
Minimal Useful Size of Counters
for (Real-Time) Multicounter Automata

Viliam Geffert and Zuzana Bednárová(B)

Department of Computer Science, P. J. Šafárik University,
Jesenná 5, 04154 Košice, Slovakia

{viliam.geffert,zuzana.bednarova}@upjs.sk

Abstract. We show that, for nondeterministic and alternating machines
with weak space bounds, the minimal space that is required for
accepting a nonregular language by real-time or one-way multicounter
automata is (log n)ε. The same space is required for two-way multicounter
automata, independent of whether they are deterministic, nondetermin-
istic, or alternating, and of whether they work with strong or weak space
bounds. On the other hand, for deterministic, nondeterministic, and
alternating machines with strong space bounds, and also for determinis-
tic machines with weak space bounds, we show that the minimal space
required for accepting a nonregular language by real-time or one-way
multicounter automata is nε. All these bounds hold both for unary and
general nonregular languages. Here ε represents an arbitrarily small—
but fixed—real positive constant; the “space” refers to the values stored
in the counters, rather than to the lengths of their binary representation.

Keywords: Space complexity · Pushdown automata
Counter automata · Real-time automata

1 Introduction and Preliminaries

The minimal amount of necessary resources is one of the fundamental research
directions in complexity theory. By the space hierarchy theorem [14], we know
that with a small increase in space s(n) we can solve new problems that could not
be solved before: if a function s2(n) grows faster than s1(n), then there exists
languages that can be accepted with space bound s2(n) but not with space
bound s1(n). (For more details and an advanced version, we refer the reader
to [8].) This holds both for (i) strong space bound s(n) that refers to the space
used by any computation path, on all inputs of length n, and for (ii) weak space
bound s(n) that refers to the minimal space that is required for an accepting
computation path, for all accepted inputs of length n. (Some other variants of
space complexity have also been considered in the literature, see [11,17,19].)

However, there is a gap between s2(n) = log log n and s1(n) = 0: each
language accepted with space below log log n is necessarily regular, and hence

Supported under contracts VEGA 1/0056/18 and APVV-15-0091.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Durand-Lose and S. Verlan (Eds.): MCU 2018, LNCS 10881, pp. 105–120, 2018.
https://doi.org/10.1007/978-3-319-92402-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92402-1_6&domain=pdf


106 V. Geffert and Z. Bednárová

accepted with no requirements on the worktape space.1 For this reason, a work-
tape the size of which is bounded by o(log log n) is not useful. This result
was gradually improved, beginning with two-way deterministic Turing machines
with strong space bounds and ending by an argument for two-way alternat-
ing machines with weak space bounds [1,14–16]. The first nonregular language
accepted by a two-way deterministic machine using this minimal useful space,
i.e., with strong space bound O(log log n), appeared already in [14].

Moreover, unary languages need a special attention, since they may require
resources that are different from those for languages built over general (or binary)
alphabets [3,4,11,17]. This is because a recognizer, already having too little
space to remember an input head position, must also cope with the lack of
any structure along the input. The first unary nonregular language accepted
deterministically with strong space bound O(log log n) was presented in [2]. The
two-way alternating machines using O(log log n) space can actually be quite
strong, e.g., they can recognize some unary languages the binary coded versions
of which are PSPACE-complete [10].

It turns out that the minimal space bounds for one-way machines accepting
nonregular languages are different, namely [1,14]: log n for deterministic, non-
deterministic, and alternating machines with strong space bounds, and also for
deterministic machines with weak space bounds, but log log n for nondetermin-
istic and alternating machines with weak space bounds.

Also in the one-way case we do have unary nonregular witness languages
matching these lower bounds: the language {1p : p is a prime} can be accepted
by a one-way deterministic Turing machine with strong space bound O(log n) [19,
Sect. 3.1] and the language L introduced by (2) in Sect. 2, by a one-way nonde-
terministic Turing machine with weak space bound O(log log n) [4] (see [17]).

The minimal useful space resources for one-way machines do not change even
if we require a computation in real-time, by machines that move the input head
forward in each computation step. Clearly, all lower bounds presented above for
one-way machines must also hold for real-time machines. Second, these bounds
cannot be raised up: the unary nonregular witness language accepted by a real-
time deterministic (hence, also nondeterministic or alternating) Turing machine
with strong space bound O(log n) appeared in [20], the unary nonregular lan-
guage accepted by a real-time nondeterministic (hence, also alternating) machine
with weak space bound O(log log n) in [3].

Taking into account that the above bounds cannot be decreased, a natural
question arises, namely, if we cannot improve the results by the use of even
simpler computational models. For example, a machine may use a simpler kind
of memory, like a pushdown store or a finite number of counters.

