof-1937-translation.html


Chapter 4
Limiting Eigenvectors of Outliers
for Spiked Information-Plus-Noise Type
Matrices

Mireille Capitaine

Abstract We consider an Information-Plus-Noise type matrix where the Infor-
mation matrix is a spiked matrix. When some eigenvalues of the random matrix
separate from the bulk, we study how the corresponding eigenvectors project onto
those of the spikes. Note that, in an Appendix, we present alternative versions
of the earlier results of Bai and Silverstein (Random Matrices Theory Appl
1(1):1150004, 44, 2012) (“noeigenvalue outside the support of the deterministic
equivalent measure”) and Capitaine (Indiana Univ Math J 63(6):1875–1910, 2014)
(“exact separation phenomenon”) where we remove some technical assumptions
that were difficult to handle.

Keywords Random matrices · Spiked information-plus-noise type matrices ·
Eigenvalues · Eigenvectors · Outliers · Deterministic equivalent measure · Exact
separation phenomenon

4.1 Introduction

In this paper, we consider the so-called Information-Plus-Noise type model

MN = ΣNΣ
∗
N where ΣN = σ

XN√
N

+ AN,

defined as follows.

• n = n(N), n ≤ N , cN = n/N →N→+∞ c ∈]0; 1].
• σ ∈]0; +∞[.
• XN = [Xij ]1≤i≤n;1≤j≤N where {Xij , i ∈ N, j ∈ N} is an infinite set of complex

random variables such that {((Xij ),)(Xij ), i ∈ N, j ∈ N} are independent
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centered random variables with variance 1/2 and satisfy

1. There exists K > 0 and a random variable Z with finite fourth moment for
which there exists x0 > 0 and an integer number n0 > 0 such that, for any
x > x0 and any integer numbers n1, n2 > n0, we have

1

n1n2

∑
i≤n1,j≤n2

P
(|Xij | > x

) ≤ KP (|Z| > x) . (4.1)

2.

sup
(i,j)∈N2

E(|Xij |3) < +∞. (4.2)

• Let ν be a compactly supported probability measure on R whose support has
a finite number of connected components. Let Θ = {θ1; . . . ; θJ } where θ1 >

. . . > θJ ≥ 0 are J fixed real numbers independent of N which are outside
the support of ν. Let k1, . . . , kJ be fixed integer numbers independent of N and
r = ∑J

j=1 kj . Let βj (N) ≥ 0, r + 1 ≤ j ≤ n, be such that 1
n

∑n
j=r+1 δβj (N)

weakly converges to ν and

max
r+1≤j≤n dist(βj (N), supp(ν)) −→

N→∞ 0 (4.3)

where supp(ν) denotes the support of ν.
Let αj (N), j = 1, . . . , J , be real nonnegative numbers such that

lim
N→+∞ αj (N) = θj .

Let AN be a n×N deterministic matrix such that, for each j = 1, . . . , J , αj (N)
is an eigenvalue of ANA∗

N with multiplicity kj , and the other eigenvalues of
ANA

∗
N are the βj (N), r + 1 ≤ j ≤ n. Note that the empirical spectral measure

of ANA∗
N weakly converges to ν.

Remark 4.1 Note that assumption such as (4.1) appears in [14]. It obviously holds
if the Xij ’s are identically distributed with finite fourth moment.

For any Hermitian n× n matrix Y , denote by spect(Y ) its spectrum, by

λ1(Y ) ≥ . . . ≥ λn(Y )

the ordered eigenvalues of Y and by μY the empirical spectral measure of Y :

μY := 1

n

n∑
i=1

δλi(Y ).
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For a probability measure τ on R, denote by gτ its Stieltjes transform defined for
z ∈ C \ R by

gτ (z) =
∫
R

dτ(x)

z − x
.

When theXij ’s are identically distributed, Dozier and Silverstein established in [15]
that almost surely the empirical spectral measure μMN of MN converges weakly
towards a nonrandom distribution μσ,ν,c which is characterized in terms of its
Stieltjes transform which satisfies the following equation: for any z ∈ C

+,

gμσ,ν,c (z) =
∫

1

(1 − σ 2cgμσ,ν,c (z))z− t
1−σ 2cgμσ,ν,c (z)

− σ 2(1 − c)
dν(t). (4.4)

This result of convergence was extended to independent but non identically
distributed random variables by Xie in [30]. (Note that, in [21], the authors in-
vestigated the case where σ is replaced by a bounded sequence of real numbers.)
In [11], the author carries on with the study of the support of the limiting spectral
measure previously investigated in [16] and later in [25, 28] and obtains that there is
a one-to-one relationship between the complement of the limiting support and some
subset in the complement of the support of ν which is defined in (4.6) below.

Proposition 4.1 Define differentiable functions ωσ,ν,c and Φσ,ν,c on respectively
R \ supp(μσ,ν,c) and R \ supp(ν) by setting

ωσ,ν,c : R \ supp(μσ,ν,c)→ R

x �→ x(1 − σ 2cgμσ,ν,c (x))
2 − σ 2(1 − c)(1 − σ 2cgμσ,ν,c (x))

(4.5)

and

Φσ,ν,c : R \ supp(ν)→ R

x �→ x(1 + cσ 2gν(x))
2 + σ 2(1 − c)(1 + cσ 2gν(x))

.

Set

Eσ,ν,c :=
{
x ∈ R \ supp(ν),Φ

′
σ,ν,c(x) > 0, gν(x) > − 1

σ 2c

}
. (4.6)

ωσ,ν,c is an increasing analytic diffeomorphism with positive derivative from R \
supp(μσ,ν,c) to Eσ,ν,c, with inverse Φσ,ν,c.

Moreover, extending previous results in [25] and [8] involving the Gaussian case
and finite rank perturbations, [11] establishes a one-to-one correspondence between
the θi’s that belong to the set Eσ,ν,c (counting multiplicity) and the outliers in the
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spectrum of MN . More precisely, setting

Θσ,ν,c =
{
θ ∈ Θ,Φ ′

σ,ν,c(θ) > 0, gν(θ) > − 1

σ 2c

}
, (4.7)

and

S = supp (μσ,ν,c) ∪
{
Φσ,ν,c(θ), θ ∈ Θσ,ν,c

}
, (4.8)

we have the following results.

Theorem 4.1 ([11]) For any ε > 0,

P[ for all large N, spect(MN) ⊂ {x ∈ R, dist(x,S ) ≤ ε}] = 1.

Theorem 4.2 ([11]) Let θj be in Θσ,ν,c and denote by nj−1 + 1, . . . , nj−1 +
kj the descending ranks of αj (N) among the eigenvalues of ANA∗

N . Then the kj
eigenvalues (λnj−1+i (MN), 1 ≤ i ≤ kj ) converge almost surely outside the support
of μσ,ν,c towards ρθj := Φσ,ν,c(θj ). Moreover, these eigenvalues asymptotically
separate from the rest of the spectrum since (with the conventions that λ0(MN) =
+∞ and λN+1(MN) = −∞) there exists δ0 > 0 such that almost surely for all
large N,

λnj−1 (MN) > ρθj + δ0 and λnj−1+kj+1(MN) < ρθj − δ0. (4.9)

Remark 4.2 Note that Theorems 4.1 and 4.2 were established in [11] for AN
as (4.14) below and with S ∪ {0} instead of S but they hold true as stated above
and in the more general framework of this paper. Indeed, these extensions can be
obtained sticking to the proof of the corresponding results in [11] but using the new
versions of [3] and of the exact separation phenomenon of [11] which are presented
in the Appendix 1 of the present paper.

The aim of this paper is to study how the eigenvectors corresponding to the
outliers of MN project onto those corresponding to the spikes θi’s. Note that there
are some pioneering results investigating the eigenvectors corresponding to the
outliers of finite rank perturbations of classical random matricial models: [27] in
the real Gaussian sample covariance matrix setting, and [7, 8] dealing with finite
rank additive or multiplicative perturbations of unitarily invariant matrices. For a
general perturbation, dealing with sample covariance matrices, Péché and Ledoit
[23] introduced a tool to study the average behaviour of the eigenvectors but it
seems that this did not allow them to focus on the eigenvectors associated with the
eigenvalues that separate from the bulk. It turns out that further studies [6, 10] point
out that the angle between the eigenvectors of the outliers of the deformed model and
the eigenvectors associated to the corresponding original spikes is determined by
Biane-Voiculescu’s subordination function. For the model investigated in this paper,
such a free interpretation holds but we choose not to develop this free probabilistic
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point of view in this paper and we refer the reader to the paper [13]. Here is the main
result of the paper.

Theorem 4.3 Let θj be in Θσ,ν,c (defined in (4.7)) and denote by nj−1 +
1, . . . , nj−1 + kj the descending ranks of αj (N) among the eigenvalues of ANA∗

N .
Let ξ(j) be a normalized eigenvector of MN relative to one of the eigenvalues
(λnj−1+q (MN), 1 ≤ q ≤ kj ). Denote by ‖ · ‖2 the Euclidean norm on C

n. Then,
almost surely

(i) lim
N→+∞

∥∥∥PKer (αj (N)IN−ANA∗
N )
ξ(j)

∥∥∥2

2
= τ (θj )

where

τ (θj ) =
1 − σ 2cgμσ,ν,c (ρθj )

ω′
σ,ν,c(ρθj )

= Φ ′
σ,ν,c(θj )

1 + σ 2cgν(θj )
(4.10)

(ii) for any θi in Θσ,ν,c \ {θj },

lim
N→+∞

∥∥∥PKer (αi(N)IN−ANA∗
N)
ξ(j)

∥∥∥
2
= 0.

The sketch of the proof of Theorem 4.3 follows the analysis of [10] as explained
in Sect. 4.2. In Sect. 4.3, we prove a universal result allowing to reduce the study
to estimating expectations of Gaussian resolvent entries carried on Sect. 4.4. In
Sect. 4.5, we explain how to deduce Theorem 4.3 from the previous Sections. In an
Appendix 1, we present alternative versions on the one hand of the result in [3] about
the lack of eigenvalues outside the support of the deterministic equivalent measure,
and, on the other hand, of the result in [11] about the exact separation phenomenon.
These new versions deal with random variables whose imaginary and real parts
are independent but remove the technical assumptions ((1.10) and “b1 > 0” in
Theorem 1.1 in [3] and “ωσ,ν,c(b) > 0” in Theorem 1.2 in [11]). This allows us to
claim that Theorem 4.2 holds in our context (see Remark 4.2). Finally, we present,
in Appendix 2, some technical lemmas that are used throughout the paper.

4.2 Sketch of the Proof

Throughout the paper, for anym×p matrix B, (m, p) ∈ N
2, we will denote by ‖B‖

the largest singular value of B, and by ‖B‖2 = {T r(BB∗)} 1
2 its Hilbert-Schmidt

norm.
The proof of Theorem 4.3 follows the analysis in two steps of [10].

Step A First, we shall prove that, for any orthonormal system (ξ1, · · · , ξkj ) of
eigenvectors associated to the kj eigenvalues λnj−1+q(MN), 1 ≤ q ≤ kj , the
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following convergence holds almost surely: ∀l = 1, . . . , J ,

kj∑
p=1

∥∥∥Pker(αl(N)IN−ANA∗
N )
ξp

∥∥∥2

2
→N→+∞

kj δjl(1 − σ 2cgμσ,ν,c (ρθj ))

ω′
σ,ν,c(ρθj )

. (4.11)

Note that for any smooth functions h and f on R, if v1, . . . , vn are eigenvectors
associated to λ1(ANA

∗
N), . . . , λn(ANA

∗
N) and w1, . . . , wn are eigenvectors associ-

ated to λ1(MN), . . . , λn(MN), one can easily check that

Tr
[
h(MN)f (ANA

∗
N)

] =
n∑

m,p=1

h(λp(MN))f (λm(ANA
∗
N))|〈vm,wp〉|2. (4.12)

Thus, since αl(N) on one hand and the kj eigenvalues of MN in (ρθj − ε, ρθj + ε[)
(for ε small enough) on the other hand, asymptotically separate from the rest of the
spectrum of respectivelyANA∗

N andMN , a fit choice of h and f will allow the study

of the restrictive sum
∑kj
p=1

∥∥∥Pker(αl(N)IN−ANA∗
N)
ξp

∥∥∥2

2
. Therefore proving (4.11) is

reduced to the study of the asymptotic behaviour of Tr
[
h(MN)f (ANA

∗
N)

]
for some

functions f and h respectively concentrated on a neighborhood of θl and ρθj .

Step B In the second, and final, step, we shall use a perturbation argument identical
to the one used in [10] to reduce the problem to the case of a spike with multiplicity
one, case that follows trivially from Step A.

Step B closely follows the lines of [10] whereas Step A requires substantial
work. We first reduce the investigations to the mean Gaussian case by proving the
following.

Proposition 4.2 Let XN as defined in Sect. 4.1. Let GN = [Gij ]1≤i≤n,1≤j≤N be a
n×N random matrix with i.i.d. standard complex normal entries. Let h be a function
in C∞(R,R) with compact support, and ΓN be a n× n Hermitian matrix such that

sup
n,N

‖ΓN‖ <∞ and sup
n,N

rank(ΓN) <∞. (4.13)

Then almost surely,

Tr
(
h
((
σ XN√

N
+ AN

) (
σ XN√

N
+ AN

)∗)
ΓN

)

−E

(
Tr

[
h

((
σ
GN√
N

+ AN

)(
σ
GN√
N

+ AN

)∗)
ΓN

])
→N→+∞ 0.

The asymptotic behaviour of E
(

Tr
[
h
((
σ GN√

N
+AN

)(
σ GN√

N
+AN

)∗)
f (ANA

∗
N)

])
can be deduced, by using the bi-unitarily invariance of the distribution of GN , from
the following Proposition 4.3 and Lemma 4.18.
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Proposition 4.3 Let GN = [Gij ]1≤i≤n,1≤j≤N be a n×N random matrix with i.i.d.
complex standard normal entries. Assume that AN is such that

AN =

⎛
⎜⎜⎜⎜⎜⎝

d1(N) (0)
(0)

. . . (0)
(0)

dn(N) (0)

⎞
⎟⎟⎟⎟⎟⎠

(4.14)

where n = n(N), n ≤ N , cN = n/N →N→+∞ c ∈]0; 1], for i =
1, . . . , n, di(N) ∈ C, supN maxi=1,...,n |di(N)| < +∞ and 1

n

∑n
i=1 δ|di(N)|2 weakly

converges to a compactly supported probability measure ν on R when N goes to
infinity. Define for all z ∈ C \ R,

GG
N(z) =

(
zI −

(
σ
GN√
N

+ AN

)(
σ
GN√
N

+ AN

)∗)−1

.

Define for any q = 1, . . . , n,

γq(N) = (ANA
∗
N)qq = |dq(N)|2. (4.15)

There is a polynomial P with nonnegative coefficients, a sequence (uN)N of
nonnegative real numbers converging to zero when N goes to infinity and some
nonnegative real number l, such that for any (p, q) in {1, . . . , n}2, for all z ∈ C\R,

E

((
GG
N(z)

)
pq

)
= 1 − σ 2cgμσ,ν,c (z)

ωσ,ν,c(z)− γq(N)
δpq +Δp,q,N (z), (4.16)

with

∣∣Δp,q,N(z)∣∣ ≤ (1 + |z|)lP (|)z|−1)uN .

4.3 Proof of Proposition 4.2

In the following, we will denote by oC(1) any deterministic sequence of positive
real numbers depending on the parameterC and converging for each fixed C to zero
when N goes to infinity. The aim of this section is to prove Proposition 4.2.
Define for any C > 0,

YCij = (Xij1|(Xij |≤C − E
((Xij1|(Xij |≤C)

+i
{)Xij1|)Xij |≤C − E

()Xij1|)Xij |≤C)} . (4.17)
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Set

θ∗ = sup
(i,j)∈N2

E(|Xij |3) < +∞.

We have

E

(
|Xij − YCij |2

)
= E

(
|(Xij |21|(Xij |>C

)
+ E

(
|)Xij |21|)Xij |>C

)

− {
E
((Xij1|(Xij |>C)}2 − {

E
()Xij1|)Xij |>C)}2

≤ E
(|(Xij |3)+ E

(|)Xij |3)
C

so that

sup
i≥1,j≥1

E

(
|Xij − YCij |2

)
≤ 2θ∗

C
.

Note that

1 − 2E
(
|(YCij |2

)
= 1 − 2E

{((Xij1|(Xij |≤C − E
((Xij1|(Xij |≤C))2

}

= 2

[
1

2
− E

(
|(Xij |21|(Xij |≤C

)]
+ 2

{
E
((Xij1|(Xij |≤C)}2

= 2E
(
|(Xij |21|(Xij |>C

)
+ 2

{
E
((Xij1|(Xij |>C)}2

,

so that

sup
i≥1,j≥1

|1 − 2E
(
|(YCij |2

)
| ≤ 4θ∗

C
.

Similarly

sup
i≥1,j≥1

|1 − 2E
(
|)YCij |2

)
| ≤ 4θ∗

C
.

Let us assume that C > 8θ∗. Then, we have

E

(
|(YCij |2

)
>

1

4
and E

(
|)YCij |2

)
>

1

4
.



4 Limiting Eigenvectors of Outliers for Information-Plus-Noise Type Model 127

Define for any C > 8θ∗, XC = (XCij )1≤i≤n;1≤j≤N, where for any 1 ≤ i ≤ n, 1 ≤
j ≤ N ,

XCij =
(YCij√

2E
(
|(YCij |2

) + i
)YCij√

2E
(
|)YCij |2

) . (4.18)

Let G = [Gij ]1≤i≤n,1≤j≤N be a n×N random matrix with i.i.d. standard complex
normal entries, independent from XN , and define for any α > 0,

Xα,C = XC + αG√
1 + α2

.

Now, for any n×N matrix B, let us introduce the (N + n)× (N + n) matrix

MN+n(B) =
(

0n×n B + AN

B∗ + A∗
N 0N×N

)
.

Define for any z ∈ C \ R,

G̃(z) =
(
zIN+n −MN+n

(
σ
XN√
N

))−1

,

and

G̃α,C(z) =
(
zIN+n −MN+n

(
σ
Xα,C√
N

))−1

.

Denote by U(n+N) the set of unitary (n+N)×(n+N)matrices. We first establish
the following approximation result.

Lemma 4.1 There exist some positive deterministic functions u and v on [0,+∞[
such that limC→+∞ u(C) = 0 and limα→0 v(α) = 0, and a polynomial P with
nonnegative coefficients such that for any α and C > 8θ∗, we have that

• almost surely, for all large N,

sup
U∈U(n+N)

sup
(i,j)∈{1,...,n+N}2

sup
z∈C\R

|)z|2
∣∣∣(U∗G̃α,C(z)U)ij − (U∗G̃(z)U)ij

∣∣∣
≤ u(C)+ v(α), (4.19)



128 M. Capitaine

• for all large N ,

sup
U∈U(n+N)

sup
(i,j)∈{1,...,n+N}2

sup
z∈C\R

1

P(|)z|−1)

×
∣∣∣E (

(U∗G̃α,C(z)U)ij − (U∗G̃(z)U)ij
)∣∣∣

≤ u(C)+ v(α) + oC(1). (4.20)

Proof Note that

XCij − YCij = (XCij
(

1 −√
2E

(
|(YCij |2

)1/2
)
+ i)XCij

(
1 −√

2E
(
|)YCij |2

)1/2
)

= (XCij
1 − 2E

(
|(YCij |2

)

1 +√
2E

(
|(YCij |2

)1/2 + i)XCij
1 − 2E

(
|)YCij |2

)

1 +√
2E

(
|)YCij |2

)1/2 .

Then,

{
sup

(i,j)∈N2
E

(
|XCij − YCij |2

)}1/2

≤ 4θ∗

C
, and sup

(i,j)∈N2
E

(
|XCij − YCij |3

)
<∞.

It is straightforward to see, using Lemma 4.17, that for any unitary (n+N)×(n+N)
matrix U ,

∣∣∣(U∗G̃α,C(z)U)ij − (U∗G̃(z)U)ij
∣∣∣

≤ σ

|)z|2
∥∥∥∥XN −Xα,C√

N

∥∥∥∥
≤ σ

|)z|2
{∥∥∥∥XN − YC√

N

∥∥∥∥+
∥∥∥∥X

C − YC√
N

∥∥∥∥
+

(
1 − 1√

1 + α2

)∥∥∥∥ X
C

√
N

∥∥∥∥+ α

∥∥∥∥ G√
N

∥∥∥∥
}
. (4.21)

From Bai-Yin’s theorem (Theorem 5.8 in [2]), we have

∥∥∥∥ G√
N

∥∥∥∥ = 2 + o(1).

Applying Remark 4.3 to the (n + N) × (n + N) matrix B̃ =
(

0n×n B

B∗ 0N×N

)
for

B ∈ {XN − YC,XC − YC,XC} (see also Appendix B of [14]), we have that almost
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surely

lim sup
N→+∞

∥∥∥∥ X
C

√
N

∥∥∥∥ ≤ 2
√

2, lim sup
N→+∞

∥∥∥∥X
C − YC√
N

∥∥∥∥ ≤ 8
√

2θ∗

C
,

and

lim sup
N→+∞

∥∥∥∥XN − YC√
N

∥∥∥∥ ≤ 4

√
θ∗
C
.

Then, (4.19) readily follows.
Let us introduce

ΩN,C =
{∥∥∥∥ G√

N

∥∥∥∥ ≤ 4,

∥∥∥∥∥
XC√
N

∥∥∥∥∥ ≤ 4,

∥∥∥∥∥
XN − YC√

N

∥∥∥∥∥ ≤ 8

√
θ∗
C
,

∥∥∥∥∥
XC − YC√

N

∥∥∥∥∥ ≤ 16θ∗
C

}
.

Using (4.21), we have

∣∣∣E (
(U∗G̃α,C(z)U)ij − (U∗G̃(z)U)ij

)∣∣∣

≤ 4σ

|)z|2
[

2

√
θ∗
C

+ 4θ∗

C
+ α +

(
1 − 1√

1 + α2

)]

+ 2

|)z|P(Ω
c
N,C).

Thus (4.20) follows.

Now, Lemmas 4.18, 4.1 and 4.19 readily yields the following approximation lemma.

Lemma 4.2 Let h be in C∞(R,R) with compact support and Γ̃N be a (n+ N) ×
(n+ N) Hermitian matrix such that

sup
n,N

‖Γ̃N‖ <∞ and sup
n,N

rank(Γ̃N ) <∞. (4.22)

Then, there exist some deterministic functions on [0,+∞[, u and v, such that
limC→+∞ u(C) = 0 and limα→0 v(α) = 0, such that for all C > 0, α > 0, we
have almost surely for all large N,

∣∣∣∣Tr

[
h

(
(MN+n

(
Xα,C√
N

))
Γ̃N

]
− Tr

[
h

(
(MN+n

(
XN√
N

))
Γ̃N

]∣∣∣∣ ≤ a
(1)
C,α,

(4.23)
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and for all large N ,

∣∣∣∣ETr

[
h

(
(MN+n

(
Xα,C√
N

))
Γ̃N

]
− ETr

[
h

(
(MN+n

(
XN√
N

))
Γ̃N

]∣∣∣∣ ≤ a
(2)
C,α,N,

(4.24)

where

a
(1)
C,α = u(C)+ v(α), a

(2)
C,α,N = u(C)+ v(α) + oC(1).

Note that the distributions of the independent random variables ((Xα,Cij ), )(Xα,Cij )

are all a convolution of a centred Gaussian distribution with some variance vα , with
some law with bounded support in a ball of some radius RC,α ; thus, according
to Lemma 4.20, they satisfy a Poincaré inequality with some common constant
CPI (C, α) and therefore so does their product (see Appendix 2). An important
consequence of the Poincaré inequality is the following concentration result.

Lemma 4.3 Lemma 4.4.3 and Exercise 4.4.5 in [1] or Chapter 3 in [24]. There
exists K1 > 0 and K2 > 0 such that for any probability measure P on R

M which
satisfies a Poincaré inequality with constant CPI , and for any Lipschitz function F
on R

M with Lipschitz constant |F |Lip, we have

∀ε > 0, P (|F − EP(F )| > ε) ≤ K1 exp

(
− ε

K2
√
CPI |F |Lip

)
.

In order to apply Lemma 4.3, we need the following preliminary lemmas.

Lemma 4.4 (See Lemma 8.2 [10]) Let f be a real CL -Lipschitz function on R.
Then its extension on the N × N Hermitian matrices is CL -Lipschitz with respect
to the Hilbert-Schmidt norm.

Lemma 4.5 Let Γ̃N be a (n+N)×(n+N)matrix and h be a real Lipschitz function
on R. For any n× N matrix B,

{
((B(i, j), )B(i, j))1≤i≤n,1≤j≤N

} �→ T r
[
h ((MN+n (B)) Γ̃N

]

is Lipschitz with constant bounded by
√

2
∥∥∥Γ̃N

∥∥∥
2
‖h‖Lip .

Proof

∣∣∣Tr
[
h(MN+p(B))Γ̃N

]
− Tr

[
h(MN+p(B

′
))Γ̃N

]∣∣∣
≤

∥∥∥Γ̃N
∥∥∥

2

∥∥∥h(MN+p(B))− h(MN+p(B
′
))

∥∥∥
2

≤
∥∥∥Γ̃N

∥∥∥
2
‖h‖Lip

∥∥∥MN+p(B)−MN+p(B
′
)

∥∥∥
2

(4.25)
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where we used Lemma 4.4 in the last line. Now,

∥∥∥MN+p(B)−MN+p(B
′
)

∥∥∥2

2
= 2

∥∥∥B − B
′∥∥∥2

2
. (4.26)

Lemma 4.5 readily follows from (4.25) and (4.26).

Lemma 4.6 Let Γ̃N be a (n+N)× (n+N) matrix such that supN,n

∥∥∥Γ̃N
∥∥∥

2
≤ K .

Let h be a real Lipschitz function on R. FN = Tr
[
h
(
MN+p

(
Xα,C√
N

))
Γ̃N

]
satisfies

the following concentration inequality

∀ε > 0, P (|FN − E(FN)| > ε) ≤ K1 exp

(
− ε

√
N

K2(α,C)K‖h‖Lip

)
,

for some positive real numbers K1 and K2(α,C).

Proof Lemma 4.6 follows from Lemmas 4.5 and 4.3 and basic facts on Poincaré
inequality recalled at the end of Appendix 2.

By Borel-Cantelli’s Lemma, we readily deduce from the above Lemma the follow-
ing

Lemma 4.7 Let Γ̃N be a (n+N)× (n+N) matrix such that supN,n

∥∥∥Γ̃N
∥∥∥

2
≤ K .

Let h be a real C 1- function with compact support on R.

Tr

[
h

(
MN+p

(
σ
Xα,C√
N

))
Γ̃N

]
− E

[
Tr

[
h

(
MN+p

(
σ
Xα,C√
N

))
Γ̃N

]]

a.s−→N→+∞ 0. (4.27)

Now, we will establish a comparison result with the Gaussian case for the mean
values by using the following lemma (which is an extension of Lemma 4.10 below
to the non-Gaussian case) as initiated by Khorunzhy et al. [22] in Random Matrix
Theory.

Lemma 4.8 Let ξ be a real-valued random variable such that E(|ξ |p+2) <∞. Let
φ be a function from R to C such that the first p+ 1 derivatives are continuous and
bounded. Then,

E(ξφ(ξ)) =
p∑
a=0

κa+1

a! E(φ(a)(ξ))+ ε, (4.28)

where κa are the cumulants of ξ , |ε| ≤ K supt |φ(p+1)(t)|E(|ξ |p+2),K only depends
on p.
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Lemma 4.9 Let GN = [Gij ]1≤i≤n,1≤j≤N be a n × N random matrix with i.i.d.
complex N(0, 1) Gaussian entries. Define

G̃G (z) =
(
zIN+n −MN+n

(
σ
GN√
N

))−1

for any z ∈ C \ R. There exists a polynomial P with nonnegative coefficients such
that for all large N , for any (i, j) ∈ {1, . . . , n + N}2, for any z ∈ C \ R, for any
unitary (n+N)× (n+N) matrix U ,

∣∣∣E [
(U∗G̃G (z)U)ij

]
− E

[
(U∗G̃(z)U)ij

]∣∣∣ ≤ 1√
N
P(|)z|−1). (4.29)

Moreover, for any (N + n)× (N + n) matrix Γ̃N such that

sup
n,N

‖Γ̃N‖ <∞ and sup
n,N

rank(Γ̃N ) <∞, (4.30)

and any function h in C∞(R,R) with compact support, there exists some constant
K > 0 such that, for any large N,

∣∣∣∣E
[

Tr

[
h

(
MN+n

(
σ
XN√
N

))
Γ̃N

]]
− E

[
Tr

[
h

(
MN+n

(
σ
GN√
N

))
Γ̃N

]]∣∣∣∣
≤ K√

N
. (4.31)

Proof We follow the approach of [26] chapters 18 and 19 consisting in introducing
an interpolation matrix XN(α) = cosαXN + sinαGN for any α in [0; π2 ] and the

corresponding resolvent matrix G̃(α, z) =
(
zIN+n −MN+n

(
σ
XN(α)√

N

))−1
for any

z ∈ C \ R. We have, for any (s, t) ∈ {1, . . . , n+N}2,

EG̃G
st (z)− EG̃st (z) =

∫ π
2

0
E

(
∂

∂α
G̃st (α, z)

)
dα

with

∂

∂α
G̃st (α, z) = σ

2
√
N

n∑
l=1

n+N∑
k=n+1

{[
G̃sl(α, z)G̃kt (α, z)+ G̃sk(α, z)G̃lt (α, z)

]

× [− sinα(Xl(k−n) + cosα(Gl(k−n)
]

+i
[
G̃sl(α, z)G̃kt (α, z)− G̃sk(α, z)G̃lt (α, z)

]

× [− sinα)Xl(k−n) + cosα)Gl(k−n)
]}
.
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Now, for any l = 1, . . . , n and k = n + 1, . . . , n +N , using Lemma 4.8 for p = 1
and for each random variable ξ in the set

{(Xl(k−n),(Gl(k−n),)Xl(k−n),)Gl(k−n)},
and for each φ in the set

{
(U∗G̃(α, z))ip(G̃(α, z)U)qj ; (p, q) = (l, k) or (k, l), (i, j) ∈ {1, . . . , n+N}2

}
,

one can easily see that there exists some constant K > 0 such that

∣∣∣E(U∗G̃G (z)U)ij − E(U∗G̃(z)U)ij
∣∣∣ ≤ K

N3/2 sup
Y∈Hn+N (C)

sup
V∈U(n+N)

SV (Y )

where Hn+N(C) denotes the set of (n + N) × (n + N) Hermitian matrices and
SV (Y ) is a sum of a finite number independent of N and n of terms of the form

n∑
l=1

n+N∑
k=n+1

∣∣∣(U∗R(Y )
)
ip1
(R(Y ))p2p3 (R(Y ))p4p5 (R(Y )U)p6j

∣∣∣ (4.32)

with R(Y ) = (zIN+n − Y )−1 and {p1, . . . , p6} contains exactly three k and three l.
When (p1, p6) = (k, l) or (l, k), then, using Lemma 4.17,

n∑
l=1

n+N∑
k=n+1

∣∣∣(U∗R(Y )
)
ip1
(R(Y ))p2p3 (R(Y ))p4p5 (R(Y )U)p6j

∣∣∣

≤ 1

|)z|2
n+N∑
k,l=1

∣∣(U∗R(Y )
)
il
(R(Y )U)kj

∣∣

≤ (N + n)

|)z|2
(
n+N∑
l=1

∣∣(U∗R(Y )
)
il

∣∣2
)1/2 (n+N∑

k=1

∣∣(R(Y )U)kj ∣∣2
)1/2

= (N + n)

|)z|2
((
U∗R(Y )R(Y )∗U

)
ii

)1/2
((
U∗R(Y )∗R(Y )U

)
jj

)1/2

≤ (N + n)

|)z|4

When p1 = p6 = k or l, then, using Lemma 4.17,

n∑
l=1

n+N∑
k=n+1

∣∣∣(U∗R(Y )
)
ip1
(R(Y ))p2p3 (R(Y ))p4p5 (R(Y )U)p6j

∣∣∣

≤ N + n

|)z|2
n+N∑
l=1

∣∣(U∗R(Y )
)
il
(R(Y )U)lj

∣∣
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≤ (N + n)

|)z|2
(
n+N∑
l=1

∣∣(U∗R(Y )
)
il

∣∣2
)1/2 (n+N∑

l=1

∣∣(R(Y )U)lj ∣∣2
)1/2

= (N + n)

|)z|2
((
U∗R(Y )R(Y )∗U

)
ii

)1/2
((
U∗R(Y )∗R(Y )U

)
jj

)1/2

≤ (N + n)

|)z|4

(4.29) readily follows.
Then by Lemma 4.19, there exists some constantK > 0 such that, for anyN and

n, for any (i, j) ∈ {1, . . . , n +N}2, any unitary (n+ N)× (n+N) matrix U ,

lim sup
y→0+

∣∣∣∣
∫ [

E(U∗G̃(t + iy)U)ij − E(U∗G̃G (t + iy)U)ij
]
h(t)dt

∣∣∣∣ ≤ K√
N
.

(4.33)

Thus, using (4.97) and (4.30), we can deduce (4.31) from (4.33).

The above comparison lemmas allow us to establish the following convergence
result.

Proposition 4.4 Let h be a function in C∞(R,R) with compact support and let Γ̃N
be a (n+N)×(n+N) matrix such that supn,N rank(Γ̃N) <∞ and supn,N ‖Γ̃N‖ <
∞. Then we have that almost surely

T r

[
h

(
(MN+n

(
σ
XN√
N

))
Γ̃N

]
− E

[
T r

[
h

(
(MN+n

(
σ
GN√
N

))
Γ̃N

]]

−→N→+∞0. (4.34)

Proof Lemmas 4.2, 4.7 and 4.9 readily yield that there exist some positive determin-
istic functions u and v on [0,+∞[ with limC→+∞ u(C) = 0 and limα→0 v(α) = 0,
such that for any C > 0 and any α > 0, almost surely

lim sup
N→+∞

∣∣∣∣T r
[
h

(
(MN+n

(
σ
XN√
N

))
Γ̃N

]
−E

[
T r

[
h

(
(MN+n

(
σ
GN√
N

))
Γ̃N

]]∣∣∣∣
≤ u(C)+ v(α).

The result follows by letting α go to zero and C go to infinity.

Now, note that, for any N × n matrix B, for any continuous real function h on R,
and any n× n Hermitian matrix ΓN , we have

T r
(
h
(
(B + AN)(B + AN)

∗)ΓN) = T r
[
h̃ (MN+n (B)) Γ̃N

]
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where h̃(x) = h(x2) and Γ̃N =
(
ΓN (0)
(0) (0)

)
. Thus, Proposition 4.4 readily yields

Proposition 4.2.

4.4 Proof of Proposition 4.3

The aim of this section is to prove Proposition 4.3 which deals with Gaussian
random variables.Therefore we assume here that AN is as (4.14) and set γq(N) =
(ANA

∗
N)qq . In this section, we let X stand for GN , A stands for AN , G denotes the

resolvent of MN = ΣΣ∗ where Σ = σ
GN√
N
+ AN and gN denotes the mean of the

Stieltjes transform of the spectral measure of MN , that is

gN(z) = E

(
1

n
T rG(z)

)
, z ∈ C \ R.

4.4.1 Matricial Master Equation

To obtain Eq. (4.35) below, we will use many ideas from [17]. The following
Gaussian integration by part formula is the key tool in our approach.

Lemma 4.10 (Lemma 2.4.5 [1]) Let ξ be a real centered Gaussian random
variable with variance 1. LetΦ be a differentiable function with polynomial growth
of Φ and Φ ′. Then,

E (ξΦ(ξ)) = E

(
Φ

′
(ξ)

)
.

Proposition 4.5 Let z be in C \ R. We have for any (p, q) in {1, . . . , n}2,

E
(
Gpq(z)

)
⎧⎨
⎩z(1 − σ 2cNgN(z))− γq(N)

1 − σ 2cNgN(z)
− σ 2(1 − cN)

+σ
2

N

n∑
p=1

∇pp(z)
⎫⎬
⎭

= δpq +∇pq(z), (4.35)
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where

∇pq = 1

1 − σ 2cNgN

{
σ 2

N

E
(
Gpq

)
1 − σ 2cNgN

Δ3 +Δ2(p, q)+Δ1(p, q).

}
, (4.36)

Δ1(p, q) = σ 2
E

{[
1

N
T rG− E

(
1

N
T rG

)]
(GΣΣ∗)pq

}
, (4.37)

Δ2(p, q) = σ 2

N
E
{
T r(GAΣ∗)

[
Gpq − E

(
Gpq

)]}
, (4.38)

Δ3 = σ 2
E

{[
1

N
T rG− E

(
1

N
T rG

)]
T r(Σ∗GA)

}
. (4.39)

Proof Using Lemma 4.10 with ξ = (Xij or ξ = )Xij and Φ = GpiΣqj , we
obtain that for any j, q, p,

E

[(
G
σX√
N

)
pj

Σqj

]
=

n∑
i=1

E

[
Gpi

σXij√
N
Σqj

]
(4.40)

= σ 2

N

n∑
i=1

E
[
(GΣ)pj GiiΣqj

]+ σ 2

N
E(Gpq) (4.41)

= σ 2

N
E
[
(T rG) (GΣ)pj Σqj

]+ σ 2

N
E(Gpq). (4.42)

On the other hand, we have

E
[
(GA)pj Σqj

] = E
[
(GA)pj Aqj

]+
n∑
i=1

E

[
GpiAij

σXqj√
N

]
(4.43)

= E
[
(GA)pj Aqj

]+ σ 2

N
E

[
Gpq

(
Σ∗GA

)
jj

]
(4.44)

where we applied Lemma 4.10 with ξ = (Xqj or ξ = )Xqj and Ψ = GpiAij .
Summing (4.42) and (4.44) yields

E
[
(GΣ)pj Σqj

] = σ 2

N
E(Gpq)+ σ 2

N
E
[
(T rG) (GΣ)pj Σqj

]
(4.45)

+σ
2

N
E

[
Gpq

(
Σ∗GA

)
jj

]
+ E

[
(GA)pj Aqj

]
. (4.46)
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Define

Δ1(j) = σ 2

N
E
[
(T rG) (GΣ)pj Σqj

]− σ 2

N
E [T rG]E

[
(GΣ)pj Σqj

]
.

From (4.46), we can deduce that

E
[
(GΣ)pj Σqj

] = 1

1 − σ 2cNgN

{
σ 2

N
E(Gpq)+ σ 2

N
E

[
Gpq

(
Σ∗GA

)
jj

]

+E
[
(GA)pj Aqj

]+Δ1(j)
}
.

Then, summing over j , we obtain that

E

[(
GΣΣ∗)

pq

]
= 1

1 − σ 2cNgN

{
σ 2

E(Gpq)+ σ 2

N
E
[
GpqT r

(
Σ∗GA

)]

+E

[(
GAA∗)

pq

]
+Δ1(p, q)

}
, (4.47)

whereΔ1(p, q) is defined by (4.37). Applying Lemma 4.10 with ξ = (Xij or )Xij
and Ψ = (GA)ij , we obtain that

E

[
T r

(
σX∗
√
N
GA

)]
= σ 2

N
E
[
T rG T r

(
Σ∗GA

)]
.

Thus,

E
[
T r

(
Σ∗GA

)] = E
[
T r

(
A∗GA

)]+ σ 2cNgNE
[
T r

(
Σ∗GA

)]+Δ3,

whereΔ3 is defined by (4.39) and then

E
[
T r

(
Σ∗GA

)] = 1

1 − σ 2cNgN

{
E
[
T r

(
GAA∗)]+Δ3

}
. (4.48)

(4.48) and (4.38) imply that

σ 2

N
E
[
GpqT r

(
Σ∗GA

)] = σ 2

N

E(Gpq)

1 − σ 2cNgN

{
E
[
T r

(
GAA∗)]+Δ3

}+Δ2(p, q),

(4.49)
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whereΔ2(p, q) is defined by (4.38). We can deduce from (4.47) and (4.49) that

E

[(
GΣΣ∗)

pq

]

= 1

1 − σ 2cNgN

{
σ 2

E(Gpq)+ E

[(
GAA∗)

pq

]

+σ
2

N

E
[
Gpq

]
1 − σ 2cNgN

E
[
T r

(
GAA∗)]

+σ
2

N

E(Gpq)

1 − σ 2cNgN
Δ3 +Δ1(p, q)+Δ2(p, q)

}
. (4.50)

Using the resolvent identity and (4.50), we obtain that

zE
(
Gpq

) = 1

1 − σ 2cNgN

{
σ 2

E(Gpq)+ E

[(
GAA∗)

pq

]

+σ
2

N

E
[
Gpq

]
1 − σ 2cNgN

E
[
T r

(
GAA∗)]

}
+ δpq +∇pq (4.51)

where ∇pq is defined by (4.36). Taking p = q in (4.51), summing over p and
dividing by n, we obtain that

zgN = σ 2gN

1 − σ 2cNgN
+ T r

[
E(G)AA∗]

n(1 − σ 2cNgN)
(4.52)

+σ
2gNT r

[
E(G)AA∗]

N(1 − σ 2cNgN)2
+ 1 + 1

n

n∑
p=1

∇pp. (4.53)

It readily follows that

T r
[
E(G)AA∗]

n(1 − σ 2cNgN)

(
σ 2cNgN

(1 − σ 2cNgN)
+ 1

)
=

(
z − σ 2

(1 − σ 2cNgN)

)
gN−1− 1

n

n∑
p=1

∇pp.

Therefore

T r
[
E(G)AA∗]

n(1 − σ 2cNgN)
= zgN(1−σ 2cNgN)−(1−σ 2cNgN)−σ 2gN−(1−σ 2cNgN)

1

n

n∑
p=1

∇pp.

(4.54)
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(4.54) and (4.51) yield

E(Gpq)×
⎧⎨
⎩z(1 − σ 2cNgN)− γq

1 − σ 2cNgN
− σ 2(1 − cN)+ σ 2

N

n∑
p=1

∇pp
⎫⎬
⎭

= δpq +∇pq.

Proposition 4.5 follows.

4.4.2 Variance Estimates

In this section, when we state that some quantity ΔN(z), z ∈ C \ R, is equal to
O( 1

Np
), this means precisely that there exist some polynomial P with nonnegative

coefficients and some positive real number l which are all independent of N such
that for any z ∈ C \R,

|ΔN(z)| ≤ (|z| + 1)lP (|)z|−1)

Np
.

We present now the different estimates on the variance. They rely on the fol-
lowing Gaussian Poincaré inequality (see Appendix 2). Let Z1, . . . , Zq be q real
independent centered Gaussian variables with variance σ 2. For any C 1 function
f : Rq → C such that f and gradf are in L2(N (0, σ 2Iq)), we have

V
{
f (Z1, . . . , Zq)

} ≤ σ 2
E

(
‖(gradf )(Z1, . . . , Zq)‖2

2

)
, (4.55)

denoting for any random variable a by V(a) its variance E(|a − E(a)|2). Thus,
(Z1, . . . , Zq) satisfies a Poincaré inequality with constant CPI = σ 2.

The following preliminary result will be useful to these estimates.

Lemma 4.11 There exists K > 0 such for all N ,

E

(
λ1

(
XX∗

N

))
≤ K.

Proof According to Lemma 7.2 in [19], we have for any t ∈]0;N/2],

E

[
Tr

(
exp t

XX∗

N

)]
≤ n exp

(
(
√
cN + 1)2t + 1

N
(cN + 1)t2

)
.
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By the Chebychev’s inequality, we have

exp

(
tE

(
λ1

(
XX∗

N

)))
≤ E

(
exp tλ1

(
XX∗

N

))

≤ E

[
Tr

(
exp t

XX∗

N

)]

≤ n exp

(
(
√
cN + 1)2t + 1

N
(cN + 1)t2

)
.

It follows that

E

(
λ1

(
XX∗

N

))
≤ 1

t
logn+ (

√
cN + 1)2 + 1

N
(cN + 1)t.

The result follows by optimizing in t .

Lemma 4.12 There exists C > 0 such that for all large N , for all z ∈ C \R,

E

(∣∣∣∣1

n
TrG− E(

1

n
TrG)

∣∣∣∣
2
)
≤ C

N2|)z|4 , (4.56)

∀(p, q) ∈ {1, . . . , n}2, E
(
|Gpq − E(Gpq)|2

)
≤ C

N |)z|4 , (4.57)

E

(
|TrΣ∗GA− E(TrΣ∗GA)|2

)
≤ C(1 + |z|)2

|)z|4 . (4.58)

Proof Let us define Ψ : R2(n×N) → Mn×N(C) by

Ψ : {xij , yij , i = 1, . . . , n, j = 1, . . . , N} →
∑

i=1,...,n

∑
j=1,...,N

(
xij + iyij

)
eij ,

where eij stands for the n × N matrix such that for any (p, q) in {1, . . . , n} ×
{1, . . . , N}, (eij )pq = δipδjq . Let F be a smooth complex function on Mn×N(C)
and define the complex function f on R

2(n×N) by setting f = F ◦ Ψ . Then,

‖gradf (u)‖2 = sup
V∈Mn×N(C),T rVV ∗=1

∣∣∣∣ ddt F (Ψ (u)+ tV )|t=0

∣∣∣∣ .

Now,X = Ψ (((Xij ),)(Xij ), 1 ≤ i ≤ n, 1 ≤ j ≤ N) where the distribution of the
random variable (((Xij ),)(Xij ), 1 ≤ i ≤ n, 1 ≤ j ≤ N) is N (0, 1

2 I2nN).

Hence consider F : H → 1
n

Tr
(
zIn −

(
σ H√

N
+ A

) (
σ H√

N
+ A

)∗)−1
.
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Let V ∈ Mn×N(C) such that T rV V ∗ = 1.

d

dt
F (X + tV )|t=0

= 1

n

{
Tr

(
Gσ

V√
N

(
σ
X√
N

+ A

)∗
G

)
+ Tr

(
G

(
σ
X√
N

+ A

)
σ
V ∗
√
N
G

)}
.

Moreover using Cauchy-Schwartz’s inequality and Lemma 4.17, we have

∣∣∣∣1

n
Tr

(
Gσ

V√
N

(
σ
X√
N

+ A

)∗
G

)∣∣∣∣

≤ σ

n
(T rV V ∗)

1
2

[
1

N
T r(

(
σ
X√
N

+ A

)(
σ
X√
N

+ A

)∗
G2(G∗)2)

] 1
2

≤ σ√
N
√
n|)z|2

[
λ1

((
σ
X√
N

+ A

)(
σ
X√
N

+ A

)∗)] 1
2

.

We get obviously the same bound for | 1
n

Tr
(
G

(
σ X√

N
+ A

)
σ V ∗√

N
G
)
|. Thus

E

(
‖gradf

(((Xij ),)(Xij ), 1 ≤ i ≤ n, 1 ≤ j ≤ N
) ‖2

2

)

≤ 4σ 2

|)z|4NnE
[
λ1

((
σ
X√
N

+ A

)(
σ
X√
N

+ A

)∗)]
. (4.59)

(4.56) readily follows from (4.55), (4.59), Theorem A.8 in [2], Lemma 4.11 and the
fact that ‖AN‖ is uniformly bounded. Similarly, considering

F : H → Tr

[(
zIN −

(
σ
H√
N

+ A

)(
σ
H√
N

+ A

)∗)−1

Eqp

]
,

where Eqp is the n × n matrix such that (Eqp)ij = δqiδpj , we can obtain that, for
any V ∈ Mn×N(C) such that TrV V ∗ = 1,

∣∣∣∣ ddt F (X + tV )|t=0

∣∣∣∣
≤ σ√

N

{((
GG∗)

pp

(
G∗ΣΣ∗G

)
qq

)1/2 +
((
G∗G

)
qq

(
GΣΣ∗G∗)

pp

)1/2
}
.

Thus, one can get (4.57) in the same way. Finally, considering

F : H → Tr

[(
σ
H√
N

+ A

)∗ (
zIN −

(
σ
H√
N

+ A

)(
σ
H√
N

+ A

)∗)−1

A

]
,
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we can obtain that, for any V ∈ Mn×N(C) such that TrV V ∗ = 1,

∣∣∣∣ ddt F (X + tV )|t=0

∣∣∣∣ ≤ σ

{(
1

N
TrΣ∗GAΣ∗GG∗ΣA∗G∗Σ

)1/2

+
(

1

N
TrGAΣ∗GΣΣ∗G∗ΣA∗G∗

)1/2

+
(

1

N
TrGAA∗G∗

)1/2
}

Using Lemma 4.17 (i), Theorem A.8 in [2], Lemma 4.11, the identity ΣΣ∗G =
GΣΣ∗ = −I+zG, and the fact that ‖AN‖ is uniformly bounded, the same analysis
allows to prove (4.58).

Corollary 4.1 Let Δ1(p, q), Δ2(p, q), (p, q) ∈ {1, . . . , n}2, and Δ3 be as defined
in Proposition 4.5. Then there exist a polynomial P with nonnegative coefficients
and a nonnegative real number l such that, for all large N , for any z ∈ C \ R,

Δ3(z) ≤ P(|)z|−1)(1 + |z|)l
N

, (4.60)

and for all (p, q) ∈ {1, . . . , n}2,

Δ1(p, q)(z) ≤ P(|)z|−1)(1 + |z|)l
N

, (4.61)

Δ2(p, q)(z) ≤ P(|)z|−1)(1 + |z|)l
N
√
N

. (4.62)

Proof Using the identity

GMN = −I + zG,

(4.61) readily follows from Cauchy-Schwartz inequality, Lemma 4.17 and (4.56).
(4.62) and (4.60) readily follows from Cauchy-Schwartz inequality and
Lemma 4.12.

4.4.3 Estimates of Resolvent Entries

In order to deduce Proposition 4.3 from Proposition 4.5 and Corollary 4.1, we need
the two following Lemmas 4.13 and 4.14.
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Lemma 4.13 For all z ∈ C \ R,

1∣∣1 − σ 2cNgN(z)
∣∣ ≤

|z|
|)z| , (4.63)

1∣∣1 − σ 2cgμσ,ν,c (z)
∣∣ ≤

|z|
|)z| . (4.64)

Proof Since μMN is supported by [0,+∞[, (4.63) readily follows from

1∣∣1 − σ 2cNgN(z)
∣∣ =

|z|∣∣z− σ 2cNzgN (z)
∣∣

≤ |z|∣∣)(z− σ 2cNzgN(z))
∣∣ =

|z|
|)z|(1 + σ 2cNE

∫
t

|z−t |2 dμMN (t)
) .

(4.64) may be proved similarly.

Corollary 4.1 and Lemma 4.13 yield that, there is a polynomial Q with
nonnegative coefficients, a sequence bN of nonnegative real numbers converging
to zero when N goes to infinity and some nonnegative integer number l, such that
for any p, q in {1, . . . , n}, for all z ∈ C \ R,

∇pq ≤ (1 + |z|)lQ(|)z|−1)bN , (4.65)

where ∇pq was defined by (4.36).

Lemma 4.14 There is a sequence vN of nonnegative real numbers converging to
zero when N goes to infinity such that for all z ∈ C \ R,

∣∣gN(z)− gμσ,ν,c (z)
∣∣ ≤

{ |z|2 + 2

|)z|2 + 1

|)z|
}
vN . (4.66)

Proof First note that it is sufficient to prove (4.66) for z ∈ C
+ := {z ∈ C; )z > 0}

since gN(z̄) − gμσ,ν,c (z̄) = gN(z)− gμσ,ν,c (z). Fix ε > 0. According to Theorem
A.8 and Theorem 5.11 in [2], and the assumption on AN , we can choose K >

max{2/ε; x, x ∈ supp(μσ,ν,c)} large enough such that P (‖MN‖ > K) goes to zero
as N goes to infinity. Let us write

gN(z) = E

(
1

n
TrGN(z)1‖MN ‖≤K

)
+ E

(
1

n
TrGN(z)1‖MN ‖>K

)
. (4.67)

For any z ∈ C
+ such that |z| > 2K , we have

∣∣∣∣E
(

1

n
TrGN(z)1‖MN ‖≤K

)∣∣∣∣ ≤ 1

K
≤ ε

2
and

∣∣gμσ,ν,c (z)∣∣ ≤ 1

K
≤ ε

2
.
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Thus, ∀z ∈ C
+, such that |z| > 2K , we can deduce that

∣∣∣∣E
(

1

n
TrGN(z)1‖MN‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣ ()z)2
|z|2 + 2

≤
∣∣∣∣E

(
1

n
TrGN(z)1‖MN‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣
≤ ε. (4.68)

Now, it is clear that E

(
1
n

TrGN1‖MN ‖≤K
)

is a sequence of locally bounded

holomorphic functions on C
+ which converges towards gμσ,ν,c . Hence, by Vitali’s

Theorem, E
(

1
n

TrGN1‖MN ‖≤K
)

converges uniformly towards gμσ,ν,c on each com-

pact subset of C+. Thus, there exists N(ε) > 0, such that for any N ≥ N(ε), for
any z ∈ C

+, such that |z| ≤ 2K and )z ≥ ε,

∣∣∣∣E
(

1

n
TrGN(z)1‖MN‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣ ()z)2
|z|2 + 2

≤
∣∣∣∣E

(
1

n
TrGN(z)1‖MN‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣
≤ ε. (4.69)

Finally, for any z ∈ C
+, such that )z ∈]0; ε[, we have

∣∣∣∣E
(

1

n
TrGN(z)1‖MN ‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣ ()z)2
|z|2 + 2

≤ 2

)z
()z)2
|z|2 + 2

≤ )z ≤ ε.

(4.70)

It readily follows from (4.68), (4.69) and (4.70) that for N ≥ N(ε),

sup
z∈C+

{∣∣∣∣E
(

1

n
TrGN(z)1‖MN ‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣ ()z)2
|z|2 + 2

}
≤ ε

Moreover, forN ≥ N ′(ε) ≥ N(ε), P (‖MN‖ > K) ≤ ε. Therefore, forN ≥ N ′(ε),
we have for any z ∈ C

+,

∣∣gN(z)− gμσ,ν,c (z)
∣∣

≤ |z|2 + 2

|)z|2 sup
z∈C+

{∣∣∣∣E
(

1

n
TrGN(z)1‖MN‖≤K

)
− gμσ,ν,c (z)

∣∣∣∣ ()z)2
|z|2 + 2

}

+ 1

)zP (‖MN‖ > K)

≤ ε

{ |z|2 + 2

|)z|2 + 1

)z
}
. (4.71)
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Thus, the proof is complete by setting

vN = sup
z∈C+

{∣∣gN(z)− gμσ,ν,c (z)
∣∣ ( |z|2 + 2

|)z|2 + 1

)z
)−1}

.

Now set

τN = (1 − σ 2cNgN (z))z− γq(N)

1 − σ 2cNgN(z)
− σ 2(1 − cN)

and

τ̃N = (1 − σ 2cgμσ,ν,c (z))z−
γq(N)

1 − σ 2cgμσ,ν,c (z)
− σ 2(1 − c). (4.72)

Lemmas 4.13 and 4.14 yield that there is a polynomial R with nonnegative
coefficients, a sequence wN of nonnegative real numbers converging to zero when
N goes to infinity and some nonnegative real number l, such that for all z ∈ C \ R,

|τN − τ̃N | ≤ (1 + |z|)lR(|)z|−1)wN . (4.73)

Now, one can easily see that,

∣∣∣∣)
{
(1 − σ 2cgμσ,ν,c (z))z−

γq(N)

1 − σ 2cgμσ,ν,c (z)
− σ 2(1 − c)

}∣∣∣∣ ≥ |)z|, (4.74)

so that
∣∣∣∣ 1

τ̃N

∣∣∣∣ ≤ 1

|)z| . (4.75)

Note that

1

τ̃N
= (1 − σ 2cgμσ,ν,c (z))

ωσ,ν,c(z)− γq(N)
. (4.76)

Then, (4.16) readily follows from Proposition 4.5, (4.65), (4.73), (4.75), (4.76),
and (ii) Lemma 4.17. The proof of Proposition 4.3 is complete.

4.5 Proof of Theorem 4.3

We follow the two steps presented in Sect. 4.2.
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Step A We first prove (4.11).
Let η > 0 small enough and N large enough such that for any l = 1, . . . , J ,

αl(N) ∈ [θl − η, θl + η] and [θl − 2η, θl + 2η] contains no other element of the
spectrum of ANA∗

N than αl(N). For any l = 1, . . . , J , choose fη,l in C∞(R,R)
with support in [θl − 2η, θl + 2η] such that fη,l(x) = 1 for any x ∈ [θl − η, θl + η]
and 0 ≤ fη,l ≤ 1. Let 0 < ε < δ0 where δ0 is introduced in Theorem 4.2. Choose
hε,j in C∞(R,R) with support in [ρθj − ε, ρθj + ε] such that hε,j ≡ 1 on [ρθj −
ε/2, ρθj + ε/2] and 0 ≤ hε,j ≤ 1.

Almost surely for all large N , MN has kj eigenvalues in ]ρθj − ε/2, ρθj + ε/2[.
According to Theorem 4.2, denoting by (ξ1, · · · , ξkj ) an orthonormal system of
eigenvectors associated to the kj eigenvalues of MN in (ρθj − ε/2, ρθj + ε/2), it
readily follows from (4.12) that almost surely for all large N ,

kj∑
n=1

∥∥∥Pker(αl(N)In−ANA∗
N )
ξn

∥∥∥2 = Tr
[
hε,j (MN)fη,l (ANA

∗
N)

]
.

Applying Proposition 4.2 with ΓN = fη,l (ANA
∗
N) and K = kl , the problem of

establishing (4.11) is reduced to prove that

E

(
Tr

[
hε,j

((
σ
GN√
N

+ AN

)(
σ
GN√
N

+ AN

)∗)
fη,l(ANA

∗
N)

])

→N→+∞
kj δjl(1 − σ 2cgμσ,ν,c (ρθj ))

ω′
σ,ν,c(ρθj )

. (4.77)

Using a Singular Value Decomposition of AN and the biunitarily invariance of the
distribution of GN , we can assume that AN is as (4.14) and such that for any j =
1, . . . , J,

(ANA
∗
N)ii = αj (N) for i = k1 + . . .+ kj−1 + l, l = 1, . . . , kj .

Now, according to Lemma 4.18,

E

(
Tr

[
hε,j

((
σ
GN√
N

+ AN

)(
σ
GN√
N

+ AN

)∗)
fη,l(ANA

∗
N)

])

= − lim
y→0+

1

π

∫
)ETr

[
GG
N(t + iy)fη,l(ANA∗

N)
]
hε,j (t)dt,
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with, for all large N ,

ETr
[
GG
N(t + iy)fη,l(ANA∗

N)
]
=

k1+·+kl∑
k=k1+·+kl−1+1

fη,l(αl(N))E[GG
N(t + iy)]kk

=
k1+·+kl∑

k=k1+·+kl−1+1

E[GG
N(t + iy)]kk.

Now, by considering

τ ′ = (1 − σ 2cgμσ,ν,c (z))z−
θl

1 − σ 2cgμσ,ν,c (z)
− σ 2(1 − c)

instead of dealing with τ̃N defined in (4.72) at the end of the proof of Proposition 4.3,
one can prove that there is a polynomialP with nonnegative coefficients, a sequence
(uN)N of nonnegative real numbers converging to zero when N goes to infinity and
some nonnegative real number s, such that for any k in {k1+ . . .+kl−1+1, . . . , k1+
. . .+ kl}, for all z ∈ C \ R,

E

((
GG
N(z)

)
kk

)
= 1 − σ 2cgμσ,ν,c (z)

ωσ,ν,c(z)− θl
+Δk,N(z), (4.78)

with

∣∣Δk,N(z)∣∣ ≤ (1 + |z|)sP (|)z|−1)uN .

Thus,

ETr
[
GG
N(t + iy)fη,l(ANA∗

N)
]
= kl

1 − σ 2cgμ,σ,ν(t + iy)

ωσ,ν,c(z)− θl
+ΔN(t + iy),

where for all z ∈ C \R, ΔN(z) = ∑k1+·+kl
k=k1+·+kl−1+1 Δk,N(z), and |ΔN(z)| ≤ kl(1 +

|z|)sP (|)z|−1)uN .

First let us compute

lim
y↓0

kl

π

∫ ρθj+ε

ρθj−ε
)hε,j (t)(1 − σ 2cgμσ,ν,c (t + iy))

θl − ωσ,ν,c(t + iy)
dt.

The function ωσ,ν,c satisfies ωσ,ν,c(z) = ωσ,ν,c(z) and gμσ,ν,c (z) = gμσ,ν,c (z), so

that ) (1−σ 2cgμσ,ν,c (t+iy))
θl−ωσ,ν,c(t+iy) = 1

2i [
(1−σ 2cgμσ,ν,c (t+iy))
θl−ωσ,ν,c(t+iy) − (1−σ 2cgμσ,ν,c (t−iy))

θl−ωσ,ν,c(t−iy) ]. As in [10],

the above integral is split into three pieces, namely
∫ ρθj−ε/2
ρθj−ε + ∫ ρθj+ε/2

ρθj−ε/2 + ∫ ρθj+ε
ρθj+ε/2.
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Each of the first and third integrals are easily seen to go to zero when y ↓ 0 by a
direct application of the definition of the functions involved and of the (Riemann)
integral. As hε,j is constantly equal to one on [ρθj − ε/2; ρθj + ε/2], the second
(middle) term is simply the integral

kl

2πi

∫ ρθj+ε/2

ρθj−ε/2
1 − σ 2cgμσ,ν,c (t + iy)

θl − ωσ,ν,c(t + iy)
− 1 − σ 2cgμσ,ν,c (t − iy)

θl − ωσ,ν,c(t − iy)
dt.

Completing this to a contour integral on the rectangular with corners ρθj ± ε/2± iy
and noting that the integrals along the vertical lines tend to zero as y ↓ 0 allows a
direct application of the residue theorem for the final result, if l = j ,

kj (1 − σ 2cgμσ,ν,c (ρθj ))

ω′
σ,ν,c(ρθj )

.

If we consider θl for some l �= j , then z �→ (1 − σ 2cgμσ,ν,c (z))(θl − ωσ,ν,c(z))
−1

is analytic around ρθj , so its residue at ρθj is zero, and the above argument provides
zero as answer.

Now, according to Lemma 4.19, we have

lim sup
y→0+

(uN)
−1

∣∣∣∣
∫
hε,j (t)ΔN(t + iy)dt

∣∣∣∣ < +∞

so that

lim
N→+∞ lim sup

y→0+

∣∣∣∣
∫
hε,j (t)ΔN(t + iy)dt

∣∣∣∣ = 0. (4.79)

This concludes the proof of (4.11).

Step B In the second, and final, step, we shall use a perturbation argument identical
to the one used in [10] to reduce the problem to the case of a spike with multiplicity
one, case that follows trivially from Step A. A further property of eigenvectors of
Hermitian matrices which are close to each other in the norm will be important
in the analysis of the behaviour of the eigenvectors of our matrix models. Given a
Hermitian matrix M ∈ MN(C) and a Borel set S ⊆ R, we denote by EM(S) the
spectral projection of M associated to S. In other words, the range of EM(S) is the
vector space generated by the eigenvectors ofM corresponding to eigenvalues in S.
The following lemma can be found in [6].

Lemma 4.15 LetM andM0 beN×N Hermitian matrices. Assume that α, β, δ ∈ R

are such that α < β, δ > 0,M andM0 has no eigenvalues in [α−δ, α]∪[β, β+δ].
Then,

‖EM((α, β))− EM0((α, β))‖ <
4(β − α + 2δ)

πδ2 ‖M −M0‖.
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In particular, for any unit vector ξ ∈ EM0((α, β))(C
N),

‖(IN − EM((α, β)))ξ‖2 <
4(β − α + 2δ)

πδ2 ‖M −M0‖.

Assume that θi is in Θσ,ν,c defined in (4.7) and ki �= 1. Let us denote by
V1(i), . . . , Vki (i), an orthonormal system of eigenvectors of ANA∗

N associated with
αi(N). Consider a Singular Value Decomposition AN = UNDNVN where VN is
a N × N unitary matrix, UN is a n × n unitary matrix whose ki first columns are
V1(i), . . . , Vki (i) and DN is as (4.14) with the first ki diagonal elements equal to√
αi(N).
Let δ0 be as in Theorem 4.2. Almost surely, for all N large enough, there

are ki eigenvalues of MN in (ρθi − δ0
4 , ρθi + δ0

4 ), namely λni−1+q(MN), q =
1, . . . , ki (where ni−1 + 1, . . . , ni−1 + ki are the descending ranks of αi(N) among
the eigenvalues of ANA∗

N ), which are moreover the only eigenvalues of MN in
(ρθi − δ0, ρθi + δ0). Thus, the spectrum of MN is split into three pieces:

{λ1(MN), . . . , λni−1(MN)} ⊂ (ρθi + δ0,+∞[,

{λni−1+1(MN), . . . , λni−1+ki (MN)} ⊂ (ρθi −
δ0

4
, ρθi +

δ0

4
),

{λni−1+ki+1(MN), . . . , λN (MN)} ⊂ [0, ρθi − δ0).

The distance between any of these components is equal to 3δ0/4. Let us fix ε0 such
that 0 ≤ θi(2ε0ki+ε2

0k
2
i ) < dist (θi, supp ν∪i �=s θs) and such that [θi; θi+θi(2ε0ki+

ε2
0k

2
i )] ⊂ Eσ,ν,c defined by (4.6). For any 0 < ε < ε0, define the matrix AN(ε) as

AN(ε) = UNDN(ε)VN where

(DN(ε))m,m = √
αi(N)[1 + ε(ki −m+ 1)], for m ∈ {1, . . . , ki},

and (DN(ε))pq = (DN)pq for any (p, q) /∈ {(m,m),m ∈ {1, . . . , ki}}.
Set

MN(ε) =
(
σ
XN√
N

+ AN(ε)

)(
σ
XN√
N

+ AN(ε)

)∗
.

For N large enough, for each m ∈ {1, . . . , ki}, αi(N)[1 + ε(ki − m + 1)]2 is an
eigenvalue of ANA∗

N(ε) with multiplicity one. Note that, since supN ‖AN‖ < +∞,
it is easy to see that there exist some constant C such that for any N and for any
0 < ε < ε0,

‖MN(ε)−MN‖ ≤ Cε

(∥∥∥∥ XN√
N

∥∥∥∥+ 1

)
.
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Applying Remark 4.3 to the (n+N)× (n+N) matrix X̃N =
(

0n×n XN

X∗
N 0N×N

)
(see

also Appendix B of [14]), it readily follows that there exists some constant C′ such
that a.s for all large N, for any 0 < ε < ε0,

‖MN(ε)−MN‖ ≤ C′ε. (4.80)

Therefore, for ε sufficiently small such that C′ε < δ0/4, by Theorem A.46 [2],
there are precisely ni−1 eigenvalues of MN(ε) in [0, ρθi − 3δ0/4), precisely ki in
(ρθi−δ0/2, ρθi+δ0/2) and preciselyN−(ni−1+ki) in (ρθi+3δ0/4,+∞[. All these
intervals are again at strictly positive distance from each other, in this case δ0/4.

Let ξ be a normalized eigenvector of MN relative to λni−1+q(MN) for some q ∈
{1, . . . , ki}. As proved in Lemma 4.15, if E(ε) denotes the subspace spanned by
the eigenvectors associated to {λni−1+1(MN(ε)), . . . , λni−1+ki (MN(ε))} in C

N , then
there exists some constant C (which depends on δ0) such that for ε small enough,
almost surely for large N ,

∥∥PE(ε)⊥ξ∥∥2 ≤ Cε. (4.81)

According to Theorem 4.2, for any j in {1, . . . , ki}, for large enough N ,
λni−1+j (MN(ε)) separates from the rest of the spectrum and belongs to a

neighborhood of Φσ,ν,c(θ
(j)
i (ε)) where

θ
(j)

i (ε) = θi (1 + ε(ki − j + 1))2 .

If ξj (ε, i) denotes a normalized eigenvector associated to λni−1+j (MN(ε)), Step A
above implies that almost surely for any p ∈ {1, . . . , ki}, for any γ > 0, for all
large N ,

∣∣∣∣∣∣
∣∣〈Vp(i), ξj (ε, i)〉∣∣2 −

δjp

(
1 − σ 2cgμσ,ν,c (Φσ,ν,c(θ

(j)

i (ε)))
)

ω′
σ,ν,c

(
Φσ,ν,c(θ

(j)

i (ε))
)

∣∣∣∣∣∣ < γ. (4.82)

The eigenvector ξ decomposes uniquely in the orthonormal basis of eigenvectors of
MN(ε) as ξ = ∑ki

j=1 cj (ε)ξj (ε, i)+ξ(ε)⊥, where cj (ε) = 〈ξ |ξj (ε, i)〉 and ξ(ε)⊥ =
PE(ε)⊥ξ ; necessarily

∑ki
j=1 |cj (ε)|2 + ‖ξ(ε)⊥‖2

2 = 1. Moreover, as indicated in

relation (4.81), ‖ξ(ε)⊥‖2 ≤ Cε. We have

Pker(αi(N)IN−ANA∗
N )
ξ =

ki∑
j=1

cj (ε)Pker(αi(N)IN−ANA∗
N)
ξj (ε, i)

+Pker(αi(N)IN−ANA∗
N )
ξ(ε)⊥
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=
ki∑
j=1

cj (ε)

ki∑
l=1

〈ξj (ε, i)|Vl(i)〉Vl(i)

+ Pker(αi(N)IN−ANA∗
N )
ξ(ε)⊥.

Take in the above the scalar product with ξ = ∑ki
j=1 cj (ε)ξj (ε, i)+ ξ(ε)⊥ to get

〈Pker(αi(N)IN−ANA∗
N )
ξ |ξ〉

=
ki∑

j,l,s=1

cj (ε)〈ξj (ε, i)|Vl(i)〉cs(ε)〈Vl(i)|ξs(ε, i)〉

+
ki∑
j=1

cj (ε)

ki∑
l=1

〈ξj (ε, i)|Vl(i)〉〈Vl(i)|ξ(ε)⊥〉

+〈Pker(αi(N)IN−ANA∗
N )
ξ(ε)⊥|ξ〉.

Relation (4.82) indicates that

ki∑
j,l,s=1

cj (ε)〈ξj (ε, i)|Vl(i)〉cs(ε)〈Vl(i)|ξs(ε, i)〉

=
ki∑
j=1

|cj (ε)|2|〈Vj (i)|ξj (ε, i)〉|2 +Δ1

=
ki∑
j=1

|cj (ε)|2
(

1 − σ 2cgμσ,ν,c (Φσ,ν,c(θ
(j)

i (ε)))
)

ω′
σ,ν,c

(
Φσ,ν,c(θ

(j)

i (ε))
) +Δ1 +Δ2,

where for all large N , |Δ1| ≤ √
γ k3

i and |Δ2| ≤ γ . Since ‖ξ(ε)⊥‖2 ≤ Cε,

∣∣∣∣∣∣
ki∑
j=1

cj (ε)

ki∑
l=1

〈ξj (ε, i)|Vl(i)〉〈Vl(i)|ξ(ε)⊥〉

+〈Pker(αi(N)IN−ANA∗
N)
ξ(ε)⊥|ξ〉

∣∣∣ ≤ (
k2
i + 1

)
Cε.
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Thus, we conclude that almost surely for any γ > 0, for all large N ,

∣∣∣∣∣∣〈Pker(αi(N)IN−ANA∗
N)
ξ |ξ〉 −

ki∑
j=1

|cj (ε)|2
(

1 − σ 2cgμσ,ν,c (Φσ,ν,c(θ
(j)
i (ε)))

)

ω′
σ,ν,c

(
Φσ,ν,c(θ

(j)

i (ε))
)

∣∣∣∣∣∣
≤ (k2

i + 1)Cε +√
γ k3

i + γ. (4.83)

Since we have the identity

〈Pker(αi(N)IN−ANA∗
N )
ξ |ξ〉 = ‖Pker(αi(N)IN−ANA∗

N)
ξ‖2

2

and the three obvious convergences limε→0 ω
′
σ,ν,c

(
Φσ,ν,c(θ

(j)

i (ε))
)
= ω′

σ,ν,c(ρθi ),

limε→0 gμσ,ν,c

(
Φσ,ν,c(θ

(j)
i (ε))

)
= gμσ,ν,c (ρθi ) and limε→0

∑ki
j=1 |cj (ε)|2 = 1, re-

lation (4.83) concludes Step B and the proof of Theorem 4.3. (Note that we use (2.9)
of [11] which is true for any x ∈ C \ R to deduce that 1 − σ 2cgμσ,ν,c (Φσ,ν,c(θi)) =

1
1+σ 2cgν(θi)

by letting x goes to Φσ,ν,c(θi)).
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Appendix 1

We present alternative versions on the one hand of the result in [3] about the lack of
eigenvalues outside the support of the deterministic equivalent measure, and on the
other hand of the result in [11] about the exact separation phenomenon. These new
versions (Theorems 4.5 and 4.6 below) deal with random variables whose imaginary
and real parts are independent, but remove the technical assumptions ((1.10) and
“b1 > 0” in Theorem 1.1 in [3] and “ωσ,ν,c(b) > 0” in Theorem 1.2 in [11]). The
proof of Theorem 4.5 is based on the results of [5]. The arguments of the proof of
Theorem 1.2 in [11] and Theorem 4.5 lead to the proof of Theorem 4.6.

Theorem 4.4 Consider

MN = (σ
XN√
N

+ AN)(σ
XN√
N

+ AN)
∗, (4.84)
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and assume that

1. XN = [Xij ]1≤i≤n,1≤j≤N is a n × N random matrix such that [Xij ]i≥1,j≥1 is
an infinite array of random variables which satisfy (4.1) and (4.2) and such that
((Xij ), )(Xij ), (i, j) ∈ N

2, are independent, centered with variance 1/2.
2. AN is an n× N nonrandom matrix such that ‖AN‖ is uniformly bounded.
3. n ≤ N and, as N tends to infinity, cN = n/N → c ∈]0, 1].
4. [x, y], x < y, is such that there exists δ > 0 such that for all largeN , ]x−δ; y+
δ[⊂ R \ supp(μσ,μANA∗N ,cN

) where μσ,μANA∗N ,cN
is the nonrandom distribution

which is characterized in terms of its Stieltjes transform which satisfies Eq. (4.4)
where we replace c by cN and ν by μANA∗

N
.

Then, we have

P[ for all large N, spect(MN) ⊂ R \ [x, y]] = 1.

Since, in the proof of Theorem 4.4, we will use tools from free probability theory,
for the reader’s convenience, we recall the following basic definitions from free
probability theory. For a thorough introduction to free probability theory, we refer
to [29].

• A C ∗-probability space is a pair (A , τ ) consisting of a unital C ∗-algebra A and
a state τ on A i.e. a linear map τ : A → C such that τ (1A ) = 1 and τ (aa∗) ≥ 0
for all a ∈ A . τ is a trace if it satisfies τ (ab) = τ (ba) for every (a, b) ∈ A 2. A
trace is said to be faithful if τ (aa∗) > 0 whenever a �= 0. An element of A is
called a noncommutative random variable.

• The noncommutative !-distribution of a family a = (a1, . . . , ak) of noncom-
mutative random variables in a C ∗-probability space (A , τ ) is defined as the
linear functional μa : P �→ τ (P (a, a∗)) defined on the set of polynomi-
als in 2k noncommutative indeterminates, where (a, a∗) denotes the 2k-uple
(a1, . . . , ak, a

∗
1 , . . . , a

∗
k ). For any selfadjoint element a1 in A , there exists a

probability measure νa1 on R such that, for every polynomial P, we have

μa1(P ) =
∫
P(t)dνa1(t).

Then we identify μa1 and νa1 . If τ is faithful then the support of νa1 is the
spectrum of a1 and thus ‖a1‖ = sup{|z|, z ∈ support(νa1)}.

• A family of elements (ai)i∈I in a C ∗-probability space (A , τ ) is free if for all
k ∈ N and all polynomials p1, . . . , pk in two noncommutative indeterminates,
one has

τ (p1(ai1, a
∗
i1
) · · ·pk(aik , a∗ik )) = 0 (4.85)

whenever i1 �= i2, i2 �= i3, . . . , ik−1 �= ik, (i1, . . . ik) ∈ Ik , and τ (pl(ail , a
∗
il
)) =

0 for l = 1, . . . , k.
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• A noncommutative random variable x in a C ∗-probability space (A , τ ) is a
standard semicircular random variable if x = x∗ and for any k ∈ N,

τ (xk) =
∫
tkdμsc(t)

where dμsc(t) = 1
2π

√
4 − t21[−2;2](t)dt is the semicircular standard distribu-

tion.
• Let k be a nonnull integer number. Denote by P the set of polynomials

in 2k noncommutative indeterminates. A sequence of families of variables
(an)n≥1 = (a1(n), . . . , ak(n))n≥1 in C∗-probability spaces (An, τn) converges
in !-distribution, when n goes to infinity, to some k-tuple of noncommutative
random variables a = (a1, . . . , ak) in a C ∗-probability space (A , τ ) if the map
P ∈ P �→ τn(P (an, a

∗
n)) converges pointwise towards P ∈ P �→ τ (P (a, a∗)).

• k noncommutative random variables a1(n), . . . , ak(n), in C∗-probability spaces
(An, τn), n ≥ 1, are said asymptotically free if (a1(n), . . . , ak(n)) converges in
!-distribution, as n goes to infinity, to some noncommutative random variables
(a1, . . . , ak) in a C ∗-probability space (A , τ ) where a1, . . . , ak are free.

We will also use the following well known result on asymptotic freeness of
random matrices. Let An be the algebra of n × n matrices with complex entries
and endow this algebra with the normalized trace defined for any M ∈ An by
τn(M) = 1

n
Tr(M). Let us consider a n × n so-called standard G.U.E matrix, i.e. a

random Hermitian matrix Gn = [Gjk]nj,k=1, where Gii ,
√

2((Gij ),
√

2)(Gij ), i < j

are independent centered Gaussian random variables with variance 1. For a fixed real
number t independent from n, let H(1)

n , . . . , H
(t)
n be deterministic n × n Hermitian

matrices such that maxti=1 supn ‖H(i)
n ‖ < +∞ and (H (1)

n , . . . , H
(t)
n ), as a t-tuple

of noncommutative random variables in (An, τn), converges in distribution when n
goes to infinity. Then, according to Theorem 5.4.5 in [1], Gn√

n
and (H (1)

n , . . . , H
(t)
n )

are almost surely asymptotically free i.e. almost surely, for any polynomial P in t+1
noncommutative indeterminates,

τn

{
P

(
H(1)
n , . . . , H (t)

n ,
Gn√
n

)}
→n→+∞ τ (P (h1, . . . , ht , s)) (4.86)

where h1, . . . , ht and s are noncommutative random variables in some C ∗-
probability space (A , τ ) such that (h1, . . . , ht ) and s are free, s is a standard
semi-circular noncommutative random variable and the distribution of (h1, . . . , ht )

is the limiting distribution of (H (1)
n , . . . , H

(t)
n ).

Finally, the proof of Theorem 4.4 is based on the following result which can be
established by following the proof of Theorem 1.1 in [5]. First, note that the algebra
of polynomials in non-commuting indeterminatesX1, . . . , Xk , becomes a !-algebra
by anti-linear extension of (Xi1Xi2 . . . Xim)

∗ = Xim . . .Xi2Xi1 .
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Theorem 4.5 Let us consider three independent infinite arrays of random vari-
ables, [W(1)

ij ]i≥1,j≥1, [W(2)
ij ]i≥1,j≥1 and [Xij ]i≥1,j≥1 where

• for l = 1, 2,W(l)
ii ,

√
2((W(l)

ij ),
√

2)(W(l)
ij ), i < j , are i.i.d centered and bounded

random variables with variance 1 and W(l)
ji = W

(l)
ij ,

• {((Xij ),)(Xij ), i ∈ N, j ∈ N} are independent centered random variables with
variance 1/2 and satisfy (4.1) and (4.2).

For any (N, n) ∈ N
2, define the (n+ N)× (n+N) matrix:

Wn+N =
(
W
(1)
n XN

X∗
N W

(2)
N

)
(4.87)

where XN = [Xij ] 1 ≤ i ≤ n,1 ≤ j ≤ N , W
(1)
n = [W(1)

ij ]1≤i,j≤n, W(2)
N = [W(2)

ij ]1≤i,j≤N .
Assume that n = n(N) and limN→+∞ n

N
= c ∈]0, 1].

Let t be a fixed integer number and P be a selfadjoint polynomial in t + 1
noncommutative indeterminates.

For any N ∈ N
2, let (B(1)n+N , . . . , B

(t)
n+N ) be a t−tuple of (n+N)× (n+N) de-

terministic Hermitian matrices such that for any u = 1, . . . , t , supN ‖B(u)n+N‖ <∞.
Let (A , τ ) be a C∗-probability space equipped with a faithful tracial state and s be
a standard semi-circular noncommutative random variable in (A , τ ). Let bn+N =
(b
(1)
n+N, . . . , b

(t)
n+N) be a t-tuple of noncommutative selfadjoint random variables

which is free from s in (A , τ ) and such that the distribution of bn+N in (A , τ )

coincides with the distribution of (B(1)n+N , . . . , B
(t)
n+N ) in (Mn+N(C), 1

n+N Tr).
Let [x, y] be a real interval such that there exists δ > 0 such that, for any large

N , [x − δ, y + δ] lies outside the support of the distribution of the noncommutative

random variable P
(
s, b

(1)
n+N , . . . , b

(t)
n+N

)
in (A , τ ). Then, almost surely, for all

large N,

spectP

(
Wn+N√
n+N

,B
(1)
n+N , . . . , B

(t)
n+N)

)
⊂ R \ [x, y].

Proof We start by checking that a truncation and Gaussian convolution procedure
as in Section 2 of [5] can be handled for such a matrix as defined by (4.87), to reduce
the problem to a fit framework where,

(H) for any N , (Wn+N)ii ,
√

2(((Wn+N)ij ),
√

2)((Wn+N)ij ), i < j, i ≤ n +
N, j ≤ n + N , are independent, centered random variables with variance
1, which satisfy a Poincaré inequality with common fixed constant CPI .

Note that, according to Corollary 3.2 in [24], (H) implies that for any p ∈ N,

sup
N≥1

sup
1≤i,j≤n+N

E
(|(Wn+N)ij |p

)
< +∞. (4.88)
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Remark 4.3 Following the proof of Lemma 2.1 in [5], one can establish that, if
(Vij )i≥1,j≥1 is an infinite array of random variables such that {((Vij ),)(Vij ), i ∈
N, j ∈ N} are independent centered random variables which satisfy (4.1) and (4.2),
then almost surely we have

lim sup
N→+∞

∥∥∥∥ Zn+N√
N + n

∥∥∥∥ ≤ 2σ ∗

where

Zn+N =
(
(0) VN
V ∗
N (0)

)
with VN = [Vij ] 1 ≤ i ≤ n,1 ≤ j ≤ N and σ ∗ =

{
sup

(i,j )∈N2
E(|Vij |2)

}1/2

.

Then, following the rest of the proof of Section 2 in [5], one can prove that for any
polynomial P in 1+ t noncommutative variables, there exists some constant L > 0

such that the following holds. Set θ∗ = supi,j E
(∣∣Xij ∣∣3

)
. For any 0 < ε < 1, there

exist Cε > 8θ∗ (such that Cε > maxl=1,2 |W(l)
11 | a.s.) and δε > 0 such that almost

surely for all large N ,

∥∥∥∥∥P
(
Wn+N√
n+N

,B
(1)
n+N , . . . , B

(t)
n+N

)
− P

(
W̃
Cε,δε
n+N√
n+N

,B
(1)
n+N , . . . , B

(t)
n+N

)∥∥∥∥∥ ≤ Lε,

(4.89)

where, for any C > 8θ∗ such that C > maxl=1,2 |W(l)
11 | a.s., and for any δ > 0,

W̃
C,δ
N+n is a (n+N)× (n+N) matrix which is defined as follows. Let (Gij )i≥1,j≥1

be an infinite array which is independent of {Xij ,W(1)
ij ,W

(2)
ij , (i, j) ∈ N

2} and

such that
√

2(Gij ,
√

2)Gij , i < j , Gii , are independent centred standard real
gaussian variables and Gij = G ji . Set Gn+N = [Gij ]1≤i,j≤n+N and define XCN =
[XCij ] 1 ≤ i ≤ n,1 ≤ j ≤ N as in (4.18). Set

W̃C
n+N =

(
W
(1)
n XCN

(XCN)
∗ W(2)

N

)
and W̃C,δ

N+n =
W̃C
n+N + δGn+N√

1 + δ2
.

W̃
C,δ
N+n satisfies (H) (see the end of Section 2 in [5]). (4.89) readily yields that it is

sufficient to prove Theorem 4.5 for W̃C,δ
N+n.

Therefore, assume now that WN+n satisfies (H). As explained in Section 6.2 in
[5], to establish Theorem 4.5, it is sufficient to prove that for all m ∈ N, all self-
adjoint matrices γ, α, β1, . . . , βt of size m×m and all ε > 0, almost surely, for all
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large N , we have

spect (γ ⊗ In+N + α ⊗ Wn+N√
n+ N

+
t∑

u=1

βu ⊗ B
(u)
n+N)

⊂ spect (γ ⊗ 1A + α ⊗ s +
t∑

u=1

βu ⊗ b
(u)
n+N)+] − ε, ε[. (4.90)

((4.90) is the analog of Lemma 1.3 for r = 1 in [5]). Finally, one can prove (4.90)
by following Section 5 in [5].

We will need the following lemma in the proof of Theorem 4.4.

Lemma 4.16 Let AN and cN be defined as in Theorem 4.4. Define the following

(n+N)× (n+N) matrices: P =
(
In (0)
(0) (0)

)
Q =

(
(0) (0)
(0) IN

)
and A =

(
(0) AN
(0) (0)

)
.

Let s, pN , qN, aN be noncommutative random variables in some C ∗-probability
space (A , τ ) such that s is a standard semi-circular variable which is free with

(pN, qN, aN) and the !-distribution of (A, P,Q) in
(
MN+n(C), 1

N+nTr
)

coincides

with the !-distribution of (aN, pN, qN) in (A , τ ) . Then, for any ε ≥ 0, the
distribution of (

√
1 + cNσpNsqN + √

1 + cNσqNspN + aN + a∗N)2 + εpN is
n

N+nTε ! μσ,μANA∗N ,cN + n
N+nμσ,μANA∗N ,cN + N−n

N+n δ0 where Tε!μσ,μANA∗N ,cN
is the

pushforward of μσ,μANA∗N ,cN
by the map z �→ z+ ε.

Proof Here N and n are fixed. Let k ≥ 1 and Ck be the k × k matrix defined by

Ck =
⎛
⎜⎝
(0) 1

...

1 (0)

⎞
⎟⎠ .

Define the k(n+N)× k(n+N) matrices

Âk = Ck ⊗ A, P̂k = Ik ⊗ P, Q̂k = Ik ⊗Q.

For any k ≥ 1, the !-distributions of (Âk, P̂k, Q̂k) in (Mk(N+n)(C), 1
k(N+n)Tr)

and (A, P,Q) in (M(N+n)(C), 1
(N+n)Tr) respectively, coincide. Indeed, let K be a

noncommutative monomial in C〈X1,X2,X3,X4〉 and denote by q the total number
of occurrences of X3 and X4 in K . We have

K (P̂k, Q̂k, Âk, Â
∗
k) = C

q
k ⊗K (P,Q,A,A∗),
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so that

1

k(n+N)
Tr

[
K (P̂k, Q̂k, Âk, Â

∗
k)
]
= 1

k
Tr(Cqk )

1

(n+N)
Tr

[
K (P,Q,A,A∗)

]
.

Note that if q is even then Cqk = Ik so that

1

k(n+N)
Tr

[
K (P̂k, Q̂k, Âk, Â

∗
k)
]
= 1

(n+N)
Tr

[
K (P,Q,A,A∗)

]
. (4.91)

Now, assume that q is odd. Note that PQ = QP = 0, AQ = A, QA = 0, AP =
0 and PA = A (and then QA∗ = A∗, A∗Q = 0, PA∗ = 0 and A∗P = A∗).
Therefore, if at least one of the terms X1X2, X2X1, X2X3, X3X1, X4X2 or
X1X4 appears in the noncommutative product in K , then K (P,Q,A,A∗) =
0, so that (4.91) still holds. Now, if none of the terms X1X2, X2X1, X2X3,
X3X1, X4X2 or X1X4 appears in the noncommutative product in K , then we
have K (P,Q,A,A∗) = ˜K (A,A∗) for some noncommutative monomial ˜K ∈
C〈X,Y 〉 with degree q . Either the noncommutative product in ˜K contains a term
such as Xp or Yp for some p ≥ 2 and then, since A2 = (A∗)2 = 0, we have
˜K (A,A∗) = 0, or ˜K (X, Y ) is one of the monomials (XY )

q−1
2 X or Y (XY)

q−1
2 . In

both cases, we have Tr ˜K (A,A∗) = 0 and (4.91) still holds.
Now, define the k(N + n)× k(N + n) matrices

P̃k =
(
Ikn (0)
(0) (0)

)
, Q̃k =

(
(0) (0)
(0) IkN

)
, Ãk =

(
(0) Ǎ
(0) (0)

)

where Ǎ is the kn× kN matrix defined by

Ǎ =
⎛
⎜⎝

(0) AN
...

AN (0)

⎞
⎟⎠ .

It is clear that there exists a real orthogonal k(N + n) × k(N + n) matrix O

such that P̃k = OP̂kO
∗, Q̃k = OQ̂kO

∗ and Ãk = OÂkO
∗. This readily

yields that the noncommutative !-distributions of (Âk, P̂k, Q̂k) and (Ãk, P̃k, Q̃k)

in (Mk(N+n)(C), 1
k(N+n)Tr) coincide. Hence, for any k ≥ 1, the distribution

of (Ãk, P̃k, Q̃k) in (Mk(N+n)(C), 1
k(N+n)Tr) coincides with the distribution of

(aN, pN, qN) in (A , τ ) . By Theorem 5.4.5 in [1], it readily follows that the distri-
bution of (

√
1 + cNσpNsqN +√

1 + cNσqNspN + aN + a∗N)2 + εpN is the almost

sure limiting distribution, when k goes to infinity, of (
√

1 + cNσ P̃k
G√

k(N+n) Q̃k +√
1 + cNσQ̃k

G√
k(N+n) P̃k + Ãk + Ã∗

k)
2 + εP̃k in (Mk(N+n)(C), 1

k(N+n)Tr), where
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G is a k(N + n) × k(N + n) GUE matrix with entries with variance 1. Now, note
that

[√
1 + cNσ

{
P̃k

G√
k(N + n)

Q̃k + Q̃k
G√

k(N + n)
P̃k

}
+ Ãk + Ã∗

k

]2

+ εP̃k

=
⎛
⎝(σ Gkn×kN√

kN
+ Ǎ)(σ

Gkn×kN√
kN

+ Ǎ)∗ + εIkn (0)

(0) (σ
Gkn×kN√
kN

+ Ǎ)∗(σ Gkn×kN√
kN

+ Ǎ)

⎞
⎠

where Gkn×kN is the upper right kn× kN corner of G . Thus, noticing that μ
ǍǍ∗ =

μANA∗
N

, the lemma follows from [15].

Proof of Theorem 4.4 Let W be a (n+N)× (n+N) matrix as defined by (4.87) in
Theorem 4.5. Note that, with the notations of Lemma 4.16, for any ε ≥ 0,

(
(σ XN√

N
+ AN)(σ

XN√
N
+ AN)

∗ + εIn (0)

(0) (σ XN√
N
+ AN)

∗(σ XN√
N
+ AN)

)

=
(

(0) (σ XN√
N
+ AN)

(σ
XN√
N
+ AN)

∗ (0)

)2

+ εP

=
(√

1 + cNP
σW√
N + n

Q+√
1 + cNQ

σW√
N + n

P + A + A∗
)2

+ εP.

Thus, for any ε ≥ 0,

spect
{
(σ
XN√
N

+ A)(σ
XN√
N

+ A)∗ + εIn

}

⊂ spect

{(√
1 + cNP

σW√
N + n

Q+√
1 + cNQ

σW√
N + n

P + A + A∗
)2

+ εP

}
.

(4.92)

Let [x, y] be such that there exists δ > 0 such that for all large N , ]x − δ; y + δ[⊂
R \ supp(μσ,μANA∗N ,cN

).

(i) Assume x > 0. Then, according to Lemma 4.16 with ε = 0, there exists δ′ > 0
such that for all large n, ]x− δ′; y+ δ′[ is outside the support of the distribution
of (

√
1 + cNσpNsqN+√

1 + cNσqNspN+aN+a∗N)2. We readily deduce that
almost surely for all large N, according to Theorem 4.5, there is no eigenvalue
of (

√
1 + cNP

σW√
N+nQ + √

1 + cNQ
σW√
N+nP + A + A∗)2 in [x, y]. Hence,

by (4.92) with ε = 0, almost surely for all large N, there is no eigenvalue of
MN in [x, y].
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(ii) Assume x = 0 and y > 0. There exists 0 < δ′ < y such that [0, 3δ′] is for all
large N outside the support of μσ,μANA∗N ,cN

. Hence, according to Lemma 4.16,

[δ′/2, 3δ′] is outside the support of the distribution of (
√

1 + cNσpNsqN +√
1 + cNσqNspN + aN + a∗N)2 + δ′pN . Then, almost surely for all large N,

according to Theorem 4.5, there is no eigenvalue of (
√

1 + cNP
σW√
N+nQ +√

1 + cNQ
σW√
N+nP + A + A∗)2 + δ′P in [δ′, 2δ′] and thus, by (4.92), no

eigenvalue of (σ X√
N

+ AN)(σ
XN√
N

+ AN)
∗ + δ′In in [δ′, 2δ′]. It readily

follows that, almost surely for all large N, there is no eigenvalue of (σ XN√
N

+
AN)(σ

XN√
N
+ AN)

∗ in [0, δ′]. Since moreover, according to (i), almost surely

for all large N, there is no eigenvalue of (σ XN√
N
+AN)(σ XN√

N
+AN)∗ in [δ′, y],

we can conclude that there is no eigenvalue of MN in [x, y].
The proof of Theorem 4.4 is now complete. 12

We are now in a position to establish the following exact separation phenomenon.

Theorem 4.6 Let Mn as in (4.84) with assumptions [1–4] of Theorem 4.4. Assume
moreover that the empirical spectral measure μANA∗

N
of ANA∗

N converges weakly
to some probability measure ν. Then for N large enough,

ωσ,ν,c([x, y]) = [ωσ,ν,c(x);ωσ,ν,c(y)] ⊂ R \ supp(μANA∗
N
), (4.93)

where ωσ,ν,c is defined in (4.5). With the convention that λ0(MN) = λ0(ANA
∗
N) =+∞ and λn+1(MN) = λn+1(ANA

∗
N) = −∞, for N large enough, let iN ∈

{0, . . . , n} be such that

λiN+1(ANA
∗
N) < ωσ,ν,c(x) and λiN (ANA

∗
N) > ωσ,ν,c(y). (4.94)

Then

P [ for all large N, λiN+1(MN) < x and λiN (MN) > y] = 1. (4.95)

Remark 4.4 Since μσ,μANA∗N ,cN
converges weakly towards μσ,ν,c assumption 4.

implies that ∀0 < τ < δ, [x − τ ; y + τ ] ⊂ R \ supp μσ,ν,c.

Proof (4.93) is proved in Lemma 3.1 in [11].

• If ωσ,ν,c(x) < 0, then iN = n in (4.94) and moreover we have, for all large
N, ωσ,μANA∗N ,cN

(x) < 0. According to Lemma 2.7 in [11], we can deduce that,

for all large N , [x, y] is on the left hand side of the support of μσ,μANA∗N ,cN
so

that ] − ∞; y + δ] is on the left hand side of the support of μσ,μANA∗N ,cN
. Since

[−|y| − 1, y] satisfies the assumptions of Theorem 4.4, we readily deduce that
almost surely, for all large N , λn(MN) > y. Hence (4.95) holds true.
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• If ωσ,ν,c(x) ≥ 0, we first explain why it is sufficient to prove (4.95) for x such
that ωσ,ν,c(x) > 0. Indeed, assume for a while that (4.95) is true whenever
ωσ,ν,c(x) > 0. Let us consider any interval [x, y] satisfying condition 4. of
Theorem 4.4 and such that ωσ,ν,c(x) = 0; then iN = n in (4.94). According
to Proposition 4.1, ωσ,ν,c(

x+y
2 ) > 0 and then almost surely for all large N,

λn(MN) > y. Finally, sticking to the proof of Theorem 1.2 in [11] leads to (4.95)
for x such that ωσ,ν,c(x) > 0.

Appendix 2

We first recall some basic properties of the resolvent (see [12, 22]).

Lemma 4.17 For a N × N Hermitian matrix M , for any z ∈ C \ spect(M), we
denote by G(z) := (zIN −M)−1 the resolvent of M .

Let z ∈ C \ R,

(i) ‖G(z)‖ ≤ |)z|−1.
(ii) |G(z)ij | ≤ |)z|−1 for all i, j = 1, . . . , N .

(iii) G(z)M = MG(z) = −IN + zG(z).

Moreover, for any N ×N Hermitian matrices M1 and M2,

(zIN −M1)
−1 − (zIN −M2)

−1 = (zIN −M1)
−1(M1 −M2)(zIN −M2)

−1.

The following technical lemmas are fundamental in the approach of the present
paper.

Lemma 4.18 (Lemma 4.4 in [6]) Let h : R → R be a continuous function with
compact support. Let BN be aN×N Hermitian matrix and CN be aN×N matrix.
Then

Tr [h(BN)CN ] = − lim
y→0+

1

π

∫
)Tr

[
(t + iy − BN)

−1CN

]
h(t)dt. (4.96)

Moreover, if BN is random, we also have

ETr [h(BN)CN ] = − lim
y→0+

1

π

∫
)ETr

[
(t + iy − BN)

−1CN

]
h(t)dt. (4.97)

Lemma 4.19 Let f be an analytic function on C \ R such that there exist some
polynomial P with nonnegative coefficients, and some positive real number α such
that

∀z ∈ C \ R, |f (z)| ≤ (|z| + 1)αP (|)z|−1).
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Then, for any h in C∞(R,R) with compact support, there exists some constant τ
depending only on h, α and P such that

lim sup
y→0+

|
∫
R

h(x)f (x + iy)dx| < τ.

We refer the reader to the Appendix of [12] where it is proved using the ideas of
[20].

Finally, we recall some facts on Poincaré inequality. A probability measure μ on
R is said to satisfy the Poincaré inequality with constant CPI if for any C 1 function
f : R → C such that f and f ′ are in L2(μ),

V(f ) ≤ CPI

∫
|f ′|2dμ,

with V(f ) = ∫ |f − ∫
f dμ|2dμ.

We refer the reader to [9] for a characterization of the measures on R which
satisfy a Poincaré inequality.

If the law of a random variable X satisfies the Poincaré inequality with constant
CPI then, for any fixed α �= 0, the law of αX satisfies the Poincaré inequality with
constant α2CPI .

Assume that probability measures μ1, . . . , μM on R satisfy the Poincaré in-
equality with constant CPI (1), . . . , CPI (M) respectively. Then the product mea-
sure μ1 ⊗ · · · ⊗ μM on R

M satisfies the Poincaré inequality with constant
C∗
PI = max

i∈{1,...,M}CPI (i) in the sense that for any differentiable function f such that

f and its gradient gradf are in L2(μ1 ⊗ · · · ⊗ μM),

V(f ) ≤ C∗
PI

∫
‖gradf ‖2

2dμ1 ⊗ · · · ⊗ μM

with V(f ) = ∫ |f − ∫
f dμ1 ⊗ · · · ⊗ μM |2dμ1 ⊗ · · · ⊗ μM (see Theorem 2.5 in

[18]) .

Lemma 4.20 (Theorem 1.2 in [4]) Assume that the distribution of a random
variable X is supported in [−C;C] for some constant C > 0. Let g be an
independent standard real Gaussian random variable. Then X + δg satisfies a
Poincaré inequality with constant CPI ≤ δ2 exp

(
4C2/δ2

)
.
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Chapter 5
Criteria for Exponential Convergence
to Quasi-Stationary Distributions
and Applications to Multi-Dimensional
Diffusions

Nicolas Champagnat, Koléhè Abdoulaye Coulibaly-Pasquier,
and Denis Villemonais

Abstract We consider general Markov processes with absorption and provide
criteria ensuring the exponential convergence in total variation of the distribution
of the process conditioned not to be absorbed. The first one is based on two-sided
estimates on the transition kernel of the process and the second one on gradient
estimates on its semigroup. We apply these criteria to multi-dimensional diffusion
processes in bounded domains of R

d or in compact Riemannian manifolds with
boundary, with absorption at the boundary.

Keywords Markov processes · Diffusions in Riemannian manifolds · Diffusions
in bounded domains · Absorption at the boundary · Quasi-stationary
distributions · Q-process · Uniform exponential mixing · Two-sided estimates ·
Gradient estimates
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5.1 Introduction

Let X be a Markov process evolving in a measurable state space E ∪ {∂} absorbed
at ∂ /∈ E at time τ∂ = inf{t ≥ 0, Xt = ∂}. We assume that Px(t < τ∂) > 0, for all
x ∈ E and all t ≥ 0, where Px is the law of X with initial position x. We consider
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the problem of existence of a probability measure α on E and of positive constants
B, γ > 0 such that, for all initial distribution μ on E,

∥∥Pμ(Xt ∈ · | t < τ∂)− α(·)∥∥
T V

≤ Be−γ t , ∀t ≥ 0, (5.1)

where Pμ is the law of X with initial distribution μ and ‖ · ‖T V is the total variation
norm on finite signed measures. It is well known that (5.1) entails that α is the unique
quasi-stationary distribution for X, that is the unique probability measure satisfying

α(·) = Pα (Xt ∈ · | t < τ∂) , ∀t ≥ 0.

Our goal is to provide sufficient conditions for (5.1) with applications when X is
a diffusion process, absorbed at the boundary of a domain of Rd or of a Riemannian
manifold. Our first result (Theorem 5.1) shows that a two-sided estimate for the
transition kernel of a general absorbed Markov process is sufficient to ensure (5.1).
This criterion applies in particular to diffusions with smooth coefficients in bounded
domains of Rd with irregular boundary. Our second result (Theorem 5.2) concerns
Markov processes satisfying gradient estimates (as in Wang [29] and Priola and
Wang [26]), irreducibility conditions and controlled probability of absorption near
the boundary. It applies to diffusions with less regular coefficients in smooth
domains of Rd and to drifted Brownian motions in compact Riemannian manifolds
with C2 boundary.

Convergence of conditioned diffusion processes have been already obtained for
diffusions in domains of R

d , mainly using spectral theoretic arguments (see for
instance [4, 5, 14, 19, 23, 24] for d = 1 and [3, 12, 18] for d ≥ 2). Among
these references, [12, 18] give the most general criteria for diffusions in dimension
2 or more. Using two-sided estimates and spectral properties of the infinitesimal
generator of X, Knobloch and Partzsch [18] proved that (5.1) holds for a class of
diffusion processes evolving in R

d (d ≥ 3) with C1 diffusion coefficient, drift in a
Kato class and C1,1 domain. In [12], the authors obtain (5.1) for diffusions with
global Lipschitz coefficients (and additional local regularity near the boundary)
in a domain with C2 boundary. These results can be recovered with our method
(see Sects. 5.2 and 5.3.2 respectively). When the diffusion is a drifted Brownian
motion with drift deriving from a potential, the authors of [3] obtain existence and
uniqueness results for the quasi-stationary distribution in cases with singular drifts
and unbounded domains with non-regular boundary that do not enter the settings of
this paper.

Usual tools to prove convergence in total variation for processes without absorp-
tion involve coupling arguments: for example, contraction in total variation norm for
the non-conditioned semi-group can be obtained using mirror and parallel coupling,
see [22, 26, 29], or lower bounds on the density of the process that could be obtained
for example using Aronson-type estimates or Malliavin calculus [1, 25, 28, 30].
However, on the one hand, lower bounds on transition densities are not sufficient to
control conditional distributions, and on the other hand, the process conditioned not
to be killed up to a given time t > 0 is a time-inhomogeneous diffusion process with
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a singular drift for which these methods fail. For instance, a standard d-dimensional
Brownian motion (Bt )t≥0 conditioned not to exit a smooth domain D ⊂ R

d up to
a time t > 0 has the law of the solution (X(t)s )s∈[0,t ] to the stochastic differential
equation

dX(t)s = dBs + [∇ lnP·(t − s < τ∂)] (X(t)s )ds.

where the drift term is singular near the boundary. Our approach is thus to use
the following condition, which is actually equivalent to the exponential conver-
gence (5.1) (see [6, Theorem 2.1]).

Condition (A)
There exist t0, c1, c2 > 0 and a probability measure ν on E such that

(A1) for all x ∈ E,

Px(Xt0 ∈ · | t0 < τ∂) ≥ c1ν(·)

(A2) for all z ∈ E and all t ≥ 0,

Pν(t < τ∂) ≥ c2Pz(t < τ∂).

