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Foreword

The 13th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Madrid, Spain, during June 18–21, 2018. The DisCoTec
series is one of the major events sponsored by the International Federation for Infor-
mation Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination
Models and Languages (the conference celebrated its 20th anniversary in 2018)

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications
and Interoperable Systems (the conference is in its 18th edition)

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems (the conference is in its 38th edition)

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. Each day of the federated event began with a plenary speaker
nominated by one of the conferences.

In addition to the three main conferences, two satellite events took place during June
20–21, 2018:

– ICE, the Workshop on Interaction and Concurrency Experience (in its 11th edition)
– FADL, Workshop on Foundations and Applications of Distributed Ledgers (this

was the first year that the workshop took place)

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference and the Steering
Committee of DisCoTec for its guidance and support. The organization of DisCoTec
2018 was only possible thanks to the dedicated work of the Organizing Committee,
including the organization chairs, Jesús Correas and Sonia Estévez (Universidad
Complutense de Madrid, Spain), the publicity chair, Ivan Lanese (University of
Bologna/Inria, Italy), the workshop chairs, Luis Llana and Ngoc-Thanh Nguyen
(Universidad Complutense de Madrid, Spain and Wroclaw University of Science and
Technology, Poland, respectively), the finance chair, Mercedes G. Merayo (Universi-
dad Complutense de Madrid, Spain), and the webmaster, Pablo C. Cañizares
(Universidad Complutense de Madrid, Spain). Finally, I would like to thank IFIP
WG6.1 for sponsoring this event, Springer’s Lecture Notes in Computer Science team
for their support and sponsorship, and EasyChair for providing the reviewing
infrastructure.

June 2018 Manuel Núñez



Preface

This volume contains the papers presented at COORDINATION 2018: the 20th
IFIP WG 6.1 International Conference on Coordination Models and Languages held
during June 18–21, 2018, in Madrid, Spain. The conference was co-located with
FORTE and DAIS, as part of the DisCoTec federated conferences on distributed
computing techniques.

The conference is the premier forum for publishing research results and experience
reports on software technologies for collaboration and coordination in concurrent,
distributed, and complex systems. The key focus of the conference is the quest for
high-level abstractions that can capture interaction patterns and mechanisms occurring
at all levels of the software architecture, up to the end-user domain. COORDINATION
called for high-quality contributions on the usage, study, formal analysis, design, and
implementation of languages, models, and techniques for coordination in distributed,
concurrent, pervasive, multi-agent, and multicore software systems.

The Program Committee (PC) of COORDINATION 2018 consisted of 23 top
researchers from 12 different countries. In all, 26 submissions were received out of 29
submitted abstracts. All submissions were reviewed by four independent referees;
papers were selected based on their quality, originality, contribution, clarity of pre-
sentation, and relevance to the conference topics. The review process included an
in-depth discussion phase, during which the merits of all papers were discussed by the
PC. At the end of the review process, 12 papers were accepted.

The selected papers constituted a program covering a varied range of topics and
techniques related to system coordination, including: actor-based coordination,
tuple-based coordination, agent-oriented techniques, constraints- based coordination,
and finally coordination based on shared spaces. Five of the accepted papers are
surveys. This was a new category of submission considered this year to celebrate the
20th edition of COORDINATION. These papers describe important results and suc-
cessful stories that originated in the context of COORDINATION. The program was
further enhanced by an invited talk by Franco Zambonelli from Università degli Studi
di Modena-Reggio Emilia (Italy).

The success of COORDINATION 2018 was due to the dedication of many people.
We thank the authors for submitting high-quality papers, the PC and their subre-
viewers, for their careful reviews, and lively discussions during the final selection
process, and the publicity chair, Francesco Tiezzi, for helping us advertise the CFP. We
thank the providers of the EasyChair conference management system, which was used
to run the review process and to facilitate the preparation of the proceedings. Finally,
we thank the Organizing Committee from Universidad Complutense de Madrid, led by
Manuel Núñez, for its contribution in making the logistic aspects of COORDINATION
2018 a success.

June 2018 Giovanna di Marzo Serugendo
Michele Loreti
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Space-Time Universality of Field Calculus

Giorgio Audrito1,2(B), Jacob Beal3, Ferruccio Damiani1,2, and Mirko Viroli4

1 Dipartimento di Informatica, University of Torino, Turin, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

2 Centro di Competenza per il Calcolo Scientifico, University of Torino, Turin, Italy
3 Raytheon BBN Technologies, Cambridge, MA, USA

jakebeal@ieee.org
4 DISI, University of Bologna, Cesena, Italy

mirko.viroli@unibo.it

Abstract. Recent work in the area of coordination models and collec-
tive adaptive systems promotes a view of distributed computations as
functional blocks manipulating data structures spread over space and
evolving over time. In this paper, we address expressiveness issues of
such computations, and specifically focus on the field calculus, a promi-
nent emerging language in this context. Based on the classical notion of
event structure, we introduce the cone Turing machine as a ground for
studying computability issues, and first use it to prove that field calcu-
lus is space-time universal. We then observe that, in the most general
case, field calculus computations can be rather inefficient in the size of
messages exchanged, but this can be remedied by an encoding to nearly
similar computations with slower information speed. We capture this
concept by a notion of delayed space-time universality, which we prove
to hold for the set of message-efficient algorithms expressible by field
calculus. As a corollary, it is derived that field calculus can implement
with message-size efficiency all self-stabilising distributed algorithms.

Keywords: Distributed computing · Computability · Field calculus

1 Introduction

A traditional viewpoint in the engineering of coordination systems is to focus
on the primitives by which a single coordinated device (or agent) interacts with
others, either by point-to-point interaction, broadcast, or by means of some sort
of mediator (a shared space, a channel, an orchestrator, and the like). A global

This work has been partially supported by: EU Horizon 2020 project HyVar (www.
hyvar-project.eu), GA No. 644298; ICT COST Action IC1402 ARVI (www.cost-arvi.
eu); Ateneo/CSP D16D15000360005 project RunVar (runvar-project.di.unito.it).
This document does not contain technology or technical data controlled under
either U.S. International Traffic in Arms Regulation or U.S. Export Administration
Regulations.
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2 G. Audrito et al.

coordination system is then designed as a protocol or workflow of interaction
“acts”, regulating synchronisation of computational activities and the exchange
of information through messages (among the many, e.g., see [8,25]).

However, a number of recent works originated in the context of distributed
intelligent systems (swarm intelligence, nature-inspired computing, multi-agent
systems, self-adaptive and self-organising systems), and then impacting coordi-
nation models and languages as well, promote a higher abstraction of spatially-
distributed collective adaptive systems. In these approaches, system coordina-
tion is expressed in terms of how the “collective” actually carries on an overall
task, designed in terms of a spatio-temporal data structure to be produced as
“output”. Works such as [4,18] survey from various different viewpoints the
many approaches that fall under this umbrella, and which we can classify in
the following categories: methods that simplify programming of a collective by
abstracting individual networked devices (e.g., TOTA [28], Hood [38], chemical
models [36]), spatial patterns and languages (e.g., Growing Point Language [13],
Origami Shape Language [30]), tools to summarise and stream information over
regions of space and time (e.g., TinyDB [27] and Cougar [39]), and finally space-
time computing models, e.g. targeting parallel computing (e.g., StarLisp [24],
systolic computing [19]).

More recently, field-based computing through the field calculus [14,15] and
the generalised framework of aggregate programming [5,34] combine and gener-
alise over the above approaches, by viewing a distributed computation as a pure
function, neglecting explicit indication of message-passing and rather focussing
on the manipulation of data structures, spread over space and evolving over time.
This is achieved by a small set of constructs equipped with a functional composi-
tion model that well supports the construction of complex system specifications.
More generally, we see the field-calculus in terms of an evolution of distributed
systems programming towards higher and higher declarative abstractions.

Some questions then naturally arise: which notions of universality emerge out
of such a view of distributed computation? how can we characterise the expres-
siveness of a set of constructs used as building blocks to program distributed
systems? how may non-functional aspects affect such notions? Classical Turing
computability is not directly applicable to space-time distributed computations,
as it does not capture relevant aspects such as the availability of information at
given devices at given moments of time.

In this paper we address these issues by introducing the notions of cone Tur-
ing machine and space-time computability, and use them to prove a universality
result for the field calculus–this notion of universality differs from others previ-
ously introduced for the field calculus [6], as it is performed in a discrete model
rather than a continuous one, and it is more strongly connected to classical Tur-
ing computability. We also inspect efficiency aspects, since they deeply affect
the “practical” notion of expressiveness: we find examples of space-time func-
tions that would be realised only by field calculus programs that are “message-
size-inefficient” (simply, message-inefficient henceforth)—i.e., that would rely
on increasingly big messages as time passes and information moves around.
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Sym. Meaning Sym. Meaning Sym. Meaning

ε event identifier < causality relation V set of comput. values
ε� maximal event � neighbouring relation V(E) set of s/t values in E
δ device identifier � restriction V(∗) set of s/t values
E set of events partial function V(�) set of cone s/t values
E event structure LC(ε) past light cone of ε Φ space-time value
E augmented event struct. CD(ε) set of connected devices f space/time function
ES set of event structures A∗ finite sequences from A e expression
EC set of cone event struct. TMcone cone Turing machine D set of device identifiers

Fig. 1. Table of symbols and notations used throughout this paper.

However, we also find that for each such message-inefficient function there exists
a “delayed” version with nearly similar behaviour: it features somewhat slower
information speed across devices but can be implemented in a message-efficient
way by field calculus. We capture this concept in terms of a stricter notion of
delayed space-time universality, a property that holds for the set of message-
efficient field calculus programs. As a corollary, we also derive an effective self-
stabilisation universality result, stating that the field calculus is able to pro-
vide a message-efficient implementation for any self-stabilising distributed algo-
rithm [15].

The remainder of this paper is organised as follows: Sect. 2 gives the main
definitions of computability this paper is built upon; Sect. 3 introduces the field
calculus and proves its universality; Sect. 4 shows a message-efficient but delayed
encoding of computations, and discusses the notion of delayed space-time uni-
versality; Sect. 5 reviews related works and Sect. 6 concludes with final remarks.
Figure 1 summarises the symbols and notations used throughout this paper.

2 Space-Time Computability

In order to ground a definition of “Turing-like” computability for distributed
functions, two main ingredients are required: a mathematical space of functions,
abstracting the essence of distributed computations, and a set of criteria for
discarding impossible computations. The former can be achieved by translating
the main features of distributed computations into mathematical objects: in this
case, atomic computing events with communication through message passing.
The latter can be achieved by combining physical requirements (i.e., causality)
with classical computability requirements [6]. Accordingly, Sect. 2.1 formalises
a space of distributed functions, and Sect. 2.2 introduces a Turing-like machine
TMcone to ground computability.

2.1 Denotation of Space-Time Computations

A number of models have been proposed over the decades to ground distributed
computations, each with a different viewpoint and purpose. Most of them boil
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past future

ε

Fig. 2. A sample event structure, split in events ε′ in the causal past of ε (ε′ < ε, in
red), events in the causal future (ε < ε′, in green) and concurrent (non-ordered, in
black). (Color figure online)

down to two main ingredients: computational events, where actual actions take
place, and messages that are exchanged to carry information between different
events. These concepts can be formalised by the notion of event structure [23].

Definition 1 (Event Structure). An event structure E = 〈E,�, <〉 is a
countable set of events E together with a neighbouring relation �⊆ E × E and
a causality relation <⊆ E × E, such that the transitive closure of � forms the
irreflexive partial order < and the set {ε′ ∈ E | ε′ < ε} is finite for each ε (i.e.,
< is locally finite). We call ES the set of all such event structures.

Note that the transitive closure condition on � also implies that � is asymmet-
ric and irreflexive. A sample event structure is depicted in Fig. 2, showing how
these relations partition events into “causal past,” “causal future,” and “concur-
rent” subsets with respect to any given event ε—that is, respectively, events from
which information can potentially be carried to ε in a message, those to which
information from ε can be carried, and events informationally isolated from ε.
Since < is uniquely induced by �, we shall feel free to omit it whenever conve-
nient, or use its weak form ≤.1 Notice that since < is required to be irreflexive,
� has to be an acyclic relation, thus inducing a directed acyclic graph (DAG)
structure on E. In fact, E can be thought of as a DAG with a “neighbouring”
relation (modelling message passing) and a “reachability” relation (modelling
causal dependence). This kind of structure is also compatible with spaces of
events equipped with special or general relativity metrics, considering ε1 � ε2
to be possible only if ε1 is in its causal past, i.e., is contained in or precedes the
past light cone2 of ε2.

Notice that information about which device or devices might be performing
that actual computation at each event is completely abstracted away: event

1 The weak form of a partial order is defined as x ≤ y iff x < y or x = y.
2 In relativity, the past light cone of an event ε2 comprises all events ε1 such that

photons produced by ε1 reach the position of ε2 at the time when ε2 happens.
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Fig. 3. Representation of a space-time value Φ of literals.

structures aim to model which data may be available at every computational
step, no matter on what device the computation may be happening. Thus a
series of computations on the same device (whether it is fixed or mobile) can still
be accurately modelled by a sequence of events ε1, . . . , εn such that εi � εi+1, in
which message passing is implemented simply by keeping data available on the
device for subsequent computations.3

The notion of event structure dates back several decades [23], and it has been
used to relate many different distributed computation paradigm, such as Petri
nets [31] or the actor model [21]: we now use them as a ground for space-time
universality, building on these previous works. Even though the definition of
event structure is usually given just in terms of the causality relation, we have
also included the neighbouring relation since it is able to capture message passing
details, which are usually needed to interpret actual distributed programs.

The notion of event structure is abstract, but well-suited to ground a seman-
tics for space-time computations, intended as “elaborations of distributed data
in a network of related events”: the causality ordering of events abstracts time,
while the presence of concurrent events abstract spatial dislocation. Follow-
ing [22], in the remainder of this paper overbar notation denotes metavari-
ables over sequences and the empty sequence is •: e.g., we use Φ for the
sequence Φ1, . . . ,Φn. Similarly, formulas with sequences are duplicated for each
set of sequence elements (sequences are assumed to have the same length): e.g.,
Φ(ε) = v is a shorthand for Φ1(ε) = v1, . . . ,Φn(ε) = vn.

Definition 2 (Space-Time Values). Let V be a denumerable universe of
allowed computational values and E be a given event structure. A space-time
value Φ in E is an annotation of the graph E with labels in V, that is, a tuple
Φ = 〈E, f〉 with f : E → V, taking E as the set of events in E.

3 Note that a computation in this model may be an arbitrarily complex action, so long
as it is local: our later formulation will take each event to be an atomic execution of
an entire round of a potentially complex program.
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Definition 3 (Space-Time Functions). Let V(E) = {〈E, f〉 | f : E → V}
be the set of space-time values in an event structure E, and V(∗) =

⋃
E∈ES V(E)

be the set of all space-time values in any event structure. Then, an n-ary space-
time function in E is a partial map4 f : V(E)n 	→ V(E) and an n-ary space-time
function is a partial map f : V(∗)n 	→ V(∗), defined only for arguments belonging
to a same V(E) and such that for any Φ in V(E) ∩ dom(f), f(Φ) ∈ V(E).

A sample space-time value is depicted in Fig. 3. Notice that space-time values
can be used to model data not only spatially distributed across devices, but also
temporally distributed across time. In this way time-evolving inputs and, most
importantly, intermediate results of computations (which are naturally time-
dependent) are easily represented, attaining maximal generality while ensuring
composability of behaviour. Furthermore, since space-time functions f are partial
maps, undefined values for f(Φ) can model computations that are non-halting
or otherwise failing on some event. We assume that a non-halting computation
does not constitute a proper event, as it is not “observable” from the external
world. The partial outcome of a computation f that is non-halting on some event
ε ∈ E can still be recovered by restricting E to the largest E′ ⊆ E on which f is
defined.

Most space-time functions, however, are not feasible in the physical world
due to two main obstacles: inconsistencies between the causality relation and
the required behaviour of the function (non-causal functions), and violation of
classical constraints on computability (super-Turing functions). We shall see in
the following subsection how to implement these two restrictions.

2.2 Cone Turing Machine

In order to define causality of a space-time function, it is necessary for the output
value in each event ε to depend only on input values in events ε′ which may have
influenced ε, that is, such that ε′ ≤ ε. This concept of causality can be captured
by the definitions of event cone and cone function.5

Definition 4 (Event Cone). An event cone is an event structure E with a
distinguished unique element ε� which is the <-maximum in E, i.e., such that
∀ε ∈ E ε ≤ ε�. We call EC the set of all such event structures.

Definition 5 (Restriction). Given an event structure E and an event ε ∈ E,
the ε-cone in E, also called the restriction of E to (the causal past of) ε, is
defined as:

E � ε = 〈E � ε,� ∩ (E � ε)2 , < ∩ (E � ε)2〉
where E � ε = {ε′ ∈ E | ε′ ≤ ε}. Analogously, given Φ ∈ V(E) and ε ∈ E, the
restriction of Φ to ε is Φ � ε = 〈E � ε,� ∩ (E � ε)2 , f ∩ (E � ε) × V〉.
4 With A �→ B we denote the space of partial functions from A into B.
5 These concepts are closely linked to the notion of causality in physics and its defini-

tion in terms of light cones.
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For example, the event structure formed by red events and by event ε in
Fig. 2 is an event cone, which is the restriction of the whole structure to ε.

Definition 6 (Cone Function). Let V(�) =
⋃

E∈EC V(E) be the set of all
space-time values in any event cone. Then, an n-ary cone function is a partial
map f� : V(�)n 	→ V defined only for arguments Φ belonging to a same V(E),
and the space-time function f : V(∗)n 	→ V(∗) induced by such f� is such that
given Φ ∈ V(E), f(Φ) = 〈E, f〉 where f(ε) = f�(Φ � ε).6

Notice that the output of a cone function is not a map over space, but
a single value in V, i.e., the value computed at the event ε� on the basis of
the history accessible to it in the cone. Note also that when inducing a space-
time function, the same cone function is assumed to be applied in each event.
However, space-time computations that apply different functions at different
times can still be modelled by a single function with an extra input selecting the
appropriate behaviour for each event. Since cone functions are able to represent
any computation from causally-available inputs, causal space-time functions are
precisely those which are induced by cone functions. Thus, computable space-
time functions are those induced by a cone function that is computable, in the
sense that it can be computed by a Turing Machine that operates over cones:

Definition 7 (Cone Turing Machine). Let A be an alphabet, π : V → A∗

and7 π� : V(�) → A∗ be injective encodings of V and V(�). A cone Turing
machine TM f

cone is a deterministic Turing machine with n+1 tapes which given
in its input tapes encodings π�(Φ) of a sequence of space-time values in an
event cone E, writes in its output tape an encoding π(v) of a value in V (if it
terminates). The cone function f� induced by TM f

cone is such that f�(Φ) = v if
and only if TM f

cone terminates with output π(v) given inputs π�(Φ). The space-
time function f induced by TM f

cone is the one induced by the corresponding f�.

The specific choice of Turing machine formalisation in this definition is not
significant, as all Turing machine formalisations are equivalent for purposes of
determining computability, except insofar as its formulation simplifies connec-
tion with the field calculus in subsequent sections. The cone Turing machine
can be accepted as a ground for space-time computability, since it processes all
causally available data in each event in a Turing-complete way. Thus, a space-
time function can be defined computable as per the following definition.

Definition 8 (Discrete Space-Time Computability). Let f : V(∗)n

	→ V(∗) be an n-ary space-time function. We say that f is computable if and
only if there exists a cone Turing machine TM f

cone which induces f.

Definition 9 (Space-Time Universality). A programming model (e.g., the
field calculus) is space-time universal if and only if it is able to compute every
space-time function that can be computed by a cone Turing machine.
6 We remark that whenever f�(Φ � ε) is undefined for some ε (the computation has

not halted), we take f(Φ) to be undefined as well.
7 We denote with A∗ the set of finite sequences of values from A.
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3 Universality of Field Calculus

The field calculus is a tiny functional calculus capturing the essential elements
of field computations, much as λ-calculus [12] captures the essence of functional
computation and FJ [22] the essence of class-based object-oriented program-
ming. Among other uses, it has been used to define reusable blocks of adaptive
distributed algorithms [3,5], and to define robustness properties [32,34]. The
defining property of computational fields is that they allow us to consider a
computation from two different viewpoints: under a global viewpoint, a field is
a distributed data structure manipulated by a network of devices, while under a
local viewpoint it is just a single value, computed by a device on the basis of infor-
mation gathered from neighbours. The translation between the two viewpoints
is deterministic and automatic, abstracting away message-passing primitives.

Section 3.1 briefly presents the syntax and semantics of the field calculus
from the local viewpoint, a detailed account of which can be found in [14,15].
Section 3.2 extends the “event structure” formalism presented in Sect. 2, enabling
convenient formalisation of properties used in the remainder of this paper.
Section 3.3 shows that the field calculus is space-time universal, while outlin-
ing some inefficiencies that may occur in translating programs into it.

3.1 Field Calculus: Syntax and Semantics

We now present first-order field calculus [14] with a syntax inspired by recent
DSL implementations [11] (in place of the prior Scheme-like formulation in [14]),
plus a brief overview of its semantics under a local viewpoint. In our model,
individual devices undergo computation in (local) asynchronous rounds (one
per event): in each round, a device sleeps for some time, wakes up, gathers
information about messages received from neighbours while sleeping, performs
an evaluation of the program, and finally emits a message to all neighbours with
information about the outcome of computation before going back to sleep.

The overall evolution of a network of devices is represented operationally
through a small-step transition system act−−→ on network configurations N =
〈Env;Ψ〉, where Env models the environmental conditions (i.e., network topology,
inputs of sensors on each device) and Ψ models the overall status of the devices in
the network at a given time (as a map from device identifiers to environments Θ).
Two types of transitions are considered: device firings N

δ−→ N ′, modelling a com-
putational round performed by a device δ, and environment changes N

env−−→ N ′,
modelling any change in sensor data or network topology Env. Such a sequence
of transitions can be mapped to a corresponding event structure, comprising an
event ε for each δ−→ transition, with neighbouring relations � according to the
network topology determined by env−−→ transitions. More precisely, an event ε on
device δ (corresponding to a transition 〈Env;Ψ1〉 δ−→ 〈Env;Ψ2〉) has a neighbour-
ing relation � to the first event ε′ on δ′ after ε if and only if δ is connected to
δ′ in the network topology Env.
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P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x v let x = e in e f(e) expression

if(e){e}{e} ∣

nbr{e} rep(e){(x)=>e}
v ::= �

∣

φ value

� ::= c(�) local value

φ ::= δ �→ � neighbouring field value

f ::= d b function name

Fig. 4. Syntax of field calculus.

Operational semantics within a single device is formalised by the judgement
“δ;Θ  emain ⇓ θ”, to be read “expression emain evaluates to θ on δ with respect
to environment Θ”, where θ is an ordered tree of values tracking the results of
all evaluated sub-expressions of emain, and Θ is a map from neighbour devices δi

(possibly including δ itself) to the θi produced in their last firing. Mapped into
our language of space-time computation, θ is the value of a space-time function
at event ε and Θ is the set of values of that function at events ε′ � ε.

Figure 4 presents the syntax of field calculus.8 A program P consists of a
sequence of function declarations and of a main expression e. A function decla-
ration F defines a (possibly recursive) function, with d the function name, x the
parameters and e the body. An expression e can be:

– a variable x, either a function formal parameter or local to a let- or rep-
expression;

– a value v, either a local value (e.g., numbers, literals) defined through data
constructors c(	), or a neighbouring field value φ (a map δ 	→ 	 from neigh-
bours to local values) which is allowed to appear in intermediate computations
but not in source programs;

– a let-expression let x = e0 in e, which is evaluated by computing the value
v0 of e0 and then yielding as result the value of the expression obtained from
e by replacing all the occurrences of the variable x with the value v0;

– a function call f(e), where f can be a declared function d or a built-in function
b, such as accessing sensors, mathematical and logical operators, or data
structure operations;

– a conditional branching if(e1){e2}{e3}, where e1 is a Boolean expression;
– a nbr-expression nbr{e}, modelling neighbourhood interaction and produc-

ing a neighbouring field value φ that represents an “observation map” from
neighbours to their latest evaluation of e;

– or a rep-expression rep(e1){(x)=>e2}, evolving a local state through time by
evaluating an expression e2, substituting variable x with the value calculated

8 Note field calculus has also been extended to support higher-order functions [14,15]:
since this calculus is a proper subset and the space and time operations are identical,
all results for this calculus apply to the higher-order formulation as well.
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for the rep-expression at the previous computational round (in the first round
x is substituted with the value of e1). Although this first-order version of the
calculus does not model anonymous functions (differently from the higher-
order version in [15]), (x)=>e2 can be understood as an anonymous function
with parameter x and body e2.

Values associated with data constructors c of arity zero (e.g., literal values) are
written by omitting the empty parentheses, i.e., we write c instead of c(). In case
b is a binary built-in operator, we allow infix notation to enhance readability:
e.g., we shall sometimes write 1 + 2 for +(1, 2).

A correct matching between messages exchanged and nbr sub-expressions
is ensured by a process called alignment, which navigates the value-trees θ
of neighbours in the environment Θ as sub-expressions of the main expres-
sion emain are accessed. This process interacts subtly with branching state-
ments if(e1){e2}{e3}: since no matching of messages from different nbr sub-
expressions is allowed, computation of e2 in devices that selected the first branch
cannot interact with devices computing e3. This effectively splits the computa-
tion into two fully isolated sub-networks (devices evaluating e1 to True, and
those evaluating it to False).

3.2 Augmented Event Structures

In field calculus, as in most distributed computing paradigms, the semantics
is device-dependent : in particular, neighbouring links � connecting subsequent
events on the same device (state preservation) have a different role than links
connecting events on different devices (message passing). This choice reflects
practical implementation details of distributed computing networks, but it is
not captured by the abstract concept of event structure (Definition 1).

However, it is still possible to use the framework in Sect. 2 for the field cal-
culus. In fact, a function f in field calculus always corresponds to a space-time
function (Definition 3) with a number of extra input arguments (modelling envi-
ronmental information) in each event:

– the device δ where the event takes place;9
– local sensor information (e.g., time clock, temperature, etc.);
– relational sensor information (e.g., physical distance from other devices).

Note that relational sensor information is just a special case of local sensor
information, in which the value returned is a map over neighbouring events.

Due to the special role played by these extra input parameters, it will be con-
venient to consider an event structure together with its associated environmental
inputs to state the properties that will be investigated in the next sections:

Definition 10 (Augmented Event Structure). An augmented event struc-
ture is a tuple E = 〈E,Φ〉 consisting of an event structure E together with a
number of space-time values Φ (including device information).10

9 We assume that device identifiers δ are taken among a denumerable set D.
10 We assume that a finite number of devices may occur in augmented event structures.
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// previous round value of v
def older(v, null) {

1st(rep (pair(null, null)) { (old) => pair(2nd(old), v) })
}
// gathers values from causal past events into a labelled DAG
def gather(node, dag) {

let old = older(dag, dag empty()) in
let next = dag join(unionhood(old, nbr{dag}), node) in
if (next == node) { dag } {

gather(node, dag union(dag, next))
}

}
def f field(e, v...) {

f( gather(dag node(e, v...), dag node(e, v...)) )
}

Fig. 5. Translation f field of a Turing computable cone function f into field calculus,
given event information as additional input.

When functions are interpreted in augmented event structures, the provided
space-time values are then supplied as inputs to the functions (or indirectly
used to define sensor built-in functions).

3.3 Space-Time Universality

As outlined in Sect. 3.1, the field calculus operational semantics is defined
through a set of syntax-directed rules, involving data available in (and com-
puted by) events in the causal past of each firing event. Since the cone Turing
machine can process inputs from arbitrary events in the causal past of the cur-
rent event in a Turing-complete way, it follows that every space-time function
that is computable for the field calculus is also computable for the cone Turing
machine. Conversely, in order for the field calculus to be space-time universal
it needs to be (i) Turing-complete for fully local computations and (ii) able to
gather values from arbitrary events in the causal past. Condition (i) is easily
matched by the field calculus, as it is assumed that built-in functions on local
values, together with branching-expressions and recursive function declarations,
provide the required Turing-completeness. Condition (ii) holds as shown by the
following theorem.

Definition 11 (Rank). The rank of ε in E is the maximum length rank(ε) of
a path ε1 � ε2 � . . . ε ending in ε.

Definition 12 (Distance). The distance of ε′ < ε from ε is the minimum
length n of a path ε′ = ε0 � . . . � εn = ε connecting them.

Theorem 1 (Field Calculus Space-Time Universality). Let f be a Turing
computable cone function. Then there is a field calculus function f field that
produces the same outputs as f in any augmented event structure including event
information.
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Proof (sketch). Figure 5 shows a possible translation, assuming event informa-
tion e as additional input. Function gather collects values of its arguments
from causal past events into a labelled DAG, which is fed to the cone function
f. The code is based on the following built-in functions, which we assume to be
available.11

pair(v1, v2): constructs a pair 〈v1, v2〉.
1st(v), 2nd(v): returns the first (resp. second) element of a pair v.
dag empty(): returns an empty DAG structure.
dag node(ε, v): constructs a DAG consisting in a single node ε with labels v.
dag union(G1, G2): returns G1 ∪G2, merging duplicate entries of a same event.
dag join(G,n): returns G with an added node n, connected to each sink of G.
unionhood(G,φ): computes the union of G with each neighbour graph in φ.

Whenever gather is called, it computes in next the result of joining the current
node with neighbour dag values. If no neighbour is aligned to the current function
call, next = node hence dag is returned. Otherwise, a recursive call is made with
the enlarged graph dag∪next. Every event performs strictly more recursive calls
than all of its neighbour events, so the recursion depth in event ε is rank(ε). On
the n-th recursive call, values from events at distance ≤ n are computed and
fed to the following recursive calls. Thus, gather collects values from all events
ε′ < ε.

4 Delayed and Stabilising Universality

In this section we address an efficiency shortcoming of the field calculus that con-
cerns the size of messages exchanged across devices (Sect. 4.1), and accordingly
draw more tailored notions of universality: a notion of delayed universality that
relaxes temporal constraints of computation by which efficiency in message size
can be practically recovered (Sect. 4.2) and stabilising universality that focusses
on the ability of expressing all stabilising computations (Sect. 4.3).

4.1 On Message-Size Efficiency and Delays in Field Calculus

As shown in the proof of Theorem 1, function gather performs rank(ε) recursive
calls in each event ε, broadcasting an increasing part of the past event cone
E � ε through expression nbr{dag} in each of them. Thus, the total messages
exchanged have O(|E � ε| · rank(ε)) size, which is larger by a factor of rank(ε)
than what would be necessary in other distributed models of computation. In
fact, a Turing machine would be able to receive full cone reconstructions E � ε′

from neighbour events, join them and in turn broadcast a final reconstructed
value by uniting them. This is not possible in field calculus due to its alignment
mechanism: message exchange is bound to nbr-expressions, which first send a
11 All those functions except for unionhood are totally local, hence can be implemented

through any Turing-complete set of built-in functions (e.g. the minimal zero, -, <).



Space-Time Universality of Field Calculus 13

1

2

3

4

5

de
vi
ce

time

ε1 ε2

Fig. 6. Past light cones of events ε1 and ε2 in a sample augmented event structure.
Note that the ε1 (red) light cone includes device 2 twice, due to the break in state
memory, while the ε2 (green) light cone does not contain device 1, since all states in
the event cone of ε2 can take a path that includes state memory. (Color figure online)

message and then receive a response, whereas the previous procedure would
require a program to first receive data in order to compute the message to be sent.
This obstacle can be circumvented only by nbr nesting (as in f field), which
leads to the larger message size. Not all field calculus computations require such
nesting, though, only those requiring communication without delay, i.e., that
access information in the past light cone of an event, as defined in the following.

Definition 13 (Past Light Cone). Let E be an augmented event structure,
ε be an event. The past light cone LC(ε) of ε is the set of ε′ such that ε′ < ε
and no path ε′ = ε0 � . . . � εn = ε passes through two events εi, εj on a same
device.

Figure 6 represents the past light cone of two given events. Intuitively, events
are in the past light cone of ε if they are barely able to reach ε, i.e., any delay
of information propagation (i.e., “waiting” one round in a device) would break
connection with them. In this case, communication is more fragile since rep
constructs are of no use: each form of communication enabled by rep constructs
requires waiting at least one round on a device. For a message to be exchanged
from events ε′ ∈ LC(ε), a field calculus program needs to execute a number of
nested nbr statements at least equal to their relative distance, each of them
contributing to the overall message size.

4.2 Delayed Universality of the Field Calculus

For events sufficiently far from the past light cone, a slower and more light-weight
pattern of data collection with respect to nbr nesting can also be effective [3,5]:
the combined use of nbr and rep statements, as in the following.

rep (initial) { (old) => combine(old, nbr{old}) }
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// gathers values from past events into a labelled tree with marked nodes
def gather(e, v...) {

rep (dag empty()) { (old) =>
// for each neighbour, link its old DAG with the neighbour event
let neigh = nbr{ dag join(old, dag node(e, False, v...)) } in
// merge the obtained trees, and link the result with the current event
dag join(unionhood(old, neigh), dag node(e, True, v...))

}
}
// step to successor event e’ of e in G, if it exists and the gathering is complete up to e’
def next completed event(G, e) {

if (last event(G, e) or not dag true(dag restrict(G, next event(G, e))) { e } {
next event(G, e)

}
}
def f delayed(e, v...) {

let G = gather(e, v...) in
let delayed event = rep (e) { (old) => next completed event(G, old) } in
f( dag restrict(G, delayed event) )

}

Fig. 7. Delayed translation f delayed of a Turing computable cone function f into
field calculus, given event information as additional input. Notice that a single nbr

statement (line 5) is executed.

In this highly common pattern of field calculus, data from the previous event
on the same device is combined with data from the preceding event to each
neighbour event. The data flow induced by this pattern is necessarily slower
than that of nbr nesting, however, it only requires a single nbr statement and
hence messages carrying on a single data—with no expansion with rank. As we
shall show in Theorem 2, this pattern is also able to mimic the behaviour of
any space-time computable function with a finite delay, provided that the event
structure involved is persistent and fair.

Definition 14 (Persistence). An augmented event structure E is persistent
if and only if for each device δ, the events ε in E corresponding to that device
form a totally ordered �-chain.

Definition 15 (Fairness). An augmented event structure E is fair if and only
if for each event ε0 and device δ, there exists an event ε on δ such that ε0 < ε.

Notice that only countably infinite event structures can be fair.

Definition 16 (Delayed Functions). Let f, g : V(∗)n 	→ V(∗) be n-ary
space-time functions. We say that g is a delay of f if and only if for each persis-
tent and fair event structure 〈E,Φ〉 there is a surjective and weakly increasing12

map π : E → E such that g(Φ)(ε) = f(Φ)(π(ε)) for each ε.

Theorem 2 (Field Calculus Effective Delayed Universality). Let f :
V(∗)n 	→ V(∗) be a computable space-time function. Then there exists a field
calculus function f delayed which executes a single nbr statement and computes
a space-time function g : V(∗)n 	→ V(∗) which is a delay of f.
12 A map π : E → E is weakly increasing if and only if ε1 < ε2 ⇔ π(ε1) < π(ε2).
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Proof (sketch). Figure 7 shows a possible translation, assuming event informa-
tion e as additional input. Function gather collects input values from past events
into a labelled DAG, with an additional boolean label indicating whether all
neighbours of the event are present in the graph. The DAG is then restricted
to the most recent event for which the whole past event cone has already been
gathered, and finally fed to the cone function f. The code is based on the same
built-in functions used in Theorem1, together with the following.

last event(G, ε): true iff ε has no successor event in the same device in G.
next event(G, ε): returns the event ε′ following ε in the same device in G.
dag restrict(G, ε): returns the restriction G � ε.
dag true(G): true iff every node in G has True as first label.

We assume all these functions are available, and that operator unionhood prefers
label True against False when merging nodes with different labels.

Since the event structure is fair and persistent, data flow between devices
is possible in many different ways: for any event ε and device δ, we can find a
path ε � . . . � εδ ending in δ such that no two consecutive � crossing different
devices are present. Thus, data about ε is eventually gathered in εδ.

The delay implied by the above translation is proportional to the hop-count
diameter of the network considered: in fact, a transmission path is delayed by
one round for every device crossing in it. In most cases, this delay is sufficiently
small for the translation to be fruitfully used in practical applications [2,3].

4.3 Stabilising Universality of the Field Calculus

Since field calculus is able to efficiently perform computations with a certain
delay, it means that it can also efficiently perform those computations whose
goal is expressed by the spatial computation limit to be eventually reached, as
defined by the well-known classes of stabilising and self-stabilising programs [32].

Definition 17 (Stabilising Values). A space-time value Φ in an augmented
event structure E is stabilising if and only if for each device δ, there exists an
event ε0 on δ such that for each subsequent ε > ε0 on δ, Φ(ε) = Φ(ε0).

The limit lim(Φ) of a stabilising value Φ is the map m : D → V such that
m(δ) = v if for all ε on δ after a certain ε0, Φ(ε) = v.

Definition 18 (Stabilising Structures). Given an event ε in an augmented
event structure E, the set CD(ε) of connected devices in ε is:

CD(ε) = {δ | ∃εδ on δ such that εδ � ε} .

An augmented event structure 〈E,Φ〉 is stabilising if and only if it is fair, per-
sistent and both Φ and CD (interpreted as a space-time value) are stabilising.
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Definition 19 (Stabilising Functions). An n-ary space-time function f :
V(∗)n 	→ V(∗) is stabilising if and only if given any stabilising augmented
event structure 〈E,Φ〉, the output f(Φ) is stabilising. Two stabilising functions
f, g : V(∗)n 	→ V(∗) are equivalent if and only if given any stabilising augmented
event structure 〈E,Φ〉, their outputs have the same limits lim(f(Φ)) = lim(g(Φ)).

Theorem 3 (Delayed to Stabilising). Let f : V(∗)n 	→ V(∗) be a stabilising
space-time function, and g be a delay of f. Then g is stabilising and equivalent
to f.

Proof. Let δ be any device, and ε be the first event on δ such that the output of
f has stabilised to v on δ after ε. Let π : E → E be the function such that g is
a delay of f as in Definition 16, and let ε′ be such that π(ε′) = ε by surjectivity
of π. Then g stabilises to v on δ after ε′, concluding the proof.

Combining Theorems 2 and 3, we directly obtain the following corollary.

Corollary 1 (Field Calculus Effective Stabilising Universality). Let f :
V(∗)n 	→ V(∗) be a computable and stabilising space-time function. Then there
exists a field calculus function f stabilising which executes a single nbr state-
ment and computes a space-time function g : V(∗)n 	→V(∗) which is equivalent
to f.

Stabilisation guarantees that a limit exists, but in general such a limit
could highly depend on “transient environmental changes”. A stronger prop-
erty, more useful in practical applications is self-stabilisation [1,20,26,35], addi-
tionally guaranteeing full-independence to transient changes as defined in the
following.

Definition 20 (Self-Stabilising Functions). An n-ary space-time function
f : V(∗)n 	→ V(∗) is self-stabilising if and only if it is stabilising and given two
stabilising event structures 〈E,Φ

1〉 and 〈E,Φ
2〉 such that lim(Φ

1
) = lim(Φ

2
) and

lim(CD1) = lim(CD2), we have that lim(f(Φ
1
)) = lim(f(Φ

2
)).

Since self-stabilising functions are a subclass of stabilising functions, stabil-
ising universality trivially implies self-stabilising universality.

5 Related Work

Studying the expressiveness of coordination models is a traditional topic in the
field of coordination models and languages. As such, a good deal of literature
exists that we here classify and compare with the notions defined in this paper.

A first thread of papers, which forms the majority of the available works,
study expressiveness of coordination models using a traditional approach of con-
currency theory based on the following conceptual steps: (i) isolating coordi-
nation primitives of existing models, (ii) developing a core calculus formalis-
ing how their semantics affect the coordination space (production/reception of
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messages, triggering of events or process continuations, injection/extraction of
data-items/tuples), and finally (iii) drawing a bridge between the core calcu-
lus rewrite behaviour with the input/output behaviour of Turing machines, to
inspect universality or compare expressiveness of different sets of primitives.

Notable examples of this approach include the study of expressiveness of
Linda coordination primitives in [8], of event notification in data-driven lan-
guages in [9], of movement constructs in mobile environments in [10], and of
timed coordination models in [25]. A slightly different approach is taken in [17],
where the focus is expressiveness of a language for expressing coordination rules
to program “the space of interaction”: the methodology is similar, but here
expressiveness neglects the behaviour of coordinated entities, focussing just on
the shared-space enacting coordination.

Other approaches start instead from the consideration that the dimension of
interaction may require a more sophisticated machinery than comparison against
Turing machines. A classical position paper following this line is Peter Wegner’s
work in [37], which however did not turn into successful frameworks to study
interaction models. Modular embedding is proposed in [16] as an empowering of
standard embedding to compare relative expressiveness of concurrent languages,
which has been largely used as a tool by the community studying the theory of
concurrency.

The approach to universality and expressiveness presented in this paper sits
in between the two macro approaches above. On the one hand, our notion of
expressiveness is strictly linked to the classic Turing framework, and focusses
on the global computation that a system of coordinated entities can carry on.
Critically, however, it is based on denoting computations as event structures,
a long-standing notion used to formalise distributed systems of various sorts
[23,29]. In this paradigm, each single node has the power of a Turing machine,
all node execute the same behaviour, and what matters is the resulting spatio-
temporal configuration of events, which describes the overall system execution
and not just its final outcome. A somewhat similar stance is taken in [6,7], in
which field computations are considered as providing a space-time continuous
effect, obtained with limit of density of devices and frequency of their opera-
tion going to infinity—an approach that we plan to soon connect with the one
presented here.

6 Conclusions

In this paper, we proposed the cone Turing machine as a foundation for space-
time computability in distributed systems based on event structures, and use it to
study the expressiveness of field calculus. Field calculus is proved universal: but
in practice, some computations can be ineffective for they would need exchange
of messages with increasing size as time passes. By a form of abstraction which
releases some constraints on temporal execution (i.e., accepting some delay), field
calculus is shown instead to be both universal and message-size efficient. As a key
corollary, we proved that field calculus can efficiently implement self-stabilising
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computations, a class of computations which lately received considerable interest
[3,20,26,33,35].

In the future, we plan to further investigate the interplay of expressiveness
and efficiency for relevant classes of distributed algorithms, both in a discrete
and continuous setting, with the goal of designing new declarative programming
constructs for distributed systems.
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Abstract. We briefly recall results obtained in twenty years of research,
spanning across the old and the new millennium, on the expressive-
ness of coordination languages and on behavioural contracts for Service-
Oriented Computing. Then, we show how the techniques developed in
those contexts are currently contributing to the clarification of aspects
that were unclear about session types, in particular, asynchronous ses-
sion subtyping that was considered decidable since 2009, while it was
proved to be undecidable in 2017.

1 Introduction

Shared dataspaces and the so-called generative communication paradigm [27]
attracted a lot of attention since the initial years of research about foundations
of coordination models and languages. Linda [18], probably the most popular
language based on this coordination model, is based on the idea that concurrent
processes interact via a shared dataspace, the so-called Tuple Space (TS for
short), where the information needed to coordinate the activities are introduced
and retrieved. After its insertion in the TS, a datum becomes equally accessible
to all processes, but it is bound to none. In this way, the interaction among
concurrent processes is decoupled in space and time, principles useful in the
development of modular and scalable concurrent and distributed systems.

Concerning foundational studies on Linda-like coordination languages, it
appeared immediately clear that techniques borrowed from the tradition of con-
currency theory could be naturally applied. At the first two editions of the
Coordination conference, two process calculi based on Linda were proposed by
De Nicola and Pugliese [22] and by Busi et al. [14]. In particular, the latter
started a line of research on the expressiveness of Linda-like coordination prim-
itives that exploited, besides process calculi, also Petri nets. For instance, Petri
nets were used in [13], to prove that a Linda process calculus with input, out-
put and test-for-absence is not Turing complete if the semantics for output is
unordered, i.e., there is an unpredictable delay between the execution of an out-
put and the actual availability of the emitted datum in the TS. It is interesting to
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recall that, on the other hand, the same calculus is Turing complete if an ordered
semantics is considered, i.e. an emitted datum is immediately available in the
TS after the corresponding output is executed. Turing completeness was proved
by showing an encoding of a Turing powerful formalism, namely Random Access
Machines (RAMs), which is a computational model based on registers that can
be incremented, decremented and tested for emptiness.

The success of the Linda coordination model was witnessed by the develop-
ment, at the end of the 90s, of Linda-based middlewares from main ICT ven-
dors like IBM and Sun Microsystem, which proposed T-Spaces and JavaSpaces,
respectively. The basic Linda coordination model was extended with primitives
for event notification, time-out based data expiration, and transactions. The
techniques for evaluating the expressive power of Linda languages had to become
more sophisticated to cope with these additional primitives. In particular, Petri
nets with transfer and reset arcs [23] were adopted to cope also with the new
coordination mechanisms for event notification [16] and for temporary data [15].

During the initial years of the new millennium, Service-Oriented Computing
(SOC) emerged as an alternative model for developing communication-based
distributed systems. In particular, the large diffusion of Web Services called for
the development of new languages and techniques for service composition. The
idea, at the basis of SOC, is to conceive an ecosystem of services that expose
operations that can be combined to realize new applications. To support this
idea, it is necessary for the services to be equipped with an interface that, besides
describing the offered operations and the format of the exchanged messages,
defines the conversation protocols, i.e., the expected flow of invocations of the
operations. These interfaces, in particular the specification of the conversation
protocol, are also called behavioural contracts.

Process calculi contributed to the development of theories for behavioural
contracts. This line of research was initiated by Carpineti et al. [17], for the case
of client-server composition, and by Bravetti and Zavattaro [6], for multiparty
service compositions. The latter is particularly significant for the so-called ser-
vice choreographies, i.e., systems in which there exists no central orchestrator,
responsible for invoking all the other services in the system, because services
reciprocally interact. Behavioural contract theories focused mainly on the inves-
tigation of appropriate notions of correctness for service compositions (i.e., define
when a system based on services is free from communication errors) and on the
characterization of notions of compatibility between services and behavioural
contracts (i.e., define when a service conforms to a given behavioural contract).

For multiparty composition, a fairness based notion of correctness, called
compliance, was proposed for the first time in [6]: a system is correct if, whatever
state can be reached, there exists a continuation of the computation that yields
a final state in which all services have successfully completed. Given the notion
of compliance, it is possible to define also a natural notion of refinement for
behavioural contracts: a refinement is a relation among contracts such that, given
a set of compliant contracts C1, · · · , Cn, each contract Ci can be independently
replaced by any of its possible refinements C ′

i, and the overall system obtained
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by composition of C ′
1, · · · , C ′

n is still compliant. Contract refinement can then
be used to check whether a service conforms with a behavioural contract: it
is sufficient to verify if the communication behaviour of the service refines the
behavioural contract. This, in fact, implies that such service can be safely used
wherever a service is expected with the behaviour specified by the contract.

A negative result in the theory of behavioural contracts is that, in general,
the union of two refinement relations is not guaranteed to be itself a refinement.
This implies the impossibility to define a maximal notion of refinement. For
this reason, most of the effort in the line of research on behavioural contracts
initiated in [6] has been dedicated to the identification of interesting subclasses
of contracts for which the maximal refinement exists. Such classes are: contracts
with output persistence [6] (i.e. output actions cannot be avoided when a state is
entered in which they are ready to be executed), contract refinement preserving
strong compliance [7] (i.e. as soon as an output is ready to be executed, a receiver
is guaranteed to be ready to receive it), and asynchronously communicating
contracts [10] (i.e. communication is mediated by fifo buffers). In the first two
of these three cases, it has been also possible to provide a sound algorithmic
characterization of the corresponding maximal refinements.

To the best of our knowledge, characterizing algorithmically the maximal con-
tract refinement in case of asynchronous communication is still an open problem.
The main source of difficulty derives from the fact that, due to the presence of
unbounded communication buffers, systems of asynchronously communicating
contracts are infinite-state, even if contracts are finite-state. In the light of this
difficulty, we tried to take inspiration from work on session types, where asyn-
chronous communication has been investigated since the seminal work by Honda
et al. [29] (recipient of the most influential POPL’08 paper award). Session types
can be seen as a simplification of contracts obtained by imposing some limita-
tions: there are only two possible choices, internal choice among distinct outputs
and external choice among distinct inputs.

The counterpart of contract refinement in the context of session types is sub-
typing [26]. If we consider asynchronous communication, both contract refine-
ment and session subtyping can admit a refinement/subtype to perform the
communication actions in a different order. For instance, given a contract/type
that performs an input followed by an output, a refinement/subtype can antic-
ipate the output before the input, because such output can be buffered and
actually received afterwards. Asynchronous session subtyping was already stud-
ied by Mostrous et al. in [38], where also an algorithm for checking subtyping
was presented. Upon studying this algorithm we noticed an error in its proof of
termination: if, while checking subtyping, the buffer grows unboundedly, the pro-
posed procedure does not terminate. Subsequently, Bravetti et al. [4] and Lange
and Yoshida [33] independently proved that asynchronous session subtyping is
actually undecidable. Our experience in the modeling of Turing complete for-
malism (see the above discussion about encoding RAMs in the Linda process
calculus) helped in finding an appropriate Turing powerful model to be encoded
in terms of asynchronous session subtyping. In particular, we were able to present
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a translation from a Queue Machine M (a computational model similar to push-
down automata, but with a queue instead of a stack) to a pair of session types
that are in asynchronous subtyping relation if and only if M does not terminate.
Then, undecidability of asynchronous session subtyping directly follows from the
undecidability of the halting problem for Queue Machines.

These negative results opened the problem of identifying significant classes
of session types for which asynchronous subtyping can be decided. Currently,
the most interesting fragments have been identified in [4,5,33]. In the former, an
algorithm is presented for the case in which one of the two types is completely
deterministic, i.e. all choices –both internal and external– have one branch only.
In the latter, we have considered single-out (and single-in) session types, mean-
ing that in both types to be checked all internal choices (resp. external choices)
have one branch only. In the design of our algorithm we have been inspired by
our expertise in the analysis of the expressiveness of Linda process calculi. In
particular, the analysis techniques in Petri nets with transfer and reset arcs (our
tools to prove decidability results) are based on the notion of well quasi order-
ing (wqo): while generating an infinite sequence of elements, it is guaranteed
to eventually generate an element that is greater –with respect to the wqo– of
an already generated element. Similarly to the procedure in [38], our algorithm
checks a sequence of judgements, but differently from [38], termination is guaran-
teed because there exists a wqo on judgements, and the algorithm can terminate
when a judgement greater than an already checked one is considered.

Outline of the Paper. The remainder of this paper is divided in three main parts:
in Sect. 2 we discuss the techniques used to investigate the expressive power of
the Linda coordination model; in Sect. 3 we recall the main results concerning
behavioural contracts; and in Sect. 4 we present recent results on session types
for asynchronous communication. The additional Sect. 5 reports some concluding
remarks.

2 Process Calculi to Study the Expressiveness of Linda

Several Linda process calculi have been proposed in the literature, like PAL
[22], LLinda [21], and the Linda calculi in [12,14], just to mention some of them
(published in the proceedings of the first two editions of the Coordination con-
ference). Those calculi have been defined for several purposes: investigate from a
foundational viewpoint coordination models and languages, develop novel formal
analysis techniques for coordinated systems, or drive the implementation of fully-
fledged coordination languages. In this section, we focus on process calculi used
to prove results about the expressive power of primitives for Tuple Spaces. Dif-
ferent techniques have been adopted, spanning from Turing completeness (used,
e.g., in [13]) to modular embeddings (used, e.g., in [12]). To give the reader a
more precise idea of such techniques, in particular the former, we report some
results taken from [13,16].

We start by introducing a Linda calculus with four basic primitives: (i) out
to introduce a new datum into a shared repository called dataspace, (ii) in
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Table 1. The transition system for processes (symmetric rule of PAR omitted).

to consume one datum available in the repository, (iii) notify to register the
interest in future emissions of a specific datum (when such datum will be emitted
a new instance of a given process will be spawned), and (iv) tfa to test for the
absence of a specific datum. This calculus is Turing complete (result taken from
[13]) while the fragment without tfa is not (result taken from [16]). The proof
of Turing completeness is by reduction from Random Access Machines, while
the non Turing completeness of the considered fragment was proved in [16] by
resorting to a (non Turing complete) variant of Petri nets, namely Petri nets with
transfer arcs (see, e.g., [23]); here, we present an alternative proof technique
based on well quasi orderings (which are actually used to prove decidability
results for Petri nets with transfer arcs).

We now formally report the definition of a Linda-based process calculus,
starting from the syntax of processes.

Definition 1 (Linda Processes). Let Name, ranged over by a, b, . . ., be a
denumerable set of names. Processes are defined by the following grammar:

α ::= in(a) | out(a) | notify(a, P ) | tfa(a)
P ::=

∑
i∈I αi.Pi | !α.P | P |P

The basic process actions are in(a) and out(a) denoting the consumption or
emission, respectively, of one instance of datum a from/into the shared datas-
pace. Two additional primitives are considered: notify(a, P ) to register a listener
interested in future emissions of the datum a (the reaction to such event will
be the spawning of process P ) and tfa(a) to test for the absence of the datum
a. The term

∑
i∈I αi.Pi denotes a process ready to perform any of the action

αi, and then proceed by executing the corresponding continuation Pi. We use
0 to denote such process in case I = ∅, and we will usually omit trailing 0.
The replicated process !α.P performs an initial action α and then spawns the
continuation P by keeping !α.P in parallel. Two parallel processes P and Q are
denoted with P |Q. In the following we will use the notation

∏
i∈I Pi to denote

the parallel composition of processes indexed on the set of indexes I.
We now formalize the operational semantics for Linda processes in terms of

a transition system with four kinds of labels: in(a), out(a), notify(a, P ), and
tfa(a). The transition system is the least one satisfying the axioms and rules
reported in Table 1. The PRE rule simply allows a sum process to execute one of
its initial actions and then continue with the corresponding continuation. REPL
allows !α.P to execute α, spawn an instance of the continuation P , and keep
!α.P in parallel. Finally, PAR allows a parallel process to execute an action.

We now move to the syntax and semantics of systems, in which processes are
equipped with a dataspace and a multiset of registered listeners.
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Table 2. The reduction relation for systems (brackets in singletons are omitted).

Definition 2 (Linda Systems). A system S is a tuple 〈P,S,L〉 where P is a
process, S is the dataspace (i.e. a multiset over Name), and L are the registered
listeners (i.e. a multiset of pairs (a, P )).

The semantics of systems is defined by the minimal transition system sat-
isfying the rules in Table 2. The transitions for systems allow processes to (i)
consume data from the shared dataspace, (ii) register a new listener, (iii) intro-
duce a new datum in the shared dataspace with the corresponding spawning
of the processes in the interested listeners, and (iv) test for the absence of one
datum in the dataspace. We use � to denote multiset union.

In the following, we will consider termination and divergence of systems.

Definition 3 (Termination and Divergence). Given a system S, we say that
S terminates, denoted S↓, if there exists at least an ending computation, i.e.,
there exist S1, · · · , Sn such that S → S1 → S2 · · · → Sn �→, where Sn �→ means
that there exists no system S′ s.t. Sn → S′. We say that S diverges, denoted
S ↑, if there exists at least one infinite computation, i.e., there exist one infinite
sequence of systems S1, · · · , Sn, · · · such that S → S1 → S2 · · · → Sn → · · · .

2.1 Turing Completeness

The Turing completeness of the Linda calculus was proved in [13]. Actually, the
calculus in that paper considered a variant of the tfa primitive called inp, which
is a non-blocking version of in: inp has two possible continuations P and Q, the
first one activated in case the consumption succeeds, and a second one activated
if the message of interest is absent. This primitive coincides with the process
in(a).P + tfa(a).Q. The proof of Turing completeness was based on an encoding
of Random Access Machines (RAMs) [42], a well known register-based Turing
powerful formalism. Here, we rephrase that encoding by exploiting in, out and
tfa, without using notify . For this reason, in this subsection, we do not consider
listeners and denote systems simply with pairs 〈P,S〉 of processes and dataspace.

A RAM, denoted in the following with R, is a computational model composed
of a finite set of registers r1, . . . , rn, that can hold arbitrarily large natural num-
bers, and of a program composed by indexed instructions (1 : I1), . . . , (m : Im),
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that is a sequence of numbered instructions, like arithmetic operations (on the
contents of registers) or conditional jumps. An internal state of a RAM is given
by (i, c1, . . . , cn) where i is the program counter indicating the next instruction
to be executed, and c1, . . . , cn are the current contents of the registers r1, . . . , rn,
respectively.

The computation starts from the first instruction (1 : I1) and terminates
when the program counter points to an undefined instruction. In other terms, the
initial configuration is (1, 0, . . . , 0) and the computation continues by executing
the other instructions in sequence, unless a jump instruction is encountered. The
execution stops when an instruction outside the valid range 1, . . . ,m is reached.

Formally, we indicate by (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n) the fact that the

configuration of the RAM R changes from (i, c1, . . . , cn) to (i′, c′
1, . . . , c

′
n) after

the execution of the i-th instruction.
In [36] it is shown that the following two instructions are sufficient to model

every recursive function: (i : Succ(rj)) to add 1 to the content of register rj ;
(i : DecJump(rj , s)) that, if the content of register rj is not zero, decreases it
by 1 and goes to the next instruction, otherwise jumps to instruction s.

We start presenting how to encode RAM instructions into Linda processes:

[[(i : Succ(rj))]] = !in(pi).out(rj).out(pi+1)
[[(i : DecJump(rj , s))]] = !in(pi).

(
in(rj).out(pi+1) + tfa(rj).out(ps)

)

The idea is to represent the content of the register rj with a corresponding
number of instances of the datum rj in the dataspace. The program counter
is modeled by a datum pi indicating that the i-th instruction is the next one
to be executed. The modeling of the i-th instruction always starts with the
consumption of the pi datum. An increment instruction on rj simply produces
one datum rj , while a DecJump instruction either consumes one datum rj or
tests for the absence of such datum. After these operations, the subsequent
program counter datum is emitted.

We now present the full definition of our encoding. Let R be a RAM with m
instructions, and let (i, c1, . . . , cn) be one of its configurations. With

[[(i, c1, . . . , cn)]]R = 〈
∏

1≤i≤m

[[(i : Ii)]], {pi, r1, · · · , r1︸ ︷︷ ︸
c1 times

, · · · , rn, · · · , rn︸ ︷︷ ︸
cn times

} 〉

we denote the system representing the configuration (i, c1, . . . , cn).
We now formally recall the correctness of the encoding (proved in [13]) from

which we conclude the Turing completeness of the Linda calculus.

Theorem 1. Let R be a RAM. Given →3 as a notation for three successive
reductions of systems, we have that:

– Soundness: if [[(i, c1, . . . , cn)]]R →3 Q then there exists a unique configura-
tion (j, c′

1, . . . , c
′
n) such that Q = [[(j, c′

1, . . . , c
′
n)]]R and (i, c1, . . . , cn) →R

(j, c′
1, . . . , c

′
n)

– Completeness: if (i, c1, . . . , cn) →R (j, c′
1, . . . , c

′
n) then [[(i, c1, . . . , cn)]] →3

[[(j, c′
1, . . . , c

′
n)]]
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As a consequence of the Turing completeness of the Linda calculus, we have
that both termination and divergence are undecidable, namely, given a system S,
it is in general undecidable whether S ↓ or S ↑. Notice that Turing completeness
does not depend on notify , as this primitive is not used in the modeling of RAMs
reported in the previous subsection.

2.2 Decidability of Divergence in the Calculus Without tfa

We now focus on the expressive power of tfa, by investigating whether the cal-
culus continues to be Turing complete even if we remove such primitive. Hence,
we consider the fragment of the Linda calculus without the tfa primitive. We
will observe that this fragment is no longer Turing powerful, as divergence turns
out to be decidable, namely, given a system S, it is always possible to decide
whether S ↑. This result was proved in [16] by presenting an encoding of a Linda
calculus with in, out , and notify into Petri nets with transfer arcs: an extension
of place/transition Petri nets for which properties like coverability, or the exis-
tence of an infinite firing sequence, are still decidable. In this section we present
a novel alternative proof (at least for this considered Linda calculus) inspired
by the theory of well structured transition systems (WSTS) [24]: we first define
an ordering on systems configurations which is proved to be a well quasi order-
ing, and then we show that the operational semantics is compatible with such
ordering.

We start by recalling the notion of well quasi ordering (see, e.g., [24]).

Definition 4. A reflexive and transitive relation on a set X is called quasi
ordering. A well quasi ordering (wqo) is a quasi ordering (X,≤) such that, for
every infinite sequence x1, x2, · · · , there exist i < j with xi ≤ xj.

In the following we will use the following well known results for wqo:

– Consider a finite set S and the set of its multisets M(S). We have that
multiset inclusion is a well quasi ordering for the latter, namely (M(S),⊆) is
a wqo, where ⊆ denotes multiset inclusion.

– Consider k well quasi orderings (X1,≤1), · · · , (Xk,≤k). Let Π be the carte-
sian product X1 × · · · × Xk and ≤k be the natural extension of the order-
ings ≤1, · · · ,≤k to Π, i.e., (x1, · · · , xk) ≤k (y1, · · · , yk) if and only if x1 ≤1

y1, · · · , xk ≤k yk. We have that (Π,≤k) is a wqo.

We now recall, taking it from [24], the notion of compatibility1 of a transition
system w.r.t. an ordering.

Definition 5. A transition system (X,→) is compatible with respect to an
ordering (X,<) if, given two states s, t ∈ X of the transition system such that
s < t and s → s′ for some s′, then there exists t′ such that s′ < t′ and t → t′.

1 The compatibility notion used in this paper is named strict compatibility in [24].
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A known result from the theory of WSTS (Theorem 4.6 in [24]) is that it
is decidable to establish the existence of an infinite computation in a transition
system compatible with a wqo. To exploit this result, we now define a wqo on
systems 〈P,S,L〉. To do this we will make use of the above result stating that
multiset inclusion over multisets with a finite domain is a wqo. This result can be
directly applied to dataspaces S and registered listeners L as they are multisets,
while this is not possible on processes P that are terms with a given syntax.
Hence, it is necessary to give an interpretation of such terms P as multisets:
this can be obtained by extracting from a term P the multiset of sequential
or replicated processes constituting P . Formally, given the process P we define
inductively, on its syntactic structure, the multiset m(P ) as follows:

m(
∑

i∈I

αi.Pi) = {
∑

i∈I

αi.Pi} m(!α.P ) = {!α.P} m(P |Q) = m(P ) � m(Q)

We are now ready to define the following ordering on systems:

〈P,S,L〉 ≤S 〈P ′,S ′,L′〉 ⇔ m(P ) ⊆ m(P ′) ∧ S ⊆ S ′ ∧ L ⊆ L′

We now prove that this ordering ≤S on systems is a wqo for the set of systems
that are reachable from a given initial system.

Proposition 1. Let S0 = 〈P0,S0,L0〉 be an initial system and let Sys be the set
of systems that are reachable from S0 according to the reduction relation defined
in Table 2. We have that (Sys,≤S) is a wqo.

Proof. Let S = 〈P,S,L〉 be a system reachable from the initial system S0 =
〈P0,S0,L0〉. It is easy to see that the data in S and the listeners in L are taken
from finite domains given, respectively, by the parameters of the primitives out
and notify occurring in the initial process P0 (plus data or listeners already
available in S0 or L0). We now observe that also the sequential or replicated
processes in m(P ) are taken from a finite domain. In fact, P is the parallel
composition of terms that already occur in the initial process P or in the lis-
teners in L0. This is because the reduction relation defined in Table 2 does not
generate new processes, but simply consumes initial actions in front of already
available sequential or replicated processes or spawns processes already present
in listeners.

Hence (for the first of the two well known results recalled for wqo) we can
conclude that multiset inclusion is a wqo for the multisets m(P ) associated to
the reachable processes P , as well as for the reachable dataspaces S and listeners
L. The ordering ≤S is the natural ordering for the cartesian product of these
last three wqo, hence it is also a wqo (for the second of the recalled results). ��

We now observe that the reduction relation for systems defined in Table 2 is
compatible with the ordering ≤S .

Proposition 2. Let S, S′ and T be three systems, in which the tfa primitive
does not occur, such that S → S′ and S ≤S T . We have that there exists a
system T ′ such that T → T ′ and S′ ≤S T ′.
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Proof. We first observe that, for every pair of processes P and P ′ such that
m(P ) ⊆ m(P ′), if P

α−→ Q then there exists also Q′ such that P ′ α−→ Q′

and m(Q) ⊆ m(Q′). This can be proved by induction on the structure of P . If
P =

∑
i∈I αi.Ri (resp. P = !α.R) then P ′ is the parallel composition of terms

including also P . Let Q be the process in the r.h.s. of the transition inferred
on P by the rule PRE (resp. REPL) in Table 1. Such transition can be inferred
(by the same rule plus possible successive applications of PAR) also on P ′: let
Q′ be the process in the r.h.s. of such transition. As the same PRE (resp. REPL)
rule is initially applied, we have that Q′ is the parallel composition of processes
including also Q, hence m(Q) ⊆ m(Q′). In the inductive case, we have that
the last rule applied in the transition P

α−→ Q is PAR, and the thesis directly
follows from the inductive hypothesis on the transition used in the premise of
the application of PAR.

Consider now three systems S, S′ and T , in which the tfa primitive does
not occur, such that S ≤S T and S → S′. The latter implies that, given S =
〈P,SS ,LS〉 and S′ = 〈P ′,SS′ ,LS′〉, there exists α such that P

α−→ P ′. Consider
now T = 〈Q,ST ,LT 〉. Having S ≤S T , we also have m(P ) ⊆ m(Q). For the
above observation, then also Q

α−→ Q′ for a process Q′ such that m(P ′) ⊆
m(Q′). Given this transition Q

α−→ Q′, by the rules in Table 1, we also have
that T → T ′ = 〈Q′,ST ′ ,LT ′〉 with S′ ≤S T ′. The latter is a consequence of
m(P ′) ⊆ m(Q′), SS′ ⊆ ST ′ and LS′ ⊆ LT ′ . The last two statements follow
from the fact that ST ′ (resp. LT ′) is obtained from ST (resp. LT ) by applying
the same modification applied to SS (resp. LS) to obtain SS′ (resp. LS′); hence
multiset inclusion SS ⊆ ST (resp. LS ⊆ LT ) is preserved. ��

We can finally conclude with our decidability result.

Theorem 2. Let S = 〈P,S,L〉 be a system in which the tfa primitive does not
occur. It is decidable whether S ↑.
Proof. Direct consequence of Propositions 1 and 2 and the result taken from the
theory of WSTS (Theorem 4.6 in [24]) recalled above. ��

We conclude by recalling other related results about the un/decidability of
S ↓, i.e. the existence of a terminating computation. In [16] it is proved that S ↓ is
undecidable in the fragment of the Linda calculus, without tfa, considered in this
subsection: hence we conclude that the Linda calculus with in, out and notify
is in between decidability and undecidability, namely, S ↑ is decidable while
S↓ is not. The undecidability proof consists of an encoding of RAMs which is
nondeterministic: the Linda system corresponding to a RAM could have several
alternative computations, but all the computations that are not faithful w.r.t.
the modeled RAM are guaranteed to be divergent. Hence, the Linda system has
a terminating computation if and only if the corresponding RAM terminates.

In the same paper [16], it is also discussed that if we remove also the primitive
notify from the calculus, also S ↓ becomes decidable. This follows from the
possibility to faithfully encode the fragment of the calculus with only in and out
into classical place/transition Petri nets, for which it is possible to decide the



Foundations of Coordination and Contracts and Their Contribution 31

reachability of any marking from which no other transitions can be fired. This
additional result allows us to conclude that adding the primitive notify strictly
increases the expressive power of the Linda calculus with only in and out .

3 Behavioural Contracts

Behavioural contracts are used to describe the message-passing behaviour of
processes. The adoption of process calculi to the specification and analysis of
behavioural contracts was initiated by Fournet et al. [25], who proposed to spec-
ify contracts as CCS-like processes. They also defined a notion of conformance
between processes and contracts following a substitution principle: a process
conforms to a contract if it can replace it in any context without adding addi-
tional stuck behaviour. Contract have been subsequently studied in the context
of service oriented computing: contracts for client-service interaction have been
proposed by Carpineti et al. [17] and then independently extended along dif-
ferent directions by, e.g., Bravetti and Zavattaro (see e.g. [6–8]) by Laneve and
Padovani [32], by Castagna et al. [19], and Barbanera and de’Liguoro [1].

All such theories of contracts introduce, under different assumptions, notions
of contract refinements that can be seen as generalizations of the notion of
conformance initially studied in [25]: a contract refines another one if it can
safely replace it in any possible context. To give to the reader an idea of such
techniques, here we report a contract theory discussed in [8,9], for synchronous
communication, and [10], for the asynchronous case. In particular, the latter
represents the unique contract theory, to the best of our knowledge, specifically
tailored to asynchronous communication.

More precisely, the contract theory that we present is based on the follow-
ing ingredients: the notion of correct contract composition, the definition of
contract refinement, and its algorithmic characterization. The theory considers
both synchronous and asynchronous communication, excluding the algorithmic
characterization which is available only for the synchronous case.