Several results should be mentioned. First [3], some nonregular languages can
be accepted by two-way deterministic pushdown automata with strong space
bound O(log log n), and also by real-time nondeterministic pushdown automata
with weak space bound O(log log n). Thus, using a pushdown store instead
of a worktape does not increase the minimal useful space. Since each unary

1 Throughout the paper, log x denotes the binary logarithm of x.



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 107

context-free language is regular [13], only unary regular languages are accepted
by one-way nondeterministic pushdown automata, but their alternating coun-
terparts can simulate any alternating machine that uses linear space [5].

Consider now one-way machines using one counter instead of a pushdown
store. We have a real-time alternating automaton recognizing a unary nonregular
language by the use of one counter with weak space bound O(log n) [3], but only
unary regular languages are accepted by one-way nondeterministic machines
using one counter, by argument that all unary context-free languages are regular.

The primary computational model studied in this paper is a real-time
automaton recognizing a unary language by the use of a finite number of coun-
ters, but several results easily extended to more powerful models.

First, we present a unary nonregular language that can be accepted by a real-
time nondeterministic automaton using four counters with weak space bound
O(log n). Then, by increasing the number of counters—but keeping the real-
time processing of the input—we reduce the weak space bound for this language
to O((log n)ε), where ε represents an arbitrarily small, but fixed, real positive
constant. Next, we show that this upper bound cannot be decreased: with weak
space bound (log n)o(1), even two-way alternating (hence, also real-time nonde-
terministic) multicounter automata can recognize only regular languages. This
gives an answer to a question stated in [20]—namely, we have shown that real-
time nondeterministic and two-way alternating multicounter automata need the
same amount of useful space (i.e., the alternation does not help here, even if a
two-way head is available). This clearly carries over to all models with compu-
tational power in between.

For completeness, we also show that O((log n)ε) is the minimal useful space
for recognizing unary nonregular languages by two-way multicounter automata,
independent of whether they are deterministic, nondeterministic, or alternating,
and of whether they work with strong or weak space bounds.

Finally, we present a unary nonregular language accepted by a real-time
deterministic automaton using two counters with strong space bound O(n1/2).
By increasing the number of counters while keeping the real-time processing, we
reduce the strong space bound for this language to O(nε). Also here the achieved
bound cannot be decreased to no(1), neither for one-way alternating (hence, nei-
ther for deterministic or nondeterministic) multicounter machines with strong
space bounds, nor for one-way deterministic multicounter machines with weak
space bounds. This improves [20, Theorem 11] that presents, for each j > 1, a
nonregular language recognized by a real-time deterministic automaton using
j counters with strong space bound O(n1/j). This result did not give a single
witness language accepted with space O(nε) at all but a sequence of languages
with decreasing space bounds and the size of input alphabets growing in j.

The bounds obtained in this paper are summarized in Table 2.
We assume the reader is familiar with the standard models of finite state

automata and pushdown automata (see, e.g., [12,15,19]).
A nondeterministic multicounter automaton is a nondeterministic machine

equipped with a finite state control, a read-only input tape, and, for some � ≥ 0,



108 V. Geffert and Z. Bednárová

with � counters, containing initially zeros. The set of operations with a counter C
consists of testing its contents for zero (C ?= 0), increasing by one (C := C +
1), decreasing by one (C := C − 1), and no change (C := C). The action of
the multicounter machine depends on the current state, the symbol currently
scanned by the input head, and which of the counters contain/do not contain
zeros. In one step, the machine changes its state, moves its head at most one
position along the input tape (forward, backward, or no move), and updates its
counters, independently (increase, decrease, or no change). The computation is
aborted, if the machine tries to decrease a counter containing zero.2 Under the
space used by counter we mean the value stored in the counter.

A multicounter automaton is one-way, if it never moves its input head back-
ward, otherwise it is two-way. A two-way machine has its input enclosed in
between two endmarkers. A real-time machine is a restricted one-way variant in
which the input head moves forward in each computation step.

As usual, a given computation path is accepting, if it starts in the initial state
and halts in any accepting state. For one-way machines, acceptance requires
halting in an accepting state after reading the entire input.

A deterministic machine can be obtained from nondeterministic version by
claiming that there is allowed at most one possible transition at a time. An alter-
nating machine is obtained from nondeterministic machine by partitioning the
state set into the sets of existential and universal states, disjointedly. In the exis-
tential states, the machine chooses one from among possible executable steps,
but in the universal states it follows all possible branches in parallel. (For more
details, see, e.g., [1,5,7,9,19].)

2 Weak Space Bounds

Here we shall present the minimal space that is required for accepting a nonreg-
ular language by multicounter real-time automata with weak bounds on space.

We begin by constructing a real-time nondeterministic machine accepting a
unary nonregular language by the use of four counters, working with weak space
bound O(log n). To this aim, consider the following function:

f(n) = the smallest positive integer not dividing n.