More precisely, if Condition (A) is satisfied, then, for all probability measure π
on E,

‖Pπ(Xt ∈ · | t < τ∂)− α(·)‖T V ≤ 2(1 − c1c2)
3t/t04

and it implies that, for all probability measures π1 and π2 on E,

∥∥Pπ1(Xt ∈ · | t < τ∂)− Pπ2(Xt ∈ · | t < τ∂)
∥∥
T V

≤ (1 − c1c2)
3t/t04

c(π1) ∨ c(π2)
‖π1 − π2‖T V , (5.2)

where c(πi) = inft≥0 Pπi (t < τ∂)/ supz∈E Pz(t < τ∂) (see Appendix for a proof of
this improvement of [6, Corollary 2.2], where the same inequality is obtained with
c(π1) ∧ c(π2) instead of c(π1) ∨ c(π2)).

Several other properties can also be deduced from Condition (A). For instance,
eλ0tPx(t < τ∂) converges when t → +∞, uniformly in x, to a positive
eigenfunction η of the infinitesimal generator of (Xt , t ≥ 0) for the eigenvalue −λ0
characterized by the relation Pα(t < τ∂ ) = e−λ0t , ∀t ≥ 0 [6, Proposition 2.3].
Moreover, it implies a spectral gap property [6, Corollary 2.4], the existence
and exponential ergodicity of the so-called Q-process, defined as the process X
conditioned to never hit the boundary [6, Theorem 3.1] and a conditional ergodic
property [7]. Note that we do not assume that Px(τ∂ < ∞) = 1, which is only
required in the proofs of [6] in order to obtain λ0 > 0. Indeed, the above inequalities
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remain true under Condition (A), even if Px(τ∂ < +∞) < 1 for some x ∈ E. The
only difference is that, in this case, E′ := {x ∈ E, Px(τ∂ < +∞) = 0} is non-
empty, α is a classical stationary distribution such that α(E′) = 1 and λ0 = 0.

The paper is organized as follows. In Sect. 5.2, we state and prove a sufficient
criterion for (5.1) based on two-sided estimates. In Sect. 5.3.1, we prove (5.1)
for Markov processes satisfying gradient estimates, irreducibility conditions and
controlled probability of absorption near the boundary. In Sect. 5.3.2, we apply this
result to diffusions in smooth domains of Rd and to drifted Brownian motions in
compact Riemannian manifolds with smooth boundary. Section 5.3.3 is devoted to
the proof of the criterion of Sect. 5.3.1. Finally, Appendix gives the proof of (5.2).

5.2 Quasi-Stationary Behavior Under Two-Sided Estimates

In this section, we consider as in the introduction a general absorbed Markov process
X in E ∪ {∂} satisfying two-sided estimates: there exist a time t0 > 0, a constant
c > 0, a positive measure μ on E and a measurable function f : E → (0,+∞)

such that

c−1f (x)μ(·) ≤ Px(Xt0 ∈ ·) ≤ cf (x)μ(·), ∀x ∈ E. (5.3)

Note that this implies that f (x)μ(E) ≤ c for all x ∈ E, hence μ is finite and f is
bounded. As a consequence, one can assume without loss of generality that μ is a
probability measure and then ‖f ‖∞ ≤ c. Note also that f (x) > 0 for all x ∈ E

entails that Px(t0 < τ∂) > 0 for all x ∈ E and hence, by Markov property, that
Px(t < τ∂) > 0 for all x ∈ E and all t > 0, as needed to deduce (5.1) from
Condition (A) (see [6]).

Estimates of the form (5.3) are well known for diffusion processes in a bounded
domain of R

d since the seminal paper of Davies and Simon [11]. The case of
standard Brownian motion in a bounded C1,1 domain of Rd , d ≥ 3 was studied
in [31]. This result has then been extended in [17] to diffusions in a bounded C1,1

domain in R
d , d ≥ 3, with infinitesimal generator

L = 1

2

d∑
i,j=1

aij ∂i∂j +
d∑
i=1

bi∂i,

with symmetric, uniformly elliptic and C1 diffusion matrix (aij )1≤i,j≤d , and with
drift (bi)1≤i≤d in the Kato class Kd,1, which contains Lp(dx) functions for p > d .
Diffusions on bounded, closed Riemannian manifolds with irregular boundary and
with generator

L = Δ+X,
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whereΔ is the Laplace-Beltrami operator and X is a smooth vector field, were also
studied in [21]. Two-sided estimates are also known for processes with jumps [2, 8–
10, 16].

Theorem 5.1 Assume that there exist a time t0 > 0, a constant c > 0, a probability
measure μ on E and a measurable function f : E → (0,+∞) such that (5.3)
holds. Then Condition (A) is satisfied with ν = μ, c1 = c−2 and c2 = c−3μ(f ). In
addition, for all probability measures π1 and π2 on E, we have

∥∥Pπ1(Xt ∈ · | t < τ∂)− Pπ2(Xt ∈ · | t < τ∂)
∥∥
T V

≤ c3 (1 − c−5μ(f ))3t/t04

π1(f ) ∨ π2(f )
‖π1 − π2‖T V , (5.4)

Moreover, the unique quasi-stationary distribution α for X satisfies

c−2μ ≤ α ≤ c2μ. (5.5)

Remark 5.1 Recall that to any quasi-stationary distribution α is associated an
eigenvalue −λ0 ≤ 0. We deduce from the two-sided estimate (5.3) and [6,
Corollary 2.4] an explicit estimate on the second spectral gap of the infinitesimal
generator L of X (defined as acting on bounded measurable functions on E ∪ {∂}):
for all λ in the spectrum of L such that λ /∈ {0, λ0}, the real part of λ is smaller than
−λ0 + t−1

0 log(1 − c−5μ(f )).

Remark 5.2 In particular, we recover the results of Knobloch and Partzsch [18].
They proved that (5.1) holds for a class of diffusion processes evolving in R

d

(d ≥ 3), assuming continuity of the transition density, existence of ground states and
the existence of a two-sided estimate involving the ground states of the generator.
Similar results were obtained in the one-dimensional case in [24].

Proof (Proof of Theorem 5.1) We deduce from (5.3) that, for all x ∈ E,

c−2 μ(·) ≤ Px(Xt0 ∈ · | t0 < τ∂) = Px(Xt0 ∈ ·)
Px(Xt0 ∈ E)

≤ c2μ(·). (5.6)

We thus obtain (A1) with c1 = c−2 and ν = μ.
Moreover, for any probability measure π on E and any z ∈ E,

Pπ(Xt0 ∈ ·) ≥ c−1π(f )μ(·)

≥ f (z)

‖f ‖∞ c
−1π(f )μ(·)

≥ c−3π(f )Pz(Xt0 ∈ ·).
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Hence, for all t ≥ t0, we have by Markov’s property

Pπ(t < τ∂) = Eπ

(
PXt0

(t − t0 < τ∂)
)

≥ c−3π(f )Ez

(
PXt0

(t − t0 < τ∂)
)

= c−3π(f )Pz(t < τ∂).

When t ≤ t0, we have Pπ(t < τ∂) ≥ Pπ(t0 < τ∂) ≥ c−1π(f ) ≥ c−3π(f ) and
hence Pπ(t < τ∂) ≥ c−3π(f )Pz(t < τ∂), so that

c(π) := inf
t≥0

Pπ(t < τ∂ )

supz∈E Pz(t < τ∂)
≥ c−3π(f ).

Taking π = ν = μ, this entails (A2) for c2 = c−3μ(f ) and (5.2) implies (5.4). The
inequality (5.5) then follows from (5.6).

5.3 Quasi-Stationary Behavior Under Gradient Estimates

In this section, we explain how gradient estimates on the semi-group of the Markov
process (Xt , t ≥ 0) imply the exponential convergence (5.1).

5.3.1 A General Result

We assume that the process X is a strong Markov, continuous1 process and we
assume that its state spaceE∪{∂} is a compact metric space with metric ρ equipped
with its Borel σ -field. Recall that ∂ is absorbing and that we assume that Px(t <
τ∂) > 0 for all x ∈ E and t ≥ 0. Our result holds true under three conditions: first,
we assume that there exists t1 > 0 such that the process satisfies a gradient estimate
of the form: for all bounded measurable function f : E ∪ {∂} → R

‖∇Pt1f ‖∞ ≤ C‖f ‖∞, (5.7)

1The assumption of continuity is only used to ensure that the entrance times in compact sets are
stopping times for the natural filtration (cf. e.g. [20, p. 48]), and hence that the strong Markov
property applies at this time. Our result would also hold true for càdlàg (weak) Markov processes
provided that the strong Markov property applies at the hitting times of compact sets.
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where Ptf (x) = Ex(f (Xt)1t<τ∂ ) denotes the Dirichlet semi-group of X and the (a
bit informal in such a general setting) notation ‖∇Pt1f ‖∞ has to be understood as

‖∇Pt1f ‖∞ := sup
x,y∈E∪{∂}

|Pt1f (x)− Pt1f (y)|
ρ(x, y)

.

Second, we assume that there exist a compact subset K of E and a constant C′ > 0
such that, for all x ∈ E,

Px(TK ≤ t1 < τ∂) ≥ C′ ρ∂(x), (5.8)

where ρ∂(x) := ρ(x, ∂) and TK = inf{t ≥ 0, Xt ∈ K}. Finally, we need the
following irreducibility condition: for all x, y ∈ E and all r > 0,

Px(Xs ∈ B(y, r), ∀s ∈ [t1, 2t1]) > 0, (5.9)

where B(y, r) denotes the ball of radius r centered at y.

Theorem 5.2 Assume that the process (Xt , t ≥ 0) satisfies (5.7), (5.8) and (5.9) for
some constant t1 > 0. Then Condition (A) and hence (5.1) are satisfied. Moreover,
there exist two constants B, γ > 0 such that, for any initial distributions μ1 and μ2
on E,

∥∥Pμ1(Xt ∈ · | t < τ∂)− Pμ2(Xt ∈ · | t < τ∂)
∥∥
T V

≤ Be−γ t

μ1(ρ∂) ∨ μ2(ρ∂)
‖μ1 − μ2‖T V . (5.10)

The proof of this result is given in Sect. 5.3.3.

5.3.2 The Case of Diffusions in Compact Riemannian
Manifolds

In this section, we provide two sets of assumptions for diffusions in compact
manifolds with boundary M absorbed at the boundary ∂M (i.e. E = M \ ∂M and
∂ = {∂M}) to which the last theorem applies:

S1. M is a bounded, connected and closed C2 Riemannian manifold with C2

boundary ∂M and the infinitesimal generator of the diffusion processX is given
byL = 1

2Δ+Z, whereΔ is the Laplace-Beltrami operator andZ is aC1 vector
field.

S2. M is a compact subset of R
d with non-empty, connected interior and C2

boundary ∂M andX is solution to the SDE dXt = s(Xt )dBt +b(Xt)dt , where
(Bt , t ≥ 0) is a r-dimensional Brownian motion, b : M → R

d is bounded and
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continuous and s : M → R
d×r is continuous, ss∗ is uniformly elliptic and for

all r > 0,

sup
x,y∈M, |x−y|=r

|s(x)− s(y)|2
r

≤ g(r) (5.11)

for some function g such that
∫ 1

0 g(r)dr <∞.

Note that (5.11) is satisfied as soon as s is uniformly α-Hölder on M for some
α > 0.

Let us now check that Theorem 5.2 applies in both situations.
First, the gradient estimate (5.7) is satisfied (see Wang in [29] and Priola and

Wang in [26], respectively). These two references actually give a stronger version
of (5.7):

‖∇Ptf ‖∞ ≤ c

1 ∧√
t
‖f ‖∞, ∀t > 0. (5.12)

The set of assumptions S2 is not exactly the same as in [26], but they clearly imply
(i), (ii), (iv) of [26, Hyp. 4.1] (see [26, Lemma 3.3] for the assumption on s) and,
since we assume that M is bounded and C2, assumptions (iii’) and (v) are also
satisfied (see [26, Rk. 4.2]). Moreover, the gradient estimate of [26] is stated for
x ∈ M \ ∂M �→ Ptf (x), but can be easily extended to x ∈ M since Ptf (x) → 0
when x → ∂M . Note also that in both references, the gradient estimates are obtained
for not necessarily compact manifolds.

The irreducibility assumption (5.9) is an immediate consequence of classical
support theorems [27, Exercise 6.7.5] for any value of t1 > 0.

It only remains to prove the next lemma.

Lemma 5.1 There exist t1, ε, C′ > 0 such that, for all x ∈ M ,

Px(Tε ≤ t1 < τ∂) ≥ C′ ρ∂M(x), (5.13)

where ρ∂M(x) is the distance between x and ∂M , Tε = inf{t ≥ 0, Xt ∈ Mε} and
the compact set Mε is defined as {x ∈ M : ρ∂M(x) ≥ ε}.
Proof (Proof of Lemma 5.1) Let ε0 > 0 be small enough for ρ∂M to be C2 on
M \Mε0 . For all t < Tε0 , we define Yt = ρ∂M(Xt). In both situations S1 and S2,
we have

dYt = σtdWt + btdt,

where W is a standard Brownian motion, where σt ∈ [σ, σ̄ ] and |bt | ≤ b̄ are
adapted continuous processes, with 0 < σ, σ̄ , b̄ < ∞. There exists a differentiable
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time-change τ (s) such that τ (0) = 0 and

W̃s :=
∫ τ (s)

0
σtdWt

is a Brownian motion and τ ′(s) ∈ [σ̄−2, σ−2]. In addition,

∫ τ (s)

0
bt dt ≥ −b̄τ (s) ≥ −b̄σ−2s.

As a consequence, setting Zs = Y0+W̃s−b̄σ−2s, we have almost surelyZs ≤ Yτ(s)
for all s such that τ (s) ≤ Tε0 .

Setting a = b̄σ−2, the function

f (x) = e2ax − 1

2a

is a scale function for the drifted Brownian motion Z. The diffusion process defined
by Nt = f (Zt) is a martingale and its speed measure is given by s(dv) = dv

(1+2av)2
.

The Green formula for one-dimensional diffusion processes [15, Lemma 23.10]
entails, for ε1 = f (ε0) and all u ∈ (0, ε1/2) (in the following lines, PNu denotes
the probability with respect to N with initial position N0 = u),

P
N
u (t ≤ T N0 ∧ T Nε1/2) ≤

E
N
u (T

N
0 ∧ T Nε1/2

)

t
= 2

t

∫ ε1/2

0

(
1 − u ∨ v

ε1/2

)
(u ∧ v)s(dv)

≤ u
Cε1

t
, where Cε1 = 2

∫ ε1/2

0

dv

(1 + 2av)2
, (5.14)

where we set T Nε = inf{t ≥ 0, Nt = ε}. Let us fix s1 = ε1Cε1 . Since N is a
martingale, we have, for all u ∈ (0, ε1/2),

u = E
N
u (Ns1∧T Nε1/2∧T

N
0
) ≤ ε1

2
P
N
u (T

N
ε1/2 ≤ s1 ∧ T N0 )+

ε1

2
P
N
u (s1 < T Nε1/2 ∧ T N0 )

≤ ε1

2
P
N
u (T

N
ε1/2 ≤ s1 ∧ T N0 )+

u

2
.

Hence there exists a constant A > 0 such that PNu (T
N
ε1/2

≤ s1 ∧ T N0 ) ≥ Au, or, in
other words,

Px(T
Z
ε ≤ σ 2t1 ∧ T Z0 ) ≥ Af (ρ∂M(x)) ≥ Aρ∂M(x)

for all x ∈ M \Mε , where t1 = s1σ
−2 and ε = f−1(ε1/2).
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Now, using the fact that the derivative of the time change τ (s) belongs to
[σ̄−2, σ−2] and that Zs ≤ Yτ(s), it follows that for all x ∈ M \Mε ,

Px(T
Y
ε ≤ t1 ∧ T Y0 ) ≥ Px(T

Z
ε ≤ σ 2t1 ∧ T Z0 ) ≥ Aρ∂M(x).

Therefore,

Px(T
Y
ε ≤ t1 < T Y0 ) ≥ Ex

[
1T Yε ≤t1∧T Y0 PX

TYε
(t1 < τ∂)

]

≥ Px(T
Y
ε ≤ t1 ∧ T Y0 ) inf

y∈Mε

Py(t1 < τ∂) ≥ C′ρ∂M(x),

where we used that infy∈Mε Py(t1 < τ∂) > 0. This last fact follows from the
inequality Py(t1 < τ∂) > 0 for all y ∈ M \ ∂M , consequence of (5.9) and from the
Lipschitz-continuity of y �→ Py(t1 < τ∂) = Pt11E(y), consequence of (5.12).

Finally, since Tε = 0 under Px for all x ∈ Mε , replacing C′ by C′ ∧
[infy∈Mε Py(t1 < τ∂)/diam(M)] entails (5.13) for all x ∈ M .

Remark 5.3 The gradient estimates of [26] are proved for diffusion processes with
space-dependent killing rate V : M → [0,∞). More precisely, they consider
infinitesimal generators of the form

L = 1

2

d∑
i,j=1

[ss∗]ij ∂i∂j +
d∑
i=1

bi∂i − V

with V bounded measurable. Our proof also applies to this setting.

Remark 5.4 We have proved in particular that Condition (A1) is satisfied in
situations S1 and S2. This is a minoration of conditional distributions of the
diffusion. For initial positions in compact subsets of M \ ∂M , this reduces to
a lower bound for the (unconditioned) distribution of the process. Such a result
could be obtained from density lower bounds using number of techniques, for
example Aronson-type estimates [1, 28, 30] or continuity properties [13]. Note that
our result does not rely on such techniques, since it will appear in the proof that
Conditions (5.7) and (5.9) are sufficient to obtain Px(Xt0 ∈ ·) ≥ ν̃ for all x ∈ Mε

for some positive measure ν̃.

5.3.3 Proof of Theorem 5.2

The proof is based on the following equivalent form of Condition (A) (see [6,
Thm. 2.1])

Condition (A’)
There exist t0, c1, c2 > 0 such that



5 Criteria for Exponential Convergence to Quasi-Stationary Distributions 175

(A1’) for all x, y ∈ E, there exists a probability measure νx,y on E such that

Px(Xt0 ∈ · | t0 < τ∂) ≥ c1νx,y(·) and Py(Xt0 ∈ · | t0 < τ∂) ≥ c1νx,y(·)

(A2’) for all x, y, z ∈ E and all t ≥ 0,

Pνx,y (t < τ∂) ≥ c2Pz(t < τ∂).

Note that (A1’) is a kind of coupling for conditional laws of the Markov process
starting from different initial conditions. It is thus natural to use gradient estimates
to prove such conditions since they are usually obtained by coupling of the paths of
the process (see [26, 29]).

We divide the proof into four steps. In the first one, we obtain a lower bound for
Px(X2t1 ∈ K | 2t1 < τ∂). The second and third ones are devoted to the proof of
(A1’) and (A2’), respectively. The last one gives the proof of (5.10).

5.3.3.1 Return to a Compact Conditionally on Non-absorption

The gradient estimate (5.7) applied to f = 1E implies that Pt11E is Lipschitz. Since
P∂ (t1 < τ∂) = 0, we obtain, for all x ∈ E,

Px(t1 < τ∂) ≤ C ρ∂(x). (5.15)

Combining this with Assumption (5.8), we deduce that, for all x ∈ E,

Px(TK ≤ t1 | t1 < τ∂) = Px(TK ≤ t1 < τ∂)

Px(t1 < τ∂)
≥ C′

C
.

Fix x0 ∈ K and let r0 = d(x0, ∂)/2. We can assume without loss of generality that
B(x0, r0) ⊂ K , since Assumption (5.8) remains true if one replaces K by the set
K ∪ B(x0, r0) ⊂ E (which is also a compact set, as a closed subset of the compact
set E ∪ {∂}). Then, it follows from (5.9) that, for all x ∈ E,

Ex

[
PXt1

(Xs ∈ B(x0, r0), ∀s ∈ [0, t1])
]
= Px(Xs ∈ B(x0, r0), ∀s ∈ [t1, 2t1]) > 0.

Because of (5.7), the left-hand side is continuous w.r.t. x ∈ M , and hence

inf
x∈K Px(Xs ∈ K, ∀s ∈ [t1, 2t1]) ≥ inf

x∈K Px(Xs ∈ B(x0, r0), ∀s ∈ [t1, 2t1]) > 0.
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Therefore, it follows from the strong Markov property at time TK that

Px(X2t1 ∈ K | 2t1 < τ∂) ≥ Px(X2t1 ∈ K)
Px(t1 < τ∂)

≥ Px(TK ≤ t1 and XTK+s ∈ K, ∀s ∈ [t1, 2t1])
Px(t1 < τ∂)

≥ inf
x∈K Px(Xs ∈ K, ∀s ∈ [t1, 2t1])Px(TK ≤ t1)

Px(t1 < τ∂)
.

Therefore, we have proved that, for all x ∈ E,

Px(X2t1 ∈ K | 2t1 < τ∂) ≥ A, (5.16)

for the positive constant A := infx∈K Px(Xs ∈ K, ∀s ∈ [t1, 2t1])C′/C.

5.3.3.2 Proof of (A1’)

For all x, y ∈ E, let μx,y be the infimum measure of δxP2t1 and δyP2t1 , i.e. for all
measurable A ⊂ E,

μx,y(A) := inf
A1∪A2=A, A1,A2 measurable

(δxP2t11A1 + δyP2t11A2).

The proof of (A1’) is based on the following lemma.

Lemma 5.2 For all bounded continuous function f : E → R+ not identically 0,
the function (x, y) ∈ E2 �→ μx,y(f ) is Lipschitz and positive.

Proof By (5.7), for all bounded measurable g : E → R,

‖∇P2t1g‖∞ = ‖∇Pt1(Pt1g)‖∞ ≤ C‖Pt1g‖∞ ≤ C‖g‖∞. (5.17)

Hence, for all x, y ∈ E,

|P2t1g(x)− P2t1g(y)| ≤ C‖g‖∞ρ(x, y). (5.18)

This implies the uniform Lipschitz-continuity of P2t1g. In particular, we deduce that

μx,y(f ) = inf
A1∪A2=E

{
P2t1(f1A1)(x)+ P2t1(f1A2)(y)

}

is continuous w.r.t. (x, y) ∈ E2 (and even Lipschitz).
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Let us now prove that μx,y(f ) > 0. Let us define μ̄x,y as the infimum measure
of δxPt1 and δyPt1 : for all measurable A ⊂ E,

μ̄x,y(A) := inf
A1∪A2=A

(δxPt11A1 + δyPt11A2).

The continuity of (x, y) �→ μ̄x,y(f ) on E2 holds as above.
Fix x1 ∈ E and d1 > 0 such that infx∈B(x1,d1) f (x) > 0. Then (5.9) entails

μ̄x1,x1(f ) = δx1Pt1f ≥ Px1(Xt1 ∈ B(x1, d1)) inf
x∈B(x1,d1)

f (x) > 0.

Therefore, there exist r1, a1 > 0 such that μ̄x,y(f ) ≥ a1 for all x, y ∈ B(x1, r1).
Hence, for all nonnegative measurable g : E → R+ and for all x, y ∈ E and all

u′ ∈ E,

δxP2t1g ≥
∫
E

1u∈B(x1,r1)Pt1g(u) δxPt1(du)

≥
∫
E

1u,u′∈B(x1,r1)μ̄u,u′(g) δxPt1(du). (5.19)

Integrating both sides of the inequality w.r.t. δyPt1(du
′), we obtain

δxP2t1g ≥ δxP2t1gδyPt1(E) ≥
∫∫

E×E
1u,u′∈B(x1,r1)μ̄u,u′(g) δxPt1(du) δyPt1(du

′).

Since this holds for all nonnegative measurable g and since μx,y is the infimum
measure between δxP2t1 and δyP2t1 , by symmetry, we have proved that

μx,y(·) ≥
∫∫

E×E
1u,u′∈B(x1,r1)μ̄u,u′(·) δxPt1(du) δyPt1(du′).

Therefore, (5.9) entails

μx,y(f ) ≥ a1Px(Xt1 ∈ B(x1, r1))Py(Xt1 ∈ B(x1, r1)) > 0.

We now construct the measure νx,y of Condition (A1’). Using a similar compu-
tation as in (5.19) and integrating with respect to δyP2t1(du

′)/δyP2t11E , we obtain
for all x, y ∈ E and all nonnegative measurable f : E → R+

δxP4t1f ≥
∫∫

K×K
μu,u′(f ) δxP2t1(du)

δyP2t1(du
′)

δyP2t11E
.



178 N. Champagnat et al.

Since δxP4t11E ≤ δxP2t11E ,

δxP4t1f

δxP4t11E
≥

∫∫
K×K

μu,u′(f )
δxP2t1(du)

δxP2t11E

δyP2t1(du
′)

δyP2t11E

= mx,yνx,y(f ),

where

mx,y :=
∫∫

K×K
μu,u′(E)

δxP2t1(du)

δxP2t11E

δyP2t1(du
′)

δyP2t11E

and

νx,y := 1

mx,y

∫∫
K×K

μu,u′(·) δxP2t1(du)

δxP2t11E

δyP2t1(du
′)

δyP2t11E
. (5.20)

Note that

mx,y ≥ inf
u,u′∈K2

μu,u′(E)
∫∫

K×K
δxP2t1(du)

δxP2t11E

δyP2t1(du
′)

δyP2t11E

≥ A2 inf
u,u′∈K2

μu,u′(E) > 0, (5.21)

because of (5.16) and Lemma 5.2. Hence the probability measure νx,y is well-
defined and we have proved (A1’) for t0 = 4t1 and c1 = A2 infu,u′∈K2 μu,u′(E).

5.3.3.3 Proof of (A2’)

Our goal is now to prove Condition (A2’). We first prove the following gradient
estimate for f = 1E .

Lemma 5.3 There exists a constant C′′ > 0 such that, for all t ≥ 4t1,

‖∇Pt1E‖∞ ≤ C′′‖Pt1E‖∞. (5.22)

Note that, compared to (5.7), the difficulty is that we replace ‖1E‖∞ by the
smaller ‖Pt11E‖∞ and that we extend this inequality to any time t large enough.

Proof We first use (5.16) to compute

P4t11E(x) ≥ Px(X2t1 ∈ K) inf
y∈K Py(2t1 < τ∂) ≥ mAPx(2t1 < τ∂),

where m := infy∈K Py(2t1 < τ∂) is positive because of Lemma 5.2. Integrating the
last inequality with respect to (δyPt−4t1)(dx) for any fixed y ∈ E and t ≥ 4t1, we
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deduce that

‖Pt1E‖∞ ≥ mA‖Pt−2t11E‖∞.

Hence it follows from (5.12) that, for all t ≥ 4t1,

‖∇Pt1E‖∞ = ‖∇Pt1(Pt−t11E)‖∞ ≤ C‖Pt−t11E‖∞
≤ C‖Pt−2t11E‖∞ ≤ C

mA
‖Pt1E‖∞.

This concludes the proof of Lemma 5.3.

This lemma implies that the function

ht : x ∈ E ∪ {∂} �→ Pt1E(x)

‖Pt1E‖∞ (5.23)

is C′′-Lipschitz for all t ≥ 4t1. Since this function vanishes on ∂ and its maximum
over E is 1, we deduce that, for any t ≥ 4t1, there exists at least one point zt ∈ E
such that ht (zt ) = 1. Since ht is C′′-Lipschitz, we also deduce that ρ(zt , ∂) ≥
1/C′′. Moreover, for all x ∈ E,

Pt1E(x)

‖Pt1E‖∞ ≥ fzt (x), (5.24)

where, for all z ∈ E and x ∈ E, fz(x) = (
1 − C′′ρ(x, z)

) ∨ 0. We define the
compact set K ′ = {x ∈ E : ρ(x, ∂) ≥ 1/C′′} so that zt ∈ K ′ for all t ≥ 4t1. Then,
for all x, y ∈ E and for all t ≥ 4t1, using the definition (5.20) of νx,y ,

Pνx,y (t < τ∂) ≥ ‖Pt1E‖∞ νx,y(fzt )

= ‖Pt1E‖∞
mx,y

∫∫
K×K

μz,z′(fzt )
δxP2t1(dz)

δxP2t11E

δyP2t1(dz
′)

δyP2t11E
.

Since z �→ fz is Lipschitz for the ‖ · ‖∞ norm (indeed, |fz(x) − fz′(x)| ≤
C′′|ρ(x, z) − ρ(x, z′)| ≤ C′′ρ(z, z′) for all x, z, z′ ∈ E3), it follows from
Lemma 5.2 that (x, y, z) �→ μx,y(fz) is positive and continuous on E3. Hence
c := infx∈K, y∈K, z∈K ′ μx,y(fz) > 0 and, using that mx,y ≤ 1,

Pνx,y (t < τ∂) ≥ c‖Pt1E‖∞
∫∫

K×K
δxP2t1(dz)

δxP2t11E

δyP2t1(dz
′)

δyP2t11E
≥ cA2‖Pt1E‖∞,

where the last inequality follows from (5.16).
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This entails Condition (A2’) for all t ≥ 4t1. For t ≤ 4t1,

Pνx,y (t < τ∂) ≥ Pνx,y (4t1 < τ∂) ≥ cA2‖P4t11E‖∞
≥ cA2‖P4t11E‖∞ sup

z∈E
Pz(t < τ∂) > 0.

This ends the proof of (A2’) and hence of (5.1).

5.3.3.4 Contraction in Total Variation Norm

It only remains to prove (5.10). By (5.2), we need to prove that there exists a constant
a > 0 such that, for all probability measure μ on E,

c(μ) := inf
t≥0

Pμ(t < τ∂)

‖Pt1E‖∞ ≥ aμ(ρ∂). (5.25)

Because of the equivalence between (A) and (A’) [6, Theorem 2.1], enlarging t0
and reducing c1 and c2, one can assume without loss of generality that ν = νx,y
does not depend on x, y ∈ E. Then, using (A1) and (A2), we deduce that, for all
t ≥ t0 ≥ 4t1,

Pμ(t < τ∂) = μ(Pt0Pt−t01E) ≥ c1Pμ(t0 < τ∂)Pν(t − t0 < τ∂)

≥ c1c2‖Pt−t01E‖∞Pμ(t0 < τ∂) ≥ c1c2‖Pt1E‖∞Pμ(t0 < τ∂).

Now, using Assumption (5.8), we deduce that

Pμ(t0 < τ∂) ≥ Eμ

(
1TK<t1 inf

y∈K Py(t0 < τ∂)

)
≥ C′μ(ρ(∂, ·)) inf

y∈K Py(t0 < τ∂),

where the constant C′′ := C′ infy∈K Py(t0 < τ∂) is positive. For t ≤ t0, the last
inequality entails

Pμ(t < τ∂) ≥ Pμ(t0 < τ∂) ≥ C′′μ(ρ(∂, ·)) ≥ C′′μ(ρ(∂, ·))‖Pt1E‖∞.

Hence (5.25) holds true with a = c1c2C
′′. This ends the proof of Theorem 5.2.

Appendix: Proof of (5.2)

Let us assume that Condition (A) is satisfied. For all t ≥ 0 and all probability
measure π on E, let ct (π) := π(Pt1E)‖Pt1E‖∞ . In the proof of [6, Corollary 2.2], it is
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proved that, for all probability measures π1, π2 on E

∥∥Pπ1(Xt ∈ · | t < τ∂)− Pπ2(Xt ∈ · | t < τ∂)
∥∥
T V

≤ (1 − c1c2)
3t/t04

ct (π1) ∨ ct (π2)
‖π1 − π2‖T V .

But

inf
t≥0

ct (π1) ∨ ct (π2) ≥ (inf
t≥0

ct (π1)) ∨ (inf
t≥0

ct (π2)) = c(π1) ∨ c(π2).

This ends the proof of (5.2).
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Chapter 6
Bismut-Elworthy-Li Formulae for Bessel
Processes

Henri Elad Altman

Abstract In this article we are interested in the differentiability property of
the Markovian semi-group corresponding to the Bessel processes of nonnegative
dimension. More precisely, for all δ ≥ 0 and T > 0, we compute the derivative of
the function x �→ PδT F (x), where (P δt )t≥0 is the transition semi-group associated
to the δ-dimensional Bessel process, and F is any bounded Borel function on
R+. The obtained expression shows a nice interplay between the transition semi-
groups of the δ—and the (δ + 2)-dimensional Bessel processes. As a consequence,
we deduce that the Bessel processes satisfy the strong Feller property, with a
continuity modulus which is independent of the dimension. Moreover, we provide a
probabilistic interpretation of this expression as a Bismut-Elworthy-Li formula.

Keywords Bismut-Elworthy-Li formula · Strong Feller property · Bessel
processes

6.1 Introduction

Bessel processes are a one-parameter family of nonnegative diffusion processes with
a singular drift, which present a reflecting behavior when they hit the origin. The
smaller the parameter (called dimension), the more intense the reflection. Hence,
studying the dynamics of these processes is a non-trivial problem, especially when
the dimension is small. Despite these apparent difficulties, Bessel processes have
remarkably nice properties. Therefore they provide an instructive insight in the study
of stochastic differential equations (SDEs) with a singular drift, as well as the study
of reflected SDEs.
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For all x ≥ 0 and δ ≥ 0, the squared Bessel process of dimension δ started at x2

is the unique strong solution of the equation:

Xt = x2 + 2
∫ t

0

√
XsdBs + δt. (6.1)

Such a process X is nonnegative, and the law of its square-root ρ = √
X is, by

definition, the δ-dimensional Bessel process started at x (see [10, section XI], or
Chapter 3 of [14] for an introduction to Bessel processes). The process ρ satisfies
the following SDE before its first hitting time T0 of 0:

∀t ∈ [0, T0), ρt = x + δ − 1

2

∫ t

0

ds

ρs
+ Bt .

This is an SDE with non-Lipschitz continuous drift term given by the function
x �→ δ−1

2
1
x

on (0,+∞). Note that when δ < 1, this function is nondecreasing on
R+, and as δ decreases this “wrong” monotonicity becomes more and more acute.
As a consequence, for δ small, the process ρ is not mean-square differentiable,
so that classical criteria for the Bismut-Elworthy-Li formula to hold (see [4,
Section 1.5, and Section 2 below]) do not apply here. Hence, one would not even
expect such a formula to hold for δ < 1. For instance, even continuity of the flow is
not known in this regime, see Remark 6.10 below.

The aim of the present paper is to study the derivative in space of the family of
transition kernels (P δT )T≥0 of the δ-dimensional Bessel process. In a first part, we
show that this derivative can be expressed in terms of the transition kernels of the δ-
and the (δ+ 2)-dimensional Bessel processes. More precisely, we prove that, for all
function F : R+ → R bounded and Borel, all T > 0 and all x ≥ 0, we have:

d

dx
P δT F (x) =

x

T

(
Pδ+2
T F (x)− PδT F (x)

)
. (6.2)

As a consequence, the Bessel processes satisfy the strong Feller property
uniformly in δ. In a second part, we interpret the above result probabilistically as
a Bismut-Elworthy-Li formula. More precisely, given a realization ρ of the Bessel
process through the SDE (6.1), we introduce the derivative ηt of ρt with respect to
the initial condition x, and show that when δ > 0, the stochastic integral

∫ t
0 ηsdBs

is well-defined as an Lp martingale, for some p > 1 depending on δ. Moreover, it
turns out that

∫ T
0 ηsdBs is (up to a constant) the Radon-Nikodym derivative of the

(δ + 2)-dimensional Bessel process over the interval [0, T ] w.r.t. the δ-dimensional
one. As a consequence, we deduce that the above equation can be rewritten:

d

dx
P δT F (x) =

1

T
E

[
F(ρt (x))

(∫ t

0
ηs(x)dBs

)]
(6.3)
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which is an apparition, in an unexpected context, of the well-known Bismut-
Elworthy-Li formula (see [7] for a precise statement and proof of the Bismut-
Elworthy-Li formula in the case of diffusions with smooth coefficients).

One surprising feature is that, while (6.2) is very easy to prove whatever the value
of δ ≥ 0, on the other hand, the process (

∫ t
0 ηs(x)dBs)t≥0 has less and less finite

moments as δ decreases, which makes the proof of (6.3) more involved for small δ.
In particular, this process is not in L2 for δ < 2(

√
2 − 1), and when δ = 0, we do

not even know whether the stochastic integral
∫ t

0 ηs(x)dBs is well-defined as a local
martingale.

This article was originally motivated by the hope to prove the strong Feller
property for some singular reflected SDEs or SPDEs. Recently, several works have
brought about new techniques to prove the strong Feller property for singular
SPDEs. Thus, in [11], the authors established this property for the P(Φ)2 equation,
and in [8], the authors established it for a large class of singular semilinear SPDEs.
The fact, mentioned above, that blowup of η does not affect the strong Feller
property of Bessel processes is reminiscent of the latter article, where the setting
used to prove the strong Feller property allows blowup in finite time of the solution.
Also, we hope that the techniques used in the present article might give inspiration
to treat more general cases. Note that, even in the present context, where many
computations can be performed explicitly, we still have an open problem concerning
the Strong Feller bounds for Bessel processes of dimension δ ≤ 2(

√
2 − 1) (see

Remark 6.14 below).
The plan of our paper is as follows. In Sect. 6.2 we recall the classical Bismut-

Elworthy-Li formula for diffusions in R with a dissipative drift, and show how this
implies the strong Feller property. In Sect. 6.3 we recall the definition of Bessel
processes and their basic properties. In Sect. 6.4 we compute the derivative of the
Bessel semi-group. In Sect. 6.5 we establish the differentiability of the Bessel flow
at any given point in R

∗+, and we give an expression for (some modification of) the
derivative. In Sect. 6.6, we show that this derivative is not bounded in time when δ <
1. We prove, however, that it is linked to an interesting martingale corresponding to
the family of Radon-Nikodym derivatives of the (δ+2)-dimensional Bessel process
w.r.t. the δ-dimensional one. In Sect. 6.7 we prove the Bismut-Elworthy-Li formula
for the Bessel processes of dimension δ > 0.

6.2 Classical Bismut-Elworthy-Li Formula for
One-Dimensional Diffusions

In this section we recall very briefly the Bismut-Elworthy-Li formula in the case
of one-dimensional diffusions, and the way this formula implies the strong Feller
property.
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Consider an SDE on R of the form:

dXt = b(Xt)dt + dBt , X0 = x (6.4)

where b : R → R is smooth and satisfies:

|b(x)− b(y)| ≤ C|x − y|, x, y ∈ R

b′(x) ≤ L, x ∈ R (6.5)

where C > 0, L ∈ R are some constants. By the classical theory of SDEs, for
all x ∈ R, there exists a unique continuous, square-integrable process (Xt (x))t≥0
satisfying (6.4). Actually, by the Lipschitz assumption on b, there even exists a bi-
continuous process (Xt (x))t≥0,x∈R such that, for all x ∈ R, (Xt (x))t≥0 solves (6.4).

Let x ∈ R. Consider the solution (ηt (x))t≥0 to the variation equation obtained
by formally differentiating (6.4) with respect to x:

dηt (x) = b′(Xt )ηt (x)dt, η0(x) = 1

Note that this is a (random) linear ODE with explicit solution given by:

ηt (x) = exp

(∫ t

0
b′(Xs)ds

)

It is easy to prove that, for all t ≥ 0 and x ∈ R, the map y → Xt(y) is a.s.
differentiable at x and:

dXt

dx

a.s.= ηt (x) (6.6)

Remark 6.1 Note that ηt (x) > 0 for all t ≥ 0 and x ∈ R. This reflects the fact that,
for all x ≤ y, by a comparison theorem for SDEs (see Theorem 3.7 in Chapter IX
in [10]), one has Xt(x) ≤ Xt(y).

Recall that a Markovian semi-group (Pt )t≥0 on a Polish space E is said to satisfy
the strong Feller property if, for all t > 0 and ϕ : E → R bounded and Borel, the
function Ptϕ : E → R defined by:

Ptϕ(x) =
∫
ϕ(y)Pt (x, dy), x ∈ R

is continuous.
The strong Feller property is very useful in the study of SDEs and SPDEs, namely

for the proof of ergodicity (see, e.g., the monographs [4, 5] and [14], as well as the
recent articles [8] and [11], for applications of the strong Feller property in the
context of SPDEs).
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Let (Pt )t≥0 be the Markovian semi-group associated to the SDE (6.9). We
are interested in proving the strong Feller property for (Pt )t≥0. Note that, by
assumption (6.5), ηt (x) ≤ eLt for all t ≥ 0 and x ∈ R. Therefore, by (6.6) and the
dominated convergence theorem, for all ϕ : R → R differentiable with a bounded
derivative, one has:

d

dx
(Ptϕ) (x) = d

dx
E [ϕ(Xt (x))] = E [ϕ(Xt (x))ηt (x)]

As a consequence, for all t ≥ 0, Pt preserves the space C1
b (R) of bounded,

continuously differentiable functions on R with a bounded derivative. It turns out
that, actually, for all t > 0, Pt maps the space Cb(R) of bounded and continuous
functions into C1

b (R). This is a consequence of the following, nowadays well-
known, result:

Theorem 6.1 (Bismut-Elworthy-Li Formula) For all T > 0 and ϕ ∈ Cb(R), the
function PT ϕ is differentiable and we have:

d

dx
PT ϕ(x) = 1

T
E

[
ϕ(XT (x))

∫ T

0
ηs(x)dBs

]
(6.7)

Proof See [7, Theorem 2.1], or [14, Lemma 5.17] for a proof.

Corollary 6.1 The semi-group (Pt )t≥0 satisfies the strong Feller property and, for
all T > 0 and ϕ : R → R bounded and Borel, one has:

∀x, y ∈ R, |PT ϕ(x)− PT ϕ(y)| ≤ eL
||ϕ||∞√
T ∧ 1

|x − y|, (6.8)

where || · ||∞ denotes the supremum norm.

The following remark is crucial.

Remark 6.2 Inequality (6.8) involves only the dissipativity constant L, not the
Lipschitz constant C. This makes the Bismut-Elworthy-Li formula very useful in
the study of SPDEs with a dissipative drift.

Proof (Proof of Corollary 6.1) By approximation, it suffices to prove (6.8) for ϕ ∈
Cb(R). For such a ϕ and for all T > 0, by the Bismut-Elworthy-Li formula, one
has:

∣∣∣∣ ddx PT ϕ(x)
∣∣∣∣ ≤ ||ϕ||∞

T
E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
]

Remark that the process (ηt (x))t≥0 is locally bounded since it is dominated by

(eLt)t≥0, so that the stochastic integral
(∫ t

0 ηs(x)dBs

)
t≥0

is an L2 martingale.
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Hence using Jensen’s inequality as well as Itô’s isometry formula, we obtain:

E

[
|
∫ T

0
ηs(x)dBs |

]
≤

√
E

[∫ T

0
ηs(x)2ds|

]

≤
√∫ T

0
e2Ls ds

and the last quantity is bounded by
√
e2LT = eL

√
T for all T ∈ (0, 1]. Therefore,

we deduce that:

∀x ∈ R,

∣∣∣∣ ddx PT ϕ(x)
∣∣∣∣ ≤ eL

||ϕ||∞√
T

so that:

∀x, y ∈ R, |PT ϕ(x)− PT ϕ(y)| ≤ eL
||ϕ||∞√
T

|x − y|

for all ϕ ∈ Cb(R) and T ∈ (0, 1]. The case T > 1 follows at once by using the
semi-group property of (Pt )t≥0:

|PT ϕ(x)− PT ϕ(y)| = |P1 (PT−1ϕ) (x)− P1 (PT−1ϕ) (y)|

≤ eL
||PT−1ϕ||∞√

1
|x − y|

≤ eL||ϕ||∞|x − y|
The claim follows.

Remark 6.3 (A Brief History of the Bismut-Elworthy-Li Formula) A particular form
of this formula had originally been derived by Bismut in [2] using Malliavin calculus
in the framework of the study of the logarithmic derivative of the fundamental
solution of the heat equation on a compact manifold. In [7], Elworthy and Li
used a martingale approach, instead of a Malliavin calculus method, to generalize
this formula to a large class of diffusion processes on noncompact manifolds
with smooth coefficients, and gave also variants of this formula to higher-order
derivatives. The key to their proof is to select a stochastic process, which in this
case is the stochastic flow, to give a probabilistic representation for the derivative of
the semigroup.

The key property allowing the analysis performed in this section is the dissipa-
tivity property (6.5). Without this property being true, one would not even expect
the Bismut-Elworthy-Li formula to hold. However, in the sequel, we shall prove
that results such as Theorem 6.1 and Corollary 6.1 above can also be obtained for a
family of diffusions with a non-dissipative drift (informally L = +∞), namely for
the Bessel processes of dimension smaller than 1.
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6.3 Bessel Processes: Notations and Basic Facts

In the sequel, for any subinterval I of R+, C(I) will denote the set of continuous
functions I → R. We shall consider this set endowed with the topology of uniform
convergence on compact sets, and will denote by B(C(I)) the corresponding Borel
σ -algebra.

Consider the canonical measurable space (C(R+),B(C(I))) endowed with the
canonical filtration (Ft )t≥0. Let (Bt )t≥0 be a standard linear (Ft )t≥0-Brownian
motion. For all x ≥ 0 and δ ≥ 0, there exists a unique continuous, predictable,
nonnegative process (Xδt (x))t≥0 satisfying:

Xt = x2 + 2
∫ t

0

√
XsdBs + δt. (6.9)

(Xδt (x))t≥0 is a squared Bessel process of dimension δ started at x2, and the process

ρδt (x) :=
√
Xδt (x) is a δ-dimensional Bessel process started at x. In the sequel,

we will also write the latter process as (ρt (x))t≥0, or ρ, when there is no risk of
ambiguity.

We recall the following monotonicity property of the family of Bessel processes:

Lemma 6.1 For all couples (δ, δ′), (x, x ′) ∈ R+ such that δ ≤ δ′ and x ≤ x ′, we
have, a.s.:

∀t ≥ 0, ρδt (x) ≤ ρδ
′
t (x

′).

Proof By Theorem (3.7) in [10, Section IX], applied to Eq. (6.9), the following
property holds a.s.:

∀t ≥ 0, Xδt (x) ≤ Xδ
′
t (x

′).

Taking the square root on both sides above, we deduce the result.

For all a ≥ 0, let Ta(x) denote the (Ft )t≥0 stopping time defined by:

Ta(x) := inf{t > 0, ρt (x) ≤ a}

(we shall also write Ta). We recall the following fact, (see e.g. Proposition 3.6
of [14]):

Proposition 6.1 The following dichotomy holds:

• T0(x) = +∞ a.s., if δ ≥ 2,
• T0(x) < +∞ a.s., if 0 ≤ δ < 2.
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Applying Itô’s lemma to ρt =
√
Xδt (x), we see that ρ satisfies the following

relation on the interval [0, T0):

∀t ∈ [0, T0), ρt = x + δ − 1

2

∫ t

0

ds

ρs
+ Bt . (6.10)

6.4 Derivative in Space of the Bessel Semi-group

Let δ ≥ 0. We denote by Pδx the law, on (C(R+),B(C(R+))), of the δ-dimensional
Bessel process started at x, and we write Eδx for the corresponding expectation
operator. We also denote by (P δt )t≥0 the family of transition kernels associated with
the δ-dimensional Bessel process, defined by

Pδt F (x) := Eδx(F (ρt ))

for all t ≥ 0 and all F : R+ → R bounded and Borel. The aim of this section is to
prove the following:

Theorem 6.2 For all T > 0 and all F : R+ → R bounded and Borel, the function
x → Pδt F (x) is differentiable on R+, and for all x ≥ 0:

d

dx
P δT F (x) =

x

T

(
Pδ+2
T F (x)− PδT F (x)

)
. (6.11)

In particular, the function x → Pδt F (x) satisfies the Neumann boundary condition
at 0:

d

dx
P δT F (x)

∣∣∣
x=0

= 0.

Remark 6.4 By Theorem 6.2, the derivative of the function x �→ PδT F (x) is a
smooth function of Pδ+2

T F (x) and PδT F (x). Hence, reasoning by induction, we
deduce that the function x �→ PδT F (x) is actually smooth on R+.

Proof The proof we propose here relies on the explicit formula for the transition
semi-group of the Bessel processes. We first treat the case δ > 0.

Given δ > 0, let ν := δ
2 − 1, and denote by Iν the modified Bessel function of

index ν. We have (see, e.g., Chap. XI.1 in [10]) :

Pδt F (x) =
∫ ∞

0
pδT (x, y)F (y)dy
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where, for all y ≥ 0:

pδt (x, y) =
1

T

(y
x

)ν
y exp

(
−x

2 + y2

2T

)
Iν

(xy
T

)
, if x > 0,

pδt (0, y) =
2−νT −(ν+1)

Γ (ν + 1)
y2ν+1 exp

(
− y2

2T

)

where Γ denotes the gamma function. By the power series expansion of the function
Iν we have, for all x, y ≥ 0:

pδT (x, y) =
1

T
exp

(
−x

2 + y2

2T

)
p̃δT (x, y) (6.12)

with:

p̃δT (x, y) :=
∞∑
k=0

y2k+2ν+1 x2k (1/2T )2k+ν

k! Γ (k + ν + 1)
.

Note that p̃δT (x, y) is the sum of a series with infinite radius of convergence in x,
hence we can compute its derivative by differentiating under the sum. We have:

∂

∂x
p̃δT (x, y) =

∂

∂x

( ∞∑
k=0

x2k y2k+2ν+1 (1/2T )2k+ν

k! Γ (k + ν + 1)

)

=
∞∑
k=0

2k x2k−1 y2k+2ν+1 (1/2T )2k+ν

k! Γ (k + ν + 1)

= x

T

∞∑
k=1

x2k−2 y2k+2ν+1 (1/2T )2k+ν−1

(k − 1)! Γ (k + ν + 1)
.

Hence, performing the change of variable j = k − 1, and remarking that ν + 1 =
δ+2

2 − 1, we obtain:

∂

∂x
p̃δT (x, y) =

x

T

∞∑
j=0

x2(j+1)−2 y2(j+1)+2ν+1 (1/2T )2(j+1)+ν−1

j ! Γ ((j + 1)+ ν + 1)

= x

T

∞∑
j=0

x2j y2j+2(ν+1)+1 (1/2T )2j+(ν+1)

j ! Γ (j + (ν + 1)+ 1)

= x

T
p̃δ+2
T (x, y).



192 H. E. Altman

As a consequence, differentiating equality (6.12) with respect to x, we obtain:

∂

∂x
pδT (x, y) =

(
− x
T
p̃δT (x, y)+

∂

∂x
p̃δT (x, y)

)
1

T
exp

(
−x

2 + y2

2T

)

= x

T

(
−pδT (x, y)+ pδ+2

T (x, y)
)
.

Hence, we deduce that the function x �→ PδT F (x) is differentiable, with a derivative
given by (6.11).

Now suppose that δ = 0. We have, for all x ≥ 0:

P 0
T F (x) = exp

(
− x2

2T

)
F(0)+

∫ ∞

0
pT (x, y)F (y)dy (6.13)

where, for all y ≥ 0:

pT (x, y) = 1

T
exp

(
−x

2 + y2

2T

)
p̃T (x, y)

with:

p̃T (x, y) := x I1

(xy
T

)
=

∞∑
k=0

x2k+2 (y/2T )2k+1

k!(k + 1)! .

Here again, we can differentiate the sum term by term, so that, for all x, y ≥ 0:

∂

∂x
p̃T (x, y) = x

T

∞∑
k=0

x2ky2k+1(1/2T )2k

k!2

= x

T
p̃2
T (x, y).

Therefore, for all x, y ≥ 0, we have:

∂

∂x
pT (x, y) =

(
− x
T
p̃T (x, y)+ ∂

∂x
p̃T (x, y)

)
1

T
exp

(
−x

2 + y2

2T

)

= x

T

(
−p̃T (x, y)+ p̃2

T (x, y)
) 1

T
exp

(
−x

2 + y2

2T

)

= x

T

(
−pT (x, y)+ p2

T (x, y)
)
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Hence, differentiating (6.13) with respect to x, and using the dominated convergence
theorem to differentiate inside the integral, we obtain:

∂

∂x
P 0
T F (x) = − x

T
exp(− x2

2T
)F (0)+ x

T

∫ ∞

0

(
−pT (x, y)+ p2

T (x, y)
)
F(y)dy

= x

T

(
−P 0

T F (x)+ P 2
T F (x)

)
,

which yields the claim.

Remark 6.5 Formula (6.11) can also be derived using the Laplace transform of
the one-dimensional marginals of the squared Bessel processes. Indeed, denote
by (Qδ

t )t≥0 the family of transition kernels of the δ-dimensional squared Bessel
process. Then for all δ ≥ 0, x ≥ 0, T > 0, and all function f of the form
f (x) = exp(−λx) with λ ≥ 0, one has:

Qδ
T f (x) = exp

(
− λx

1 + 2λT

)
(1 + 2λT )−δ/2

(see [10, Chapter XI, Cor. (1.3)]). For such test functions f , we check at once that
the following equality holds:

d

dx
Qδ
T f (x) =

1

2T

(
Qδ+2
T f (x)−Qδ

T f (x)
)
.

By linearity and by the Stone-Weierstrass theorem, we deduce that this equality
holds for all bounded, continuous functions f . Then an approximation argument
enables to deduce the equality for all functions f : R+ → R Borel and bounded.
Finally, remarking that for all bounded Borel function F on R+ we have

PδT F (x) = Qδ
T f (x

2)

with f (x) := F(
√
x), we deduce that:

d

dx
P δT F (x) = 2x

d

dx
(Qδ

T f )(x
2)

= x

T

(
Qδ+2
T f (x2)−Qδ

T f (x
2)
)

= x

T

(
Pδ+2
T F (x)− PδT F (x)

)

which yields the equality (6.11).

Corollary 6.2 The semi-group (P δt )t≥0 has the strong Feller property. More pre-
cisely, for all T > 0, R > 0, x, y ∈ [0, R] and F : R+ → R bounded and Borel,
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we have:

|PδT F (x)− PδT F (y)| ≤
2R||F ||∞

T
|y − x|. (6.14)

Proof By Theorem 6.2, for all x, y ∈ [0, R] such that x ≤ y, we have:

|Pδt F (x)− Pδt F (y)| =
∣∣∣∣
∫ y

x

u

T

(
Pδ+2
T F (u)− PδT F (u)

)
du

∣∣∣∣
≤ 2||F ||∞

T

∫ y

x

u du

≤ 2R||F ||∞
T

|y − x|.

Remark 6.6 The bound (6.14) is in 1/T , which is not very satisfactory for T small.
However, in the sequel, we will improve this bound by getting a better exponent on
T , at least for δ ≥ 2(

√
2 − 1) (see inequality (6.28) below).

6.5 Differentiability of the Flow

In the following, we are interested in finding a probabilistic interpretation of
Theorem 6.2, in terms of the Bismut-Elworthy-Li formula. To do so we study, for
all δ ≥ 0, and all couple (t, x) ∈ R+×R

∗+, the differentiability at x of the function:

ρt : R+ → R+

y �→ ρδt (y).

In this endeavour, we first need to choose an appropriate modification of the process
(ρt (x))t≥0,x>0. We have the following result:

Proposition 6.2 Let δ ≥ 0 be fixed. There exists a modification (ρ̃δt (x))x,t≥0 of the
process (ρδt (x))x,t≥0 such that, a.s., for all x, x ′ ∈ R+ with x ≤ x ′, we have:

∀t ≥ 0, ρ̃δt (x) ≤ ρ̃δt (x
′). (6.15)

Proof For all q, q ′ ∈ Q+, such that q ≤ q ′, by Lemma 6.1, the following property
holds a.s.:

∀t ≥ 0, ρδt (q) ≤ ρδt (q
′).

For all x ∈ R+, we define the process ρ̃δ(x) by:

∀t ≥ 0, ρ̃δt (x) := inf
q∈Q+,q≥x

ρδt (q).
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Then (ρ̃δt (x))x,t≥0 yields a modification of the process (ρδt (x))x,t≥0 with the
requested property.

In the sequel, when δ ≥ 0 is fixed and there is no ambiguity, we shall write ρ̃
instead of ρ̃δ .

Remark 6.7 Given δ ≥ 0, we may not have, almost-surely, joint continuity of all the
functions t �→ ρ̃t (x), x ≥ 0. Note however that, by definition, for all x ≥ 0, x ∈ Q,
we have a.s.:

∀t ≥ 0, ρ̃t (x) = ρt (x),

so that, a.s., t �→ ρ̃t (x) is continuous and satisfies:

∀t ∈ [0, T0(x)), ρ̃t (x) = x + δ − 1

2

∫ t

0

ds

ρ̃s(x)
+ Bt .

As a consequence, by countability of Q, there exists an almost sure event A ∈ F
on which, for all x ∈ Q+, the function t �→ ρ̃t (x) is continuous and satisfies:

∀t ∈ [0, T0(x)), ρ̃t (x) = x + δ − 1

2

∫ t

0

ds

ρ̃s(x)
+ Bt .

Actually, in Corollary 6.5 of the Appendix, we will prove the stronger fact that,
almost-surely, we have:

∀x ≥ 0, ∀t ∈ [0, T̃0(x)), ρ̃t (x) = x + δ − 1

2

∫ t

0

ds

ρ̃s(x)
+ Bt ,

where, for all x ≥ 0:

T̃0(x) := inf{t > 0, ρ̃t (x) = 0}

In this section, as well as the Appendix, we always work with the modification
ρ̃. Similarly, we work with T̃0(x) instead of T0(x), for all δ, x ≥ 0. We will write
again ρ and T0 instead of ρ̃ and T̃0. Note that, a.s., the function x �→ T0(x) is
non-decreasing on R+.

Proposition 6.3 Let δ ≥ 0, t > 0 and x > 0. Then, a.s., the function ρt is
differentiable at x, and its derivative there is given by:

dρt (y)

dy

∣∣∣
y=x

a.s.= ηt (x) := 1t<T0(x) exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
. (6.16)
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The proof of this proposition is quite technical. Since, moreover, the result will
not be necessary in the sequel, we prefer to postpone the proof to the Appendix of
the article.

Remark 6.8 In particular, when δ = 1, the above formula reduces to:

dρt (y)

dy

∣∣∣
y=x

a.s.= 1t<T0(x) (6.17)

a formula which was already well-known (see e.g. [1, Lemma A.1]).

Remark 6.9 Note that the indicator function 1t<T0(x) in the right-hand side of (6.16)
is related to the behavior of the Bessel process at the boundary 0. It is reminiscent
of Theorem 1 in [6], where a similar indicator function appears in the expression of
the spatial derivative of the flow of vector-valued solutions to SDEs with reflection.

Remark 6.10 Proposition 6.3 shows that, for all t, x > 0, the function ρt is
almost-surely differentiable at x. We may, however, ask if, a.s., the function ρt is
differentiable on the whole of R

∗+. The case where δ > 1 was treated in detail
in [13], where it was shown that, a.s., for all t ≥ 0 the function x �→ ρt (x) is
differentiable on R

∗+, and that the derivative dρt (x)
dx

is continuous in (t, x) ∈ R+ ×
R
∗+. However, as δ gets smaller than 1, the regularity of the process (ρt (x))t≥0,x>0

becomes much worse. Note that δ = 1 corresponds to the case of the flow of
reflected Brownian motion on the half-line; in that case the flow is no longer
continuously differentiable as suggested by (6.17). Many works have been carried
out on the study of the flow of reflected Brownian motion on domains in higher
dimension (see e.g. [3] and [12]) or on manifolds with boundary (see e.g. [1]). By
contrast, the regularity of Bessel flows of dimension δ < 1 seems to be a very open
problem.

In the remainder of the article, however, we shall not need any regularity results
on the Bessel flow. Instead, for all fixed x > 0, we shall study the process (ηt (x))t≥0
defined above as a process in itself.

6.6 Properties of η

In the sequel, for all x ≥ 0, we shall consider the process (ηt (x))t≥0 defined as
above:

ηt (x) := 1t<T0(x) exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
. (6.18)

When there is no ambiguity we shall drop the x from our notation and denote this
process by η.
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6.6.1 Regularity of the Sample Paths of η

We are interested in the continuity property of the process η. It turns out that, as δ
decreases, η becomes more and more singular, as shown by the following result.

Proposition 6.4 If δ > 1, then a.s. η is bounded and continuous on R+.
If δ = 1, then a.s. η is constant on [0, T0) and [T0,+∞), but has a discontinuity

at T0.
If δ ∈ [0, 1), then a.s. η is continuous away from T0, but it diverges to +∞ as

t ↑ T0.

Proof When δ ≥ 2, T0 = ∞ almost-surely, so that, by (6.18), the following equality
of processes holds:

ηt = exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
.

Hence, a.s., η takes values in [0, 1] and is continuous on R+. To treat the case δ < 2
we need a lemma:

Lemma 6.2 Let δ < 2 and x > 0. Then the integral:

∫ T0

0

ds

(ρs(x))2

is infinite a.s.

We admit this result for the moment. Then, when δ ∈ (1, 2), η takes values in
[0, 1], is continuous away from T0 and, almost-surely, as t ↑ T0:

ηt = exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
−→ 0.

Since, ηt = 0 for all t ≥ T0, η is continuous and the claim follows. When δ = 1,

ηt (x) := 1t<T0(x)

so the claim follows at once. Finally, if δ ∈ [0, 1), then η is continuous away from
T0, but by the above lemma, a.s., as t ↑ T0:

ηt = exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
−→ +∞

so the claim follows.
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We now prove Lemma 6.2

Proof (Proof of Lemma 6.2) The proof is in two steps. In a first step we prove the
lemma when ρ is replaced with a Brownian motion started at some positive point,
and in a second step we invoke a representation theorem of Bessel processes as
time-changes of some power of the Brownian motion to conclude.

First Step Let (βt ) be a Brownian motion started from some y > 0, and let T0
denote its hitting time of the origin. Then the integral:

∫ T0

0

ds

(βs(y))2

is a.s. infinite. Indeed, denote by h : [0,∞)→ R+ the function given by:

h(t) :=
{√

t| log(1/t)|, if t > 0,

0, if t = 0.

LetA > 0. By Levy’s modulus of continuity (see Theorem (2.7), Chapter I, in [10]),
there exists a κ > 0, such that the event

M := { ∀s, t ∈ [0, 1], |βt − βs | ≤ κ h(|s − t|) }
has probability one. Therefore, by scale invariance of Brownian motion, setting
κA := √

Aκ , one deduces that the event

MA := { ∀s, t ∈ [0, A], |βt − βs | ≤ κA h(|s − t|) }
also has probability one. Moreover, under the event {T0 < A} ∩MA, we have, for
small h > 0.

β2
T0−h = |βT0−h − βT0 |2 ≤ κA

2 h log(1/h).

Since 1
h log(1/h) is not integrable as h→ 0+, we deduce that, under the event {T0 <

A} ∩MA, we have
∫ T0

0
ds

(βs)2
= +∞. Therefore:

P[T0 < A] = P[{T0 < A} ∩MA] ≤ P

(∫ T0

0

ds

(βs)2
= +∞

)
.

Since T0 < +∞ a.s., we have lim
A→∞P[T0 < A] = 1. Hence, letting A → ∞ in the

above, we deduce that:

P

(∫ T0

0

ds

(βs)2
= +∞

)
= 1

as claimed.



6 Bismut-Elworthy-Li Formulae for Bessel Processes 199

Second Step Now consider the original Bessel process (ρt (x))t≥0. Suppose that
δ ∈ (0, 2). Then, by Thm 3.5 in [14], the process (ρt (x))t≥0 is equal in law to

(|βγ (t)| 1
2−δ )t≥0, where β is a Brownian motion started from y := x2−δ , and γ :

R+ → R+ is the inverse of the increasing function A : R+ → R+ given by:

∀u ≥ 0, A(u) = 1

(2 − δ)2

∫ u

0
|βs |

2(δ−1)
2−δ ds.

Therefore, denoting by T β0 the hitting time of 0 by the Brownian motion β, we have:

∫ T0

0

ds

(ρs(x))2
(d)=

∫ A(T
β

0 )

0

ds

|βγ (s)| 2
2−δ

=
∫ T

β
0

0

1

|βu| 2
2−δ

1

(2 − δ)2
|βu|

2(δ−1)
2−δ du

= 1

(2 − δ)2

∫ T
β
0

0

du

βu
2

where we have used the change of variable u = γ (s) to get from the first line to the
second one. By the first step, the last integral is infinite a.s., so the claim follows.

There still remains to treat the case δ = 0. By Thm 3.5 in [14], in that case, the

process (ρt (x))t≥0 is equal in law to

((
β
γ (t)∧T β0

)1/2
)
t≥0

, where β is a Brownian

motion started from y := x2, T β0 is its hitting time of 0 and γ : R+ → R+ is the
inverse of the increasing function A : R+ → R+ given by:

∀u ≥ 0, A(u) = 1

4

∫ u∧T β0
0

β−1
s ds.

Then, the same computations as above yield the equality in law:

∫ T0

0

ds

(ρs(x))2
(d)= 1

4

∫ T
β
0

0

du

βu
2

so the result follows as well.
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6.6.2 Study of a Martingale Related to η

Let δ ∈ [0, 2) and x > 0 be fixed. In the previous section, we have shown that, a.s.:

∫ t

0

ds

ρs(x)2
−→

t→T0(x)
+∞

As a consequence, for δ ∈ [0, 1), a.s., the modification ηt of the derivative at x of
the stochastic flow ρt diverges at T0(x):

ηt (x) = 1t<T0(x) exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
−→
t↑T0(x)

+∞.

However, since ρt (x) −→ 0 as t → T0(x), this does not exclude the possibility
that the product ρt (x)ηt (x) converges as t → T0(x). This motivates to study the
process:

Dt := ρt (x)ηt (x) = 1t<T0(x)ρt (x) exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
. (6.19)

As a matter of fact, we will show that (Dt )t≥0 is an Lp continuous martingale for
some p ≥ 1.

Remark 6.11 The process (Dt )t≥0 appears as (one half times) the derivative of
the stochastic flow associated with the squared Bessel process Xt(x) = (ρt (x))

2.
Indeed, by applying formally the chain rule, we have, for all t ≥ 0 and x > 0:

dXt(x)

dx
= 2ρt (x)ηt (x).

6.6.3 Continuity of (Dt)t≥0

In this subsection we show that the process (Dt )t≥0 has a.s. continuous sample
paths. By the expression (6.19), continuity holds as soon as T0(x) = ∞ a.s., i.e. as
soon as δ ≥ 2. On the other hand, if δ ∈ [0, 2) it suffices to prove that, a.s., Dt → 0
as t ↑ T0(x). This is the content of the following proposition.

Proposition 6.5 For all δ ∈ [0, 2) and x > 0, with probability one:

ρt (x) exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
−→

t→T0(x)
0.
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Proof If δ ∈ [1, 2), then exp
(

1−δ
2

∫ t
0

ds
ρs (x)2

)
≤ 1 for all t ≥ 0. Since ρt −→ 0 as

t → T0(x), the claim follows at once.

If δ ∈ [0, 1), on the other hand, exp
(

1−δ
2

∫ t
0

ds

ρs (x)2

)
−−−−→
t↑T0(x)

+∞ whereas

ρt −−−−→
t→T0(x)

0 so a finer analysis is needed. We have:

log

[
ρt

x
exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)]
= log

ρt

x
+ 1 − δ

2

∫ t

0

ds

ρ2
s

Now, recall that a.s., for all t < T0, we have:

ρt = x + δ − 1

2

∫ t

0

ds

ρs
+ Bt

Hence, defining for all integer n ≥ 1 the (Ft )t≥0-stopping time τn as:

τn := inf{t > 0, ρt ≤ 1/n} ∧ n,

we have:

ρt∧τn = x + δ − 1

2

∫ t∧τn

0

ds

ρs
+ Bt∧τn .

Hence, by Itô’s lemma, we deduce that:

log
ρt∧τn
x

= δ − 1

2

∫ t∧τn

0

ds

ρ2
s

+
∫ t∧τn

0

dBs

ρs
− 1

2

∫ t∧τn

0

ds

ρ2
s

so that:

log
ρt∧τn
x

+ 1 − δ

2

∫ t∧τn

0

ds

ρ2
s

=
∫ t∧τn

0

dBs

ρs
− 1

2

∫ t∧τn

0

ds

ρ2
s

. (6.20)

Consider now the random time change:

A : [0, T0)→ R+

t �→ At :=
∫ t

0

ds

ρ2
s

.

Note that A is differentiable with strictly positive derivative. Moreover, since
At −→

t→T0
+∞ a.s. by Lemma 6.2, we deduce that A is a.s. onto. Hence, a.s., A
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is a diffeomorphism [0, T0)→ R+, the inverse of which we denote by

C : R+ → [0, T0)

u �→ Cu.

Let βu := ∫ Cu
0

dBr
ρr
, u ≥ 0. Then β is a local martingale started at 0 with

quadratic variation 〈β, β〉u = u, so by Lévy’s theorem it is a Brownian motion.
The equality (6.20) can now be rewritten:

log
ρt∧τn
x

+ 1 − δ

2

∫ t∧τn

0

ds

ρ2
s

= βAt∧τn −
1

2
At∧τn .

Letting n→ ∞, we obtain, for all t < T0:

log
ρt

x
+ 1 − δ

2

∫ t

0

ds

ρ2
s

= βAt −
1

2
At .

By the asymptotic properties of Brownian motion (see Corollary (1.12), Chapter II
in [10]), we know that, a.s.:

lim sup
s→+∞

βs

h(s)
= 1

where h(s) := √
2s log log s. In particular, a.s., there exists T > 0 such that, for all

t ≥ T , we have βt ≤ 2h(t). Since, a.s., At −→
t→T0

+∞, we deduce that:

lim sup
t→+∞

(
βAt −

1

2
At

)
≤ lim sup

t→+∞

(
2h(At)− 1

2
At

)

= −∞.

Hence, a.s.:

log

[
ρt

x
exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)]
−→
t↑T0(x)

−∞

i.e.

ρt exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)
−→
t↑T0(x)

0

as claimed.
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6.6.4 Martingale Property of (Dt)t≥0

Let δ ≥ 0 and x > 0 be fixed. We show in this section that (Dt )t≥0 is an (Ft )t≥0
martingale which, up to a positive constant, corresponds to a Girsanov-type change
of probability measure.

Recall that, by definition:

Dt = 1t<T0(x)ρt (x) exp

(
−δ − 1

2

∫ t

0

ds

ρ2
s

)
. (6.21)

Notation For all a ≥ 0 and t ≥ 0, we denote by Pax
∣∣
Ft

the image of the probability
measure Pax under the restriction map:

(C(R+),B(C(R+)))→ (C([0, t]),Ft )

w �→ w|[0,t ]
The following proposition is a generalization of the absolute continuity results

obtained in [9].

Proposition 6.6 Let δ ≥ 0 and x > 0. Then, for all t ≥ 0, the law Pδ+2
x |Ft

is

absolutely continuous w.r.t. the law Pδx |Ft
, and the corresponding Radon-Nikodym

derivative is given by:

dP δ+2
x

dP δx

∣∣∣∣
Ft

(ρ)
a.s.= 1t<T0(x)

ρt (x)

x
exp

(
−δ − 1

2

∫ t

0

ds

ρ2
s

)
.

Proof Fix ε > 0. Under Pδx |Ft
, the canonical process ρ stopped at Tε satisfies the

following SDE on [0, t]:

ρs∧Tε = x + δ − 1

2

∫ s∧Tε

0

ds

ρs
+ Bs∧Tε .

Consider the processMε defined on [0, t] by:

Mε
s :=

∫ s∧Tε

0

dBu

ρu

Mε is anL2 martingale on [0, t]. The exponential local martingale thereto associated
is:

E (Mε)s = exp

(∫ s∧Tε

0

dBu

ρu
− 1

2

∫ s∧Tε

0

du

ρ2
u

)
.
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Since, by Itô’s lemma:

log
(ρs∧Tε

x

)
=

∫ s∧Tε

0

dBu

ρu
+

(
δ

2
− 1

)∫ s∧Tε

0

du

ρ2
u

,

we have:

E (Mε)s = exp

[
log

(ρs∧Tε
x

)
− δ − 1

2

∫ s∧Tε

0

du

ρ2
u

]

= ρs∧Tε
x

exp

[
−δ − 1

2

∫ s∧Tε

0

du

ρ2
u

]
.

Note that

E

[
exp

(
1

2
〈Mε,Mε〉t

)]
≤ exp

(
t

2ε

)

<∞

so that, by Novikov’s criterion, E (Mε) is a uniformly integrable martingale on [0, t].
So we may consider the probability measure E (Mε)t P

δ
x

∣∣
Ft

.
Note also that:

〈Mε,B〉t =
∫ s∧Tε

0

du

ρu
.

Hence, by Girsanov’s theorem, under the probability measure E (Mε)t P
δ
x

∣∣
Ft

, the
process:

ρs∧Tε − x − δ + 1

2

∫ s∧Tε

0

du

ρu

is a local martingale, with quadratic variation given by s ∧ Tε . Therefore, by
Theorem (1.7) in Chapter V of [10], there exists, on some enlarged probability
space, a Brownian motion β such that, a.s.:

∀s ∈ [0, t], ρs∧Tε = x + δ + 1

2

∫ s∧Tε

0

du

ρu
+ βs∧Tε .

Denote by ρ̄ the unique strong solution on [0, t] of the SDE:

ρ̄s = x + δ + 1

2

∫ s

0

du

ρ̄u
+ βs.
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Then, by strong uniqueness of the solution to this SDE, we deduce that, under
E (Mε)t P

δ
x

∣∣
Ft

, a.s.:

∀s ∈ [0, t], s < Tε %⇒ ρs = ρ̄s .

Since ρ̄ has the law of a δ + 2-dimensional Bessel process started at x, we deduce
that, for all F : C([0, T ],R+)→ R+ Borel, we have:

Eδx
[
E (Mε)tF (ρ)1t<Tε

] = Eδ+2
x [F(ρ)1t<Tε ]

i.e.:

Eδx

[
ρt

x
exp

(
−δ − 1

2

∫ t

0

ds

ρ2
s

)
F(ρ)1t<Tε

]
= Eδ+2

x [F(ρ)1t<Tε ].

Letting ε → 0, by the monotone convergence theorem, we obtain:

Eδx

[
ρt

x
exp

(
−δ − 1

2

∫ t

0

ds

ρ2
s

)
F(ρ)1t<T0

]
= Eδ+2

x [F(ρ)1t<T0].

But, since Pδ+2
x [T0 < +∞] = 0, this yields:

Eδx

[
ρt

x
exp

(
−δ − 1

2

∫ t

0

ds

ρ2
s

)
F(ρ)1t<T0

]
= Eδ+2

x [F(ρ)]

as stated.

Remark 6.12 Proposition 6.6 is actually a particular case of a more general result.
Indeed, for all x > 0, t ≥ 0, and δ′ ≥ δ ≥ 0, such that δ′ ≥ 2, Pδ

′
x |Ft

is absolutely

continuous w.r.t. the law Pδx |Ft
, and the corresponding Radon-Nikodym derivative

is given by:

dP δ
′
x

dP δx

∣∣∣∣
Ft

(ρ)
a.s.= 1t<T0(x)

(
ρt (x)

x

) δ′−δ
2

exp

[
−δ

′ − δ

2

(
δ′ + δ

4
− 1

)∫ t

0

ds

ρ2
s

]
.

(6.22)

The proof of this fact is in all respect similar to that of Proposition 6.6 above.

Corollary 6.3 (Dt)t≥0 is an (Ft )t≥0 continuous martingale

Proof The process (Dt )t≥0 is continuous. Moreover, for all t ≥ 0, 1
x
Dt is the

Radon-Nikodym derivative of Pδ+2
x |Ft

w.r.t. Pδx |Ft
. Therefore ( 1

x
Dt)t≥0 is an

(Ft )t≥0 martingale, so (Dt )t≥0 is a martingale as well, and the claim follows.
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6.6.5 Moment Estimates for the Martingale (Dt)t≥0

In this section, we prove that the martingale (Dt)t≥0 is actually in Lp for some
p ≥ 1. We first recall the following fact:

Lemma 6.3 For all a ≥ 0, t ≥ 0, and m ≥ 0, we have:

Eax (ρ
m
t ) <∞.

Proof Denote by d any integer such that d ≥ a. By Lemma 6.1, we have:

Eax (ρ
m
t ) ≤ Edx (ρ

m
t )

Since Pdx is the law of (||Bs ||)s≥0, where (Bs)s≥0 is a d-dimensional Brownian
motion and || · || is the Euclidean norm in R

d (see [10, Chapter 11]), this inequality
can be rewritten as:

Eax (ρ
m
t ) ≤ E

(||Bt ||m)

Since Bt is a Gaussian random variable, E (||Bt ||m) is finite, and the result follows.

Proposition 6.7 (Dt )t≥0 is an Lp martingale for all finite positive number p such
that p ≤ p(δ), where p(δ) ∈ [1,+∞] is given by:

p(δ) :=
{
(2−δ)2
4(1−δ) if δ < 1,

+∞ if δ ≥ 1.
(6.23)

Moreover the above statement is sharp: for δ < 1 and t > 0, the random variable
Dt is not in Lp for p > p(δ).

Remark 6.13 We emphasize that p is finite in the above result. Indeed Dt is never
in L∞ even if δ ≥ 1; for example, when δ = 1, Dt = ρt1t<T0(x) which is clearly
not bounded a.s.

Proof (Proof of Proposition 6.7) If δ ≥ 1, then, for all t ≥ 0, Dt ≤ ρt . Hence, for
all p ∈ (0,+∞):

E
(
D
p
t

) ≤ Eδx(ρt
p)

which is finite by Lemma 6.3.
On the other hand, if δ ∈ [0, 1), then, for all t > 0 and p > 0, we have:

E
(
D
p
t

) = Eδx

[
1t<T0 ρt

p exp

(
−pδ − 1

2

∫ t

0

ds

ρ2
s

)]
.
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By the absolute continuity relation (6.22) applied with δ′ := 2, the latter equals:

E2
x

⎡
⎢⎢⎢⎣x

2−δ
2 ρt

p+ δ−2
2 exp

⎛
⎜⎜⎜⎝
(
−pδ − 1

2
− (δ − 2)2

8

)
︸ ︷︷ ︸

:=A(p)

∫ t

0

ds

ρ2
s

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ .

For p = p(δ), A(p) = 0, so that:

E

[
D
p(δ)
t

]
= E2

x

[
x

2−δ
2 ρt

p(δ)+ δ−2
2

]

= x1− δ
2 E2

x

[
ρt
p(δ)+ δ

2−1
]
.

Since δ
2 + p(δ) − 1 ≥ 0, by Lemma 6.3, the last quantity is finite. Hence Dt is

indeed in Lp(δ).
Suppose now that p = p(δ) + r for some r > 0. We show that Dt /∈ Lp . We

have:

E
[
D
p
t

] = E2
x

[
x

2−δ
2 ρt

p+ δ−2
2 exp

((
−pδ − 1

2
− (δ − 2)2

8

)∫ t

0

ds

ρs2

)]

= x1− δ
2E2

x

[
ρt
p+ δ

2−1 exp

(
1 − δ

2
r

∫ t

0

ds

ρs2

)]

We claim that the last quantity is infinite. Indeed, first note that by Jensen’s
inequality and Fubini, for any C > 0 we have:

E2
x

[
exp

(
C

∫ t

0

ds

ρs2

)]
≥ exp

(
C

∫ t

0
E2
x

(
ρ−2
s

)
ds

)

and the right-hand side is infinite since, for all s > 0, E2
x

(
ρ−2
s

) = +∞ (indeed, by
formula (6.12), the transition density p2

s (x, y) does not integrate y−2 as y → 0).
Therefore:

E2
x

[
exp

(
C

∫ t

0

ds

ρs2

)]
= +∞ (6.24)

Consider now any c > 0 and a, b > 0 such that 1
a
+ 1

b
= 1. By (6.24) and Hölder’s

inequality, we have:

+∞ = E2
x

[
exp

(
1 − δ

2a
r

∫ t

0

ds

ρs2

)]

≤ E2
x

[
ρt
ac exp

(
1 − δ

2
r

∫ t

0

ds

ρs2

)]1/a

E2
x

[
ρ−bct

]1/b
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Set c = δ
2+p−1
δ
2+p

, a = δ
2 + p, and b = δ

2+p
δ
2+p−1

. Remark that δ2 + p − 1 > 0 since

p > p(δ) ≥ 1, so that this choice for c, a, and b makes sense. We obtain:

E2
x

[
ρt

δ
2+p−1 exp

(
1 − δ

2
r

∫ t

0

ds

ρs2

)] 1
δ
2 +p E2

x

[
ρ−1
t

] δ
2 +p−1
δ
2 +p = +∞

By the comparison Lemma 6.1 and the expression (6.12) for the transition density
of the Bessel process, we have

E2
x

[
ρ−1
t

]
≤ E2

0

[
ρ−1
t

]
=

∫ ∞

0

1

t
exp

(
−y

2

2t

)
dy

so that E2
x

[
ρ−1
t

]
< +∞. Therefore, we deduce that:

E2
x

[
ρt

δ
2+p−1 exp

(
1 − δ

2
r

∫ t

0

ds

ρs2

)]
= +∞

as claimed. Hence Dt /∈ Lp for p > p(δ).

6.7 A Bismut-Elworthy-Li Formula for the Bessel Processes

We are now in position to provide a probabilistic interpretation of the right-hand-
side of Eq. (6.11) in Theorem 6.2.

Let δ > 0, and x > 0. As we saw in the previous section, the process (ηt (x))t≥0
may blow up at time T0, so that the stochastic integral

∫ t
0 ηs(x)dBs is a priori ill-

defined, at least for δ ∈ (0, 1). However, it turns out that we can define the latter
process rigorously as a local martingale.

Proposition 6.8 Suppose that δ > 0. Then the stochastic integral process
∫ t

0 ηsdBs
is well-defined as a local martingale and is indistinguishable from the continuous
martingaleDt − x.

Proof We first treat the case δ ≥ 2, which is much easier to handle. In that case,
ηt ∈ [0, 1] for all t ≥ 0, so that the stochastic integral

∫ t
0 ηsdBs is clearly well-

defined as an L2 martingale. Moreover, since T0 = +∞ a.s., by Itô’s lemma we
have:

Dt = ρtηt = x +
∫ t

0
ηs dρs +

∫ t

0
ρs dηs

= x +
∫ t

0
ηs

(
δ − 1

2

ds

ρs
+ dBs

)
−

∫ t

0
ρs
δ − 1

2

ηs

ρs2 ds
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= x +
∫ t

0
ηsdBs

so the claim follows.
Now suppose that δ ∈ (0, 2) and fix an ε > 0. Recall that Tε(x) := inf{t ≥

0, ρt (x) ≤ ε} and note that, since Tε < T0, the stopped process ηTε is continuous
on R+, so that the stochastic integral

∫ t∧Tε(x)
0 ηs(x)dBs is well-defined as a local

martingale. Using as above Itô’s lemma, but this time with the stopped processes
ρTε and ηTε , we have:

∫ t∧Tε

0
ηsdBs = Dt∧Tε − x. (6.25)

Our aim would be to pass to the limit ε → 0 in this equality. By continuity of D,
as ε → 0, Dt∧Tε converges to Dt∧T0 = Dt almost-surely. So the right-hand side
of (6.25) converges to Dt − x almost-surely.

The convergence of the left-hand side to a stochastic integral is more involved,
since we first have to prove that the stochastic integral

∫ t
0 ηsdBs is indeed well-

defined as a local martingale. For this, it suffices to prove that, almost-surely:

∀t ≥ 0,
∫ t

0
η2
s ds <∞.

We actually prove the following stronger fact. For all t ≥ 0

E

[(∫ t

0
η2
s ds

)p/2]
<∞ (6.26)

for all finite positive number p such that p ∈ (1, p(δ)]. Indeed, applying
successively the Burkholder-Davis-Gundy (BDG) inequality and Doob’s inequality
to the martingale

∫ Tε∧·
0 ηsdBs , we have:

E

[(∫ t∧Tε

0
η2
s ds

)p/2]
≤ Cp E

[
sup

s≤t∧Tε

∣∣∣∣
∫ s

0
ηudBu

∣∣∣∣
p
]

= Cp E

[
sup

s≤t∧Tε
|Ds − x|p

]

≤ Cp

(
p

p − 1

)p
E
[|Dt∧Tε − x|p]
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whereCp is a constant depending only on p. Now, since (Dt−x)t≥0 is a continuous
martingale, by the optional stopping theorem and Jensen’s inequality, we have:

E
[|Dt∧Tε − x|p] ≤ E(|Dt − x|p)

and the right-hand side is finite because Dt is in Lp. Hence, letting ε → 0 in the
above, by the monotone convergence theorem we deduce that:

E

[(∫ t∧T0

0
η2
s ds

)p/2]
<∞

But since ηt = 0 for all t ≥ T0, this implies the bound (6.26), and hence the
stochastic integral

∫ t
0 ηsdBs is well-defined as a local martingale. Moreover, for all

t ≥ 0, by the BDG inequality, we have:

E

[(∫ t

0
ηsdBs −

∫ t∧Tε

0
ηsdBs

)p]
= E

[(∫ t∧T0

t∧Tε
ηsdBs

)p]

≤ cp E

[(∫ t∧T0

t∧Tε
η2
s ds

)p/2]

where cp is some constant depending only on p. Now, by the dominated conver-
gence theorem, the last quantity above goes to 0 as ε → 0, and hence:

∫ t∧Tε

0
ηsdBs −→

ε→0

∫ t

0
ηsdBs

in Lp . Hence, the left-hand side of equality (6.25) converges in Lp to the stochastic
integral

∫ t
0 ηsdBs . Letting ε → 0 in that equality, we thus obtain:

∫ t

0
ηsdBs = Dt − x

as claimed.

Using the above proposition, Theorem 6.2 can now be interpreted probabilisti-
cally as a Bismut-Elworthy-Li formula.

Theorem 6.3 (Bismut-Elworthy-Li Formula) Let δ > 0. Then, for all T > 0,
and all F : R+ → R bounded and Borel, the function x → Pδt F (x) is differentiable
on R+, and for all x > 0:

d

dx
P δT F (x) =

1

T
E

[
F(ρt (x))

(∫ T

0
ηs(x)dBs

)]
. (6.27)



6 Bismut-Elworthy-Li Formulae for Bessel Processes 211

Proof By Theorem 6.2, the differentiability property holds, and we have:

d

dx
P δT F (x) =

x

T

[
Pδ+2
T F (x)− PδT F (x)

]
.

Moreover, by Proposition 6.6, for all x > 0:

Pδ+2
T F (x)− PδT F (x) = Eδx

[
F(ρT )

(
DT

x
− 1

)]

and, by Proposition 6.8, we have:

Eδx

[
F(ρT )

(
DT

x
− 1

)]
= 1

x
E

[
F(ρT (x))

(∫ T

0
ηs(x)dBs

)]

so equality (6.27) follows.

Using the Bismut-Elworthy-Li formula, we are now able to sharpen the Strong
Feller estimate obtained in Eq. (6.14) above.

Corollary 6.4 Let T > 0 and δ ≥ 2(
√

2 − 1). Then, for all R > 0, there exists
a constant C > 0 such that, for all x, y ∈ [0, R] and F : R+ → R bounded and
Borel, we have:

|PδT F (x)− PδT F (y)| ≤
C||F ||∞
T α(δ)

|y − x| (6.28)

where the exponent α(δ) ∈ [ 1
2 , 1) is given by:

α(δ) :=
{

1
2 + 1−δ

2−δ if δ ∈ [2(√2 − 1), 1],
1/2 if δ ≥ 1.

Proof Let x > 0. By Theorem 6.3, we have:

d

dx
P δT F (x) =

1

T
E

[
F(ρt (x))

(∫ T

0
ηs(x)dBs

)]
.

so that:

∣∣∣∣ ddx P δT F (x)
∣∣∣∣ ≤ ||F ||∞

T
E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
]
.

We now bound the quantity E

[∣∣∣∫ T0 ηs(x)dBs

∣∣∣]. If δ ≥ 1, then the process

(ηs(x))s≥0 takes values in [0, 1], so that, using the Cauchy-Schwarz inequality and
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Itô’s isometry formula, we have:

E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
]
≤

√
E

(∫ T

0
ηs(x)2ds

)
≤ √

T .

Therefore:
∣∣∣∣ ddx P δT F (x)

∣∣∣∣ ≤ ||F ||∞√
T

and the claim follows with C = 1.
Suppose now that δ ∈ [2(√2 − 1), 1). Letting p := p(δ) as in (6.23), we have,

by Jensen’s inequality:

E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
]
≤

(
E

∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
p
)1/p

Now, applying successively the BDG inequality, Jensen’s inequality and the abso-
lute continuity relation (6.22) between P 2

x and Pδx , we have, for some constant cp
depending only on p:

E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
p
]
≤ cp E

[(∫ T

0
ηs(x)

2ds

)p/2]

≤ cp T
p/2−1

E

(∫ T

0
ηs(x)

p ds

)

≤ cp T
p/2−1

∫ T

0
Eδx(η

p
s ) ds

= cp T
p/2−1

∫ T

0
E2
x

[(ρs
x

) δ−2
2

× exp

((
1 − δ

2
p − (2 − δ)2

8

)∫ s

0

du

ρ2
u

)]
ds

= cp T
p/2−1

∫ T

0
E2
x

[(ρs
x

) δ−2
2
]
ds

where the last equality follows from the fact that 1−δ
2 p − (2−δ)2

8 = 0 for p = p(δ).
Now, since δ−2

2 ≤ 0, by the comparison Lemma 6.1, as well as the scaling property
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of the Bessel processes (see, e.g., Remark 3.7 in [14]), for all s ∈ [0, T ], we have:

E2
x

[
ρ
δ−2

2
s

]
≤ E2

0

[
ρ
δ−2

2
s

]
= s

δ−2
4 E2

0

[
ρ
δ−2

2
1

]
.

Let c := E2
0

[
ρ
δ−2

2
1

]
. Using formula (6.12), we have:

c =
∫ ∞

0
yδ/2 exp

(
−y

2

2

)
dy <∞.

Hence:

∫ T

0
E2
x

[(ρs
x

) δ
2−1

]
ds ≤ c x1− δ

2

∫ T

0
s
δ−2

4 ds

≤ 4 c

δ + 2
x1− δ

2 T
δ+2

4 .

Therefore, we obtain:

E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
p
]
≤ K x1− δ

2 T
p
2 −1 T

δ+2
4

≤ K x1− δ
2 T

p
2 + δ−2

4

whereK is a constant depending only on δ. Hence

E

[∣∣∣∣
∫ T

0
ηs(x)dBs

∣∣∣∣
]
≤ K1/p x

1
p (1− δ

2 ) T
1
2+ δ−2

4p .

Note that, since p = p(δ), we have 1
p
(1− δ

2 ) = 2(1−δ)
2−δ , and δ−2

4p = − 1−δ
2−δ . Therefore,

we obtain:
∣∣∣∣ ddx P δT F (x)

∣∣∣∣ ≤ K1/p x2 1−δ
2−δ ||F ||∞ T − 1

2− 1−δ
2−δ .

Therefore, given R > 0, one has for all x ∈ [0, R]:
∣∣∣∣ ddx P δT F (x)

∣∣∣∣ ≤ C
||F ||∞
T α(δ)

with C := K1/p R2 1−δ
2−δ . This yields the claim.
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Remark 6.14 In the above proposition, the value 2(
√

2 − 1) that appears is the
smallest value of δ for which η is in L2. For δ < 2(

√
2 − 1), η is no longer in

L2 but only in Lp for p = p(δ) < 2, so that we cannot apply Jensen’s inequality

to bound the quantity E

(∫ T
0 ηs(x)

2ds
)p/2

anymore. It seems reasonable to expect

that the bound (6.28) holds also for δ < 2(
√

2−1), although we do not have a proof
of this fact.
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Appendix

In this Appendix, we prove Proposition 6.3. Recall that we still denote by
(ρt (x))t,x≥0 the process (ρ̃δt (x))t,x≥0 constructed in Proposition 6.2.

Lemma 6.4 For all rational numbers ε, γ > 0, let:

U ε
γ := [0, Tε(γ ))× (γ,+∞)

and set:

U :=
⋃

ε,γ∈Q∗+

U ε
γ .

Then, a.s., the function (t, x) �→ ρt (x) is continuous on the open set U .

Proof By patching, it suffices to prove that, a.s., the function (t, x) �→ ρt (x) is
continuous on each U ε

γ , where ε, γ ∈ Q
∗+.

Fix ε, γ ∈ Q
∗+, and let x, y ∈ (γ,+∞) ∩ Q. We proceed to show that, a.s., for

all t ≤ s < Tε(γ ) the following inequality holds:

|ρt (x)− ρs(y)| ≤ |x − y| exp

( |δ − 1|
2ε2 t

)
+ |δ − 1|

2ε
|s − t| + |Bs −Bt |. (6.29)

Since Tε(γ ) < T0(γ ), a.s., for all t ≤ s ≤ Tε(γ ), we have:

∀τ ∈ [0, t], ρτ (x) = x + δ − 1

2

∫ τ

0

du

ρu(x)
+ Bτ
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as well as

∀τ ∈ [0, s], ρτ (y) = y + δ − 1

2

∫ τ

0

du

ρu(y)
+ Bτ

and hence:

∀τ ∈ [0, t], |ρτ (x)− ρτ (y)| ≤ |x − y| + |δ − 1|
2

∫ τ

0

|ρu(x)− ρu(y)|
ρu(x)ρu(y)

du.

By the monotonicity property of ρ, we have, a.s., for all t, s as above and u ∈ [0, s]:

ρu(x) ∧ ρu(y) ≥ ρu(γ ) ≥ ε (6.30)

so that:

∀τ ∈ [0, t], |ρτ (x)− ρτ (y)| ≤ |x − y| + |δ − 1|
2

∫ τ

0

|ρu(x)− ρu(y)|
ε2 du,

which, by Grönwall’s inequality, implies that:

|ρt (x)− ρt (y)| ≤ |x − y| exp

( |δ − 1|
2ε2 t

)
. (6.31)

Moreover, we have:

ρs(y)− ρt (y) = δ − 1

2

∫ s

t

du

ρu(y)
+ Bs − Bt

which, by (6.30), entails the inequality:

|ρs(y)− ρt (y)| ≤ |δ − 1|
2ε

|s − t| + |Bs − Bt |. (6.32)

Putting inequalities (6.31) and (6.32) together yields the claimed inequality (6.29).
Hence, we have, a.s., for all rationals x, y > γ and all t ≤ s < Tε(γ ):

|ρt (x)− ρs(y)| ≤ |x − y| exp

( |δ − 1|
2ε2 t

)
+ δ − 1

2
|s − t| + |Bs − Bt |

and, by density of Q ∩ (γ,+∞) in (γ,+∞), this inequality remains true for all
x, y > γ . Since, a.s., t �→ Bt is continuous on R+, the continuity of ρ on U ε

γ is
proved.
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Corollary 6.5 Almost-surely, we have:

∀x ≥ 0, ∀t ∈ [0, T0(x)), ρt (x) = x + δ − 1

2

∫ t

0

du

ρu(x)
+ Bt . (6.33)

Remark 6.15 We have already remarked in Sect. 6.3 that, for all fixed x ≥ 0, the
process (ρt (x))t≥0 satisfies the SDE (6.10). By contrast, the above Corollary shows
the stronger fact that, considering the modification ρ̃ of the Bessel flow constructed
in Proposition 6.2 above, a.s., for each x ≥ 0, the path (ρ̃t (x))t≥0 still satisfies
relation (6.10).

Proof Consider an almost-sure event A ∈ F as in Remark 6.7. On the event A ,
for all r ∈ Q+, we have:

∀t ∈ [0, T0(r)), ρt (r) = r + δ − 1

2

∫ t

0

du

ρu(r)
+ Bt .

Denote by B ∈ F any almost-sure event on which ρ satisfies the monotonicity
property (6.15). We show that, on the event A ∩B, the property (6.33) is satisfied.

Suppose A ∩B is fulfilled, and let x ≥ 0. Then for all r ∈ Q such that r ≥ x,
we have:

∀t ≥ 0, ρt (x) ≤ ρt (r)

so that T0(r) ≥ T0(x). Hence, for all t ∈ [0, T0(x)), we have in particular t ∈
[0, T0(r)), so that:

ρt (r) = r + δ − 1

2

∫ t

0

du

ρu(r)
+ Bt .

Since, for all u ∈ [0, t], ρu(r) ↓ ρu(x) as r ↓ x with r ∈ Q, by the monotone
convergence theorem, we deduce that:

∫ t

0

du

ρu(r)
−→

∫ t

0

du

ρu(x)

as r ↓ x with r ∈ Q. Hence, letting r ↓ x with r ∈ Q in the above equation, we
obtain:

ρt (x) = x + δ − 1

2

∫ t

0

du

ρu(x)
+ Bt .

This yields the claim.
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One of the main difficulties for proving Proposition 6.3 arises from the behavior
of ρt (x) at t = T0(x). However we will circumvent this problem by working away
from the event t = T0(x). To do so, we will make use of the following property.

Lemma 6.5 Let δ < 2 and x ≥ 0. Then the function y �→ T0(y) is a.s. continuous
at x.

Proof The function y �→ T0(y) is nondecreasing over R+. Hence, if x > 0, it has
left- and right-sided limits at x, T0(x

−) and T0(x
+), satisfying:

T0(x
−) ≤ T0(x) ≤ T0(x

+). (6.34)

Similarly, if x = 0, there exists a right-sided limit T0(0+) satisfying T0(0) ≤
T0(0+). Suppose, e.g., that x > 0. Then we have:

E

(
e−T0(x

+)
)
≤ E

(
e−T0(x)

)
≤ E

(
e−T0(x

−)
)
. (6.35)

Now, by the scaling property of the Bessel processes (see, e.g., Remark 3.7 in [14]),
for all y ≥ 0, the following holds:

(yρt (1))t≥0
(d)= (ρy2t (y))t≥0,

so that T0(y)
(d)= y2T0(1). Therefore, using the dominated convergence theorem, we

have:

E

(
e−T0(x

+)
)
= lim

y↓x E
(
e−T0(y)

)

= lim
y↓x E

(
e−y2T0(1)

)

= E

(
e−x2T0(1)

)

= E

(
e−T0(x)

)
.

Similarly, we have E

(
e−T0(x

−)
)
= E

(
e−T0(x)

)
. Hence the inequalities (6.35) are

actually equalities; recalling the original inequality (6.34), we deduce that T0(x
−) =

T0(x) = T0(x
+) a.s.. Similarly, if x = 0, we have T0(0) = T0(0+) a.s.

Before proving Proposition 6.3, we need a coalescence lemma, which will help
us prove that the derivative of ρt at x is 0 if t > T0(x):

Lemma 6.6 Let x, y ≥ 0, and let τ be a nonnegative (Ft )t≥0-stopping time. Then,
almost-surely:

ρτ (x) = ρτ (y) ⇒ ∀s ≥ τ, ρs(x) = ρs(y).
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Proof On the event {ρτ (x) = ρτ (y)}, the processes (Xδt (x))t≥0 := (ρt (x)
2)t≥0 and

(Xδt (y))t≥0 := (ρt (y)
2)t≥0 both satisfy, on [τ,+∞), the SDE:

Xt = ρτ (x)
2 + 2

∫ t

τ

√
XsdBs + δ(t − τ ).

By pathwise uniqueness of this SDE (see [10, Theorem (3.5), Chapter IX]), we
deduce that, a.s. on the event {ρτ (x) = ρτ (y)}, Xt(x) = Xt(y), hence ρt (x) =
ρt (y) for all t ≥ τ .

Now we are able to prove Proposition 6.3.

Proof (Proof of Proposition 6.3) Let t > 0 and x > 0 be fixed. First remark that:

P(T0(x) = t) = 0.

Indeed, if δ > 0, then:

P(T0(x) = t) ≤ P(ρt (x) = 0)

and the RHS is zero since the law of ρt (x) has no atom on R+ (it has density pδt (x, ·)
w.r.t. Lebesgue measure on R+, where pδt was defined in Eq. (6.12) above). On the
other hand, if δ = 0, then 0 is an absorbing state for the process ρ, so that, for all
s ≥ 0:

P(T0(x) ≤ s) = P(ρs(x) = 0)

and the RHS is continuous in s on R+, since it is given by exp(− x2

2s ) (see [10,
Chapter XI, Corollary 1.4]). Hence, also in the case δ = 0 the law of T0(x) has no
atom on R+. Hence, a.s., either t < T0(x) or t > T0(x).

First suppose that t < T0(x). A.s., the function y �→ T0(y) is continuous at
x, so there exists a rational number y ∈ [0, x) such that t < T0(y); since, by
Remark (6.7), t �→ ρt (y) is continuous, there exists ε ∈ Q

∗+ such that t < Tε(y).
By monotonicity of z �→ ρ(z), for all s ∈ [0, t] and z ≥ y, we have:

ρs(z) ≥ ρs(y) ≥ ε.

Hence, recalling Corollary 6.5, for all s ∈ [0, t] and h ∈ R such that |h| < |x − y|:

ρs(x + h) = x + h+
∫ s

0

δ − 1

2

du

ρu(x + h)
+ Bs.



6 Bismut-Elworthy-Li Formulae for Bessel Processes 219

Hence, setting ηhs (x) := ρs (x+h)−ρs(x)
h

,we have:

∀s ∈ [0, t], ηhs (x) = 1 − δ − 1

2

∫ t

0

ηhu(x)

ρu(x)ρu(x + h)
du

so that:

ηht (x) = exp

(
1 − δ

2

∫ t

0

ds

ρs(x)ρs(x + h)

)
.

Note that, for all s ∈ [0, t] and h ∈ R such that |h| < |x − y|, we have (s, x + h) ∈
[0, Tε(y))× (y,+∞) ⊂ U . Hence, by Lemma 6.4, we have, for all s ∈ [0, t]

ρs(x + h) −→
h→0

ρs(x)

with the domination property:

1

ρs(x)ρs(x + h)
≤ ε−2

valid for all |h| < |x−y|. Hence, by the dominated convergence theorem, we deduce
that:

ηht (x) −→
h→0

exp

(
1 − δ

2

∫ t

0

ds

ρs(x)2

)

which yields the claimed differentiability of ρt at x.
We now suppose that t > T0(x). Since the function y �→ T0(y) is a.s. continuous

at x, a.s. there exists y > x, y ∈ Q, such that t > T0(y). By Remark (6.7),
the function t �→ ρt (y) is continuous, so that ρT0(y)(y) = 0. By monotonicity of
z �→ ρ(z), we deduce that, for all z ∈ [0, y], we have:

ρT0(y)(z) = 0.

By Lemma 6.6, we deduce that, leaving aside some event of probability zero, all
the trajectories (ρt (z))t≥0 for z ∈ [0, y] ∩ Q coincide from time T0(y) onwards. In
particular, we have:

∀z ∈ [0, y] ∩Q, ρt (z) = ρt (x).

Since, moreover, the function z �→ ρt (z) is nondecreasing, we deduce that it is
constant on the whole interval [0, y]:

∀z ∈ [0, y], ρt (z) = ρt (x).

In particular, the function z �→ ρt (z) has derivative 0 at x. This concludes the proof.
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Chapter 7
Large Deviations for Infectious Diseases
Models

Peter Kratz and Etienne Pardoux

Abstract We study large deviations of a Poisson driven system of stochastic
differential equations modeling the propagation of an infectious disease in a large
population, considered as a small random perturbation of its law of large numbers
ODE limit. Since some of the rates vanish on the boundary of the domain where
the solution takes its values, thus making the action functional possibly explode,
our system does not obey assumptions which are usually made in the literature. We
present the whole theory of large deviations for systems which include the infectious
disease models, and apply our results to the study of the time taken for an endemic
equilibrium to cease, due to random effects.

Keywords Poisson process driven SDE · Lareg deviations · Freidlin-Wentzell
theory · Epidemic models

7.1 Introduction

Consider a model of infectious disease dynamics where the total number of
individuals is constant over time, equal to N , and we denote by ZN(t) the vector
of proportions of this population in each compartment (susceptible, infectious,
removed, etc.). Our probabilistic model takes into account each event of infection,
removal, etc. It takes the form

ZN,x(t) := ZN(t) := x + 1

N

k∑
j=1

hjPj

( ∫ t

0
Nβj (Z

N(s))ds
)
. (7.1)
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Here, (Pj )1≤j≤k are i.i.d. standard Poisson processes. The hj ∈ Zd denote the
k respective jump directions with jump rates βj (x) and x ∈ A (where A is the
“domain” of the process). The d components of the process denote the “proportions”
of individuals in the various compartments. Usually A is a compact or at least a
bounded set. For example, in the models we have in mind the compartment sizes are
non-negative, hence A ⊂ Rd+.

As we shall prove below, ZN,xt → Y xt as N → ∞, where Y xt is the solution of
the ODE

Y x(t) := Y (t) := x +
∫ t

0
b(Y x(s))ds, (7.2)

with

b(z) :=
k∑
j=1

βj (z)hj .

This Law of Large Numbers result goes back to [9] (see the version in Theorem 7.3
below, where a rate of convergence is given).

Most of the literature on mathematical models of disease dynamics treats
deterministic models of the type of (7.2). When an epidemics is established, and
each compartment of the model contains a significant proportion of the total
population, if N is large enough, the ODE (7.2) is a good model for the epidemics.
The original stochastic model (7.1), which we believe to be more realistic than
the (7.2), can be considered as a stochastic perturbation of (7.2). However, we know
from the work of [7], that small Brownian perturbations of an ODE will eventually
produce a large deviation from its law of large numbers limit. For instance, if the
ODE starts in the basin of attraction of an locally stable equilibrium, the solution of
the ODE converges to that equilibrium, and stays for ever close to that equilibrium.
The theory of Freidlin and Wentzell, based upon the theory of Large Deviations,
predicts that soon or later the solution of a random perturbation of that ODE will
exit the basin of attraction of the equilibrium. The aim of this paper is to show that
the Poissonian perturbation (7.1) of (7.2) behaves similarly. This should allow us
to predicts the time taken by an endemic equilibrium to cease, and a disease-free
equilibrium to replace it.