We start by presenting the formal definition of behavioural contracts as it
appears in [2]. Contracts can be seen as a representation of the communication
actions that can be performed at a certain location over the network. We assume
a denumerable set of action names N , ranged over by a, b, c, . . . and a denumer-
able set Loc of location names, ranged over by l, l′, l1, · · · . We use τ /∈ N to
denote an internal (unsynchronizable) action. Contracts are denoted adopting
a basic process algebra with prefixes over {τ, a, al | a ∈ N , l ∈ Loc}, denoting
internal, input, and output action, respectively. Notice that a destination loca-
tion is specified for outputs. Such a process algebra is a simple extension of basic
CCS [35] with successful termination denoted by “1” (whereas the traditional
null process “0” denotes a failure or a deadlock).

Definition 6 (Behavioural Contracts). We consider a denumerable set of
contract variables Var ranged over by X, Y , · · · . The syntax of contracts is
defined by the following grammar
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Table 3. Semantic rules for contracts (symmetric rules omitted).

C ::= 0 | 1 | α.C | C+C | X | recX.C
α ::= τ | a | al

where recX. is a binder for the process variable X denoting recursive definition
of processes. We assume that in a contract C all process variables are bound. In
the following we will omit trailing “1” when writing contracts.

The operational semantics of contracts is defined in terms of a transition system
labeled over L={a, al, τ,

√ | a ∈ N , l ∈ Loc}, ranged over by λ, λ′, . . . , obtained
by the rules in Table 3 (plus a symmetric rule for choice). We use the notation
C{ / } to denote syntactic replacement. Semantic rules are the standard ones,
apart from that of term 1, which performs a

√
transition denoting successful

termination. The semantics of a contract C yields a finite-state labeled transition
system,2 whose states are the contracts reachable from C.

We now present a simple example of a contract describing an authentication
service that repeatedly performs two kinds of task: (i) the authentication of
clients by receiving their username and password, and (ii) the request to an
external account service for update of the list of the registered users.

recX.(username.password.(acceptedclient.X + failedclient.X)
+updateAccountsaccountServer.newAccounts.X)

The contract indicates a repeated choice between the two possible tasks. The
first task is activated by the reception of an invocation on username. In this
case, a password should subsequently be received and then two possible answers
are sent back to the client: either accepted or failed . The second task is acti-
vated by sending a request for update to the accountServer. In this case, the
newAccounts are subsequently received.

In the following we will study independent contract refinement. As already
anticipated in the Introduction under synchronous communication a maximal
independent contract refinement that preserves compliance does not exist. In [6]
we showed that this is a consequence of the symmetry between input and output
actions and that a possible solution, for synchronous communication, is to resort
to output persistent contracts; thus breaking such a symmetry.

2 As for basic CCS [35] finite-stateness is an obvious consequence of the fact that the
process algebra does not include static operators, like parallel or restriction.
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Definition 7 (Output Persistence). Consider the following notation: C
λ−→

means ∃C ′ : C
λ−→ C ′ and, given a (possibly empty) sequence of labels w =

λ1λ2 · · · λn−1λn, we use C
w−→ C ′ to denote the sequence of transitions C

λ1−→
C1

λ2−→ · · · λn−1−→ Cn−1
λn−→ C ′. A contract C is output persistent if, for any C ′

such that C
w−→ C ′ and C ′ al−→, the following holds: C ′

√
−→/ and, if C ′ α−→ C ′′

with α �= al, then also C ′′ al−→.

The output persistence property states that once a contract decides to exe-
cute an output, its actual execution is mandatory in order to successfully com-
plete the execution of the contract. This property typically holds in languages
for the description of service orchestrations (see e.g. WS-BPEL [40]) in which
output actions cannot be used as guards in external choices (see e.g. the pick
operator of WS-BPEL which is an external choice guarded on input actions).

The previous example of the authentication server (which is not output per-
sistent) can be rephrased as follows to be used in a synchronous setting:

recX.(username.password.(τ.acceptedclient.X + τ.failedclient.X)
+ τ.updateAccountsaccountServer.newAccounts.X)

Notice that, in this new version of the example, we have simply added an internal
action τ in front of outputs occurring in choices. This guarantees that, at the
moment the choice is to be resolved, the output action is not yet ready to be
executed: it becomes available only after the τ and, then, its eventual execution
is mandatory.

In the remainder, when we consider synchronous communication, we will
restrict to output persistent contracts.

3.1 Synchronous Contract Composition

Synchronous systems are formed by the parallel composition of contracts.

Definition 8 (Synchronous Systems). The syntax of synchronous systems
is defined by the following grammar

P ::= [C]l | P ||P
We assume systems to be such that: (i) every contract subterm [C]l occurs in P at
a different location l and (ii) no output action with destination l is syntactically
included inside a contract subterm occurring in P at the same location l, i.e.
actions al cannot occur inside a subterm [C]l of P .

A contract located at location l is denoted with [C]l. Located contracts can be
combined in parallel with the operator P ||P .

System operational semantics is defined by the rules in Table 4 plus symmet-
ric rules and a rule lifting τ transitions to located contracts like the one for

√
.

Transition system labels, still ranged over by λ, λ′, · · · , are now taken from the
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set {asr, asr, τ,
√ | a ∈ N ; s, r ∈ Loc}, where: asr (asr, resp.) denotes a potential

output (input, resp.) with the sender being at location s and the receiver at
location r; τ denotes a synchronization or a move performed internally by one
contract in the system and

√
denotes successful termination.

Table 4. Synchronous system semantics (τ lifting rule and symmetric rules omitted).

3.2 Asynchronous Contract Composition

In asynchronous systems contracts are equipped with an input message queue.

Definition 9 (Asynchronous Systems). The syntax of asynchronous
systems is defined by the following grammar

P ::= [C,Q]l | P ||P
Q ::= ε | al::Q

We assume asynchronous systems to be such that: (i) and (ii) of Definition 8
(with [C,Q]l replacing [C]l) hold true.

Terms Q denote message queues. They are sequences of messages, each one
denoted with al where a is the action name and l is the location of the sender. We
use “ε” to denote the empty message queue. Trailing ε are usually left implicit,
and we use “::” also as an operator over the syntax: if Q and Q′ are ε-terminated
queues, according to the syntax above, then Q::Q′ means appending the two
queues into a single ε-terminated list. Therefore, if Q is a queue, then ε::Q, Q::ε,
and Q are syntactically equal. In the following, when we talk about asynchronous
contract systems, we will use the shorthand [C]l to stand for [C, ε]l.

Asynchronous system operational semantics is defined by the rules in Table 5
plus the rules for the parallel operator of Table 4. In Table 5 we assume a rule
lifting τ transitions to located contracts like the one for output (without action
subscripts) and that bl ∈ Q holds true if and only if bl syntactically occurs inside
Q. This notation is used in the premise of the novel τ synchronization rule that
represents the consumption of an a message from the queue by removal of the
oldest a one.

As an example consider the system: [as.bs]r || [b.a]s. After executing the two
outputs, the system evolves to [1]r || [b.a, ar::br]s. The receiver is now ready to
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Table 5. Asynchronous system semantics (τ lifting rule and rules for parallel omitted).

consume the two messages stored in the queue, thus reaching [1]r || [1]s. This
means that the two messages are consumed in the opposite order of reception.

Notice that the information about the sender attached to queue messages is
actually not used by the operational semantic rules in Table 5: even if omitted
we would have obtained the same transitions. Nevertheless, we decided to use
the same queue syntax as in [10] to be more adherent to reality, where messages
can be distinguished e.g. depending on the sender. As a matter of fact, in [10],
this information is used to produce, instead of τ actions, more informative labels
that include denotation of the sender-receiver (this makes it possible to establish
conformance w.r.t. a given choreographical specification).

3.3 Contract Refinement

We now recall the formal definition of independent contract refinement that
preserves correct composition of contracts in both the synchronous and asyn-
chronous cases. With P

τ−→∗
P ′ we denote the existence of a (possibly empty)

sequence of τ -labeled transitions starting from the system P and leading to P ′.

Definition 10 (Correct Contract Composition – Compliance). A system
P is a correct contract composition, denoted P↓, if for every P ′ such that

P
τ−→∗

P ′, there exists P ′′ such that P ′ τ−→∗
P ′′ and P ′′

√
−→.

Intuitively, a system composed of contracts is correct if any possible computa-
tion may guarantee completion, i.e. it can be extended to reach a successfully
terminated computation (in the asynchronous case this means that all queues
are empty). In this case, such contracts are called compliant. An example of
contract composition that is correct (both in the synchronous and asynchronous
case) is [al3 ]l1 || [bl3 ]l2 || [a.b]l3 . Another example is [as.bs]r || [b.a]s considered
above, which is correct only in the asychronous case.

We are now ready to define the notion of contract refinement. Given a con-
tract C, we use oloc(C) to denote the set of locations used as destinations in all
the output actions occurring inside C.

Definition 11 (Independent Refinement). A pre-order ≤ over contracts
is an independent refinement if, for any n ≥ 1, contracts C1, . . . , Cn and
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C ′
1, . . . , C

′
n such that ∀i. C ′

i ≤ Ci, and distinguished location names l1, . . . , ln ∈
Loc such that ∀i. oloc(Ci) ∪ oloc(C ′

i) ⊆ {lj | 1 ≤ j ≤ n ∧ j �= i}, we have:

([C1]l1 || . . . || [Cn]ln)↓ ⇒ ([C ′
1]l1 || . . . || [C ′

n]ln)↓
An independent refinement pre-order formalizes the possibility to replace in a
correct contract composition every contract with one of its refinements, with
the guarantee that the new system is still correct. In [6] it is shown that in
the synchronous case, in the absence of the output persistence assumption, it
could happen that given two independent refinement pre-orders, their union is
no longer an independent refinement pre-order. In other words, there exists no
maximal independent refinement pre-order.

On the contrary, if we restrict to output persistent contracts or we consider
asynchronous communication, we have that the maximal independent refinement
pre-order exists: it can be achieved by considering a coarser form of refinement in
which, given any system composed of a set of contracts, refinement is applied to
one contract only (thus leaving the others unchanged). This form of refinement,
that we call compliance testing [11], is a form of testing where both the test and
the system under test must reach success. Given a system P , we use loc(P ) to
denote the subset of Loc of the locations of contracts syntactically occurring
inside P .

Definition 12 (Refinement Relation). A contract C ′ is a refinement of a
contract C denoted C ′ � C, if and only if for all l ∈ Loc and system P such
that l /∈ loc(P ) and l /∈ oloc(C) ∪ oloc(C ′) ⊆ loc(P ), we have:

([C]l||P )↓ ⇒ ([C ′]l||P )↓
Theorem 3 (Maximal Independent Refinement). There exists a maximal
independent refinement ≤ pre-order and it corresponds to the (compliance testing
based) refinement relation “�”.

3.4 Properties of Contract Refinement

We now discuss some properties of contract refinement and also show a sound
characterization that is decidable for the synchronous case. We use I(C) (O(C),
resp.) to stand for the set of names a (located names al, resp.) of input actions
a (output actions al, resp.) syntactically occurring in C. Given O ⊆ {al | a ∈
N ∧ l ∈ Loc}, we assume O to stand for {al | al ∈ O}.

We first observe that the refinement relation � allows input on new names
(and unreachable outputs on new names) to be added in refined contracts.

Theorem 4 (Refinements with Extended Inputs and Outputs). Let
C,C ′ be contracts. Both of the following hold

C ′{0/α.C ′′ | α ∈ I(C ′) − I(C)} ≺ C ⇔ C ′ ≺ C

C ′{T/α.C ′′ | α ∈ O(C ′) − O(C)} ≺ C ⇔ C ′ ≺ C

where T is: 0 in the synchronous case, τ.0 in the asynchronous case.
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This theorem is a direct consequence of queue based communication (in the asyn-
chronous case) and output persistence (in the synchronous case): a subcontract
C ′ cannot perform reachable outputs that were not included in the potential
outputs of the supercontract C; and, similarly, a compliant test P of a contract
[C]l cannot perform reachable outputs directed to l that C cannot receive (e.g.
in the asynchronous case [a]l||[al + bl]l′ is not a correct contract composition).
From this theorem we can derive two fundamental properties of the maximal
independent refinement pre-order: external choices on inputs can be extended,
e.g. a + b � a; while internal choices on outputs can be reduced, e.g. al � al + bl

in the asynchronous case and τ.al � τ.al + τ.bl in the synchronous one, because
the lefthand term is more deterministic (typical property in testing).

We now focus on determining an algorithmic sound characterization of the
synchronous contract refinement relation. This is achieved by resorting to the
theory of fair testing, called should-testing [41]. As a side result we also have
that the refinement relation � is coarser than fair testing preorder. We denote
with �test the should-testing pre-order defined in [41] where we consider

√
to

be included in the set of actions of terms under testing as any other action (
√

is
treated as a normal action and not as the special action representing success of
tests in [41]). In order to resort to the theory should-testing, we define a normal
form for contracts C, denoted with NF(C), that corresponds to terms of the
language in [41] (mainly a matter of replacing 1 with a

√
action, see [8] for

details).

Theorem 5 (Resorting to Fair Testing). Let C,C ′ be contracts. We have

NF(C ′{0/α.C ′′ | α ∈ I(C ′) − I(C)}) �test NF(C) ⇒ C ′ � C

The opposite implication does not hold in general. This can be easily seen by
considering uncontrollable contracts, i.e. contracts for which there is no compliant
test. For instance the contract 0, any other contract a.b.0 or c.d.0 or more
complex examples like a + a.b. These contracts are all equivalent according to
our refinement relation, but of course not according to fair testing. Notice that
such uncontrollable contracts have completely different traces: this means that
trace pre-order is not coarser than our refinement relation.

4 Session Types

In this section we move to session types, in particular we report about our study
of asynchronous session subtyping. Session types [28,29] are types for control-
ling the communication behaviour of processes over channels. In a very simple
but effective way, they express the pattern of sends and receives that a process
must perform. They are, therefore, similar to behavioural contracts, but more
constrained in the kind of behaviours they can express. Since they can guaran-
tee freedom from some basic programming errors, session types are becoming
popular with many main stream language implementations, e.g., Haskell [34],
Go [39] or Rust [30]. In [38] session subtyping is introduced for asynchronous
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communication and it is also stated that it is decidable. Recently it has been
proven that, on the contrary, it is undecidable. Here we present such an unde-
cidability result [4] and the decidability result in [5], where the largest known
decidable fragment is introduced. In particular, we recall the basic definitions
of session types and synchronous and asynchronous session subtyping. We then
report the undecidability proof in [4]. Finally, we present the fragment of single-
out (and single-in) session types, for which we show asynchronous subtyping to
be decidable [5]. The techniques for these (un)decidability results can be seen
as improvements of those developed for Linda process calculi: reduction from
Turing complete computational models and exploitation of well quasi orderings.

4.1 Session Subtyping

Session subtyping, which is the counterpart for session types of refinement for
behavioural contracts, was first introduced by Gay and Hole [26] for a session-
based π-calculus where communication is synchronous. Session subtyping of [26]
is endowed with covariant/contravariant properties that correspond to those we
observed on behavioural contract refinement: internal choices on outputs can
be reduced, while external choices on inputs can be extended. To the best of
our knowledge, Mostrous et al. [38] were the first to adapt the notion of session
subtyping to an asynchronous setting. Their computation model is a session
π-calculus with asynchronous communication that makes use of session queues
for maintaining the order in which messages are sent. Based on such a model
they introduce the idea of output anticipation, which is also a main feature of
our theory in [4,5] that we present here. Mostrous and Yoshida [37] extended
the notion of asynchronous subtyping to session types for the higher-order π-
calculus. They also observed that their definition of asynchronous subtyping
allows for orphan messages, i.e. sent messages which are never consumed from
the session queue. Orphan messages are, instead, prohibited with the definition
of subtyping given by Chen et al. [20]: they show that such a definition is both
sound and complete w.r.t. type safety and orphan message freedom.

We start with the formal syntax of binary session types, adopting a simplified
notation (used, e.g., in [4,5]) without dedicated constructs for sending an out-
put/receiving an input. We instead represent outputs and inputs directly inside
choices. More precisely, we consider output selection ⊕{li : Ti}i∈I , expressing an
internal choice among outputs, and input branching &{li : Ti}i∈I , expressing an
external choice among inputs. Each possible choice is labeled by a label li, taken
from a global set of labels L, followed by a session continuation Ti. Labels in a
branching/selection are assumed to be pairwise distinct.

Definition 13 (Session Types). Given a set of labels L, ranged over by l, the
syntax of binary session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | μt.T | t | end

A session type is single-out if, for all of its subterms ⊕{li : Ti}i∈I , |I| = 1; it is
single-in if, for all of its subterms &{li : Ti}i∈I , |I| = 1.
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In the sequel, we leave implicit the index set i ∈ I in input branchings and
output selections when it is already clear from the denotation of the types. Note
also that we abstract from the type of the message that could be sent over the
channel, since this is orthogonal to our theory. Types μt.T and t denote standard
tail recursion for recursive types. We assume recursion to be guarded: in μt.T ,
the recursion variable t occurs within the scope of an output or an input type.
In the following, we will consider closed terms only, i.e., types with all recursion
variables t occurring under the scope of a corresponding definition μt.T . Type
end denotes the type of a channel that can no longer be used.

For session types, we define the usual notion of duality: given a session type
T , its dual T is defined as: ⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li :
T i}i∈I , end = end, t = t, and μt.T = μt.T . In the sequel, we say that a relation
R on session types is dual closed if (S, T ) ∈ R implies (T , S) ∈ R.

We start by considering a synchronous subtyping relation, similar to that
of Gay and Hole [26] but, to be more consistent with contracts, following a
process-oriented instead of a channel-based approach.3 Moreover, following [38],
we consider a generalized version of unfolding that allows us to unfold recursions
μt.T as many times as needed.

Definition 14 (n-unfolding).

unfold0(T ) = T unfold1(⊕{li : Ti}i∈I) = ⊕{li : unfold1(Ti)}i∈I

unfold1(μt.T ) = T{μt.T/t} unfold1(&{li : Ti}i∈I) = &{li : unfold1(Ti)}i∈I

unfold1(end) = end unfoldn(T ) = unfold1(unfoldn−1(T ))

Definition 15 (Synchronous Subtyping, ≤s). R is a synchronous subtyping
relation whenever (T, S) ∈ R implies that:

1. if T = end then ∃n ≥ 0 such that unfoldn(S) = end;
2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = ⊕{lj : Sj}j∈J , I ⊆ J

and ∀i ∈ I. (Ti, Si) ∈ R;
3. if T = &{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = &{lj : Sj}j∈J , J ⊆ I

and ∀j ∈ J. (Tj , Sj) ∈ R;
4. if T = μt.T ′ then (T ′{T/t}, S) ∈ R.

T is a synchronous subtype of S, written T≤sS, if there is a synchronous sub-
typing relation R such that (T, S) ∈ R.

Two types T and S are related by ≤s, whenever S is able to simulate T with out-
put and input types enjoying covariance and contravariance properties, respec-
tively. Notice the asymmetric use of unfolding between the left- and righthand
terms T and S: in T recursion is always unfolded once, while in S many unfold-
ings can be needed in order to expose the starting operator of T .

As already discussed, subtyping is the counterpart of contract refinement in
the context of session types. Consider, for instance,

&{a : end, b : end} ≤s &{a : end} ⊕ {a : end} ≤s ⊕ {a : end, b : end}
3 Differently from our definitions, in the channel-based approach of Gay and Hole [26]

subtyping is covariant on branchings and contra-variant on selections.
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that hold for input contravariance and output covariance. These examples of
subtypings precisely correspond to those of contract refinements commented
in Sect. 3.4. Note that, while in the case of contracts they were obtained as a
consequence of considering the maximal independent refinement, in the theory
of session types they are taken by definition.

We now consider the standard notion of asynchronous subtyping ≤ intro-
duced by Chen et al. [20], which enjoys orphan message freedom; we consider
the simple rephrasing based on dual closeness we introduced in [5]. In the defi-
nition of ≤ we use the following notion of input context.

Definition 16 (Input Context). An input context A is a session type with
multiple holes defined by the syntax: A ::= [ ]n | &{li : Ai}i∈I .

The holes [ ]n, with n ∈ N
+, of an input context A are assumed to be consis-

tently enumerated, i.e. there exists m ≥ 1 such that A includes one and only one
[ ]n for each n ≤ m. Given types T1,. . . , Tm, we use A[Tk]k∈{1,...,m} to denote
the type obtained by filling each hole k in A with the corresponding term Tk.

Definition 17 (Asynchronous Subtyping, ≤). R is an asynchronous sub-
typing relation whenever it is dual closed and (T, S) ∈ R implies 1., 3., and 4.
of Definition 15, plus the following modified version of 2.:

2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0,A such that
– unfoldn(S) = A[⊕{lj : Skj}j∈Jk

]k∈{1,...,m},
– ∀k ∈ {1, . . . , m}. I ⊆ Jk and
– ∀i ∈ I, (Ti,A[Ski]k∈{1,...,m}) ∈ R

T is an asynchronous subtype of S, written T ≤ S, if there is an asynchronous
subtyping relation R such that (T, S) ∈ R.

We now explain the modified version of Rule 2. and its impact on the obtained
subtyping relation. Concerning the adopted notation, for each hole k of the input
context A (which is at the beginnig of the righthand term S after any needed
unfolding), we take lj , with j ∈ Jk, to be the labels of the output selection in
the hole. Moreover, we use Skj to denote the type reached after output lj in
the hole k. An important characteristic of asynchronous subtyping (formalized
by Rule 2. above) is the following one. In a subtype output selections can be
anticipated so to bring them before the input branchings that in the supertype
occur in front of them. For example

⊕{
l : &{l1 : T1, l2 : T2}

} ≤ &
{
l1 : ⊕{l : T1}, l2 : ⊕{l : T2}

}

where the output selection with label l (occurring in the supertype) is antici-
pated w.r.t. the input branching with labels l1 and l2 (such an output selection
is present in all its input branches). As already discussed in the Introduction,
output anticipation reflects the fact that we are considering asynchronous com-
munication protocols in which messages are stored in queues. In this setting, it is
safe to replace a peer that follows a given protocol with another one following a
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modified protocol where outputs are anticipated: in fact, the difference is simply
that such outputs will be stored earlier in the communication queue.

As a further example, consider the types T = μt.&{l : ⊕{l : t}} and S =
μt.&{l : &{l : ⊕{l : t}}}. We have T ≤S by considering an infinite subtyping
relation including pairs (T ′, S′), with S′ being &{l : S}, &{l : &{l : S}}, &{l :
&{l : &{l : S}}}, . . . ; that is, the effect of each output anticipation is that a
new input &{l : } is accumulated in the initial part of the r.h.s. It is worth
to observe that every accumulated input &{l : } is eventually consumed in the
simulation game (orphan message freedom), but the accumulated inputs grows
unboundedly.

4.2 Undecidability of Asynchronous Subtyping

The proof of undecidability of the asynchronous subtyping relation, taken
from [4], is by reduction from the acceptance problem for queue machines.

Definition 18 (Queue machine). A queue machine M is defined by a six-
tuple (Q,Σ, Γ, $, s, δ) where: Q is a finite set of states; Σ ⊂ Γ is a finite set
denoting the input alphabet; Γ is a finite set denoting the queue alphabet (ranged
over by A,B,C,X); $ ∈ Γ − Σ is the initial queue symbol; s ∈ Q is the start
state; δ : Q × Γ → Q × Γ ∗ is the transition function.

We now formally define queue machine computations.

Definition 19 (Queue machine computation). A configuration of a queue
machine is an ordered pair (q, γ) where q ∈ Q is its current state and γ ∈ Γ ∗

is the queue (Γ ∗ is the Kleene closure of Γ ). The starting configuration on
an input string x is (s, x$). The transition relation →M over configurations
Q × Γ ∗, leading from a configuration to the next one, is defined as follows. For
any p, q ∈ Q, A ∈ Γ and α, γ ∈ Γ ∗ we have (p,Aα) →M (q, αγ) whenever
δ(p,A) = (q, γ). A machine M accepts an input x if it eventually terminates on
input x, i.e. it reaches a blocking configuration with the empty queue (notice that,
as the transition relation is total, the unique way to terminate is by emptying the
queue). Formally, x is accepted by M if (s, x$) →∗

M (q, ε) where ε is the empty
string and →∗

M is the reflexive and transitive closure of →M .

Queue machines are Turing complete, see [31] (p. 354) and [4].
Our goal is to construct a pair of types, say T and S, from a given queue

machine M and a given input x, such that: T ≤S if and only if x is not accepted
by M . Intuitively, type T encodes the finite control of M , i.e., its transition
function δ, starting from its initial state s. And type S encodes the machine
queue that initially contains x$, where x is the input string x = X1 · · · Xn of
length n ≥ 0. The set of labels L for such types T and S is M ’s queue alphabet Γ .

Formally, the queue of a machine is encoded into a session type as follows:

Definition 20 (Queue Encoding). Let M = (Q,Σ, Γ, $, s, δ) be a queue
machine and let C1 · · · Cm ∈ Γ ∗, with m ≥ 0. We define:
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[[C1· · ·Cm]] = &{C1: . . . &{Cm : μt. ⊕ {A : &{A : t}}A∈Γ }}
Given a configuration (q, γ) of M , the encoding of the queue γ = C1 · · · Cm is
thus defined as [[C1 · · · Cm]].

Note that whenever m = 0, we have [[ε]] = μt. ⊕ {A : &{A : t}}A∈Γ . Observe
that we are using a slight abuse of notation: in both output selections and input
branchings, labels lA, with A ∈ Γ , are simply denoted by A.

A1?

Ak!

.....

$?X1? Xn?.....

A1!

Ak?

Fig. 1. Session type encoding the initial queue X1 · · · Xn$

Figure 1 contains a graphical representation of the queue encoding with its
initial content X1 · · · Xn$. In order to better clarify our development, we graph-
ically represent session types as labeled transition systems (in the form of com-
municating automata [3]), where an output selection ⊕{li : Ti}i∈I is represented
as a choice among alternative output transitions labeled with “li!”, and an input
branching &{li : Ti}i∈I is represented as a choice among alternative input tran-
sitions labeled with “li?”. Intuitively, we encode a queue containing symbols
C1 · · · Cm with a session type that starts with m inputs with labels C1, . . . ,
Cm, respectively. Thus, in Fig. 1, we have C1 · · · Cm = X1 · · · Xn$. After such
sequence of inputs, representing the current queue content, there is a recursive
type representing the capability to enqueue new symbols. Such a type repeatedly
performs an output selection with one choice for each symbol Ai in the queue
alphabet Γ (with k being the cardinality of Γ ), followed by an input labeled
with the same symbol Ai.

We now give the definition of the type modelling the finite control of a queue
machine, i.e., the encoding of the transition function δ.

Definition 21 (Finite Control Encoding). Let M = (Q,Σ, Γ, $, s, δ) be a
queue machine and let q ∈ Q and S ⊆ Q. We define:

[[q]]S =

⎧
⎨

⎩

μq.&{A :⊕{BA
1 : · · · ⊕ {BA

nA
: [[q′]]S∪q}}}A∈Γ

if q �∈ S and δ(q,A) = (q′, BA
1 · · · BA

nA
)

q if q ∈ S
The encoding of the transition function of M is then defined as [[s]]∅.
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A1?

Ak?

B1!

.....

B1 !

Bk! ..... Bk  !

.....

q[[ ]]

q1[[ ]]

qk[[ ]]
1

1

nk

n1

(for Γ = Ai i k and δ(q, Ai) = (qi, Bi
1 Bi

ni
) for every i)

Fig. 2. Session type encoding a finite control.

The encoding of the finite control is a recursively defined term with one recursion
variable q for each state q ∈ Q of the machine. Above, [[q]]S is a function that,
given a state q and a set of states S, returns a type representing the possible
behaviour of the queue machine starting from state q. Such behaviour consists
of first reading from the queue (input branching on A ∈ Γ ) and then writing on
the queue a sequence of symbols BA

1 , . . . , BA
nA

. The parameter S is necessary for
managing the recursive definition of this type. In fact, as the definition of the
encoding function is itself recursive, this parameter keeps track of the states that
have been already encoded (see example below). In Fig. 2, we report a graphical
representation of the Labelled Transition System corresponding to the session
type that encodes the queue machine finite control, i.e. the transition function
δ. Each state q ∈ Q is mapped onto a state [[q]] of a session type, which performs
an input branching with a choice for each symbol in the queue alphabet Γ (with
k being the cardinality of Γ ). Each of these choices represents a possible symbol
that can be read from the queue. After this initial input branching, each choice
continues with a sequence of outputs labeled with the symbols that are to be
inserted in the queue (after the symbol labeling that choice has been consumed).
This is done according to function δ, assuming that δ(q,Ai) = (qi, B

i
1 · · · Bi

ni
),

with ni ≥ 0, for all i in {1, . . . , k}. After the insertion phase, state [[qi]] of the
session type corresponding to state qi of the queue machine is reached.

Notice that, queue insertion actually happens in the encoding because, when
the encoding of the finite control performs an output of a B symbol, the encoding
of the queue must mimic such an output, possibly by anticipating it. This has
the effect of adding an input on B at the end of the sequence of initial inputs of
the queue machine encoding.

Theorem 6. Given a queue machine M = (Q,Σ, Γ, $, s, δ), an input string x,
and the two types T = [[s]]∅ and S = [[x$]], we have that M accepts x iff T �≤S.

4.3 Decidability of Single-Out/Single-In Asynchronous Subtyping

We now show decidability of asynchronous session subtyping over single-out/
single-in session types. The full technical machinery can be found in [5].

We start by giving a procedure (an algorithm that does not necessarily ter-
minate) for the general subtyping relation, which we showed to be undecid-
able. Such a procedure is inspired by the one proposed by Mostrous et al. [38]
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for asynchronous subtyping in multiparty session types. In order to do so, we
introduce two functions on the syntax of types. The function outDepth cal-
culates how many unfoldings are necessary for bringing an output outside a
recursion (in every possible input path). If that is not possible, the function
is undefined (denoted by ⊥). As an example consider, for any T1 and T2,
outDepth(⊕{l1 : T1, l2 : T2}) = 0. On the other hand, consider the type
Tex = &

{
l1 : μt. ⊕ {

l2 : T1

}
, l3 : μt.&

{
l4 : μt′. ⊕ {l5 : T2}

}}
: we have,

outDepth
(
Tex

)
= 2. We then define outUnf(), a variant of the unfolding function

given in Definition 14, which unfolds only where it is necessary, in order to reach
an output. The function above differs from unfoldn: for example, unfold2

(
Tex

)

would unfold twice both subterms μt. ⊕{l2 : T1} and μt.&
{
l4 : μt′. ⊕{l5 : T2}

}
.

On the other hand, applying outDepth to the same term would unfold once the
term reached with l1 and twice the one reached with l3. In the subtyping pro-
cedure defined below we make use of outUnf() in order to have that recursive
definitions under the scope of an output are never unfolded. This guarantees that
during the execution of the procedure, even if the set of reached terms could be
unbounded, all the subterms starting with an output are taken from a bounded
set of terms. This is important to guarantee termination of the algorithm that
we are going to define as an extension of the procedure described below.

Subtyping Procedure. An environment Σ is a set containing pairs (T, S), where
T and S are types. Judgements are triples of the form Σ � T ≤a S which
intuitively read as “in order to succeed, the procedure must check whether T
is a subtype of S, provided that pairs in Σ have already been visited”. Our
subtyping procedure, applied to the types T and S, consists of deriving the state
space of our judgments using the rules in Fig. 3 bottom-up starting from the
initial judgement ∅ � T ≤a S. More precisely, we use the transition relation Σ �
T ≤a S → Σ′ � T ′ ≤a S′ to indicate that if Σ � T ≤a S matches the conclusions
of one of the rules in Fig. 3, then Σ′ � T ′ ≤a S′ is produced by the corresponding
premises. The procedure explores the reachable judgements according to this
transition relation. We give highest priority to rule Asmp, thus ensuring that at
most one rule is applicable.4 The idea behind Σ is to avoid cycles when dealing
with recursive types. Rules RecR1 and RecR2 deal with the case in which the type
on the right-hand side is a recursion and must be unfolded. If the type on the left-
hand side is not an output then the procedure simply adds the current pair to Σ
and continues. On the other hand, if an output must be found, we apply RecR1

which checks whether such output is available. Rule Out allows nested outputs
to be anticipated (when not under recursion) and condition

(A �= [ ]1
) ⇒ ∀i ∈

I.& ∈ Ti (inspired by [20]) makes sure there are no orphan messages. In fact,
this condition implies that if there is some output which is anticipated in the
subtype w.r.t. some inputs, in every continuation of the subtype there are input
actions that will eventually reproduce also the input behaviour of the supertype.
4 The priority of Asmp is sufficient because all the other rules are alternative, i.e.,

given a judgement Σ � T ≤a S there are no two rules different from Asmp that can
be both applied.
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(A �= [ ]1) ⇒ ∀i ∈ I.& ∈ Ti

∀n.I ⊆ Jn ∀i ∈ I . Σ � Ti ≤a A[Sni]n

Σ � ⊕{li : Ti}i∈I ≤a A[⊕{lj : Snj}j∈Jn ]
n Out

J ⊆ I ∀j ∈ J . Σ � Tj ≤a Sj

Σ � &{li : Ti}i∈I ≤a &{lj : Sj}j∈J
In

Σ � end ≤a end
End

Σ, (T, S) � T ≤a S
Asmp

Σ, (μt.T, S) � T{μt.T/t} ≤a S

Σ � μt.T ≤a S
RecL

T = end ∨ T = &{li : Ti}i∈I Σ, (T, μt.S) � T ≤a S{μt.S/t}
Σ � T ≤a μt.S

RecR1

outDepth(S) ≥ 1 Σ, (⊕{li : Ti}i∈I , S) � ⊕{li : Ti}i∈I ≤a outUnf(S)
Σ li : Ti i I a S

RecR2

Fig. 3. A Procedure for Checking Subtyping

The remaining rules are self-explanatory. Σ � T ≤a S →∗ Σ′ � T ′ ≤a S′ is the
reflexive and transitive closure of the transition relation among judgements. We
write Σ � T ≤a S →ok if the judgement Σ � T ≤a S matches the conclusion of
one of the axioms Asmp or End, and Σ � T ≤a S →err to mean that no rule can
be applied to Σ � T ≤a S. Due to input branching and output selection, the
rules In and Out could generate branching also in the state space to be explored
by the procedure. Namely, given a judgement Σ � T ≤a S, there are several
subsequent judgements Σ′ � T ′ ≤a S′ such that Σ � T ≤a S → Σ′ � T ′ ≤a S′.
The procedure could (i) successfully terminate because all the explored branches
reach a successful judgement Σ′ � T ′ ≤a S′ →ok, (ii) terminate with an error
in case at least one judgement Σ′ � T ′ ≤a S′ →err is reached, or (iii) diverge
because no branch terminates with an error and at least one branch never reaches
a successful judgement. As we prove in [5] the procedure is sound with respect
to asynchronous subtyping ≤ and it can diverge only if the checked types are in
the ≤ relation.

If we consider types T and S of the example considered after Definition 17
the subtyping procedure in Fig. 3 applied to ∅ � T ≤a S does not terminate.
The problem is that the termination rule Asmp cannot be applied because the
term on the r.h.s. (i.e. the supertype) generates always new terms in the form
&{l : &{l : . . . &{l : S} . . . }}. Notice that, in this particular example, these
infinitely many distinct terms are obtained by adding single inputs (i.e. single-
choice input branchings) in front of the term in the r.h.s.: we call this linear
input accumulation. In general, however, input accumulation takes the form of
a tree (thus accounting for all possible alternative accumulated input behaviors
at the same time).

We now show how to decide asynchronous subtyping over single-out types,
i.e. when input accumulation can indeed be in the general form of a tree, but, due
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to the absence of output selections with multiple choices, it gets accumulated in a
deterministic (i.e. unique) way. This will also allow us to deal with single-in types
by exploiting duality. As anticipated, it deals with general input accumulation
by representing it as a tree. We need to be able to extract the leaves from these
trees: this is done by the leaf set function. The leaf set of a session type T is the
set of subterms reachable from its root through a path of inputs. For example,
the leaf set of the term &{l1 : μt. ⊕ {l2 : t}, l3 : &{l4 : ⊕{l2 : μt. ⊕ {l2 : t}}}} is
{μt. ⊕ {l2 : t},⊕{l2 : μt. ⊕ {l2 : t}}.

During the check of subtyping, according to Fig. 3 (rule Out), when a term in
the r.h.s. having input accumulation has to mimic an output in front of the l.h.s.,
such output must be present in front of all the leaves of the tree. In this case,
the checking continues by anticipating the output from all the leaves. We make
use of an auxiliary output anticipation function, called antOut, that indicates the
way a term changes after having anticipated a sequence of outputs. antOut(T, l̃)
yields the term obtained from T by anticipating all outputs occurring in the
sequence l̃. For example, the function applied to the type T = μt. ⊕ {

l1 : &{l :
⊕{l2 : t}, l′ : ⊕{l2 : t}}

and the sequence (l1, l2) returns &{l : T, l′ : T},
while it is undefined with the sequence (l1, l1). Moreover, we say that T can
infinitely anticipate outputs, written antOutInf(T ), if there exists an infinite
sequence of labels li1 · · · lij · · · such that antOut(T, li1 · · · lin) is defined for every
n. The definition of antOutInf(T ) is not algorithmic in that it quantifies on every
possible natural number n. Nevertheless, it can be decided by checking whether,
for every session type obtained from T by means of output anticipations, all the
terms populating its leaf set can anticipate the same output label. Although the
types that can be obtained from T by means of output anticipations may be
infinite, the terms populating the leaf sets are finite and are over-approximated
by the function reach(T ) which is defined as the minimal set of (single-out)
session types such that:

1. T ∈ reach(T );
2. &{li : Ti}i∈I ∈ reach(T ) implies Ti ∈ reach(T ) for every i ∈ I;
3. μt.T ′ ∈ reach(T ) implies T ′{μt.T ′/t} ∈ reach(T );
4. ⊕{l : T ′} ∈ reach(T ) implies T ′ ∈ reach(T ).

Notice that reach(T ) contains the session types obtained by consuming initial
inputs and outputs, and by unfolding recursion when it is at the top level.

Proposition 3. Given a single-out session type T , reach(T ) is finite and it is
decidable whether antOutInf(T ).

Subtyping Algorithm for Single-Out Types. We are now ready to present an addi-
tional termination condition that, once included into the subtyping procedure
in Fig. 3, makes it a valid algorithm for checking subtyping for single-out types.
The termination condition is defined as an additional rule, named Asmp2, that
complements the already defined Asmp rule by detecting those cases in which
the subtyping procedure in Fig. 3 does not terminate (Asmp2, presented below,
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is assumed to have the same priority as rule Asmp: both rules have highest pri-
ority). The new rule is defined parametrically on the session type Z, which is
the type on the right-hand side of the initial pair of types to be checked (i.e. the
algorithm is intended to check V ≤Z, for some type Z). We start from the initial
judgement ∅ � V ≤t Z and then apply from bottom to top the rules in Fig. 3,
where ≤a is replaced by ≤t , plus the following additional rule:

S ∈ reach(Z) antOutInf(S) |γ| < |β|
leafSet(antOut(S, γ)) = leafSet(antOut(S, β))

Σ, (T, antOut(S, γ)) � T ≤t antOut(S, β)
Asmp2

Intuitively, we have that this additional termination rule guarantees to catch
all those cases where the term on the right grows indefinitely, by anticipating out-
puts and accumulating inputs. These infinitely many distinct types are anyway
obtainable starting from the finite set reach(Z), by means of output anticipa-
tions. Hence there exists S ∈ reach(Z) that can generate infinitely many of these
types: this guarantees antOutInf(S) to be true. As observed above, the leaves
of such infinitely many terms are themselves taken from the finite set reach(Z).
In Sect. 2 we have commented that multiset inclusion is a wqo over multisets
defined on a finite domain; here we use a similar result according to which set
equality is a wqo over the subsets of a finite given set. In fact, the possible sub-
sets in this case are finite thus in an infinite sequence of such subsets at least one
is repeated. The termination of our algorithm follows this wqo: Asmp2, besides
checking conditions that are guaranteed to hold if the procedure ≤a continues
indefinitely, checks also for the equality between the set of leaves of the r.h.s.
term in the current judgement and in a previously checked one.

Theorem 7 (Decidability for Single-out Types). Asynchronous subtyping
≤ over single-out session types is decidable.

Exploiting dual closeness of ≤ we can use the algorithm presented for single-out
types also for single-in types (it is sufficient to check subtyping on the duals,
observing that the dual of a single-in type is single-out).

Corollary 1 (Decidability for Single-in Types). Asynchronous subtyping
≤ over single-in session types is decidable.

5 Conclusion

In this survey paper we have recalled the main results related with two lines
of research on the expressiveness of Linda-like coordination models and on the
theory of behavioural contracts. In the third part of the paper, we have dis-
cussed how the techniques developed for Linda-like coordination have recently
contributed to the advancement of the research in the context of session types
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for asynchronous communication. Session types, which can be seen as a simplifi-
cation of contracts, already had a wide application on concurrent programming
languages, as, e.g., Haskell [34], Go [39] and Rust [30].

We expect two possible lines for future work: on the one hand, analyse the
impact on the theory of contracts of our results for session types (in fact, very
few results are present in the literature about contracts for asynchronous com-
munication) and, on the other hand, continue in the context of session types by
investigating novel techniques for sound algorithmic characterizations of asyn-
chronous session subtyping.
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Abstract. Since complexity of inter- and intra-systems interactions is
steadily increasing in modern application scenarios (e.g., the IoT), coor-
dination technologies are required to take a crucial step towards matu-
rity. In this paper we look back at the history of the COORDINATION
conference in order to shed light on the current status of the coordina-
tion technologies there proposed throughout the years, in an attempt
to understand success stories, limitations, and possibly reveal the gap
between actual technologies, theoretical models, and novel application
needs.

Keywords: Coordination technologies · Middleware · Survey

1 Scope, Goal, and Method

Complexity of computational systems, as well as their impact on our everyday
life, is constantly increasing, along with the growing complexity of interaction—
inter- and intra-systems. Accordingly, the role of coordination models should
expectedly grow, along with the relevance of coordination technologies within
ICT systems: instead, this is apparently not happening—yet.

Then, it is probably the right time – now, after twenty years of the COOR-
DINATION conference – and the right place – the COORDINATION conference
itself – to take a step back and reflect on what happened to coordination models,
languages, and (above all) technologies in the last two decades. That is why in
this paper we survey all the technologies presented and discussed at COORDI-
NATION, examine their stories and their current status, and try to provide an
overall view of the state-of-the art of coordination technologies as emerging from
twenty years of work by the COORDINATION community. The main goal is to
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provide a sound basis to answer questions such as: Are coordination technolo-
gies ready for the industry? If not, what is currently missing? Which archetypal
models lie behind them? Which are the research areas most/least explored? And
what about the target application scenarios?

1.1 Structure and Contribution of the Paper

Section 2 first provides an overview of the data about papers published in the
conference throughout the years (Subsect. 2.1), as collected from the official
SpringerLink website and its companion BookMetrix service, with the aim of
emphasising trends concerning (i) the number of papers published in each vol-
ume, (ii) the number of citations generated by each volume, (iii) the number of
downloads generated by each volume, (iv) the most cited paper of each volume,
and (v) the most downloaded paper of each volume.

Then, the scope of our analysis narrows down to those papers bringing a
technological contribution, in the sense of describing a software artefact offering
an API exploitable by other software to coordinate its components. Accordingly,
Subsect. 2.2 provides an overview of all the technologies born within the COOR-
DINATION conference series. For each one, the reference model implemented,
and the web URL where to retrieve the software – if any – are given.

Then, a brief description of all the software for which no working implemen-
tation could be found is reported for the sake of completeness, whereas technolo-
gies still available are thoroughly described in Subsect. 2.3. There, each selected
technology was downloaded and tested to clearly depict its health status:

– date of last update to the source code (or project web page, if the former is
not available)

– whether the software appears to be actively developed, in maintenance mode,
or discontinued

– whether suitable documentation is available
– whether the source code is publicly available
– whether the build process of the software artefact is reproducible
– whether the software artefact, once built, executes with no errors

For the latter two items, in case of failures, an explanation of the problem and,
if needed, the steps undertaken in the attempt to overcome it, are provided too.
In particular, the latter test is not meant to measure performance, or, to provide
a benchmark for comparisons: its purpose is to assess whether the technology
is usable, that is, executable on nowadays software platforms and by nowadays
programming languages. For instance, a library requiring an obsolete third-party
libraries that hinders smooth deployment is considered not usable. Accordingly,
each technology is tested either running provided example code, or developing a
minimal working example of usage of the API.

Section 3 discusses the data collected so as to deliver insights about: (i) the
evolution of technologies as they are stemming from a few archetypal models
(Fig. 5), (ii) the relationships between the selected technologies, as a compari-
son of their features (Fig. 6), and (iii) the main goal and reference scenario of
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each technology (Fig. 7). Also, a general discussion is provided, reporting about
success stories, peculiarities, and opportunities.

Finally, Sect. 4 concludes the paper by summarising the results of the survey
and providing some perspectives for the future of coordination technologies.

1.2 Method

The scope of this survey is indeed the COORDINATION conference series.
There, we focus on coordination technologies intended as software implementing
a given coordination model, language, mechanism, or approach with the goal of
providing coordination services to other software applications. In other words,
our focus is on technologies implementing some form of coordination middleware
or API—analysed in Subsect. 2.2. We nevertheless include in our overview other
technologies produced within COORDINATION (Subsect. 2.1), such as simula-
tion frameworks, model-checking tools, and proof-of-concept implementations of
process algebras—which are only described in short.

Starting from the COORDINATION conference proceedings available online
from SpringerLink1, the survey proceeds as follows:

1. for each conference year, papers describing a coordination-related technology
were gathered manually into a Google Spreadsheet

2. for each collected paper, we checked whether the paper was actually proposing
some software package—papers failing the test are omitted

3. for each paper passing the test, we verified the health status of the
technology—as described in Subsect. 1.1

4. then, for each paper featuring at least a usable distribution – meaning a down-
loadable version of the software – the corresponding software was downloaded
and tested—i.e., installation & basic usage

2 The Survey

Although the focus of this paper are coordination technologies, we believe an
overview of the whole conference proceedings is due to give context to the survey
itself. Accordingly, Subsect. 2.1 summarises and analyses all the data officially
available from Springer—concerning, for instance, citations and downloads of
each volume and paper. Then, Subsect. 2.2 accounts for all the coordination
technologies mentioned in COORDINATION papers, regardless of their actual
availability, while Subsect. 2.3 reports about the core of this survey: the status
of the coordination technologies nowadays publicly available.

2.1 Overview

The COORDINATION conference series has been held 19 times since its first
edition in 1996 in Cesena (Italy), and generated as many conference proceed-
ings volumes—all available online (See footnote 1). Data about the number of
1 http://link.springer.com/conference/coordination.

http://springerlink.bibliotecabuap.elogim.com/conference/coordination
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published papers, the number of citations and downloads per year of each vol-
ume, as well as the most cited and most download paper have been collected
from SpringerLink and its companion service BookMetrix2—and are reported in
Table 1 (last checked February 9th, 2018). Highest values for each column are
emphasised in bold.

Table 1. Overall data directly available online from Springer regarding the
COORDINATION conference series. To compute citations (downloads) per year, the
number of citations (downloads) was divided by the number of years the publications
is available since. MCP stands for “Most Cited Paper” whereas MDP stands for “Most
Downloaded Paper”.

Edition No. of papers Citations/year Downloads/year MCP MDP

1996 34 3.32 140.00 16 124

1997 31 2.86 140.48 14 149

1999 32 2.05 205.26 6 154

2000 27 0.11 — 6 158

2002 35 2.81 301.88 7 180

2004 23 4.07 197.86 19 146

2005 19 3.00 261.54 9 214

2006 18 6.25 312.50 22 297

2007 17 8.27 341.82 14 308

2008 21 10.70 391.00 13 227

2009 15 7.44 370.00 13 259

2010 12 3.25 507.50 6 536

2011 14 4.00 538.57 6 675

2012 18 5.50 1081.67 6 523

2013 17 8.20 1314.00 7 547

2014 12 10.50 792.50 10 299

2015 15 6.67 1453.33 11 336

2016 16 14.00 2355.00 4 350

2017 14 2.00 1930.00 1 245

Avg. 20.53 5.53 701.94 10 301.42

Std. Dev. 7.57 3.60 658.47 5.42 160.16

The trend over time of the number of papers, the citations of the volumes,
and their downloads, are plotted in Figs. 1 and 2, respectively, along with their
trend line. A few significant trends can be spotted in spite of the high variability
between different editions of the conference. For the number of published papers,

2 http://www.bookmetrix.com/.

http://www.bookmetrix.com/
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Fig. 1. Number of papers in the volume and number of citations per year (computed
as described in text) of the volume.

Fig. 2. Number of downloads per year (computed as described in text) of the volume.

the trend is clearly descending : the first five editions featured an average of
32 papers, whereas the latest five an average of 15. As far as the number of
citations per year generated by each volume of the proceedings is concerned, a
few oscillations can be observed:

– a first phase (from the 1st edition to the 4th) shows a decreasing number of
citations, from 3.32 down to 0.11 (the all-time-low)

– then, in a second phase (from the 5th to the 10th edition) the number of
citations increases, up to 10.70 in 2008

– finally, after a brief fall in 2009 and 2010, the number of citations per year
kept increasing up to the all-time-high of 2016 (14.00)

For the number of downloads per year, two phases can be devised out in Fig. 2:

– in the first period, from the 1st edition to the 13th (2011), the trend is quite
stable, oscillating between 140 and 538.57
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– in the second one instead, from 2012 up to latest edition, there is a sharp
increase up to the all-time-high of 2355.00 in 2016

Finally, Figs. 3 and 4 show the most cited paper and the most downloaded paper
per year, respectively. Besides noting (i) the highly irregular trend regarding the
most cited papers, oscillating from 6 to 22 through approximately three epochs3

(few citations during 1996–2002, more citations during 2003–2009, few again
during 2010–2017), and (ii) the increasing number of downloads in recent years:
in the four years between 2010 and 2013 the most downloaded papers combined
generated more downloads than the most downloaded papers of all the previous
years combined (2281 vs. 2216), it could be interesting to check how many of
such papers are related to technology, if any.

Overall, in the 19 editions of COORDINATION held until now, the most
cited/downloaded paper is about technology – in the broadest acceptation of

Fig. 3. Most cited paper per year with average values & standard deviation.

Fig. 4. Most downloaded paper per year with average values & standard deviation.

3 Excluding the most recent editions, which had less time to generate citations.
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the term – in slightly less then a half of them: 7 papers amongst the most cited
ones, and 8 amongst the most downloaded ones.

By extending the analysis to all the papers published in the proceedings,
instead, out of all the 390 papers published, only 47 (just 12.05%) – based on
authors’ inspection of the papers – convey a technological contribution. And,
such an estimate is somehow optimistic, since we counted papers just for merely
mentioning a technology, with no means to access it—see Table 2.

2.2 Analysis of Technologies

Table 2 provides an overview of the coordination technologies born within the
COORDINATION conference series throughout the years. Only those technolo-
gies passing test §2 in Sect. 1.2 are included, that is, those technologies actually
delivering some form of coordination services to applications—i.e. in the form of
a software library with suitable API. For each technology, the original paper is
referenced, the model taken as reference for implementation indicated – if any –
and the URL to the technology web page hosting the software given—if any
is still reachable. Technologies whose corresponding software is still available –
that is, those passing test §3 in Sect. 1.2 – are further discussed in Subsect. 2.3;
those with no working software found are briefly described in the following.

The Early Days. The first few years of COORDINATION (1996–2000) saw a
flourishing of successful technologies: some of the ideas introduced back then are
still alive and healthy. For instance, ACLT [35] adopted first-order logic terms
as Linda tuples, an intuition shared by the μ2Log model and its language,
MultiBinProlog [31]. Also, ACLT allowed agents to dynamically program tuple
spaces via a specification language, enabling definition of computations to be
executed in response to some events generated by interacting processes. Both
features influenced the TuCSoN model and infrastructure [28], one of the few
technologies to be still actively maintained nowadays.

Similarly, the IWIM coordination model and its corresponding language,
Manifold [5], were introduced back in 1996 and survived until present days
by evolving into Reo [6]. IWIM came by recognising a dichotomy between exoge-
nous and endogenous coordination, and exploiting channel composition as a
means to build increasingly complex coordination patterns.

Finally, Moses [4] was presented to the COORDINATION community as an
infrastructure reifying the Low Governed Interaction (LGI) model. The tech-
nology is still alive and inspectable from its homepage, even if apparently no
longer maintained. Analogously, the Piccola composition language presented in
[2] clearly relies on a coordination technology which reached stability and robust-
ness, even if it seems to be no longer maintained, too.

Besides these success stories, many other papers at that time proposed a
technology, but either they only mentioned the technology without actually pro-
viding a reference to a publicly available software, or such a reference is no longer
reachable (i.e. the link is dead and no reference to the software have been found
on the web). For instance:
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Table 2. Overview of the coordination technologies presented at COORDINATION.
“Name” denotes the technology, whereas “Model” makes explicit the model taken as
reference for the implementation. The last column points to the web page where the
software is available – if any – and provides for additional notes.

Name Year Model (Closest) Web page & notes

Manifold [5] 1996 IWIM [5] http://projects.cwi.nl/manifold

no link to implementation

Sonia [12] 1996 Linda + access
control

no implementation found

Laura [92] 1996 service-oriented
Linda

no implementation found

MultiBinProlog
[31]

1996 μ2Log [31] http://cseweb.ucsd.edu/∼goguen/courses/230/
pl/art.html

dead links

MESSENGERS
[42]

1996 Navigational

Programming [42]

http://www.ics.uci.edu/∼bic/messengers

dead links

ACLT [35] 1996 Linda +

programmable tuple

spaces

evolved into TuCSoN

Blossom [46] 1997 Linda +

coordination

patterns

no implementation found

Bonita [84] 1997 asynch Linda no implementation found

Berlinda [93] 1997 Linda no implementation found

SecOS [22] 1999 Linda no implementation found

Messengers [95] 1999 CmPS + mobility
[52]

http://osl.cs.illinois.edu/software/

no mention of “Messengers”

MJada [82] 1999 OO Linda http://www.cs.unibo.it/cianca/wwwpages/
macondo/

no reference to MJada

STL++ [87] 1999 ECM [87] no implementation found

Clam [86] 1999 IWIM [5] no implementation found

TuCSoN [28] 1999 novel (many

extensions to Linda)

http://tucson.unibo.it/

Truce [53] 1999 novel (protocols +
roles)

no implementation found

CoLaS [29] 1999 novel (protocols +
roles)

no implementation found

OpenSpaces [38] 2000 OO Linda no implementation found

Piccola [2] 2000 novel http://scg.unibe.ch/research/piccola

Moses [4] 2000 LGI [4] http://www.moses.rutgers.edu

Scope [63] 2000 Linda + mobility +

space federation

no implementation found

Pεω [6] 2002 IWIM [5] http://reo.project.cwi.nl/reo

evolved into Reo

SpaceTub [94] 2002 Linda no implementation found

O’Klaim [15] 2004 OO Linda +
mobility

http://music.dsi.unifi.it/xklaim

evolved into X-Klaim

(continued)

http://projects.cwi.nl/manifold
http://cseweb.ucsd.edu/~goguen/courses/230/pl/art.html
http://cseweb.ucsd.edu/~goguen/courses/230/pl/art.html
http://www.ics.uci.edu/~bic/messengers
http://osl.cs.illinois.edu/software/
http://www.cs.unibo.it/cianca/wwwpages/macondo/
http://www.cs.unibo.it/cianca/wwwpages/macondo/
http://tucson.unibo.it/
http://scg.unibe.ch/research/piccola
http://www.moses.rutgers.edu
http://reo.project.cwi.nl/reo
http://music.dsi.unifi.it/xklaim
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Table 2. (continued)

Name Year Model (Closest) Web page & notes

Limone [40] 2004 Linda + mobility +

spaces federation

http://mobilab.cse.wustl.edu/projects/limone

CRIME [65] 2007 Lime [34] http://soft.vub.ac.be/amop/crime/introduction

TripCom [89] 2007 Triple Space
Computing [39]

http://sourceforge.net/projects/tripcom

CiAN [88] 2008 novel http://mobilab.cse.wustl.edu/Projects/CiAN/

Home/Home.shtml

Smrl [1] 2008 Pepa [45] http://groups.inf.ed.ac.uk/srmc/download.html

CaSPiS [18] 2008 IMC [17] http://sourceforge.net/projects/imc-fi

LeanProlog [91] 2008 novel http://www.cse.unt.edu/∼tarau/research/

LeanProlog

JErlang [75] 2010 Join-Calculus [41] http://github.com/jerlang/jerlang

Session Java [68] 2011 Session Types [50] http://www.doc.ic.ac.uk/∼rhu/sessionj.html

WikiRecPlay/
InFeed [80]

2012 BPM no implementation found

Statelets [57] 2012 novel http://sourceforge.net/projects/statelets

IIC [77] 2012 Reo [6] http://github.com/joseproenca/ip-constraints

LINC [58] 2015 Linda [44] implementation not available for commercial
reasons
see http://bag-era.fr/index en.html#about

RepliKlaim [3] 2015 Klaim [19] http://sysma.imtlucca.it/wp-content/uploads/

2015/03

Logic Fragments
[30]

2014 Sapere [97] no implementation found

Sonia [12] — a Linda-like approach supporting human workflows, therefore
stressing aspects such as understandability of the tuple and template lan-
guages, time-awareness and timeouts, and security by means of access control

Laura [92] — a language attempting to steer Linda towards service-orientation,
where tuples can represent (formal descriptions of) service requests, offers,
or results, thus enabling loosely coupled agents to cooperate by means of
Linda-like primitives

MESSENGERS [42] — following the Navigational Programming methodology
[42], where strongly-mobile agents – a.k.a. Messengers – can migrate between
nodes. Here, coordination is seen as “invocation [of distributed computations]
and exchange of data” and it “is managed by groups of Messengers propa-
gating autonomously through the computational network”

Blossom [46] — a Linda variant focusing on safety, which is provided by sup-
porting a type system for tuples and templates, and a taxonomy of access
patterns to tuple spaces, aimed at supporting a sort of “least privilege” prin-
ciple w.r.t. access rights of client processes

http://mobilab.cse.wustl.edu/projects/limone
http://soft.vub.ac.be/amop/crime/introduction
http://sourceforge.net/projects/tripcom
http://mobilab.cse.wustl.edu/Projects/CiAN/Home/Home.shtml
http://mobilab.cse.wustl.edu/Projects/CiAN/Home/Home.shtml
http://groups.inf.ed.ac.uk/srmc/download.html
http://sourceforge.net/projects/imc-fi
http://www.cse.unt.edu/~tarau/research/LeanProlog
http://www.cse.unt.edu/~tarau/research/LeanProlog
http://github.com/jerlang/jerlang
http://www.doc.ic.ac.uk/~rhu/sessionj.html
http://sourceforge.net/projects/statelets
http://github.com/joseproenca/ip-constraints
http://bag-era.fr/index_en.html#about
http://sysma.imtlucca.it/wp-content/uploads/2015/03
http://sysma.imtlucca.it/wp-content/uploads/2015/03
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Bonita [84] — another Linda-like technology – as its successor WCL [85] –
focusing on asynchronous primitives and distribution of tuple spaces, which
can also migrate closer to their users

Berlinda [93] — providing a meta-model – along with a Java implementation
– for instantiating different Linda-like models

SecOS [22] — a Linda variant focusing on security and exploring the exploita-
tion of (a)symmetric key encryption

Messengers [95] — not to be confused with [42] despite its name, which focusses
on message exchange by means of migrating actors

MJada [82] — an extension of the Jada language [25], focusing on coordinating
concurrent (possibly distributed) Java agents by means of Linda-like tuple
spaces with an extended primitive set and object-oriented tuples

Clam [86] — a coordination language based on the IWIM model [5]
Truce [53] — a scripting language aimed at describing protocols to which agents

must comply by enacting one or more roles
CoLaS [29] — a model and its corresponding language providing a framework

where a number of participants can join interaction groups and play one
or more roles within the scope of some coordination protocol. In particular,
CoLaS focuses on the enforcement of coordination rules by validating and
constraining participants behaviour

The Millenials. After year 2000, technologies are less present amongst COOR-
DINATION papers, but not necessarily less important. For instance, Reo made
its first appearance in 2002 [6], its name written in Greek (Pεω). Reo provides an
exogenous way of governing interactions between processes in a concurrent and
possibly distributed system. Its strength is due to its sound semantics, enabling
researchers to formally verify system evolution, as well as to the availability of
software tools. The technology is indeed still alive and actively developed.

Recent implementations are more easily available on the web. Out of 22
coordination technologies, just 6 were not found on the web during the survey:

–OpenSpaces [38] — focussing on the harmonisation of the Linda model with
the OOP paradigm and, in particular, with the inheritance mechanism

–Scope [63] — analogously to Lime, it provides multiple distributed tuple spaces
cooperating by means of local interactions when some process attempts to
access a tuple, thus providing a sort of federated view on the tuple space

–SpaceTub [94] — successor of Berlinda, it aims at providing a meta-framework
where other Linda-like frameworks can be reproduced

–WikiRecPlay/InFeed [80] — a pair of tools (browser extensions, no longer
available) aimed at extracting and manipulating information from web appli-
cations to record them and later replay, enabling the definition of sequences
of activities that can be synchronised with each other. The goal here is to
augment social software with coordination capabilities.

–LINC [58] — a coordination environment implementing the basic Linda primi-
tives – out, in, rd – in a setting in which each tuple space (called bag) could
implement the primitives differently (still preserving semantics), a convenient
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opportunity when dealing with physical devices (i.e. in the case of deployment
to IoT scenarios) or legacy systems (i.e. databases). It provides transactions
to alleviate to developers the burden of rolling back actions in the case of
failures, and a chemical-reaction model inspired to Gamma [11] for enacting
reaction rules. Several tools [59] are provided to help developers debug the
rules, and to generate rules from high level specifications. The LINC software
is nevertheless not publicly available because it is exploited by the Bag-Era
company. Accordingly, it is not further analysed in Subsect. 2.3, but it is
included in Sect. 3 as an example of industrial success.

–Logic Fragments [30] — a chemical-based and programmable coordination
model likewise Sapere [97] – to which it is inspired – enriched with a logic-
based one through the notion of Logic Fragments, which are combinations
of logic programs defining on-the-fly, ad-hoc chemical reactions – similar to
Sapere eco-laws – that apply on matching tuples to manipulate other tuples
or to produce new Logic Fragments. The aim is to guarantee data consis-
tency, favour knowledge representation of partial information, and support
constraints satisfaction, thanks to verification of global properties enabled by
the logic nature of the framework.

All the others are still publicly available, thus further analysed in next section.
For instance, the O’Klaim language presented in [15] evolved into the X-

Klaim project [16] which is still alive, even if apparently no longer maintained.
Similar considerations can be made for Limone [40] and CRIME [65], which both
stem from the idea of opportunistic federation of transient tuple spaces intro-
duced by LIME [66], and improve it with additional features such as lightweight-
ness and orientation to ambient-programming.

Analogously, the CiAN [88] model and middleware, targeting the coordina-
tion of distributed workflows over M obile Ad-hoc Networks (MANETs), comes
with a mature implementation, although no longer maintained. An extension to
Session Java [51] is proposed in [68] to explicitly tackle synchronisation issues
such as freedom from deadlock via multi-channel session primitives, Whereas
the implementation was discontinued in 20114, the source code is still available
from GoogleCode archive. JErlang [75], a Java-based implementation of Erlang
extended with constructs borrowed from the Join-Calculus [41], appears to
be no longer maintained too as explicitly stated in its home page5, although a
couple of implementations are still available and (partially) working.

Also RepliKlaim [3], an implementation of Klaim [19] aimed at optimis-
ing performance and reliability through replication of tuples and tuple spaces,
received updates until 2015 as far as we know, thus appears to be discontinued.
Likewise, 2015 is the year when both Statelets [57] and IIC [77] received their
last known update: the former is a programming model and language aimed at
integrating social context and network effects, derived from social networks anal-
ysis, as well as semantic relationships amongst shared artefacts in, i.e. groupware

4 Year of latest commit: https://code.google.com/archive/p/sessionj.
5 http://jerlang.org/.

https://code.google.com/archive/p/sessionj
http://jerlang.org/
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applications, into a single and coherent coordination model, while the latter pro-
poses Interactive Interaction Constraints (IIC) as a novel framework to ground
channel-based interaction – à la Reo – upon constraints satisfaction, interpreting
the process of coordinating components as the execution of a constraints solver.

Next section briefly focuses on those technologies—that is, coordination tech-
nologies that can be actually installed and used nowadays—step §4 in Sect. 1.2.

2.3 Analysis of Selected Technologies

Table 3 overviews the working technologies we were able to somewhat successfully
test, that is, only those technologies listed in Table 2 which successfully surpassed
test §4 described in Sect. 1.2—a software artefact exists and is still working.

It is worth noting that, w.r.t. Table 2, a few technologies are not included
in this section despite the corresponding software is available from the reference
web page therein referenced. The reason is:

– Smrl requires ancient software to run—that is, an old version of Eclipse requir-
ing in turn an ancient version of the Java runtime (1.4)

– CaSPiS [18] (or better, JCaSPiS, namely the Java-based implementation of
CaSPiS) was not found anywhere—neither in the author personal pages, nor
in their account profiles on Github, nor in the web pages of the SENSORIA
project mentioned in the paper. Nevertheless, the IMC model and framework
allegedly grounding its implementation is still accessible6. Then we proceeded
to download it looking for the CaSPiS code, without success. It is worth to
be mentioned, anyway, that the IMC framework code appears to be broken,
since compilation fails unless a restricted/deprecated Java API is used7, and
even in the case of instructing the compiler to allow for it8 the attempt to
run any part of the software failed without informative error messages—just
generic Java exceptions.

– LeanProlog is not usable as a coordination technology as defined in Sect. 1.2:
it is a Prolog engine with low-level mechanisms for handling multi-threading,
and provides no API for general purpose coordination

– Session Java, as explicitly stated in its home page, requires an ancient version
of the Java runtime to run, that is, 1.4

– Statelets is explicitly tagged as being in “pre-alpha” development stage, and,
upon inspection, revealed to be only partially developed

TuCSoN. Although TuCSoN [28] appeared at COORDINATION in 1999, its
roots date back to the first edition of the conference, as the ACLT model [35].

TuCSoN is a coordination model adopting Linda as its core but extending it
in several ways, such as by adopting nested tuples (expressed as first-order logic
terms), adding primitives (i.e. bulk [83] and uniform [60]), and replacing tuple

6 https://sourceforge.net/projects/imc-fi/.
7 A class uses a deprecated API, and another one requires breaking access restrictions.
8 See https://goo.gl/pdWCsx.

https://sourceforge.net/projects/imc-fi/
https://goo.gl/pdWCsx
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spaces with tuple centres [71] programmable in the ReSpecT language [70]. It
comes with a Java-based implementation providing coordination as a service [96]
in the form of a Java library providing API and a middleware runtime, especially
targeting distributed Java process but open to rational agents implemented in
tuProlog [36]. The TuCSoN middleware is publicly available from its home page9,
which provides both the binaries (a ready-to-use Java jar file) and a link to the
source code repository. From there, also documentation pages are available, in
the form of a usage guide and a few tutorials providing insights into specific
features. Finally, a few related sub-projects are therein described too, such as
TuCSoN4Jade [62] and TuCSoN4Jason [61], which are both Java libraries aimed
at integrating TuCSoN with Jade [13] and Jason [21] agent runtimes, respec-
tively, by wrapping TuCSoN services into a more convenient form which best
suites those developers accustomed to programming in those platforms.

As far as technology is concerned, TuCSoN is still actively developed, being
the latest commit in 2017, when also the latest related publication has been
produced—an extension to the ReSpecT language and toolchain exploited to
program tuple centres in TuCSoN [27]. Also, it is actively exploited as the infras-
tructural backbone for other projects – e.g., the smart home logic-based platform
Home Manager [23] – and industrial applications—e.g., the Electronic Health
Record solution [37]. Nevertheless, TuCSoN is the results of many years of active
development by many different people with many different goals. Thus, despite
some success stories, TuCSoN would require some substantial refactoring and
refinement before it can become a truly commercially-viable product.

Moses. Moses [4] is the technology implementing the Law Governed Interaction
(LGI) coordination model [64], which aims at controlling the interaction of agents
interoperating on the Internet. In LGI, each agent interacts with the system by
means of a controller, that is, a component exposing a fixed set of primitives
allowing agents to exchange messages with other agents. The controller is in
charge of intercepting invocations of primitives by interacting agents to check if
they are allowed according to the law currently adopted by that controller.

Laws are shared declarative specifications dictating how the controller should
react when it intercepts events of interest. Laws are expressed either in a Prolog-
like language or as Java classes. Each controller has its own state which can be
altered by reactions to events and can influence the effect of future reactions.
Non-allowed activities are technically prohibited by the controller which takes
care of aborting the forbidden operation—for instance, by not forwarding a mes-
sage to the intended receiver if some conditions are met.

The project home page10 is well-organised and provides a number of resources
focussed on Moses/LGI such as reference papers, manuals, tutorials, JavaDoc,
examples. The page also provides an archive with the compiled versions of the
Moses middleware, the latest one dating back to 2017—suggesting that the

9 http://tucson.unibo.it.
10 http://www.moses.rutgers.edu/index.html.

http://tucson.unibo.it
http://www.moses.rutgers.edu/index.html
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project is actively maintained and/or developed, and representing another suc-
cess story born within the COORDINATION series. We were able to successfully
compile and execute the code: however, no source code is provided, and some
portion of the web page, such as the JavaDoc, are not updated w.r.t. the current
Moses implementation. Finally, Moses still bounds to deprecated technologies
such as Java Applets, which we believe may hinder its adoption.