To give an idea how the function f(n) develops, Table 1 shows some values. It
is well-known [2,6,19] that f(n) can be bounded by O(log n). For our purposes,
we shall need a more exact upper bound, derived in [3, Lemma 6]:

f(n) < 2· log n , for each n ≥ 3. (1)

2 Equivalently, the counter may be viewed as a special case of the pushdown store,
the contents of which are always in the form �Xh, where � denotes the bottom-of-
pushdown-store-endmarker.



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 109

Table 1. Some values of function f(n).

n 0 1 2 3 4 5 6 · · · 12 · · · 60 · · · 420 · · · 840 · · ·
f(n) +∞ 2 3 2 3 2 4 <5 5 <7 7 <8 8 <9 9 · · ·

Next, consider the following unary language:

L = {1n : f(n) is not equal to a power of 2}. (2)

For the special case of n = 0, we have f(n) = +∞ and 10 ∈ L. Historically, the
complement of L was the first known unary nonregular language accepted with
only O(log log n) space, by a two-way deterministic Turing machine with strong
space bound [2]. Later, in [4] (see also [17]), it was shown that the language L
(but not its complement) can be accepted by a one-way nondeterministic Turing
machine, with the same—but weak—space bound O(log log n). Quite recently [3],
this was improved by showing that L can also be accepted by a real-time nonde-
terministic machine, still keeping the weak space bound O(log log n). Both in [4]
and in [3], the machines for L are based on the observation that, for each n > 0,

1. 1n ∈ L if and only if there exist two positive integers k and i satisfying
2i < k < 2i+1, such that n mod k �= 0 and n mod 2i = 0.

2. Moreover, if 1n ∈ L and n ≥ 3, the membership can be certified by taking
k = f(n) and 2i = 2�log k�. This gives 2i < k < 2· log n, by (1).

The conditions in (1) guarantee that 1n ∈ L, the item (2) gives an upper bound
on the values 2i and k that certify the membership in L. These properties allow
us to construct a machine for a minor modification of L:

Theorem 1. There exists a unary nonregular language—namely, L′ = L·{1},
for L introduced by (2)—accepted by a real-time nondeterministic automaton
using four counters with weak space bound O(log n).

Proof. We first present a nondeterministic machine A for L accepting in a non-
standard way, using a set of accepting configurations rather than the set of
accepting states. Then we shall replace A by A′ for L′ that accepts by classic
halting in an accepting state.

At the very beginning on the given input 1n, our nondeterministic machine A
for the language L nondeterministically chooses between n ≤ 6 and n ≥ 7.

Short inputs with n ≤ 6 are solved without using the counters at all.
Consider now the case of n ≥ 7. The recognition is based on the facts

presented by the items (1) and (2) above. That is, the machine A nondeter-
ministically guesses an integer k > 0 different from a 8 power of two, takes
2i = 2�log k�, which ensures that 2i < k < 2i+1, and checks whether the condi-
tions n mod k �= 0 and n mod 2i = 0 are satisfied. To compute the length of
the input modulo k, the machine uses two counters, denoted here by C1 and C2.
Similarly, to compute n modulo 2i, we use another two counters, C3 and C4.



110 V. Geffert and Z. Bednárová

Fig. 1. The counters in the course of a computation that guesses k = 9, with 2i = 8.

Starting with counters that are all empty the main problem is the initial
assignment of values k and 2i to the counters C1 and C3, respectively, in such
a way that 2i < k < 2i+1. Recall that A should be a real-time machine and
should move its input head forward in each computation step. To make this
tricky procedure easier to follow, we shall describe manipulation with C1, C2 and
C3, C4 separately. The reader is referred to Fig. 1.

First, let us describe the work with the counters C1 and C2 which are used
to guess k > 0 and to compute the length of the input modulo k. With respect
to k, the computation is divided into two phases (see also Fig. 1, top):

First k -phase: Moving k symbols to the right along the input, A guesses an
integer k > 0 and saves this value in C1. More precisely:

– In each step, reading one symbol from the input, A increases the counter C1;
the counter C2 does not change. This is repeated in a loop, the moment of
leaving this loop is chosen nondeterministically.

That is, in each step, A nondeterministically chooses between carrying on and
leaving the first k-phase.3 Clearly, at the moment when A decides to leave this
phase, C1 = k (the number of input symbols read so far) and C2 = 0.

Second k -phase: From this moment on, the counters C1 and C2 are used to com-
pute the length of the input modulo k. This is quite straightforward, A switches
between the following two sweep modes:

– Odd sweep: reading one input symbol, A decreases C1 and increases C2. When
C1 becomes empty, A switches to even-sweep mode below.

3 An important detail is that leaving this loop is disabled, whenever C3 = 0 or C4 = 0.
This ensures that we cannot choose k be equal to a power of two—to be described
later.



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 111

– Even sweep: reading one symbol from the input, A decreases C2 and
increases C1. When C2 = 0, A switches to odd-sweep mode.