We shall apply at the end of this paper our results to the following example.

Example 7.1 We consider a so-called SIRS model without demography (S(t) be-
ing the number of susceptible individuals, I (t) the number of infectious individuals
and R(t) the number of removed/immune individuals at time t). We let β > 0 and
assume that the average number of new infections per unit time is βS(t)I (t)/N .1

1The reasoning behind this is the following. Assume that an infectious individual meets on average
α > 0 other individuals in unit time. If each contact of a susceptible and an infectious individual
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For γ, ν > 0, we assume that the average number of recoveries per unit time is γ I (t)
and the average number of individuals who lose immunity is νR(t). As population
size is constant, we can reduce the dimension of the model by solely considering
the proportion of infectious and removed at time t . Using the notation of Eqs. (7.1)
and (7.2), we have

A = {x ∈ R2+|0 ≤ x1 + x2 ≤ 1}, h1 = (1, 0)#, h2 = (−1, 1)#, h3 = (0,−1)#,

β1(z) = βz1(1 − z1 − z2), β2(z) = γ z1, β3(z) = νz2.

It is easy to see that in this example the ODE (7.2) has a disease free equilibrium
x̄ = (0, 0)#. This equilibrium is asymptotically stable if R0 = β/γ < 1. R0 is the
so-called basic reproduction number. It denotes the average number of secondary
cases infected by one primary case during its infectious period at the start of the
epidemic (while essentially everybody is susceptible). If R0 > 1, x̄ is unstable and
there exists a second, endemic equilibrium

x∗ =
(
ν(β − γ )

β(γ + ν)
,
γ (β − γ )

β(γ + ν)

)

which is asymptotically stable. While in the deterministic model the proportion of
infectious and removed individuals converges to the endemic equilibrium x∗, the
disease will go extinct soon or later in the stochastic model (Fig. 7.1).

Our results also apply to other models like the SIV model (V like vaccinated)
and the S0IS1 (with two levels of susceptibility), see [8] and the references therein.
These two models have the property that for certain values of their parameters, both
the disease-free equilibrium and one of the endemic equilibria are locally stable.

Fig. 7.1 Transmission
diagram of the SIRS model
without demography

yields a new infection with probability p, the average number of new infections per unit time is
βS(t)I (t)/N , where β = pα since all individuals are contacted with the same probability (hence
S(t)/N is the probability that a contacted individual is susceptible).
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Our results predict the time taken by the solution of the stochastic equation to leave
the basin of attraction of the endemic equilibrium. We shall discuss those and other
applications elsewhere in the future.

There is already a vast literature on the theory of large deviations for systems
with Poissonian inputs, see [4–6, 13], among others.

However, the assumptions in those works are not satisfied in our case. The
difficulty is the following. For obvious reasons, the solution of our SDE (7.1) must
remain in Rd+. This implies that some rates vanish when one of the components
of ZN,x(t) vanishes. However, the expression of the large deviation functional (as
well as the ratio of the probabilities in the Girsanov theorem) involves the logarithm
of those rates, which hence explodes as the rate vanishes. The same happens with
the computer network models which was the motivation of the work of [13], and
this led them to consider situations with vanishing rates in [14]. However, even the
assumptions in that paper are not fully satisfied in our models (see our discussion
below in Sect. 7.2.3). For that reason, in order to avoid the awkward situation where
we would have to cite both [13] and [14], and add some arguments to cope with
our specific situation, we preferred to rewrite the whole theory, so as to cover the
situation of the epidemiological models in a self-consistent way. We must however
recognize that the work of Shwartz and Weiss has been an importance source of
inspiration for this work.

Let us now discuss one subtlety of our models. In the models without demog-
raphy, i.e. the models where the total population remains constant, then we choose
N as this total population, so that the various components of the vector ZN,xt are
the proportions of the total population in the various compartments of the model,
that is each component of ZN,xt at any time is of the form k/N , where k ∈ Z+,
and also

∑d
i=1 Z

N,x
i (t) = 1, if ZN,xi (t) denotes the i-th component of the vector

ZN,x(t), 1 ≤ i ≤ d . In this case, provided we start our SDE from a point of the
type (k1/N, . . . , kd/N), where k1, . . . , kd ∈ Z+, then the solution visits only such
points, and cannot escape the set Rd+ without hitting first its boundary, where the

rates for exiting vanish. ConsequentlyZN,xt remains in Rd+ for all time a.s. However,
if we start our process outside the above grid, or if the total population size does not
remain constant, the components of the vector ZN,xt multiplied by N need not be
integers. Then some of the components of ZN,xt might become negative, and one
can still continue to define ZN,xt provided for any 1 ≤ i ≤ d and 1 ≤ j ≤ k,
the rule xi = 0 ⇒ βj (x) = 0 is extended to xi ≤ 0 ⇒ βj (x) = 0. However,
in order to make things simpler, we restrict ourselves in this paper to the situation
where all coordinates of the vector NZN,x0 are integers, and the same is true with

NZ
N,x
t for all t > 0. In particular, we shall consider Eq. (7.1) only with a starting

point x such that all coordinates of Nx are integers. This will be explicitly recalled
in the main statements, and implicitly assumed everywhere. We shall consider more
general situations in a further publication.

The paper is organized as follows. Our set-up is made precise and the general
assumptions are formulated in Sect. 7.2. Section 7.3 is devoted to the law of large
numbers. In Sect. 7.4 we study the rate function. The Large Deviations lower



7 Large Deviations for Infectious Diseases Models 225

bound is established in Sect. 7.5 and the Large Deviations upper bound in Sect. 7.6.
Section 7.7 treats the exit time from a domain, including the case of a characteristic
boundary. Finally in Sect. 7.8 we show how our results apply to the SIRS model
(which requires an additional argument), and a Girsanov theorem is formulated in
the Appendix.

7.2 Set-Up

We consider a set A ⊂ Rd (whose properties we specify below) and define the grids

Zd,N := {x ∈ Rd
∣∣ xi = j/N for some j ∈ Z}, AN := A ∩Zd,N .

We rewrite the process defined by Eq. (7.1) as

ZN,x(t) := ZN(t) := x + 1

N

k∑
j=1

hjPj

( ∫ t

0
Nβj (Z

N(s))ds
)

(7.3)

= x +
∫ t

0
b(ZN(s))ds + 1

N

∑
j

hjMj

( ∫ t

0
Nβj (Z

N(s))ds
)
,

where the Mj(t) = Pj (t) − t , j = 1, . . . , k. Mj(t) is the so-called compensated
Poisson processes corresponding to Pj (t).

Let us shortly comment on this definition. In the models we have in mind, the
components of ZN usually denote the proportions of individuals in the respective
compartments. It is hence plausible to demand that the starting point is in Zd,N .
However, it is not sufficient to simply restrict our analysis to those starting points
with x ∈ AN as this does obviously not imply x ∈ AM for all M > N . Note that
UN(t) = NZN(t) would solve the SDE

UN(t) = Nx +
k∑
j=1

hjPj

(∫ t

0
βj,N (U

N(s))

)
,

where Nβj (x) = βj,N (Nx). Here the coefficients of the vector UN(t) are the
numbers of individuals from the population in each compartment. The equation for
UN(t) is really the original model, where all events of infection, recovery, loss of
immunity, etc. are modeled. Dividing by N leads to a process which has a law of
large number limits as N → ∞. The crucial assumption for this procedure to make
sense is that N−1βj,N (Nx) does not depend upon N , which is typically the case in
the epidemics models, see in particular Example 7.1.
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We first introduce the following notations. For x ∈ A and y ∈ Rd , let

Vx :=
{
μ ∈ Rk+

∣∣μj > 0 only if βj (x) > 0
}
,

Vx,y :=
{
μ ∈ Vx

∣∣ y =
∑
j

μjhj

}
.

As Vx,y is sometimes independent of x or Vx,y = ∅, we also define for y ∈ Rd ,

Ṽy :=
{
μ ∈ Rd+

∣∣ y =
∑
j

μjhj

}

We define the cone spanned by a (finite) set of vectors (vj )j (vj ∈ Rd by

C((vj )j ) :=
{
v =

∑
j

αj vj
∣∣αj ≥ 0

}
.

Similarly, we define the cone generated by the jump directions (hj )j at x ∈ A by

Cx := C((hj )j :βj (x)>0) =
{
v =

∑
j :βj (x)>0

μjhj
∣∣μj ≥ 0

}
.

Note that

Cx = C = {v =
k∑
j=1

μjhj
∣∣μj ≥ 0} (7.4)

whenever x ∈ Å, since βj (x) > 0 for all 1 ≤ j ≤ k if x ∈ Å. Also, in part of this
paper, we shall assume that the logβj ’s are bounded, which then means that (7.4) is
true for all x ∈ A.

We define the following upper and lower bounds of the rates. Let ρ > 0.

β̄ := sup
x∈A, j=1,...,k

βj (x) ∈ R̄+,

β := inf
x∈A, j=1,...,k

βj (x) ∈ R+,

β(ρ) := inf
{
βj (x)|j = 1, . . . , k, x ∈ A

and |x − z| ≥ ρ∀z ∈ A with βj (z) = 0
} ∈ R+,

h̄ := sup
j=1,...,k

|hj | ∈ R+.
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7.2.1 Cramer’s Theorem for the Poisson Distribution

Let X1,X2, . . . , Xn, . . . be mutually independent Poi(μ) r.v.’s. The Law of Large
Numbers tells us that

1

N

N∑
i=1

Xi → μ a.s. as N → ∞.

Let us first define, for X ∼ Poi(μ) the logarithm of its Laplace transform

Λμ(λ) = logE[exp(λX)] = μ(eλ − 1),

and the Fenchel–Legendre transform of the latter

Λ∗
μ(x) = sup

λ∈R
{λx −Λ(λ)} = x log

(
x

μ

)
− x + μ.

Note that the minimum of Λ∗ is achieved at x = μ, and Λ∗ is zero at that point.
Let νN denote the law of the r.v. 1

N

∑N
i=1 Xi . We can now state Cramer’s theorem,

see e.g. Theorem 2.2.3 in [3].

Theorem 7.1 For any closed set F ⊂ R,

lim sup
N→∞

1

N
log νN(F ) ≤ − inf

x∈F Λ
∗(x).

For any open set G ⊂ R,

lim inf
N→∞

1

N
log νN(G) ≥ − inf

x∈GΛ
∗(x).

We deduce in particular (with Å the interior of A, Ā the closure of A)

Corollary 7.1 For any Borel set A ⊂ R,

− inf
x∈Å

Λ∗(x) ≤ lim inf
N

1

N
log νN(Å) ≤ lim sup

N

1

N
log νN(Ā) ≤ − inf

x∈Ā
Λ∗(x).

In particular, if inf
x∈Å Λ

∗(x) = infx∈Ā Λ∗(x) = infx∈A Λ∗(x),

1

N
log νN(A)→ inf

x∈AΛ
∗(x) as N → ∞.

It is not surprising that the function Λ∗
μ(x) will appear again below, see the very

beginning of the next section.
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7.2.2 The Legendre-Fenchel Transform and the Rate Function

We define the following transforms. For x ∈ A, y ∈ R
d , let

�(x, μ) :=
∑
j

{
βj (x)− μj + μj log

( μj
βj (x)

)}
,

with the convention 0 log(0/α) = 0 for all α ∈ R, and

L(x, y) :=
{

infμ∈Vx,y �(x, μ) if Vx,y �= ∅
+∞ otherwise.

Now let, for x, y as above and θ ∈ R
d ,

�̃(x, y, θ) = 〈θ, y〉 −
∑
j

βj (x)
(

e〈θ,hj 〉 −1
)
,

and define

L(x, y) := sup
θ∈Rd

�̃(x, y, θ),

Remark 7.1 For μ ∈ Ṽy \ Vx,y , we have �(x, μ) = ∞ and hence

L(x, y) = inf
μ∈Ṽy

�(x, μ).

We first show

Lemma 7.1 Let x ∈ A, y ∈ Cx , θ ∈ Rd and μ ∈ Vx,y . Then

�̃(x, y, θ) ≤ �(x, μ),

in particular

L(x, y) ≤ L(x, y).

Proof The result is obvious if Vx,y = ∅. If not, for μ ∈ Vx,y , with

fj (z) = μjz− βj (x)(e
z − 1),

�̃(x, y, θ) =
∑
j

μj 〈θ, hj 〉 − βj (x)(exp(〈θ, hj 〉)− 1)
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=
∑
j

fj (〈θ, hj 〉)

≤
∑
j

fj (logμj/βj (x))

= �(x, μ),

since fj achieves its maximum at z = log[μj/βj (x)].
We will show in Sect. 7.4.2 that under appropriate assumptions, L(x, y) =

L(x, y), and we shall write L(x, y) for the common value of those two quantities.
For any T > 0, we define

C([0, T ];A) := {φ : [0, T ] → A |φ continuous},
D([0, T ];A) := {φ : [0, T ] → A |φ càdlàg}.

On C([0, T ];A) (or D([0, T ];A)), dC denotes the metric corresponding to the
supremum-norm, denoted by ‖ · ‖. Whenever the context is clear, we write d := dC .
On D([0, T ];A) we denote by dD the metric given, e.g., in [2], Sections 12.1
and 12.2 which defines the Skorohod topology in such a way that the resulting
space is Polish. The resulting metric spaces are denoted by C([0, T ];A; dC),
D([0, T ];A; dC) and D([0, T ];A; dD), respectively (where the metrics are omit-
ted, whenever they are clear from the context).

We now introduce a candidate I for the rate function. For φ : [0, T ] → A, let

IT (φ) :=
{∫ T

0 L(φ(t), φ′(t))dt if φ is absolutely continuous

∞ otherwise.

For x ∈ A and φ : [0, T ] → A, let

IT ,x(φ) :=
{
IT (φ) if φ(0) = x

∞ otherwise.

7.2.3 Assumptions on the Process ZN

We do not assume that the rates are bounded away form zero (as in [13]) and allow
for them to vanish near the boundary (cf. the discussion in the introduction). Shwartz
and Weiss [14] allow for vanishing rates. We generalize these assumptions as we
outline below. The difference is essentially Assumption 7.2 (C) below.
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Assumption 7.2

(A) Assumptions on the set A.

(A1) The set A is compact and A = Å. Furthermore, there exists a constant
λ0 > 0 such that for all N ∈ N, z ∈ AN and j = 1, . . . , k with βj (z) >
0,2

z+ hj

N
∈ AN and |z̃− z| ≥ λ0

N
for all z̃ with βj (z̃) = 0.

(A2) There exist open balls3 Bi = B(xi, ri ), i = 1, . . . , I1, . . . , I (0 < I1 < I )
such that

xi ∈ ∂A for i ≤ I1 and xi ∈ Å for i > I1

and

A ⊂
⋃
i≤I

Bi, ∂A ⊂
⋃
i≤I1

Bi and Bi ∩ ∂A = ∅ for i > I1.

(A3) There exist (universal) constants λ1, λ2 > 0 and vectors vi (i ≤ I1,
w.l.o.g., we assume 0 < |vi | ≤ 1; for notational reasons, we set vi = 0
for i > I1) such that for all x ∈ Bi ∩ A,

B(x + tvi , λ1t) ⊂ A for all t ∈ (0, λ2).

and dist(x + tvi , ∂A) is increasing for t ∈ (0, λ2).
(A4) There exists a Lipschitz continuous mapping ψA : Rd → A such that

ψA(x) = x whenever x ∈ A.

(B) Assumptions on the rates βj .

(B1) The rates βj : A→ R+ are Lipschitz continuous.
(B2) For x ∈ Å, j = 1, . . . , k, βj (x) > 0 and C((hj )j ) = Rd .
(B3) For all x ∈ ∂A there exists a constant λ3 = λ3(x) > 0 such that

y ∈ Cx, |y| ≤ λ3 ⇒ x + y ∈ A.

2This implies that for z ∈ AN with βj (z) > 0, we have βj (z) ≥ β(λ0/N).
3Here (and later) B(x, r) denotes the open ball around x with radius r .
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(B4) There exists a (universal) constant λ4 > 0 such that for all i ≤ I1, x ∈
Bi ∩ A and

v ∈ C1,i :=
{ ṽ
|ṽ|

∣∣∣ṽ = vi + w for w ∈ Rd , |w| ≤ λ1

3 − λ1

}
,

βj (x) < λ4 ⇒ βj (x + ·v) is increasing in (0, λ2).

(C) There exists an η0 > 0 such that for all N ∈ N, ε > 0 there exists a constant
δ(N, ε) > 0 (decreasing in N and in ε) such that for all i ≤ I1, x ∈ Bi there
exists a μi = μi(x) ∈ Ṽvi and

P

[
sup

t∈[0,η0]
|Z̃N,x(t)− φx(t)| ≥ ε

]
≤ δ(N, ε),

where Z̃N,x denotes the solution of (7.3) if the rates βj are replaced by the
rates μ̃ij for

μ̃ij (z) :=
{
μij if z+ εhj ∈ A for all ε small enough

0 else

and φx = x + tvi as before.4

Furthermore, there exists a constant α ∈ (0, 1/2) and a sequence εN such
that

εN <
1

Nα
and

δ(N, εN )

εN
→ 0 as N → ∞. (7.5)

and

ρα logβ(ρ)→ 0 as ρ → 0. (7.6)

Let us comment on Assumption 7.2. Assumption (A) is essentially Assump-
tion 2.1 of [14]. We want to remark that Assumption 2.1 (iv) of [14] is not included
here as it is redundant (see Lemma 3.5 of [14]; cf. also the discussion preceding
Lemma 7.23). In the epidemiological models we want to consider, A is a compact,
convex d-polytope, i.e., ∂A is composed by d − 1-dimensional hyperplanes. For
example for the SIRS model in Example 7.1,

A = {x ∈ R2|0 ≤ x1 + x2 ≤ 1}.

4We do not necessarily have μi ∈ Vx,vi for all x ∈ Bi ; this might not be the case if x ∈ ∂A. In
such a case Vx,vi = ∅ is possible, cf. the discussion about x = (1, 0)# for the SIRS model below.
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In line with the Assumption (A1), let us note that we always want to choose the
starting point x of Eq. (7.1) to belong toAN . If that would not be the case, then in our
simplest models the solution ZN,x might exit the domain A. Choosing the starting
point arbitrarily in A would force us to let the rates βj depend uponN (and vanish)
near the boundary. Note that the coordinates of the vector ZN,xt are proportions of
the population in various compartments. The coordinates of the vector NZN,xt are
integers, while those of the vectors hj belong to the set {−1, 0, 1}.

Note that in all situations we have in mind, both the set A itself and its boundary
can be covered by a finite number of balls. These balls can furthermore be chosen
in such a way that those centered in the interior do not intersect with the boundary.
For the SIRS model, we can for instance define the balls covering the boundary by
B(x, 3/(4m)) for large m ∈ N and x = (i/m, j/m)# for i = 0, . . . ,m, j = 0
or i = 0, j = 0, . . . ,m or i + j = m. The vectors vi can be defined to be the
inside normal vectors for those balls with x �∈ {(0, 0)#, (1, 0)#, (0, 1)#}. For the
remaining three balls, we define vi by the normalizations of

(1/2, 1/2)#, (−1/2, 1/4)# respectively (1/2,−1/2)#.

In general, the constant λ1 can be interpreted to be given via the “angle” of the vector
vi to the boundary. We have λ1 ≤ 1. It is straightforward that Assumption (A)
is satisfied for the SIRS model. We also note that Assumption (A) is not very
restrictive, see [14] Lemma 2.1. In particular, every convex, compact set with non-
empty interior satisfies the assumption.

Most of Assumption (B) is taken from Assumption 2.2 of [14]. We outline the
difference below. Assumption (B1) is quite standard and ensures in particular that
the ODE (7.2) admits a unique solution. For the compartmental epidemiological
models we consider, the rates are usually polynomials and hence this assumption
is satisfied. Assumption (B2) implies that within Å it is possible to move into all
directions. Only by approaching the boundary the rates are allowed to vanish. (B3)
implies that at least locally the convex cone x + Cx is included in A. In particular, it
is not possible to exit the set A from its boundary. Assumption (B4) differs slightly
from the corresponding assumption in [14]. While in [14], it is implied that close to
the boundary, “small” rates are increasing while following the vector vi , we assume
this for a set of vector in a “cone” around vi . We note that for i ≤ I1, x ∈ Bi ,
v ∈ C1,i , we have (cf. Assumption (A3))

dist(x + tv, ∂A) ≥ dist(x + tvi , ∂A)− t
λ1

3 − λ1
≥ tλ1

(2 − λ1

3 − λ1

)
.

It is easily seen that this assumption is satisfied for the SIRS model. In addition to
this, [14] also require that (cf. the meaning of λ4 in Assumption (B4))

vi ∈ C({hj | inf
x∈Bi

βj (x) > λ4}
)
. (7.7)
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In order to apply the theory to epidemiological models, we have to remove this
assumption. To see this, consider the SIRS model and the point x = (1, 0)# with
corresponding ball B containing it. We readily observe that a vector v pointing
“inside” A (as required by Assumption (A3)) which is generated by only those
hj whose corresponding rates are bounded away from zero in B does not exist.
We hence replace this assumption by Assumption (C), which follows from (7.7).
Indeed, if Assumption (7.7) holds, the μi representing vi can be chosen in such a
way that the directions corresponding to components μij > 0 do not point outside

A in Bi . Hence, μ̃i ≡ μi (as long as the process is in Bi ) and the LLN Theorem 7.3
can be applied. In general, Theorem 7.3 cannot be applied as the rates μ̃i can be
discontinuous. Note that the assumption can only fail if x ∈ ∂A. Else, the process is
equal to the process with constant rates μi on the set

{
sup

t∈[0,η0]
|Z̃N,x(t)− φx(t)| < ε

}

for all small enough ε > 0 and Theorem 7.3 is applicable. We note that
Assumption (C) implies that

δ(N, ε)→ 0 as N → ∞ for all ε > 0.

Moreover, as δ(N, ·) is decreasing, we can choose εN in such a way that

εN = 1

Nα
for some α ∈ (0, 1). (7.8)

We remark here (and further discuss this important issue below) that Assump-
tion 7.2 (C) may well fail to be satisfied. To this end, we consider the SIRS model an
x ∈ A with x1 = 0. We hence have β2(x) = 0 and hence the process ZN,x cannot
enter the interior of A. Therefore, we have

P

[
sup

t∈[0,η0]
|ZN,x(t)− φx(t)| ≥ ε

]
= 1

for ε small enough. Assumption (C) can hence be considered as a means to ensure
that the process can enter the interior of A from every point on the boundary (7.6)
implies that

∫ η

0
| logβ(ρ)|dρ → 0 as η→ 0, (7.9)

since ρα/2| logβ(ρ)| ≤ C for appropriate C and hence | logβ(ρ)| ≤ C/ρα/2 is
integrable, and hence in particular that the rate I (φ) of linear functions φ is finite,
as it is shown in Lemma 7.25 below.
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It remains to show that Assumption 7.2 (C) is satisfied for the SIRS model. This
is accomplished in Sect. 7.8.

Exploiting (7.6), it is easy to prove

Lemma 7.2 Under the Assumption 7.2 (C), for all i ≤ I , x ∈ A ∩ Bi , let φx(t) :=
x + tvi . For all ε > 0, there exists an η > 0 (independent of i, x) such that for all
i ≤ I and all x ∈ A ∩ Bi ,

Iη,x(φ
x) < ε.

Note that for i > I1, we have φx(t) = x for all t .

7.3 Law of Large Numbers

We first prove the law of large numbers as stated in Theorem 5.3 from [13], which
adds a rate of convergence to the classical result by Kurtz [9].

Theorem 7.3 Let ZN.x and Y x be given as in Eqs. (7.3) and (7.2) respectively, and
assume that the rates βj are bounded and Lipschitz continuous. Then there exist
constants C̃1 = C̃1(T ) > 0 (independent of ε) and C̃2(ε) = C̃2(T , ε) > 0 with
C̃2(ε) = O(ε2) as ε → 0 such that

P

[
sup

t∈[0,T ]
|ZN,x(t)− Y x(t)| ≥ ε

]
≤ C̃1 exp

(−NC̃2(ε)
)
.

C1 and C2 can be chosen independently of x.

Before we prove Theorem 7.3, we require some auxiliary results. We first have

Lemma 7.3 Let T > 0. Suppose that f : D([0, T ];A) × R → R and G :
D([0, T ];A)×R×R → R are such that for all ρ > 0,

M(t) := exp
(
ρf (ZN,x, t)−G(ZN,x, t, ρ)

)

is a right-continuous martingale with mean one. Suppose furthermore that R : R×
R → R is increasing in the first argument and

G(φ, t, ρ) ≤ R(t, ρ)

for all φ ∈ D([0, T ];A) and ρ > 0. Then for all ε > 0

P

[
sup

t∈[0,T ]
f (ZN,x, t) ≥ ε

]
≤ inf
ρ>0

exp
(
R(T , ρ)− ρε).
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Proof Fix ρ > 0. Then by the assumptions of the lemma,

P

[
sup

t∈[0,T ]
f (ZN,x, t) ≥ ε

]
= P

[
sup

t∈[0,T ]
exp

(
ρf (ZN,x, t)

) ≥ exp
(
ρε

)]

≤ P

[
sup

t∈[0,T ]
exp

(
ρf (ZN,x , t)−G(ZN,x, t, ρ)

)

≥ exp
(
ρε − R(T , ρ)

)]

≤ exp
(
R(T , ρ)− ρε

)

where the last inequality is Doob’s martingale inequality, see, e.g. Theorem II.1.7
in [11].

The next result is an easy exercise which we leave to the reader.

Lemma 7.4 Let Y be a d-dimensional random vector. Suppose that there exist
positive numbers a and δ such that for all θ ∈ Rd with |θ | = 1

P
[〈θ, Y 〉 ≥ a

] ≤ δ.

Then

P
[|Y | ≥ a

√
d
] ≤ 2dδ.

The main step towards the proof of Theorem 7.3 is the following Lemma

Lemma 7.5 Assume that βj (j = 1, . . . , k) is bounded and that Y x is a solution
of (7.2). Then for all θ ∈ Rd with |θ | = 1 and all T > 0, there is a function
C̃ : R+ → R+ (independent of x) such that

P

[
sup

t∈[0,T ]

{
〈ZN,x(t)− Y x(t), θ〉

−
∫ t

0

k∑
j=1

(
βj (Z

N,x(s))− βj (Y
x(s))

)〈hj , θ〉ds
}
≥ ε

]
≤ exp

(−NC̃(ε)
)
,

and moreover

0 < lim
ε→0

C̃(ε)/ε2 <∞, and lim
ε→∞ C̃(ε)/ε = ∞.
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Proof Let

N θ
t = 〈ZN,x(t)− Y x(t), θ〉 −

∫ t

0

k∑
j=1

(
βj (Z

N,x(s))− βj (Y
x(s))

)〈θ, hj 〉ds

= 1

N

k∑
j=1

〈hj , θ〉Mj

(
N

∫ t

0
βj (Z

N,x
s )ds

)
.

We want to use Lemma 7.3, with f (ZN,x, t) = N θ
t . It is not hard to check that if

we define

G(ZN,x, t, ρ) = N

k∑
j=1

(
e
ρ
N
〈hj ,θ〉 − 1 − ρ

N
〈hj , θ〉

) ∫ t

0
βj (Z

N,x(s))ds,

we have that

M(t) = exp
(
ρf (ZN,x, t) −G(ZN,x, t, ρ)

)

is a martingale. Hence from Lemma 7.3, with a = ρ/N ,

P

(
sup

0≤t≤T
N θ
t > ε

)
≤ min

a>0
exp

⎛
⎝NβT

⎡
⎣ k∑
j=1

{
ea〈hj ,θ〉 − 1 − a〈hj , θ〉

}
− aε

⎤
⎦
⎞
⎠ .

The main inequality of the Lemma is established, with

C̃(ε) = βT max
a>0

⎡
⎣aε −

k∑
j=1

{
ea〈hj ,θ〉 − 1 − a〈hj , θ〉

}⎤⎦ .

It is not hard to show that as ε → 0,

C̃(ε)

ε2 → βT

2
∑k
j=1〈hj , θ〉2

.

Consider now the case where ε is large. If 〈hj , θ〉 ≤ 0 for 1 ≤ j ≤ k, then for
ε > −∑

j 〈hj , θ〉, C̃(ε) = +∞, which means that a certain event has probability
zero. Now consider the more interesting case where 〈hj , θ〉 > 0 for at least one
1 ≤ j ≤ k. If we choose aε such that

k∑
j=1

{
eaε〈hj ,θ〉 − 1 − aε〈hj , θ〉

}
= ε,
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then aε → ∞ as ε → ∞, while C̃(ε) ≥ ε(aε − 1), which completes the proof of
the Lemma.

Proof (Proof of Theorem 7.3) We deduce from Lemma 7.5 and a variant of
Lemma 7.7 that

P

⎛
⎝ sup

0≤t≤T
1

N

∣∣∣∣∣∣
k∑
j=1

hjMj

(
N

∫ t

0
βj (Z

N,x
s )ds

)∣∣∣∣∣∣ > ε

⎞
⎠ ≤ 2de−NC̃ ′(ε), (7.10)

where C̃′(ε) = C̃(ε/
√
d). In view of the Lipschitz property of b, we have

Z
N,x
t − Y xt =

∫ t

0

[
b(ZN,xs )− b(Y xs )

]
ds

+ 1

N

k∑
j=1

hjMj

(
N

∫ t

0
βj (Z

N,x
s )ds

)
,

sup
0≤s≤t

∣∣∣ZN,xs − Y xs

∣∣∣ ≤ K

∫ t

0
sup

0≤r≤s

∣∣∣ZN,xr − Y xr

∣∣∣ ds

+ sup
0≤s≤t

1

N

∣∣∣∣∣∣
k∑
j=1

hjMj

(
N

∫ s

0
βj (Z

N,x
r )dr

)∣∣∣∣∣∣ .

The result now follows from (7.10) and Gronwall’s Lemma.

We can deduce from Theorem 7.3.

Corollary 7.2 Let M be a compensated standard Poisson process. Then there exist
constants C1 = C1(T ) > 0 (independent of ε) and C2(ε) = C2(T , ε) > 0 with
C2(ε) = O(ε2) as ε → 0 such that

P

[
sup

t∈[0,T ]
|M(tN)|
N

≥ ε
]
≤ C1 exp

(−NC2(ε)
)
.

C1 and C2 can be chosen independently of x.

Proof We apply Theorem 7.3 to d = k = 1, β1(x) ≡ 1 and h1 = 1. Hence,

|ZN(t)− Y (t)| = |M(tN)|
N

.

The result follows directly.
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We shall need below the

Lemma 7.6 Let βj (j = 1, . . . , k) be bounded. Then there exist positive constants
C̃1 and C̃2 independent of x such that for all 0 ≤ s < t ≤ T and for all ε > 0,

P

[
sup
r∈[s,t ]

|ZN,x(r)− ZN,x(s)| ≥ ε
]
≤ exp

(
− NεC̃1 log

( εC̃2

t − s

))
.

Proof Let ξNs,t denote the number of jumps of the process ZN,x on the time interval
[s, t]. It is plain that

{ sup
r∈[s,t ]

|ZN,x(r)− ZN,x(s)| ≥ ε} ⊂ {ξNs,t ≥ CNε},

for some universal constant C > 0. Now ξNs,t is stochastically dominated by a
Poisson random variable with parameterC′N(t−s), for some other constantC′ > 0.
Now let Θ be a Poisson r.v. with parameter λ. We claim that for any b > 0,

P(Θ > b) ≤ exp

(
−b log

(
b

eλ

))
. (7.11)

Indeed, if b ≤ eλ this is obvious, and if b > eλ it is obtained by applying
Chebychef’s inequality to the r.v. Θ and the function exp[x log(b/λ)]. The result
follows by applying (7.11) with λ = C′N(t − s), and b = CNε.

7.4 Properties of the Rate Function

7.4.1 Properties of the Legendre Fenchel Transform

In this subsection we assume that the βj ’s are bounded and continuous. We recall
that �, L, �̃ and L have been defined in Sect. 7.2.2, and start with

Lemma 7.7

1. For all x ∈ A, L(x, ·) : Cx → R+ is convex and lower semicontinuous.
2. For all y ∈ Rd ,

L(x, y) ≥ L
(
x,

∑
j

βj (x)hj

)
= 0

with strict inequality if y �= ∑
j βj (x)hj .
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Proof

1. We readily observe that �̃(x, ·, θ) is linear and hence convex. As the supremum
of these functions, the function L(x, ·) is convex.

Lower semicontinuity follows as L(x, ·) is the supremum of a family of
continuous functions.

2. Let first y = ∑
j βj (x)hj . We have

L(x, y) = sup
θ

{∑
j

βj (x)〈hj , θ〉 −
∑
j

βj (x)
(

exp〈hj , θ〉 − 1
)}

= sup
θ

{∑
j

βj (x)
(〈hj , θ〉 − exp〈hj , θ〉 + 1

)}

= 0

as βj (x) ≥ 0 and ez ≥ z+ 1 for all z ∈ R with equality for z = 0.
Let now y be such that L(x, y) = 0. This implies

〈y, θ〉 −
∑
j

βj (x)
(

exp〈hj , θ〉 − 1
) ≤ 0 for all θ ∈ Rd,

in particular for θ = εei (where ei is the ith unit-vector and ε > 0; in the
following hij is the ith component of hj ),

εyi ≤
∑
j

βj (x)
(

exp(εhij )− 1
)
.

Dividing by ε and letting ε → 0, we deduce that

yi ≤
∑
j

βj (x)h
i
j .

For θ = −εei the converse inequality follows accordingly.

Remark 7.2 The function L(x, ·) is even strictly convex, see Corollary 7.3 below.

Lemma 7.8 Assume that βj (j = 1, . . . , k) is bounded. Then, there exist constants
C1 and B1 such that for all |y| ≥ B1, x ∈ R

d ,

L(x, y) ≥ C1|y| log(|y|).
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Proof Let

θ := y
log |y|
h̄|y| ,

hence provided |y| ≥ 1,

L(x, y) ≥ |y| log |y|
h̄

− kβ̄|y|

which grows like |y| log |y| as |y| → ∞.

We now have

Lemma 7.9 There exists a constant C2 such that for all x ∈ A, y ∈ Cx , there exists
a μ ∈ Vx,y with

|μ| ≤ C2|y|.

Proof We first note that there are only finitely many convex cones Cx and we can
hence restrict our attention to a fixed x ∈ A.

We proceed by contradiction. Assume that for all n there exists a yn ∈ Cx such
that for all μ ∈ Vx,yn,

|μ| ≥ n|yn|.

We note that for any y ∈ Cx , there exists a minimal representation μ ∈ Vx,y (in the
sense that μ̃ ∈ Vx,y ⇒ maxj μ̃j ≥ maxj μj ). Indeed, let {μn, : n ≥ 1} ⊂ Vx,y be
such that, as n→ ∞,

max
j
μnj ↓ inf

μ∈Vx,y

(
max
j
μj

)
.

There exists a subsequence along which μn → μ ∈ Rd+ as n → ∞. If μj > 0,
we have μnj > 0 for n large enough and hence βj (x) > 0. Hence μ ∈ Vx,y since
moreover

∑
j

μjhj = lim
n

∑
j

μnj hj = y.

Given yn, we denote this minimal representation by μ̄n. We now define

ỹn := yn

|μ̄n| , hence |ỹn| ≤ 1

n
.
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Furthermore, it is easy to see that minimal representations for the ỹn are given by

μ̃n := μ̄n

|μ̄n| , hence |μ̃n| = 1.

Boundedness implies (after possibly the extraction of a subsequence) μ̃n → μ̃ with
|μ̃| = 1. We let n large enough such that for all j

μ̃nj > 0 ⇒ μ̃nj >
μ̃j

2

(note that for at least one j , μ̃j > 0). We have

0 = lim
n
ỹn = lim

n

∑
j

μ̃nj hj =
∑
j

μ̃j hj

and therefore

ỹn =
∑
j

μ̃nj hj =
∑

j ;μ̃j>0

(
μ̃nj −

μ̃j

2

)
︸ ︷︷ ︸

=:μ̂nj>0

hj +
∑

j ;μ̃j=0

μ̃nj︸︷︷︸
=:μ̂nj

hj ,

a contradiction to the minimality of the μ̃nj .

We require the following result

Lemma 7.10 Let x ∈ A.

1. �(x, μ) ≥ 0 for μ ∈ Vx and �(x, ·) : Vx −→ R+ is strictly convex and has
compact level sets {μ ∈ Vx |�(x, μ) ≤ α}.

2. Let y ∈ Cx . Then there exists a unique μ∗ = μ∗(y) such that

�(x, μ∗) = inf
μ∈Vx,y

�(x, μ).

3. There exist constants C3, C4, C5, B2 > 0 (which depend only upon
supx∈A maxi≤j≤k βj (x)), such that

|μ∗(y)| ≤ C3|y| if |y| > B2, (7.12)

|μ∗(y)| ≤ C4 if |y| ≤ B2, (7.13)

|μ∗(y)| ≥ C5|y| for all y. (7.14)

4. L(x, ·), μ∗ : Cx → R+ are continuous.
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Proof

1. We define the function f (z) = 1− z+ z log z for z ≥ 0 and note that for μ ∈ Vx ,

�(x, μ) =
∑

j,βj (x)>0

βj (x)f
(

μj
βj (x)

)
.

We readily observe (by differentiation) that f ≥ 0 and that f is strictly convex.
Thus the first two assertions follow.

As Vx is closed and �(x, ·) is continuous, the level sets are closed. Compact-
ness follows form the fact that limx→∞ f (x) = ∞.

2. Existence of a minimizer follows from the fact that Vx,y is closed. Uniqueness
follows from the strict convexity of �(x, ·).

3. By the definition of �, there exists a B2 = B2(β̄(x)) > 0 and C = C(β̄(x)) > 0
such that for y ∈ Cx with |y| ≥ B2 (and appropriate μ ∈ Vx,y according to
Lemma 7.9),

�(x, μ∗(y)) ≤ �(x, μ) ≤ C|y| log |y|.

On the other hand, assume that for all n there exists an yn ∈ Cx with |yn| ≥ B2
such that

|μ∗(yn)| ≥ n|yn|.

This implies for an appropriate constant C̃ and n large enough

�(x, μ∗(yn)) ≥ nC̃|y| log |y|,

a contradiction. Hence Inequality (7.12) follows.
Assume now that for all n there exists an yn ∈ Cx with |yn| ≤ B2,

|μ∗(yn)| ≥ n, hence lim
n→∞ �(x, μ

∗(yn))→ ∞.

However, Lemma 7.9 implies that there exists an μn ∈ Vx,yn and a constant
C = C(β̄(x), B2) independent of n with

�(x, μn) ≤ C,

a contradiction. Hence Inequality (7.13) follows.
Finally, Inequality (7.14) follows from the definition of Vx,y .

4. Let y, yn ∈ Cx with yn → y. By 3., the sequence (μ∗(yn))n is bounded and
hence there exists a convergent subsequence, say (by abuse of notation)

μ∗(yn)→ μ∗ with μ∗
j ≥ 0 for all j.
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In particular, we have

∑
j

μ∗
jhj = y. (7.15)

We have

yn =
∑
j

μ∗
j (y

n)hj

= (1 − εn)
∑
j

μ∗
jhj +

∑
j

(
μ∗
j (y

n)− μ∗
j + εnμ∗

j

)
hj

= (1 − εn)
∑
j

μ∗
j (y)hj +

∑
j

μ̃njhj , (7.16)

where we have used (7.15), μ∗(y) = argmaxμ �(x, μ), μ̃
n
j = μ∗

j (y
n) − μ∗

j +
εnμ∗

j , and

εn =
⎧⎨
⎩

2 maxj |μ∗j (yn)−μ∗j |
minj;μ∗

j
>0 μ

∗
j

, if minj ;μ∗j>0 μ
∗
j > 0;

1/n, otherwise.

In particular, we have 0 ≤ μ̃nj → 0 as n → ∞. By Eq. (7.16), 2. and the
continuity of �, we have

�(x, μ∗(yn))) ≤ �(x, (1 − εn)μ∗(y)+ μ̃n)

≤ �(x, μ∗(y))+ δ(n) (7.17)

with δ(n)→ ∞ as n→ ∞. This implies (again by the continuity of �)

�(x, μ∗) ≤ �(x, μ∗(y))

and hence μ∗ = μ∗(y) by 2. As this holds true for all convergent subsequences
of (μ∗(yn))n, this establishes the continuity of μ∗(·).

The continuity of L(x, ·) follows directly from this and the continuity of �.

Remark 7.3 Assume that for x ∈ A, Cx = Cx̃ for all x̃ in some neighborhood U
of x. Then the function � : U × Vx,y → R+ is continuous and hence we have that
μ∗(y) = μ∗(x, y) as given in Lemma 7.10 is also continuous in x (as the argmin of
a continuous function).
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We have moreover

Lemma 7.11

1. Let x ∈ A. For all B > 0, there exists a constant C6 = C6(x, B) > 0 such that
for all y ∈ Cx with |y| ≤ B and θ ∈ Rd with �̃(x, y, θ) ≥ −1,5

〈θ, hj 〉 ≤ C6 for all j with βj (x) > 0.

If logβj (·) (j = 1 . . . , k) is bounded, C6 can be chosen independently of x.
2. Let x ∈ A and y ∈ Cx . If (θn)n is a maximizing sequence of �̃(x, y, ·) and for

some j = 1, . . . , k,

lim inf
n→∞ 〈θn, hj 〉 = −∞,

then

μj = 0 for all μ ∈ Vx,y.

Conversely, there exists a constant C̃6 = C̃6(B) > 0 such that if |y| ≤ B and
μj > 0 for some μ ∈ Vx,y , then

lim inf
n→∞ 〈θn, hj 〉 > −C̃6.

Proof

1. Let |y| ≤ B, C2 and μ ∈ Vx,y be according to Lemma 7.9. Define the functions
from R into itself

fj (z) := μjz − βj (x)(ez−1).

Note that fj (z) = 0 if βj (x) = 0, and argmaxz fj (z) = logμj/βj (x) if βj (x) >
0. Let

C̃(x, B) = sup
j ; βj (x)>0

sup
|μ|≤C2B

fj

(
log

μj

βj (x)

)
.

5The constant −1 can be replaced by any other constant −C (C > 0). Note that C6 then depends
on C with C6 increasing in C.
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If x, y and θ are as in the statement, and 1 ≤ j ≤ k is such that βj (x) > 0 and
〈θ, hj 〉 > 0, then

∑
j ′ �=j

fj ′(〈θ, hj ′ 〉) = �̃(x, y, θ)− fj (〈θ, hj 〉),

hence in view of the assumption,

fj (〈θ, hj 〉) ≥ −1 − (k − 1)C̃(x, B),

As fj (z)→ −∞ as z→ ∞, the assertion follows.
2. If lim infn→∞〈θn, hj 〉 = −∞ and μ ∈ Vx,y with μj > 0, then 1. implies that
�̃(x, y, θn)→ −∞, a contradiction.

The second assertion follows accordingly.

We now prove

Lemma 7.12

1. Let x ∈ A and y ∈ Cx . Then there exists a maximizing sequence (θn)n of �̃(x, y, ·)
and constants s̃j (for all j = 1, . . . , k for which there exists a μ ∈ Vx,y with
μj > 0) such that

lim
n→∞〈θn, hj 〉 = s̃j ∈ R.

The constants s̃j are bounded uniformly over bounded sets of y ∈ Cx .
In particular, there exists a maximizing sequence (θn)n such that for all j =

1, . . . , k with βj (x) > 0,6

lim
n→∞ exp(〈θn, hj 〉) = sj ∈ R.

2. Let x ∈ A and y �∈ Cx . Then L(x, y) = ∞.

Proof

1. By Lemma 7.11,

−C̃6 = −C̃6(|y|) < 〈θn, hj 〉 ≤ C6 = C6(|y|)

for all n and for all j with μj > 0 for some μ ∈ Vx,y . The first assertion follows
by taking appropriate subsequences.

6Note that here, we also include those j with βj (x) > 0 and μj = 0 for all μ ∈ Vx,y .



246 P. Kratz and E. Pardoux

For the second assertion, we have to consider those j with μj = 0 for all
μ ∈ Vx,y although βj (x) > 0. If lim infn→∞〈θn, hj 〉 = −∞, we take further
subsequences and obtain (with a slight abuse of notation)

lim
n→∞ exp(〈θn, hj 〉) = 0.

2. Let y �∈ Cx and v be the projection of y on Cx . Hence, 0 = 〈y−v, v〉 ≥ 〈y−v, ṽ〉
for all ṽ ∈ Cx . For z = y − v ( �= 0 as y �∈ Cx ), we have 〈z, y〉 = 〈z, z〉 + 〈z, v〉 >
0 and 〈z, hj 〉 ≤ 0 for all j with βj (x) > 0. If we set θn = nz, we obtain
�(x, y, θn)→ ∞.

7.4.2 Equality of L and L

We can now finally establish

Theorem 7.4 For all x ∈ A, y ∈ Rd ,

L(x, y) = L(x, y).

Proof In view of Lemma 7.1, it suffices to prove that L(x, y ≤ L(x, y). We first
note that we have L(x, y) < ∞ if and only if y ∈ Cx by Lemmas 7.12 2. and 7.13.
As the same is true for L(x, y) by definition, we can restrict our attention to the case
y ∈ Cx .

We choose a maximizing sequence (θn)n according to Lemma 7.11 and obtain

lim
n
〈θn, y〉 = L(x, y)+

∑
j

βj (x)(sj − 1); (7.18)

here we set sj = 0 if βj (x) = 0. We now differentiate with respect to θ and obtain
for all n

∇θ �̃(x, y, θn) = y −
∑

j ;βj (x)>0

βj (x)hj exp(〈θn, hj 〉);

hence (by the fact that (θn)n is a maximizing sequence and the limit of ∇θ �̃(x, y, θn)
exists),

lim
n

∇θ �̃(x, y, θn) = y −
∑

j ;βj (x)>0

βj (x)sjhj = 0.

We set,

μ∗
j := βj (x)sj , (7.19)
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in particular

y =
∑
j

μ∗
j hj and μ∗ ∈ Vx,y.

Therefore,

L(x, y) ≤ �(x, μ∗)

=
∑
j

βj (x)− μ∗
j + μ∗

j log
( μ∗j
βj (x)

)

=
∑
j

βj (x)(1 − sj )+ μ∗
j log sj

= L(x, y),

where we have used (7.18) and (7.19) for the last identity. The assertion follows.

From now on, we shall write L(x, y) for the quantity L(x, y) = L(x, y).
We now prove the strict convexity of L(x, ·).

Corollary 7.3 For all x ∈ A, L(x, ·) : Cx → R+ is strictly convex.

Proof For strict convexity, we exclude the case that βj (x) = 0 for all j (as then
L(x, y) = ∞ for all y �= 0 and the assertion is trivial).

Convexity was proven in Lemma 7.7. Assume now that for y, ỹ ∈ Cx and λ ∈
(0, 1),

L(x, λy + (1 − λ)ỹ) = λL(x, y)+ (1 − λ)L(x, ỹ).

In other words,

sup
θ

{
〈θ, λy + (1 − λ)ỹ〉 −

∑
j

βj (x)(e
〈θ,hj 〉 −1)

}

= sup
θ

{
λ
[〈θ, y〉 −∑

j

βj (x)(e〈θ,hj 〉 −1)
]

+ (1 − λ)
[〈θ, ỹ〉 −∑

j

βj (x)(e〈θ,hj 〉 −1)
]}

= λ sup
θ

{
〈θ, y〉 −

∑
j

βj (x)(e〈θ,hj 〉 −1)
}

+ (1 − λ) sup
θ

{
〈θ, ỹ〉 −

∑
j

βj (x)(e
〈θ,hj 〉 −1)

}
.
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Hence, if (θn)n is a maximizing sequence for �̃(x, λy + (1 − λ)ỹ, ·), it is also a
maximizing sequence for �̃(x, y, ·) and �̃(x, ỹ, ·). As in the proof of Theorem 7.4,
this implies

lim
n→∞∇θ �̃(x, y, θn) = y − lim

n→∞
∑
j

βj (x)(e
〈θn,hj 〉 −1) = 0,

lim
n→∞∇θ �̃(x, ỹ, θn) = ỹ − lim

n→∞
∑
j

βj (x)(e
〈θn,hj 〉 −1) = 0.

Hence y = ỹ as required.

7.4.3 Further Properties of the Legendre Fenchel Transform

In this subsection, we assume that the logβj ’s are bounded. In this case Cx = C =
R
d for all x.
We have

Lemma 7.13 Assume that logβj (j = 1, . . . , k) is bounded. Then

1. for all B > 0 exists a constant C7 = C7(B) > 0 such that for all x ∈ A, y ∈ C
with |y| ≤ B,

L(x, y) ≤ C7;

2. for all x ∈ A, L(x, ·) : C → R+ is continuous.

Proof

1. Let x ∈ A, y ∈ C. By Lemma 7.9 and Theorem 7.4 above,7 we obtain

L(x, y) ≤
∑

j,βj (x)>0

βj (x)− μj + μj logμj − μj logβj (x)

≤ k(β + C|y| logC + C|y| log |y| + C|y|| logβ|).

The assertion follows.
2. The assertion follows directly from 1. and Lemma 7.7 1.

7Note that this result is not used for the proof of Theorem 7.4.
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We have moreover

Lemma 7.14 Assume that logβj (j = 1, . . . , k) is bounded. For all ρ > 0, ε > 0,
C8 > 0, there exists a constant B3 = B(C8, ε) such that for all x ∈ A, y ∈ C with
|y| ≤ C8,

sup
|θ |≤B

�̃(x, y, θ) ≥ sup
θ∈Rd

�̃(x, y, θ)− ε = L(x, y)− ε.

Proof We first fix x ∈ A and define the compact set

C̃ := {y ∈ C||y| ≤ C8}.

We fix δ > 0 and define for y ∈ C̃,

z(y, δ) := y +
∑
j

δhj ,

Ny,δ := {
y +

∑
j

αj hj |αj ∈ (−δ, δ)
}
.

For all y ∈ C̃, Ny,δ is relatively open (with respect to C) and y ∈ Ny,δ. Hence there
exists a finite coverN1, . . . , Nn of C̃, where Ni := Nyi,δ for appropriate yi ∈ C̃; we
define zi := z(yi, δ).

From the continuity of L(x, ·) : C → R+ (cf. Lemma 7.13 2.) and the
compactness of C̃, we deduce that for δ small enough and for all y ∈ C̃, v ∈ Ny,δ,

|L(x, v)− L(x, z(y, δ))| < ε

4
. (7.20)

We let θi be almost optimal for zi in the sense that

�̃(x, zi , θi) ≥ L(x, zi)− ε

4
. (7.21)

We now set Bx := maxi |θi | and let y ∈ C̃, say y ∈ Ni . Then, making use
successively of (7.20) and (7.21), we obtain

L(x, y) ≤ L(x, zi)+ ε

4

≤ �̃(x, zi , θi)+ ε

2

= �̃(x, y, θi)+ ε

2
+ 〈θi, zi − y〉. (7.22)
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We have zi − y = ∑
j μjhj for appropriate μj = αj + δ ∈ (0, 2δ) and by

Lemma 7.11 (cf. also Inequality (7.20)), 〈θi, hj 〉 ≤ C6. Hence

〈zi − y, θi〉 =
∑
j

μj 〈hj , θi〉 ≤ 2kC6δ ≤ ε

4
, (7.23)

provided we choose δ such that 8kC6δ ≤ ε. Therefore by Inequalities (7.22)
and (7.23) for all y ∈ C̃,

L(x, y) ≤ �̃(x, y, θi)+ ε (recall that |θi | ≤ Bx). (7.24)

Let now for all x ∈ A, Bx be the bound obtained above belonging to ε
4 .8 Let

furthermore x, x̃ ∈ A with |β(x)− β(x̃)| < δ for some δ > 0, y ∈ C̃, |y| ≤ C8 and
θ ∈ Rd such that �̃(x, y, θ) ≥ −1 (which implies 〈θ, hj 〉 ≤ C6 by Lemma 7.11).
This implies

|�̃(x, y, θ)− �̃(x̃, y, θ)| ≤
∑
j

|βj (x)− βj (x̃)| eC6 <
ε

4
(7.25)

for δ small enough (and independent of x, x̃, y, θ ). Let now be θ̃ be almost optimal
for x̃, y. Using twice (7.25) and once (7.24), we obtain

L(x̃, y) ≤ �̃(x̃, y, θ̃ )+ ε

4

≤ �̃(x, y, θ̃)+ ε

2

≤ sup
|θ |≤Bx

�̃(x, y, θ)+ 3ε

4

≤ sup
|θ |≤Bx

�̃(x̃, y, θ)+ ε

We can cover the compact interval [β, β̄] by finitely many δ̃-neighborhoods

of βi . The assertion follows by taking the maximum of the corresponding Bi

(cf. Footnote 8).

Lemma 7.15 Assume that logβj (j = 1, . . . , k) is bounded. There exist constants
B4 and C9 such that for all, x ∈ A and y ∈ C,

L(x, y) ≤
{
C9 if |y| ≤ B4

C9|y| log |y| if |y| > B4.

8Note that Bx depends on x only through β(x).
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Proof From the formula for L(x, y) and Lemma 7.9, we have

L(x, y) ≤
∑
j

β̄ + C|y| log |y| + C|y|| logβ|

≤ k · (β̄ + C|y| log |y| + C|y|| logβ|).
We also obtain the continuity of L in x

Lemma 7.16 Assume that logβj (j = 1, . . . , k) is bounded and continuous. For
all y ∈ C,

L(·, y) : A→ R+

is continuous. The continuity is uniform over bounded y.

Proof We let y ∈ C with |y| ≤ B, 0 < ε < 1. and x, x̃ ∈ A. Let θ such that

L(x, y) ≤ �̃(x, y, θ)+ ε

2
.

We have by the continuity of the βj and Lemma 7.11,

|�̃(x, y, θ)− �̃(x̃, y, θ)| ≤
∑
j

|βj(x)− βj (x̃)|eC6 <
ε

2

if |x − x̃| < δ for appropriate δ > 0 (independent of x, x̃ ∈ A and y with |y| ≤ B).
Thus,

L(x, y) ≤ �̃(x̃, y, θ)+ ε ≤ L(x̃, y)+ ε.

Reversing the roles of x and x̃ proves the assertion.

Combining Lemmas 7.16 and 7.13, we deduce the

Corollary 7.4 Assume that logβj (j = 1, . . . , k) is bounded and continuous. Then
L : A× R

d → R+ is continuous.

7.4.4 The Rate Function

Recall that for φ : [0, T ] → A, we let

IT (φ) :=
{∫ T

0 L(φ(t), φ′(t))dt if φ is absolutely continuous

∞ otherwise.
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For x ∈ A and φ : [0, T ] → A, let

IT ,x(φ) :=
{
IT (φ) if φ(0) = x

∞ otherwise.

We first have the following statement, which follows readily from point 2 in
Lemma 7.7.

Lemma 7.17 Assume that x ∈ A. If φ solves the ODE (7.2), then IT ,x(φ) = 0.
Conversely, if the ODE (7.2) admits a unique solution Y x and IT ,x(φ) = 0, then
φ(t) = Y x(t) for all t ∈ [0, T ].

In the next statement, B1 refers to the constant appearing in Lemma 7.8.

Lemma 7.18 Assume that βj (j = 1, . . . , k) is bounded.

1. Let K, ε > 0. There exits δ > 0 such that for all φ with IT ,x(φ) ≤ K and for all
finite collections of non-overlapping subintervals of [0, T ], [s1, t1], . . . , [sJ , tJ ],
with

∑
i (ti − si ) = δ,

∑
i

|φ(ti )− φ(si)| < ε.

2. Let K > 0. Then, for all constants B ≥ B1 and for all φ with IT ,x(φ) ≤ K ,

∫ T

0
1{|φ′(t)|≥B}dt <

K

C1B logB
.

Proof

1. Note first that

f (α) := inf
x,y

{
L(x, y)

|y|
∣∣∣ |y| ≥ α

}
→ ∞, (7.26)

as α → ∞ by Lemma 7.8. For g(t) := 1∪j [sj ,tj ] and α = 1/
√
δ, we obtain by

the fact that φ is absolutely continuous

∑
j

|φ(tj )− φ(sj )| ≤
∫ T

0
|φ′(t)|g(t)dt

≤
∫ T

0
α1{|φ′(t)|≤α}g(t)dt

+
∫ T

0
1{|φ′(t)|>α}

L(φ(t), φ′(t))
L(φ(t), φ′(t))/|φ′(t)|g(t)dt
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≤ αδ + IT ,x(φ)

f (α)

≤ √
δ + K

f (1/
√
δ)

→ 0,

as δ → 0.
2. By Lemma 7.8, f (B) ≥ C1 logB for B ≥ B1, where f is again defined as

in (7.26).

∫ T

0
1{|φ′(t)|≥B}dt ≤ 1

B

∫ T

0
|φ′(t)|1{|φ′(t)|≥B}dt

= 1

B

∫ T

0

L(φ(t), φ′(t))|φ′(t)|
L(φ(t), φ′(t))

1{|φ′(t)|≥B}dt

≤ K

Bf (B)
≤ K

C1B logB
.

Note that Lemma 7.18 1. says that the collection of functions φ satisfying IT (φ) ≤
K are uniformly absolutely continuous.

Theorem 7.5 Assume that logβj (j = 1, . . . , k) is bounded and continuous. Let
φ ∈ D([0, T ];A) with IT ,x(φ) < ∞. For all ε > 0, there exists a δ > 0 such that
for

φ̃ : [0, T ] → A with sup
0≤t≤T

|φ̃(t)− φ(t)| < δ,

∣∣∣
∫ T

0

(
L(φ̃(t), φ′(t))− L(φ(t), φ′(t))

)
dt

∣∣∣ < ε.

Proof We choose B ≥ B1 ∨ B4 large enough such that for x ∈ A, y ∈ Cx = C
(independent of x) with |y| ≥ B (cf. Lemmas 7.8 and 7.15),

C1|y| log |y| ≤ L(x, y) ≤ C9|y| log |y|.

As IT ,x(φ) <∞, the set {t|φ′(t) �∈ C} is a Lebesgue null-set and we assume w.l.o.g.
that for all t , φ′(t) ∈ C. We hence obtain that

∫ T

0
L(φ̃(t), φ′(t))1{|φ′(t)|≥B}dt ≤

∫ T

0
C9|φ′(t)| log |φ′(t)|1{|φ′(t)|≥B}dt

≤ C9

C1

∫ T

0
L(φ(t), φ′(t))1{|φ′(t)|≥B}dt.
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From this and Lemma 7.18, we can choose B large enough such that

sup

(∫ T

0
L(φ̃(t), φ′(t))1{|φ′(t)|≥B}dt,

∫ T

0
L(φ(t), φ′(t))1{|φ′(t)|≥B}dt

)
<
ε

4
.

By Lemma 7.16, there exists an δ > 0 such that for all x, x̃ ∈ A with |x − x̃| < δ

and y ∈ C with |y| ≤ B,

|L(x, y)− L(x̃, y)| < ε

2T
.

We obtain for sup0≤t≤T |φ̃(t)− φ(t)| < δ,

∣∣∣
∫ T

0

(
L(φ̃(t), φ′(t))− L(φ(t), φ′(t))

)
dt

∣∣∣

≤
∣∣∣
∫ T

0
L(φ̃(t), φ′(t))1{|φ′(t)|≥B}dt

∣∣∣+
∣∣∣
∫ T

0
L(φ(t), φ′(t))1{|φ′(t)|≥B}dt

∣∣∣

+
∫ T

0

∣∣L(φ̃(t), φ′(t))− L(φ(t), φ′(t))
∣∣1{|φ′(t)|<B}dt

< ε.

7.4.5 I is a Good Rate Function

We first have

Lemma 7.19 For δ > 0, x ∈ A and y ∈ Rd , we define

Lδ(x, y) := sup
θ∈Rd

�̃δ(x, y, θ),

where

�̃δ(x, y, θ) := 〈θ, y〉 − sup
z∈A;|z−x|≤δ

∑
j

βj (z)
(

e〈θ,hj 〉 −1
)
.

Since the βj are bounded and continuous, then

Lδ(x, y) ↑ L0(x, y) = L(x, y)

and Lδ(x, y) is lower semicontinuous in (δ, x, y).
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Proof It is easy to see that �̃δ(x, y, θ) is continuous is (x, y, δ), hence the first
assertion follows. The second assertion follows from the fact that the supremum
of a family of lower semicontinuous functions is lower semicontinuous.

We next establish (recall the metric dD introduced in Sect. 7.2.2)

Lemma 7.20 Let the βj be bounded and continuous. Then, IT is lower semicontin-
uous with respect to the metric dD on D([0, T ];A).
Proof As IT (φ) = ∞ if φ is not absolutely continuous, we can restrict our
attention to sequences of absolutely continuous functions. As the Skorohod topol-
ogy relativized to C([0, T ];A) coincides with the uniform topology (see, e.g., [2,
Section 12, p. 124]), we can consider a sequence of functions φn ∈ C([0, T ];A)
converging to a function φ under the uniform topology. We can furthermore assume
that IT (φn) ≤ K for some K and all n ≥ 1. By Lemma 7.18, the functions φn
are hence uniformly absolutely continuous and therefore the limit φ is absolutely
continuous.

Therefore, for any given δ > 0, there exists a Δ > 0 such that

|s − t| ≤ Δ⇒ |φn(s)− φn(t)| ≤ δ for all n.

We choose Δ smaller if necessary such that T/Δ =: J ∈ N and divide [0, T ] into
subintervals [tj , tj+1], j = 1, . . . , J of length ≤ Δ. We note that for |x ′ − x| ≤ δ,
we have Lδ(x ′, y) ≤ L(x, y). Furthermore, we observe that Lδ(x, ·) is convex as a
supremum of linear functions and hence by Jensen’s Inequality

∫ T

0
L(φn(t), φ

′
n(t))dt ≥

J∑
j=1

∫ tj+1

tj

Lδ(φn(tj ), φ
′
n(t))dt

≥
J∑
j=1

ΔLδ

(
φn(tj ),

φn(tj+1)− φn(tj )

Δ

)
. (7.27)

We now further divide the interval [0, T ] into subintervals of length Δk := Δ2−k ,
k ∈ N, [tkj , tkj+1], j = 1, . . . , Jk := 2kJ and define the functions

φk(t) := φ(tkj ) if t ∈ [tkj , tkj+1], φ
k
(t) := φk(t +Δk).

Note that there exits a sequence δk ↓ 0 such that

|s − t| < Δk ⇒ |φn(s)− φn(t)| < δk for all n.
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Hence by Inequality (7.27) and Lemma 7.19 for all k ∈ N,

lim inf
n→∞

∫ T

0
L(φn(t), φ

′
n(t))dt ≥

Jk∑
j=1

Δk lim inf
n→∞ Lδk

(
φn(t

k
j ),

φn(t
k
j+1)− φn(t

k
j )

Δk

)

≥
∫ T−Δk

0
Lδk

(
φk(t),

φ
k
(t)− φk(t)

Δk

)
dt. (7.28)

As φ is absolutely continuous, we have that for almost all t ∈ [0, T ],

φ
k
(t)− φk(t)

Δk
→ φ′(t) as k → ∞.

We conclude by using Inequality (7.28), Fatou’s Lemma and Lemma 7.19 again:

lim inf
n→∞

∫ T

0
L(φn(t), φ

′
n(t))dt

≥ lim inf
k→∞

∫ T−Δk

0
Lδk

(
φk(t),

φ
k
(t)− φk(t)

Δk

)
dt

≥
∫ T

0
lim inf
k→∞

(
1[0,T−Δk ](t)Lδk

(
φk(t),

φ
k
(t)− φk(t)

Δk

))
dt

≥
∫ T

0
L(φ(t), φ′(t))dt

as required.

We define for K > 0, x ∈ A,

Φ(K) = {
φ ∈ D([0, T ];A)|IT (φ) ≤ K

}
,

Φx(K) =
{
φ ∈ D([0, T ];A)|IT ,x(φ) ≤ K

}
.

We have moreover

Proposition 7.1 Assume that βj (j = 1, . . . , k) are bounded and continuous. Let
furthermore K > 0 and Ã ⊂ A be compact. Then, the set

⋃
x∈Ã

Φx(K)

is compact in C([0, T ];A).
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Proof By Lemma 7.18, the set
⋃
x∈Ã Φx(K) is equicontinuous. As Ã is compact,

the theorem of Arzelà-Ascoli hence implies that
⋃
x∈Ã Φx(K) has compact closure.

Now, the semicontinuity of I (cf. Lemma 7.20) implies that
⋃
x∈Ã Φx(K) is closed,

which ends the proof.

We define for S ⊂ D([0, T ];A),

Ix(S) := inf
φ∈S IT ,x(φ).

Lemma 7.21 Assume that βj (j = 1, . . . , k) are bounded and continuous. Let
F ⊂ C([0, T ];A) be closed. Then Ix(F ) is lower semicontinuous in x.

Proof We let xn → x with lim infn→∞ Ixn(F ) =: K < ∞. For simplicity, we
assume that Ixn(F ) ≤ K + ε for some fixed ε > 0 and for all n. By Proposition 7.1,
we have that for all ε, δ > 0,

F ∩Φxn(K + ε) and F ∩
⋃

|x−y|≤δ
Φy(K + ε)

are compact. By the semicontinuity of IT (·) (cf. Lemma 7.20) and the fact that a
l.s.c. function attains its minimum on a compact set, there exist φn ∈ F such that
Ixn(F ) = IT ,xn(φn) (for n large enough). As the φn are in a compact set, there exists
a convergent subsequence with limit φ, in particular φ(0) = x. As F is closed, we
have φ ∈ F . We use Lemma 7.20 again and obtain

Ix(F ) ≤ IT (φ) ≤ lim inf
n→∞ IT (φn) = lim inf

n→∞ Ixn(F ) = K

as required.

The following result is a direct consequence of Lemma 7.21.

Lemma 7.22 Assume that βj (j = 1, . . . , k) is bounded and continuous. For F ⊂
D([0, T ];A) closed and x ∈ A, we have

lim
ε↓0

inf
y∈A, |x−y|<ε Iy(F ) = Ix(F )

We can now establish the main result of this subsection.

Proposition 7.2 Let the βj be bounded and continuous. For all x, Ix is a good rate
function on C([0, T ];A) ∩ {φ |φ(0) = x}.
Proof It is clear that IT is non-negative asL is non-negative. Furthermore, it is lower
semicontinuous by Lemma 7.20. By Proposition 7.1 its level sets are compact.
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We have moreover

Corollary 7.5 Let the βj be bounded and continuous. For all x ∈ A, IT ,x is a good
rate function on D([0, T ];A) ∩ {φ |φ(0) = x} under both metrics dC and dD .

Proof Since It,x is finite only for absolutely continuous functions, it suffices to
consider sequences in C([0, T ];A) ∩ {φ|φ(0) = x}. Limits of such sequences
(under either metric) are continuous and convergence is equivalent for both metrics
(see, e.g., [2]). Lower semicontinuity follows. Compactness of the level sets follows
by Proposition 7.2 and the fact that the identity maps from (C([0, T ];A), dC) into
(D([0, T ];A), dC) and (D([0, T ];A), dD) are continuous.

7.4.6 A Property of Non-exponential Equivalence

It is worth wondering whether or not {ZN,xNt , 0 ≤ t ≤ T } and {ZN,xt , 0 ≤ t ≤ T }
are exponentially equivalent, whenever xN → x as N → ∞. Indeed, [3] prove
that property for diffusions with small noise and Lipschitz coefficients, and use it
to establish certain results, of which we shall prove analogs below, but without that
exponential equivalence, which fails to hold in our Poissonian case.

Let x, y ∈ A, and consider the processes

Z
N,x
t = x +

k∑
j=1

hj

N
Pj

(
N

∫ t

0
βj (Z

N,x
s )ds

)
,

Z
N,y
t = y +

k∑
j=1

hj

N
Pj

(
N

∫ t

0
βj (Z

N,y
s )ds

)
.

For any δ > 0, as |x − y| → 0, we ask what is the limit, as |x − y| → 0, of

lim sup
N→∞

1

N
logP

(
sup

0≤t≤T
|ZN,xt − Z

N,y
t | > δ

)
?

If that limit is −∞, then we would have the above exponential equivalence. We
now show on a particularly simple example that this is not the case. It is easy to
infer that it in fact fails in the above generality, assuming that the βj ’s are Lipschitz
continuous and bounded. We consider the case d = 1, A = R+, k = 1, β(x) = x,
h = 1. We could truncate β(x) to make it bounded, in order to comply with our
standing assumptions. The modifications below would be minor, but we prefer to
keep the simplest possible notations. Assume 0 < x < y and consider the two
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processes

Z
N,x
t = x + 1

N
P

(
N

∫ t

0
ZN,xs ds

)
,

Z
N,y
t = y + 1

N
P

(
N

∫ t

0
Z
N,y
s ds

)
.

It is plain that 0 < Z
N,x
t < Z

N,y
t for all N ≥ 1 and t > 0. Let ΔN,x,yt = Z

N,y
t −

Z
N,x
t . The law of {ΔN,x,yt , 0 ≤ t ≤ T } is the same as that of the solution of

Δ
N,x,y
t = y − x + 1

N
P

(
N

∫ t

0
Δ
N,x,y
s ds

)
.

We deduce from Theorem 7.9 below (which is established in case of a bounded
coefficient β(x), but it makes no difference here) that

lim inf
N→∞

1

N
logP[ΔN,x,y1 > 1] ≥ − inf

φ(0)=y−x, φ(1)>1
I1,y−x(φ)

≥ −I1,y−x(ψ),

with ψ(t) = y − x + t , hence

I1,y−x(ψ) =
∫ 1

0
L(y − x + t, 1)dt

=
∫ 1

0
[y − x + t − 1 − log(y − x + t)]dt

= y − x + 1/2 − (y − x + 1) log(y − x + 1)+ (y − x) log(y − x)

→ 1/2,

as y − x → 0. This clearly contradicts the exponential equivalence.
We note that the above process ZN,xt can be shown to be “close” (in a sense

which is made very precise in [9]) to its diffusion approximation

X
N,x
t = x +

∫ t

0
XN,xs ds + 1√

N

∫ t

0

√
X
N,x
s dBs,

where {Bt, t ≥ 0} is standard Brownian motion. One can study large deviations of
this diffusion process from its Law of Large Numbers limit (which is the same as
that of ZN,xt ). The rate function on the time interval [0, 1] is now

I (φ) =
∫ 1

0

(φ′(t)− φ(t))2

φ(t)
dt.
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Let againψ(t) = y−x+t , now with 0 = x < y. I (ψ) = log(1+y)−log(y)−3/2+
y → +∞, as y → 0. We see here that the large deviations behaviour of the solution
of the Poissonian SDE and of its diffusion approximation differ dramatically, as was
already noted by Pakdaman [10] (see also the references in this paper).

7.5 Lower Bound

We first establish the LDP lower bound under the assumption that the rates are
bounded away from zero, or in other words the logβj ’s are bounded. From this, we
will derive later the general result.

7.5.1 LDP Lower Bound If the Rates Are Bounded Away from
Zero

We first note that if the βj are bounded away from zero, then the convex cone Cx is
dependent of x, Cx = C for all x. Note that this implies that the “domain” A of the
process cannot be bounded.

We require a LDP for linear functions. This follows from the LLN (Theorem 7.3).

Proposition 7.3 Assume that logβj (j = 1, . . . , k) is bounded and continuous.
For any ε > 0, δ > 0 there exists an ε̃ > 0 such that for x ∈ A, y ∈ C and
μ ∈ Vx,y = Ṽy ,

lim inf
N→∞

1

N
log

(
inf

z∈A;|z−x|<ε̃
P

[
sup

t∈[0,T ]
|ZN,z(t)− φx(t)| < ε

])

≥ −
∫ T

0
�(φx(t), μ)dt − δ,

where

φx(t) := x + ty = x + t
∑
j

μjhj .

Proof We define

FN,z :=
{

sup
t∈[0,T ]

|ZN,z(t)− φz(t)| < ε

2

}

and let ε̃ < ε1 = ε/2. Let now ξT = ξ
N,z
T = dP̃

dP
|FT be given as in Theorem 7.15

for initial value z and constant rates β̃j = μj . Then, with the notation ẼFN,z [X] :=
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Ẽ[X|FN,z] and (recall that ξT �= 0 P̃-almost surely)

X
N,z
T := XT := log ξ−1

T =
∑
τ≤T

[
logβj(τ)(Z

N,z(τ−))− logμj(τ)
]

−N
∑
j

∫ T

0

(
βj (Z

N,z(t))− μj
)
dt,

lim inf
N→∞

1

N
log

(
inf

z∈A, |x−z|<ε̃
P
[

sup
t∈[0,T ]

|ZN,z(t)− φx(t)| < ε
])

≥ lim inf
N→∞

1

N
log inf

z∈A, |x−z|<ε̃
P[FN,z]

= lim inf
N→∞

1

N
inf

z∈A, |x−z|<ε̃
logP[FN,z]

≥ lim inf
N→∞

1

N
inf

z∈A, |x−z|<ε̃
log Ẽ

[
ξ−1
T 1FN,z

]

= lim inf
N→∞

1

N
inf

z∈A, |x−z|<ε̃
log

(
P̃[FN,z]ẼFN,z [exp(XT )]

)

≥ lim inf
N→∞

1

N
inf

z∈A, |x−z|<ε̃
log P̃[FN,z]

+ lim inf
N→∞

1

N
inf

z∈A, |x−z|<ε̃
log ẼFN,z [exp(XT )]

≥ lim inf
N→∞ inf

z∈A, |x−z|<ε̃
ẼFN,z

[XT
N

]
, (7.29)

where we have used Corollary 7.10 for the second inequality, Theorem 7.3 and
Jensen’s inequality on the last line. Note the independence of the constants C̃1, C̃2
of z in Theorem 7.3 and hence

P̃[FN,z] → 1 as N → ∞ independently of z.

We have

1

P̃[FN,z] Ẽ
[
1FN,zT

∑
j

μj
] = T

∑
j

μj .



262 P. Kratz and E. Pardoux

By the fact that the βj ’s are bounded and continuous and by Theorem 7.3, we
have for j = 1, . . . , k,

sup
t∈[0,T ]

|βj(ZN,z(t))− βj (φ
z(t))| → 0 P̃− a.s.

as N → ∞ uniformly in z. This implies

1

P̃[FN,z] Ẽ
[
1FN,z

∫ T

0

∑
j

βj (Z
N,z(t))dt

]
−→

∑
j

∫ T

0
βj (φ

z(t))dt

as N → ∞ uniformly in z.
Let us now define the following processes. For z ∈ A, j = 1, . . . , k and 0 ≤

t1 < t2 ≤ T let

Y
N,z,t1,t2
j := 1

N
· #jumps of ZN,z in direction hj in [t1, t2].

Let furthermore τj ∈ [0, T ] denote the jump times of ZN in direction hj ; we
obtain

1

P̃[FN,z]
∑

j ;μj>0

Ẽ

[ 1

N
1FN,z

∑
τj

logμj
]

= 1

P̃[FN,z]
∑

j ;μj>0

logμj
{
Ẽ
[
Y
N,z,0,T
j

]
P̃
[
FN,z

]+ C̃ov(1FN,z , Y
N,z,0,T
j )

}

→ T
∑
j

μj logμj , (7.30)

since, for a given set F ,

Ẽ[YN,z,t1,t2j ] = (t2 − t1)μj

Ṽar[YN,z,t1,t2
j

] = (t2 − t1)μj

|C̃ov(1F , Y
N,z,t1,t2
j )| ≤

√
Ṽar[1F ]

√
Ṽar[YN,z,t1,t2j ] =

√
P̃[F ] − P̃[F ]2

√
(t2 − t1)μj .

We now define the set

F̃ N,z :=
{

sup
t∈[0,T ]

|ZN,z(t)− φz(t)| < εN

}
for εN := ε ∧ 1

N1/3 ;
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we have (for N large enough)

P̃[F̃ N,z] ≥ 1 − C̃1 exp
(−NC̃2(εN)

) −→ 1

as N → ∞ uniformly in z by Theorem 7.3. We furthermore let Ā ⊂ A be compact
such that for all z, |z − x| < ε̃ and all t ∈ [0, T ], φz(t) ∈ Ā and ZN,z(t) ∈ Ā

on FN,z. As the logβj are bounded and uniformly continuous, there exit constants
δ̃N > 0 with δ̃N ↓ 0 such that

x̃, x̄ ∈ Ā, |x̃ − x̄| < 2

N1/3
⇒ | logβj (x̃)− logβj (x̄)| < δ̃N.

We define μ̄ = maxj μj ,

M = M(N) := 3TN1/3kh̄μ̄+ 14

and divide the interval [0, T ] into M subintervals [tr , tr+1] (r = 0, . . . ,M − 1,
tr = tr (N)) of length Δ = Δ(N), i.e. for N ≥ N0 independent of z large enough,

Δ <
1

N1/3kμ̄h̄
.

For j , r = 0, . . . ,M − 1 and τj , t ∈ [tr , tr+1], since for |t − s| < 1
N1/3kμ̄h̄

, |φz(t)−
φz(s)| < 1

N1/3 , we have on F̃ N,z

|ZN,z(τj−)− φz(t)| ≤ |ZN,z(τj−)− φz(τj )| + |φz(τj )− φz(t)| ≤ 2

N1/3 ,

and hence

inf
t∈[tr ,tr+1]

logβj (φz(t))− δ̃N ≤ logβj (ZN,z(τj−)) ≤ sup
t∈[tr ,tr+1]

logβj (φz(t))+ δ̃N .

We compute

1

P̃[FN,z] Ẽ
[ 1

N
1FN,z

∑
τ

logβj(τ)(Z
N,z(τ−))

]

= 1

P̃[FN,z]
∑

j, μj>0

M−1∑
r=0

Ẽ

[ 1

N
1
F̃ N,z

∑
τj∈[tr ,tr+1)

logβj (ZN,z(τj−))
]

+ 1

P̃[FN,z]
∑

j, μj>0

M−1∑
r=0

Ẽ

[ 1

N
1
FN,z\F̃ N,z

∑
τj∈[tr ,tr+1)

logβj (ZN,z(τj−))
]
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≤ 1

P̃[FN,z]
∑

j, μj>0

M−1∑
r=0

(
sup

t∈[tr ,tr+1)

logβj (φz(t))+ δ̃N

)
Ẽ

[
1F̃ N,zY

N,z,tr ,tr+1
j

]

+ 1

P̃[FN,z]
∑

j, μj>0

M−1∑
r=0

log β̄Ẽ
[
1
FN,z\F̃ N,zY

N,z,tr ,tr+1
j

]

≤ 1

P̃[FN,z]
∑

j, μj>0

M−1∑
r=0

sup
t∈[tr ,tr+1)

logβj (φ
z(t))

{
Ẽ
[
1F̃ N,z

]
Ẽ
[
Y
N,z,tr ,tr+1
j

]

+ C̃ov(1F̃ N,z , Y
N,z,tr ,tr+1
j )

}

+ 1

P̃[FN,z]
∑

j, μj>0

M−1∑
r=0

log β̄
{
Ẽ
[
1
FN,z\F̃ N,z

]
Ẽ
[
Y
N,z,tr ,tr+1
j

]

+ C̃ov(1
FN,z\F̃ N,z , Y

N,z,tr ,tr+1
j )

}

+ 1

P̃[FN,z] δ̃Nkμ̄T

≤ P̃[F̃ N,z]
P̃[FN,z]

∑
j, μj>0

μj

M−1∑
r=0

Δ sup
t∈[tr,tr+1)

logβj (φz(t))

+ 1

P̃[FN,z]
{

log β̄
∑

j, μj>0

M−1∑
r=0

(
|C̃ov(1F̃ N,z , Y

N,z,tr ,tr+1
j )|

+ |C̃ov(1FN,z\F̃ N,z , Y
N,z,tr ,tr+1
j )|

)

+ δ̃Nkμ̄T + P̃[FN,z \ F̃ N,z]kμ̄T log β̄
}

(7.31)

=: SN,z + U
N,z
,

where S
N,z

and U
N,z

are the first respectively the second term in Inequality (7.31).
In a similar fashion we obtain

1

P̃[FN,z] Ẽ
[ 1

N
1FN,z

∑
τ

logβj(τ)(Z
N,z(τ−))

]

≥ P̃[F̃ N,z]
P̃[FN,z]

∑
j, μj>0

μj

M−1∑
r=0

Δ inf
t∈[tr,tr+1)

logβj (φ
z(t))
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+ 1

P̃[FN,z]
{

logβ
∑

j, μj>0

M−1∑
r=0

(
|C̃ov(1F̃ N,z , Y

N,z,tr ,tr+1
j )|

+ |C̃ov(1
FN,z\F̃ N,z , Y

N,z,tr ,tr+1
j )|

)

− δ̃Nkμ̄T + P̃[FN,z \ F̃ N,z]kμ̄T logβ
}

=: SN,z + UN,z;

we first note that U
N,z
, UN,z → 0 as N → ∞ uniformly in z, since δ̃N → 0 and

P̃[FN,z \ F̃ N,z] → 0 as N → 0 uniformly in z. Furthermore, as (up to a factor

which converges to 1 uniformly in z) S
N,z

and SN,z are upper respectively lower
Riemann sums, we obtain

S
N,z
, SN,z →

∑
j

μj

∫ T

0
logβj (φz(t))dt (7.32)

as N → ∞; since

|SN,z − SN,z| ≤ 2
P̃[F̃ N,z]
P̃[FN,z]kμ̄δ̃N → 0

uniformly in z, the convergence in (7.32) is likewise uniform in z.
The uniform convergence implies (cf. (7.29)–(7.30) and the preceding discus-

sion) that

lim inf
N→∞

1

N
log

(
inf

z∈A, |x−z|<ε̃
P
[

sup
t∈[0,T ]

|ZN,z(t)− φx(t)| < ε
])

≥ − sup
z∈A, |x−z|<ε̃

∫ T

0
�(φz(t), μ)dt

In combination with the uniform continuity of �(·, μ) (recall the boundedness of the
logβj ) this proves the assertion.

The main building block for the lower bound is the following result.

Theorem 7.6 Assume that logβj (j = 1, . . . , k) is bounded and continuous. Let
φ ∈ D([0, T ];A) with φ(0) = x and ε > 0. Then,

lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,x(t)− φ(t)| < ε

]
≥ −IT ,x(φ).

The convergence is uniform in x ∈ A.
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Proof We can w.l.o.g. assume that IT ,x(φ) < ∞ (and hence φ is absolutely
continuous) as else the assertion is trivial. We approximate the function φ by a
continuous piecewise linear function and then apply the LDP for linear functions
to each of these linear functions. To this end, we let δ > 0 and divide the interval
[0, T ] into J subintervals of length Δ = T/J , [tr−1, tr ] (r = 1, . . . , J ) such that
the resulting piecewise linear approximation

φ̃(t) = φ(tr−1)+ t − tr−1

Δ
(φ(tr )− φ(tr−1))

satisfies

sup
t∈[0,T ]

|φ(t)− φ̃(t)| < ε

2

(recall that φ is continuous).
We now apply Theorem 7.5 twice (in Inequalities (7.33) and (7.35)) and choose

J large enough in order to assure

∫ T

0
L(φ(t), φ′(t))dt =

J∑
r=1

∫ tr

tr−1

L(φ(t), φ′(t))dt

≥
J∑
r=1

∫ tr

tr−1

L(φ(tr−1), φ
′(t))dt − δ

4
(7.33)

≥ Δ

J∑
r=1

L
(
φ(tr−1),

Δφ(tr )

Δ

)
− δ

4
(7.34)

≥
J∑
r=1

∫ tr

tr−1

L
(
φ̃(t), φ̃′(t)

)
dt − δ

2
, (7.35)

where

Δφ(tr ) := φ(tr )− φ(tr−1).

Note that for Inequality (7.34), we have applied Jensen’s inequality and the fact that
L is convex in its second argument (cf. Corollary 7.3). As IT ,x(φ̃) <∞, this implies

Δφ(tr ) ∈ C for all r.

We note that by the continuity of L(·, y), μ∗(x, y) (the minimizing μ ∈ Vx,y = Ṽy
for �(x, ·)) is “almost optimal” for all x̃ sufficiently close to x (in the sense that
�(x̃, μ∗(x, y)) is close to L(x̃, y)). By dividing each interval [tr−1, tr ] into further
subintervals [sj−1, sj ] if necessary, we can hence represent the directionsΔφ(tk)/Δ
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by

μj ∈ Vφ̃(t),Δφ(tr)/Δ = ṼΔφ(tr )/Δ

in such a way that

L
(
φ̃(t),

Δφ(tr )

Δ

)
≥ �(φ̃(t), μj )− δ

4T
for all t ∈ [sj−1, sj ].

For simplicity of exposition, we assume that this further subdivision of the intervals
[tr−1, tr ] is not required and denote the “almost optimal” μ’s by μr (r = 1, . . . , J ).
Hence

∫ T

0
L(φ(t), φ′(t))dt ≥

J∑
r=1

∫ tr

tr−1

�(φ̃(t), μr )− 3δ

4
. (7.36)

Choose now ε̃ = ε̃J−1 according to Proposition 7.3 corresponding to ε/2,
δ/(4J ), initial value φ̃(tJ−1) and time-horizon Δ. Using the Markov property of
ZN , we compute

P

[
sup

t∈[0,T ]
|ZN,x(t)− φ(t)| < ε

]
≥ P

[
sup

t∈[0,tJ−1]
|ZN,x(t)− φ̃(t)| < ε̃

]

· inf
z∈A;|z−φ̃(tJ−1)|<ε̃

P

[
sup

t∈[tJ−1,T ]
|ZN,z(t)− φ̃(t)| < ε

2

]
;

here, we denote (by a slight abuse of notation) the process starting at z at time tJ−1
by ZN,z. Proposition 7.3 implies

lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,x(t)− φ(t)| < ε

]

≥ lim inf
N→∞

1

N
logP

[
sup

t∈[0,tJ−1]
|ZN,x(t)− φ̃(t)| < ε̃J−1

]

+ lim inf
N→∞

1

N
log

(
inf

z∈A;|z−φ̃(tJ−1)|<ε̃
P

[
sup

t∈[tJ−1,T ]
|ZN,z(t)− φ̃(t)| < ε

2

])

≥ lim inf
N→∞

1

N
logP

[
sup

t∈[0,tJ−1]
|ZN,x(t)− φ̃(t)| < ε̃J−1

]

−
∫ T

tJ−1

�(φ̃(t), μJ )dt − δ

4J
.
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Iterating this procedure, we obtain

lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,x(t)− φ(t)| < ε

]
≥ −

J∑
r=1

∫ tr

tr−1

�(φ̃(t), μr)dt − δ

4

and the assertion follows from Inequality (7.36) if we let δ → 0.
We note that the convergence is uniform in x by the uniformity in Proposition 7.3.

Theorem 7.7 Assume that logβj (j = 1, . . . , k) is bounded and continuous. Let
G ⊂ D([0, T ];A) be open and x ∈ A. Then,

lim inf
N→∞

1

N
logP[ZN,x ∈ G] ≥ − inf

φ∈G, IT ,x(φ).

The convergence is uniform in x ∈ A.

Proof Let infφ∈G IT ,x(φ) =: I∗ < ∞; hence, for δ > 0, there exists a φδ ∈ G

(φ(0) = x) with IT ,x(φδ) ≤ I∗ + δ. For small enough ε = ε(φδ) > 0, we have

{
φ ∈ D([0, T ];A)| sup

t∈[0,T ]
; |φδ(t)− φ(t)| < ε

}
⊂ G

and therefore

P

[
sup

t∈[0,T ]
|ZN,x(t)− φδ(t)| < ε

]
≤ P[ZN,x ∈ G].

This implies by Theorem 7.6 that for all δ > 0,

lim inf
N→∞

1

N
logP[ZN,x ∈ G] ≥ lim inf

N→∞
1

N
logP

[
sup

t∈[0,T ]
|ZN,x(t)− φδ(t)| < ε

]

≥ −IT ,x(φδ)
≥ −I∗ − δ.

This implies

lim inf
N→∞

1

N
logP[ZN,x ∈ G] ≥ −I∗

as desired.
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We obtain the following result.

Corollary 7.6 Assume that logβj (j = 1, . . . , k) is bounded and continuous. Then
for all φ ∈ D([0, T ];A) with φ(0) = x and ε, δ > 0, there exists an ε̃ > 0 such
that

lim inf
N→∞

1

N
log

(
inf

z∈A;|x−z|<ε̃
P

[
sup

t∈[0,T ]
|ZN,z − φ(t)| < ε

])
≥ −IT ,x(φ)− δ.

Proof We assume w.l.o.g. that IT ,x(φ) < ∞. By Theorem 7.7, there exists an N0
and ε̃ such that for N ≥ N0 and z with |z− x| < ε̃,

1

N
logP

[
sup

t∈[0,T ]
|ZN,z − φ(t)| < ε

]
≥ − inf

φ̃:‖φ−φ̃‖<ε
IT ,x(φ̃)− δ ≥ −IT ,x(φ)− δ.

The assertion follows.

7.5.2 LDP Lower Bound with Vanishing Rates

In the following, we drop the assumption that the log-rates are bounded. Instead, we
rather consider situations, where Assumption 7.2 is satisfied.

We start by some preliminary considerations and assume that Assump-
tion 7.2 (A1) and (A2) are satisfied. We note that there exists a constant α > 0
such that for all x ∈ A there exists a i ≤ I such that B(x, α) ⊂ Bi . Indeed, assume
that this is incorrect and consider a sequence of points xn ∈ A such that B(xn, 1/n)
is not contained in any Bi . W.l.o.g., we can assume that xn → x ∈ A (recall that A
is compact). As x ∈ Bi0 for some i0, we have B(xn, 1/n) ⊂ Bi0 for n large enough,
a contradiction.

Lemma 7.23 Assume that βj (j = 1, . . . , k) is bounded and that Assump-
tion 7.2 (A1) and (A2) are satisfied. Then, for T > 0, K > 0, there exists a
J = J (T ,K) ∈ N such that for all φ ∈ D([0, T ];A) with IT (φ) ≤ K , there
exist

0 = t0 < t1 < · · · < tJ = T and i1, . . . , iJ such that φ(t) ∈ Bir for t ∈ [tr−1, tr ].

Furthermore, for r = 1, . . . , J ,

dist(φ(tr−1), ∂Bir ) ≥ α and dist(φ(t), ∂Bir ) ≥ α/2 for t ∈ [tr−1, tr ]

for α as before.
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Proof By the considerations above, we have B(x, α) ⊂ Bi1 for an appropriate i1.
We define

t̃1 := inf{t ≥ 0|B(φ(t), α/2) �⊂ Bi1} ∧ T > 0.

Now, there exists an i2 such that B(φ(t1), α) ⊂ Bi2 . If t̃1 < T , we define

t̃2 := inf{t ≥ t1|B(φ(t), α/2) �⊂ Bi2} ∧ T > t̃1.

In the same way, we proceed. By the uniform absolute continuity (Lemma 7.18) of
all φ with IT (φ) ≤ K , we have

t̃r − t̃r−1 ≥ δ for a constant δ > 0 independent of φ.

The assertion hence follows for J := 3T
δ
4 + 1 and tr := rδ (r = 1, . . . , J − 1),

tJ := T .

We now define a function φη which is close to a given function φ with
IT (φ) <∞. We assume that Assumption 7.2 (A) holds. Hence, for x ∈ Bi ∩ A
and t ∈ (0, λ2),

d(x + tvi , ∂A) > λ1t .

Note that λ1 ≤ 1. Let η > 0 be small. We define for r = 1, . . . , J , with the notation∑0
j=1 . . . = 0,

ηr := η

r∑
j=1

( 3

λ1

)j−1
.

• For r = 1, . . . , J , t ∈ [
tr−1 + ηr−1, tr−1 + ηr

]
,

φη(t) := φ(tr−1)+ η

r−1∑
j=1

( 3

λ1

)j−1
vij +

(
t − tr−1 − ηr−1

)
vir .

• For r = 1, . . . , J , t ∈ [
tr−1 + ηr , tr + ηr

]
,

φη(t) := φ
(
t − ηr

)+ η

r∑
j=1

( 3

λ1

)j−1
vij .
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We make the following assumptions on η:

ηJ = η

J∑
r=1

( 3

λ1

)r−1 ≤ α

4
∧ min
r=1,...,J

|tr − tr−1| ∧ λ2.

Therefore, we have the following properties for φη:

• For r = 1, . . . , J , t ∈ [
tr−1 + ηr−1, tr−1 + ηr

]
,

|φ(t)−φη(t)| ≤ |φ(t)−φ(tr−1)|+ηr−1 + (ηr −ηr−1) = Vtr−tr−1(φ)+ηr → 0

as η → 0, where V·(φ) is the modulus of continuity of φ. Similarly, for r =
1, . . . , J , t ∈ [

tr−1 + ηr, tr + ηr
]
,

|φ(t) − φη(t)| ≤ |φ(t)− φ(t − ηr)| + ηr = Vηr (φ)+ ηr → 0

as η→ 0.
• For r = 1, . . . , J , t ∈ [

tr−1 + ηr−1, tr−1 + ηr
]
,

dist(φη(t), ∂Bir ) ≥ dist(φ(tr−1), ∂Bir )− ηr ≥ α − α

4
.

Similarly, for r = 1, . . . , J , t ∈ [
tr−1 + ηr , tr + ηr

]
, hence t − ηr ∈ [tr−1, tr ],

dist(φη(t), ∂Bir ) ≥ dist(φ(t − ηr), ∂Bir )− ηr ≥ α

2
− α

4
.

Hence, for r = 1, . . . , J , t ∈ [
tr−1 + ηr−1, tr + ηr

]
,

dist(φη(t), ∂Bir ) ≥
α

4
.

• For t ∈ [0, η],

dist(φη(t), ∂A) ≥ tλ1. (7.37)

For t ∈ [
η, T + ηJ

]
,

dist(φη(t), ∂A) ≥ λ1η. (7.38)

This can be seen by induction on r = 1, . . . , J (the induction hypothesis is clear,
cf. Inequality (7.37)). For r = 1, . . . , J , we have (by induction hypothesis and
the assumptions on η)

φη
(
tr−1 + ηr−1

)
∈ Bir , and for r ≥ 2, dist

(
φη

(
tr−1 + ηr−1

)
, ∂A

)
≥ ηλ1.
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From Assumption 7.2 (A3), the distance of φη(t) to the boundary is increasing
for t ∈ [

tr−1 + η
∑r−1

j=1

( 3
λ1

)j−1
, tr−1 + η

∑r
j=1

( 3
λ1

)j−1], and is at least

(
t −

(
tr−1 + η

r−1∑
j=1

( 3

λ1

)j−1)) · λ1 ∨ ηλ1.

In particular,

dist
(
φη

(
tr−1 + η

r∑
j=1

( 3

λ1

)j−1)
, ∂A

)
≥ ηλ1

( 3

λ1

)r−1
.

For t ∈ [
tr−1 + η

∑r
j=1

( 3
λ1

)j−1
, tr + η

∑r
j=1

( 3
λ1

)j−1]
, we have

φη(t) = φ
(
t − η

r∑
j=1

( 3

λ1

)j−1)+ η
( 3

λ1

)r−1
vir + η

r−1∑
j=1

( 3

λ1

)j−1
vij

= φ̄(t)+ η

r−1∑
j=1

( 3

λ1

)j−1
vij

and therefore (by elementary calculus and the fact that |vi | ≤ 1)

dist(φη(t), ∂A) ≥ dist(φ̄(t), ∂A)−
∣∣∣η

r−1∑
j=1

( 3

λ1

)j−1
vij

∣∣∣

≥ η

(
3

λ1

)r−1

λ1

(
1 − 1r≥2

2

)

≥ ηλ1.

We now have

Lemma 7.24 Assume that Assumption 7.2 holds. Let K > 0 and ε > 0. Then there
exists an η0 = η0(T ,K, ε) > 0 such that for all φ ∈ D([0, T ];A) with IT (φ) ≤ K

and all η < η0,

IT (φ
η) ≤ IT (φ)+ ε,

where φη(t) is defined as above.
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Proof We first use Lemma 7.2.3 and chose η < η1 small enough (independent of
i, φ) such that

J∑
r=1

∫ tr−1+ηr

tr−1+ηr−1

L(φη(t), (φη)′(t))dt =
J∑
r=1

Iηr−ηr−1(φ) <
ε

2
.

We now denote by μ∗(t) the optimal μ corresponding to (φ(t), φ′(t))
(cf. Lemma 7.10). We let r = 1, . . . , J and t ∈ [tr−1 + ηr , tr + ηr ] and note
that (φη)′(t) = φ′(t − ηr). By Theorem 7.4, we have

L(φη(t), φ′(t − ηr)) ≤ �(φη(t), μ∗(t − ηr)). (7.39)

By the Lipschitz continuity of the βj , we have

|βj(φη(t))− βj (φ(t − ηr))| ≤ δK(η) (7.40)

where δK(η) is independent of φ and δK(η)→ 0 as η→ 0. We deduce from (7.39)
and (7.40)

L(φη(t), φ′(t − ηr))− L(φ(t − ηr), φ
′(t − ηr)) ≤ kδK(η)

+
∑
j

μ∗
j (t − ηr) log

βj (φ(t − ηr))

βj (φη(t))
. (7.41)

Let

ṽir =
( 3

λ1

)r−1
vir +

r−1∑
j=1

( 3

λ1

)j−1
vij , and v̂ir =

ṽir

|ṽir |
∈ C1,ir .

By Assumption 7.2 (B4), there exists a constant λ4 > 0 such that for z ∈ Bir and
η < η2 ≤ η1 small enough (note that η2 depends on λ1 and λ2 but not directly on
φ, except throughK),

βj (z) < λ4 ⇒ βj (z+ ηṽir ) ≥ βj (z),

hence

log
βj (φ(t − ηr))

βj (φη(t))
< 0 if βj (φ(t − ηr)) < λ4. (7.42)
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If βj (φ(t − ηr)) ≥ λ4 (recall the definition of δK(η) and choose η < η3 < η2 small
enough such that δK(η) < λ4/2)

log
βj (φ(t − ηr))

βj (φη(t))
≤ log

βj (φ(t − ηr))

βj (φ(t − ηr))− δK(η)

≤ log
λ4

λ4 − δK(η)

= log
1

1 − δK(η)/λ4

≤ 2δK(η)

λ4
, (7.43)

since log(1/(1 − x)) < 2x for 0 < x ≤ 1/2.
From Lemmas 7.8 and 7.10, there exist (universal, i.e., independent of x)

constants B ≥ B1 ∨ B2, B > 1, C1, C3 such that for |y| ≥ B, and x ∈ A,

L(x, y) ≥ C1|y| log |y|, (7.44)

|μ∗| = |μ∗(x, y)| ≤ C3|y|. (7.45)

Hence if |φ′(t − ηr)| ≥ B, using (7.41)–(7.43) and (7.45) for the first inequality
and (7.44) for the second, we get

L(φη(t), φ′(t − ηr))− L(φ(t − ηr), φ
′(t − ηr )) ≤ kδK(η)+ kC3|φ′(t − ηr)|2δK (η)

λ4

≤ kδK(η)+ kC3
2δK (η)L(φ(t − ηr), φ

′(t − ηr ))

C1λ4 log |φ′(t − ηr )| . (7.46)

If however |φ′(t − ηr)| < B, Lemma 7.10 implies similarly as before that |μ∗(t −
ηr)| ≤ C3B. From (7.41), we deduce

L(φη(t), φ′(t−ηr))−L(φ(t−ηr), φ′(t−ηr)) ≤ kδK(η)+kC3B
2δK(η)

λ4
. (7.47)

Inequalities (7.46) and (7.47) imply

L(φη(t), φ′(t − ηr))− L(φ(t − ηr), φ
′(t − ηr)) ≤ δ1,K(η)

+ δ2,K(η)L(φ(t − ηr), φ
′(t − ηr))
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with constants δi,K(η) → 0 as η → 0. We can hence choose η < η4 < η3 small
enough such that

J∑
r=1

∫ tr+ηr

tr−1+ηr
L(φη(t), φ′(t − ηr))dt −

J∑
r=1

∫ tr+ηr

tr−1+ηr
L(φ(t − ηr), φ′(t − ηr))dt < ε

2
.

This yields the result.

The following lemma is the main difference with the corresponding result of [14].
We transform the LLN from Assumption 7.2 (C) to a LDP lower bound for linear
functions following the vector vi near the boundary.

In the next statement, α is the exponent which appears in the Assumption 7.2
(C).

Lemma 7.25 Assume that Assumption 7.2 holds. Let i ≤ I1, x ∈ A ∩ Bi and
xN ∈ AN ∩ Bi such that

lim sup
N→∞

|xN − x|Nα < 1.

Let furthermore ε > 0 and define μi , φx and η0 as in Assumption 7.2 (C). Then for
all η small enough, all ε,

lim inf
N→∞

1

N
logP

[
sup
t∈[0,η]

|ZN,xN (t)− φx(t)| < ε
]
≥ −

∫ η

0
�(φx(t), μi )dt,

and the above convergence is uniform in x ∈ A.

Proof The proof follows the same line of reasoning as the proof of Proposition 7.3
but is technically more involved.

For simplicity, let N be large enough and η < η0 (for η0 as in Assump-
tion 7.2 (C)) be small enough such that φx

N
(t) ∈ Bi for all t ≤ η. We furthermore

let

ε̃ < ε1 := ε ∧ λ1η,

and define the set

FN :=
{

sup
t∈[0,η]

|ZN,xN (t)− φx(t)| < ε̃
}
.

Let

ξη = ξNη = dP̃

dP
|Fη
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be given as in Theorem 7.15 for the rates β̃j = μ̃ij . We note that due to
Assumption 7.2 (C),

P̃[FN ] ≥ 1 − δ(N, ε̃)→ 1 as N → ∞. (7.48)

From Corollary 7.10, (7.48) and Jensen’s inequality, we deduce that

lim inf
N→∞

1

N
logP

[
sup
t∈[0,η]

|ZN,xN (t)− φx(t)| < ε
]

≥ lim inf
N→∞

1

N
logP

[
FN

]

≥ lim inf
N→∞

1

N
log Ẽ

[
ξ−1
η 1FN

]

= lim inf
N→∞

1

N
log

{
P̃
[
FN

]
ẼFN

[
exp(Xη)

]}

≥ lim inf
N→∞

1

N
log P̃

[
FN

]+ lim inf
N→∞

1

N
log ẼFN

[
exp(Xη)

]

≥ lim inf
N→∞ ẼFN

[Xη
N

]
, (7.49)

where ẼFN [X] := Ẽ[X|FN ] and

XNη := Xη := log ξ−1
η =

∑
τ≤η

[
logβj(τ)(Z

N,xN (τ−)− log μ̃ij (τ )(Z
N,xN (τ−)

]

+N
∑
j

∫ η

0

(
μ̃ij (Z

N,xN (t)− βj (Z
N,xN (t))

)
dt.

We have dist(φx
N
(t), ∂A) ≥ λ1t (cf. Assumption 7.2 (A3)) and therefore on FN ,

dist(ZN,x
N

(t), ∂A) > λ1t − ε̃ for t ∈
[ ε̃
λ1
, η

]
.

Consequently

μ̃ij (Z
N,xN (t)) = μij for all j and for all t ∈

[ ε̃
λ1
, η

]
.
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We obtain

1

P̃[FN ] Ẽ
[
1FN

∫ η

0

∑
j

μ̃ij (Z
N,xN (t))dt

]

= 1

P̃[FN ]
(
Ẽ

[
1FN

∫ η

ε̃/λ1

k∑
j=1

μ̃ij (Z
N,xN (t))dt

]

+ Ẽ

[
1FN

∫ ε̃/λ1

0

k∑
j=1

μ̃ij (Z
N,xN (t))dt

])

=:
k∑
j=1

∫ η

ε̃/λ1

μijdt +XN1 (ε̃), (7.50)

since μij (Z
N,xN (t)) = μij on FN . We note that for all N ,

|XN1 (ε̃)| ≤
ε̃

λ1
kμ̄ where μ̄ := max

j=1,...,k
μij . (7.51)

Since the βj ’s are bounded and continuous and by Theorem 7.3, we have for
j = 1, . . . , k,

sup
t∈[0,η]

|βj (ZN,xN (t))− βj (φ
x(t))| → 0 a.s. as N → ∞.

Combined with (7.48), this implies

1

P̃[FN ] Ẽ
[
1FN

∫ η

0

k∑
j=1

βj (Z
N,xN (t))dt

]
−→

k∑
j=1

∫ η

0
βj (φ

x(t))dt (7.52)

as N → ∞.
Let us now define the following processes. For z ∈ A, j = 1, . . . , k and 0 ≤ s <

t ≤ η let Z̄N,z solves Eq. (7.3) with constant rates μij under P̃, and

Y
N,z,s,t
j := 1

N
· #jumps of ZN,z in direction hj in [s, t],

Ȳ
N,z,s,t
j := 1

N
· #jumps of Z̄N,z in direction hj in [s, t],
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We have for any event F , noting that P̃[F ] − P̃[F ]2 = P̃[Fc] − P̃[Fc]2,

Ẽ[YN,z,s,tj ] ≤ (t − s)μij = Ẽ[Ȳ N,z,s,tj ], (7.53)

Ṽar[YN,z,s,tj ] ≤ (t − s)μij = Ṽar[Ȳ N,z,s,tj ],

|C̃ov(1F , Y
N,z,s,t
j )|, |C̃ov(1F , Ȳ

N,z,s,t
j )| ≤

√
Ṽar[1F ]

√
Ṽar[Ȳ N,z,s,tj ]

≤
√
P̃[F ] − P̃[F ]2

√
(t − s)μij .