JErlang. JErlang [75] is an extension of the Erlang language for concur-
rent and distributed programming featuring joins as the basic synchronisation
construct—as borrowed from the Join-Calculus [41]. The web page mentioned
in the paper11 is no longer accessible; by searching JErlang and the authors’
names on the web, a GitHub repository with the same broken reference popped
up12, apparently tracking the development history of the JErlang technology.
There, however, JErlang is described as an implementation of Erlang/OTP on
the JVM. Also, another apparently very similar technology is therein referenced:
Erjang.

Anyway, JErlang installation and usage instructions are nowhere to be found,
and, when trying to build the project through the provided Maven pom.xml file,
the build fails due to many errors related to obsolete dependencies—which we
were not able to fix. Instead, Erjang GitHub repository – with no clue about its
links to the paper – provides installation instructions, however building fails due
to a Java compilation failure for a “bad class file” error13. We feel then free to
declare the implementation as discontinued.

IIC. Interactive Interaction Constraints (IIC) [77] is a sort of “spin-off” of Reo
introduced in 2013 [77]. The original approach of implementing Reo connectors
as interaction constraints is extended to allow interaction to take place also
between rounds of constraints satisfaction. This extends the expressive reach of
IIC beyond Reo, and makes the whole process of constraints satisfaction trans-
actional w.r.t. observable behaviour.

The IIC software is distributed as a Scala library providing an handy syntax
which eases definition of Reo-like connectors. The Scala library source code is
distributed by means of a GitHub repository14 where the latest commit dates
back to 2015. The library ships with a SBT configuration, allegedly supporting
automatic building. Nevertheless, we were not able to reproduce the compila-
tion process since the provided SBT configuration depends on an ancient SBT
version. Therefore, we consider IIC a no longer maintained but still usable full-
fledged coordination technology.

Reo. Reo was firstly introduced to the COORDINATION community in [6],
its name in Greek letters (Pεω). Similarly to the IWIM model, Reo adopts a

11 https://www.doc.ic.ac.uk/∼susan/jerlang/.
12 Second link in “See also” section at https://github.com/jerlang/jerlang.
13 Actual error is: “class file contains malformed variable arity method: [...]”.
14 http://github.com/joseproenca/ip-constraints.
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paradigm for exogenous coordination of concurrent and possibly distributed soft-
ware components. According to the Reo model, components are the entities to be
coordinated, representing the computations to be performed, while connectors
are the abstraction reifying coordination rules. The only assumption Reo makes
about components is that they have a unique name and a well-defined interface
in the form of a set of input ports and output ports. Conversely, connectors
are composed by nodes and channels, or other connectors. A number of coordi-
nation schemes can be achieved by combining the different sorts of nodes and
channels accordingly. This allows to formally specify how, when, and upon which
conditions data may flow from the input to the output ports of components.

Diverse research activities originated from Reo throughout the years, mostly
aimed at (i) analysing the formal properties of both Reo connectors and con-
straints automata [10], which are the computational model behind Reo seman-
tics; and (ii) supporting web services orchestration [54], composition, and veri-
fication [55] by means of code generation and verification tools.

Several technologies are available from the Reo tools homepage15, collectively
branded as the Extensible Coordination Tools (ECT). They consist of various
Eclipse IDE plugins, such as a graphical designer for Reo connectors, and a
code generator which automatically converts the graphical description into Java
sources in which developers may inject applicative logic. Nevertheless, the gen-
erated code comes with no explicit support for distribution.

According to their home page, ECT are allegedly compatible with any Eclipse
version starting from 3.6; while we were not able to reproduce its installation
in that version (due to a dependency requiring an higher version of Eclipse), we
succeeded in installing it on Eclipse version 4.7 (the latest available), but the code
generator appears buggy and unstable – thus hindering further testing – because
of several non-informative error messages continuously appearing when trying
to use the Reo model designer—which is a required step for code generation.

The ECT source code is available from a Google Code repository16—last
commit dating back to 2013. In [78] a novel implementation is proposed, named
Dreams, implemented in Scala and aimed at closing the gap between Reo and
distributed systems. Nevertheless, its binary distribution seems unavailable and
no documentation is provided describing how to compile or use it, thus we were
not able to further test this novel Dreams framework.

TripCom. TripCom [89] is essentially a departure from the Linda model where
the tuple space abstraction is brought towards the Semantic Web vision [47]
and web-based semantic interoperability in general. The former is achieved by
employing the Resource Description Framework (RDF) – that is, a represen-
tation of semantic information as a triple “subject-predicate-object” – as the
tuple representation language, and by considering tuple spaces as RDF triplets
containers. Also, Linda primitives have been consequently re-thought under
a semantics-oriented perspective—that is, by adopting an ad-hoc templating

15 http://reo.project.cwi.nl/reo/wiki/Tools.
16 https://code.google.com/archive/p/extensible-coordination-tools/source.
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language enabling expression of semantic relationships. The latter is achieved by
making triple spaces accessible on the web as SOAP-based web-services.

The implementation is hosted on a SourceForge repository17 and it is appar-
ently discontinued, provided that the last commit dates back to 2009, and the
home page lacks any sort of presentation or reference to publications or docu-
mentation. Nevertheless, the available source code appears well engineered and
is well documented. It can be easily compiled into a .war file and then deployed
on a Web Server (i.e. Apache Tomcat).

Once deployed, the web service is accessible via HTTP – making it is virtually
interoperable with any programming language and platform – and can be tested
by means of a common web browser. Additionally, the service exposes a WSDL
description of the API needed to use it, which implies that a client library
(aka stub) may be automatically generated using standard tools for service-
oriented architectures. Nevertheless, this WSDL description is the only form of
documentation when it comes to actually interact with the web-service.

CiAN. Collaboration in Ad hoc Networks (CiAN) [88] is a Workflow Management
System (WfMS) enabling users to schedule and execute their custom workflow
over MANETs. It comes with a reference architecture and a middleware. The
middleware keeps track of the workflow state in a distributed way, and takes
into account routing of tasks’ input/output data, on top of a dynamic network
topology where nodes communication is likely to be opportunistic.

Workflows in CiAN are modelled as directed graphs whose vertices represent
tasks, and edges represent the data-flow from a task to its successors: when a task
is completed, a result value is transferred through its outgoing edges. Conditions
may be specified within task definitions stating, for instance, weather a task
should wait for all its inputs or just for one of them.

Users can encode their workflow descriptions via a XML-based language to
be endowed to an initiator singleton node, distributing the workflow to a number
of coordinator nodes in charge of allocating tasks to the available worker nodes.

While the middleware is implemented in Java, tasks logic can be implemented
virtually by means of any language since CiAN only assumes the application logic
to interact with the middleware by means of the SOAP protocol, which provides
great interoperability. Both the middleware’s source code and its compiled ver-
sion are distributed through CiAN website18, together with detailed documenta-
tion and some runnable examples. The source code can be easily compiled, and
both the obtained binaries and those publicly available can be run smoothly.
The code is well documented and engineered. Nevertheless, the source code and
documentation both date back to 2008: we therefore consider the project to be
mature and usable, but no longer maintained.

Piccola. Piccola [2] is in its essence a composition language. It provides simple
yet powerful abstractions: forms as immutable, prototype-like, key-value objects;

17 https://sourceforge.net/projects/tripcom.
18 http://mobilab.cse.wustl.edu/Projects/CiAN/Software/Software.shtml.
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services as functional forms which can be invoked and executed; agents as con-
current services; and channels as inter-agent communication facilities. Virtually
any interaction mechanism can be built by properly composing these abstrac-
tions, such as shared variables, push and pull streams, message-passing, publish-
subscribe, and so on.

Nevertheless, a limitation is due to the fact that not solely the coordina-
tion mechanisms are to be programmed with the Piccola language, but also the
coordinated entities. There is thus no possibility of integration with mainstream
programming languages, which is a severe limitation for adoption. Additionally,
even if Piccola comes with networking capabilities virtually enabling deployment
to a distributed setting, there is no middleware facility available and no opportu-
nity with integration with others is given, which is another factor likely to hinder
Piccola adoption within the scope of distributed programming and coordination.

Piccola home page19 is still available and collects a number of useful resources
such as documentation pages and implementation. This comes in two flavours:
JPiccola, based on Java, which reached version 3.7, and SPiccola, based on
Smalltalk, which reached version 0.7. Source code is provided for the Java imple-
mentation only, which correctly compiles and executes.

Nevertheless, the project appears to be discontinued, given that the last com-
mit on the source repository dates back to 2006.

CRIME. CRIME adheres to the Fact Spaces model, a variant of Linda which
absorbs transient federation of tuple space from Lime [66] for implementing
mobile fact spaces—tuple spaces where tuples are logic facts and each tuple space
is indeed a logic theory. Federated fact spaces are therefore seen as distributed
knowledge bases.

In this sense, CRIME has some similarities with TuCSoN, which exploits first-
order logic tuples both as the communication items and as the coordination laws.
In this context, Linda out and in primitives collapse into logic facts assertions
and retractions, respectively.

Suspensive semantics is not regarded as being essential within the scope of the
Fact Spaces model, since the focus is about programming fact spaces to react to
information insertion/removal (or appearance/disappearance in case of transient
federation). Accordingly, users can register arbitrary logic rules by means of a
Prolog-like syntax. The head of such rules represent propositions which may be
proved true (activated) or unknown (deactivated) given the current knowledge
base by evaluating the body of the rule. Users can then plug arbitrary application
logic reacting to (de)activation of these rules.

Implementation of CRIME is available on the project home page20 and con-
sists of an archive shipping pre-compiled Java classes with no attached source
code. The software is apparently no longer maintained : the web page has been
updated last in 2010, and the archive dates back to 2006. Nevertheless, the
archive provides a number of example applications which have been tested and

19 http://scg.unibe.ch/research/piccola.
20 http://soft.vub.ac.be/amop/crime/introduction.
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are still correctly working. No support is provided to application deployment and
no documentation has been found describing how to deploy CRIME to an actual
production environment.

Klava-�. With notation Klava-� we refer to the family of models and technologies
stemming from Klaim [19] – such as O’Klaim [15] and MoMi [14] – which
nowadays evolved into the X-Klaim/Klava framework [20].

X-Klaim consists of a domain-specific language and its compiler, which pro-
duces Java code by accepting X-Klaim sources as input. The produced code
exploits the Klava library in turn, that is, the Java library implementing the
middleware corresponding to the Klaim model.

The overall framework explicitly targets code mobility, thus allowing both
processes and data to migrate across a network. To do so, X-Klaim and Klava
provide a first-class abstraction known as locality. Localities are of two sorts:
either physical, such as network nodes identifiers, or logical, such as symbolic
references to network nodes having a local semantics. Each locality hosts its
own tuple space, and the processes therein interacting. The Linda primitives
supported by Klava are always explicitly or implicitly related to the tuple space
hosted on a specific locality. Furthermore, processes are provided with primitives
enabling them to migrate from a locality to another in a strong manner, that is,
along with their execution state.

Both X-Klaim and Klava are distributed by means of the Klaim Project
home page21, providing well detailed documentation. For what concerns X-
Klaim, its C++ source code – dating back to 2004, date of the last edit, vis-
ible right below the title – is publicly available along with a self-configuring
script meant to ease compilation. Nevertheless, we were not able to reproduce
the compilation process on modern Linux distributions, seemingly due to some
missing (and undocumented) dependency. No clues about how to fix the self-
configuration process when it fails is provided, neither we were able to find some
sort of documentation explicitly enumerating the compilation dependencies.

Conversely, the Klava library – actually implementing the coordination mid-
dleware – is distributed as a single .jar file containing both Java sources and the
binaries. The .jar file dates back to 2004 likewise for X-Klaim, so it is appar-
ently no longer developed, but further testing showed how the Klava library is
still functioning, since it is self-contained and targets Java versions 1.4+.

Limone. Limone [40] is a model and middleware meant to improve scalability and
security in Lime [66] through access control, and explicitly targeting distributed
mobile systems and, in particular, agents roaming across ad-hoc networks built
on top of opportunistically interconnected mobile devices.

Once two or more devices enter within their respective communication range
and thus establish a connection, the agents running on top of them are (poten-
tially) enabled to interact by means of transient sharing of their own tuple
spaces. But, for some agents to be actually able to communicate, Limone states
they should specify their engagement policies. An agent A’s engagement policy
21 http://music.dsi.unifi.it/klaim.html.
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determines which agents are allowed to interact with it and to which extent, that
is, which primitives are allowed to be invoked. Agents satisfying the policy are
registered within A’s acquaintance list. So, each agent only has to care about its
acquaintance list, thus reducing the bandwidth requirements for the middleware.

A reactive programming mechanism completes the picture, enabling agents
to inform their peer about their interest in tuples matching a given template, in
order to be informed when such tuples becomes available.

The Limone technology is distributed by means of the project web page22 in
the form of a compressed archive containing the Java source code (dated back
in 2004) and a Makefile for automatic build. Nevertheless, the code strictly
requires to be compiled against a Java version prior to 1.5, and modern Java
compilers do not support such an ancient version23. For these reasons, we could
not proceed to further test the technology and we consider it to be no longer
maintained nor actually usable.

RepliKlaim. RepliKlaim [3] is a variant of Klaim [19] introducing first-class abstrac-
tions and mechanisms to deal with data locality and consistency, so as to give
programmers the ability to explicitly account for and tackle these aspects when
developing parallel computing applications. Specifically, the idea is to let the
programmer specify and coordinate replication of data, and operate on replicas
with a configurable level of consistency. This enables the programmer to adapt
data distribution and locality to the needs of the application at hand, especially
with the goal of improving performance in terms of concurrency level and data
access speed—in spite of latencies due to distribution.

Most of the abstractions and mechanisms, as well as syntax elements and
semantics, of RepliKlaim are exactly as in Klaim, such as data repositories, pro-
cesses, locations, and many actions. When due, actions are extended to explicitly
deal with replication aspects, such as in the case of an out primitive putting mul-
tiple copies of the same tuple in multiple localities, or an in primitive removing
all replicas from all locations at once. Also, various degrees of consistency among
replicas in the same or different locations are achieved depending on whether
primitives are synchronous (namely, atomically executed) or asynchronous.

There exists a prototype implementation of RepliKlaim on top of Klava, the
Java implementation of Klaim, available for direct download from a URL24 given
in its companion paper [3]. From there, a .rar archive is provided, containing a
version of Klava and the source files implementing RepliKlaim, which can be
easily compiled and run successfully.

Nevertheless, as stated in the paper describing RepliKlaim, its implementa-
tion currently relies on encoding its model in the standard Klaim model, thus,
on the practical side the code provided only features examples about how to
translate RepliKlaim primitives into Klava. No higher-level API directly pro-
viding to developers the replica-oriented operations of RepliKlaim is provided.

22 http://mobilab.cse.wustl.edu/projects/limone.
23 As stated here: https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627.
24 http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.

rar.
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Fig. 5. Lines of evolution of selected technologies (below the dashed line), as stemming
from a few archetypal coordination model (above the dashed line).

In other words, there exists no RepliKlaim Java library which can be imported
to other java projects in order to exploit its provided coordination services.

3 Discussion

In this section we aim at providing further insights about the technologies
described in Subsect. 2.3, especially to understand (i) whether they stem from
a common archetypal coordination framework (Fig. 5), (ii) their relationships in
terms of the features they provide (Fig. 6), and (iii) which goal mostly motivated
their development and which application scenario they mostly target (Fig. 7).

A Family Tree. Figure 5 depicts a sort of “family tree” of the selected coordina-
tion technologies, emphasising how they stem from a few archetypal coordination
models/languages, and how they are built on each other. It makes thus apparent
how most of the technologies still available stem from two archetypal models:
Linda [44] and IWIM [5]. Nevertheless, whereas in the case of Linda many het-
erogeneous extensions have been proposed throughout the years, focussing on
different features and thus diverging from Linda in many diverse ways, the evolu-
tion of the IWIM model appears much more homogeneous, featuring descendants
which “linearly” extend their ancestors’ features. Summing up, from Linda stem
the TuCSoN family, the Klaim [19] family – including Klava and RepliKlaim –, the
Lime [74] family – with Limone and CRIME –, besides the lone runners LINC
and TripCom, whereas from the IWIM root stems the Reo family—completed
by Manifold, Clam, and the latest extension IIC.

Apart from these two big family trees, we have the LGI model, along with
its implementation, Moses, and a small group of “lone runners” with unique
features: Piccola, CiAN, and JErlang. While the former inspired some features
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Fig. 6. Main differences (in green and red) and similarities (in blue) amongst selected
technologies. Arrows indicate what it takes (in green, add something; in red, remove
something) to go from one technology (the source) to another (the destination). (Color
figure online)

of technologies stemming from other models – for instance, its programmable
laws inspired essentially any other technology or model having reactive rules of
some sort, such as LINC –, the latter remained mostly confined to itself.

It is interesting to notice how “the IWIM family” and “the Linda family”
remained well-isolated one from each other over all these years. Whereas this
can be easily attributed to the fundamental difference in the approach to coor-
dination they have – data-driven vs. control-driven, as also emphasised in Fig. 6
– it seems odd that nobody tried to somewhat integrate these two extremely
successful coordination models, in an attempt to improve the state of art by
cherry-picking a few features from both to create a novel, hybrid coordination
model [69], with “the best of two worlds”. To some extent, the TuCSoN model,
along with its coordination language, ReSpecT, pursues this path: ReSpecT in
fact can be regarded as a data-driven model because coordination is based on
availability of tuples, as in Linda, but, at the same time, coordination policies
are enforced by declarative specifications which control the way in which the
coordination medium behaves, thus, ultimately, how the coordinated compo-
nents interact—as typical for control-driven models like IWIM.

We believe that the path toward integration could be the key in further
perfecting and improving coordination models and languages, by complement-
ing data-driven models elegance and flexibility with control-driven models fine-
grained control and predictability.
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Families Marriage. Figure 6 enriches the family tree just described with rela-
tionships indicating differences (red and green arrows) and similarities (blue
arrows) in features provided—notice that w.r.t. Fig. 5 Piccola, CiAN, and JEr-
lang have been removed because they are so unique that no clear relationship
may be found with other technologies. As already mentioned for Fig. 5, Linda
has been taken as the common ground for many technologies which are instead
very heterogeneous in the aim pursued: if ACLT , TuCSoN, and LINC have a
Linda core enriched with many other features – such as programmability, trans-
actionality, and novel primitives –, the Klaim family and the Lime one diverge
more, by changing the way in which primitives behave – as in the case of local-
ities in Klaim –, or the way in which the interacting processes see each others’
tuple spaces—as for Lime transient federation.

Nevertheless, technologies which may appear as being far apart from each
other have interesting similarities, as in the case of the interaction rules of LGI,
thus Moses, which strongly resembles ACLT and TuCSoN reactions, or the fact
that both the Reo family and Moses are based on message passing. Or, the fact
that both CRIME and TuCSoN rely on logic tuples so as to leverage on the
inference capabilities of interacting agents, while Reo and both Lime and Klaim
take into account mobility of processes and coordination abstractions (tuple
spaces vs. channels) as a first-class citizen.

It is worth emphasising here that Fig. 6 highlights the features to which
more attention has been devoted throughout the years: programmability, access
control, and mobility. We believe that these features, possibly extended with
scalability and inference capabilities, are crucial for widening applicability of
coordination technologies to real-world scenarios. For instance, the Internet of
Things (IoT) [9] – along with its variants Web of Things [48] and Internet of
Intelligent Things [8] – is a very good fit for testing coordination technologies,
and requires precisely the aforementioned features.

Goals & Preferred Scenarios. Finally, Fig. 7 relates the selected technologies with
the main aim pursued which motivates their extension in a particular direction,
along with the applications scenario they best target.

From the description of the selected technologies we gathered, two are the
main goals motivating their evolution: (i) providing flexibility so as to deal with
the majority of heterogeneous application scenarios possible, and (ii) focussing
on first-class abstractions for better supporting space-awareness of both the
coordination abstractions and the interacting processes.

In fact, TuCSoN/ACLT , LINC, and Moses all provide means to somewhat
program the coordinative behaviour of the coordination medium, thus aim at
making it configurable, adaptable, malleable, even at run-time, and/or provide
additional coordination primitives to expand the expressive reach of the coor-
dination technology. The Klaim family, the Reo family, and the Lime family
instead, are geared toward some forms of space-awareness, be it by promoting
mobility or by providing location-sensitive primitives.
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Fig. 7. Selected technologies per main goal pursued (top, blue arrows) and preferred
application scenario (bottom, red arrows). (Color figure online)

Besides these, two more main goals can be devised, peculiar to specific tech-
nologies: (iii) supporting humans-in-the-loop, in the case of CiAN, and (iv) pro-
vide a semantic representation of data items, in the case of TripCom.

About the application scenarios explicitly declared as of particular inter-
est for the technology, the most prominent one is service composition, which
is especially interesting for Piccola, JErlang, the Reo family, the Klaim family,
and TripCom—besides being naturally applicable to all other technologies too.
Then, whereas technologies such as LINC and the Lime family are mainly tai-
lored to the IoT landscape, being meant to cope with the requirements posed by
small, possibly portable, possibly embedded devices with low resources, Work-
flow Management (WfMS) is peculiar to CiAN, while also considered by TuCSoN
[79]. Besides these application scenarios, there are many technologies without a
specific focus, although they have been applied to many different ones, such as
TuCSoN itself, LINC, Moses, and TripCom: these have been associated with the
generic “General purpose” scenario.

We believe that the goals and application scenarios just highlighted
strengthen our previous consideration that the IoT could be the “killer-app”
for coordination technologies. In fact, flexibility (there including programmabil-
ity and configurability), space-awareness (there including mobility and location-
awareness), and semantics (there including interoperability of data representa-
tion formats) are all necessary ingredients for any non-trivial IoT deployment:
the former helps in dealing with uncertainty and unpredictability typical of the
IoT scenarios, the latter is required for building open IoT systems, and some
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form of space-awareness is a common feature of many IoT deployments, from
retail to industry 4.0. Also, the fact that service composition has been already
thoroughly explored is a great advantage and the perfect starting point for tack-
ling IoT challenges: both the IoT and the Web of Things vision foster a world
where connected objects provide and consume services, which can be composed
in increasingly high-level ones.

4 Conclusion

The main aim of this paper is to provide insights about the state-of-the-art of
coordination technologies after twenty years of the COORDINATION conference
series, and to stimulate informed discussion about future perspectives. Overall,
apart from some notable success stories – i.e. the commercial success of LINC
along with the active development of TuCSoN and Reo – most coordination tech-
nologies have gone through a rapid and effective development at the time they
were presented, then lacked further improvements or even maintenance of its
usability, thus never reached a wider audience—i.e. outside the COORDINA-
TION community or in the industry. Obviously, something also happens out-
side the COORDINATION boundaries. For instance, coordination technologies
are surveyed in [73], whereas [81] focuses on tuple-based technologies. However,
mostly of the technological developments reported here just happened after those
survey were published, in 2001 [72].

Although we acknowledge that researchers are usually mostly concerned with
providing scientifically-relevant models rather than production-ready software,
we also believe that backing up models and languages with more then proof-
of-concept software is crucial to promote wider adoption of both the technol-
ogy itself and the models, which in turn may provide invaluable feedback to
researchers for further developing and tuning models. The next decade will prob-
ably tell us more about the actual role of coordination technologies in the devel-
opment of forthcoming application scenarios: the IoT, for instance, is at the
“peak of inflated expectations” according to Gartner’s hype cycle for 2017, and
is expected to reach the plateau in 2 to 5 years. This means the time is ripe
for pushing forward the development of coordination technologies, so as to have
them ready when the IoT will be mature enough to actually benefit from their
added value.

Besides coordination technologies, we believe the COORDINATION confer-
ence is quite healthy: although the number of published papers is decreasing,
citations and downloads grows (modulo too recent years), and contributions
conveying technological advancements still represent almost a half of all the
contributions.
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Abstract. Building upon previous work by the authors, this paper
reviews and proposes extensions of Linda-like languages aiming at coor-
dinating data-intensive distributed systems. The languages manipulate
tokens associated in different ways with a notion of multiplicity. Thanks
to De Boer and Palamidessi’s notion of modular embedding, we estab-
lish expressiveness hierarchies. We also discuss implementation issues
and argue that the more expressive the language is the more expensive
is its implementation.

1 Introduction

Technological evolutions over the last recent years have confirmed the upward
trends in pervading our everyday environment by more and more numerical
artifacts, mobile or not, injecting or retrieving an endless increasing amount of
information. As a result, service-oriented applications have become more and
more necessary and indeed have been developed at an increasing speed. Most
of them are based on popularity and quality measures, with, as a key feature,
the fact that these meseasures are not determined at specific points in time but
rather continuously, as user experiences evolve.

Moreover, with the help of machine learning techniques, data tend to be
more and more transformed in knowledge, which leads our daily life to be more
and more mediated by knowledge systems. In this context coordinating systems
relying on a huge amount of data appears to be a central task. Coordination
languages and models have proved to be well suited to program the interaction
of conventional distributed systems, and in particular to model service-oriented
applications (see e.g. [7,23,31]). Recently, it has been shown in [28] how they can
be used to code complex socio-technological systems based on the interaction of
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knowledge intensive components. This paper aims at addressing a more funda-
mental issue in exploring how the addition of multiplicity information to tuples
increases the expressiveness of Linda [18], the seminal coordination language,
while being able to handle the above mentioned requirement of popularity and
quality measures.

To do so, we shall start with a dialect of Linda developed at the University
of Namur, named Bach. Following Linda, it permits to model in an elegant way
the interaction between different components through the deposit and retrieval
of tuples in a shared space. As its basic form only allows the manipulation of one
tuple at a time and since the selection between several tuples matching a required
one is provided in a non-deterministic fashion, a first extension was proposed in
[20] in the aim of enriching traditional data-based coordination languages by a
notion of multiplicity (historically named density) attached to tuples, thereby
yielding a new coordination language, called Dense Bach. In a second extension
we have proposed in [16] to consider lists of tuples among which densities are
distributed. The resulting language has been named DBD-Bach. It turns out
that its presentation can be made more elegant by using a variant, named VD-
Bach, in which arguments of coordination primitives are composed of lists of
so-called dense tokens.

Introducing variants of languages necessarily calls for a gain of expressiveness.
Based on previous work by the authors, among others of [8,11,12,16,20,27], we
shall employ de Boer and Palamidessi’s modular embedding and show that Bach
is less expressive than Dense Bach, which itself is less expressive than VD-Bach.
VD-Bach being similar in essence to multiset rewriting, as introduced in Gamma
[1,2], we shall also compare the two languages and prove that Gamma is actually
more expressive than VD-Bach.

Since our purposes are essentially of a theoretical nature, for simplicity pur-
poses, we shall consider in this paper simplified versions of the languages where
tuples are taken in their simplest form of flat and unstructured tokens. Neverthe-
less, as we shall argue at the end of the paper, the resulting simplification of the
matching process is orthogonal to our purposes and, consequently, our results
can be directly extended to more general tuples. Consequently, our languages
will subsequently be renamed with a T suffix, thus yielding BachT, DBD-BachT
and VD-BachT.

Despite this simplification, we shall also discuss implementation issues and,
show, without big surprise, that the more expressive a language is the more
expensive is its implementation. This highlights from another perspective the
expressiveness results: instead of directly using the more expressive language, it
is of interest from an efficiency point of view to use the language just expressive
enough for coding purposes under consideration.

The rest of the paper is organized as follows. Section 2 presents the languages
studied in the paper and defines an operational semantics. Section 3 evidences
the interest of these languages through the coding of some examples but also
by showing how the newly introduced language VD-BachT can express the lan-
guage DBD-Bach introduced in [16]. Section 4 provides a short presentation of
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modular embedding and, on that basis, proceeds with an exhaustive compari-
son of the relative expressive power of the languages. Section 5 shows how these
expressiveness results can be lifted to tuple-based languages. Section 6 discusses
implementation issues. Finally, Sect. 7 compares our work with related work,
draws our conclusions and presents expectations for future work.

2 Densed Tuple-Based Coordination Languages

2.1 Primitives

A. BachT and Dense BachT

Let us start by defining the BachT and Dense BachT languages [20] from which
the languages under study in this paper are extensions. The following definition
formalizes how we attach a multiplicity or density to them.

Definition 1. Let Stoken be a enumerable set, the elements of which are subse-
quently called tokens and are typically represented by the letters t and u. Define
the association of a token t and a positive integer n ∈ N as a dense token. Such
an association is typically denoted as t(n). Define then the set of dense tokens
as the set SDtoken. Note that since Stoken and N are both enumerable, the set
SDtoken is also enumerable.

Intuitively, a dense token t(m) represents the simultaneous presence of m
occurrences of t. As a result, {t(m)} is subsequently used to represent the multiset
{t, · · · , t} composed of these m occurrences. Moreover, given two multisets of
tokens σ and τ , we shall use σ ∪ τ to denote the multiset union of elements of σ
and τ . As a particular case, by slightly abusing the syntax in writing {t(m), t(n)},
we have {t(m)} ∪ {t(n)} = {t(m), t(n)} = {t(m + n)}. Finally, we shall use
σ�{t(m)} to denote, on the one hand, the multiset union of σ and {t(m)}, and,
on the other hand, the fact that t does not belong to σ.

Definition 2. Define the set Tb of the token-based primitives as the set of prim-
itives Tb generated by the following grammar:

Tb : := tell(t) | ask(t) | get(t) | nask(t)

where t represents a token. Similarly, define the set of dense token-based primi-
tives Tdb as the set of primitives Tdb generated by the following grammar:

Tdb : := tell(t(m)) | ask(t(m)) | get(t(m)) | nask(t(m))

where t represents a token and m a positive natural number.

The primitives of the BachT language are essentially the Linda ones
rephrased in a constraint-like setting. As a result, by calling store a multiset
of tokens aiming at representing the current content of the tuple space, the exe-
cution of the tell(t) primitive amounts to enriching the store by an occurrence of
t. The ask(t) and get(t) primitives check whether t is present on the store with
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Fig. 1. Transition rules for token-based primitives (BachT)

Fig. 2. Transition rules for dense token-based primitives (Dense BachT)

the latter removing one occurrence. Dually, nask(t) tests whether t is absent
from the store.

The primitives of the Dense BachT language extend these primitives by
simultaneously handling multiple occurrences. Accordingly, tell(t(m)) atomi-
cally puts m occurrences of t on the store and ask(t(m)) together with get(t(m))
require the presence of at least m occurrences of t with the latter removing m of
them. Moreover, nask(t(m)) verifies that there are less than m occurrences of t.

These executions can be formalized by the transition steps of Figs. 1 and
2, where configurations are pairs of instructions, for the moment reduced to
simple primitives, coupled to the contents of a store. Note that E is used to
denote a terminated computation. As can be seen by the above description, the
primitives of BachT are those of Dense BachT with a density of 1. Consequently,
our explanation starts by the more general rules of Fig. 2. Rule (Td) states that
for any store σ and any token t with density m, the effect of the tell primitive is
to enrich the current multiset of tokens by m occurrences of token t. Note that
∪ denotes multi-set union. Rules (Ad) and (Gd) specify the effect of ask and get
primitives, both requiring the presence of at least m occurrences of t, but the
latter also consuming them. Rule (Nd) defines the nask primitive, which tests
for the absence of m occurrences of t. Note that there might be some provided
there are less than m. It is also worth observing that thanks to the notation
σ � {t(n)} one is sure that t does not occur in σ and consequently that there
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Fig. 3. Transition rules for vectorized dense token-based primitives (VD-BachT)

are exactly n occurrences of t. This does not apply for rules (Ad) and (Gd) for
which it is sufficient to assume the presence of at least m occurrences, allowing
σ to contain others.

Figure 1 specifies the transition rules for the primitives of the BachT lan-
guage. As expected, they amount to the rules of Fig. 2 where the density m is
taken to be 1.

B. Vectorized Dense BachT

A natural extension is to replace a dense token by a set of dense tokens in
the primitives. For instance, the primitive ask(t(1), u(2), v(3)) would succeed
on a store containing one occurrence of t, two of u and three of v. Dually, the
computation of tell(t(1), u(2), v(3)) would result in adding one occurrence of t
on the store, two of u and three of v.

The following definitions formalize this intuition. As seen above, to avoid
using unnecessary brackets, we shall slightly abuse notations and use lists of
dense tokens, which we shall subsequently designate as vectors of dense tokens,
hence the name Vectorized Dense BachT or VD-BachT for short. The intuition
remains however that of sets, with the order of the dense tokens being meaning-
less.

Definition 3. Define a vector of dense tokens as a list t1(m1), · · · , tn(mn) of
dense tokens. Such a vector is subsequently denoted as

−−→
t(m). Define SVDtoken

as the set of vectors of dense tokens.

Definition 4. Define the set of vectorized dense token-based primitives Tvb as
the set of primitives Tvb generated by the following grammar:

Tvb : := tell(
−−→
t(m)) | ask(

−−→
t(m)) | get(

−−→
t(m)) | nask(

−−→
t(m))

where
−−→
t(m) represents a vector of dense tokens.

The transition steps for these primitives are defined in Fig. 3. As suggested
above, rule (Tv) asserts that telling a vector of dense tokens amounts to adding
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Fig. 4. Transition rule for the weak nask

each of them with the corresponding density on the store. Similarly, rule (Av)
requires for an ask primitive to succeed the presence, for each token ti, of at
least mi occurrences on the store. According to rule (Gv) the behavior of a get
primitive performs such a test for presence but also removes mi occurrences of
ti on the store. Finally, rule (Nv) requires, for each token ti, the absence of
mi occurrences. It is here worth noting that, in contrast to BachT and Dense
BachT, the behavior of the nask primitive is not the negation of that of the ask
primitive. Indeed, this interpretation would have required for the nask primitive
that, for some token ti, less than mi occurrences are present on the store. It will
however be handful to have such a nask primitive. We thus introduce it, name it
weak nask and denote it by wnask. It is formally defined by rule (Ww) of Fig. 4.

It is worth observing that with such a definition, wnask(
−−→
t(m)) succeeds

whenever nask(
−−→
t(m)) succeeds. However, the converse is not true. Consider,

for instance, the store composed of 2 occurrences of t and 4 of u. In that
context, nask(t(1), u(5)) does not succeed since, although 4 < 5 the inequal-
ity 2 < 1 does not hold. However, wnask(t(1), u(5)) succeeds since, as mul-
tisets, {t(2), u(4)} �⊆ {t(1), u(5)}. Rephrased using the notation of rule (Nv),
it is required for nask that p1 < m1 ∧ · · · ∧ pn < mn whereas wnask only
requires that p1 < m1 ∨ · · · ∨ pn < mn. In view of that, it is easy to ver-
ify that wnask(t1(m1), · · · , tn(mn)) can be encoded as follows: nask(t1(m1)) +
· · · + nask(tn(mn)) where + denotes the non-deterministic choice. As a result,
although useful later, wnask does not bring an increase of expressiveness.

C. MRT

The last language we shall consider is a Gamma-like language [1,2], based on
the chemical reaction metaphor. It considers communication primitives as the
rewriting of pre-condition multi-sets into post-condition multi-sets. Intuitively,
the operational effect of a multi-set rewriting (pre, post) consists in inserting
all the positive post-conditions, and in deleting all the negative post-conditions
from the current store σ, provided that σ contains all positive pre-conditions
and does not meet any of the negative pre-conditions. Formally, these rewritings
are specified as follows.

Definition 5. Define the set of multi-set rewriting primitives TMR as the set of
primitives TMR generated by the following grammar:

TMR : :=({M}, {M})
M : :=λ | + t | − t | M,M

where λ indicates an empty multi-set and where t denotes a token.
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Fig. 5. Transition rules for multi-set rewriting-based primitives (MRT)

It is worth observing that not all pairs of preconditions and postconditions
correspond to reasonable computations. Indeed, as stated above, it is possible
to require in a precondition that the same token is present and absent or to
require in the postcondition the removal of a token which has not been tested
for presence in the precondition. We subsequently define such reasonable pairs
of pre- and post-conditions as respectively consistent and valid. To that end, we
first introduce some notations.

Definition 6. Given a multi-set rewriting pair (Pre, Post), denote by Pre+ the
multi-set {t | + t ∈ Pre} of tokens positively appearing in the precondition and
by Pre− the multi-set {t| − t ∈ Pre} negatively appearing in it. Similarly, we
shall denote by Post+ and Post− the multiset of tokens appearing positively and
negatively in the postcondition.

A multi-set rewriting pair (Pre, Post) is said to be consistent if Pre+ ∩
Pre− = ∅. It is said to be valid if Post− ⊆ Pre+.

A consequence of consistency and validity is that four basic pairs of pre-
and post-conditions can be put forward: ({+t}, {}), ({−t}, {}), ({}, {+t}),
({+t}, {−t}). They correspond respectively to the ask(t), nask(t), tell(t) and
get(t) of the BachT language.

It turns out that it is possible to define it by one rule. To express it, an
auxiliary notion is however needed. It extends the notations of Definition 6 to
capture the fact that, for each token, the tokens mentioned negatively in the
definition are not with their multiplicity on the current store σ.

Definition 7. For any token t, define Pre−[t] as the multiset of negatively
marked tokens t in the precondition Pre:

Pre−[t] = {t : −t ∈ Pre−}.

Given a precondition Pre and a store σ, we then define the non element-wise
inclusion operator ⊥ as follows:

Pre−⊥ σ iff Pre−[t] �⊆ σ, for any token t.

With this notation, rule (CM) of Fig. 5 states that a multi-set rewriting
(Pre, Post) can be executed in a store σ if the multi-set Pre+ is included in
σ and if no negative pre-condition occurs with the required multiplicity in σ.
Under these conditions, the effect of the rewriting is to delete from σ all the
negative post-conditions and to add to σ all the positive post-conditions.
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2.2 Languages

We are now in a position to formally define the languages we shall consider in
the paper. The statements of these languages, also called agents, are defined
from the tell, ask, get and nask primitives by possibly combining them by the
classical non-deterministic choice operator +, parallel operator (denoted by the
|| symbol) and the sequential operator (denoted by the ; symbol). The formal
definition is as follows.

Definition 8. Define the BachT language LB as the set of agents A generated
by the following grammar:

A : := Tb | A ; A | A || A | A + A

where Tb represents a token-based primitive. Define similarly the Dense BachT
language LDB, the VD-BachT language LV B, the MRT language LMR by tak-
ing instead of the token-based primitive Tb, respectively the dense token-based
primitives Tdb, the list of token-based primitive Tvb and the multi-set rewriting
primitive TMR.

Moreover, subsequently, we shall consider sublanguages formed similarly but
by considering only subsets of these primitives. In that case, if H denotes such
a subset, then we shall write the induced sublanguages as LB(H), LDB(H),
LV B(H) and LMR(H) respectively. Note that for the latter sublanguages, the
tell, ask, nask and get primitives are associated with the basic pairs described
above.

2.3 Transition System

To study the expressiveness of the languages, a semantics needs to be defined.
As suggested in the previous subsections, we shall use an operational one, based
on transition systems. For each transition system, the configuration consists of
agents (summarizing the current state of the agents running on the store) and a
multi-set of tokens (denoting the current state of the store). In order to express
the termination of the computation of an agent, we extend the set of agents
by adding a special terminating symbol E that can be seen as a completely
computed agent. For uniformity purpose, we abuse the language by qualifying
E as an agent. To meet the intuition, we shall always rewrite agents of the form
(E;A), (E || A) and (A || E) as A. This is technically achieved by defining the
extended sets of agents as LB ∪{E}, LDB ∪{E}, LV B ∪{E} or LMR ∪{E} and
by justifying the simplifications by imposing a bimonoid structure.

The rules for the primitives of the languages have been given in Figs. 1, 2,
3, 4 and 5. Figure 6 details the usual rules for sequential composition, parallel
composition, interpreted in an interleaving fashion, and non-deterministic choice.

2.4 Observables and Operational Semantics

We are now in a position to define what we want to observe from the computa-
tions. Following previous work by some of the authors (see e.g. [10,11,24–26]),
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Fig. 6. Transition rules for the operators

we shall actually take an operational semantics recording the final state of the
computations, this being understood as the final store coupled to a mark indi-
cating whether the considered computation is successful or not. Such marks are
respectively denoted as δ+ (for the successful computations) and δ− (for failed
computations).

Definition 9.

1. Define the set of stores Sstore as the set of finite multisets with elements from
Stoken.

2. Let δ+ and δ− be two fresh symbols denoting respectively success and failure.
Define the set of histories Shist as the cartesian product Sstore × {δ+, δ−}.

3. For each language LI of the languages LB, LDB, LV B, LMR, define the
operational semantics OI : LI → P(Shist) as the following function: for any
agent A ∈ L

O(A) = {(σ, δ+) : 〈A|∅〉 →∗ 〈E|σ〉}
∪ {(σ, δ−) : 〈A|∅〉 →∗ 〈B|σ〉 �, B �= E}

3 Applications

To evidence the interest of Dense BachT and VD-BachT, let us turn to some
applications and see how they easily allow for their encodings.

3.1 A Simple Taxi Application

A typical service application inspired by Uber consists in a system allowing to
select taxi drivers based on their reputation. To be operational, such a system
needs on the one hand to allow users to express their satisfaction with regard
to the service provided, and on the other hand, to test that a taxi driver is
recognized at a sufficient level of satisfaction. For illustration purposes, we will
assume that only positive marks are taken into account and that the service
offered by a taxi driver can be evaluated as good or excellent, corresponding to
a respective evaluation with numbers 1 and 2. We will then imagine that a level
of satisfaction 100 is a minimal satisfaction mark for a reasonable driver.
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Using Dense BachT for the first task, the satisfaction of a user can
be registered by inserting the token taxi driver id once if the evaluation
mark is good and twice if it is excellent. Technically, with taxi driver id
being the identifier of the taxi driver, this amounts to respectively executing
tell(taxi driver id(1)) or tell(taxi driver id(2)). As regards the sec-
ond task, making sure that a proposed driver, say identified by id, has reached
a level of satisfaction of at least 100, can be simulated by executing the primitive
ask(id(100)). Note that, as the number of matching tuples is only counted, such
a satisfaction level may be reached thanks to the contribution of many users. Of
course, different policies can be implemented in the application, for instance to
forbid a user to mark a taxi driver more than once a day. It is also worth noting
that thanks to the space and time decoupling between information producers
and information consumers offered by coordination languages, it is very easy to
introduce new users and new taxi drivers in the application.

3.2 The Dining Philosophers

Formulated by Edsger Dijkstra in 1965, the dining philosophers is a classical con-
currency problem addressing the synchronisation of processes sharing resources.
It is formulated as follows: N philosophers spend their time thinking and eating.
To eat, they must sit on a round table in front of a dish and take the forks on
their left and right sides. There is however only one fork between two dishes,
which makes it impossible for all the philosophers to eat simultaneously.

The classical solution is to use semaphores, one for each fork and one to let
only enter to the table a number of philosophers. Other solutions have been pro-
posed by the coordination community, for instance, using Respect [29]. The Vector
Dense BachT language proposes a very simple solution by associating each fork
with a token and by simulating each philosopher taking his two forks by a get
primitive on these tokens and dually each philosopher realising them by means of
a tell primitive. For N = 5, the philosophers may then be coded as follows:

Phil0 = get(f0, f1); tell(f0, f1);Phil0

Phil1 = get(f1, f2); tell(f1, f2);Phil1

· · ·
Phil4 = get(f4, f0); tell(f4, f0);Phil4

with the whole set of philosophers simulated by

Phil0 || Phil1 || Phil2 || Phil3 || Phil4

3.3 An Online Shopping System

Let us now consider an online shopping system related to an European sporting
goods store, present in five different European cities: Brussels, Paris, London,
Berlin and Rome. All these shops propose the same articles. In order to manage
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efficiently the number of orders that arrive through the online system, these are
distributed on the different shops present in the five cities. Assume that a group
of 50 orders arrive and has to be distributed equally between the different shops.
This can be simulated through the execution of the following tell primitive:

tell(Brussels(10), Paris(10), London(10), Berlin(10), Rome(10)).

Assume now that the following maxima of orders to be processed have been
imposed for the shops: 200 orders for Brussels, 75 for Paris, 50 for London,
150 for Berlin and 70 for Rome. A check whether these maxima have not been
reached can be simulated by executing the following nask primitive:

nask(Brussels(200), Paris(75), London(50), Berlin(150), Rome(70)).

3.4 Distributed Density

In the online shopping problem, the arrival of 50 orders has been explicitly dis-
tributed on the shops. A natural extension is to let the execution of the primitive
non-deterministically choose the distribution. We are then lead to consider a list
of tokens together with a density and to distribute it on the tokens. The following
definition formalizes such an association.

Definition 10. Let Snlt denote the set of non-empty lists of tokens in which,
for simplicity purposes, each token differs from the others. Such a list is typically
denoted as L = [t1, . . . , tp] and is thus such that ti �= tj for i �= j. Define a dense
list of tokens as a list of Snlt associated with a strictly positive integer. Such a
dense list is typically represented as L(m), with L the list of tokens and m an
integer.

The distribution of the density over a list of tokens is formalized through the
following distribution function.

Definition 11. Define the distribution of tokens from dense lists of tokens to
sets of tuples of dense tokens as follows:

Di([t1, · · · , tp](m)) = {(t1(m1), · · · , tp(mp)) : m1 + · · · + mp = m}
Note that, thanks to the definition of dense tokens, we assume above that the
mi’s are positive integers. For the sake of simplicity, we shall call the set
Di([t1, · · · , tp](m)) the distribution of m over [t1, · · · , tp].

The distribution of an integer m over a list of tokens L has the potential
to express the behavior of the BachT primitives extended with dense lists of
tokens as arguments. Indeed, telling a dense list amounts to telling atomically
the ti[mi]’s of a tuple defined above. Asking or getting a dense list requires to
check that a tuple of Di([t1, · · · , tp](m)) is present on the considered store. For
the negative ask, the requirement is that none of the tuple is present. For the
ease of writing and to make this latter concept clear, we introduce the following
concept of intersection.
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Fig. 7. Transition rules for list of token-based primitives (Dense BachT with distributed
Density)

Definition 12. Let m be a positive integer, L = [t1, · · · , tp] be a list of tokens
and σ a store. We define Di(L(m)) � σ as the following set of tuples of dense
tokens:

Di(L(m)) � σ = {(t1(m1), . . . , tp(mp)) ∈ Di(L(m)) : {ti(mi)} ⊆ σ}

We are now in a position to specify the language extension handling dense
lists of tokens.

Definition 13. Define the set of dense lists primitives Tdbd as the set of prim-
itives Tdbd generated by the following grammar:

Tdbd : := tell(L(m)) | ask(L(m)) | get(L(m)) | nask(L(m))

where L(m) represents a dense list of tokens.

The transition steps for these primitives are defined in Fig. 7. As suggested
above, rule (Tdbd) specifies that telling a dense list L(m) of tokens amounts
to atomically adding the multiple occurrences ti(mi)’s of the tokens of a tuple
of the distribution of m over L. Note that the selected tuple is chosen non-
deterministically, which gives to a tell primitive a non-deterministic behavior
as opposed to the tell primitives of BachT and Vectorized Dense BachT. Rule
(Adbd) states that asking for the dense list L(m) amounts to testing that a
tuple of the distribution of m over L is in the store, which is technically stated
through the non-emptyness of the intersection of the distribution and the store.
Rule (Gdbd) requires that the tokens of the tuples are removed in the considered
multiplicity. Finally, rule (Ndbd) specifies that negatively asking L(m) succeeds
if m is strictly positive and no tuple of the distribution of m over L is present
on the current store.

We are now in a position to define the language Dense BachT with a Distri-
bution of the density over a list of tokens by considering the statements of this
language as defined from the tell, ask, get and nask primitives possibly combined
by the non deterministic choice, parallel and sequential operators.
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A further extension consists in equipping the tokens of a dense list with
minimal and maximal numbers, as follows.

Definition 14. Define the association of a token and two positive integers of N

as a capacity dense token. Such a token is typically denoted as t(m,n) where t
is the token and m, n are the integers.

Definition 15. Let Snlct denote the set of non-empty lists of capacity dense
tokens in which, for simplicity purposes, each token differs from the others. Such
a list is typically denoted as L = [t1(m1, n1), . . . , tp(mp, np)] and is thus such that
ti �= tj for i �= j. Define a dense list of capacity dense tokens as a list of Snlct
associated with a strictly positive integer. Such a list is typically represented as
L(m), with L the list of capacity dense tokens and m an integer.

The expected extended language is simply obtained by slightly modifying the
notion of distribution introduced in Definition 11.

Definition 16. Define the cardinality based distribution of tokens from dense
lists of capacity tokens to sets of tuples of extended dense tokens as follows:

Dc([t1(m1, n1), · · · , tp(mp, np)](q))
= {(t1(q1), · · · , tp(qp)) : q1 + · · · + qp = q and mi ≤ qi ≤ ni for i ∈ {1, · · · , p}}

Note that nothing guarantees that the above set is non empty. We shall
subsequently called coherent those dense lists of capacity based tokens such that
their cardinality based distribution is non empty and restrict ourselves to such
coherent dense lists in the following.

To conclude this section, it is worth observing that it is straightforward to
translate the positive version of DBD-BachT and its cardinality extension in
terms of VD-BachT.

Indeed, as easily observed, one can code the tell, ask and get primitives of
DBD-BachT as follows:

tell(L(m)) =
∑

v∈Di(L(m))

tell(v r)

ask(L(m)) =
∑

v∈Di(L(m))

ask(v r)

get(L(m)) =
∑

v∈Di(L(m))

get(v r)

where v r denotes the vector v restricted to its strictly positive dense tokens.
Translating the nask primitive is slightly more complicated in requiring the

parallel composition of the weak form of nask of vectors:

nask(L(m)) = ||v∈Di(L(m))wnask(v r)

Translating the DBD-BachT language with cardinality proceeds similarly by
using Dc(L(m)) instead of Di(L(m)).
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4 Expressiveness Study

The translation just introduced evidences the need for a study of the expressive-
ness power of the languages introduced in Sect. 2, to which we now turn.

4.1 On the Expressiveness of Languages

A natural way to compare the expressive power of two languages is to determine
whether all programs written in one language can be easily and equivalently
translated into the other language, where equivalent is intended in the sense of
conserving the same observable behaviors.

Fig. 8. Basic embedding.

According to this intuition, Shapiro introduced in
[30] a first notion of embedding as follows. Consider
two languages L and L′. Assume given the seman-
tics mappings (Observation criteria) S : L → Os and
S ′ : L′ → O′

s, where Os and O′
s are on some suit-

able domains. Then L can embed L′ if there exists a
mapping C (coder) from the statements of L′ to the
statements of L, and a mapping Dc (decoder) from
Os to O′

s, such that the diagram of Fig. 8 commutes,
namely such that for every statement A ∈ L′ : Dc(S(C(A))) = S ′(A).

This basic notion of embedding turns out however to be too weak since,
for instance, the above equation is satisfied by any pair of Turing-complete lan-
guages. De Boer and Palamidessi hence proposed in [17] to add three constraints
on the coder C and on the decoder Dc in order to obtain a notion of modular
embedding usable for concurrent languages:

1. Dc should be defined in an element-wise way with respect to Os, namely for
some appropriate mapping Del

∀X ∈ Os : Dc(X) = {Del(x) | x ∈ X} (P1)

2. the coder C should be defined in a compositional way with respect to the
sequential, parallel and choice operators:

C(A ; B) = C(A) ; C(B)
C(A || B) = C(A) || C(B)

C(A + B) = C(A) + C(B)
(P2)

3. the embedding should preserve the behavior of the original processes with
respect to deadlock, failure and success (termination invariance):

∀X ∈ Os,∀x ∈ X : tm′(Del(x)) = tm(x) (P3)

where tm and tm’ extract the termination information from the observables
of L and L′, respectively.
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Fig. 9. Embedding hierarchy of BachT Languages.

Fig. 10. Embedding hierarchy of BachT and Dense BachT

An embedding is then called modular if it satisfies properties P1, P2, and P3.
The existence of a modular embedding from L′ into L is subsequently denoted
by L′ � L. It is easy to prove that � is a pre-order relation. Moreover if L′ ⊆ L
then L′ � L that is, any language embeds all its sublanguages. This property
descends immediately from the definition of embedding, by setting C and Dc

equal to the identity function.

4.2 Comparing BachT, Dense BachT and Vectorized Dense BachT

The expressive power of the different sublanguages of BachT has been studied
in [9–11] from which the expressiveness hierarchy of Fig. 9 can be established.
Building upon these results, the article [22] has established the embedding rela-
tions of Fig. 10.

In both figures, an arrow from a language L1 to a language L2 means that L2

embeds L1, that is L1 � L2. When an arrow from L1 to L2 has no counterpart
from L2 to L1, then L1 is strictly less expressive than L2, that is L1 < L2. If
L1 � L2 and L2 � L1 then L1 and L2 are equivalent, that is L1 = L2. In that
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Fig. 11. Embedding hierarchy of Dense BachT and Vectorized Dense BachT languages.

case, they are depicted together. If L1 �� L2 and L2 �� L1 then L1 and L2 are not
comparable with each other. This is subsequently denoted by L1 � L2. Thanks
to the transitivity, both figures contain only a minimal amount of arrows. Apart
from these induced relations, no other relation holds.

It is worth noting that the hierarchy relations presented in Fig. 9 appear in
the center of Fig. 10. This reflects the fact that BachT is a special case of Dense
BachT. Moreover, the hierarchy of the Dense BachT sublanguages resembles
that of the BachT sublanguages. This intuitively results from the very nature of
the ask, nask and get primitives, which are not altered by the density of tokens.
Nevertheless, except for the sublanguage reduced to a tell primitive, it is worth
observing that the dense sublanguages are strictly more expressive than their
BachT counterparts. This highlights the fact that Dense BachT is an extension
of BachT bringing more expressiveness.

Following the same reasonings as those published in [16] it is possible to
establish similar embedding relations between Dense BachT and Vectorized
BachT. Due to space limits, the proof are not reproduced here but the results
are depicted in Fig. 11. To get a complete expressiveness picture, it remains to
study the expressiveness of Vectorized Dense BachT and MRT. This is the pur-
pose of the next subsection. Due to space limits, the key points are only given,
the interested reader being referred to [15] where all the proofs are conducted in
details.

4.3 Relating Vectorized Dense BachT and MRT

As a first observation, it is easy to establish that the VD-BachT sublanguages
are embedded in the corresponding MRT sublanguages.

Proposition 1. LV B(χ) � LMR(χ), for any subset of χ of primitives.

Proof. Immediate by defining the coder as follows:
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C(tell((t1(m1), . . . , tk(mk)))) = ({}, {+t1, · · · ,+t1
︸ ︷︷ ︸

m1 times

, · · · ,+tk, · · · ,+tk
︸ ︷︷ ︸

mk times

})

C(ask((t1(m1), . . . , tk(mk))) = ({+t1, · · · ,+t1
︸ ︷︷ ︸

m1 times

, · · · ,+tk, · · · ,+tk
︸ ︷︷ ︸

mk times

}, {})

C(get((t1(m1), . . . , tk(mk)))) = ({+t1, · · · ,+t1
︸ ︷︷ ︸

m1 times

, · · · ,+tk, · · · ,+tk
︸ ︷︷ ︸

mk times

},

{−t1, · · · ,−t1
︸ ︷︷ ︸

m1 times

, · · · ,−tk, · · · ,−tk
︸ ︷︷ ︸

mk times

})

C(nask((t1(m1), . . . , tk(mk)))) = ({−t1, · · · ,−t1
︸ ︷︷ ︸

m1 times

, · · · ,−tk, · · · ,−tk
︸ ︷︷ ︸

mk times

}, {})

and using the identity as decoder.

As for the results mentioned before, we shall only consider non trivial sub-
languages, namely sublanguages containing at least the tell primitive. The store
being feeded with tokens, the second step is to provide the sublanguage with
a possibility to question the store about the presence or the absence of tokens
on it. Those two capacities result from the introduction of the ask and nask
primitives. A third important property is then to allow the language to retrieve
tokens from the store, by using the get primitive. Finally the last step studies
the most complete language, combining the get and tell primitives with the nask
and/or ask primitives.

A. Adding Tokens on the Store

When only constituted by the tell primitive the sublanguages are equivalent,
namely LV B(tell) and LMR(tell) are equivalent.

Proposition 2. LMR(tell) and LV B(tell) are equivalent.

Proof. We have LV B(tell) � LMR(tell) by Proposition 1. Furthermore,
LMR(tell) � LV B(tell) is established by coding any tell primitive of
LMR(tell) as the composition of their dense versions: C({}, {+t1, · · · ,+t1︸ ︷︷ ︸

m1 times

, · · · ,

+tk, · · · ,+tk︸ ︷︷ ︸
mk times

}) = tell((t1(m1), · · · , tk(mk))).

B. Checking for Presence and/or Absence When Adding Tokens

In contrast to what is obtained in the comparison of Dense BachT and Vectorized
BachT languages, LV B(ask,tell) is as expressive as LMR(ask,tell).

Proposition 3. LV B(ask,tell) = LMR(ask,tell)

Proof. (i) On the one hand, LV B(ask,tell) � LMR(ask,tell), by Proposition 1.
(ii) On the other hand, LMR(ask,tell) � LV B(ask,tell) is established by noting
that any agent of LMR(ask,tell) can be simulated by an agent of LMR(ask)
followed by an agent of LMR(tell).

In contrast, LV B(nask,tell) is strictly less expressive than LMR(nask,tell).
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Proposition 4. LV B(nask,tell) < LMR(nask,tell).

Proof. (i) On the one hand, LV B(nask,tell) � LMR(nask,tell) holds by Propo-
sition 1. (ii) On the other hand, LMR(nask,tell) �� LV B(nask,tell) is proved
by considering agent AB = ({−a}, {+b}) and agent BA = ({−b}, {+a}), with
O(AB || BA) = {(∅, δ−)}. The proof proceeds by contradiction, by assuming
the existence of a coder C with C(AB) in normal form [9], and thus written
as tell(

−→
t1 );A1 + · · · + tell(

−→
tp );Ap + nask(−→u1);B1 + · · · + nask(−→uq);Bq. In this

expression we will establish that there is no alternative guarded by a tell(
−→
ti )

operation and no alternative guarded by a nask(−→uj) operation either, which is
impossible since C(AB) must contain at least one primitive. We notice that the
coding of C(AB || BA) can be written as C(AB) || C(BA) by P2.

Let us first establish that there is no alternative guarded by a tell(
−→
ti )

operation. Indeed if there is an alternative guarded, say by tell(
−→
ti ), then

D = 〈C(AB || BA)|∅〉 → 〈(Ai || C(BA))|{−→
ti }〉 is a valid computation prefix

of C(AB || BA). It should deadlock afterwards since O(AB || BA) = (∅, δ−).
However D is also a valid computation prefix of C((AB || BA) + ({}, {+a})).
Hence, C((AB || BA) + ({}, {+a})) admits a failing computation which contra-
dicts the fact that O((AB || BA) + ({}, {+a})) = ({a}, δ+).

Secondly we establish that there is no alternative guarded by a nask(−→uj) oper-
ation. Indeed starting from the empty store, if there is an alternative guarded,
say by nask(−→uj), then D = 〈C(AB || BA)|∅〉 → 〈(Bj || C(BA))|{ti}〉 is a
valid computation prefix of C(AB || BA). It should deadlock afterwards since
O(AB || BA) = (∅, δ−). However D is also a valid computation prefix of
C((AB || BA) + ({}, {+a})). Hence, C((AB || BA) + ({}, {+a})) admits a fail-
ing computation which contradicts the fact that O((AB || BA) + ({}, {+a})) =
({a}, δ+).

LMR(ask,tell) and LV B(nask,tell) are not comparable with each other, and
so are LMR(nask,tell) and LV B(ask,tell).

Proposition 5. LMR(ask,tell) � LV B(nask,tell)

Proof. On the one hand, we have that LMR(ask,tell) �� LV B(nask,tell).
Otherwise, by non embedding by transitivity, we have LV B(ask,tell) �
LV B(nask,tell) which has been proved impossible (see Fig. 11). On the other
hand, LV B(nask,tell) �� LMR(ask,tell) is established by contradiction. Indeed,
assuming the relation holds, we would then have LB(nask, tell) � LMR(ask,tell),
which has been proved impossible in [11].

Proposition 6. LMR(nask,tell) � LV B(ask,tell)

Proof. On the one hand, LMR(nask,tell) �� LV B(ask,tell) holds. Otherwise, by
embedding by transitivity, we have LV B(nask,tell) � LV B(ask,tell) which is
impossible (see Fig. 11). On the other hand, LV B(ask,tell) �� LMR(nask,tell) is
established by contradiction by considering tell(t(1)) ; ask(t(1))) and by noting
that O(tell(t(1)) ; ask(t(1))) = {({t(1)}, δ+)}.
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We now prove that LV B(ask,nask,tell) and LMR(nask,tell) are not compara-
ble with each other.

Proposition 7. LV B(ask,nask,tell) � LMR(nask,tell)

Proof. (i) We have that LV B(ask,nask,tell) �� LMR(nask,tell). Otherwise, by
embedding by transitivity, LV B(ask,tell) � LMR(nask,tell), which has been
proved impossible in Proposition 6.

(ii) The proof of LMR(nask,tell) �� LV B(ask,nask,tell) is an extension of
the proof used in Proposition 4 with normal forms extended with ask primi-
tives. It is established by considering agent AB = ({−a}, {+b}) and agent BA
= ({−b}, {+a}), with O(({−a}, {+b}) || ({−b}, {+a})) = {(∅, δ−)}.

Let us now prove that LMR(ask,tell) is strictly less expressive than
LV B(ask,nask,tell).

Proposition 8. LMR(ask,tell) < LV B(ask,nask,tell)

Proof. (i) On the one hand, thanks to Proposition 3, LMR(ask,tell) =
LV B(ask,tell) � LV B(ask,nask,tell) and thus LMR(ask,tell) �
LV B(ask,nask,tell).

(ii) On the other hand, LV B(ask,nask,tell) �� LMR(ask,tell), since otherwise,
LV B(nask,tell) � LV B(ask,nask,tell) � LMR(ask,tell), which has been proved
impossible in Proposition 5.

We now prove that LV B(ask,nask,tell) is stricly less expressive than
LMR(ask,nask,tell).

Proposition 9. LV B(ask,nask,tell) < LMR(ask,nask,tell)

Proof. (i) On the one hand, the fact that LV B(ask,nask,tell) �
LMR(ask,nask,tell) is immediate by Proposition 1. (ii) On the other
hand, LMR(ask,nask,tell) �� LV B(ask,nask,tell). Otherwise, by embedding
by transitivity, from LMR(nask,tell) � LMR(ask,nask,tell), one would get
LMR(nask,tell) � LV B(ask,nask,tell), which has been proved impossible in
Proposition 7.

LV B(get,tell) is not comparable with LMR(ask,tell) nor with
LMR(ask,nask,tell).

Proposition 10. LV B(get,tell) � LMR(ask,tell)

Proof. See [15].

Proposition 11. LV B(get,tell) � LMR(ask,nask,tell)

Proof. On the one hand, for LV B(get,tell) �� LMR(ask,nask,tell), we refer the
reader to [15]. On the other hand, LMR(ask,nask,tell) �� LV B(get,tell). Other-
wise, by transitivity of the embedding, one would have that LMR(ask,tell) �
LMR(ask,nask,tell) � LV B(get,tell) which has been proved impossible in Propo-
sition 10.
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LMR(ask,tell) can be proved to be not comparable with LV B(nask,get,tell)
nor is LMR(ask,tell).

Proposition 12. LMR(ask,tell) � LV B(nask,get,tell) � LMR(nask,tell)

Proof. See [15].

We are now in a position to establish that LV B(get,tell) is not comparable
with LMR(nask,tell).

Proposition 13. LV B(get,tell) � LMR(nask,tell)

Proof. On the one hand, LV B(get,tell) �� LMR(nask,tell). Otherwise, as
LV B(ask,tell) < LV B(get,tell), one would have LV B(ask,tell) � LV B(get,tell) �
LMR(nask,tell) which has been proved impossible in Proposition 6. On the
other hand, LMR(nask,tell) �� LV B(get,tell). Otherwise, we would have
LMR(nask,tell) � LV B(get,tell) � LV B(nask,get,tell) which has been proved
impossible in Proposition 12.

LV B(nask,get,tell) is not comparable with LMR(ask,nask,tell).

Proposition 14. LMR(ask,nask,tell) � LV B(nask,get,tell)

Proof. (i) On the one hand LMR(ask,nask,tell) �� LV B(nask,get,tell). Oth-
erwise, LMR(ask,tell) � LV B(nask,get,tell) which contradicts Proposition
12. (ii) On the other hand, LV B(nask,get,tell) �� LMR(ask,nask,tell). By
contradiction, consider tell(t(1)) ; get(t(1)). O((tell(t(1)) ; get(t(1))) =
{(∅, δ+)}. Hence any computation of C(tell(t(1))) ; C(get(t(1))) is suc-
cessful. Such a computation is composed of a computation for C(tell(t(1)))
followed by a computation for C(get(t(1))). As C(get(t(1))) is composed
of ask, nask, tell primitives which do not destroy elements on the store,
the latter computation can be repeated step by step which yields success-
ful computation for C(tell(t(1))) ; (C(get(t(1))) || C(get(t(1)))). However,
O(tell(t(1)) ; (get(t(1)) || get(t(1))) = {(∅, δ−)}.

C. Retrieving Tokens from the Store

Proposition 15. LV B(get,tell) < LMR(get,tell)

Proof. See [15].

We can now prove that LMR(get,tell) is not comparable respectively with
LV B(nask,tell), LV B(nask,get,tell) and LV B(ask,nask,tell).

Proposition 16. LMR(get,tell) � LV B(nask,tell)

Proof. On the one hand, LMR(get,tell) �� LV B(nask,tell). Otherwise,
LMR(ask,tell) � LMR(nask,tell) which has been proved impossible in
[11]. On the other hand, LV B(nask,tell) �� LMR(get,tell) is established
by contradiction, by considering tell(t(1)) ; nask(t(1)). Indeed, one has
O(tell(t(1)) ; nask(t(1))) = {({t(1)}, δ−)} whereas it is possible to establish
that C(tell(t(1))) ; C(nask(t(1))) has a successful computation.
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Proposition 17. LMR(get,tell) � LV B(nask,get,tell)

Proof. On the one hand, LMR(get,tell) �� LV B(nask,get,tell). Other-
wise, as LMR(ask,tell) � LMR(get,tell), we then have LMR(ask,tell) �
LV B(nask,get,tell) which has been proved impossible in Proposition 12. On
the other hand, LV B(nask,get,tell) �� LMR(get,tell). Otherwise, we would have
LV B(nask,tell) � LMR(get,tell) which has been proved impossible in Proposi-
tion 16.

Proposition 18. LMR(get,tell) � LV B(ask,nask,tell)

Proof. On the one hand, LMR(get,tell) �� LV B(ask,nask,tell). Other-
wise, one has LMR(ask,tell) � LMR(get,tell) � LV B(ask,nask,tell)
which has been proved impossible in Proposition 8. On the other hand,
LV B(ask,nask,tell) �� LMR(get,tell). Otherwise, one would have LMR(ask,tell) �
LMR(ask,nask,tell) � LV B(get,tell) which has been proved impossible in Propo-
sition 10.

D. Checking for Presence and/or Absence When Adding and/or
Retrieving Tokens

We finally prove that LV B(ask,nask,get,tell) is strictly less expressive than
LMR(ask,nask,get,tell).

Proposition 19. LV B(ask,nask,get,tell) < LMR(ask,nask,get,tell)

Proof. On the one hand, LV B(ask,nask,get,tell) � LMR(ask,nask,get,tell) is
immediate by Proposition 1. On the other hand, LMR(ask,nask,get,tell) ��
LV B(ask,nask,get,tell) is established by contradiction. Indeed, assuming that
LMR(ask,nask,get,tell) � LV B(ask,nask,get,tell), as LV B(ask,nask,get,tell) =
LV B(nask,get,tell), one would have LMR(nask, tell) � LMR(ask,nask,get,tell) �
LV B(ask,nask,get,tell) � LV B(nask,get,tell) which has been proved impossible
in Proposition 12.

E. Summary

Figure 12 provides a summary of the expressiveness results developed in this
paper in a three dimensional perspective. It is worth observing that the Vec-
torized Dense BachT language obeys the same hierarchy as the BachT, Dense
BachT and MRT languages. This is due to the nature of the tell, ask, nask and
get primitives, which is preserved by the extension provided to the tokens. It
is also worth noting that the sublanguage reduced to the tell primitive has the
same power in all the languages. The other sublanguages obey the expressiveness
studies already developed for BachT and Dense BachT. Finally, the Vectorized
Dense Bach sublanguages appear to be strictly more expressive than their Dense
BachT counterparts but are strictly less expressive than their MRT counterparts.
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Fig. 12. Three-dimensional representation of the expressiveness relations between the
different languages.

The notable exception is provided by the LV B(ask,tell) sublanguage, which is
as expressive as the LMR(ask,tell) sublanguage.

Note that, in the picture, the dash arrows are drawn to suggest the three-
dimensional perspective but have the same meaning as the plain arrows.
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5 From Tokens to Tuples

As announced in the introduction, the paper has so far concentrated on token
based versions of the languages. A natural question to ask is whether the expres-
siveness study performed in Sect. 4 can be extended to tuples and thereby can
embrace Linda-like languages in their full version.