Thus, we keep C1 + C2 = k, which ensures counting the length of the input 1n

modulo k. Clearly, when the end of the input is reached, we have C1 �= 0∧C2 �= 0
if and only if n mod k �= 0.

Second, consider the work with the counters C3 and C4. These two counters
are used to compute the length of the input modulo 2i, for 2i = 2�log k�. Counting
modulo 2i runs in parallel with counting modulo k, described above. Among
others, this means that the two procedures manipulating with C1, C2 and C3, C4

share the same input head, moving this head one position to the right in each
computation step. With respect to 2i, the computation is divided into three
phases (see Fig. 1, bottom).

First 2i-phase: After this initialization, we set C3 := 1 and C4 := 0:

– In the first two steps, reading the first two symbols from the input, A increases
C3 from 0 to 1; the counter C4 does not change.

Second 2i-phase: This involves the standard use of the counters C3 and C4 to
multiply, repeatedly, the actual value by the factor of two. This is done by
switching between the following two sweep modes:

– Odd sweep: reading two input symbols, A decreases C3 by 1 and increases C4

by 2. When C3 becomes empty, A switches to even-sweep mode below.
– Even sweep: reading two symbols in two steps, A decreases C4 by 1 and

increases C3 by 2. When C4 = 0, A switches to odd-sweep mode.

Thus, starting with C3 + C4 = 1 after the first 2i-phase and iterating this way
i sweeps, for some i > 0, we get C3 + C4 = 2i, with either C3 = 0 or C4 = 0,
depending on parity of i.

The whole process prepares to terminate when the procedure manipulating
the counters C1 and C2 (described above, running in parallel) nondeterministi-
cally decides to switch from the first k-phase to the second k-phase. This means
that the final value k has been fixed at this moment. When this happens, the
current sweep of the second 2i-phase (no matter whether it is odd or even) is
fixed as the last one, which is kept in the finite state control. The current sweep
of the second 2i-phase is still going to be completed, that is, we carry it on
until we get C3 = 0 or C4 = 0, depending on parity of i. After that, A switches
from the second 2i-phase to the third 2i-phase—to be described below. More
precisely, depending on parity of i, we switch either from the odd sweep of the
second 2i-phase to the even sweep of the third 2i-phase or, vice versa, from the
even sweep of the second 2i-phase to the odd sweep of the third 2i-phase.

Let us calculate how many symbols are read from the input in the course
of the first two 2i-phases. Let i be the total number of sweeps iterated in the
second 2i-phase—including the one in which the final value k has been fixed,
i.e., during which A switches nondeterministically from the first k-phase to the
second k-phase. It is easy to see that the second 2i-phase reads exactly

∑i−1
j=1 2j =



112 V. Geffert and Z. Bednárová

2i−2 symbols in the first i−1 sweeps and exactly
∑i

j=1 2j = 2i+1−2 symbols in
the first i sweeps. Since, by Footnote 3, the machine A cannot switch from the
first k-phase to the second k-phase whenever C3 = 0 or C4 = 0, the final value
k must be fixed in the middle of the i-th sweep of the second 2i-phase. Taking
into account that exactly 2 symbols were read during the first 2i-phase, we get:

2i < k < 2i+1. (3)

This implies that the input tape segment traversed in the course of the first two
2i-phases is of length 2i+1. Using (3), it is also easy to see that 82i = 2�log k�.

Third 2i-phase: From this moment on, the counters C3 and C4 are used to com-
pute the length of the input modulo 2i. Since we have traversed 2i+1 input
symbols in the first two 2i-phases, which is an integer multiple of 2i, and the
second 2i-phase ends with C3 + C4 = 2i, with either C3 = 0 or C4 = 0 (depending
on parity of i), counting modulo 2i can be implemented in the same way as in
the second k-phase, using C3, C4 instead of C1, C2:

– Odd sweep: reading one symbol from the input, A decreases C3 and
increases C4. When C3 = 0, A switches to even-sweep mode below.

– Even sweep: reading one symbol from the input, A decreases C4 and
increases C3. When C4 = 0, A switches to odd-sweep mode.

Thus, at the end of the input, C3 = 0 ∨ C4 = 0 if and only if n mod 2i = 0.
Finally, by definition, A accepts if it reaches the end of the input

– in the second k-phase with C1 �= 0 ∧ C2 �= 0 and, at the same time,
in the third 2i-phase with C3 = 0 ∨ C4 = 0.

The above nondeterministic machine A accepts an input 1n if and only if
1n ∈ L. However, A accepts in a somewhat nonstandard way, by getting to an
accepting configuration (situation) rather than to an accepting state. Now we
replace A by a new machine A′ that simulates A but,

– each time A gets to an accepting situation, i.e., each time A is in the second
k-phase with C1 �= 0 ∧ C2 �= 0 and, at the same time, in the third 2i-phase
with C3 = 0 ∨ C4 = 0, the machine A′ nondeterministically decides whether
to carry on the simulation or to stop by reading one more symbol from the
input and switching to its unique final state. The same applies to the special
path handling short inputs of length n ≤ 6.