(7.54)

We define the sets

FN1 :=
{∣∣∣ZN,xN(2ε̃

λ1

)
− φx

(2ε̃

λ1

)∣∣∣ < ε̃

2

}
∈ F2ε̃/λ1

and for z ∈ A with |z− φx(2ε̃/λ1)| < ε̃/2,

F
N,z
2 :=

{
sup

t∈[0,η−2ε̃/λ1]
|ZN,z(t)− φz(t)| < ε̃

2

}
.

Note that

dist(φx(t), ∂A) ≥ 2ε̃ for t ∈
[2ε̃

λ1
, η

]

and whenever |z− φx(2ε̃/λ1)| < ε̃/2,

∣∣∣φz(t)− φx
(
t + 2ε̃

λ1

)∣∣∣ < ε̃

2
for t ∈

[
0, η − 2ε̃

λ1

]
.

Hence

dist(ZN,z(t), ∂A) ≥ ε̃ for t ∈
[
0, η − 2ε̃

λ1

]

and therefore ZN,z(t) = Z̄N,z(t) on FN,z2 . This implies

F
N,z
2 =

{
sup

t∈[0,η−2ε̃/λ1]
|Z̄N,z(t)− φz(t)| < ε̃

2

}
.

We now let

2ε̃

λ1
≤ s < t ≤ η
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and compute (by using the Markov property of ZN and the fact that
Y
N,z,s−2ε̃/λ1,t−2ε̃/λ1
j = Ȳ

N,z,s−2ε̃/λ1,t−2ε̃/λ1
j on the event FN,z2 )

Ẽ[YN,xN ,s,tj ] = Ẽ[1FN1 Y
N,xN ,s,t
j ] + Ẽ[1(FN1 )cY

N,xN ,s,t
j ]

≥ P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

Ẽ[YN,z,s−2ε̃/λ1,t−2ε̃/λ1
j ]

+ Ẽ[1(FN1 )cY
N,xN ,s,t
j ]

≥ P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

Ẽ[1
F
N,z
2
Y
N,z,s−2ε̃/λ1,t−2ε̃/λ1
j ]

+ P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

Ẽ[1
(F

N,z
2 )c

Y
N,z,s−2ε̃/λ1,t−2ε̃/λ1
j ]

+ Ẽ[1(FN1 )cY
N,xN ,s,t
j ]

= μij (t − s)P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

P̃[FN,z2 ]

+ P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

C̃ov(1
F
N,z
2
, Y

N,z,s−2ε̃/λ1,t−2ε̃/λ1
j )

+ P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

Ẽ[1
(F

N,z
2 )c

Y
N,z,s−2ε̃/λ1,t−2ε̃/λ1
j ]

+ Ẽ[1(FN1 )cY
N,xN ,s,t
j ] (7.55)

≥ μij (t − s)P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

P̃[FN,z2 ]

− P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

∣∣C̃ov(1
F
N,z
2
, Y

N,z,s−2ε̃/λ1,t−2ε̃/λ1
j )

∣∣
(7.56)

as the third and the fourth term in (7.55) are non-negative. As furthermore

P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

P̃[FN,z2 ] → 1

and

P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

C̃ov(1
F
N,z
2
, Y

N,z,s−2ε̃/λ1,t−2ε̃/λ1
j )→ 0

as N → ∞ by Assumption 7.2 (C), Theorem 7.3 and (7.54). Combining the
resulting inequality with (7.53) for all ε̃ < ε1 and 2ε̃/λ1 ≤ s < t , we deduce
that

lim
N→∞ Ẽ[YN,xN ,s,tj ] = μij (t − s).
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Note that for 0 ≤ s < t ≤ η, and all ε̃ < ε1

Y
N,xN ,s,t
j = Y

N,xN ,s,(s∨2ε̃/λ1)∧t
j + Y

N,xN ,(s∨2ε̃/λ1)∧t,t
j

and hence also for 0 ≤ s < t ≤ η, since when s < 2ε̃/λ1, YN,x
N ,s,2ε̃/λ1∧t

j is of the
order of ε̃,

lim
N→∞ Ẽ[YN,xN ,s,tj ] = μij (t − s). (7.57)

Let now τj ∈ [0, η] denote the jump times of ZN,x
N

in direction hj . Since

μ̃ij (Z
N,xN (τj−)) = logμij P̃ a.s.,

1

P̃[FN ]
∑

j ;μij>0

Ẽ

[ 1

N
1FN

∑
τj≤η

log μ̃ij (Z
N,xN (τj−))

]

= 1

P̃[FN ]
∑

j ;μij>0

logμij Ẽ
[
1FNY

N,xN ,0,η
j

]

= 1

P̃[FN ]
∑

j ;μij>0

logμij
{
P̃[FN ] · Ẽ[YN,xN ,0,ηj

]+ C̃ov(1FN , Y
N,xN ,0,η
j )

}

−→
∑

j ;μij>0

ημij logμij =
k∑
j=1

∫ η

0
μij logμijdt (7.58)

as N → ∞ by (7.48), (7.54) and (7.57).
For the last and most extensive step of the proof, we define for ε̃ < ε1 and

(cf. Assumption 7.2 (C) and (7.8))

εN = 1

Nα

and the set

F̃ N :=
{

sup
t∈[0,η]

|ZN,xN (t)− φx(t)| < εN

}
.

We assume w.l.o.g. that from now on N is large enough (cf. Assumption 7.2 (C))
such that

P̃
[
F̃ N

] ≥ 1 − δ(N, εN ),
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where δ(N, εN )→ 0 asN → ∞. We note that we have for all ε̃ ≤ ε1, j = 1, . . . , k
with μij > 0, N ∈ N and t ∈ [2ε̃/λ1, η],

logβj (φx(t)), log βj (ZN,x
N

(t)) ≥ logβ(ε̃) > 0 on FN and F̃ N .

We compute

1

P̃[FN ] Ẽ
[ 1

N
1FN

∑
τ≤η

logβj(τ)(Z
N,xN (τ−))

]

= 1

P̃[FN ]
∑

j, μij>0

Ẽ

[ 1

N
1F̃ N

∑
τj∈[2ε̃/λ1,η]

logβj (ZN,x
N

(τj−))
]

+ 1

P̃[FN ]
∑

j, μij>0

Ẽ

[ 1

N
1
F̃ N

∑
τj∈[0,2ε̃/λ1]

logβj (ZN,x
N

(τj−))
]

+ 1

P̃[FN ]
∑

j, μij>0

Ẽ

[ 1

N
1FN\F̃ N

∑
τj∈[0,η]

logβj (Z
N,xN (τj−))

]
. (7.59)

Let us first consider the first term in Eq. (7.59). As for all j ,

logβj (·) : Ã(ε̃) := {z ∈ A| dist(z, ∂A) ≥ ε̃} → R

is uniformly continuous, there exit constants δ̃N > 0 with δ̃N ↓ 0 such that

z, z̃ ∈ Ã(ε̃), |z̃− z| < 3εN ⇒ | logβj (z̃)− logβj (z)| < δ̃N . (7.60)

We define

M = M(N) := 3(η − 2ε̃/λ1)ε
−1
N + 14

and divide the interval [2ε̃/λ1, η] into M equidistant subintervals [tr , tr+1] (r =
0, . . . ,M − 1, tr = tr (N)) of lengthΔ = Δ(N), i.e. (for N large enough),

εN

2
≤ Δ < εN.

For j = 1, . . . , k, r = 0, . . . ,M − 1 and τj , t ∈ [tr , tr+1] we have,

|ZN,xN (τj−)− φx(t)| ≤ 2εN on F̃ N ,
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since |φx(τj )− φx(t)| ≤ |τj − t| as |vi | ≤ 1, and hence (cf. (7.60))

inf
t∈[tr ,tr+1]

logβj (φx(t))− δ̃N ≤ logβj (ZN,x
N

(τj−)).

From this inequality, we deduce

1

P̃[FN ] Ẽ
[ 1

N
1F̃ N

∑
τ∈[2ε̃/λ1,η]

logβj(τ)(Z
N,xN (τ−))

]

= 1

P̃[FN ]
∑

j, μij>0

M−1∑
r=0

Ẽ

[ 1

N
1F̃ N

∑
τj∈[tr ,tr+1)

logβj (Z
N,xN (τj−))

]

≥ 1

P̃[FN ]
∑

j, μij>0

M−1∑
r=0

(
inf

t∈[tr ,tr+1)
logβj (φx(t))− δ̃N

)
Ẽ

[
1F̃ N Y

N,xN ,tr ,tr+1
j

]

≥ 1

P̃[FN ]
∑

j, μij>0

M−1∑
r=0

inf
t∈[tr ,tr+1)

logβj (φ
x(t))P̃[F̃ N ]Ẽ[YN,xN ,tr ,tr+1

j

]

− 1

P̃[FN ]
∑

j, μij>0

M−1∑
r=0

∣∣ logβ(ε̃)
∣∣∣∣C̃ov(1F̃ N , Y

N,xN ,tr ,tr+1
j )

∣∣

− 1

P̃[FN ] δ̃N
∑

j, μij>0

Ẽ
[
1F̃ N Y

N,xN ,2ε̃/λ1,η]. (7.61)

The second term in Inequality (7.61) satisfies (cf. Inequality (7.54) and Assump-
tion 7.2 (C); we assume that N is sufficiently large such that M ≤ 2ε−1

N η),

1

P̃[FN ]
∑

j, μij>0

M−1∑
r=0

∣∣ logβ(ε̃)
∣∣∣∣C̃ov(1

F̃ N
, Y

N,xN ,tr ,tr+1
j )

∣∣

≤ 1

P̃[FN ]2kη
∣∣ logβ(ε̃)

∣∣ε−1
N

√
μ̄ εN

√
δ(N, εN )

→ 0

as N → ∞. The third term in Eq. (7.61) satisfies

1

P̃[FN ] δ̃N
∑

j, μij>0

Ẽ
[
1F̃ N Y

N,xN ,2ε̃/λ1,η] ≤ 1

P̃[FN ] δ̃Nkμ̄η→ 0
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as N → ∞. Finally, let us consider the first term in Eq. (7.61). Recall that by (7.53)
and (7.56), we have

μij (tr+1 − tr ) ≥ Ẽ[YN,xN ,tr ,tr+1
j ]

≥ μij (tr+1 − tr )P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

P̃[FN,z2 ]

− P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

∣∣C̃ov(1
F
N,z
2
, Y

N,z,tr−2ε̃/λ1,tr+1−2ε̃/λ1
j )

∣∣.
We define

αN1 := P̃[F̃ N ]
P̃[FN ] ,

αN2 := P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

P̃[FN,z2 ] < 1,

αN3 := P̃[FN1 ] · inf
z;|z−φx(ε̃/λ1)|<ε̃/2

∣∣C̃ov(1
F
N,z
2
, Y

N,z,tr−2ε̃/λ1,tr+1−2ε̃/λ1
j )

∣∣,
φrj := inf

t∈[tr ,tr+1)
logβj (φx(t)),

SN :=
∑

j, μij>0

μij

M−1∑
r=0

(tr+1 − tr ) inf
t∈[tr,tr+1)

logβj (φx(t)).

We compute (for N large enough as before)

P̃[F̃ N ]
P̃[FN ]

∑
j, μij>0

M−1∑
r=0

inf
t∈[tr ,tr+1)

logβj (φx(t))Ẽ
[
Y
N,xN ,tr ,tr+1
j

]

≥ αN1

∑
j, μij>0

M−1∑
r=0

inf
t∈[tr ,tr+1)

logβj (φ
x(t)) ·

{
1{φrj<0}μj (tr+1 − tr )

+ 1{φrj>0}
(
αN2 μj(tr+1 − tr )− αN3

)}

≥ αN1

∑
j, μij>0

μij

M−1∑
r=0

(tr+1 − tr ) inf
t∈[tr,tr+1)

logβj (φ
x(t))

{
1{φrj<0} + αN2 1{φrj>0}

}

− 2ηαN1 k| log β̄|ε−1
N αN3

≥ αN1 S
N − 2ηαN1 k| log β̄|ε−1

N αN3 − αN1 k| log β̄|μ̄η(1 − αN2 ).



284 P. Kratz and E. Pardoux

We readily observe that

αN1 , α
N
2 → 1 as N → ∞

by Theorem 7.3 and Assumption 7.2 (C). We furthermore note that by Assump-
tion 7.2 (C) and Theorem 7.3 (cf. also the comment corresponding to (7.7) and
again the fact that the rate of convergence in Theorem 7.3 is independent of initial
values),

infz
√
P̃[FN,z2 ] − P̃[FN,z2 ]2

√
εN

≤
infz

√
P̃[(FN,z2 )c]
√
εN

→ 0 as N → ∞.

Therefore (for N sufficiently large as before),

2ηαN1 k| log β̄|ε−1
N αN3 ≤ 2ηαN1 k| log β̄|P̃[FN1 ]√μ̄ 1√

εN

inf
z;|z−φx(ε̃/λ1)|<ε̃/2

√
P̃[FN,z2 ] − P̃[FN,z2 ]2

→ 0

as N → ∞. Finally, SN is a Riemann sum and we have

SN →
∑
j

μij

∫ η

2ε̃/λ1

logβj (φx(t))dt as N → ∞. (7.62)

We observe that (7.61)–(7.62) yield

lim inf
N→∞

1

P̃[FN ]
∑

j, μij>0

Ẽ

[ 1

N
1F̃ N

∑
τj∈[2ε̃/λ1,η]

logβj (ZN,x
N

(τj−))
]

≥
k∑
j=1

μij

∫ η

2ε̃/λ1

logβj (φx(t))dt. (7.63)

We now consider the second term in the right and side of (7.59). We define

M̃ = M̃(N) := 32ε̃ε−1
N + 14

and divide the interval [0, 2ε̃/λ1] into M̃ subintervals [t̃r , t̃r+1] (r = 0, . . . , M̃ − 1,
t̃r = t̃r (N)) of length Δ̃ = Δ̃(N), i.e., for N large enough,

εN

2λ1
≤ Δ̃ <

εN

λ1
.
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For r = 0, . . . , M̃ − 1 and τj ∈ [t̃r , t̃r+1], we obtain on F̃ N ,

dist(ZN,x
N

(τj−), ∂A) > dist(φx(τj−), ∂A)− 2εN

≥ dist(φx(t̃r ), ∂A)− 2εN

≥ λ1 t̃r − 2εN

≥ r − 4

2
εN .

Hence, dist(ZN,x
N
(τj−), ∂A) > εN for r ≥ 6. We compute for j with μj > 0,

1

P̃[FN ] Ẽ
[ 1

N
1F̃ N

∑
τj∈[0,2ε̃/λ1]

logβj (Z
N,xN (τj−))

]

= 1

P̃[FN ]
M̃−1∑
r=0

Ẽ

[ 1

N
1F̃ N

∑
τj∈[t̃r ,t̃r+1]

logβj (ZN,x
N

(τj−))
]

= 1

P̃[FN ]
M̃−1∑
r=6

Ẽ

[ 1

N
1F̃ N

∑
τj∈[t̃r ,t̃r+1]

logβj (Z
N,xN (τj−))

]

+ 1

P̃[FN ]
5∑
r=0

Ẽ

[ 1

N
1F̃ N

∑
τj∈[t̃r ,t̃r+1]

logβj (Z
N,xN (τj−))

]
. (7.64)

We note that for all j , βj (ZN,x
N
(τj−)) ≥ β(λ0/N) P̃-a.s. by Assumption 7.2 (A1).

The second term in the right hand side of (7.64) can be bounded from below (w.l.o.g.
β(λ0/N) < 1):

1

P̃[FN ]
5∑
r=0

Ẽ

[ 1

N
1F̃ N

∑
τj∈[t̃r ,t̃r+1]

logβj (Z
N,xN (τj−))

]

≥ 4

P̃[FN ] logβ
(λ0

N

) 5∑
r=0

{
P̃[F̃ N ]Ẽ[YN,xN ,t̃r ,t̃r+1

j ] + C̃ov(1F̃ N , Y
N,z,t̃r ,t̃r+1
j )

}

≥ 6P̃[F̃ N ]
P̃[FN ] logβ

(λ0

N

)
μ̄
εN

λ1
+ 4

P̃[FN ] logβ
(λ0

N

)√ μ̄ εN
λ1

√
δ(N, εN )

→ 0

asN → ∞ by Assumption 7.2 (C) (cf. also (7.6)). For the first term in Eq. (7.64), we
compute for j with μj > 0 (similarly as before, we assume w.l.o.g. that β(ε̃) < 1
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and note that βj (ZN,x
N
(τj−)) ≥ β(λ1 t̃r − εN) ≥ β((r − 4)λ1Δ̃/2))

1

P̃[FN ]
M̃−1∑
r=6

Ẽ

[ 1

N
1F̃ N

∑
τj∈[t̃r ,t̃r+1]

logβj (Z
N,xN (τj−))

]

≥ 1

P̃[FN ]
M̃−5∑
r=2

logβ(rλ1Δ̃/2)Ẽ[1F̃ N YN,x
N ,t̃r ,t̃r+1]

= P̃[F̃ N ]
P̃[FN ]μ

i
j

M̃−5∑
r=2

Δ̃ logβ(rλ1Δ̃/2)

+ 1

P̃[FN ]
M̃−5∑
r=2

logβ(rλ1Δ̃/2)C̃ov(1F̃ N , Y
N,xN ,t̃r ,t̃r+1). (7.65)

For the first term in Eq. (7.65), we have by Assumption 7.2 (C) (in particular by the
fact that the integral below converges, cf. (7.9))

P̃[F̃ N ]
P̃[FN ]μ

i
j

M̃−5∑
r=2

Δ̃ logβ(rλ1Δ̃/2)→ μij

∫ 2ε̃/λ1

0
logβ(λ1ρ/2)dρ

as N → ∞. Similarly, we obtain for the second term in Eq. (7.65),

1

P̃[FN ]
M̃−5∑
r=2

logβ(rλ1Δ̃/2)C̃ov(1F̃ N , Y
N,xN ,t̃r ,t̃r+1)

≥ 1

P̃[FN ]

√
μij
δ(N, εN )

Δ̃

M̃−5∑
r=2

Δ̃ logβ(rλ1Δ̃/2)

→ 0 (7.66)

as N → 0 by Assumption 7.2 (C) (cf. (7.5) and (7.9)).
Finally, we consider the third term in Eq. (7.59). We obtain by Assump-

tion (7.2) (C),

1

P̃[FN ]
∑

j, μij>0

Ẽ

[ 1

N
1
FN\F̃ N

∑
τj∈[0,η]

logβj (ZN,z(τj−))
]

≥ 1

P̃[FN ] logβ
(λ0

N

) ∑
j ;μij>0

{
P̃[(F̃ N )c]Ẽ[YN,z,0,ηj ] + C̃ov(1(F̃ N)c , Y

N,z,0,η
j )

}
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≥ 1

P̃[FN ] logβ
(λ0

N

)
k μ̄ η δ(N, εN )+ 1

P̃[FN ] logβ
(λ0

N

)
k
√
μ̄ η δ(N, εN )

→ 0 (7.67)

as N → ∞ similarly as before (cf. (7.5) and (7.6)).
We obtain by Eqs. (7.59) and (7.63), (7.64)–(7.67),

lim inf
N→∞

1

P̃[FN ] Ẽ
[ 1

N
1FN

∑
τ≤η

logβj(τ)(Z
N,xN (τ−))

]

≥
k∑
j=1

μij

∫ η

2ε̃/λ1

| logβj (φx(t))|dt − kμ̄

∫ 2ε̃/λ1

0
| logβ(λ1ρ/2)|dρ. (7.68)

We conclude by letting δ > 0 and choosing ε̃ < ε1 small enough such that
(cf. Eqs. (7.50), (7.51) and Inequality (7.68); note that we require the convergence
of the integral in (7.9) of Assumption 7.2 (C) here)

ε̃

λ1
kμ̄, kμ̄

∫ 2ε̃/λ1

0
| logβj (φx(t))|dt, kμ̄

∫ 2ε̃/λ1

0
| logβ(λ1ρ/2)|dρ < δ

4
.

The assertion now follows from Inequality (7.49) and (7.50)–(7.52), (7.58)
and (7.68):

lim inf
N→∞ ẼFN

[Xη
N

]
≥ −

∫ η

0
�(φx(t), μ)dt − δ.

The uniformity of the convergence follows from the fact that we have used only
Assumption 7.2 (C) and Theorem 7.3, where the convergences are uniform in x.

Again in the following result, the exponentα is the one from Assumption 7.2 (C).

Theorem 7.8 Assume that Assumption 7.2 holds. Let x ∈ A and xN ∈ AN such
that

lim sup
N→∞

|xN − x|Nα < 1.

Then, for φ ∈ D([0, T ];A) and ε > 0,

lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,xN (t)− φ(t)| < ε

]
≥ −IT ,x(φ).

Moreover the above convergence is uniform in x ∈ A
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Proof We can w.l.o.g. assume that IT ,x(φ) ≤ K < ∞. Let δ > 0 and divide the
interval [0, T ] into J subintervals as before. We define the function φη as before
and choose η1 small enough such that for all η < η1 (cf. Lemma 7.24),

∫ T

η

L(φη(t), (φη)′(t))dt <
∫ T

0
L(φ(t), φ′(t))dt + δ

3
. (7.69)

We furthermore assume that η < η1 is such that

sup
t∈[0,T ]

|φ(t)− φη(t)| < ε

4
.

Hence,

lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,xN (t)− φ(t)| < ε

]

≥ lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,xN (t)− φ̃η(t)| < ε

2

]
.

From (7.38), for t ≥ η, dist(φη(t), ∂A) ≥ ηλ1. We define

ε1 = ε1(η) = ε

2
∧ λ1η

4
,

βη := inf
{
βj (z)

∣∣∣ 1 ≤ j ≤ k, z ∈ A, dist(z, ∂A) ≥ ηλ1

2

}
> 0

and

β̃
η
j (z) :=

{
βj (z) ∨ βη if z ∈ A
β̃
η
j (ψA(z)) else,

where the functionψA has been specified in Assumption (A4). We denote by Z̃N,z,η

the process starting at z at time η with rates β̃ηj . As the log β̃ηj are bounded, we have
by Theorem 7.6 that there exists an

ε2 = ε2(η) < ε1(η)
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such that for all ε̃ < ε2,

lim inf
N→∞

1

N
log

(
inf

|z−φη(η)|<ε̃
P

[
sup

t∈[η,T ]
|Z̃N,z,η(t)− φ̃η(t)| < ε1

])

≥ −
∫ T

η

L̃η(φη(t), (φη)′(t))dt − δ

3
,

where L̃η denotes the Legendre transform corresponding to the rates β̃ηj . We readily
observe that for all t ∈ [η, T ],

L̃η(φη(t), φη(t)) = L(φη(t), (φη)′(t))

and that for |z − φη(η)| < ε̃, denoting by an abuse of notation ZN,z the process
starting from z at time η,

sup
t∈[η,T ]

|ZN,z(t)− φη(t)| < ε1 ⇔ sup
t∈[η,T ]

|Z̃N,z,η(t)− φη(t)| < ε1.

and hence

P

[
sup

t∈[η,T ]
|ZN,z(t)− φ̃η(t)| < ε

2

]
≥ P

[
sup

t∈[η,T ]
|ZN,z(t)− φ̃η(t)| < ε1

]

= P

[
sup

t∈[η,T ]
|Z̃N,z,η(t)− φ̃η(t)| < ε1

]

consequently for ε̃ < ε2

lim inf
N→∞

1

N
log

(
inf

|z−φη(η)|<ε̃
P

[
sup

t∈[η,T ]
|ZN,z(t)− φ̃η(t)| < ε1

])

≥ −
∫ T

η

L(φη(t), (φη)′(t))dt − δ

3

≥ −
∫ T

0
L(φ(t), φ′(t))dt − 2δ

3
,

where we have used (7.69) for the second inequality. We use the Markov property
of ZN and obtain for ε̃ < ε2

P

[
sup

t∈[0,T ]
|ZN,xN (t)− φ(t)| < ε

]
≥ P

[
sup
t∈[0,η]

|ZN,xN (t)− φ̃η(t)| < ε̃
]

· inf
|z−φη(η)|<ε̃

P

[
sup

t∈[η,T ]
|ZN,z(t)− φ̃η(t)| < ε1

]
.
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Combining the last two inequalities with Lemma 7.25, we deduce that (i being the
index of the ball Bi to which the starting point x belongs)

lim inf
N→∞

1

N
logP

[
sup

t∈[0,T ]
|ZN,xN (t)− φ(t)| < ε

]

≥ −
∫ η

0
�(φx(t), μi)dt −

∫ T

0
L(φ(t), φ′(t))dt − 2δ

3

≥ −
∫ T

0
L(φ(t), φ′(t))dt − δ

thanks to Lemma 7.26 below, provided η is small enough. The result follows since
δ > 0 is arbitrary.

Lemma 7.26 Let x ∈ Bi , where i ≤ I1, and suppose φx(t) = x+tvi . Let moreover
μi be such that

∑k
j=1 μ

i
jhj = vi . Then, uniformly in x, as t → 0,

∫ t

0
�(φx(s), μi)ds → 0.

Proof Since according to Assumption (A3) d(φx(t), ∂A) ≥ λ1t , the result follows
from (7.6) from Assumption (C).

Theorem 7.9 Assume that Assumption 7.2 as well as the assumptions from Theo-
rem 7.8 hold. Then for any open set G ⊂ D([0, T ];A),

lim inf
N→∞

1

N
logP

[
ZN,x

N ∈ G] ≥ − inf
φ∈G IT ,x(φ).

Moreover the convergence is uniform in x.

Proof The proof follows the same line of reasoning as the proof of Theorem 7.7.

We will need the following stronger version. Recall the definition of AN at the start
of Sect. 7.2.

Theorem 7.10 Assume that Assumption 7.2 holds. Then for any open set G ⊂
D([0, T ];A) and any compact subset K ⊂ A,

lim inf
N→∞

1

N
log inf

x∈K∩AN
P
[
ZN,x ∈ G] ≥ − sup

x∈K
inf
φ∈G IT ,x(φ).

Proof This follows readily from the uniformity in x of the convergence in Theo-
rem 7.9.
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7.6 LDP Upper Bound

We now prove the LDP upper bound. For reasons of readability, we split up the proof
into four parts. In the first three parts, we prove the main auxiliary results required
(Sects. 7.6.1–7.6.3). Finally, we prove the main results of the section in Sect. 7.6.4.

In this section, whenever we consider the process ZN,x , we will mean that the
process ZN is started from the nearest point to x on the grid AN (see the beginning
of Sect. 7.2 for the definition of AN ).

7.6.1 Piecewise Linear Approximation

The goal of this section is to prove that ZN,x is exponentially close to its piecewise
linear approximation. For ZN,x , we define the piecewise linear interpolation YN,x .
To this end, we divide [0, T ] into N subintervals [tj−1, tj ] with tj = jT

N
, j =

1, . . . , N . We define t ∈ [tj−1, tj ]

Y
N,x
t = ZN,x(tj−1)+ t − tj−1

tj − tj−1
(ZN,x(tj )− ZN,x(tj−1)). (7.70)

We prove that YN,x is exponentially close to ZN,x .

Lemma 7.27 Assume that βj (j = 1, . . . , k) is bounded. Let δ > 0. Then

lim sup
N→∞

1

N
logP[d(YN,x , ZN,x) > δ] = −∞

uniformly in x ∈ A.

Proof For any 1 ≤ j ≤ [N/T ], we have the inclusion

{ sup
t∈[tj−1,tj ]

|YN,xt − Z
N,x
t | ≥ δ} ⊂ { sup

t∈[tj−1,tj ]
|ZN,xt − Z

N,x
tj−1

| ≥ δ/2}.

It then follows from Lemma 7.6 that for some positive constant C and for each j ,

P( sup
t∈[tj−1,tj ]

|YN,xt − Z
N,x
t | ≥ δ) ≤ exp (−CNδ log(CNδ))).

Consequently

P

(
sup

t∈[0,T ]
|YN,xt − Z

N,x
t | ≥ δ

)
= P

⎛
⎝[N/T ]⋃

j=1

{
sup

t∈[tj−1,tj ]
|YN,xt − Z

N,x
t | ≥ δ

}⎞
⎠

≤ N exp (−CNδ log(CNδ))).

The result clearly follows.
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7.6.2 The Modified Rate Function Iδ

In this section, we define a modified rate function I δ and analyse how it relates to
I . The main result is Corollary 7.8 below.

We define the following functional (Lemma 7.19 above). For δ > 0, x ∈ A,
y, θ ∈ Rd , let

�̃δ(x, y, θ) := 〈θ, y〉 −
k∑
j=1

sup
z=zj∈A;|z−x|<δ

βj (z)
(

exp(〈θ, hj 〉)− 1
)
,

Lδ(x, y) := sup
θ∈Rd

�̃δ(x, y, θ).

Obviously, we have

Lδ(x, y) ≤ L(x, y)

and for the respectively defined functional, I δ ,

I δ ≤ I.

We obtain

Lδ(x, y) = sup
θ∈Rd

{
〈θ, y〉 −

k∑
j=1

sup
zj∈A;|zj−x|<δ

βj (z
j )
(

exp(〈θ, hj 〉)− 1
)}

= sup
θ∈Rd

inf
z1,...,zk∈A;|zj−x|<δ

{
〈θ, y〉 −

k∑
j=1

βj (z
j )
(

exp(〈θ, hj 〉)− 1
)}

= inf
z1,...,zk∈A;|zj−x|<δ

sup
θ∈Rd

{
〈θ, y〉 −

k∑
j=1

βj (z
j )
(

exp(〈θ, hj 〉)− 1
)}

(7.71)

= inf
z1,...,zk,|zj−x|<δ

inf
μ∈Ṽzj ,y

k∑
j=1

(
βj (z

j )− μj + μj logμj − μj logβj (z
j )
)

(7.72)

= �(z∗, μ∗), (7.73)

where we use the slight abuse of notation: for z = (z1, . . . , zk), μ = (μ1, . . . , μk),

�(z, μ) =
∑
j

βj (z
j )− μj + μj log

( μj

βj (zj )

)

Note that �(x, μ) depends on x only through the rates β(x).
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Here, Eq. (7.71) follows from Sion’s min-max theorem,9 see [15]. Indeed, since
the variables of the βj ’s are decoupled, we can as well decide that we are taking the
inf-sup of

F(β1, . . . , βk; θ) = 〈θ, y〉 −
k∑
j=1

βj (e
〈θ,hj 〉 − 1).

F is defined on X × Y , where X = ∏k
j=1{βj(z), |z − x| ≤ δ} and Y =

R
d . Now X is convex and compact, Y is convex, F is continuous, is a linear

(hence convex) function of (β1, . . . , βk) for each θ , and a concave function of θ
for each (β1, . . . , βk). Hence Sion’s theorem applies. Equation (7.72) follows by
Theorem 7.4. Equation (7.73) follows from Lemma 7.10 and the continuity of � and
μ∗ (as a function in the state). We remark that |z∗j − x| = δ is possible.

In a similar way as before (cf. Proposition 7.1), we define the sets

Φδ(K) := {φ ∈ D([0, T ];A)|I δ(φ) ≤ K},
Φδ
x(K) := {φ ∈ D([0, T ];A)|I δx (φ) ≤ K}.

In particular, we have Φ(K) ⊂ Φδ(K) and Φx(K) ⊂ Φδ
x(K) and Φδ

x(K), Φ
δ(K)

are increasing in δ.
For technical reasons, we define for m > 0, z ∈ A the rates

βmj (z) := max{βj (z), 1/m}

and the corresponding functionals Lm and Im by replacing the rates βj by the rates
βmj in the respective definitions.

We will need the following slightly stronger version of Lemma 7.24, where again
φη is defined from φ as in the lines before Lemma 7.24.

Lemma 7.28 Assume that Assumption 7.2 holds. Let K > 0 and ε > 0. Then there
exists an η0 = η0(T ,K, ε) > 0 such that for all η < η0 there exists an m0 > 0 such
that for all m > m0 and for all φ ∈ D([0, T ];A) with ImT (φ) ≤ K ,

IT (φ
η) < K + ε,

where φη is defined before Lemma 7.24 and satisfies ‖φη − φ‖ ≤ ε.

9This theorem says that if F : X × Y → R, where X and Y are convex, one the two being
compact, F being quasi-concave and u.s.c. with respect to its first variable, quasi-convex and l.s.c.
with respect to the second, then supx infy F (x, y) = infy supx F (x, y).
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Proof We follows the first steps of the proof of Lemma 7.24, where we replace
μ∗(t) by μm,∗(t) the optimal μ corresponding to (φ(t), φ′(t)) and jump rates βmj .
Now (7.39) is replaced by

L(φη(t), φ′(t − ηr)) ≤ �(φη(t), μm,∗(t − ηr)). (7.74)

We now choosem > 1/η and deduce

|βj (φη(t))−βmj (φ(t−ηr ))| ≤
1

m
+|βj (φη(t))−βj (φ(t−ηr))| ≤ δ′K(η), (7.75)

where δ′K(η) = η+ δK(η)→ 0 as η→ 0 by the (uniform) continuity of the βj . We
deduce from (7.74) the following modified version of (7.41)

L(φη(t), φ′(t − ηr))− Lm(φ(t − ηr), φ
′(t − ηr))

≤ kδ′K(η)+
∑
j

μm,∗(t − ηr) log
βmj (φ(t − ηr))

βj (φη(t))
, (7.76)

since βmj (φ(t)) > 0 and βj (φη(t)) > 0 for t �= 0.
We recall that λ1 and the vi ’s have been defined in Assumption 7.2 (A3), and that

the ṽi ’s, v̄i ’s and v̂i ’s have been defined in the proof of Lemma 7.24.
By Assumption 7.2 (B4), there exists a constant λ4 > 0 such that for z ∈ Bir

(and η < η2 ≤ η1 small enough, depending upon λ1 and λ2 but not on φ, except
throughK),

βj (z) < λ4 ⇒ βj (z+ ηṽir ) ≥ βj (z). (7.77)

We now want to bound from above the second term in the right hand side
of (7.76). If βj (φ(t − ηr)) ≥ λ4, then βj (φ(t − ηr)) ≥ 1/m and therefore
βmj (φ(t − ηr)) = βj (φ(t − ηr)), so that the bound (7.43) holds.

Now consider the case βj (φ(t − ηr)) < λ4. We define the function

s(δ) := inf{βj (x) | d(x, ∂A) ≥ δ}.

From the continuity of the βj and the compactness of A, s(δ) > 0 for δ > 0, and
for any x ∈ A, βj (x) ≥ s(d(x, ∂A)).

We furthermore let

m0 = m0(η, λ4) > max{1/λ4, 1/s(λ1η)};

and recall that d(φη(t), ∂A) ≥ λ1η for t ≥ η (cf. the discussion preceding
Lemma 7.24).
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We let m > m0. Since βj (φ(t − ηr)) < λ4, by (7.77),

βj (φ
η(t)) ≥ βj (φ(t − ηr)).

By the definition of s, we have furthermore

βj (φ
η(t))) ≥ s(λ1η) ≥ 1/m.

Combining these observations, we obtain

βj (φ
η(t)) ≥ max{βj(φ(t − ηr)), 1/m} = βmj (φ(t − ηr))

and therefore

log
βmj (φ(t − ηr))

βj (φη(t))
≤ 0.

From Lemmas 7.8 and 7.10, there exist (universal, i.e., independent of x and m)
constants B ≥ B1 ∨ B2, B > 1, C1, C3 such that whenever |y| > B, for all x ∈ A
and m ≥ 1,

L(x, y) ≥ C1|y| log |y|, Lm(x, y) ≥ C1|y| log |y|,

|μm,∗| = |μ∗(x, y,m)| ≤ C3|y|.

Hence if |φ′(t − ηr)| ≥ B, we get, instead of (7.47),

L(φη(t), φ′(t − ηr))− Lm(φ(t − ηr), φ
′(t − ηr))

≤ kδ′K(η)+ kC3|φ′(t − ηr)|2δK(η)
λ4

≤ kδ′K(η)+ kC3
2δK(η)Lm(φ(t − ηr), φ

′(t − ηr))

C1λ4 log |φ′(t − ηr)| . (7.78)

If |φ′(t − ηr)| < B, Lemma 7.10 implies that |μm,∗(t − ηr)| ≤ C̃B for a universal

constant C̃ > 0. Using Eqs. (7.75) and (7.76), we obtain

L(φη(t), φ′(t−ηr))−Lm(φ(t−ηr ), φ′(t−ηr)) ≤ kδ′K(η)+kC̃B
2δK(η)

λ4
. (7.79)
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Inequalities (7.78) and (7.79) imply

L(φη(t), φ′(t − ηr))− Lm(φ(t − ηr), φ
′(t − ηr))

≤ k(η + δK(η))+ kC̃B
2δK(η)

λ4
+ kC3

2δK(η)Lm(φ(t − ηr), φ
′(t − ηr))

C1λ4 log |φ′(t − ηr)|
=: δ1(η)+ δ2(η)L

m(φ(t − ηr), φ
′(t − ηr))

where δi(η)→ 0 as η→ 0, i = 1, 2. We now choose η > 0 such that

δ2(η)K <
ε

4
and T δ1(η) <

ε

4
,

and choose m > m0(η); this yields

IT (φ
η) < K + ε.

In the following, we show a relation between Lm and Lδ .

Remark 7.4 It can easily be seen that Lemma 7.8 holds for Lδ (with exactly the
same proof). The same holds true for Lemmas 7.14 and 7.18.

Lemma 7.29 Let βj (j = 1, . . . , k) be bounded and ε > 0. Then there exists an
m0 > 0 such that for all m > m0, there exists an δ0 > 0 such that for all δ < δ0
and all x ∈ A y ∈ Rd ,

Lm(x, y) ≤ ε + (1 + ε)Lδ(x, y)

Proof Let m0 > 0, m > m0 and δ > 0. We let μ∗ = μ∗(z∗, y) be the optimal μ
associated to the optimal z∗ according to Eq. (7.73). Then

Lm(x, y)− Lδ(x, y) ≤ �m(x,μ∗)− �(z∗, μ∗). (7.80)

Furthermore, we have by the uniform continuity of the βj (cf. the proof of
Lemma 7.28),

|βmj (x)− βj (z
∗)| ≤ 1

m
+K(δ) =: K1(m, δ). (7.81)

Moreover, we note that if βj (x) < 1
m
−K(δ), then

log
βj (z

∗)
βmj (x)

< 0. (7.82)
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On the other hand, if βj (x) ≥ 1
m
−K(δ), then

log
βj (z

∗)
βmj (x)

≤ log
βmj (z

∗)
βmj (x)

≤ log
1
m
+K(δ)

1
m

≤ mK(δ) =: K2(m, δ). (7.83)

By Lemmas 7.8 and 7.9, there exist constants B, C1, C3 and C4 such that for all
x ∈ A and y ∈ Cx ,

L(x, y), Lδ(x, y) > C1|y| logB if |y| > B, (7.84)

|μ∗(y)| ≤ C3|y| if |y| > B, (7.85)

|μ∗(y)| ≤ C4 if |y| ≤ B (7.86)

(note that the constants in Inequality (7.84) are independent of δ).
For |y| > B, we have by Inequalities (7.80)–(7.85),

Lm(x, y)− Lδ(x, y) ≤ kK1(m, δ)+ kC3|y|K2(m, δ)

≤ kK1(m, δ)+ kC3K2(m, δ)

C1 logB
Lδ(x, y). (7.87)

For |y| ≤ B, we have by Inequalities (7.80)–(7.83) and (7.86),

Lm(x, y)− Lδ(x, y) ≤ kK1(m, δ)+ kC4K2(m, δ) (7.88)

The assertion now follows from Inequalities (7.87) and (7.88) by choosingm0 large
enough,m > m0 and δ0 = δ0(m) small enough such that

kK1(m, δ0), kC4K2(m, δ0),
kC3K2(m, δ0)

C1 logB
<
ε

2
.

We directly deduce the following result

Corollary 7.7 Let βj (j = 1, . . . , k) be bounded and continuous. For all ε,K, T >

0, there exists an m0 > 0 such that for all m > m0, there exists a δ0 > 0 such that
for all δ < δ0 and all functions φ with I δT (φ) ≤ K − ε,

ImT (φ) < K.

We now deduce from Lemma 7.28 and Corollary 7.7 .

Corollary 7.8 Assume that Assumption 7.2 holds. Then for all ε,K > 0, there
exists a δ0 > 0 such that for all δ < δ0,

Φδ
x(K − ε) ⊂ {

φ ∈ D([0, T ];A)| d(φ,Φx(K)) ≤ ε
}
.
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Proof Let ε > 0 and choose m0, m, δ0, δ according to Corollary 7.7 for ε/2. Let
φ ∈ Φδ

x(K − ε). Then by Corollary 7.7, φ ∈ Φm
x (K − ε/2). By Lemma 7.28, there

exists a φ̃ such that

‖φ̃ − φ‖ < ε and IT ,x(φ̃) ≤ K.

7.6.3 Distance of YN to Φδ

In this section, we derive a result about the distance of YN , defined by (7.70), to Φδ

(Lemma 7.37 below).
We state the following elementary result (see, e.g., [12, Chapter 3, Proposi-

tion 22]).

Lemma 7.30 Let f : [a, b] → Rd be measurable. For all ε > 0, there exists a step
function g such that |g−f | < ε except on a set with measure less than ε. Moreover
the range of g is a subset of the convex hull of the range of f .

We define for δ > 0, φ : [0, T ] → A and Borel-measurable θ : [0, T ] → Rd ,

I δT (φ, θ) :=
∫ T

0
�̃δ(φ(t), φ

′(t), θ(t))dt.

Lemma 7.31 Let logβj (j = 1, . . . , k) be bounded. For all absolutely continuous
φ : [0, T ] → A with I δT (φ) < ∞ and all ε > 0 there exists a step function
θ : [0, T ] → Rd such that

I δT (φ, θ) ≥ I δT (φ)− ε.

Proof As I δ(φ) <∞, there exists a large enough positive number B such that

∫ T

0
1{|φ′(t)|>B}Lδ(φ′(t), φ(t))dt ≤ ε

3

(cf. Lemma 7.18 and Remark 7.4). We set

θ1(t) := 0 if |φ′(t)| > B.

By Lemma 7.14 (which holds true with L replaced by Lδ , see Remark 7.4—this
is where we need the assumption that the logβj are bounded), there exists a constant
B̃ such that for all x ∈ A and y ∈ C with |y| ≤ B,

sup
|θ |≤B̃

�̃δ(x, y, θ) > Lδ(x, y)− ε

6T
.
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We set

D := {(x, y, θ)| x ∈ A, y ∈ C, |y| ≤ B, |θ | ≤ B̃}.

The function �̃δ is uniformly continuous on D. Hence there exists an η > 0 such
that for |x − x̃|, |y − ỹ|, |θ − θ̃ | < η,

|�̃δ(x, y, θ)− �̃δ(x̃, ỹ, θ̃ )| < ε

6T
.

By a compactness argument, we obtain a finite cover {θi,j , xi , yj } of D such that

�̃δ(xi, yj , θi,j ) ≥ Lδ(x, y)− ε

3T
for |x − xi|, |y − yj | < η.

We set

θ1(t) := θi,j if |φ(t)− xi |, |φ′(t)− yj | < η

(with some kind of tie-breaking rule). Hence θ1 only takes finitely many values.
However, it is not clear whether θ1 is piecewise constant.

We now choose η̃ small enough such that Leb[E] < η̃
2 implies that

∫
[0,T ]∩E

Lδ(φ(t), φ
′(t))dt ∨

∫
[0,T ]∩E

sup
|θ |≤B̃

(
−�̃δ(φ(t), φ′(t), θ)

)
dt <

ε

3
.

(7.89)

and

min |θi,j − θl,m| > η̃, min |θi,j | > η̃.

By Lemma 7.30, there exists a step function θ2 with |θ1 − θ2| < η̃
2 except on a set

Ẽ with Lebesgue measure< η̃
2 .

Hence there exists a step function θ which agrees with θ1 except on Ẽ (modify
θ2 if necessary such that |θ1 − θ2| < η̃

2 ⇒ θ2 = θ1 on Ẽc). Note that |θ(t)| ≤ B̃, for
all t ∈ [0, T ].

We conclude by collecting the approximations above:

I δT (φ) =
∫
[0,T ]

Lδ(φ(t), φ
′(t))dt

≤
∫
[0,T ]∩{|φ′(t)|>B}

Lδ(φ(t), φ
′(t))dt +

∫
[0,T ]∩Ẽ

Lδ(φ(t), φ
′(t))dt

+
∫
[0,T ]∩({|φ′(t)|≤B}∪Ẽc)

Lδ(φ(t), φ
′(t))dt
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≤2ε

3
+

∫
[0,T ]∩({|φ′(t)≤B}∪Ẽc)

�̃δ(φ(t), φ
′(t), θ(t))dt

= 2ε

3
+
∫
[0,T ]

�̃δ(φ(t), φ
′(t), θ(t))dt −

∫
[0,T ]∩Ẽ
�̃δ(φ(t), φ

′(t), θ(t))dt

−
∫
[0,T ]∩{|φ′(t)|>B}∩Ẽc

�̃δ(φ(t), φ
′(t), θ(t))dt

≤ ε +
∫
[0,T ]

�̃δ(φ(t), φ
′(t), θ(t))dt.

Indeed θ(t) = 0 on the set {|φ′(t)| > B} ∩ Ẽc, while (7.89) implies that the second
integral in the next to last line is bounded by ε/3.

We next prove.

Lemma 7.32 Let u : [0, T ] → R be nonnegative and absolutely continuous and
δ > 0. Then there exists an η > 0, a Borel set E ⊂ [0, T ] with Leb(E) < δ and two
finite collections (Ji)i∈I+ and (Hj )j∈I0 of subintervals of [0, T ] such that

[0, T ] = E ∪
⋃
i∈I+

Ji ∪
⋃
j∈I0

Hj

and for all i ∈ I+, j ∈ I0,

inf
t∈Ji

u(t) > η, u(t) = 0 on Hj ∩ Ec.

Proof Given t ∈ [0, T ] such that u(t) > 0, let Ot be the largest open interval
containing t such that u(s) > 0 for all s ∈ Ot . Let mt = max{u(t), t ∈ Ot }.
Since u is absolutely continuous, there is a finite number of intervals Ot such that
mt > 1/m, for each m ≥ 1. Hence there are at most countably many open intervals
{Oi , i ≥ 1} where u is positive. Choose M large enough such that

Leb
(∪∞

i=M+1Oi

) ≤ δ

2
.

For 1 ≤ i ≤ M , let Ji ⊂ Oi be a closed interval such that

Leb (Oi \ Ji) ≤ δ

2M
.

Let

E = (∪∞
i=M+1Oi

) ∪ (
∪Mi=1Oi \ Ji

)
.
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Clearly Leb(E) ≤ δ. Let M be the number of connected components of [0, T ] \
∪Mi=1Ji . For 1 ≤ j ≤M , letHj denote the closure of the j -th connected component
of [0, T ] \ ∪Mi=1Ji . Hj is an interval. Moreover

inf
1≤i≤M inf

t∈Ji
u(t) = η > 0, and

u(t) = 0, if t ∈ Hj ∩ Ec.

We require this result for the proof of Lemma 4.6 of [14]. This is a (more general)
variant of Lemma 5.43 of [13] (cf. also Lemma 7.31).

Lemma 7.33 Assume that βj (j = 1, . . . , k) is bounded and Lipschitz continuous.
Then for all φ with IT (φ) <∞ and ε > 0, there exists a step function θ such that

I δT (φ, θ) ≥ I δT (φ)− ε.

Proof If none of the βj (φ(t)) vanishes on the interval [0, T ], then the proof of
Lemma 7.31 applies. If that is not the case, we note that since φ is absolutely
continuous and βj is Lipschitz continuous, t → βj (φ(t)) is absolutely continuous.
Hence we can apply Lemma 7.32 to the function u(t) := βj (φ(t)), and associate

to each 1 ≤ j ≤ k intervals (J ji )i∈I+ and (H j

i )i∈I0 . It is not hard to see that to
each η > 0 one can associate a real η > 0, an integer M , a collection (Ii )1≤i≤M of
subintervals of [0, T ], with the following properties

[0, T ] = E ∪
⋃

1≤i≤M
Ii,

with Leb(E) ≤ δ, and moreover to each 1 ≤ i ≤ N we can associate a subset
A ⊂ {1, 2, . . . , k} such that

βj (φ(t)) > η, if j ∈ A, t ∈ Ii , and βj (φ(t)) = 0, if j �∈ A, t ∈ Ii ∩ Ec.

Each interval Ii is an intersection of J ji ’s for j ∈ A and of Hj
i ’s for j �∈ A.

On each subinterval Ii , by considering the process with rates and jump directions
{βj , hj , j ∈ A} only, we can deduce from Lemma 7.31 that there exists a step
function θ such that

∫
Ii

�̃δ(φ(t), φ
′(t), θ(t)) ≥

∫
Ii

Lδ(φ(t), φ
′(t))dt − ε

2M
.

In fact there exists a unique stepfunction θ defined on [0, T ], such that each of the
above inequality holds and moreover, by the same argument as in the proof of
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Lemma 7.31, provided η is small enough,

∫
E

�̃δ(φ(t), φ
′(t), θ(t)) ≥ −ε

2
.

The result follows.

We now define for M ∈ N

K(M) :=
⋂
m≥M

{φ ∈ C([0, T ];A)|V2−m(φ) ≤ 1
logm },

where Vδ is the modulus of continuity:

Vδ(φ) := sup
s,t∈[0,T ], |s−t |<δ

|φ(s)− φ(t)|.

We readily observe (Arzelà-Ascoli) that K(M) is compact in C([0, T ];Rd).
We next obtain exponential tightness for the sequence YN,x defined in (7.70).

Lemma 7.34 Assume that βj (j = 1, . . . , k) is bounded. There exists a positive
constant a such that for all M large enough and for all x ∈ A,

lim sup
N→∞

1

N
logP[YN,x �∈ K(M)] ≤ −a M

logM
.

Proof Suppose that

V2−m(Y
N) ≤ 1

logm
, form = M, . . . ,M(N), where M(N) =

⌈
log(N/T )

log 2

⌉
.

(7.90)

It is plain that m ≥ M(N) implies that 2−m < T/N , hence V2−(m+1)(YN) =
1
2V2−m(Y

N). Then, provided N > 4T , M(N) ≥ 2, hence for any m ≥ M(N),
m + 1 ≤ m2, and also (2 logm)−1 ≤ (log(m + 1))−1, and it follows that (7.90)
implies that YN,x ∈ K(M).

Now if M ≤ m ≤ M(N),

{
V2−m(Y

N) >
1

logm

}
⊂

N−1⋃
j=0

{
sup

tj≤s≤tj+21−m
|ZN,xs − Z

N,x
tj

| > 1

2 logm

}
.
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Consequently, with the help of Lemma 7.6, for someC > 0 and providedM is large
enough,

P[YN,x �∈ K(M)] ≤
M(N)∑
m=M

P

(
V2−m(Y

N) >
1

logm

)

≤ N

M(N)∑
m=M

exp

(
− CN

logm
log

(
C2m

logm

))

≤ M(N)N exp

(
− CN

logM
log

(
C2M

logM

))
,

where the last inequality follows from the fact that for x > 0 large enough, the

mapping x → (log x)−1 log
(
C2x
logx

)
is increasing. Consequently

1

N
logP

[
YN,x �∈ K(M)

]
≤ logM(N)

N
+ logN

N
− c

logM
log

(
C2M

logM

)
.

It remains to take the limsup as N → ∞.

We now establish the main local estimate for YN .

Lemma 7.35 Assume that βj (j = 1, . . . , k) is bounded. For all δ > 0, we have
uniformly in x ∈ A and θ in a bounded set,

lim sup
N→∞

logE
[

exp
(
N〈YN,x( T

N
)− YN,x(0), θ〉)]

≤ T ·
k∑
j=1

sup
zj∈A, |zj−x|≤δ

βj (z
j )(e〈θ,hj 〉 −1).

Proof It is not hard to verify that for any θ ∈ R
d , the process

Mθ
t := exp

⎛
⎝N〈ZN,xt − x, θ〉 −N

k∑
j=1

(e〈θ,hj 〉 − 1)
∫ t

0
βj (Z

N,x(s))ds

⎞
⎠

is a martingale with Mθ
0 = 1, hence E[Mθ

t ] = 1. Let

SN,δ := { sup
0≤t≤T/N

|ZN,xt − x] ≤ δ}.
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Since Mθ
t > 0, E[Mθ

T/N1SN,δ ] ≤ 1. But on the event SN,δ ,

Mθ
T/N ≥ exp

⎛
⎝N〈ZN,x(T /N)− x, θ〉 − T

k∑
j=1

sup
zj∈A,|zj−x|≤δ

βj (z
j )(e〈θ,hj 〉 − 1)

⎞
⎠ ,

hence

E

[
exp

(
N〈ZN,x(T /N)− x, θ〉

)
1SN,δ

]

≤ exp

⎛
⎝T

k∑
j=1

sup
zj∈A,|zj−x|≤δ

βj (z
j )(e〈θ,hj 〉 − 1)

⎞
⎠ .

On the other hand, from Lemma 7.6, for some C > 0, whenever |θ | ≤ B,

E

[
exp

(
N〈ZN,x (T /N)− x, θ〉

)
1ScN,δ

]

≤
∞∑
�=1

eN(�+1)δ|θ |
P

(
�δ ≤ |ZN,x(T /N) − x| ≤ (�+ 1)δ

)

≤
∞∑
�=1

exp
(
Nδ

[
(�+ 1)B − C� log(CN�δ)

])

≤
∞∑
�=1

a(N, δ)�

≤ 2a(N, δ),

providedN is large enough, such that

a(N, δ) := exp
(
Nδ

[
2B − C log(CNδ)

]) ≤ 1/2.

Finally

E

[
exp

(
N〈ZN,x(T /N)− x, θ〉

)]

≤ exp

⎛
⎝T

k∑
j=1

sup
zj∈A,|zj−x|≤δ

βj (z
j )(e〈θ,hj 〉 − 1)

⎞
⎠+ 2a(N, δ).

The result follows from the fact that a(N, δ)→ 0 as N → ∞, for any δ > 0.
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We next establish

Lemma 7.36 Let βj (j = 1, . . . , k) be bounded and continuous. Let θ : [0, T ] →
Rd be a step function, δ > 0 and K ⊂ K(M) be a compact set, such that the subset
Kac consisting of those elements of K which are absolutely continuous is dense in
K. Then

lim sup
N→∞

1

N
logP[YN,x ∈ K] ≤ − inf

φ∈K, φ(0)=x
I δ(φ, θ)

uniformly in x.

Proof Let θ be a fixed step function from [0, T ] into Rd , which we assume w.l.o.g.
to be right continuous, and let K be a given compact subset of C([0, T ];Rd), which
has the property that Kac is dense in K. We define for each δ > 0 the mapping
gδ : R2d → R by

gδ(z, θ) =
k∑
j=1

sup
|zj−x|≤δ

βj (zj )(e
〈θ,hj 〉 − 1).

We let t� := �T /N , and define for z ∈ Kac, the two quantities

S̃N (z, θ) =
N∑
�=1

〈z(t�)− z(t�−1), θ(t�−1)〉 − T

N

N∑
�=1

gδ(z(t�−1), θ(t�−1)),

S(z, θ) =
∫ T

0
〈z′(t), θ(t)〉dt − T

N

N∑
�=1

gδ(z(t�−1), θ(t�−1)).

Choose any η > 0. We can assume that N0 has been chosen large enough, such that

sup
z∈Kac

|S̃N (z, θ)− S(z, θ)| ≤ η.

Indeed, this difference is bounded by twice the number of jumps of θ times the sup
of |θ(t)|, times the maximal oscillation of z on intervals of length 1/N in [0, T ].

It follows from Lemma 7.35 and the Markov property that, providedN0 has been
chosen large enough, for any N ≥ N0,

E

[
exp

(
NS̃N (Y

N,x, θ)
)]

≤ exp(Nη).

Clearly, on the event YN,x ∈ K,

exp

[
N

(
S̃N (Y

N, θ)− inf
z∈Kac

S̃N (z, θ)

)]
≥ 1,
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and combining this fact with the previous inequalities, we deduce that

P(YN,x ∈ K) ≤ E exp

[
N

(
S̃N (Y

N,x, θ)− inf
z∈Kac

S̃N (z, θ)

)]

≤ exp(Nη) exp

(
−N inf

z∈Kac
S̃N (z, θ)

)

≤ exp(2Nη) exp

(
−N inf

z∈Kac
SN(z, θ)

)

Now, uniformly in z ∈ Kac, SN (z, θ)→ I δ(z, θ), where

I δ(z, θ) =
∫ T

0
〈z′(t), θ(t)〉dt −

∫ T

0
gδ(z(t), θ(t))dt.

The result follows from the last two facts, since η > 0 can be chosen arbitrarily
small, and Kac is dense in K.

We now have

Lemma 7.37 Assume that βj (j = 1, . . . , k) is bounded and Lipschitz continuous.
Then for all K > 0, δ > 0 and ε > 0,

lim sup
N→∞

1

N
logP[d(YN,x,Φδ

x(K)) > ε] ≤ −K + ε

uniformly in x ∈ A.

Proof We fix ε, δ,K > 0 and chooseM ∈ N such that a M
logM > K − ε, where a is

the constant appearing in Lemma 7.35.
For absolute continuous φ : [0, T ] → A with I δ(φ) < ∞, there exists a step

function θφ such that

I δ(φ, θφ) ≥ I δ(φ)− ε
2

(cf. Lemma 7.31). It can easily be verified by elementary calculus that the function
I δ(·, θφ) is continuous for the sup norm topology on the set of absolutely continuous
functions. Hence there exists a number 0 < ηφ < ε

2 such that for all absolutely
continuous φ̃ with ‖φ − φ̃‖ < ηφ ,

I δ(φ̃, θφ) ≥ I δ(φ)− ε. (7.91)

We consider the compact set

Kx(M) := {φ ∈ K(M)|φ(0) = x}
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(cf. the definition preceding Lemma 7.34). By a compactness argument, there exist
finitely many absolutely continuous functions {φi, 1 ≤ i ≤ m} ⊂ Kx(M) with
I δ(φi) <∞ (and corresponding θi := θφi and ηi := ηφi ) such that

Kx(M) ⊂
m⋃
i=1

Bηi (φi).

For each 1 ≤ i ≤ m, we define the compact set

Kxi (M) := Bηi (φi) ∩Kx(M).

We now let

I := {1 ≤ i ≤ m | d(φi,Φ
δ
x(K)) ≥ ηi}.

Then d(Y x,N,Φδ
x(K)) ≥ ε and Y x,N ∈ Kxi (M) imply i ∈ I, since ηi ≤ ε/2. Hence

lim sup
N→∞

1

N
logP[d(Y x,N,Φδ

x(K)) ≥ ε]

≤ lim sup
N→∞

1

N
log

{
P[Y x,N �∈ Kx(M)] +

∑
i∈I

P[Y x,N ∈ Kxi (M)]
}
.

Applying first Lemma 7.36 and then (7.91), we obtain

lim sup
N→∞

1

N
logP[Y x,N ∈ Kxi (M)] ≤ − inf

φ∈Kx
i (M)

I δ(φ, θi)

≤ −I δ(φi)+ ε

< −K + ε

as I δ(φi) > K (recall that i ∈ I). The result now follows from the two last
inequalities, Lemma 7.34 and the fact that a M

logM > K − ε.

7.6.4 Main Results

Theorem 7.11 Assume that Assumption 7.2 is satisfied. For F ⊂ D([0, T ];A)
closed and x ∈ A, we have

lim sup
yN∈AN ,yN→x, N→∞

1

N
logP[ZN,yN ∈ F ] ≤ −Ix(F ).
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Proof We first let Ix(F ) =: K < ∞ and ε > 0. By Lemma 7.22, there exits a
δε > 0 such that for all δ ≤ δε ,

y ∈ A, |x − y| < δ ⇒ Iy(F ) ≥ Ix(F )− ε = K − ε.

For δ ≤ δε , we define

Fδ := {φ ∈ F ||φ(0)− x| ≤ δ},
Sδ :=

⋃
y∈A,|x−y|≤δ

Φy(K − 2ε).

F δ is closed in D([0, T ];A; dD) and Sδ is compact in D([0, T ];A; dD) by
Proposition 7.1. Furthermore, the two sets have no common elements. Hence, by
the Hahn-Banach Theorem,

d(F δ, Sδ) =: ηδ > 0. (7.92)

Note that ηδ is increasing as δ is decreasing, since the sets Fδ and Sδ are decreasing.
We now let |y−x| ≤ δ and η ≤ ηδ . Let YN be defined as in the paragraph preceding
Lemma 7.27. We have

P[ZN,y ∈ F ] = P[ZN,y ∈ Fδ]
≤ P[d(YN,y, F δ) < η

2 ] + P[‖YN,y − ZN,y‖ ≥ η
2 ]. (7.93)

Let now φ(0) = y with d(φ, F δ) < η
2 , hence from (7.92)

d(φ,Φy(K − 2ε)) ≥ η

2
. (7.94)

Let δ̃ be such that Corollary 7.8 with K replaced by K − 2ε and ε by η
4 holds with

δ replaced by 2δ̃. Hence (7.94) implies

d(φ,Φ2δ̃
y (K − 2ε − η

4 ) >
η

4
. (7.95)

Indeed, if that is not the case, there exists a φ̃ ∈ Φ2δ̃
y (K−2ε− η

4 )with ‖φ− φ̃‖ ≤ η
4 .

Then Corollary 7.8 implies that there exists φ̄ ∈ Φy(K − 2ε) with ‖φ̄ − φ̃‖ ≤
η
4 ; consequently ‖φ̄ − φ‖ ≤ η

2 , which contradicts (7.95). We hence obtain by
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Lemma 7.37,

lim sup
N→∞

1

N
logP[d(YN,y, F δ) < η

2 ]

≤ lim sup
N→∞

1

N
logP[d(YN,y,Φ2Δ̃

y (K − 2ε − η
4 ) >

η

4
]

≤ −(K − 2ε − η

2
) (7.96)

uniformly in y ∈ A with |y − x| ≤ δ.
Furthermore, Lemma 7.27 implies

lim sup
N→∞

1

N
logP[‖YN,y − ZN,y‖ ≥ η

2 ] = −∞ (7.97)

uniformly in y ∈ A.
Combining Inequalities (7.93), (7.96) and (7.97), we obtain

lim sup
N→∞

1

N
logP[ZN,y ∈ F ] ≤ −(K − 2ε − η

2
)

uniformly in y ∈ A, |x − y| ≤ δ. The result now follows as ε and η can be chosen
arbitrarily small.

The result in case Ix(F ) = ∞ follows, since this implies that Ix(F ) > K for all
K > 0.

We will need the following stronger version. Recall the definition of AN at the
start of Sect. 7.2.

Theorem 7.12 Assume that Assumption 7.2 is satisfied. For F ⊂ D([0, T ];A)
closed and any compact subset K ⊂ A, we have

lim sup
N→∞

1

N
log sup

x∈K∩AN
P[ZN,x ∈ F ] ≤ − inf

x∈K Ix(F ).

Proof We use the same argument as in the proof of Corollary 5.6.15 in [3]. From
Theorem 7.11, for any x ∈ A, any δ > 0, there exists εx,δ > 0 and Nx,δ ≥ 1 such
that wheneverN ≥ Nx,δ, y ∈ AN with |y − x| < εx,δ,

1

N
logP[ZN,y ∈ F ] ≤ −I δx (F ),

where I δx (F ) = min[Ix(F ) − δ, δ−1]. Consider now a compact set K ⊂ A. There
exists a finite set {xi, 1 ≤ i ≤ I } such that K ⊂ ∪i=1B(xi, εxi ), where B(x, ε) =
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{y; |y − x| < ε}. Consequently, for N ≥ sup1≤i≤I Nxi,δ , any y ∈ AN ∩K ,

1

N
logP[ZN,y ∈ F ] ≤ − min

1≤i≤I I
δ
xi
(F ) ≤ − inf

x∈K I
δ
x (F ).

It remains to take the sup over y ∈ K ∩AN on the left, take the lim sup as N → ∞,
and finally let δ tend to 0 to deduce the result.

7.7 Exit Time from a Domain

In this section we establish the results for the exit time of the process from a domain.
To this end, we follow the line of reasoning of [3, Section 5.7] and modify the
arguments when necessary.

We let O � A be relatively open in A (with O = Õ ∩ A for Õ ⊂ Rd open) and
x∗ ∈ O be a stable equilibrium of (7.2). By a slight abuse of notation, we say that

∂̃O := ∂Õ ∩ A

is the boundary of O . For y, z ∈ A, we define the following functionals.

V (x, z, T ) := inf
φ∈D([0,T ];A),φ(0)=x,φ(T )=z

IT ,x(φ)

V (x, z) := inf
T>0

V (x, z)

V̄ := inf
z∈∂̃O

V (x∗, z).

In other words, V̄ is the minimal energy required to leave the domain O when
starting from x∗.

Assumption 7.13

(D1) x∗ is the only stable equilibrium point of (7.2) in O and the solution Y x

of (7.2) with x = Y x(0) ∈ O satisfies

Y x(t) ∈ O for all t > 0 and lim
t→∞Y

x(t) = x∗.

(D2) For a solution Y x of (7.2) with x = Y x(0) ∈ ∂̃O, we have

lim
t→∞Y

x(t) = x∗.

(D3) V̄ <∞.
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(D4) For all ρ > 0 there exist constants T (ρ), ε(ρ) > 0 with T (ρ), ε(ρ) ↓ 0 as
ρ ↓ 0 such that for all z ∈ ∂̃O ∪ {x∗} and all x, y ∈ B(z, ρ) ∩ A there exists
an

φ = φ(ρ, x, y) : [0, T (ρ)] → A

with φ(0) = x, φ(T (ρ)) = y and IT (ρ)(φ) < ε(ρ).

(D5) For all z ∈ ∂̃O there exists an η0 > 0 such that for all η < η0 there exists a
z̃ = z̃(η) ∈ A \ Ō with |z− z̃| > η.

Let us shortly comment on Assumption 7.13. By (D1), O is a subset of the
domain of attraction of x∗. (D2) is violated by the applications we have in mind:
we are interested in situations where ∂̃O is the characteristic boundary of O , i.e.,
the boundary separating two regions of attraction of equilibria of (7.2). In order
to relax this assumption, we shall add an approximation argument in Sect. 7.7.3.
By (D3), it is possible to reach the boundary with finite energy. This assumption is
always satisfied for the epidemiological models we consider. For z = x∗, (D4) is
also always satisfied in our models as the rates βj are bounded from above and away
from zero in small neighborhoods of x∗; hence, the function φ(x, y, ρ) can, e.g., be
chosen to be linear with speed one (see, e.g., [13] Lemma 5.22). (D5) allows us to
consider a trajectory which crosses the boundary ∂̃O, in such a way that all paths in
a sufficiently small tube around that trajectory do exit O .

We are interested in the following quantity:

τN,x := τN := inf{t > 0|ZN,x(t) �∈ O},

i.e., the first time that ZN,x exits O .

7.7.1 Auxiliary Results

Assumption 7.13 (A4) gives the following analogue of Lemma 5.7.8 of [3].

Lemma 7.38 Assume that Assumption 7.13 holds. Then for any δ > 0, there exists
an ρ0 > 0 such that for all ρ < ρ0,

sup
z∈∂̃O∪x∗,x,y∈B(z,ρ)

inf
T ∈[0,1]V (x, y, T ) < δ.

We can recover the analogue of Lemma 5.7.18 of [3] by using Lemma 7.38.
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Lemma 7.39 Assume that Assumptions 7.2 and 7.13 hold. Then, for any η > 0
there exists a ρ0 such that for all ρ < ρ0 there exists a T0 <∞ such that

lim inf
N→∞

1

N
log inf

x∈B(x∗,ρ)
P[τN,x ≤ T0] > −(V̄ + η).

Proof We follow the same line of reasoning as in the proof of Lemma 5.7.18 in [3].
Let x ∈ B(x∗, ρ). We use Lemma 7.38 for δ = η/4 (and we let ρ be small enough
for Lemma 7.38 to hold). We construct a continuous path ψx with ψx(0) = x,
ψx(tx) = x∗ (tx ≤ 1) and Itx ,x(ψ

x) ≤ η/4. We then use Assumption 7.13 (D3). For
T1 < ∞, we can construct a path φ ∈ C[0, T1] such that φ(0) = x∗, φ(T1) = z ∈
∂̃O and IT1,0(φ) ≤ V̄ + η/4. Subsequently, we use Lemma 7.38 and obtain a path
ψ̃ with ψ̃(0) = z, ψ̃(sx) �∈ O (s ≤ 1), Is,z(ψ̃) ≤ η/4 and dist(z̄,O) =: Δ > 0.10

We finally let θx be the solution of the ODE (7.2) with θx(0) = z̄ on [0, 2− tx − s],
consequently I2−tx−s,z̄(θx) = 0, see Lemma 7.7.

We concatenate the paths ψx , φ, ψ̃ and θx and obtain the path φx ∈ C[0, T0]
(T0 = T1 + 2 independent of x) with IT0,x(φ

x) ≤ V̄ + η/2.
Finally, we define

Ψ :=
⋃

x∈B(x∗,ρ)

{
ψ ∈ D([0, T0];A)|‖ψ − φx‖ < Δ/2

};

hence Ψ ⊂ D([0, T0];A) is open, (φx)x∈B(x∗,ρ) ⊂ Ψ and {ZN,x ∈ Ψ } ⊂ {τN,x ≤
T0}. We now use Theorem 7.10.

lim inf
N→∞

1

N
log inf

x∈B(x∗,ρ)
P[ZN,x ∈ Ψ ] ≥ − sup

x∈B(x∗,ρ)
inf
φ∈Ψ IT0,x(φ)

≥ − sup
x∈B(x∗,ρ)

IT0,x(φ
x)

> −(V̄ + η).

We also require the following result (analogue of Lemma 5.7.19 of [3]).

Lemma 7.40 Assume that Assumption 7.13 holds. Let ρ > 0 such that B(x∗, ρ) ⊂
O and

σN,xρ := inf{t > 0|ZN,xt ∈ B(x∗, ρ) or ZN,xt �∈ O}.

10Note that the Assumption (D5) is required here.
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Then

lim
t→∞ lim sup

N→∞
1

N
log sup

x∈O
P[σN,xρ > t] = −∞.

Proof We adapt the proof of [3] Lemma 5.7.19 to our case.
Note first that for x ∈ B(x∗, ρ), σN,xρ = 0; we hence assume from now on that

x /∈ B(x∗, ρ). For t > 0, we define the closed set Ψt ⊂ D([0, t];A),

Ψt := {φ ∈ D([0, t];A)|φ(s) ∈ O \ B(x∗, ρ) for all s ∈ [0, t]};

hence for all x,N ,

{σN,xρ > t} ⊂ {ZN,x ∈ Ψt }.

By Theorem 7.12, this implies for all t > 0,

lim sup
N→∞

1

N
log sup

x∈O\B(x∗,ρ)
P[σN,xρ > t] ≤ lim sup

N→∞
1

N
log sup

x∈O\B(x∗,ρ)
P[Zε,x ∈ Ψt ]

≤ − inf
φ∈Ψt

It,φ(0)(φ).

It hence suffices to show that

lim
t→∞ inf

φ∈Ψt
It,φ(0)(φ) = ∞. (7.98)

To this end, consider x ∈ O \ B(x∗, ρ) and recall that Y x is the solution of (7.2)
(on [0, t] for all t > 0). By Assumption 7.13 (D2), there exists a Tx <∞ such that
Y x(Tx) ∈ B(x∗, 3ρ). We have (here B denotes the Lipschitz constant of b),

|φx(t)− φy(t)| ≤ |x − y| +
∫ t

0
|b(φx(s))− b(φy(s))|ds

≤ +|x − y| +
∫ t

0
B|φx(s)− φy(s)|ds

and therefore by Gronwall’s inequality |Y x(Tx) − Y y(Tx)| ≤ |x − y|eTxB ;
consequently, there exists a neighborhood Wx of x such that for all y ∈ Wx ,
Y y(Tx) ∈ B(x∗, 3ρ). By the compactness ofO \ B(x∗, ρ), there exists a finite open
subcover ∪ki=1Wxi ⊃ O \ B(x∗, ρ); for T := maxi=1,...,k Txi and y ∈ O \ B(x∗, ρ)
this implies that Y y(s) ∈ B(x∗, 2/3ρ) for some s ≤ T .
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Assume now that (7.98) is false. Then there exits an M < ∞ such that for all
n ∈ N there exists an φn ∈ ΨnT with InT (φn) ≤ M . The function φn is concatenated
by functions φn,k ∈ ΨT and we obtain

M ≥ InT (φn) =
n∑
k=1

IT (φn,k) ≥ n min
k=1,...,n

IT (φn,k).

Hence there exists a sequence (ψk)k ⊂ ΨT with limk→∞ IT (ψk) = 0. Note now
that the set

φ(t) := {φ ∈ C[0, T ]|IT ,φ(0)(φ) ≤ 1, φ(s) ∈ O \ B(x∗, ρ) for all s ∈ [0, T ]} ⊂ ΨT

is compact (as a subset of (C[0, T ], ‖·‖∞)); hence there exists a subsequence (ψkl )l
of (ψk)k such that liml→∞ ψkl =: ψ∗ ∈ φ(t) in (C[0, T ], ‖ · ‖∞). By the lower
semi-continuity of IT (cf. Lemma 7.20) this implies

0 = lim inf
l→∞ IT (ψnl ) ≥ IT (ψ

∗),

which in turn implies that ψ∗ solves (7.2) for x = ψ∗(0). But then, ψ∗(s) ∈
B(x∗, 2/3ρ) for some s ≤ T , a contradiction to ψ∗ ∈ ΨT .

The following lemma is the analogue of [3] Lemma 5.7.21.

Lemma 7.41 Assume that Assumptions 7.2 and 7.13 hold. LetC ⊂ A\O be closed.
Then

lim
ρ→0

lim sup
N→∞

1

N
log sup

x∈B(x∗,3ρ)\B(x∗,2ρ)
P[ZN,xσρ

∈ C] ≤ − inf
z∈C V (x

∗, z).

Proof We adapt the proof of [3] Lemma 5.7.21 to our situation. We can assume
without loss of generality that infz∈C V (x∗, z) > 0 (else the assertion is trivial). For
infz∈C V (x∗, z) > δ > 0, we define

V δC := ( inf
z∈C V (x

∗, z)− δ) ∧ 1/δ > 0.

By Lemma 7.38, there exists a ρ0 = ρ0(δ) > 0 such that for all 0 < ρ < ρ0,

sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

V (x∗, y) < δ;
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hence

inf
y∈B(x∗,3ρ)\B(x∗,2ρ), z∈C

V (y, z) ≥ inf
z∈C V (x

∗, z)− sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

V (x∗, y) > V δC.

(7.99)

For T > 0, we define the closed set ΦT ⊂ D([0, T ];A) by

ΦT := Φ := {φ ∈ D([0, T ];A)|φ(t) ∈ C for some t ∈ [0, T ]}.

We then have for y ∈ B(x∗, 3ρ) \ B(x∗, 2ρ),

P[ZN,yσρ
∈ C] ≤ P[σN,yρ > T ] + P[ZN,y ∈ ΦT ]. (7.100)

In the following, we bound the two parts in Inequality (7.100) from above.
For the second part, we note first that (cf. Inequality (7.99))

inf
y∈B(x∗,3ρ)\B(x∗,2ρ), φ∈ΦT

IT ,y(φ) ≥ inf
y∈B(x∗,3ρ)\B(x∗,2ρ), z∈C

V (y, z) > V δC;

hence, we obtain by Theorem 7.12

lim sup
N→∞

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)
P[ZN,y ∈ ΦT ]

≤ − inf
y∈B(x∗,3ρ)\B(x∗,2ρ), φ∈ΦT

IT ,y(φ)

< −V δC. (7.101)

For the first part in Inequality (7.100), we use Lemma 7.40: There exists a 0 <
T0 <∞ such that for all T ≥ T0

lim sup
N→∞

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)
P[σN,y > T ] < −V δC. (7.102)

We let T ≥ T0 and ρ < ρ0 and combine Inequalities (7.100)–(7.102). Hence
there exists an N0 > 0 such that for all N > N0,

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)
P[ZN,yσρ

∈ C]

≤ 1

N
log

(
sup

y∈B(x∗,3ρ)\B(x∗,2ρ)
P[σN,yρ > T ]
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+ sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y ∈ ΦT ]
)

<
1

N
log

(
2e−NV δC

) = 1

N
log 2 − V δC;

and

lim sup
N→∞

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)
P[ZN,xσρ

∈ C] ≤ −V δC.

Taking the limit δ → 0 finishes the proof.

The next lemma is the analogue of Lemma 5.7.22 of [3].

Lemma 7.42 Assume that Assumption 7.13 holds. Then, for all ρ > 0 such that
B(x∗, ρ) ⊂ O and for all x ∈ O ,

lim
N→∞P[ZN,xσρ

∈ B(x∗, ρ)] = 1.

Proof Let x ∈ O \ B(x∗, ρ) (the case x ∈ B(x∗, ρ) is clear). Let furthermore
T := inf{t ≥ 0|φ(t) ∈ B(x∗, ρ/2)}. Since Y x is continuous and never reaches ∂̃O
(Assumption 7.13 (D1)), we have inft≥0 dist(Y x(t), ∂̃O) =: Δ > 0. Hence we have
the following implication:

sup
t∈[0,T ]

|ZN,xt − Y x(t)| ≤ Δ

2
⇒ ZN,xσρ

∈ B(x∗, ρ).

In other words,

P[ZN,xσρ
/∈ B(x∗, ρ)] ≤ P

[
sup

t∈[0,T ]
|ZN,xt − Y x(t)| > Δ

2

]
,

and the right hand side of the last inequality converges to zero as N → ∞
by Theorem 7.3.

The next lemma is the analogue of [3, Lemma 5.7.23].

Lemma 7.43 Assume that Assumption 7.13 holds. Then, for all ρ, c > 0, there
exists a constant T = T (c, ρ) <∞ such that

lim sup
N→∞

1

N
log sup

x∈O
P[ sup
t∈[0,T ]

|ZN,xt − x| ≥ ρ] < −c.
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Proof Let ρ, c > 0 be fixed. For T ,N > 0 and x ∈ O we have

P[ sup
t∈[0,T ]

|ZN,xt − x| ≥ ρ] = P

[
sup

t∈[0,T ]
1

N
|
∑
j

hjPj

(
N

∫ t

0
βj (Z

N,x
s )ds

)
| ≥ ρ

]

≤ P

[∑
j

Pj (Nβ̄T ) ≥ Nρh̄−1
]

≤ kP
[
P(Nβ̄T ) ≥ Nρh̄−1k−1

]
(7.103)

for a standard Poisson process P . We now let, with c1(T ) = β̄T and c2 = ρh̄−1k−1,

T < T0 := e−1c2

2β̄
∧ e−c/c2−1c2

β̄
and N > N0 := 1/c2 ∧ log 2k

c1(T )
. (7.104)

We then deduce from (7.11)

kP
[
P(Nc1(T )) ≥ Nc2

]
≤ k

(
e

c2
c1(T )

)Nc2

. (7.105)

Finally

( e
c2
c1(T )

)Nc2 =
(( e
c2
c1(T )

)−c2
)−N

< e−Nc (7.106)

by (7.104). The assertion now follows by combining the Inequalities (7.103), (7.105)
and (7.106).

7.7.2 Main Results

We can now deduce the analogue of Theorem 5.7.11 (a) in [3] . The proof of [3]
carries over.

Theorem 7.14 Assume that Assumption 7.13 holds. Then, for all x ∈ O ∩AN and
δ > 0,

lim
N→∞P

[
e(V̄−δ)N < τN,x < e(V̄+δ)N

] = 1.

Moreover, for all x ∈ O , as N → ∞,

1

N
logE(τN,x)→ V̄ .
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Proof Upper bound of exit time:
We fix δ > 0 and apply Lemma 7.39 with η := δ/4. Hence, for ρ < ρ0 there

exists a T0 <∞ and an N0 > 0 such that for N > N0,

inf
x∈B(x∗,ρ)

P[τN,x ≤ T0] > e−N(V̄+η).

Furthermore, by Lemma 7.40 there exists a T1 < ∞ and N1 > 0 such that for all
N > N1,

inf
x∈O P[σN,xρ ≤ T1] > 1 − e−2Nη.

For T := T0 + T1 and N > N0 ∨ N1 ∨ 1/η, we hence obtain

qN := q := inf
x∈O P[τN,x ≤ T ]

≥ inf
x∈O P[σN,xρ ≤ T1] inf

y∈B(x∗,ρ)
P[τN,y ≤ T0]

> (1 − e−2Nη)e−N(V̄+η)

≥ e−N(V̄+2η). (7.107)

This yields for k ∈ N

P[τN,x > (k + 1)T ] = (
1 − P[τN,x ≤ (k + 1)T |τN,x > kT ])P[τN,x > kT ]

≤ (1 − q)P[τN,x > kT ]

and hence inductively

sup
x∈O

P[τN,x > kT ] ≤ (1 − q)k.

This implies, exploiting (7.107) for the last inequality

sup
x∈O

E[τN,x ] ≤ T
(
1 +

∞∑
k=1

sup
x∈O

P[τN,x > kT ]) ≤ T

∞∑
k=0

(1 − q)k = T

q
≤ T eN(V̄+2η);

(7.108)

by Chebychev’s Inequality we obtain

P[τN,x ≥ eN(V̄+δ)] ≤ e−N(V̄+δ)E[τN,x ] ≤ T e−δN/2

which approaches zero as N → ∞ as required.
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Lower bound of exit time:
For ρ > 0 such that B(x∗, 3ρ) ⊂ O , we define recursively θ0 := 0 and for

m ∈ N0,

τxm := τm := inf{t ≥ θxm|ZN,xt ∈ B(x∗, ρ) or ZN,xt �∈ O},
θxm+1 := θm+1 := inf{t ≥ τxm|ZN,xt ∈ B(x∗, 3ρ) \ B(x∗, 2ρ)},

with the convention θm+1 := ∞ if ZNτm �∈ O . Note that we have τN,x = τxm for some
m ∈ N0.

For fixed T0 > 0 and k ∈ N we have the following implication: If for all m =
0, . . . , k, τm �= τN and for all m = 1 . . . , k, τm − τm−1 > T0, then

τN > τk =
k∑

m=1

(τm − τm−1) > kT0.

In particular, we have for k := 3T −1
0 eN(V̄−δ)4+1 (note that θm−τm−1 ≤ τm−τm−1),

P[τN,x ≤ eN(V̄−δ)] ≤ P[τN,x ≤ kT0]

≤
k∑

m=0

P[τN,x = τxm] +
k∑

m=1

P[θxm − τxm−1 ≤ T0]

= P[τN,x = τx0 ] +
k∑

m=1

P[τN,x = τxm]

+
k∑

m=1

P[θxm − τxm−1 ≤ T0]. (7.109)

In the following, we bound the three parts in (7.109) from above. To this end, we
assume V̄ > 0 for now. The simpler case V̄ = 0 is treated below.

For the first part, we have

P[τN,x = τx0 ] = P[ZN,xσρ
�∈ O]. (7.110)

For the second part, we use the fact that ZN,x is a strong Markov process and that
the τm’s are stopping times. We obtain form ≥ 1 and x ∈ O ,

P[τN,x = τxm] ≤ sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,yσρ
�∈ O]. (7.111)
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Similarly, we obtain for the third part for m ≥ 1 and x ∈ O ,

P[θxm − τxm−1 ≤ T0] ≤ sup
y∈O

P[ sup
t∈[0,T0]

|ZN,yt − y| ≥ ρ]. (7.112)

The upper bounds in (7.111) and (7.112) can now be bounded by using the
Lemmas 7.41 and 7.43, respectively. We fix δ > 0. By Lemma 7.41 (forC = A\O),
there exists a ρ = ρ(δ) > 0 and an N1 = N1(ρ, δ) > 0 such that for all N > N1,

sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,yσρ
�∈ O] ≤ exp

(−N(V̄ − δ/2)
)
. (7.113)

By Lemma 7.43 (for ρ = ρ(δ) as above and c = V̄ ), there exists a constant T0 =
T (ρ, V̄ ) <∞ and an N2 = N2(ρ, δ) > 0 such that for all N > N2,

sup
y∈O

P[ sup
t∈[0,T0]

|ZN,yt − y| ≥ ρ] ≤ exp
(− N(V̄ − δ/2)

)
. (7.114)

We now let N > N1 ∨N2 (and large enough for T −1
0 exp

(
N(V̄ − δ)) > 1 for the

specific T0 above). Then first by Inequalities (7.109)–(7.112), then by (7.113) and
(7.114)

P[τN,x ≤ eN(V̄−δ)] ≤ P[ZN,xσρ
�∈ O] + k sup

y∈B(x∗,3ρ)\B(x∗,2ρ)
P[ZN,yσρ

�∈ O]

+ k sup
y∈O

P[ sup
t∈[0,T0]

|ZN,yt − y| ≥ ρ]

≤ P[ZN,xσρ
�∈ O] + 4T −1

0 exp
(−Nδ/2

)
.

The right-hand side of the last inequality tends to zero as ε → 0 by Lemma 7.42,
finishing the proof for V̄ > 0.

Finally, let us assume that V̄ = 0 and that the assertion is false for a given x ∈ O .
Then there exists a μ0 ∈ (0, 1/2) and a δ0 > 0 such that for all N̄ > 0 there exists
an N > N̄ with

μ0 ≤ P[τN,x ≤ e−Nδ0 ].

We fix ρ > 0 such that B(x∗, 2ρ) ⊂ O . Using the strong Markov property of Z and
the fact that σρ is a stopping time again, we have that for all N̄ > 0 there exists an
N > N̄ with

μ0 ≤ P[τN,x ≤ e−Nδ0 ]
≤ P[ZN,xσρ

/∈ B(x∗, ρ)] + sup
y∈O

P[ sup
t∈[0,e−Nδ0 ]

|ZN,yt − y| ≥ ρ]. (7.115)
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By Lemma 7.42, there exists an N0 such that for all N > N0,

P[ZN,xσρ
�∈ B(x∗, ρ)] ≤ μ0

2
. (7.116)

We now set c := −2ε0 log μ0
2 . Then by Lemma 7.43, there exists a T = T (c, ρ) > 0

and an N1 > N0 such that for all N > N1,

e−Nδ0 < T (7.117)

and

sup
y∈O

P[ sup
t∈[0,T ]

|ZN,yt − y| ≥ ρ] ≤ e−Nc/2 <
μ0

2
. (7.118)

Combining Inequalities (7.116)–(7.118) yields a contradiction to Inequality (7.115),
finishing the proof.

Expected exit time:

We have shown in particular that P(τN,x > e(V̄−δ)N) → 1 as N → ∞.
Consequently, from Chebycheff,

E(τN,x ) ≥ e(V̄−δ)NP(τN,x > e(V̄−δ)N ),

lim inf
N→∞

1

N
logE(τN,x ) ≥ V̄ − δ

for all δ > 0. This together with (7.108) implies the second statement of the
Theorem.

7.7.3 The Case of a Characteristic Boundary

Since we are mainly interested in studying the time of exit form the basin of
attraction of one local equilibrium to that of another, we need to consider situations
which do not satisfy the above assumptions. More precisely, we want to delete
Assumption (D2), and keep Assumptions (D1), (D3)–(D5). We assume that there
exists a collection of open sets {Oρ, ρ > 0} which is such that

• Oρ ⊂ O for any ρ > 0.
• d(Oρ, ˜∂O)→ 0, as ρ → 0.
• Oρ satisfies Assumptions (D1), (D2), (D3), (D4) and (D5) for any ρ > 0.
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We can now establish

Corollary 7.9 Let then O be a domain satisfying Assumptions (D1), (D3), (D4)
and (D5), such that there exists a sequence {Oρ, ρ > 0} satisfying the three above
conditions. Then the conclusion of Theorem 7.14 is still true.

Proof If we define V̄ρ as V̄ , but withO replaced byOρ , it follows from Lemma 7.38
that V̄ρ → V̄ as ρ → 0. By an obvious monotonicity property and the continuity of
the quasi-potential, the lower bound

lim
N→∞P

[
τN,x > e(V̄−δ)N

] = 1

follows immediately from Theorem 7.14. The proof of the upper bound is done
as in the proof of Theorem 7.14, once (7.107) is established. Let us now give the
argument. Let τN,xρ denote the time of exit from Oρ . The same argument used to
establish (7.107) above leads to the statement that for any ρ, η > 0, there exists
Nρ,η such that for all N ≥ Nρ,η,

inf
x∈O P[τN,x ≤ T ] ≥ e−N(V̄+η).

Now utilizing (D4), (D5) and the compactness of Ō\Oρ , it is not hard to deduce
from Theorem 7.10 that for ρ > 0 small enough,

lim inf
N→∞ log inf

x∈(Ō\Oρ)∩AN
Px(τ

N,x ≤ 1) > −η.

The wished result follows now from the last two lower bounds and the strong
Markov property.

Finally the result for E(τN,x) now follows from the first part of the result, exactly
as in the proof of Theorem 7.14.

7.8 Example: The SIRS Model

We finally show that Theorem 7.14 applies to the SIRS model from Example 7.1.
Assumptions (A) and (B) have already been verified in Sect. 7.2. For (C), we note
that major problems only occur for the balls centered at the “corner points” of the
set A. Only for a corner point x (with corresponding vector v), we have v �∈ Cx
(recall that we define Cx corresponding to the modified rates βδ). For simplicity
of exposition, we concentrate on the ball B centered at x = (1, 0)#. The same
argument applies to the balls centered at the other corners and in a simpler form
to all other balls. For the balls Bi not centered at the corners, the vectors vi can
be represented by μi ’s for which μij > 0 implies that βδj (z) > λ > 0 (for an
appropriate constant λ which can be chosen independently of i) for all z ∈ Bi .
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This simplifies the discussion below significantly. In particular, Assumption (C) is
satisfied due to Theorem 7.3. We first note that for all x ∈ A, y ∈ Rd , L(x, y) =
L̃(x, y), cf. Theorem 7.4 below. As before, we define the vector

v = (−1/2, 1/4)# and μ1 = 0, μ2 = 1

2
, μ3 = 1

4
,

in particular μ ∈ Ṽv (but Vx,v = ∅!). In order to simplify the notation, we do not
normalize v. We let η < η0 := 1/2 and note that for t ∈ [0, η],

β2(φ
x(t)) = γ

(
1 − t

2

)
≥ 3

4
γ, β3(φ

x(t)) = ν

4
t .

Let us prove that Assumption (C) is satisfied. Let XN be a Poisson random
variable with mean μN . We note that by Theorem 7.3 for ξ > 1,

P[XN > ξNμ] ≤ C̄1 exp
(−NC̄2(ξ)), P[XN < ξ−1Nμ] ≤ C̃1 exp

(−NC̃2(ξ))

(7.119)

for appropriate constants C̄1, C̃1, C̄2, C̃2 with C̄2(ξ) = O((ξ − 1)2) as ξ ↓ 1 and
C̃2(ξ) = O((1−ξ−1)2) as ξ ↓ 1. The first bound is obtained by applying Theorem 7.3
to d = k = h1 = 1, β1 ≡ μ and x = 0. We get

P[XN > ξNμ] = P

[ 1

N
XN > ξμ

]

= P

[ 1

N
XN − μ > (ξ − 1)μ

]

≤ P

[∣∣∣ 1

N
XN − μ

∣∣∣ > (ξ − 1)μ
]

= P

[
|ZN,0(1)− μ| > (ξ − 1)μ

]

≤ P

[
sup
t∈[0,1]

|ZN,0(t)− μt | > (ξ − 1)μ
]
.

Let us define the process ẐN,x as the solution of (7.3) with constant rates μj . For
ε > 0 small enough, we define

X
N,ε
2 := #jumps of type h2 of Z̃N,x in [0, ε],
X
N,ε
3 := #jumps of type h3 of Z̃N,x in [0, ε]

and

F
N,ε
2 :=

{15

32
Nε < X

N,ε
2 <

17

32
Nε

}
, F

N,ε
3 :=

{ 7

32
Nε < X

N,ε
3 <

9

32
Nε

}
.
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hence

Z̃N,x(ε) ∈ B̃ :=
{
z ∈ A

∣∣∣1 − 17

32
ε < z1 < 1 − 15

32
ε,

3

16
ε < z2 <

5

16
ε
}

and

sup
t∈[0,ε]

|Z̃N,x (t)− φx(t)| < ε

on FN,ε2 ∩ FN,ε3 . Furthermore, for z ∈ B̃ and t ∈ [0, η − ε],

dist(φz(t), ∂A) ≥ 3

16
ε

and

|Z̃N,z(t)− φz(t)| < 3

16
ε ⇒ |Z̃N,z(t)− φx̃(t)| < ε,

where x̃ = φx(ε) = (1 − ε/2, ε/4)#. We compute by using the Markov property of
ZN ,

P

[
sup
t∈[0,η]

|Z̃N,x (t)− φx(t)| < ε]

≥ P

[
sup

t∈[0,η]
|Z̃N,x (t)− φx(t)| < ε;FN,ε2 ∩ FN,ε3

]

≥ P

[
F
N,ε
2 ∩ FN,ε3

]
· inf
z∈B̃

P

[
sup

t∈[0,η−ε]
|Z̃N,z(t)− φz(t)| < 3

16
ε
]

≥ P

[
F
N,ε
2 ∩ FN,ε3

]
· inf
z∈B̃

P

[
sup

t∈[0,η−ε]
|ẐN,z(t)− φz(t)| < 3

16
ε
]

≥ 1 − Ĉ1 exp
(−NĈ2(ε)

)

for appropriate constants Ĉ1, Ĉ2 with Ĉ2(ε) = O(ε2) as ε ↓ 0 by Theorem 7.3 and
Inequalities (7.119) as required. As the rates are vanishing like polynomials, (7.6) is
satisfied.

Our model has a disease-free equilibrium (0, 0), and if β > γ it has a stable
endemic equilibrium (and then the disease-free equilibrium is unstable). We assume
from now on that β > γ , and we seek to estimate the time it takes for the random
perturbations to drive our system form the stable endemic equilibrium to the disease-
free equilibrium. The characteristic boundary which we want to hit is the set {x =
0, 0 ≤ y ≤ 1}. We note, however, that not only the Assumption 7.13 (D2) but also
the Assumption 7.13 (D5) fail to be satisfied here. Consequently we cannot apply
Corollary 7.9. We will now show that if we denote by τN,x = inf{t > 0, ZN (t) ∈ Õ}
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where Õ = {z1 = 0}, then Theorem 7.14 applies. All we have to show is that for any
δ > 0, V̄ being defined as in Sect. 7.7,

lim
N→∞P

[
e(V̄−δ)N < τN,x < e(V̄+δ)N

] = 1.

For any η > 0, let Oη = {(z1, z2) ∈ [0, 1]2, z1 > η, z1 + z2 ≤ 1}, Õη = {z1 =
η, 0 ≤ z2 ≤ 1 − η}, and τN,xη = inf{t > 0, ZN(t) ∈ Õη}. We note that all the above
assumptions, including Assumption 7.13 (D1), (D2),. . . , (D5) are satisfied for this
new exit problem, so that

lim
N→∞P

[
e(V̄η−δ/2)N < τN,xη < e(V̄η+δ/2)N

] = 1,

where V̄η = inf
z∈Õη V (x

∗, z). Now for η0 > 0 such that whenever η ≤ η0, V̄ − δ/2 ≤
V̄η < V̄ . Moreover clearly τ

N,x
η ≤ τN,x . From these follows clearly the fact that

P(τN,x > e(V̄−δ)N)→ 1 as N → ∞. It remains to establish the upper bound.
The crucial result which allows us to overcome the new difficulty is the

Lemma 7.44 For any η > 0, t > 0,

lim inf
N→∞

1

N
log inf

x∈AN∩Oc
η

P(τN,x < t) ≥ −η log

(
β

γ

)
.

Proof The first component of the process ZN,x(t) is dominated by the process

x1 + 1

N
P1

(
Nβ

∫ t

0
Z
N,x
1 (s)ds

)
− 1

N
P1

(
Nγ

∫ t

0
Z
N,x
1 (s)ds

)
,

which is a continuous time binary branching process with birth rate β and death rate γ . This
process goes extinct before time t with probability (see the formula in the middle of page 108
in [1])

(
γ eN(β−γ )t − γ

βeN(β−γ )t − γ

)Nx1

.

The result follows readily, since x ∈ Ocη implies that x1 ≤ η.

In order to adapt the proof of the upper bound in Theorem 7.14, all we have to do
is to extend the proof of Lemma 7.39 to the time of extinction in the SIRS model,
which we now do. Indeed, from Lemma 7.39, for any η, δ, ρ > 0, there exists T0
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such that

lim inf
N→∞

1

N
log inf

x∈B(x∗,ρ)
P(τN,xη ≤ T0 − 1) > −(V̄ + δ/2).

On the other hand, from Lemma 7.44, provided η < δ
2 log(β/γ ) ,

lim inf
N→∞

1

N
log inf

x∈AN∩Oc
η

P(τN,x < 1) ≥ −δ/2.

The statement of Lemma 7.39 now follows from the strong Markov property and
the last two estimates.

Acknowledgements The authors thank an anonymous Referee, whose careful reading and
detailed remarks allowed us to improve an earlier version of this paper.

This research was supported by the ANR project MANEGE, the DAAD, and the Labex
Archimède.

Appendix: Change of Measure

We assume that ZN,x = ZN has rates {Nβj |j = 1, . . . , k} under P and rates {Nβ̃j |j =
1, . . . , k} under P̃. We furthermore assume that for x ∈ A,

β̃j (x) > 0 only if βj (x) > 0.

Hence, P̃|Ft is absolutely continuous with respect to P|Ft but not necessarily vice
versa.

We require Theorem B.6 of [13] which gives us an important change of measure
formula.

Theorem 7.15 For all T > 0 and non-negative, FT -measurable random variables X, we
have

E[ξT X] = Ẽ[X],

where Ẽ denotes the expectation with respect to P̃ and

ξT := exp
(∑

τ

[
log

(
β̃j (τ )(Z

N(τ−)))− log
(
βj (τ)(Z

N(τ−))]

−N
∑
j

∫ T

0

(
β̃j (Z

N(t))− βj (Z
N(t))

)
dt

)
;
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here, we sum over the jump times τ ∈ [0, T ] of ZN ; j (τ) denotes the corresponding type of
the jump direction. In other words, we have

ξT = dP̃

dP

∣∣∣FT .

We observe that (under P) ξT = 0 if and only if there exists a jump time τ ∈ [0, T ]
(with jump type j (τ)) and β̃j (τ )(ZN(τ−)) = 0.

We deduce the following result. Note that since P̃[ξT = 0] = 0, ξ−1
T

is well-
defined P̃-almost surely.

Corollary 7.10 For every non-negative measurable function X ≥ 0,

E[X] ≥ Ẽ[ξ−1
T X].

Proof As X ≥ 0, we have

E[X] ≥ E[X1{ξT �=0}] = Ẽ[X1{ξT �=0}ξ−1
T ] = Ẽ[Xξ−1

T ].
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Chapter 8
The Girsanov Theorem Without
(So Much) Stochastic Analysis

Antoine Lejay

Abstract In this pedagogical note, we construct the semi-group associated to
a stochastic differential equation with a constant diffusion and a Lipschitz drift
by composing over small times the semi-groups generated respectively by the
Brownian motion and the drift part. Similarly to the interpretation of the Feynman-
Kac formula through the Trotter-Kato-Lie formula in which the exponential term
appears naturally, we construct by doing so an approximation of the exponential
weight of the Girsanov theorem. As this approach only relies on the basic properties
of the Gaussian distribution, it provides an alternative explanation of the form of
the Girsanov weights without referring to a change of measure nor on stochastic
calculus.

Keywords Girsanov theorem · Lie-Trotter-Kato formula · Feynman-Kac
formula · Stochastic differential equation · Euler scheme · Splitting scheme ·
Flow · Heat equation · Cameron-Martin theorem

8.1 Introduction

This pedagogical paper aims at presenting the Girsanov theorem—a change of
measure for the Brownian motion—using the point of view of operator analysis. We
start from the sole knowledge of the Brownian distribution and its main properties.
By doing so, stochastic calculus is avoided excepted for identifying the limit.
Therefore, in a simplified context, we give an alternative proof of a result which
is usually stated and proved using stochastic analysis and measure theory.

In 1944, R.H. Cameron and W.T. Martin proved the celebrated theorem on the
change of the Wiener measure. They later extend it [10, 11].
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Theorem 8.1 (Cameron and Martin [9]) Let F be a continuous functional on the
space of continuous functions C([0, 1];R) with respect to the uniform norm. Let b
be a continuous function in C([0, 1];R) whose derivative b′ has bounded variation.
Then for a Wiener process (or a Brownian motion)1 W,

E[F(W)] = E

[
F(W+ b) exp

(
−

∫ 1

0
b′(s) dWs − 1

2

∫ 1

0
|b′(s)|2 ds

)]
.

Later in 1960, Girsanov states in [20] a variant of this theorem for solutions of
stochastic differential equations. Even when the diffusivity σ is constant, the drift is
itself a non-linear functional of the Brownian motion.

Theorem 8.2 (Girsanov [20]) Let W be a n-dimensional Wiener process on a
probability space (Ω,F ,P) with respect to a filtration (Ft )t≥0. Let X be the
solution on (Ω,P) to

Xt (ω) = X0(ω)+
∫ t

0
a(s, ω) dW(s, ω) +

∫ t

0
b(s, ω) ds

where a is matrix valued, b is vector valued, and

(A1) The applications a and b are measurable with respect to (s, ω) ∈ [0, 1] ×Ω .
(A2) For each t ≥ 0, a is Ft -measurable.
(A3) Almost everywhere,2

∫ 1
0 ‖a(t, ω)‖2 dt < +∞.

(A4) Almost everywhere,
∫ 1

0 |b(t, ω)| dt < +∞.

Let φ = (φ1, . . . , φn) be a vector-valued function on [0, 1] ×Ω such that (A1)-
(A3) are satisfied.

Let us set P̃[ dω] = exp(Z1
0(φ, ω))P[ dω] where

Zts (φ, ω) =
∫ t

s

φi(u, ω)δij dWj (u, ω)− 1

2

∫ t

0

(
n∑
i=1

φi(u, ω)2

)
du.

Let us also set W̃(t, ω) = W(t, ω)−∫ t
0 φ(s, ω) ds. If P̃[Ω] = 1, then W̃ is a Wiener

process with respect to (Ft )t≥0 on (Ω,F , P̃) and (X, P̃) is solution to

Xt (ω) = X0(ω)+
∫ t

0
a(s, ω) dWs(ω)+

∫ t

0
(b(s, ω)+ a(s, ω)φ(s, ω)) ds.

1In the original paper [9], the result is stated for 2−1/2W and 21/2b.
2The norm of a matrix is ‖a‖ =

(∑n
i,j=1 |a2

i,j |
)1/2

while the norm of a vector is ‖a‖ =(∑n
i=1 |ai |2

)1/2
.
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Soon after, these results were extended in many directions, for example to deal
with semi-martingales (see e.g. [51]). The study of the weights for the change of
measures and their exponential nature gives rise to the theory of Doléans-Dade
martingales [14, 35].

These theorems provide us with measures which are equivalent to the Wiener’s
one. The converse is also true [42]: Absolute continuity of Wiener or diffusions
measures can only be reached by adding terms of bounded variation [42, 46].

The Cameron-Martin and Girsanov theorems have a profound meaning as well
as a deep impact on modern stochastic calculus. For example, for example, they
are one of the cornerstones of Malliavin calculus [6, 36], likewise a major tool in
filtering, statistics of diffusion processes [33, 34], mathematical finance [26], . . .

The Girsanov theorem has also been extended to some Gaussian processes,
including the fractional Brownian motion [18, 24].

The Feynman-Kac formula related the Brownian motion with some PDEs. It
involves a probabilistic representation with an exponential weight (see Sect. 8.9.1).
The Feynman-Kac formula could be proved by many ways, including stochastic
calculus from one side and the Trotter-Kato-Lie formula on the other side (see [17,
Chap. 3, Sect. 5] or [12] for a nice introduction to this subject, and [21] for a proof
of the Feynman-Kac formula with this procedure).

To illustrate the latter approach, let us consider three linear matrix-valued
equations

Ẋ = AX, Ẏ = BY, Ṙ = (A+B)R with X0 = Y0 = R0 = Id,

where A and B are d × d-matrices. These equations are easily solved by

Xt = exp(tA), Yt = exp(tB) and Rt = exp(t (A+B)).

The solutionsX, Y and R satisfy the semi-group property: Xt+s = XtXs . If AB =
BA, then Rt = YtXt . This is no longer true in general. However, as shown first by
Lie [32], the solution R could be constructed from X and Y by the following limit
procedure:

Rt = exp(t (A+B)) = lim
n→∞Xt/nYt/nXt/nYt/n · · ·Xt/nYt/n = lim

n→∞(e
At/neBt/n)n.

Trotter [50] and Kato [28] have shown that this could be generalized for large
families of linear unbounded operators A and B. In this case, (Xt )t≥0 and (Yt )t≥0
are families on linear operators with the semi-groups property.