To that end, two issues need to be taken into account. On the one hand,
structured pieces of information need to be tackled instead of flat tokens. Using
our notations, this would lead to consider tuples of the form 〈t1, · · · , tn〉 instead
of t as arguments of tell, ask, get and nask primitives. On the other hand, it
is desirable to introduce variables as arguments of the tuples in ask, get and
nask primitives to retrieve values from the tuples stored on the tuple space1.
The resulting tuples are classically called templates or anti-tuples.

It turns out that tackling these issues can be reduced to using flat tokens by
assuming a very reasonable hypothesis: variables have to range over enumerable
sets of values. If this is the case, then, as exemplified in process algebras like
mCRL2 [19], any primitive containing a tuple with variables can be rewritten as
a choice of that primitive with the variables instantiated to values. For instance,
ask(〈1,X : Int〉) can be rewritten as

∑
i∈Int ask(〈1, i〉). As a result, assuming

a general choice over enumerable sets in the language, we may reduce the lan-
guage to primitives involving tuples without variables. As a further step, tuples
having a finite number of arguments and the choices being on enumerable sets,
these tuples range over enumerable unions of enumerable sets, namely over an
enumerable set. We may thus associate any of these tuples to a token of Stoken
and vice-versa. By doing so, we are back to the token-based languages studied
before, provided that an interpretation is given to dense tuples. Two are actu-
ally possible. Consider for instance a store containing twice t(1), three times t(2)
and one time t(3). Then, in a first interpretation, the request ask(t(X : Int)(3))
can be satisfied if one may instantiate X to an integer, say i, such that the
induced instance t(i) appears at least three times on the store. In our example,
this would be possible by giving to X the value 2. Under this interpretation,
the translation just provided from tuple-based languages to token-based lan-
guages applies directly, which thus allows to lift the results obtained in Sect. 4 to
tuple-based languages. In another interpretation, one may argue that one should
find three occurrences of tuples which matches t(X) by possibly instantiating
X to different values. Under this interpretation, the request ask(t(X : Int)(3))
not only succeeds but also ask(t(X : Int)(5)) since t(1) and t(2) both match
t(X). However, this interpretation is exactly what is captured by DBD-BachT
language. In our example, ask(t(X : Int)(5)) could indeed be reformulated as
ask([t(1), t(2), t(3), · · · ](5)). Hence, under that second interpretation too, the
results obtained in Sect. 4 can be lifted to tuple-based languages.

1 In Linda, variables are also allowed in tell primitives to denote unknown attributes.
However, as argued in [12], we believe that it is better to use ψ-terms in this case,
which allows to keep the idea of structured information without the need for writing
unknown arguments.
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6 Implementation Issues

The expressiveness study has shown that BachT is strictly less expressive than
Dense BachT, which itself is strictly less expressive than VD-BachT, which is
finally less expressive than MRT. One may thus wonder about the interest of
all the languages, except the most expressive one. The aim of this section is
to convince the reader that implementing the more expressive languages comes
with a higher cost and thus that one better selects the language just expressive
enough for its coding purposes.

To start with, let us first detail how the token space (or more generally the
tuple space2) may be implemented for Bach. Since our first implementation (see
[4]), processes have been implemented as threads and the tuple space has been
implemented as a token-indexed list. Per list element (token), we keep track of
the number of identical tokens (token counter), and of the input primitives that
are suspended on this token. The token list is stored in shared memory. The
list is directly updated by the communication primitives, as one may guess: the
tell primitive adding tokens and the get primitive consuming them. In order to
guarantee exclusive access, the individual list elements are protected by a lock,
which means that operations on different tokens can execute in parallel. This
has turned out to generate interesting speed-ups over the naive implementa-
tion which would lock the entire tuple space for each primitive execution. More
precisely, the following algorithms are employed for the primitives.

Performing an nask primitive first checks whether the associated token is
known to the tuple space (i.e. has already an element in the list of tokens). If
not, the tuple space is locked, and a list element for the token is created. If the
token counter equals zero, the nask-primitive succeeds. If not, it suspends, and
is added to the list of suspended primitives, until the token counter reaches zero.

Asking a token t first checks whether at least one occurrence of t is present
in the tuple space. If so, the primitive succeeds. Otherwise, the ask primitive is
put in the associated list of waiting processes, until the token counter is positive.

Getting a token t proceeds similarly but decrements the token counter for t.
If the token counter reaches zero, we check whether there are suspended nask(t)
primitives. If so, the process associated with the nask primitive is resumed and
is removed from the list of waiting primitives.

Finally, telling a token t proceeds dually. The list of waiting processes is
first inspected to discover an ask or get primitive waiting for t. In case an
ask primitive is discovered, it is resumed and the search continues. In case a
get primitive is discovered the token t is consumed by that primitive and the
corresponding process is resumed. If no waiting get primitives are encountered,
then the token counter for t is incremented.

2 In Bach, following [12], tuples are actually represented in the form of a functor name
followed by a series of pairs, each consisting of an attribute associated with a value.
Without entering into details, the functor names play the role of tokens and, in that
manner, the implementation sketched in this section can be lifted from the tokens
considered in this paper to more general tuples.
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As the careful reader will have noticed, lifting the Bach implementation to
Dense Bach is quite easy. One basically just needs to count the number of occur-
rences of the tokens for the ask and get primitives and to upgrade the number
of tokens for the tell primitives. The case of general tuples is slightly more com-
plicated in that pattern matching needs to be done in addition but only on the
elements of the list associated with the functor taken as a token. However, the
key property remains: the tuple space need not be blocked globally, locks are
only put on the list associated with the considered token.

Moving to VD-Bach is more subtle since several locks need to be taken and
hence the above key property cannot be met. Consider for instance a multi-
get primitive which needs to consume tokens a, b and c. To evaluate it, one
needs in principle to lock the lists associated with a, b and c. However, as other
primitives may compete, for instance to get b, c and d, one actually needs to lock
at once the three lists associated with a, b and c in order to prevent the system
from deadlocks. In practice, an easy way to do so is to lock the whole tuple
space. However, by using abstract interpretation techniques on a static code or
by using declarations on the vectors employed and by employing the activator
vectors of [21], one may slightly relax the global lock by adding locks for super
sets of vectors, in the example above to a, b, c and d. This still allows for parallel
computations, although to a lesser extend than for Dense Bach.

It is worth noting that the more the structure involves tokens the more
constraining are the locks used. In particular, a similar technique can be used to
implement MRT but, as one may expect, with a greater computation overhead.

As a conclusion, the more expressive the language is the more expensive is
its implementation. Hence, there is obviously a trade-off to be made between the
programming ease offered by the language expressiveness and the computation
costs needed by its implementation.

7 Conclusion

This paper is written in the continuity of our previous research on the expressive-
ness of Linda-like languages. It has presented extensions of our Bach language
aiming at handling multiplicities. In particular, as a novel piece of work, we have
presented an extension of our Dense BachT language, that has promoted the
interest of vectors of dense tokens. The new language, called Vectorized Dense
BachT proposes to atomically perform multiple operations on dense tokens by
introducing lists of dense tokens in the four classical primitives of our BachT
language.

Our work thus builds upon our previous work [10,11,16,20,22,24–26]. We
have essentially followed the same lines and in particular have used De Boer
and Palamidessi’s notion of modular embedding to compare the families of sub-
languages of Dense BachT and Vectorized Dense BachT. Accordingly, we have
established a gain of expressivity, namely that Vectorized Dense BachT is strictly
more expressive than Dense BachT and, consequently, in view of the results of
[20], strictly more expressive than the BachT and Linda languages. However the
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structure of the hierarchies of the sublanguages of a family is kept, which shows
that the very nature of the tell, ask, get and nask primitives is preserved. We
have also compared Vectorized Dense BachT with a multiset rewriting language
and showed that it is strictly less expressive. However, as shown in the paper, it
is expressive enough to code interesting applications as well as Dense Bach with
Distributed Density, a language we introduced in [16]. Moreover, the fact that
Vectorized Dense BachT only provides atomic tell, ask, nask and get allows for
more efficient implementations than MRT.

Our work has similarities but also differences with several work on the expres-
siveness of Linda-like languages. Compared to [33,34], it is worth observing that
a different comparison criteria is used to compare the expressiveness of lan-
guages. Indeed, in these pieces of work, the comparison is performed on (i) the
compositionality of the encoding with respect to parallel composition, (ii) the
preservation of divergence and deadlock, and (iii) a symmetry condition. More-
over, we have taken a more liberal view with respect to the preservation of
termination marks in requiring these preservations on the store resulting from
the execution from the empty store of the coded versions of the considered agents
and not on the same store. In particular, these ending stores are not required to
be of the form σ ∪σ (where ∪ denotes multi-set union) if this is so for the stores
resulting from the agents themselves.

In [3], nine variants of the LB(ask, nask, get, tell) language are studied. They
are obtained by varying both the nature of the shared data space and its struc-
ture. Rephrased in the setting of [17], this amounts to considering different oper-
ational semantics. In contrast, in our work we fix an operational semantics and
compare different languages on the basis of this semantics. In [14], a process
algebraic treatment of a family of Linda-like concurrent languages is presented.
Again, different semantics are considered whereas we have sticked to one seman-
tics and have compared languages on this basis.

In [13], a study of the absolute expressive power of different variants of Linda-
like languages has been made, whereas we study the relative expressive power of
different variants of such languages (using modular embedding as a yard-stick
and the ordered interpretation of tell).

It is worth observing that [3,13,14,33,34] do not deal with a notion of den-
sity attached to tuples. In contrast, [5,6] decorate tuples with an extra field in
order to investigate how probabilities and priorities can be introduced in the
Linda coordination model. Different expressiveness results are established in [5]
but on an absolute level with respect to Turing expressiveness and the possi-
bility to encode the Leader Election Problem. Our work contrasts in several
aspects. First, we have established relative expressiveness results by comparing
the sublanguages of two families. Moreover, some of these sublanguages incor-
porate the nask primitives, which, strictly increases the expressiveness. Finally,
the introduction of density resembles but is not identical to the association of
weights to tuples. Indeed, in contrast to [5,6] we do not modify the tuples on
the store and do not modify the matching function so as to retrieve the tuple
with the highest weight. In contrast, we modify the tuple primitives so as to
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be able to atomically put several occurrences of a tuple on the store and check
for the presence or absence of a number of occurrences. As can be appreciated
by the reader through the comparison of BachT, Dense BachT and Vectorized
Dense BachT, this facility of handling atomically several occurrences produces
a real increase of expressiveness. One may however naturally think of encoding
the number of occurrences of a tuple as an additional weight-like parameter. It
is nevertheless not clear how our primitives tackling at once several occurrences
can be rephrased in Linda-like primitives and how the induced encoding would
still fulfills the requirements of modularity. This will be the subject for future
research.

In [32], Viroli and Casadei propose a stochastic extension of the Linda frame-
work, with a notion of tuple concentration, similar to the weight of [5,6] and our
notion of density. The syntax of this tuple space is modeled by means of a cal-
culus, with an operational semantics given as an hybrid CTMC/DTMC model.
This operational semantics describes the behavior of tell, ask and get like prim-
itives but does not consider a nask like primitive. Moreover, no expressiveness
results are established and there is no counterpart for non-determinism arising
from the distribution of density on tokens.

These three last pieces of work tackle probabilistic extensions of Linda-like
languages. As a further and natural step in our research, we aim at studying
how our notions of multiplicity can be the basis of such probabilistic extensions.
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Abstract. We review some results regarding specification, program-
ming and verification of different classes of distributed systems which
stemmed from the research of the Concurrency and Mobility Group at
University of Firenze. More specifically, we review distinguishing fea-
tures of network-aware programming, service-oriented computing, auto-
nomic computing, and collective adaptive systems programming. We
then present an overview of four different languages, namely Klaim,
Cows, Scel and AbC. For each language, we discuss design choices,
present syntax and informal semantics, show some illustrative examples,
and describe programming environments and verification techniques.

1 Introduction

Since the mid-90s, we have witnessed an evolution of distributed comput-
ing towards increasingly complex systems formed by several software compo-
nents featuring asynchronous interactions, and operating in open-ended and
non-deterministic environments. Such transformation, initially induced by the
spreading of internetworking technologies, led to a paradigm shift making soft-
ware components aware of the underlying network infrastructure. Such aware-
ness, on the one hand, constrained the remote access to distributed resources and,
on the other hand, enabled computation mobility, to support different kinds of
optimisations.

On top of these networked systems, software components have been then
deployed to provide services accessible by end-users and other system com-
ponents. This fostered the development of sophisticated applications built by
reusing and composing simpler elements. Such service-based compositional app-
roach required to overcome the interaction challenges posed by the heterogeneity
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of the involved components; interoperability was then achieved through the def-
inition of standard protocols and suitable run-time support for programming
languages.

Later on, the need arose of reducing the maintenance cost of these systems,
whose size was becoming bigger and bigger, and of extending their applicability
to interact with and control the physical world, possibly in scenarios where
human intervention was difficult or even impossible. It was then advocated to
rely on autonomic components, which are capable of continuously monitoring
their internal status and the working environment, and to adapt their behaviour
accordingly.

More recently, a growing interest emerged in a new class of computational sys-
tems consisting of a large number of interacting components featuring complex
behaviour that are usually distributed, heterogeneous, decentralised and interde-
pendent, and operate in dynamic and possibly unpredictable environments. The
components form collectives by combining their behaviours to achieve specific
goals, or to contribute to an emerging behaviour of the global system. Collectives
abstract from the identity of the single components to guarantee scalability.

The evolution of distributed computing described above corresponds to
the emergence of classes of systems that characterise specific programming
domains. Correspondingly, dedicated programming paradigms have been pro-
posed, namely network-aware programming, service-oriented computing, auto-
nomic computing, and collective adaptive systems programming. Besides dealing
with the distinctive aspects of each of such domains, the main challenge in engi-
neering these classes of distributed systems is to coordinate the overall behaviour
resulting from the involved components while ensuring trustworthiness of the
whole system. To meet this goal, many researchers have adopted language-based
approaches that combine the use of formal methods techniques with model-
driven software engineering. The key ingredients of the resulting methodology
can be summarised as follows:

1. a specification language equipped with a formal semantics, which associates
mathematical models to each term of the language to precisely establish the
expected behaviour of systems;

2. a set of techniques and tools, built on top of the models, to express and verify
properties of interest for the considered class of systems;

3. a programming framework together with the associated runtime environment
to actually execute the specified systems.

When specialising this methodology, a major challenge for (specification or
programming) language designers is to devise appropriate abstractions and lin-
guistic primitives to deal with the specificities of the domain under investigation.
Indeed, including the distinctive aspects of the domain as first-class elements of
the language makes systems design more intuitive and concise, and their analysis
more effective. In fact, when the outcome of a verification activity is expressed
by considering the high level features of a system, and not its low-level repre-
sentation, system designers can be provided with more direct feedbacks.
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This paper reviews some of the efforts, to which the authors have contributed,
in applying the outlined methodology to the classes of distributed systems men-
tioned above by taking as starting point process algebras and some of the ver-
ification techniques and tools developed for them. The approach was initially
applied to network-aware programming and the main result was the definition
of the Klaim language [23] (Sect. 2). Afterwards, the approach was applied to
service-oriented computing resulting in the design of Cows [57] (Sect. 3), to
autonomic computing obtaining as a result Scel [27] (Sect. 4), and to collective
adaptive systems programming to obtain AbC [2] (Sect. 5). For each of these
domain-specific languages, we discuss design choices, present syntax and infor-
mal semantics, show some simple but illustrative example specifications, and
describe programming environments and verification techniques. We want to
stress that all languages have been equipped with a formal operational seman-
tics, based on labelled transition systems, that is omitted here for the sake of
space; the interested reader is referred to the relevant papers in the bibliogra-
phy. Moreover, for the sake of readability and understandability, the examples
are presented at the level of the specification language; of course they can be
refined in order to be implemented by means of the proposed programming
environments, but currently they are not. The paper ends with a summary of
distinguishing features of the presented languages and with a few considerations
about the lessons learnt (Sect. 6).

2 KLAIM: A Kernel Language for Agents Interaction
and Mobility

Network awareness indicates the ability of the software components of a dis-
tributed application to manage directly a sufficient amount of knowledge about
the network environment where they are currently deployed. This capability
allows components to have a highly dynamic behaviour and manage unpre-
dictable changes of the network environment over time. This is of great impor-
tance when programming mobile components capable of disconnecting from one
node of the underlying infrastructure and of reconnecting to a different node.
Programmers are usually supported with primitive constructs that enable com-
ponents to communicate, distribute and retrieve data to and from the nodes of
the underlying infrastructure.

Klaim (Kernel Language for Agents Interaction and Mobility, [23]) has been
specifically devised to design distributed applications consisting of several com-
ponents (both stationary and mobile) deployed over the nodes of a distributed
infrastructure. The Klaim programming model relies on a unique interface
(i.e. set of operations) supporting component communications and data man-
agement.

Localities are the basic building blocks of Klaim for guaranteeing network
awareness. They are symbolic addresses (i.e. network references) of nodes and
are referred by means of identifiers. Localities can be exchanged among the com-
putational components and are subjected to sophisticated scoping rules. They
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provide the naming mechanism to identify network resources and to represent
the notion of administrative domain: computations at a given locality are under
the control of a specific authority. This way, localities naturally support pro-
gramming spatially distributed applications.

Klaim builds on Linda’s notion of generative communication through a single
shared tuple space [36] and generalizes it to multiple distributed tuple spaces.
A tuple space is a multiset of tuples. Tuples are anonymous sequences of data
items and are retrieved from tuple spaces by means of an associative selection.
Interprocess communication occurs through asynchronous exchange of tuples
via tuple spaces: there is no need for producers (i.e. senders) and consumers
(i.e. receivers) of a tuple to synchronise.

The obtained communication model has a number of properties that make
it appealing for distributed computing in general (see, e.g., [14,19,31,37]). It
supports time uncoupling (data life time is independent of the producer process
life time), destination uncoupling (the producer of a datum does not need to
know the future use or the final destination of that datum) and space uncoupling
(programmers need to know a single interface only to operate over the tuple
spaces, regardless of the network node where the action will take place).

2.1 Syntax

The syntax of Klaim is presented in Table 1. We assume existence of two disjoint
sets: the set of localities, ranged over by l, and the set of locality variables, ranged
over by u. Their union gives the set of names, ranged over by �. We also assume
three other disjoint sets: a set of value variables, ranged over by x, a set of process
variables, ranged over by X, and a set of process identifiers, ranged over by A.

Table 1. Klaim syntax

NETS:
N ::= l ::ρ P (computational node)

| l :: 〈et〉 (located tuple)
| N1 ‖ N2 (net composition)

PROCESSES:
P ::= nil (null process)

| a.P (action prefixing)
| P1 | P2 (parallel composition)
| X (process variable)
| A (process invocation)

ACTIONS:
a ::= out(t)@� (output)

| in(T )@� (input)
| read(T )@� (read)
| eval(P )@� (migration)
| newloc(u) (creation)

TUPLES:
t ::= f | f, t

TUPLE FIELDS:
f ::= e | � | u | P

EVALUATED TUPLES:
et ::= ef | ef, et

EVALUATED TUPLE FIELDS:
ef ::= V | l | P

TEMPLATES:
T ::= F | F, T

TEMPLATE FIELDS:
F ::= f | !x | !u | !X

EXPRESSIONS:
e ::= V | x | . . .



114 R. De Nicola et al.

Nets are finite collections of nodes where processes and data can be placed.
A computational node takes the form l::ρP , where ρ is an allocation environment
and P is a process. Since processes may refer to locality variables, the allocation
environment acts as a name solver binding locality variables to specific localities.

Processes are the active computational units of Klaim. Their syntax is
standard and specifies the Actions to be executed. Recursive behaviours are
modelled via process definitions; it is assumed that each identifier A has a single
defining equation A � P .

The tuple space of a node consists of all the evaluated tuples located
there. Tuples are sequences of actual fields, i.e. expressions, localities or locality
variables, or processes. The precise syntax of expressions is deliberately not
specified; it is just assumed that they contain, at least, basic values, ranged over
by V , and variables, ranged over by x. Templates are sequences of actual and
formal fields, and are used as patterns to select tuples in a tuple space. Formal
fields are identified by the !-tag (e.g. !x) and are used to bind variables to values.

2.2 Informal Semantics

Nets aggregate nodes through the composition operator ‖ , which is both
commutative and associative. Processes are concurrently executed in an inter-
leaving fashion, either at the same computational node or at different nodes.
They can perform operations borrowed from a unique interface which provides
two categories of actions. The first one consists of the programming abstractions
supporting data management. Three primitive behaviours are provided: adding
(out), withdrawing (in) and reading (read) a tuple to/from a tuple space. Input
and output actions are mutators: their execution modifies the tuple space. The
read action is an observer : it checks the availability and takes note of the content
of a certain tuple without removing it from the tuple space. The second category
of actions refers to network awareness: the migration action (eval) activates a
new process over a network node, while the creation action (newloc) generates
a new network node. The latter action is the only one not indexed by a locality
because it acts locally; all the other actions are tagged with the (possibly remote)
locality where they will take place. Note that, in principle, each network node
can provide its own implementation of the action interface. This feature can be
suitably exploited to sustain different policies for data handling as done, e.g., in
MetaKlaim [34].

Only evaluated tuples can be added to a tuple space and templates must
be evaluated before they can be used for retrieving tuples. Tuple and template
evaluation amounts to computing the values of their expressions. Localities and
formal fields are left unchanged by such evaluation.

A pattern-matching mechanism is used for associatively selecting (evaluated)
tuples from tuple spaces according to (evaluated) templates. Intuitively, an eval-
uated template matches against an evaluated tuple if both have the same number
of fields and corresponding fields do match; two values (localities) match only
if they are identical, while formal fields match any value of the same type. A
successful matching returns a substitution associating the variables contained in
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the formal fields of the template with the values contained in the corresponding
actual fields of the accessed tuple.

Process variables support higher-order communication, namely the capabil-
ity to exchange (the code of) a process and possibly execute it. This is realised
by first adding a tuple containing the process to a tuple space and then retriev-
ing/withdrawing this tuple while binding the process to a process variable.

Finally, Klaim offers two forms of process mobility. One is based on static
scoping : by exploiting higher-order communication, a process moves along the
nodes of a net with a fixed binding of resources determined by the allocation
environments of the nodes from where, from time to time, it is going to move.
The other form of mobility relies on dynamic scoping : when migrating, a process
breaks the local links to resources and inherits those of the destination node.

2.3 Example: A Street Light Controller

We outline here the main features of the design of a (simplified) Street Light Con-
troller working on a one-way street, inside a restricted traffic zone. It consists of
several integrated components. Smart lamp post components are cyber-physical
entities (battery powered). They can sense their surrounding environment and
can communicate with their neighbours to share information. For instance if (a
sensor of) the lamp post perceives a pedestrian and there is not enough light in
the street it turns its light on and communicates the presence of the pedestrian
to the lamp posts nearby. A further component of the street light controller
uses the information provided by the electronic access point to the street. When
a car crosses the checkpoint, a message is sent to the supervisor of the street
accesses, that in turn notifies the presence of the car to a further component of
the system: the supervisor of the street. A notice is also sent to the node that
hosts the cloud service of the police department. This service checks whether
the car is enabled to enter that restricted zone, through automatic number plate
recognition. The street supervisor, as a result of this coordinated behaviour, is
in charge of sending the authorisation message to the lamp post closest to the
checkpoint that starts a forward chain till the end of the street, thus completing
the overall cooperative behaviour. For simplicity, here we assume that each sen-
sor has a unique name and the sensed values are modelled as tuples containing
the name of the sensor and the detected value. Since every cyber-physical node
has a fixed number of sensors, the tuple space of the node is designated to store
the values read by sensors.

The process running at checkpoint node is the driver of the visual sensor Scp,
defined below. The driver takes a picture of the car detected in the street and
stores it in the tuple space:

Scp � in(probe, !v)@self.out(picture, v)@self.Scp

where probe is the unique identifier of the sensor and the tuple tagged by picture
identifies the collected picture of the car. Then, the picture is enhanced (by using
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the function noiseRed for reducing noise) by the process Pcp and sent to the
supervisor:

Pcp � in(picture, !z)@self.out(enPicture,noiseRed(z))@controller .Pcp

The checkpoint node Ncp is defined as lcp::ρcp
(Pcp | Scp | Bcp), where ρcp is

the allocation environment binding the locality variable controller to the locality
la where the access controller node is deployed, and Bcp abstracts other compo-
nents we are not interested in, among which the tuple space at lcp. The access
controller node Na receives the picture and communicates the presence of the
car to the lamp posts supervisor and to the police department. The behaviour
of the driver process running at node Na is as follows

P � in(enPicture, !x)@self.out(car , x)@supervisor .out(car , x)@pdept .P

and the node is defined as la::ρa
(P | Ba), where ρa binds the locality variable

supervisor and pdept to the localities where the street supervisor and the police
department are deployed. The process Ba abstracts other components we are
not interested in, among which the tuple space at la. The supervisor node Ns

contains the process Ps that receives the picture from Na and sends a message
to the lamp node closest to the checkpoint; its behaviour is straightforward.

In our smart street light control system there is a node Np for each lamp post.
Each lamp post is equipped with four sensors to sense (1) the environment light,
(2) the solar light, (3) the battery level and (4) the presence of a pedestrian.
These sensors are the interface towards the cyber-physical world and their asyn-
chronous behaviour simply inserts the acquired information in the tuple space
of the node. The drivers of sensors share the same structure; hence we only show
that for the battery level:

Sbattery � in(probeBatteryLevel , !v)@self.out(batteryLevel , v)@self.Sbattery

The control process reads the current values from the sensors and stores the
resulting values in a local tuple consisting of four terms, i.e. environment light,
solar light, battery level and presence of pedestrian, by means of the action
out(el, sl, bl, p)@self. Action read(!el, !sl, !bl, !p)@self is used to access such infor-
mation in order to detect the actual state of affair: (i) a pedestrian is in the street
(p = true), (ii) the intensity of environment and solar lights are greater than, or
equal to, the given thresholds, el ≥ th1 and sl ≥ th2, and (iii) there is enough
battery (at least bl ≥ th3). The presence of the pedestrian is communicated to
the lamp posts nearby, whose locality is obtained from the allocation environ-
ment (out(pedestrian, p)@next). In case the battery level is insufficient, an error
message is sent to the supervisor node (out(failure)@supervisor).

The overall intelligent controller of the street lights is then described as the
parallel composition of the checkpoint node Ncp, the supervisor nodes Na and
Ns, the nodes of lamp posts Np, with p ∈ [1, k], and the police department
node Npd:

Ncp ‖ Na ‖ Ns ‖ N1 ‖ · · · ‖ Nk ‖ Npd
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2.4 Programming Environment

X-Klaim (eXtended Klaim, [11]) is an experimental programming language
that extends Klaim with a high level syntax for processes. It provides variable
declarations, enriched operations, assignments, conditionals, sequential and iter-
ative process composition. The implementation of X-Klaim is based on Klava1

(Klaim in Java, [12]), a Java package that provides the run-time system for X-
Klaim operations, and on a compiler, which translates X-Klaim programs into
Java programs that use Klava. X-Klaim can be used to write the higher layer
of distributed applications while Klava can be seen both as a middleware for
X-Klaim programs and as a Java framework for programming according to the
Klaim paradigm. By using Klava directly, the programmer is able to exchange,
through tuples, any kind of Java object, and to implement a finer grained type
of mobility.

2.5 Verification Techniques

Many verification techniques have been defined for Klaim and variants thereof.
Due to lack of space, here we only mention a few of them. In [26] a temporal logics
is proposed for specifying and verifying dynamic properties of mobile processes
specified in Klaim. The inspiration for the proposal was the Hennessy-Milner
Logics, but it needed significant adaptations due to the richer operating con-
text of components. The resulting logic provides tools for establishing not only
deadlock freedom, liveness and correctness with respect to given specifications
(which are crucial properties for process calculi and similar formalisms), but also
properties concerned with resource allocation, resource access and information
disclosure (which are important issues for processes involving different actors
and authorities).

An important topic deeply investigated for Klaim is the use of type systems
for security [24,25,40], devoted to control accesses to tuple spaces and mobility of
processes. In these type systems, traditional types are generalised to behavioural
types. These are abstractions of process behaviours that provide information
about processes capabilities, namely the operations that processes can execute
at a specific locality (downloading/consuming a tuple, producing a tuple, acti-
vating a process, and creating a new node). When using behavioural types, each
Klaim node is equipped with a security policy, determined by a net coordinator,
that specifies the execution privileges; the policy of a node describes the actions
processes there located can execute. By exploiting static and dynamic checks,
type checking guarantees that only processes whose intentions match the rights
granted to them by coordinators are allowed to proceed.

An alternative approach to control accesses to tuple spaces and mobility of
processes is introduced in [28]. It is based on Flow Logic and permits stati-
cally checking absence of violations. Starting from an existing type system for
Klaim with some dynamic checks, the insights from the Flow Logic approach are

1 X-Klaim and Klava are available on line at http://music.dsi.unifi.it.

http://music.dsi.unifi.it
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exploited to construct a type system for statically guaranteeing secure access to
tuple spaces and safe process migration for a smooth extension of Klaim. This
is the first completely static type system for controlling accesses devised for a
tuple space-based coordination language.

Finally, an expressive language extension, called MetaKlaim, and a power-
ful type system are described in [34]. MetaKlaim is a higher order distributed
process calculus equipped with staging mechanisms. It integrates MetaML (an
extension of SML for multi-stage programming) and Klaim, to permit inter-
leaving of meta-programming activities (such as assembly and linking of code
fragments), dynamic checking of security policies at administrative boundaries,
and traditional computational activities on a wide area network (such as remote
communication and code mobility). MetaKlaim exploits a powerful type system
(including polymorphic types á la system F) to deal with highly parameterised
mobile components and to enforce security policies dynamically: types are meta-
data that are extracted from code at run-time and are used to express trustiness
guarantees. The dynamic type checking ensures that the trustiness guarantees
of wide area network applications are maintained also when computations inter-
operate with potentially untrusted components.

3 Cows: Calculus for Orchestration of Web Services

Since the early 2000s, the increasing success of e-business, e-learning,
e-government, and other similar systems, has led the World Wide Web, ini-
tially thought of as a system for human use, to evolve towards an architecture
for Service-Oriented Computing (SOC) supporting automated use. The SOC
paradigm, that finds its origin in object-oriented and component-based soft-
ware development, aims at enabling developers to build networks of distributed,
interoperable and collaborative applications, regardless of the platform where
the applications run and of the programming language used to develop them.
The paradigm is based on the use of independent computational units, called ser-
vices. They are loosely coupled reusable components, that are built with little or
no knowledge about clients and about other services involved in their operating
environment.

One successful instantiation of the general SOC paradigm is given by the
Web Service technology [62], which exploits the pervasiveness of the Internet and
related standards. Traditional software engineering technologies, however, do not
neatly fit with SOC, thus hindering its full realisation in practice. The challenges
come from the necessity of dealing at once with such issues as asynchronous
interactions, concurrent activities, workflow coordination, business transactions,
resource usage, and security, in a setting where demands and guarantees can be
very different for the many involved components.

Cows (Calculus for Orchestration of Web Services, [44,57]) is a process cal-
culus whose design has been influenced by the OASIS standard WS-BPEL [54]
for orchestration of web services. In Cows, services are computational entities
capable of generating multiple instances to concurrently handle different client
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Table 2. Cows syntax

SERVICES:
s ::= u• u′!ε̄ (invoke)

| kill(k) (kill)
| g (receive-guarded choice)
| s | s (parallel composition)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

RECEIVE-GUARDED CHOICE:
g ::= 0 (nil)

| p• o?w̄.s (request processing)
| g + g (choice)

requests. Inter-service communication occurs through communication endpoints
and relies on pattern-matching for logically correlating messages to form an
interaction session by means of their identical contents. Differently from most
process calculi, receive activities in Cows bind neither names nor variables, and
this is crucial for allowing concurrent service instances to share (part of) the
state. The calculus also supports service fault and termination handling by pro-
viding activities to force termination of labelled service instances and to protect
service activities from a forced termination.

3.1 Syntax

The syntax of Cows is presented in Table 2. We use three countable disjoint sets:
the set of values (ranged over by v), the set of ‘write once’ variables (ranged over
by x), and set of killer labels (ranged over by k). The set of values is left unspeci-
fied; however, we assume that it includes the set of partner and operation names
(ranged over by n, p, o) mainly used to represent communication endpoints. We
also use a set of expressions (ranged over by ε), whose exact syntax is delib-
erately omitted; we just assume that expressions contain values and variables,
and do not contain killer labels. As a matter of notation, w ranges over values
and variables, u ranges over names and variables, and e ranges over elements,
i.e. killer labels, names and variables. Notation ·̄ stands for tuples, e.g. x̄ means
〈x1, . . . , xn〉 (with n ≥ 0), where variables in the same tuple are all distinct.

Services are structured activities built from basic activities, i.e. the empty
activity 0, the invoke activity • ! , the receive activity • ? , and the kill
activity kill( ), by means of prefixing . , choice + , parallel composition | ,
protection {| |}, delimitation [ ] and replication ∗ . We write I � s to assign a
name I to the term s.

3.2 Informal Semantics

Invoke and receive are the communication activities. The former permits invok-
ing an operation (i.e., a functionality like a method in object-oriented program-
ming) offered by a service, while the latter permits waiting for an invocation to
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arrive. Besides output and input parameters, both activities indicate an endpoint
through which communication should occur.

An endpoint p • o can be interpreted as a specific implementation of operation
o provided by the service identified by the logic name p. The names composing
an endpoint can be dealt with separately, as in an asynchronous request-response
interaction, where usually the service provider statically knows the name of the
operation for sending the response, but not the partner name of the requesting
service it has to reply to. Partner and operation names can be exchanged in
communication, thus enabling many different interaction patterns among service
instances. However, dynamically received names cannot form the endpoints used
to receive further invocations (as in localised π-calculus [51]). In other words,
endpoints of receive activities are identified statically because the syntax only
allows using names and not variables for them. This design choice reflects the
current (web) service technologies that require endpoints of receive activities be
statically determined.

An invoke p • o!〈ε1, . . . , εn〉 can proceed as soon as all expression arguments
are successfully evaluated. A receive p • o?〈w1, . . . , wn〉.s offers an invocable oper-
ation o along with a given partner name p, thereafter the service continues as s.
An inter-service communication between these two activities takes place when
the tuple of values 〈v1, . . . , vn〉, resulting from the evaluation of the invoke argu-
ment, matches the template 〈w1, . . . , wn〉 argument of the receive. This causes a
substitution of the variables in the receive template (within the scope of variables
declarations) with the corresponding values produced by the invoke.

Communication is asynchronous, as in Klaim. This results from the syntactic
constraints that invoke activities cannot be used as prefixes and choice can only
be guarded by receive activities (as in asynchronous π-calculus [6]). Indeed, in
service-oriented systems, communication is usually asynchronous, in the sense
that (i) there may be an arbitrary delay between the sending and the receiving of
a message, (ii) the order in which messages are received may differ from that in
which they were sent (iii) a sender cannot determine if and when a sent message
will be received.

The empty activity does nothing, while choice permits selecting for execution
one between two alternative receives.

Execution of parallel services is interleaved. However, if more matching
receives are ready to process a given invoke, only one of the receives that generate
a substitution with smallest size (in terms of number of variable-value replace-
ments) is allowed to progress (namely, execution of this receive takes precedence
over that of the others). This mechanism permits to model the precedence of a
service instance over the corresponding service specification when both of them
can process the same request (see [57] for detailed examples), and enables a sort
of blind-date conversation joining strategy [16].

Delimitation is the only binding construct: [e] s binds the element e in the
scope s. According to its first argument, delimitation is used for three different
purposes: (i) to regulate the range of application of substitutions produced by
communication, when the delimited element is a variable; (ii) to generate fresh
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names, when the delimited element is a name; (iii) to confine the effect of a
kill activity, when the delimited element is a killer label. The scope of names
can be dynamically extended, in order to model the communication of private
names, as done with the restriction operator in π-calculus [52]. Instead, killer
labels cannot be dynamically extended, because the activities whose termination
would be forced by the execution of a kill need to be statically determined.

The kill activity forces immediate termination of all the concurrent activities
not enclosed within the protection operator. To faithfully model fault and ter-
mination handling of SOC applications, kill activities are executed eagerly with
respect to the communication activities enclosed within the delimitation of the
corresponding killer label.

Finally, the replication construct ∗ s permits to spawn in parallel as many
copies of s as necessary. This, for example, is exploited to implement recursive
behaviours and to model business process definitions, which can create multiple
instances to serve several requests simultaneously.

3.3 Example: A Travel Agency Scenario

We report here a few examples aimed at illustrating the main Cows features.
We consider a typical SOC scenario, where a travel agency exposes a service to
automatically book a hotel and a flight according to customers’ requests.

At a high level of abstraction, the travel agency service is rendered in
Cows as:

TravelAgency � ∗ [xcust, xdates, xdest] pta • oreq?〈xcust, xdates, xdest〉.
xcust • oresp !〈book(xdates, xdest)〉

The replication operator ∗ is used here to specify that the service is persistent,
i.e. capable of creating multiple instances to serve several requests simultane-
ously. The delimitation operator specifies the scope of the variables arguments
of the subsequent receive activity on operation oreq , used to receive a request
message from a customer. Besides dates and destination of the travel, this mes-
sage contains the partner name that the customer will use to receive the response,
which will be sent by the service by means of the invoke activity on operation
oresp . Booking of hotel and flight is here abstracted by the (unspecified) expres-
sion book(xdates, xdest).

A customer of the travel agency is specified as follows:

Customer � pta • oreq !〈pc, vdates, vdest〉 | [xtravel] pc • oresp?〈xtravel〉.s

The customer behaviour is specular to that of the travel agency: it starts with
an invoke and then waits for a response message containing the travel data.

The overall specification of the scenario is simply the parallel composition
of the two components: (Customer | TravelAgency). Whenever prompted by a
client request, the travel agency service creates an instance to serve that specific
request, and is immediately ready to concurrently serve other possible requests.
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Therefore, the resulting Cows term after such a computational step is the fol-
lowing:

[xtravel] pc • oresp?〈xtravel〉.s | TravelAgency | pc • oresp !〈book(vdates, vdest)〉

The created service instance (highlighted by a grey background) is represented
as a service running in parallel with the other terms. Notably, the variables of
the invoke activity are instantiated (i.e., replaced) by the corresponding values
exchanged in the communication. This invoke activity can now synchronise with
the receive activity of the customer, whose execution will then continue as s with
xtravel replaced by the value resulting from the evaluation of the book expression.

Let us now consider a more refined specification, where the role of the
book expression is played by the interactions with services for flights and hotels
searching:

TravelAgency ′ � ∗ [xcust, xdates, xdest] pta • oreq?〈xcust, xdates, xdest〉.
[p, o, xflight , xhotel ]
( (pflight • obook !〈pta , xcust, xdates, xdest〉

| pta • ofRes?〈xcust, xdates, xdest, xflight 〉. (p • o!〈end〉 | sf ))
| (photel • obook !〈pta , xcust, xdates, xdest〉

| pta • ohRes?〈xcust, xdates, xdest, xhotel〉. (p • o!〈end〉 | sh))
| p • o?〈end〉. p • o?〈end〉. xcust • oresp !〈xflight , xhotel〉 )

After the reception of a customer request, the service contacts in parallel the two
searching services (by invoking the operation obook). When the responses from
both services are available, the travel agency service combines them and replies
to the customer. To this aim, a private endpoint p • o is exploited: the reception
of a message from a searching service triggers an end signal (i.e., an internal
message) along the private endpoint, and two of such signals are necessary to
trigger the invoke the activity for replying to the customer. Notice that the
scope of variable xflight (resp. xhotel) includes not only the continuation sf (resp.
sh) of the service performing the receive, but also the activity for sending the
response to the customer. This is different from most process calculi and accounts
for easily expressing variables shared among parallel activities within the same
service instance, which is a feature typically supported in SOC.

The behaviour of the above service is of particular interest when it is included
in a scenario with multiple customers (the specifications of customers and search-
ing services are omitted, we just assume that they follow the communication
protocol established by the travel agency specification):

Customer1 | Customer2 | TravelAgency ′ | FlightBooking | HotelBooking

After a certain number of computational steps have taken place, we can obtain
a system configuration where one instance of the travel agency service is created
per each customer, and both instances have sent their requests to the searching
services and are waiting for replies. Now, to send the values resulting from the
processing of the request of the first customer, the flight searching service has to
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perform an invoke activity of the form pta • ofRes !〈pc1, vdates, vdest, vflight 〉. How-
ever, the travel agency service has two instances waiting for such message along
the endpoint pta • ofRes . In order to deliver the message to the proper instance,
i.e. the one serving the request of the first customer, the message correlation
mechanism is used. In fact, in SOC, it is up to each single message to provide a
form of context that enables services to associate the message with the appropri-
ate instance. This is achieved by embedding values, called correlation data, in the
message itself. Pattern-matching is the mechanism used by the Cows’s seman-
tics for locating correlation data. In our example, these data are the customer’s
partner name, the travel dates and the destination, which have instantiated the
corresponding variables in the receive activity pta • ofRes?〈pc1, vdates, vdest, xflight〉
within Customer1 . While the receive of the first customer is enabled, the one
within the second customer instance is not, as it has been instantiated with
unmatchable values.

Finally, let us provide further details of the travel agency specification, in
order to add fault and compensation handling activities (highlighted by a grey
background):

TravelAgency ′′ � ∗ [xcust, xdates, xdest] pta • oreq?〈xcust, xdates, xdest〉.
[p, o, xflight , xhotel , k ]
( (pflight • obook !〈pta , xcust, xdates, xdest〉

| pta • ofRes?〈xcust, xdates, xdest, xflight〉.
(p• o!〈end〉 | sf

| {|p• o?〈comp〉. pflight • ocancel !〈xcust, xdates, xdest〉|} )

+ pta • ofFault?〈xcust, xdates, xdest〉.
(kill(k) | {|p• o!〈comp〉 | p• o!〈fault〉|}) )

| (photel • obook !〈pta , xcust, xdates, xdest〉
| pta • ohRes?〈xcust, xdates, xdest, xhotel〉.

(p• o!〈end〉 | sh

| {|p• o?〈comp〉. photel • ocancel !〈xcust, xdates, xdest〉|} )

+ pta • ohFault?〈xcust, xdates, xdest〉.
(kill(k) | {|p• o!〈comp〉 | p• o!〈fault〉|}) )

| p• o?〈end〉. p• o?〈end〉. xcust • oresp !〈xflight , xhotel〉
| {|p• o?〈fault〉. xcust • ofault !〈〉|} )

Now, when a positive response from a searching service is received, a compensa-
tion handler is installed. This consists of an invoke activity on operation ocancel ,
triggered by a comp signal, devoted to cancel the booking. If a negative response
on ofFault (resp. ohFault) is received, the normal execution of the service is imme-
diately terminated (by means of the kill activity), the activity compensating
the hotel (resp. flight) booking is activated, if installed, and a fault signal is
emitted. This last signal triggers the execution of the fault handler, consisting of
an invoke activity for notifying the customer that the request booking is failed.
Notably, fault and compensation activities are enclosed within protection blocks,
in order to protect them from the killing effect of the kill activities.
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3.4 Programming Environment

To effectively program SOC applications, Cows, originally conceived as a process
calculus, has been extended with high-level features, such as standard control
flow constructs (i.e., sequentialization, assignment, conditional choice, iteration)
and a scope activity explicitly defining fault and compensation handlers. The
implementation of the resulting orchestration language, called Blite [46], is based
on a software tool [15] supporting a rapid and easy development of SOC appli-
cations via the translation of service orchestrations written in Blite into exe-
cutable WS-BPEL programs. More specifically, a Blite program given as input
to this tool also includes a declarative part, containing the variable types and
the physical service bindings, necessary for generating the corresponding WSDL
document and the process deployment descriptor. These files, together with the
one containing the WS-BPEL code, are organised in a package that can be
deployed and executed in a WS-BPEL engine.

3.5 Verification Techniques

The main verification techniques devised for Cows specifications are the fol-
lowing: (i) a type system for checking confidentiality properties [45], which uses
types to express and enforce policies for regulating the exchange of data among
services; (ii) a bisimulation-based observational semantics [58], which permits to
check interchangeability of services and conformance against service specifica-
tions; (iii) a verification methodology for checking functional properties specific
of SOC systems [33].

Concerning the third technique, the properties are described by means of
SocL, a logic specifically designed to express in a convenient way distinctive
aspects of services, such as, e.g., acceptance of a request, provision of a response,
and correlation among service requests and responses. The verification of SocL
formulae over Cows specifications is assisted by the on-the-fly model checker
CMC. This approach has been used in [33,38,49] to verify some properties of
interest of an automotive scenario, an e-Health authentication protocol, and a
finance case study, respectively.

4 SCEL: Software Component Ensemble Language

Developing massively distributed and highly dynamic computing systems which
interact with and control the physical world is a major challenge in todays soft-
ware engineering. Difficulties arise from the open-ended and dynamic nature
of large-scale systems, the non-deterministic and unpredictably changing exter-
nal environment, the often limited or even impossible human intervention, and
the need of ensembles of components to interact and collaborate for achieving
specific goals, while hiding the complexity to end-users. A possible answer to
the problems posed by such systems is to make them self-aware, by continu-
ously monitoring their behaviour and their working environment, and able to
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self-adapt their behaviour or structure, by selecting the actions to perform for
dealing with the current status of affairs. These and other self-management capa-
bilities, like self-configuration, self-healing, self-optimisation, and self-protection,
characterise autonomic computing [43] systems.

Scel (Software Component Ensemble Language, [22,27]) is a formal language
providing a set of linguistic abstractions for specifying the behaviour of (auto-
nomic) components, the interaction among them, and the formation of their
ensembles. In Scel, components are computational entities that have assigned
dedicated knowledge repositories and behavioural policies. They also have an
interface exposing characterising attributes. Ensembles, in turn, are aggrega-
tions of interacting partner components dynamically determined by means of
predicates validated by each component on the basis of its attributes.

Scel linguistic abstractions support programming self- and context-
awareness, adaptation and autonomicity. Indeed, through the knowledge repos-
itories, components can gain information on their status (self-awareness) and
environment (context awareness). By exploiting awareness and higher-order fea-
tures (i.e. the capability to store/retrieve processes in/from components knowl-
edge repositories and to dynamically activate new processes), components can
trigger self-adaptation and/or initiate self-healing actions for reacting to faults
or activate optimization strategies by, e.g., including or replacing processes and
other components. By integrating Scel with suitable policy languages, it is pos-
sible to guarantee self-protection against, e.g., unauthorized accesses or denial-
of-service attacks.

4.1 Syntax

Scel syntax is reported in Table 3. Five countable disjoint sets are used: the set
of names (ranged over by n, n′, . . . ), the set of predicate names (ranged over
by p, . . . ), the set of variables for names (ranged over by x, x′, . . . ), the set
of variables for processes (ranged over by X, Y , . . . ), and the set of parame-
terised process identifiers (ranged over by A, . . . ). self is a distinguished variable
standing for the name of a component.

Systems result from the aggregation of Components which, in turn, result
from the aggregation of Knowledge and Processes, according to some Poli-
cies. Processes specify the flow of the Actions that can be performed.
Actions can have a Target to determine the other components, in addition
to the subject one, that are involved in that action.

Scel is parametric with respect to some syntactic categories, namely Poli-
cies, Knowledge, Templates and Items (with the last two determining
the part of Knowledge to be retrieved/removed or added, respectively). This
choice permits integrating different approaches to policy specification and knowl-
edge handling within Scel, like, e.g., the access control policies of [48] and the
constraint stores of [53]. A simple, yet expressive, instance of Scel, named Sce-
light, has been introduced in [29] where policies are absent (equivalently, any
process action is authorised) and knowledge repositories are implemented as
tuple spaces á la Klaim.



126 R. De Nicola et al.

Table 3. Scel syntax (Policies Π, Knowledge K, Templates T , and Items t are
parameters of the language)

SYSTEMS:
S ::= C (component)

| S1 ‖ S2 (composition)
| (νn)S (name restriction)

COMPONENTS:
C ::= I[K, Π, P ] (single component)

PROCESSES:
P ::= nil (inert)

| a.P (action prefixing)
| P1 + P2 (choice)
| P1 | P2 (composition)
| X (process variable)
| A(p̄) (invocation)

ACTIONS:
a ::= get(T )@c (withdraw)

| qry(T )@c (retrieve)
| put(t)@c (addition)
| fresh(n) (scope)
| new(I, K, Π, P ) (new)

TARGETS:
c ::= n (name)

| x (variable)
| self (self)
| (predicate)
| (pred. name)

4.2 Informal Semantics

Systems aggregate components through the composition operator ‖ , which
is both commutative and associative. It is also possible to restrict the scope of
a name, say n, by using the name restriction operator (νn) . In a system of the
form S1 ‖ (νn)S2, the effect of the operator is to make name n invisible from S1.

A component I[K,Π, P ] consists of:

– An interface I publishing and making available information about the compo-
nent itself in the form of attributes, i.e. names acting as references to informa-
tion stored in the component’s knowledge repository. Among them, attribute
id is mandatory and is bound to the name of the component.

– A knowledge repository K managing both application data and awareness
data, together with the specific handling mechanism. Application data are
used for enabling the progress of components’ computations, while awareness
data provide information about the environment in which the components are
running (e.g. monitored data from sensors) or about the status of a component
(e.g. its current location).

– A set of policies Π regulating the interaction between the different parts of
a single component and the interaction between components.

– A process P , together with a set of process definitions that can be dynamically
activated.

Processes are the active computational units. Each process is built up from
the inert process nil via action prefixing (a.P ), nondeterministic choice (P1+P2),
controlled composition (P1 | P2), process variable (X), and parameterised pro-
cess invocation (A(p̄)). The semantics of the construct P1 | P2 is another param-
eter of Scel. It can be instantiated so as to capture various forms of parallel
composition commonly used in process calculi. For example, in Scelight, it cor-
responds to the standard interleaving execution of the two involved processes.
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Communication can be higher-order, as in Klaim. We assume that A ranges
over a set of parameterised process identifiers that are used in (possibly recur-
sive) process definitions. We also assume that each process identifier A has a
single definition of the form A(f̄) � P . Lists of actual and formal parameters
are denoted by p̄ and f̄ , respectively.

Processes can perform five different kinds of actions. Actions get(T )@c,
qry(T )@c and put(t)@c are used to manage shared knowledge repositories by
withdrawing/retrieving/adding information items from/to the knowledge repos-
itory identified by target c. These actions exploit templates T as patterns to
select knowledge items t in the repositories. They heavily depend on the chosen
kind of knowledge repository (a parameter of Scel, as we have already noticed)
and are implemented by invoking the knowledge handlers it provides. Action
fresh(n) introduces a scope restriction for the name n so that this name is guar-
anteed to be fresh, i.e., different from any other name previously used. Action
new(I,K,Π, P ) creates a new component I[K,Π, P ].

Action get may cause the process executing it to wait for the expected ele-
ment, in case it is not (yet) available in the knowledge repository. Action qry,
exactly like get, may suspend the process executing it if the knowledge repos-
itory does not (yet) contain or cannot “produce” the expected element. The
two actions differ for the fact that get removes the found item from the knowl-
edge repository while qry leaves the target repository unchanged. Actions put,
fresh and new are instead immediately executed (provided that their execution
is allowed by the policies in force).

Different entities may be used as the target c of an action. In addition to
names and variables for names, the distinguished variable self can be used by
processes to refer to the name of the component hosting them. The possible
targets could be also singled out via a predicate P (or the name p of a predi-
cate). Predicates are boolean-valued expressions obtained by logically combining
relations between attributes and value expressions. When the target of a com-
munication action is a predicate, this predicate acts as a “guard” specifying
the ensemble of all those components with which the process performing the
action intends to interact. Thus, e.g., actions put(t)@n and put(t)@P give rise
to two different primitive forms of communication: the former is a point-to-point
communication, while the latter is a sort of group-oriented communication.

It is worth noticing that the group-oriented variant of action put is used
to insert a knowledge item in the repositories of all components belonging to
the ensemble identified by the target predicate. Differently, the group-oriented
variants of actions get and qry withdraw and retrieve, respectively, an item
from a single component non-deterministically selected among those satisfying
the target predicate.

4.3 Example: A Collection of Service Components

Scel has proved to be suitable for modelling autonomic systems from different
application scenarios such as, e.g., collective robotic systems [17,27], coopera-
tive e-vehicles [13], service provision and cloud-computing [22,48,50]. Here, we
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consider a scenario, borrowed from [29] and modelled in Scelight, consisting of
m provider components Ipj

[Kpj
, Apj

], offering a variety of services, and n client
components Ich [Kch , Pch ]:

Ip1 [Kp1 , Ap1 ] ‖ . . . ‖ Ipm
[Kpm

, Apm
] ‖ Ic1 [Kc1 , Pc1 ] ‖ . . . ‖ Icn [Kcn , Pcn ] .

Each service component manages and elaborates service requests with dif-
ferent requirements, roughly summarised by the following three quality levels:
gold, silver and base. These levels are defined via a combination of predicates on
the hardware configuration and the runtime state of the provider components.
To this aim, we assume that attributes named hw and load are provided by each
service component. The former can take an integer value from 0 to 10 that gives
an indication of the capacity of the hardware configuration of the component,
while the latter can take an integer value from 0 to 100 that estimates the actual
computational load of the component. The three quality of service levels are
then characterised by following predicates:

Pg � (7 ≤ hw )
Ps � (4 ≤ hw < 7) ∨ (Pg ∧ load < 40)
Pb � ( hw < 4) ∨ (Ps ∧ load < 40) ∨(Pg ∧ load < 20)

identifying, respectively, three ensembles of service components that

– Gold : have a high level of hardware configuration, i.e. a hardware level greater
or equal to 7;

– Silver : provide a hardware configuration with a level that is at least 4 and,
whenever the hardware level is over 7, the computational load is less than 40%;
this latter condition guarantees that gold components can handle requests at
silver level only when their computational load is under 40%;

– Base: have any hardware level, however if they are also gold or silver compo-
nents then their computational load is under 20% or 40%, respectively.

Each service component also stores in its knowledge repository a collection
of items indicating the provided services, together with the component iden-
tifier. For example, the provider pj offering the factorial service stores in its
local repository the item 〈service, factorial , ipj

〉. Note that including the iden-
tifier in the tuple publishing the service is fundamental as the group-oriented
communication primitives are completely anonymous, i.e., the actual targets of
a group-oriented communication action are not known to the subject.

Finally, each service component pj runs the process Apj
defined as:

Apj
� get(invoke, factorial , ?x, ?y)@self.

get(load , ?z)@self.
put(load , (z + 20))@self.
(Apj

| Q(x, y))

The process is triggered by a client request. Whenever this happens, the compu-
tational load is updated; we assume that each service instance uses 20% of the



A Formal Approach to the Engineering 129

sever’s capacity. Then, the factorial service becomes again ready to serve other
client requests, and the process Q, which actually computes the result of the
invoked service for the current request, is executed. We assume that, before its
termination, process Q updates the value of attribute load, and puts the result
of the computation in the repository of the client.

We remark that components dynamically and transparently leave or enter an
ensemble when their computational load changes. For instance, a gold component
leaves a silver ensemble when its computational load becomes higher than 40%.

Each client component ch runs the process Pch , that takes care of the inter-
action with the factorial service and is of the form

qry(service, factorial , ?x)@Pk.
put(invoke, factorial , v, ich)@x.
get(result , factorial , ?y)@self. P ′

ch

for some service level k in {b, s, g} and some argument v for the factorial function
the client would like the server to execute. Intuitively, such process first searches
among the components belonging to the ensemble identified by predicate Pk,
via a qry action, an item matching the template (service, factorial , ?x). In this
way, by taking advantage of group-oriented communication, the client is able
to dynamically identify a component x that provides the factorial service at
the desired service level k. If more than one provider component meets these
requirements, one of them will be non-deterministically selected. Then, via a
put action, the process invokes the selected service, in a point-to-point fashion,
by providing the actual parameter v of the request. After issuing the invocation,
the process waits for the result (recall that action get is blocking). Whenever
the result of the service invocation is made available, the process can withdraw
it from the local repository and continue as process P ′

ch
.

4.4 Programming Environment

Scel systems can be executed and simulated in jRESP2 (Java Runtime Envi-
ronment for Scel Programs), which offers specific software tools to develop
and support Scel systems. In particular, jRESP provides an API that per-
mits enriching Java programs with the Scel’s linguistic constructs. The API is
instrumental to assist programmers in the implementation of autonomic systems,
which thus turns out to be simplified with respect to using “pure” Java. More-
over, jRESP provides a set of classes enabling execution of virtual components
on top of a simulation environment that can control component interactions and
collect relevant simulation data.

4.5 Verification Techniques

A prototype framework for statistical model-checking has been developed [30] by
relying on the jRESP simulation environment. The tool is parameterised with
2 jRESP website: http://jresp.sourceforge.net/.

http://jresp.sourceforge.net/


130 R. De Nicola et al.

respect to a given tolerance ε and error probability p, thus allowing one to verify
whether the implementation of a system satisfies a given property with a certain
degree of confidence. The underlying randomised algorithm guarantees that the
difference between the computed value and the exact one is greater than ε with
a probability that is less than p.

Qualitative properties of Scelight specifications have been verified through
the Spin model checker [42]. The verification relies on a preliminary translation
from Scelight into Promela, i.e., the input language of Spin. This approach
has been used in, e.g., [29] to verify some properties of interest of the appli-
cation scenario illustrated in Sect. 4.3, like absence of deadlock, server overload
and responsiveness, and in [30] to verify similar properties for a swarm robotics
scenario.

Scel’s operational semantics has also been implemented by using the Maude
framework [18]. The outcome, named Misscel (Maude Interpreter and Simu-
lator for Scel), focuses on Scelight and exploits the rich Maude toolset to
perform, among other things, qualitative analysis via Maude’s invariant and
LTL model checkers, and statistical model checking via MultiVeStA [59] (as
done in [10] for a robotic collision avoidance scenario). A further advantage of
Misscel is that Scel specifications can be intertwined with (very expressive)
raw Maude code. This permits to obtain sophisticated specifications in which
Scel is used to model behaviours, aggregations, and knowledge handling, while
scenario-specific details are specified with Maude.

5 AbC: Attribute-Based communication

Collective-Adaptive Systems (CAS) [35] are new emerging computational sys-
tems, consisting of a massive number of components, featuring complex interac-
tion mechanisms. These systems are usually distributed, heterogeneous, decen-
tralised and interdependent, and are operating in dynamic and often unpre-
dictable environments. CAS components combine their behaviours, by forming
collectives, to achieve specific goals depending on their attributes, objectives,
and functionalities. CAS are inherently scalable and their boundaries are fluid
in the sense that components may enter or leave the collective at any time; so
they need to dynamically adapt to their environmental conditions and contextual
data.

AbC (Attribute-based Communication calculus, [2,4]) is a process calculus
specifically designed to deal with CAS. It has been heavily inspired by Scel, but
has been designed to reduce complexity and keep the set of linguistic primitives
to a minimum. Indeed, it was originally designed as a trimmed version of Scel
that was obtained by ignoring the parts relative to policies and knowledge and
concentrating only on behaviours and interfaces. In this respect, AbC has similar
aims to Scelight, but the underling communication paradigm is very different;
explicit message passing for the former and shared memory à la Klaim for the
latter.

Indeed, the original aim of AbC was to assess the impact of the new mes-
sage passing paradigm based on attributes and compare it with more classical
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ones that handle the interaction between distributed components by relying on
identities (Actors [5]), or channels (π-calculus), or broadcast (B-π-calculus [55]).
In all these formalisms, messages exchanges rely on names or addresses of the
involved components and are independent of their status and capabilities. This
makes it hard to program, coordinate, and adapt complex behaviours that highly
depend on run-time changes of components.

In AbC, the attribute-based system is however more than just the parallel
composition of interacting partners; it is also parametrised with respect to the
environment or the space where system components are executed. The environ-
ment has a great impact on how components behave and provides a new means
of indirect communication, that allows components to mutually influence each
other, possibly unintentionally.

5.1 Syntax

Table 4 contains the syntax of AbC. The top-level entities of the calculus are
components. A component, Γ:IP , is a process P associated with an attribute
environment Γ , and an interface I. The attribute environment provides a collec-
tion of attributes whose values represent the status of the component and influ-
ence its run-time behaviour. Formally, Γ :A �→ V is a partial map from attribute
identifiers (a ∈ A) to values (v ∈ V), i.e., to numbers, strings, tuples, . . . The
interface I ⊆ A contains the public attributes of a component (the attributes in
dom(Γ )− I being private). Composed components C1‖C2 are built by using the
parallel operator.

Table 4. The syntax of the AbC calculus

COMPONENTS:
C ::= Γ:IP (component)

| C1‖C2 (composition)
PROCESSES:

P ::= 0 (inaction)
| Π(x̃).U (attribute-based input)
| (Ẽ)@Π.U (attribute-based output)
| 〈Π〉P (context awareness)
| P1 + P2 (choice)
| P1|P2 (parallel composition )
| K (process identifier)

UPDATES:
U ::= [a := E]U (attribute update)

| P (process)

PREDICATES:
Π ::= true (true)

| false (false)
| p(Ẽ) (atomic predicate)
| Π1 ∧ Π2 (conjunction)
| Π1 ∨ Π2 (disjunction)
| ¬Π (negation)

EXPRESSIONS:
E ::= v (value)

| x (variable)
| a (attribute identifier)
| this.a (local reference)
| op(Ẽ) (operator)

A process P can be: the inactive process 0; an action-prefixed process,
act.U , where act is a communication action and the update U is a process
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possibly preceded by attribute updates; a context aware process, 〈Π〉P , where
Π is a predicate built from boolean constants and from atomic predicates,
based on expressions over attributes, by using standard boolean operators; a
nondeterministic choice between two processes, P1 + P2; a parallel composition
of two processes, P1|P2; or a process call with an identifier K used in a unique
process definition K � P .

5.2 Informal Semantics

Attribute-based actions for sending and receiving messages permit to establish
communication links between different components according to specific predi-
cates over their attributes.

Specifically, attribute-based output (Ẽ)@Π sends the result of the evaluation
of the sequence of expressions Ẽ to the components whose attributes satisfy the
predicate Π. Notably, together with the computed values, also the portion of
the attribute environment of the sending component that can be perceived by
the context is sent; this is obtained from the local environment by limiting its
domain to the attributes in the component interface. This information is needed
to allow receivers to determine whether they are interested in the sent message.

Instead, attribute-based input Π(x̃) specifies receipt of messages from a com-
ponent satisfying predicate Π; the sequence x̃ acts as a placeholder for received
values. A message can be received when two communication constraints are sat-
isfied: the public local attribute environment satisfies the predicate used by the
sender to identify potential receivers, and the sender environment satisfies the
receiving predicate. In this case, attribute updates are performed under the gen-
erated substitution. An attribute update [a := E] assigns the value of E to the
attribute identifier a. This action is used to change the values of the attributes
according to contextual conditions and to adapt component’s behaviour. Notice
that the execution of a communication action and the following update(s) is
atomic.

The awareness construct 〈Π〉P blocks the execution of P until predicate Π
is satisfied when using the local attribute environment, possibly after a change
of state by a component. This construct permits to collect awareness data and
take decisions based on the changes in the attribute environment.

5.3 Example: A TV Broadcaster Scenario

We now illustrate the features of AbC by considering a simple scenario borrowed
from the paper where AbC was originally introduced [4]. In this scenario, we
consider a TV broadcaster (e.g., CNN) represented by the process CNN, and two
receivers represented by the processes RcvA and RcvB:
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CNN � (vs)@Πsport.CNN + (vn)@Πnews.CNN

+ ()@false.[Qbrd := LD]CNN + ()@false.[Qbrd := HD]CNN
RcvA� (Qbrd = HD)(x).RcvA

+ ()@false.[Genre := Sport]RcvA + ()@false.[Genre := News]RcvA
RcvB� (true)(x).RcvB + . . .

where
Πsport = (Genre = Sport) ∧ (CNN-Sub = tt)
Πnews = (Genre = News)

The overall system is expressed as the parallel composition below, where the
dots refer to other possible broadcasters or receivers:

Γcnn:C CNN | Γa:A RcvA | . . . | Γb:B RcvB.

CNN periodically broadcasts Sport or News and targets different groups of
receivers based on the predicates Πsport and Πnews. Πsport targets the group
of receivers who want to watch Sport (Genre = Sport) provided that those
receivers have subscribed to CNN (CNN-Sub = tt). On the other hand, Πnews

targets the group of receivers who want to watch News (Genre = News).
The quality of the broadcasted multimedia varies according to different fac-

tors (e.g., low bandwidth). CNN channel non-deterministically chooses to broad-
cast low-definition ([Qbrd := LD]) or high-definition ([Qbrd := HD]) multimedia.
The receiving processes RcvA and RcvB almost have the same behaviour except
that RcvA is only interested in high quality broadcasts while RcvB is willing to
accept broadcasts of any quality. So they either accept the broadcast that their
attributes in Γa and Γb satisfy, or change the genre.

A fragment of the possible interactions in this scenario is reported below; we
use −→b and −→τ to denote the computational steps induced by a broadcast
action and by an attribute update action, respectively, and also use the grey-
shaded box to indicate the components involved in the evolution.

Γcnn:CCNN | Γa:ARcvA | . . . | Γb:BRcvB

−→b Γcnn:CCNN | Γa:ARcvA | . . . | Γb:BRcvB
...

−→τ Γcnn [Qbrd �→ LD]:CCNN | Γa:ARcvA | . . . | Γb:BRcvB

−→b Γ ′
cnn:CCNN | Γa:ARcvA | . . . | Γb:BRcvB

We assume that the initial attribute environments Γcnn, Γa and Γb are: Γcnn =
{(Qbrd, HD), . . . }, Γa = {(Genre, News), . . . } and Γb = {(Genre, News), . . . }.

The interfaces of CNN, RcvA, and RcvB are defined as follows: C = {Qbrd}
and A = B = {Genre}. Assume also that CNN initiates the interaction by broad-
casting high quality News. As shown above, both RcvA and RcvB can join the
collective and receive the broadcast because their attributes satisfy the condi-
tion of the broadcast (based on predicate Πnews). After a while CNN chooses
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to lower the quality of multimedia (indeed, its environment is updated with
Qbrd �→ LD) to cope with some situations, such as low bandwidth, and CNN can
evolve independently. Finally, CNN continues broadcasting News and in this case
RcvA chooses to leave the collective because the quality of the broadcast does not
satisfy its receiving predicate, while RcvB stays because it has no requirement
for the input quality.

5.4 Programming Environment

Basing the interaction on the values of run-time attributes is indeed a nice idea,
but it needs to be supported by a middleware that provides efficient ways for
distributing messages, checking attribute values, and updating them. A typical
approach is to rely on a centralised broker that keeps track of all components,
intercepts every message and forwards it to registered components. It is then
the responsibility of each component to decide whether to receive or discard the
message. This is the solution proposed in [3] where a Java implementation of
AbC is provided, that however suffers of serious performance problems. Two
additional implementations of AbC have thus been considered, which are built
on the top of two well-established programming languages largely used for con-
current programming, namely Erlang and Go, guaranteeing better scalability.
The two implementations are called AErlang , for Attribute based Erlang, and
GoAt, for Go with attributes.

AErlang [21] is a middleware enabling attribute-based communication among
programs in Erlang [32], a concurrent functional programming language origi-
nally designed for building telecommunication systems and recently successfully
adapted to broader contexts, such as large-scale distributed messaging platforms
like Facebook and WhatsApp. AErlang lifts Erlang’s send and receive commu-
nication primitives to attribute-based reasoning. In Erlang, the send primitive
requires an explicit destination address while in AErlang processes are not aware
of the presence and identity of each other, and communicate using predicates
over attributes. AErlang has two main components: (i) a process registry that
keeps track of process details, such as the process identifier and the current sta-
tus, and (ii) a message broker that undertakes the delivery of outgoing messages.
The Process registry is a generic server that accepts requests regarding process
(un)registration and internal updates. It stores process identifiers and all the
information used by the message broker to deliver messages. The Message bro-
ker is responsible for delivering messages between processes. It is implemented
as an Erlang server process listening for interactions from attribute-based send.
To address potential bottlenecks arising in the presence of a very large number of
processes, the message broker can be set up to run in multiple parallel threads.
Like the Java implementation for AbC presented in [3], the message broker is
still centralised, however, to avoid broadcasts, the broker has an attribute reg-
istry where components register their attribute values and the broker is now
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responsible for message filtering. Different distribution policies have been imple-
mented that can be used by taking into account dynamicity of attributes and of
predicates.

GoAt3 extends Go [39], the language introduced by Google to handle mas-
sive computation clusters, and to make working in these environments more
productive. Go has an intuitive and lightweight concurrency model with a well-
understood semantics and extends the CSP model [41] with channel mobility,
like in π-calculus. It also supports buffered channels, to provide mailboxes à
la Erlang. The Attribute-based API for Go offers the possibility of using the
AbC primitives to program the interaction of CAS applications directly in Go.
The actual implementation faithfully models the formal semantics of AbC and
it is parametric with respect to the infrastructure that mediates interactions.
The GoAt API offers the possibility of using three different distributed coordi-
nation infrastructures for message exchange, namely cluster, ring, and tree. For
all three infrastructures, it has been proved that the message delivery ordering
is the same as the one required by the original formal semantics of AbC [1]. An
Eclipse plugin permits programming in a high-level syntax, which can be anal-
ysed via formal methods by relying on the operational semantics of AbC. Once
the code has been analysed, the GoAt plugin will generate formally verifiable Go
code. Examples available from GoAt ’s site permit to appreciate how intuitive it
is to program a complex variant of the well-known problem of Stable Allocation
in Content Delivery Network [47].