This changes A for L to A′ that accepts L′ = L·{1} by classic halting in a unique
accepting state at the end of the input. 	


As the next step, we shall show that the space used in Theorem 1 can be
decreased to O((log n)ε), where ε represents an arbitrarily small, but fixed, real
positive constant, but using more than four counters. To this aim, let us show
that we can save a substantial amount of space by simulating one counter with
the help of two counters, preserving the real-time processing of the input.



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 113

Theorem 2. Each automaton A using a counter C the space of which is
bounded by s(n)—not excluding that A may also utilize some other computa-
tional resources—can be replaced by an equivalent automaton A′ utilizing the
same computational resources as A but, instead of the counter C, it uses two
counters C1 and C2, both of them with space bound s′(n) ≤ O(s(n)1/2). More-
over, if A is a real-time machine, so is A′.

Proof. A counter C with space bound s(n) can be simulated by two coun-
ters C1, C2 with space bound O(s(n)1/2), based on the one-to-one correspon-
dence between N, the set of natural numbers, and N×N. (See, e.g., [19, Theo-
rem 3.2.3].) The main problem to be fixed here is making such simulation real-
time: each single-step operation with C should be simulated in one step, since the
new machine A′ is forced to move its input head forward in each computation
step.

The current value in the counter C of the original machine A will be repre-
sented by three quantities, namely, by two values stored in the counters C1, C2,
and by a sweep mode s ∈ {even, odd}, kept in the finite state control. This dou-
bles the number of finite control states of the original machine. Initially, A′ starts
in even sweep mode and both counters are empty,4 that is, s = even, C1 = 0, and
C2 = 0. All other computational resources of the original machine A—including
its current final control state and its head along the input tape—are manipulated
in a straightforward way.

The main idea behind this implementation of a counter is simple: when
A′ simulates several operations C := C + 1 in a row, it imitates a sweep along a
line in a two-dimensional grid. In the course of this sweep, the current coordi-
nates in the grid are given by 〈C1, C2〉 and satisfy, for some v ≥ 0, the condition
C1 + C2 = v. When, sweeping along this line, A′ hits either of the axes of the
coordinate system (that is, when C1 = 0 or C2 = 0), the machine switches the
sweep mode, from even to odd or vice versa. After that, A′ starts a sweep that
goes to the other axis in the grid along a new line, keeping this time a new
invariant, C1 + C2 = v + 1 instead of C1 + C2 = v. The operation C := C − 1 is
implemented as backing up along this zigzag trajectory towards the origin 〈0, 0〉.
The point 〈C1, C2〉 = 〈0, 0〉 corresponds to C = 0. Figure 2 (left) reflects the main
idea, Fig. 2 (right) displays a more detailed transition table.

Both C1 and C2 are bounded by 
(2·C)1/2� ≤ O(s(n)1/2). It is also easy to
see that one step of the original machine is simulated by exactly one step. 	


By the use of the previous theorem, we can decrease the space requirements
for arbitrarily many counters, down to O(s(n)1/2), preserving the real-time pro-
cessing of the input.

Lemma 3. For each � ≥ 0, each automaton A using � counters with space
bound s(n) can be replaced by an equivalent automaton A′ using 2·� counters
with space bound s′(n) ≤ O(s(n)1/2). This holds for all computational models
listed in the statement of Theorem 2. In particular, if A is a real-time machine,
so is A′.
4 Throughout the entire computation, s = even if and only if C1 + C2 is even.



114 V. Geffert and Z. Bednárová

Fig. 2. A real-time simulation of one counter by two smaller counters.

Proof. Let A be a machine equipped with � counters, denoted here by C1, . . . , C�.
Each of these counters works with space bound s(n). Now, by repeated appli-
cation of Theorem 2, for i = 1, . . . , �, we can replace the i-th counter Ci by
a pair of new counters, C′

i and C′′
i . This also requires to keep a sweep mode

si ∈ {even, odd} in the finite state control. Both C′
i and C′′

i work with space bound
s′(n) ≤ O(s(n)1/2). Thus, for each i ∈ {1, . . . , �}, the intermediate machine uses
the counters Ci+1, . . . , C� working with space bound s(n) together with the coun-
ters C′

1, . . . , C′
i and C′′

1 , . . . , C′′
i working with space bound s′(n). In addition, the

intermediate machine manipulates all sweep modes s1, . . . , si ∈ {even, odd} in
the finite state control, simultaneously. In the end, for i = �, we obtain an
equivalent machine A′ using 2·� counters, all of them working with space bound
s′(n) ≤ O(s(n)1/2). The price we pay is that A′ uses ‖Q′‖ = 2�·‖Q‖ states,
where ‖Q‖ denotes the number of states in the original machine A. 	