On the space of continuous, bounded functions Cb(R
d,R), consider the (scaled)

Laplace operatorA = 1
27 and let B be defined by Bf (x) = U(x)f (x) for any f ∈

C(Rd ,R), where the continuous function U is called a potential. For a Brownian
motion B, Xt = E[f (x + Bt )] whereas Ytf (x) = exp(tU(x))f (x) for any f ∈
Cb(R

d,R), x ∈ R
d and t ≥ 0.
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With the Trotter-Kato-Lie formula, we compose over short times the semi-group
X of the Laplace operator with the one Y of the potential term. Using the Markov
property of the Brownian motion, for any bounded, measurable function f ,

Rtf (x) = lim
n→∞E

[
exp

(
t

n

n−1∑
i=0

U(x + Bit/n)

)
f (x + Bt )

]
. (8.1)

With the right integrability conditions on U , we obtain in the limit an exponential
representation of the Feynman-Kac formula [27], that is

Rtf (x) = E

[
exp

(∫ t

0
U(x + Bs) ds

)
f (x + Bt )

]
,

which gives a probabilistic representation to the PDE

∂tRtf (x) = 1

2
7Rtf (x)+ U(x)Rtf (x) with R0f (x) = f (x).

The seminal derivation of the Feynman-Kac formula by Kac in [27] used an
approximation of the Brownian motion by a random walk, which leads to an
expression close to (8.1).

What happens now if we use for B the first-order differential operator b∇· for a
function b? This means that we consider giving a probabilistic representation of the
semi-group (Rt )t≥0 related to the PDE

∂tRtf (x) = 1

2
7Rtf (x)+ b(x)∇Rtf (x) with R0f (x) = f (x).

Of course, a probabilistic representation is derived by letting Xt be the solution of
the SDE Xt = x + Bt +

∫ t
0 b(Xs ) ds and Rtf (x) = E[f (Xt )]. With the Girsanov

theorem (Theorem 8.2),Rtf (x) = E[Zt f (x+Bt )] for the Girsanov weight Z given
by (8.5) below.

The Feynman-Kac formula is commonly understood as a byproduct of the
Trotter-Kato-Lie formula [22], at least in the community of mathematical physics in
relation with the Schrödinger equation [40, 45]. The Trotter-Kato-Lie formula also
offers a simple interpretation, leading to splitting procedures that provide explicit
construction of numerical schemes (see e.g., [8, 23], among others).

Splitting schemes have been proposed to solve SDE.3 Surprisingly enough, we
found no trace where the Girsanov theorem is presented as a by-product of the

3In the domain of SDE, among others, the Ninomiya-Victoir scheme [41] relies on an astute way
to compose the operators.
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Trotter-Kato-Lie formula4 Yet its probabilistic interpretation is very simple: we
combine Brownian evolution over a short time with a transport equation through
the ODE Ẋ = b(X) over a short time, and so on. . .

A heuristic argument shows how the exponential weight appears. For a contin-
uous, bounded function f , the semi-group solution (Pt )t≥0 such that ∂tPtf (x) =
1
27Ptf (x) is given by Ptf (x) = E[f (x + Bt )]. The one (Qt)t≥0 that gives the
solution to ∂tQtf (x) = b(x)∇Qtf (x) is for f ∈ C1

b(R
d ,R)

Qtf (x) = f (Yt (x)) = f (x)+ tb(x)∇f (x)+ O(t2) with Ẏt = b(Yt ) and Y0 = x.

(8.2)

Thus, in short time,

PtQtf (x) = E[f (x + Bt )+ tb(x + Bt )∇f (x + Bt )] + O(t2)

= E[f (x + Bt )+ tb(x)∇f (x + Bt )]
+E[t (b(x + Bt )− b(x)∇f (x + Bt ))] + O(t2). (8.3)

Since the Gaussian density p(t, x) = exp(−x2/2t)/
√

2πt satisfies ∂xp(t, x) =
− x
t
p(t, x), an integration by parts implies that5

E[∇f (x + Bt )] =
∫
p(t, y)∂yf (x + y) dy =

∫
y

t
p(t, y)f (x + y) dy

= E

[
Bt
t
f (x + Bt )

]

so that

E[tb(x)∇f (x + Bt )] = E
[
Bt b(x)f (x + Bt )

]
.

Since b is Lipschitz, the term involving b(x +Bt )− b(x) in (8.3) is considered as a
higher order term, roughly of order O(t3/2) since Bt is roughly of order O(

√
t) and

it is multiplied by t . Thus,

PtQtf (x) = E
[
f (x + Bt )+ Bt b(x)f (x + Bt )

]+ O(t3/2).

4In [31], R. Léandre gives an interpretation of the Girsanov formula and Malliavin calculus in
terms of manipulation on semi-groups.
5This is one of the central ideas of Malliavin calculus to express the expectation involving the
derivative of a function as the expectation involving the function multiplied by a weight.
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Again owing to the regularity of the Brownian motion since (B2
t − t)t≥0 is a

martingale, we get

PtQtf (x) = E

[
exp

(
b(x)Bt − t

2
b(x)2

)
f (x + Bt )

]
+ O(t3/2)

to take into account the Taylor expansion of the exponential at order 2. The
exponential weight is an approximation of the Girsanov weight in short time so
that a similar analysis may be performed to show that PtQtf (x) = E[Zt f (x +
Bt )] + O(t3/2).

We also see that limit of our approach, as it requires both f to be C1
b(R

d,R) and
b to be Lipschitz. Such a restriction does not hold with the classical approach.

Using the above set of ideas, we then aim at proving rigorously the Girsanov
theorem in a restricted setting, by considering only the solution of the stochastic
differential equation

Xt = x + Bt +
∫ t

0
b(Xs ) ds

for a drift b ∈ C1
b(R

d ,Rd) and a d-dimensional Brownian motion on a probability
space (Ω,F ,P). As a rule, we try to stuck on functional analysis arguments, and
not on stochastic calculus to see how far we could go. When X is the canonical
process,6 we show that for any f ∈ C1

b(R
d,R),

Ê[f (Xt )] = E[Zt f (Xt )] (8.4)

with Zt = exp

(∫ t

0
b(Xs) dBs − 1

2

∫ t

0
|b(Xs)|2 ds

)
(8.5)

= 1 +
∫ t

0
Zsb(Xs) dBs, (8.6)

where Ê is the expectation of the distribution P̂ of X, and P the one of the
Brownian motion. It is only at the last stage that stochastic calculus is used, to
give the expression for Z by passing to the limit. All the other arguments come from
functional analysis or simple computations on the Gaussian density.

In the course of events, we obtain an upper bound for the weak rate of
convergence of the Euler scheme with a drift coefficient of class C1

b(R
d,Rd ), as

well as some insight on the exponential nature of the Girsanov weight.
We actually gives two derivations. One is based on the Euler scheme and could

be used without reference to the splitting procedure. It was used, with a different
formulation, by G. Maruyama in 1954 to show the differentiability of the transition

6This is, Xt (ω) = ω(t) when the probability space Ω is C(R+,R).
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densities of SDE [37]. This approach now seems to be part of the “folklore”. The
second one is an application of the Trotter-Kato-Lie using the heuristic given above.
Both procedures complement each others and gives two alternative discretization of
the Girsanov weights.

Our hypotheses are a priori more restrictive than the full Girsanov theorem.
Actually,

• Using the Markov property of Z and X, it is possible to show that

E[Zt2f (Xt2)f (Xt1)] = E
[
EXt1

[Zt2,t1f (Xt2−t1)]Zt1f (Xt1)
] = Ê[f (Xt2)f (Xt1)]

for 0 ≤ t1 ≤ t2, and so on. A limiting argument shows that the transform is valid
for functionals of the Brownian motion, not only for the marginal distribution.

• The restriction that f ∈ C1
b(R

d,R) in (8.4) is easily removed by using a sequence
of smooth approximations of a function f which is only continuous.

• The Girsanov theorem assumes nothing on the regularity of the drift and requires
only integrability condition. Here, the hypothesis that b is C1

b(R
d,Rd ) (or at least

Lipschitz continuous) is crucial for our analysis. Yet any drift could be reached
by regularizing the drift both in the PDE and the expression of the change of
measure. However, non-anticipative functional drifts cannot be treated by this
approach. We comment this further in Sect. 8.10.

• We use the independence of the increments of the Brownian motion as well as the
explicit expression of its density (the heat or Gaussian kernel) and its derivative.
Considering a diffusion coefficient σ which is smooth enough, we could apply to
approach to

Xt = x +
∫ t

0
σ(Xs) dBs,

where the Markov property is used, as well as Gaussian controls over the density
of the process and its derivatives, as well as expressions over the derivative of
Xt using Malliavin calculus. It requires fine stochastic and analytic tools while
our aim is to be as basic as possible, we use only the Brownian motion seen as a
process with independent, Gaussian increments.

• Time could be added in b, provided that b is uniformly Lipschitz continuous in
space with respect to the time and uniformly bounded.

Finally, let us mention an alternative derivation of the Girsanov theorem that
relies mostly on algebraic manipulations on the exponential weight [1]. This
approach also avoids stochastic calculus as much as they can. Yet more sophisticated
tools than ours are used.
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Outline

The semi-groups are introduced in Sect. 8.2. The main estimates on elementary steps
are given in Sect. 8.3. The convergence of the semi-groups associated to the Euler
scheme is shown in Sect. 8.4, while the ones for the splitting procedure is shown in
Sect. 8.5. The limits of the weights are identified in Sect. 8.7, leading to our proof of
the Girsanov theorem. The infinitesimal generator of the SDE with drift is identified
in Sect. 8.8 by the sole use of functional analysis. At last, to complement our idea
to avoid stochastic calculus, we present in Sect. 8.9 a representation of the Girsanov
weights that does not involve stochastic integrals for some special form the of drift.
Finally, we discuss in Sect. 8.10 the difference between SDEs and ODEs. The article
ends with two appendices.

8.2 Brownian Motion and Flows

For a dimension d , let B be a d-dimensional Brownian motion on a probability space
(Ω,F ,P). The drift b we consider belongs to C1

b(R
d ,R), the space of bounded,

continuous functions with a bounded, continuous first order derivatives.
We set for convenience Bt,s(x, ω) = x + Bt (ω) − Bs (ω) for any x ∈ R

d ,
t ≥ s ≥ 0 and ω ∈ Ω . This family (Bt,x(x, ω))t≥s≥0 is called a random dynamical
system. Clearly,

Bt,s(Bs,r (x, ω), ω) = Bt,r (x, ω) for any t ≥ s ≥ r ≥ 0 and any x ∈ R
d .

(8.7)

This property (8.7) is called the flow property.
For any s ≥ 0, let us define (Xt,s(x, ω))t≥s as the unique solution to

Xt,s(x, ω) = x + Bt (ω)− Bs(ω)+
∫ t

s

b(Xr,s(x, ω)) dr

= Bt,s(x, ω)+
∫ t

s

b(Xr,s(x, ω)) dr, t ≥ s.

(8.8)

Actually, there is no need of a theory of stochastic differential equation for this,
so that X·,s(x, ω) could be defined pathwise for any Brownian path B(ω) of the
Brownian motion B.

Proposition 8.1 For every ω in Ω and any starting point x ∈ R
d , there exists a

unique solution X (x, ω) to (8.8) defined on [s,+∞).

Proof Let us consider Ut,s(x, ω) = Xt,s(x, ω) −Bt,s (x, ω) and set β(t, y, ω) =
b(Bt,s(x) + y) so that b(Xt,s(x, ω)) = β(t,Ut,s(x, ω), ω). This way, X·,s (x, ω)
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is solution to (8.8) if and only if U·,s (x, ω) is solution to

Ut,s(x, ω) =
∫ t

s

β(r,Ur,s(x, ω), ω) dr, t ≥ s. (8.9)

For any s ≥ 0, x ∈ R
d and ω ∈ Ω , Eq. (8.9) has a unique solution, since β is

bounded in time and Lipschitz continuous in space. Then, (8.8) has necessarily a
unique solution as the map which transforms X to U is one-to-one. 12

To simplify our notations, we drop from now any reference to the event ω ∈ Ω ,
which is implicit.

From the uniqueness of the solution to (8.8), the family (Xt,s)t≥s≥0 satisfies the
flow property:

Xt,s(Xs,r (x)) = Xt,s(x) for 0 ≤ r ≤ s ≤ t .

For x ∈ R
d , we also consider the solution to the one-dimensional ODE

Yt,r (x) = x +
∫ t

r

b(Ys,r(x)) ds, t ≥ r.

This family also satisfies the flow property: Yt,r (x) = Yt,s(Ys,r (x)) for any 0 ≤
r ≤ s ≤ t and any x ∈ R

d . As b is time-homogeneous, Yt,s(x) = Yt−s(x) for any
0 ≤ s ≤ t .

Let us introduce several families of linear operators on Cb(R
d ,R) to Cb(R

d,R)

defined by

Xs,tg(x) = E[g(Xt,s (x))],
Ps,tg(x) = E[g(Bt,s (x))],
Qs,tg(x) = g(Yt,s(x)),

Vs,tg(x) = E[(1 + b(x)(Bt − Bs ))g(Bt,s (x))],
Es,tg(x) = E[g(Bt,s (x)+ (t − s)b(x))],

for g ∈ Cb(R
d ,R) and any 0 ≤ s ≤ t .

The time indices of X have been inverted with respect to the ones of X . The
same convention holds for the other operators. The reason is the following: as the
increments Bt − Bs and Bs − Br are independent,

E[g(Xt,s (Xr,s (x))] = E[Xs,tg(Xr,s (x))] = Xr,sXs,tg(x).

Acting the same for the other operators,

Xr,sXs,t = Xr,t , Qr,sQs,t = Qr,t and Pr,sPs,t = Pr,t . (8.10)
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Besides, Xs,s(x) = x so that Xs,s = Id. The same holds for the pairs (Y ,Q)

and (B, P ). This means that (Xr,t )0≤r≤t , (Qr,t )0≤r≤t and (Pr,t )0≤r≤t are non-
homogeneous semi-groups.7 Their infinitesimal generators are

B := b∇ for (Qr,t )0≤r≤t , L := 1

2
7 for (Pr,t )0≤r≤t and A := L+B for (Xr,t )0≤r≤t

with the appropriate domains (see Sect. 8.8).

8.3 Some Estimates

The next lemma is central for our analysis. Its proof is immediate so that we skip it.

Lemma 8.1 For bounded, linear operators Ai and Bi , i = 1, . . . , n,

n∏
i=1

(Ai + Bi)−
n∏
i=1

Ai =
n∑
j=1

⎛
⎝j−1∏
i=1

(Ai + Bi)

⎞
⎠Bj

⎛
⎝ n∏
i=j+1

Ai

⎞
⎠ .

Actually, such a lemma just follows from algebraic manipulations which are valid
in any Banach algebra. In the context of semi-group, it can be seen as a discrete
version of the perturbation formula [17, 43] which is central for the analysis of
semigroups. This perturbation is also related to the so-called parametrix method for
constructing densities (see e.g., [4] for an interpretation in the stochastic context).

8.3.1 Differentiability of the Flows

We recall here a classical result about the differentiability of the flow. A formal
proof is given for the sake of clarity.

To simplify the notations, we set

β = ‖∇b‖∞.

Proposition 8.2 For any 0 ≤ s ≤ t , the maps x �→ Yt,s(x) and x �→ Xt,s (x) are
differentiable. Besides,

‖∇Yt,s(x)‖ ≤ exp((t − s)β) and ‖∇Xt,s (x)‖ ≤ exp((t − s)β), ∀t ≥ s ≥ 0.
(8.11)

7These semi-groups are actually time-homogeneous. We however found it more convenient to keep
the time dependence for our purpose.
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Proof For i = 1, . . . , d and Yt,s(x) = (Y 1
t,s(x), . . . ,Y

d
t,s(x)),

∂xiY
j
t,s(x) = δi,j +

∫ t

s

n∑
k=1

∂xkbj (Ys,r(x))∂iY
k
s,r (x) dr.

After having considered formally this equation, it is then possible to show that
∇Yt,s(x) is really the derivative of Yt,s(x).

By identifying ∇Yt,s(x) with a matrix (∂xi Y
j
t,s(x))i,j=1,...,d ,

‖∇Yt,s(x)‖ ≤ 1 +
∫ t

s

β‖∇Yr,s(x)‖ dr

so that (8.11) for ∇Yt,s(x) follows from the Grönwall lemma. Similarly,

∂xiX
j
t,s(x) = δi,j +

∫ t

s

n∑
k=1

∂xkbj (Xr,s(x))∂iX
k
r,s(x) dr

so that a control similar to the one on ∇Yt holds for ∇Xt,s . 12
The control over the derivative of the flow is then transferred as a control on the

semi-groups.

Corollary 8.1 For any t ≥ s ≥ 0 and g ∈ C1
b(R

d ,R),

‖∇Xs,tg‖∞ ≤ exp(β(t − s))‖∇g‖∞.

Proof For any 0 ≤ s ≤ t , the chain rule implies that

∇Xs,tg(x) = ∇E[g(Xt,s (x))] = E[∇Xt,s (x)∇g(Xt,s(x))].

The result stems from (8.11). 12

8.3.2 The Heat Semi-group

Being associated to the heat equation, we call (Ps,t )0≤s≤t the heat semi-group (see
section “The Heat Semi-group” in Appendix 2).

Lemma 8.2 For any 0 ≤ s ≤ t ,

‖Ps,t g‖∞ ≤ ‖g‖∞, g ∈ Cb(R
d ,R)

and ‖∇Ps,t g‖∞ ≤ ‖∇g‖∞, g ∈ C1
b(R

d ,R).
(8.12)
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In addition, for g ∈ Cb(R
d,R) and i = 1, . . . , d ,

∂xi Ps,tg(x) = ∂xiE[g(Bt,s (x))] = E

[
Bit − Bis
t − s

g(Bt,s (x))

]
. (8.13)

For μ ∈ R, σ > 0, let us denote by N (μ, σ ) the Gaussian distribution of mean ν
and variance σ .

Proof Inequalities (8.12) are immediate. For (8.13), since x+Bt −Bs∼N (x, t−s),

Ps,tg(x) =
∫
Rd

1

(2π(t − s))d/2
exp

(−|y − x|2
2(t − s)

)
g(x + y) dy.

Since

∂xi exp

(−|y − x|2
2(t − s)

)
= (yi − xi)

t − s
exp

(−|y − x|2
2(t − s)

)
, (8.14)

we obtain the integration by part formula (8.13). 12
Remark 8.1 An immediate consequence of (8.13) is that

‖∇Ps,t g‖∞ ≤ ‖g‖∞√
t − s

, ∀0 < s < t, ∀g ∈ Cb(R
d,R). (8.15)

8.3.3 The Transport Semi-group

The semi-group (Qs,t )0≤s≤t is associated to a transport equation (see section “The
Transport Semi-group” in Appendix 2).

Lemma 8.3 For any 0 ≤ s ≤ t ,

‖Qs,tg‖∞ ≤ ‖g‖∞ for g ∈ Cb(R
d,R). (8.16)

In addition,

‖∇Qs,tg‖∞ ≤ ‖∇g‖∞ exp((t − s)β), ∀t ≥ 0 for g ∈ C1
b(R

d,R). (8.17)

Proof Inequality (8.16) is immediate and (8.17) follows from Proposition 8.2. 12
For g ∈ C1

b(R
d ,R), the Newton formula implies that

g(Yt,r (x)) = g(x)+
∫ t

r

b(Ys,r(x))∇g(Ys,r(x)) ds

= g(x)+ (t − r)b(x)∇g(x)+ R(r, t, g, x) (8.18)
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with a remainder term

R(r, t, g, x) =
∫ t

r

(b(Ys,r(x))∇g(Ys,r(x))− b(x)∇g(x)) ds. (8.19)

8.4 The Euler Scheme

We give a first convergence result which is related to the Euler scheme.
Let us set Et,s(x) = x + Bt − Bs + b(x)(t − s) = Bt,s (x)+ b(x)(t − s). This

is one step of the Euler scheme, in the sense that for ti = iT /n, i = 0, . . . , n,

ξi(x) = Eti ,ti−1 ◦ · · · ◦ Et1,0(x)

and the ξi(x)’s are easily recursively computed by

ξ0(x) = x and ξi+1(x) = Eti+1,ti (ξi (x)) = ξi + Bti+1 − Bti + b(ξi(x))
1

n

for i = 0, . . . , n− 1.
The Euler scheme provides a simple way to approximate the flow XT ,0(x) as

ET ,(n−1)T /n ◦ · · · ◦ ET/n,0(x) −−−→
n→∞ XT ,0(x) almost surely. (8.20)

We give an insight of the proof in Appendix 1.
In Proposition 8.3 below, an immediate consequence of the next lemma, we

provide a weak rate of convergence for the Euler scheme.

Lemma 8.4 For g ∈ C1
b(R

d,R),

‖Es,tg −Xs,tg‖∞ ≤ ‖∇g‖∞K(t − s)3/2.

Proof Actually,

Xt,s(x)− Es,t (x) =
∫ t

s

(b(Xr,s(x))− b(x)) dr

so that with β = ‖∇b‖∞,

|Xt,s(x)− Et,s(x)| ≤ β

∫ t

s

∣∣∣∣Br − Bs −
∫ r

s

b(Xu,s(x)) du

∣∣∣∣ dr.



342 A. Lejay

Then for g ∈ C1(Rd;R),

‖Es,tg −Xs,tg‖∞ ≤ ‖∇g‖∞β
∫ t

s

E[|Br − Bs |] dr + ‖∇g‖∞ (t − s)2

2
β‖b‖∞.

But E[|Br − Bs |] ≤ √
r − s. Hence the result. 12

For g ∈ C1
b(R

d ,R), let us denote

‖g‖! = max{‖g‖∞, ‖∇g‖∞}.

For a bounded linear operator A : C1
b(R

d ,R)→ C1
b(R

d ,R), let us set

‖A‖∞→∞ = sup
g∈Cb,‖g‖∞=1

‖Ag‖∞ and ‖A‖! = sup
g∈C1

b,‖g‖!=1

‖Ag‖!. (8.21)

Proposition 8.3 (Weak Rate of Convergence of the Euler Scheme) For any g ∈
C1

b(R
d,R),

∥∥∥∥∥
(
n−1∏
i=0

EiT/n,(i+1)T /n

)
g − X0,T g

∥∥∥∥∥
∞

≤ ‖g‖! C√
n
, (8.22)

for a constant C that depends only on ‖b‖! and T .

Proof Writing Ds,t = Es,t −Xs,t and using Lemma 8.1,

E0,1/n · · ·E(n−1)T /n,T g −X0,1/n · · ·X(n−1)T /n,T g

=
n−1∑
j=0

⎛
⎝ n−1∏
i=j+1

EiT/n,(i+1)T /n

⎞
⎠D(j−1)T /n,jT/n

⎛
⎝j−1∏
i=0

XiT/n,(i+1)T /n

⎞
⎠ g.

With Lemma 8.4, the product property (8.10) of (Xs,t ) and Corollary 8.1,

‖D(j−1)T /n,jT/nX0,(j−1)T /ng‖∞ ≤ ‖∇g‖∞K T
3/2

n3/2 .

In addition, since ‖Es,t‖∞→∞ ≤ 1 and

‖Er,sEs,t‖∞→∞ ≤ ‖Er,s‖∞→∞‖Es,t‖∞→∞,

on get easily (8.22) from the above inequality. 12
Remark 8.2 The weak rate of convergence of the Euler scheme is generally
established for smoother coefficients (e.g. b ∈ C4(Rd ,Rd)) to achieve a rate 1 [49].
In [38, 39], it is shown that for α-Hölder continuous coefficients with α < 2, the
order of convergence is α/2. This approach excludes the integer values of α, and the
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terminal condition is required to be (2 + α)-Hölder continuous. With our regularity
condition on the drift, we complete this result for α = 1 when the diffusivity is
constant. This result can also be recovered with the results in [29].

Remark 8.3 For a closely related approach with semi-groups, the article [5] pro-
vides us with some conditions in a more general context to exhibit the rate of
convergence of Euler schemes.

8.5 An Intermediary Convergence Result

We prove that the products of the operators Vs,t over finer and finer partitions of
[0, T ] converges to the operatorX0,T . This result is crucial to study the convergence
of the products of Qs,tPs,t in the next section.

Proposition 8.4 For any g ∈ C1
b(R

d ,R),

∥∥∥∥∥
(
n−1∏
i=0

ViT/n,(i+1)T /n

)
g −X0,T g

∥∥∥∥∥
∞

≤ ‖g‖! C√
n
,

for a constant C that depends only on ‖b‖! and T .

Proof From the Newton formula,

g(Et,s(x)) = g(Bt,s (x))+ (t − s)

∫ 1

0
b(x)∇g(Bt,s(x)+ τ (t − s)b(x)) dτ,

so that

|Es,tg(x)− Vs,tg(x)|
≤ ∣∣E[g(Et,s(x)] − E[g(Bt,s(x))] − E[(t − s)b(x)∇g(Bt,s(x))]

∣∣
≤ (t − s)

∫ 1

0
‖b‖∞

∣∣∣E[∇g(Bt,s (x)+ τ (t − s)b(x))−∇g(Bt,s (x))] dτ
∣∣∣.

Again with an integration by parts on the density of the normal distribution, for
G ∼ N (0, 1),

E[∇φ(μ+σG)] = 1√
2π

∫
exp

(−|y|2
2

)
∇φ(μ+σy) dy = E

[
G

σ
φ(μ+ σG)

]
,

from which we obtain for τ ∈ [0, 1],

E[∇g(Bt,s (x)+ τ (t − s)b(x))] = E

[
Bt − Bs
t − s

g(Bt,x (x)+ τ (t − s)b(x)

]
.
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Thus,

|Es,tg(x)− Vs,tg(x)| ≤ ‖b‖2∞
2

E[|Bt − Bs |]‖∇g‖∞(t − s) ≤ C‖∇g‖∞(t − s)3/2.

With Lemma 8.4,

|Xs,tg(x)− Vs,tg(x)| ≤ C′(t − s)3/2‖∇g‖∞.

The result follows from the same argument as in the proof of Proposition 8.3. 12

8.6 The Splitting Procedure

The composition Qs,tPs,t corresponds to a splitting (or composition): first, we
follow the flow generated B starting from x and then the one generated by Y·,s
starting at Bt,s(x). The convergence of the products of Q and P over finer and
finer partitions is the spirit of the Trotter-Kato-Lie approach to construct the semi-
groupX (see [12, 17]).

The main point is that if g is C1
b(R,R), then

Qs,tg(x) = g(Yt,s (x)) = g(x)+
∫ t

s

b∇g(Yr,s(x)) dr = g(x)+(t−s)b∇g(x)+· · · .

We use this Taylor development to obtain some control over the product Qs,tPs,t ,
together with an integration by parts on the Brownian density.

Proposition 8.5 For any g ∈ C1
b(R

d ,R),

∥∥∥∥∥
(
n−1∏
i=0

QiT/n,(i+1)T /nPiT/n,(i+1)T /n

)
g − XT,0g

∥∥∥∥∥
∞

≤ ‖g‖! C√
n
,

for a constant C that depends only on ‖b‖! and T .

Proof With (8.12) and (8.17),

‖∇(QtPt )g‖∞ ≤ exp(t‖∇b‖∞)‖∇Ptg‖∞ ≤ exp(tβ)‖g‖∞.

From (8.18),

Qs,tPs,tg(x) = Ps,tg(x)+ (t − s)b(x)∇Ps,tg(x)+ R(s, t, Ps,t g, x)
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where the remainder term R(s, t, ·, x) is defined by (8.19). With (8.13),

Qs,tPs,tg(x) = Vt,sg(x)+ R(s, t, Ps,t g, x).

Since b ∈ C1
b(R

d ,R),

|Yt,s(x)− x| =
∣∣∣∣
∫ t

s

b(Yr,s(x)) dr

∣∣∣∣ ≤ ‖b‖∞(t − s). (8.23)

Again from (8.13),

R(s, t, Ps,t g, x)

=
∫ t

s

E

[
Bt − Bs
t − s

·
(
b(Yr,s(x))g(Yr,s(x)+ Bt − Bs )− b(x)g(Bt,s(x)))

)
dr

]

so that with (8.23),

‖R(s, t, Ps,t g, ·)‖∞ ≤ E

[ |Bt − Bs |
t − s

] ∫ t

s

(‖∇b‖∞‖g‖∞ + ‖b‖∞‖∇g‖∞)r dr

≤ 2‖b‖!‖g‖!(t − s)3/2.

This proves that

∥∥∥∥∥
(
n−1∏
i=0

QiT/n,(i+1)T /nPiT/n,(i+1)T /n

)
g −

(
n−1∏
i=0

ViT/n,(i+1)T /n

)
g

∥∥∥∥∥
∞

≤ ‖g‖! C√
n
,

and the result follows from Proposition 8.4. 12

8.7 The Weights and Their Limits: The Girsanov Theorem

The expression of the weight will be obtained by two ways: The first one involves
the expression of the Euler scheme. For this, we need however a change of measure
which is easily deduced from the explicit expression of the Gaussian density. The
second one involves the expressions of V in the splitting procedure. With the
discrete time approximation, both expressions leads to different expressions for the
weights, whose limit is however the same. The expression obtained by the Euler
scheme is a discretization of the stochastic integral in the exponential weight given
by (8.5). The ones obtained using the splitting is a discretization of the SDE (8.6)
the exponential weights solve.
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We have now all the elements to prove the Girsanov theorem with our approach.

Theorem 8.3 (Girsanov, Simplified Form) There exists a stochastic process
(Zt (x))t∈[0,T ] given by

Zt (x) = exp

(∫ t

0
b(x + Bs) dBs − 1

2

∫ t

0
|b(x + Bs)|2 ds

)
(8.24)

or Zt (x) = 1 +
∫ t

0
Zs (x)b(x + Bs) dBs (8.25)

such that

E[g(XT ,0(x))] = E[ZT (x)g(BT ,0(x))]

for any bounded, measurable function g.

The weight (Zt (x))t≥0 will be identified as a limit, and stochastic analysis is
needed for this. For this, we will rewrite the probabilistic representation of the
operators given by both the Euler scheme and the splitting scheme as involving
some exponential term, and then combine them. The expression (8.24) is related
to the representation provided by the Euler scheme while (8.25) stems from the
splitting scheme.

The proof of this theorem is then obtained by combining Propositions 8.7 and 8.8
below with Remark 8.5.

8.7.1 Exponential Representation of the One-Step Euler
Scheme

The following exponential representation is a direct consequence of the expression
of the density of the Gaussian distribution.

Lemma 8.5 For any x ∈ R
d and 0 ≤ s ≤ t ,

E[g(Et,s(x))] = Et,sg(x) = E
[
Es,t (x)g(Bt,s(x))

]

with

Es,t (x) = exp

(
b(x) · (Bt − Bs )− (t − s)

2
|b(x)|2

)
.
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Proof When G ∼ N (0, σ 2Idd×d) and H ∼ N (μ, σ 2Idd×d), then for any
measurable, bounded function φ : Rd → R,

E[φ(μ+G)] = E[φ(H)] =
∫
φ(x)

exp
(−|x−μ|2

2σ 2

)
(2πσ 2)d/2

dx

=
∫
φ(x) exp

(
x · μ
σ 2

− |μ|2
2σ 2

) exp
(−|x|2

2σ 2

)
(2πσ 2)d/2

dx

= E [Ψ (G,μ)φ(G)]

with Ψ (G,μ) = exp

(
G · μ
σ 2 − |μ|2

2σ 2

)
.

With

φ(y) = g(x + y), G = Bt − Bs ∼ N (0, (t − s)Idd×d)

and H = (t − s)b(x)+ Bt − Bs ∼ N ((t − s)b(x), (t − s)Idd×d),

this yields the result. 12

8.7.2 The Weights

Let us set for x ∈ R
d and 0 ≤ r ≤ t ,

Vr,t (x) = 1 + b(x)(Bt − Br ) so that Vr,tg(x) = E[Vr,t (x)g(Bt,r (x))].

Proposition 8.6 For any x ∈ R
d , T > 0 and n ∈ N,

n−1∏
i=0

EiT/n,(i+1)T /ng(x) = E

[
ZEn,n(x)g(Bt,0(x))

]
(8.26)

and
n−1∏
i=0

ViT/n,(i+1)T /ng(x) = E

[
ZVn,n(x)g(Bt,0(x))

]

with ZEk,n(x) =
k−1∏
i=0

EiT /n,(i+1)T /n(BiT /n,0(x))

and ZVk,n(x) =
k−1∏
i=0

ViT /n,(i+1)T /n(BiT /n,0(x)).
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Proof Let us work on Et,s , the proof being similar for Vt,s .
Set F(x) = E[g(Et,s(x))] so that

Er,sEs,t g(x) = E[Es,t g(Es,r (x))] = E[F(Es,r (x))]
= E[Er,s (x)F (Bs,r (x))] = E[Er,s (x)Es,t (Bs,r (x))g(Bt,s (Bs,r (x)))]
= E[Er,s (x)Es,t (Bs,r (x))g(Bt,r (x))].

By iterating this computation, this leads to (8.26). 12

8.7.3 Uniform Integrability of the Weights

For n ≥ 1 and T > 0 fixed, let us denote byΔni B = Δn
iT/n,(i+1)T /nB, the increments

of the Brownian motion. For i = 1, . . . , n, set F n
i = σ(Δn0B, . . . ,Δ

n
i−1B), so that

(F n
i )i≥0 is the filtration generated by the increments of the Brownian motion.
We fix a starting point x ∈ R

d .

Lemma 8.6 For each n, both (ZEk,n(x))k≥0 and (ZVk,n(x))n≥0 are discrete martin-

gales with respect to (F n
i )i=1,...,n. Besides E[ZEk,n(x)] = E[ZVk,n(x)] = 1.

Proof The proof is immediate using the independence of the increments of the
Brownian motion. 12
Remark 8.4 Although ZEn,n(x) and ZVn,n(x) are close, they are certainly not equal as

ZEn,n(x) remains positive while ZVn,n(x) is negative with a positive probability.

To be able to pass to the limit, we prove that the family weights are uniformly
integrable martingales.

Lemma 8.7 Both (ZEk,n(x))n≥1 and (ZVk,n(x))n≥1 are uniformly integrable.

Remark 8.5 Provided that ZEn,n(x) and ZVn,n(x) converge in distribution to some
random variable ZT , the uniform integrability of these random variables is sufficient
to assert that

lim
n→∞E[ZEn,n(x)g(BT,0(x))] = lim

n→∞E[ZVn,n(x)g(BT,0(x))] = E[ZT (x)g(BT,0(x))].

Proof Using the independence of the increment and the property of the Laplace
transform of the Gaussian distribution,

E

[(
exp

(
b(x + BiT /n)Δni B− T

2n
|b(x + BiT /n)|2

))2
∣∣∣∣∣F n

i

]
≤ exp

(
‖b‖∞ T

n

)
,
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so that, by computing iteratively the conditional expectations,

sup
k=1,...,n
n≥1

E[(ZEk,n(x))2] ≤ exp(‖b‖∞T ).

Similarly,

E

[(
1 + b(x + BiT /n)Δni B

)2
∣∣∣F n

i

]
≤ 1 + T

n
‖b‖∞ ≤ exp

(
‖b‖∞ T

n

)
,

so that

sup
k=1,...,n
n≥1

E[(ZVk,n(x))2] ≤ exp(‖b‖∞T ).

This is sufficient to prove and uniform integrability. 12

8.7.4 Identification of the Limit of the Weights: Stochastic
Calculus At last

At this stage, we need some stochastic calculus in order to identify the limit of
ZEk,n(x) and ZVk,n(x).

Let us rewrite ZEk,n(x) as the iterative family by setting ZE0,n(x) = 1 and

ZEk+1,n(x) = ZEk,n(x) exp

(
b(x + Btnk )Δ

n
kB− T

2n
|b(x + Btnk )|2

)

= exp

(
k∑
i=0

b(x + Btni )Δ
n
i B− T

2n

k∑
i=0

|b(x + Btni )|2
)

for k = 0, . . . , n− 1.
The next result is an immediate consequence of the definition of a stochastic

integral. We recover the traditional expression for the Girsanov weight.

Proposition 8.7 When n → ∞ and kn → ∞ with kn/n −−−→
n→∞ t for some t ∈

[0, T ], ZEkn,n(x) converges in probability to Zt (x)t∈[0,T ] given by (8.24).

An application of the Itô formula yields the well known fact that Zt given
by (8.24) is solution to the Stochastic Differential Equation (8.25).

On the other hand, writing ZVk,n(x) as an iterative family yields that

ZVk+1,n(x) = ZVk,n(1 + b(x + Btnk )Δ
n
kB) for k = 0, . . . , n− 1
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with ZV0,n = 1. This could immediately be rewritten as the discrete analogue
of (8.25) by

ZVk+1,n(x) = 1 +
k∑
i=0

ZVi,n(x)b(x + Btni )Δ
n
i B for k = 0, . . . , n− 1.

The convergence of ZVk,n(x) is less immediate than the one of ZEk,n(x). Hopefully,
it can be dealt with the results of Duffie and Protter [16] (see also [30, Example 8.7,
p. 33]).

Proposition 8.8 When n → ∞ and kn → ∞ with kn/n −−−→
n→∞ t for some

t ∈ [0, T ], ZVkn,n(x) converges in distribution to Zt (x) given by (8.25) or
equivalently (8.24).

8.8 The Infinitesimal Generator of the Semi-group (Xt)t≥0

We compute now the infinitesimal generator of (Xt )t≥0, still using only functional
analysis. For the details, we refer for example to the book [12, 17].

The semi-groups (Xs,t )0≤s≤t , (Ps,t )0≤s≤t and (Qs,t )0≤s≤t are indeed homoge-
neous in time, as actuallyXs,t = X0,t−s , Ps,t = P0,t−s andQs,t = Q0,t−s . We now
set Xt = X0,t−s , Pt = P0,t−s and Qt = Q0,t−s .

Definition 8.1 (Strongly Continuous Semi-group) Let B be a Banach space with
a norm ‖ · ‖. A semi-group (Ft )t≥0 on B is said to be strongly continuous if for any
f ∈ B, Tf f is continuous.

Definition 8.2 (Infinitesimal Generator) The infinitesimal generator of a semi-
group (Ft )t≥0 on B is a linear operator F : Dom(F) ⊂ B → B such that

Dom(F) =
{
f ∈ B

∣∣∣∣ lim
h→0

Fhf − f

h
exists

}

and Ff = limh→0(Fhf − f )/h.

When (F,Dom(F)) is closed for the graph norm ‖·‖+‖F ·‖ and densely defined
in B, then it determines the semi-group uniquely [17, Proposition 1.4, p. 51].

We consider that the underlying Banach space is B = Cz(R
d,R), the space of

continuous, bounded functions that vanish at infinity, and ‖ · ‖ = ‖ · ‖∞. We denote
by Ckc(R

d,R) ⊂ Cz(R
d,R) the space of functions of class Ck(Rd,R) with compact

support.
On B, we consider the heat operator L = 1

27, whose domain is the closure of
C2

c(R
d,R) for the graph norm. This is the infinitesimal generator of (Pt )t≥0 (see

section “The Heat Semi-group” in Appendix 2).
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We also consider B = b∇ whose domain is the closure of C1
c(R

d,R) for the
graph norm. The operator (B,Dom(B)) is the infinitesimal generator of (Qt )t≥0
(See section “The Transport Semi-group” in Appendix 2).

The next result is an “almost” direct consequence of the Trotter-Kato-Lie
formula.

Proposition 8.9 The infinitesimal generator of the semi-group (Xt)t≥0 is A = L+
B with Dom(A) = Dom(L).

Proof To construct the semi-group (Xt)t≥0, we apply Corollary 5.8 in [17, p. 227],
which follows from the Chernoff product formula [17, Theorem 5.2, p. 220].

We show first that Dom(L) ⊂ Dom(B).
For any λ > 0, (λ−L) is invertible on B and Dom(L) = (λ−L)−1(B). Moreover,

(λ− L)−1f (x) =
∫ +∞

0
e−λtPtf (x) dt . (8.27)

Using the control (8.15), for any f ∈ B,

‖∇(λ− L)−1f (x)‖∞ ≤ C(λ)‖f ‖∞ (8.28)

with C(λ) = ∫ +∞
0 t−1/2e−λt dt . Thus,

‖B(λ− L)−1f ‖∞ ≤ ‖b‖∞C(λ)‖f ‖∞.

It follows that B is well defined for any Dom(L) since for any g ∈ Dom(L), there
exists f ∈ B such that g = (λ− L)−1f .

Both (Qt )t≥0 and (Pt )t≥0 are contraction semi-groups,8 since ‖Ptg‖∞ ≤ ‖g‖∞
and ‖Qtg‖∞ ≤ ‖g‖∞ for any g ∈ B = Cz(R

d ,R). Thus, for any t ≥ 0, PtQt is a
bounded operator on B with norm 1.

It remains to show that (λ − L − B)(Dom(L)) is dense in B = Cz(R
d,R) for

some λ > 0. We actually show that (λ − L − B) is one-to-one between Dom(L)
to B.

For this, we consider finding the pairs (f, g) ∈ Dom(L)× B such that

(λ− L−B)f = g. (8.29)

We rewrite (8.29) as

f − (λ− L)−1Bf = (λ− L)−1g,

8These semi-groups satisfies the far more finer properties of being Feller, as for (Xt )t≥0, but we
do not use it here.
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so that f is sought as

f = Kg = lim
n→∞Kng with Kng =

n∑
k=0

(
(λ− L)−1B

)k
(λ− L)−1g. (8.30)

For any k ≥ 1,

(
(λ− L)−1B

)k
(λ− L)−1 = (λ− L)−1(B(λ − L)−1)k.

Inequality (8.8) proves that B(λ − L)−1 is a bounded operator on B with
constant ‖b‖∞C(λ).

When λ → ∞, C(λ) decreases to 0. We choose λ large enough so
that ‖b‖∞C(λ) < 1. An immediate consequence of (8.27) is that (λ − L)−1 is
bounded by 1/λ. Thus, for any k ≥ 1,

‖((λ− L)−1B
)k
(λ− L)−1g‖∞ ≤ 1

λ

(‖b‖∞C(λ))k‖g‖∞.
This means that the series Kg defined in (8.30) converges in B. Moreover, it is easily
checked that

(λ− L−B)Kn(λ− L)−1g = −(B(λ− L)−1)n+1g + g.

With (8.28), under the condition that C(λ)‖b‖∞ < 1, f = Kg solves (λ − L −
B)f = g in B.

Since

BKng =
n∑
k=0

B[(λ− L)−1B]k(λ− L)−1g =
n+1∑
k=1

[B(λ− L)−1]kg,

it follows from (8.8) that when C(λ)‖b‖∞ < 1, (BKng)n≥1 forms a Cauchy
sequence. Since (B,Dom(B)) is a closed operator, its limit is necessarily BKg.
Thus,

(λ− L)Kng = g − (B(λ− L)−1)n+1g +BKng.

Clearly, Kng ∈ Dom(L). Since (L,Dom(L)) is also a closed operator, we obtain
that by passing to the limit, Kg ∈ Dom(L) and

(λ− L)Kg = g +BKg

so that λ−L−B is invertible from Dom(L) to B with inverse K which is bounded
on B. This implies that (L + B) is itself a closed operator, with domain Dom(L).
The latter domain is dense in B.
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The Chernoff product formula [17, Theorem 5.2, p. 220] then proves that the
infinitesimal generator of (Xt)t≥0 is (L+B,Dom(L+B)). 12

8.9 A Case Where Itô Formula Could be Avoided (or
Feynman, Kac, Girsanov and Doob Meet Together)

Still to stuck to our rule to avoid stochastic calculus for the sake of play, we show that
for special form of the drift, an already known probabilistic representation can be
obtained by combining the previous results. The representation is the starting point
of the so-called exact simulation method from Beskos and Roberts [7] for simulating
a Brownian motion with drift by performing an acceptance/rejection scheme on
paths from the Brownian bridge.

8.9.1 The Feynman-Kac Formula

The Feynman-Kac formula provides a probabilistic representation to the solution to

{
∂tu(t, x) = 1

27u(t, x)+ U(x)u(t, x),

u(0, x) = f (x).
(8.31)

Theorem 8.4 (Kac [27]) LetU be bounded.9 Then the solution of (8.31) is solution
to

u(t, x) = E

[
exp

(∫ t

0
U(x + Bs) ds

)
f (x + Bt )

]
. (8.32)

Proved first by M. Kac, it is also related to the Feynman path integral for solving
the Schrödinger equation (See e.g. [40, 45]). This formula has many applications,
in mathematical physics of course, but also in analysis. For example, it provides
an effective way to compute Laplace transforms of functionals of the Brownian
motion—the original goal of Kac [27] (for applications, see e.g. [25])—or to
perform some change of measures [44].

The Feynman-Kac formula could also be proved naturally through the Trotter-
Kato-Lie formula (see e.g. [21, 48]).

9This condition is stronger than the one given in the original article of M. Kac on that subject.
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With L = 1
27 and U be defined on the space of bounded functions by Uf (x) =

U(x)f (x), the semi-group (Ut )t≥0 of U is simply given by

Utf (x) = exp(U(x)t)f (x), t ≥ 0,

a fact which is easily verified. Thus, by a computation similar to the one of
Proposition 8.6, for any t ≥ 0,

(Ut/nPt/n)
n = E

[
exp

(
n−1∑
i=0

U(x + Bit/n)
t

n

)
f (Bt )

]
−−−→
n→∞ u(t, x) given by (8.32).

On the other hand, the Trotter-Kato-Lie formula implies that

∂tv(t, x) = (L+ U)v(t, x) with v(0, x) = f (x) when v(t, x) = lim
n→∞(Ut/nPt/n)

nf (x).

8.9.2 The Infinitesimal Generator of a Semi-group Under a
h-Transform

Given a semi-group (Pt )t>0 and a positive function φ, one could naturally set

P
φ
t f = 1

φ
Pt(φf ), t ≥ 0.

The rationale is that for any measurable, bounded function f ,

P
φ
t P

φ
s f = 1

φ
Pt

(
φ

φ
Ps(φf )

)
= 1

φ
Pt+s(φf ) = P

φ
t+sf for any s, t ≥ 0

so that (Pφt )t≥0 is still a semi-group.

Proposition 8.10 Let φ be a positive function of class C2
b(R

d ,Rd). Consider the
semi-group (Pt )t≥0 generated by P = L+V. Then the infinitesimal generator Pφ

of (Pφt )t≥0 is given by

Pφf = Pf + 1

φ
∇φ · ∇f + 1

2φ
(7φ)f.

Since φ is positive, let us write Φ = ln(φ) so that for f ∈ C2
b(R

d ,Rd),

Pφf = Lf +Vf +∇Φ · ∇f + 1

2
(7Φ)f + 1

2
(∇Φ · ∇Φ)f.
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Remark 8.6 If φ is a harmonic function, then Pφ is the infinitesimal generator of
a diffusion process with drift ∇φ/φ. This is the spirit of the h-transform or Doob’s
transform introduced by Doob [15] for solving problem in potential analysis. This
implies a large class of processes with conditioning (for example, to construct a
Brownian bridge where the value at a given time is fixed) could be obtained through
a process with a drift (Actually, the same computations hold when φ is also time
dependent).

8.9.3 An Alternative Formulation for the Girsanov Weights for
Some Special Form of the Drift

Given a bounded function φ, it is tempting but hopeless to look for a function φ
such that ∇φ = φb and 7φ = 0. We are however free to choose the potential U .

Let (St )t≥0 be the semi-group generated by P = L+U withU = − 1
2∇Φ ·∇Φ+

1
27Φ with Φ = logφ. Hence,

S
φ
t f (x) =

1

eΦ(x)
Ex

[
exp

(
−1

2

∫ t

0
∇Φ(Bs ) · ∇Φ(Bs ) ds

+
∫ t

0

1

2
7Φ(Bs) ds +Φ(Bt )

)
f (Bt )

]
. (8.33)

According to the above rules, the infinitesimal generator Sφ of Sφt is

Sφf = Lf +∇Φ · ∇f.

Proposition 8.11 Assume that b ∈ C1(Rd ,Rd) is a potential vector field, i.e., there
exists Φ ∈ C2(Rd ,R) such that b = ∇Φ. Then for a bounded, measurable function
f , E[f (Xt)] = S

φ
t f (x) where Sφt is given by (8.33).

Actually, (8.33) is not surprising. With the Itô’s formula,

Φ(Bt )−Φ(B0) =
∫ t

0
∇Φ(Bs) dBs − 1

2

∫ t

0
7Φ(Bs ) ds,

from which the classical representation of the exponential weight of the Girsanov
theorem is easily obtained.
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8.10 Complement: On the Regularity of the Drift and the
Difference Between Classical and Stochastic Analysis

With our approach, the drift was assumed to be Lipschitz continuous. The main
reason for this condition is that from the very construction, the flow associated to
the ODE Ẋ = b(X) needs to be defined to construct the semi-group (Qt )t>0.

If b is not Lipschitz continuous, the equation Ẋ = b(X) may have several
solutions. A classical example is b(x) = √

x.
The regularity of b could be weakened to define a flow or to consider a particular

solution to Ẋ = b(X) but still a minimal regularity of b should be enforced. For
example, b should belong to some Sobolev space [2, 13].

On the other hand, the situation changes when SDE are considered. Striking
results from Zvonkin [53] and afterwards Veretennikov [52] prove the existence
of a unique strong solution to the SDE

dXt = σ(Xt ) dBt + b(Xt ) dt (8.34)

whatever the regularity of b provided that

dXt = σ(Xt ) dBt , t ≥ 0 (8.35)

has a strong solution (of course, with suitable integrability conditions on b). The
solution to (8.34) defines a flow of diffeomorphisms when σ is a positive constant
and b is Hölder continuous.

Taking σ(z) = εz for ε > 0 which is taken as small as possible proved the
uniqueness of a solution to the SDE dXt = ε dBt + b(Xt ) dt seen as a noisy
perturbation of the ODE Ẋ = b(X) even when the latter ODE has no single solution.
This fact is discussed among other references in [3, 19].

For the Girsanov theorem seen as a change of measure, the regularity of b
plays no role. One has only to ensure that the exponential super-martingale Zt =
exp

(∫ t
0 b(Xs ) dBs + 1

2

∫ t
0 b(Xs) ds

)
defining the weight is actually a martingale,

and numerous conditions have been given on b (See e.g. [20, 33]). For this, the drift
appears only in an integrated form. An immediate application is the existence of a
weak solution to the (8.34) when (8.35) has one, whatever the regularity of b (of
course, with the suitable integrability conditions on b, see e.g. [47]).

We then see that a difference holds by considering (8.35) and Ẋ = b(X) sepa-
rately through the Trotter-Kato-Lie, or by considering directly SDE of type (8.34),
which draws a line of separation between stochastic and ordinary differential
equations. This explains why our conditions on b are stronger than the one required
usually when invoking the Girsanov theorem.
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Appendix 1: Almost Sure Convergence of the Euler Scheme

The convergence property (8.20) of the Euler scheme follows from the recursive
inequality

|ξi+1(x)−Xti+1,0(x)| ≤ |ξi(x)−Xti ,0(x)| + ρi + T

n
|b(ξi(x))− b(Xti ,0(x))|

≤ exp (T ‖∇b‖∞)
i∑

j=1

ρj (8.36)

with

ρi =
∫ ti+1

ti

|b(Xr,0(x)) − b(Xti ,0(x))| dr ≤ T

n
‖∇b‖∞ sup

r∈[ti ,ti+1]
|Xr,0(x) −Xti ,0(x)|.

For this, we have used the fact that b is Lipschitz continuous and 1 + T
n
‖∇b‖∞ ≤

exp(T ‖∇b‖∞/n).
It can be proved that similarly to the Brownian path, each path of Xt,0(x) is α-

Hölder continuous for any α < 1/2. This is a direct consequence of the Kolmogorov
lemma on the regularity of stochastic processes. This proves that the right hand side
of (8.36) converges to 0 at rate α < 1/2.

Appendix 2: The Heat and the Transport Semi-group

The underlying Banach space is B = Cz(R
d,R), the space of continuous, bounded

functions that vanish at infinity. The norm on B is ‖f ‖ = supx∈Rd |f (x)|.

The Heat Semi-group

The heat semi-group is

Ptf (x) =
∫

1

(2πt)d/2
exp

(−|x − y|2
2t

)
f (y) dy
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for a measurable function g which is bounded or in L2(Rd), the space of square
integrable functions.

Since the marginal distribution of the Brownian motion B at any time t is normal
one with mean 0 and variance t , Ptf (x) = E[f (x + Bt)].

Using Fourier transform or computing derivatives,

∂tPtf (x) = 1

2
7Ptf (x), x ∈ R

d , t > 0.

Multiplying the above equation by g(x) ∈ C2
c(R

d ,R), performing an integration by
parts then integrating between 0 and t lead to

∫
Rd

(Ptg(x)− g(x))f (x) dx = 1

2

∫ t

0

∫
Rd

Ptf (x)7g(x) dx.

Then, passing to the limit and since f is freely chosen,

lim
t→0

Ptg(x)− g(x)

t
= 1

2
7g(x), ∀x ∈ R

d, g ∈ C2
c(R

d,R). (8.37)

Thus, if (L,Dom(L)) is the infinitesimal generator of (Pt )t≥0 (this is necessarily a
close operator), L = 1

27 on C 2
c (R

d,R) ⊂ Dom(L). The latter space being dense in
the underlying space Cz(R

d ,R) with respect to ‖ · ‖∞ and Dom(L) with respect to
the graph norm ‖·‖∞+‖L ·‖∞, (8.37) characterizes (L,Dom(L)) when Cz(R

d,R)

is the ambient Banach space.
In other words, we recover that the infinitesimal generator of the Brownian

motion is L = 1
27 with a suitable domain. This could of course be easily obtained

from the Itô’s formula. Also, we see the link between the heat equation (8.10), the
Brownian motion and the heat semi-group.

The Transport Semi-group

Let us consider now the flow (Yt ). Since Y (x) is solution to Yt (x) = x +∫ t
0 b(Ys(x)) ds, the Newton formula for f ∈ C1

c(R
d ,R) implies that

f (Yt (x))− f (x) =
∫ t

0
b(Ys(x))∇f (Ys (s)) ds.

Hence, the infinitesimal generator of (Qt )t≥0 is B = b∇· whose domain Dom(B)
is the closure of C1

c(R
d,R) to the graph norm (see e.g. [17, § II.3.28, p. 91]).

The semi-group (Qt )t>0 is also linked to a PDE, called the transport equation.
We have seen in Proposition 8.2 that x �→ Yt (x) is differentiable. It is actually of
class C1(Rd ,R). Thus, Qtf (x) = f ◦ Yt (x) is also differentiable. Applying the
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Newton formula to f ◦ Yt = Qtf and using the flow property of Yt leads to

f (Yt+ε(x))−f (Yt (x)) = Qtf (Yε(x))−Qtf (x) =
∫ ε

0
b(Ys(x))∇Qtf (Ys(x)) ds.

Dividing each side by ε and passing to the limit implies that

∂tQtf (x) = b(x)∇Qtf (x).

Conversely, it is also possible to start from the transport equation ∂tu(t, x) =
b(x)∇u(t, x) to construct the flow Y through the so-called method of character-
istics, that is to find the paths Z : R+ → R

d such that u(t,Zt ) is constant over the
time t .
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Chapter 9
On Drifting Brownian Motion Made
Periodic

Paul McGill

Abstract The Brownian reference measure on periodic functions provides a frame-
work for investigating more general circular processes. These include a significant
class of periodic diffusions. We illustrate by proposing simple analytic criteria for
finiteness and absolute continuity of the intrinsic circular measure associated to
drifting Brownian motion. Our approach exploits a property of approximate bridges.

Keywords Drifting Brownian motion · Approximate bridge · Circular measure ·
Girsanov formula

AMS Classification 2010 Primary: 60J65; Secondary: 60H10, 28C20

9.1 Introduction

Notation Let T = R/Z and Mφ = φ2 − φ′. Write Px[zt = y] for the semigroup
density of the real diffusion (zt ). We reserve F to represent a generic bounded Borel
functional on C([0,∞)), C([0, 1]) or C(T) as appropriate. Processes are indexed by
[0, 1], unless otherwise indicated, and C > 0 is constant.

Any regular real diffusion (zt ) specifies a unique measure ž on C(T) via the
relation

Ě[F(ž)] =
∫
C(T)

F (γ )ž(dγ )

=
∫
R
Ex [F(z)|z1 = x]Px[z1 = x]dx (9.1)
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where F ≥ 0. This mixture of periodic bridges is intrinsic to the (zt ) semigroup.
We drafted Ě to signal the possibility of infinite mass; a finite ž determines the law
of a periodic process—aka (zt ) made periodic.

For the case of Brownian motion (βt ), translation invariance means that

Ě[F(β̌)] =
∫
R
Ex[F(x + ξ)] dx√

2π
(9.2)

using the standard bridge (ξt )
law= (βt−tβ1) for β0 = 0. Compare [3] but beware their

normalization. The circular Brownian measure furnishes a convenient framework
for doing analysis on C(T). Applications include the study of periodic diffusions
with explicit Radon-Nikodym derivative.

We illustrate by proposing simple analytic criteria for absolute continuity ž� β̌

and ž <∞ in the case of drifting Brownian motion, namely ∃φ : R → R such that

dzt = dβt − φ(zt )dt. (9.3)

Restricting to solutions of (9.3) facilitates calculation. It also opens a fresh
perspective on [2, 3]. Example 9.3 in section four describes the Ricatti circular
measure that features, albeit implicitly, in [3] and [9].

The approach adopted below will start from the absolute continuity of individual
bridges. We therefore broaden our remit to embrace

Px [z ∈ . ] � Px[β ∈ . ] ; Px→y [z ∈ . ] � Px→y[β ∈ . ] ; ž� β̌. (9.4)

Conditions that guarantee the first are well-understood (Novikov, Kazamaki,..). We
will establish the other parts under decidedly weaker assumptions.

Our underpinning hypothesis stipulates that

φ has locally bounded variation and Mφ(da) ≥ −Cda (9.5)

noting how the Radon measure Mφ(da) features in the exponential local martingale

Et (φ, β) = exp
(
−∫ t

0φ(βs)dβs − 1
2

∫ t
0φ

2(βs)ds
)

= exp
(
Φ(β0)− Φ(βt)− 1

2

∫ t
0Mφ(βs)ds

)
. (9.6)

Condition (9.5), while effective and widely applicable, is far from optimal. We
deploy it here in order to shorten the proofs. Recall also, e.g. [11], that Φ := ∫ .

0 φ

satisfies Φ ′ a.e.= φ.

Remark 9.1

(1) The circular measure ž determines all periodic bridge laws and the mixing
density Px[z1 = x].
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(2) Condition (9.5) says that h ≥ −C a.e. and μ⊥ ≥ 0 in the Lebesgue
decomposition Mφ(da) = h(a)da + μ⊥(da).

(3) Mφ is Miura’s map of mKdV/KdV renown [9].

The main result of this paper sets out sufficient conditions for (9.4). In the statement
we conflate derivative and Radon-Nikodym factor.

Proposition 9.1 Assume condition (9.5).

(P1) If Φ ≥ −C then Px[z ∈ .] � Px[β ∈ .] with derivative E1(φ, β).
(P2) The derivative for Px→y[ z ∈ . ] � Px→y[ β ∈ . ] equals

eΦ(x)−Φ(y)e−
1
2

∫ 1
0 Mφ(β)Px[β1 = y]/Px [z1 = y].

(P3) ž(dγ ) = exp{− 1
2

∫ 1
0 Mφ(γ )}β̌(dγ ).

(P4) ž has finite total mass iff
∫
dx E[ exp{− 1

2

∫ 1
0 Mφ(x + ξ)} ] converges.

Remark 9.2

(1) Well-known (P1) handles an ultimately restoring drift. We use it to introduce
the proof of (P2).

(2) Proposition 9.1, together with Corollary 9.1 below, refines [2, Section 3].
(3) Subject to existence, formula (P2) befits the continuous version of y →

Ex [F(z)|z1 = y].
(4) The measure ž is finite iff

∫
Px [z1 = x]dx converges but direct verification is

fraught. The practical test set forth in Corollary 9.1 wields the criterion (P4).
(5) From (9.6) we see that ψ = e−Φ solves ψ ′′/ψ = Mφ . In [7, Section 8.6],

they apply the converse. Given a suitable k, the logarithmic derivative of the
groundstate for ψ ′′/ψ = k defines φ satisfying k = Mφ .

9.2 Proof of Proposition 9.1

The key result of this section, Lemma 9.1, deals with absolute continuity of the
approximate bridges. Our rationale for allowing the endpoint to vary in a non-trivial
bounded interval is that this expedites the deployment of martingale calculus. We
begin however by recalling some consequences of condition (9.5).

Consider first the implications for (9.3) which describes a diffusion having scale
and speed measure given by

s′(x) = e2Φ(x) ; m(dx) = 2e−2Φ(x)dx. (9.7)
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Applying Itô’s formula to u = s(z) we get

dut = s′(zt )dβt + [ 1
2s

′′ − φs′](zt )dt
= s′ ◦ s−1(ut )dβt (9.8)

where, as noted in [12], local boundedness of φ implies s′ ◦ s−1 is locally
Lipschitz. So for z0 = x we conclude (e.g. [10, Ch.IX §2]) that Eq. (9.8), and
consequently (9.3), admits a unique strong solution on its interval of non-explosion
[0, ζ ).

Next we consider the ramifications of (9.5) for the local martingale (9.6). Since
the distributional derivative φ′ is a Radon measure we may specify

∫ t
0 Mφ(βs)ds =

∫ Mφ(da)L
a
t

by fixing a bicontinuous version of Brownian local time (a, t) → Lat . Moreover,
noting the lower bound

∫ t
0 Mφ(βs)ds =

∫
Lat Mφ(da)

≥ −C ∫
Lat da

= −C t, (9.9)

it follows from Φ ≥ −C that (9.6) is uniformly bounded when β0 = x.

Proof of (P1) By the preceding Qx [A] = Ex [E1(φ, β);A] defines a probability law
on the Borel sets of C[0, 1] such that, vide [10, Chapter VIII],

βQ = β + ∫ .
0φ(βs)ds

is a Q-Brownian motion. Uniqueness in (9.3) then validates

Ex [F(z)] = EQx [F(β)]

= Ex [F(β)E1(φ, β)] . (9.10)

Proof (P2) ⇒ (P3–4) Rearranging then integrating (P2) with x = y, we apply (9.1)
on the left and (9.2) on the right to obtain

Ě[F(ž)] =
∫
R
E

[
F(x + ξ)e

− 1
2

∫ 1

0
Mφ(x+ξ)

]
dx√
2π
.

This is the formal expression for (P3) and assigning F ≡ 1 yields (P4).
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To complete the proof of Proposition 9.1 it remains to justify (P2). There are
two steps. First we verify absolute continuity when the endpoint lies in a bounded
interval. Invoking semigroup regularity then lets us secure same for the bridge.

For the next lemma we temporarily lift the restriction that all processes are
defined on [0, 1] and introduce (Ft )t≥0 to represent the underlying filtration. Recall
the notation βT := (βt∧T ) and standard convention whereby F vanishes on the
explosion set (ζ ≤ 1).

Lemma 9.1 Under condition (9.5) the relation

Ex [F(z.∧1)g(z1)] = Ex [F(β.∧1)g(β1)E1(φ, β)]

holds for all g ∈ Cc(R).

Proof Introducing Tn = inf{t > 0 : |βt | ≥ n}, and writing Sn = Tn ∧ n,
then (9.9) ensures uniform boundedness of (ESnt (φ, β))when β0 = x. The argument
justifying (9.10) now yields

Ex[F(zSn.∧1)g(z
Sn
1 );A] = Ex[F(βSn.∧1)g(β

Sn
1 )ESn(φ, β);A]

for arbitrary A ∈ FSn . Fixing A = (Sn > 1) ∈ F1 the equation simplifies

Ex [F(z.∧1)g(z1); Sn > 1] = Ex [F(β.∧1)g(β1)E1(φ, β); Sn > 1]

by Doob’s theorem. However both integrands are uniformly bounded: clearly for
each term on the left while the right side has bounded factors

F(β.∧1) ; eΦ(x)−Φ(β1)g(β1) ; e−
1
2

∫ 1
0 Mφ(β).

Passing to limit we obtain

Ex [F(z.∧1)g(z1); ζ > 1] = Ex [F(β.∧1)g(β1)E1(φ, β)]

and the explosion set does not contribute.

Proof of (P2) Defining Fn(β) = F(βtn) where tn = (n− 1)/n, Lemma 9.1 implies
that for μ(da) := 1

2Mφ(a)da + 1
2Cda ≥ 0 and almost every y

Ex [Fn(z)|z1 = y]Px[z1 = y]
= eΦ(x)−Φ(y)+

1
2CEx [Fn(β)e−

∫
La1μ(da)|β1 = y]Px[β1 = y]. (9.11)

We claim that each term in (9.11) has a y-continuous version. This ensures equality
and hence, since the Fn constitute a determining family, identity of the measures
in question. To verify our claim we recall first from [4, §4.11], that the semigroup
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density of β killed at rate μ

(x, y, t)→ p
(μ)
t (x, y) = Ex

[
e−

∫
Lat μ(da) | βt = y

]
Px[βt = y] > 0 (9.12)

is jointly continuous in all three variables when t > 0. Next, for g ∈ Cc(R), we
apply the Markov property to decompose

Ex
[
Fn(β)e

− ∫
La1μ(da)g(β1)

]
= E(μ)x

[
Fn(β)E

(μ)
βtn

[
g(β1/n)

]]

=
∫

E(μ)x

[
h(βtn)p

(μ)
1/n(βtn, y)

]
g(y)dy

using h(βtn) := E(μ)x

[
Fn(β)|βtn

]
. It follows that for almost every y

Ex

[
Fn(β)e

− ∫
La1μ(da)|β1 = y

]
Px [β1 = y]

= E(μ)x

[
h(βtn)p

(μ)
1/n(βtn, y)

]
.

However the last is continuous—inherited from (9.12) using h bounded and the
Gaussian domination

p
(μ)
1/n(x, y) ≤ Px[β1/n = y] ≤ √

n/2π.

This implies continuity of the conditional expectation and hence, Φ being continu-
ous, continuity for all terms on the right side of (9.11). Since the same holds on the
left, by continuity of Px [z1 = y] > 0, our claim is vindicated.

This completes the proof of Proposition 9.1. The result suggests a wide range of
applications, notably in the area of semigroup perturbation [2, 3], but we confine
our immediate focus to the repercussions for ž.

9.3 Applications

The combination of (P3) with (9.2) provides a general method for establishing
properties of ž. Besides their wider import, the corollaries below were selected for
their relevance to the examples of the next section.
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The first concerns a test for finiteness. Starting from (P4), we seek an approx-
imating function mφ(x) for

∫ 1
0 Mφ(x + ξ) such that ž < ∞ holds whenever

exp{− 1
2mφ} ∈ L1(R). Our options for mφ are dictated by the choice of approxi-

mation estimate.
As a practical demonstration we apply Kuiper’s [6] oscillation bound

P[ξ•1 − ξ◦1 > x] = 2
∑
k≥1

(4x2k2 − 1)e−2x2k2
,

where (ξ•t ) (resp. (ξ◦t )) denotes the maximum (resp. minimum), to control the error

in the casem
�

φ (x) = inf|2u|≤|x|Mφ(x+u). Our proof employs the maximal process
ξ∗ = sup(ξ•,−ξ◦).
Corollary 9.1 Assume φ′ exists for |x| ≥ N sufficiently large. Then integrability at

infinity of exp{− 1
2m

�

φ } guarantees ž <∞.

Proof To verify (P4) we note first that (9.9) lets us assume |x| large. Then by the
same token

E
[
e−

1
2

∫ 1
0 Mφ(x+ξ ); ξ∗1 > |x|/2

]
≤ e

1
2CP

[
ξ∗ > |x|/2]

≤ e
1
2CP

[
ξ•1 − ξ◦1 > |x|/2] ,

which has Gaussian decay, while for |x| > 2N

E
[
e−

1
2

∫ 1
0 Mφ(x+ξ ); ξ∗1 ≤ |x|/2

]
≤ e

− 1
2m

�

φ (x)

and our hypothesis applies.

Remark 9.3

(1) We can replace m
�

φ by Mφ if this is monotone far out. Thus polynomial drift
conforms.

(2) ApplyingP[ξ• > x] = e−2x2
(see [1, IV.26]) on each half-line separately yields

a better, if ultimately futile, Gaussian bound.
(3) Jeulin [5] studied

∫
dx E[exp{− 1

2

∫
μ(da)�a−x1 }] for μ Radon and (�at ) the

bridge local time. While (P4) is a special case, the method proves too cum-
bersome for the simple examples of the next section.

(4) Condition (9.5), and hence Corollary 9.1, fails for φ(x) = |x|. Nevertheless, a
different argument comprising an estimate with Brownian local time confirms
that ž <∞ here too.

(5) Given Borel R : C(T) → [0,∞) then applying Corollary 9.1 to Mφ − 2R
provides a test for existence of Ě[exp{∫ 1

0 R(ž)}].
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Our second application of Proposition 9.1 uncovers a general reflection formula.
The proof invokes Brownian symmetry Ě[F(−β̌)] = Ě[F(β̌)] itself a consequence

of (ξt )
law= (−ξt ) in definition (9.2).

Corollary 9.2 DefiningΔMφ(dx) = Mφ(dx)−Mφ(−dx) then

Ě[F(−ž)] = Ě
[
F(ž)e

1
2

∫ 1
0 ΔMφ(ž)

]

holds ∀F ≥ 0. In particular, ž and Mφ are symmetric together.

Proof Combining (P3) with Brownian symmetry we find that

Ě
[
F(−ž)] = Ě

[
F(−β̌)e− 1

2

∫ 1
0 Mφ(β̌)

]

= Ě
[
F(β̌)e−

1
2

∫ 1
0 Mφ(−β̌)].

It remains to identify the latter. Using (P3), which applies to bounded F , we deduce

Ě
[
F(ž)e

1
2

∫ 1
0 ΔMφ(ž);An(ž)

] = Ě
[
F(β̌)e−

1
2

∫ 1
0 Mφ(−β̌);An(β̌)

]

for An(z) = {∫ 1
0 ΔMφ(z) ≤ n} where it suffices to take the (monotone) limit.

There are other ways to investigate ž. Given an explicit semigroup one can work
directly from definition (9.1). E.g. in [3] they disintegrate β̌ wrt

∫ 1
0 β̌: for centred

bridge ξ̄ = ξ − ∫ 1
0 ξ and bounded Borel g ≥ 0 then

Ě
[
F(β̌)g(

∫ 1
0 β̌)

]
=

∫
R
E
[
F(ξ̄ + y)

]
g(y)

dy√
2π
.

This formula offers an alternative to definition (9.2), which describes the disintegra-
tion over the initial = final value.

In the reverse direction, Remark 9.1(1) hints that periodic z-bridges may inherit
certain attributes of ž. See Lemma 9.2 for an interesting addendum.

9.4 Examples

Our examples are simplest possible; they have polynomial drift of degree at most
two. So (9.5) applies automatically and Corollary 9.1 implies ž <∞ iff deg(φ) ≥ 1.

Example 9.1 Brownian motion with constant drift λ ∈ R satisfies (9.4). In fact
Proposition 9.1 handles all bar Px [z ∈ .] � Px[β ∈ .] where we guarantee uniform

integrability of (9.6) on [0, 1] by Ex
[E2

1 (−λ, β)
]
<∞. Note also ž = e− 1

2λ
2
β̌ from

(P3).
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Example 9.2 For α ∈ R∗ the Ornstein-Uhlenbeck process q = q(α) solves

dqt = dβt − αqtdt.

Then (P1) gives Px[q ∈ .] � Px[β ∈ .] when α > 0. Remark however that the
result extends to α > − 1

2π via Novikov’s criterion for (9.6), as verified by analytic
continuation in the Cameron-Martin formula [10, XI.1.8],

Ex
[
e−

1
2α

2
∫ 1

0 β
2
]
= (cosh x)−1/2e−

1
2αx tanhα.

The other parts of (9.4) are immediate and we obtain the total mass for q̌ as in [3],
using σ 2 = (1 − e−2α)/2α > 0 to evaluate

∫
R
P[q0 = x = q1]dx = 1√

2πσ 2

∫
R
e−(x−e−αx)2/2σ 2

dx

= eα/2

2 sinh 1
2 |α|

.

Symmetry follows by Corollary 9.2, since Mφ is even, while from (P3) we discover
the drift-reversal relation eα/2q̌(−α) = e−α/2q̌(α).

Example 9.3 The Ricatti process with real parameter λ satisfies

dpt = dβt − (λ+ p2
t )dt

on the interval 0 < t < ζ = inf{t > 0 : pt = −∞}. Using (9.7) we identify −∞
as an exit boundary in the sense of [4], 4.1. Thus Px[p∗t = ∞] > 0 for all t > 0
meaning Px [p ∈ .] �� Px [β ∈ .]. Nevertheless, the other assertions of (9.4) follow
from Proposition 9.1. Lastly, if Λ0 denotes the periodic groundstate eigenvalue for
ψ ′′ = −ψ(λ + β ′) on [0, 1] then (P3) lets us rewrite the leading formula of [3] in
Ricatti style

P[λ < Λ0] = Ě
[
1 − e−2P̌ ; P̌ > 0

]
= P̌[P̌ > 0] − P̌[P̌ < 0]

with P̌ := ∫ 1
0 p̌ and invoking Corollary 9.2 for the last.

We finish with a result concerning the reverse-drift process characterized by

dwt = dβt + φ(wt )dt.

Assuming (9.5), then (P3) shows that ž = Cw̌ iff Mφ−M−φ = 2φ′ is constant a.e.
wrt β̌. So for linear drift Remark 9.1(1) suggests that (wt ) and (zt ) share periodic
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bridges. The confirmation, by substituting the explicit semigroup in formula (P2), is
emphatic.

Lemma 9.2 For φ linear then Ex [F(z)|z1 = y] = Ex [F(w)|w1 = y].
Remark 9.4

(1) Drift-reversal in the Ricatti SDE of Example 9.3 maps (pt ) to (−pt ). So their
respective bridges start, and finish, at opposing points.

(2) Another proof of Lemma 9.2 uses the SDE for (zt ) conditioned by z1. When
φ(x) = αx + λ there exists a Brownian motion (bt ) satisfying

dzt = dbt + λ tanh 1
2α(1 − t)dt

−α
[
z1 − zt coshα(1 − t)

sinhα(1 − t)

]
dt

and this is invariant for (α, λ)→ (−α,−λ).
(3) Examples 9.1–9.2 suggest that dispersion diminishes the circular measure in the

ordering defined by formula (P3).
(4) In [8] the authors consider absolute continuity of the complex Brownian bridge

under a phase change depending only on the modulus. Their result exploits
independence properties of the skew-product decomposition and is unrelated to
Proposition 9.1.
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Chapter 10
On the Markovian Similarity

Laurent Miclo

Abstract Two finite Markov generators L and L̃ are said to be intertwined if
there exists a Markov kernel Λ such that LΛ = ΛL̃. The goal of this paper is to
investigate the equivalence relation between finite Markov generators obtained by
imposing mutual intertwinings through invertible Markov kernels, in particular its
links with the traditional similarity relation. Some consequences on the comparison
of speeds of convergence to equilibrium for finite irreducible Markov processes
are deduced. The situation of infinite state spaces is also quickly mentioned, by
showing that the Laplacians of isospectral compact Riemannian manifolds are
weakly Markov-similar.

Keywords Markov generators · Markov intertwinings · Similarity relation ·
Isospectrality · Convergence to equilibrium · ϕ-Entropies
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10.1 Introduction

Intertwining of Markov processes is an old subject, coming back to Rogers and
Pitman [17] (or even to the book of Dynkin [8] for the deterministic version),
which lately has attracted a renewed interest, see for instance the paper of Pal
and Shkolnikov [15] and the references therein. Very recently, Patie and Savov
[16] have used intertwinings between reversible Laguerre diffusions and certain
non-local and non-reversible Markov processes to get information on the spectral
decompositions of the latters. This arises a natural question: when are two Markov
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processes intertwined? To avoid a trivial answer, we will introduce a notion of
Markov-similarity, where a Markovian requirement is imposed on the relation of
similitude. Indeed, we will begin by investigating its links with the usual similarity
in the framework of general finite Markov processes. Next we will discuss the
consequences for the comparison of mixing speeds of Markov-similar finite ergodic
Markov processes. Then we will only scratch the surface of the corresponding
question in the non-finite setting, in particular by checking that a weak Markov-
similarity holds for isospectral Riemannian manifolds.

As announced, we first study the finite state space situation. Let V be a finite set,
endowed with a Markov generator L: it is a V × V matrix (L(x, y))x,y∈V whose
off-diagonal entries are non-negative and whose row sums vanish:

∀x ∈ V,
∑
y∈V

L(x, y) = 0.

Consider L̃ another Markov generator on a finite set Ṽ (more generally, all objects
associated to L̃ will receive a tilde). A Markov kernel Λ from V to Ṽ is a
V × Ṽ matrix (Λ(x, x̃))(x,̃x)∈V×Ṽ whose entries are non-negative and whose row
sums are all equal to 1. We say that L is intertwined with L̃, if there exists a
Markov kernel Λ from V to Ṽ such that LΛ = ΛL̃. If furthermore there exists
a Markov kernel Λ̃ from Ṽ to V such that L̃Λ̃ = Λ̃L, then L and L̃ are said to
be mutually intertwined. This notion is not very interesting, because any finite
Markov generators L and L̃ are always mutually intertwined. Indeed, any finite
Markov generatorL admits an invariant probability measureμ, namely satisfying
μ[L[f ]] = 0 for all functions f defined on V (where we used the traditional matrix
notations: any measure is seen as a row vector and any function as a column vector).
Let μ̃ be an invariant measure for L̃ and define two Markov kernels Λ and Λ̃ by

∀(x, x̃) ∈ V × Ṽ , Λ(x, x̃)�μ̃(̃x),

∀(̃x, x) ∈ Ṽ × V, Λ̃(̃x, x)�μ(x).

By using these Markov kernels, it is immediate to check that L and L̃ are
mutually intertwined.

So let us add a more stringent requirement. A Markov kernel Λ from V to Ṽ is
said to be a link, if it is invertible (as a matrix). Here we depart from the terminology
introduced by Diaconis and Fill [5], since for them a link is just a Markov kernel. In
particular, V and Ṽ have the same cardinality, which will be denoted |V |.
Definition 10.1 The Markov generators L and L̃ are said to be Markov-similar if
there exist two links Λ and Λ̃, respectively from V to Ṽ and from Ṽ to V such that

LΛ = ΛL̃ and L̃Λ̃ = Λ̃L (10.1)
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The first motivation of this paper stems from the natural question: when are two
finite Markov generators Markov-similar?

Of course, two finite Markov-similar Markov generators are linked by a simil-
itude relation, so they are similar in the usual sense, namely they have the same
eigenvalues (in C) and the corresponding Jordan blocks have the same dimensions.
But despite the results presented in this introduction, the reverse implication is not
always true, as we will see in Sect. 10.3.

Recall the usual notion of transience for the points of V relatively toL. Let x, y ∈
V , we say that x leads to y, if there exists a finite sequence x = x0, x1, x2, . . . , xl =
y, with l ∈ Z+, such that L(xk−1, xk) > 0 for all k ∈ �l��{1, 2, . . . , l}. A point
x ∈ V is said to be transient, if there exists y ∈ S such that x leads to y but y does
not lead to x. The finite Markov generator L is said to be non-transient, if there is
no transient point. In particular, if L is irreducible (namely, any point x ∈ V leads
to any point y ∈ S), then L is non-transient.

Theorem 10.1 Two non-transient Markov generators L and L̃ are Markov-similar
if and only if they are similar.

It is well-known that the number of irreducible classes (whose definition will
be recalled in the beginning of Sect. 10.3) of a non-transient Markov generator
is an information included into the spectrum of L, since it is the multiplicity
of the eigenvalue 0. So according to the above result, two finite Markov-similar
non-transient Markov generators have the same number of irreducible classes.
Nevertheless the cardinalities of these classes can be different. This may first sound
strange (but this is the deep reason behind the aggregation (10.8) considered in the
transient setting, see Sect. 10.3) and is illustrated by the example below.

Example 10.1 Assume that the finite set V is partitioned into V = 2n∈�n�Cn, with
n ∈ N. For n ∈ �n�, let be given μn a probability measure whose support is Cn. On
each Cn, consider the generator Ln�μn − ICn where ICn is the Cn × Cn identity
matrix and where μn stands for the matrix whose rows are all equal to μn. The
spectrum of −Ln consists of the simple eigenvalue 0 and of the eigenvalue 1 with
(geometric) multiplicity |Cn| − 1. Next, define the generator L on V which acts as
Ln on Cn for all n ∈ �n�, namely L� ⊕n∈�n� Ln. Then the spectrum of −L has
the eigenvalue 0 with multiplicity n and the eigenvalue 1 with multiplicity |V | − n.
ThusL is diagonalizable and its similarity class is the set of diagonalizable matrices
which are isospectral to L. In particular a generator L̃ defined in a similar fashion
will be Markov-similar to L if and only if |Ṽ | = |V | and ñ = n. It follows that
{|Cn| : n ∈ �n�} can be different from {|C̃n| : n ∈ �n�} (as multisets), for instance
we can have n = 2, |C1| = 1, |C2| = 3, |C̃1| = 2 and |C̃2| = 2.

Proposition 10.5 of Sect. 10.3 gives an extension of Theorem 10.1 to subMarkov
generators, which corresponds to Markov processes which can be absorbed.

Remark 10.1

(a) A more stringent requirement in (10.1) would impose that the links Λ and Λ̃
are inverse of each other:ΛΛ̃ = I , the identity kernel, as in the usual similarity
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relation. But this implies that Λ is a deterministic kernel, in the sense there
exists a bijection σ : V → Ṽ such that

∀(x, x̃) ∈ V × Ṽ , Λ(x, x̃) = δσ(x)(̃x)

(see for instance [14]). The link Λ̃ is then the deterministic kernel associated to
σ−1. It follows that

∀(x, y) ∈ V 2, L(x, y) = L̃(σ (x), σ (y)).

namely, L can be identified with L̃, up to a permutation of the state space.
Under this form, it would correspond to a discrete and non symmetric version

of the question “can one hear the shape of a drum?” popularized by Kac in [12],
where Laplace operators on two-dimensional compact domains with Dirichlet
condition on the boundary (assumed to be smooth or polygonal), should be
replaced by finite Markovian generators.

(b) Consider links Λ, Λ̃ such that (10.1) is satisfied with respect to some Markov
generators L, L̃. Then ΛΛ̃ is an invertible Markov kernel from V to V which
commutes with L:

LΛΛ̃ = ΛL̃Λ̃ = ΛΛ̃L

and symmetrically, Λ̃Λ is an invertible Markov kernel from Ṽ to Ṽ commuting
with L̃. In [14], the convex set of Markov kernels commuting with a given
Markov generator was studied, in particular in correlation with the notion of
weak hypergroup, on which we will come back at the end of Sect. 10.4.

One of the interest of Markov-similarity of two generators is that it should enable
the comparison between their speeds of convergence to equilibrium or to absorption.
Assume that L is a finite irreducible Markov generator and let μ be its unique
invariant probability. If m0 is a given initial probability on V , define for any t > 0,
mt�m0 exp(tL), the distribution at time t of the Markov process starting from m0
and whose evolution is dictated by L. As t goes to infinity, mt converges toward
μ and there are several ways to measure the discrepancy between mt and μ. Let
ψ : R+ → R+ be a convex function such that ψ(1) = 0. The set of such functions
will be denoted Ψ . For ψ ∈ Ψ , the ψ-entropy of a probability measure m with
respect to μ is given by

Eψ [m|μ]�
∑
x∈V

ψ

(
m(x)

μ(x)

)
μ(x).

Consider the worst cases over the initial conditions, namely

∀ψ ∈ Ψ, ∀t ≥ 0, E(ψ, t)� sup{Eψ [m0 exp(tL)|μ] : m0 ∈ P(V )}
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where P(V ) stands for the set of all probability measures on V . Then we have:

Proposition 10.1 Let L and L̃ be two Markov-similar generators. Then there exists
a constant T ≥ 0 such that

∀ψ ∈ Ψ, ∀t ≥ 0, E(ψ, T + t) ≤ Ẽ(ψ, t) and Ẽ(ψ, T + t) ≤ E(ψ, t)

where Ẽ(ψ, t) is defined as E(ψ, t), but with L replaced by L̃ and μ by μ̃.

So in some sense, after the warming up time T , the convergences to equilibrium
are similar for the Markov processes generated by L and L̃. More precise results in
this direction will be given in Sect. 10.4, in particular for some initial distributions
no warming up period is necessary, but the crucial quantitative estimation of T will
remain to be investigated.

To extend the previous considerations to infinite state spaces, one must begin
by choosing an appropriate notion of “non degeneracy” of the links. Recall that in
general, a Markov kernelΛ from a measurable space (V ,V ) to a measurable space
(Ṽ , Ṽ ), is a mapping from V × Ṽ such that:

• for any x ∈ V , Λ(x, ·) is a probability measure on (Ṽ , Ṽ ),
• for any A ∈ Ṽ , Λ(·, A) is a (V ,V )-measurable mapping.

When V and Ṽ are finite (it is then understood that they are endowed with their full
σ -algebras), one recovers the above definition, namely Λ can be identified with a
V × Ṽ matrix whose entries are non-negative and whose row sums are all equal to
1.

Let B (respectively B̃) the vector space of bounded measurable functions on
(V ,V ) (resp. (Ṽ , Ṽ )). A Markov kernel Λ from (V ,V ), to (Ṽ , Ṽ ) induces an
operator from B̃ from B via

∀x ∈ V, ∀f̃ ∈ B̃, Λ[f̃ ](x)�
∫
f̃ (̃x)Λ(x, dx̃) (10.2)

The Markov kernel is then said to be a weak link if it is a one-to-one operator.
Let L be a Markov generator on (V ,V ), in the sense that it is defined on a

subspace D(L) of B such that the corresponding martingale problems are well-
posed for any initial condition (for a thorough exposition of these concepts, see e.g.
the book of Ethier and Kurtz [9]). If V is finite, it corresponds to Definition 10.1
given in the beginning of this introduction.

Definition 10.2 The Markovian generatorsL and L̃ are said to be weakly Markov-
similar, if there exist two links, Λ from (V ,V ) to (Ṽ , Ṽ ) and Λ̃ from (Ṽ , Ṽ ) to
(V ,V ), such that

LΛ = ΛL̃ and L̃Λ̃ = Λ̃L

In particular, these relations require thatΛ(D(L̃)) ⊂ D(L) andΛ(D(L)) ⊂ D(L̃).
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In these general definitions, we did not mention invariant probabilities, since when
V is infinite, they may not exist. Nevertheless, if we are given a probability μ
invariant for L, in the sense that

∀f ∈ D(L), μ[L[f ]] = 0

then the above notions can be slightly modified to be given a L
2 flavor: the Markov

operator defined in (10.2) can be extended into an operator from L
2(μ) to L

2(μ̃),
with μ̃�μΛ and (D(L), L) can be replaced by its L

2(μ)-closure. The operator
Λ is then Markovian, in the abstract sense that it preserves non-negativity and the
functions taking only the value 1 (respectively μ- and μ̃-a.s.). Conversely, if the
measurable spaces (V ,V ) and (Ṽ , Ṽ ) are the Borelian spaces associated to Polish
topological spaces, then any abstract Markovian operator from L

2(μ̃) to L
2(μ)

corresponds to a Markov kernel. We are thus led naturally to the notions of weak
(abstract) L2(μ)-link and of weak (abstract) L2-Markov-similarity between L and
L̃, when μ̃ is left invariant by L̃. Despite the fact that this subject would deserve a
general investigation, here we restrict our attention to a very particular situation. We
say that the Markov generator L with invariant probability μ is nice, if:

• The measurable space (V ,V ) is the Borelian space associated to a Polish
topological space.

• The operator L admits a unique invariant probability μ, which is in fact
reversible, in the sense that

∀f, g ∈ D(L), μ[fL[g]] = μ[gL[f ]] (10.3)

This assumption enables to consider the (Friedrich) minimal extension of L as a
self-adjoint operator on L

2(μ), with D(L) as new domain.
• The spectral decomposition of −L only consists of eigenvalues, say (λl)l∈Z+ ,

with multiplicities.
• It is possible to choose a family (ϕl)l∈Z+ of eigenvectors associated to the

eigenvalues (λl)l∈Z+ , such that for any l ∈ Z+, the function ϕl is bounded (this
is always true for the eigenvalue 0, since by the preceding point, its eigenspace
is the set of the constant functions).

The interest of this notion is:

Proposition 10.2 Two nice Markov generators L and L̃ are weakly L
2-Markov-

similar if and only if they are isospectral.

A typical example of a nice Markov generator is that of a reversible elliptic
diffusion with regular coefficients on a compact manifold V . In this situation, one
can endow V with a Riemannian structure and find a smooth function U , such
that the underlying Markov generator L has the following form (known as Witten
Laplacian)

L · = 7 · − 〈∇U,∇ · 〉
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where 7 is the Laplace-Beltrami operator, 〈·, ·〉 is the scalar product and ∇ is the
gradient operator (see e.g. the book of Ikeda and Watanabe [11]). The corresponding
reversible probability μ admits as density with respect to the Riemannian measure
the one proportional to exp(−U). The compactness of V implies that the spectrum of
−L consists only of non-negative eigenvalues with finite multiplicities and without
accumulation point. Denote them by

0 = λ0 < λ1 ≤ λ2 ≤ . . .

As solutions to elliptic equations, the corresponding eigenvectors are smooth and
thus bounded.

Let L̃ be another diffusion generator of the same kind (i.e. associated to a
compact Riemannian manifold Ṽ and to a potential Ũ ). Let 0 = λ̃0 < λ̃1 ≤
λ̃2 ≤ . . . be its eigenvalues. As a consequence of Proposition 10.2, L and L̃ are
L

2-Markov-similar if and only if we have λn = λ̃n for all n ∈ Z+. In particular,
the Laplace-Beltrami operators corresponding to isospectral compact Riemannian
manifolds are L

2-Markov-similar. This result enables the coupling by intertwining
(generalizing the coupling constructed by Diaconis and Fill [5] for discrete time
finite Markov chains) of the Brownian motions on such manifolds, suggesting that
the question of isospectrality for compact Riemannian manifolds (see e.g. the review
of Bérard [1] and references therein) could be revisited from a probabilistic point of
view. The study of the links between the mixing speed of such Brownian motions,
as in Proposition 10.2, is out of the scope of this paper.

The paper is organized as follows: the next section contains the proof of Theo-
rem 10.1. Section 10.3 investigates the transient situation, where the characterization
of Markov-similarity is not complete. The subMarkovian case will also be dealt with
there. Section 10.4 collects the considerations about mixing speeds. The proof of
Proposition 10.2 is given in the final section.

10.2 The Finite Non-transient Setting

This section is devoted to the proof of Theorem 10.1. It will be shown gradually,
starting with the case of irreducible and reversible generators and ending with the
general non-transient case.

Recall that a finite Markov generator L is said to be reversible with respect to a
probability measure μ on V , if

∀x, y ∈ V, μ(x)L(x, y) = μ(y)L(y, x)

This property is equivalent to the symmetry of L in L
2(μ) mentioned in (10.3)

for the general case. We begin by assuming that the generator L is irreducible and
reversible. By irreducibility, the invariant measure μ is unique and positive on V .
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The reversibility of L with respect to μ implies that L is diagonalizable. Denote the
eigenvalues (with multiplicities) of −L by

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λ|V | (10.4)

(the strict inequality comes from irreducibility).
Consider another irreducible and reversible Markov generator L̃. In this case, the

similarity of L and L̃ reduces the fact that L and L̃ are isospectral, i.e. V and Ṽ
have the same cardinality and

∀k ∈ �|V |�, λ̃k = λk

Here is the first step in the direction of Theorem 10.1, it corresponds to Proposi-
tion 10.2 in the finite case.

Lemma 10.1 Two finite, irreducible and reversible Markov generators are Markov-
similar if and only if they are similar.

Proof Let L and L̃ be finite, irreducible and reversible Markov generators. If they
are Markov-similar, there is a similarity relation between them, for instance L̃ =
Λ−1LΛ, so they are similar.

Conversely, assume that L and L̃ are similar. Denote by (10.4) the common
spectrum of −L and −L̃. Let (ϕk)k∈�|V |� and (ϕ̃k)k∈�|V |� be orthonormal bases

of L
2(μ) and L

2(μ̃) consisting of corresponding eigenvectors. Without loss of
generality, we can assume that Ṽ = V and that ϕ1 = ϕ̃1 = 1 (the function always
taking the value 1). To construct an invertible Markov kernel Λ from V to V such
that LΛ = ΛL̃, consider the operator A defined by

∀k ∈ �|V |�, A[ϕ̃k]�
{
ϕk , if k ≥ 2
0 , if k = 1

For ε ∈ R, we are interested in the operator

Λ�μ̃+ εA (10.5)

where μ̃ is again interpreted as the matrix whose rows are all equal to the probability
μ̃. It is immediately checked that

∀k ∈ �|V |�, Λ[ϕ̃k]�
{
εϕk , if k ≥ 2
ϕ1 , if k = 1

since by orthogonality, μ̃[ϕ̃k] = μ̃[ϕ̃1ϕ̃k] = 0. It implies the relation LΛ = ΛL̃

and that Λ is invertible as soon as ε �= 0.
From the relation Λ[1] = 1, it appears that the row sums of Λ are all equal to

1. Thus it remains to find ε �= 0 such that all the entries of Λ are non-negative. It is
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sufficient to take

0 < |ε| ≤ min
x,y∈V

|A(x, y)|
μ̃(y)

(10.6)

By exchanging the roles of L and L̃, one constructs an invertible Markov kernel
Λ̃ such that L̃Λ̃ = Λ̃L and this ends the proof of the lemma.

To extend the above lemma to all finite irreducible Markov generators, we need
to recall more precisely the characteristic invariants for the similarity relation and
to introduce the corresponding notation. Let R be a N × N real finite matrix. Seen
as a complex matrix, it is similar to a block matrix, whose blocks are of Jordan type
(λ1, n1), (λ2, n2), . . . , (λr , nr ), where λ1, λ2, . . . , λr ∈ C are the eigenvalues of R
(with geometric multiplicities) and r ∈ N, n1, n2, . . . , nr ∈ N with n1 + n2 + · · · +
nr = N . Recall that a Jordan block of type (λ, n) is a n× n matrix whose diagonal
entries are equal to λ, whose first above diagonal entries are equal to 1 and whose
other entries vanish. The set {(λk, nk) : k ∈ �r�} is a characteristic invariant for the
similarity class of R and will be called the characteristic set of R. Note that this
characteristic set of R is equal to {(λk, nk) : k ∈ �r�}, if and only if one can find
a (complex) basis (ϕ(k,l))(k,l)∈S of CN , where S�{(k, l) : k ∈ �r� and l ∈ �nk�},
such that

∀(k, l) ∈ S, R[ϕ(k,l)] = λkϕ(k,l) + ϕ(k,l−1)

where by convention, ϕ(k,0) = 0 for all k ∈ �r�. Such a basis will be said to be
adapted to R.

Lemma 10.1 extends into:

Lemma 10.2 Two finite and irreducible Markov generators are Markov-similar if
and only if they are similar.

Proof It is sufficient to adapt the arguments given in the reversible situation. Again
we just need to show the direct implication. Let L and L̃ be two finite and irreducible
Markov generators which are similar. Up to a permutation, we identify the index set
S̃ with S in the above notation (with R = −L̃ or R = L). Let (ϕ(k,l))(k,l)∈S and
(ϕ̃(k,l))(k,l)∈S be adapted bases associated to −L and −L̃. By irreducibility, 0 is an
eigenvalue of multiplicity 1, so we can assume that (λ1, n1) = (0, 1) and ϕ(1,1) = 1.
We begin by proving that

∀(k, l) ∈ S \ {(1, 1)}, μ[ϕ(k,l)] = 0

Indeed, for any k ∈ �r�, we have L[ϕ(k,1)] = −λkϕ(k,1) with λk �= 0. Integrating
the previous relation with respect to μ, we obtain

λkμ[ϕ(k,1)] = 0
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so that μ[ϕ(k,1)] = 0. Next we show that

μ[ϕ(k,l)] = 0 (10.7)

by iteration on l, with k ∈ �r� fixed. If (10.7) is true for some l ∈ �nk − 1�, then
integrating with respect to μ the relation

L[ϕ(k,l+1)] = −λkϕ(k,l+1) + ϕ(k,l)

we get λkμ[ϕk,l+1] = 0, namely (10.7) with l replaced by l + 1.
Let F be the vector space generated by the family (ϕ(k,l))(k,l)∈S\{(1,1)}, i.e. the

vector space of functions f defined on V such that μ[f ] = 0. Define similarly F̃
and an operator B from F̃ to F by

∀(k, l) ∈ S \ {(1, 1)}, B[ϕ̃(k,l)]�ϕ(k,l)

Consider two bases of F and F̃ made up of real functions, a priori the entries of the
matrix (still denotedB) associated to B in these bases are complex numbers. But we
have that B is invertible and that on F̃ , LB = BL̃. Since the entries of L and L̃ are
real numbers, it follows that L((B) = ((B)L̃ and L)(B) = )(B)L̃, where ( and
) stands for the real and imaginary parts. Furthermore, there exists a real number s
such that the rank of A�((B)+ s)(B) is |V |−1 (use e.g. the polynomial mapping
C 9 z �→ det(((B) + z)(B))). Extend A into an operator from L

2(μ̃) to L
2(μ)

by imposing A[1] = 0 and note that LA = AL̃ and that in the usual basis (1x)x∈V
formed of the indicator functions of the points, the entries of A are real numbers.
For ε �= 0, we consider again the operatorΛ given by (10.5). The proof goes on as
before,Λ being an invertible Markov kernel if (10.6) is satisfied.

It remains to relax the irreducibility assumption to prove Theorem 10.1. Recall
that a finite Markov generator is non-transient, if and only if it admits a invariant
probability measure which gives positive weights to all the points of V . This state
space can then be partitioned into parts which ignore themselves and are of the type
considered in Lemma 10.2. Nevertheless, Example 10.1 suggests that Theorem 10.1
cannot be a direct consequence of Lemma 10.2.

Proof (Proof of Theorem 10.1) The difference with the proof of Lemma 10.2 is
that the eigenvalue 0 of a finite and non-transient Markov generator is no longer
necessarily simple. Its multiplicity is the number n ∈ N of irreducible classes and
the dimension of the Jordan blocks associated to each of the eigenvalue(s) 0 is 1.
The arguments of the proof of Lemma 10.2 can be adapted by doing the following.
If L and L̃ are two finite and non-transient Markov generators, begin by choosing
corresponding positive invariant probabilities measures μ and μ̃. Next choose an
orthonormal (in L

2(μ)) basis (ϕ1, ϕ2, . . . , ϕn) of the kernel of L, with ϕ1 = 1 and
similarly an orthonormal (in L

2(μ̃)) basis (ϕ̃1, ϕ̃2, . . . , ϕ̃n) of the kernel of L̃ with
ϕ̃1 = 1. Complete these families of vectors into adapted bases for L and L̃, with
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the convention that the index associated to the eigenvectors ϕ1 and ϕ̃1 is (1, 1). The
argument goes on as before, since both ϕ1 and ϕ̃1 are orthogonal to all the other
eigenvectors in their respective bases.

10.3 On the Finite Transient Setting

As alluded to in the introduction, in general similarity does not imply Markov-
similarity. Remaining in the finite state space framework, we investigate here in
more detail the transient situation where this phenomenon appears, by obtaining
a necessary condition, of spatial-spectral nature, for Markov-similarity. On a
example, we will check that this condition is not sufficient. Thus the problem of
finding characterizing invariants for Markov-similarity is still open and seems quite
challenging.

We begin by recalling a traditional classification of the points of V according to
L, refining the notion of transience defined in the introduction. Consider x, y ∈ V ,
if x leads to y and y to x, we say that x and y communicate. This defines an
equivalence (irreducibility) relation.

Let C1, C2, . . . , Cn, with n ∈ N, be the associated equivalence classes. For k, l ∈
�n�, we write Ck <0 Cl if there exist x ∈ Cl and y ∈ Ck such that x leads to y. The
relation <0 defines a partial order on C0�{C1, . . . , Cn}. Consider

A1�{a ∈ �n� : Ca is minimal for <0}
B1��n� \ A1

V1�
⊔
a∈A1

Ca

From a probabilistic point of view, V1 is the maximal subset of V supporting an
invariant probability for L and V \ V1 is the set of transient points. If V1 = V , the
construction stops here and L is non-transient. Otherwise, consider C1�{Ca : a ∈
B1} and denote by <1 the restriction of the partial order <0 to C1. Define

A2�{a ∈ B1 : Ca is minimal for <1}
B2�B1 \ A2

For each a ∈ A2, consider LCa , the Ca × Ca matrix extracted from L (also named
the Dirichlet restriction of L to Ca), it is a subMarkovian generator, in the sense
that the off-diagonal entries are non-negative and the row sums are non-positive.
The Perron-Frobenius’ theorem can be applied to show that −LCa admits a smallest
eigenvalue (in modulus), λ1(Ca) ≥ 0, called the first Dirichlet eigenvalue of LCa .
Order the elements of the set {λ1(Ca) : a ∈ A2} into λ2,1 < λ2,2 < · · · < λ2,κ2 ,
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with κ2 ∈ �|A2|�. For l ∈ �2, 1 + κ2��{2, 3, . . . , 1 + κ2}, we denote

Vl�
⋃

a∈A2 : λ1(Ca)=λ2,l−1

Ca (10.8)

so that V2 2 V3 2 · · · 2 Vκ2 forms a partition of
⊔
a∈A2

Ca . It was not necessary to
explicit such a partition in our first step (defining V1), because for any a ∈ A1, one
has that LCa is still a Markov generator, so that λ1(Ca) = 0 and we would have
end up with the unique set V1 (i.e. κ1 = 1). The procedure goes on by iteration, in
the second step (if B2 is not empty), we construct some disjoint non-empty subsets
Vκ2+1, Vκ2+2, . . . , Vκ2+κ3 , for some κ3 ∈ �|A3|�, where A3 is the set of minimal
elements of B2 for the restriction of <1, and so on. At the end of the construction,
we have disjoint non-empty subsets V1, V2, . . . , Vm, with m ∈ �n�, such that V =
V12V22· · ·2Vm, as well as a finite sequence of positive integers κ�(κ1, κ2, . . . , κη),
where η is the number of iterations of the previous procedure, in particular κ1 +
κ2 + · · · + κη = m. For m ∈ �m�, let Lm be the Vm × Vm submatrix of L, it is a
subMarkovian generator.

Consider another generator L̃ and construct as above the subMarkovian genera-
tors L̃1, L̃2, . . . , L̃m̃, as well as the finite sequence κ̃�(̃κk)k∈�̃η�. We say that L and

L̃ satisfy Condition (C) if κ̃ = κ (in particular η̃ = η and m̃ = m) and if for any
l ∈ �m�, Ll and L̃l are similar. Example 10.4 at the end of this section shows that
Condition (C) does not imply similarity in general. So let us call Hypothesis (H)
the conjunction of (C) with similarity.

Proposition 10.3 If two Markov generators L and L̃ are Markov-similar then they
satisfy (H).

The following very simple example (which nevertheless played an important role
in the study of certain Markov intertwinings in [6] and [13]) illustrates the above
construction and the difference between Hypothesis (H) and the similarity relation.

Example 10.2 Consider on V��|V |� a finite Markov generator L�(L(x, y))x,y∈V
which is lower diagonal, whose diagonal entries are all different and such that the
first lower diagonal is positive (namely, for all k ∈ �2, |V |�, L(k, k − 1) > 0). Then
in the above decomposition, we have n = m = |V | and for all k ∈ �|V |�, Vk = {k}
and Lk is reduced to the real number L(k, k), which is also its unique eigenvalue
(note furthermore that necessarily, L1 = 0). We have η = |V | and κk = 1 for all
k ∈ �|V |�. Consider another Markov generator L̃. The generators L and L̃ satisfy
Condition (C) if and only if L̃ is of the same type (up to a permutation of the state
space) and if for any k ∈ �|V |�, L̃(k, k) = L(k, k). As a consequence L and L̃
are similar, since they are diagonalizable, the L(k, k), for k ∈ �|V |�, being their
distinct eigenvalues. Nevertheless, the mere similarity of L and L̃ is a much weaker
requirement, it does not imply that L̃ is of the same type, and even if it is, it only asks
for the equality of the spectra, i.e. of the sets {L(k, k) : k ∈ �|V |�} = {L̃(k, k) :
k ∈ �|V |�}. Another example in the same spirit is obtained by considering a finite
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Markov generator L satisfying

∀x ∈ �|V |�, L(x, x − 1) = −L(x, x) > 0

(with L(1, 0) = 0 = L(1, 1)), so that all the entries outside the main and first
lower diagonals vanish. Any eigenvalue λ of −L is geometrically simple, because a
corresponding eigenvector ϕ is completely determined by λ and by the value ϕ(|V |)
(by iteration on k ∈ �|V |�, one computes ϕ(|V |−k+1) via the relationL(|V |−k+
1, |V | − k)(ϕ(|V | − k)− ϕ(|V | − k+ 1)) = −λϕ(|V | − k + 1)). The dimension of
the corresponding Jordan block is the cardinal of the set {x ∈ �|V |� : L(x, x) = λ}.
As above, another Markov generator L̃ and L satisfy Condition (C) if and only if
L̃ is of the same type (up to a permutation of the state space) and if for any k ∈
�|V |�, L̃(k, k) = L(k, k). Again (C) implies (H), due to the previous observation on
the dimension of the Jordan blocks. The same remark about the mere similarity is
equally valid, except that the last equality {L(k, k) : k ∈ �|V |�} = {L̃(k, k) : k ∈
�|V |�} must be understood in the sense of multi-sets.