5.5 Verification Techniques

Some work has now started to verify properties of AbC programs. On the one
hand, it is under investigation the use of the generic tools that have been designed
for verifying properties of Erlang and Go programs. On the other hand, tools are
under development to prove directly properties of the AbC specifications. The
second alternative is under consideration because in some cases the correspon-
dence between the actual AbC specifications and the running programs may not
be immediate, and the difference would reduce the effectiveness of the effort.

A novel approach to the analysis of concurrent systems modelled as AbC
terms has been introduced in [20]. It relies on the UMC model checker, a
tool based on modelling concurrent systems as communicating UML-like state
machines [61]. A structural translation from AbC specifications to the UMC
internal format is used as the basis for program analysis. This permits identify-
ing emerging properties of systems and unwanted behaviours.

Recent work considers a variant of AbC and proposes a technique to prove
properties of the system by translating the specifications into symbolic C pro-
grams to be analysed with SAT-based approaches.

3 GoAt codes and examples can be retrieved from https://giulio-garbi.github.io/goat/.

https://giulio-garbi.github.io/goat/
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6 Concluding Remarks

This paper surveyed four domain-specific coordination languages supporting the
engineering of different classes of modern distributed systems. These languages
have been developed in the last twenty years by the authors (three of which have
been working for quite a while in the Concurrency and Mobility Group at Uni-
versity of Florence) and other collaborators. Within the coordination community
other research groups have followed a similar methodology, however relying on
different specification models, e.g. coalgebras [7], actors [60] or automata [8],
rather than process algebras.

Below, we summarise the programming abstractions introduced with the dif-
ferent formalisms and the lessons learned when designing and using languages for

1. Network-Aware Programming,
2. Service-Oriented Computing,
3. Autonomic Computing,
4. Collective Adaptive Systems Programming.

The design of Klaim has shown that network awareness in distributed sys-
tems can be achieved by the explicit use of localities as first-order citizens of the
language. Localities, indeed, identify network nodes, where computation takes
place and data is stored. Network awareness relies on the notion of (multiple)
tuple spaces, which can be accessed via a unique interface to insert and retrieve
data. Communication is thus asynchronous, anonymous and associative, pattern
matching plays a crucial role and guarantees high expressive power. Network
awareness also supports computation mobility, thus paving the way for different
kinds of optimisations.

From Cows, we learnt that SOC applications typically abstract from the
structure of the underlying network and from distribution of data, which become
transparent to the programmer. Pattern-matching still plays a key role in sup-
porting communication, as it is at the basis of the message correlation mecha-
nism. Novel distinguishing features are service persistence, state sharing among
concurrent service instances, and service fault and termination handling. We
have shown that the modelling of the first one can rely on the standard pro-
cess replication operator. Instead, the modelling of the second one relies on the
combined use of suitable binder operators, and non-standard receive activities
binding neither names nor variables. Similarly, the modelling of the third feature
requires a combination of some ingenious constructs to either force termination
or protect activities in case of termination of other processes.

In Scel the central notion is that of ensemble of components, which can be
dynamically created in an opportunistic and transparent way. Indeed, the forma-
tion of an ensemble and the establishment of interactions among its members rely
on the information exposed as attributes in the interface of the involved compo-
nents. This enables an effective group-oriented communication model. Ensemble
components are equipped with knowledge repositories that generalise Klaim’s
tuple spaces by supporting different knowledge representations and handling
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mechanisms. Self- and context-awareness make these components capable to
adapt their behaviour to evolving needs and environmental changes.

Finally, AbC refines the group-oriented communication model of Scel, in
order to convey in a distilled form the attribute-based communication paradigm
exploited to model and program Collective Adaptive Systems. The result of
this synthesis effort is a compact calculus, suitable for studying the theoretical
impact of the novel communication paradigm and for obtaining new program-
ming frameworks by the new paradigm in different well-established programming
languages, such as Java, Erlang and Go.

To recap, we think that the engineering methodology we presented, as wit-
nessed by the four instantiations we have illustrated, provides a uniform linguistic
approach, based on formal methods techniques, for ensuring the trustworthiness
of the considered classes of systems and possibly of the other ones that will
emerge in the near future. In this respect, we plan to consider the Aggregate
Programming [9] domain, where the abstraction level in designing distributed
systems further increases. In such an engineering approach, data and devices
are aggregated via ‘under-the-hood’ coordination mechanisms. Although these
aggregations resemble the notions of ensemble and collectives discussed in this
paper, they mainly focus on distributed computation rather than on communi-
cation mechanisms.

As a final disclaimer we would like to say that obviously a section dedicated
to related work is missing. Given the time span and the different programming
domains covered by the development of our four languages, it would have needed
a paper on his own. Thus the only thing we can do is to refer the interested reader
to the bibliography sections of the papers that have introduced and developed
Klaim, Cows, Scel and AbC. Moreover, for references on network-aware pro-
gramming and relation with Klaim we refer to [56], for service-oriented com-
puting and Cows to [63] and for autonomic computing and Scel to [64].
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Abstract. Constraint automata specify protocols as labeled transition
systems that preserve synchronization under composition. They have
been used as a basis for tools, such as compilers and model checkers.
Unfortunately, composition of transition systems suffers from state space
and transition space explosions, which limits scalability of the tools based
on constraint automata. In this work, we propose stream constraints as
an alternative to constraint automata that avoids state space explosions.
We introduce a rule-based form for stream constraints that can avoid
transition space explosions. We provide sufficient conditions under which
our approach avoids transition space explosions.

1 Introduction

Over a decade ago, Baier et al. introduced constraint automata for the specifi-
cation of interaction protocols [6]. Constraint automata feature a powerful com-
position operator that preserves synchrony: composite constructions not only
yield intuitively meaningful asynchronous protocols but also synchronous pro-
tocols. Constraint automata have been used as basis for tools, like compilers
and model checkers. Jongmans developed Lykos: a compiler that translates con-
straint automata into reasonably efficient executable Java code [13]. Baier, Blech-
mann, Klein, and Klüppelholz developed Vereofy, a model checker for constraint
automata [4,19]. Unfortunately, like every automaton model, composition of con-
straint automata suffers from state space and transition space explosions. These
explosions limit the scalability of the tools based on constraint automata.

To improve scalability, Clarke et al. developed a compiler that translates a
constraint automaton to a first-order formula [9]. The transitions of the con-
straint automaton correspond to the solutions of this formula. At run time, a
generic constraint solver finds these solutions and simulates the automaton. Since
composition and abstraction for constraint automata respectively correspond to
conjunction and existential quantification, the first-order specification does not
suffer from state space or transition space explosion. However, the approach pro-
posed by Clarke et al. only delays the complexity until run time: calling a generic
constraint solver at run time imposes a significant overhead.

Jongmans realized that the overhead of this constraint solver is not always
necessary. He developed a commandification algorithm that accepts constraints
without disjunctions (i.e., conjunctions of literals) and translates them into a
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small imperative program [14]. The resulting program is a light-weight, tailor-
made constraint solver with minimal run time overhead. Since commandification
accepts only constraints without disjunction, Jongmans applied this technique
to data constraints on individual transitions in a constraint automaton. Relying
on constraint automata, his approach still suffers from scalability issues [17].

We aim to prevent state space and transition space explosions by combining
the ideas of Clarke et al. and Jongmans. To this end, we present the language of
stream constraints: a generalization of constraint automata based on temporal
logic. A stream constraint is an expression that relates streams of observed data
at different locations (Sect. 2). We identify a subclass of stream constraints, called
regular (stream) constraints, which is closed under composition and abstraction
(Sect. 3). Regular constraints can be viewed as a constraint automata, and con-
junction of reflexive regular constraints is similar to composition of constraint
automata (Sect. 4).

A straightforward application of the commandification algorithm of Jong-
mans to regular stream constraints entails transforming a stream constraint into
disjunctive normal form and applying the algorithm to each clause separately.
However, the number of clauses in the disjunctive normal form may grow expo-
nentially in the size of the composition. To prevent such exponential blowups of
the size of the formula, we recognize and exploit symmetries in the disjunctive
normal form. Each clause in the disjunctive normal form can be constructed
from a set of basic stream constraints, which we call rules. This idea allows us
to represent a single large constraint as certain combination of a set of smaller
constraints, called the rule-based form (Sect. 5). We express the composition of
stream constraints in terms of the rule-based normal form (Sect. 6), and show
that, for simple sets of rules, the number of rules to describe the composition
is only linear in the size of the composition (Sect. 7). The class of stream con-
straints defined by a simple set of rules contains constraints for which the size of
the disjunctive normal form explodes, which shows that our approach improves
upon existing approaches by Clarke et al. and Jongmans. We express abstrac-
tion on stream constraints in terms of the rule-based normal form and provide a
sufficient condition under which the number of rules remains constant (Sect. 8).
Finally, we conclude and point out future work (Sect. 10).

Related work. Representation of stream constraints in rule-based form is part of
a larger line of research on symbolic approaches, such a symbolic model check-
ing [5,8,20] and symbolic execution [10]. These approaches not only use logic
(cf., SAT solving techniques [12,18] for verification), but also other implicit rep-
resentations, like binary decision diagrams [7] and Petri nets [21]. Petri nets
offer a small representation of protocols with an exponentially large state space.
While our focus is more on compilation, Petri nets have been studied in the
context of verification. As inspiration for future work, it is interesting to study
the similarities between Petri nets and stream constraints.

Since regular stream constraints correspond to constraint automata, we can
view regular stream constrains as a restricted temporal logic for which dis-
tributed synthesis is easy. In general, distributed (finite state) synthesis of
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protocols is undecidable [22,23]. Pushing the boundary from regular to a larger
class of stream constraints can be useful for more effective synthesis methods.

2 Syntax and Semantics

The semantics of constraint automata is defined as a relation over timed data
streams [3], which are pairs, each consisting of a non-decreasing stream of time
stamps and a stream of observed (exchanged) data items. The primary signifi-
cance of time streams is the proper alignment of their respective data streams,
by allowing “temporal gaps” during which no data is observed. For convenience,
we drop the time stream and model protocols as relations over streams of data,
augmented by a special symbol that designates “no-data” item.

We first define the abstract behavior of a protocol C. Fix an infinite set X
of variables, and fix a non-empty set of user-data Data ⊇ {0} that contains a
datum 0. Consider the data domain D = Data∪{∗} of data stream items, where
we use the “no-data” symbol ∗ ∈ D \ Data to denote the absence of data. We
model the a single execution of protocol C as a function

θ : X −→ DN (1)

that maps every variable x ∈ X to a function θ(x) : N −→ D that represents a
stream of data at location x. We call θ a data stream tuple (over X and D). For
all n ∈ N and all x ∈ X, the value θ(x)(n) ∈ D is the data that we observe at
location x and time step n. If θ(x)(n) = ∗, we say that no data is observed at x
in step n (i.e., we may view θ as a partial map N × X ⇀ Data). The behavior
of protocol C consists of the set

L(C) ⊆ (DN)X (2)

of all possible executions of C, called the accepted language of C. We can think
of accepted language L(C) as a relation over data streams. In this paper, we
study protocols that are defined as a stream constraint:

Definition 1 (Stream constraints). A stream constraint φ is an expression
generated by the following grammar

φ ::= ⊥ | t0
.= t1 | φ0 ∧ φ1 | ¬φ | ∃xφ | �φ

t ::= x | d | t′

where x ∈ X is a variable, d ∈ D is a datum, and t is a stream term.

We use the following standard syntactic sugar: � = ¬⊥, φ0 ∨ φ1 = ¬(¬φ0 ∧
¬φ1), ♦φ = ¬�¬φ, ¬(t1

.= t2) = (t1  .= t2), (t1
.= t2 ∧ · · · ∧ tn−1

.= tn) = (t1
.=

· · · .= tn), t(0) = t, and t(k+1) = (t(k))′, for all k ≥ 0. Following Rutten [25], we
call t(k), k ≥ 0, the k-th derivative of term t.

We interpret a stream constraint as a constraint over streams of data in DN.
For a datum d ∈ D, d is the constant stream defined as d(n) = d, for all n ∈ N.
The operator (−)′, called stream derivative, drops the head of the stream and
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is defined as σ′(n) = σ(n + 1), for all n ∈ N and σ ∈ DN. Streams can be
related by .= that expresses equality of their heads: x

.= y iff x(0) = y(0), for all
x, y ∈ DN. The modal operator � allows us to express that a stream constraint
holds after applying any number of derivatives to all variables. For example,
�(x .= y) iff x(k)(0) = y(k)(0), for all k ∈ N and x, y ∈ DN. Stream constraints
can be composed via conjunction ∧, or negated via negation ¬. Streams can be
hidden via existential quantification ∃.

Each stream term t evaluates to a data stream in DN. Let θ : X −→ DN be
a data stream tuple. We extend the domain of θ from the set of variables X to
the set of terms T ⊇ X as follows: we define θ : T −→ DN via θ(d) = d and
θ(t′) = θ(t)′, for all d ∈ D and terms t ∈ T .

Next, we interpret a stream constraint φ as a relation over streams.

Definition 2 (Semantics). The language L(φ) ⊆ (DN)X of a stream con-
straint φ over variables X and data domain D is defined as

1. L(⊥) = ∅;
2. L(t0

.= t1) = {θ : X −→ DN | θ(t0)(0) = θ(t1)(0)};
3. L(φ0 ∧ φ1) = L(φ0) ∩ L(φ1);
4. L(¬φ) = (DN)X \ L(φ);
5. L(∃xφ) = {θ : X −→ DN | θ[x �→ σ] ∈ L(φ), for some σ ∈ DN};
6. L(�φ) = {θ : X −→ DN | θ(k) ∈ L(φ), for all k ≥ 0},
where θ[x �→ σ] : X −→ DN is defined as θ[x �→ σ](x) = σ and θ[x �→ σ](y) =
θ(y), for all y ∈ X \ {x}; and θ(k) : X −→ DN is defined as θ(k)(x) = θ(x(k)),
for all x ∈ X.

Let φ and ψ be two stream constraints and θ : X −→ DN a data stream
tuple. We say that θ satisfies φ (and write θ |= φ), whenever θ ∈ L(φ). We say
that φ implies ψ (and write φ |= ψ), whenever L(φ) ⊆ L(ψ). We call φ and ψ
equivalent (and write φ ≡ ψ), whenever L(φ) = L(ψ).

Example 1. One of the simplest stream constraints is sync(a, b), which is defined
as �(a .= b). Constraint sync(a, b) encodes that the data streams at a and b are
equal: θ(a)(k) = θ(b)(k), for all k ∈ N and all θ ∈ (DN)X . Therefore, sync(a, b)
synchronizes the data flow observed at ports a and b.

Conjunction ∧ and existential quantification ∃ provide natural operators for
composition and abstraction for stream constraints. For example, the composi-
tion sync(a, b) ∧ sync(b, c) synchronizes ports a, b, and c. Hiding port b yields
∃b(sync(a, b) ∧ sync(b, c)), which is equivalent to sync(a, c). �
Example 2. Recall that x(k), for k ≥ 0, is the k-th derivative of x. We can
express that a stream x is periodic via the stream constraint �(x(k) .= x), for
some k ≥ 1. For k = 1, stream x is constant, like 0 and ∗. �
Example 3. The stream constraint fifo(a, b,m) defined as m

.= ∗ ∧ �((a .= m′ .=
0 ∧ b

.= m
.= ∗) ∨ (a .= m′ .= ∗ ∧ b

.= m
.= 0) ∨ (a .= b

.= ∗ ∧ m′ .= m)) models a
1-place buffer with input location a, output location b, and memory location m
that can be full (m .= 0) or empty (m .= ∗). �
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Example 4. Recall that ∗ models absence of data. Stream constraint �♦(a  .= ∗)
expresses that always eventually we observe some datum at a. A constraint of
such form can be used to define fairness. �

3 Regular Constraints

We identify a subclass of stream constraints that naturally correspond to con-
straint automata. We first introduce some notation.

To denote that a string s occurs as a substring in a stream constraint φ or a
stream term t, we write s ∈ φ or s ∈ t, respectively.

Every stream constraint φ admits a set free(φ) ⊆ X of free variables, defined
inductively via free(⊥) = ∅, free(t0

.= t1) = {x ∈ X | x ∈ t0 or x ∈ t1},
free(φ0 ∧ φ1) = free(φ0) ∪ free(φ1), free(¬φ) = free(�φ) = free(φ), and
free(∃xφ) = free(φ) \ {x}.

For every variable x ∈ X, we define the degree of x in φ as

degx(φ) = max({−1} ∪ {k ≥ 0 | x(k) ∈ φ}),

and the degree of φ as deg(φ) = maxx∈X degx(φ). Note that for x /∈ φ we have
degx(φ) = −1. For k ≥ 0, we write freek(φ) = {x ∈ free(φ) | degx(φ) = k} for
the set of all free variables of φ of degree k.

We call a variable x of degree zero in φ a port variable and write P (φ) =
free0(φ) for the set of port variables of φ. We call a variable x of degree one or
higher in φ a memory variable and write M(φ) =

⋃
k≥1 freek(φ) for the set of

memory variables of φ.

Definition 3 (Regular). A stream constraint φ is regular if and only if
φ = ψ0 ∧ �ψ, such that � /∈ ψ0 ∧ ψ and degx(ψ0) < degx(ψ) ≤ 1, for all x ∈ X.

For a regular stream constraint φ = ψ0∧�ψ, we refer to ψ0 as the initial con-
dition of φ and we refer to ψ as the invariant of φ. Stream constraints sync(a, b)
and fifo(a, b,m) in Examples 1 and 3 are regular stream constraints.

A regular stream constraint φ has an operational interpretation in terms of
a labeled transition system �φ�. States of the transition system consist of maps
q : M(φ) −→ D that assign data to memory locations, and its labels consist of
maps α : P (φ) −→ D that assign data to ports. We write Q(φ) for the set of
states of φ and A(φ) for the set of labels of φ.

Definition 4 (Operational semantics). The operational semantics �φ� of a
regular stream constraint φ = ψ0 ∧ �ψ consists of a labeled transition system
(Q(φ), A(φ),→, Q0), with set of states Q(φ), set of labels A(φ), set of transitions
→ = {(qφ(θ), qφ(θ′), αφ(θ)) | θ ∈ L(ψ)}, and set of initial states Q0 = {qφ(θ) |
θ ∈ L(ψ0 ∧ ψ)}, where

1. qφ(θ) : M(φ) −→ D is defined as qφ(θ)(x) = θ(x)(0), for x ∈ M(φ); and
2. αφ(θ) : P (φ) −→ D is defined as αφ(θ)(x) = θ(x)(0), for x ∈ P (φ).

and θ′ is defined as θ′(x)(n) = θ(x)(n + 1), for all x ∈ X and n ∈ N.
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[a �→ 0, b ∗→� ]

[a ∗→� , b �→ 0]

[a �→ ∗, b ∗→� ] [a ∗→� , b ∗→� ]

Fig. 1. Semantics of fifo(a, b, m) over the trivial data domain {0, ∗}.

Example 5. Consider the regular stream constraint fifo(a, b,m) from Example 3.
Note that in this example, the set of ports equals free0(fifo) = {a, b} and the set
of memory locations equals free1(fifo) = {m}. The semantics of fifo(a, b,m) over
the trivial data domain D = {0, ∗} consists of 4 transitions:

1. ([m �→ ∗], [m �→ 0], [a �→ 0, b �→ ∗]);
2. ([m �→ 0], [m �→ ∗], [a �→ ∗, b �→ 0]); and
3. ([m �→ d], [m �→ d], [a �→ ∗, b �→ ∗]), for every d ∈ {∗, 0}.

Figure 1 shows the semantics of fifo over the trivial data domain. �
Equivalent stream constraints do not necessarily have the same operational

semantics. We are, therefore, interested in operational equivalence of constraints:

Definition 5 (Operational equivalence). Stream constraints φ and ψ are
operationally equivalent (φ � ψ) iff φ ≡ ψ and freek(φ) = freek(ψ), for k ≥ 0.

Example 6. Let φ be a stream constraint, let t be a term and let x /∈ t be a
variable that does not occur in t. Then, we have ∃x(x .= t ∧ φ) ≡ φ[t/x], where
φ[t/x] is obtained from φ by substituting t for every free occurrence of x. Observe
that ∃x(x .= t ∧ φ) and φ[t/x] may admit different sets of free variables: if φ is
just � and t is a variable y, the equivalence amounts to ∃x(x .= y) ≡ �. To
ensure that the free variables coincide, we can add the equality t

.= t and obtain
the operational equivalence ∃x(x .= t ∧ φ) � φ[t/x] ∧ t

.= t. �
Operational equivalence of stream constraints φ and ψ implies that their

operational semantics are identical, i.e., �φ� = �ψ�. It is possible to introduce
weaker equivalences by, for example, demanding that �φ� and �ψ� are only weakly
bisimilar. Such weaker equivalence offer more room for simplification of stream
constraints than operational equivalence does. As our work does not need this
generality, we leave the study of such weaker equivalences as future work.

The most important operations on stream constraints are composition (∧)
and hiding (∃). The following result shows that regular stream constraints are
closed under conjunction and existential quantification of degree zero variables.

Theorem 1. For all stream constraints φ and ψ and variables x, we have

1. �φ ∧ �ψ ≡ �(φ ∧ ψ); and
2. ∃x�φ ≡ �∃xφ, whenever degx(φ) ≤ 0 and � /∈ φ.
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Proof. For assertion 1, L(�φ ∧ �ψ) = {θ ∈ (DN)X | ∀k ≥ 0 : θ(k) |= φ ∧ ψ} =
L(�(φ ∧ ψ)) shows that �φ ∧ �ψ ≡ �(φ ∧ ψ).

For assertion 2, suppose that degx(φ) ≤ 0 and � /∈ φ. We show that θ ∈
L(�∃xφ) if and only if θ ∈ L(∃x�φ), for all θ ∈ (DN)X . By Definition 2, this
equivalence can be written as

θ(k)[x �→ μk] |= φ ⇔ (θ[x �→ σ])(k) |= φ, (3)

for all k ≥ 0, σ ∈ DN, and μk ∈ DN such that μk(0) = σ(k)(0).
To prove Eq. (3), we proceed by induction on the length of φ:
Case 1 (φ := ⊥): Since L(⊥) = ∅, Eq. (3) holds trivially.
Case 2 (φ := t0

.= t1): Observe that, since degx(φ) ≤ 0, for all terms t, we
have x ∈ t iff t = x. We conclude Eq. (3) from μk(0) = σ(k)(0) and

θ(k)[x �→ μk](t)(0) =

{
μk(0) if t = x

θ(k)(t)(0) if t = x

}

= (θ[x �→ σ])(k)(t)(0).

Case 3 (φ := ψ0 ∧ ψ1): By the induction hypothesis, Eq. (3) holds for ψ0 and
ψ1. By conjunction of Eq. (3), we conclude Eq. (3) for φ.

Case 4 (φ := ¬ψ): By the induction hypothesis, Eq. (3) holds for ψ. By
contraposition of Eq. (3), we conclude Eq. (3) for φ.

Case 5 (φ := ∃yψ): If y = x, then x /∈ free(φ) and both sides in Eq. (3) are
equivalent to θ(k) |= φ. Hence, Eq. (3) holds for y = x. Suppose y = x. Then,
θ(k)[x �→ μk] |= φ is equivalent to (θ[y �→ τ ])(k)[x �→ μk] |= ψ, for some τ ∈ DN.
Applying the induction hypothesis for θ equal to θ[y �→ τ ], we conclude that
θ(k)[x �→ μk] |= φ is equivalent to (θ[y �→ τ ][x �→ σ])(k) |= ψ, for some τ ∈ DN.
Since y = x, we conclude that Eq. (3) holds.

We conclude that the claim holds for all φ with degx(φ) ≤ 0 and � /∈ φ. �

4 Reflexive Constraints

Conjunction of stream constraints is a simple syntactic composition operator
with clear semantics: a data stream tuple θ satisfies a conjunction φ0 ∧φ1 if and
only if θ satisfies both φ0 and φ1. In view of the semantics of regular stream
constraints in Definition 2, it is less obvious how �φ0 ∧ φ1� relates to �φ0� and
�φ1�. The following result characterizes their relation when no memory is shared.

Theorem 2. Let φ0 and φ1 be regular stream constraints such that free(φ0) ∩
free(φ1) ⊆ P (φ0 ∧ φ1), and let (qi, q

′
i, αi) ∈ Q(φi)2 × A(φi), for i ∈ {0, 1}. The

following are equivalent:

1. q0
α0−→ q′

0 in �φ0�, q1
α1−→ q′

1 in �φ1�, and α0|P (φ1) = α1|P (φ0);
2. q0 ∪ q1

α0∪α1−−−−→ q′
0 ∪ q′

1 in �φ0 ∧ φ1�,

where | is restriction of maps, and ∪ is union of maps.
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Proof. Write φi = ψi0 ∧ �ψi, with � /∈ ψi0 ∧ ψi and degx(ψi0) < degx(ψi) ≤ 1,
for all x ∈ X. Then, freek(φi) = freek(ψi), for all i, k ∈ {0, 1}.

Suppose that assertion 1 holds. By Definition 2, we find, for all i ∈ {0, 1},
some θi ∈ L(ψi) such that qi = qφi

(θi), q′
i = qφi

(θ′
i), and αi = αφi

(θi). Define
θ : X −→ DN by θ(x) = θi(x), if x ∈ free(φi), and θ(x) = ∗, otherwise. Since
free(φ0) ∩ free(φ1) ⊆ P (φ0 ∧ φ1) and α0|P (φ1) = α1|P (φ0), we have that θ0(x) =
θ1(x), for all x ∈ free(φ0) ∩ free(φ1). Hence, θ is well-defined. By construction,
θ |= ψ0 and θ |= ψ1. By Definition 2, we have θ |= ψ0∧ψ1. By Theorem 1, we have
φ0 ∧φ1 = ψ00 ∧ψ10 ∧�(ψ0 ∧ψ1). Since q0 ∪ q1 = qφ0∧φ1(θ), q′

0 ∪ q′
1 = qφ0∧φ1(θ

′),
and α0 ∪ α1 = αφ0∧φ1(θ), we conclude assertion 2.

Suppose that assertion 2 holds. We find some θ ∈ L(ψ0 ∧ ψ1), such that
q0 ∪ q1 = qθ, q′

0 ∪ q′
1 = qθ′ , and α0 ∪ α1 = αθ. Then, we conclude assertion 1, for

qi = qφi
(θ), q′

i = qφi
(θ′), and αi = αφi

(θ). �

Stream constraints φ0 and φ1 without shared variables (free(φ0)∩ free(φ1) =
∅) seem completely independent. However, Theorem 2 shows that their com-
position φ0 ∧ φ1 admits a transition only if φ0 and φ1 admit respective local
transitions (q0, q′

0, α0) and (q1, q′
1, α1), such that α0|P (φ1) = α1|P (φ0). Since φ0

and φ1 do not share variables, the latter condition on α0 and α1 is trivially
satisfied. Still, for one protocol φi, with i ∈ {0, 1}, to make progress in the
composition φ0 ∧ φ1, constraint φ1−i must admit an idling transition.

To allow such independent progress, we assume that φ1−i admits an idling
transition (q, q, τ), where τ is the silent label over P (φ1−i). The silent label over
a set of ports P ⊆ X is the map τ : P −→ D that maps x ∈ P to ∗ ∈ D. If such
idling transitions are available in every state of φ1, we say that φ1 is reflexive:

Definition 6 (Reflexive). A stream constraint φ is reflexive if and only if
q

τ−→ q in �φ�, for all q ∈ Q(φ).

For regular constraints, we can define reflexiveness also syntactically, for
which we need some notation. For a variable x ∈ X and an integer k ∈ N∪{−1},
we define the predicate x†k (pronounced: “x is blocked at step k”) as follows:

x†k := (x(k) .= x(k−1)), with x(k) .= ∗, for all k < 0.

Predicate x†−1 ≡ � is trivially true. Predicate x†0 ≡ (x .= ∗) means that we
observe no data flow at port x. Predicate x†1 ≡ (x′ .= x) means that the data
in memory variable x remains the same.

We now provide a syntactic equivalent of Definition 6 for regular constraints.

Lemma 1. A regular stream constraint φ = ψ0 ∧ �ψ is reflexive if and only if∧
x∈X x†d(x) |= ψ, where d(x) = degx(φ), for all x ∈ X.

Proof. Since d(x) = −1, for all but finitely many x ∈ X, the stream constraint∧
x∈X x†d(x) is well-defined. By definition,

∧
x∈X x†d(x) |= ψ if and only if, for

all q ∈ Q(φ), there exists some θ ∈ L(ψ), such that qθ = qθ′ = q and αθ = τ . �
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Example 7. The stream constraint sync(a, b) := �(a .= b) from Example 1 is
reflexive, because

∧
x∈X x†d(x) = a

.= ∗ ∧ b
.= ∗ implies a

.= b. The stream
constraint fifo from Example 3 is reflexive, because

∧
x∈X x†d(x) = a

.= ∗ ∧ b
.=

∗ ∧ m′ .= m is one of the clauses of fifo. �
Theorem 2 suggests a composition operator × on labeled transition systems,

satisfying �φ0�×�φ1� = �φ0∧φ1�. For reflexive constraints φ0 and φ1, composition
× simulates composition of constraint automata [6]. Constraint automata also
feature a hiding operator that naturally corresponds to existential quantification
∃ for stream constraints. We leave a full formal comparison between stream
constraints and constraint automata as future work.

5 Rule-Based Form

The commandification algorithm developed by Jongmans accepts only conjunc-
tions of literals [14]. To apply commandification to the invariant ψ of an arbitrary
regular stream constraint ψ0∧�ψ, we can first transform ψ into disjunctive nor-
mal form (DNF). However, the number of clauses in the disjunctive normal form
may be exponential in the length of the constraint. In this section, we introduce
an alternative to the disjunctive normal form that prevents such exponential
blow up, for a strictly larger class of stream constraints. Our main observation is
that the clauses of the disjunctive normal form may contain many symmetries,
in the sense that we may generate all clauses from a set of stream constraints R,
called a set of rules. A rule is a stream constraint ρ, such that deg(ρ) ≤ 1 and
� /∈ ρ.

Definition 7 (Rule-based form). A reflexive stream constraint φ is in rule-
based form iff φ equals

rbf(R) =
∧

x∈free(R)

x†d(x) ∨
∨

ρ∈R:x∈free(ρ)

ρ (4)

with R a finite set of rules, free(R) =
⋃

ρ∈R free(ρ), and d(x) = maxρ∈R degx(ρ).
A stream constraint φ is defined by R iff φ � rbf(R).

We apply the rule-based form to the invariant of regular constraints, via
ψ0 ∧ � rbf(R), for some degree zero stream constraint ψ0 and set of rules R.
Intuitively, R remains smaller than the DNF of rbf(R) under composition.

Example 8. ψ � rbf({ψ}), for all reflexive stream constraints ψ, with deg(ψ) ≤ 1
and � /∈ ψ. Hence, Example 7 shows sync(a, b) = �(a .= b) � � rbf({a

.= b}). �
Example 9. The stream constraint lossy(a, b) := � rbf({a

.= a, a
.= b}) is equiv-

alent to �(b .= ∗ ∨ a
.= b). Note that � rbf({�, a

.= b}) � � rbf({a
.= b}) �

sync(a, b). Hence, rules a
.= a and � are very different. �
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Example 10. The set of rules that define a stream constraint is not unique.
Consider the stream constraint fifo from Example 3. On the one hand, we have
fifo(a, b,m) � m

.= ∗∧� rbf({ϕ,ψ}), where ϕ � a
.= m′ .= 0∧m

.= ∗ models the
action that puts data in the buffer and ψ � m′ .= ∗∧b

.= m
.= 0 models the action

that takes data out of the buffer. On the other hand, we have fifo(a, b,m) � m
.=

∗ ∧ � rbf({a
.= m′ .= 0 ∧ b

.= m
.= ∗, a

.= m′ .= ∗ ∧ b
.= m

.= 0}). �
Example 11. Rule-based forms are an alternative to disjunctive normal forms.
Consider the reflexive constraint φ :=

∨n
i=1 ρi in DNF for which the first con-

junctive clause ρ1 is equivalent to
∧

x∈free(φ) x†d(x), with d(x) = degx(φ). By
adding equalities of the form x

.= x, we assume without loss of generality that
free(ρi) = free(φ), for all 2 ≤ i ≤ n. For R = {ρi | 2 ≤ i ≤ n}, it follows from

rbf(R) ≡
∧

x∈free(R)

⎛

⎝x †d(x) ∨
∨

ρ∈R

ρ

⎞

⎠ ≡
⎛

⎝
∧

x∈free(φ)

x†d(x)

⎞

⎠ ∨
∨

ρ∈R

ρ ≡ φ (5)

that φ is defined by the set R. �
Definition 7 presents the rule-based form as a conjunctive normal form. The

following result computes the disjunctive normal form of rbf(R).

Lemma 2. For every set of rules R, we have

rbf(R) � dnf(R) :=
∨

T⊆R

∧

ρ∈T

ρ ∧
∧

x∈free(R)\free(T )

x†d(x).

Proof. Let x ∈ X be arbitrary. By construction, we have degx(dnf(R)) ≤
maxρ∈R degx(ρ). Since d(x) = maxρ∈R degx(ρ), the clause for T = ∅ shows
that degx(dnf(R)) ≥ d(x). By Lemma 4, degx(rbf(R)) = degx(dnf(R)), for all
x ∈ X. Hence, freek(rbf(R)) = freek(dnf(R)), for all k ≥ 0.

Next, we show that rbf(R) |= dnf(R). Let θ ∈ L(rbf(R)). We find, for every
x ∈ free(R), some rule ρx ∈ R, such that θ |= ρ and x ∈ free(ρ). Now, define Tθ :=
{ρx | x ∈ free(R) and θ /∈ L(x†d(x))}. By construction, θ |= ρx, for every ρx ∈ Tθ.
If x ∈ free(R) and θ /∈ L(x†d(x)), then ρx ∈ Tθ and x ∈ free(ρx) ⊆ free(Tθ). By
contraposition, we conclude that θ |= x†d(x), for all x ∈ free(R)\ free(Tθ). Hence,
θ |= dnf(R), and L(rbf(R)) ⊆ L(dnf(R)).

Finally, we show that dnf(R) |= rbf(R). Let θ ∈ L(dnf(R)). By definition of
dnf(R), we find some T ⊆ R with θ |= ρ, for all ρ ∈ T , and θ |= x†d(x), for all
x ∈ free(R)\ free(T ). Suppose that x ∈ free(R) and θ |= x†d(x). Since θ |= x†d(x),
for all x ∈ free(R) \ free(T ), we find by contraposition that x ∈ free(T ). Hence,
we find some ψ ∈ T with x ∈ free(ψ). Since θ |= ρ, for all ρ ∈ T , we find that
θ |= ψ. Hence, θ |= rbf(R) and we conclude that rbf(R) � dnf(R). �

6 Composition

We express conjunction of stream constraints in terms of their defining sets of
rules. That is, for two sets of rules R0 and R1, we define the composition R0∧R1
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of R0 and R1, such that rbf(R0 ∧ R1) � rbf(R0) ∧ rbf(R1). If R0 and R1 do not
share any variable (i.e., free(R0) ∩ free(R1) = ∅), composition R0 ∧ R1 is given
by the union R0 ∪ R1. In this section, we define the composition R0 ∧ R1 of R0

and R1 for free(R0) ∩ free(R1) = ∅.
In view of Example 11, consider the normal form dnf(R0∧R1). Since dnf(R0∧

R1) equals dnf(R0) ∧ dnf(R1), it suffices to characterize the set of clauses of
dnf(R0)∧dnf(R1). Every such clause is a conjunction of a clause in dnf(R0) and
a clause in dnf(R1). Lemma 2 shows that the clauses of dnf(Ri) correspond to
subsets Ti of Ri, for all i ∈ {0, 1}. Not every pair of subsets T0 ⊆ R0 and T1 ⊆ R1

yields a clause of dnf(R0) ∧ dnf(R1), but only if S = T0 ∪ T1 is synchronous:

Definition 8 (Synchronous). A synchronous set over sets of rules R0 and R1

is a subset S ⊆ R0 ∪R1, with free(S)∩ free(Ri) ⊆ free(S ∩Ri), for all i ∈ {0, 1}.
Example 12. For any integer i ≥ 1, let ϕi := ai

.= m′
i

.= 0 ∧ mi
.= ∗ and

ψi := m′
i

.= ∗∧ai+1
.= mi

.= 0 be the two rules that define fifo(ai, ai+1,mi), from
Example 10. The synchronous sets consist of exactly those sets S ⊆ {ϕ1, ψ1} ∪
{ϕ2, ψ2} that satisfy ψ1 ∈ S iff ϕ2 ∈ S. That is, the synchronous sets are given
by ∅, {ϕ1}, {ψ2}, {ψ1, ϕ2}, {ϕ1, ψ1, ϕ2}, {ψ1, ϕ2, ψ2}, {ϕ1, ψ1, ϕ2, ψ2}. �

Next, we recognize symmetries in the collection of synchronous sets. We can
construct every synchronous set as a union of irreducible synchronous subsets:

Definition 9 (Irreducibility). A non-empty synchronous set ∅ = S ⊆ R0∪R1

is irreducible if and only if S = S0 ∪ S1 implies S = S0 or S = S1, for all
synchronous subsets S0, S1 ⊆ R0 ∪ R1.

Example 13. Let R0 and R1 be sets of rules, and let ρ ∈ R0 be a rule, such
that free(ρ) ∩ free(R1) = ∅. We show that {ρ} is irreducible synchronous. Since
free({ρ}) ∩ free(R0) = free(ρ) = free({ρ} ∩ R0) and free({ρ}) ∩ free(R1) = ∅ ⊆
free({ρ} ∩ R1), we conclude that {ρ} is synchronous. Suppose {ρ} = S0 ∪ S1.
Then, ρ ∈ Si, for some i ∈ {0, 1}. Hence, {ρ} ⊆ Si ⊆ {ρ}, which shows that
Si = {ρ}. We conclude that {ρ} is irreducible synchronous in R0 ∪ R1. �
Example 14. Consider ϕi and ψi, for i ∈ {1, 2}, from Example 12. The irre-
ducible synchronous sets of {ϕ1, ψ1}∪{ϕ2, ψ2} are {ϕ1}, {ψ2}, and {ψ1, ϕ2}. �
Definition 10 (Composition). The composition of sets of rules R0 and R1 is
R0 ∧ R1 := {∧

ρ∈S ρ | S ⊆ R0 ∪ R1 irreducible synchronous}.
Example 15. Let R0 and R1 be sets of rules, with free(R0) ∩ free(R1) = ∅. By
Example 13, we find that {ρ} ⊆ R0 ∪ R1, for all ρ ∈ R0 ∪ R1, is irreducible syn-
chronous. Hence, every synchronous set S ⊆ R0 ∪ R1, with |S| ≥ 2, is reducible.
Therefore, S ⊆ R0 ∪ R1 is irreducible synchronous if and only if S = {ρ}, for
some ρ ∈ R0 ∪ R1. We conclude that R0 ∧ R1 = R0 ∪ R1. Consequently, ∅ is a
(unique) identity element with respect to composition ∧ of sets of rules. �

To show that the composition of sets of rules coincides with conjunction of
stream constraints, we need the following result that shows that every non-empty
synchronous set can be covered by irreducible synchronous sets.
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Lemma 3. Let R0 and R1 be sets of rules, and let S ⊆ R0 ∪R1 be a non-empty
synchronous set. Then, S =

⋃n
i=1 Si, where Si ⊆ R0 ∪ R1, for 1 ≤ i ≤ n, is

irreducible synchronous.

Proof. We prove the lemma by induction on the size |S| of S. For the base
case, suppose that |S| = 1. We show that S is irreducible synchronous, which
provides a trivial covering. Suppose that S = S0 ∪S1, for some synchronous sets
S0, S1 ⊆ R0∪R1. Since, |S| = 1, we have S ⊆ Si ⊆ S, for some i ∈ {0, 1}. Hence,
S = Si, and S is irreducible. We conclude that the lemma holds, for |S| = 1.

For the induction step, suppose that |S| = k > 1, and suppose that the
lemma holds, for |S| < k. If S is irreducible, we find a trivial covering of S.
If S is reducible, we find S = S0 ∪ S1, where S0 = S = S1 are synchronous
sets in R0 ∪ R1. Since |Si| < |S|, for i ∈ {0, 1}, we find by the hypothesis that
Si =

⋃ni

j=1 Sij . Hence, S = S0 ∪ S1 =
⋃1

i=0

⋃ni

j=1 Sij . We conclude that the
lemma holds, for |S| = k. By induction on |S|, we conclude the lemma. �

Lemma 4. degx(rbf(R)) = maxρ∈R degx(ρ), for all sets of rules R and x ∈ X.

Proof. For any set of rules R and y ∈ X, we have

degy(rbf(R)) = max
x∈free(R)

max(degy(x†d(x)), max
ρ∈R:x∈free(ρ)

degy(ρ)).

Note that degy(x†d(x)) = d(y), if y = x, and degy(x†d(x)) = −1, otherwise. Since
d(y) = maxρ∈R degy(ρ), we have degy(rbf(R)) = maxρ∈R degy(ρ). �

Theorem 3. rbf(R0 ∧R1) � rbf(R0)∧ rbf(R1), for all sets of rules R0 and R1.

Proof. By Lemma 4 and Definition 10, degx(rbf(R0 ∧ R1)) = degx(rbf(R0) ∧
rbf(R1)), for all x ∈ X. Hence, freek(rbf(R0 ∧ R1)) = freek(rbf(R0) ∧ rbf(R1)),
for all k ≥ 0.

Next, we show rbf(R0) ∧ rbf(R1)) |= rbf(R0 ∧ R1). Let θ ∈ L(rbf(R0) ∧
rbf(R1)). By Definition 7, we must show that for every x ∈ free(R0 ∧ R1) there
exists some ρx ∈ R0 ∧R1 such that x ∈ free(ρx) and either θ |= x†d(x) or θ |= ρx.
Hence, suppose that θ /∈ L(x†d(x)), for some variable x ∈ free(R0 ∧ R1). Since
free(R0 ∧ R1) = free(R0) ∪ free(R1) and θ |= free(R0) ∧ free(R1), we find from
Definition 7 some ψ ∈ R0 ∪ R1, with θ |= ψ and x ∈ free(ψ). We now show
that there exists an irreducible synchronous set S ⊆ R0 ∪ R1, such that, for
ρx :=

∧
ρ∈S ρ, we have θ |= ρx and x ∈ free(ρx). By repeated application of

Definition 8, we construct a finite sequence

{ψ} = S0 � · · · � Sn,

such that Sn ⊆ R0∪R1 is synchronous, and θ |= ∧
ρ∈Sn

ρ. Suppose Sk ⊆ R0∪R1,
for k ≥ 1, is not synchronous. By Definition 8, there exists some i ∈ {0, 1} and a
variable x ∈ free(Sk) ∩ free(Ri), such that x /∈ free(Sk ∩ Ri). Since x ∈ free(Ri),
we have Rx

i := {ρ ∈ Ri | x ∈ free(ρ)} = ∅. Since θ |= rbf(Ri), there exists some
ψk ∈ Rx

i such that θ |= ψk. Now define Sk+1 := Sk∪{ψk}. Since x /∈ free(Sk∩Ri)
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ϕ1
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ϕ2

ψ2

a1

m1

a2

m2

a3

(a)
∧2

i=1 rbf({ϕi, ψi})

ϕ1

ψ1 ∧ ϕ2

ψ2

a1

m1

a2

m2

a3

(b) rbf(
∧2

i=1{ϕi, ψi})

Fig. 2. Hypergraph representations of
∧2

i=1 fifo(ai, ai+1, mi).

and x ∈ free(Sk+1 ∩ Ri), we have a strict inclusion Sk � Sk+1. Due to these
strict inclusions, we have, for k ≥ |R0 ∪ R1|, that Sk = R0 ∪ R1, which is
trivially synchronous in R0 ∪ R1. Therefore, our sequence S0 � · · · of inclusions
terminates, from which we conclude the existence of Sn. By Lemma 3, we find
some irreducible synchronous set S ⊆ Sn, such that ψ ∈ S. We conclude that
ρx :=

∧
ρ∈S ρ ∈ R0∧R1 satisfies θ |= ρx and x ∈ free(ψ) ⊆ free(S) = free(ρx). By

Definition 7, we have θ |= rbf(R0 ∧ R1), and rbf(R0) ∧ rbf(R1) |= rbf(R0 ∧ R1).
Finally, we prove that rbf(R0 ∧R1) |= rbf(R0)∧ rbf(R1). Let θ ∈ L(rbf(R0 ∧

R1)). We show that θ |= rbf(Ri), for all i ∈ {0, 1}. By Definition 7, we must show
that for every i ∈ {0, 1} and every x ∈ free(Ri) there exists some ρ ∈ Ri such that
x ∈ free(ρ) and either θ |= x†d(x) or θ |= ρ. Hence, let i ∈ {0, 1} and x ∈ free(Ri)
be arbitrary, and suppose that θ /∈ L(x†d(x)). Since free(Ri) ⊆ free(R0 ∧ R1),
it follows from our assumption θ |= rbf(R0 ∧ R1) that θ |= ∧

ρ∈S ρ, for some
irreducible synchronous set S ⊆ R0∪R1 satisfying x ∈ free(S). Since S ⊆ R0∪R1

synchronous, we find that x ∈ free(S) ∩ free(Ri) = free(S ∩ Ri). Hence, we
find some ρ ∈ S ∩ Ri, such that θ |= ρ and x ∈ free(ρ). By Definition 7,
we conclude that θ |= rbf(Ri), for all i ∈ {0, 1}. Therefore, rbf(R0 ∧ R1) �
rbf(R0) ∧ rbf(R1). �

Example 16. Let ϕi and ψi, for i ≥ 1, be the rules from Example 12. By Exam-
ple 14, the composition fifo2 :=

∧2
i=1 fifo(ai, ai+1,mi) is defined by the set of

rules {ϕ1, ψ1 ∧ ϕ2, ψ2}.1 To compute a set of rules that defines the composition,
it is not efficient to enumerate all (exponentially many) synchronous subsets of
R0 ∪ R1 and remove all reducible sets. Our tools use an algorithm based on

1 The rules for the composition of two fifo stream constraints has striking similarities
with synchronous region decomposition developed by Proença et al. [24]. Indeed, ϕ1,
ψ1 ∧ ϕ2, and ψ2 correspond to the synchronous regions in the composition of two
buffers. Therefore, rule-based composition generalizes synchronous region decompo-
sition that has been used as a basis for generation of parallel code [15].
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hypergraph transformations to compute the irreducible synchronous sets. The
details of this algorithm fall outside the scope of this paper. Figure 2 shows a
graphical representation of composition fifo2, using hypergraphs. These hyper-
graphs consist of sets of hyperedges (x, F ), where x is a variable and F is a set
of rules. Each hyperedge (x, F ) in a hypergraph corresponds to a disjunction
x†d(x) ∨ ∨

ρ∈F ρ of the rule-based form in Definition 7. �

7 Complexity

In the worst case, composition R0 ∧R1 of arbitrary sets of rules R0 and R1 may
consists of |R0| × |R1| rules. However, if R0 and R1 are simple, the size of the
composition is bounded by |R0| + |R1|.
Definition 11 (Simple). A set R of rules is simple if and only if free(ρ) ∩
free(ρ′) ∩ P (rbf(R)) = ∅ implies ρ = ρ′, for every ρ, ρ′ ∈ R.

Example 17. By Example 10, the invariant of fifo(a, b,m) is defined by R :=
{a

.= m′ .= 0 ∧ m
.= ∗,m′ .= ∗ ∧ b

.= m
.= 0} as well as R′ := {a

.= m′ .= 0 ∧ b
.=

m
.= ∗, a

.= m′ .= ∗ ∧ b
.= m

.= 0}. The set R is simple, while R′ is not. �
Lemma 5. Let R0 and R1 be sets of rules, such that free(R0) ∩ free(R1) ⊆
P (rbf(R0 ∪ R1)), and let S ⊆ R0 ∪ R1 be synchronous. Let GS be a graph with
vertices S and edges ES = {(ρ, ρ′) ∈ S2 | free(ρ)∩free(ρ′)∩P (rbf(R0∪R1)) = ∅}.
If S irreducible, then GS is connected.

Proof. Suppose that GS is disconnected. We find ∅ = S0, S1 ⊆ S, with S0∪S1 =
S, S0 ∩ S1 = ∅ and free(S0) ∩ free(S1) ∩ P (rbf(R0 ∪ R1)) = ∅. We show that
S0 and S1 are synchronous. Let i, j ∈ {0, 1} and x ∈ free(Si) ∩ free(Rj). We
distinguish two cases:

Case 1 (x ∈ free(R1−j)): Then, x ∈ free(R0) ∩ free(R1) ⊆ P (rbf(R0 ∪ R1)).
Since free(S0)∩free(S1)∩P (rbf(R0∪R1)) = ∅, we have x /∈ free(S1−i). Since S is
synchronous, we have x ∈ free(Si)∩ free(Rj) ⊆ free(S)∩ free(Rj) ⊆ free(S ∩Rj).
Hence, we find some ρ ∈ S ∩ Rj , with x ∈ free(ρ). Since x /∈ free(S1−i), we
conclude that ρ ∈ Si ∩ Rj . Thus, x ∈ free(Si ∩ Rj), if x ∈ free(R1−j).

Case 2 (x /∈ free(R1−j)): Since x ∈ free(Si), we find some ρ ∈ Si, with
x ∈ free(ρ). Since x /∈ free(R1−j), we conclude that ρ ∈ Rj . Hence, x ∈ free(ρ) ⊆
free(Si ∩ Rj), if x /∈ free(R1−j).

We conclude in both cases that x ∈ free(ρ) ⊆ free(Si ∩Rj). Hence, free(Si)∩
free(Rj) ⊆ free(Si ∩ Rj), for all i, j ∈ {0, 1}, and we conclude that S0 and
S1 are synchronous. Since S0 = S = S1, we conclude that S is reducible. By
contraposition, we conclude that GS is connected, whenever S is irreducible. �

Lemma 6. Let R0 and R1 be simple sets of rules, with free(R0) ∩ free(R1) ⊆
P (rbf(R0∪R1)), and let S0, S1 ⊆ R0∪R1 be irreducible synchronous. If S0∩S1 =
∅, then S0 = S1.
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Proof. Suppose that S0 ∩ S1 = ∅. Then, there exists some ρ0 ∈ S0 ∩ S1. We
show that Si ⊆ S1−i, for all i ∈ {0, 1}. Let i ∈ {0, 1}, and ρ ∈ Si. By Lemma 5,
we find an undirected path in GSi

from ρ0 to ρ. That is, we find a sequence
ρ0ρ1 · · · ρn ∈ S∗, such that ρn = ρ and (ρi, ρi+1) ∈ ESi

, for all 0 ≤ i < n. We
show by induction on n ≥ 0, that ρn ∈ S1−i. For the base case (n = 0), observe
that ρn = ρ0 ∈ S0 ∩ S1 ⊆ S1−i. For the induction step, suppose that ρn ∈ S1−i.
By construction of GSi

, we find that free(ρn)∩ free(ρn+1)∩P01 = ∅, where P01 =
P (rbf(R0 ∪ R1)). Let j ∈ {0, 1}, such that ρn+1 ∈ Rj . Since ρn ∈ S1−i and S1−i

is synchronous, we have ∅ = free(S1−i) ∩ free(Rj) ∩ P01 = free(S1−i ∩ Rj) ∩ P01.
We find some ρ′ ∈ S1−j ∩ Rj , with free(ρn+1) ∩ free(ρ′) ∩ P01 = ∅. Since Rj is
simple, we have ρn+1 = ρ′ ∈ S1−i, which concludes the proof by induction. It
follows from ρn ∈ S1−i that Si ⊆ S1−i, for all i ∈ {0, 1}, that is, S0 = S1. �

As seen in Lemma 2, the number of clauses in the disjunctive normal form
dnf(R0 ∧ R1) can be exponential in the number of rules |R0 ∧ R1| of the compo-
sition of R0 and R1. However, the following (main) theorem shows the number
of rules required to define

∧
i φi is only linear in k.

Theorem 4. If R0 and R1 are simple sets of rules, and free(R0) ∩ free(R1) ⊆
P (rbf(R0 ∪ R1)), then R0 ∧ R1 is simple and |R0 ∧ R1| ≤ |R0| + |R1|.
Proof. From Lemmas 3 and 6, we find that the irreducible synchronous subsets
partition R0 ∪ R1. We conclude that |R0 ∧ R1| ≤ |R0| + |R1|. We now show
that R0 ∧ R1 is simple. Let ρ0 and ρ1 be rules in R0 ∧ R1, with free(ρ0) ∩
free(ρ1) ∩ P01 = ∅, where P01 = P (rbf(R0 ∪ R1)). By Definition 10, we find, for
all i ∈ {0, 1}, an irreducible synchronous set Si, such that ρi =

∧
ψ∈Si

ψ. Since
free(ρ0)∩free(ρ1)∩P01 = ∅ and free(ρi) = free(Si), for all i ∈ {0, 1}, we find some
x ∈ free(S0)∩free(S1)∩P01. Suppose that x ∈ free(Rj), for some j ∈ {0, 1}. Since
S0 and S1 are synchronous sets, we have x ∈ free(Si) ∩ free(Rj) ⊆ free(Si ∩ Rj),
for all i ∈ {0, 1}. We find, for all i ∈ {0, 1}, some ψi ∈ Si ∩ Rj , such that
x ∈ free(ψi). Hence, free(ψ0) ∩ free(ψ1) ∩ P01 = ∅, and since Rj is simple, we
conclude that ψ0 = ψ1. Therefore, S0∩S1 = ∅, and Lemma 6 shows that S0 = S1

and ρ0 = ρ1. We conclude that R0 ∧ R1 is simple. �

The number of clauses in the disjunctive normal form of direct compositions
of k fifo constraints grows exponentially in k. This typical pattern of a sequence
of queues manifests itself in many other constructions, which causes serious scala-
bility problems (cf., the benchmarks for ‘Alternatork’ in [17, Sect. 7.2]). However,
Theorem 4 shows that rule-based composition of k fifo constraints does not suffer
from scalability issues: by Example 17, the fifo constraint can be defined by a
simple set of rules. The result in Theorem 4, therefore, promises (exponential)
improvement over the classical constraint automaton representation.

Unfortunately, it seems impossible to define any arbitrary stream constraint
by a simple set of rules. Therefore, the rule-based form may still blow up for
certain stream constraints. It seems, however, possible to recognize even more
symmetries (cf., the queue-optimization in [16]) to avoid explosion and obtain
comparable compilation and execution performance for these stream constraints.
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8 Abstraction

We now study how existential quantification of stream constraints operates on
its defining set of rules.

Definition 12 (Abstraction). Hiding a variable x in a set of rules R yields
∃xR := {∃xρ | ρ ∈ R}.

Unfortunately, ∃xR does not always define ∃xφ, for a stream constraint φ
defined by a set of rules R. The following result shows that ∃xR defines ∃xφ if
and only if rbf(∃xR) |= ∃x rbf(R). In this case, we call variable x hidable in R.

It is non-trivial to find a defining set of rules for ∃xφ, if x is not hidable in
R, and we leave this as future work.

Theorem 5. Let R be a set of rules, and let x ∈ X be a variable. Then,
∃x rbf(R) � rbf(∃xR) if and only if rbf(∃xR) |= ∃x rbf(R).

Proof. Trivially, ∃x rbf(R) � rbf(∃xR) implies rbf(∃xR) |= ∃x rbf(R). Con-
versely, suppose that rbf(∃xR) |= ∃x rbf(R). From Lemma 2, it follows that
∃x rbf(R) ≡ ∃xdnf(R). Since existential quantification distributes over disjunc-
tion and ∃xφ ∧ ψ |= ∃xφ ∧ ∃xψ, for all stream constraints φ and ψ, we find

∃xdnf(R) |=
∨

S⊆R

∧

ρ∈S

∃xρ ∧
∧

x	=y∈free(R)\free(S)

y†d(y) ≡ dnf(∃xR).

By Lemma 2, we have ∃x rbf(R) |= rbf(∃xR), and by assumption ∃x rbf(R) ≡
rbf(∃xR). Using Lemma 4, we have degy(∃x rbf(R)) = maxρ∈R degy(∃xρ) =
degy(rbf(∃xR)), for every variable y. We conclude ∃x rbf(R) � rbf(∃xR). �

Example 18. Suppose Data = {0, 1}, which means that the data domain equals
D = {0, 1, ∗}. Let 1 be the constant stream defined as 1(n) = 1, for all n ∈ N.
For i ∈ {0, 1}, consider the set of rules Ri = {x = x, x = yi = i}. Observe
that {x = x, x = yi = i} ⊆ R0 ∪ R1 is synchronous, for all i ∈ {0, 1}. Hence,
x = yi = i ∈ R0 ∧ R1, for all i ∈ {0, 1}. However, for θ = [y0 �→ 0, y1 �→ 1],
we have θ |= ∧

i∈{0,1} ∃x(x = yi = i), while ∃x
∧

i∈{0,1} x = yi = i ≡ ⊥. Thus,
variable x is not hidable from R0 ∧ R1. �

9 Application

In on-going work, we applied the rule-based form to compile protocols (in the
form of Reo connectors) into executable code. Reo is an exogenous coordination
language that models protocols as graph-like structures [1,2]. We recently devel-
oped a textual version of Reo, which we use to design non-trivial protocols [11].
An example of such non-trivial protocol is the Alternatork, where k ≥ 2 is an
integer. Figure 3(a) shows a graphical representation of the Alternatork protocol.

Intuitively, the behavior of the alternator protocol is as follows: The nodes
P1, . . . , Pk accept data from the environment. Node C offer data to the environ-
ment. All other nodes are internal and do not interact with the environment.
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P1 P2 Pk· · ·

· · · C• •

(a) Alternatork
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(b) Compilation times

Fig. 3. Graphical representation (a) of the Alternatork protocol in [17], for 2 ≤ k ≤ 500,
and its compilation time (b). The dotted red line is produced by the Jongmans’ compiler
(and corresponds to [17, Fig. 11(a)]), and the solid blue line is our compiler. (Color
figure online)

In the first step of the protocol, the Alternatork waits until the environment is
ready to offer data at all nodes P1, . . . , Pk and is ready to accept data from node
C. Only then, the Alternatork transfers the data from Pk to C via a synchronous
channel, and puts the data from Pi in the i-th fifo channel, for all i < k. The
behavior of a synchronous channel is defined by the sync stream constraint in
Example 1. Each fifo channel has buffer capacity of one, and its behavior is
defined by the fifo stream constraint from Example 3. In subsequent steps, the
environment can one-by-one retrieve the data from the fifo channel buffers, until
they are all empty. Then, the protocol cycles back to its initial configuration, and
repeats its behavior. For more details on the Reo language and its semantics, we
refer to [1,2].

As mentioned in the introduction, Jongmans developed a compiler based
on constraint automata [17]. The otherwise stimulating benchmarks presented
in [17] show that Jongmans’ compiler still suffers from state-space explosion.
Figure 3(b) shows the compilation time of the Alternatork protocol for Jongmans’
compiler and ours. Clearly, the compilation time improved drastically and went
from exponential in k to almost linear in k.

Every fifo channel in the Alternatork, except the first, either accepts data from
the environment or accepts data from the previous fifo channel. This choice is
made by the internal node at the input of each fifo channel. Unfortunately,
the behavior of such nodes is not defined in terms of a simple set of rules.
Consequently, we cannot readily apply Theorem 4 to conclude that the number
of rules depends only linearly on k. However, it turns out that Alternatork can
be defined using only k rules: one rule for filling the buffers of all fifo channels,
plus k − 1 rules, one for taking data out of the buffer of each of the k − 1 fifo
channels. This observation explains why our compiler drastically improves upon
Jongmans’ compiler.
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10 Conclusion

We introduce (regular) stream constraints as an alternative to constraint
automata that does not suffer from state space explosions. We define the rule-
based form for stream constraints, and we express composition and abstraction of
constraints in terms of their rule-based forms. For simple sets of rules, composition
of rule-based forms does not suffer from ‘transition space explosions’ either.

We have experimented with a new compiler for protocols using our rule-
based form, which avoids the scalability problems of state- and transition-space
explosions of previous automata-based tools. Our approach still leaves the possi-
bility for transition space explosion for non-simple sets of rules. In the future, we
intend to study symmetries in stream constraints that are not defined by simple
sets of rules. The queue-optimization of Jongmans serves as a good source of
inspiration for exploiting symmetries [16].

The results in this paper are purely theoretical. In on-going work, we show
practical implications of our results by developing a compiler based on stream
constraints. Such a compiler requires an extension to the current theory on
stream constraints: we did not compute the abstraction ∃xR on sets of rules R
wherein variable x is not hidable. Example 11 indicates the existence of situations
where we can compute ∃xR even if x is not hidable, a topic which we leave as
future work.

Acknowledgements. The authors thank Benjamin Lion for his help in developing a
rule-based compiler and for generating Fig. 3(b).
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Abstract. In many actor-based programming models, asynchronous
method calls communicate their results using futures, where the fulfil-
ment occurs under-the-hood. Promises play a similar role to futures,
except that they must be explicitly created and explicitly fulfilled; this
makes promises more flexible than futures, though promises lack fulfil-
ment guarantees: they can be fulfilled once, multiple times or not at
all. Unfortunately, futures are too rigid to exploit many available con-
current and parallel patterns. For instance, many computations block
on a future to get its result only to return that result immediately (to
fulfil their own future). To make futures more flexible, we explore a con-
struct, forward, that delegates the responsibility for fulfilling the current
implicit future to another computation. Forward reduces synchronisation
and gives futures promise-like capabilities. This paper presents a formal-
isation of the forward construct, defined in a high-level source language,
and a compilation strategy from the high-level language to a low-level,
promised-based target language. The translation is shown to preserve
semantics. Based on this foundation, we describe the implementation
of forward in the parallel, actor-based language Encore, which compiles
to C.

1 Introduction

Futures extend the actor programming model (This paper focuses on futures.
From this perspective we consider the actor-, task-, and active object-based mod-
els as synonymous.) to express call-return synchronisation of message sends [1].
Each actor is single-threaded, but different actors execute concurrently. Com-
munication between actors happens via asynchronous method calls (messages),
which immediately return a future; futures are placeholders for the eventual
result of these asynchronous method calls. An actor processes one message at
a time and each message has associated a future that will be fulfilled with the
returned value of the method. Futures are first-class values, and operations on
them may be blocking, such as getting the result out of the future (get), or asyn-
chronous, such as attaching a callback to a future. This last operation, known as
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future chaining (f x� e), attaches a closure λx.e to the future f and immediately
returns a new future that will contain the result of applying the closure to the
value eventually stored in future f .

Consider the following code (in the actor-based language Encore (https://
github.com/parapluu/encore) [2]) that implements the broker delegation pat-
tern: the developer’s intention is to connect clients (the callers of the Broker
actor) to a pool of actors that will actually process a job (lines 6–7):

1 active class Broker
2 val workers: Buffered[Worker]
3 var current: uint
4
5 def run(job: Job): int
6 val worker = this.workers[++this.current % workers.size()]
7 val future : Fut[int] = worker!start(job)
8 return get(future)
9 end

10 end

The problem with this code is that the connection to the Broker cannot be com-
pleted immediately without blocking the Broker’s thread of execution: returning
the result of the worker running the computation requires that the Broker blocks
until the future is fulfilled (line 8). This implementation makes the Broker the
bottleneck of the application.

One obvious way to avoid this bottleneck is by returning the future, instead
of blocking on it, as in the following code:

1 def run(job: Job): Fut[int]
2 val worker = this.workers[++this.current % workers.size()]
3 return worker!start(job)
4 end

This solution removes the blocking from Broker, but returns a future, which
results in the client receiving a future containing a future Fut (Fut int), cluttering
client code and making the typing more complex.

Another way to avoid the bottleneck is to not block but yield the current
thread until the future is fulfilled. This can be done using the await command
[2,3], which frees up the Broker to do other work:1

1 def run(job: Job): int
2 val worker = this.workers[++this.current % workers.size()]
3 val future = worker!start(job)
4 await(future)
5 return get(future)
6 end

This solution frees up the Broker, but can result in a lot of memory being
consumed to hold the waiting instances of calls Broker.run().

Another alternative is to use promises [4]. A promise can be passed around
and fulfilled explicitly at the point where the corresponding result is known.

1 The essential difference between get and await is that get blocks an actor, whereas
await blocks only the current method invocation and frees up the actor.

https://github.com/parapluu/encore
https://github.com/parapluu/encore


164 K. Fernandez-Reyes et al.

Passing a promise around is akin to passing the responsibility to provide a par-
ticular result, thereby fulfilling the promise.

1 def run(job: Job, promise: Promise[int]): unit
2 val worker = this.workers[++this.current % workers.size()]
3 worker!start(job, promise)
4 end
5
6 class Worker
7 def start(job: Job, promise: Promise[int]) : unit
8 // actually do job
9 promise.fulfil(result)

10 end
11 end

Promises are problematic because they diverge from the commonplace call-return
control flow, there is no explicit requirement to actually fulfil a promise, and care
is required to avoid fulfilling multiple times. This latter issue, fulfilling a promise
multiple times, can be solved by a substructural type system, which guarantees a
single writer to the promise [5,6]. Substructural type systems are more complex
and not mainstream, which rules out adoption in languages such as Java and
C#. Our solution relies on futures and is suitable for mainstream languages.

The main difference between promises and futures are that developers explic-
itly create and fulfil promises, whereas futures are implicitly created and fulfilled.
Promises are thus more flexible at the expense of any fulfilment guarantees.

This paper explores a construct called forward that retains the guarantees of
using futures, while allowing some degree of delegation of responsibility to fulfil
a future, as in promises. This construct was first proposed a while ago [7], but
only recently has been implemented in the language Encore [2].

With forward, the run of Broker method now becomes:

1 def run(job: Job): int
2 val worker = this.workers[++this.current % workers.size()]
3 forward(worker!start(job))
4 end

Forward delegates the fulfilment of the future that run will put its result in, to the
call worker!start(job). Using forward frees up the Broker object, as run com-
pletes immediately, though the future is fulfilled only when worker!start(job)
produces a result.

The paper makes the following contributions:

– a formalisation and soundness proof of the forward construct in a concise,
high-level language (Sect. 2);

– a formalisation of a low-level, promise-based language (Sect. 3),
– a translation from the high-level language to the low-level language, a proof

of program equivalence, between the high-level language and its translation
to the low-level language (Sect. 4); and

– microbenchmarks that compare the get-and-return and await-and-get pat-
tern versus the forward construct (Sect. 5).
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2 A Core Calculus of Futures and Forward

This section presents a core calculus that includes tasks, futures and opera-
tions on them, and forward. The calculus consists of two levels: expressions and
configurations. Expressions correspond to programs and what tasks evaluate.
Configurations capture the run-time configuration; they are collections of tasks
(running expressions), futures, and chains. This calculus is much more concise
than the previous formalisation of forward [7].

The syntax of the core calculus is as follows:

e ::= v | e e | async e | e
x� e | if e then e else e | forward e | get e

v ::= c | f | x | λx.e

Expressions include values (v), function application (e e), spawning asyn-
chronous computations (async e), future chaining (e x� e′), which attaches λx.e′

onto a future to run as soon as the future produced by e is fulfilled, if-then-else
expressions, forward, and get, which extracts the value from a future. Values
are constants (c), futures (f ), variables (x ) and lambda abstractions (λx.e). The
calculus has neither actors nor message sends/method calls. For our purposes,
tasks play the role of actors and spawning asynchronous computations is analo-
gous to message sends.

Configurations, config , give a partial view on the system and are (non-empty)
multisets of tasks, futures and chains. They have the following syntax:

config ::= (futf ) | (fut f v) | (task f e) | (chainf f e) | config config

Future configurations are (futf ) and (fut f v), representing an unfulfilled future
f and a fulfilled future f with value v. Configuration (task f e) is a task running
expression e that will write the result of e in future f. 2 Configuration (chainf g e)
denotes a computation that waits until future g is fulfilled, applies expression e
to the value stored in g in a new task whose result will be stored in future f .

The initial configuration for program e is (task f e) (futf ), where the result
of e will be written into future f at the end result of the program’s execution.

2.1 Operational Semantics

The operational semantics use a small-step semantics with reduction-based, con-
textual rules for evaluation within tasks. Evaluation contexts E contains a hole
• that denotes where the next reduction step happens [8]:

E ::= • | E e | v E | E
x� e | forwardE | getE | if E then e else e

2 A reviewer suggested that (futf ), (fut f v), and (task f e) could be combined into
a single configuration component. We have considered this conflation in the past.
While it would reduce the complexity of the calculus, it would also make compilation
into the target calculus and the proofs of correctness more complex.
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(Red-If-True)

(task f E[if true then e else e′]) −→ (task f E[e])
(Red-β)

(task f E[λx.e v]) −→ (task f E[e[v/x]])

(Red-If-False)

(task f E[if false then e else e′]) −→ (task f E[e′])
(Red-Fwd-Fut)

(task f E[forward h]) −→ (chainf h λx.x)

(Red-Chain-Run)

(chaing f e) (fut f v) −→ (taskg (e v)) (fut f v)
(Red-Get)

(task f E[get h]) (futh v) −→ (task f E[v]) (futh v)

(Red-Fut-Fulfil)

(task f v) (futf ) −→ (fut f v)

(Red-Async)

fresh f

(taskg E[async e]) −→ (futf ) (task f e) (taskg E[f ])

(Red-Chain-Create)

fresh g

(task f E[h x� e]) −→ (futg) (chaing h λx.e) (task f E[g])

Fig. 1. Reduction rules. f, g, h range over futures.

config → config ′′

config config ′ → config ′′ config ′
config ≡ config ′ config ′ → config ′′ config ′′ ≡ config ′′′

config → config ′′′

Fig. 2. Configuration evaluation rules. Equivalence ≡ (omitted) captures the fact that
configurations are a multiset of basic configurations.