The space reduction presented in Lemma 3 can be improved, by repeating
the application of this lemma h times:

Lemma 4. For each h ≥ 0 and each � ≥ 0, each automaton A using � counters
with space bound s(n) can be replaced by an equivalent automaton A′ using 2h·�
counters with space bound s′(n) ≤ O(s(n)1/2h). This holds for all computational
models listed in the statement of Theorem 2. In particular, if A is a real-time
machine, so is A′.

By taking h = 
log(1/ε)� in the above lemma, we then get:

Theorem 5. For arbitrarily small, but fixed, real constant ε > 0, each automa-
ton A using � counters with space bound s(n) can be replaced by an equivalent
automaton A′ using �′ < 2�/ε counters with space bound s′(n) ≤ O(s(n)ε).
This holds for all computational models listed in the statement of Theorem 2. In
particular, if A is a real-time machine, so is A′.

We are now ready to establish one of the main results, showing that (log n)ε is
the smallest possible weak space bound for accepting unary nonregular languages
by multicounter real-time automata:



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 115

Theorem 6. There exists a unary nonregular language—namely, L′ = L·{1},
for L introduced by (2)—such that, for arbitrarily small, but fixed, real constant
ε > 0, it can be accepted by a real-time nondeterministic automaton using �′ <
8/ε counters with weak space bound O((log n)ε).

Proof. From Theorem 1 we know the language L′ is accepted by a real-time non-
deterministic automaton using four counters with weak space bound O(log n).
By Theorem 5 we get, for each ε > 0, an equivalent real-time nondeterministic
automaton using �′ < 8/ε counters with weak space bound O((log n)ε). 	


The above upper bound cannot be decreased. That is, the constant ε > 0
in O((log n)ε) cannot be replaced by a function r(n) satisfying limn→∞ r(n) =
0, even if we use a more powerful computational model—utilizing the power
of alternation and/or two-way input head movement, and even if the witness
nonregular language is quite arbitrary—not necessarily unary:

Theorem 7. If a two-way alternating automaton recognizes a nonregular lan-
guage, using a finite number of counters with weak space bound s(n), then
s(n) /∈ (log n)o(1).

Proof. Suppose that some nonregular language is accepted by a two-way alter-
nating automaton using some � counters with weak space bound s(n). Such
machine can be replaced by an equivalent two-way Turing machine using one
worktape, keeping the contents of all counters in binary, separated by a spe-
cial symbol. The total length of this worktape can be bounded by s′(n) ≤
�·(2 + log s(n)) = log((4·s(n))�). By [16], if a two-way alternating Turing
machine accepts a nonregular language with weak space bound s′(n), then
s′(n) /∈ o(log log n). Hence there exist a real constant e0 > 0 and an infinite
sequence of input lengths n1 < n2 < n3 < · · · such that, for each i ≥ 1,
we have s′(ni) ≥ e0· log log ni = log((log ni)e0). But then log((4·s(ni))�) ≥
log((log ni)e0), and s(ni) ≥ 1

4 ·(log ni)e0/�, for infinitely many input lengths. Thus,
s(n) /∈ (log n)o(1). 	


We point out that the constant e0 > 0 in the proof of the above theorem
(given by the proof in [16]) is smaller than one and makes our lower bound
dependent also on the number of states in the original multicounter machine.

3 Two-Way Devices

This section shows that also for two-way multicounter automata the minimal
useful space is O((log n)ε). For two-way devices, the bound is independent of
whether the machines are deterministic, nondeterministic, or alternating, and of
whether they work with strong or weak space bounds.

Theorem 8. There exists a unary nonregular language—namely, L introduced
by (2)—accepted by a two-way deterministic automaton using two counters with
strong space bound O(log n).



116 V. Geffert and Z. Bednárová

Proof. On the given input 1n, for n > 0, our two-way machine A equipped with
the counters C1 and C2 runs a loop for k = 2, 3, 4, . . . , until it finds the first k
not dividing n. In order to check whether a number k divides n, the machine
traverses across the entire input, counting modulo k in the same way as in the
second k-phase in the proof of Theorem 1. Thus, a traversal starts from one of
the endmarkers with C1+C2 = k and with either C1 = 0 or C2 = 0. If k divides n,
the machine reaches the opposite endmarker with either C1 = 0 or C2 = 0 again.
After that, A increases C1 + C2 from k to k + 1 and starts a new traversal across
the input in the opposite direction. This is repeated until A gets to the opposite
endmarker with C1 > 0 ∧ C2 > 0.

When this happens, C1 + C2 = k = f(n). From this moment on, the input
head does not move—parked at one of the endmarkers. It only remains to check
whether k = C1 + C2 is not equal to a power of 2. This is quite simple; we first
move the contents of C2 to C1 by decreasing C2 and increasing C1, until we get
C2 = 0 and C1 = k. Next, we divide the contents of C1 by two. Thus, in a loop,
we decrease C1 by 2 and increase C2 by 1. When the counter C1 reaches zero, the
original value in C1 has been halved, but now it is stored in C2. By swapping
the roles of C1 and C2, we can halve this value again, ending this time with a
result stored in C1. This halving is repeated until we find out that we have tried
to halve a value that is odd. Then, A accepts if this last value was greater than
one, i.e., the last integer division by two must not end with empty counters.