In the definition of Condition (C), it is important not to forget the equality of the
finite sequences κ = κ̃, as shown by

Example 10.3 On V�{1, 2, 3}, consider the two generators

L�

⎛
⎝0 0 0

1 −1 0
0 2 −2

⎞
⎠ and L̃�

⎛
⎝ 0 0 0

1 −1 0
2 0 −2

⎞
⎠

With the notation of the above decomposition, we have, for all k ∈ �3�, Vk = {k} =
Ṽk and Lk = (k − 1) = L̃k . So the fact that L and L̃ are not satisfying Condition
(C) comes from κ = (1, 1) �= (2) = κ̃ . This also provides a very simple example of
Markov generators which are similar but not Markov-similar.

Here is a simple consequence of Proposition 10.3:

Corollary 10.1 Let the two Markov generators L and L̃ be Markov-similar. If L is
non-transient, then the same is true for L̃.

Proof Indeed, the non transience of a Markov generator L is equivalent to the fact
that κ = (κ1) = (1).

As an extension of the observation made after the statement of Theorem 10.1,
note that two finite Markov-similar Markov generators have the same number of
irreducible classes. Indeed, for a general Markov generator L, this number is the
sum of the multiplicities of the first Dirichlet eigenvalues of the subMarkovian
generators L1, L2, . . . , Lm, with the notation of the above decomposition (which
will be enforced for the remaining part of this section).
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The proof of Proposition 10.3 asks for several steps. We start with

Lemma 10.3 Let two Markov generatorsL, L̃ and a linkΛ be such thatLΛ = ΛL̃.
Then we have |V1| ≥ |Ṽ1| and ΛV1×Ṽ1

(the submatrix of Λ indexed by V1 × Ṽ1) is
a Markov kernel.

Proof Consider μ an invariant probability for L whose support is V1 (constructed
as a mixture with positive weights of the invariant probabilities associated to the
irreducibility classes forming V1). The intertwining relation implies that μΛL̃ = 0,
namely μ̃�μΛ is an invariant probability for L̃. The support of μ̃ is included into
Ṽ1, since it is the largest subset of Ṽ supporting an invariant probability for L̃. The
equality

∀x̃ �∈ Ṽ1,
∑
x∈V

μ(x)Λ(x, x̃) = μ̃(̃x) = 0

implies that ΛV1×(Ṽ \Ṽ1)
= 0, namely ΛV1×Ṽ1

is a Markov kernel. Another

consequence of the fact that ΛV1×(Ṽ \Ṽ1)
vanishes is that |V1| ≥ |Ṽ1|, otherwise

Λ could not be invertible.

In particular, we get

Corollary 10.2 Assume that the two Markov generators L and L̃ are Markov-
similar. Then the two Markov generators L1 and L̃1 are Markov-similar.

Proof Applying the previous lemma to the two intertwining relations (10.1), we get
that |V1| = |Ṽ1|, namelyΛV1,Ṽ1

can be seen as a square matrix. DenoteW1�V \V1

and W̃1�V \ Ṽ1. Since LV1,W1 = 0, L̃Ṽ1,W̃1
= 0 and ΛV1,W̃1

= 0, we deduce
from the intertwining LΛ = ΛL̃ that L1ΛV1,Ṽ1

= LV1,V1ΛV1,Ṽ1
= ΛV1,Ṽ1

L̃Ṽ1,Ṽ1
=

ΛV1,Ṽ1
L̃1. Furthermore ΛV1,Ṽ1

must be invertible, if we want Λ to be invertible.
Applying the same considerations to the intertwining L̃Λ̃ = Λ̃L, it follows that L1
and L̃1 are Markov-similar.

To extend by iteration the above result to all the subMarkov generatorsLl and L̃l ,
for l ∈ �m�, we must adapt the arguments to the subMarkovian setting. First note
that the decomposition of the state space into the partition V = V1 2 V2 2 · · · 2 Vm
can be applied verbatim to a subMarkovian generator L (with the difference that
the first step can already produce several subset V1, V2, . . . , Vκ1 , with κ1 ∈ N).
The probabilistic interpretation of V1 has to be slightly modified, with respect to the
strict Markovian case:

Lemma 10.4 Consider L a subMarkovian generator and let L be the set of real
numbers λ such that there exists a probability measure μ with μL = −λμ (then
λ is necessarily non-negative). We have L = {λ1(Ca) : a ∈ A1}. Denote λ1 <

λ2 < · · · < λκ1 the elements of L . For any k ∈ �κ1�, Vk is the largest subset of V
supporting a probability measure satisfying μL = −λkμ.
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Proof Since the classes C1, C2, . . . , Cn are irreducible, we can apply to each of
them the Perron-Frobenius’ theorem, to get for a ∈ �m�, a probability measure μa
(called the quasi-stationary measure associated to LCa ) whose support is Ca and
which is such that μaLCa = −λ1(Ca)μa , where λ1(Ca) ≥ 0 is the first Dirichlet
eigenvalue of LCa . The particularity of the set of indices A1 is that for each a ∈ A1
and for any probability measure ν whose support is included in Ca , we have νL =
νLCa (with the identification of a measure whose support is included into Ca with a
measure on Ca). It follows that for a ∈ A1, we have μaL = −λ1(Ca)μa , so that

{λ1(Ca) : a ∈ A1} ⊂ L

Conversely, consider λ ∈ L and a probability measure μ satisfying μL = −λμ.
Let us first check that supp(μ) ⊂ 2a∈A1Ca . We begin by remarking that if x, y ∈ V
are such that μ(x) > 0 and L(x, y) > 0, then μ(y) > 0. Indeed, otherwise in the
equality

∑
z∈V \{y}

μ(z)L(z, y) = −μ(y)L(y, y)− λμ(y)

the l.h.s. would be positive and the r.h.s. would vanish. It follows by iteration that if
μ(x) > 0 and if x leads to y, then μ(y) > 0. In particular, the support of μ is an
union of irreducibility classes and at least one of them is included into 2a∈A1Ca . If
all the irreducibility classes forming supp(μ) are included into 2a∈A1Ca , we get that
supp(μ) ⊂ 2a∈A1Ca . Otherwise, we can find a ∈ A1 and b �∈ A1, with Ca 2 Cb ⊂
supp(μ) and there exist x0 ∈ Cb and y0 ∈ Ca with L(x0, y0) > 0. The restriction to
Ca of μL = −λμ writes down μCaLCa = −λμCa , where μCa is the restriction of
μ to Ca . Since μCa is positive, it follows from the uniqueness statement in Perron-
Frobenius’ theorem, that μCa is proportional to the quasi-stationary measure μa
associated to LCa and λ = λ1(Ca). Due to the property satisfied by x0, y0, we have
that μ(x0) > 0 and ((μ− μCa)L)(y0) > 0. We deduce that

−λμ(y0) = (μL)(y0)

= ((μ− μCa + μCa)L)(y0)

= ((μ− μCa)L)(y0)+ (μCaL)(y0)

> (μCaL)(y0)

= −λμ(y0)

which is a contradiction.
The above arguments also show that μ is a mixture of the quasi-stationary

measures associated to the irreducible classes included into 2a∈A1Ca . Furthermore,
the classes Ca , with a ∈ A1, which are such that μ(Ca) > 0 must satisfy
λ1(Ca) = λ. It follows that if μL = −λ1μ, then the support of μ is included
into Vk , where k ∈ �κ1� is such that λ = λk , and is equal to Vk if μ is chosen to be a
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non-degenerate convex combination of the quasi-stationary measures associated to
the Ca included into Vk .

This result allows us to adapt the proof of Lemma 10.3 and Corollary 10.2 to get
the following generalization, where a sublink stands for an invertible subMarkov
kernel (i.e. a matrix with non-negative entries whose row sums are bounded above
by 1). We also say that two subMarkovian generators L and L̃ are subMarkov-
similar if there exist two sublinks Λ and Λ̃ such that (10.1) is valid.

Lemma 10.5 Let L, L̃ be two subMarkov generators and Λ a sublink such that
LΛ = ΛL̃. Then we have L ⊂ L̃ . Assume furthermore that L and L̃ are
subMarkov-similar. Then L = L̃ and the subMarkov generators Lm and L̃m are
subMarkov-similar, for m ∈ �κ1�, as well as the subMarkov generators LW�LW,W
and L̃W̃�L̃W̃ ,W̃ , where W�V \ (V1 2 · · · 2 Vκ1) and W̃�Ṽ \ (Ṽ1 2 · · · 2 Ṽκ1).

Proof With the notation of Lemma 10.4, consider λ ∈ L and a probability measure
μ on V such that μL = −λμ. The measure μΛ is non-negative and cannot be 0,
becauseΛ is invertible. We can thus define the probability measure μ̃�μΛ/μΛ(Ṽ ).
By multiplying on the left the relation LΛ = ΛL̃ by μ, we get that μ̃L̃ = −λμ̃, so
that λ ∈ L̃ .

So if L and L̃ are subMarkov-similar, we get L = L̃ . The arguments of the
proofs of Corollary 10.2 and Lemma 10.3 can now be repeated, with the notion
of invariant measure replaced by that of eigen-probability measure associated to
λ ∈ L (with respect to −L and −L̃). Indeed, the subMarkov-similarity of the
subMarkov generatorsLW and L̃W̃ is also valid in Corollary 10.2, using the sublinks
ΛW,W̃ and Λ̃W̃ ,W . It was not asserted there, just because the subMarkov-similarity
between subMarkov generators had not yet been defined.

Remark 10.2 From the above proof, it also follows that for all m ∈ �m�, we have
ΛVm,V̄m = 0, where

V̄m�
⊔
m∈Jm

Vm

Jm��κ1 + · · · + κjm + 1,m� \ {m}

where jm ∈ �0, η − 1� is such that m ∈ �κ1 + · · · + κjm + 1, κ1 + · · · + κjm+1�.

Proposition 10.3 is now a simple consequence of the previous lemma. Indeed,
extending naturally Conditions (C) and (H) to subMarkovian generators, we get:

Proposition 10.4 Consider two subMarkov generators L and L̃. If they are
subMarkov-similar, then they satisfy Hypothesis (H).

Proof Applying iteratively Lemma 10.5, we end up with the conclusion that for l ∈
�m�, Ll is subMarkov-similar to L̃l and Ll = L̃l . SubMarkov-similarity implying
similarity, we conclude to the announced validity of Hypotheses (C) and (H).
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Let us now mention an extension of Theorem 10.1 to the present subMarkov
framework. In some sense, the following result is the “Dirichlet condition” analogue
of Theorem 10.1 (whose “Neumann condition” corresponds to the fact that Markov
processes are conservative). We say that a subMarkov generator L is isotransient, if
L = L1 (this appellation amounts to non-transcience for Markov generators). Note
in particular that for any subMarkov generatorL, Lm is isotransient for allm ∈ �m�.

Proposition 10.5 Two isotransient subMarkov generatorsL and L̃ are subMarkov-
similar if and only if they are similar.

Proof As usual, the direct implication is obvious. We begin by showing the
subMarkovian extension of Lemma 10.2, namely that two finite and irreducible
subMarkov generators are similar if and only if they are subMarkov-similar.
Consider two similar and irreducible subMarkov generators L and L̃. By Perron-
Frobenius’ theorem, there a exists positive eigenvector ψ associated to the first
Dirichlet eigenvalue λ1 of L. The operator L† ·�ψ−1(L − λ1I)[ψ·] is a Markov
generator (sometimes called the Doob transform of L, see e.g. [7]). Its spectrum is
the spectrum of L shifted by λ1. If L̃† is constructed similarly for L̃, it appears that
L† and L̃† are similar irreducible Markov generators, so from Lemma 10.2, there
exist two links Λ† and Λ̃† such that

L†Λ† = Λ†L̃† and L̃†Λ̃† = Λ̃†L†

It remains to define the non-negative kernels

Λ[·]�ψΛ†
[

1

ψ̃
·
]

Λ̃[·]�ψ̃Λ̃†
[

1

ψ
·
]

to ensure that (10.1) is satisfied. To get sublinks, divide Λ and Λ̃ by a sufficiently
large constant.

When L and L̃ are isotransient subMarkov generators, let C1, C2, . . . , Cn, with
m ∈ N, be the irreducibility class(es) of L and let λ1 be the common first Dirichlet
eigenvalue of the corresponding restrictions LCl . For l ∈ �n�, let ψl be a positive
eigenvector on Cl associated to λ1. Let ψ the function on V coinciding with these
eigenvectors on each of the Cl , for l ∈ �n�. Do the same with L̃, remarking that
λ̃1 = λ1 by similarity. The previous arguments are then still valid.

We end this section with an example on four points illustrating that Hypothesis
(H) is not sufficient for Markov-similarity.
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Example 10.4 On V��4�, consider for any p ∈ [0, 1), the Markov generator

L(p)�

⎛
⎜⎜⎝

0 0 0 0
2 −2 0 0
0 1 −1 0
0 2p 2(1 − p) −2

⎞
⎟⎟⎠

and we denote L�L(0).
For all p ∈ [0, 1), −L(p) has three eigenvalues: λ1�0, λ2�1 and λ3�2. The

similarity class of L(p) depends on the geometric multiplicity of λ3, which is either
2 or 1 (with then a Jordan block of dimension 2 associated to λ3). Computing the
eigenspace of λ3, it appears that there is a Jordan block of dimension 2 associated
to λ3 if and only if p �= 1/2.

Moreover the spatial decomposition of L(p) is immediate to obtain for all p ∈
[0, 1): for all k ∈ �4�, we have Vk = {k}, L(p)k = L(k, k) and κ(p) = (1, 1, 1, 1).
It follows that if L̃�L(p), with p ∈ [0, 1), then L and L̃ satisfy Condition (C). In
particular (C) does not imply similarity for p = 1/2 and Hypothesis (H) is true
if and only if p �= 1/2. From now on, we assume that L̃�L(p), with a fixed p ∈
[0, 1) \ {1/2} and we are wondering if L and L̃ are Markov-similar. We show below
that this is the case if and only if p ∈ [0, 1/2).

Denote A�(0, 0, 2), Ã�(0, 2p, 2(1 − p)) and

K�

⎛
⎝ 0 0 0

2 −2 0
0 1 −1

⎞
⎠

so we can write

L =
(
K 0
A −2

)
and L̃ =

(
K 0
Ã −2

)

Let Λ a link such that LΛ = ΛL̃, then necessarily it can be written under the form

Λ =
(
Q 0
B d

)

where Q is a link, B = (a, b, c) and d = 1 − a − b − c, with a, b, c, d ∈ [0, 1].
Indeed, L̃1{4} = −21{4}, so that Λ1{4} is an eigenfunction associated to the
eigenvalue −2 of L. Since p �= 1/2, such an eigenfunction is proportional to
1{4}, which amounts to the above form of Λ. This form can also be deduced from
Remark 10.2, which enables to see a priori that Q must be lower diagonal.

The intertwining relation LΛ = ΛL̃ is then equivalent to

KQ = QK and AQ− 2B = BK + dÃ (10.9)
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Define

ϕ1�

⎛
⎝ 1

1
1

⎞
⎠ , ϕ2�

⎛
⎝ 0

1
−1

⎞
⎠ , ϕ3�

⎛
⎝0

0
1

⎞
⎠

which are eigenvectors of K associated respectively to the eigenvalues 0, −2, −1.
The intertwining relation is equivalent to the existence of x, y, z ∈ R such that

Qϕ1 = xϕ1, Qϕ2 = yϕ2, Qϕ3 = zϕ3

and this means that

Q =
⎛
⎝ x 0 0

x − y y 0
x + y − 2z z − y z

⎞
⎠

The fact that Λ is required to be an invertible Markov kernel is then equivalent to
the constraints

x = 1, 0 < y ≤ 1, y ≤ z ≤ (1 + y)/2

It follows that Condition (10.9) is equivalent to

⎧⎨
⎩

1 + y − 2z = 2a
2(z− y) = c + 2dp

2z− c = 2(1 − p)d

itself equivalent to

⎧⎪⎨
⎪⎩
a = (1 + y − 2z)/2
b = (1 + y − 2z)/2
c = 2

2p−1 ((1 − p)y + (2p − 1)z)

Summing these equations, we get

a + b + c = 1 + 1

2p − 1
y

so the requirement a + b + c ≤ 1 is equivalent to p < 1/2 (recall that y > 0).
Conversely, if p ∈ [0, 1/2), taking e.g. z = 1/4 and y > 0 small enough leads to a
solution for the link Λ.

Similar considerations show that there exists a link Λ̃ such that Λ̃L = L̃Λ̃ if and
only if p ∈ [0, 1/2).
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Remark 10.3 In addition to Remark 10.2, in general the link Λ is not such that
ΛVm,Vm is itself a link, for m ∈ �m�. Indeed, in the above example under this
restriction, we would have end up with Λ = I , the identity matrix, which does
not enable to intertwine L and L(p) for p ∈ (0, 1/2).

10.4 Comparisons of Mixing Speeds

The goal of this section is to discuss the consequences of Markov-similarity on
speeds of convergence to equilibrium, and especially to prove Proposition 10.1. We
introduce some sets of Markov kernels and probability measures associated to finite
Markov-similar generators which play a crucial role.

More precisely, if L and L̃ are finite Markov-similar generators as in the
introduction, denote K (L, L̃) the set of Markov kernels Λ from V to Ṽ such that
LΛ = ΛL̃ and P(L, L̃)�P(V )K (L, L̃), namely the set of probability measures
m̃ on Ṽ such that there exists m ∈ P(V ) (recall that P(V ) stands for the set of
all probability measures on V ) and Λ ∈ K (L, L̃) such that m̃ = mΛ. The sets
K (L̃, L) and P(L̃, L) are defined symmetrically, by inverting the roles of L and
L̃. Here is the advantage of Markov-similarity:

Lemma 10.6 Assume furthermore that L is irreducible. Then the set P(L, L̃) is a
neighborhood of μ̃ the invariant measure of L̃, which is necessarily also irreducible.

Remark 10.4 We don’t know whether P(L, L̃) is always convex or not.

Proof (Proof of Lemma 10.6) Since L and L̃ are Markov-similar, we deduce from
Corollary 10.1 that the non-transience of L implies that of L̃. Furthermore the
number of irreducible class(es) of L̃ is that of L, so L̃ is irreducible. It follows that
L̃ has a unique invariant measure and it is given by μ̃ = μΛ, for all Λ ∈ K (L, L̃).
Note that μ belongs to the interior of P(V ) (as a subset of the space of all
signed measures on V ), because it gives a positive weight to all the points. By
Markov-similarity, we can find a link Λ in K (L, L̃). Its invertibility implies that
it transforms a neighborhood of μ into a neighborhood of μ̃. So P(L, L̃) is a
neighborhood of μ̃.

Remark that P(L, L̃) is left invariant by the Markov semi-group (exp(tL))t≥0
generated by L. Indeed, for any initial conditions m0 ∈ P(V ), m̃0 ∈ P(Ṽ ) and
any time t ≥ 0, denote

mt � m0 exp(tL) and m̃t � m̃0 exp(tL̃)

the marginal distribution at time t obtained respectively through the evolutions
generated by L and L̃. Assume m̃0 ∈ P(L, L̃), so there exist m0 ∈ P(V ) and
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Λ ∈ K (L, L̃) such that m̃0 = m0Λ. For any t ≥ 0, we get

m̃t = m̃0 exp(tL̃)

= m0Λ exp(tL̃)

= m0 exp(tL)Λ

= mtΛ

This implies that m̃t ∈ P(L, L̃), as announced. Since we also have μ̃ = μΛ, it
follows that

Eψ(m̃t |μ̃) = Eψ(mtΛ|μΛ)
≤ Eψ(mt |μ) (10.10)

because ψ-entropies decrease under the action of Markov kernels, for any ψ ∈
Ψ . This well-known property, which holds on general measurable spaces (see e.g.
Proposition 1.1 of [4]), is an important reason behind our interest in considering
intertwining kernels which are Markovian. Thus, seen through the ψ-entropy, the
convergence of m̃t toward μ̃ for large t ≥ 0 is dominated by that of mt toward μ. In
particular we deduce that

m̃0 ∈ P(L, L̃)⇒ ∀t ≥ 0, ∀ψ ∈ Ψ, Eψ(m̃t |μ̃) ≤ E(ψ, t)

Proposition 10.1 is now a simple consequence of

Lemma 10.7 Under the assumption of Lemma 10.6, there exists T ≥ 0, such that
for any m̃0 ∈ P(Ṽ ), m̃T ∈ P(L, L̃).

Of course in practice, the problem will be to describe P(L, L̃) and to estimate T .

Proof As in the proof of Lemma 10.6, consider a link Λ ∈ K (L, L̃). The set
P(V )Λ ⊂ P(L, L̃) is convex and left invariant by the semigroup (exp(tL̃))t≥0.
Thus it is sufficient to see that for any x̃ ∈ Ṽ , there exists Tx̃ ≥ 0 such that
δx̃ exp(Tx̃ L̃) ∈ P(V )Λ. Indeed, by stability of P(L, L̃) by the semi-group
generated by L̃, we get

∀x̃ ∈ Ṽ , δx̃ exp(T L̃) ∈ P(L, L̃)

with T�max{Tx̃ : x̃ ∈ Ṽ }. By convexity of the mapping P(Ṽ ) 9 m̃0 �→ m̃T and
of the set P(V )Λ, it appears then that

∀m̃0 ∈ P(Ṽ ), m̃0 exp(T L̃) ∈ P(V )Λ ⊂ P(L, L̃)

But for any fixed x̃ ∈ Ṽ , we have that δx̃ exp(tL̃) converges toward μ̃ for large t , so
for large enough Tx̃ ≥ 0, δx̃ exp(Tx̃ L̃) belongs to the neighborhood P(L, L̃) of μ̃.
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In this paper, we adopted an equivalence relation point of view on Markov inter-
twinings, through the Markov-similarity. But the order relation aspect of the Markov
intertwinings is also very interesting and maybe more relevant for applications. Such
considerations can be found in [14], but let us slightly modify the definitions given
there by saying that the Markov generator L̃ on the finite set Ṽ is dominated by the
Markov generator L on the finite set V (written L̃ ≺ L), if there exists a injective
Markov kernelΛ from V to Ṽ such that LΛ = ΛL̃. The requirement thatΛ is one-
to-one (with respect to the functional interpretation (10.2)) means that |V | ≥ |Ṽ |
and thatΛ has maximal rank as a matrix. Note that two Markov generatorsL and L̃
are Markov-similar if and only if L̃ ≺ L and L ≺ L̃. Most of the results presented
up to now have variants for the domination relation ≺. In this spirit, Lemma 10.6
can be strengthened into

Lemma 10.8 Assume that the two Markov generatorsL and L̃ are such that L̃ ≺ L

and L is irreducible. Then L̃ is irreducible and if μ̃ is its invariant probability,
P(L, L̃) is a neighborhood of μ̃.

Proof We begin by proving that L̃ is irreducible. LetΛ ∈ K (L, L̃) be injective. Let
f̃ be a function on Ṽ such that L̃[f̃ ] = 0. By the intertwining relation, we get that
L[Λ[f̃ ]] = 0, so that by irreducibility ofL,Λ[f̃ ] is constant and by injectivity ofΛ,
f̃ is constant (since Λ[1] = 1). This property implies that if Ṽ is decomposed into
irreducible classes with respect to L̃, then there is only one terminal class (namely
Ã1 is a singleton, with the notation introduced at the beginning of Sect. 10.3). So
to prove that L̃ is irreducible, it is sufficient that to show that L̃ admits an invariant
probability whose support is Ṽ . By the intertwining relation, we get that μ̃�μΛ
is an invariant probability of L̃, if μ is the invariant probability of L. It remains to
see that μ̃ gives a positive weight to all the elements of Ṽ . Let M (V ) be the set
of signed measures on V . The Markov kernel Λ can be seen as an operator from
M (V ) to M (Ṽ ) via:

∀m ∈ M (V ), ∀x̃ ∈ Ṽ , mΛ(̃x)�
∑
x∈V

m(x)Λ(x, x̃)

It corresponds to the dual operator of Λ seen as an operator on functions, through
the natural duality between functions and signed measures on V . In particular, seen
as an operator on signed measures, Λ is onto. As a consequence, for any x̃ ∈ Ṽ , we
can find mx̃ ∈ M (V ) such that mx̃Λ = δx̃ . Since μ gives a positive weight to all
elements of V , we can find ε > 0 small enough so that for all real numbers (ax)x∈V
with |ax | ≤ ε for all x ∈ V , μ+∑

x∈V axmx is a non negative measure. It follows
that

μ̃+
∑
x∈V

axδx = (μ+
∑
x∈V

axmx)Λ

is a non-negative measure. This is only possible, for all (ax)x∈V as above, if and
only if μ̃ gives a positive weight to all the elements of Ṽ .
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The same argument shows that Λ transforms neighborhoods of μ into neighbor-
hoods of μ̃, so P(L, L̃) is a neighborhood of μ̃.

The proof of Lemma 10.7 can now be adapted (replacing the link Λ by an injective
Markov kernel) to show:

Proposition 10.6 Under the assumption of Lemma 10.7, there exists T ≥ 0 such
that m̃T ∈ P(L, L̃) for all m̃0 ∈ P(Ṽ ). It follows that

∀ψ ∈ Ψ, ∀t ≥ 0, Ẽ(ψ, T + t) ≤ E(ψ, t)

with the notation introduced in Proposition 10.1, because for any ψ ∈ Ψ , m̃0 ∈
P(L, L̃) and t ≥ 0, we have

Eψ(m̃t |μ̃) ≤ E(ψ, t)

according to (10.10).

Let us illustrate the previous considerations on the simplest example.

Example 10.5 Consider the two points set V�{0, 1}. Any generator L on V can
be written under the form L = l(μ − Id), where Id is the 2 × 2-identity matrix,
l ≥ 0 and μ is “the” invariant measure of L (note that except if L = 0, which
corresponds to l = 0, L has a unique invariant measure μ). It appears that −L is
diagonalizable and its eigenvalues are 0 and l. The generator L is non-transient if
and only if a > 0 and μ > 0 (in the sense that μ(0) > 0 and μ(1) > 0). The
generator L �= 0 is transient if and only if l > 0 and μ is a Dirac mass. The left
case is L = 0. Consider another generator L̃ = l̃(μ̃ − Id) on {0, 1}. According to
Corollary 10.1 and Theorem 10.1, it is Markov-similar to the non-transientL if and
only if l = l̃ and μ̃ > 0. From Corollary 10.1, we also deduce that the generator
L̃ �= 0 is Markov-similar to the transient L �= 0 if and only if l̃ = l and μ̃ is a Dirac
mass. Finally the unique generator Markov similar to L = 0 is 0 itself.

From now on, we assume that L and L̃, as above, are non-transient and Markov-
similar. Let Λ be a Markov kernel on {0, 1} such that LΛ = ΛL̃. This amounts
to μΛ = μ̃, namely K (L, L̃) is the set of Markov kernels transporting μ on μ̃
(in general, it is only a subset of those Markov kernels). Since Λ − Id is a Markov
generator, we can find a ≥ 0 and a probability measure ν on {0, 1} such that

Λ = (1 − a) Id+aν

This is not sufficient to insure that Λ is a Markov kernel: to get that the entries
are non-negative, we need furthermore that a ∈ [0, 1/(1 − min(ν))], but it will
not be convenient to work directly with this condition. The relation μΛ = μ̃ is
equivalent to

aν = μ̃− (1 − a)μ
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For the l.h.s. to be non-negative, we must have a ≥ 1 − min(μ̃/μ). The kernel Λ
can be written under the form

Λa�(1 − a)(Id−μ)+ μ̃

For the entries of this matrix to be non-negative, we must have:

• For a > 1: for all x ∈ {0, 1},

(1 − a)(1 − μ(x))+ μ̃(x) ≥ 0

i.e.

a ≤ 1 + μ̃(x)

1 − μ(x)

Let a+�1 + min(μ̃/(1 − μ)), this condition is a ≤ a+.
• For a = 1, Λ1 = μ̃ has non-negative entries.
• For a < 1: for all x ∈ {0, 1},

(a − 1)μ(x)+ μ̃(x) ≥ 0

and we recover the condition a ≥ a−�1 − min(μ̃/μ).

Thus we get

K (L, L̃) = {Λa : a ∈ [a−, a+]}

Since the mapping a �→ Λa is affine and that the set of probability measures on
{0, 1} is of dimension 1, it appears that P(L, L̃) is the segment generated by the
four probabilities η!,y�δyΛa! , with y ∈ {0, 1} and ! ∈ {−,+}. Let x0, x1 ∈ {0, 1}
be respectively such that

μ̃

μ
(x0) = min

(
μ̃

μ

)

μ̃

1 − μ
(x1) = min

(
μ̃

1 − μ

)

We have, for any y ∈ {0, 1},

η−,y = μ̃(x0)

μ(x0)
(δy − μ)+ μ̃

η+,y = μ̃(x1)

1 − μ(x1)
(μ− δy)+ μ̃
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So, denoting x̄�1 − x for all x ∈ {0, 1}, we compute that η−,x̄0 = δx̄0 and η+,x1 =
δx̄1 . We also get

η−,x0(x0) = μ̃(x0)

μ(x0)
and η+,x̄1(x1) = μ̃(x1)

μ(x̄1)
(10.11)

So η−,x0 is a Dirac mass if and only if μ̃ = μ and η+,x̄1 is a Dirac mass if and only
if μ̃ is the image of μ by the involution of {0, 1}, x �→ x̄. Without loss of generality,
assume that μ(1) ≥ μ(0) and μ̃(1) ≥ μ̃(0). In particular μ̃ is the image of μ by
the involution of {0, 1}, x �→ x̄ if and only if μ and μ̃ are the uniform measure.
Next let us dismiss the cases where μ = μ̃, i.e. L = L̃, because it is clear then that
P(L,L) = P(V ). From the above considerations, it follows that for L �= L̃, we
will have P(L, L̃) = P(V ) if and only if the convex hull of {δx̄0, δx̄1} is P(V ), i.e.
if x0 �= x1. But we just assumed that μ and μ̃ are non-decreasing, we have x1 = 0.
Thus P(L, L̃) = P(V ) if and only if μ̃(1)

μ(1) ≥ μ̃(0)
μ(0) , i.e. μ̃(1) ≤ μ(1). Note that

P(L, L̃) = P(V ) = P(L̃, L) is in fact equivalent to L = L̃. A first conclusion is
that if μ̃(1) ≤ μ(1), then

∀ψ ∈ Ψ, ∀t ≥ 0, Ẽ(ψ, t) ≤ E(ψ, t)

Assume next that μ̃(1) > μ(1). Then we have x0 = x1 = 0 and from (10.11)
(taking into account that μ̃(0)/μ(0) ≥ μ̃(0)/μ(1)) we deduce that

P(L, L̃) =
[
μ̃(0)

μ(0)
δ0 +

(
1 − μ̃(0)

μ(0)

)
δ1, δ1

]

It follows that we can take in Lemma 10.7,

T = min

{
t ≥ 0 : ∀m̃0 ∈ P({0, 1}), m̃t (1) ≥ 1 − μ̃(0)

μ(0)

}

= min

{
t ≥ 0 : δ0 exp(tL̃)(1) ≥ 1 − μ̃(0)

μ(0)

}

= min

{
t ≥ 0 : (1 − exp(−lt))μ̃(1) ≥ 1 − μ̃(0)

μ(0)

}

= −1

l
ln

(
1 − μ̃(1)− μ(1)

μ̃(1)(1 − μ(1))

)

We end this section by pointing out the links between the objects introduced
above with the notion of weak hypergroup. Let be given a Markov generator L on
the finite set V . The set K (L,L) was called the Markov commutator of L in [14],
since it consists of the Markov kernels commuting with L (as already mentioned
in Remark 10.1). Following this previous paper, the generator L is said to be a
weak hypergroup with respect to x0 ∈ V if for any m ∈ P(V ), there exists
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K ∈ K (L,L) such that K(x0, ·) = m(·). Taking advantage of the fact that for
any Markov generators L, L̃ and L̂, we have the inclusion K (L, L̃)K (L̃, L̂) ⊂
K (L, L̂), we deduce the following criterion:

Proposition 10.7 Assume that L and L̃ are two Markov generators on V and Ṽ
respectively, such that L̃ is a weak hypergroup with respect to x̃0 and there exists
x0 ∈ V and Λ ∈ K (L, L̃) with Λ(x0, ·) = δx̃0 . Then we have P(L, L̃) = P(Ṽ )

and by consequence,

∀ψ ∈ Ψ, ∀t ≥ 0, Ẽ(ψ, t) ≤ E(ψ, t)

This condition generalizes the deduction of P(L, L̃) = P(Ṽ ) given in
Example 10.5, which is continued below:

Example 10.6 We come back to the two point case, with the notation introduced in
Example 10.5. Consider L = l(μ − Id) a non-transient generator, where μ(0) ≤
μ(1). Let us check that L is a weak hypergroup with respect to 0. We begin by
computing the commutator K (L,L). We have seen that any Markov kernel K on
{0, 1} can be written under the form (1 − k) Id+kν, where ν ∈ P({0, 1}) and
k ∈ [0, 1/(1 − min(ν))]. It appears that K commutes with L if and only if kν
commutes with μ, namely if k = 0 or ν = μ. So we get

K (L,L) = {Kk�(1 − k) Id+kμ : k ∈ [0, 1/(1 − min(μ))]}

SinceK0(0, ·) = δ0 andK1/(1−μ(0))(0, ·) = δ1, we get that L is a weak hypergroup.
Consider another non-transient Markov generator L̃, to fulfill the assumptions of

Proposition 10.7, we are wondering if we can find x0 ∈ {0, 1} and Λ ∈ K (L, L̃)

such that Λ(x0, ·) = δ0. As we have already deduced it from (10.11), this is
equivalent to μ̃(1) ≤ μ(1).

10.5 On Infinite State Spaces

The goal of this short section is to prove Proposition 10.2 and to suggest that the
infinite state space situation would deserve to be investigated further.

Let L and L̃ be two Markov generators, respectively on the measurable spaces
(V ,V ) and (Ṽ , Ṽ ). The simple implication in Proposition 10.2 holds under weaker
assumptions than L and L̃ being nice:

Lemma 10.9 Assume that L and L̃ admit unique invariant probabilities μ and μ̃
which are reversible, and that their spectra consist of eigenvalues, respectively in
L

2(μ) and L
2(μ̃). If L and L̃ are weakly Markov-similar in the abstract sense, then

they are isospectral.
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Proof Let Λ be an abstract weak L
2-link such that LΛ = ΛL̃. As the operator Λ

is Markovian, it has norm 1. Denote by (̃λl)l∈Z+ and (ϕ̃l)l∈Z+ the eigenvalues and
respective orthonormal eigenvectors of L̃. For any l ∈ Z+, Λ[ϕ̃l] belongs to L

2(μ)

(its norm is less than or equal to 1) and from the intertwining relation we deduce
that it is an eigenfunction of L associated to the eigenvalue λ̃l . Taking into account
that Λ is one-to-one, we deduce that the spectrum of L̃ is included into that of L.
Conversely, considering Λ̃ an abstract weak L

2-link such that L̃Λ̃ = Λ̃L, we get
the reverse inclusion.

The proof of the reciprocal implication is an extension of that of Lemma 10.1.

Lemma 10.10 If the two nice generators L and L̃ are isospectral, then they are
weakly Markov-similar.

Proof Let (ϕl)l∈Z+ and (ϕ̃l)l∈Z+ be bounded orthonormal eigenvectors of L and L̃,
respectively, associated to the same family of eigenvalues (λl)l∈Z+ . We can and will
assume that ϕ0 = 1 and ϕ̃0 = 1 are the constant eigenvectors associated to the
eigenvalue 0. We will construct an operatorΛ such that LΛ = ΛL̃ by requiring that

∀l ∈ Z+, Λ[ϕ̃l] = alϕl

for a conveniently chosen sequence (al)l∈Z+ . First we impose that a0 = 1, so that
Λ[1] = 1. Next we choose the remaining coefficients positive and satisfying

∑
l∈N

al ‖ϕl‖∞ ‖ϕ̃l‖∞ ≤ 1 (10.12)

This is possible, since the eigenvectors are bounded. Let us check that such an
operatorΛ preserves non-negativity. It is sufficient to show that if f̃ is a measurable
function defined on Ṽ and taking values in [0, 1], then Λ[f̃ ] ≥ 0 μ-a.s. Since
f̃ ∈ L

2(μ̃), we can decompose it on the orthonormal basis (ϕ̃l)l∈Z+ :

f̃ =
∑
l∈Z+

blϕ̃l

where a priori the coefficients (bl)l∈Z+ belong to R. We have b0 = μ̃[1f̃ ] ∈ [0, 1]
and

∀l ∈ N, |bl| = |μ̃[ϕ̃l f̃ ]|
≤ ‖ϕ̃l‖∞ μ̃[1f̃ ]
= ‖ϕ̃l‖∞ b0
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Thus we get

Λ[f̃ ] = Λ

⎡
⎣∑
l∈Z+

blϕ̃l

⎤
⎦

=
∑
l∈Z+

alblϕl

= b01+
∑
l∈N

alblϕl

≥ b0 −
∑
l∈N

al |bl| ‖ϕl‖∞

≥
(

1 −
∑
l∈N

al ‖ϕl‖∞ ‖ϕ̃l‖∞
)
b0

≥ 0

according to (10.12). It follows that Λ is a Markov operator in the abstract sense. It
comes from a Markov kernel, due to the assumption on the state spaces.

It remains to show that μΛ is equal to the invariant probability μ̃ of L̃. By the
intertwining relation, μΛ is an invariant probability of L̃, thus by uniqueness of the
latter, we have μΛ = Λ̃.

It is natural to imagine a strong version of Proposition 10.2. The Markov operator
Λ : L

2(μ̃) → L
2(μ) is said to be a strong link if it is invertible and its inverse

is bounded. This notion leads to the definition: two Markov generators L and L̃ are
strongly Markov-similar if they can be mutually intertwined through strong links.
We are wondering if two nice isospectral Markov generators would not be strongly
Markov-similar if their eigenvectors are uniformly bounded, namely with the above
notation, if

sup
l∈Z+

‖ϕl‖∞ < +∞ and sup
l∈Z+

‖ϕ̃l‖∞ < +∞

Note that the examples of isospectral flat manifolds presented in the review of
Gordon [10] can be shown to be strongly Markov-similar, by transforming the
transplantation maps (i.e. unitary instead of Markovian intertwining maps, see the
papers of Bérard [2, 3]) into strong links. More precisely, it is sufficient to take
a, b > 0 such that 4a+ 3b = 1 in the matrix T displayed page 763 of Gordon [10].
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Chapter 11
Sharp Rate for the Dual Quantization
Problem

Gilles Pagès and Benedikt Wilbertz

Abstract In this paper we establish the sharp rate of the optimal dual quantization
problem. The notion of dual quantization was introduced in Pagès and Wilbertz
(SIAM J Numer Anal 50(2):747–780, 2012). Dual quantizers, at least in a Euclidean
setting, are based on a Delaunay triangulation, the dual counterpart of the Voronoi
tessellation on which “regular” quantization relies. This new approach to quanti-
zation shares an intrinsic stationarity property, which makes it very valuable for
numerical applications.

We establish in this paper the counterpart for dual quantization of the celebrated
Zador theorem, which describes the sharp asymptotics for the quantization error
when the quantizer size tends to infinity. On the way we establish an extension of
the so-called Pierce Lemma by a random quantization argument. Numerical results
confirm our choices.

Keywords Dual quantization · Delaunay triangulation · Zador Theorem · Pierce
Lemma · random quantization

11.1 Introduction

A new notion of vector quantization called dual quantization (or Delaunay quan-
tization in a Euclidean framework) has been introduced in [12] after a first one
dimensional try in [11]. Some applications were developed in [10], devoted to the
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design of new quantization based numerical schemes for multi-dimensional optimal
stopping and stochastic control problems arising in Finance (see also [1]). The
general principle of dual quantization consists of mapping an R

d -valued random
vector (r.v.) onto a non-empty finite subset (or grid) Γ ⊂ R

d using an appropriate
random splitting operator JΓ : Ω0 × R

d → Γ (defined on an exogenous
probability space (Ω0,S0,P0)) which satisfies the intrinsic stationarity property

∀ ξ ∈ conv(Γ ), E P0

(
JΓ (ξ)

) =
∫
Ω0

JΓ (ω0, ξ)P0(dω0) = ξ, (11.1)

where conv(Γ ) denotes the convex hull of Γ in R
d . Every r.v. X : (Ω,S ,P) →

conv(Γ ) defined on any probability space can be canonically extended to (Ω0 ×
Ω,S0 ⊗S ,P0 ⊗ P) in order to define the dual quantization induced by Γ as

X̂Γ,dual(ω0, ω) = JΓ

(
ω0,X(ω)

)
.

As a specific feature inherited from (11.1), it always satisfies the dual or reverse
stationary property

E P⊗P0(JΓ (X) |X) = X.

This can be compared to the more classical Voronoi framework where the Γ -
quantization of X is defined from a Borel nearest neighbour projection ProjΓ by

X̂Γ,vor(ω) = ProjΓ (X(ω)).

The stationary property then reads: E
(
X | X̂Γ,vor) = X̂Γ,vor , except that it holds

only for grids which are critical points (typically local minima) of the so-called
distortion function (see e.g. [5]) in a Euclidean framework.

To each quantization corresponds a functional approximation operator: Voronoi
quantization is related to the stepwise constant functional approximation opera-
tor f ◦ ProjΓ whereas dual quantization leads to an operator defined for every
ξ ∈ conv(Γ ) by

JΓ (f )(ξ) = E P0

(
f (JΓ (ω0, ξ))

) = ∑
x∈Γ

f (x)λx(ξ), (11.2)

where λx(ξ) = P0(JΓ (., ξ) = x), x ∈ Γ , are barycentric “pseudo-coordinates”
of ξ in Γ satisfying λx(ξ) ∈ [0, 1], ∑x∈Γ λx(ξ) = 1 and

∑
x∈Γ λx(ξ)x = ξ .

The operator JΓ is an interpolation operator which turns out, under appropriate
conditions, to be more regular (continuous and stepwise affine, see [10]) than its
“Voronoi” counterpart. It is shown in [10–12] how we can take advantage of this
intrinsic stationary property to produce more accurate error bounds for the resulting
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cubature formula

E P

(
f (X̃Γ,dual)

) = E P

(
JΓ (f )(X)

) = E P⊗P0

(
f (JΓ (ω0, ξ))

) = ∑
x∈Γ

wdualx f (x)

(11.3)

where wdualx = E P(λx(X)) = P⊗ P0(JΓ (ω0,X) = x), x ∈ Γ , regardless of any
optimality property of Γ with respect to PX. Typically, if f ∈ Lip(Rd,R) (Lipschitz
continuous function) with coefficient [f ]Lip,

∣∣∣E Pf (X)− E P⊗P0f (X̃
Γ,dual)

∣∣∣ ≤ [f ]Lip
∥∥X − X̂Γ,dual

∥∥
L1(P⊗P0)

= [f ]LipE P⊗P0

(‖X −JΓ (ω0,X)‖
)

= [f ]LipE P⊗P0

(
E P⊗P0(‖X −JΓ (ω0,X)‖ |X)

)

whereas, if f has a Lipschitz continuous differentialDf (the norm on R
d is denoted

‖ . ‖), a second order Taylor expansion yields

∣∣∣E Pf (X)− E P⊗P0f (X̃
Γ,dual)

∣∣∣ ≤ ∥∥∥f (X)− E P⊗P0

(
f (JΓ (ω0, X)) |X

)∥∥∥
L1(P⊗P0)

≤ [Df ]LipE P⊗P0

(‖X −JΓ (ω0, X)‖2)
≤ [Df ]LipE P⊗P0

(
E P⊗P0 (‖X −JΓ (ω0, X)‖2 |X))

(11.4)

where E P⊗P0(‖X − JΓ (ω0,X)‖p |X) =
∑
x∈Γ

λx(X)‖X − x‖p = JΓ (‖.‖2)(X),

p = 1, 2 (see Sect. 11.2.2 for more details).
More generally, if one aims at approximating E

(
f (X) | g(Y )) by its dually

quantized counterpart E P⊗P0⊗P1

(
f (JΓX (ω0,X)) |JΓY (ω1, Y )

)
(with obvious

notations), it is also possible, under natural additional assumptions, to get error
bounds based on both dual quantization error moduli related to the quantizations
of X and Y respectively, see e.g. the proof (Step 2) of Proposition 2.1 in [10].

This suggests to investigate the properties and the asymptotic behavior of the
(Γ,Lp)-mean dual quantization error, p∈ (0,∞), defined by

∥∥∥X − X̂Γ,dual
∥∥∥
Lp(P⊗P0)

=
∥∥∥X −JΓ (ω0,X)

∥∥∥
Lp(P⊗P0)

=
[
E P⊗P0

(
E P⊗P0

(‖X −JΓ (ω0,X)‖p |X
))] 1

p

so as to make it as small as possible. This program can be summed up in four
phases:

– The first step is to minimize the above conditional expectation, i.e. E (‖ξ −
JΓ (ω0, ξ)‖p) for every ξ ∈ conv(Γ ), for a fixed grid Γ i.e. to determine the
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best random splitting operator JΓ . In a regular quantization setting, this phase
corresponds to showing that the nearest neighbour projection on Γ is the best
projection on Γ .

– The second step is “optional” . It aims at finding grids which minimize the mean

dual quantization error
∥∥∥X − JΓ (ω0,X)

∥∥∥
Lp(P⊗P0)

among all grids Γ whose

convex hull contains the support of the distribution of X or equivalently such
that P

(
X∈ conv(Γ )

) = 1.
– The third step is to extend dual quantization to r.v.s X with unbounded support

with in mind that, if the stationarity can no longer hold outside conv(Γ ), one
still benefits from it inside conv(Γ ) (see e.g. (11.4)). A balance between the
quantization errors induced by the outside and the inside of conv(Γ ) will lead to
the appropriate unfolding of the grid Γ in the optimization phase.

The first two steps have been already solved in [12]. We discuss in-depth the
third one in Sect. 11.2.2. The aim of this paper is to solve the last (and fourth)
step:

– the fourth step aims at elucidating the rate of decay to 0 of the optimal Lp-mean
dual quantization error modulus, i.e. minimized over all grids Γ of size at most
N—as N grows to infinity.

This means establishing in a dual quantization framework the counterpart of
Zador’s Theorem—recalled below—which rules the convergence rate of optimal
“regular” (Voronoi) quantization.

To be more precise, we will establish such a theorem, for L∞-bounded r.v.s but
also, once mean dual quantization error will have been extended in an appropriate
way, following [12], to Lp-integrable r.v.s.

Let us now introduce in more formal way the (local and mean) dual quantization
error moduli, following [12]. For a grid Γ ⊂ R

d , we define the Lp-mean dual
quantization error of X induced by the grid Γ by

dp(X;Γ ) = ‖Fp(X;Γ )‖Lp(P) (11.5)

where Fp denotes the local dual quantization error function defined by

Fp(ξ;Γ ) = inf

{(∑
x∈Γ

λx‖ξ − x‖p
) 1
p
, λx ∈ [0, 1],

∑
x∈Γ

λx x = ξ,
∑
x∈Γ

λx = 1

}
. (11.6)

Note that Fp(ξ;Γ ) < +∞ if and only if ξ ∈ conv(Γ ) so that dp(X;Γ ) < +∞
if and only if X ∈ conv(Γ ) P-a.s.. and that dp(X;Γ ) =

∥∥∥X − X̂Γ,dual
∥∥∥p
Lp(P⊗P0)

.

Hence, this notion only makes sense for compactly supported r.v.s. In particular,
if the support of P

X
is compact and contains d + 1 affinely independent points,

dn,p(X, Γ ) = +∞ as long as n ≤ d . This new quantization modulus leads to an
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optimal dual quantization problem at level n,

dn,p(X) = inf
{
dn,p(X, Γ ), Γ ⊂ R

d , |Γ | ≤ n
}

= inf
{
‖Fp(X;Γ )‖p, Γ ⊂ R

d, |Γ | ≤ n
}

where |Γ | denotes the cardinality of Γ .
One important application of quantization in general is the use of quantization

grids to devise cubature formulas for numerical integration (see (11.3)) or condi-
tional expectation approximation (see [10]). The main feature here is the stationarity
which allows to derive a second order formula for the error (11.3) (see (11.4)).
As, by construction, dual quantization can achieve stationarity only for compactly
supported r.v.s/distributions, we explain in Sect. 11.2.2 how the extension of dual
quantization to non-compactly supported random variables, as defined in [12], still
preserves in practice this second order rate. We therefore define the splitting operator
JΓ outside conv(Γ ) by setting

∀ ξ ∈ R
d \ conv(Γ ), JΓ (ω0, ξ) = Projconv (Γ )∩∂Γ (ξ)

where Projconv (Γ )∩∂Γ is a Borel nearest neighbour projection on Γ . This ex-
tension is not canonical: an alternative choice could be to set JΓ (ω0, ξ) =
Proj∂Γ ∩conv(Γ )(ξ) where ∂Γ denotes the boundary of conv(Γ ). A posteriori, after
the grid optimization phase, this alternative extension often coincides with ours
which turns out to be more tractable in terms of simulation. We will also prove
that it does not deteriorate the resulting mean quantization error when the grid size
|Γ | → +∞. Though the stationary property is lost as expected, we point out in
Sect. 11.2.2 that this operator remains as performing as JΓ is for bounded r.v.s
when implementing cubature formulas for possibly unbounded Lp-integrable r.v.s.

Hence, we define the extended local dual quantization error function as

F̄p(ξ;Γ ) := Fp(ξ;Γ ) 1conv(Γ )(ξ)+ dist(X, Γ ) 1conv(Γ )c (ξ) (11.7)

and the extended Lp-mean dual quantization error of X induced by Γ as

d̄p(X;Γ ) = ‖F̄p(X;Γ )‖Lp(P). (11.8)

Finally, we define the extended Lp-mean dual quantization error at level n by

d̄n,p(X) = inf
{
d̄p(X, Γ ), Γ ⊂ R

d , |Γ | ≤ n
}
. (11.9)

At this stage, we also briefly recall a few facts about the (regular) Voronoi optimal
quantization problem at level n associated to the nearest neighbour projection ProjΓ :
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it reads

en,p(X) = inf
{
‖dist(X, Γ )‖Lp(P), Γ ⊂ R

d , |Γ | ≤ n
}

(11.10)

(where dist(x,A) = infa∈A ‖x−a‖). It is well-known that, ifX∈ Lp(P), en,p(X) ↓
0 as n→ +∞. Moreover, the rate of convergence to 0 of en,p(X) is ruled by Zador’s
Theorem (see Theorem 6.2 in [5]) and an extended version (see [7]) of the so-called
Pierce Lemma (see Lemma 6.6, p. 82, in [5]). We recall below these results for the
reader’s convenience.

Theorem 11.1

(a) Sharp rate (Zador’s Theorem). Let p ∈ (0,+∞). Let X ∈ L
p+δ
Rd

(P) for some
δ > 0 with distribution P

X
= h.λd +ν, ν ⊥ λd , where λd denotes the Lebesgue

measure on (Rd ,Bor(Rd)). Then

lim
n
n

1
d en,p(X) = Q

vq
‖·‖,p,d ‖h‖

1
p

d
p+d

where ‖h‖ d
p+d

=
( ∫

Rd

h(ξ)
d

p+d dξ
)1+ p

d
and Q

vq
‖·‖,p,d= inf

n
n

1
d en,p

(
U ([0, 1]d))

∈ (0,∞).
(b) Non asymptotic upper bound (Extended Pierce’s Lemma) (see [7]). Let p, δ >

0. There exists a real constant Cd,p,δ ∈ (0,+∞) such that, for every R
d-valued

random vector X defined on a probability space (Ω,A ,P),

∀ n ≥ 1, en,p(X) ≤ Cd,p,δ σp+δ(X)n−
1
d .

where, for any r ∈ (0,+∞), σr(X) = min
a∈Rd

‖X − a‖
Lr

≤ +∞.

Remark In fact, what is precisely proved in [7] (Lemma 1) is

∀ n ≥ 1, en,p(X) ≤ Cd,δ‖X‖Lp+δ n−
1
d .

To get the above conclusion, just note that the Lp-mean quantization error is
invariant by translation since, for every a∈ R

d and Γ ⊂ R
d , finite,

dist(X, Γ ) = inf
b∈Γ ‖X − b‖ = inf

b∈Γ ‖(X − a)− (b − a)‖ = dist(X − a, Γ − a)

where Γ −a = {b−a, b∈ Γ } so that en,p(X) = en,p(X−a)which in turn implies

∀ a∈ R
d, en,p(X) ≤ Cd,δ‖X − a‖Lp+δ n−

1
d .

Minimizing over a yields the announced result.
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The above rate depends on d and is known as the curse of dimensionality. Its
statement and proof goes back to Zador (PhD, 1954) for the uniform distributions on
hypercubes, its extension to absolutely continuous distributions is due to Bucklew
and Wise in [2]. A first general rigorous proof (according to mathematical standards)
was provided in [5] in 2000 (see also [6] for a survey of the history of quantization).

It should be noted that dn,p(X) and d̄n,p(X) do not coincide even for bounded
r.v.s. We will extensively use (see [12]) that

dn,p(X) ≥ d̄n,p(X) ≥ en,p(X).

This paper is entirely devoted to establishing the sharp asymptotics of the optimal
dual quantization error moduli dn,p(X) and d̄n,p(X) as n goes to infinity. The main
result is stated in Theorem 11.2 (Zador’s like theorem) (see Sect. 11.2.1 below).
Theorem 11.3 (a Pierce like Lemma) is a companion result which provides a non-
asymptotic upper bound for the exact rate simply involving moments of the r.v.
X higher than p. Our proof follows the same approach as that in [5] (the first
completely rigorous one to our knowledge), except that the splitting operator JΓ

is much more demanding to handle than the plain nearest neighbour projection:
it requires non trivial arguments borrowed from convex analysis (including dual
primal/methods) and geometry, both in a probabilistic framework. In one dimension,
the exact rateO(n−1) for dn,p(X) and d̄n,p(X) follows from a random quantization
argument detailed in Sect. 11.4 (extended Pierce Lemma for dn,p(X)). This rate

can be transferred in a d-dimensional framework to O(n−
1
d ) using product (dual)

quantization (see Proposition 11.1 below and Sect. 11.3.2), that is a tensorisation
argument. Finally, the sharp upper bound is obtained in Sect. 11.5 by successive
approximation procedures of the density of X, whereas the lower bound relies on a
new “firewall” Lemma.

Notations

• ‖·‖ denotes a norm on R
d .

• conv(A) stands for the convex hull of A ⊂ R
d , |A| for its cardinality,

diam‖.‖(A) = supx,y∈A‖x−y‖ for its diameter and aff.dim(A) for the dimension
of the affine subspace of Rd spanned by A.

• We denote
(
n
i

) := n!
i!(n−i)! , n, i∈ {0, . . . , n}, n∈ N = {1, 2, . . .}.

• 3x4 and ?x@ will denote the lower and the upper integer part of the real number x
respectively; set likewise x± = max(±x, 0). For two sequences of real numbers
(an) and (bn), an ∼ bn if an = unbn with limn un = 1.

• For every x = (x1, . . . , xd) ∈ R
d , |x|�r = (|x1|r + · · · |xd |r )1/r denotes the

�r -norm or pseudo-norm, 0 < r < +∞ and |x|�∞ = max1≤i≤d |xi | denotes the
�∞-norm. A general norm on R

d will be denoted ‖·‖.
• λd denotes the Lebesgue measure on (Rd,Bor(Rd )) and ‖f ‖p =( ∫

Rd
|f |pdλd

) 1
p denotes the Lp-(pseudo-)norm with respect to λd of the Borel

function f : Rd → R for p > 0.
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• supp(μ) denotes the support of a distribution μ on (Rd ,Bor(Rd)).

• ‖X‖Lp or ‖X‖Lp(P) denotes the Lp(P)-(pseudo-)norm
(
E‖X‖p) 1

p of a random
vectorX : (Ω,S ,P)→ R

d andLp
Rd
(P) the space of r.v.s for which this quantity

is finite.

11.2 Main Results and Motivation for Extended Dual
Quantization

11.2.1 Main Results

The theorem below establishes for any p > 0 and any norm on R
d the counterpart

of Zador’s Theorem in the framework of dual quantization for both dn,p and d̄n,p
error moduli.

Theorem 11.2

(a) LetX∈ L∞
Rd
(P). Assume the distribution PX ofX reads PX = h.λd+ν, ν ⊥ λd .

Then

lim
n

n
1
d dn,p(X) = lim

n
n

1
d d̄n,p(X) = Q

dq
‖·‖,p,d ‖h‖

1
p

d
p+d

where Qdq
‖·‖,p,d = inf

n≥1
n

1
d dn,p

(
U ([0, 1]d))∈ (0,∞).

(b) Let X∈ Lp′
Rd
(P), p′ > pwith PX like in (a). Then

lim
n
n

1
d d̄n,p(X) = Q

dq
‖·‖,p,d ‖h‖

1
p

d
p+d

.

(c) If d = 1, then

dn,p
(
U ([0, 1])) =

(
2

(p + 1)(p + 2)

) 1
p 1

n− 1
,

which implies Qdq
| . |,p,1 =

(
2p+1

p+2

) 1
p
Q
vq
| . |,p,1.

Moreover, we will also establish in Sect. 11.5 an upper bound for the dual
quantization coefficientQdq

‖·‖,p,d when ‖·‖ = |·|�r .



11 Sharp Rate for the Dual Quantization Problem 413

Proposition 11.1 (Product Quantization) Let r, p ∈ [1,∞) with r ≤ p. Then it
holds for every d ∈ N

Q
dq
|·|�r ,p,d ≤ d

1
r ·Qdq

|·|,p,1

where | . | denotes standard absolute value on R.

Since this upper bound achieves the same asymptotic rate as in the case of regular

quantization (cf. Corollary 9.4 in [5]), this suggests the rate O(d
1
r ) to be also the

true one for Qdq
‖·‖,p,d as d → +∞.

As a step towards the above sharp rate theorem, we also need to establish a
counterpart of the so-called Pierce Lemma (as stated in an operating form e.g.
in [7]). In practice, it turns out to be quite useful for applications since it provides
non-asymptotic error bounds which only depend on slightly higher moments of the
r.v. X and the quantization level n as emphasized in [10] (see Sect. 11.4.2 for the
proof).

Theorem 11.3 (d-Dimensional Extended Pierce Lemma)

(a) Let p, η > 0. There exists a real constantCd,p,η > 0 such that, for every n ≥ 1
and every r.v. X∈ Lp+η

Rd
(Ω,A ,P),

d̄n,p(X) ≤ Cd,p,ησp+η,‖.‖(X) n−1/d

where σp+η,‖.‖(X) = infa∈Rd ‖X− a‖Lp+η denotes the Lp+η-pseudo-standard
deviation of X.

(b) If supp(P
X
) is compact then, there exists a real constant C′

d,p,η > 0 such that,
for every n ≥ 1

dn,p(X) ≤ C′
d,p,ηdiam‖.‖

(
supp(PX)

)
n−1/d .

11.2.2 How to Use the Extended Lp-Dual Quantization Error
Modulus?

We briefly explain why the extended dual quantization error modulus, already
introduced in [12] for non-compactly supported distributions, is the right tool to
perform automatically an optimized truncation of non-compactly supported distri-
butions. Basically, it uses its additional “outer Voronoi projection” (see (11.7)) as a
penalization term which expands automatically the convex hull of the dually optimal
grid at its appropriate “magnitude”, making altogether the distribution outside of its

convex hull “negligible” and sharing an optimal rate of decay n− 1
d as its size n
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goes to infinity. The specific choice of a Voronoi quantization among other possible
solutions for this penalization is motivated by both its theoretical tractability and
its simple implementability in stochastic grid optimization algorithms. This feature
is of the highest importance for numerical integration or conditional expectation
approximation. This is the main motivation to introduce and deeply investigate
the sharp asymptotics of this Lp-mean extended dual quantization error modulus
d̄n,p(X).

We saw in [12] that Euclidean dual quantization of a compactly supported
distribution produces stationary (dual) quantizers, namely r.v.s X̂dual satisfying
E (X̂dual |X) = X. Hence, see Proposition 9 in [12], dual quantization based
cubature formulas induce on functions f ∈ C 1

Lip(R
d,R) (Lipschitz functions with

Lipschitz continuous gradient) an error at most equal to [Df ]Lipd2,n(X)
2. Taking

into account the rate established in Theorem 11.2(a), this yields a O(n− 2
d ) error

rate.
There is no way to extend dual quantization to unbounded r.v.s so that it preserves

the above stationarity property. However, with the choice we made (nearest neighbor
projection on the grid outside its convex hull), natural heuristic arguments strongly

suggest that the above order O(n− 2
d ) is still satisfied for functions in C 1

Lip(R
d ,R).

We consider an unbounded Borel distribution μ = P
X

of an R
d -valued r.v. X.

Let Γn be an Euclidean L2-optimal extended dual quantization grid of size n for
μ (see [12] or Theorem 11.5) and X̂dual the resulting Γn-valued extended dual
quantization of X. Let Cn = conv

(
Γn

)
. It is clear by construction of X̂dual that

X̂dual=X̃dual +X̃vor where, with obvious notations,

1{X∈Cn}E
(
X̃dual|X) = 1{X∈Cn}X (dual stationarity) and X̃vor = ProjΓn∩Cn(X).

Hence, if f ∈ C 1
Lip(R

d,R), E
(
(Df (X)|X − X̃dual)|X∈ Cn

) = 0 and

∣∣∣E (
f
(
X̃dual

)|X∈ Cn
)
−E

(
f
(
X
)|X∈ Cn

)∣∣∣
=

∣∣∣E (
f
(
X̃dual

)−f (X)−Df (X).(X−X̃dual)|X∈ Cn
)∣∣∣

≤ [Df ]Lipdn,2
(
Γn, X̃

dual |X∈ Cn
)2
.

Consequently,

∣∣∣E (
f
(
X̃dual

)
1{X∈Cn}

)
− E

(
f
(
X
)
1{X∈Cn}

)∣∣∣ ≤ [Df ]Lipdn,2(X̃
dual, Γn)

2/P(X∈ Cn)
≤ [Df ]Lipd̄n,2(X, Γn)

2/P(X∈ Cn).
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On the other hand,

∣∣∣E (
f
(
X̃vor

)
1{X/∈Cn}

)
− E

(
f
(
X
)
1{X/∈Cn}

)∣∣∣ ≤ [f ]Lipen,2
(
X,Γn

)
P
(
X /∈ Cn

) 1
2

≤ [f ]Lipd̄n,2(X)P
(
X /∈ Cn

) 1
2 .

Relying on Theorem 11.2(b), we know that, if μ = h.λd
⊥+ ν, then

d̄n,2(X) ∼ Q
dq
2,|.|eucl ‖h‖

1
p

d
2+d
n−

1
d .

The “outside” contribution will be negligible compared to the “inside” one as soon
as

P
(
X /∈ Cn

) = o
(
d̄n,2(X, Γn)

2
)
= o

(
n−

2
d

)
. (11.11)

This condition turns out to be not very demanding and can be checked, at

least heuristically, as illustrated below: if X
d= N (0; Id), one may conjecture,

taking advantage of the spherical symmetries of the normal distribution, that Cn
is approximately a sphere centered at 0 with radius ρn = maxa∈Γn |a|. As

P(|X| ≥ ξ) ∼ Vd ξ
d−2e−

ξ2

2 as ξ → +∞ (
with Vd = λd−1

(
Sd(0, 1)

))
.

Condition (11.11) is satisfied as soon as lim infn
ρn√
log n

> 2√
d

(≥ if d = 1, 2).
As an example, one must have in mind that, for optimal Voronoi quantization, this

inequality is satisfied since (see [9]) lim
n

ρn√
logn

= √
2(1 + 2/d) >

2√
d

. More

precisely, we have

P
(
X /∈ Cn

) ∼ κd(logn)
d
2 −1n−1− 2

d

so that

d̄n,2(X)P
(
X /∈ Cn

) 1
2 = O

(
n−

2
d− 1

2 (logn)
d−2

4

)
.

Numerical experiments, not reproduced here, carried out with the above
N (0; Id) distribution confirm that the radius of optimal dual quantizers always
achieves this asymptotics which makes the above partially heuristic reasoning very
likely. Moreover, we also tested the two rates of convergence of P(X ∈ Cn) and
d̄n,2(X)

2, this time on the joint distribution of the (W1, supt∈[0,1]Wt), W standard
Brownian motion which has less symmetries (see Appendix). They also confirm
that the above partially heuristic reasoning is most likely true.
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11.3 Dual Quantization: Background and Basic Properties

11.3.1 Definition and First Properties

In the introduction, the definitions related to Voronoi (or regular) and dual quan-
tizations of a r.v. X defined on a probability space (Ω,S ,P) have been recalled
(see (11.7)–(11.9)). The aim of this section is to come back briefly to the origin and
the motivations which led us to introduce dual quantization in [12]. On the way,
we will also recall several basic results on dual quantization established in [12].
First, we will assume throughout the paper that the r.v. of interest, X, is truly d-
dimensional in the sense that

aff.dim(supp(PX)) = d.

Let us start by a few practical points. First note that, although all the definitions
below are related to a r.v. X, in fact the error moduli of interest only depend on
the distribution P = P

X
, so we will also often write dp(PΓ ) for dp(X, Γ ) and

dn,p(P ). Furthermore, to alleviate notations, we will denote from now on Fp, dp

and d̄p, . . . instead of (Fp)p, (dp)p and (d̄p)p,. . .
Let us come back to the terminology dual quantization: it refers to a canonical

example of the intrinsic stationary splitting operator: the dual quantization operator.
To be more precise, let p∈ [1,+∞) and let Γ = {x1, . . . , xn} ⊂ R

d be a grid of
size n ≥ d + 1 such that aff.dim(Γ ) = d i.e. Γ contains at least one d + 1-tuple of
affinely independent points.

The underlying idea is to “split” ξ ∈ conv(Γ ) across at most d + 1 affinely
independent points in Γ proportionally to its barycentric coordinates of ξ . There
are usually many possible choices of such a Γ -valued (d + 1)-tuple of affinely
independent points, so we introduced in [12] a minimal inertia based criterion to
select the most appropriate one, namely the function Fp(ξ;Γ ) defined for every ξ
as the value of the minimization problem

Fp(ξ;Γ ) = inf
(λ1,...,λn)

{( n∑
i=1

λi‖ξ − xi‖p
) 1
p
, λi ∈ [0, 1],

∑
i

λi

[
xi

1

]
=

[
ξ

1

]}
.

(11.12)

Owing to the compactness of the constraint set (λi ≥ 0,
∑

i λi = 1,
∑

i λixi =
ξ ), there exists at least one solution λ∗(ξ) to the above minimization problem.
Moreover, for any such solution, one shows using convex extremality arguments,
that the set I∗(ξ) := {

i∈ {1, . . . , n} s.t. λ∗i (ξ) > 0
}

defines an affinely independent
subset {xi, i∈ I∗(ξ)} of Γ .
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If, for every ξ ∈ conv(Γ ), this solution is unique, the dual quantization operator
is simply defined on conv(Γ ) by

∀ ξ ∈ conv(Γ ), ∀ω0∈ Ω0, J
∗
Γ (ω0, ξ) =

∑
i∈I (ξ)∗

xi1{∑i−1
j=1 λ

∗
j (ξ)≤U(ω0)<

∑i
j=1 λ

∗
j (ξ)}

(11.13)

where U denotes a random variable uniformly distributed over [0, 1], defined on an
exogenous probability space (Ω0,S0,P0). This operator J ∗

Γ is then measurable
(see [12]).

The above uniqueness assumption is not so stringent, especially for applications.
Thus, in a purely Euclidean quadratic framework: ‖ . ‖ = | . |�2 (canonical Euclidean

norm) and p = 2 and if Γ is said in “general position”,1 then
{
{ξ s.t. I∗(ξ) =

I }, |I | ≤ d + 1
}

makes up a Borel partition of conv(Γ ) (with possibly empty

elements), known in 2-dimension as the Delaunay triangulation of Γ (see [14] for
a precise connection with Delaunay triangulations).

In a more general framework, we refer to [12] for a construction of dual
quantization operators. Such operators are splitting operators since, by construction,
they satisfy the stationarity property (11.1).

The dual quantization operators J ∗
Γ (ω0, ξ) plays the role of the nearest neigh-

bour projections for regular Voronoi quantization. One checks that, by construction,

∀ ξ ∈ conv(Γ ), ‖J ∗
Γ (ξ)− ξ‖Lp(P0) = ‖Fp(ξ;Γ )‖Lp(P0)

so that, as soon as supp(P
X
) ⊂ Γ (or equivalently P(X∈ conv(Γ )) = 1),

dp(X;Γ ) = ‖J ∗
Γ (X)−X‖Lp(P0⊗P) = ‖Fp(X;Γ )‖Lp(P0⊗P).

At this stage, it appears naturally that the second step of the optimization process
consists of finding (at least) one grid which optimally “fits” (the distribution of) X
for this criterion i.e. which is the solution to the second step of the optimization
procedure

dn,p(X) = inf
{
‖J ∗

Γ (X)−X‖Lp(P0⊗P), J
∗
Γ : Ω0 × conv(Γ )→ Γ,

conv(Γ ) ⊃ supp(P
X
), |Γ | ≤ n

}
.

Note that if X ∈ L∞
Rd
(P), dn,p(X) < +∞ if and only if n ≥ d + 1 (whereas it is

identically infinite if X is not essentially bounded). The existence of an optimal grid
(or dual quantizer) has been established in [12] (see Theorem 11.5 further on).

1No d + 2 points of Γ lie on a sphere in R
d .



418 G. Pagès and B. Wilbertz

The error modulus dn,p(X) can also be characterized as the lowest Lp-mean
approximation error by a r.v. having at most n values and satisfying the intrinsic
stationarity property as established in [12] (Theorem 2, precisely recalled in
Theorem 11.4 below). It should be compared to the well-known property satisfied
by the mean (regular) quantization error modulus en,p(X), namely

en,p(X) = inf
{
‖X − X̂‖Lp(P), |X̂(Ω)| ≤ n

}
.

A stochastic optimization procedure based on a stochastic gradient approach
has been devised in [12] to compute optimal dual quantization grids w.r.t. various
distributions (so far, uniform over [0, 1]2, normal, (W1, supt∈[0,1]Wt), W standard
Brownian motion, all in a quadratic Euclidean framework).

Let us conclude by recalling two results established in [12]. The first one is
the characterization of dual quantization operator in terms in terms of best Lp-
approximation (see [12], Theorem 2).

Theorem 11.4 Let X : Ω,S ,P)→ R
d be a r.v. such that aff.dim(supp(P

X
)) = d

and let n∈ N, n ≥ d + 1. Then

dn,p(X) = inf
{
E ‖X −JΓ (X)‖Lp : JΓ : Ω0 × R

d → Γ, intrinsic stationary,

supp(P
X
) ⊂ conv(Γ ), |Γ | ≤ n

}

= inf
{
E ‖X − X̂‖Lp : X̂ : (Ω0 ×Ω,S0 ⊗S ,P0 ⊗ P)→ R

d,

|X̂(Ω0 ×Ω)| ≤ n, E (X̂|X) = X
}
≤ +∞.

This quantity is finite if and only if X∈ L∞(Ω,S ,P).

Finally, the following existence result for optimal dual quantizers at level n ∈ N

and the Lp-norm with p ∈ (1,∞) is established in [12]. Although we will not use
it in our proofs, this result is recalled for the reader’s convenience.

Theorem 11.5 (Existence of Optimal Quantizers) Let X ∈ Lp(P) for some p ∈
(1,+∞).

(a) If supp(P
X
) is compact, then there exists for every n ∈ N a grid Γ ∗

n ⊂
R
d , |Γ ∗

n | ≤ n such that dp(X;Γ ∗
n ) = dn,p(X).

(b) If P
X

is strongly continuous in the sense that it assigns no mass to hyperplanes
of Rd , then there exists for every n ∈ N a grid Γ ∗

n ⊂ R
d, |Γ ∗

n | ≤ n such that
d̄p(X;Γ ∗

n ) = d̄n,p(X).

If, furthermore |supp(P
X
)| ≥ n, then |Γ ∗

n | = n.
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11.3.2 Local Properties of the Dual Quantization Functional

We establish or recall in this paragraph some first general properties of the local
Lp-dual quantization functional Fp, which will be needed for the final proof of
Theorem 11.2.

Proposition 11.2 Let Γ1, Γ2 ⊂ R
d be finite grids and let ξ ∈ R

d . Then

Γ1 ⊂ Γ2 %⇒ Fp(ξ;Γ2) ≤ Fp(ξ;Γ1).

Proof First note that the set
{
λ ∈ R

n | [ x1 ... xm
1 ... 1

]
λ = [

ξ
1

] }
is clearly a compact

set on which the continuous function λ �→ ∑n
i=1 λi‖ξ − xi‖p attains a minimum.

Assume Γ1 = {x1, . . . , xm} and Γ2 = {x1, . . . , xm, xm+1, . . . , xn}. Then

Fp(ξ ;Γ2) = min
λ∈Rn

n∑
i=1

λi ‖ξ − xi‖p

s.t.
[
x1 ... xn
1 ... 1

]
λ=

[
ξ
1

]
, λ≥0

= min
λ∈Rn,λm+1=···=λn=0

m∑
i=1

λi ‖ξ − xi‖p

s.t.
[
x1 ... xm
1 ... 1

]
λ=

[
ξ
1

]
, λ≥0

≤ min
λ∈Rm

n∑
i=1

λi ‖ξ − xi‖p

s.t.
[
x1 ... xm
1 ... 1

]
λ=

[
ξ
1

]
, λ≥0

= Fp(ξ ;Γ1).

12
We will also make use of the following three properties established in [12]

(Propositions 11, 12, 13 respectively). In particular, the third claim yields a first
upper bound for the asymptotics of the local Lp-dual quantization error when the
size n of the grid goes to infinity.

Proposition 11.3

(a) Scalar bound: Let Γ = {x1, . . . , xn} ⊂ R with x1 ≤ . . . ≤ xn. Then

∀ξ ∈ [x1, xn], Fp(ξ;Γ ) ≤ max
1≤i≤n−1

(xi+1 − xi

2

)p
.

(b) Local Product Quantization: Let ‖·‖ = | · |�p and let Γ =
∏

1≤j≤d
Γj for some

Γj ⊂ R. Then

∀ ξ ∈ R
d, Fp,|.|�p (ξ;Γ ) =

⎛
⎝ d∑
j=1

Fp(ξj ;Γj)
⎞
⎠

1
p

and the same holds true with F̄p,�p on R
d .
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(c) Product Quantization: Let C = a + L [0, 1]d , a = (a1, . . . , ad)∈ R
d , L > 0,

be a hypercube, with edges parallel to the coordinate axis with common edge-
length L. Let Γ be the product quantizer of size (m+ 1)d defined by

Γ =
d∏
k=1

{
aj + iL

m
, i = 0, . . . ,m

}
.

There exists a positive real constant C‖.‖,p = sup|x|�p=1‖x‖p > 0 such that

∀ ξ ∈ C, Fp(ξ;Γ ) ≤ d C‖·‖,p ·
(L

2

)p ·m−p. (11.14)

11.4 Extended Pierce Lemma and Applications

The aim of this section is to provide a non-asymptotic “universal” upper-bound for
the optimal (extended) Lp-mean dual quantization error in the spirit of [7] (see
also [13]): it achieves nevertheless the optimal rate of convergence when the size n
goes to infinity. Like for Voronoi quantization this upper-bound deeply relies on a
random quantization argument and will be a key in the proof of the sharp rate (step 2
of the proof of Theorem 11.2). We begin with an extension of Pierce’s lemma. This
is one of the two main results of the paper.

11.4.1 Extended Pierce Lemma

For every integer n ≥ 1, we define the set of “non-decreasing” n-tuples of Rn by

In :=
{
(x1, . . . , xn)∈ R

n, −∞ < x1 ≤ x2 ≤ · · · ≤ xn < +∞
}
.

Let (x1, . . . , xn) ∈ In (so that Γ = {x1, . . . , xn} has at most n elements) and let
ξ ∈ R. When d = 1, it is clear that the minimization problem (11.6) always has a
unique solution when ξ ∈ [x1, xn] so that, for every ω0∈ Ω0 = [0, 1], one has

J̄ ∗
(x1,...,xn)

(ω0, ξ) =
n−1∑
i=1

(
xi1{ω0≤ xi+1−ξ

xi+1−xi }
+ xi+11{ω0≥ xi+1−ξ

xi+1−xi }
)

1[xi ,xi+1)(ξ)

+x11(−∞,x1)(ξ)+ xn1[xn,+∞)(ξ).
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It follows from (11.7) that

F̄
p
n (ξ, x1, . . . , xn) = E P0

∣∣ξ − J̄ ∗
(x1,...,xn)

(ω0, ξ )
∣∣p

=
n−1∑
i=1

(
(xi+1 − ξ)p(ξ − xi)

xi+1− xi
+ (xi+1 − ξ)(ξ − xi)

p

xi+1− xi

)
1[xi ,xi+1)(ξ )

+(x1 − ξ)p1(−∞,x1)(ξ )+ (ξ − xn)
p1[xn,+∞)(ξ ) (11.15)

(the subscript n is temporarily added to the functional F̄ p, F̄p, etc, to emphasize that
they are defined on In × R). The functionals F̄ pn share three important properties
extensively used in what follows:

• Additivity: Let (x1, . . . , xi0, . . . , xn)∈ In. Then for every ξ ∈ R

F̄
p
n (ξ, x1, . . . , xn) = F̄

p

i0
(ξ, x1, . . . , xi0)1(−∞,xi0 )

(ξ)

+ F̄
p

n−i0+1(ξ, xi0, . . . , xn)1[xi0 ,+∞)(ξ).

• Consistency and monotony: Let (x1, . . . , xn) ∈ In and x̃i ∈ [xi, xi+1] for an
i∈ {1, . . . , n− 1}. For every ξ ∈ R,

F̄
p

n+1(ξ, x1, . . . , xi−1, xi , x̃i , xi+1, . . . , xn) ≤ F̄
p
n (ξ, x1, . . . , xi−1, xi , xi+1, . . . , xn).

(11.16)

When ξ ∈ [x1, xn], F̄ pn (ξ; x1, . . . , xn) coincides with Fp(ξ, {x1, . . . , xn})
and (11.16) is a consequence of the definition of Fp as the value function of
the minimization problem (11.6).

Outside, (11.16) holds as an equality since it amounts to the nearest distance
of ξ to {x1, xn} (or [x1, xn]). As a consequence,

n �−→ d̄n,p(X) = inf
(x1,...,xn)∈In

∥∥F̄p,n(X, x1, . . . , xn)
∥∥
Lp

is non-increasing.

(11.17)

More generally, for every fixed x0∈ R, both

n �−→ inf
(x0,x2,...,xn)∈In

∥∥F̄p,n(X, x0, x2, . . . , xn)
∥∥
Lp

(11.18)

and

n �−→ inf
(x1,x2,...,xn−1,x0)∈In

∥∥F̄p,n(X, x1, . . . , xn−1, x
0)
∥∥
Lp

(11.19)

are non-increasing.
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• Scaling: ∀ω∈ Ω0, ∀ (x1, . . . , xn)∈ In, ∀ ξ ∈ R, ∀α∈ R+, ∀β∈ R,

(i) F̄
p
n (α ξ + β, α x1 + β, . . . , α xn + β) = α F̄

p
n (ξ, x1, . . . , xn),

(ii) F̄
p
n (ξ, x1, . . . , xn) = F̄

p
n (−ξ,−xn, . . . ,−x1).

The theorem below is the one dimensional version of Theorem 11.3(a) and a
crucial step to its proof.

Theorem 11.6 Let p, η > 0. There exists a real constant Cp,η > 0 such that, for
every random variable X : (Ω,A ,P)→ R,

∀ n ≥ 1, inf
(x1,...,xn)∈In

‖F̄p,n(X, x1, . . . , xn)‖Lp ≤ Cp,ησp+η(X)n−1.

The proof that follows relies on a random quantization argument involving an
n-sample of the Pareto(δ)-distribution on [1,+∞).

We will extensively make use of the Γ and B functions defined by Γ (a) =∫ +∞
0 ua−1e−udu, a > 0, and B(a, b) = ∫ 1

0 u
a−1(1 − u)b−1du, a, b > 0,

respectively, and satisfying B(a, b) = Γ (a)Γ (b)
Γ (a+b) .

Proof Step 1. We first assume that X is [1,+∞)-valued and n ≥ 2. Let (Yn)n≥1 be
a sequence of i.i.d. Pareto(δ)-distributed random variables (with probability density
fY (y) = δy−δ−11{y≥1}) defined on a probability space (Ω ′,A ′,P′).

Let δ = δ(η, p)∈ (0, η
?p@ ) be chosen so that � = �(p, η) = p

δ
is an integer and

� ≥ 2. For every n ≥ �(p, η), set ñ = n − � + 2∈ N, ñ ≤ n. It follows from the
monotony properties (11.18) and (11.19) that

inf
(1,x2,...,xn)∈In

‖F̄p,n(X, 1, x2, . . . , xn)‖Lp

≤ inf
(1,x2,...,xñ)∈Iñ

‖F̄p,̃n(X, 1, x2, . . . , xñ)‖Lp

≤‖F̄p,̃n(X, Y (n)0 , Y
(n)
1 , . . . , Y

(n)
ñ−1)‖Lp(Ω×Ω ′,P⊗P′)

where, for every n ≥ 1, Y (n) = (Y
(n)
1 , . . . , Y

(n)
n ) denotes the standard order statistics

of the first n terms of the sequence (Yk)k≥1 and Y (n)0 = 1. On the other hand, we

recall (see e.g. [3]) that the joint distribution of (Y (n)i , Y
(n)
i+1), 1 ≤ i ≤ n−1, is given

by

P
′
(Y
(n)
i ,Y

(n)
i+1)

(du, dv) = δ2 n!
(i − 1)!(n− i − 1)! (1 − u−δ)i−1v−δ(n−i−1)(uv)−δ−1 du dv.
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Step 2. Assume that n ≥ 3. SinceX and (Y1, . . . , Y0) are independent andX ≥ 1

∥∥F̄p,̃n(X, Y (n)0 , Y
(n)
1 , . . . , Y

(n)
ñ−1)

∥∥p
Lp(Ω×Ω ′,P⊗P′)

=
∫
[1,+∞)

‖F̄p,̃n(ξ, Y (n)0 , Y
(n)
1 , . . . , Y

(n)
ñ−1)‖pLp(Ω ′,P′)PX(dξ).

Relying on the expression (11.15) of the functional F̄ pn , we set for every i =
0, . . . , n− � and ξ ≥ 1

(a)i := E

(
(Y

(n)
i+1 − ξ)p(ξ − Y

(n)
i )

Y
(n)
i+1 − Y

(n)
i

1{Y (n)i <ξ≤Y (n)i+1}

)
,

(b)i := E

(
(Y

(n)
i+1 − ξ)(ξ − Y

(n)
i )p

Y
(n)
i+1 − Y

(n)
i

1{Y (n)i <ξ≤Y (n)i+1}

)

and (c)̃n−1 := E

((
ξ − Y

(n)
n−�+1

)p1{ξ≥Y (n)n−�+1}
)

.

We will first inspect the sum
∑n−�

i=0 (!)i , where ! = a, b successively.
Let i∈ {1, . . . , ñ− 1}. It follows from the above expression of the distribution of

(Y
(n)
i , Y

(n)
i+1) that

(a)i = δ2 n!
(i − 1)!(n− i − 1)!

×
∫ ∫

1≤u≤ξ≤v
(v − ξ)p(ξ − u)

v − u
(1 − u−δ)i−1v−δ(n−i−1)(uv)−δ−1 du dv.

The change of variable v = ξ(w + 1) yields

(a)i = n(n− 1)
(
n−2
i−1

)
δ2ξp−δ(n−i)

∫ ξ

1
(ξ − u)(1 − u−δ)i−1u−δ−1du

×
∫ +∞

0

wp

ξ(w + 1)− u
(w + 1)−δ(n−i)−1dw.

Noting that ξ−u
ξ(w+1)−u ≤ 1

w+1 then leads to

(a)i ≤ n(n− 1)
(
n−2
i−1

)
δ2n(n− 1)ξp−δ(n−i)

∫ ξ

1
(1 − u−δ)i−1u−δ−1du

×
∫ +∞

0
wp(1 +w)−δ(n−i)−2dw.
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The change of variable w = 1
y
− 1 shows that

∫ +∞

0
wp(1 +w)−δ(n−i)−2dw = B

(
δ(n− i)− p + 1, p + 1

)

whereas
∫ ξ

1
(1 − u−δ)i−1u−δ−1du = (1 − ξ−δ)i

δi
. Hence

(a)i ≤ δn

(
n− 1
i

)
(1 − ξ−δ)iξp−δ(n−i) Γ (p + 1)Γ (δ(n− i)− p + 1)

Γ (δ(n− i)+ 2)

where we used the standard identity
(
n−1
i

) = n−1
i

(
n−2
i−1

)
.

When i = 0, noting that the density of Y (n)1 = min1≤i≤n Yi is δny−δn−11{y≥1},
we get

(a)0 = E

(
(Y

(n)
1 − ξ)p(ξ − 1)

Y
(n)
1 − 1

1{1≤ξ≤Y (n)1 }

)

= δn

∫ +∞

ξ

(ξ − 1)
(v − ξ)p

v − 1
v−δn−1dv

= δnξp−δn
∫ +∞

0

(ξ − 1)

ξ(w + 1)− 1
wp(w + 1)−δn−1dw (where we set v = ξ(w + 1))

≤ δnξp−δnB(δn− p + 1, p + 1)

where we used in the last line that ξ−1
ξ(w+1)−1 ≤ 1

w+1 . As a consequence

n−�∑
i=0

(a)i ≤ δ nΓ (p + 1)
n−�∑
i=0

(
n−1
i

)
ξp−δ(n−i)(1 − ξ−δ)i Γ (δ(n− i)− p + 1)

Γ (δ(n− i)+ 2)

≤ δ nΓ (p + 1)ξp(1 − ξ−δ)n
n∑
j=�

(
n−1
j−1

)
(ξδ − 1)−j Γ (δj − p + 1)

Γ (δj + 2)
.

Now, using that for every a > 0, Γ (x+a)
Γ (x)

∼ xa as x → +∞, we derive the existence

of real constants κ̃ (0)p,δ, κ
(0)
p,δ > 0 such that

∀ j ≥ 0,
Γ (δj − p + 1)

Γ (δj + 2)
≤ κ̃

(0)
p,δ j

−(p+1) ≤ κ
(0)
p,δ

j ?p@−p

j (j + 1) · · · (j + ?p@) .
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In turn, using that

(
n+?p@
j+?p@

)
= (n+ ?p@) · · · n
(j + ?p@) · · · j

(
n−1
j−1

)
,

we finally obtain

n−�∑
i=0

(a)i ≤ κ
(0)
p,δ nΓ (p + 1)

ξpδ(1 − ξ−δ)n

(n+ ?p@) · · · (n+ 1)n

n∑
j=�

(
n+?p@
j+?p@

)
(ξδ − 1)−j j ?p@−p

≤ κ
(0)
p,δ Γ (p + 1)ξpδ(1 − ξ−δ)n n?p@−p

(n+ ?p@) · · · (n+ 1)
(ξδ − 1)?p@

×
(

1 + (ξδ − 1)−1
)n+?p@

.

Now, as ξ ≥ 1,

(1 − ξ−δ)nξp(ξδ − 1)?p@
(

1 + (ξδ − 1)−1
)n+?p@ = (1 − ξ−δ)2ξp+δ?p@ ≤ ξp+δ?p@

so that, using again that ξ ≥ 1 and δ < η
?p@ , we get ξp+δ?p@ ≤ ξp+η which in turn

implies

n−�∑
i=0

(a)i ≤ κ
(0)
p,δ δ Γ (p + 1)ξp+η

1

np
.

Let us pass now to the second sum involving (b)i . First note that, on the event{
Y
(n)
i ≤ ξ ≤ Y

(n)
i + Y

(n)
i+1

2

}
(which is clearly included in

{
Y
(n)
i ≤ ξ ≤ Y

(n)
i+1

}
), one

has (ξ −Y (n)i )p(Y
(n)
i+1 −ξ) ≤ (ξ −Y (n)i )(Y

(n)
i+1 −ξ)p so that, owing to what precedes,

we can focus on
n−�∑
i=0

(̃b)i where

(̃b)i := E

(
(ξ − Y

(n)
i )p1{ Y (n)

i
+Y (n)
i+1

2 ≤ξ≤Y (n)i+1

}
)

≥ E

(
(Y

(n)
i+1 − ξ)(ξ − Y

(n)
i )p

Y
(n)
i+1 − Y

(n)
i

1{ Y (n)
i

+Y (n)
i+1

2 ≤ξ≤Y (n)i+1

}
)
.

This time we will analyze successively the sum over i = 1, . . . , n − � and the
case i = 0.
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n−�∑
i=1

(̃b)i = δ2n(n− 1)
∫∫

{1≤u≤ξ≤v≤2ξ−u}
du dv (uv)−δ−1(ξ − u)p

n−�∑
i=1

(
n−2
i−1

)
v−δ(n−2−(i−1))(1 − u−δ)i−1

≤ δ2n(n− 1)
∫∫

{1≤u≤ξ≤v≤2ξ−u}
du dv(uv)−δ−1(ξ − u)p(1 − u−δ + v−δ)n−2

≤ δ2n(n− 1)
∫ ξ

1
duu−δ−1(ξ − u)p

∫ 2ξ−u

ξ

dv v−δ−1e−(n−2)(u−δ−v−δ)

= δ2n(n− 1)
∫ ξ

1
duu−δ−1(ξ − u)pe−(n−2)u−δ

∫ 2ξ−u

ξ

dv v−δ−1e(n−2)v−δ

where we used in the in the second line that n− �− 1 ≤ n− 2 since � ≥ 1. Setting

v = y− 1
δ yields

∫ 2ξ−u

ξ

v−δ−1e(n−2)v−δ dv = 1

δ

∫ ξ−δ

(2ξ−u)−δ
e(n−2)ydy

≤ 1

δ

(
ξ−δ − (2ξ − u)−δ

)
e(n−2)ξ−δ

≤ (ξ − u)ξ−δ−1e(n−2)ξ−δ

where we used in the last line the fundamental formula of Calculus. Consequently,

n−�∑
i=1

(̃b)i ≤ n(n− 1)δ2ξ−δ−1
∫ ξ

1
u−δ−1(ξ − u)p+1e−(n−2)(u−δ−ξ−δ)du

= n(n− 1)ξ−δ−1δ

∫ (n−2)(1−ξ−δ)

0

(
ξ − ( x

n− 2
+ ξ−δ

)− 1
δ

)p+1
e−x dx

n− 2

where we put u = (
x
n−2 + ξ−δ

)− 1
δ . Now, applying again the fundamental formula

of Calculus to the function z− 1
δ yields,

ξ −
( x

n− 2
+ ξ−δ

)− 1
δ = (ξ−δ)−

1
δ −

( x

n− 2
+ ξ−δ

)− 1
δ ≤ x

δ(n− 2)
ξδ+1

so that
n−�∑
i=1

(̃b)i ≤ n(n− 1)

(n− 2)p+2
δ−pξ(p+1)(δ+1)−(δ+1)

∫ (n−2)(1−ξ−δ)

0
xp+1e−xdx

≤ κ
(1)
p,δΓ (p + 2)n−pξp(δ+1)

for some constant κ(1)p,δ > 0.
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When i = 0, keeping in mind that Y (n)1 = min1≤i≤n Yi , we get

(̃b)0 ≤ (ξ − 1)pP(ξ ≤ Y
(n)
1 ≤ 2ξ − 1) = (ξ − 1)p

(
ξ−nδ − (2ξ − 1)−nδ

)
≤ nδ(ξ − 1)p+1ξ−nδ−1 = nδξp(1+δ)g(1/ξ)

where g(u) = (1−u)p+1u(n+p)δ, u∈ (0, 1). One checks that g attains its maximum
over (0, 1] at u∗ = (n+p)δ

(n+p)δ+p+1 so that

sup
u∈(0,1]

g(u) = g(u∗) =
(

p + 1

(n+ p)δ + p + 1

)p+1

(u∗)(n+p)δ ≤
(

1

1 + n+p
p+1 δ

)p+1

.

Finally, there exists a real constant κ(2)p,δ > 0 such that

(̃b)0 ≤ ξp(δ+1) δn

(1 + n+p
p+1 δ)

p+1
≤ κ

(2)
p,δξ

p(δ+1)n−p.

As concerns the (c)n−�+1 term, we proceed as follows.

E

((
ξ − Y

(n)
n−�+1

)p1{ξ≥Y (n)n−�+1}
)
≤ ξpP(ξ ≥ Y

(n)
n−�+1)

≤ ξp(1+δ)E (Y (n)n−�+1)
−pδ.

Note that

E (Y
(n)
n−�+1)

−pδ = Γ (n+ 1)

Γ (n− �+ 1)Γ (�)

∫ 1

0
(1 − v)n−�v�+p−1dv

= Γ (n+ 1)

Γ (�)

Γ (�+ p)

Γ (n+ p + 1)

∼ Γ (�+ p)

Γ (�)
n−p = O(n−p).

Finally, for every ξ ≥ 1,

(c)n−�+1 ≤ κ
(3)
p,δξ

p(1+δ)n−p.

Consequently, there exists a real constant κp,η = maxj=0,...,3 κ
(j)
p,δ > 0 such that,

for every n ≥ np,η = �(η, p) ∨ 3,

∀ ξ ≥ 1, np E F̄
p
n (ξ, Y

(n)
0 , . . . , Y

(n)
ñ+1) ≤ κp,η ξ

p+η
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since p δ ≤ η. Hence for every r.v. X, we derive by integrating in ξ ∈ [1,+∞) with
respect to P

X
(dξ):

np inf
(1,x2,...,xn)∈In

E F̄
p
n (X, 1, x2, . . . , xn) ≤ npE F̄

p
n (X, Y

(n)
0 , . . . , Y

(n)
ñ+1)

≤ κp,η E Xp+η.

Step 3. If X is a non-negative random variable, applying the second step to X + 1
and using the scaling property (i) satisfied by Fp,n yields for n ≥ np,η (as defined
in Step 2),

inf
(0,x2,...,xn)∈In

‖F̄p,n(X, 0, x2, . . . , xn)‖Lp = inf
(1,x2,...,xn)∈In

‖F̄p,n(X + 1, 1, . . . , xn)‖Lp

≤ κ
1/p
p,η

‖1 +X‖1+ η
p

Lp+η
n

≤ C(0)p,η
1 + ‖X‖1+ η

p

Lp+η
n

with C(0)p,η = (21+ηκp,η)
1
p .

We may assume that ‖X‖Lp+η ∈ (0,∞). Then, applying the above bound to
the non-negative random variable X̃ = X

‖X‖Lp+η and taking again advantage of the

scaling property (i), we obtain

inf
(0,x2,...,xn)∈In

∥∥F̄p,n(X, 0, x2, . . . , xn)
∥∥
Lp

= ‖X‖Lp+η inf
(0,x2,...,xn)∈In

∥∥F̄p,n(X̃, 0, x2, . . . , xn)
∥∥
Lp

≤ ‖X‖Lp+ηC(0)p,η
1 + 1

n
= 2C(0)p,η ‖X‖Lp+η

1

n
.

Step 4. Let X be a real-valued random variable and let, for every integer n ≥ 1,
x1, . . . , xn ∈ (−∞, 0), xn+1 = 0 and xn+2, . . . , x2n+1 ∈ (0,+∞). It follows from
the additivity property that

F̄
p
2n+1(X, x1, . . . , x2n+1) = F̄

p
n+1(X+, xn+1, . . . , x2n+1)1{X≥0}

+ F̄ pn+1(−X−, x1, . . . , xn+1)1{X<0}

= F̄
p
n+1(X+, x1, . . . , xn+1)1{X≥0}

+ F̄ pn+1(X−,−xn+1, . . . ,−x1)1{X<0}.
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Consequently, using that X+ ×X− ≡ 0 and that xn+1 = 0, we get

inf
(x1,...,x2n+1)∈I2n+1

xn+1=0

∥∥F̄p,2n+1(X, x1, . . . , x2n+1)
∥∥p
Lp

≤ inf
(0,y2,...,yn+1)∈In+1

∥∥F̄p,n+1(X+, 0, y2, . . . , yn+1)
∥∥p
Lp

+ inf
(0,y2,...,yn+1)∈In+1

∥∥F̄p,n(X−, 0, y2, . . . , yn+1)
∥∥p
Lp
.

Hence, it follows from Step 2 that, for every n ≥ np,η − 1,

inf
(x1,...,x2n+1)∈I2n+1

∥∥F̄p,2n+1(X, x1, . . . , x2n+1)
∥∥p
Lp

≤
(
‖X−‖pLp+η + ‖X+‖pLp+η

)(
2C(0)p,η
n+ 1

)p
.

Now, using that (a + b) ≤ 21− 1
q (aq + bq)

1
q , a, b ≥ 0, with q = 1 + η

p
≥ 1, we

derive that

‖X−‖pLp+η + ‖X+‖pLp+η ≤ 2
η

p+η
(
‖X−‖p+ηLp+η + ‖X+‖p+ηLp+η

) p
p+η = 2

η
p+η ‖X‖p

Lp+η

sinceX−×X+ ≡ 0. Now, the monotonicity property (11.17) implies that, for every
n ≥ 2 np,η,

d̄n,p(X) = inf
(x1,...,xn)∈In

‖F̄p,n(X, x1, . . . , xn)‖Lp ≤ 2
η

p(p+η) 2C(0)p,η
‖X‖Lp+η

n
.

Still calling upon (11.17), we note that, for every n ∈ {1, . . . , 2np,η}, d̄n,p(X) ≤
d̄1,p(X) = infx∈R ‖X − x1‖Lp ≤ ‖X‖Lp so that

d̄n,p(X) ≤ 2np,η
‖X‖Lp+η

n
.

Hence, setting Cp,η = max
(

2np,η, 21+ η
p(p+η) C(0)p,η

)
, yields

∀ n ≥ 1, d̄n,p(X) ≤ Cp,η
‖X‖Lp+η

n
.



430 G. Pagès and B. Wilbertz

Now using that the function F̄ is invariant by translation (property “Scaling
(i)”) combined with the fact that the real constant Cp,η does not depend on the
(distribution of the) random variable X implies that, for every a ∈ R, d̄n,p(X) =
d̄n,p(X − a) so that

d̄n,p(X) ≤ Cp,η
infa∈R ‖X − a‖Lp+η

n
= Cp,η

σp+η(X)
n

which completes the proof. 12

11.4.2 A d-Dimensional Non-asymptotic Upper-Bound
for the Dual Quantization Error

Now, combining Theorem 11.6 and Proposition 11.3(b), we are in position to show
Theorem 11.3 (the d-dimensional version of the extended Pierce Lemma) which
provides a non-asymptotic upper-bound at the exact rate for dual quantization error
moduli.

Proof of Theorem 11.3

(a) First note that d̄n,p(X) = d̄n,p(X − a), a ∈ R
d (invariance by translation), so

we may assume that X is Lp+η-centered i.e. σp+η,‖.‖(X) = ‖X‖Lp+η . When
d = 1, Theorem 11.6 solves the problem.

Let d ≥ 2. Let X = (X1, . . . , Xd) (Xi components of X). It follows
form Proposition 11.3 that, if Γ = ∏

1≤i≤d Γi , with Γi ⊂ R, |Γi | = ni with
n1 · · · nd ≤ n. Then for every ξ = (ξ1, . . . , ξd )∈ R

d

F̄
p
‖.‖(ξ;Γ ) ≤ Cp,‖.‖F̄ p�p (ξ;Γ ) =

d∑
j=1

F̄ p(ξj ;Γj )

where Cp,‖.‖ = sup|ξ |�p=1 ‖ξ‖p . Integrating with respect to the distribution of

X yields d̄p(X;Γ )≤ Cp,‖.‖
d∑
j=1

d̄p(Xj ;Γj) which in turn easily implies

d̄
p
n (X) ≤ Cp,‖.‖

d∑
j=1

d̄
p
nj (X

j ).
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Now set nj = 3n 1
d 4, j = 1, . . . , d . It follows from Theorem 11.6 that

d̄
p
n (X) ≤ C

p
p,‖.‖Cp,η

d∑
j=1

‖Xj‖p
Lp+η3n

1
d 4−p

≤ Cp,‖.‖Cp,η sup
k≥2

( k
1
d

k
1
d − 1

)p
n−

p
d

d∑
j=1

‖Xj‖p
Lp+η

≤ Cp,‖.‖Cp,η

(
2

1
d

2
1
d − 1

)p
n−

p
d d

η
p+ηE |X|p+η

�p+η

≤ d
η

p+η Cp,‖.‖Cp,η

(
2

1
d

2
1
d − 1

)p
C̃‖.‖,p+η‖X‖p+ηLp+ηn

− p
d

where C̃‖.‖,r = sup‖x‖=1 |x|r�r , r > 0.
(b) Let C be the smallest hypercube withe edges parallel to the coordinate

axis containing conv(supp(PX)). Up to a translation, which leaves dn,p(X)
invariant, we may assume thatC = [0, L]d where 0 ≤ L ≤ diam‖.‖(supp(PX)).
The conclusion follows is obtained by following the lines of the proof of
claim (a) once Inequality (11.14) is integrated with respect to PX(dξ) with

m = 3n 1
d 4. 12

11.5 Proof of the Sharp Rate Theorem

On the way to proving the sharp rate theorem, we have to establish few additional
propositions.

Proposition 11.4 (Sub-linearity) Let P = ∑m
i=1 siPi where s1, . . . , sm ∈ [0, 1],∑m

i=1 si = 1 and let n1, . . . , nm∈ N such that
∑m
i=1 ni ≤ n. Then,

d
p
n (P ) ≤

m∑
i=1

si d
p
ni (Pi).

Proof For ε > 0 and every i = 1, . . . ,m, choose Γi ⊂ R
d, |Γi | ≤ ni such that

dp(Pi;Γi) ≤ (1 + ε) d
p
ni (Pi).
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Set Γ = ⋃m
i=1 Γi ; from Proposition 11.2, we get

d
p
n (P ) ≤ d

p
n (P ;Γ ) =

m∑
i=1

si

∫
Fp(ξ;Γ )Pi(dξ)

≤
m∑
i=1

si

∫
Fp(ξ;Γi) Pi(dξ) ≤ (1 + ε)

m∑
i=1

si d
p
ni (Pi).

Letting ε → 0 completes the proof. 12
Remark 11.1 Proposition 11.4 does not hold for d̄pn since F̄ p is not decreasing for
the inclusion order on grids. This induces substantial difficulties in the proof of the
sharp rate compared to the regular quantization setting.

Proposition 11.5 (Scaling Property) Let C = a + ρ[0, 1]d (a ∈ R
d , ρ > 0) be

a d-dimensional hypercube, with edges parallel to the coordinate axis and edge-
length ρ > 0. Then, if U (C) denotes the uniform distribution over C, one has

dn,p(U (C)) = ρ · dn,p
(
U

([0, 1]d)).
Proof Keeping in mind that λd([0, ρ]d) = ρd , one derives that

dp(U (C); {a + ρx1, . . . , a + ρxn}) =
∫
[0,ρ]d

min
λ∈Rn

n∑
i=1

λi ‖ξ − ρxi‖p

s.t.
[
ρx1 ... ρxn

1 ... 1

]
λ=

[
ξ
1

]
, λ≥0

λd(dξ)

λd
([0, ρ]d)

=
∫
[0,1]d

min
λ∈Rn

n∑
i=1

λi ‖ρu− ρxi‖p

s.t.
[
ρx1 ... ρxn

1 ... 1

]
λ=

[
ρu
1

]
, λ≥0

λd(du)

= ρp
∫
[0,1]d

min
λ∈Rn

n∑
i=1

λi ‖u− xi‖p

s.t.
[
x1 ... xn
1 ... 1

]
λ=

[
u
1

]
, λ≥0

λd(du)

= ρp · dp(U ([0, 1]d); {x1, . . . , xn}
)
. 12

Next lemma shows that it is also true for d̄n,p that the convex hull spanned by
a sequence of quantizers such that d̄n,p(PX, Γn) → 0 asymptotically covers the
interior of supp(P

X
). (This fact is trivial for dn,p if X has a compact support.)

Lemma 11.1 Let K = conv{a1, . . . , ak} ⊂
˚︷ ︸︸ ︷

supp(P
X
) be a set with K̊ �= ∅ and let

Γn be a sequence of quantizers such that d̄n,p(PX, Γn) → 0 as n → +∞. Then,
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there exists n0 ∈ N such that, for all n ≥ n0,

K ⊂ conv(Γn).

Proof Set a0 = 1
k

∑k
i=1 ai and define for every ρ > 0

K̃(ρ) = conv{̃a1(ρ), . . . , ãk(ρ)} with ãi(ρ) = a0 + (1 + ρ)(ai − a0).

Since K ⊂ ˚︷ ︸︸ ︷
supp(PX), there exists ρ0 > 0 such that K̃ = K̃(ρ0) ⊂ supp(PX).