The evaluation rules are given in Fig. 1. The evaluation of if-then-else expres-
sions and functions applications proceed in the standard fashion (Red-If-True,
Red-If-False, and Red-β). The async construct spawns a new task to execute
the given expression, and creates a new future to store its result (Red-Async).
When the spawned task finishes its execution, it places the value in the desig-
nated future (Red-Fut-Fulfil). To obtain the contents of a future, the blocking
construct get stops the execution of the task until the future is fulfilled (Red-

Get). Chaining an expression on a future results immediately in a new future
that will eventually contain the result of evaluating the expression, and a chain
configuration storing the expression is connected with the original future (Red-

Chain-Create). When the future is fulfilled, any chain configurations become
task configurations and start evaluating the stored expression on the value stored
in the future (Red-Chain-Run). Forward applies to a future where the result of
the future computation will be the result of the current computation, stored in
the future associated with the current task. Forwarding to future h throws away
the remainder of the body of the current task and chains the identity function
on the future, the effect of which is to copy the eventual result stored in h into
the current future (Red-Fwd-Fut).

The configuration evaluation rules (Fig. 2) describe how configurations make
progress, which is either by some subconfiguration making progress, or by
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rewriting a configuration to one that will make progress using the equations of
multisets.

Example and Optimisations. The following example illustrates some aspects
of the calculus.

(task f E[async (forward h)]) (futh 42)
Red-Async−−−−−−−→ (task f E[g]) (futh 42) (futg) (taskg forward h)
Red-Fwd-Fut−−−−−−−−→ (task f E[g]) (futh 42) (futg) (chaing h λx.x)
Red-Chain-Run−−−−−−−−−−→ (task f E[g]) (futh 42) (futg) (taskg (λx.x) 42)
Red-β−−−−→ (task f E[g]) (futh 42) (futg) (taskg 42)
Red-Fut-Fulfil−−−−−−−−−−→ (task f E[g]) (futh 42) (futg 42)

Firstly, a new task is spawned with the use of async. This task forwards the
responsibility to fulfil its future to (the task fulfilling) future h, i.e. future g gets
fulfilled with the value contained in future h.

Two special cases of forward can be given more direct reduction sequences,
which correspond to optimisations performed in the Encore compiler. The
first case corresponds to forwarding directly to another method call, which
is the primary use case for forward, namely, forwarding to another method
forward(e!m()). The optimised reduction rule is

(task f E[forward (async e)]) → (task f e)

For comparison, the standard reduction sequence3 is

(task f E[forward (async e)]) → (task f E[forward g]) (taskg e) (futg)

→ (chainf g λx.x) (taskg e) (futg) →∗ (chainf g λx.x) (taskg v) (futg)

→ (chainf g λx.x) (futg v) → (task f (λx.x) v) (futg v) → (task f v) (futg v)

This can be seen as equivalent to the reduction sequence

(task f E[forward (async e)]) → (task f e) →∗ (task f v)

because the future g will no longer be accessible.
Similarly, forwarding a future chain can be reduced directly to a chain con-

figuration:
(task f E[forward (h x� e)]) → (chainf h λx.e)

In both cases, forward can be seen as making a call-with-current-future.

3 →∗ is the reflexive, transitive closure of the reduction relation →.
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2.2 Static Semantics

The type system has basic types, K, and future types:

τ ::= K | Fut τ

(T-Constant)

c is a constant of type τ

Γ �ρ c : τ

(T-Future)

f : Fut τ ∈ Γ

Γ �ρ f : Fut τ

(T-Variable)

x : τ ∈ Γ

Γ �ρ x : τ

(T-Abstraction)

Γ, x : τ �• e : τ ′

Γ �ρ λx.e : τ → τ ′

(T-Application)

Γ �ρ e1 : τ → τ ′ Γ �ρ e2 : τ

Γ �ρ e1 e2 : τ ′

(T-If-Then-Else)

Γ �ρ e : bool Γ �ρ e′ : τ Γ �ρ e′′ : τ

Γ �ρ if e then e′ else e′′ : τ

(T-Get)

Γ �ρ e : Fut τ

Γ �ρ get e : τ

(T-Async)

Γ �τ e : τ

Γ �ρ async e : Fut τ

(T-Chain)

Γ �ρ e : Fut τ Γ, x : τ �τ ′ e′ : τ ′

Γ �ρ e
x� e′ : Fut τ ′

(T-Forward)

Γ �ρ e : Fut ρ ρ �= •
Γ �ρ forward e : τ

Fig. 3. Typing rules

The typing rules (Fig. 3) define the judgement Γ �ρ e : τ , which states
that in the typing environment Γ , which gives the types of futures and free
variables, expression e has type τ , where ρ is the expected task type, the result
type of the task in which the expression appears. ρ ranges over both types τ
and symbol • which is not a type. • is used to prevent the use of forward in
contexts where the expected task type is not clear, specifically within closures,
as a closure can be passed between tasks and run in a context different from their
defining contexts. The types of constants are assumed to be provided (Rule T-

Constant). Variables and futures types are defined in the typing environment
(Rules T-Variable and T-Future). Function application and abstraction have
the standard typing rules (Rules T-Application and T-Abstraction), except
that within the body of a closure the expected task type is not known. When
async is applied to an expression e, a new task is created and the expected task
type changes to the type of the expression. The result type of the async call is
a future type of the expression’s type (Rule T-Async). Chaining is essentially
mapping for the Fut type constructor, and rule T-Chain reflects this fact. In
addition, because chaining ultimately creates a new task to run the expression,
the expected task type ρ changes to the return type of the expression. Getting the
value from a future of some type results in a value of that type (Rule T-Get).
Forwarding requires the argument to forward to be a future of the same type as
the expected task type (Rule T-Forward). As forward does not return locally,
the result type is arbitrary.

Well-formed configurations, Γ � config ok, are typed against environment, Γ ,
that gives the types of futures (Fig. 4). The type rules depend on the following
definitions.
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(Fut)

f ∈ dom(Γ )

Γ � (futf ) ok

(F-Fut)

f : Fut τ ∈ Γ Γ �• v : τ

Γ � (fut f v) ok

(Task)

f : Fut τ ∈ Γ Γ �τ e : τ

Γ � (task f e) ok

(Chain)

f : Fut τ ∈ Γ g : Fut τ ′ ∈ Γ Γ �τ e : τ ′ → τ

Γ � (chainf g e) ok

(Config)

Γ � config1ok Γ � config2ok

defs(config1) ∩ defs(config2) = ∅

writers(config1) ∩ writers(config2) = ∅

Γ � config1 config2 ok

Fig. 4. Configuration typing

Definition 1. The function defs(config ) extracts the set of futures present in a
configuration config .

defs((futf )) = defs((fut f v)) = {f}
defs((config1 config2)) = defs(config1) ∪ defs(config2)
defs( ) = ∅

Definition 2. The function writers(config ) extracts the set of writers to futures
in configuration config.

writers((chainf g e)) = writers((task f e)) = {f}
writers(config1 config2) = writers(config1) ∪ writers(config2)
writers( ) = ∅

Rules Fut and F-Fut define well-formed future configurations. Rules Task
and Chain define well-formed task and future chaining configurations and set
the expected task types. Rule Config defines how to build larger configurations
from smaller ones. Each future may be defined at most once and there is at most
one writer to each future.

The rules for well-formed configurations apply to partial configurations. Com-
plete configurations can be typed by adding extra conditions to ensure that all
futures in Γ have a future configuration, there is a one-to-one correspondence
between tasks/chains and unfulfilled futures, and dependencies between tasks
are acyclic. These definitions have been omitted and are similar to those found
in our earlier work [9].

Formal Properties. The proof of soundness of the type system follows stan-
dard techniques [8]. The proof of progress requires that there is no deadlock,
which follows as there is no cyclic dependency between tasks [9].

Lemma 1 (Type preservation). If Γ � config ok and config → config ′, then
there exists a Γ ′ such that Γ ′ ⊃ Γ and Γ ′ � config ′ ok.
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Proof. By induction on the derivation of config → config ′. ��

Definition 3 (Terminal Configuration). A complete configuration config is
terminal iff every element of the configuration has the shape: (fut f v).

Lemma 2 (Progress). For a complete configuration config , if Γ � config ok,
then config is a terminal configuration or there exists a config ′ such that config →
config ′.

Proof. By induction on a derivation of config → config ′, relying on the invariance
of the acyclicity of task dependencies. ��

3 A Promising Implementation Calculus

The implementation of forward in the Encore programming language is via com-
pilation into C, linking with Pony’s actor-based run-time [10]. At this level,
Encore’s futures are treated like promises in that they are passed around to the
place where the result of a method call is known in order to be fulfilled. To model
this implementation approach, we introduce a low-level target calculus based on
tasks and promises. This section presents the formalised target calculus, and
the next section presents the compilation strategy from the source to the target
language.

The syntax of the target language is as follows:

e ::= v | e e | Task(e, e) | stop | e; e | Prom | fulfil(e, e) | get e

| Chain(e, e, e) | if e then e else e

v ::= c | f | x | λx.e | ()

Expressions consist of values, function application (e e), sequential composition
of expressions (e; e), the spawning and stopping of tasks (Task(e, e) and stop),
the creation, fulfilment, reading, and chaining of promises (Prom, fulfil(e, e),
get e, and Chain(e, e, e)) and the standard if-then-else expression. Values are
constants, futures, variables, abstractions and unit (). The main differences with
the source language are that tasks have to be explicitly stopped, which captures
non-local exit, and promises must be explicitly created and fulfilled.

3.1 Operational Semantics

The semantics of the target calculus is analogous to the source calculus. The
evaluation contexts are:

E ::= • | E e | v E | E; e | getE | fulfil(E, e) | fulfil(v,E)
| Task(E, e) | Chain(e,E, e) | Chain(E, v, e) | Chain(v, v, E)
| if E then e else e
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(RI-If-True)

(task E[if true then e else e′]) −→ (task E[e])
(RI-ERROR)

(prmf v) (task E[fulfil(f, v′)]) −→ ERROR

(RI-If-False)

(task E[if false then e else e′]) −→ (task E[e′])

(RI-Promise)

freshf

(task E[Prom]) −→ (prmf ) (task E[f ])

(RI-Statement)

(task E[v; e]) −→ (task E[e])
(RI-Chain)

(task E[Chain(f, g, (λx.e))]) −→ (chain g e[f/x]) (task E[f ])

(RI-β)

(task E[(λx.e) v]) −→ (task E[e[v/x]])
(RI-Fulfil)

(prmf ) (task E[fulfil(f, v)]) −→ (prmf v) (task E[()])

(RI-Stop)

(task E[stop]) −→ ε

(RI-Task)

(task E[Task(f, (λx.e))]) −→ (task E[f ]) (task e[f/x])

(RI-Config-Chain)

(chain g e) (prmg v) −→ (task (e v)) (prmg v)
(RI-Get)

(task E[get h]) (prmh v) −→ (task E[v]) (prmh v)

Fig. 5. Target reduction rules

Configurations are multisets of promises, tasks, and chains:

config ::= ε | (prmf ) | (prmf v) | (task e) | (chain f e) | config config

The empty configuration is represented by ε, an unfulfilled promise is written as
(prmf ) and a fulfilled promise holding value v is written as (prmf v).

Tasks and chains work in the same way as in the source language, except that
they work now on promises (Fig. 5). Promises are handled much more explicitly
than futures are, and need to be passed around like regular values. The creation
of a task needs a promise and a function to run; the spawned task runs the
function, has access to the passed promise and leaves the promise reference in
the spawning task (RI-Task). Stopping a task just finishes the task (RI-Stop).
The construct Prom creates an empty promise (RI-Promise). Fulfilling a promise
results in the value being stored if the promise was empty (RI-Fulfil), or an
error otherwise (RI-Error). Promises are chained in a similar fashion to futures:
the construct Chain(f, g, e) immediately passes the promise f to expression e —
the intention being that f will hold the eventual result; the chain then waits on
promise g, and passes the value it receives into expression (e f) (RI-Chain and
RI-Config-Chain). The target language borrows the configuration evaluation
rules from the source language (Fig. 2).

Example. For illustration purposes we translate the example from the high-
level language, (futf ) (task f E[forward (async e)]) shown in Sect. 2, and show
the reduction steps of the low-level language:
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(prmf ) (task E[Chain(f, Task(Prom, (λd′
.fulfil(d′

, e); stop)), λd′
.λx.fulfil(d′

, x); stop); stop])

−→ (prmf ) (prmg) (task E[Chain(f, Task(g, (λd′
.fulfil(d′

, e); stop)), λd′
.λx.fulfil(d′

, x); stop); stop])

−→ (prmf ) (prmg) (task E[Chain(f, g, λd′
.λx.fulfil(d′

, x); stop); stop]) (task fulfil(g, e); stop)

−→ (prmf ) (prmg) (task E[f ; stop]) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, e); stop)

−→ (prmf ) (prmg) (task E[stop]) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, e); stop)

−→ (prmf ) (prmg) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, e); stop)

−→∗
(prmf ) (prmg) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, v); stop)

−→ (prmf ) (prmg v) (chain g (λx.fulfil(f, x); stop)) (task (); stop)

−→ (prmf ) (prmg v) (chain g (λx.fulfil(f, x); stop)) (task stop)

−→ (prmf ) (prmg v) (chain g (λx.fulfil(f, x); stop))

−→ (prmf ) (prmg v) (task (λx.fulfil(f, x); stop) v)

−→ (prmf ) (prmg v) (task fulfil(f, v); stop)

−→ (prmf v) (prmg v) (task (); stop)

−→ (prmf v) (prmg v) (task stop)

−→ (prmf v) (prmg v)

We show how the compilation strategy proceeds in Sect. 4.

3.2 Static Semantics

The type system has basic types, K, and promise types defined below:

τ ::= K | Prom τ

The type rules define the judgment Γ � e : τ which states that, in the
environment Γ , which records the types of promises and free variables, expres-
sion e has type τ . The rules for constants, promises, and variables, if-then-else,
abstraction and function application are analogous to the source calculus, except
no expected task type is recorded. The unit value has type unit (TI-Unit); the
stop expression finishes a task and has any type (TI-Stop). The creation of
a promise has type Prom τ (TI-Promise-New); the fulfilment of a promise
fulfil(e, e′) has type unit and requires the first parameter to be a promise
and the second to be an expression that matches the type of the promise (TI-

Fulfil). To spawn a task (Task(e, e)), the first argument of the task must be
a promise and the second a function that takes a promise having the same type
as the first argument (TI-Task); promises can be chained on with functions
that run if the promise is fulfilled: Chain(e, e′, e′′) has type Prom τ and e and
e′ are promises and e′′ is an abstraction that takes arguments of the first and
second promise types. Both task and chain constructors return the promise that
is passed to them, for convenience in the compilation scheme.

Soundness of the type system is proven using standard techniques.
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(TI-Constant)

c is a constant of type τ

Γ � c : τ

(TI-Promise)

f : Prom τ ∈ Γ

Γ � f : Prom τ

(TI-Variable)

x : τ ∈ Γ

Γ � x : τ

(TI-Unit)

Γ � () : unit

(TI-Stop)

Γ � stop : τ

(TI-Promise-New)

Γ � Prom : Prom τ

(TI-If)

Γ � e : bool Γ � e′ : τ Γ � e′′ : τ

Γ � if e then e′ else e′′ : τ

(TI-Statement)

Γ � e1 : τ ′ Γ � e2 : τ

Γ � e1; e2 : τ

(TI-Abstraction)

Γ, x : τ � e : τ ′

Γ � λx.e : τ → τ ′

(TI-App)

Γ � e : τ ′ → τ Γ � e′ : τ ′

Γ � e e′ : τ

(TI-Fulfil)

Γ � e : Prom τ Γ � e′ : τ

Γ � fulfil(e, e′) : unit

(TI-Task)

Γ � e : Prom τ Γ � e′ : Prom τ → τ ′

Γ � Task(e, e′) : Prom τ

(TI-Get)

Γ � e : Prom τ

Γ � get e : τ

(TI-Chain)

Γ � e : Prom τ Γ � e′ : Prom τ ′ Γ � e′′ : Prom τ → τ ′ → τ ′′

Γ � Chain(e, e′, e′′) : Prom τ

(Prom)

f ∈ dom(Γ )

Γ � (prmf ) ok

(F-Prom)

f : Prom τ ∈ Γ

Γ � (prmf v) ok

(Chain-Target)

Γ � f : Prom τ Γ � e : τ → τ ′′

Γ � (chain f e) ok

(Task-Target)

Γ � e : τ

Γ � (task e) ok

(Config-Target)

Γ � config1 ok Γ � config2 ok

Γ � config1 config2 ok

Fig. 6. Typing rules for expressions and configurations in the target language

4 Compilation: From Futures and Forward to Promises

This section presents the compilation function from the source to the target
language and outlines a proof that it preserves semantics. The compilation
strategy is defined inductively (Fig. 7); the compilation of expressions, denoted
C�e�destiny, takes an expression e and a meta-variable destiny which holds the
promise that the current task should fulfil, and produces an expression in the
target language.

Futures are translated to promises, and most other expressions are trans-
lated homomorphically. The constructs where something interesting happens
are async, forward and future chaining; these constructs adopt a common pat-
tern implemented using a two parameter lambda abstraction: the first param-
eter, variable destiny′, is the promise to be fulfilled and the second parame-
ter is the value that fulfils the promise. The best illustration of how forward
behaves differently from a regular asynchronous call is the difference in the rules
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Fig. 7. Compilation strategy of terms, configurations, types and typing rules

for async e and the optimised rule for forward (async e). The translation of
async e creates a new promise to store e’s result value, whereas the translation
of forward (async e) reuses the promise from the context, namely the one passed
in via the destiny variable.

The compilation of configurations, denoted T �config �, translates configura-
tions from the source language to the target language. For example, the com-
pilation of the source configuration (futf ) (task f forward (async e)) compiles
into:
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T �(futf )(task f forward (async e))� =

T �(futf )�T �(task f forward (async e))� =

(prmf )(task fulfil(f, C�forward (async e)�f ))

The optimised compilation of C�forward (async e)�f is:

(prmf ) (task E[Task(f, (λd′.fulfil(d′, C�e�d′); stop)); stop])

For comparison, the base compilation gives:

(prmf ) (task E[Chain(f, Task(Prom, (λd′
.fulfil(d′

, C�e�d′ ); stop)), λd′
.λx.fulfil(d′

, x); stop); stop])

Types and typing rules are compiled inductively (Fig. 7). The following lemmas
guarantee that the compilation strategy does not produce broken target code
and state the correctness of the translation.

4.1 Correctness

The correctness of the translation is proven in a number of steps.
The first step involves converting the reduction rules to a labelled transition

system where communication via futures is made explicit. This involves splitting
several rules involving multiple primitive configurations on the left-hand side
to involve single configurations, and labelling the values going into and out of
futures. For example, (task f v) (futf ) → (fut f v) is replaced by the two rules:

(task f v)
f↓v−−→ ε (futf )

f↓v−−→ (fut f v)

The other rules introduced are:

(fut f v)
f↑v−−→ (fut f v) (task f E[geth])

h↑v−−→ (task f E[v])

(chaing f e)
f↑v−−→ (taskg e[v/x])

Label f ↓ v captures a value being written to a future, and label f ↑ v captures
a value being read from a future, both from the future’s perspective. Labels
f ↓ v and f ↑ v are the duals from the perspective of the remainder of the con-
figuration. The remainder of the rules are labelled with τ to indicate that no
observable behaviour occurs. The same pattern is applied to the target language.

It is important to note that the values in the labels of the source language are
the compiled values, while the values in the labels of the target language remain
the same.4 This is needed so that labelled values such as lambda abstraction
match during the bisimulation game.

4 We have omitted the notation from the translation to keep it simple to read.
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The composition rules are adapted to propagate or match labels in the stan-
dard way. For instance, the rule for matching labels in parallel configurations is:

config
l−→ config ′′ config ′ l−→ config ′′′

config config ′ τ−→ config ′′ config ′′′

The following theorems capture correctness of the translation.

Theorem 1. If Γ � config ok, then C�Γ � � T �config � ok.

Theorem 2. If Γ � config ok, then config ∼ T �config �.

The first theorem states that translating well-typed configurations results in
well-typed configurations. The second theorem states that any well-typed con-
figuration in the source language is bisimilar to its translation. The precise notion
of bisimilarity used is bisimilarity up-to expansion [11]. This notion of bisimi-
larity compresses the administrative, unobservable transitions introduced by the
translation.

The proof involves taking each derivation rule in the adapted semantics for
the source calculus (described above) and showing that each source configuration
is bisimilar to its translation. This is straightforward for the base cases, because
tasks are deterministic in both source and target languages, and at most two
unobservable transitions are introduced by the translation. To handle the parallel
composition of configurations, bisimulation is shown to be compositional, mean-
ing that if config ∼ T �config � and config ′ ∼ T �config ′�, then config config ′ ∼
T �config config ′�; now by definition T �config config ′� = T �config � T �config ′�,
hence config config ′ ∼ T �config � T �config ′�.

5 Experiments

We benchmarked the implementation of forward by comparing it against the
blocking pattern get-and-return and an implementation that uses the await-
and-get (both described in Sect. 1). The micro-benchmark used is a variant of
the broker pattern with 4 workers, compiled with aggressive optimisations (−O3).
We report the average time (wall clock) and memory consumption of 5 runs of
this micro-benchmark under different workloads (Fig. 8). The processing of each
message sent involves complex nested loops with quadratic complexity (in the
Workload value) written in such a way to avoid the compiler optimising them
away — the higher the workload, the higher the probability that the Broker
actor blocks or awaits in the non-forward implementations.

The performance results (Fig. 8) show that the forward version is always
faster than the get-and-return and await-and-get version. In the first case,
this is expected as blocking prevents the Broker actor from processing messages,
while the forward version does not block. In the second case, we also expected
the forward version to be faster than the await-and-get: this is due to the
overhead of the context switching operation performed on each await statement.
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Performance (in seconds)
Workload Get Await+Get Forward

100 0.03 0.03 0.00
500 0.47 0.25 0.02

1000 1.85 0.94 0.06
3000 16.55 8.29 0.39
5000 45.77 23.01 1.03
7500 103.43 51.62 2.26

10000 183.04 91.86 4.02

Memory consumption (in kilobytes)
Workload Get Await+Get Forward

100 12697 49446 7334
500 12292 49676 6608

1000 12451 49927 6832
3000 12222 49070 7793
5000 12427 48584 7269
7500 12337 48016 7853

10000 12484 48316 8475

Fig. 8. Elapsed time (left) and memory consumed (right) by the Broker microbench-
mark (the lower the better).

The forward version consumes the least amount of memory, while the await-
and-get version consumes the most (Fig. 8). This is expected: forward creates
one fewer future per message sent than the other two versions; the await-and-get
version has around 5 times more overhead than the forward implementation, as
it needs to save the context (stack) whenever a future cannot immediately be
fulfilled.

Threats to Validity. The experiments use a microbenchmark, which pro-
vides useful information but is not as comprehensive as a case study would be.

6 Related Work

Baker discovered futures in 1977 [12]; later Liskov introduced promises to
Argus [4]. Around the same time, Halstead introduced implicit futures in Mul-
tilisp [13]. Implicit futures do not appear as a first-class construct in the pro-
gramming language at either the term or type level, as they do in our work.

The forward construct was introduced in earlier work [7], in the formalisa-
tion of an extension to the active object-based language Creol [14]. The main
differences with our work are: our core calculus is much smaller, based on tasks
rather than active objects; our calculus includes closures, which complicate the
type system, and future chaining; we defined a compilation strategy for forward,
and benchmark its implementation.

Caromel et al. [15] formalise an active object language that transparently
handles futures, prove determinism of the language using concepts similar to
weak bisimulation, and provide an implementation [16]. In contrast, our work
uses a task-based formalism built on top of the lambda calculus and uses futures
explicitly. It is not clear whether forward can be used in conjunction with trans-
parent futures.

Proving semantics preservation of whole programs is not a new idea [17–23].
We highlight the work from Lochbihler, who added a new phase to the veri-
fied, machine-checked Jinja compiler [19] that proves that the translation from
multi-threaded Java programs to Java bytecode is semantics preserving, using
a delay bisimulation. In contrast, our work uses an on-paper proof using weak
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bisimilarity up-to expansion, proving that the compilation strategy preserves the
semantics of the high-level language.

Ábrahám et al. [5] present an extension of the Creol language with promises.
The type system uses linear types to track the use of the write capability (ful-
filment) of promises to ensure that they are fulfilled precisely once. In contrast
to the present work, their type system is significantly more complex, and no
forward operation is present. Curiously, Encore supports linear types, though
lacks promises and hence does not use linear types to keep promises under con-
trol.

Niehren et al. [6] present a lambda calculus extended with futures (which
are really promises). Their calculus explores the expressiveness of programming
with promises, by using them to express channels, semaphores, and ports. They
also present a linear type system that ensures that promises are assigned only
once.

7 Conclusion

One key difference between futures, futures with forward and promises is that
the responsibility to fulfil a future cannot be delegated. The forward construct
allows such delegation, although only of the implicit future receiving the result
of some method call, while promises allow arbitrary delegation of responsibility.
This paper presented a formal calculus capturing the forward construct, which
retains the static fulfilment guarantees of futures. A translation of the source
calculus into a target calculus based on promises was provided and proven to
be semantics preserving. This translation models how forward is implemented
in the Encore compiler. Microbenchmarks demonstrated that forward improves
performance in terms of speed and memory overhead compared to two alternative
implementations in the Encore language.
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Abstract. Security policies are important for protecting digitalized
information, control resource access and maintain secure data storage.
This work presents the development of a policy language to transpar-
ently incorporate aggregate programming and privacy models for dis-
tributed data. We use tuple spaces as a convenient abstraction for stor-
age and coordination. The language has been designed to accommodate
well-known models such as k-anonymity and (ε, δ)-differential privacy,
as well as to provide generic user-defined policies. The formal semantics
of the policy language and its enforcement mechanism is presented in
a manner that abstracts away from a specific tuple space coordination
language. To showcase our approach, an open-source software library has
been developed in the Go programming language and applied to a typical
coordination pattern used in aggregate programming applications.

Keywords: Secure coordination · Policy languages · Privacy models
Tuple spaces · Aggregate programming

1 Introduction

Privacy is an essential part of society. With increasing digitalization the attack
surface of IT-based infrastructures and the possibilities for abuse is growing. It
is therefore necessary to include privacy models that can scale with the complex-
ity of those infrastructures and their software components, in order to protect
information stored and exchanged, while still ensuring information quality and
availability. With EU GDPR regulation [19] being implemented in all EU coun-
tries, regulation on how data acquisition processes handle and distribute personal
information becomes enforced. This affects software development processes and
life cycles as security-by-design choices will need to be incorporated. Legacy sys-
tems will also be affected by GDPR compliance. With time, these legacy systems
will need to be replaced, not only because of technological advancements, but
also due to political and social demands for higher quality infrastructure. No
matter the perspective, the importance of privacy-preserving data migration,
mining and publication will remain relevant as society advances.

c© IFIP International Federation for Information Processing 2018

Published by Springer International Publishing AG 2018. All Rights Reserved

G. Di Marzo Serugendo and M. Loreti (Eds.): COORDINATION 2018, LNCS 10852, pp. 181–199, 2018.

https://doi.org/10.1007/978-3-319-92408-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92408-3_8&domain=pdf


182 L. Kaminskas and A. Lluch Lafuente

Aggregation, Privacy and Coordination. Aggregate programming meth-
ods are used for providing privacy guarantees (e.g. by reducing the ability to
distinguish individual data items), improving performance (e.g. by reducing stor-
age size and communications) and even as the basis of emergent coordination
paradigms (e.g. computational field and aggregate programming based on the
field calculus [1,23] or the SMuC calculus [14]). Basic aggregation functions (e.g.
sums, averages, etc.), do not offer enough privacy guarantees (e.g. against statis-
tical attacks) to support the construction of trustworthy coordination systems.
The risk is that less users will be willing to share their data. As a consequence,
the quality of different infrastructures and services based on data aggregations
may degrade. More powerful privacy protection systems are needed to reassure
users and foster their participation with useful data. Fortunately, aggregation-
based methods can be enhanced by using well-studied privacy models that allow
policy makers to trade between privacy and data utility. We investigate in this
work how such methods can be easily integrated in a coordination model such as
tuple spaces, that in turn can be used as the basis of aggregation-based systems.

Fig. 1. Different stages of GIS
data.

Motivational Examples. One of our main moti-
vations is to address systems where users provide
data in order to improve some services that they
themselves may use. In such systems it is often the
case that: (i) A user decides how much privacy is
to be sacrificed when providing data. Data aggre-
gation is performed according to a policy on their
device and transmitted to a data collector. (ii) A
data collector partitions data by some quality cri-
terion. Aggregation is then performed on each par-
tition and results are stored, while the received
data may be discarded. (iii) A process uses the
aggregated data, and shares results back to the
users in order to provide a service.

A typical example of such systems are Intelli-
gent Transport System (ITS), which exploit Geo-
graphic Information Systems (GIS) data from
vehicles to provide better transportation services,
e.g. increased green times at intersections, reduc-
tion of queue and congestion or exploration of
infrastructure quality. As a real world example,
bicycle GIS data is exploited by ITS systems to
reduce congestion on bicycle paths, while main-
taining individuals privacy. Figure 1 shows user
positional data in different stages: (a) raw data
as collected, (b) data after aggregating multiple trips, and (c) aggregated data
with addition of noise to protect privacy. This aggregated data can then be deliv-
ered back to the users, in order to support their decision making before more
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congestion occurs. Depending on the background knowledge and insights in a
service, an adversary can partially or fully undo bare aggregation. By using pri-
vacy models and controlling aggregate functions, one can remove sensitive fields
such as unique identifiers and device names, and add noise to give approxima-
tions of aggregation results. This gives a way to trade data accuracy in favor of
privacy.

Fig. 2. A distance gradient field (Color
figure online)

Another typical example are self-
organizing systems. Consider, for instance,
the archetypal example of the construc-
tion of a distance field, identified in [2] as
one of the basic self-organization building
blocks for aggregate programming. The
typical scenario in such systems is as fol-
lows. A number of devices and points-of-
interests (PoI) are spread over a geograph-
ical area. The main aim of each device
is to estimate the distance to the clos-
est PoI. The resulting distributed map-
ping of devices into distances and possi-
bly the next device on the shortest path,
forms a computational field. This provides
a basic layer for aggregate programming
applications and coordinated systems, as
in e.g. providing directions to PoIs. Figure 2 shows an example with the result of
1000 devices in an area with a unique PoI located at (0, 0), where each device is
represented by a dot and whose color intensity is proportional to the computed
distance. The computation of the field needs to be done in a decentralized way,
since the range of communication of devices needs to be kept localized. The
algorithm that the devices use to compute the field is based on data aggrega-
tions: a device iteratively queries the neighbouring devices for their information
and updates its own information to keep track of the closest distance to a PoI.
Initially, the distance di of each device i is set to the detected distance to the
closest PoI, or to ∞ if no device is detected. At each iteration, a device i updates
its computed distance di as follows. It gets from each neighbour j its distance
dj , and then updates di to be the minimum between di or dj plus the distance
from i to j. In this algorithm, the key operation performed by the devices is an
aggregation of neighbouring data, which may not offer sufficient privacy guaran-
tees. For instance, the exact location of devices or their exact distance to a PoI
could be inferred by a malicious agent. A simple case where this could be done
is when one device and a PoI are in isolation. A more complex case could be if
the devices are allowed to move and change their distances to a PoI gradually.
By observing isolated devices and their interactions with neighbours, one could
start to infer more about the behaviour of a device group.
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1 privacy_policy:

2 noisy_average:

3 aquery avg, data

4 altered by result func add_noise

5 ...

Listing 1.1. An aggregation policy that adds noise to average-based queries

1 program:

2 ...

3 x := aquery avg, data

4 ...

Listing 1.2. An aggregated query subject to the policy in Listing 1.1.

Challenges. Engineering of privacy mechanisms and embedding of these
directly into large software systems is not a trivial task, and may be error prone.
Therefore, it is crucial to separate privacy mechanisms from an application,
in such a way that the privacy mechanisms can be altered without having to
change the application logic. For example, Listing 1.1 shows a policy that a data
hosting service will provide, and Listing 1.1 shows a program willing to use the
data. The policy controls the aggregate query (aquery) of the program. It only
allows to average (avg) some data and, in addition, it uses a add noise func-
tion to the result before an assignment in the program occurs. In this manner,
a clear separation of logic can be achieved, and multiple queries of the same
kind can be altered by the same policy. Furthermore, it allows policies to be
changed at run-time, in order to adapt to changes in regulations or to optimize
the implementation of a policy. Separation of concerns provides convenience for
both developers and policy makers alike.

Contribution. Our goal is to develop a tool-supported policy language provid-
ing access control for which well-studied privacy models, aggregate programming
constructs, and coordination primitives could be used to provide non-intrusive
data access in distributed applications. We wanted to focus on an interactive set-
ting where data is dynamically produced, consumed and queried, instead of the
traditional static data warehousing that privacy models implementations tend
to address.

Our first contribution is a novel policy language in Sect. 2 to specify aggre-
gation policies for tuple spaces. The choice of tuple spaces has been motivated
by the need to abstract away from concrete data storage models and to address
data-oriented coordination models. Our approach to the language provides a
clean separation between policies that need to be enforced, and application logic
that needs to be executed. The presentation abstracts away from any concrete
tuple-based coordination language and we focus on aggregated versions of the
traditional operations to add, retrieve and remove tuples.

Our second contribution (Sect. 3) is a detailed description of how two well-
studied privacy models such as k-anonymity and (ε, δ)-differential privacy can
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be expressed in our language. For this purpose, those models (which are usually
presented in a database setting) have been redefined in the setting of tuple
spaces. To the authors knowledge, this is the first time that the definition of
those models has been adapted to tuple spaces.

Our third and last contribution (Sect. 4) is an open-source, publicly available
implementation of the policy language and its enforcement mechanism in a tuple
space library for the Go programming language, illustrated with an archetypal
example of a self-organizing pattern used as basic block in aggregate program-
ming approaches [2], namely the above presented computation of a distance
gradient.

2 A Policy Language for Aggregations

We start the presentation of our policy language by motivating the need of
supporting and controlling aggregate programming primitives, and present a set
of such primitives. We then move into the description of our policy language,
illustrate the language through examples, and conclude the section with formal
semantics.

Fig. 3. Aggregation primitives.

Aggregate Programming Primitives.
The main computations we focus in this
paper are aggregations of multiset of data
items. As we have discussed in Sect. 1, such
computations are central to aggregate pro-
gramming approaches. The main motiva-
tion is to control how such aggregations are
performed: a data provider could want, for
instance, to provide access to the average of
a data set, but not to the data set or any of
its derived forms. Traditional tuple spaces
(e.g. those following the Linda model) do
not support aggregations as first-class prim-
itives: a user would need to extract all the
data first and perform the aggregation dur-
ing or after the extraction. Such a solution
does not allow to control how aggregations
are performed, and the user is in any case
given access to an entire set of data items
that needs to be protected. However, in
databases, aggregate operators can be used
in queries, providing thus a first-class prim-
itive to perform aggregated queries, more
amenable for access control. A similar sit-
uation can be found in aggregate programming languages that provide functions
to aggregate data from neighbouring components: the field calculus offers a nbr



186 L. Kaminskas and A. Lluch Lafuente

primitive to retrieve information about neighbouring devices and aggregation is
to be performed on top of that, whereas the SMuC calculus is based on atomic
aggregation primitives.

We adapt such ideas to tackle the necessity of controlling aggregations
in tuple spaces by proposing variants of the classical single-data operations
put/out, get/in and qry/read. In particular, we extend them with an additional
argument: an aggregation function that is intended to be applied to the multi-
set of all matched tuples. Typical examples of such functions would be averages,
sums, minimum, concatenation, counting functions and so forth. While standard
tuple space primitives allow to retrieve some or all tuples matching some tem-
plate, the primitives we promote would allow to retrieve the aggregated version
of all the matched tuples. More in detail, we introduce the following aggregate
programming primitives (Fig. 3):

aqryλD, U : This operation works similarly to an aggregated query in a database
and provides an aggregated view of the data. In particular, it returns the
result of applying the aggregation function λD to all tuples that match the
template U .

agetλD, U : This operation is like aqry, but removes the matched data with
template U .

aputλD, U : This operation is like aget, but the result of the aggregation is intro-
duced in the tuple space. It provides a common pattern used to atomically
compress data.

It is worth to remark that such operations allow to replicate many of the
common operations on tuple spaces. Indeed, the aggregation function could be,
for instance, the multiset union (providing all the matched tuples) or a function
that provides just one of the matched tuples (according to some deterministic
or random function).

Syntax of the Language. The main concepts of the language are knowledge
bases in the form of tuple spaces, policies for expressing how operations should
be altered, and aggregate programming operators. The language itself can be
embedded in any host coordination language, but the primary focus will be
in expressing policies. The language is defined in a way that is reminiscent of
a concrete syntax for a programming language. Although, the point is not to
force a particular syntax, but to have a convenient abstraction for describing the
policies themselves. Further, the language and aggregation policies do not force
a traditional access control based model by only permitting or denying access to
data: policies allow transformations thus giving different views on the same data.
This gives a choice to a policy maker to control the accuracy of the information
released to a data consumer. Subjects (e.g. users) and contextual (e.g. location)
attributes are not part of our language, in order to keep the presentation focused
on the key aspects of aggregate programming. Yet, the language could be easily
extended to include these attributes.



Aggregation Policies for Tuple Spaces 187

Table 1. Syntax for policies and aggregate programming operators.

Tuple Space : T ::= ∅ | V :u | V :u ; T
Policy Label : v

Policy Labels : V ::= ∅ | v | v ,V

Tuple : u ::= ε | c | u1 ,u2

Template : U ::= ε | c | Ω | U1 ,U2

Composable Policy : Π ::= 0 | π | π ;Π

Aggregation Policy : π ::= v :H

Aggregation Rule : H ::= none | putU altered byDa

| AD altered byDU Du Da

Action : A ::= AS | AD

Simple Action : AS ::= putV :u

Aggregate Action : AD ::= aputλD ,U | agetλD ,U | aqryλD ,U

Template Transformation : DU ::= template funcλU

Tuple Transformation : Du ::= tuple funcλu

Result Transformation : Da ::= result funcλa

Aggregate operator : λD ::= sum | avg | min | max | . . .

Template operator : λU ::= id | pseudo i | collapse i | . . .

Tuple operator : λu ::= id | collapse i | noiseX | . . .

The syntax of our aggregation policy language can be found in Table 1. Let
Ω denote the types which are exposed by the host language and a type be τ ∈ Ω.
For the sake of exposition we consider the simple case {int, float, string} ⊆ Ω.
T is a knowledge base represented by a tuple space with a multiset interpretation,
where the order of tuples is irrelevant and multiple copies of the identical tuples
are allowed. For T , the language operator ; denotes the multiset union, \ is
the multiset difference and � is the multiset symmetric difference. T contains
labelled tuples, i.e. tuples attached a set of labels, with each label identifying a
policy. A tuple is denoted and generated by u, and an empty tuple is denoted
by ε. Tuples may be primed u′ or stared u� to distinguish between different
types of tuples. The type of a tuple u is denoted by τu = τu1 × τu2 × . . . × τun

.
In Sect. 3, individual tuple fields will be needed, and hence we will be more
explicit and use u = (u1, . . . , ui, . . . , un), where ui denotes the ith tuple field
with type τui

. When dealing with a multiset of tuples of type τu (e.g. a tuple
space), the type τ∗

u will be used. For a label set V , a labelled tuple is denoted by
V :u. Similarly as for a tuple, the empty labelled tuple is denoted by ε. A label
serves as a unique attribute when performing policy selection based on an action
A. A template U can contain constants c and types τ ∈ Ω and is used for pattern
matching against a u ∈ T . As with tuples, we shall be explicit with template
fields when necessary and use U = (U1, . . . , Ui, . . . , Un), where Ui denotes the ith

template field with type τUi
. There are three main aggregation actions derived

from the classical tuple space operations (put, get, qry), namely: aput, aget and
aqry. All operate by applying an aggregate operator λD on tuples u ∈ T that
matches U . Aggregate functions λD have a functional type λD : τ∗

u → τu′ and
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are used to aggregate tuples of type τu into a tuple of type τu′ . The composable
policy Π is a list of policies that contain aggregation policies π. An aggregation
π is defined by a policy label v and an aggregation rule H, where v is used
as an identifier for H. An aggregation rule H describes how an action A is
altered either by a template transformation DU , a tuple transformation Du, and
a result transformation Da, or not at all by none. A template transformation
DU is defined by a template operator λU : τU → τU ′ , and can be used for e.g.
hiding sensitive attributes or to adapt the template from the public format of
tuples to the internal format of tuples. A tuple transformation Du is defined
by a tuple operator λu : τu → τu′ . This allows to apply additional functions
on a matched tuple u, and can be used e.g. for doing sanitization, addition of
noise or approximating values, before performing the aggregate operation λD on
the matched tuples A result transformation Da is defined by a tuple operator
λa : τu′ → τu′′ . The arguments of λa are the same as for tuple transformations
λu, except the transformation is applied on an aggregated tuple. This allows
for coarser control, say, in case a transformation on all the matched tuples is
computationally expensive or if simpler policies are enough.

Examples and Comparison with a Database. Observe that λD and any
of the aggregation actions in A can provide all of the aggregate functions found
in commercial databases, but with the flexibility of exactly defining how this is
performed in the host language itself. The motivation for doing this comes from
the fact that: (i) there is tendency for database implementations to provide non-
standardized functionalities, introducing software fragmentation when swapping
technologies, (ii) user-defined aggregate functions are often defined in a different
language from the host language. In our approach, by allowing to directly express
both the template for the data needed and aggregate functionality in the host
language, helps reducing the programming complexity and improves readability,
as the intended aggregation is expressed explicitly and in one place. Moreover,
the usage of templates allows to specify the view of data at different granularity
levels. For instance, in our motivational example on GIS data, one could be
interested in expressing:

1. Field granularity where U contains concrete values only, but access is provided
to some fields only. Listing 1.3 shows how to allow access to a specific data
source by using U = ("devices", "gps", "accelerometer", "gyroscope") as
a template of concrete devices. Here, id is the identity function, first is an
aggregation function which returns the first matched tuple, and nth 2 selects
the second field of the tuple.

1 accelerometer-data-only:

2 aqry first, "devices", "gps", "accelerometer", "gyroscope"

3 altered by

4 template func id

5 tuple func id

6 result func (fun x -> nth 2 x)

Listing 1.3. Example of field granularity policy.
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2. Tuple granularity where U contains concrete values and all fields are provided.
Listing 1.4 shows how a policy can provide access to a specific trip. In this
case, it is specified by a trip type and trip identifier U = ("bike-ride", 1).

1 single-ride:

2 aqry first, "bike-ride", 1 altered by

3 template func id

4 tuple func id

5 result func id

Listing 1.4. Example of tuple granularity policy.

3. Mixed granularity where U contains a mix of concrete values and types.
Listing 1.5 shows how this could be used to protect user coordinates expressed
as a triplet of float’s encoding latitude, longitude, elevation while allowing a
certain area. In this case, the copenhagen area is exposed, and computation
of the average elevation with avg is permitted.

1 alices-trips:

2 aqry avg, "copenhagen", float, float, float altered by

3 template func id

4 tuple func (fun x -> nth 4 x)

5 result func id

Listing 1.5. Example of mixed granularity policy.

4. Tuple-type granularity where U contains only types. Listing 1.6 shows how
this could be used to count how many points there are in each discretized
part of a map, where area maps coordinates into areas.

1 map-partition:

2 aqry count, float, float altered by

3 template func id

4 tuple func (fun (x y) -> area(x,y))

5 result func id

Listing 1.6. Example of tuple-type granularity policy.

With respect to databases, the aforementioned granularities correspond to: 1.
cell level, 2. single row level, 3. multiple row level, and 4. table level Combined
with a user-defined aggregate function λD and transformations DU , Du and Da,
one can provide many different views of a tuple space in a concise manner.

Formal Semantics. Before presenting the formal semantics, we provide a
graphical and intuitive presentation using A = aqryλD,U and some T and Π
as an example shown in Fig. 4. The key idea is: 1. Given some action A, deter-
mine the applicable policy π. There can be multiple matches in Π; 2. extract
the first-matching policy π with some label v; 3. extract template, tuple and
result operators from transformations DU , Du, and Da respectively; 4. extract
the aggregate operator λD and apply U ′ = λU (U); 5. based on the tuples V :u
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Fig. 4. Semantics of an aggregate action A given an applicable policy π.

from T that match U ′ and have v ∈ V : perform tuple transformation with λu,
aggregation with λD, and result transformation with λa

The formal operational semantics of our policy enforcement mechanism is
described by the set of inference rules in Table 2, whose format is

P1 . . . Pi . . . Pn

T , Π � A → T ′
, Π � R

where P1, . . . , Pn are premises, T is a tuple space subject to Π, A is the action
subject to control, and the return value (if any) is modelled by �R. The return
value may then be consumed by the host language. The absence of a return value
denotes that no policy was applicable.

The semantics for applying a policy that matches an aggregate action
aputλD,U , agetλD,U and aqryλD,U is respectively defined by rules Agg-Put-
Apply, Agg-Get-Apply and Agg-Query-Apply. For performing putV :u,
Put-Apply is used. All three rules apply such transformation and differ only
in that aget and aput modify the tuple space. A visual representation of the
semantics of aputλD,U , agetλD,U and aqryλD,U can be seen in Fig. 4. The
premises of the rules include conditions to ensure that the right operation is
being captured and a decomposition of how the operation is transformed by the
policy. In particular, the set T1 represents the actually matched tuples (after
transforming the template) and T2 is the actual view of the tuple space being
considered (after applying the tuple transformations to T1). It is on T2 that the
user-defined aggregation λD is applied, and then the result transformation λa

is applied to provide the final result ua. Rules named Unmatched, Priority-
Left, Priority-Left, and Priority-Unavailable take care of scanning the
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Table 2. Semantics for action A under Π including the semantics format.

Put-Apply:
Π = vπ : putU altered by result funcλa

match(u, U) vπ ∈ V ua = λa(u) T ′
= T ;V :ua

T , Π � putV :u → T ′
, Π � V :ua

Agg-Put-Apply:
Π = vπ : aputλD ,U

′ altered by template funcλU tuple funcλu result funcλa

match(U, U
′
) T1 = {V :u ∈ T |match(u, λU (U)) ∧ vπ ∈ V } T ′

= T \ T1

T2 = {V :λu(u) | V :u ∈ T1} ua = λa(λD({u | V :u ∈ T2})) T ′′
= T ′ ; {vπ} :ua

T , Π � aputλD ,U → T ′′
, Π � {vπ} :ua

Agg-Get-Apply:
Π = vπ : agetλD ,U

′ altered by template funcλU tuple funcλu result funcλa

match(U, U
′
) T1 = {V :u ∈ T |match(u, λU (U)) ∧ vπ ∈ V }

T ′
= T \ T1 T2 = {V :λu(u) | V :u ∈ T1} ua = λa(λD({u | V :u ∈ T2}))

T , Π � agetλD ,U → T ′
, Π � {vπ} :ua

Agg-Query-Apply:
Π = vπ : aqryλD ,U

′ altered by template funcλU tuple funcλu result funcλa

match(U, U
′
) T1 = {V :u ∈ T |match(u, λU (U)) ∧ vπ ∈ V }

T2 = {V :λu(u) | V :u ∈ T1} ua = λa(λD({u | V :u ∈ T2}))
T , Π � aqryλD ,U → T , Π � {vπ} :ua

Unmatched:
Π = vπ : none ∨ (Π = vπ :A2 altered byDU Du Da ∧ A1 �= A2) ∨ Π = 0

T , Π � A1 → T , Π

Priority-Right:
T , Π1 � A → T , Π1

T , Π2 � A → T ′
, Π

′
2 � V :u

T , Π1 ;Π2 � A → T ′
, Π1 ;Π

′
2 � V :u

Priority-Left:
T , Π1 � A → T ′

, Π
′
1 � V :u

T , Π1 ;Π2 � A → T ′
, Π

′
1 ;Π2 � V :u

Priority-Unavailable:
T , Π1 � A → T , Π1 T , Π2 � A → T , Π2

T , Π1 ;Π2 � A → T , Π1 ;Π2

policy as list. It is up to the embedding in an actual host language to decide
what to do with the results. For example, in our implementation, if the policy
enforcement yields no result, the action is simply ignored.

3 Privacy Models

The design of our language has been driven by inspecting a variety of privacy
models, first and foremost k-anonymity and (ε, δ)-differential privacy. We show
in this section how those models can be adopted in our approach. The original
definitions have been adapted from databases to our tuple space setting.

k-anonymity. The essential idea of k-anonymity [15,20,22] is to provide
anonymity guarantees beyond hiding sensitive fields by ensuring that, when
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information on a data set is released, every individual data item is indistin-
guishable from at least k − 1 other data items. In our motivational examples,
for instance, this could be helpful to protect the correlation between devices and
their distances from an attacker that can observe the position and number of
devices in a zone and can obtain the list of distances within a zone through
a query. k-anonymity is often defined for tables in a database, here it shall be
adapted to templates U instead. We start by defining k-anonymity as a property
of T : roughly, k-anonymity requires that every tuple u cannot be distinguished
from at least k − 1 other tuples. Distinguishability of tuples is captured by an
equivalence relation =t. Note that =t is not necessarily as strict as tuple equal-
ity: two tuples u and u′ may be different but equivalent, in the sense that they
can be related exactly by the same, and possibly external, data. In our setting,
k-anonymity is formalized as follows.

Definition 1 (k-anonymity). Let k ∈ N
+, T be a multiset of tuples, and let

=t be an equivalence relation on tuples. T has k-anonymity for =t if:

∀u ∈ T .|{u′ ∈ TU | u′ =t u}| ≥ k

In other words, the size of the non-empty equivalence classes induced by =t

is at least k. We say that a multiset of tuples T has k-anonymity if T has k-
anonymity for =t being tuple equality (the finest equivalence relation on tuples).
k-anonymity is not expected to be a property of the tuple space itself, but of the
release of data provided by the operations aqry, aget and aput. In particular,
we say that k-anonymity is provided by a policy Π on a tuple space T when for
every query based on the above operations the released result ua (cf. Fig. 4) has
k-anonymity. Note that this does only make sense if the result ua is a multiset
of tuples, which could be the case when the aggregation function is a multiset
operation like multiset union. Policies can be used to enforce k-anonymity on
specific queries. Consider for instance the previously mentioned example of the
attacker trying to infer information about distances and positions of devices.
Assume the device information is stored in tuples (x, y, i, j, d) where (x, y) are
actual coordinates of the devices, (i, j) represents the zone in the grid and d
is the computed distance to the closest PoI. Suppose further that we want to
provide access to a projection of those tuples by hiding the actual positions and
providing zone and distance information. Hiding the positions is not enough and
we want to provide 2-anonymity on the result. We can do so with the following
policy:

1 2-anonymity:

2 aqry mset_union, float, float, int, int, float altered by

3 tuple func (fun x y i j d -> if anonymity(2) (i j d) else nil))

Listing 1.7. Example of k-anonymity for k = 2.

where anonymity(k) checks k-anonymity on the provided view T2 (cf. Fig. 4),
according to Definition 1. Basically, the enforcement of the policy will ensure
that we provide the expected result, if in each zone there are at least two devices
with the same computed distance, otherwise the query produces the empty set.
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(ε, δ)-differential Privacy. Differential privacy techniques [7] aim at protect-
ing against attackers that can perform repeated queries with the intention of
inferring information about the presence and/or contribution of single data item
in a data set. The main idea is to add controlled noise to the results of queries
so to reduce the amount of information that such attackers would be able to
obtain. Data accuracy is hence sacrificed for the sake of privacy. For instance,
in the motivational example of the distance gradient, differential privacy can be
used to the approximate the result of the aggregations performed by the gra-
dient computation. This is done in order to minimize leakage about the actual
positions and distance of each neighbouring device. Differential privacy is a prop-
erty of a randomized algorithm, where the data set is used to give enough state
information in order to increase indistinguishably. Randomization arises from
privacy protection mechanisms based on e.g. sampling and adding randomly
distributed noise. The property requires that performing a query for all possible
neighbouring subsets of some data set, the addition (or removal) of a single data
item produces almost indistinguishable results. Differential privacy is often pre-
sented in terms of histogram representations of databases not suitable for our
purpose. We present in the following a reformulation of differential privacy for
our setting. Let P[A(T ) ∈ S] denote the probability that the output A(T ) of a
randomized algorithm A is in S when applied to T , where S ⊆ R(A) and R(A)
is the codomain of A. In our setting A should be seen as the execution of an
aggregated query, and that randomization arises from random noise addition.
(ε, δ)-differential privacy in our setting is then defined as the following property.

Definition 2 ((ε, δ)-differential privacy). Let A be a randomized algorithm,
T be a tuple space, e be Euler’s number, and ε and δ be real numbers. A satisfies
(ε, δ)-differential privacy if and only if for any two tuple spaces T1 ⊆ T and
T2 ⊆ T such that ‖T1 � T2‖τu

≤ 1, and for any S ⊆ R(A), the following holds:

P[A(T1) ∈ S] ≤ eε · P[A(T2) ∈ S] + δ

Differential privacy can be enforced by policies that add a sufficient amount
of random noise to the result of the queries. There are several noise addition
algorithms that guarantee differential privacy. A common approach is based on
the global sensitivity of data set for an operation and a differentially private
mechanism which uses the global sensitivity to add the noise. Global sensitivity
measures the largest possible distance between neighbouring subsets (i.e. differ-
ing in exactly one tuple) of a tuple space, given an operation. The differentially
private mechanism uses this measure to distort the result when the operation is
applied. To define a notion of sensitivity in our setting, assume that for every
basic type τ there is a norm function ‖ · ‖ : τu → R which maps every tuple into
a real number. This is needed in order to define a notion of difference between
tuples. We are now ready to define a notion of sensitivity for a given aggregate
operator λD.
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Definition 3 (Sensitivity). Let T be a tuple space, λD : τu′ → τu�
be an

aggregation function, and p ∈ N
+. The pth-global sensitivity Δp of λD is defined

as:
Δp(λD) = max

∀ T1,T2 ⊆ T
T1�T2=1

p

√ ∑
i∈{0,..,|τu′ |}

|‖λD(T1)i‖ − ‖λD(T2)i‖|p (1)

Roughly, Eq. (1) is expressing that the sensitivity scale of an aggregate operator
is determined by the largest value differences between all fields of the aggregated
tuples. The global sensitivity can then be used to introduce Laplace noise accord-
ing to the well-known Laplace mechanism, which provides (ε, 0)-differential
privacy.

Definition 4 (Laplace noise addition). Let T be a tuple space, λD : τ∗
u →

τu′ be an aggregation function, ⊕ : τu′ × τu′ → τu′ be an addition operator
for type τu′ , ε ∈ ]0, 1], p ∈ N

+, and Y = (Y1, . . . , Yi, . . . , Yn) be a tuple of
random variables that are independently and identically distributed according
to the Laplace distribution Yi ∼ L(0,Δp(λD)/ε). The Laplace noise addition
function laplaceT ,λD,ε is defined by:

laplaceT ,λD,ε(u) = u ⊕ Y (2)

Note that the function is parametric with respect to the noise addition operator
⊕. For numerical values ⊕ is just ordinary addition. In general, for ⊕ to be to be
meaningful, one has to define it for any type. For complex types such as strings,
structures or objects this is not trivial, and either one has to have a well-defined
⊕ or other mechanisms should be considered for complex data types.

Consider again our motivational example of distance gradient computation,
we can define a policy to provide differential privacy on the aggregated queries
of each round of the computation as follows:

1 edp:

2 aqry minD, float, float, int, int, float altered by

3 result func (fun x y i j d -> (laplace minD 0.9 (x, y, d)))

Listing 1.8. Example of (ε, 0)-differential privacy policy.

The policy controls queries aiming at retrieving the information (x, y) coordi-
nates, (i, j) zone and distance d of the device that is closest to a PoI, obtained by
the aggregation function minD. The query returns only the coordinates of such
device and its distance, after distorting them with Laplace noise by function
laplace, implemented according to Definition 4 (with the tuple space being the
provided view T2, cf. Fig. 4).

More in general, the enforcement of policies of the form

1 aquery λD, U altered by

2 template func DU

3 tuple func Du

4 result func (fun u -> (laplace λD ε u))

Listing 1.9. Schema for (ε, 0)-differential privacy policies.
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provides (ε, 0)-differential privacy on the view of the tuple space (cf. T2 in Fig. 4)
against aggregated queries based on the aggregation function λD.

4 Aggregation Policies at Work

To showcase the applicability of our approach to aggregate computing applica-
tions, we describe in this section a proof-of-concept implementation of our policy
language and its enforcement mechanism in a tuple space library (cf. Sect. 4.1),
and the implementation of one of the archetypal self-organizing building blocks
used in aggregate programming, namely the computation of a distance gradient
field, that we use also to benchmark the library (cf. Sect. 4.2).

4.1 Implementation of a Proof-of-Concept Library

The open-source library we have implemented is available for download, instal-
lation and usage at https://github.com/pSpaces/goSpace. The main criteria for
choosing Go was that it provides a reasonable balance between language features
and minimalism needed for a working prototype. Features that were considered
important included concurrent processes, a flexible reflection system and a con-
cise standard library. The goSpace project was chosen because it provided a basic
tuple space implementation, and had the fundamental features, such as addition,
retrieval and querying of tuples based on templates, and it also provides derived
features such as retrieval and querying of multiple tuples. Yet, goSpace itself was
modified in order to provide additional features needed for realizing the policy
mechanism. One of the key features of the implementation is a form of code
mobility that allows to transfer functions across different tuple spaces. This was
necessary to serve as a foundation for allowing user-defined aggregate functions
across multiple tuple spaces. Further, the library was implemented to be slightly
more generic than what is given in Sect. 2 and can in principle be applied to other
data structures beyond tuple spaces and aggregation operators on tuple space.
Currently, our goSpace implementation supports policies for the actions aput,
aget and aqry but it can be easily extended to support additional operations.

4.2 Protecting Privacy in a Distance Gradient

We have implemented the case study of the distance field introduced in Sect. 1 as
a motivational example. In our implementation, the area where devices and PoIs
are placed, is discretized as a grid of zones; each device and PoI has a position
and is hence located in a zone. The neighbouring relation is given by the zones:
two devices are neighbours if their zones are incident. Devices can only detect
PoIs in their own zone and devices cannot communicate directly with each other:
they use a tuple space to share their information. Each device publishes in the
tuple space their information (position, zone and computed distance) labelled
with a privacy policy. The aggregation performed in each round uses the aqry

https://github.com/pSpaces/goSpace


196 L. Kaminskas and A. Lluch Lafuente

(a) noise 0.01 (b) noise 0.1 (c) noise 0.2 (d) noise 1.0

Fig. 5. Distance gradients with aggregation policies based on noise addition. (Color
figure online)

operation with an aggregation function that selects the tuple with the smallest
distance to a PoI.

Different policies can be considered. The identity policy would simply corre-
spond to the typical computation of the field as seen in the literature. Basically,
all devices and the tuple space are considered to be trustworthy and no privacy
guarantees are provided. Another possibility would be to consider that devices,
and other agents that want to exploit the field, cannot be fully trusted with
respect to privacy issues. A way to address this situation would be to consider
policies that hide or distort the result of the aggregated queries used in each
round.

Fig. 6. Gradient with noise

We have performed several experiments with
our case study and we have observed, as
expected, that such polices may affect accu-
racy (due to noise addition) and performance
(due to the overhead of the policy enforce-
ment mechanism). Some results are depicted
in Figs. 2, 5 and 6. In particular the figures show
experiments for a scenario with 1000 devices
and a discretization of the map into a 100×100
grid. Figure 2 shows the result where data is not
protected but is provided as-it-is, while Fig. 5
shows results that differ in the amount of noise
added to the distance obtained from the aggre-
gated queries. This is regulated by a parameter
x so that the noise added is drawn from a uniform distribution in [−x ∗ d, x ∗ d],
where d is the diameter of each cell of the grid (actually

√
10 ∗ 10). In the fig-

ures, each dot represents a device and the color intensity is proportional to the
distance to the PoI, which is placed at (0, 0). Highest intensity corresponds to
distance 0, while lowest intensity corresponds to the diameter of the area (

√
200).

The results with more noise (Fig. 5(d)) make it evident how noise can affect data
accuracy: the actual distance seems to be the same for all nodes. However, Fig. 5,
which shows the same data but where the color intensity goes from 0 to the
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maximum value in the field, reveals that the price paid for providing more privacy
does not affect much the field: the gradient towards the PoI is still recognizable.

5 Conclusion

We have designed and implemented a policy language which allows to succinctly
express and enforce well-understood privacy models in the syntactic category
such as k-anonymity, and in the semantic category such as (ε, δ)-differential
privacy. Aggregate operations and templates defined for a tuple space were used
to give a useful abstraction for aggregate programming. Even if not shown here,
our language allows to express additional syntactic privacy models such as 
-
diversity [15], t-closeness [13,21] and δ-presence [8]. Our language does not only
allow to adopt the above mentioned privacy models but it is flexible enough to
specify and implement additional user-defined policies. The policy language and
its enforcement mechanism have been implemented in a publicly available tuple
space library. The language presented here has been designed with minimality
in mind, and with a focus on the key aspects related to aggregation and privacy
protection. Several aspects of the language can be extended, including richer
operations to compose policies and label tuples, user-dependent and context-
aware policies, tuple space localities and polyadic operations (e.g. to aggregate
data from different sources as usual in aggregate computing paradigms). We
believe that approaches like ours are fundamental to increase the security and
trustworthiness of distributed and coordinated systems.

Related Work. We have been inspired by previous works that enriched tuple
space languages with access control mechanism, in particular SCEL [6,16] and
Klaim [3,11]. We have also considered database implementations with access
control mechanisms amenable for the adoption of privacy models. For exam-
ple, [5] discusses the development strategies for FBAC (fine-grained access con-
trol) frameworks in NoSQL databases and showcases applications for MongoDB,
the Qapla policy framework [18] provides a way to manipulate DBMS queries
at different levels of data granularity and allows for transformations and query
rewriting similar to ours, and PINQ [17] uses LINQ, an SQL-like querying syn-
tax, to express queries that can apply differential privacy embedded in C#. With
respect to databases our approach provides a different granularity to control
operations, for instance our language allows to easily define template-dependent
policies. Our focus on aggregate programming has been also highly motivated
by the emergence of aggregate programming and its application to domains of
increasing interest such as the IoT [1]. As far as we know, security aspects of
aggregate programming are considered only in [4] where the authors propose to
enrich aggregate programming approaches with trust and reputation systems to
mitigate the effect of malicious data providers. Those considerations are related
to data integrity and not to privacy. Another closely related work is [9] where
the authors present an extension to a tuple space system with privacy properties
based on cryptography. The main difference with respect to our work is in the
different privacy models and guarantees considered.
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Future Work. One of the main challenges of current and future privacy protec-
tion systems for distributed systems, such as the one we have presented here, is
their computational expensiveness. We plan to carry out a thorough performance
evaluation of our library. We plan in particular to experiment with respect to
different policies and actions. It is well known that privacy protection mechanism
may be expensive and finding a right trade-off is often application-dependent.
Part of the overhead in our library is due to the preliminary status of our imple-
mentation where certain design aspects have been done in a naive manner to pri-
oritize rapid prototyping over performance optimizations, e.g. use of strong cryp-
tographic hashing, use of standard library concurrent maps and redundancies in
some data structures. This makes room for improvement and we expect that the
performance of our policy enforcement mechanism will be significantly improved.
More in general, finding the optimal k-anonymity is an NP-hard problem. There
is however room for improvements. For instance, [12] provides an approximation
algorithm. This algorithm could be adapted if enforcement is needed. An online
differentially private algorithm, namely private multiplicative weights algorithm,
is given in [7]. Online algorithms are worth of investigation since interactions
with T are inherently online. Treatment of functions and functional data in dif-
ferential privacy setting can be found [10]. We are currently investigating online
efficient algorithms to improve the performance of our library.
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Abstract. Major challenges in the software development of distributed
systems are rooted in the complex nature of coordination. Assertions
are a practical programming mechanism to improve the quality of soft-
ware in general by monitoring it at runtime. Most approaches today
limit assertions to statements about local states whereas coordination
requires reasoning about distributed states. The Peer Model is an event-
based coordination programming model that relies on known foundations
like shared tuple spaces, Actor Model, and Petri Nets. We extend it with
distributed runtime invariant assertions that are specified and imple-
mented using its own coordination mechanisms. This lifts the concept of
runtime assertions to the level of coordination modeling. The concept is
demonstrated by means of an example from the railway domain.

Keywords: Coordination model · Runtime assertions
Distributed systems · Tuple space

1 Introduction

The development of coordination is complex because of the asynchronous nature
of distributed systems. Coordination models like the Actor Model [2], Petri Nets
[20], Reo [3] and the Peer Model [15] are well suited to model the interactions
in concurrent systems. They allow reasoning about coordination at a certain
abstraction level. Such a model-driven approach has the advantage to specify
the system unambiguously, and to support the verification of system properties.
Assertions are a practical programming mechanism to improve the quality of
software in general by monitoring it at runtime. Most approaches today limit
assertions to statements about local states whereas coordination requires rea-
soning about distributed states.

The objective of this paper is to introduce event-based, asynchronous, and
distributed runtime assertions to a coordination model. This approach shall lift
the concept of runtime assertions to the level of coordination modeling. A main
problem is to find a good tradeoff between a very costly mechanism and a good
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quality of verification. A further requirement is to provide a notation that is well
integrated into the notation of the coordination model so that developers need
not learn a different language. This way, the assertions can be directly added
to the model of the application using the same modeling concepts. Keeping the
number of concepts that a developer has to comprehend small contributes to
usability [24].

We use the Peer Model (see Sect. 3) as reference coordination model nota-
tion and introduce an assertion mechanism based on its own modeling language.
Checking of distributed assertions can in turn be considered a coordination prob-
lem. We propose therefore model transformation algorithms that automatically
translate the assertion specifications into coordination constructs of the model.
Thus they become part of the application model and can be implemented with
the same mechanisms. In this way, the extended Peer Model is a contribution
towards verification of practical distributed systems.

The paper is structured as follows: Sect. 2 summarizes related work on dis-
tributed assertion mechanisms. Section 3 gives an overview of the Peer Model. In
Sect. 4 we extend the Peer Model by distributed runtime invariant assertions that
are specified and implemented using its own coordination mechanisms. In Sect. 5
the concept is demonstrated by means of an example from the railway domain.
Section 6 summarizes the results and Sect. 7 gives an outlook to future work.

2 Related Work

Proper assertions for verification of coordination models should be declarative,
event-driven and distributed. Assertions express correctness properties that must
hold in all system states. Coordination model assertions should be model-based
and use the same or similar notation of the model to keep the number of concepts
small. For concurrent distributed systems, run time assertions [6] provide high
confidence that the properties to be verified are fulfilled. However, assertions
in this case should be of asynchronous nature so that they neither disturb the
execution nor interfere with user code and data by any means. They should be
bootstrapped for implementation with native model mechanisms.

[9] introduces a solution for coordinating activities of multiple intelligent
agents using the tuple space computational model. The tuple space-based prob-
lem solving framework is implemented on an Intel Hypercube iPSC/2 allow-
ing multiple rule-based systems concurrently performing their dedicated interre-
lated tasks. Their approach to build a rule-based system resembles our approach
towards distributed assertions, but on a different level of reasoning.

A language for determining correct behavior in distributed systems is
described in [25]. This approach succeeds to verify distributed systems but
introduces a different language and notation. Also, waiting states for opera-
tors’ actions add much overhead to the run time check which is not acceptable
in most systems, especially those of safety-critical nature.

Reusable assertions were developed in [13], where the assertions can be used
at different abstraction levels. The approach handles the timing but does not
provide asynchronous assertions for distributed system modules.



202 e. Kühn et al.

In [14] a lightweight modeling language (Alloy), based on first-order relational
logic is used to model and analyze Reo connectors. Reo [3] is a coordination lan-
guage based on components and connectors. The model presented in this work
preserves the original structure of the Reo network, avoiding a complex transla-
tion effort. The approach handles basic channel types, compositional construc-
tion of more complex connectors, constraints on the environment, and networks
exposing context-sensitive behavior. However, in Alloy, no asynchronous asser-
tion mechanism is provided and the properties are defined in terms of first-order
predicates, and not in the same model notation.

[4] investigates runtime verification where the properties are expressed in
linear time temporal logic (LTL) or timed linear time temporal logic (TLTL).
Runtime verification is identified in comparison to model checking and testing.
A three-valued semantics (with truth values true, false, inconclusive) is intro-
duced as an expressive interpretation indicating whether a partial observation
of a running system meets an LTL or TLTL property. For LTL, a minimal size
deterministic monitor is generated identifying a continuously monitored trace as
either satisfying or falsifying a property as early as possible, similarly for TLTL.
The approach is successful and provides foundation for real-time monitoring of
system properties. The approach does not provide asynchronous assertions and
uses a different notation from the model.