The trivial case of 10 ∈ L is resolved at the very beginning: A verifies whether
n = 0 by checking whether the first symbol to the left of the left endmarker is
the right endmarker.

Clearly, by (1), the counters are bounded by k = f(n) ≤ O(log n). 	

By applying Theorem 5, we then get:

Theorem 9. There exists a unary nonregular language—namely, L introduced
by (2)—such that, for arbitrarily small, but fixed, real constant ε > 0, it can
be accepted by a two-way deterministic automaton using �′ < 4/ε counters with
strong space bound O((log n)ε).

Also this upper bound cannot be decreased since, by Theorem 7, even a
two-way alternating multicounter automaton with weak space bound s(n) ∈
(log n)o(1) recognizes only a regular language.

4 Strong Space Bounds and/or Determinism

Here we present the corresponding minimal space that is required for accepting
nonregular languages by real-time multicounter automata with strong bounds on
space, and also for real-time deterministic machines with weak bounds on space.
It turns out that, for these computational models, the corresponding minimal
space is nε. To this aim, consider the following language:

L′′ = {1(n1+n2)·(n1+n2+1)/2+n1 : n1, n2 ∈ N, (n1 + n2) mod 2 = 0}. (4)



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 117

Theorem 10. There exists a unary nonregular language—namely, L′′ intro-
duced by (4)—accepted by a real-time deterministic automaton using two coun-
ters with strong space bound O(n1/2).

Proof. Our machine A traverses across the entire input and counts its length.
The operation C := C + 1 is simulated by the use of two counters, C1, and C2,
in the same way as in Theorem 2. This also requires to keep a sweep mode
s ∈ {even, odd} in the finite state control. By definition, let even be the only
initial and, at the same time, the only final state of A.

Clearly, A accepts if and only if it halts with s = even after reading the
entire input, with any values C1 ≥ 0 and C2 ≥ 0 in the counters. But (see also
Footnote 4) this configuration is reached for each C1, C2 ∈ N such that C1 + C2 is
even. This condition gives δ = C1 and hence the desired configuration is reached
after reading C symbols from the input, where

C =
∑C1+C2−1

v=0 (v + 1) + δ =
∑C1+C2

v=1 v + C1 = (C1 + C2)·(C1 + C2 + 1)/2 + C1. (5)

Thus, A is a real-time deterministic machine accepting L′′. Moreover, as shown
in the proof of Theorem 2, we have C1 +C2 < 
(2·C)1/2� = 
(2·n)1/2� ≤ O(n1/2).

In only remains to show that L′′ accepted by A is not regular. First, for
any given h > 0, take C1 = 2·h and C2 = 0. Since C1 + C2 = 2·h is even, the
machine A reaches these two values in the counters with s = even, after reading
C = h·(2h+3) symbols from the input—this value C is obtained by using C1 = 2·h
and C2 = 0 in (5). Thus, for each h > 0, the input 1h·(2h+3) is accepted but,
since s = even and C2 = 0, the procedure presented in the proof of Theorem 2
switches the sweep mode to odd after reading one more symbol from the input.
Moreover, the sweep mode will not change in the subsequent C1 + C2 = 2·h
steps, and hence A rejects 1h·(2h+3)+i, for each i = 1, . . . , 2·h + 1. Consequently,
this language cannot be accepted by a deterministic finite state automaton with
fewer than 2·h + 2 states, since, after getting into a cycle the length which is
bounded by 2·h + 1, such automaton cannot accept one input and then reject
the next 2·h + 1 inputs in a row. Since h > 0 can be chosen arbitrarily large,
this rules out all finite state automata. 	


Also here the space requirements can be decreased by using more counters,
by application of Theorem 5 on the machine constructed in Theorem 10:

Theorem 11. There exists a unary nonregular language—namely, L′′ intro-
duced by (4)—such that, for arbitrarily small, but fixed, real constant ε > 0, it
can be accepted by a real-time deterministic automaton using �′ < 4/ε counters
with strong space bound O(nε).

The above upper bound is optimal and cannot be decreased for one-way
machines with strong space bounds, even if we use the power of alternation. The
same holds for one-way deterministic machines, even if we use a less restrictive
weak space bound, not taking into account space used on inputs that are rejected:



118 V. Geffert and Z. Bednárová

Table 2. Minimal space used by multicounter automata accepting nonregular lan-
guages. All these bounds are tight both for unary and general languages.