From now on, we denote ãi(ρ0) by ãi . Since moreover ãi ∈ supp(P), there exists a
sequence (ani )n≥1 having values in conv(Γn) and converging to ãi . Otherwise, there
would exist ε0 > 0 and a subsequence (n′) such that B(̃ai , ε0) ⊂ (conv(Γn′))c. Then

d̄
p

n′(X, Γn′) ≥ E
[
dist(X, Γn′ )

p1{X∈B(̃ai,ε0/2)}
] ≥ (ε0

2

)p
P
(
X∈ B(̃ai , ε0/2)

)
> 0

since ãi ∈ supp(PX). This contradicts the assumption on the sequence (Γn)n≥1.
As K has a nonempty interior, aff. dim{a1, . . . , ak} = aff. dim{̃a1, . . . , ãk} = d .

Consequently, we may choose a subset I∗ ⊂ {1, . . . , k}, |I∗| = d + 1, so that
{̃aj : j ∈ I∗} is an affinely independent system in R

d and, furthermore, there exists
n0 ∈ N such that the same holds for {anj : j ∈ I∗}, n ≥ n0. Hence, we may write
for n ≥ n0

ãi =
∑
j∈I ∗

μ
n,i
j a

n
j ,

∑
j∈I ∗

μ
n,i
j = 1, i = 1, . . . , k. (11.20)

This linear system has the unique asymptotic solution μ
∞,i
j = δij (Kronecker

symbol), which implies μn,ij → δij when n→ +∞.

Now let ξ ∈ K ⊂ K̃ and write

ξ =
k∑
i=1

λiai for some λi ≥ 0,
k∑
i=1

λi = 1.

One easily checks that it also holds

ξ =
k∑
i=1

λ̃i ãi with λ̃i = ρ0

k(1 + ρ0)
+ λi

1 + ρ0
≥ ρ0

k(1 + ρ0)
> 0 and

k∑
i=1

λ̃i = 1.

Furthermore, we may choose n1 ≥ n0 such that, for every n ≥ n1,

μ
n,i
i >

1

2
and ∀j �= i, |μn,ij | ≤ ρ0

4k(1 + ρ0)
.
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Using (11.20), this leads to

ξ =
∑
j∈I ∗

( k∑
i=1

λ̃iμ
n,i
j

)
anj

and

k∑
i=1

λ̃iμ
n,i
j > λ̃jμ

n,j

j −
k∑

i=1,i �=j
λ̃i |μn,ij | > ρ0

2k(1 + ρ0)
− ρ0

4k(1 + ρ0)
= ρ0

4k(1 + ρ0)
> 0

for every j ∈ I∗. Finally, one completes the proof by noting that

∑
j∈I ∗

k∑
i=1

λ̃iμ
n,i
j =

k∑
i=1

λ̃i
∑
j∈I ∗

μ
n,i
j = 1. 12

As already mentioned, Proposition 11.4 does not hold anymore for d̄n,p. As a
consequence, we have to establish a “firewall Lemma”, which will be a useful tool
to overcome this problem in the non-compact setting.

Lemma 11.2 (Firewall) Let K ⊂ R
d be compact and convex with K̊ �= ∅.

Moreover, let ε > 0 be small enough so that

Kε =
{
x ∈ K : dist�∞(x,Kc) ≥ ε

} �= ∅.

Let Γα,ε be a subset of the lattice αZd with edge-length α > 0 satisfying

K \Kε ⊂ conv(Γα,ε) and ∀ x∈ K \Kε, dist‖·‖(x, Γα,ε) ≤ C‖·‖α

where C‖·‖ > 0 is a real constant only depending on the norm ‖·‖.
Then, for every grid Γ ⊂ R

d containingK and every η ∈ (0, 1), it holds

∀ ξ ∈ Kε, Fp(ξ;Γ ) ≥ 1

(1 + η)p+d+1F
p(ξ; (Γ ∩ K̊) ∪ Γα,ε)

−(1 + η)−d−1η−p(d + 1) Cp‖·‖α
p.

Remark 11.2 The lattice Γα,ε and its size will be carefully defined and estimated for
the specified compact sets K when calling upon the firewall lemma in what follows.

Proof Let Γ = {x1, . . . , xn} and let ξ ∈ Kε. Then we may choose I = I (ξ) ⊂
{1, . . . , n}, |I | ≤ d + 1 such that

Fp(ξ;Γ ) =
∑
i∈I

λj‖ξ − xi‖p,
∑
i∈I

λixi = ξ, λi ≥ 0,
∑
i∈I

λi = 1.
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If for every xi ∈ Γ \ K̊ λi = 0, then Fp(ξ;Γ ) = Fp(ξ;Γ ∩ K̊) and our claim is
trivial. Therefore, let J (ξ) = {

i : xi ∈ Γ \ K̊, λi > 0
} ⊂ I (ξ) and choose one

fixed i0 ∈ J (ξ). Let θ = θ(i0)∈ (0, 1) such that

x̃i0 = ξ + θ(xi0 − ξ) ∈ K \Kε and
θp∧1

θ + λi0(1 − θ)
≤ 1 + η

(when p ≥ 1, the right constraint is empty). Setting

λ̃0
i =

λiθ

θ + λi0(1 − θ)
, i ∈ I \ {i0}, λ̃0

i0
= λi0

θ + λi0(1 − θ)

we obtain

λ̃0
i0
x̃i0 +

∑
i∈I\{i0}

λ̃0
i xi = ξ, λ̃0

i ≥ 0,
∑
i∈I

λ̃0
i = 1.

Consequently

λ̃0
i0
‖ξ − x̃i0‖p +

∑
j∈I\{i0}

λ̃0
i ‖ξ − xi‖p = λi0θ

p

θ + λi0(1 − θ)
‖ξ − xi0‖p

+
∑

i∈I\{i0}

λiθ

θ + λi0(1 − θ)
‖ξ − xi‖p

≤ θp∧1

θ + λi0(1 − θ)

∑
i∈I

λi‖ξ − xi‖p

≤ (1 + η)
∑
i∈I

λi‖ξ − xi‖p.

Repeating the procedure for every i∈ J (ξ) finally yields by induction the existence
of x̃i ∈ K \Kε and λ̃i , i ∈ I , such that

∑
i∈I :xi /∈K̊

λ̃i x̃i +
∑

i∈I :xi∈K̊
λ̃ixi = ξ, λ̃i ≥ 0,

∑
i∈I

λ̃i = 1

and

(1 + η)|J (ξ)|Fp(ξ;Γ ) ≥
∑

i∈I :xi /∈K̊
λ̃i‖ξ − x̃i‖p +

∑
i∈I :xi∈K̊

λ̃i‖ξ − xi‖p. (11.21)

Let us denote Γα,ε = {a1, . . . , am} and let i0 ∈ J (ξ) be such that x̃i0 is a
“modified” xi0 (originally lying in Γ \ K̊). By construction x̃i0 ∈ K \ Kε ⊂
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conv(Γα,ε) and there is Ji0 ⊂ {1, . . . ,m} such that

Fp(̃xi0;Γα,ε) =
∑
j∈Ji0

μ
i0
j ‖x̃i0 − aj‖p,

∑
j∈Ji0

μ
i0
j xj = x̃i0 , μ

i0
j ≥ 0,

∑
j∈Ji0

μ
i0
j = 1

and

∀ j ∈ Ji0 , ‖x̃i0 − aj‖ ≤ C‖·‖ α.

Using the elementary inequality

∀p > 0, ∀η > 0, ∀ u, v ≥ 0, (u+ v)p ≤ (1 + η)pup +
(

1 + 1

η

)p
vp,

we derive that for every j ∈ Ji0

‖ξ −aj‖p ≤ (‖ξ − x̃i0‖+‖x̃i0 −aj‖
)p ≤ (1+η)p‖ξ − x̃i0‖p+

(
1+ 1

η

)p
C
p
‖·‖ α

p.

As a consequence,

∑
j∈Ji0

μ
i0
j ‖ξ − aj‖p ≤ (1 + η)p

(
‖ξ − x̃i0‖p + η−p Cp‖·‖ α

p
)

which in turn implies

‖ξ − x̃i0‖p ≥ 1

(1 + η)p

∑
j∈Ji0

μ
i0
j ‖ξ − aj‖p − η−p Cp‖·‖ α

p.

Plugging this inequality in (11.21) yields and using that |J (ξ)| ≤ d + 1, we finally
get

(1 + η)|J (ξ)|Fp(ξ ;Γ ) ≥
∑

i∈I :xi∈K̊
λ̃i‖ξ − xi‖p + 1

(1 + η)p

∑
i∈I :xi /∈K̊

λ̃i
∑
j∈Ji

μij‖ξ − aj‖p

− |J (ξ)|η−pd Cp‖·‖ αp

≥ 1

(1 + η)p
Fp

(
ξ ; (Γ ∩ K̊}) ∪ Γα,ε

)− η−p (d + 1) Cp‖·‖ α
p.

12
Now we can establish the sharp rate for the uniform distribution U ([0, 1]d).

Proposition 11.6 (Uniform Distribution) For every p ≥ 1,

Q
dq
‖·‖,p,d := inf

n≥1
n1/d dn,p

(
U

([0, 1]d)) = lim
n
n1/d dn,p

(
U

([0, 1]d)).
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Proof Let n,m ∈ N, m < n and set k = k(n,m) =
⌊(

n
m

)1/d
⌋
≥ 1. Covering the

unit hypercube [0, 1]d by kd translates C1, . . . , Ckd of the hypercube
[
0, 1

k

]d , we
arrive at U

([0, 1]d) = k−d
∑

1≤i≤kd U (Ci). Hence, Proposition 11.4 yields

d
p
n,p

(
U

([0, 1]d)) ≤ k−d
kd∑
i=1

d
p
m(U (Ci)).

Furthermore, Proposition 11.5 implies

dm,p(U (Ci)) = k−1 dm,p
(
U

([0, 1]d)),
so that we may conclude for all n, m∈ N, m < n,

dn,p
(
U

([0, 1]d)) ≤ k−1 dm,p
(
U

([0, 1]d)).
Thus, we get

n1/d dn,p
(
U

([0, 1]d)) ≤ k−1 n1/d dm,p
(
U

([0, 1]d))

≤ k + 1

k
m1/d dm,p

(
U

([0, 1]d)),
which yields, for every fixed integer m ≥ 1,

lim sup
n

n1/d dn,p
(
U

([0, 1]d)) ≤ m1/d dm,p
(
U

([0, 1]d))

since lim
n
k(n,m) = +∞. This finally implies

lim
n
n1/d dn,p

(
U

([0, 1]d)) = inf
m≥1

m1/d dm,p
(
U

([0, 1]d)). 12

Proposition 11.7 For every p ≥ 1,

Q
dq
‖·‖,p,d = lim

n
n1/d dn,p

(
U

([0, 1]d)) = lim
n
n1/d d̄n,p

(
U

([0, 1]d)).
Proof Since, for every compactly supported distribution P , we have d̄n,p(P ) ≤
dn,p(P ), it remains to show

Q
dq
‖·‖,p,d ≤ lim inf

n
n1/d d̄n,p

(
U

([0, 1]d)).
For ε ∈ (0, 1/2), let Cε = (1/2, . . . , 1/2) + 1−ε

2 [−1, 1]d be the centered
hypercube in [0, 1]d with edge-length 1−ε and midpoint (1/2, . . . , 1/2). Moreover,
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let (Γn)n≥1 be a sequence of quantizers such that, for every n ≥ 1,

d̄p
(
U

([0, 1]d);Γn) ≤ (1 + ε)d̄n,p
(
U

([0, 1]d)).
Owing to Lemma 11.1, as Cε ⊂ (0, 1)d , there is an integer nε ∈ N such that

∀n ≥ nε, Cε ⊂ conv(Γn).

We therefore get for any n ≥ nε

(1 + ε)d d̄
p
n

(
U

([0, 1]d)) ≥ d̄p
(
U

([0, 1]d);Γn)

≥
∫
Cε

F̄ p(ξ;Γn)pdξ

=
∫
Cε

Fp(ξ;Γn)pdξ = λd(Cε)d
p
(
U (Cε), Γn

)

≥ (1 − ε)dd
p
n

(
U (Cε)

) = (1 − ε)d+pdpn
(
U

([0, 1]d))

where we used the scaling property (Proposition 11.5) in the last line.
Hence, we obtain that, for every 0 < ε < 1/2,

lim inf
n

n1/d d̄n,p
(
U

([0, 1]d)) ≥ (1 − ε)1+d/p

(1 + ε)d/p
Q

dq
‖·‖,p,d

so that letting ε → 0 completes the proof. 12
Proposition 11.8 Let P = ∑m

i=1 si U (Ci),
∑m

i=1 si = 1, si > 0, i = 1, . . . ,m,
where Ci = ai + [0, l]d , i = 1, . . . ,m, are pairwise disjoint hypercubes in R

d with
common edge-length l. Set

h := dP

dλd
=

m∑
i=1

si l
−d1Ci .

Then

lim
n
n1/d dn,p(P ) = lim

n
n1/d d̄n,p(P ) = Q

dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p).

Proof Since dn,p(P ) ≥ d̄n,p, it suffices to show that

lim sup
n

n1/d dn,p(P ) ≤ Q
dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p) and lim inf
n

n1/d d̄n,p(P ) ≥ Q
dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p).
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For n ∈ N, set

ti = s
d/(d+p)
i∑m

j=1 s
d/(d+p)
j

and ni = 3tin4, 1 ≤ i ≤ m.

Then, by Propositions 11.4 and 11.5, we get for every n ≥ max1≤i≤m(1/ti)

d
p
n (P ) ≤

m∑
i=1

si d
p
n

(
U (Ci)

) = lp
m∑
i=1

si d
p
ni

(
U

([0, 1]d)).

Proposition 11.6 then yields

n
p
d d

p
ni

(
U

([0, 1]d)) =
(
n

ni

) p
d

n
p
d

i d
p
ni

(
U

([0, 1]d)) −→ t
− p
d

i Q
dq
‖·‖,p,d as n→ +∞.

Noting that ‖h‖d/(d+p) = lp
(∑

s
d/(d+p)
i

)(d+p)/d
, we get

lim sup
n

n
p
d d

p
n,p(P ) ≤ Q

dq
‖·‖,p,d l

p

m∑
i=1

si t
− p
d

i = Q
dq
‖·‖,p,d · ‖h‖d/(d+p).

Now, let us prove the reverse inequality. Let ε ∈ (0, l/2) and let Ci,ε denote the
closed hypercube with the same center as Ci but with edge-length l − ε. For α ∈
(0, ε/2), we set α̃ = l

?l/α@ and we define the lattice

Γα,ε,i =
(
ai + α̃Zd

) ∩ (
Ci \ Ci,ε

)⋃{
vertices of Ci}.

It is clear that conv(Γα,ε,i) = Ci ⊂ Ci \ Ci,ε since it contains the vertices of
Ci . Moreover, for every ξ ∈ Ci \ Ci,ε , dist�∞(ξ, Γα,ε,i) ≤ α so that there exists a
real constant C‖·‖ > 0 only depending on the norm ‖.‖ such that dist‖.‖(ξ, Γα,ε,i) ≤
C‖·‖α. Consequently, the lattice Γα,ε,i satisfies the assumption of the firewall lemma
(Lemma 11.2).

On the other hand, easy combinatorial arguments show that the number of points
mi of Γα,ε,i falling in Ci satisfies ? l

α̃
@d ≤ mi ≤ (? l

α̃
@ + 1

)d + 2d whereas the

numbermi,ε of points falling in Ci,ε satisfies
(? l−ε

α̃
@ − 1

)d ≤ mi,ε ≤
(? l−ε

α̃
@ + 1

)d
so that

⌈ l
α̃

⌉d − (⌈ l − ε

α̃

⌉
+ 1

)d ≤ |Γα,ε,i| ≤
(⌈ l
α̃

⌉
+ 1

)d + 2d −
(⌈ l − ε

α̃

⌉
− 1

)d
.
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We define for every ε ∈ (0, l/2) and every α ∈ (0, ε/2)

gl,ε(α) = αd |Γα,ε,i|.

Since α
α̃
→ 1 and 2α

⌈
ε/2
α̃

⌉
→ ε as α → 0, we conclude from the above inequalities

that

∀ε ∈ (0, l/2), lim
α→0

gl,ε(α) = ld − (l − ε)d . (11.22)

Let η ∈ (0, 1) and let (Γn)n≥1 denote a sequence of n-quantizers such that
d̄p(P ;Γn) ≤ (1 + η)d

p
n (P ). It follows from Theorem 11.3 that d̄p(P ;Γn) → 0

for n → ∞ so that Lemma 11.1 yields the existence of nε ∈ N such that for any
n ≥ nε

⋃
1≤i≤m

Ci,ε ⊂ conv(Γn).

We then derive from Lemma 11.2 (firewall)

d̄p(U (Ci);Γn) = l−d
∫
Ci

F̄ p(ξ;Γn) λd(dξ)

≥ l−d
∫
Ci,ε

F̄ p(ξ;Γn) λd(dξ) = l−d
∫
Ci,ε

F p(ξ;Γn) λd(dξ)

≥ l−d (l − ε)d

(1 + η)p+d+1 d
p
(
U (Ci,ε); (Γn ∩ C̊i ) ∪ Γα,ε,i

)

− l−d (l − ε)d
(1 + η)−d−1

ηp
(d + 1)C‖·‖ · αp.

At this stage, we set for every ρ > 0

αn = αn(ρ) =
( m
ρn

)1/d
(11.23)

and denote

ni = |(Γn ∩ C̊i ) ∪ Γαn,ε,i |.
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Proposition 11.5 yields dni,p(U (Ci,ε)) = (l − ε)dni,p
(
U

([0, 1]d)), so that we get

n
p
d d

p
n (P ) ≥ 1

1 + η

m∑
i=1

si n
p
d d̄p(U (Ci);Γn)

≥ l−d (l − ε)d

(1 + η)p+d+2

m∑
i=1

si n
p
d dp

(
U (Ci,ε); (Γn ∩ C̊i ) ∪ Γαn,ε,i

)

− l−d (l − ε)d
(1 + η)−d−2

ηp

m∑
i=1

si (d + 1) C‖·‖ · αp · n
p
d

≥ l−d (l − ε)d+p

(1 + η)p+d+2

m∑
i=1

si n
p
d d

p
ni

(
U

([0, 1]d))

− l−d (l − ε)d
(1 + η)−d−2

ηp
(d + 1) C‖·‖

(m
ρ

) p
d
.

(11.24)

Since

ni

n
≤ |Γn ∩ C̊i |

n
+ gl,ε(αn)

nαdn
= |Γn ∩ C̊i |

n
+ ρ

m
gl,ε(αn),

we conclude from (11.22) and (11.23) that

lim sup
n

m∑
i=1

ni

n
≤ 1 + ρ

(
ld − (l − ε)d

)
.

We may choose a subsequence (still denoted by (n)), such that

n1/d d̄n,p(P )→ lim inf
n

n1/d dn,p(P) and
ni

n
→ vi ∈

[
0, 1 + ρ(ld − (l − ε)d)

]
.

As a matter of fact, vi > 0, for every i = 1, . . .m: otherwise Proposition 11.6
would yield

n
p
d d̄

p
n,p(P ) ≥ l−d (l − ε)d+p

(1 + η)p+d+2

m∑
i=1

si

(ni
n

)− p
d
n
p
d

i d
p
ni

(
U

([0, 1]d))

− l−d (l − ε)d
(1 + η)p−d−2

ηp
(d + 1)C‖·‖ ·

(m
ρ

) p
d

→ +∞ as n→ +∞
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which contradicts (a). Consequently, we may normalize the vi ’s by setting

ṽi = vi

1 + ρ(ld − (l − ε)d)
, i = 1, . . . ,m,

so that
∑m
i=1 ṽi ≤ 1. We derive from Proposition 11.6 that

lim inf
n

m∑
i=1

si n
p
d d

p
ni

(
U

([0, 1]d))

≥
m∑
i=1

si v
− p
d

i n
p
d

i d
p
ni

(
U

([0, 1]d))

= Q
dq
‖·‖,p,d

(
1 + ρ

(
ld − (l − ε)d

))− p
d

m∑
i=1

si ṽ
− p
d

i

≥ Q
dq
‖·‖,p,d

(
1 + ρ

(
ld − (l − ε)d

))− p
d inf∑

i yi≤1,yi≥0

m∑
i=1

siy
− p
d

i

= Q
dq
‖·‖,p,d

(
1 + ρ

(
ld − (l − ε)d

))− p
d

( m∑
i=1

s
d/(d+p)
i

)(d+p)/d
.

Hence, we get from (11.24)

lim inf
n

n
p
d d̄

p
n,p(P )

≥ l−d (l − ε)d+p

(1 + η)p+d+2
(
1 + ρ(ld − (l − ε)d)

) p
d

Q
dq
‖·‖,p,d

( m∑
i=1

s
d/(d+p)
i

)(d+p)/d

− l−d (l − ε)d
(1 + η)−d−2

ηp
(d + 1) C‖·‖ ·

(m
ρ

) p
d
.

Letting ε → 0 implies

lim inf
n

n
p
d d̄

p
n,p(P ) ≥ lp

(1 + η)p+d+2 Q
dq
‖·‖,p,d

( m∑
i=1

s
d/(d+p)
i

)(d+p)/d

− (1 + η)−d−2

ηp
(d + 1) C‖·‖

(m
ρ

) p
d

= 1

(1 + η)p+d+2
Q

dq
‖·‖,p,d · ‖h‖d/(d+p)

− (1 + η)−d−2

ηp
d C‖·‖

(m
ρ

) p
d
.
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Letting successively ρ go to +∞ and η go to 0 completes the proof. 12
Proposition 11.9 Assume that P is absolutely continuous w.r.t. λd with compact
support and density h. Then

lim
n
n
p
d dn,p(P ) = lim inf

n
n
p
d d̄n,p(P ) = Q

dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p).

Proof Since dn,p(P ) ≥ d̄n,p(P ), it suffices to show that

lim sup
n

n
p
d dn,p(P ) ≤ Q

dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p) and lim inf
n

n
p
d d̄n,p(P ) ≥ Q

dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p).

Preliminary Step Let C = [−l/2, l/2]d be a closed hypercube centered at the
origin, parallel to the coordinate axis with edge-length l, such that supp(P ) ⊂ C.
For k ∈ N consider the tessellation of C into kd closed hypercubes with common
edge-length l/k. To be precise, for every i = (i1, . . . , id)∈ Z

d , we set

Ci =
d∏
r=1

[
− l

2
+ ir l

k
,− l

2
+ (ir + 1)l

k

]
.

Then, set

h = dP

dλd
and Pk =

∑
i∈Zd

0≤ir<k

P (Ci)U (Ci), hk = dPk

dλd
=

∑
i∈Zd

0≤ir<k

P (Ci)

λd(Ci)
1Ci , k ≥ 1.

(11.25)

By differentiation of measures, we obtain hk → h, λd -a.s. as k → +∞. Which
in turn implies, owing to Scheffé’s Lemma,

lim
k→+∞‖hk − h‖1 = 0.

Furthermore,

lim
k→+∞‖hk‖d/(d+p) = ‖h‖d/(d+p)

since ‖hk − h‖d/(d+p) ≤
(
λd(C)

) p
d ‖hk − h‖1 by Jensen’s Inequality applied to the

probability measure λd |C
λd (C)

. Moreover, by Proposition 11.8 we have

lim
n
n1/d dn,p(Pk) = Q

dq
‖·‖,p,d ‖hk‖

1
p

d/(d+p). (11.26)
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Likewise, we define an inner approximation of P : first, define

Ck =
⋃

Ci⊂ supp(P )

Ci

the union of the hypercubesCi lying in the interior of supp(P ). Then set

P̊k =
∑

Ci⊂ supp(P )

P (Ci)U (Ci) and h̊k = dP̊k

dλd
= hk1Ck .

We have as above that

h̊k → h, λd -a.s. as k → +∞.

Consequently, we also have

lim
k→∞‖̊hk − h‖1 = 0 and lim

k→∞‖̊hk‖d/(d+p) = ‖h‖d/(d+p).

We get likewise by Proposition 11.8 that, for every k ∈ N,

lim
n
n1/d dn,p(P̊k) = Q

dq
‖·‖,p,d · ‖̊hk‖

1
p

d/(d+p). (11.27)

(a) Let 0 < ε < 1 and n ≥ 2d/ε. If we divide each edge of the hypercubeC into

m = ⌊
(εn)1/d

⌋− 1

intervals of equal length l/m, the interval endpoints definem+1 grid points on each
edge. Denoting by Γ1 = Γ1(ε, n) the product quantizer made up by this procedure,
we clearly have

|Γ1| = (m+ 1)d = ⌊
(εn)1/d

⌋d =: n1.

For this product quantizer, it follows from Proposition 11.3 that, for all ξ ∈ C,

Fp(ξ;Γ1) ≤ C‖·‖
d∑
i=1

( l

2m

)p ≤ C‖·‖,p,d
lp

(εn)
p
d

.
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For n2 = 3(1 − ε)n4, let Γ2 be an n2-quantizer such that dp(Pk;Γ2) ≤
(1 + ε)d

p
n2(Pk). We clearly have |Γ1 ∪ Γ2| ≤ n and

n
p
d

∣∣∣∣
∫
Fp(ξ;Γ1 ∪ Γ2)dPk(ξ)−

∫
Fp(ξ;Γ1 ∪ Γ2)dP (ξ)

∣∣∣∣
≤ n

p
d

∫
Fp(ξ;Γ1 ∪ Γ2)|hk(ξ)− h(ξ)|dλd(ξ)

≤ C‖·‖,p,d
lp

ε
p
d

‖hk − h‖1 = c1,ε‖hk − h‖1

for k ∈ N and n ≥ max
{

2d
ε
, 1

1−ε
}

. This implies

n
p
d d

p
n (P ) ≤ n

p
d

∫
Fp(ξ;Γ1 ∪ Γ2)dP (ξ)

≤ n
p
d

∫
Fp(ξ;Γ1 ∪ Γ2)dPk(ξ)+ c1,ε‖hk − h‖1

≤ n
p
d

∫
Fp(ξ;Γ2)dPk(ξ)+ c1,ε‖hk − h‖1

≤ (1 + ε) n
p
d d

p
n2(Pk)+ c1,ε‖hk − h‖1

so that we can conclude from (11.26) that

lim sup
n

n
p
d d

p
n (P ) ≤ 1 + ε

(1 − ε)
p
d

(
Q

dq
‖·‖,p,d

)p‖hk‖d/(d+p) + c1,ε‖hk − h‖1 .

Letting first k go to infinity and then letting ε go to zero yields

lim sup
n

n1/dd
p
n (P ) ≤ Q

dq
‖·‖,p,d‖hk‖

1
p

d/(d+p).

(b) Assume now that Γ3 is an n2-quantizer such that d̄p(P ;Γ3) ≤ (1 + ε) d̄
p
n2(P ).

Again it holds |Γ1 ∪ Γ3| ≤ n and we derive as above

n
p
d

∣∣∣∣
∫
Fp(ξ;Γ1 ∪ Γ3)dP̊k(ξ)−

∫
Fp(ξ;Γ1 ∪ Γ3)dP (ξ)

∣∣∣∣ ≤ c2,ε‖̊hk − h‖1 .

(11.28)
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Moreover, Lemma 11.1 yields for every k ∈ N the existence of nk,ε ∈ N such
that, for all n ≥ nk,ε ,

(1 + ε) d̄
p
n2(P ) ≥ d̄p(P ;Γ3) ≥

∫
conv(Γ3)

Fp(ξ;Γ3)dP (ξ)

≥
∫
Ck
Fp(ξ;Γ3)dP (ξ) ≥

∫
Ck
Fp(ξ;Γ1 ∪ Γ3)dP (ξ).

Thus, we derive from (11.28) that, for every n ≥ max
(
nk,ε,

2d
ε
, 1

1−ε
)

,

(1 + ε) n
p
d d̄

p
n2(P ) ≥ n

p
d

∫
Ck
Fp(ξ;Γ1 ∪ Γ3)dP (ξ)

≥ n
p
d

∫
Ck
Fp(ξ;Γ1 ∪ Γ3)dP̊k(ξ)− c2,ε‖̊hk − h‖1

≥ n
p
d d

p
n (P̊k)− c2,ε‖̊hk − h‖1 ,

which yields, once combined with (11.27),

1 + ε

(1 − ε)
p
d

lim inf
n

n
p
d

2 d̄
p
n2,p(P ) ≥ Q

dq
‖·‖,p,d ‖̊hk‖d/(d+p) − c2,ε‖̊hk − h‖1 .

Letting first k go to +∞ and then letting ε go to 0, we get

lim inf
n

n
1
d d̄n,p(P ) ≥ Q

dq
‖·‖,p,d‖h‖

1
p

d/(d+p). 12

Proposition 11.10 (Singular Distribution) Assume that P is singular with re-
spect to λd and has compact support. Then

lim sup
n

n
p
d d̄n,p(P ) = 0.

Proof Let A be a Borel set such that P(A) = 1 and λd(A) = 0. Let ε > 0; by
the outside regularity of λd , there exists an open set O = O(ε) ⊃ A such that
λd(O) ≤ ε (and P(O) = 1). Let C be an open hypercube with edges parallel to the
coordinate axis, edge-length � and containing the closure of A.
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Let Ck = ∏d
i=1[ck,i, ck,i + �i), k ∈ N, be a countable partition of O consisting

of nonempty half-open hypercubes, still with edges parallel to the coordinate axis
(see, e.g. Lemma 1.4.2 in [4]).

Let m = m(ε)∈ N such that
∑

k≥m+1

P(Ck) ≤ ε
p
d �−p.

Let n ∈ N, n ≥ 2d+1 and let n1, . . . , nd ≥ 2 be integers such that the product
nd1 + · · · + ndm ≤ n/2. One designs a grid Γ as follows.

For every k∈ {1, . . . ,m}, we consider the lattice of Ck of size ndi defined by

d∏
i=1

{
ck,i + ri

nk − 1
�i, ri = 0, . . . , nk − 1, i = 1, . . . , d

}
.

Then, one defines likewise the lattice of C of size ndm+1 ≤ n/2

d∏
i=1

{
ck,i + ri

nm+1 − 1
�i, ri = 0, . . . , nm+1 − 1, i = 1, . . . , d

}
.

The grid Γ is made up with all the points of the m+ 1 above finite lattices.
Now let ξ ∈ A. It is clear from the definition of the function Fp that

Fp(ξ;Γ ) ≤
{
C‖.‖

(
�k/nk

)p if ξ ∈ ⋃m
k=1 Ck

C‖.‖
(
�/nm+1

)p if ξ ∈ C \⋃m
k=1 Ck

where C‖.‖ > 0 is a real constant only depending on the norm. As a consequence

d
p
n (P ) =

m∑
k=1

∫
Ck

Fp(ξ;Γ )dP(ξ) +
∫
C\⋃m

k=1 Ck

Fp(ξ;Γ )dP(ξ)

≤ C‖.‖
( m∑
k=1

(�k/nk)
pP (Ck)+ (�/nm+1)

pP
(
C \

m⋃
k=1

Ck

))
.

Set for every k ∈ {1, . . . ,m}, nk =
⌊

�k(n/2)
1
d

(
∑d

k′=1 �
d
k′)

1
d

⌋
and nm+1 = 3(n/2) 1

d 4.

Note that

d∑
k′=1

�dk′ =
m∑
k=1

λd(Ck) ≤ λd(O) ≤ ε.
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Elementary computations show that, for large enough n, all the integers nk are
greater than 1 and that

m∑
k=1

(�k/nk)
pP (Ck)+ (�/nm+1)

pP
(
C \

m⋃
k=1

Ck

)
≤ (

d∑
k′=1

�dk′)
p
d (n/2)−

p
d P

( ∪1≤k≤m Ck
)

+(n/2)− p
d �pP

(
C \

m⋃
k=1

Ck

)

so that

lim sup
n

n
p
d d

p
n (P ) ≤ C‖.‖(ε/2)

p
d

which in turn implies, by letting ε go to 0, that lim sup
n

n
p
d d

p
n (P ) = 0. 12

Proof of Theorem 11.2 Claim (a) follows directly from Propositions 11.4, 11.9
and 11.10: assume P = ρPa + (1 − ρ)Ps where Pa = h

ρ
λd and Ps denote

the absolutely continuous and singular parts of P respectively. The following
inequalities hold true

ρd̄n,p(Pa) ≤ d̄n,p(P ) ≤ ρd̄n1,p(Pa)+ (1 − ρ)d̄n2,p(Ps)

for every triplet of integers (n1, n2, n) with n1 + n2 ≤ n. Set n1 = n1(n) =
3(1 − εn)4, n2 = n2(n) = 3εn4. Then we derive that

ρQ
dq
‖·‖,p,d ·

∥∥∥h
ρ

∥∥∥
1
p

d/(d+p) lim inf
n

n
p
d d̄n,p(Pa) ≤ lim inf

n
n
p
d d̄n,p(P )

≤ lim sup
n

n
p
d d̄n,p(P )

≤ ρ(1 − ε)−
p
d Q

dq
‖·‖,p,d ·

∥∥∥h
ρ

∥∥∥
1
p

d/(d+p).

Letting ε go to 0 completes the proof.

Furthermore, part (c) was derived in [12, Sect. 5.1]. Hence, it remains to prove
Claim (b).

Proof of Claim (b) Step 1. (Lower Bound) If X is compactly supported, the asser-
tion follows from Proposition 11.9. Otherwise, set for every R∈ (0,∞),

C
R
= [−R,R]d and P( · |Ck) = h1Ck

P (Ck)
· λd, k ∈ N.
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Proposition 11.9 yields again

lim
n
n

1
d d̄n,p(P (·|Ck)) = Q

dq
‖·‖,p,d · ‖h1Ck/P (Ck)‖

1
p

d/(d+p), (11.29)

so that d̄pn,p(P ) ≥ P(·|Ck)d̄pn,p(P (·|Ck)) implies for all k ∈ N

lim inf
n

n
1
d d̄n,p(P ) ≥ Q

dq
‖·‖,p,d · ‖h1Ck‖

1
p

d/(d+p).

Sending k to infinity, we get at

lim inf
n

n
1
d d̄n,p(P ) ≥ Q

dq
‖·‖,p,d · ‖h‖

1
p

d/(d+p).

Step 2 (Upper Bound, supp(P ) = R
d ). Let ρ∈ (0, 1). SetK = Ck+ρ andKρ = Ck .

Let Γk,α,ρ be the lattice grid associated to K \ Kρ with edge α > 0 as defined in
the proof of Proposition 11.8. It is straightforward that there exists a real constant
C > 0 such that

∀ k ∈ N,∀ ρ ∈ (0, 1),∀α ∈ (0, ρ) : |Γα,ρ | ≤ Cdρkd−1α−d .

Let ε∈ (0, 1). For every n ≥ 1, set αn = α̃0n
− 1
d where α̃0 ∈ (0, 1) is a real constant

and

n0 = |Γk,αn,ρ |, n1 = 3(1 − ε)(n− n0)4, n2 = 3ε(n− n0)4

so that αn ∈ (0.ρ), n0 + n1 + n2 ≤ n and ni ≥ 1 for large enough n.
For every ξ ∈ Kρ = Ck and every grid Γ ⊂ R

d such that conv(Γ ) ⊃ Kρ , we
know by the “firewall” Lemma 11.2 that

Fp
(
ξ; (Γ ∩ K̊) ∪ Γα,ρ

) ≤ (1 + η)pFp(ξ;Γ )+ (1 + η)p(1 + 1/η)pC‖.‖αp.

Let Γ1 = Γ1(n1, k) be an n1 quantizer such that d
p
n1

(
P(.|Ck);Γ1

) ≤
(1 + η)d

p
n1

(
P( · |Ck)

)
. Set Γ ′

1 = (
(Γ1 ∩ C̊k+ρ) ∪ Γk,αn,ρ

)
. One has Γ ′

1 ⊂ Ck+2ρ for
large enough n (so that αn < ρ).

Let moreover Γ2 = Γ2(n2, k) be an n2 quantizer such that d̄pn2

(
P(.|Cck);Γ2

) ≤
(1 + η)d̄

p
n2

(
P(.|Cck)

)
. For n ≥ nρ , we may assume that Ck+2ρ ⊂ conv(Γ2) owing

to Lemma 11.1 since Ck+2ρ = conv(Ck+2ρ \ C
k+ 3

2ρ
) and Ck+2ρ \ C

k+ 3
2ρ

⊂
˚︷ ︸︸ ︷

suppP(.|Cck ). As a consequence Γ ′
1 ⊂ conv(Γ2) so that conv(Γ ′

1 ) ⊂ conv(Γ2) =
conv(Γ ) where Γ = Γ ′

1 ∪ Γ2 and

Ck+ρ ⊂ conv(Γ ) = conv(Γ2).
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Now

d̄
p
n (P ) ≤

∫
Ck

(
Fp(ξ;Γ )1{ξ∈conv(Γ2)} + d(ξ, Γ )p1{ξ /∈conv(Γ2)}︸ ︷︷ ︸

=0

)
dP(ξ)

+
∫
Cck

(
Fp(ξ;Γ )1{ξ∈conv(Γ2)} + d(ξ, Γ )p1{ξ /∈conv(Γ2)}

)
dP(ξ).

Using that, for every ξ ∈ Ck ,

Fp(ξ;Γ ) ≤ Fp(ξ;Γ ′
1 )

≤ (1 + η)p
(
Fp(ξ;Γ1)+ (1 + 1/η)p C‖.‖ αpn

)

implies

d̄
p
n (P ) ≤ P(Ck)(1 + η)p

(
(1 + η) d

p
n1(P (.|Ck))+ (1 + 1/η)p C‖.‖ α̃0 n

− 1
d

)

+P(Cck) (1 + η) d̄
p
n2(P (.|Cck)).

Consequently

n
p
d d̄

p
n (P ) ≤ P (Ck)(1 + η)p

[
(1 + η)

( n
n1

) p
d
n
p
d

1 d
p
n1(P (.|Ck))+ (1 + 1/η)pC‖.‖α̃0

]

+(1 + η)
( n
n2

) p
d
P (Cck) n

p
d

2 d̄
p
n2(P (.|Cck))

which in turn implies, using Proposition 11.9 for the modulus dn,p and the d-
dimensional version of the extended Pierce Lemma (Theorem 11.3) for d̄n,p,

lim sup
n

n
p
d d̄

p
n (P ) ≤ P (Ck)(1 + η)p

[( (1 + η)−p/d

(1 − ε)(1 − Cdρkd−1α̃−d0 )

) p
d
Q
dq
‖.‖‖h1Ck‖

L
d

d+p

+(1 + 1/η)pC‖.‖α̃0

]

+P (Cck) (1 + η) Cp,d ‖X1{X∈Cck }‖
p

Lp+δ

(
1

ε(1 − Cdρkd−1α̃−d0 )

) p
d

.

One concludes by letting successively ρ, α̃0, η go to 0, k → ∞ and finally ε to 0.
Step 3. (Upper Bound: General Case). Let ρ ∈ (0, 1). Set Pρ = ρP + (1 − ρ)P0
where P0 = N (0; Id) (d-dimensional normal distribution). It is clear from the very
definition of d̄n,p that d̄n,p(P ) ≤ 1

ρ
d̄n,p(Pρ) since P ≤ 1

ρ
Pρ . The distribution Pρ

has hρ = ρh + (1 − ρ)h0 as a density (with obvious notations) and one concludes
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by noting that

lim
ρ→0

‖hρ‖d/(d+p) = ‖h‖d/(d+p)

owing to the Lebesgue dominated convergence Theorem. 12
Proof of Proposition 11.1 Using Hölder’s inequality one easily checks that for 0 ≤
r ≤ p and x ∈ R

d it holds

|x|�r ≤ d
1
r− 1

p |x|�p .

Moreover, for m ∈ N set n = md and let Γ ′ be an optimal quantizer for
dm,p

(
U

([0, 1])) (or at least (1 + ε)-optimal for ε > 0). Denoting Γ = ∏d
i=1 Γ

′, it
then follows from Proposition 11.3(b) that

n
p
d d

p
n

(
U

([0, 1]d)) ≤ n
p
d dp

(
U

([0, 1]d);Γ )

= mp
d∑
i=1

dp
(
U

([0, 1]);Γ ′) = d mp d
p
m

(
U

([0, 1])).

Combining both results and keeping in mind that Qdq
‖·‖,p,d holds as an infimum,

we obtain for r ∈ [0, p],
(
Q

dq
|·|�r ,p,d

)p ≤ d
p
r
−1 n

p
d d

p
n,|·|�p

(
U

([0, 1]d)) ≤ d
p
r mp d

p
m

(
U

([0, 1])),
which finally proves the assertion by sendingm→ +∞. 12

11.6 Concluding Remarks and Prospects

This result does not conclude the theoretical investigations about dual quantization
(beyond the existence of optimal dual quantizers in the case p = 1, left open
in [12]): the first one is to elucidate the asymptotic behaviour of the constantQdq

‖.‖,p,d
coming out in Theorem 11.2 as d goes to infinity, most likely by showing that

lim
d→+∞

Q
dq
‖.‖,p,d

Q
vq
‖.‖,p,d

= 1. From a practical point of view, is it possible to evaluate the

mean dual quantization error induced by an optimal Voronoi quantization grid? An
answer to that question would be very valuable for applications since many optimal
quantization grids have been computed for various distributions (see e.g. [8] for
Gaussian distributions).

Many natural questions solved in the optimal Voronoi quantization theory remain
open. Among others “Is there a counterpart to the empirical measure theorem for
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(asymptotically) optimal quantizers?” (see Theorem 7.5, p. 96 in [5])? “How does
dual quantization behave with respect to empirical distribution of i.i.d. n-samples of
a given distribution?”. Is it possible to develop an infinite dimensional “functional”
dual quantization?

Appendix: Numerical Results for d̄n,2(X)2

In order to support the heuristic argumentation on the intrinsic and rate optimal
growth limitation of the truncation error P

(
X /∈ Cn

)
induced by the extended dual

quantization error modulus, we consider the two dimensional random variable

X =
(
WT , sup

0≤t≤T
Wt

)
,

where (Wt )0≤t≤T is a standard Brownian Motion. This example is motivated by
the pricing of path-dependent (exotic) options, where this joint distribution plays an
important role.

Using a variant of the CVLQ algorithm (see [12]) adapted for the dual quan-
tization modulus inside Cn and the nearest neighbor mapping outside, we have
computed a sequence of optimal grids together with the squared dual quantization
error d̄n,2(X)2 and the truncation error P

(
X /∈ Cn

)
.

These results are reported in Table 11.1 below.
Furthermore, we see in Fig. 11.1 a log-log plot for the convergence of the two

rates d̄n,2(X)2 and P
(
X /∈ Cn

)
.

The distortion rate d̄n,2(X)2 shows here an absolute stable convergence rate
(least-squares fit of the exponent yields −1.07192) which is consistent with the

theoretical optimal rate of n− 2
d since d = 2. Moreover, the truncation error P

(
X /∈

Cn
)

outperforms also in this case the heuristically derived rate of n−1 and also
outperforms the squared “inside” quantization error, which means that even for
such an asymmetric and non-spherical distribution of the Brownian motion and its
supremum, a second order rate can be achieved.

This confirms again the motivation of the extended dual quantization error as the
correction penalization constraint on growth of the convex hull in order to preserve
second order stationarity.

Table 11.1 Numerical
results for the dual
quantization X

n d̄n,2(X)
2

P
(
X /∈ Cn

)
50 0.04076 0.01784

100 0.01966 0.00795

150 0.01236 0.00412

200 0.00931 0.00141
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 0.001
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 10  100  1000

distortion
truncation error

Fig. 11.1 Log-log plot of d̄n,2(X)2 (distortion error) and P
(
X /∈ Cn

)
(truncation) with respect to

the grid size n
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Chapter 12
Cramér’s Theorem in Banach Spaces
Revisited

Pierre Petit

Abstract The text summarizes the general results of large deviations for empirical
means of independent and identically distributed variables in a separable Banach
space, without the hypothesis of exponential tightness. The large deviation upper
bound for convex sets is proved in a nonasymptotic form; as a result, the closure of
the domain of the entropy coincides with the closed convex hull of the support of
the common law of the variables. Also a short original proof of the convex duality
between negentropy and pressure is provided: it simply relies on the subadditive
lemma and Fatou’s lemma, and does not resort to the law of large numbers or any
other limit theorem. Eventually a Varadhan-like version of the convex upper bound
is established and embraces both results.

Keywords Cramér’s theory · Large deviations · Subadditivity · Convexity ·
Fenchel-Legendre transformation

MSC 2010 Subject Classifications 60F10

12.1 Introduction

Cramér’s original theorem (see [11]) about the large deviations of empirical means
of independent and identically distributed real-valued random variables has led to
an extensive literature. Several proofs of it were given by Chernoff, Bahadur, Ranga
Rao, Petrov, Hammersley, and Kingman (see [2, 3, 10, 19, 22, 27]). The result
was extended to higher dimensions by Sethuraman, Borovkov, Rogosin, Hoeffding,
Sievers, Bartfai, and many others (see [5, 7, 21, 31–33]). At the same time, Sanov’s
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theorem (see [30]) and its generalizations (see, e.g., [20]), and the study of large
deviations of random processes (see, e.g., [34]) gave rise to Donsker and Varadhan’s
setting of large deviation principles in separable Banach spaces (see [16]). In this
unifying setting, if we assume the exponential tightness of the sequence of empirical
means, or equivalently the boundedness of the pressure in a neighborhood of the
origin, then a full large deviation principle can be proved.

Independently, the physicist Lanford imported the subadditive argument, devel-
oped by him and Ruelle in statistical physics, into Cramér’s theory (see [29] and
[23]). Bahadur and Zabell (see [4]) took advantage of this new method to generalize
Cramér’s theory to locally convex spaces, to simplify some proofs, and to provide a
good synthesis of the previous texts. By the way, they revealed that, if you replace
the exponential tightness by the less restricting convex tightness, you still have
the exponential decay for large deviation events associated with a convex set and
the convex duality between negentropy and pressure. Among many others, the
standard texts of Azencott, de Acosta, Deuschel, Stroock, Dembo, Zeitouni, and
Cerf summarize the successive developments of the theory (see [1, 8, 12–14]).

Here, we prove the general results of Cramér’s theory in separable Banach
spaces without assuming extra hypotheses. Our arguments rely on geometrical and
topological properties of Banach spaces, in the spirit of [4] and [8], and enable
to complete some known partial conclusions. The main one is the large deviation
upper bound for all convex sets, which is even valid in a nonasymptotic form. We
deduce that the closure of the domain of the entropy coincides with the closed
convex hull of the law of the variables. Another goal of the present text is to shed
a new light on the theory, providing efficient and simple proofs. For instance, to
prove the convex duality between the negentropy −s and the pressure p, we prove
the equality p = (−s)∗ using the convex tightness of the probability measures
on a Banach space and Fatou’s lemma (see [15] for a similar proof when the full
large deviation principle is assumed), whereas usual proofs show the dual equality
s = −p∗ by means of convex regularity and Cramér’s theorem in R, which in turn
relies on an approximation by simpler variables (discrete in [10], bounded in [13])
and a limit theorem (Stirling’s formula in [10], the law of large numbers in [13]).
By the way, we intensively exploit the nice properties of convex sets to simplify
proofs and establish the equivalence between convex regularity and convex tightness
(which clarifies the appendix of [4]). It appears that our methods can be generalized
to locally convex spaces, but technical points may have hidden the heart of our
new proofs. We also show how Varadhan-like lemmas provide unifying results and,
eventually, we prove a Varadhan-like lemma for concave functions which embraces
both the nonasymptotic upper bound for convex sets and the equality p = (−s)∗.

After setting the stage and stating the results (Sect. 12.2), we first give a short
proof of the weak large deviation principle (Sect. 12.3). Then we prove the large
deviation upper bound for convex sets and deduce the clear identification of the
closure of the domain of the entropy (Sect. 12.4). Section 12.5 is devoted to the
proof of the convex duality between negentropy and pressure. Finally we prove
the general convex upper bound à la Varadhan (Sect. 12.6). Except for the classic
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Fenchel-Moreau theorem (see [25]), proofs of convex analysis are provided;
complementary notions can be found in general texts like [25] and [28].

12.2 Setting and Results

Let X be a separable Banach space, B the Borel σ -algebra over X , and μ a
probability measure on (X ,B). Let (Xn)n�1 be a sequence of independent and
identically distributed random variables with law μ. For all n � 1, let Xn be the
empirical mean (X1 +X2 + · · · +Xn)/n.

Definition 12.1 The entropy of the sequence (Xn)n�1 is the function s : X →
[−∞, 0] defined by

∀x ∈ X s(x) := inf
ε>0

lim inf
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)

where B(x, ε) denotes the open ball of radius ε centered at x in X .

By construction, the entropy s is the greatest function that satisfies the lower bound:

(LB) for all open subsets G, lim inf
n→∞

1

n
logP

(
Xn ∈ G

)
� sup

x∈G
s(x).

One says that the sequence (Xn)n�1 satisfies a large deviation principle if, in
addition, it satisfies the upper bound:

(UB) for all closed subsets F , lim sup
n→∞

1

n
logP

(
Xn ∈ F

)
� sup

x∈F
s(x).

Conditions so that (UB) be satisfied, such as exponential tightness of the sequence
(Xn)n�1, are given in standard texts (see [1, 4, 8, 12–14, 16]). Here, as in [4] and [8],
we are interested in weaker upper bounds that do not require additional hypotheses.
For instance, the following result is well-known (see, e.g., [4, 16]).

Theorem 12.1 The sequence (Xn)n�1 satisfies a weak large deviation principle,
i.e. it satisfies the compact upper bound:

(UBk) for all compact subsets K , lim sup
n→∞

1

n
logP

(
Xn ∈ K

)
� sup

x∈K
s(x).

The upper bound is known also for open convex sets (see [4]), but the proof for
closed convex sets is omitted. Here we prove the better nonasymptotic versions of
them.

Theorem 12.2 The sequence (Xn)n�1 satisfies the nonasymptotic closed convex
upper bound:

(UBcc) for all closed convex subsetsC and n � 1, P
(
Xn ∈ C

)
� exp

(
n sup
x∈C

s(x)
)

;
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and the nonasymptotic open convex upper bound:

(UBoc) for all open convex subsets C and n � 1, P
(
Xn ∈ C

)
� exp

(
n sup
x∈C

s(x)
)

.

In particular, if C is an open convex subset, we get

lim
n→∞

1

n
logP

(
Xn ∈ C

) = sup
n�1

1

n
logP

(
Xn ∈ C

) = sup
x∈C

s(x) .

The proof we give here does not rely on hypothesis (Ĉ) of [14, Sect. 3.1], or
assumption 6.1.2 of [13], but simply on the convex tightness of μ introduced in [4]
and it generalizes more easily.1 Theorem 12.2 appears to be very convenient in the
study of large deviations of means of independent and identically distributed random
variables. For instance, consider the domain of the entropy dom(s) = {s > −∞}.
Denote by co supp(μ) the convex hull of the support of the measure μ.

Theorem 12.3 The closure of the domain of the entropy s is the closed convex hull
of the support of the measure μ, i.e.

dom(s) = co supp(μ) .

The result is only partially proved in [4] and [8]. We give a complete proof. Another
consequence of Theorem 12.2 is the link between entropy and pressure. Let X ∗
denote the topological dual of X and let p : X ∗ → (−∞,+∞] be the pressure2

of the sequence (Xn)n�1 defined by

∀λ ∈ X ∗ p(λ) := lim sup
n→∞

1

n
logE

(
enλ(Xn)

) = logE
(
eλ(X1)

)

which reduces to the log-Laplace transform of μ.

Theorem 12.4 The pressure p and the negentropy −s are convex-conjugate func-
tions, i.e.

∀λ ∈ X ∗ p(λ) = sup
x∈X

(λ(x)+ s(x)) =: (−s)∗(λ) (12.1)

and

∀x ∈ X − s(x) = sup
λ∈X ∗

(λ(x)− p(λ)) =: p∗(x) . (12.2)

1Hypothesis (Ĉ) of [14] and Assumption 6.1.2 (b) of [13] were introduced so as to complete the
proofs of Appendix of [4], but they are not required to prove the first proposition of the appendix.
2Physically speaking, the function p should be interpreted as the opposite of a free energy, which
is proportional to the pressure in the case of simple fluids.
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Equation (12.2) is well-known (see, e.g., [4, 8, 13]) and standard proofs rely on
three ingredients: Chebyshev’s inequality, the open half-space upper bound,3 which
is a particular case of (UBoc), and Cramér’s theorem in R. Equation (12.1) follows
from Eq. (12.2) by proving that p is convex and lower semi-continuous (see [8,
Chapter 12]). Here we give a simple original proof of Eq. (12.1) from which we
deduce Eq. (12.2). Even in X = R, it provides a new proof of Cramér’s theorem
(see [9]). Notice that Eq. (12.1) is similar to Varadhan’s lemma (remember the first
definition of the pressure p). The present proof relies on Varadhan-like versions of
the lower bound and compact upper bound:

Lemma 12.1 The sequence (Xn)n�1 satisfies the lower bound à la Varadhan:

(VLB) for all lower semi-continuous functions f : X → [−∞,+∞),

lim inf
n→∞

1

n
logE

(
enf (Xn)

)
� sup

x∈X
(f (x)+ s(x)) .

Lemma 12.2 The sequence (Xn)n�1 satisfies the compact upper bound à la
Varadhan:

(VUBk) for all upper semi-continuous functions f : X → [−∞,+∞) such that
{f > −∞} is relatively compact,

lim sup
n→∞

1

n
logE

(
enf (Xn)

)
� sup

x∈X
(f (x)+ s(x)) .

Interestingly enough, Lemma 12.2 provides a Varadhan-like version of the convex
upper bounds, which in turn implies Theorems 12.2 and 12.4:

Theorem 12.5 The sequence (Xn)n�1 satisfies the nonasymptotic convex upper
bounds à la Varadhan:

(VUBcc) for all upper semi-continuous concave functions f : X → [−∞,+∞),

lim sup
n→∞

1

n
logE

(
enf (Xn)

) = sup
n�1

1

n
logE

(
enf (Xn)

)
� sup

x∈X
(f (x)+ s(x)) ;

and:
(VUBoc) for all concave functions f : X → [−∞,+∞) such that C = {f >

−∞} is open and f |C is upper semi-continuous,

lim
n→∞

1

n
logE

(
enf (Xn)

) = sup
n�1

1

n
logE

(
enf (Xn)

)
� sup

x∈X
(f (x)+ s(x)) .

3The proof is even simpler using the closed half-space upper bound, which is a particular case of
(UBcc).
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12.3 Proof of Theorem 12.1

The proof of the weak large deviation principle relies on two key arguments:
subadditivity and what may be called “the principle of the largest term” (see [24,
Section 2]). The former is the purpose of Proposition 12.2 and the latter that of
Proposition 12.3. Beforehand, we need two very handy properties of open convex
sets.

Proposition 12.1 Let C be an open convex subset of X containing 0. Then

⋃
t>0

tC = X , (12.3)

i.e. C is an absorbing subset of X , and

⋃
δ∈(0,1)

(1 − δ)C = C . (12.4)

Proof To show (12.3), let x ∈ X . Since the mapping a ∈ R �→ ax ∈ X is
continuous and C is a neighborhood of 0, there is α > 0 such that αx ∈ C. Setting
t = 1/α, we get x ∈ tC. As for (12.4), let x ∈ C. Since the mapping a ∈ R �→
ax ∈ X is continuous and C is a neighborhood of x, there is α > 0 such that
(1 + α)x ∈ C. Defining δ ∈ (0, 1) by 1 − δ = 1/(1 + α), we get x ∈ (1 − δ)C,
whence

C ⊂
⋃

δ∈(0,1)
(1 − δ)C

and the converse inclusion is trivial. 12
Proposition 12.2 below is fundamental in Cramér’s theory. Here is a short proof

relying on the proposition above.

Proposition 12.2 Let C be an open convex subset of X . Then

lim
n→∞

1

n
logP

(
Xn ∈ C

) = sup
n�1

1

n
logP

(
Xn ∈ C

)
.

Proof The result is trivial if C = ∅. Now suppose 0 ∈ C, otherwise consider (Xn−
x)n�1 for some x ∈ C. Let n,m � 1 and write n = qm+ r the Euclidean division
of n by m with r ∈ {1, 2, . . . ,m}. Let δ ∈ (0, 1). Using the convexity of C, the
independence of X1, X2, . . . , Xn, and the fact that

Xn = m

n

q−1∑
k=0

⎛
⎝ 1

m

(k+1)m∑
i=km+1

Xi

⎞
⎠+ 1

n

n∑
i=mq+1

Xi ,
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we get

P
(
Xn ∈ C

)
� P

(
Xm ∈ n

qm
(1 − δ)C

)q
P

(
X1 ∈ n

r
δC

)r
.

Since r � m and C is an absorbing subset of X (see Proposition 12.1),

P

(
X1 ∈ nδ

r
C
)r

� P

(
X1 ∈ nδ

m
C
)m −−−→

n→∞ 1 .

Hence, remembering that qm � n,

lim inf
n→∞

1

n
logP

(
Xn ∈ C

)
� lim inf

n→∞
q

n
logP

(
Xm ∈ n(1 − δ)

qm
C
)

� 1

m
logP

(
Xm ∈ (1 − δ)C

)

and the proof is completed by taking the limit when δ → 0 (see Proposition 12.1),
and then the supremum overm � 1. 12

Notice that Proposition 12.2 is more generally valid for algebraically open
convex sets that are measurable, i.e. measurable convex sets that satisfy proper-
ties (12.3) and (12.4) of Proposition 12.1 and their translates, i.e. measurable convex
sets that are equal to their algebraic interior (see [35]).

The next simple but useful result is well-known and may be called the “principle
of the largest term” (see, e.g., [24, Lemma 2.3]). We give its proof for the sake of
completeness.

Proposition 12.3 Let u1, u2, . . . , ur be [0,+∞]-valued sequences. Then

lim sup
n→∞

1

n
log

r∑
i=1

ui(n) = max
1�i�r

lim sup
n→∞

1

n
logui(n).

Proof From the double inequality

max
1�i�r

ui(n) �
r∑
i=1

ui(n) � r max
1�i�r

ui(n),

we get

lim sup
n→∞

1

n
log

r∑
i=1

ui(n) = lim sup
n→∞

1

n
log max

1�i�r
ui(n).
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Moreover

lim sup
n→∞

1

n
log max

1�i�r
ui(n) = lim

n→∞ max
1�i�r

(
sup
k�n

1

k
logui(k)

)

= max
1�i�r

lim
n→∞

(
sup
k�n

1

k
logui(k)

)
,

since the function max : [−∞,+∞]r → [−∞,+∞] is continuous. 12
Proof (Proof of Theorem 12.1) LetK be a compact subset of X and α > 0. For all
x ∈ K , apply Proposition 12.2 and choose ε > 0 such that

lim
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
� max(s(x)+ α,−1/α) .

Since K is compact, there is a finite subcover K ⊂ B1 ∪ B2 ∪ · · · ∪ Br with Bi =
B(xi, εi). Now apply Propositions 12.3 and 12.2 to get

lim sup
n→∞

1

n
logP

(
Xn ∈ K

)
� lim sup

n→∞
1

n
log

r∑
i=1

P
(
Xn ∈ Bi

)

= max
1�i�r

lim
n→∞

1

n
logP

(
Xn ∈ Bi

)

� max
1�i�r

max(s(xi)+ α,−1/α)

� max

(
sup
x∈K

s(x)+ α,−1/α

)

and finally let α → 0. 12

12.4 Proofs of Theorems 12.2 and 12.3

To prove the convex upper bounds, we will simply extend the compact (convex)
upper bound to convex sets using the convex tightness of the measures on (X ,B).
The idea can be traced back to [4] and the proof given here is shorter and complete.

Proposition 12.4 Any probability measure ν on (X ,B) is convex tight, i.e. for all
α > 0, there exists a compact convex subset K of X such that ν(K) > 1 − α.

Proof Let ν be a probability measure on (X ,B) and let α > 0. Since X is metric,
separable, and complete, ν is tight, i.e. there is a compact subset K1 of X such that
ν(K1) > 1− α (see [6, Theorem 1.3]). ThenK = co(K1) the closed convex hull of
K1 is compact (see [17, Theorem V.2.6]) and satisfies ν(K) > 1 − α. 12
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To prove (UBcc), we also need a fact similar to Proposition 12.2.

Proposition 12.5 Let C be a measurable convex subset of X . Then

lim sup
n→∞

1

n
logP

(
Xn ∈ C

) = sup
n�1

1

n
logP

(
Xn ∈ C

)
.

Proof Let m, q � 1. Since C is convex and X1, X2, . . . , Xqm are independent,

P
(
Xqm ∈ C) � P

(
Xm ∈ C)q .

Hence

lim sup
n→∞

1

n
logP

(
Xn ∈ C

)
� lim sup

q→∞
1

qm
logP

(
Xqm ∈ C) � 1

m
logP

(
Xm ∈ C) .

Take the supremum overm � 1 to conclude. 12
Proof (Proof of (UBcc)) Let C be a closed convex subset of X and N � 1. By
Proposition 12.4, the distribution of XN is convex tight, whence, for all α > 0,
there exists a compact convex subset K of X such that

1

N
logP

(
XN ∈ C) � 1

N
logP

(
XN ∈ C ∩K)+ α . (12.5)

Applying Proposition 12.5 to the convex C ∩K leads to

1

N
logP

(
XN ∈ C ∩K)

� lim sup
n→∞

1

n
logP

(
Xn ∈ C ∩K)

.

Finally, the application of Theorem 12.1 to the compact C ∩K yields

lim sup
n→∞

1

n
logP

(
Xn ∈ C ∩K)

� sup
x∈C∩K

s(x) � sup
x∈C

s(x) .

From (12.5), we get

1

N
logP

(
XN ∈ C) � sup

x∈C
s(x)+ α .

Conclude by letting α → 0. 12
A detailed observation of this last proof shows that it only requires the convex

tightness of μ. Indeed, the convex tightness of μ implies the convex tightness of the
distribution of XN , since, if K is convex, then

P(XN ∈ K) � P(X1 ∈ K)N .
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This simple remark is fruitful: it permits to establish (UBcc) in a more general
context and to avoid technical hypotheses. The proof of (UBoc) is in the same vein.
We only need a nice property of open convex sets.

Proposition 12.6 Let C be an open convex subset of X containing 0. Then,

⋃
δ∈(0,1)

(1 − δ)C = C .

Proof Given Proposition 12.1, it remains to show that, for all δ ∈ (0, 1), (1−δ)C ⊂
C. Let δ ∈ (0, 1) and let x ∈ (1 − δ)C. Defining α > 0 by 1 + α = 1/(1 − δ), we
have (1 + α)x ∈ C. Since −C is a neighborhood of 0, ((1 + α)x − αC) ∩ C �= ∅,
whence x ∈ C. 12

Proposition 12.6 implies:

Proposition 12.7 Any probability measure ν on (X ,B) is convex inner regular,
i.e. for all open convex subsets C of X and for all α > 0, there exists a compact
convex subset K of C such that ν(K) > ν(C)− α.

Proof Let ν be a probability measure on X , let C be an open convex subset of X ,
and let α > 0. Using Proposition 12.4, there is a compact subset K1 of X such
that ν(K1) > 1 − α/2. Using Proposition 12.6, we can choose δ ∈ (0, 1) such that
ν((1− δ)C) > ν(C)−α/2. Finally,K = K1 ∩ (1− δ)C is a compact convex subset
of C such that ν(K) > ν(C)− α. 12

To sum up the previous proof, the convex inner regularity of a measure is
equivalent to its convex tightness (in a general topological vector space). In a more
general context, this argument completes the proof of [4, Appendix, Proposition 1]
and gives a simpler condition than hypothesis (Ĉ) of [14, Sect. 3.1] or Assumption
6.1.2 of [13].

Proof (Proof of (UBoc)) In inequality (12.5) of the proof of (UBcc), replace C ∩K
by a compact convex subset K of C given by Proposition 12.7 to obtain

1

N
logP

(
XN ∈ C) � sup

x∈C
s(x) .

The last remark of Theorem 12.2 then follows from (LB). 12
To prove Theorem 12.3, we show two intermediate and useful results. Remember

that the support of the measure μ is the subset of X defined by

supp(μ) = {x ∈ X ; ∀ε > 0, μ(B(x, ε)) > 0} .

Proposition 12.8 For any open ball B in X ,

B ∩ supp(μ) �= ∅ ⇐⇒ μ(B) > 0 .
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Proof The direct implication is a mere consequence of the definition of supp(μ).
And the converse one stems from the fact that X is second countable, so that we
have μ(supp(μ)) = 1 (see [26, Theorem 2.1]). We provide another proof that relies
on the convex inner regularity ofμ. Consider an open ballB such thatB∩supp(μ) =
∅. Let α > 0. Use the convex inner regularity of μ to find a compact subset K of
B such that μ(K) > μ(B) − α. For all x ∈ K , there exists ε > 0 such that
μ(B(x, ε)) = 0. Extract a finite subcover K ⊂ B1 ∪ B2 ∪ · · · ∪ Br with Bi =
B(xi, εi). Finally,

μ(B) � μ(K)+ α �
r∑
i=1

μ(Bi)+ α = α

and let α → 0. 12
Proposition 12.9 The entropy s is upper semi-continuous and concave.

Proof To show that s is upper semi-continuous, take t ∈ R and x ∈ X such that
s(x) < t . By the very definition of s, there is ε > 0 such that

lim
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
< t .

For all y ∈ B(x, ε), take δ such that B(y, δ) ⊂ B(x, ε) and write

s(y) � lim
n→∞

1

n
logP

(
Xn ∈ B(y, δ)

)
� lim

n→∞
1

n
logP

(
Xn ∈ B(x, ε)

)
< t .

So s is upper semi-continuous. Now we prove that s is concave. Let x, y ∈ X
and set z = (x + y)/2. Let ε > 0 and set Bz = B(z, ε), Bx = B(x, ε/2), and
By = B(y, ε/2). For all n � 1,

P
(
X2n ∈ Bz

)
� P

(
Xn ∈ Bx

)
P
(
Xn ∈ By

)

whence

lim
n→∞

1

2n
logP

(
X2n ∈ Bz

)
� lim

n→∞
1

2n
log

(
P
(
Xn ∈ Bx

)
P
(
Xn ∈ By

))

� s(x)+ s(y)

2
.

Taking the infimum in ε, we get s((x + y)/2) � (s(x)+ s(y))/2 and the concavity
of s follows, since s is upper semi-continuous. 12
Proof (Proof of Theorem 12.3) Since s is concave (see Proposition 12.9), dom(s) is
a convex subset of X , so we only need to prove

supp(μ) ⊂ dom(s) (12.6)
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and

dom(s) ⊂ co supp(μ) . (12.7)

Let x /∈ dom(s) and ε > 0 such that B(x, ε) ∩ dom(s) = ∅. The bound (UBoc)
implies logμ(B(x, ε)) = −∞. With Proposition 12.8, we get B(x, ε)∩ supp(μ) =
∅, so inclusion (12.6) is proved. Now, let x ∈ dom(s) and ε > 0. Showing that
B(x, ε) ∩ co supp(μ) �= ∅ is enough to prove inclusion (12.7). There is n � 1 such
that P(Xn ∈ B(x, ε/2)) > 0, i.e. μ⊗n(C) > 0 where

C =
{
(u1, u2, . . . , un) ∈ X n ; u1 + u2 + · · · + un

n
∈ B(x, ε/2)

}
.

LetQ be a countable dense subset of X . Since C is an open subset of X n,Qn ∩C
is a dense subset of C, whence

C ⊂
⋃

(u1,...,un)∈Qn∩C

n∏
i=1

B(ui, ε/2) .

Since the union is countable and μ⊗n(C) > 0, there is (u1, u2, . . . , un) ∈ C such
that, for all integers i ∈ {1, 2, . . . , n}, μ(B(ui, ε/2)) > 0. So, by Proposition 12.8,
for all integers i ∈ {1, 2, . . . , n}, there is yi ∈ B(ui, ε/2) ∩ supp(μ). Hence,

y := y1 + y2 + · · · + yn

n
∈ B

(u1 + u2 + · · · + un

n
, ε/2

)
⊂ B(x, ε)

and y ∈ co supp(μ). 12
Note that Theorem 12.3 implies Theorem 2.4(a), (b) of [4] and results 9.7 and

9.8 of [8].

12.5 Proof of Theorem 12.4

The Fenchel-Legendre transform of a function g : X → [−∞,+∞] is the function
on the dual space g∗ : X ∗ → [−∞,+∞] defined by

∀λ ∈ X ∗ g∗(λ) = sup
x∈X

(
λ(x)− g(x)

)
.

Similarly, the Fenchel-Legendre transform of a function h : X ∗ → [−∞,+∞] is
the function h∗ : X → [−∞,+∞]

∀x ∈ X h∗(x) = sup
λ∈X ∗

(
λ(x)− h(λ)

)
.
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We say that the functions g : X → [−∞,+∞] and h : X ∗ → [−∞,+∞] are
convex conjugate functions if g∗ = h and h∗ = g.

Proposition 12.10 (Fenchel-Moreau Theorem) A function g : X → (−∞,

+∞] satisfies g∗∗ = g if and only if g is lower semi-continuous and convex.

Proof See, e.g., [25, Section 5]. 12
Proof (Proof of Theorem 12.4) Knowing that s is upper semi-continuous and
concave (see Proposition 12.9), and applying Proposition 12.10, we only need to
prove p = (−s)∗. The classic proof of the inequality p � (−s)∗, or its equivalent
s � −p∗, relies on Chebyshev’s inequality (see, e.g., [4, Theorem 3.1]). Another
proof consists in applying Lemma 12.1 (the proof of which is given below) to
the continuous functions f = λ ∈ X ∗. The other inequality p � (−s)∗, or its
equivalent s � −p∗, is usually proved via the open half-space upper bound and
Cramér’s theorem in R (see, e.g., [4, Section 3]). Let us see how we can get it via
Lemma 12.2 (the proof of which is given below). Let λ ∈ X ∗ and let α > 0. Since
μ is convex tight (see Proposition 12.4) and using Fatou’s lemma, there exists a
compact convex subset K of X such that

min
(

logE
(
eλ(X1)

)− α, 1/α
)
� logE

(
eλ(X1)1K(X1)

)
.

Since K is convex, for all n � 1, the conjunction of X1 ∈ K , X2 ∈ K , . . . , and
Xn ∈ K implies Xn ∈ K . Hence, using the independence of the Xi ’s, we get

logE
(
eλ(X1)1K(X1)

)
� inf

n�1

1

n
logE

(
enλ(Xn)1K(Xn)

)

� lim sup
n→∞

1

n
logE

(
en(λ+χK)(Xn)

)

where

χK = log 1K

is the characteristic function of the convex set K . Finally, we apply Lemma 12.2 to
the upper semi-continuous function f = λ + χK for which {f > −∞} = K is
compact and we get

lim sup
n→∞

1

n
logE

(
en(λ+χK)(Xn)

)
� sup

x∈X
(λ(x)+ χK(x)+ s(x)) � (−s)∗(λ) .

Conclude the proof by letting α → 0. 12
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Proof (Proof of Lemma 12.1) Let f : X → [−∞,+∞] be a lower semi-
continuous function. Let x ∈ X and let α > 0. There is ε > 0 such that, for
all y ∈ B(x, ε),

f (y) � min(f (x)− α, 1/α) .

Hence,

lim inf
n→∞

1

n
logE

(
enf (Xn)

)
� lim inf

n→∞
1

n
logE

(
enf (Xn)1B(x,ε)(Xn)

)

� min(f (x)− α, 1/α) + lim inf
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
� min(f (x)− α, 1/α) + s(x) .

Taking the limit when α → 0 and the supremum over x ∈ X , we get

lim inf
n→∞

1

n
logE

(
enf (Xn)

)
� sup

x∈X
(f (x)+. s(x))

where +. is the natural extension of the addition verifying (−∞)+. (+∞) = −∞.
The result reduces to (VLB) when {f = +∞} = ∅. 12
Proof (Proof of Lemma 12.2) Let f : X → [−∞,+∞] be an upper semi-
continuous function such that K := {f > −∞} is relatively compact. Let α > 0.
For all x ∈ X , there is ε > 0 such that, for all y ∈ B(x, ε),

f (y) � max(f (x)+ α,−1/α).

By the definition of s(x) and Proposition 12.2, should we reduce ε, we may suppose
that

lim sup
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
� max(s(x)+ α,−1/α) .

Extract a finite subcoverK ⊂ B1∪B2∪· · ·∪Br with Bi = B(xi, εi). For all n � 1,

1

n
logE

(
enf (Xn)

)
� 1

n
log

r∑
i=1

E
(
enf (Xn)1Bi (Xn)

)

� 1

n
log

r∑
i=1

e
nmax

(
f (xi)+α,−1/α

)
P
(
Xn ∈ Bi

)
.
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Taking the limit superior when n → ∞ and applying the principle of the largest
term (Proposition 12.3), we get

lim sup
n→∞

1

n
logE

(
enf (Xn)

)

� max
1�i�r

(
max(f (xi)+ α,−1/α) + max(s(xi)+ α,−1/α)

)

� sup
x∈X

(
max(f (x)+ α,−1/α)+ max(s(x)+ α,−1/α)

)
.

Letting α → 0, we get

lim sup
n→∞

1

n
logE

(
enf (Xn)

)
� sup

x∈X
(f (x)� s(x))

where � is the natural extension of the addition such that (−∞)� (+∞) = +∞.
The result reduces to (VUBk) when {f = +∞} = ∅. 12

12.6 Proof of Theorem 12.5

The proof of Theorem 12.5 is a slight variant of that of Theorem 12.2. We need
here a complete version of the subadditive lemma due to Fekete (see [18]). It is very
well known when u is finite valued with a proof similar to that of Propositions 12.2
and 12.5.

Proposition 12.11 Let u be a [−∞,+∞]-valued sequence. Suppose that u is
subadditive, i.e. for all m,n � 1, u(m+ n) � u(m)� u(n), where � is the natural
extension of the addition such that (−∞)� (+∞) = +∞. Then

lim inf
n→∞

u(n)

n
= inf

n�1

u(n)

n
. (12.8)

If u is also controlled, i.e. there is N � 1 such that, for all n � N , u(n) < +∞,
then

lim
n→∞

u(n)

n
= inf

n�1

u(n)

n
. (12.9)

Proof Let u be a subadditive [−∞,+∞]-valued sequence. For m � 1, we have

lim inf
n→∞

u(n)

n
� lim inf

q→∞
u(qm)

qm
� u(m)

m
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and Eq. (12.8) follows by taking the infimum over m � 1. Now suppose that u is
also controlled. Letm � N . For all n � m, write n = qm+r the Euclidean division
of n by m with r ∈ {m,m+ 1, . . . , 2m− 1} and

u(n) � qu(m)� u(r) � n

m
u(m)� max

m�i<2m
u(i) .

Since, for all i � m, u(i) < +∞, we get

lim sup
n→∞

u(n)

n
� u(m)

m

and Eq. (12.9) follows by taking the infimum overm � 1. 12
We immediately deduce the useful property:

Proposition 12.12 Let f : X → [−∞,+∞] be a +. -concave function, i.e. for all
x, y ∈ X and t ∈ (0, 1),

f
(
(1 − t)x + ty

)
� (1 − t)f (x)+. tf (y) ,

where +. is the natural extension of the addition verifying (−∞)+. (+∞) = −∞.
Then

lim sup
n→∞

1

n
logE

(
enf (Xn)

) = sup
n�1

1

n
logE

(
enf (Xn)

)
. (12.10)

If, moreover, C = {f > −∞} is open, then

lim
n→∞

1

n
logE

(
enf (Xn)

) = sup
n�1

1

n
logE

(
enf (Xn)

)
. (12.11)

Proof Let f : X → [−∞,+∞] be a +. -concave function. For all integersm,n �
1, since (m+ n)f (Xm+n) � mf (Xm)+. nf ((Xm+1 + · · · +Xm+n)/n), we get

E
(
e(m+n)f (Xm+n)

)
� E

(
emf (Xm)

)
E
(
enf (Xn)

)
,

so u(n) := − logE
(
enf (Xn)

)
is a subadditive sequence and Eq. (12.10) stems from

Proposition 12.11. Suppose thatC = {f > −∞} is open. Then, either, for all n � 1,
u(n) = +∞ and Eq. (12.11) is trivial; or there existsm � 1 such that u(m) < +∞.
Then P(Xm ∈ C) > 0. Using Proposition 12.2, we find that there existsN � 1 such
that, for all n � N , P(Xn ∈ C) > 0, whence u(n) < +∞. So u is controlled and
Eq. (12.11) stems from Proposition 12.11. 12
Proof (Proof of (VUBcc)) Let f : X → [−∞,+∞] be an upper semi-continuous
+. -concave function (if {f = +∞} = ∅, f is simply upper semi-continuous
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and concave). The first equality stems from Proposition 12.12. Let us prove the
inequality. Let α > 0. Choose N � 1 such that

min
(

sup
n�1

1

n
logE

(
enf (Xn)

)− α, 1/α
)
� 1

N
logE

(
eNf (XN )

)
.

Let β > 0. By Proposition 12.4, the distribution of XN is convex tight. Using
Fatou’s lemma, there exists a compact convex subset K of X such that

min
( 1

N
logE

(
eNf (XN)

)− β, 1/β
)
� 1

N
logE

(
eNf (XN )1K(XN)

)
. (12.12)

Applying Proposition 12.12 to the +. -concave function f +. χK , we get

1

N
logE

(
eNf (XN)1K(XN)

)
� lim sup

n→∞
1

n
logE

(
en(f +. χK)(Xn)) .

Finally, we apply Lemma 12.2 (more precisely the slight generalization appearing
in its proof) to the upper semi-continuous function f +. χK and get

lim sup
n→∞

1

n
logE

(
en(f +. χK)(Xn)) � sup

x∈X
(f (x)� s(x)) .

Conclude by letting α, β → 0. 12
Proof (Proof of (VUBoc)) Let f : X → [−∞,+∞] be a +. -concave function
such that C = {f > −∞} is open and f |C is upper semi-continuous. The first
equality stems from Proposition 12.12. To prove the inequality, suppose that, in
inequality (12.12), K is a compact convex subset of C (see Proposition 12.7) and
notice that f +. χK is upper semi-continuous. 12
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35. C. Zălinescu, Convex Analysis in General Vector Spaces (World Scientific, River Edge, 2002)



Chapter 13
On Martingale Chaoses

B. Rajeev

Abstract We extend Wiener’s notion of ‘homogeneous’ chaos expansion of Brow-
nian functionals to functionals of a class of continuous martingales via a notion
of iterated stochastic integral for such martingales. We impose a condition of
‘homogeneity’ on the previsible sigma field of such martingales and show that
under this condition the notions of purity, chaos representation property and the
predictable representation property all coincide.

Keywords Martingale representation · Stochastic integral representation · Chaos
expansion · CRP · PRP · Pure martingales

Mathematics Subject Classification (2000) Primary 60H10, 60H15; Secondary
60J60, 35K15

13.1 Introduction

The chaos expansion of Brownian functionals [10, 11, 13, 16, 28] has become
the principal tool in what is called ‘stochastic analysis’. Among other things an
important application is to the notion of the stochastic derivative and its adjoint, the
Skorokhod integral (see [11, 16, 18, 26]). Chaos expansions have been extended to
Lévy processes (see [3, 4, 14, 19, 21, 22]), Azéma martingales [5–7]. The chaos
expansion property is also related to Fock space expansions which are used in
physics [8, 24] and in quantum probability [20].

In this paper we introduce the notion of chaos expansion for d-dimensional
continuous local martingales Y = (Y 1, · · · , Y d), which are pairwise orthogonal
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and have a common quadratic variation process<Y> that increases to infinity with
time, almost surely. These expansions are in terms of iterated, multiple stochastic
integrals, denoted as IYn,α(f )(t, ω), α = (α1, · · · , αn) where 1 ≤ αi ≤ d , the vector
α determines the order of integration, and f ∈ L2(Δn), whereΔn is the same as for
Brownian motion (see Sect. 13.3 for definition). For example, an iterated integral of
order two i.e. n = 2 and α1 = 2, α2 = 3 and d > 3 would be an integral of the form

IY2,α(f )(t, ω) :=
∫ t

0

∫ t2

0
f (<Y>t1,<Y>t2) dY

2
t1
dY 3

t2
.

Such integrals have been defined in [17] for d = 1, when the martingale Y satisfies
<Y>t = t . It turns out in the present case that such integrals when evaluated at
t = ∞, have all the properties as in the Brownian case viz. linearity, isometry
and orthogonality. Indeed, such integrals turn out to be closely related (by time
change) to the corresponding integral IBn,α(f )(t, ω) for a Brownian motion B =
(B1, · · · , Bd), where we have the Dambis-Dubins-Schwartz (DDS) representation
Y = B ◦<Y> ([12], Chap. 2, Sect. 7). We use this relation as a definition of IYn,α(f )
and deduce all the properties from that of IBn,α(f ) (Definition 13.2, and Theorem
13.2 in Sect. 3). In [23] we provide an alternate definition of IYn,α(f ) from first
principles; in particular it does not use the definition for Brownian motion.

An immediate question that arises is whether the chaotic representation property
(CRP) holds for the process Y i.e. whether every L2 functional of the process Y can
be expanded in terms of elements from its ‘chaotic’ subspaces. One answer to this
question is an immediate consequence of the representation Y = B ◦<Y> and time
change viz. that the CRP is true iff Y is pure (see [25, 27], for the notion of purity
and Proposition 13.11, Sect. 5 below).

A closely related notion to CRP is that of the predictable representation property
(PRP) (see [25], Chap. V) and a natural question is its relationship with CRP and
purity. It is known that there are martingales which have the PRP but are not pure.
On the other hand pure martingales are extremal ([25], Chap. V, Proposition (4.11))
and hence have the PRP. We show that a certain measure theoretic condition on
the previsible sigma field P(Y ) of Y is sufficient for the equivalence of the PRP,
CRP and the strong PRP, a notion that we introduce (see Theorem 13.4, Sect. 13.5,
below).

To explain this further, we introduce a sigma field η−1P(B) which is defined as
the pull back of the previsible sigma field of B viz. P(B), by the map η(s, ω) :=
(<Y>s, ω) (see Definition 13.1(4), Sect. 13.2 below). Let φ(t, ω) ≡ t . Then our
measure theoretic condition says that P(Y ) = η−1P(B) a.e. μ := d<Y>dP

(Theorem 13.4) and a necessary condition is that the process φ(t, ω) ≡ t should
be measurable in the sigma field η−1P(B). This latter condition may be viewed
as a homogeneity condition on P(Y ) (see Remark 13.1 following Corollary 13.2
to Theorem 13.4 in Sect. 13.5). In Theorem (5), following (Émery, 2015, personal
communication), we show that when Y is pure this condition is also sufficient for
the equality, P(Y ) = η−1P(B) to hold up to evanescent sets. We also obtain
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necessary and sufficient conditions for the law of the translates of Y , by processes
of the form h◦<Y> where h is a deterministic function on [0,∞), to be equivalent
to the law of Y (Theorem 13.7) when Y is pure. In other words, we characterize the
Cameron-Martin subspace for a pure martingale Y [1, 9].

The paper is organised as follows: in Sect. 13.2 we bring together some measure
theoretic preliminaries. The definition of the iterated stochastic integrals and its
properties are in Sect. 13.3. In Sect. 13.4 we introduce the space of kernels that arise
in the chaos expansion. In Sect. 13.5 we discuss the relationship between P(Y ) and
η−1P(B). We introduce a notion of ‘strong PRP’ and show that it is equivalent
to that of CRP and purity. We discuss the equivalence between CRP and PRP
(Theorem 13.4, Corollaries 13.1 and 13.2) using the measure theoretic condition
P(Y ) = η−1P(B) and also discuss the connection between this condition and
purity. In Sect. 13.6 we prove a version of the Cameron-Martin-Girsanov theorem
for pure martingales.

13.2 Preliminaries

Let (Ω,F ,Ft , P ) be a filtered probability space with (Ft ) taken to be right
continuous and F0 containing all P null sets. Let Y 1, · · · , Y d be continuous Ft

local martingales with quadratic variation process (< Y i >t), i = 1, · · · , d , Y i0 ≡ 0
and < Y i, Y j >t = 0, i �= j , t ≥ 0, a.s. We will also assume throughout this paper
that for i �= j ,< Y i >t = < Yj >t =: <Y>t . Let Yt := (Y 1

t , · · · , Y dt ). For n ≥ 1,
α = (α1, · · · , αn), αi ∈ {1, · · · , d}, let (Y αt ) be the R

n valued process defined by
Yαt := (Y

α1
t , · · · , Y αnt ). The right continuous inverse of <Y> will be denoted by

τ . We will always assume that a.s., <Y>∞ = ∞. Then note that Y = B ◦ <Y>
where B := (B1, · · · , Bd) is a standard d-dimensional Brownian motion (see [12,
Thms. 7.2,7.3, Chapter 2]). For a filtration Ft , P(Ft ) will denote the previsible
sigma field associated with Ft . The filtration generated by a process X = (Xt )

will be denoted by FX := (FX
t ). The corresponding previsible sigma field will be

denoted by P(X) := P(FX).
For a sigma field G on a set G and a function T : (G,G ) → (Rd,B(Rd )), we

use the notation T ∈ G to say that T is measurable with respect to G and the sigma
field in the range viz. B(Rd ). Consider Ω ′ := [0,∞)×Ω with the product sigma
field F ′ = B[0,∞) ×F Y∞, where for 0 ≤ t < ∞, F Y

t := σ {Ys; 0 ≤ s ≤ t} and
F Y∞ = σ {Ys; 0 ≤ s < ∞}. We make the following definitions, some of which are
well known.

Definition 13.1 We make the following definitions, some of which are well known
and others that are frequently used in the sequel.

1. We recall [27] that a continuous local martingale Y with the representation Y =
B ◦ <Y> as above is pure iff F Y∞ = FB∞. In Sect. 13.5 below we will make a
closer study of this notion.
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2. For A ∈ F ′, we define μ(A) := E
∫∞

0 IA(s, ω) d<Y>s , A ∈ F ′. When
<Y>t = t we shall denote the corresponding measure by μ0.

3. Recall ([2], p. 86, Chapter IV, paras 6–8) that a set E ∈ F ′ is said to be
evanescent iff ∃ A ∈ F , P (A) = 0 such that the set {ω : ∃ t ≥ 0, (t, ω) ∈ E} ⊂
A. Note that a set E is evanescent iff the process IE(t, ω) is indistinguishable
from the zero process.

4. Let η be the map η : Ω ′ := [0,∞)×Ω → Ω ′ defined as η(s, ω) := (<Y>s, ω).

We define the sigma field η−1P(B) on Ω ′ as follows:

η−1P(B) := {A : A = η−1A′, A′ ∈ P(B)}.

5. We define the map φ(t, ω) := t for all (t, ω) ∈ [0,∞)×Ω. 12
We will complete F ′ by all the μ null sets, and use the same notation for the
completed sigma field. Define for t ≥ 0, the stochastic process Y t : [0,∞)×Ω →
R
d by Y ts (ω) := Yt∧s(ω).
Before we state the next proposition we make some remarks on the map φ in

Definition 13.1(5). For a fixed t ≥ 0, φ(t, ω) is the constant random variable t and
in particular generates the trivial sigma field onΩ . However the situation is different
when we let t vary and consider sigma fields on Ω ′ instead of Ω . The sigma field
generated by φ on Ω ′ is easily seen to be B[0,∞)× E where E denotes the trivial
sigma field onΩ . The adjunction of φ to a collection of maps can crucially alter the
structure of the generated sigma field on Ω ′. In particular we note that in general,
σ {Y t : t ≥ 0} �= σ {φ, Y t : t ≥ 0} as can easily be seen by considering a stopped
process (Ys); for example, one that satisfies Ys = Ys∧1 for every s ≥ 0. We then
have the following proposition.

Proposition 13.1 P(Y ) = σ {φ, Y t : t ≥ 0}.
Proof It suffices to show that P(Y ) ⊆ σ {φ, Y t : t ≥ 0}, the reverse inclusion
being immediate from the continuity and adaptedness of the maps involved. Again
it suffices to show that for every t > 0, and A ∈ F Y

t the set (t,∞)×A ∈ σ {φ, Y t :
t ≥ 0}. By a monotone class argument it suffices to takeA to be a finite dimensional
set:

A = {ω : (Yt1, · · · , Ytn) ∈ B}

where 0 ≤ t1 < t2 < · · · < tn ≤ t and B a Borel set in R
dn. But then

(t,∞)×A = {(s, ω) : φ(s) > t, (Y t1s (ω)), · · · Y tns (ω)) ∈ B}

and the RHS is clearly in σ {φ, Y u : u ≥ 0}. 12
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Let Δ1 = [0,∞) and L2(Δ1, λ1) =: L2(Δ1) where λ1 is the Lebesgue measure
on [0,∞). For f ∈ L2(Δ1) we define the process

{IY1,i(f )(t); t ≥ 0} := {
∫ t

0
f (<Y>s) dY

i
s ; t ≥ 0}

and the random variable

I1,i(f ) := I1,i(f )(∞) =
∫ ∞

0
f (<Y>s) dY

i
s .

We will drop the Y and write I1,i (f )(t) when there is no risk of confusion. When
d = 1, we drop the suffix i and just write I1(f )(t) or IY1 (f )(t).

Define M1,t (Y ) to be the sigma field on Ω ′ generated by the first chaos viz.

M1,t (Y ) := σ {(s, ω)→ I1(f )(s ∧ t, ω) : f ∈ L2(Δ1)}.

We note that by continuity of Y we have for all t ≥ 0,P(Y ) ⊇ M1,t (Y ). We use
the notation Y ts (ω) := Yt∧s(ω).

In the following two propositions we will take d = 1, although they are valid
for higher dimensions. We will also use the fact, below and elsewhere, that the
indistinguishability of two measurable processes implies that the subset of Ω on
which they differ for some t is evanescent.

Proposition 13.2 For every t ≥ 0, we have up to evanescent sets,

M1,t (Y ) = σ {IY t1 (f )(s, ω) : f ∈ L2(Δ1), s ≥ 0}.

Proof We have for every s ≥ 0, using Y ts =
∫ s

0 I[0,t ](u) dYu, a.s.

IY
t

1 (f )(s) =
∫ s

0
f (< Y t >u)I[0,t](u) dYu =

∫ t∧s

0
f (<Y>u) dYu = I1(f )(s ∧ t, ω)

for every s ≥ 0. 12
Combining the above two propositions with the fact that for each t ≥ 0, {Y ts ;

s ≥ 0} is measurable with respect to the sigma field on [0,∞)×Ω generated by the
maps {(s, ω)→ IY

t

1 (f )(s, ω) : f ∈ L2(Δ1)} we get the following proposition. We
use the notation IY1 (f ) := IY1 (f )(∞) := ∫∞

0 f (<Y>s) dYs .

Proposition 13.3 We have the following equalities, up to evanescent sets:

P(Y ) = σ {φ, (s, ω)→ IY
t

1 (f )(s, ω) : f ∈ L2(Δ1), t ≥ 0}
= σ {φ,M1,t (Y ), t ≥ 0}.
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Proof By Proposition 13.2, it suffices to prove only the first equality. We have

IY
t

1 (f ) =
∫ ∞

0
f (<Y>s)I[0,t ](s) dYs =

∫ t

0
f (<Y>s) dYs.

Hence the maps generating the sigma field in the RHS of the first equality in the
statement of the proposition are P(Y ) measurable. To get the reverse inclusion let
fr(u) := I[0,r](u). Note that for each s ≥ 0,

Y ts = lim
r→∞ I

Y t

1 (fr )(s) ,

where the limit holds in probability, uniformly in s ∈ [0, t]; it follows that (s, ω)→
Y ts (ω) is measurable w.r.t. σ {φ, (s, ω) → IY

t

1 (f )(s, ω) : f ∈ L2(Δ1), t ≥ 0} , up
to an evanescent set. Hence using Proposition 13.1,

P(Y ) = σ {φ, Y t : t ≥ 0} ⊆ σ {φ, (s, ω)→ IY
t

1 (f )(s, ω) : f ∈ L2(Δ1), t ≥ 0} .

12
We state the following proposition whose proof is elementary.

Proposition 13.4 Every η−1P(B) measurable function f (t, ω) can be written as
f (t, ω) = h(<Y>t, ω) for some h which is P(B) measurable.

13.3 Martingale Chaoses

Let Δn := {(t1, · · · , tn) : 0 ≤ t1 < · · · < tn < ∞}. L2(Δn, λn) =: L2(Δn)

where λn is the Lebesgue measure on R
n. To define the iterated multiple integral

of f ∈ L2(Δn) with respect to a one dimensional continuous martingale Y with
quadratic variation <Y>, we first note that the intuitive definition viz.

In(f ) :=
∫ ∞

0

∫ tn

0
· · ·

∫ t2

0
f (<Y>t1, · · · ,<Y>tn) dYt1 · · · dYtn (13.1)

where the RHS is an iterated multiple Ito integral of f w.r.t. Y , is problematic,
since In−1(f (., · · · , t)) is defined only up to null sets that depend on t . While
it is possible to define the multiple iterated integrals In(f ), f ∈ L2(Δn) by
induction from first principles, a quicker way would be to exploit the relationship
of Y with its DDS Brownian motion B and the fact that the quadratic variation
processes are the same. We deal directly with the case of a vector valued continuous
local martingale Y = (Y 1, · · · , Y n), but in this case we need to also deal with
the order of integration. For f : Δn → R, for 1 < k < n and for u =
(u1, · · · , un−k) ∈ Δn−k, we use the notation f u to denote the map f u : Δk →
R, f u(t1, · · · , tk) := f (t1, · · · , tk, u1, · · · , un−k)IΔn(t1, · · · , tk, u1, · · · , un−k).
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Note that if f ∈ L2(Δn) we can choose a version f̃ such that for all u =
(u1, · · · , un−k) ∈ Δn−k , f̃ u ∈ L2(Δk). We will not distinguish between f and f̃ .

Let (Gt ) be a filtration and B = (B1, · · · , Bd) a standard Gt -Brownian motion.
The following theorem is well known and lists the main properties of the multiple
integral with respect toB. We first recall that for α = (α1, · · · , αn), αi ∈ {1, · · · , d}
the multiple integral IBn,α(f ) is defined for f ∈ L2(Δn) of the form f (t1, · · · , tn) =
n∏
i=1

fi(ti) with fi(t) := I(ai ,bi ](t), a1 < b1 ≤ a2 < · · · < bn, as follows:

IBn,α(f ) :=
n∏
i=1

(B
αi
bi

− Bαiai ) .

We extend the map IBn,α(f ) linearly to the linear span of such functions, which we
note is dense inL2(Δn). We then have the following theorem (see for example [18]).

Theorem 13.1 Let n ≥ 0; α = (α1, · · · , αn), 1 ≤ αi ≤ d , i = 1, · · · , n. Then the
map IBn,α extends to the whole of L2(Δn) and satisfies for f, g ∈ Δn and a, b ∈ R

IBn,α(af + bg) = aIBn,α(f )+ bIBn,α(g)

E(IBn,α(f )I
B
n,α(g)) = <f, g>L2(Δn)

. (13.2)

Further,

E(IBn,α(f )I
B
m,β(g)) = 0 (13.3)

if either n �= m or α �= β. Finally if we define

IBn,α(f )(t, ω) := E[IBn,α(f )|Gt ](ω)

then (IBn,α(t),Gt ) is a continuous martingale which satisfies a.s. P , for every t ≥ 0,

IBn,α(f )(t) =
∫ t

0
IBn−1,(α1,··· ,αn−1)

(f s)(s) dBαns .

Definition 13.2 Let Y 1, · · · , Y d be continuousFt -local martingales with quadratic
variation process (< Y i >t), i = 1, · · · , d . We assume that Y i0 ≡ 0, < Y i, Y j > ≡
0, i �= j , < Y i > ≡ < Yj > =: <Y>t and <Y>∞ = ∞, a.s.. Then Yt :=
(Y 1
t , · · · , Y dt ) = B ◦ <Y>t where B := (B1, · · · , Bd) is a standard Gt := F Y

τt
-

Brownian motion with τt := inf{s > 0 : <Y>s > t}.
For n = 0, Δ0 := {0}, f : Δ0 → R define I0(f )(t, ω) := f (0) ∈ R for

every t ≥ 0, ω ∈ Ω . We define for n ≥ 1, f ∈ L2(Δn) and α = (α1, · · · , αn),
αi ∈ {1, · · · , d}, the process

{IYn,α(f )(t); t ≥ 0} := {IBn,α(f )(<Y>t ); t ≥ 0}
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where IBn,α(f )(t, ω) is the iterated multiple Wiener-Ito integral of f ∈ L2(Δn). We
define the random variable IYn,α(f )(ω) := IYn,α(f )(∞, ω) = IBn,α(f )(ω). 12

Let Ht := G<Y>t . Then since <Y>t is a Gt -stopping time, (Ht ) is a filtration.
Note that since Yt = B ◦<Y>t , we have F Y

t ⊆ Ht . We note that IYn,α(f )(t, ω) :=
IBn,α(f )(<Y>t ) is a square integrable Ht -martingale; this follows from Doob’s
optional sampling theorem and the fact that IBn,α(f )(ω) ∈ L2(Ω).

In the following theorem we list the main properties of the multiple integral
IYn,α(f )(t, ω).

Theorem 13.2 Let n ≥ 0; α = (α1, · · · , αn), 1 ≤ αi ≤ d , i = 1, · · · , n. Then the
map IYn,α satisfies for f, g ∈ Δn and a, b ∈ R

IYn,α(af + bg) = aIYn,α(f )+ bIYn,α(g)

E(IYn,α(f )I
Y
n,α(g)) = <f, g>L2(Δn)

. (13.4)

Further,

E(IYn,α(f )I
Y
m,β(g)) = 0 (13.5)

if either n �= m or α �= β. Finally (IYn,α(f )(t),F
Y
t ) is a continuous martingale

which satisfies a.s. P , for every t ≥ 0,

IYn,α(f )(t) :=
∫ t

0
IYn−1,(α1,··· ,αn−1)

(f u)(s)|u=<Y>s dY αns . (13.6)

Proof The proofs of linearity, isometry and orthogonality are immediate conse-
quences of the definition of IYn,α(f ), the fact that IYn,α(f ) = IBn,α(f ) a.s. P and
the fact that <Y>∞ = ∞ a.s. The last statement in the theorem follows from the
corresponding statement for Brownian motion in Theorem 13.1 and time change:

IYn,α(f )(t) =
∫ <Y>t

0
IBn−1,(α1,··· ,αn−1)

(f s)(s) dBαns

=
∫ t

0
IYn−1,(α1,··· ,αn−1)

(f u)(s)|u=<Y>s dY αns

where for every u ≥ 0 we have by definition,

IYn−1,(α1,··· ,αn−1)
(f u)(s) = IBn−1,(α1,··· ,αn−1)

(f u)(<Y>s) .

Here we note that the fact that the map

(s, ω) −→ IYn−1,(α1,··· ,αn−1)
(f u)(s)|u=<Y>s (ω)
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is P(Y ) measurable and in particular that IYn,α(f )(t) is F Y
t adapted follows by

a monotone class argument; that it is square integrable d<Y>dP follows by
time change and the fact that IYn−1,(α1,··· ,αn−1)

(f s)(τs) = IBn−1,(α1,··· ,αn−1)
(f s)(s).

In particular it follows that (IYn,α(f )(t),F
Y
t ) is a continuous martingale. This

completes the proof. 12

13.4 Kernels Associated with Chaos Expansions

In this section we define the kernels associated with the multiple stochastic
integrals with respect to the martingale Y and the kernels associated with the
chaos expansions of functionals of Y . As in the previous section we consider
continuous vector orthogonal martingales Y = (Y 1, · · · , Y d) with a common
quadratic variation process <Y>. Our chaos expansions will be for elements of
L2(Ω ′,P(Y ), μ) rather than for those of L2(Ω,F Y∞, P ) where we recall that
dμ = d<Y>dP onΩ ′ := [0,∞)×Ω . We abbreviateL2(Ω ′,P(Y ), μ) asL2(μ).
In the following, for f ∈ L2(Δn+1) we set hn,α(f )(s, t, ω) := In,α(f

s)(t, ω). To
be more precise it is a B[0,∞)×P(Y α)-measurable ‘process’ and for each s ≥ 0,
is indistinguishable from the process (In,α(f s)(t, ω))t≥0. We sometimes use the
notation In,α(f s)(t, ω)|s=<Y>t for hn,α(f )(<Y>t, t, ω) where f ∈ Δn+1.

For n ≥ 1, α = (α1, · · · , αn) we define the set of kernels of type (n, α) as
follows:

Hn,α(Y ) := {F : F(t, ω) = hn,α(f )(<Y>t, t, ω), a.s.(P ) for all t ≥ 0,

for some f ∈ L2(Δn+1)}

For n = 0, we define H0(Y ) := {h(<Y>t) : h ∈ L2(Δ1)}.
We have the following

Proposition 13.5 For every n ≥ 0 and α = (α1, · · · , αn), Hn,α(Y ) is a closed
subspace of L2(dμ).

Proof The result is immediate from the fact that the map f→hn,α(f )(<Y>t , t, ω) :
L2(Δn+1) → L2(Ω ′,P(Y ), μ) is an isometry and hence its range Hn,α(Y ) is
closed. 12
Proposition 13.6 Hn,α(Y ) is orthogonal to Hm,β(Y ) if either m �= n or if α �= β.

Proof Let F∈Hn,α(Y ) and G∈Hm,β(Y ). Suppose F(t, ω)=In,α(f s)(t, ω)|s=<Y>t ,
G(t, ω) = Im,β(g

s)(t, ω)|s=<Y>t where f ∈ L2(Δn+1), g ∈ L2(Δm+1). Then,
using Eqs. (13.5) and (13.6), we have

< F,G>L2(μ) = E(In+1,α(f )Im+1,β(g)) = 0

if either m �= n or if α �= β. 12
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We define the closed subspace of kernels of type n viz. Hn(Y ) of L2(dμ) for
n ≥ 1 as

Hn(Y ) :=
⊕

α=(α1,··· ,αn)
Hn,α(Y )

where αi ∈ {1, 2, · · · , d}. Let H(Y) be the closed subspace of L2(dμ) which is the
direct sum of the Hn(Y ), n ≥ 0 :

H(Y) :=
∞⊕
n=0

Hn(Y ).

As the calculations in Proposition 13.8 below show for d = 1, the usual chaos
expansion of elements in L2(F Y ) are obtained by integrating elements of the d-
fold direct sum of H(Y) with respect to Y .

Recall that Y = B ◦ <Y>. Define an operator T acting on P(B) mea-
surable functions f (t, ω) with range P(Y ) measurable functions, as follows:
T (f )(t, ω) := f (<Y>t , ω). Then T extends to a linear operator, T : L2(dμ0) →
L2(dμ) where dμ0 := dt dP.

Proposition 13.7 T is an isometric isomorphism from L2(dμ0) into L2(dμ) that
maps Hn,α(B) onto Hn,α(Y ). Further we have

H(Y) = T (H(B)) .

Proof The proof of the first part of the proposition is immediate from the fact that
T (f ) = f ◦ η and that μ ◦ η−1 = μ0.

To prove that T : Hn,α(B)→ Hn,α(Y ) is onto, let

F ∈ Hn,α(Y ), F (t, ω) = hn,α(f )(<Y>t, t, ω) = IYn,α(f
s)(t, ω)|s=<Y>t , f ∈ Δn+1 .

If one defines G(t, ω) := gn,α(f )(t, t, ω) where gn,α(f )(s, t, ω) := IBn,α(f
s)(t, ω)

thenG ∈ Hn,α(B) and it is easy to verify using the definition of the iterated integrals
of Y , that

TG(t, ω) = gn,α(f )(<Y>t,<Y>t, ω) = hn,α(f )(<Y>t, t, ω) = F(t, ω).

Thus T : Hn,α(B)→ Hn,α(Y ) is onto.
To show that the H(Y) = T (H(B)), we first note that, by what has just

been proved, T is an isometric isomorphism, and hence preserves direct sums.
Consequently,

Hn(Y ) =
⊕

α=(α1,··· ,αn)
Hn,α(Y ) =

⊕
α=(α1,··· ,αn)

T (Hn,α(B)) = T (Hn(B)).
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Therefore,

H(Y) :=
∞⊕
n=0

Hn(Y ) =
∞⊕
n=0

T (Hn(B)) = T (

∞⊕
n=0

Hn(B)) = T (H(B)) . 12

In the following two propositions we use the following notation for the Ito
integral: For a martingale Y and previsible process F we denote by IY (F ) :=∫∞

0 F(s) dYs . The following Proposition is easily seen to be true—with appropriate
notation—even for d > 1.

Proposition 13.8 Let d = 1 and F ∈ H(Y). Then IY (F ) has a chaos expansion as
follows: for each n ≥ 1, there exists unique fn ∈ L2(Δn) such that almost surely P ,

IY (F ) =
∑
n≥1

IYn (fn).

Proof From the definition of H(Y) we can write the previsible process F :=
(F (t, ω)) as the sum

F(t, ω) =
∑
n

IYn (f
s
n+1)(t, ω)|s=<Y>t

for a sequence {fn}, fn ∈ L2(Δn+1), n ≥ 0. Integrating this expression from 0 to
∞ with respect to Y , we get the required expansion for IY (F ). 12

The next result is a consequence of the chaotic representation property (CRP) for
Brownian motion. Recall that dμ0 := dt dP .

Proposition 13.9 L2(Ω ′,P(B), μ0) = H(B).