Mining of the simulation data as an effective solution for generation of asser-
tions is presented in [5]. The research provides an efficient way to develop a highly
trusted set of assertions and solves the incompleteness problem of Assertion
Based Verification (ABV). The assertions are not based on the model notation
and need effort of the developer to integrate them into the runtime. Distributed
asynchronous mechanisms for assertions are not provided.

The work presented in [19] investigates the realization of infrastructures
to maintain and access data and use it in assertions. Assertions can be man-
aged across distributed system to support sophisticated assertions for inter-
communications in distributed systems. A tool-chain is provided for program-
ming assertions on interaction history written in regular expressions that incor-
porate inter-process and inter-thread behavior amongst multiple components in
a distributed system. The mechanism is promising but not model-based.

A novel approach described in [26] uses machine learning for automatic asser-
tion generation. The approach releases the burden of manually specifying the
assertions, which is a time-consuming and error-prone process. Similarly the
authors of [21] also deal with the problem of insufficiently written assertions and
propose an automatic approach for assertion generation based on active learn-
ing. The approach targets complex Java programs, which cannot be symbolically
executed. Test cases are used as a base for assertion generation and active learn-
ing to iteratively improve the generated assertions is applied. Both approaches
are runtime-based and automatic, but they are not applicable for distributed
systems where coordination needs to be defined and asserted asynchronously to
validate the system functionality.
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[8] introduces runtime verification as a complementary validation technique
for component-based systems written in the BIP (Behavior, Interaction and Pri-
ority) framework. The proposed solution dynamically builds a minimal abstrac-
tion of the current runtime state of the system so as to lower the overhead.
Monitors are directly generated as BIP components where the C code generator
of BIP generate actual monitored C programs and remain compatible with pre-
viously proposed runtime verification frameworks. However, an adaptation layer
is needed to adapt monitors generated by other existing tools.

A general approach to monitor the specifications of decentralized systems is
presented in [7]. The specification is considered as a set of automata associated
with monitors attached to different components of the decentralized system. A
general monitoring algorithm is developed to monitor the specifications. Execu-
tion History Encoding (EHE) data structure is introduced as a middle ground
between rewriting and automata evaluation. Rewriting is restricted to Boolean
expressions, parameters are determined and their respective effect on the size of
expressions and the upper bounds are fixed. A similar decentralized algorithm
for runtime verification of distributed programs is introduced in [18]. The tech-
nique works on asynchronous distributed systems, where a global clock is not
assumed. The specification language used is full LTL so that temporal proper-
ties can be monitored. The algorithm can also determine the verification verdict
once a total order of events in the system under inspection can be constructed.
The presented algorithm addresses shortcomings in other algorithms as it does
not assume a global clock, is able to verify temporal properties and is sound
and complete. However, the main concern is the large number of monitoring
messages introducing an increased communication and memory overhead.

[12] proposes a session-based verification framework for concurrent and dis-
tributed ABS models. Applications are categorized with respect to the sessions
in which they participate. Their behaviors are partitioned based on sessions,
which include the usage of future. The presented framework extends the pro-
tocol types through adding terms suitable for capturing the notion of futures,
accordingly the communication between different ABS endpoints can be verified
by the corresponding session-based composition verification framework. Timing
is handled but not in an asynchronous way.

In summary, none of the listed approaches provides assertions that are speci-
fied at the model level, are runtime-based, asynchronous and distributed, and the
implementation of which can be bootstrapped with native model mechanisms.
The motivation was therefore to use the Peer Model (see Sect. 3) as reference
coordination model notation and to provide a full set of assertions that can
be translated to the same model notation, whereby all mentioned requirements
for assertions are fulfilled. This way, the intent is to extend the Peer Model to
become capable to trustfully monitor distributed systems.

3 The Peer Model in a Nutshell

The Peer Model [15] is a coordination model that relies on known foundations like
shared tuple spaces [10,11,17], Actor Model [2], and Petri Nets [20]. It clearly
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separates coordination logic from business logic and is well suited to model
reusable coordination solutions in form of patterns. It provides a refinement-
based modeling approach where you start with the highest abstraction layer of
your application model, and stepwise improve the model1. The main concepts
are briefly explained in the following.

Peer. A peer relates to an actor in the Actor Model [2]. It is an autonomous
worker with in- and outgoing mailboxes, termed peer input container (PIC) and
peer output (POC) container.

Container. A container is a sub-space in the tuple space that stores entries that
are written, read, or taken (i.e., read and removed) in local transactions.

Entry. Entries are the units of information passed between peers. An entry has
system- and application-defined properties, which are name/value pairs. Exam-
ples for system-defined properties are e.g.: ttl (time-to-life; if it expires, the
entry becomes an exception entry that wraps the original entry), and fid (flow
id). All entries with the same fid belong to the same flow, i.e., they logically
belong together. An exception entry is a special system-defined entry. If it is
caused by the expiration of an entry ttl it inherits the fid of the entry causing
the exception, and “wraps” the original entry in a property termed entry. The
type of the exception is stored in the excType property.

Link. A link transports entries between two containers c1 and c2. It selects entries
from c1 using a query. Link operations are move (take entries from c1 and write
them to c2), copy (read entries from c1 and write them to c2), test (read entries
from c1), delete (read and remove entries from c1), create (create entries of
given type and count and write them to c2), and no operation specified (no
container access; this link serves solely to perform tests on variables). A link can
set or get variables (see below) and set or get properties of entries (if an operation
was used that selected entries from c1). In these expressions also system-defined
functions like head() (get first element of a list), tail() (get rest of a list) can
be used. Finally, a link may have system-defined properties, e.g., dest (peer to
whose PIC all selected entries shall be sent), and mandatory (flag whether the
link is obligatory).

Wiring. The coordination behavior of a peer is explicitly modeled with wirings,
which have some similarity with Petri Net transitions [20]. All wiring specifica-
tions are executed concurrently in so-called wiring instances. Each instance has
an internal container termed Wiring Internal Container (WIC), which serves as
a temporary, local entry collection. Each wiring instance is a local transaction
[16] that transports entries between containers with help of links. A link from
a PIC or POC to the WIC is termed “guard” (G) and a link from the WIC
to a PIC or POC is termed “action” (A). The operational behavior of a wiring
instance is the sequential execution of guards, and actions. The arrival of entries
in peer space containers triggers the execution of guards. A wiring is triggered if

1 There exists an Event-B-based model checker for the Peer Model [22].



Distributed Coordination Runtime Assertions for the Peer Model 205

Fig. 1. Graphical notation for the main artifacts of the ground model.

all of its guard links are satisfied. Wirings also have system-defined properties.
Each instance of a wiring obtains a new WIC. Wirings can treat exceptions.

Query. A query consists of: (1) entry type (mandatory), (2) an integer number
(default is 1) specifying how many entries shall be selected, or ALL (all entries in
the container that can be read or taken, possibly 0), and (3) a selector expression.
It is fulfilled when enough entries with specified type match the selector. It selects
entries with same type and of compatible flows [15]. The first link of a wiring
determines the flow. All further links select only entries with same fid, or not
fid set. A selector can use AND, OR and NOT operators.

Variable. There exist application- and system-defined variables. The former are
denoted with “$” and used in the scope of a wiring instance. The latter are
denoted with “$$” and set by the runtime, e.g., $$PID (id of the current peer),
$$WID (id of the current wiring), $$CNT (number of entries selected by a link
query), and $$FID (current flow id of the wiring instance).

Figure 1 shows the graphical notation of the core concepts. It depicts one
peer with id P1 and one wiring termed W1. The wiring possesses two guard links
(G1, G2), and two action links (A1, A2) – represented by arrows. G1 (connecting
PIC and WIC) depicts the general notation: Operation, query and the access
to variables and entry properties are located above the respective arrow and
properties are denoted below. Guard links are directed towards the WIC, and
action links are pointing in the other direction. If entries are read (and removed)
from a container, then the arrow base is connected to it; if entries are written
into a container, then the arrow head is connected to it. Otherwise, a vertical
bar is used on the respective side to indicate that no entries “go through”.

G2 shows a guard link that takes one entry of type status from the PIC, using
a selector specifying that the val property of the entry must be set to free, and
writes the entry into the WIC. It stores the from and to properties of the selected
entry in local variables $from and $to. In action link A1 the wiring takes the
above mentioned status entry from the WIC, swaps its to and from properties
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with help of the local variables, and writes it back to the PIC. A2 creates one
new entry of type info, and as the link property dest is set, the entry is sent
to the PIC of the destination address, in this case the Operator peer. If dest is
set, the arrow of the link goes through the POC. All system-defined terms are
written in type writer style.

4 Introducing Peer Model Assertions

To improve the quality of specifications at the modeling level, the Peer Model
is augmented with declarative invariant assertions. The goal of the assertion
mechanism is to detect model inconsistencies at runtime. The trade-off between
interference with normal execution, network traffic, and strict evaluation of asser-
tions should be configurable. The mechanism shall be distributed, asynchronous
and event-driven, assuming neither reliable nor ordered communication.

Assertions are statements about container states, because the shared coor-
dination state of the distributed system is manifested in them. They follow the
same principles as the Peer Model concepts (see Sect. 3), e.g., they have prop-
erties, are flow sensitive, and cause exception entries to be treated by the appli-
cation. The consideration of the flow is fundamental, because the scope of each
assertion check is restricted to one flow. This has the advantage that the cor-
relation of distributed events can fully rely on the Peer Model’s native flow
mechanisms. Peers are assumed to report about assertion violations to one or
more coordinators, which are peers in charge of controlling the assertion check-
ing for a particular flow. Reporting considers actual and past states; liveness is
out of scope of this mechanism.

We differentiate between assertions referring to containers of one single
peer only (intra-peer assertions) and assertions involving multiple (local or dis-
tributed) peers (inter-peer assertions). For the former, violations are checked
autonomously by the peer itself, for the latter, violation checking is under-
stood as a distributed coordination problem. The proposed mechanism includes
a translation of the declarative assertions to existing Peer Model constructs by
a model translation algorithm (MTA) (see Sect. 4.1). For intra-peer assertion
checks, respective wirings are statically added to the meta-model of the peers
that monitor their local container states and create assertion exception entries
on violation. The inter-peer assertion mechanism relies in principle on the same
wiring type, but instead of exceptions, report entries are created and sent to
coordinators, which in turn decide if exceptions must be created based on the
status of received reports. Therefore, the overall assertion check can be reduced
to an analogous wiring that checks a derived and normalized intra-peer assertion
about these reports, generated by the MTA.

The required overhead consists only of carrying out the required tests when
a new relevant event is received, storing the current reporting state and (in
the inter-peer case) sending one report message to each coordinator on a new
assertion violation. However, not all violations can be detected in case of commu-
nication failures. To cope with these issues and to support assertions about past



Distributed Coordination Runtime Assertions for the Peer Model 207

states, a history of the relevant events can be maintained in a dedicated internal
peer container termed HIC. This history is created by extending the existing
application wirings to capture all local changes and deletions of entries refer-
enced by assertions in the HIC, which creates a certain overhead. However, the
overhead can be reduced by deleting events that cannot be referenced any more
by active assertions (e.g. a flow has expired), assigning time-to-live properties
and introducing bounds on the depth of the history.

The expressiveness of the mechanism can be further enhanced by introducing
variables shared between different sub-assertions (see below) of inter-peer asser-
tions. This produces additional message overhead, as reports about property
changes in relevant entries must be sent to all respective wirings that reference
these properties by means of these variables. Variable reports are only sent, if
the corresponding assertion is not violated, because – like in failing optional
links – variables can only be assumed to have meaningful value, if the expres-
sion that sets them was successful. In addition, assertion wirings depend on
variable reports to be present and are activated by each new variable report.
The mentioned trade-off between strictness and expressiveness versus overhead
is controlled by the assertion model. Namely, avoiding inter-peer variables, and
not using assertions about the past and not demanding a history reduces the
overhead to a minimum.

The coordinator(s) for inter-peer assertions are specified by means of asser-
tion properties. Default is no coordinator, meaning that each sub-assertion cre-
ates local exceptions instead of sending reports to coordinators; the logic of how
to handle them can be explicitly modeled. Here, the trade-off is between many
coordinators with a larger message overhead and fewer coordinators leading to
a potential bottle-neck and single point-of-failure.

The syntax of assertions is given in Table 1 and their operational semantics is
defined with existing Peer Model constructs. An assertion is either a simple one
(SAss) or a complex one (CAss), i.e., sub-assertions connected with logic opera-
tors AND, OR, NOT and → (equivalent to ∧, ∨, ¬ and =⇒). Sub-assertions of inter-
peer assertions are intra-peer assertions and sub-assertions of intra-peer assertions
are container assertions. Container assertions are satisfied, if the container con-
tains exactly quantor entries of type that satisfy the query selector sel. Note that
type sel and set/get refer to the Peer Model’s link notation (see Fig. 1). Intra- and
inter-peer assertions are satisfied if the propositional formula corresponding to the
assertion – in which the propositions are the sub-assertions – is satisfied.

4.1 Model Translation Algorithm (MTA)

Intra-peer assertions are translated into single wirings located in the peer(s) cor-
responding to the context. Each assertion corresponds to a wiring that checks its
truth value and raises an exception on violation. Such assertion wirings define
and use all variables used in the corresponding assertion and overhead variables
to evaluate the truth value of the assertion. These overhead variables are: 1
variable for each container sub-assertion to store the evaluation value, 2 vari-
ables for each container sub-assertion to store the number of entries that fit the
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Table 1. EBNF for assertion notation.

type and query, 1 to store the overall assertion value and 1 to store whether a
violation must be reported. The assertion and overhead variables are initialised
on a dedicated mandatory guard. Each container sub-assertion is tested using
3 guards: (1) tests how many entries there are in the container that fulfil the
query of the assertion and saves the number in a variable; this guard also sets
the variables used by the assertion. (2) tests how many entries there are in the
container that fulfil the type of the assertion. (3) compares the quantities for
(1) and (2) according to the quantor in the container sub-assertion and sets the
corresponding truth variable to true if it is fulfilled. (1) and (2) are mandatory,
(3) is only executed if the sub-assertion is asserted. The truth value of the overall
assertion is set to true on an optional guard according to the logic formula of the
intra-peer assertion. If the overall intra-peer assertion is violated and no report
has yet been issued, a report is created in the peer input container (PIC) and
an exception is raised in the peer output container (POC).

Each intra-peer assertion creates an overhead of k wirings with 3n + 2 vari-
ables and 3n + 5 links each (n . . . # of container sub-assertions and k . . . # of
peers in the context). For each violation, 2 additional entries are created.

Figure 2 shows the translated wiring of an intra-peer assertion. G1 defines
a variable $qi for the result of each ContainerAss (see Table 1), a variable $q
for the result of the entire PeerAss, a variable $report to reflect whether the
assertion has already been reported, and initializes all application variables of
the wiring, if any. G1 is created once per wiring. Gj.k (j = 2, ..., n + 1, k = 1, 2,
3) are generated for each of the n ContainerAss: Gj.1 tests all entries fulfilling
type and sel (see Fig. 1) of the assertion query and saves their count in the
variable $cj . Gj.2 counts all entries that fulfill the type of the assertion query
and saves the value in the variable $caj which is needed for the quantifier check.
Gj.3 checks whether the right quantity of entries satisfies the sel by comparing
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$cj , $caj and the quantor in the ContainerAss as follows: (quantor == ALL AND
$cj == $caj) OR (quantor == NONE AND $cj == 0) OR ($cj == quantor). Gn + 2
sets the variable $q to the result of the overall assertion based on the values of
$q1, . . ., $qn. Gn + 3 checks whether an assertion violation has already been
reported for this wiring and flow, which is the case if an assReported entry
exists in the PIC. If the assertion is violated and has not been reported yet, A1
creates an assReported entry for the wiring and flow in the PIC. If the assertion
is violated and has not been reported yet, A2 creates an exception with type
ASSERTION for the wiring and flow in the POC.

Fig. 2. Corresponding wiring for a intra-peer assertion.

Inter-peer assertions are translated analogously: Sub-assertions (intra-peer
assertions) are treated individually and the overall inter-peer assertions evalu-
ated by coordinators based on the evaluation value of the sub-assertions.

The sub-assertions are translated into intra-peer assertion wirings. But
instead of raising exceptions, they send violation reports to coordinators when
the evaluation value might cause the overall assertion to fail. The differences are
reflected in A2, which creates an assReport entry and sends it to all coordina-
tors, and in the selector of Gn + 2, which is inverted for negated assertions with
quantor ALL and non-negated assertions with quantor NONE in the context.

The overall assertion is evaluated in dedicated wirings in coordinators that col-
lect the corresponding sub-assertion values and combine them according to the
propositional formula of the overall assertion. The resulting wiring is analogous
to an intra-peer assertion wiring where the sub-assertions are checks on the num-
ber of assertion reports sent by other peers. Variable initialization, evaluation of
the propositional skeleton, keeping track of violations and raising of exceptions
is analogous to intra-peer wirings. For each sub-assertion, the number of reports
sent by peers is counted (G2.1) and the numbers are compared according to the
quantor and the variable set to true if the sub-assertion is fulfilled (G2.2).

Inter-peer assertions introduce c overall evaluation wirings (c . . . # of coordi-
nators) with 2m+ 5 links and 2m+ 2 variables each (m . . . # of sub-assertions)
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and
∑m

1 ki intra-peer assertion wirings (ki . . . # of peers in the context for each
sub-assertion) with 3ni +5 links and 3ni +2 variables (ni . . . # of container sub-
assertions in the respective sub-assertions). For each violation at most

∑m
1 ki

messages are sent and 2c +
∑m

1 2ki entries are created.
The use of HIC adds additional links to each wiring that modifies or deletes

entries for which a HIC entry is assumed: The wiring gets additional links to
retrieve, update and write back sequence numbers from the HIC for an overall
sequence number (os) and a type sequence number (ts). (1) if the entry is taken
from the container, modified and written back or written to another container,
a copy of the entry as seen in the WIC is written to the history with ts and os
set, and (2) if the entry is deleted, the delete is replaced by a move and it is
subsequently moved into the HIC with ts and os set. All history entries of a
wiring instance are assigned the same sequence numbers. l + 4 additional links
and 2 new variables are added to each wiring that modifies or deletes entries
that must be kept in the history (l . . . # of links that modify or delete entries
relevant for the history).

Variables can be shared between sub-assertions. In that case, the wiring for
the assertion that sets the variable, must get additional logic to report the values.
The wirings for assertions that read the variables, must treat the variable reports
and set their local wiring variables accordingly. For positive sub-assertions in the
CNF, reports are sent if the corresponding assertion did not fail, for negated ones,
they are sent if the assertion failed. Variables shared between contexts introduce
an overhead of

∑m
1 (2oi ∗ ki + k2j) additional links and at most

∑m
1 ki

∑oi
1 k2j

additional messages (m . . . # sub-assertions, ki . . . size of context setting a vari-
able, k2j . . . size of context reading a variable).

5 Proof-of-Concept: Railway Use Case

The selected use case refers to the reservation of rails (cf. [1,23]). A block is
either a track or a point (see Fig. 3). It has a unique identifier (id). A track has
2 connectors. A point has 3 connectors. A connector references a connector of
another Block. A signal refers to a main signal; its value is red or green. It is
valid at the exit of the Block and associated with a connector (dependent on
the direction). A route is a sequence of connected Blocks. A reserved route is a
route where all Blocks are exclusively reserved for this route.

Three scenarios are selected: (1) Reserve Route: Mark all Blocks Block1, . . .,
BlockN for a route in the specified order. Check that the neighbor Blocks are
physically connected via connectors, and set their direction appropriately. (2)
Set Signals: Set signals on Blocks of a reserved route.

An example for a physical configuration of tracks is shown in Fig. 4. Each
Block knows to which neighboring Blocks it is connected. The challenge is that
there may exist many train Operators who try to reserve routes concurrently
(see red and blue routes in Fig. 4). It must not happen that a safety constraint
is violated (see informal specification of required assertions in Table 2). These
assertions for the example use case were provided by a railway expert.

We assume that the Operator defines a ttl within which the route must be
reserved. If not, the reservation fails, and the Operator issues the freeing of the
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Fig. 3. Two tracks (left) and one point (right) with set direction and signals. (Color
figure online)

Fig. 4. Sample configuration. Two routes: red and blue. (Color figure online)

already reserved Blocks of the route. The reservation of a route, the setting of
signals of Blocks of the reserved route, and the freeing of the route belong to the
same flow.

5.1 The Model

The Peer Model based representation is presented in the following using the
graphical notation.

Entries: The entries used in the example are categorized into entries that repre-
sent the state of the distributed system, and entries that represent events which
are sent between the peers as requests and answers. “bid” stands for Block id,
and “cid” for connector id.

State Entries:
– config:

• btyp: track or point
• b1: bid of neighbor 1
• c1: cid of neighbor 1
• b2: bid of neighbor 2
• c2: cid of neighbor 2
• b3: bid of neighbor 3 (if point)
• c3: cid of neighbor 3 (if point)

– status:
• val: free or reserved
• from: connector name
• to: connector name

– signals: red or green
• s1: signal at cid 1
• s2: signal at cid 2
• s3: signal at cid 3 (if point)

Request/Answer Entries:
– setDirection:

• from: connector id
• to: connector id

– setSignals:
• s1: red or green
• s2: red or green
• s3: red or green

– markRoute:
• route: sequence of Block ids
• operator: peer id of operator
• done: flag used by route marking
• action: reserve or free
• sender: peer id of sender (Operator

or Block)
– ackRoute
– nackRoute
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Peers: We define two kinds of peer roles: Block and Operator. Each track and
point is modeled as a Block with unique block id. It accepts commands to change
status, set signals and direction. The task of an Operator is to issue the setting of
Block directions, the reservation and freeing of routes, and the setting of signals
on reserved routes. All Operators act concurrently.

Wirings: Figures 5 and 6 show the wirings of Block peers.

Init: The initialization wiring (Fig. 5) is enabled exactly once when the Block
peer is created. It creates entries to hold the local status (A1), signals (A2), and
config (A3) and writes them to the peer’s PIC. Initially the status is free and
does not belong to a flow, all signals are set to red, and the configuration of the
Block is set based on the given peer’s configuration parameters.

SetSignals: This wiring (Fig. 5) sets the signals, provided that the Block is
reserved for the current flow. It is triggered by receipt of a setSignals entry
which it deletes from the PIC (G1). In (G2) it tests that its status says that it
is reserved for this flow. In (G3) it takes the signals entry from the PIC and in
(A1) writes the updated signals entry back to the PIC.

The marking of a route consists of the following wirings. Depending on the
action of markRoute, the Blocks are either reserved of freed within a flow.

ReserveRoute (see Fig. 6) reacts on the receipt of a markRoute event in its
PIC. We assume that a markRoute entry sent by an operator contains a valid
route and has its ttl (time-to-live) property set. It checks that it has not been
treated yet (i.e., the done flag is false), that the action is to reserve the route,
remembers the sender in the variable $s, the next Block of the route in the
variable $snext (G1), and initializes two variables $f and $t to empty. It takes its
status entry (G2) from PIC, tests that in its configuration the val property equals
free (G2). G3 tests the existence of one config entry in the PIC and remembers

Fig. 5. Block Peer: Initialization, and setting of signals.
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Fig. 6. Block Peer: Marking a route as reserved.

its properties in local variables termed $b1, $b2 and $b3. G4 initializes the
local variables $f and $t to contain the connector id of the sender (if it was not
the operator, i.e., sender is empty), and to the connector id of the next block.
It updates the value of the status entry to be reserved, sets its flow id to the
current flow, and the from and to properties to the respective connector ids (A1).
Finally, it sets the done flag on the markRoute entry to true (A2) to denote
that the status has been updated.

FreeRoute frees a reserved route. Its model is similar to ReserveRoute, with
the only difference that it needs not check that the block was free before and
updates the signals entry. It is therefore not shown.

EndOfRoute (see Fig. 6) fires after the Block’s status has been set by
ReserveRoute (i.e., done is true) and if the route has been completely treated,
i.e., the route is empty (G1). It sends the reply entry ackRoute to the requesting
Operator, provided that the action was to reserve the route. Otherwise no reply
is sent (A1). Therefore the action link is not mandatory.

ContinueRoute (see Fig. 6) fires after the Block’s status has been set by
ReserveRoute and recursively processes the rest of a not yet empty route (G1).
It sends the directive to mark the rest of the route to the next Block found in
the route (A1), i.e., the head of the current route.

RouteTimeout (see Fig. 6) treats the ttl exception of the markRoute entry
(G1), and sends as reply nackRoute to the Operator (A1), if the action was to
reserve the route, using the flow id of the markRoute entry, which is inherited
by the exception entry.



214 e. Kühn et al.

Table 2. Railway use case assertions (informal description). N. . .assertion number,
D. . .distributed assertion, P. . .refers to past

N Assertion D P

1: There must exist exactly one status entry at each Block – –

2: There must exist exactly one config entry at each Block – –

3: There must exist exactly one signals entry at each Block – –

4: markRoute is received from “from” neighbor or from Operator – –

5: The next Block of the route is the “to” Block neighbor – –

6: A Block receiving setSignal is reserved within the same flow id – –

7: If a Block is free then all its signals are red – –

8: If a Block status is free then the flow id of its status must be null – –

9: Reserved Blocks were free before – x

10: Block freeing requires Operator to have received ack/nackRoute – x

11: nackRoute is only sent after TTL of markRoute has expired – x

12: If Operator got ackRoute, all Blocks of the route are reserved x –

13: Signals are set after the Operator has received ackRoute for the flow x x

CleanUp (not shown) deletes outdated markRoute entries that want to free
the Block.

5.2 Assertions

Table 2 describes the major assertions for the use case in an informal way. All of
them were successfully modeled with the presented assertion mechanism, trans-
lated with MTA, and tested with the runnable specification of the Peer Model.
The resulting Peer Model assertions are shown in Table 3. Of these, assertions 12
and 13 show the specification of the assertion property excType. For assertion
12 we specify that all Operators shall act as coordinators, and in assertion 13
all Blocks serve as coordinators.

MTA Application
As an example for applying the developed model translation algorithms to the
defined assertions, the resulting implementation of assertion 7 is shown in Fig. 7,
which is an intra-peer one with two sub-assertions.

Overhead Evaluation
We calculate the overhead by assuming one distributed railway application that
has all shown example assertions. The introduced overhead is categorized by
number of additional wirings and links. In average per assertion 1,08 more
wirings and 11,15 links per Block, and 0,46 more wirings and 6,08 links per
operator were needed as shown in Table 4.
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Table 3. Railway use case assertions (formal specification).

Fig. 7. MTA applied to assertion 7 (see Tables 2 and 3).
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Table 4. Calculation of the overhead.

Assertion
number

# wirings per
Block

# wirings per
Operator

# links per
Block

# links per
Operator

1 1 0 8 0

2 1 0 8 0

3 1 0 8 0

4 1 0 14 0

5 1 0 14 0

6 1 0 11 0

7 1 0 11 0

8 1 0 8 0

9 1 0 24 0

10 1 1 8 24

11 1 1 0 17

12 1 3 12 30

13 2 1 19 8

Total 14 6 145 79

Average 1,08 0,46 11,15 6,08

Median 1,00 0,00 11,00 0,00

6 Conclusion

In this paper we have presented an asynchronous runtime assertion mechanism
for the Peer Model, which is an event-driven coordination model. Assertions are
formulated in a declarative notation that relies on the query mechanism of the
Peer Model. While their concept and syntax are new, they are closely related
those of the link and do not pose an entirely new mechanism as the use of a
separate tool or language would.

The proposed mechanism allows for lazy and strict assertion checking. In the
former case, it might happen that certain errors are not detected due to race
conditions. In the latter case, all errors can be detected during runtime, however,
with the trade-off that a history of certain events must be kept.

Without history and shared variables, overhead is linear in the number of
assertions to be checked and an the sizes of context they must be applied to.
History imposes an overhead linear in the number of modifications to each entry
type to be kept in history and shared variables increase the overhead quadratic in
the size of the contexts and linear in the number of variables and sub-assertions.

In a first step, the application model is transformed so that the event history
can be maintained, if required by assertions. In a second step, the assertions are
implemented by mapping them to the concepts of the Peer Model, so that they
become an integral part of the application model and can be understood as a
coordination solution themselves.
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In contrast to model checking, the proposed assertion mechanism is use-
ful at both model definition and runtime. It makes no assumptions about the
environment and can serve models of arbitrary size and distribution without
encountering the state explosion problem.

The lazy mechanism is completely orthogonal to the application. The com-
munication overhead depends on the distribution and number of the assertions.
The strict mechanism causes additional computation in the wirings, however,
only those events need to be captured in the history container that are referred
to by (sub)assertions, that are newly obtained in a peer container, or updated
or deleted by guards.

While the MTA is specific to the Peer Model, its concepts can be applied
to assertion checking in coordination models or distributed systems in general.
I.e., states are evaluated locally and evaluations compared instead of collecting
global states, only evaluations and variable assignments that influence the overall
evaluation of the assertion are shared and the mechanism is highly configurable.

As a proof-of-concept we have specified the major assertions for a use case
from the railway domain and demonstrated that all could be captured.

7 Future Work

In future work, the MTA will be implemented and integrated into Peer Model
implementations. Its correctness will be proven and its performance evaluated
systematically. We will work on optimizations for overhead minimization pro-
duced by the model translation algorithm, investigate assertions that also refer
to future events and dynamic changes of the meta model to support dynamic
injection of assertions.

Acknowledgements. The authors would like to thank Anita Messinger for the dis-
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Abstract. Among the programming models for parallel and distributed
computing, one can identify two important families. The programming
models adapted to data-parallelism, where a set of coordinated pro-
cesses perform a computation by splitting the input data; and coordina-
tion languages able to express complex coordination patterns and rich
interactions between processing entities. This article takes two success-
ful programming models belonging to the two categories and puts them
together into an effective programming model. More precisely, we inves-
tigate the use of active objects to coordinate BSP processes. We choose
two paradigms that both enforce the absence of data-races, one of the
major sources of error in parallel programming. This article explains why
we believe such a model is interesting and provides a formal semantics
integrating the notions of the two programming paradigms in a coherent
and effective manner.

Keywords: Parallelism · Programming models · Active objects · BSP

1 Introduction

This article presents our investigations on programming paradigms mixing
efficient data parallelism, and rich coordination patterns. We propose a pro-
gramming methodology that mixes a well-structured data-parallel programming
model, BSP [17] (Bulk Synchronous Parallel), and actor-based high-level interac-
tions between asynchronous entities. This way, we are able to express in a single
programming model several tightly coupled data-parallel algorithms interacting
asynchronously. More precisely we design an active-object language where each
active object can run BSP code, the communication between active objects is
remote method invocation, while it is delayed memory read/write inside the
BSP code. These two programming models were chosen because of their prop-
erties: BSP features predictable performance and absence of deadlocks under
simple hypotheses. Active objects have only a few sources of non-determinism
and provide high-level asynchronous interactions. Both models ensure absence of
data races, thus our global model features this valuable property. The benefits
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we expect from our mixed model are the enrichment of efficient data-parallel
BSP with both service-like interactions featured by active objects, and elastic-
ity. Indeed, scaling a running BSP program is not often possible or safe, while
adding new active objects participating to a computation is easy.

This short paper presents the motivation for this work and an analysis of
related programming models in Sect. 2. Then a motivating example is shown in
Sect. 3. The main contribution of this paper is the definition of a core language
for our programming model, presented in Sect. 4. An implementation of the
language as a C++ library is under development.

2 Context and Motivation

2.1 Active Objects and Actors

The actor model [1] is a parallel execution model focused on task parallelism.
Actor-based applications are made of independent entities, each equipped with
a different process or thread, interacting with each other through asynchronous
messages passing. Active objects hide the concept of message from the language:
they call each other through typed method invocations. A call is asynchronous
and returns directly giving a Future [11] as a placeholder for its result. Since
there is only one thread per active object, requests cannot run in parallel. The
programmer is thus spared from handling mutual exclusion mechanisms to safely
access data. This programming model is adapted to the development of inde-
pendent components or services, but is not always efficient when it comes to
data-parallelism and data transmission. An overview of active object languages
is provided by [5], focusing on languages which have a stable implementation and
a formal semantics. ASP [7] is an active object language that was implemented
as the ProActive Java library [3]. Deterministic properties were proven in ASP
when no two requests can arrive in a different order on the same active object.

Several extensions to the active object model enable controlled parallelism
inside active objects [2,8,12]. Multi-active objects is an extension of ASP [12]
where the programmer can declare that several requests can run in parallel on
the same object. This solution relies on the correctness of program annotation to
prevent data-races but provides efficient data-parallelism inside active objects.
Parallel combinators of Encore [8] also enable some form of restricted parallelism
inside an active object, mostly dedicated to the coordination of parallel tasks. A
set of parallel operators is proposed to the programmer, but different messages
still have to be handled by different active objects. This restricted parallelism
does not provide local data parallelism.

2.2 Bulk Synchronous Parallel

BSP is another parallel execution model, it defines algorithms as a sequence of
supersteps, each made of three phases: computation, communication, and syn-
chronization. BSP is adapted to the programming of data-parallel applications,
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but is limited in terms of application elasticity or loose coupling of computing
components as it relies on the strong synchronization of all computing entities.

Interactions between BSP processes occur through communication primi-
tives sending messages or performing one-sided Direct Remote Memory Access
(DRMA) operations, reading or writing the memory of other processes without
their explicit consent. BSP is generally used in an SPMD (Single Program Mul-
tiple Data) way, it is suitable for data-parallelism as processes may identically
work on different parts of a data. BSPlib is a C programming library for writing
BSP programs [13], it features message passing and DRMA. Variants of BSPlib
exist such as the Paderborn University BSP (PUB) library [6], or BSPonMPI
[14]. The PUB library offers subset synchronization, but this feature is argued
against by [10] in the context of a single BSP data-parallel algorithm. Using sub-
set synchronization to coordinate different BSP algorithms in the same system
seems possible but even more error prone. Formal semantics were defined for
BSPlib DRMA [15] and the PUB library [9].

2.3 Motivation and Objectives

The SPMD programming model in general and BSP are well adapted for the
implementation of specific algorithms, but composing different such algorithms
in a single application requires coordination capabilities that are not naturally
provided by the SPMD approach. Such coordination is especially difficult to
implement in BSPlib because a program starts with all processes in a single
synchronization group. For any communication to occur, all processes of the
application need to participate in the same synchronization barrier, making it
difficult to split a program into parallel tasks with different synchronization
patterns. The PUB library can split communication groups to synchronize only
some of the processes, but still lacks high level libraries for coordinating the
different groups. On the other hand, asynchronous message sending of active
objects is appropriate for running independent tasks, but inefficient when there
are many exchanged messages inside a given group of process or following a
particular communication pattern.

In this paper, we use active objects for wrapping BSP tasks, allowing us to
run different BSP algorithms in parallel without requiring them to participate
in the same synchronization. Active objects provide coordination capabilities
for loosely coupled entities and can be used to integrate BSP algorithms into a
global application. To our knowledge, this is the first model using active objects
to coordinate BSP tasks.

Among related works, programming languages based on stream processing,
like the StreamIt [16] language, feature data parallelism. While splitting a pro-
gram into independent tasks could be considered similar to our approach, stream
processing languages do not feature the strong synchronization model of BSP.
They are also less convenient for service-like interaction between entities, par-
ticularly when those sending queries are not determined statically. In summary,
ABSP features an interesting mix between locally constrained parallelism using
BSP (with fixed number of processes and predefined synchronization pattern),
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1 class IPActor : public ac t ivebsp : : ActorBase {
2 public :
3 double ip ( vector<double> v1 , vector<double> v2 ) {
4 // . . .
5 for ( int i = 0 ; i < bsp nprocs ( ) ; ++i ) { // Sp l i t data
6 int beg = ( v1 . s i z e ( )/ bsp nprocs ( ) ) ∗ i ,
7 end = ( v1 . s i z e ( )/ bsp nprocs ( ) ) ∗ ( i +1);
8 bsp put ( i , &v1 [ beg ] , x part , 0 , ( end−beg )∗ s izeof (double ) ) ;
9 bsp put ( i , &v2 [ beg ] , y part , 0 , ( end−beg )∗ s izeof (double ) ) ;

10 }
11
12 bsp run(&IPActor : : bspinprod ) ;
13
14 return a lpha ;
15 }
16
17 void bspinprod ( ) {
18 // c a l l BSPedupack inner product , returns r e s u l t on a l l p
19 a lpha = bspip ( bsp nprocs ( ) , bsp pid ( ) , n part , x part , y pa r t ) ;
20 }
21 } ;
22
23 int main ( ) {
24 // . . .
25 vector<double> v ;
26 // . . .
27 Proxy<IPActor> actorA = createActor<IPActor> ({1 , 2} ) ;
28 Proxy<MultActor> actorB = createActor<MultActor >({3 ,4}) ;
29
30 Future<double> f 1 = actorA . ip (v , v ) ;
31 double ip = f1 . get ( ) ;
32 Future<vector<double>> f 2 = actorB . mu l t i p l y a l l (v , ip ) ;
33 v = f2 . get ( ) ;
34 // . . .
35 }

Fig. 1. A ABSP example

and flexible service oriented interactions featured by active objects (more flexi-
ble but still with some reasonable guarantees). This makes our approach quite
different from StreamIt and other similar languages.

3 Example

In this section we show an example written using our C++ library under devel-
opment (Fig. 1). This library uses MPI for actor communications and reuses the
BSPonMPI library for BSP communications.

We chose C++ because we put higher priority on the efficiency of BSP data-
parallel code, C++ allows us to re-use BSP implementations written in C while
allowing objects and more transparent serialization. An implementation mixing
incompatible languages would, at this point, yield unnecessary complexity in our
opinion. We chose a motivating example based on this implementation instead
of the formal language of the next section to show the re-use of existing code
and because we think it is more convincing.

This example shows how an active object can encapsulate process data and
how its function interface can act as a parameterized sequential entry point to a
parallel computation. We also show the result of a call being used to call another
active object to do another computation, which is not shown.
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The IPActor class interfaces the inner product implementation included in
the BSPedupack software package [4]. We only show parts of the code we deem
interesting to present our model. Object variables begin by ‘ ’, their declarations
are not shown. We assume bsp nprocs() divides v1.size().

In the main function, the MPI process of pid 0 creates two active objects
with two processes each, see the parameter of the createActor primitive. Then
the ip function of the first one is called with vector v as the two parameters. This
asynchronous call returns with a future f1. The ip function of this active object
is then called sequentially. Using BSP primitives, the input vectors are split
among the processes of the active object. Then a bsp run primitive is used to
run bspinprod in parallel. It calls the bspip function of BSPedupack. Immediately
after the call on the first object, the main method requests the result with a get
primitive on f1, blocking until the result is ready. This result is sent to another
active object as request parameter.

4 A Core Language for Coordinating BSP Computations

4.1 Syntax

ABSP is our core language for expressing the semantics of BSP processes encap-
sulated inside active objects. Its syntax is shown in Fig. 2, x ranges over variable
names, m over method names, α, β over actor names, f over future names, and i,
j, k, N over integers that are used as process identifiers or number of processes.
A program P is made of a main method and a set of object classes with name
Act, each having a set of fields and a set of methods. The main method identifies
the starting point of the program. Each method M has a return type, a name,
a set of parameters x, and a body. The body is made of a set of local variables
and a statement. Types T and terms are standard for object languages, except
that new creates an active object, get accesses a future, and v.m(v) performs
an asynchronous method invocation on an active object and creates a future.
The operators for dealing with BSP computations are: BSPrun(m) that triggers
the parallel execution of several instances of the method m; sync delimits BSP
supersteps; and bsp put writes data on a parallel instance, to prevent data-
races the effect of bsp put is delayed to the next sync. bsp get is the reverse of
bsp put, reading remote data instead of writing it. Sequence is denoted; and is
associative with a neutral element skip. Each statement can be written as s; s′

with s neither skip nor a sequence.

Design Choices. We chose to specify a FIFO request service policy like in ASP
because it exists in several implementations and makes programming easier. In
ABSP, all objects are active, a richer model using passive objects or concurrent
object groups [5] would be more complex. We choose a simple semantics for
futures: futures are explicit and typed by a parametric type with a simple get
operator. We chose to model DRMA-style communications although message
passing also exists in BSPlib; modelling messages between processes hosted on
the same active object would raise no additional difficulty.
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P ::= Act{T x M} {T x s} program
T ::= Int | Bool | Act | Fut < T > type

M ::= T m(T x) {T x s} method
s ::= skip | x = z | if v { s } else { s } | s ; s

| return v | BSPrun(m) | sync | bsp put(v, v, x) statements
z ::= e | v.m(v) | new Act(N, v) | get v rhs of assign
e ::= v | v ⊕ v expressions
v ::= x null integer-values atoms

Fig. 2. Static syntax of ABSP

cn ::= α(N, A, p, q,Upd) f(⊥) f(w) configuration
p ::= ∅ | q : [i �→ Task] ; j �→ Task

)
current request service

q ::= (f, m, w ditseuqer)
Task ::= {�|s} task

w ::= x | α | f | null | integer-values runtime values
�, a ::= [x �→ w erotslacol]
A ::= [i �→ a sdlefitcejbo]
e ::= w | v ⊕ v runtime expressions

Upd ::= (isrc, v, idst, x snoitarepoAMRD)

Fig. 3. Runtime Syntax of ABSP (terms identical to the static syntax omitted).

4.2 Semantics

The semantics of ABSP is expressed as a small-step operational semantics
(Fig. 4); it relies on the definition of runtime configurations which represent
states reached during the intermediate steps of the execution. The syntax of
configurations and runtime terms is defined in Fig. 3. Statements and expres-
sions are the same as in the static syntax except that they can contain runtime
values.

A runtime configuration is an unordered set of active objects and futures
where futures can either be unresolved or have a future value associated. An
active object has a name α, a number N of processes involved in α, these pro-
cesses are numbered [0..N −1], A associates each pid i to a set of field-value pairs
a. It has the form (0 �→ [x �→ true, y �→ 1], 1 �→ [x �→ true, y �→ 3]) for example
meaning that the object at pid 0 has two fields x and y with value true and 1, and
the object at pid 1 has the same fields with different values. Note that the object
has the same fields in every pid. The function A(i) allows us to select the ele-
ment a at position i. q is the request queue of the active object. The active object
might be running at most one request at a time. If it is not running a request,
then p = ∅. Otherwise p = q :

(
[i �→ Task] ; j �→ Task

)
where q is the identity

of the request being served, and
(
[i �→ Task] ; j �→ Task

)
is a two level mapping

of processes to tasks that have to be performed to serve the request. The first
level represents parallel execution, it maps process identifiers to tasks, the second
represents sequential execution and contains a single process identifier and task.
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w is not a variable
[[w]]� = w

x ∈ dom(�)
[[x]]� = �(x)

[[v]]� = k [[v′]]� = k′

[[v ⊕ v′]]� = k ⊕ k′

New
[[v]]a+� = w y = fields(Act)

A = [j �→ (y �→ w, pid �→ j,nprocs �→ N)| j ∈ [0..N − 1]] β fresh
Rk[a, �, x = new Act(N, v) ; s] → Rk[a, �, x = β ; s] β(N, A, ∅, ∅, ∅)

If-True
[[v]]a+� = true

Rk[a, �, if v { s1 } else { s2 } ; s]
→ Rk[a, �, s1 ; s]

If-False
[[v]]a+� �= true

Rk[a, �, if v { s1 } else { s2 } ; s]
→ Rk[a, �, s2 ; s]

Get
[[v]]a+� = f

Rk[a, �, y = get v ; s] f(w) → Rk[a, �, y = w ; s] f(w)

Assign
[[e]]a+� = w (a + �)[x �→ w] = a′ + �′

Rk[a, �, x = e ; s] → Rk[a′, �′, s]

Invk
[[v]]a+� = β [[v]]a+� = w f fresh

Rk[a, �, x = v.m(v) ; s] β(N, A, p, q,Upd)
→ Rk[a, �, x = f ; s] β(N, A, p, q :: (f, m, w),Upd) f(⊥)

Serve
bind(α, m, v) = {�|s} i = head(N)

α(N, A, ∅, (f, m, v) :: q′,Upd) cn → α(N, A, (f, m, v) : (∅ ; i {→� �|s}), q′,Upd) cn

BSPRUN
bind(α, m, ∅) = {�′|s′}

α(N, A, q : (∅ ; i {→� � | BSPrun(m) ; s}), q′,Upd) cn
→ α(N, A, q : ([k {→� �′|s′}|k ∈ [0..N − 1]] ; i {→� � | s}), q′,Upd) cn

Return-Value
[[v]]A(i)+� = w

α(N, A, (f, m, w) : (∅; i {→� � | return v ; s}), q,Upd) f(⊥) cn → α(N, A, ∅, q,Upd) f(w) cn

Return-Sub-Task
α(N, A, q : i �→ Task

] � [k {→� � | returnv ; s}] ; j �→ Task′) , q,Upd) cn
→ α(N, A, q : i �→ Task

]
; j �→ Task′) , q,Upd) cn

Sync
A′ =

[
j �→ A(j)

[
(y �→ [[v]]A(i))|(i, v, j, y) ∈ Upd

] | j ∈ I
]

α(N, A, q :
(
[k �→ {�k|sync ; sk}] ; i �→ Task

)
, q′,Upd) cn

→ α(N, A′, q :
(
[k �→ {�k|sk}] ; i �→ Task

)
, q′, ∅) cn

Bsp-Get
[[v]]a+� = i

Dk[a, �, bsp get(v, xsrc, xdst) ; s,Upd]
→ Dk[a, �, s,Upd ∪ (i, xsrc, k, xdst)]

Bsp-Put
[[v]]a+� = i [[vsrc]]a+� = v′

Dk[a, �, bsp put(v, vsrc, xdst) ; s,Upd]
→ Dk[a, �, s,Upd ∪ (k, v′, i, xdst)]

Fig. 4. Semantics of ABSP.
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Tasks in each process consist of a local environment � and a current statement s.
For example, p = q : ([k �→ {�k|sk}|k ∈ [0..N − 1]] ; i �→ {�|s}) means that the
current request q first requires the parallel execution on all processes of [0..N −1]
of their statements sk in environments �k; then the process i will recover the exe-
cution and run the statement s in environment �. Concerning future elements,
these have two possible forms: f(⊥) for a future being computed, or f(w) for a
resolved future with the computed result w.

We adopt a notation inspired from reduction contexts to express concisely
a point of reduction in an ABSP configuration. A global reduction context
Rk[a, �, s] is a configuration with four holes: a process number k, a set a of
fields, a local store �, and a statement s. It represents a valid configuration
where the statement s is at a reducible place, and the other elements can be
used to evaluate the statement. This reduction context uses another reduction
context focusing on a single request service and picking the reducible statement
inside the current tasks. This second reduction context Ck[�, s] will allow us to
conveniently define rules evaluating the current statement in any of the two exe-
cution levels, it provides a single entry for two possible options: the sequential
level and the parallel one. It also defines that the parallel level is picked first
instead of the sequential one if it is not empty. The two reduction contexts are
defined as follows:

Rk[a, �, s] ::= α(N,A � [k �→ a], q : Ck[�, s], q,Upd) cn
Ck[�, s] ::= (∅ ; k �→ {�|s}) | (

[i �→ Task] � [k �→ {�|s}]; j �→ Task
)

Taking the assignment as example, it applies in two kinds of configurations:
α(N,A � [k �→ a], q :

(
[i �→ Task] � [k �→ {�|x = e ; s}]; j �→ Task

)
, q,Upd) cn

and α(N,A � [k �→ a], q : (∅ ; k �→ {�|x = e ; s}) , q,Upd) cn. Using contexts
both greatly simplifies the notation and spares us from having to duplicate rules.

To help defining DRMA operations, we will also use Dk[a, �, s, Upd], which
is an extension of Rk[a, �, s] exposing the Upd field. It is defined as:

Dk[a, �, s,Upd] ::=α(N,A � [k �→ a], q : Ck[�, s], q,Upd) cn

We use the notation
[
i �→ Task

]�[k �→ {�|s}] to access and modify the local store
and current statement of a process k. Just as a statement can be decomposed
into a sequence s; s′ with the associative property, the task mapping can be
decomposed into

[
i �→ Task

] � [k �→ Task], we use the disjoint union � to work
on a single process disjoint from the rest.

The first three rules of the semantics define an evaluation operator [[e]]� that
evaluates an expression e using a variable environment l. We rely on dom(l)
to retrieve the set of variables declared in l. While these rules involve a single
variable environment, we often use the notation a+ l to involve multiple variable
environments, e.g. [[e]]a+�. It is important to note that [[e]]a+� = w implies that
w is not a variable, it can only be an object or future name, null, or an integer
value.
New creates a new active objects on N processes with parameters v, used to
initialize object fields. We use fields(Act) to retrieve names and rely on the
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declaration ordering to assign values to the right variables. We also add a unique
process identifier and N , respectively as pid and nprocs. The new active object
β is then initialized with N processes and the resulting object environment A.

Assign is used to change the value of a variable. The expression e is evaluated
using the evaluation operator, producing value w. Since variable x can either
be updated in the object or local variable environments, we use the notation
(a + �)[x �→ w] = a′ + �′ to update either of these and retrieve both updated
environments a′ and l′. They replace old ones in the object configuration.

If-True and If-False reduces an if statement to s1 or s2 according to the
evaluation of the boolean expression v.

Get retrieves the value associated with a future f . The future must be resolved.
If the future has been resolved with value w, the get statement is replaced by w.

Invk invokes an existing active object and creates a future associated to the
result. This rule requires v to be evaluated into an active object, then enqueues
a new request in this object. A new unresolved future f is added to the config-
uration. Allowing self-invocation would require a simple adaptation of this rule.
Parameters v that are passed to the method are evaluated locally, into w. The
request queue of the active object β is then appended with a triplet containing
a new future identifier f associated to the request, the method m to call and the
parameters w.

Serve processes a queued request. To prevent concurrent execution of different
requests, the active object is required to be idle (with the current request field
empty). A request (f,m, v) is dequeued to build and execute a new sequential
environment i �→ {l|s}; it relies on bind to build this environment. The process
i responsible for the sequential environment is called the head, it is the master
process responsible for serving requests.

BSPRun starts a new parallel environment from the current active object α
and the method m. Every process of the active object is going to be responsible
for executing one instance of the same task {l′|s′}. All parallel processes start
with the same local variable environment and the same statement to execute.

Return-Value resolves a future. The expression v is first evaluated into a value
w that is associated with the future f . The current request field is emptied,
allowing a new request to be processed.

Return-Sub-Task terminates one parallel task. The process that returned is
removed from the set of tasks running in parallel. When the last process is
removed, the sequential context can be evaluated.

Sync ends the current superstep, the sync statement must be reached on every
pid k of the parallel execution context before this rule can be reduced. DRMA
operations that were requested since the last superstep and stored in the Upd
field as (i, v, j, y) quadruplets are taken into account. They are used to update
the object variable environment A into A′ such that variable y of pid j is going
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to take the value v as evaluated in process i, for every such quadruplet. As Upd
is an unordered set, these updates are performed in any order.

BSP-Get requests to update a local variable with the value of a remote one.
We write a DRMA quadruplet such that the variable xsrc of the remote process
i is going to be read into the variable xdst of the current pid k during the next
sychronisation step.

BSP-Put requests to write a local value into a remote variable. The value to
be written is evaluated into v, and a new update quadruplet is created in Upd.
It will be taken into account upon the next sync.

While race conditions exist in ABSP, like in active object languages and in
BSP with DRMA, the language has no data race. Indeed, the only race condi-
tions are message sending between active objects, and parallel emission of update
requests. The first one results in a non-deterministic ordering in a request queue,
and the second in parallel accumulation of update orders in an unordered set.
Updates are performed in any order upon synchronisation but additional order-
ing could be enforced, e.g. based on the time-stamp of the update.

5 Current Status and Objectives

We presented a new programming model for the coordination of BSP processes.
It consists of an actor-like interaction pattern between SPMD processes. Each
actor is able to run an SPMD algorithm expressed in BSP. The active-object pro-
gramming model allowed us to integrate these notions together by using object
and methods as entry points for asynchronous requests and for data-parallel
algorithms. We have shown an example of this model that features two differ-
ent BSP tasks coordinated through dedicated active objects. This example also
shows the usage of an experimental C++ library implementing this model that
relies on MPI for flexible actor communications and a BSPlib-like implementa-
tion for intra-actor data-parallel computations.

The semantics proposed in this paper will allow us to prove properties of the
programming model. Already, by nature both active objects and BSP ensure
the absence of data-races and thus our programming model inherits this crucial
property. To further investigate race-conditions, we should formally identify the
sources of non-determinism in ABSP and show that only concurrent request
sending to the same AO and DRMA create non-determinism. Another direction
of research could focus on the verification of sync statements, checking they can
only be invoked in a parallel context.
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Abstract. Transactional memory (TM) guarantees that a sequence of
operations encapsulated into a transaction is atomic. This simple yet
powerful paradigm is a promising direction for writing concurrent appli-
cations. Recent TM designs employ a time-based mechanism to lever-
age the performance advantage of invisible reads. With the advent of
many-core architectures and non-uniform memory (NUMA) architec-
tures, this technique is however hitting the synchronization wall of the
cache coherency protocol. To address this limitation, we propose a novel
and flexible approach based on a new consistency criteria named stricter
serializability (SSER+). Workloads executed under SSER+ are opaque
when the object graph forms a tree and transactions traverse it top-
down. We present a matching algorithm that supports invisible reads,
lazy snapshots, and that can trade synchronization for more parallelism.
Several empirical results against a well-established TM design demon-
strate the benefits of our solution.

Keywords: Transactional memory · NUMA · Stricter serializability

1 Introduction

The advent of chip level multiprocessing in commodity hardware has pushed
applications to be more and more parallel in order to leverage the increase of
computational power. However, the art of concurrent programming is known
to be a difficult task [27], and programmers always look for new paradigms to
simplify it. Transactional Memory (TM) is widely considered as a promising
step in this direction, in particular thanks to its simplicity and programmer’s
friendliness [11].

This research is partly supported by the Rainbow FS project of Agence Nationale
de la Recherche, France, number ANR-16-CE25-0013-01a.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. Di Marzo Serugendo and M. Loreti (Eds.): COORDINATION 2018, LNCS 10852, pp. 231–251, 2018.
https://doi.org/10.1007/978-3-319-92408-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92408-3_11&domain=pdf
http://orcid.org/0000-0003-1493-6603
http://orcid.org/0000-0001-7329-1812


232 P. Sutra et al.

The engine that orchestrates concurrent transactions run by the application,
i.e., the concurrency manager, is one of the core aspects of a TM implemen-
tation. A large number of concurrency manager implementations exists, rang-
ing from pessimistic lock-based implementations [1,21] to completely optimistic
ones [22], with [29] or without multi-version support [2]. For application work-
loads that exhibit a high degree of parallelism, these designs tend to favor opti-
mistic concurrency control. In particular, a widely accepted approach consists
in executing tentatively invisible read operations and validating them on the
course of the transaction execution to enforce consistency. For performance rea-
sons, another important property is disjoint-access parallelism (DAP) [12]. This
property ensures that concurrent transactions operating on disjoint part of the
application do not contend in the concurrency manager. Thus, it is key to ensures
that the system scales with the numbers of cores.

From a developer’s point of view, the interleaving of transactions must sat-
isfy some form of correctness. Strict serializability (SSER) [24] is a consistency
criteria commonly encountered in database literature. This criteria ensures that
committed transactions behave as if they were executed sequentially, in an order
compatible with real-time. However, SSER does not specify the conditions for
aborted transactions. To illustrate this point, let us consider history h1 where
transaction T1 = r(x); r(y) and T2 = w(x);w(y) are executed respectively by
processes p and q. In this history, T1 aborts after reading inconsistent values for
x and y. Yet, h1 is compliant with SSER.

(h1)

p

q

r1(x0) r1(y2) ABORT

w2(x2) w2(y2) COMMIT

Opacity (OPA) was introduced [17] to avoid the eratic behavior of so-called
doomed transactions, i.e., transactions which eventually abort (such as T1 in his-
tory h1).1 In addition to SSER, OPA requires that aborted transactions observe
a prefix of the committed transactions. This is the usual consistency criteria for
TM.

Achieving OPA is known to be expensive, even for weak progress properties
on the transactions [30]. In particular, ensuring that a transaction always sees
a consistent snapshot when reads are invisible generally asks to re-validate the
read set after each read operation, or to rely on a global clock. The former
approach increases the time complexity of execution. The latter is expensive in
multi-core/multi-processors architecture, due to the synchronization wall.

In this paper, we address these shortcomings with a new consistency criteria,
named stricter serializability (SSER+). This criteria extends strict serializability
by avoiding specifically the inconsistency illustrated in history h1. We describe
in detail a corresponding TM algorithm that ensures invisible reads, and permits

1 Allowing T1 to return both x0 and y2 may have serious consequences in a non-
managed environment. As pointed out in [17], transaction T1 may compute a division
by 0, leading the program to crash.
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transactions to commit as long as they do not contend with conflicting trans-
actions. We further validate our design by means of a full implementation of
SSER+ and several experiments. Our results show that when the workloads are
embarrassingly parallel, SSER+ offers close-to-optimum performance.

Outline. This paper is organized as follows. Section 2 introduces our system
model assumptions and defines precisely SSER+. The corresponding trans-
actional memory algorithm and a formal proof of correctness are presented
in Sect. 3. We present the evaluation of our prototype against several bench-
marks in Sect. 4. We survey related work in Sect. 5, before concluding in Sect. 6.

2 A New Consistency Criteria

This section is organized in two parts. The first part (Sect. 2.1) present the
elements of our system model as well as the notions of contention and binding
(Sect. 2.2). In the second part (Sects. 2.3 and 2.4), we formulate our notion of
stricter serializability and study its applicability.

2.1 System Model

Transactional memory (TM) is a recent paradigm that allows multiple processes
to access concurrently a shared memory region. Each process manipulates objects
in the shared memory with the help of transactions. When a process starts a
new transaction, it calls operation begin. Then, the process executes a sequence
of read and write operations on the shared objects according to some internal
logic. Operation read(x) takes as input an object x and returns either a value
in the domain of x or a flag abort to indicate that the transition aborts. A
write write(x, v) changes x to the value v in the domain of x. This operation
does not return any value and it may also abort. At the end of the transaction
execution, the process calls tryCommit to terminate the transaction. This calls
returns either commit, to indicate that the transaction commits, or abort if
the transaction fails.

A history is a sequence of invocations and responses of TM operations by one
or more processes. As illustrated with history h2 below, a history is commonly
depicted as parallel timelines, where each timeline represents the transactions
executed by a process. In history h2, process p, q and r execute respectively
transactions T1 = w(x), T2 = w(x) then T4 = r(y); r(x), and T3 = r(x); r(y).
All the transactions but T4 complete in this history. For simplicity, a complete
transaction that is not explicitly aborted in a history commits immediately after
its last operation. We note com(h) the set of transactions that commit during
history h. In the case of history h2, we have com(h2) = {T1, T2, T3}.

(h2)

p

q

r

w1(x1)

w2(x2)

r3(x1) w3(y3)

r4(y3) r4(x?)
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A history induces a real-time order between transactions (denoted ≺h). The
order Ti ≺h Tj holds when Ti terminates in h before Tj begins. For instance in
history h2, transaction T1 precedes transaction T3. When two transactions are
not related with real-time, they are concurrent.

A version is the state of a shared object as produced by the write of a
transaction. This means that when a transaction Ti writes to some object x,
an operation denoted wi(xi), it creates the version xi of x. Versions allow to
uniquely identify the state of an object as observed by a read operation, e.g.,
r3(x1) in h2. When a transaction Ti reads version xj , we say that Ti read-from
transaction Tj .

Given some history h and some object x, a version order on x for h is a total
order over the versions of x in h. By extension, a version order for h is the union
of all the version orders for all the objects (denoted �h). For instance, in history
h2 above, we may consider the version order (x2 �h2 x1).

Consider an history h and some version order �h. A transaction Ti depends
on some transaction Tj , written Ti � Tj when Tj precedes Ti, Ti reads-from
Tj , or such a relation holds transitively. Transaction Ti anti-depends from Tj on
object x, when Ti reads some version xk, Tj writes version xj , and xk precedes
xj in the version order (xk �h xj). An anti-dependency between Ti and Tj on
object x is a reverse-commit anti-dependency (for short, RC-anti-dependency)
[20] when Tj commits before Ti, and Ti writes some object y �= x.2

To illustrate the above definitions, consider again history h2. In this history,
transaction T3 depends on T1 and T2. On the other hand, if x2 �h x1 holds and
T4 reads x2, then this transaction exhibits an anti-dependency with T1. This
anti-dependency becomes an RC-anti-dependency if T4 executes an additional
step during which it writes some object z �= x.

Over the course of its execution, a transaction reads and writes versions of
the shared objects. The set of versions read by the transaction forms its read set
(or snapshot). The versions written define the write set.

A transaction observes a strictly consistent snapshot [5] when it never misses
the effects of some transaction it depends on. In detail, the snapshot of transac-
tion Ti in history h is strictly consistent when, for every version xj read by Ti,
if Tk writes version xk, and Ti depends on Tk, then xk is followed by xj in the
version order.

2.2 Contention and Bindings

Internally, a transactional memory is built upon a set of base objects, such as
locks or registers. When two transactions are concurrent, their steps on these
base objects interleave. If the two transactions access disjoint objects and the
TM is disjoint-access parallel, no contention occurs. However, in the case they
access the same base object, they may slow down each other.

A transactional read is invisible when it does not change the state of the
base objects implementing it. With invisible reads, read contention is basically

2 In this paper, we consider a slight generalization of an RC-anti-dependency as defined
in [20], where Tj does not read x prior to its update.
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free. From a performance point of view, this property is consequently appealing,
since workloads exhibit in most case a large ratio of read operations.

When two transactions are concurrently writing to some object, it is possible
to detect the contention and abort preemptively one of them. On the other hand,
when a read-write conflict occurs, a race condition occurs between the reader
and the writer. If the read operation takes place after the write, the reader is
bound to use the version produced by the writer.

Definition 1 (Binding). During a history h, when a transaction Ti reads some
version xj and Ti is concurrent to Tj, we say that Ti is bound to Tj on x.

When a transaction Ti is bound to another transaction Tj , to preserve the
consistency of its snapshot, Ti must read the updates and causal dependencies
of Tj that are intersecting with its read set. This is for instance the case of
transaction T4 in history h2, where this transaction is bound to T3 on y. As a
consequence, T4 must return x1 as the result of its read on x, or its snapshot
will be inconsistent.

Tracking this causality relation is difficult for the contention manager as it
requires to inspect the read set, rely on a global clock, or use large amount of
metadata. We observe that this tracking is easier if each version read prior the
binding is either, accessed by the writer, or one of its dependencies. In which
case, we will say that the binding is fair.

Definition 2 (Fair binding). Consider that in some history h a transaction
Ti is bound to a transaction Tj on some object x. This binding is fair when, for
every version yk read by Ti before xj in h, Tj � Tk holds.

Going back to history h3, the binding of T4 to T3 on y is fair. Indeed, this
transaction did not read any data item before accessing the version of y written
by T3. When the binding is fair, the reader can leverage the metadata left by
the writer to check prior versions it has read and ensure the consistency of later
read operations. In the next section, we formalize this idea with the notion of
stricter serializability.

2.3 Stricter Serializability

In what follows, we introduce and describe in detail SSER+, the stricter serial-
izability consistency criteria that we build upon in the remainder of this paper.
As strict serializability, SSER+ requires that committed transactions form a
sequential history which preserves the real-time order. In addition, it prohibits
transactions to view inconsistencies unless one of their bindings is unfair.

Definition 3 (Strict serialization graph). Consider some version order �h

for h. Below, we define a relation < to capture all the relations over com(h)
induced by �h.
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Ti < Tj �=i
�
=

∨ Ti ≺h Tj (1)
∨ ∃x : ∨ rj(xi) ∈ h (2)

∨ ∃Tk : xk �h xj ∧ ∨ Tk = Ti (3)
∨ ri(xk) ∈ h (4)

Relation can be either a partial or a total order over the committed trans-
actions in h. The serialization graph of history h induced by �h, written
SSG(h,�h), is defined as (com(h), <).

In the above definition, (1) is a real-time order between T and T ′, (2) a
read-write dependency, (3) a version ordering, and (4) an anti-dependency.

Definition 4 (Stricter serializability). A history h is stricter serializable
(h ∈ SSER+) when (i) for some version order �h, the serialization graph
(com(h), <) is acyclic, and (ii) for every transaction Ti that aborts in h, either
Ti observes a strictly consistent snapshot in h, or one of its bindings is unfair.

Opacity (OPA) and strict serializability (SSER) coincide when aborted trans-
actions observe strictly consistent snapshots. As a consequence of the above def-
inition, a stricter serializable history during which all the aborted transactions
exhibit fair bindings is opaque.

Proposition 1. For a history h ∈ SSER+, if every transaction T in h exhibits
fair bindings then h ∈ OPA holds.

Proposition 1 offers a convenient property on histories that, when it applies,
allows to reach opacity. The next section characterizes a class of applications
for which this property holds. In other words, we give a robustness criteria [6]
against SSER+.

2.4 Applicability

In what follows, we give some details about the model of application we are
interested with. Then, we present our robustness criteria and prove that it applies
to SSER+.

Model of Application. The state of an object commonly includes references
to one or more objects in the shared memory. These references between objects
form the object graph of the application.

When performing a computation, a process traverses a path in the object
graph. To this end, the process knows initially an immutable root object in the
graph. Starting from this root, the process executes a traversal by using the
references stored in each object.
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For some transaction T , a path is the sequence of versions π that T accesses.
It should satisfy that (i) the first object in π corresponds to the immutable root
of the object graph, and (ii) for all xi ∈ π, some yj <π xi includes a reference
to xi.

A Robustness Criteria. To define our criteria, we focus specifically on SSER+

implementations that allow invisible reads. As pointed out earlier, this restriction
is motivated by performance since most workloads are read-intensive. In this
context, the result of Hans et al. [20] tells us that it is not possible to jointly
achieve (i) SSER, (ii) read invisibility, (iii) minimal progressiveness, and (iv)
accept RC-anti-dependencies. As a consequence, we remove histories that exhibit
such a pattern from our analysis; hereafter, we shall note these histories RCAD.

Let us consider the property P below on a TM application. In what follows,
we prove that if P holds and the TM does not accept RC-anti-dependencies,
then it is robust against SSER+.

– (P) The object graph forms initially a tree and every transaction maintains
this invariant.

Let T be some set of transactions for which property P holds. HT refers to
histories built upon transactions in T . We wish to establish the following result:

Proposition 2. (SSER+ ∩ HT \ RCAD) ⊂ OPA.

To state this result, we note h some history in HT ∩ SSER+. Since h is
serializable, there exits some linearization λ of com(h) equivalent to h. For a
transaction Ti in λ, we let πi and π′

i be the paths (if any) from the root to x
before and after transaction Ti. By property P, if such a path exists it is unique,
because each transaction preserves that the object graph is a tree.

Lemma 1. If transaction Ti reaches x in h, then for every yj in πi ∪ π′
i, the

dependency Ti � Tj holds.

Proof. There are two cases to consider:

– (yj ∈ πi) Property P implies that either yj is the root, or Ti reads the version
zk right before yj in πi. Hence, by a short induction, transaction Ti reads all
the versions in πi.

– (yj ∈ π′
i) Assume that Ti accesses yj and name zk the version right before

yj in π′
i. Version zk holds a reference to yj . If this reference does not exist

prior to the execution of Ti, object z was updated. Otherwise, T must reads
zk prior to accessing yj .
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Lemma 2. If transaction Ti aborts in h then all its bindings are fair.

Proof (By induction.). Define x and Tj such that Ti is bound to Tj on x and
assume that all the prior bindings of Ti are fair.

First, consider that either (πi = πj) or (πi = π′
j) is true. Choose some yk

read before xj in πi. By Lemma1, since yk ∈ (πj ∪ π′
j is true, the dependency

Tj � Tk holds.
Otherwise, by our induction hypothesis, all the bindings of Ti prior xj are

fair. It follows that transaction Ti observes a strictly consistent snapshot in h
up to ri(xj). Hence, there exists a committed transaction Tk such that πi is the
path to x after transaction Tk in λ (i.e., π′

k = πi).
Depending on the relative positions of Tj and Tk in λ, there are two cases

to consider. In both cases, some transaction Tl between Tj and Tk modifies the
path to x in the object graph.

– (Tj <λ Tk) Without lack of generality, assume that Tl is the first transaction
to modify π′

j . Transaction Tl and Tj are concurrent in h and Tl commits
before Tj . This comes from the fact that Tl must commit before Ti in h, Tj

is concurrent to Ti in h and Tj is before Tl in λ. Then, since Tl modifies
π′

j and the two transactions are concurrent, Tl must update an object read
by Tj . It follows that h exhibits an RC-anti-dependency between Tj and Tl.
Contradiction.

– (Tk <λ Tj) Choose some yk′ read before xj in πi. If y is still in πj , then
Tj reads at least that version of object y. Otherwise, consider that Tl is the
first transaction that removes y from the path to x in the object graph. To
preserve property P, Tl updates some object y′ read by Tk′ that was referring
to y. Because h /∈ RCAD, transaction Tk′ cannot commit after Tl. Hence,
Tj � Tk′ holds.

3 Algorithm

In this section, we present a transactional memory that attains SSER+. Contrary
to several existing TM implementation, our design does not require a global
clock. It is weakly-progressive, aborting a transaction only if it encounters a
concurrent conflicting transaction. Moreover, reads operations do not modify
the base objects of the implementation (read invisibility).