Proof It is clear from the definitions that H(Y) ⊆ L2(μ). Taking Y = B, the
RHS in the statement is contained in the LHS. To show the reverse inclusion, let
f ∈ L2(Ω ′,P(B), μ0) =: L2(μ0) and F := ∫∞

0 f (s) dB1
s =: IB1

(f ). Then by
CRP for Brownian motion there exist fn,α ∈ L2(Δn) such that

F =
∑
n≥1,α

IBn,α(fn,α) =
d∑
i=1

∑
n≥1,α:αn=i

IB
i

(IBn−1,(α1,··· ,αn−1)
(f sn,α))

=
d∑
i=1

IB
i

(
∑

n≥1,α:αn=i
IBn−1,(α1,··· ,αn−1)

(f sn,α)) =
d∑
i=1

IB
i

(gi)

where

gi(s, ω) :=
∑

n≥1,α:αn=i
IBn−1,(α1,··· ,αn−1)

(f sn,α)(s, ω).
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Note that gi ∈
∞⊕
n=0

Hn(B) =: H(B). From the definition of F it follows that

f = g1. In particular f = g1 ∈ H(B). 12

13.5 Integral Representations

Let n ≥ 1 and α = (α1, · · · , αn) be a multi index. We define sigma fields on
[0,∞) × Ω as follows Mn,α,t := σ {(s, ω) → In,α(f )(s ∧ t, ω) : f ∈ L2(Δn)}.
We then have the following proposition. Recall the notation φ(u, ω) := u. In the
following proposition all multiple integrals are with respect to Y = (Y 1, · · · , Y d).
Proposition 13.10 We have Mn,α,t ⊆ σ {φ, M1,i,s; 0 ≤ s ≤ t, 1 ≤ i ≤ d}.
Proof We first note the following: let G t := (G t

s ) be the filtration

G t
s := σ {I1,i(g)(u ∧ t); u ≤ s, g ∈ L2(Δ1), 1 ≤ i ≤ d} .

Then

P(G t ) = σ {φ, M1,i,s; 0 ≤ s ≤ t, 1 ≤ i ≤ d}.

This can be seen as in Proposition 13.1, Sect. 13.2, using the fact that the previsible
sigma field P(G t ) is generated by sets of the form [0,∞)×A,A ∈ G t

0 and (s,∞)×
A, A ∈ G t

s , 0 ≤ s ≤ t . Since G t
s is generated by finite dimensional cylinder sets of

the form

A = {ω : (I1,i (g)(s1 ∧ t), · · · , I1,i(g)(sn ∧ t)) ∈ B}

where g ∈ L2(Δ1), 1 ≤ i ≤ d , and 0 ≤ s1 ≤ · · · ≤ sn ≤ s, n ≥ 1 we can proceed
as in Proposition 13.1 to show that P(G t ) ⊆ σ {φ, M1,i,s; 0 ≤ s ≤ t, 1 ≤ i ≤ d}.
The reverse inequality follows from the continuity and adaptedness of the processes
involved.

We will use an inductive argument to show that if f ∈ L2(Δn) and t is fixed,
then σ {In,α(f )(s ∧ t, ω)} ⊆ σ {φ, M1,i,s; 0 ≤ s ≤ t, 1 ≤ i ≤ d}. Suppose the
above holds for 0 ≤ n ≤ k. It suffices then to prove the claim for n = k + 1 and

f =
k+1⊗
l=1

fl . Then from Eq. (13.6) we have

Ik+1,α(f )(s ∧ t) =
∫ s∧t

0
Ik,(α1,··· ,αk)(

k⊗
l=1

fl)(u) dI1,αk+1(fk+1)(u ∧ t).
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By the induction hypothesis and the observation made at the beginning of the proof,

Ik,(α1,··· ,αk)(
k⊗
l=1

fl)(u ∧ t) is measurable w.r.t. P(G t ). By the continuity of the

stochastic integral and the fact that it is adapted to the filtration (G t
s ) it follows

that Ik+1,α(f )(s ∧ t, ω) is measurable P(G t ) and we are done. 12
We may, by virtue of the above proposition, restrict our analysis to the sigma

fields generated by the first chaos. We use the notation

M1(Y ) := σ {IY i1 (f )(s, ω) : f ∈ L2(Δ1), i = 1, · · · , d}

for the sigma field generated on [0,∞) × Ω by the first chaos. Recall the map η
defined in Sect. 13.2, Definition 13.1(4).

Lemma 13.1 We have the following inclusions up to evanescent sets:

M1(Y ) ⊆ η−1P(B) ⊆ P(Y ).

Proof (Émery, 2015, personal communication). The first inclusion is an immediate
consequence of the definition of IY1 (f )(t). To show the second inclusion, recall that
τ is the right continuous inverse of <Y> and Gt := F Y

τt
. Since FB

t ⊆ Gt for every
t ≥ 0, we have P(B) ⊆ P(G ). Hence η−1P(B) ⊆ η−1P(G ). It suffices to show
that η−1P(G ) ⊆ P(Y ). This follows from the fact that for t > 0, A ∈ Gt we have,

η−1((t,∞)×A) = {(s, ω) : η(s, ω) ∈ (t,∞)× A}
= {(s, ω) : <Y>s(ω) > t, ω ∈ A}
= {(s, ω) : τt (ω) < s, ω ∈ A}
= {(s, ω) : T (ω) < s <∞}
=: ]]T ,∞[[

where T := τtIA +∞IAc is an (F Y
t ) stopping time. Consequently the RHS in the

above equality is in P(Y ) and this completes the proof of the second inclusion. 12
In the following three definitions Y is a continuous d-dimensional local mar-

tingale Y = B ◦ <Y> with B a d-dimensional standard Brownian motion and
<Y>t ↑ ∞, a.s.

Definition 13.3 We say that F ∈ L2(F Y∞) has the strong previsible representation
(SPR) property with respect to Y if there exists fi ∈ L2(P(B), μ0), i = 1, · · · , d
such that

F = EF +
d∑
i=1

∫ ∞

0
fi(<Y>s, ω) dY

i
s . (13.7)
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Definition 13.4 We will say that F ∈ L2(F Y∞) has the chaotic representation (CR)
property with respect to Y if there exist fn,α ∈ L2(Δn) for n ≥ 0, α = (α1, · · · , αn)
such that

F =
∑
n,α

IYn,α(fn,α)

where the equality holds in L2(F Y∞).

Let P be any one of the properties CR, SPR or PR (the previsible representation
property). We define for any property P pertaining to the elements of L2(F Y∞), the
subsets

HP := {F ∈ L2(F Y∞) : F has propertyP }.

We thus have the closed subspaces of L2(F Y∞) viz.HCR,HPR,HSPR, the maximal
subspaces with the chaotic representation property, the previsible representation
property and the strong previsible representation property, respectively. Note that
HSPR is closed follows by time change.

Recall the definition of a pure local martingale (Definition 13.1, Sect. 13.2). It
is clear from the above definitions, and the definition of IYn,α(f ) and time change
that purity is equivalent to the chaotic representation property (CRP) and the strong
previsible representation property. We state this as our next proposition.

Proposition 13.11 The following are equivalent:

a) Y has strong PRP, i.e. L2(F Y∞) = HSPR.
b) Y has the CRP, i.e. L2(F Y∞) = HCR.
c) Y is pure.

Even when CRP fails for Y we have the following result.

Theorem 13.3 Let Y be as above. Then HCR = HSPR

Proof The proof follows by observing that both sides of the equality in the statement
equal L2(FB∞): For the RHS this follows by observing that by time change, the

stochastic integral in Eq. (13.7) is just EF +
d∑
i=1

∫∞
0 fi(s, ω)dB

i
s . This shows

HSPR ⊆ L2(FB∞). The reverse inclusion follows from the PRP for Brownian
motion.

For the LHS we note that in the chaos expansion for F in Definition 13.4,
IYn,α(f ) = IBn,α(f ) and consequently HCR ⊆ L2(FB∞). The reverse inclusion
follows by using the CRP for B. 12

It is well known that the PRP for Y is not equivalent to its purity (see [25],
Proposition (4.11), Chap V.). The following result provides a sufficient condition
viz. μ a.e. P(Y ) = η−1P(B) for this equivalence.
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Theorem 13.4 The following are equivalent:

1) a.e. μ,P(Y ) = η−1P(B);
2) HPR = HCR = HSPR.

Consequently when P(Y ) = η−1P(B), a.e.μ, the CRP, the PRP and the strong
PRP are all equivalent.

Proof 1) implies 2). Suppose P(Y ) = η−1P(B), a.e. (μ). As we have noted above
HCR = HSPR and by Lemma 13.1 above, HSPR ⊆ HPR . The reverse inclusion
follows since by our assumption any F Y

t -previsible process f (t, ω) must be of the
form g(<Y>t, ω) with g(t, ω) a FB

t previsible process. Thus 2) holds.
2) implies 1). It suffices to show L2(η−1P(B), μ) = L2(P(Y ), μ). By

Lemma 13.1, η−1P(B) ⊆ P(Y ) and so we have L2(η−1P(B), μ) ⊆
L2(P(Y ), μ). Conversely let f ∈ L2(P(Y ), μ). Let 1 ≤ i ≤ d . Then∫∞

0 f (s, ω) dY is ∈ HPR = HSPR where the last equality holds by assumption.
But this implies f ∈ L2(η−1P(B), μ) and consequently L2(P(Y ), μ) ⊆
L2(η−1P(B), μ). 12
Corollary 13.1 Suppose that Y has CRP. Then it has PRP; Consequently P(Y ) =
η−1P(B), a.e. μ.

Proof Since η−1P(B) ⊆ P(Y ), a.e. (μ) we always have HCR = HSPR ⊆ HPR .
In particular if HCR = L2(F Y ) then 2) and consequently 1) holds. 12
Corollary 13.2 Suppose that Y has PRP and in additionP(Y )=η−1P(B), a.e. μ.
Then Y has CRP.

Proof This is immediate from ‘1) implies 2)’ part of the theorem. 12
Remark 13.1 A natural question here is to get sufficient conditions for P(Y ) =
η−1P(B), a.e. μ to hold. Note that φ ∈ η−1P(B) a.e. μ is a necessary condition
for the equality to hold. We do not know if it is sufficient. Consider the case d = 1,
and <Y>t is strictly increasing so t = τ<Y>t , where τ is the inverse of <Y>t . If
τ ∈ P(B), then it follows that φ ∈ η−1P(B). The following result (Émery, 2015,
personal communication) is in this direction.

Theorem 13.5 Let Y be a continuous R
d valued local martingale such that

< Y i, Y j > = δij<Y>, with <Y>∞ = ∞ a.s. The following are equivalent:

(i) η−1P(B) = P(Y ), where the equality holds up to evanescent sets;
(ii) Y is pure and φ is measurable with respect to η−1P(B);

(iii) Y is pure and <Y> is almost surely strictly increasing.

Proof We first observe that

η−1P(B) = P(Y ) %⇒ φ ∈ η−1P(B) %⇒ <Y> is strictly increasing.
(13.8)
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The first implication is because φ is continuous and deterministic and consequently
P(Y ) measurable. Secondly, if φ ∈ η−1P(B), then φ = H ◦ η for some P(B)-
measurable H , so for all (t, ω), one has t = H(<Y>t (ω), ω) and hence for each ω
the map t → <Y>t(ω) is injective. This shows (13.8).

The next step is to show that

η−1P(B) = P(Y ) and <Y> is strictly increasing %⇒ Y is pure. (13.9)

Indeed η−1P(B) = P(Y ) entails ]]t,∞[[ ∈ η−1P(B). When <Y> is strictly
increasing, this becomes η−1]]<Y>t ,∞[[ ∈ η−1P(B), which in turn is equivalent
to ]]<Y>t,∞[[ ∈ P(B) because η is then a bijection. Consequently each <Y>t is
an FB -stopping time. Hence Yt = B<Y>t ∈ FB

<Y>t
⊆ FB∞, so F Y

t ⊆ FB∞ and
Eq. (13.9) is established.

The implications (i) %⇒ (ii) %⇒ (iii) are immediate consequences of (13.8) and
(13.9). We now show (iii) %⇒ (i). Assuming (iii), take T any F Y stopping time.
As Y is pure <Y>T is an FB stopping time, from which follows ]]<Y>T ,∞[[ ∈
P(B), and consequently η−1]]<Y>T ,∞[[ ∈ η−1P(B). But since<Y> is strictly
increasing η−1]]<Y>T ,∞[[ = ]]T ,∞[[. Hence ]]T ,∞[[ ∈ η−1P(B) for every
F Y -stopping time T , giving P(Y ) ⊆ η−1P(B). 12

Call τ+ (instead of our usual τ ) the right-continuous inverse of<Y> and τ− the
left-continuous inverse of <Y>. Note that τ−t := inf{s > 0 : <Y>s ≥ t}. Define
the subsets Ω+, Ω− of Ω ′ as follows: Ω+ := Range τ+ and Ω− := Range τ−;
the restricted maps η|Ω+ : Ω+ → Ω ′ and η|Ω− : Ω− → Ω ′ are two bijections.
Recall that Gt = F Y

τt
. With this notation, purity is easily characterized in terms of

η−1P(B) (Émery, 2015, personal communication).

Proposition 13.12 The following are equivalent:

(i) Y is pure;
(ii) FB = G ;

(iii) P(B) = P(G );
(iv) η−1P(B) = η−1P(G );
(v) η−1P(B) and η−1P(G ) have the same restriction to the subset Ω+;

(vi) η−1P(B) and η−1P(G ) have the same restriction to the subset Ω−.

Proof (i) ⇔ (ii) is classical. (ii) ⇔ (iii) is due to the fact that a filtration, say
(Ht ), is always characterized by its previsible σ -field, because Ht = {A ⊆ Ω :
(t,∞)×A is H previsible}. (iii) ⇔ (iv), (iii) ⇔ (v) and (iii) ⇔ (vi) hold because
the three maps η : Ω ′ → Ω ′, η|Ω− : Ω− → Ω ′, η|Ω+ : Ω+ → Ω ′ are onto (and
if a map f : E → F is onto, then f−1 acting on subsets of F is into; so, when f is
onto, a σ -field A on F is characterized by f−1A ). 12

This leads to the question of clarifying the links between η−1P(B) and P(Y ).
We have the following result (Émery, 2015, personal communication).
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Theorem 13.6 Let Y be a continuous R
d valued local martingale such that

< Y i, Y j > = δij<Y>, with <Y>∞ = ∞ a.s. Then Y is pure iff P(Y ) and
η−1P(B) have the same restriction to Ω−.

Proof We show that P(Y ) and η−1P(G ) have the same restriction to Ω−. Then
the result follows from the equivalence between (i) and (vi) in Proposition 13.12.

To prove our claim we shall first show that if T is an F Y -stopping time, <Y>T
is a Gt -stopping time, which satisfies

]]T ,∞[[ ∩ Ω− = η−1(]]<Y>T ,∞[[) ∩Ω− . (13.10)

Indeed if T is an F Y -stopping time, {<Y>T � s} = {τs � T } ∈ F Y
τ s

=
Gs , so <Y>T is a Gt -stopping time. Moreover, putting S = <Y>T , one has
τ−S = τ−<Y>T � T � τ<Y>T = τS . Hence the symmetric difference ]]T ,∞[[ �

]]τS,∞[[ equals ]]T , τS]], and is included in ]]τ−S , τS]], which does not meet Ω−.
Consequently, ]]T ,∞[[∩Ω− = ]]τS,∞[[∩Ω−. Equation (13.10) now follows from
]]τS,∞[[ = η−1]]S,∞[[ = η−1]]<Y>T ,∞[[.

According to Eq. (13.10), for each F Y
t -stopping time T there exists a set Γ ∈

η−1P(G ) such that ]]T ,∞[[ ∩ Ω− = Γ ∩ Ω−. Now, when T ranges over all
F Y
t -stopping times, the sets ]]T ,∞[[ generate the sigma field P(Y ); consequently

P(Y )|Ω− ⊆ (η−1P(G ))|Ω− . The reverse inclusion η−1P(G ) ⊆ P(Y ) is already
known; so η−1P(G ) and P(Y ) always have the same restriction to the subset Ω−
of Ω ′. 12

13.6 Change of Measure

On C([0,∞),Rd), define for each t ≥ 0, Yt (ω) := ω(t) = (Y1(t), · · · , Yd(t)), the
coordinate random variables. The sigma fields Ft := σ {Ys; s ≤ t} and F∞ :=
σ {Ys; s ≥ 0}. Let P be a probability on C([0,∞),Rd) such that (Yt ,Ft ) is a
martingale with Y0 = 0 a.s. We will assume that < Y i, Y j >t = δij<Y>t and
that <Y> ↑ ∞ a.s. Let h(t) denote a fixed, deterministic, Rd -valued continuous
function. Define the probability measure Ph on C([0,∞),Rd) as follows:

Ph(A) := P(ω : Y.(ω)+ h ◦<Y>.(ω) ∈ A).

For a continuous martingale (Mt) with quadratic variation < M > we define
exp(M)t := exp(Mt − 1

2< M >t).
Let τt := inf{s > 0 : <Y>s > t}. The increasing process (τt ) induces a map

τ : C([0,∞),Rd) → C([0,∞),Rd) given by τ (ω) := ω′ where ω′(t) := ω(τt ).
Define τ−1F := σ {τ−1(A) : A ∈ F }. Then note that τ−1F = σ {Yτu : u ≥
0} ⊆ F where the equality can be seen by considering finite dimensional sets and
the inclusion follows by the measurability of each Yτu , u ≥ 0. Define τ−1(F )t :=
σ {τ−1(A) : A ∈ Ft }. As before, τ−1(F )t = σ {Yτu : 0 ≤ u ≤ t} ⊆ Fτt .
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Note that τ : (C([0,∞),Rd ), τ−1F ) → (C([0,∞),Rd),F ) given by the map
τ (ω) := ω ◦ τ = Yτ.(ω) is measurable and Bt := Yτt is a standard d-dimensional
Brownian motion. Note that FB := σ {Bu; u ≥ 0} = σ {Yτu; u ≥ 0} = τ−1F .
We write P1 ∼ P2 if P1 and P2 are mutually absolutely continuous measures on
C([0,∞),Rd).

Theorem 13.7 Let (Yt ,Ft ) be a pure martingale. Then Ph ∼ P on F if and only
if h(t) := ∫ t

0 ḣ(s) ds, ḣ = (ḣ1, · · · , ḣd ), ḣi ∈ L2[0,∞). Moreover, in this case, we

have Ph(A) =
∫
A
exp(M)t dP , A ∈ Ft where Mt :=

∫ t
0 ḣ ◦<Y>s dYs .

Proof We follow the proof in [15] given for Brownian motion. Suppose that Ph ∼ P

on F . Then Ph(A) = ∫
A
Zt dP where (Zt ) is a uniformly integrable (Ft , P )

martingale. Since Y is pure it has the CRP and hence the strong PRP. Hence there
exists V ∈ P(B) = P((τ−1Ft )),

∫∞
0 V 2 ◦ <Y>s d<Y>s < ∞, a.s. (P ) such

that Zt = exp(
∫ t

0 V ◦<Y>s dYs).
Hence under Ph,

Ỹt := Yt −
∫ t

0
V ◦<Y>s d<Y>s

is an Ft -martingale. Since < Ỹ >t = <Y>t a.s. Ph, we have by Lévy’s character-
ization (Ỹτt ) is a Brownian motion under Ph. In particular,

(Bt − ht )+ ht = Bt = Ỹτt +
∫ t

0
V (s) ds.

By a time change argument it follows that under Ph, B − h is a Brownian motion.
It follows by the uniqueness of the semi-martingale decomposition for (Bt ) that
h(t) := ∫ t

0 ḣ(s) ds where, almost surely, ḣ(s) = V (s), a.e. (s). In particular, it
follows that ḣ ∈ L2[0,∞).

Conversely, we assume h(t) := ∫ t
0 ḣ(s) ds, ḣ = (ḣ1, · · · , ḣd ), ḣi ∈ L2[0,∞).

Define

Q(A) :=
∫
A

exp(M)t dP, A ∈ F

where (Mt ) is as in the statement of the Theorem. Then Q is a probability on F .
We note that under Q, {Yt −

∫ t
0 ḣ ◦ <Y>s d<Y>s,Ft } is a martingale. We then

have

Q ◦ τ−1(A) = Q{ω : Y ◦ τ ∈ A} = P {Y ◦ τ ∈ A−
∫ .

0
ḣ(s) ds}

= P {Y ◦ τ + (

∫ ·

0
ḣ(<Y>s) d<Y>s) ◦ τ ∈ A}
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= P {Y +
∫ ·

0
ḣ(<Y>s) d<Y>s ∈ τ−1(A)}

= Ph{τ−1(A)}

where the second equality follows because underQ, Y ◦τ−∫ ·
0 ḣ(s) ds is a Brownian

motion. Thus Ph is equivalent to P on the sigma field τ−1(F ) = FB = F , where
the last equality follows from purity. 12
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Chapter 14
Explicit Laws for the Records
of the Perturbed Random Walk on Z

Laurent Serlet

Abstract We consider a nearest neighbor random walk on Z which is perturbed
when it reaches its extrema, as considered before by several authors. We give
invariance principles for the signs of the records, the values of the records, the
times of the records, the number of visited points, with explicit asymptotic Laplace
transforms and/or densities.

Keywords Perturbed random walk · Once-reinforced random walk · Perturbed
Brownian motion · Records · Invariance principle · Recurrence

14.1 Introduction

We consider a process (Xn)n≥0 with values in Z, started at 0 (X0 = 0), which is
a nearest neighbor random walk on Z that is, for every n ≥ 0, we have Xn+1 ∈
{Xn − 1,Xn + 1}. We denote its maximum and minimum up to time n by Xn =
max{X0,X1, . . . , Xn} and Xn = min{X0,X1, . . . , Xn}. We say that (Xn)n≥0 is a
perturbed random walk (PRW) with reinforcement parameters β, γ ∈ (0,+∞) if
the transition probability

P
(
Xn+1 = Xn + 1

∣∣X0,X1, . . . , Xn
)

is equal to

• 1/2 if Xn < Xn < Xn or n = 0
• 1/(1 + β) if Xn = Xn and n ≥ 1
• γ /(1 + γ ) if Xn = Xn and n ≥ 1.
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When β = γ = 1, we obtain a standard random walk (SRW). When β = γ , we
obtain a symmetric perturbed random walk (SPRW) with parameter β ∈ (0,+∞).
We interpret the case β > 1 as a self-attractive walk whereas for β ∈ (0, 1) the walk
is self-repulsive.

This process belongs to the broad class of processes with reinforcement which
has generated an important amount of literature. Pemantle gives in [7] a nice survey
with lots of references. More precisely, our PRW is sometimes called the once-
reinforced random walk. This once-reinforced random walk can also be defined in
Z
d for d > 1 and some fundamental questions are still open in these dimensions but,

in the present paper, we stay in dimension 1 which enables a much easier treatment
and in particular, explicit computations of laws.

In [4] and [5], Davis introduces a diffusive rescaling by setting Xnt = 1√
n
Xnt

(after linear interpolation ofX between integer times) and he proves that the process
(Xnt )t≥0 converges in law to a process (Wt )t≥0 which is the unique solution of the
equation

Wt = Bt − (β − 1) sup
s≤t

Ws + (γ − 1) inf
s≤t Ws (14.1)

where (Bt )t≥0 is a Brownian motion.
The solutions of (14.1) have been studied by several authors under the name

“Brownian motion perturbed at its extrema”, see for instance [2–5, 8, 10] and the
references therein.

The present paper uses a different approach since it is based on explicit
computations for the random walk and we get results on the limiting continuous
objects as by-products. The methods are similar to those in [9] where we treated the
case of the reflecting random walk perturbed at the maximum. We will of course
refer to this paper for several proofs which are identical to that case. However since
our approach is based on explicit computations, the non-reflecting case generates
different formulas than the reflecting case and the non-reflecting case also adds new
questions related to the signs, that we address in the present paper.

Since the PRW behaves as a SRW when it stays away from the extrema, we
concentrate on the study of the process when it reaches an extremum, in particular
for the first time and in that case we call it a record time. More precisely, we set

Vk = Xk −Xk + 1

for the number of visited points up to time k i.e. the number of distinct values in the
set {X0,X1, . . . , Xk}. Then we define T0 = 0 and for n ≥ 1, we call

Tn = inf{k ≥ 1; Vk = n+ 1}

the time of the n-th record. Then Rn = XTn is the value of the n-th record and
the sign of Rn is denoted by χn ∈ {−1, 1}. As we will see the sequence (χn)n≥1
is a time-inhomogeneous Markov chain for which the transition matrix is easily
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computed. As a consequence we will derive an invariance principle. We will also
note that the record values (Rn)n≥0 can be reconstructed from the sequence of signs
(χn)n≥1 and thus derive an invariance principle for the record values.

Then we introduce the rescaled record time process (τnt )t≥0 by

τnt = 1

n2 T[nt ] (14.2)

where [·] denotes the integer part. We want an invariance principle for this process.
First we work conditionally on the record signs and then without conditioning.
Unfortunately in this latter case, we are unable to obtain a result in the general
case and we restrict to symmetric perturbation (β = γ ).

This invariance principle has consequences on the process of the number of
visited points (Vk)k≥1. As in the standard case, Vk is of order

√
k and we obtain

in particular the asymptotic law of Vk/
√
k. Finally we will examine the possibility

of “positive recurrence” for the PRW.
The paper is organized as follows. The next section is a precise statement of our

main results, ending with two open questions. The following sections are devoted to
proofs, beginning with a section of technical preliminary lemmas.

14.2 Statement of the Results

Most of the processes that we consider in this section have their trajectories
in the space d([0,+∞),R) of càdlàg functions that we endow with the usual
Skorohod topology. Weak convergence of probability laws on this space is simply
called in the sequel “convergence in law”. However special care will be needed in
Proposition 14.2 where we have to restrict to compact intervals of (0,+∞). In the
sequel the notations cosh, sinh and tanh refer to the usual functions of hyperbolic
trigonometry.

Let (Xn)n≥0 denote a PRW with parameters β, γ ∈ (0,+∞). First note that
the sequence of record values (Rn)n≥0 is easily reconstructed from the sequence of
record signs (χn)n≥1 because, for any n ≥ 1,

Rn = χn

n∑
k=1

1{χk=χn} (14.3)

and it justifies that we first focus on (χn)n≥1. We start with an easy fact.

Proposition 14.1 The sequence of the signs of records (χn)n≥1 of the PRW is a
time-inhomogeneous Markov chain with transition matrix

Qn =
(

β+n
γ+β+n

γ
γ+β+n

β
γ+β+n

γ+n
γ+β+n

)
. (14.4)
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We notice that the off-diagonal terms of this transition matrix are of order 1/n so
we speed up time by factor n to get a limit in law.

14.2.1 Asymptotic Results for the Signs of Records

Proposition 14.2 Let the rescaled sequence of the record signs of the PRW be
defined by

∀t > 0, χnt = χ[nt ]. (14.5)

There is a process (xt )t∈(0,+∞) with values in {−1,+1} uniquely defined in law
such that, for any a > 0,

P(xa = −1) = β

β + γ
; P(xa = 1) = γ

β + γ
(14.6)

and (xt )t∈(a,+∞) is a time-inhomogeneous Markov jump process with generator

(− γ
t

γ
t

β
t

−β
t

)
(14.7)

and transition probability matrix

T (s, t) = 1

β + γ

⎛
⎝ β + γ

(
s
t

)β+γ
γ
(

1 − (
s
t

)β+γ )
β
(

1 − (
s
t

)β+γ )
γ + β

(
s
t

)β+γ
⎞
⎠ . (14.8)

For all 0 < a < b, the sequence of processes (χnt )t∈[a,b] converges in law to
(xt )t∈[a,b], as laws on the space D([a, b], {−1, 1}) of càdlàg functions from [a, b]
to {−1, 1} endowed with the Skorohod topology.

Let us remark that setting x̃t = xet for t ∈ R gives a new process (x̃t )t∈R which
is a time-homogeneous Markov jump process on {−1, 1} or, in other words, an
alternating renewal process.

14.2.2 Consequences on the Sequence of Records

We derive a corollary which is the continuous-time counterpart of (14.3).

Corollary 14.3 Let (yt )t>0 be the process defined by

∀t > 0, yt = xt

∫ t

0
1{xu=xt } du

where (xt )t>0 is the process introduced in Proposition 14.2.
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Then, the process (R[nt ]/n)t>0 converges in law to the process (yt )t>0.

In particular Rn/n converges in law to y1. One must not be deceived by the formula

Rn

n
=

{− 1
n

∑n
k=1 1{χk=−1} if χn = −1

1
n

∑n
k=1 1{χk=1} if χn = 1

(14.9)

(which is a reformulation of (14.3)) and the fact that (χn)n≥1 is a Markov chain
converging in law to the probability β/(β + γ ) δ−1 + γ /(β + γ ) δ+1. In the
time-homogeneous case, (14.9) would imply by the ergodic Theorem that Rn/n
accumulates almost surely on the two limit points − β

β+γ and γ
β+γ . But here the

Markov chain (χn)n≥1 is time-inhomogeneous and the almost sure behaviour of
Rn/n is completely different as one can see in the following proposition which
holds whatever the values of β, γ ∈ (0,+∞).

Proposition 14.4 Almost surely, the sequence {Rn/n; Rn > 0} has limsup 1 and
liminf 0 and similarly {Rn/n; Rn < 0} has limsup 0 and liminf -1 that is, for all
ε ∈ (0, 1) and N ≥ 1 there exist n1, n2, n3, n4 ≥ N such that

Rn1

n1
> 1 − ε, 0 <

Rn2

n2
< ε, −ε < Rn3

n3
< 0,

Rn4

n4
< −1 + ε.

14.2.3 Invariance Principle for the Record Times,
Conditionally on the Signs

We pass to the study of (τnt )t≥0 the rescaled process of the record times of the PRW
as defined by (14.2).

We have seen in the previous subsection the convergence in law of the rescaled
record signs (on compact sets away from 0). By the Skorohod representation
Theorem, we could suppose—concerning the properties that involve the law—that
this convergence holds almost surely. In that case, we want to show the convergence
of the conditional law of (rescaled) record times knowing these (rescaled) record
signs. Let us introduce some notation. Let (xn(t))t>0 be a sequence of càdlàg
functions taking their values in {−1,+1} which converges to a function (x(t))t>0
with respect to the Skorohod topology when t varies in any compact sets of
(0,+∞). We set, for 0 ≤ s < t , D(x; s, t) = {r ∈ (s, t); x(r−) �= x(r)} for
the set of discontinuities of x(·) and similarly D(xn; ·, ·) for xn(·). We suppose that
D(xn; 0,+∞) ⊂ 1

n
N for all n and that D(x; s, t) is finite for all 0 < s < t < +∞.

Proposition 14.5 As n→ +∞, the conditional law of (τnt )t≥0 knowing (χnt )t>0 =
(xn(t))t>0 converges weakly to the law of a process (τ (x)t )t≥0—defined condi-
tionally on (x(t))t>0—such that it has independent non-negative increments with
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distribution given, for 0 < s < t , by the Laplace transform

E

[
e−

μ2

2 (τ
(x)
t −τ (x)s )

]
=

⎛
⎝ ∏
r∈D(x;s,t)

μ r

sinh(μ r)

⎞
⎠

× exp

[∫ t

s

δ(x(u))

(
1

u
− μ cothμu

)
du

]
(14.10)

where

δ(y) = β 1{y=1} + γ 1{y=−1}.

In the case of the SPRW (i.e. β = γ ), this formula simplifies into

E

[
e−

μ2

2 (τ
(x)
t −τ (x)s )

]
=

(
sinh(μ s)

μ s

)β ⎛
⎝ ∏
r∈D(x;s,t)

μ r

sinh(μ r)

⎞
⎠ (

μ t

sinh(μ t)

)β
.

(14.11)

14.2.4 Invariance Principle for the Record Times of the SPRW

Our goal is to state an invariance principle for (τnt )t≥0 without any conditioning.
But the same approach as the one leading to Proposition 14.5 stumbles over a
computational difficulty that we will explain later and we are compelled to restrict
to the case of symmetric perturbation.

Theorem 14.6 Let (τnt )t≥0 be the rescaled record process of the SPRW (β = γ ).
Then, as n → +∞, the process (τnt )t≥0 converges in law to a process (τt )t≥0

with independent non-negative increments whose law is given, for 0 < s < t , by the
Laplace transform

E

[
e−

μ2

2 (τt−τs )
]
=

(
cosh(μ2 s)

cosh(μ2 t)

)2 β

.

This process has strictly increasing trajectories and is self-similar:

∀a > 0, (τa t )t≥0
(d)= (a2 τt )t≥0. (14.12)

For any t > 0, the density of τt on (0,+∞) is a (signed) mixture of 1/2-stable laws:

φτt : x → 22β

√
2π

+∞∑
k=0

(−2 β

k

)
(β + k) t

x3/2 e−
(β+k)2 t2

2 x (14.13)
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(using the usual notation (14.18)). Moreover we have the representation

τt =
∫ t

0

∫
R+
x N (ds dx)

where N (ds dx) is a Poisson point measure on R+×R+ with intensity fs(x) ds dx
where

fs(x) = 2 π2

s3 β

+∞∑
n=1

(2n− 1)2 e
− (2n−1)2π2

2
x

s2 .

14.2.5 Criterion of Positive Recurrence for the PRW

From the value of the transition matrix (14.4), it is clear that the signs of records
cannot be asymptotically constant; indeed the infinite product of the diagonal terms
of that transition matrix tends to 0. The PRW, whatever its parameters β, γ ∈
(0,+∞), is thus recurrent in the sense that every level is visited infinitely often,
as it is the case for the SRW. But compared to the SRW which is null recurrent, the
PRW can also become “positive recurrent” if the reinforcement parameters are high
enough that is if the process is sufficiently self-attractive. We define the notion of
positive recurrence in the non-Markov setting of PRW as follows but note that this
property clearly implies that the return time to any level has finite mean. For q ≥ 1,
we introduce

Cq = inf{j > q; χj = −χq}

as the index of the first record after record q of opposite sign. We say that the PRW
is positive recurrent if and only if, for every integer q ≥ 1,

E
(
TCq − Tq

)
< +∞.

Theorem 14.7 The PRW is positive recurrent if and only if β, γ ∈ (2,+∞).

14.2.6 Number of Visited Points for the SPRW

The number of visited points of the PRW is the inverse of the record time process:
Vk = inf{n ≥ 1; Tn > k}. In the case of the SPRW (β = γ ) the invariance principle
stated in Theorem 14.6, with limit process (τt )t≥0, implies an invariance principle
for (Vk)k≥1.
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Proposition 14.8 Let (Ys)s≥0 be the non-decreasing process defined by Ys =
inf{t; τt > s}. This process has continuous trajectories and is self-similar:

∀a > 0, (Ya s)s≥0
(d)= (

√
a Ys)s≥0. Its marginal laws are

∀s > 0, Ys
(d)=

√
1

τ1/
√
s

(d)=
√
s

τ1
(14.14)

and, for any s > 0, the variable Ys admits the density on R+ given by:

φYs (x) =
2 s

x3
φτ1

( s
x2

)
(14.15)

= 22β+1

√
2π s

+∞∑
k=0

(−2β

k

)
(β + k) e−

(β+k)2 x2

2 s . (14.16)

Moreover, as k → +∞, the process
(
V[ks]√
k

)
s≥0

converges in law to the process

(Ys)s≥0.

As a corollary of the invariance principle for the PRW proved by Davis, we have
the representation

Ys = max
u∈[0,s]Wu − min

u∈[0,s]Wu (14.17)

where (Wu) is the perturbed Brownian motion as introduced in (14.1).
Also the process (τt )t≥0 obtained in Theorem 14.6 is the inverse of (Ys)s≥0. As

a consequence it can be interpreted in terms of the perturbed Brownian motion via
the representation (14.17) of (Ys)s≥0 given above.

14.2.7 Open Questions

Here are two questions we were unable to solve:

• find the law of y1; this will describe how “non-centered” the range can be,
asymptotically;

• obtain a generalization of Theorem 14.6 to the case β �= γ .

As we will see later, both questions amount to find the value of an infinite matrix
product. Alternatively the question about the law of y1 can also be stated in terms
of alternating renewal process.
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14.3 Preliminary Lemmas

In the sequel we will use the classical notation of matrix exponential:

exp[M] =
+∞∑
k=0

1

k! M
k

for any real or complex square matrix M . We also recall the usual notation for
generalized binomial coefficients

(−β
k

)
=

k∏
j=1

−β − j + 1

j
= (−1)k

k!
Γ (k + β)

Γ (β)
(14.18)

where Γ ( · ) is the classical Gamma function. Let 0 < s < t be fixed. We introduce
a notion of approximate equality of two quantities a(k, n) and b(k, n) up to terms
of order 1/n2 by

a(k, n) ≈ b(k, n)⇔ sup
n≥1; [ns]≤k≤[nt ]

n2 |a(k, n)− b(k, n)| < +∞. (14.19)

Denote by Md×d the set of real d × d matrices. If A(k, n) = (
Ax,y(k, n)

)
1≤x,y≤d

and B(k, n) = (
Bx,y(k, n)

)
1≤x,y≤d belong to Md×d , we extend the previous notion

by setting A(k, n) ≈ B(k, n) if and only if Ax,y(k, n) ≈ Bx,y(k, n) for all x, y.

Lemma 14.9 Let us suppose that g(·) is a Md×d -valued function which is
continuous on [s, t] and f (k, n) is a Md×d -valued function such that

f (k, n) ≈ I + 1

n
g

(
k

n

)
.

Then

lim
n→+∞

[nt ]∏
k=[ns]

f (k, n) = lim
n→+∞

[nt ]∏
k=[ns]

exp

[
1

n
g

(
k

n

)]
(14.20)

provided the limit on the right-hand side exists. Moreover, when g(x) g(y) =
g(y) g(x) for all x, y ∈ [s, t], then

lim
n→+∞

[nt ]∏
k=[ns]

f (k, n) = exp

[∫ t

s

g(x) dx

]
. (14.21)
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Proof As all matrix norms induce the same topology we may choose a matrix norm
|| · || which has the supplementary property that ||AB|| ≤ ||A|| ||B|| for all matrices
A,B and, as a consequence, || exp[A]|| ≤ e||A||. Also, using this property of the
norm, the assumption easily implies that

f (k, n) = exp

[
1

n
g

(
k

n

)]
+ 1

n2 R(k, n) with sup
n≥1

sup
[ns]≤k≤[nt ]

||R(k, n)|| < +∞.

Then we have

[nt ]∏
k=[ns]

f (k, n) =
[nt ]∏
k=[ns]

exp

[
1

n
g

(
k

n

)]
+ Rem

where the remainder term is

Rem =
[nt ]−[ns]+1∑

j=1

∑
J :#(J )=j

[nt ]∏
k=[ns]

(
exp

[
1

n
g

(
k

n

)]
1{k �∈J } + 1

n2 R(k, n) 1{k∈J }
)
.

But the term in the product on the right-hand side has a norm bounded by eH∞/n if
k �∈ J and by R∞/n2 if k ∈ J where H∞ and R∞ are two constants. It follows that

||Rem|| ≤
[nt ]−[ns]+1∑

j=1

([nt] − [ns] + 1

j

)(
e
H∞
n

)[nt ]−[ns]+1−j (
R∞
n2

)j

=
(
e
H∞
n + R∞

n2

)[nt ]−[ns]+1

−
(
e
H∞
n

)[nt ]−[ns]+1

=
(
e
H∞
n

)[nt ]−[ns]+1

⎡
⎣
(

1 + R∞ e−
H∞
n

n2

)[nt ]−[ns]+1

− 1

⎤
⎦ .

The first term is bounded and the second one tends to zero; hence the remainder term
converges to zero and we get (14.20). When the commutation property is satisfied
by g, the classical property of the matrix exponential entails

[nt ]∏
k=[ns]

exp

[
1

n
g

(
k

n

)]
= exp

⎡
⎣ [nt ]∑
k=[ns]

1

n
g

(
k

n

)⎤⎦

and (14.21) follows immediately by a Riemann sum argument.
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Lemma 14.10 Let (Yn)n≥1 be a sequence of nonnegative random variables, ν be a
probability on R+ and denote its Laplace transform by

Lν(μ) =
∫ +∞

0
e−

μ2

2 x ν(dx).

Assume that

lim
n→+∞E

[(
1

cosh(μ/n)

)Yn]
= Lν(μ)

uniformly with respect to μ belonging to a compact neighborhood of any positive
value.

Then Yn
n2 converges in law to ν.

Proof Easy and omitted.

The following elementary lemma is for instance a part of Lemma 12 of [9] but
we recall it for the convenience of the reader.

Lemma 14.11 (Time Spent in a Strip by a SRW) Let (Xn)n≥0 be a SRW started
at 1 and ξ be the hitting time of {0, k}. Then

J+1(k, λ) = E

[
(coshλ)−(1+ξ) 1{Xξ=0}

]
= 1 − tanhλ

tanh(kλ)
(14.22)

and

J−1(k, λ) = E

[
(coshλ)−(1+ξ) 1{Xξ=k}

]
= tanhλ

sinh(kλ)
. (14.23)

Lemma 14.12 (Time Needed for the PRW to Exit the Strip of Visited Points)
Let k ∈ {1, 2, 3, . . . } and (Xn)n≥0 be the Markov chain on Z whose transition
probabilities (p(x, y); x, y ∈ Z) are given by

• p(x, x + 1) = p(x, x − 1) = 1/2 if x ∈ {1, . . . , k − 1}
• p(0, 1) = γ

1+γ , p(0,−1) = 1
1+γ

• p(k, k + 1) = 1
1+β , p(k, k − 1) = β

1+β ,

other transition probabilities being irrelevant for what follows. Let ζ be the hitting
time of {−1, k + 1}. We use the notation Ea[ · ] = E[ · | X0 = a] and define,

Gk(λ, 1, 1) = Ek

[
(coshλ)−ζ 1{Xζ=k+1}

]
(14.24)

Gk(λ,−1,−1) = E0
[
(coshλ)−ζ 1{Xζ=−1}

]
(14.25)

Gk(λ, 1,−1) = Ek

[
(coshλ)−ζ 1{Xζ=−1}

]
(14.26)

Gk(λ,−1, 1) = E0
[
(coshλ)−ζ 1{Xζ=k+1}

]
. (14.27)
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Then we have

Gk(λ, 1, 1) = coshλ sinh(kλ)+ γ sinh λ cosh(kλ)

Dk(λ)
(14.28)

Gk(λ,−1,−1) = coshλ sinh(kλ)+ β sinhλ cosh(kλ)

Dk(λ)
(14.29)

Gk(λ, 1,−1) = β sinh λ

Dk(λ)
(14.30)

Gk(λ,−1, 1) = γ sinhλ

Dk(λ)
(14.31)

where

Dk(λ) = sinh(kλ)
(

1 + (1 + βγ ) sinh2 λ
)
+ β + γ

2
sinh(2λ) cosh(kλ).

(14.32)

Proof Let us start withGk(λ,−1,−1). To simplify notation we set z = 1/(coshλ).
We condition on the value of X1 to get

Gk(λ,−1,−1) = 1

1 + γ
z + γ

1 + γ
E1

[
z1+ξ+ζ◦θξ 1{Xξ+ζ◦θξ =−1}

]

where ξ is the duration needed to reach {0, k} and ζ ◦ θξ is the duration needed after
that time to hit −1 or k+ 1. We now use the strong Markov property at the stopping
time ξ to get

E1

[
z1+ξ+ζ◦θξ 1{Xξ+ζ◦θξ =−1}

]
= E1

[
z1+ξ 1{Xξ=0} E0

(
zζ 1{Xζ=−1}

)]

+ E1

[
z1+ξ 1{Xξ=k} Ek

(
zζ 1{Xζ=−1}

)]

= J+1(k, λ)Gk(λ,−1,−1)+ J−1(k, λ)Gk(λ, 1,−1)

where J−1(k, λ) and J1(k, λ) are the functions introduced in Lemma 14.11. So we
get a first equation on theGk’s as displayed on the first line below and we add three
more equations by similar reasoning:

Gk(λ,−1,−1) = 1

1 + γ
z+ γ

1 + γ
J+1(k, λ)Gk(λ,−1,−1)

+ γ

1 + γ
J−1(k, λ)Gk(λ, 1,−1)

Gk(λ, 1, 1) = 1

1 + β
z+ β

1 + β
J+1(k, λ)Gk(λ, 1, 1)

+ β

1 + β
J−1(k, λ)Gk(λ,−1, 1)



14 Records of the Perturbed Random Walk 507

Gk(λ,−1, 1) = γ

1 + γ
J+1(k, λ)Gk(λ,−1, 1)+ γ

1 + γ
J−1(k, λ)Gk(λ, 1, 1)

Gk(λ, 1,−1) = β

1 + β
J+1(k, λ)Gk(λ, 1,−1)+ β

1 + β
J−1(k, λ)Gk(λ,−1,−1).

From the second and third equations we derive

Gk(λ,−1, 1) =
1

1+β
γ

1+γ z J−1(k, λ)(
1 − β

1+β J1(k, λ)
) (

1 − γ
1+γ J1(k, λ)

)
− β

1+β
γ

1+γ J
2−1(k, λ)

.

We replace J−1(k, λ) and J1(k, λ) by their explicit values in terms of hyperbolic
trigonometric functions. After a few lines of computation, we get (14.31). Then,
by the third equation of the system above we obtain (14.28). Finally, (14.30)
and (14.29) can be obtained by the substitution γ ↔ β.

14.4 Signs of Records of the PRW

We start with the proof of Proposition 14.1. The fact that (χn)n≥1 is a (time-
inhomogeneous) Markov chain is clear. For n ≥ 1 and x, y ∈ {−1, 1}, the transition
probabilities are given by

pn(x, y) = P(χn+1 = y |χn = x) = lim
λ→0

Gn(λ, x, y) (14.33)

where the Gn’s were introduced in (14.24)–(14.27) (for the second equality above
apply Lebesgue’s dominated convergence Theorem). Using the explicit values given
by (14.28)–(14.31), it is straightforward to compute these limits and this completes
the proof of (14.4).

We pass to the proof of Proposition 14.2. The requirements on (xt )t∈(0,+∞) im-
pose the finite-dimensional marginal laws thus the uniqueness in law of (xt)t∈(0,+∞)

is clear. The existence of this law is a consequence of the standard Kolmogorov
extension Theorem, the compatibility condition following from the invariance of
the probability defined by (14.6) for the transition matrices T (s, t).

In order to prove the convergence in law of (χnt )t∈[r,A], for any 0 < r < A, we
first show the tightness. Recalling for instance Corollary 7.4 of [6], it suffices, in the
present context, to show that, for any η > 0, we may find δ > 0 such that for all n
large enough, the probability that (χnt )t∈[r,A] has two jumps separated by less than
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δ is lower than η. But this probability is lower than

[nA]∑
k=[nr]

[nδ]∑
j=1

P
(
χk+1 = −χk , χk+j+1 = −χk+j

)

≤
[nA]∑
k=[nr]

[nδ]∑
j=1

β ∨ γ
β + γ + k

β ∨ γ
β + γ + k + j

. (14.34)

Using the usual expansion of the partial sums of the harmonic series, we have

[nδ]∑
j=1

β ∨ γ
β + γ + k + j

≤ c log

(
1 + nδ

k

)

so that we can bound the expression (14.34) above by

c

[nA]∑
k=[nr]

1

k
log

(
1 + nδ

k

)
≤ c

∫ [nA]/n

([nr]−1)/n

1

x
log

(
1 + δ

x

)
dx

and this quantity tends to 0 as δ ↓ 0, uniformly in n large enough. This ends the
proof of tightness.

To complete the proof of the proposition, it suffices to show firstly that, for r > 0,
the law of χnr converges to the law given by (14.6) which will follow from

lim
n→+∞

[nr]∏
k=1

Qk = 1

β + γ

(
β γ

β γ

)
(14.35)

and secondly that the transition kernels also converge that is, for all t > s > 0,

lim
n→+∞

[nt ]∏
k=[ns]

Qk = T (s, t). (14.36)

We will only prove (14.36) since (14.35) is similar. Note that Qk = I + 1
β+γ+kA

where

A =
(−γ γ

β −β
)
= Ω

(
0 0
0 −β − γ

)
Ω−1

with

Ω =
(

1 γ

1 −β
)

and Ω−1 = 1

β + γ

(
β γ

1 −1

)
.
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We deduce that

lim
n→+∞

[nt ]∏
k=[ns]

Qk = Ω

(
1 0
0 L

)
Ω−1 (14.37)

where

L = lim
n→+∞

[nt ]∏
k=[ns]

(
1 − β + γ

β + γ + k

)
(14.38)

but this limit L is easily shown to be (s/t)β+γ , for instance by expressing the
product in values of the Gamma function and using the fact that, for a > 0, as
x → +∞,

Γ (x + a)

Γ (x)
∼ xa. (14.39)

Finally we check that the matrix product on the right-hand side of (14.37) is equal
to T (s, t) and it concludes the proof.

14.5 Record Values of the PRW

Let us start with the proof of Corollary 14.3. We rewrite (14.3) as

Rk = χk

(
1 +

∫ k

1
1{χ[u]=χk} du

)

Changing the variable in the integral and substituting [nt] for k we get

1

n
R[nt ] = χnt

(
1

n
+

∫ [nt ]/n

1/n
1{χny=χnt } dy

)
.

For our purpose of convergence in law, by Skorohod representation Theorem and
Proposition 14.2, we can suppose that, almost surely, (χnt ) converges to (xt ) in
the Skorohod topology over every compact of (0,+∞). It follows easily that the
right-hand side above converges—again with respect to the Skorohod topology
over all compacts of (0,+∞)—to the process (yt ) defined in the statement of the
proposition.

We now give a proof of Proposition 14.4. As was noticed by Formula (14.3), the
sequence (Rn)n≥1 can be reconstructed from the sequence of record signs (χn)n≥1.
The idea is to show that there are long sequences of records with the same sign.
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Let q be a large integer. For k ≥ 1 we introduce the events

A1
k = {χq4k = 1},

A2
k =

{
∀j ∈ [q4k, q4k+1], χj = χq4k = 1

}
,

A3
k =

{
∃!j0 ∈ (q4k+1, q4k+2), χj0+1 = −χj0

}
,

A4
k =

{
∀j ∈ [q4k+2, q4k+3], χj = χq4k+2 = −1

}
,

and Ak = A1
k ∩ A2

k ∩ A3
k ∩ A4

k . The probability of A1
k converges to γ /(β + γ ) as

k → +∞. The probability of A1
k ∩ A2

k is equal to P(A1
k) multiplied by

q4k+1−1∏
j=q4k

(
1 − β

β + γ + j

)
= Γ (β + γ + q4k) Γ (γ + q4k+1)

Γ (γ + q4k) Γ (β + γ + q4k+1)
.

This term converges to q−β > 0 using (14.39).
Thus we claim that P(A1

k ∩ A2
k) is bounded from below by a positive constant.

Now P(A1
k ∩ A2

k ∩A3
k) is equal to P(A1

k ∩ A2
k) multiplied by

q4k+2−1∑
j0=q4k+1+1

j0−1∏
j=q4k+1

(
1 − β

β + γ + j

)
β

β + γ + j0

q4k+2−1∏
j=j0+1

(
1 − γ

β + γ + j

)

which is bounded from below by a positive constant, by the same arguments as
above. Now P(Ak) = P(A1

k ∩A2
k ∩A3

k ∩A4
k) is equal to P(A1

k ∩A2
k ∩A3

k)multiplied
by

q4k+3−1∏
j=q4k+2

(
1 − γ

β + γ + j

)

and repeating once more the same arguments we obtain finally that P(Ak) is
bounded from below by a positive constant. We deduce that with positive probability
the events Ak holds infinitely often. Note that on Ak, we have

Rq4k+1

q4k+1 ≥ q4k+1 − q4k

q4k+1 = 1 − 1

q
,

Rq4k+3

q4k+3 ≤ −q
4k+3 − q4k+2

q4k+3 = −
(

1 − 1

q

)
,
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0 >
Rj0+1

j0 + 1
≥ −q4k

q4k+1 = − 1

q
,

0 <
Rj1

j1
≤ q4k+2

q4k+3 = 1

q
,

where j1 denotes the time of the first change of sign of χn after time q4k+3. From
these remarks we deduce that the statements of Proposition 14.4 hold with positive
probability. To conclude with probability 1 and thus complete the proof, we use the
following zero-one law.

Proposition 14.13 (Zero-One Law) Every event in the asymptotic σ -algebra

A(χ) =
⋂
n

σ (χk; k ≥ n)

has probability zero or one.

Proof Let A belong to A(χ) and take B ∈ σ(χk; k ≤ m) of the form

B = {χ1 = x1, . . . , χm = xm}

where x1, . . . , xm ∈ {−1, 1}. Take any n > m. Since A ∈ σ(χk; k ≥ n) we may
write

P(A |B)− P(A) = P(A|χm = xm)− P(A)

= P(A|χn = 1) [P(χn = 1|χm = xm)− P(χn = 1)]
+ P(A|χn = −1) [P(χn = −1|χm = xm)− P(χn = −1)].

(14.40)

By the same computation as the one leading to (14.35), we obtain

lim
n→+∞

(
P(χn = −1|χm = −1) P(χn = 1|χm = −1)
P(χn = −1|χm = 1) P(χn = 1|χm = 1)

)

= lim
n→+∞

n−1∏
k=m

Qk = 1

β + γ

(
β γ

β γ

)

so that both quantities in square brackets in (14.40) tend to zero as n→ +∞. As a
consequence P(A|B) = P(A) i.e. A is independent of B. Since this holds for all B
of the specified form, in particular for all m, we deduce that A(χ) is independent of
the σ -algebra generated by all the variables χi, i ≥ 1. But this σ -algebra contains
A(χ). Hence A(χ) is independent of itself which ends the proof.
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14.6 Record Times of the PRW: Conditional Case

Let us prove Proposition 14.5. We first concentrate on the convergence of finite-
dimensional marginal laws. We will give the justification of tightness at the end of
Sect. 14.7.

For x, y ∈ {−1, 1} and k ≥ 1, the quantity

G̃k(λ, x, y) = E

[(
1

coshλ

)Tk+1−Tk ∣∣∣ χk = x, χk+1 = y

]
(14.41)

is equal toGk(λ, x, y)/pk(x, y) because of (14.24)–(14.27) and (14.33). For further
reference we gather the explicit values in a matrix:

(
G̃k(λ,−1,−1) G̃k(λ,−1, 1)
G̃k(λ, 1,−1) G̃k(λ, 1, 1)

)
= k + β + γ

Dk(λ)
· · ·

· · · ×
(

cosh λ sinh kλ+β sinhλ coshkλ
k+β sinh λ

sinh λ coshλ sinhkλ+γ sinhλ coshkλ
k+γ

)
, (14.42)

recalling the Dk(λ) is given by (14.32). The increments of the record times Tk+1 −
Tk, k ≥ 1 are independent random variables, even conditionally on the record signs
(χk)k≥1. It follows that

E

[(
1

coshλ

)T[nt]−T[ns] ∣∣∣ (χk)k≥1 = (xn(k/n))k≥1

]

=
[nt ]−1∏
k=[ns]

G̃k

(
λ, xn

(
k

n

)
, xn

(
k + 1

n

))

=
∏

[ns] ≤ k < [nt]
xn(k/n) �= xn((k + 1)/n)

(sinhλ)
k + β + γ

Dk(λ)

∏
[ns] ≤ k < [nt]

xn(k/n) = xn((k + 1)/n)

×
(k + β + γ )

(
coshλ sinh(kλ)+ δ̃(xn(k/n)) sinhλ cosh(kλ)

)

Dk(λ)
(
k + δ̃(xn(k/n))

)

where δ̃(x) = γ if x = 1 and δ̃(x) = β if x = −1. We denote the set of
discontinuities of the càdlàg function xn(·) over [s, t] by D(xn; s, t) = {r ∈
(s, t); xn(r−) �= xn(r)}. In order to get the asymptotic behaviour, we regroup
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the terms and set λ = μ
n

:

E

[(
1

cosh μ
n

)T[nt]−T[ns] ∣∣∣ (χk)k≥1 =
(
xn

(
k

n

))
k≥1

]

=
[nt ]−1∏
k=[ns]

(k + β + γ )
(

cosh μ
n

sinh
(
k μ
n

)
+ δ̃

(
xn

(
k
n

))
sinh μ

n
cosh

(
k μ
n

))

Dk
(
μ
n

) (
k + δ̃

(
xn

(
k
n

)))

×
∏

k+1
n

∈D(xn;s,t)

sinh
(
k μ
n

) (
k + δ̃

(
xn

(
k
n

)))
(

cosh μ
n

sinh
(
k μ
n

)
+ δ̃

(
xn

(
k
n

))
sinh μ

n
cosh

(
k μ
n

)) .
(14.43)

Let us now perform asymptotic expansions up to the order 1/n2 in the sense
of (14.19). We obtain that

Dk

(μ
n

)
≈ sinh

(
k μ

n

)
+ (β + γ )

μ

n
cosh

(
k μ

n

)
.

Also we get

(k + β + γ )(
k + δ̃

(
xn

(
k
n

))) ≈ 1 + 1

n

(
β + γ − δ̃

(
xn

(
k

n

)))
1

k/n

≈ 1 + 1

n
δ

(
xn

(
k

n

))
1

k/n
,

recalling that δ(y) = β + γ − δ̃(y). Then we do similarly for the other terms
in (14.43). Now we use Lemma 14.9 (1-dimensional case) to deduce that

lim
n→+∞

[nt ]−1∏
k=[ns]

(k + β + γ )
(

cosh μ
n

sinh
(
k μ
n

)
+ δ̃

(
xn

(
k
n

))
sinh μ

n
cosh

(
k μ
n

))

Dk
(μ
n

) (
k + δ̃

(
xn

(
k
n

)))

= exp

(∫ t

s

δ(x(u))

(
1

u
− μ cothμu

)
du

)
. (14.44)

To be precise we apply this Lemma a finite number of time, on each interval where
δ(xn(·)) is constant and at the limit, reunite all the integrals over these intervals into
a single one.
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The set D(x; s, t) is finite and the convergence of (xn(r))s≤r≤t toward
(x(r))s≤r≤t with respect to the Skorohod topology implies that, for any continuous
function ϕ,

lim
n→+∞

∏
k+1
n ∈D(xn;s,t)

ϕ(k/n) =
∏

r∈D(x;s,t)
ϕ(r).

As a consequence we deduce that,

lim
n→+∞

∏
k∈D(xn;s,t)

sinh
(
k μ
n

) (
k + δ̃

(
xn

(
k
n

)))
(

cosh μ
n

sinh
(
k μ
n

)
+ δ̃

(
xn

(
k
n

))
sinh μ

n
cosh

(
k μ
n

))

=
∏

r∈D(x;s,t)

μr

sinhμr
.

Moreover by inspecting all the proof we see that the limits above are uniform for μ
varying in any compact neighborhood of a fixed positive value. By Lemma 14.10,
the proof of the convergence of finite-dimensional marginal laws is complete.

14.7 Record Times of the PRW: Unconditional Case

We start with the general case β, γ ∈ (0,+∞) to see how far we can go before
being compelled to restrict to β = γ . The main step is to compute the limit in law
of a rescaled increment (T[nt ] − T[ns])/n2 and, as before, this is done by computing
the limit of

E

[(
1

cosh μ
n

)T[nt]−T[ns]]
.

We set λ = μ/n and z = 1/ coshλ, as before. By the repeated use of the Markov
property and the definition of Gk(·, ·, ·), we get, for fixed x[ns] ∈ {−1, 1},

E

[
zT[nt]−T[ns]

∣∣∣ χ[ns] = x[ns]
]

=
∑

xk ∈ {−1, 1}
[ns] < k ≤ [nt]

E

⎡
⎣
⎛
⎝[nt ]−1∏
k=[ns]

zTk+1−Tk
⎞
⎠ [nt ]∏
k=[ns]+1

1{χk=xk}
∣∣∣ χ[ns] = x[ns]

⎤
⎦
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=
∑

xk ∈ {−1, 1}
[ns] < k ≤ [nt]

[nt ]−1∏
k=[ns]

Gk(λ, xk, xk+1)

=
∑

x[nt]∈{−1,1}

⎛
⎝[nt ]−1∏
k=[ns]

Gk(λ)

⎞
⎠ (x[ns], x[nt ]) (14.45)

whereGk(λ) = (Gk(λ, x, y))x,y∈{−1,1} is a 2 × 2 matrix. We recall that

Gk(λ) = coshλ sinh(kλ)

Dk(λ)

(
1 + β tanhλ cotanh(k λ) γ tanhλ

sinh(kλ)
β tanhλ
sinh(kλ) 1 + γ tanhλ cotanh(k λ)

)
.

Changing λ into μ/n and without conditioning, Formula (14.45) writes as

E

[(
1

coshμ/n

)T[nt]−T[ns]]

=
∑

x∈{−1,1}
P(χ[ns] = x)

∑
y∈{−1,1}

⎛
⎝[nt ]−1∏
k=[ns]

Gk(μ/n)

⎞
⎠ (x, y) . (14.46)

We want to pass to the limit n → +∞. It is easy to see, using again the
notation (14.19), that

Gk

(μ
n

)
≈ I + 1

n
H̃

(
k

n

)

where

H̃ (x) =
(−γ μ cotanh(μ x) γ μ sinh−1(μ x)

β μ sinh−1(μ x) −β μ cotanh(μ x)

)
.

Then we would like to apply Lemma 14.9 and conclude that

lim
n→+∞

[nt ]−1∏
k=[ns]

Gk(μ/n) = lim
n→+∞

[nt ]−1∏
k=[ns]

exp

[
1

n
H̃

(
k

n

)]

provided the limit on the right-hand side exists. Unfortunately we are not able
to prove the existence of the limit in the general case. The problem is that the
matrices H̃ (·) do not commute in the general case. We listed this limit as one of the
open problems of Sect. 14.2.7. But in the particular case of symmetric perturbation
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β = γ , the matrices H̃ (·) do commute and we deduce by Lemma 14.9 that

lim
n→+∞

[nt ]∏
k=[ns]

exp

[
1

n
H̃

(
k

n

)]
= exp

[∫ t

s

H̃ (x) dx

]
.

Moreover in this case we check that

∫ t

s

H̃ (x) dx = H(t)−H(s)

with

H(t) =
( −β log sinh(μ t) β log tanh(μ t/2)
β log tanh(μ t/2) −β log sinh(μ t)

)
.

Moreover we know that the probabilities P(χ[ns] = x), x ∈ {−1, 1} appearing
in (14.46) simply converge in this case to 1/2. Combining all these facts, the passage
to the limit in (14.46) gives

lim
n→+∞E

[(
1

cosh μ
n

)T[nt]−T[ns]]
= 1

2
(1 1) exp [H(t)−H(s)]

(
1
1

)

where, of course, the right-hand side should be read as a product of three matrices.
But the matrix H(t)−H(s) has the special form

H(t)−H(s) = β

(−a b

b −a
)

where

a = log

(
sinh(μ t)

sinh(μ s)

)
and b = log

(
tanh μ t

2

tanh μ s
2

)
.

So, computing the exponential is easily done via the diagonalization

(−a b
b a

)
= 1

2

(
1 1
1 −1

)(−a + b 0
0 −a − b

)(
1 1
1 −1

)

and we obtain finally

lim
n→+∞E

[(
1

cosh μ
n

)T[nt]−T[ns]]
=

(
cosh(μ2 s)

cosh(μ2 t)

)2 β
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which leads to the desired convergence of finite-dimensional marginal laws, via the
usual argument.

Now we want to address the problem of tightness of the laws of the processes(
(τnt )t≥0, n ≥ 1

)
. We can use for instance the criterion stated in [1, Theorem 15.6]

which consists, for any T > 0, in finding a nondecreasing continuous function F
such that, for all 0 ≤ t1 ≤ t ≤ t2 ≤ T and all n large enough,

E
[
(τnt − τnt1) (τ

n
t2
− τnt )

] ≤ [F(t2)− F(t1)]2. (14.47)

Note that only the case t2 − t1 ≥ 1/n has to be considered, otherwise the left-hand
side vanishes. Let us recall that trivially

E(τnt − τns ) =
1

n2

[nt ]−1∑
k=[ns]

E(Tk+1 − Tk) . (14.48)

By the Definition (14.41) we derive easily

E (Tk+1 − Tk |χk = x, χk+1 = y ) = − lim
λ→0

1

λ

d

dλ
G̃k(λ, x, y) . (14.49)

The expressions of G̃k(λ, x, y) for x, y ∈ {−1, 1} are explicitly given by (14.42).
So it suffices to differentiate G̃k(λ, x, y) and replace every hyperbolic trigonometric
function by its Taylor expansion around 0 (up to order 3) to get the value of the limit
in (14.49). The computations are a bit tedious and left to the reader but the important
fact is that there exists a constant c such that, for all k,

E(Tk+1 − Tk |χk+1 = χk) ≤ c k (14.50)

and

E(Tk+1 − Tk |χk+1 = −χk) ≤ c k2 . (14.51)

Moreover we have seen that, for a certain (other) constant c, P(χk+1 = −χk) ≤ c
k

so that we conclude that E(Tk+1 − Tk) ≤ c k and as a consequence,

E(τnt − τns ) ≤ c ([nt] − [ns])/n.

Using the independence of the increments, (14.47) easily follows, with a linear
function F(·) and tightness is assured.

Let us come back shortly to the conditional case where we claim that a similar
proof of tightness can be constructed on every compact interval of (0,+∞). Indeed
the same argument works on a time interval where the signs of the corresponding
records are constant. Any time interval [ε, T ] with T > ε > 0 can be decomposed
for every n into a (finite) partition such that on each interval of this partition the
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signs of the corresponding records, given by xn(·) are constant. Because of the
convergence in Skorohod topology of xn(·) toward x(·), these partitions converge
to the partition ruling the sign of x(·) over [ε, T ]. So the relative compactness of the
conditional laws over [ε, T ] can be deduced from the tightness guaranteed on each
sub-interval of the partition.

The end of the proof of Theorem 14.6 is similar to the proof of Theorem 1
in [9], except the multiplication by a power of 2 from places to places. Also we omit
the proof of Proposition 14.8 which is identical to the proof of Proposition 2 in [9].

14.8 Positive Recurrence

We now want to prove Theorem 14.7. By symmetry, it suffices to prove that β > 2
is equivalent to

E

(
Tinf{j>q; χj=−1} − Tq

∣∣∣χq = 1
)
< +∞.

This (conditional) expectation equals

+∞∑
j=q

⎧⎨
⎩
⎛
⎝j−1∑
k=q

E(Tk+1 − Tk |χk+1 = χk = 1)

⎞
⎠ + E(Tj+1 − Tj |χj = 1 = −χj+1)

⎫⎬
⎭

× P
(
χq+1 = · · · = χj = 1 = −χj+1 | χq = 1

)
. (14.52)

But, by Proposition 14.1,

P
(
χq+1 = · · · = χj = 1 = −χj+1 | χq = 1

)

=
⎛
⎝j−1∏
k=q

(
1 − β

β + γ + k

)⎞⎠ β

β + γ + j
(14.53)

and it is easy to see that this quantity is equivalent toC j−β−1 whereC is a constant.
We discussed at the end of the previous section the procedure to get the

conditional means of Tk+1 − Tk , see (14.50) and (14.51). This procedure shows
also that, as k, j → +∞,

E(Tk+1 − Tk |χk+1 = χk = 1) ∼ 2β

3
k

and

E(Tj+1 − Tj |χj = 1 = −χj+1) ∼ j2

3
.
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Combining this with the estimate for (14.53) already obtained, we get that the
expression of the (conditional) expectation given by (14.52) behaves like

∑
j j

1−β
hence is finite for β > 2 as announced.
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Chapter 15
A Potential Theoretic Approach to
Tanaka Formula for Asymmetric Lévy
Processes

Hiroshi Tsukada

Abstract In this paper, we shall introduce the Tanaka formula from viewpoint
of the Doob–Meyer decomposition. For symmetric Lévy processes, if the local
time exists, Salminen and Yor (Tanaka formula for symmetric Lévy processes. In:
Séminaire de Probabilités XL. Lecture notes in mathematics, vol. 1899, Springer,
Berlin, pp. 265–285, 2007) obtained the Tanaka formula by using the potential
theoretic techniques. On the other hand, for strictly stable processes with index
α ∈ (1, 2), we studied the Tanaka formula by using Itô’s stochastic calculus and
the Fourier analysis. In this paper, we study the Tanaka formula for asymmetric
Lévy processes via the potential theoretic approach. We give several examples
for important processes. Our approach also gives the invariant excessive function
with respect to the killed process in the case of asymmetric Lévy processes, and it
generalized the result in Yano (J Math Ind 5(A):17–24, 2013).

Keywords Local time · Lévy process · Resolvent · Excessive function

MSC 2010 60J55, 60G51, 60J45

15.1 Introduction

In this paper, we shall focus on local times for Lévy processes. It is known that
there are several definitions of local times for different stochastic processes, see
Geman and Horowitz [6]. Thus, we define a local time L = {Lxt : x ∈ R, t ≥
0} for a one-dimensional Lévy process X by the occupation density which means
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random variables L = {Lxt : x ∈ R, t ≥ 0} satisfying for each non-negative Borel
measurable function f and t ≥ 0,

∫ t

0
f (Xs)ds =

∫
R

f (x)Lxt dx, a.s.,

and is chosen as

Lxt = lim sup
ε↓0

1

2ε

∫ t

0
1{|Xs−x|<ε}ds

(
:= lim

ε↓0
sup

0<δ<ε

1

2δ

∫ t

0
1{|Xs−x|<δ}ds

)
,

by Lebesgue’s differentiation theorem, see Bertoin [1, Chap.V].
For a real-valued Brownian motion B = (B)t≥0, it is well known that the Tanaka

formula holds:

|Bt − x| − |B0 − x| =
∫ t

0
sgn(Bs − x)dBs + Lxt ,

where Lxt denotes the local time of the Brownian motion at level x. It is well known
as an important expression to understand the reflection problem (see, e.g. Chung
and Williams [5]) and the Ray–Knight theorem (see, Jeulin [8]). It also represents
that the local time Lx can be understood as a bounded variation process in the
Doob–Meyer decomposition on the positive submartingale |B− x|. Our goal in this
paper is to construct the Tanaka formula from the viewpoint of the Doob–Meyer
decomposition.

The Tanaka formula has already studied for symmetric stable processes with
index α ∈ (1, 2) by Yamada [13], for symmetric Lévy processes by Salminen and
Yor [10]. In this paper, we are interested in asymmetric Lévy processes, while the
formula has been obtained for strictly stable processes in [12]. We shall construct the
Tanaka formula for asymmetric Lévy processes based upon the potential theoretic
approach as stated in [10]. Moreover, it will clearly extend the original Tanaka
formula for Brownian motions to our formula for Lévy processes.

In [12], we have already obtained the Tanaka formula for strictly stable processes
with index α ∈ (1, 2) via Itô’s stochastic calculus. By using the Fourier transform,
we could obtain the fundamental solution F of the infinitesimal generator L for
strictly stable processes:

L (F ∗ φ)(x) = φ(x), φ ∈ S (R),

where F ∗φ is the convolution of F and φ. By using Itô’s stochastic calculus and the
scaling property, we could construct the Tanaka formula for a strictly stable process
S = (St )t≥0 with index α ∈ (1, 2):

F(St − x)− F(S0 − x) = Mx
t + Lxt ,
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where the process (Mx
t )t≥0 given by

Mx
t :=

∫ t

0

∫
R\{0}

{F(Ss− − x + h)− F(Ss− − x)}Ñ(ds, dh),

is a square integrable martingale andLxt is the local time at level x. Here, Ñ(ds, dh)
is the compensated Poisson random measure. But it is not clear whether a similar
representation can be obtained for general Lévy processes, or not, because it is very
difficult to find the fundamental solution of the infinitesimal generator for Lévy
processes.

In [10], Salminen and Yor have constructed the Tanaka formula for a symmetric
Lévy process X = (Xt)t≥0 via the potential theoretic approach, if the local time
exists. By using the continuous resolvent density rq , they could construct the Tanaka
formula:

h(Xt − x)− h(x) = Mx
t + Lxt

where h(x) := limq↓0(rq(0)− rq (x)) which is called a renormalized zero resolvent,
Mx
t := − limq↓0M

q,x
t is a martingale and Lxt is the local time at level x. But the

expression of the martingale part Mx
t was not given.

In [14] and [15], Yano obtained an invariant excessive function h with respect to
the killed process:

E
0
x[h(Xt )] = h(x)

where E
0
x is the expectation with respect to the law of a Lévy process X starting

at x killed upon hitting zero. The function h is associated with the Tanaka formula
for the local time at level zero because the local time for such a process at level
zero becomes zero. In the symmetric case, Yano [14] needed a necessary and
sufficient condition for the existence of local times, and Salminen and Yor [10] also
needed the same condition, but in the asymmetric case, Yano [15] needed sufficient
conditions for the existence of the function and its expression. Our result also gives
the existence and its expression under weaker conditions than the ones in [15].

In Sect. 15.2, we shall give the preliminaries about resolvent operators of Lévy
processes and a connection between the local time and the resolvent density. In
Sect. 15.3, the convergence and its expression of the renormalized zero resolvent
are mentioned. In Sect. 15.4, the Doob–Meyer decomposition can be constructed in
the case of asymmetric Lévy processes. And then, we obtain the Tanaka formula
for asymmetric Lévy processes and the invariant excessive function with respect to
the killed process. In Sect. 15.5, we give several examples that satisfy the conditions
introduced in Sects. 15.2 and 15.3.
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15.2 Preliminaries

Let S (R) be the Schwartz space of rapidly decreasing functions on R. We denote
the law of processes starting at x and the corresponding expectation by Px and Ex

respectively.
Consider a Lévy process X = (Xt )t≥0 on R with the Lévy–Khintchine

representation given by

E0[eiuXt ] = etη(u),

where the Lévy symbol η of X can be represented as

η(u) = ibu− 1

2
au2 +

∫
R\{0}

(
eiuy − 1 − iuy1|y|≤1

)
ν(dy)

for a drift parameter b ∈ R, a Gaussian coefficient a ≥ 0 and a Lévy measure ν on
R \ {0} satisfying

∫
R\{0}

(y2 ∧ 1)ν(dy) <∞.

We note that the Lévy symbol η is continuous. Let θ and ω be the real and imaginary
parts of η respectively:

θ(u) := (η(u) = −1

2
au2 +

∫
R\{0}

(cos(uy)− 1) ν(dy),

ω(u) := )η(u) = bu+
∫
R\{0}

(
sin(uy)− uy1|y|≤1

)
ν(dy),

for u ∈ R. Remark that θ ≤ 0, θ is even and ω is odd.
The resolvent operator of a Lévy process X is defined by

Rqf (x) := Ex

[∫ ∞

0
e−qtf (Xt )dt

]
, q > 0, x ∈ R

for all bounded Borel measurable function f .
Using the Fourier transform of f ∈ L1(R) defined by

F [f ](u) :=
∫
R

e−iuxf (x)dx, u ∈ R,

and the inverse Fourier transform defined by

F−1[f ](x) := 1

2π

∫
R

eiuxf (u)du, x ∈ R,

the resolvent operator is also represented as follows:
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Proposition 15.1 ([1, Proposition I.9]) For any f ∈ S (R) and x ∈ R,

Rqf (x) = F−1
[

1

q − η(u)
F [f ](u)

]
(x), q > 0.

For q > 0, the resolvent kernel Rq(x, dy) is defined by

Rqf (x) =
∫
R

f (y)Rq(x, dy)

for all bounded Borel measurable function f and x ∈ R. If there exists its density
with respect to the Lebesgue measure, then we define the resolvent density by rq(x)
such that

Rqf (x) =
∫
R

f (y)rq(y − x)dy.

Let T0 be the first hitting time to 0 of X:

T0 := inf{t > 0 : Xt = 0}.
We say that 0 is regular for itself if P0(T0 = 0) = 1, and irregular for itself
otherwise. From the Blumenthal zero-one law, 0 is irregular if P0(T0 = 0) = 0.

We introduce the following conditions:

(A1) The Lévy symbol η satisfies that

∫
R

(
(

1

q − η(u)

)
du <∞, for all q > 0,

(A2) 0 is regular for itself.

It is known that the condition (A1) is equivalent to the existence of the resolvent
density. See [1, 3, 9].

Lemma 15.1 ([1, Theorem II.16]) The condition (A1) holds if and only if the
resolvent kernel Rq(0, dy) is absolutely continuous with respect to the Lebesgue
measure and has the bounded resolvent density.

Using the Fourier transform for L2(R)-functions, the resolvent density can be
represented as follows:

Proposition 15.2 Suppose that the condition (A1) hold. The bounded continuous
resolvent density can be expressed as:

rq(x) = F−1
[

1

q − η(u)

]
(−x) a.e.

for all q > 0.



526 H. Tsukada

Proof Since we have for q > 0

∣∣∣∣ 1

q − η(u)

∣∣∣∣
2

≤ ((q − η(u))

q|q − η(u)|2 = 1

q
(
(

1

q − η(u)

)
,

it follows by the condition (A1) that

1

q − η(u)
∈ L2(R).

Hence, by Proposition 15.1 and Parseval’s theorem, we have for all φ ∈ S (R),

Rqφ(x) = F−1
[

1

q − η(u)
F [φ](u)

]
(x)

= 1

2π

∫
R

eiux

q − η(u)
F [φ](u)du

= 1

2π

∫
R

F

[
eiux

q − η(u)

]
(y)φ(y)dy

=
∫
R

F−1
[

1

q − η(u)

]
(x − y)φ(y)dy.

By Lemma 15.1, we then have for all φ ∈ S (R),

∫
R

(
rq(y)−F−1

[
1

q − η(u)

]
(−y)

)
φ(y)dy = 0.

Since rq is integrable, we have

rq (x) = F−1
[

1

q − η(u)

]
(−x) a.e.

for all q > 0. 12
It is known that the condition (A2) is equivalent to the continuity of the resolvent

density. See [1–3, 7, 9].

Lemma 15.2 ([1, Theorem II.19]) Suppose that the condition (A1) holds. Then,
the followings hold for all q > 0:

(i) The condition (A2) holds if and only if there exist a bounded continuous
resolvent density rq such that

Rqf (x) =
∫
R

f (y)rq(y − x)dy,
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for all bounded Borel measurable function f and that

Ex[e−qT0] = rq (−x)
rq(0)

, x ∈ R.

(ii) If rq is continuous, then

rq(0) = 1

π

∫ ∞

0
(
(

1

q − η(u)

)
du,

and for all x ∈ R

2rq(0)− {rq(x)+ rq (−x)} = 2

π

∫ ∞

0
(
(

1 − cos(ux)

q − η(u)

)
du.

We introduce the following condition which is stronger than the condition
(A1):

(A) The Lévy symbol η satisfies that

1

q − η(u)
∈ L1(R), for all q > 0.

Corollary 15.1 Suppose that the condition (A) holds. The bounded continuous
resolvent density rq can be expressed as:

rq (x) = 1

π

∫ ∞

0
(
(

e−iux

q − η(u)

)
du

for all q > 0 and x ∈ R.

Proof By Proposition 15.2 and the condition (A), we have

rq(x) = 1

π

∫ ∞

0
(
(

e−iux

q − η(u)

)
du,

and it follows from the dominated convergence theorem that rq(·) is continuous. 12
From Corollary 15.1 and Lemma 15.2(i), we have the following:

Corollary 15.2 If the condition (A) holds, then the conditions (A1) and (A2) hold.

Remark 15.1 In the case of a 1-stable, not strictly stable, process which is called
an asymmetric Cauchy process, the conditions (A1) and (A2) hold but the condition
(A) does not hold.
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We introduce the following conditions that are associated with the conditions
(A1) and (A2):

(A3) The process X is the type C, i.e.,

either a > 0 or
∫
|y|≤1

|y|ν(dy) = ∞,

(A4) The process X is not a compound Poisson process.

The following was proved by Kesten [9], and another proof was given by
Bretagnolle [3].

Lemma 15.3 ([9] and [3]) The conditions (A1) and (A3) hold if and only if the
conditions (A2) and (A4) hold. Furthermore, under the condition (A1), the condition
(A2) holds if and only if the condition (A3) holds.

Remark 15.2 From Corollary 15.2 and Lemma 15.3, we have that if the condition
(A) holds, then the conditions (A1)–(A4) hold.

In order to construct the Tanaka formula via the techniques in the potential theory,
we use a connection between the local time and the resolvent density.

Lemma 15.4 ([1, Lemma V.3]) Suppose that the conditions (A1) and (A2) hold.
For any x ∈ R, denote by dLxt the Stieltjes measure of the increasing function Lx· .
Then, it holds that

Ey

[∫ ∞

0
e−qtdLxt

]
= rq(x − y), q > 0, y ∈ R.

Remark 15.3 In [1, Chap.V], the condition (A1) holds if and only if the occupation
measureμt satisfying for each non-negative Borel measurable function f and t ≥ 0,

∫ t

0
f (Xs)ds =

∫
R

f (x)μt (dx),

has the density in L2(dx ⊗ dP0) as the Radon–Nikodym derivative. Therefore, if
the condition (A1) holds, then local times for Lévy processes exist. Moreover, under
the condition (A1), the local time Lxt is continuous almost surely with respect to t
if the condition (A2) holds. In the symmetric case, if the condition (A1) holds, then
the condition (A2) holds.

Remark 15.4 By Blumenthal and Getoor [2], it can be considered as the potential
theoretic definition of local times, i.e. the local time can be defined as a positive
additive functional Lxt such that

E0

[∫ ∞

0
e−qtdLxt

]
= rq(x).
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15.3 Renormalized Zero Resolvent

Now, we set

hq(x) := rq(0)− rq (−x), q > 0, x ∈ R.

Since 0 ≤ rq (y) ≤ rq(0) for all y ∈ R by Lemma 15.2(i), we have hq ≥ 0. In
[15], the limit h := limq↓0 hq is called the renormalized zero resolvent if the limit
exists, which is known as a harmonic function for the killed process under some
conditions.

But its convergence of hq is not clear for the asymmetric case, and Yano [15]
needed the following conditions:

(L1) The Lévy symbol η satisfies that

∫ ∞

0

1

q − θ(u)
du <∞, for all q > 0,

(L2) The processX is the type C, that is the same condition as (A3),
(L3) The real and imaginary parts of the Lévy symbol η have measurable deriva-

tives on (0,∞) which satisfy

∫ ∞

0
(u2 ∧ 1)

|θ ′(u)| + |ω′(u)|
θ(u)2 + ω(u)2

du <∞.

However, our condition (A) is weaker than the condition (L1), and if the
condition (A) holds, then the condition (L2) holds. Moreover, we shall introduce the
condition (B) which is weaker than the condition (L3) under the condition (A):

(B) The Lévy symbol η satisfies that

∫ 1

0

∣∣∣∣)
(

u

η(u)

)∣∣∣∣ du <∞.

Proposition 15.3 Suppose that the condition (A) holds. If the condition (L3) holds,
then the condition (B) holds.

Proof By the condition (A), we have θ(u) �= 0 if u �= 0. Using the inequality:
1 − cos(x) ≥ x2/4 for |x| ≤ 1, we have for all |u| ≤ 1

|η(u)| ≥ −θ(u)

≥
(
a

2
+

∫
|y|≤|u|−1

1 − cos(uy)

(uy)2
y2ν(dy)

)
u2
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≥
(
a

2
+ 1

4

∫
|y|≤|u|−1

y2ν(dy)

)
u2

≥
(
a

2
+ 1

4

∫
|y|≤1

y2ν(dy)

)
u2 ≥ 0.

Hence, by using integration by parts, we have

∫ 1

0

∣∣∣∣)
(

u

η(u)

)∣∣∣∣ du ≤
∫ 1

0

u

|η(u)|du =
[

u2

2|η(u)|
]1

0
−

∫ 1

0

u2

2

(
1

|η(u)|
)′
du

= 1

|η(1)| +
∫ 1

0

u2(θ(u)θ ′(u)+ ω(u)ω′(u))
(θ(u)2 + ω(u)2)

√
θ(u)2 + ω(u)2

du

≤ 1

|η(1)| +
∫ 1

0

u2(|θ ′(u)| + |ω′(u)|)
θ(u)2 + ω(u)2

du <∞.

The proof is now complete. 12
Under the conditions (A) and (B), we obtain the following renormalized zero

resolvent for general Levy processes:

Theorem 15.1 Suppose that the conditions (A) and (B) hold. For all x ∈ R,

lim
q↓0

hq(x) = 1

π

∫ ∞

0
(
(
eiux − 1

η(u)

)
du =: h(x).

In order to show Theorem 15.1 and establish the Tanaka formula, we need the
following lemma:

Lemma 15.5 Suppose that the condition (A) holds. Then, the followings hold:

(i) |η(u)| → ∞ as |u| → ∞.

(ii)

∫ ∞

c

∣∣∣∣ 1

η(u)

∣∣∣∣ du <∞ for all c > 0.

(iii)

∫ c

0

∣∣∣∣ u
2

η(u)

∣∣∣∣ du <∞ for all c > 0.

(iv) lim
q↓0

∫
R

∣∣∣∣ q

q − η(u)

∣∣∣∣ du = 0.
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Proof

(i) Since r1 is integrable, it follows that

|F [r1](u)| =
∣∣∣∣ 1

1 − η(−u)
∣∣∣∣ ≥ 1

1 + |η(−u)| ,

by Proposition 15.2. Hence, by the Riemann–Lebesgue theorem, we have
|η(u)| → ∞ as |u| → ∞.

(ii) We know θ(u) �= 0 if u �= 0. By the condition (A) and the assertion (i), we
have ∣∣∣∣ η(u)

1 − η(u)

∣∣∣∣ → 1 as |u| → ∞.

Hence, the required result follows.
(iii) By the argument in the proof of Proposition 15.3, it follows that for 0 < u ≤ 1,

∣∣∣∣η(u)u2

∣∣∣∣ ≥ a

2
+ 1

4

∫
|y|≤1

y2ν(dy) > 0.

Hence, the required result follows from the dominated convergence theorem.
(iv) Since we have for each q < 1

∣∣∣∣ q

q − η(u)

∣∣∣∣ ≤ 1 ∧
∣∣∣∣ 1

η(u)

∣∣∣∣ ,
it follows from the dominated convergence theorem that

lim
q↓0

∫
R

∣∣∣∣ q

q − η(u)

∣∣∣∣ du =
∫
R

lim
q↓0

∣∣∣∣ q

q − η(u)

∣∣∣∣ du = 0.

The proof is now complete. 12
Now, we shall prove Theorem 15.1.

Proof (Proof of Theorem 15.1) By Corollary 15.1, we have

hq(x) = 1

π

∫ ∞

0
(
(

1 − eiux

q − η(u)

)
du

= 1

π

∫ ∞

0
(
(

1 − cos(ux)

q − η(u)

)
du+ 1

π

∫ ∞

0
)
(

sin(ux)

q − η(u)

)
du.

Using the inequality: 1 − cos(y) ≤ y2 ∧ 2 for y ∈ R, we have

∣∣∣∣(
(

1 − cos(u)

q − η(u)

)∣∣∣∣ ≤ u2 ∧ 2

|η(u)| ∈ L1(R),
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by Lemma 15.5(ii) and (iii). Hence, it follows from the dominated convergence
theorem that

∫ ∞

0
(
(

1 − cos(u)

q − η(u)

)
du→

∫ ∞

0
(
(

cos(u)− 1

η(u)

)
du,

as q ↓ 0.
By the condition (B) and Lemma 15.5(ii), we have

∣∣∣∣)
(

sin(u)

q − η(u)

)∣∣∣∣ ≤
∣∣∣∣)

(
u ∧ 1

η(u)

)∣∣∣∣ ≤
∣∣∣∣)

(
u

η(u)

)∣∣∣∣ ∧
∣∣∣∣ 1

η(u)

∣∣∣∣ ∈ L1(R).

Hence, it follows from the dominated convergence theorem that

∫ ∞

0
)
(

sin(ux)

q − η(u)

)
du→ −

∫ ∞

0
)
(

sin(ux)

η(u)

)
du,

as q ↓ 0. 12

15.4 Tanaka Formula

Using Lemma 15.4, we can construct the Doob–Meyer decomposition as stated in
[10, Proposition 1].

Proposition 15.4 Suppose that the conditions (A1) and (A2) hold. For each q > 0,
t � 0 and x ∈ R, it holds that

rq(−Xt + x) = rq (−X0 + x)+M
q,x
t + q

∫ t

0
rq(−Xs + x)ds − Lxt ,

where Mq,x
t is a martingale with respect to the natural filtration {Gt }t≥0 of X.

Proof By Lemma 15.4 and by the Markov property, we have

EX0

[∫ ∞

0
e−qudLxu|Gs

]
=

∫ s

0
e−qudLxu + EXs

[∫ ∞

0
e−q(s+u)dLxu

]

=
∫ s

0
e−qudLxu + e−qsrq (−Xs + x).
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By using integration by parts, we obtain

q

∫ t

0
eqs

∫ s

0
e−qudLxuds

= eqt
∫ t

0
e−qudLxu − Lxt

= eqt
(
EX0

[∫ ∞

0
e−qudLxu|Gt

]
− e−qt rq(−Xt + x)

)
− Lxt

= eqtEX0

[∫ ∞

0
e−qudLxu|Gt

]
− rq(−Xt + x)− Lxt .

Hence, it follows that

rq(−Xt + x)− q

∫ t

0
rq(−Xs + x)ds + Lxt

= −q
∫ t

0
eqsEX0

[∫ ∞

0
e−qudLxu|Gs

]
ds + eqtEX0

[∫ ∞

0
e−qudLxu|Gt

]

For the sake of simplicity of notations, we shall write

Yt := EX0

[∫ ∞

0
e−qudLxu|Gt

]
,

Zt := −q
∫ t

0
eqsYsds + eqtYt .

Since Z0 = rq(−X0 + x), we will show that Zt is a martingale with respect to the
natural filtration {Gt }t≥0. By Fubini’s theorem, we have for all 0 ≤ v < t ,

EX0 [Zt |Gv] = −q
∫ t

0
eqsEX0 [Ys |Gv]ds + eqtEX0 [Yt |Gv]

= −q
∫ v

0
eqsYsds − q

∫ t

v

eqsYvds + eqtYv

= −q
∫ v

0
eqsYsds + eqvYv = Zv,

and the required result follows. 12
Now we will establish the Tanaka formula for general Lévy processes.

Theorem 15.2 Suppose that the conditions (A) and (B) hold. Let h andMq,x be the
same as in Theorem 15.1 and Proposition 15.4 respectively. Then, for each t ≥ 0
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and x ∈ R, it holds that

h(Xt − x) = h(X0 − x)+Mx
t + Lxt ,

where Mx
t := − limq↓0M

q,x
t is a martingale.

Proof From the Doob–Meyer decomposition (Proposition 15.4), let q ↓ 0, we have

h(Xt − x) = h(X0 − x)− lim
q↓0

(
M
q,x
t + q

∫ t

0
rq(−Xs + x)ds

)
+ Lxt .

by Theorem 15.1. Recall that 0 ≤ rq(y) ≤ rq(0) for all y ∈ R, and then it follows
that

0 ≤ q

∫ t

0
rq(−Xs + x)ds ≤ qrq(0)t.

Hence, by Lemma 15.5(iv), we have

q

∫ t

0
rq(−Xs + x)ds → 0 as q ↓ 0.

It remains to show that Mx
t := − limq↓0M

q,x
t is a martingale. Thus, it is enough

to prove that

E0|Mx
t +M

q,x
t | → 0 as q ↓ 0,

because then Mq,x
t is a uniformly integrable martingale. We know that

|Mx
t +M

q,x
t | ≤ |h(Xt − x)− hq(Xt − x)| + |h(X0 − x)− hq(X0 − x)|

+ q

∫ t

0
rq(−Xs + x)ds.

By Theorem 15.1, the second term on the above right-hand side converges to 0 as
q ↓ 0. By Lemma 15.5(iv), the third term convergences to 0 as q ↓ 0.

It remains to prove the convergence of the first term as q ↓ 0. By Lemma 15.2(ii),
we have

hq(x) ≤ hq(x)+ hq(−x)

= 2

π

∫ ∞

0
(
(

1 − cos(ux)

q − η(u)

)
du

≤ 2

π

∫ ∞

0

1 − cos(ux)

|η(u)| du.
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By Fubini’s theorem and by Lemma 15.5(ii) and (iii), we have

E0

[∫ ∞

0

1 − cos(u(Xt − x))

|η(u)| du

]

=
∫ ∞

0

1 −( exp{tη(u)− iux}
|η(u)| du

=
∫ ∞

0

1 − cos(tω(u)− ux) exp{tθ(u)}
|η(u)| du

≤
∫ 1

0

1 − cos(tω(u) − ux)− tθ(u)

|η(u)| du+
∫ ∞

1

∣∣∣∣ 2

η(u)

∣∣∣∣ du

≤
∫ 1

0

(tω(u)− ux)2

|η(u)| du+
∫ ∞

1

∣∣∣∣ 2

η(u)

∣∣∣∣ du+ t

≤ 2
∫ 1

0

(tω(u))2 + (ux)2

|η(u)| du+
∫ ∞

1

∣∣∣∣ 2

η(u)

∣∣∣∣ du+ t <∞.

Hence, it follows from the dominated convergence theorem that

E0|Mx
t +M

q,x
t | → 0 as q ↓ 0.

The proof is now complete. 12
Remark 15.5 From Theorem 15.2, we obtain the invariant excessive function with
respect to the killed process. Indeed, when we denote the law of the process starting
at x killed upon hitting zero and the corresponding expectation by P

0
x and E

0
x

respectively, under the conditions (A) and (B) we have

E
0
x [h(Xt)] = h(x), t ≥ 0, x ∈ R,

because E0
x [L0

t ] = 0.

15.5 Examples

We shall introduce examples satisfying the conditions (A) and (B). Because the
condition (A) is a sufficient condition to have local times and explicit resolvent
densities, we give examples with a focus on satisfying the condition (B).

Example 15.1 (Strictly Stable Processes) LetX be a strictly stable process of index
α ∈ (1, 2) with the Lévy measure ν on R \ {0} given by

ν(dy) =
{
c+|y|−α−1dy on (0,∞),

c−|y|−α−1dy on (−∞, 0),
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where α ∈ (1, 2), and c+ and c− are non-negative constants such that c+ + c− > 0,
and with the drift parameter b given by

b = −
∫
|y|>1

yν(dy).

The Lévy symbol η of X is represented as

η(u) = −d|u|α
(

1 − iβsgn(u) tan
πα

2

)
,

where d > 0 and β ∈ [−1, 1] are given by

d = c+ + c−
2c(α)

, β = c+ − c−
c+ + c−

with

c(α) = 1

π
Γ (α + 1) sin

πα

2
.

See Sato [11] on details.
By α ∈ (1, 2), we have for q > 0

∣∣∣∣ 1

q − η(u)

∣∣∣∣ ≤ 1

q − θ(u)
= 1

q + d|u|α ∈ L1(R).

Hence, the condition (A) holds.
By −α + 1 ∈ (−1, 0), we have

∫ 1

0

∣∣∣∣)
(

u

η(u)

)∣∣∣∣ du ≤
∫ 1

0

u

|θ(u)|du =
∫ 1

0

1

d
|u|−α+1du <∞.

Hence, the condition (B) holds.
In this case, it can be represented by

h(x) = c(−α) 1 − βsgn(x)

d
(
1 + β2 tan2(πα/2)

) |x|α−1.

The result is consistent with [12].

Remark 15.6 This process also satisfies Yano’s conditions (L1)–(L3).
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Remark 15.7 In [12], by using the Fourier transform, we could find the fundamental
solution F of the infinitesimal generator for a strictly stable process S = (St )t≥0
with index α ∈ (1, 2). Moreover, we have F = h. By using Itô’s stochastic calculus,
we have the martingale part Mx

t of the Tanaka formula can be represented as the
explicit form:

Mx
t :=

∫ t

0

∫
R\{0}

{F(Ss− − x + h)− F(Ss− − x)}Ñ(ds, dh).

Thus, we could study the property of local times from the Tanaka formula. On the
other hand, for general Lévy processes, even if the renormalized zero resolvent and
the local time exist, we could not use Itô’s stochastic calculus, because we do not
know the explicit form of the renormalized zero resolvent.

Example 15.2 (Truncated Stable Processes) A truncated stable process is a Lévy
process with the Lévy measure ν on R \ {0} given by

ν(dy) =
{
c+|y|−α−11{y≤1}dy on (0,∞),

c−|y|−α−11{y≥−1}dy on (−∞, 0),

where α ∈ (1, 2), and c+ and c− are non-negative constants such that c+ + c− > 0,
and without a drift parameter b.

Using the inequality: 1 − cos(x) ≥ x2/4 for |x| ≤ 1, we have for all u ≥ 1,

|θ(u)| ≥ 1

4

∫
|y|≤u−1

(uy)2ν(dy)

= c+ + c−
4

∫ u−1

0
u2y−α+1dy = c+ + c−

4(2 − α)
uα.

Hence, by α ∈ (1, 2), the condition (A) holds.
By the argument in the proof of Proposition 15.3, we have

∫ 1

0

∣∣∣∣)
(

u

η(u)

)∣∣∣∣ du =
∫ 1

0

|uω(u)|
|η(u)|2 du ≤

1

c2
1

∫ 1

0

∣∣∣∣ω(u)u3

∣∣∣∣ du

where the positive constant c1 is given by

c1 = 1

4

∫
|y|≤1

y2ν(dy).
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Using the inequality: | sin(x)− x| ≤ |x|3 for all x ∈ R, we have

∣∣∣∣ω(u)u3

∣∣∣∣ =
∣∣∣∣
∫
|y|≤1

sin(uy)− uy

u3 ν(dy)

∣∣∣∣
≤

∫
|y|≤1

∣∣∣∣ sin(uy)− uy

u3

∣∣∣∣ ν(dy)

≤
∫
|y|≤1

|y|3ν(dy) <∞.

Hence, the condition (B) holds.

Remark 15.8 Using the inequalities: 1 − cos(x) ≤ x2 and |x − sin(x)| ≤ |x|3 for
x ∈ R, we have for u ∈ R

|θ(u)| ≤ c2u
2, |ω(u)| ≤ c3|u|3,

where the positive constants c2 and c3 are given by

c2 =
∫
|y|≤1

y2ν(dy), c3 =
∫
|y|≤1

|y|3ν(dy).

We have for u ∈ R

θ ′(u) = −
∫
|y|≤1

y sin(uy)ν(dy),

ω′(u) =
∫
|y|≤1

y(cos(uy)− 1)ν(dy).

Using the inequalities: 1 − cos(x) ≥ x2/2 and | sin(x)| ≥ |x|/2 for all |x| ≤ 1, we
have for 0 ≤ u ≤ 1

|θ ′(u)| ≥ c4u, |ω′(u)| ≥ c5u
2,

where the positive constant c4 and the non-negative constant are given by

c4 = 1

2

∫
|y|≤1

y2ν(dy), c5 = 1

4

∣∣∣∣
∫
|y|≤1

y3ν(dy)

∣∣∣∣ .

Thus, we have for 0 < u ≤ 1

u2(|θ ′(u)| + |ω′(u)|)
θ(u)2 + ω(u)2

≥ c4u
3 + c5u

4

c2
2u

4 + c2
3u

6
≥ c4

(c2
2 + c2

3)u
> 0

Hence, this process does not satisfy Yano’s condition (L3).
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Remark 15.9 If a Lévy process with a Lévy measure having a bounded support and
with the drift parameter b given by

b = −
∫
|y|>1

yν(dy),

then the condition (B) holds by the same argument as stated in Example 15.2, but
Yano’s condition (L3) does not hold by the same argument as stated in Remark 15.8.

Example 15.3 (Tempered Stable Processes) A tempered stable process is a Lévy
process with the Lévy measure ν on R \ {0} given by

ν(dy) =
{
c+|y|−α+−1e−λ+|y|dy on (0,∞),

c−|y|−α−−1e−λ−|y|dy on (−∞, 0),

where α+, α− ∈ (1, 2), and c+, c−, λ+ and λ− are non-negative constants such that
c+ + c− > 0, and with the drift parameter b given by

b = −
∫
|y|>1

yν(dy).

The processes have studied as models for stock price behavior in finance. See Carr
et al. [4] on details.

We have for all u ≥ 1,

|θ(u)| ≥ 1

4

∫
|y|≤u−1

(uy)2ν(dy)

≥ u2

4

(
c+e−λ+

∫ u−1

0
y−α++1dy + c−e−λ−

∫ u−1

0
y−α−+1dy

)

= c+e−λ+
4(2 − α+)

uα+ + c−e−λ−
4(2 − α−)

uα− .

Hence, by α+, α− ∈ (1, 2), the condition (A) holds.
In the case of [λ+, λ− > 0], [c+, λ+ = 0 & λ− > 0] or [c−, λ− = 0 & λ+ > 0],

we have for all 0 < u ≤ 1,

∣∣∣∣ω(u)u3

∣∣∣∣ ≤
∫
R\{0}

∣∣∣∣ sin(uy)− uy

u3

∣∣∣∣ ν(dy) ≤
∫
R\{0}

|y|3ν(dy) <∞.

Hence, the condition (B) holds.
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In the case of [c+ > 0 & λ+ = 0] or [c− > 0 & λ− = 0], we have for all
0 ≤ u ≤ 1,

|θ(u)| ≥
(∫ ∞

0
(1 − cos(uy)) ν(dy)

)
∨
(∫ 0

−∞
(1 − cos(uy)) ν(dy)

)

= c+ ∨ c−
2c(α)

|u|α+∨α−

by the Lévy symbol of Example 15.1. We then have for 0 < u ≤ 1,
∣∣∣∣)

(
u

η(u)

)∣∣∣∣ =
∣∣∣∣ uω(u)

θ(u)2 + ω(u)2

∣∣∣∣ ≤ u

2|θ(u)| ≤
c(α)

c+ ∨ c− u
−(α+∨α−)+1,

Hence, by −(α+ ∨ α−)+ 1 ∈ (−1, 0), the condition (B) holds.

Remark 15.10 In the case of [λ+, λ− > 0], [c+, λ+ = 0 & λ− > 0] or [c−, λ− = 0
& λ+ > 0], we have

∫
|y|>1

|y|3ν(dy) <∞.

Hence, by the similar argument as stated in Remark 15.8, Yano’s condition (L3)
does not hold.

But, in the case of [c+ > 0 & λ+ = 0] or [c− > 0 & λ− = 0], the condition
(L3) holds.

Example 15.4 (Integrable Processes That Are Not Martingales) Suppose that the
condition (A) holds, and that a Lévy measure ν satisfies

∫
|y|>1

|y|ν(dy) <∞,

and that a drift parameter b satisfies

b �= −
∫
|y|>1

yν(dy).

Using the inequality: | sin(x)− x1|x|≤1| ≤ |x|3 ∧ |x| for all x ∈ R, we have
∣∣∣∣∣)

(
u

η(u)

)−1
∣∣∣∣∣ ≥

∣∣∣∣ω(u)u
∣∣∣∣

=
∣∣∣∣b +

∫
|y|≤1

sin(uy)− uy

u
ν(dy)+

∫
|y|>1

sin(uy)

u
ν(dy)

∣∣∣∣
→

∣∣∣∣b +
∫
|y|>1

yν(dy)

∣∣∣∣ > 0,

as u ↓ 0. By the dominated convergence theorem, the condition (B) follows.
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Example 15.5 (Spectrally Negative or Positive Processes) A Lévy process with
no positive (negative) jumps is called a spectrally negative (positive) process. The
processes have studied as models for insurance risk and dam theory.

Suppose that the condition (A) holds, and that a Lévy measure ν has a support in
(−∞, 0) and satisfies

∫
|y|>1

|y|ν(dy) <∞.

In the case of a drift parameter b such that

b �= −
∫
|y|>1

yν(dy),

these processes are in Example 15.4.
We consider the case of the drift parameter b given by

b = −
∫
|y|>1

yν(dy).

We have for all x ∈ R,

0 ≤ hq(x) = 1

π

∫ ∞

0
(
(

1 − cos(ux)

q − η(u)

)
du+ 1

π

∫ ∞

0
)
(

sin(ux)

q − η(u)

)
du.

≤ hq(x)+ hq(−x) = 2

π

∫ ∞

0
(
(

1 − cos(ux)

q − η(u)

)
du.

Hence, by Lemma 15.5(ii) and (iii), we have

∣∣∣∣
∫ 1

0
)
(

sin(u)

q − η(u)

)
du

∣∣∣∣
≤

∣∣∣∣
∫ ∞

0
(
(

1 − cos(u)

q − η(u)

)
du

∣∣∣∣+
∣∣∣∣
∫ ∞

1
)
(

sin(u)

q − η(u)

)
du

∣∣∣∣
≤

∫ ∞

0

|u|2 ∧ 1

|η(u)| du+
∫ ∞

1

∣∣∣∣ 1

η(u)

∣∣∣∣ du <∞.

Since we have ω(u) ≥ 0 for all u ≥ 0, we have the following function:

)
(

sin(u)

q − η(u)

)(
= ω(u) sin(u)

(q − θ(u))2 + ω(u)2

)
on (0, 1]

is increasing as q ↓ 0. Hence, by the monotone convergence theorem, the condition
(B) follows.



542 H. Tsukada

Suppose that the condition (A) holds, and that a Lévy measure ν has a support in
(0,∞) and satisfies

∫
|y|>1

|y|ν(dy) <∞.

In this case, the condition (B) holds by the same argument as the spectrally negative
case.
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