We first give an overview of the algorithm, present its internals and justify
some design choices. A correctness proofs follows. We close this section with a
discussion on the parameters of our algorithm. In particular, we explain how to
tailor it to be disjoint-access parallel.
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3.1 Overview

Algorithm1 depicts the pseudo-code of our construction of the TM interface at
some process p. Our design follows the general approach of the lazy snapshot
algorithm (LSA) [14], replacing the central clock with a more flexible mechanism.
Algorithm1 employs a deferred update schema that consists in two steps. A
transaction first executes optimistically, buffering its updates. Then, at commit
time, the transaction is certified and, if it commits, its updates are applied to
the shared memory.

During the execution of a transaction, a process checks that the objects
accessed so far did not change. Similarly to LSA, this check is lazily executed.
Algorithm1 executes it only if the shared object was recently updated, or when
the transaction terminates.

3.2 Tracking Time

Algorithm1 tracks time to compute how concurrent transactions interleave dur-
ing an execution. To this end, the algorithm makes use of logical clocks. We
model the interface of a logical clock with two operations: read() returns a value
in N, and adv(v ∈ N) updates the clock with value v. The sequential specifi-
cation of a logical clock guarantees a single property, that the time flows for-
ward: (Time Monotonicity) A read operation always returns at least the great-
est value to which the clock advanced so far. In every sequential history h,
(res(read(), v) ∈ h) → (v ≥ max ({u : adv(u) ≺h read()} ∪ {0})).

Algorithm1 associates logical clocks with both processes and transactions.
To retrieve the clock associated with some object x, the algorithm uses function
clock(x). Notice that in the pseudo-code, when it is clear from the context,
clock(x) is a shorthand for clock(x).read().

The clock associated with a transaction is always local (line 2). In the case of
a process, it might be shared or not (line 3). The flexibility of our design comes
from this locality choice for clock(p). When the clock is shared, it is linearizable.
To implement an (obstruction-free) linearizable clock we employ the following
common approach:

(Construction 1). Let x be a shared register initialized to 0. When read() is
called, we return the value stored in x. Upon executing adv(v), we fetch the
value stored in x, say u. If v > u holds, we execute a compare-and-swap to
replace u with v; otherwise the operation returns. If the compare-and-swap
fails, the previous steps are retried.
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Algorithm 1. A SSER+ transactional memory – code at process p
1: Variables:
2: clock(T ), rs(T ),ws(T ) // local to p
3: clock(p) // shared

4: begin(T )
5: clock(T ).adv(minqclock(q))
6: rs(T ) ← ∅

7: ws(T ) ← ∅

8: read(T, x)
9: if (x, d) ∈ ws(T ) then
10: return d
11: (d, t) ← loc(x)
12: if isLocked(x)
13: ∨ (∃(x, t’) ∈ rs(T ) : t �= t′) then
14: return abort(t)
15: if t > clock(T ) ∧ ¬ extend(T, t) then
16: return abort(t)
17: rs(T )[x] ← t
18: return d

19: write(T, x, d)
20: if ¬ lock(x) then
21: return abort(T )

22: ( , t) ← loc(x)
23: if t > clock(T ) ∧ ¬ extend(T, t) then
24: return abort(t)
25: ws(T )[x] ← d

26: tryCommit(T )
27: if ¬ extend(T, clock(T )) then
28: return abort(T )

29: return commit(T )

// Helpers

30: extend(T, t)
31: for all (x, t’) ∈ rs(T ) do
32: ( , t′′) ← loc(x)
33: if isLocked(x) ∨ t′′ �= t′ then
34: return false
35: clock(T ).adv(t)
36: return true

37: abort(T )

38: for all ∈ ws(T ) do
39: unlock(x)
40: return ABORT

41: commit(T )
42: if ws(T ) �= ∅ then
43: clock(T ).adv(clock(T ) + 1)
44: clock(p).adv(clock(T ))
45: for all (x, d) ∈ ws(T ) do
46: loc(x) ← (d, clock(T ))
47: unlock(x)
48: return COMMIT

3.3 Internals

In Algorithm1, each object x has a location in the shared memory, denoted
loc(x). This location stores a pair (d, t), where t ∈ N is a timestamp, and d is
the actual content of x as seen by transactions. For simplicity, we shall name



Boosting Transactional Memory with Stricter Serializability 241

hereafter a pair (d, t) a version of object x. Since the location of object x is
unique, a single version of object x may exist at a time in the memory. As usual,
we assume some transaction TINIT that initializes for every object x the location
loc(x) to (⊥, 0). Furthermore, we consider that each read or write operation to
some location loc(x) is atomic.

Algorithm1 associates a lock to each object. To manipulate the lock-related
functions of object x, a process p employs appropriately the functions lock(x),
isLocked(x) and unlock(x).

For every transaction T submitted to the system, Algorithm1 maintains three
local data structures: clock(T ) is the logical clock of transaction T ; rs(T ) is a
map that contains its read set; and ws(T ) is another map that stores the write
set of T . Algorithm1 updates incrementally rs(T ) and ws(T ) over the course
of the execution. The read set serves to check that the snapshot of the shared
memory as seen by the transaction is strictly consistent. The write set buffers
updates. With more details, the execution of a transaction T proceeds as follows.

– When T starts its execution, Algorithm1 initializes clock(T ) to the smallest
value of clock(q) for any process q executing the TM. Then, both rs(T ) and
ws(T ) are set to ∅.

– When T accesses a shared object x, if x was previously written, its value
is returned (line 10). Otherwise, Algorithm 1 fetches atomically the version
(d, t), as seen in location loc(x). Then, the algorithm checks that (i) no lock is
held on x, and (ii) in case x was previously accessed, that T observes the same
version. If one of these two conditions fails, Algorithm1 aborts transaction T
(line 14). The algorithm then checks that the timestamp t associated to the
content d is smaller than the clock of T . In case this does not hold (line 15),
Algorithm1 tries extending the snapshot of T by calling function extend().
This function returns true when the versions previously read by T are still
valid. In which case, clock(T ) is updated to the value t. If Algorithm1 succeeds
in extending (if needed) the snapshot of T , d is returned and the read set of
T updated accordingly; otherwise transaction T is aborted (line 16).

– Upon executing a write request on behalf of T to some object x, Algorithm1
takes the lock associated with x (line 20), and in case of success, it buffers
the update value d in ws(T ) (line 25). The timestamp t of x at the time
Algorithm1 takes the lock serves two purposes. First, Algorithm1 checks
that t is lower than the current clock of T , and if not T is extended (line 23).
Second, it is saved in ws(T ) to ensure that at commit time the timestamp of
the version of x written by T is greater than t.

– When T requests to commit, Algorithm1 certifies the read set by calling func-
tion extend() with the clock of T (line 27). If this test succeeds, transaction
T commits (lines 43 to 48). In such a case, clock(T ) ticks to reach its final
value (line 43). By construction, this value is greater than the timestamps of
all the versions read or written by T (lines 14 and 23). Algorithm1 updates
the clock of p with the final value of clock(T ) (line 44), then it updates the
items written by T with their novel versions (line 46).
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3.4 Guarantees

In this section, we assess the core properties of Algorithm1. First, we show that
our TM design is weakly progressive, i.e., that the algorithm aborts a transaction
only if it encounters a concurrent conflicting transaction. Then, we prove that
Algorithm1 is stricter serializable.

(Weak-progress). A transaction executes under weak progressiveness [19], or
equivalently it is weakly progressive, when it aborts only if it encounters a conflict-
ing transaction. By extension, a TM is weakly progressive when it only produces
histories during which transactions are weakly-progressive. We prove that this
property holds for Algorithm1.

In Algorithm 1, a transaction T aborts either at line 14, 16, 21, 24, or 28.
We observe that in such a case either T observes an item x locked, or that the
timestamp associated with x has changed. It follows that if T aborts then it
observes a conflict with a concurrent transaction. From which we deduce that it
is executing under weak progressiveness.

(Stricter serializability). Consider some run ρ of Algorithm1, and let h be the
history produced in ρ. At the light of its pseudo-code, every function defined
in Algorithm1 is wait-free. As a consequence, we may consider without lack of
generality that h is complete, i.e., every transaction executed in h terminates
with either a commit or an abort event. In what follows, we let �h be the order
in which writes to the object locations are linearized in ρ. We first prove that
< is acyclic for this definition of �h. Then, we show that, if a transaction does
not exhibit any unfair binding, then it observes a strictly consistent snapshot.
For some transaction, we shall note clock(Ti)f the final value of clock(T ).

Proposition 3. Consider two transactions Ti and Tj �=i in h. If either Ti � Tj

or xj �h xi holds, then clock(Ti)f ≥ clock(Tj)f is true. In addition, if transac-
tion Ti is an update that commits then the ordering is strict, i.e., clock(Ti)f >
clock(Tj)f .

Proof. In each of the two cases, we prove that clock(Ti)f ≥ clock(Ti)f holds
before transaction Ti commits.

(Ti � Tj). Let x be an object such that ri(xj) occurs in h. Since transaction Ti

reads version xj , transaction Tj commits. We observe that Tj writes version
xj together with clock(Tj)f at loc(x) when it commits (line 46). As a conse-
quence, when transaction Ti returns version xi at line 18, it assigns clock(Tj)f
to t before at line 11. The condition at line 15 implies that either clock(Ti) ≥ t
holds, or a call to extend(Ti, t) occurs. In the latter case, transaction Ti exe-
cutes line 35, advancing its clock up to the value of t.

(xj �h xi). By definition, relation �h forms a total order over all versions of x.
Thus, we may reason by induction, considering that xi is immediately after
xj in the order �h. When Tj returns from wj(xj) at line 25, it holds a lock
on x. This lock is released at line 47 after writing to loc(x). As �h follows
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the linearization order, Ti executes line 20 after Tj wrote (xj , clock(Tj)f )
to loc(x). Location loc(x) is not updated between xj and xi. Hence, afterTi

executes line 23, clock(Ti) ≥ clock(Tj) holds.

Since a clock is monotonic, the relation holds forever. Then, if transaction Ti

is an update that commits, it must executes line 43, leading to clock(Ti)f >
clock(Ti)f .

Proposition 4. History h does not exhibit any RC-anti-dependencies (h /∈
RCAD)

Proof. Consider Ti, Tj and Tk such that ri(xk), wj(xj) ∈ h, xk �h xj and
Tj commits before Ti. When Tj invokes commit , it holds a lock on x. This
lock is released at line 47 after version xj is written at location loc(x). Then,
consider the time at which Ti invokes tryCommit . The call at line 27 leads to
fetching loc(x) at line 32. Since Ti reads version xk in h, a pair (xk, clock(Tk)f )
is in rs(Ti). From the definition of �h the write of (xk, clock(Tk)f ) takes place
before the write of version (xj , clock(Tj)f ) in ρ. Hence, loc(x) does not contain
anymore (xk, clock(Tk)f ) Applying Proposition 3, Ti executes line 34 and aborts
at line 29.

Proposition 5. Consider two transactions Ti and Tj �=i in com(h). If Ti < Tj

holds, transaction Ti invokes commit before transaction Tj in h.

Proof. Assume that Ti and Tj conflict of some object x. We examine in order
each of the four cases defining relation <.

– (Ti ≺h Tj)
This case is immediate.

– (∃x : rj(xi) ∈ h)
Before committing, Tj invokes extend at line 27. Since Tj commits in h, it
should retrieve (xi, −) from loc(x) when executing line 32. Hence, transaction
Ti has already executed line 46 on object x. It follows that Ti invokes commit
before transaction Tj in history h.

– (∃x : xi �h xj)
By definition of �h, the write of version xi is linearized before the write
of version xj in ρ. After Ti returns from wi(xi), it owns a lock on object
x (line 46). The object is then unlocked by transaction Ti at line 47. As a
consequence, transaction Ti takes a lock on object x after Ti invokes operation
commit . From which it follows that the claim holds.

– (∃x, Tk : xk �x xj ∧ ri(xk))
Follows from Proposition 4.

Theorem 1. History h belongs to SSER+.

Proof. Proposition 5 tells us that if Ti < Tj holds then Ti commits before Tj . It
follows that the SSG(h,�h) is acyclic.
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Let us now turn our attention to the second property of SSER+. Assume
that a transaction Ti aborts in h. For the sake of contradiction, consider that Ti

exhibits fair bindings and yet that it observes a non-strictly consistent snapshot.
Applying the definition given in Sect. 2.1, there exist transactions Tj and Tk

such that Ti � Tj , ri(xk) occurs in h and xk �h xj . Applying Proposition 5, if
Tj ≺h Ti holds, transaction Ti cannot observe version xk. Thus, transaction Tj

is concurrent to Ti. Moreover, by definition of Ti � Tj , there exist a transaction
Tl (possibly, Tj) and some object y such that Ti performs ri(yl) and Tl � Tj . In
what follows, we prove that Ti aborts before returning yl.

For starter, relation < is acyclic, thus xk �= yl holds. It then remains to
investigate the following two cases:

– (ri(yl) ≺h ri(xk))
From Proposition 5 and Tl � Tj , transaction Tj is committed at the time Ti

reads object x. Contradiction.
– (ri(xk) ≺h ri(yl))

We first argue that, at the time Ti executes line 11, the timestamp fetches
from loc(y) is greater than clock(Ti).

Proof. First of all, observe that Tj is not committed at the time Ti reads object
x (since xk �h xj holds). Hence, denoting q the process that executes Tj ,
clock(q) < clock(Tj)f is true when Ti begins its execution at line 5. From the
pseudo-code at line 5, clock(Ti) < clock(Tj)f holds at the start of Ti. Because
Tj is concurrent to Ti, Tl is also concurrent to Ti by Proposition 5. Thus, as
ri(yl) occurs, Ti is bound to Tl on y. Now, consider some object z read by Ti

before y, and name zr the version read by Ti. Since the binding of Ti to Tl is fair,
Tl � Tr is true. Hence, applying Proposition 3, we have clock(Tr)f < clock(Tl)f .
It follows that the relation clock(Ti) < clock(Tl)f is true.

From what precedes, transaction Ti invokes extend at line 15. We know that
transaction Tj is committed at that time (since Tl is committed and Tl � Tj

holds). Thus, the test at line 33 fails and Ti aborts before returning yl.

3.5 Discussion

Algorithm1 replaces the global clock usually employed in TM architectures with
a more flexible mechanism. For some process p, clock(p) can be local to p, shared
across a subset of the processes, or even all of them.

If processes need to synchronize too often, maintaining consistency among
the various clocks is expensive. In this situation, it might be of interest to find a
compromise between the cost of cache coherency and the need for synchroniza-
tion. For instance, in a NUMA architecture, Algorithm1 may assign a clock per
hardware socket. Upon a call to clock(p), the algorithm returns the clock defined
for the socket in which the processor executing process p resides.

On the other hand, when the processes use a global clock, Algorithm1 boils
down to the original TinySTM implementation [14]. In this case, a read-only
transaction always sees a strictly consistent snapshot. As a consequence, it can
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commit right after a call to tryCommit , i.e., without checking its snapshot at
line 27.

A last observation is that our algorithm works even if one of the processes
takes no step. This implies that the calls to process clocks (at lines 5 and 44)
are strictly speaking not necessary and can be skipped without impacting the
correctness of Algorithm1. Clocks are solely used to avoid extending the snapshot
at each step where a larger timestamp is encountered. If process clocks are not
used, when two transactions access disjoint objects, they do not contend on
any base object of the implementation. As a consequence, such a variation of
Algorithm1 is disjoint-access parallel (DAP).

4 Evaluation

This section presents a performance study of our SSER+ transactional mem-
ory described in Sect. 3. To conduct this evaluation we implemented and inte-
grated our algorithm inside TinySTM [14], a state-of-the-art software trans-
actional memory implementation. Our modifications account for approximately
500 SLOC. We run Algorithm1 in disjoint-access parallel mode. As explained in
Sect. 3.5, in this variation the clocks of the processes are not accessed. A detailed
evaluation of the other variations of Algorithm 1 is left for future work.

The experiments are conducted on an AMD Opteron48, a 48-cores machine
with 256 GB of RAM. This machine has 4 dodeca-core AMD Opteron 6172,
and 8 NUMA nodes. To evaluate the performance of our implementation on this
multi-core platform, we use the test suite included with TinySTM. This test
suite is composed of several TM applications with different transaction patterns.
The reminder of this section briefly describes the benchmarks and discuss our
results. As a matter of a comparison, we also present the results achieved with
the default TinySTM distribution, (v1.0.5).

4.1 A Bank Application

The bank benchmark consists in simulating transfers between bank accounts. A
transaction updates two accounts, transferring some random amount of money
from one account to another. A thread executing this benchmark performs trans-
fers in closed-loop. Each thread is bound to some branch of the bank, and
accounts are spread evenly across the branches. A locality parameter allows to
tune the accounts accessed by a thread to do a transfer. This parameter serves to
adjust the probability that a thread executes consecutive operations on the same
data. More specifically, when locality is set to the value ρ, a thread executes a
transfer in its branch with probability ρ and between two random accounts with
probability (1 − ρ). When ρ = 1, this workload is fully parallel.

Figure 1 presents the experimental results for the bank benchmark. In
Fig. 1(a), we execute a base scenario with 10 k bank accounts, and a locality
of 0.8. We measure the number of transfers performed by varying the number
of threads in the application. In this figure, we observe that the performance
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obtained with TinySTM merely improves as the number of thread increases:
48 threads achieve 2.8 million transactions per second (MTPS), scaling-up from
2.2 MTPS with a single thread. Our implementation performs better: with 48
threads Algorithm1 executes around 68 MTPS, executing ×31 more operations
than with one thread.

To understand the impact of data locality on performance, we vary this
parameter for a fixed number of threads. Figure 1(b) presents the speedup
obtained when varying locality from 0, i.e., all the accounts are chosen at ran-
dom, up to 1, where they are all chosen in the local branch. In this experiment,
we fix the number of threads to 48, i.e. the maximum number of cores available
on our test machine. As shown in Fig. 1(b), our TM implementation leverages
the presence of data locality in the bank application. This is expected, since we
use the disjoint-access parallel (DAP) variation of Algorithm1. When locality
increases, the contention in the application decreases. As a consequence of DAP,
each thread works on independent data, thus improving performance.
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Fig. 2. Linked-list (left) and Red-Black tree (right) benchmarks. Y-axis: transactions/
sec.

4.2 Linked-List

The linked-list benchmark consists in concurrently modifying a sorted linked-list
of integers. Each thread randomly adds or removes an integer from the list. We
run this benchmark for a range of 512 values, i.e. a thread randomly selects a
value between −255 and +256 before doing an insertion/removal. The linked list
is initialized to contain 256 integers. We report our results in Fig. 2 (left).

We observe that TinySTM outperforms our implementation in the linked-list
benchmark. This is due to the fact that, without proper clock synchronization,
transactions tend to re-validate their reads frequently over their execution paths.
In this scenario of high contention, it is (as expected) preferable to rely on a fre-
quent synchronization mechanism such as the global clock used in TinySTM.
To alleviate this issue, one could adjust dynamically the clocks used in Algo-
rithm1 accordingly to contention. Such a strategy could rely on a global lock,
similarly to the mechanism used to avoid that long transactions abort. We left
the implementation of this optimization for future work

4.3 Red-Black Tree

The red-black tree benchmark is similar to the linked-list benchmark except
that the values are stored in a self-balancing binary search tree. We run this
benchmark with a range of 107 values, and a binary tree initialized with 105

values. Figure 2 (right) reports our results.
When using the original TinySTM design, the performance of the applica-

tion improves linearly up to 12 threads. It then stalls to approximately 50 MTPS
due to contention on the global clock. In this benchmark, the likelihood of hav-
ing two concurrent conflicting transactions is very low. Leveraging this workload
property, our implementation of Algorithm1, scales the application linearly with
the number of threads. Algorithm1 achieves 176 MTPS with 48 threads, improv-
ing performance by a ×36 factor over a single threaded execution.
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5 Related Work

Transactional memory (TM) allows to design applications with the help of
sequences of instructions that run in isolation one from another. This paradigm
greatly simplifies the programming of modern highly-parallel computer architec-
tures.

Ennals [13] suggests to build deadlock-free lock-based TMs rather than non-
blocking ones. Empirical evidences [9] and theoretical results [18,26] support this
claim.

At first glance, it might be of interest that a TM design accepts all correct his-
tories; a property named permissiveness [16]. Such TM algorithms need to track
large dependencies [25] and/or acquire locks for read operations [2]. However,
both techniques are known to have a significant impact on performance.

Early TM implementations (such as DSTM [23]) validate all the prior reads
when accessing a new object. The complexity of this approach is quadratic in the
number of objects read along the execution path. A time-based TM avoids this
effort by relying on the use a global clock to timestamp object versions. Zhang
et al. [33] compare several such approaches, namely TL2 [8], LSA [31] and GCC
[32]. They provide guidelines to reduce unnecessary validations and shorten the
commit sequence.

Multi-versioning [10,15] brings a major benefit: allowing read-only transac-
tions to complete despite contention. This clearly boosts certain workloads but
managing multiple versions has a non-negligible performance cost on the TM
internals. Similarly, invisible reads ensure that read operations do not contend in
most cases. However, such a technique limits progress or the consistency criteria
satisfied by the TM [3]. In the case of Algorithm1, both read-only and updates
transaction are certain to make progress only in the absence of contention.

New challenges arise when considering multicore architectures and cache
coherency strategies for NUMA architectures. Clock contention [7] is one of
them. To avoid this problem, workloads as well as TM designs should take into
account parallelism [28]. Chan et al. [7] propose to group threads into zones, and
that each zone shares a clock and a clock table. To timestamp a new version,
the TL2C algorithm [4] tags it with a local counter together with the thread id.
Each thread stores a vector of the latest timestamp it encountered. The algo-
rithm preserves opacity by requiring that a transaction restarts if one of the
vector entries is not up to date.

6 Conclusion

Transactional memory systems must handle a tradeoff between consistency and
performance. It is impractical to take into account all possible combinations of
read and write conflicts, as it would lead to largely inefficient solutions. For
instance, accepting RCAD histories brings only a small performance benefits in
the general case [20].

This paper introduces a new consistency criteria, named stricter serializabil-
ity (SSER+). Workloads executed under SSER+ are opaque when the object



Boosting Transactional Memory with Stricter Serializability 249

graph forms a tree and transactions traverse it top-down. We present an algo-
rithm to attain this criteria together with a proof of its correctness. Our evalua-
tion based on a fully implemented prototype demonstrates that such an approach
is very efficient in weakly-contended workloads.
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Abstract. Aggregate computing is an emerging approach to the engi-
neering of complex coordination for distributed systems, based on view-
ing system interactions in terms of information propagating through col-
lectives of devices, rather than in terms of individual devices and their
interaction with their peers and environment. The foundation of this app-
roach is the distillation of a number of prior approaches, both formal and
pragmatic, proposed under the umbrella of field-based coordination, and
culminating into the field calculus, a functional programming model for
the specification and composition of collective behaviours with equivalent
local and aggregate semantics. This foundation has been elaborated into
a layered approach to engineering coordination of complex distributed
systems, building up to pragmatic applications through intermediate lay-
ers encompassing reusable libraries of provably resilient program compo-
nents. In this survey, we trace the development and antecedents of field
calculus, review the current state of aggregate computing theory and
practice, and discuss a roadmap of current research directions that we
believe can significantly impact the agenda of coordination models and
languages.

1 Introduction

As computing devices continue to become cheaper and more pervasive, the com-
plexity of the distributed systems that run our world continues to increase. Over
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Fig. 1. This survey reviews the development of field calculus from its antecedents (left),
the current state of aggregate computing theory and practice as layered abstractions
based on field calculus (middle), and current research directions on top of field calculus
with respect to challenges in coordination models and languages (right).

the past several decades, we have moved from many people sharing a single com-
puter to a computer for each person to many, mostly embedded and minimal-
interface computing devices for each person. The only way to effectively engineer
and coordinate the operation of such systems is to program and operate in terms
of aggregates of devices rather than attempting to micro-manage each individual
device. Moreover, as devices become more numerous, smaller, and more embed-
ded, decentralisation brings new opportunities as well as new challenges—not
only in terms of pervasive sensing/actuation/computation abilities, but also of
increasing advantages in resilience, efficiency, and privacy.

Aggregate computing is an emerging approach, developed significantly within
the coordination models and languages research community, that embraces this
environment, building from a foundation on the field calculus, a functional pro-
gramming model for the specification and composition of collective behaviours
with formally equivalent local and aggregate semantics. Atop this foundation,
a layered approach to engineering coordination of complex distributed systems
has been constructed, first considering challenges of resilience, then pragma-
tism in the form of reusable libraries capturing common coordination patterns,
and finally applications across a number of different domains. As the research on
aggregate computing is becoming rather multi-faceted, we also envision a variety
of research directions of high importance for distributed systems and specifically
for coordination models and languages, both in theory, engineering methods and
tools, and applications.

In this survey, we present a discussion of the past, present, and future of
aggregate computing (Fig. 1). Section 2 begins by tracing the development of
aggregate computing through its antecedents both in coordination research and
in other areas, culminating in development of the field calculus. Section 3 then
discusses the current state of aggregate computing theory and practice across its
various abstraction layers. Finally, Sect. 4 presents a roadmap of current research
directions on top of field calculus and with respect to challenges in coordination
models and languages, and Sect. 5 summarises and concludes.



254 M. Viroli et al.

2 Coordination, Self-organisation, and Fields

In this section we review and discuss the conceptual, but also technical and
technological, path that brought traditional coordination models for parallel
computing, step-by-step to address the complexity of self-organising, large-scale
deployed systems (Sect. 2.1). Then, we describe the emergence of field-based
coordination (Sect. 2.2), and how, through the interaction with research works
falling under the umbrella of space-based computation models (Sect. 2.3), this
path ended up in the field calculus as discussed in next section.

2.1 Coordination Towards Self-organisation

Generative Communication. Coordination models are rooted into the idea
that interaction among multiple, independent, and autonomous software systems
(processes, components, somewhat generically called agents henceforth) could be
conceived and designed as a space orthogonal to pure computation. Historically,
many coordination models reify this idea into a concept of shared data space,
working as a whiteboard, where processes of a parallel computing system can
write and read information [36], enabling so-called generative communication.
Linda [52] is universally recognised as the ancestor of a number of approaches to
generative communication falling under the umbrella of tuple-based coordination
models. The foundational idea of Linda was to have processes (on a centralised
system) share information by writing and retrieving, with a suspensive semantics
(the requestor is blocked until the query is satisfiable), data in form of ordered
collection of possibly-heterogeneous knowledge chunks, i.e., tuples, from a shared
(tuple-)space. Such data could be retrieved associatively, by querying through
partial representations of the structure and content matching the desired piece
of data (tuple template). The consequence is twofold: (i) decoupling in commu-
nication is strongly promoted, since no information about the sender, the space
itself, and the tuple insertion time is required in order for communication to hap-
pen; and (ii) coordination is still possible in environments where information is
vague, incomplete, inaccurate, or not entirely specified, due to the possibility to
synchronise over a partial representation of knowledge.

Programmable Coordination Rules. The vision of tuple-based coordination
as a shared knowledge repository used for agent coordination is further promoted
by logic tuple-space models, where software agents coordinate through first-
order tuples, and tuple spaces can be programmed as first-order logic theories.
A prominent example of such approach is Shared Prolog [23], a framework for
writing multi-processor Prolog systems. More generally, this view promotes the
idea of equipping the shared space with some form of “intelligence”, i.e., in the
form of an application logic that can manipulate data in the shared space and
the way it can be accessed. Several Linda-inspired approaches tackle this issue
by enabling programmability at the tuple-space level in order to express rules
of coordination, and hence, pushing forward a notion of expressiveness of the
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coordination media [24]. Among them, we find Law-Governed Interaction [65],
MARS [26] and ReSpecT [71].

Distribution. All these approaches, however, do not explicitly focus on dis-
tributed systems, but on the coordination of centralised local components. As
software components get spread across the system topology, so multiple tuple
spaces can be distributed across the system environment, enabling distributed
coordination abstractions, featuring mechanisms for event-based interactions,
timing, and advanced data representation. This is the case with industrial sys-
tems like JavaSpaces [51] and TSpaces [97]. Lime [67], Klaim [44], and LogOp
[63], take the approach a step further, by allowing to express the dynamic envi-
ronment topology in a distributed setting, thus paving the way towards applica-
tion of coordination models to pervasive computing system scenarios.

Self-organising Coordination. As coordination abstractions of various sorts
(tuple spaces, channels, coordination artifacts [72,93]) are available in the dis-
tributed settings, one is directly faced with the problem of dealing with openness
(hence, unexpectedness of environment changes, faults, and interactions), large-
scale (possibly a huge number of agents and coordination abstractions to be man-
aged), and intrinsic adaptiveness (as the ability of intercepting relevant events,
and react to them so as to guarantee certain levels of overall system resilience).
This calls for an approach of self-organising coordination [89], where coordina-
tion abstractions handle “local” interactions only (and typically use stochastic
mechanisms to keep the coordination process always “up and running”), such
that global and robust patterns of correct coordination behaviour can emerge—
achieved by trading off by-design adaptiveness with inherent, automatic one.

Coordination models following this approach typically take their inspiration
from complex natural systems (from physics through chemistry all the way to
ethology) and reuse their foundational mechanisms. A primary source of inspi-
ration for these systems is to be found in biology (social animals, and insects
in particular), whose foraging techniques inspire the mechanisms that regulate
coordination [27,78,80]. For instance, SwarmLinda [80] is a tuple-based mid-
dleware that brings the collective intelligence displayed by swarms of ants to
computational mechanisms to guarantee efficient retrieval. Tuples are handled
as sort of pheromones or items that ants (agents) continuously and opportunis-
tically relocate. Chemical-inspiration is used in [87,88] to regulate the “activity
level” of tuples, which drives the likelihood of their retrieval as well as their prop-
agation rate. Ecology-inspiration is instead used in [81] to inject competition,
composition, and disposal behaviour in the context of coordination of pervasive
computing services.

2.2 Field-Based Coordination

Another important natural source of inspiration comes from physics: physics-
inspired self-organising coordination systems rely on the notion of “field”
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(gravitational field, electromagnetic field), which essentially provides a frame-
work to handle (create, manipulate, combine) global-level, distributed data
structures.

A notion of coordination field (or co-field) was initially proposed in [62] as a
means to support self-organisation patterns of agent movement in complex envi-
ronments: it was used as an abstraction over the actual environment, spread by
both agents and the environment itself, and used by agents (which can locally
perceive the value of fields) to properly navigate the environment. Based on
this idea, the TOTA (Tuples On The Air) tuple-based middleware [61] was pro-
posed to support field-based coordination for pervasive-computing applications.
In TOTA each tuple, when inserted into a node of the network, is equipped with
a content (the tuple data), a diffusion rule (the policy by which the tuple has to
be cloned and diffused around) and a maintenance rule (the policy whereby the
tuple should evolve due to events or time elapsing).

The evolving tuples model, presented in [79], is an extension to traditional
Linda tuple spaces with the goal of supporting resource discovery in a pervasive
system, relying on ideas inspired by TOTA. Evolution is firstly embedded in
tuples by adding, to each field of the tuple, a name and a formula that specifies
the field behaviour over time. Formulas support the if-then-else construct and
arithmetic and boolean operators. Secondly, a new operation evolve() is intro-
duced in the tuple space, which is responsible for applying formulas to tuples
using contextual information.

One of the first works connecting field-based coordination with formalisation
tools typical of coordination models and languages (i.e., process algebras and
transition systems) is the στ -Linda model [94], where agents can inject into the
space “processes” that spread, collect and decay tuples, ultimately sustaining
fields of tuples.

2.3 Spatial Computing Approaches: Towards the Field Calculus

More or less independently from the problem of finding suitable coordination
models for distributed and situated systems, a number of works addressed sim-
ilar problems in the more general attempt of building distributed intelligent
systems by promoting higher abstractions of spatial collective adaptive systems.
Works such as [14,46,64,73] survey from various different viewpoints the many
approaches that fall under this umbrella (including also some of the above men-
tioned coordination models), and which mainly organise in the following cate-
gories: methods that simplify programming of a collective by abstracting indi-
vidual networked devices (e.g., SCEL [45], Hood [96], Butera’s “paintable com-
puting” [25], and Meld [1]), spatial patterns and languages (e.g., Growing Point
Language [35], geometric patterns in Origami Shape Language [68], self-healing
geometries [34], or universal patterns [98]), tools to summarise and stream
information over regions of space and time (e.g., TinyDB [60], Cougar [99],
TinyLime [37], and Regiment [69]), and finally space-time computing models
aiming at the manipulation of data structures diffused in space and evolving with
time, e.g. targeting parallel computing (e.g., StarLisp [57], systolic computing
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[48]) and topological computing (e.g., MGS [53,54]). Among them, space-time
computing models based on the notion of computational fields were initially
proposed in [12] and implemented in the Proto language. Combining techniques
coming from the above approaches and generalising over Proto (which can be
considered the archetypal spatial computing language due to its expressiveness
and versatility), the field calculus has been proposed as a foundational model
for the coordination of computational devices spread in physical environments.

3 From Field Calculus to Aggregate Computing

In this section, we discuss the current state of the art in aggregate computing,
with the goal of presenting the full spectrum of results achieved without going
into deep technical details—the reader can access code examples and tutorials, as
well as formalisation of semantics, from the references provided. We begin with
a review of its mathematical core in field calculus (Sect. 3.1), then discuss the
construction of implementations of field calculus as the domain specific language
Protelis (Sect. 3.2) and Scala support ScaFi (Sect. 3.3). Finally, we discuss the
layered abstractions of aggregate programming built upon these foundations,
from resilient operators to pragmatic libraries (Sect. 3.4).

3.1 Field Calculus

Basic Calculus. The field calculus (FC) has been proposed in [92] as a minimal
core calculus meant to capture the key ingredients of languages that make use
of computational fields:1 functional composition of fields, functions over fields,
evolution of fields over time, construction of fields of values from neighbours,
and restriction of a field computation to a sub-region of the network.

The field calculus is based on the idea of specifying aggregate system
behaviour of a network of devices (where a dynamic neighbouring relation repre-
sents physical or logical proximity) by a functional composition of operators that
manipulate (evolve, combine, restrict) computational fields. A key feature of the
approach is that a specification can be interpreted locally or globally. Locally, it
can be seen as describing a computation on an individual device, iteratively exe-
cuted in asynchronous “computation rounds” comprising: reception of messages
from neighbours, perception of contextual information through sensors, storing
local state of computation, computing the local value of fields and spreading
messages to neighbours. Globally, a field calculus expression e specifies a map-
ping (i.e., the computational field) associating each computation round of each
device to the value that e assumes on that space-time event. This duality intrin-
sically supports the reconciliation between the local behaviour of each device
and the emerging global behaviour of the whole network of devices [41,92].

The distinguished interaction model of this approach has been first formalised
in [92] by means of a small-step operational semantics modelling single device
1 Much as λ-calculus [32] captures the essence of functional computation and FJ [55]

the essence of class-based object-oriented programming.
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// distance from source region with nbrRange metric

def distanceTo(source) {

rep (Infinity) { (dist) =>

mux ( source , 0, minHood(nbr{dist} + nbrRange ()) )

}

}

// distance from source region , avoiding obstacle region

def distanceToWithObs(source , obstacle) {

if (obstacle) { Infinity }{ distanceTo(source) }

}

// main expression

distanceWithObs(deviceId == 0, senseObs ())

Fig. 2. Example field calculus code

computation (which is ultimately responsible for the whole network execution).
The main technical novelty in this formalisation is that device state and message
content are represented in an unified way as an annotated evaluation tree. Field
construction, propagation, and restriction are then supported by local evaluation
“against” the evaluation trees received from neighbours. Accessing these values
is allowed by two specialised constructs:

– rep(e0){(x)=>e} which retrieves the value v computed for the whole rep
expression in the last evaluation round (the value produced by evaluating
the expression e0 is used at the first evaluation round) and updates it by the
value produced by evaluating the expression obtained from e by replacing the
occurrences of x by v;

– nbr{e}, which gathers the values computed by neighbours for expression e
(from the respective evaluation trees) in their last round of computation into
a neighbouring field value, which is a map from neighbour device identifiers
to their correspondent values.

These constructs are backened by a data gathering mechanism accomplished
through a process called alignment, which ensures appropriate message match-
ing, i.e., that no two different nbr expressions can inadvertently “swap” their
respective messages. This has the notable consequence that the two branches of
an if statement in field calculus are executed in isolation: devices computing the
“then” branch cannot communicate with a device computing the “else” branch,
and viceversa.

Consider as an example Fig. 2. Function distanceTo takes as argument a field
of booleans source, associating true to source nodes, and produces as result a
field of reals, mapping each device to its minimum distance to a source node,
computing relaxation of triangle inequality; namely: repetitively, and starting
from infinity (construct rep) everywhere, the distance on any node gets updated
to 0 on source nodes (function mux(c, t, e) is a purely functional multiplexer
which chooses t if c is true, or e otherwise), and elsewhere to the minimum
(built-in minHood) of neighbours’ distance (construct nbr) added with nbrRange,
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a sensor for estimated distances. Function distanceToWithObs takes an addi-
tional argument, a field of booleans obstacle, associating true to obstacle nodes;
it partitions the space of devices: on obstacle nodes it gives the field of infinity
values, elsewhere it reuses computation of distanceTo. Because of alignment,
the set of considered neighbours for distanceTo automatically discards nodes
that evaluate the other branch of if, effectively making computation of distances
circumvent obstacles. Finally, the main expression calls distanceToWithObs to
compute distances from the node with id equal to 0, circumventing the devices
where senseObs gives true.

The work in [41] (which is an extended and revised version of [92]) presents a
type system, used to intercept ill-formed field-calculus programs. The type sys-
tem, which builds on the HindleyMilner type system [39] for ML-like functional
languages, is specified by a set of syntax-directed type inference rules. Being
syntax-directed, the rules straightforwardly specify a variant of the Hindley-
Milner type inference algorithm [39]. Namely, an algorithm that given a field
calculus expression and type assumptions for its free variables: either fails (if
the expression cannon be typed under the given type assumptions) or returns
its principal type, i.e., a type such that all the types that can be assigned to an
expression by the type inference rules can be obtained from the principal type
by substituting type variables with types.

Types are partitioned in two sets: types for expressions and types for func-
tions (built-in operators and user-defined functions)—this reflects the fact that
the field calculus does not support higher order functions (i.e., functions are not
values). Expression types are further partitioned in two sets: types for local val-
ues (e.g., the values produced by numerical literals) and types for neighbouring
field values (e.g., the values produced by nbr-expressions).

The type system is proved to guarantee the following two properties:

– Domain alignment: On each device, the domain of every neighbouring field
value arising during the reduction of a well-typed expression consists of the
identifiers of the aligned neighbours and of the identifier of the device itself.
In other words, information sharing is scoped to precisely implement the
aggregate abstraction.

– Type soundness: The reduction of a well-typed expression terminates.

Higher-Order Field Calculus. The higher-order field calculus (HFC) [42]
(see also [84]) is an extension of the field calculus with first-class functions.
Its primary goal is to allow programmers to handle functions just like any other
value, so that code can be dynamically injected, moved, and executed in network
(sub)domains. Namely, in HFC:

– Functions can take functions as arguments and return a function as result
(higher-order functions). This is key to define highly reusable building block
functions, which can then be fully parameterised with various functional
strategies.
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– Functions can be created “on the fly” (anonymous functions). Among other
applications, such functions can be passed into a system from the external
environment, as a field of functions considered as input coming from a sensor
modelling addition of new code into a device while the system is operating.

– Functions can be moved between devices (via the nbr construct) and the
function to be executed can change over time (via rep construct), which
allows one to express complex patterns of code deployment across space and
time.

– A field of functions (possibly created on the fly and then shared by movement
to all devices) can be used as an aggregate function operating over a whole
spatial domain.

In considering fields of function values, HFC takes the approach in which making
a function call acts as a branch, with each function in the range of the field
applied only on the subspace of devices that hold that function. When the field
of functions is constant, this implicit branch reduces to be precisely equivalent
to a standard function call. This means that we can view ordinary evaluation of
a function name (or anonymous function) as equivalent to creating a function-
valued field with a constant value, then making a function call applying that
field to its argument fields. This elegant transformation is one of the key insight
of HFC, enabling first-class functions to be implemented with relatively minimal
complexity.

In [42] the operational semantics of HFC is formalised, for computation
within a single device, by a big-step operational semantics where each expression
evaluates to an ordered tree of values tracking the results of all evaluated subex-
pressions. Moreover, [42] also presents a formalisation of network evolution, by a
transition system on network configurations—transitions can either be firings of
a device or network configuration changes, while network configurations model
environmental conditions (i.e., network topology and inputs of sensors on each
device) and the overall status of devices in the network at a given time.

Behavioural Properties. Since HFC is designed as a general-purpose language
for spatially distributed computations, its semantics and type system guarantees
do not prevent the formulation of ill-behaving programs. Thus, regularity prop-
erties have been isolated and studied for subsets of the core language. Among
them, the established notion of self-stabilisation to correct states for distributed
systems [47,58,59] plays a central role. This notion, defined in terms of properties
of the transition system of network evolution, ensures that both (i) the evalua-
tion of a program on an eventually constant input converges to a limit value in
each device in finite time; (ii) this limit only depends on the input values, and
not on the transitory input values that may have happened before that. When
applied in a dynamically evolving system, a self-stabilising algorithm guarantees
that whenever the input changes, the output reacts accordingly without spurious
influences from past values.

In [40] (which is an extended version of [91]), a first self-stabilising frag-
ment is isolated through a spreading operator, which minimises neighbour
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values as they are monotonically updated by a diffusion function. This pattern
can be composed arbitrarily with local operations, but no explicit rep and nbr
expressions are allowed: nonetheless, several building blocks can be expressed
inside this fragment, such as classic distance estimation. However, more self-
stabilising programs and existing “building block” implementations are covered
by the larger self-stabilising fragment introduced in [83] (which is an extended
version of [86]). This fragment restricts the usage of rep statements to three spe-
cific patterns (converging, acyclic and minimising rep), roughly corresponding
to the three main building blocks (time evolution, aggregation, distance estima-
tion). Furthermore, a notion of equivalence and substitutability for self-stabilising
programs is examined: on the one hand, this notion allows for practical optimi-
sation of distributed programs by substitution of routines with equivalent but
better-performing alternatives; on the other hand, this equivalence relation natu-
rally induces a limit viewpoint for self-stabilising programs, complementing and
integrating the two general (local and global) viewpoints by abstracting away the
transitory characteristics and isolating the input-output mapping corresponding
to the distributed algorithm. These viewpoints effectively constitute different
semantic interpretations of a same program: operational semantics (local view-
point), denotational semantics (global viewpoint), and eventual behaviour (limit
viewpoint).

A fourth “continuous” viewpoint is considered in [20]: as the density of com-
puting devices in a given area increases, assuming that each device takes inputs
from a single continuous function on a space-time manifold, the output values
may converge towards a limit continuous output. Programs with this property
are called consistent, and have a “continuous” semantic interpretation as a trans-
formation of continuous functions on space-time manifolds. Taking inspiration
from self-stabilisation, this notion is relaxed for eventually consistent programs,
which are only required to continuously converge to a limit except for a transi-
tory initial part, provided that the inputs are constant (except for a transitory
initial part). Eventual consistency can then be proved for all programs express-
ible in the GPI (gradient-following path integral) calculus, that is a restriction
of the field calculus where the only coordination mechanism allowed is the GPI
operator, a generalised variant of the distance estimation building block.

Up to this point, hence, validation of behavioural properties is mostly
addressed “by construction”, namely, proving properties on simple building
blocks or restricting the calculus to fragments. It is a future work to consider
the applicability of techniques such as the formal basis in [59], or model-based
analysis such as [7].

3.2 Protelis: A DSL for Field Calculus

The concrete usage of HFC in application development is conditioned by the
availability of practical languages, embedding an interpreter or compiler, as well
as handling runtime aspects such as communication, interfacing with the oper-
ating system, and integration with existing software. Protelis [77] provides one
such implementation, including: (i) a concrete HFC syntax; (ii) an interpreter
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and a virtual machine; (iii) a device interface abstraction and API; and (iv) a
communication interface abstraction and API.

In Protelis, the parser translates a Protelis source code file into a valid repre-
sentation of the HFC semantics. Then, the program, along with an execution con-
text, is fed to the virtual machine that executes the Protelis interpreter at regular
intervals. The execution context API defines the interface towards the operating
system, including (with ancillary APIs) an abstraction of the device capabilities
and the communication system. This architecture has been proven to make the
language easy to port across diverse contexts, both simulated (Alchemist [76]
and NASA World Wind [21]) and real-world [33].

The entire Protelis infrastructure is developed in Java and hosted on the
Java Virtual Machine (JVM). The motivation behind one such choice is twofold:
first, the JVM is highly portable, being available on a variety of architectures
and operating systems; second, the Java world is rich in libraries that can be
directly used within Protelis, with little or no need of writing new libraries for
common tasks.

The model-to-model translation between the Protelis syntax and the HFC
interpreter is operated by leveraging the Xtext framework [22]. Along the parser
machinery, this framework is able to generate most of the code required for
implementing Eclipse plug-ins: one such plug-in is available for Protelis, assisting
the developer through code highlighting, completion suggestions, and early error
detection.

The language syntax is designed with the idea of lowering the learning curve
for the majority of developers, and as such it is inspired by languages of the C-
family (C, C++, Java, C#...), with some details borrowed from Python. Code
can be organised in modules (or namespaces) whose name must reflect the direc-
tory structure and the file name. Modules can contain functions and a main
script. The code snippet in Fig. 3 offers a panorama on the ordinary and field-
calculus specific features of Protelis, including the ability of importing libraries
and static methods, using functions as higher-order values in let constructs and
by apply, tuple and string literals, lambdas, built-ins (e.g., minHood, and mux),
and field calculus constructs rep and nbr.

Function definitions are prefixed by the def keyword, and they are visible by
default only in the local module. In order for other modules to access them, the
keyword public must be explicitly specified. Other modules can be imported,
as well as Java static methods. Types are not specified explicitly: in fact, Pro-
telis is duck-typed—namely, type-checked at run-time through reflection mech-
anisms. The language offers literals for commonly used numeric values, tuples,
and strings. Instance methods can be invoked on any expression with the same
“dot” syntax used in Java. Higher order support includes a compact syntax for
lambda expressions, closures, function references, functions as parameters and
function application. Lastly, context properties, including device capabilities, are
accessible through the self keyword. Environment variables can be accessed via
the short syntax env.



From Field-Based Coordination to Aggregate Computing 263

import protelis:coord:spreading // Import other modules

import java.lang.Math.sqrt // Import static Java methods

def privateFun(my, params) {

my + params // Infix operators , duck typing

}

public def availableOutside () { // externally visibile

privateFun (1, 2); // Function call

let aFun = privateFun; // Variable definition , function ref

aFun.apply("a", "str"); // String literals , application

let tup = [NaN , pi , e]; // Tuple literals , built -in numbers

// lambda expressions , closures , method invocation:

let inc3 = v -> {privateFun(v, tup.size())}

}

// MAIN SCRIPT

let myid = self.getDeviceUID (); // Access to device info

if (myid < 1000) { // Domain separation

rep (x <- self.nextRandomDouble ()) {// Stateful computation

// Java static method call

mux (sqrt(x) < 0.5) { // mux executes both branches

// Library call , field gathering and reduction

minHood(nbr(env.has("source")))

} else { Infinity }

} < 10

} else { // Mandatory else: every expression returns a value

false // booleans

}

Fig. 3. Example Protelis code showcasing detailed syntactic aspects

A relevant asset of Protelis is its recently developed library “protelis-lang”
[50], streamlining the implementation of several algorithms found in litera-
ture devoted to development of distributed systems. Among others, it includes
several implementations of self-stabilising building functions [18,83], such as
distanceTo to estimate distances, broadcast to send alerts, summarize to per-
form distributed sensing, and so on. Notably, the library also includes machin-
ery for “aligning” aggregate computing programs along arbitrary keys, sep-
arating and mixing domains in a finer way than the if construct allows.
These constructs, based on the alignedMap primitive of Protelis, enable highly
dynamic meta-algorithms to be written, that open to new possibilities such as
multiInstance [50], or allow for increased resilience and adaptation as in the
case of timeReplicated [75].

3.3 ScaFi: An API for the Scala Programming Ecosystem

From a pragmatical viewpoint, it is highly desirable to bridge the gap
between field calculus-based DSLs and mainstream programming platforms
and languages that embody, among others, the functional, object-oriented, and
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actor-based paradigms (i.e., the nowadays reference styles for in-the-small, in-
the-large, and concurrent/distributed programming, respectively). Indeed, this
can be critical to foster adoption, reducing accidental complexity through coher-
ent syntax, semantics, and toolset, and paving the way to a more integrated
programming experience.

External DSLs such as Protelis, despite the aid provided by DSL frameworks
like Xtext [22], can require a lot of development and maintenance effort, since
they must cover aspects ranging from language design to typing, and proper
tooling must be provided to enable full interoperability with the target platform
in static, runtime, and debugging contexts. By contrast, internal DSLs are an
interesting alternative, for they are expressed in the host language and are de
facto equivalent to an API: they more seamlessly interoperate, and reuse the
syntax, semantics, typing, and tools of their host language, at the expense of
reduced flexibility due to the constraints exerted by the host environment.

Such considerations of pragmatism, reuse, and interoperability motivate
ScaFi (Scala Fields) [30], an aggregate computing framework including a field-
calculus DSL internal to the Scala programming language [70], also integrated
into the Alchemist meta-simulator [29], as well as an actor-based platform for
distributed aggregate systems [31,90]. The choice of Scala as the host language
was inspired by its (i) interoperability across the JVM platform, (ii) seam-
less integration of the object-oriented and functional paradigms, with support
for lightweight component-based programming (cf., traits and self-types), (iii)
advanced features for type-safe library development (cf., implicits, generic type
constraints), (iv) syntax flexibility and sugar (cf., by-name arguments), allowing
to create fluent DSL-like APIs; and (v) prominent role in the scene of distributed
computing frameworks (cf., Akka, Kafka, Spark). Concerning the platform per-
spective, instead, the use of actor-based abstractions is instrumental to the inte-
gration of aggregate-level functionality into existing distributed systems (e.g.,
developed with more traditional techniques), by exposing collective coordina-
tion events and data through message or event-like interfaces [31].

Working with a general-purpose, multi-paradigm programming language like
Scala gives to the hands of developers quite a lot of flexibility and power for what
concerns design and implementation of field libraries and programs. Consider
the example in Fig. 4 for a taste of the programming style, including definition
of a reusable block G (extending distance calculation [15,83]), type-class-style
assumptions on arguments via context bound “[V: Bounded]”, tuples by syntax
(.,.), and pattern matching (case .. =>).

An AggregateProgram instance acts simply as a function from an abstract
Context to an Export. Hence, for a platform to support local execution of field
computations it is just a matter of instantiating an aggregate program (possibly
mixing in components to provide access to platform-level functionality), prepar-
ing contextual information (i.e., previous state, sensor data, and messages from
neighbours), and running a computation round according to the device lifecycle.
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trait BlockG { // Component

self: FieldCalculus with StandardSensors => // Dependencies

// Generic function with type -class constraint on V

def G[V: Bounded ]( source: Boolean ,

field: V,

acc: V => V, // Function type

metric: => Double // By-name parameter

): V = // Return type

rep(( Double.MaxValue , field)) {

case (dist , value) => // Function by pattern matching

mux(source) {

(0.0, field) // Tuple syntax sugar for Tuple2(_,_)

}{

minHoodPlus { // Requires (Double ,V) to be Bounded

(nbr { dist } + metric , acc(nbr { value }))

}

}

}._2 // Selects 2nd element of tuple

}

class Program extends AggregateProgram

with StandardSensors with BlockG { // Mixins

def main: Double = // Program entry point

distanceTo(isSource)

def isSource = sense[Boolean ]("source")

def distanceTo(source: Boolean): Double =

G(source , 0.0, _ + nbrRange , nbrRange)

}

Fig. 4. Example ScaFi code

3.4 Aggregate Programming

Building upon these theoretical and pragmatic foundations, aggregate program-
ming [15] elaborates a layered architecture that aims to dramatically simplify the
design, creation, and maintenance of complex distributed systems. This approach
is motivated by three key observations about engineering complex coordination
patterns:

– composition of modules and subsystems must be simple and transparent;
– different subsystems need different coordination mechanisms for different

regions and times;
– mechanisms for robust coordination should be hidden “under the hood”,

where programmers are not required to interact with them.
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Fig. 5. Aggregate programming abstraction layers. The software and hardware capa-
bilities of particular devices are used to implement aggregate-level field calculus con-
structs. These constructs are used to implement a limited set of building-block coor-
dination operations with provable resilience properties, which are then wrapped and
combined together to produce a user-friendly API for developing situated IoT (Internet-
of-Things)systems—picture adapted from [15].

Field calculus (and its language incarnations) provides mechanisms for the first
two, but is too general to guarantee resilience and too mathematical and succinct
in its syntax for direct programming to be simple.

Aggregate programming thus proposes two additional abstraction layers, as
illustrated in Fig. 5, for hiding the complexity of distributed coordination in
complex networked environments. First, the “resilient coordination operators”
layer plays a crucial role both in hiding the complexity and in supporting effi-
cient engineering of distributed coordination systems. First proposed in [18],
it is inspired by the approach of combinatory logic [38], the catalogue of self-
organisation primitives in [49], and work on self-stabilising fragments of the field
calculus [40,83,91]. Notably, three key operators within this self-stabilising frag-
ment cover a broad range of distributed coordination patterns: operator G is
a highly general information spreading and “outward computation” operation,
C is its inverse, a general information collection operation, and T implements
bounded state evolution and short-term memory.
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Above the resilience layer, aggregate programming libraries [50,86] capture
common patterns of usage and more specialised and efficient variants of resilient
operators to provide a more user-friendly interface for programming. This def-
inition of well-organised layers of abstractions with predictable compositional
semantics thus aims to foster (i) reusability, through generic components; (ii)
productivity, through application-specific components; (iii) declarativity, through
high-level functionality and patterns; (iv) flexibility, through low-level and fine-
grained functions; and (v) efficiency, through multiple components with coherent
substitution semantics [83,86].

Within these two layers, development has progressed from an initial model
built only around the spreading of information to a growing system of compos-
able operators and variants. The first of these operator/variant families to be
developed centred around the problems of spreading information, since interac-
tion in aggregate computing is often structured in terms of information flowing
through collectives of devices. A major problem thus lies in regulating such
spreading, in order to take into account context variation, and in rapidly adapt-
ing the spreading structure in reaction to changes in the environment and in
the system topology. Here, the gradient (i.e., the field of minimum distances
from source nodes) in its generalised form in the G operator is what captures,
in a distributed way, a notion of “contextual distance” instrumental to calculate
information diffusion, and forms the basis for key interaction patterns, such as
outward/inward bounded broadcasts and dynamic group formation, as well as
higher-level components built upon these.

The widespread adoption of gradient structures in algorithms stresses the
importance of fast self-healing gradients [13], which are able to quickly recover
good distance estimates after disruptive perturbations, and more “dependable”
gradient algorithms in which stability is favoured by enacting a smoother self-
healing behaviour [8]. Several alternative gradient algorithms have been devel-
oped, addressing two main issues. Firstly, the recovery speed after an input
discontinuity, which has first been bounded to O(diameter) time by CRF (con-
straint and restoring force) gradient [13], further improved to optimal for algo-
rithms with a single-path communication pattern by BIS (bounded information
speed) gradient [5], and refined to optimality for algorithms with a multi-path
communication pattern by SVD (stale values detection) gradient [3]. Secondly,
the smoothness and resilience to noise in inputs, first addressed by FLEX (flex-
ible) gradient [8] and then refined and combined with improved recovery speed
by ULT (ultimate) gradient [3].

To empower the aggregate programming tool-chain, other building blocks
have been proposed and refined besides from gradients: consensus algorithms
[11], centrality measures [4], leader election and partitioning [18], and most
notably, collection. The collection building block C progressively aggregates and
summarises values spread throughout a network into a single value, e.g., the
sum or other meaningful statistics. Based itself on distance estimation through
gradients, a general single-path collection algorithm has been proposed in [18]
granting self-stabilisation to a correct value, then multi-path collection has been
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developed for improved resiliency in sum estimations [83], and finally refined
to weighted multi-path collection [2] which is able to maintain acceptable whole
network sums even in highly volatile environments. A different approach to col-
lection has also proved to be effective for minimum/maximum estimates: overlap-
ping replicas of non-self-stabilising gossip algorithms [75] (with an appropriately
tuned interval of replication), thus combining the resiliency of these algorithms
with self-stabilisation requirements.

4 Perspectives and Roadmap

Over the past decade, aggregate computing has moved from a fragmented col-
lection of ideas and tools to a stable core calculus and a coherent layered frame-
work for the engineering of distributed systems. Thus, even as the underly-
ing theory continues to be developed, as shown in [85], a significant portion of
research and development can shift to more pragmatic issues linked to appli-
cations and higher levels of the aggregate computing stack. In this section, we
review a number of such research directions, which include elaboration of libraries
(Sect. 4.1), techniques to control dynamics (Sect. 4.2), management of mobile
devices and processes (Sect. 4.3), development of software platforms (Sect. 4.4),
security (Sect. 4.5), and applications (Sect. 4.6).

4.1 Elaboration of Libraries

The most immediate and incremental line of future development for aggregate
computing is the elaboration of the existing collection of libraries, to form a more
broadly applicable and easier to use interface at the top of the aggregate comput-
ing stack. Some of these additions and refinements will be based on development
of alternative implementations of core resilient building blocks (e.g., [2,5,75]),
while others are expected to capturing common design patterns and necessary
functionalities specific to particular application domains. No particular high-
priority targets are suggested at present for this development, however. Instead,
this process is expected to be a natural incremental progress of ongoing matu-
ration and professionalisation driven by issues discovered as the other lines of
future development outlined below exercise the existing libraries to expose their
current shortcomings and needs for enhancement.

4.2 Understanding and Controlling Dynamics and Feedback

Much of the work to date on aggregate computing has focused on the converged
properties of a system, such as self-stabilisation [47,82] and eventual consis-
tency [20]. These theoretical approaches, however, assume that the network of
devices is often in a persistent quasi-stable state in which the set of devices, their
connections to one another, and their environment all do not change for a signif-
icant length of time. In large scale systems, however, such quasi-stable states are
typically rare and short-lived: there is almost always something changing with
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respect to some device, thus constantly injecting perturbations into the system.
Prior compositional safety analysis regarding self-stabilisation and eventual con-
sistency also does not apply in the case of systems involving feedback, and many
applications do require feedback either directly between building blocks or indi-
rectly via interactions with the environment.

The control theory literature has many well-developed tools for analysing
the response of complex systems under perturbation and in the presence of feed-
back. The mathematical frameworks for such tools are not straightforward to
adapt for application to aggregate computing building blocks, but with careful
work may often still be applied, e.g., through identification of appropriate Lya-
punov functions to bound the convergence behaviour of a building block. Early
work in this area shows promise, enabling analysis and prediction of aggregate
computing systems with feedback between building blocks [56] and providing
stability analysis and tight convergence bounds for particular applications of the
G operator [43] and C operator [66]. An important area for future development
is thus to expand these results to cover a large sublanguage of aggregate com-
puting systems and to apply them in order to refine and improve the dynamical
performance of building blocks.

4.3 Mobility of Devices and Processes

Another key area for expansion of aggregate computing, both in theory and prac-
tice, is better handling of mobility, both of devices and of processes dispersed
through networks of devices. From a theoretical perspective, this is closely inter-
woven with the need for a deeper understanding of convergence dynamics, as
systems with mobile devices or processes typically do not ever achieve the quasi-
stable states required for self-stabilisation to hold. Instead, work to date has
depended on the informal observation that “slow enough” mobility does not dis-
rupt commonly used self-stabilising building blocks. Theoretical work is needed
to predict and bound regions of stability and effects of perturbation, as well as to
develop improved building block alternatives for conditions where the identified
dynamics are unsatisfactory.

There is also a need to expand the existing building block libraries to support
applications involving mobility. For controlling the physical motion of devices, a
number of building blocks have been demonstrated or proposed throughout the
swarm robotics and multi-agent systems literature, including a number already
formulated as building blocks for aggregate computing (e.g., [6,9,10]). We may
also consider systems in which the device is not the focus of mobility, but instead
code and processes dynamically deploy, migrate, upgrade, and terminate during
system operation, as considered for example in [15,95]. To effectively support
mobility in aggregate computing, the large volume of prior work on algorithms
and strategies for such systems needs to be systematised and organised, analysed
for compositional safety and bounds on convergence, and adapted for use in
aggregate computing based on the results of analysis.
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4.4 Software Platforms

Aggregate computing targets a number of application scenarios, generally char-
acterised by inherent distribution, heterogeneity, mobility and lack of stable
infrastructure (including computation, storage, and networking media). Hence,
proper middleware or software platform is paramount to ease the development
and deployment of applications as well as support their management at run-
time [90]. Moreover, such a layer is the ideal place where to encapsulate cross-
cutting concerns such as security, privacy, monitoring, fault tolerance and so on.

Though the problem of a middleware is common to almost any distributed
computing effort, there are some issues (e.g., those discussed in this section, like
mobility and control) and opportunities specifically related to aggregate comput-
ing and coordination that deserve attention. In particular, consider the aggregate
programming model: it achieves a certain degree of declarativity by abstracting
over a number of details such as, for instance, the specifics of neighbourhood-
based communication and the order and frequency of micro-level activities sus-
taining application execution—details that can be delegated to corresponding
platform services for topology management, scheduling and round execution.
This abstraction provides a lot of flexibility on the platform side, which is free
to apply optimisations of various sorts, from simpler (e.g., avoid broadcasting
redundant messages) to more complex ones. In fact, the most relevant insight
here is the ability of running aggregate computing systems according to different
execution strategies [90], from fully peer-to-peer, where end-devices directly com-
municate between one another and run by themselves their piece of aggregate
logic, to completely centralised solutions where, instead, end-devices act only
as managers for sensors and actuators, sending perceptions upstream to one or
more servers which run computations on their behalf and ultimately propagate
actuation data downstream.

Crucially, this flexibility paves the way towards an opportunistic and QoS-
driven exploitation of available infrastructural resources, as well as to intrin-
sic adaptation of application execution to forthcoming multi-layer architectures
involving edge, fog, and cloud interfaces [90]—as required to deal with emerging
IoT scenarios. For instance, an aggregate system specification can be mapped
to a system of actors [31] where each actor is responsible for a specific aspect
of the overall computation and communication and can be migrated to different
machines while preserving coordination by automatically adapting the bind-
ings [90]. A lot of interesting future work is expected to be carried out in order
to put such theory of adaptive execution coordination into practice.

4.5 Security

Security is a critical concern in computer science in general and especially in
open environments, such as those envisioned in pervasive computing and IoT
scenarios involving vast numbers of devices administered by individuals and
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organisations with no particular knowledge of security. This problem is mul-
tifaceted and requires carefully thought, full-stack solutions that also consider
orthogonal issues such as, for instance, the cost of security-related computational
tasks in resource-constrained devices.

A number of security issues, not strictly related to coordination, of prominent
importance in real-world, trustworthy systems, can be addressed in the middle-
ware layer and through proper deployment solutions. For example, support is
needed to enable safe code mobility and execution, as proposed in [42], which may
be required in scenarios characterised by significant dynamicity requirements or
demands for automatic deployment of new functionality. Another key theme is
confidentiality: privacy properties on the propagated and collected data need to
be understood and guaranteed, otherwise participation may be hindered. Addi-
tionally, despite the decentralised and inherently scalable nature of aggregate
systems, availability issues need to be considered, according to the specifics of
applications, especially with respect to nodes playing a crucial role in algorithms
(e.g., sources, hubs, collectors, region leaders).

Regarding application-level interaction, since coordination activity in aggre-
gate computing is substantially based on a premise of cooperation between the
participating entities, it is often sensitive to attacks that may trigger epidemic
deviation. That is, what is the extent to which agents and their data can be
trusted? In order to assess and mitigate the impact of voluntary or involuntary
misbehaviour, adoption of computational trust has proven useful [28] and appli-
cable even in decentralised settings, in which no central authority is available to
certify recipients and endpoints, and in scenarios where seamless opportunistic
interaction is the norm. Much work remains, however, to develop these initial
proposals into a fully articulated theory and practice for the security of aggregate
computing systems that takes into account confidentiality, integrity, availability,
and authenticity issues.

4.6 Applications and Pragmatics

Finally, the core goal all along for the aggregate computing research thrust has
been to enable simpler, faster development of more resilient distributed appli-
cations. Having developed both its theoretical foundations and the layered sys-
tem of algorithms and libraries exploiting those foundations, one of the major
directions of current and future work is indeed to apply these developments to
real-world problems across a variety of domains.

One key application area, previously discussed in [15] and other works, is
pervasive or IoT scenarios in dense urban environments. As the density of com-
municating devices increases, their interactions put pressure on the available
fixed infrastructure and the opportunities for local interaction increase. This is
particularly acute during transient events when demand and the available infras-
tructure become mismatched, such as during festivals or sporting events when
the number of people packed into an area spikes, or during natural disasters and
other emergencies when the available infrastructure may be degraded. One of the
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critical challenges in this area is simply to access the potential peer-to-peer capa-
bilities of devices, which are often closed platforms and are currently typically
configured primarily for asymmetrical communication with fixed infrastructure
or individually connected personal networks. These constraints are both loosen-
ing over time as app infrastructures continue to spread and develop on many
platforms. Finally, the benefits of distribution must be effectively balanced with
tight energy budgets on many devices and the continuous value of non-local
interactions enabled by cloud connections.

Another important emerging application area is control of drones and other
unmanned vehicles, driven by the rapidly increasing availability of high-quality
platforms at various levels of cost and capability. With the emergence of highly
capable autopilots, the need for detailed human control is decreased and it
becomes desirable to shift from the current typical practice of multiple people
commanding a single platform toward a single person controlling many plat-
forms. Aggregate computing is a natural fit for approaching multi-platform
control, using paradigms such as those discussed in [6,9]. In implementation,
however, the challenges of mobility become acute as one considers rapid physi-
cal movements. Likewise, a better understanding of convergence dynamics and
feedback will be needed. Work in this space will also demand significant elabora-
tions in aggregate computing libraries, adapting manoeuvres from the applicable
literature and doctrine into additional composable building block components.
Finally, there are also major pragmatic issues to be addressed in platform inter-
faces, including a plethora of standards, safety issues, and appropriate incorpo-
ration of resource and manoeuvring constraints.

Agent-based planning uses similar principles, computing plans for future
actions over an aggregate of agents. This generalisation, however, typically also
connects representations of future plans, tasks, goals, and environment into the
aggregate [95], as some combination of additional virtual devices in the aggregate
and virtual fields that devices can interact with. Examples include the poly-agent
approach to modelling and planning [74] and agent-based sharing of airborne
sensors [16,17]. When agent-based planning is centralised, managing projections
and tasks is straightforward; when distributed across physical agents, however,
there are important questions to be addressed regarding where projections and
tasks should be hosted, to what degree they should be duplicated, and how to
synchronise information between duplicates.

Aggregate computing can also be applied to more conventional networked
systems. In this case, the links between neighbours are defined by (not partic-
ularly spatial) physical network connections, virtual network relationships such
as in an overlay network, or else logical relationships such as interaction pat-
terns between services. As long as the number of such neighbours is relatively
constrained, such that sending regular updates to neighbours is not problem-
atic, many of the same sorts of coordination approaches that work in other
application areas can work in areas such as these as well. Examples of appli-
cations in this space include coordinating recovery operations for networks of
enterprise services [33], coordinating a checkpoint-based “rewind and replay”
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across interacting services to undo the effects of a cyber-attack [19], and inte-
grating applications across intermittently connected distributed cloud nodes [19].
In this domain, in most cases it is not cost-effective to try to write or refactor
entire services and applications into an aggregate computing paradigm. Instead,
aggregate computing appears better used as meta-level coordination and control
service, helping to determine things like when and where to migrate services
across machines, how many instances of a service should be used, how to ren-
dezvous between services that need to communicate, and so on. Future work in
this space is thus likely to focus on extending libraries to better support various
coordination paradigms, particularly with distributed graph algorithms for sup-
porting coordination regarding dependencies and information flows, and on the
pragmatics of interfacing with complex legacy applications.

In addition to the four presented here, aggregate computing offers potential
value in many other application domains as well: it is likely to offer value in
any domain with an increasing number and potential volatility in collections of
devices capable of communicating locally. The ongoing continuation of minia-
turisation and embedding of computational devices means this is likely to apply
in most areas of human endeavour, to one degree or another. Across all such
domains, just as in the four domains described in detail, it is likely to be the
case that aggregate computing will not be the focus of the system but rather,
much like any other specialised library, used as a modular component: and most
specifically, as a component providing a coordination service. A critical chal-
lenge for the future, then, will be to continue shaping and improving libraries
and interface patterns in response to the needs of these application domains,
in order to allow aggregate computing to become as invisible as possible in the
actual process of systems engineering.

5 Conclusions

Aggregate computing is a potentially powerful approach to the engineered dis-
tributed systems, emerging from the distillation of a wide variety of approaches
to coordination into the field calculus. This mathematical core then serves as
the basis for a layered approach to pragmatic development of composable and
resilient distributed systems. The future of aggregate programming involves both
continued development of its core theoretical tools as well as work to realise its
potential across a wide range of important application domains.
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