Stronga Weaka Two-wayb

Deterministic nε nε (log n)ε

Nondeterministic nε (log n)ε (log n)ε

Alternating nε (log n)ε (log n)ε

aBoth real-time and one-way
bBoth strong and weak

Theorem 12. If a one-way alternating automaton recognizes a nonregular lan-
guage, using a finite number of counters with strong space bound s(n), then
s(n) /∈ no(1). The same holds for weak space bounds in the case of one-way deter-
ministic multicounter machines.

Proof. The known lower bounds for accepting nonregular languages state that
s′(n) /∈ o(log n) both for one-way alternating Turing machines with strong
space bounds and for one-way deterministic Turing machines with weak space
bounds ([1,14], [19, Sect. 5.2]). The rest of argument mirrors the proof of The-
orem 7, using n instead of log n the lower bound s′(n) /∈ o(log n) for one-way
Turing machines gives us the lower bound s(n) /∈ no(1) for one-way multicounter
machines. 	


5 Concluding Remarks

We have studied the minimal useful space that is required for recognizing non-
regular languages by automata using a finite number of counters. The primary
computational model was a real-time machine recognizing a unary language, but
several results easily extended to a more general setting. All tight bounds are
summarized in Table 2. The results in this table are derived by combining the
upper bounds obtained in Theorems 6, 9, and 11 with the lower bounds obtained
in Theorems 7 and 12, using also some trivial relations between upper and lower
bounds for weaker and stronger computational models.

Both for unary and general nonregular languages, and both for real-time
and one-way multicounter machines, the tight bounds do not differ. Allowing an
unrestricted number of computation steps in between two forward moves along
the input does not help to decrease the minimal useful space. Neither does the
use of alternation instead of nondeterminism, for the same computational model.

We conjecture that if we fix the number of counters to some constant �, all
bounds nε in Table 2 will change to Θ(n1/�) while (log n)ε to Θ((log n)1/�). The
argument would require a more efficient use of counters in upper bounds and,
at the same time, a more precise analysis of the lower bounds.

However, we cannot exclude the possibility that, with the same number of
counters, alternation may become more powerful, especially for small values �,
below 4. For example, we know a real-time alternating automaton recognizing



Minimal Useful Size of Counters for (Real-Time) Multicounter Automata 119

a unary nonregular language by the use of one counter with weak space bound
O(log n) [3], but only unary regular languages are accepted by one-way non-
deterministic machines using one counter. Second, it is well known that each
recursively enumerable language can be accepted by a one-way deterministic
automaton with two counters [18] (see also [15]), but the values in the counters
are double-exponential in space used by the original Turing machine, and hence
such simulation is far from being real-time. The best known upper bound for
a real-time deterministic automaton recognizing a unary nonregular language
by the use of two counters is O(n1/2), presented in Theorem 10. For two-way
deterministic machines using two counters, this bound drops to O(log n), in
Theorem 8. It is not clear whether these bounds cannot be decreased by the
use of nondeterminism. For a small fixed number of counters, it is even not
clear whether the bounds required for recognizing unary and general (or binary)
nonregular languages do differ.

References

1. Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L. (ed.)
FCT 1985. LNCS, vol. 199, pp. 1–7. Springer, Heidelberg (1985). https://doi.org/
10.1007/BFb0028785

2. Alt, H., Mehlhorn, K.: A language over a one symbol alphabet requiring only
O(log log n) space. SIGACT News 7, 31–33 (1975)

3. Bednárová, Z., Geffert, V., Reinhardt, K., Yakaryılmaz, A.: New results on the
minimum amount of useful space. Int. J. Found. Comput. Sci. 27, 259–281 (2016)

4. Bertoni, A., Mereghetti, C., Pighizzini, G.: Strong optimal lower bounds for Turing
machines that accept nonregular languages. In: Wiedermann, J., Hájek, P. (eds.)
MFCS 1995. LNCS, vol. 969, pp. 309–318. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60246-1 137

5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach.
28, 114–133 (1981)

6. Freedman, A., Ladner, R.: Space bounds for processing contentless inputs. J. Com-
put. Syst. Sci. 11, 118–128 (1975)

7. Geffert, V.: A hierarchy that does not collapse: alternations in low level space.
RAIRO Inform. Théor. Appl. 28, 465–512 (1994)

8. Geffert, V.: Space hierarchy theorem revised. Theor. Comput. Sci. 295, 171–187
(2003)

9. Geffert, V.: Alternating space is closed under complement and other simulations
for sublogarithmic space. Inform. Comput. 253, 163–178 (2017)

10. Geffert, V.: Unary coded PSPACE-complete languages in ASPACE(loglog n). In:
Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 141–153. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58747-9 14

11. Geffert, V., Mereghetti, C., Pighizzini, G.: Sublogarithmic bounds on space and
reversals. SIAM J. Comput. 28, 325–340 (1999)

12. Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. Discrete
Math. Theor. Comput. Sci. 17, 157–180 (2015)

13. Ginsburg, S., Rice, H.: Two families of languages related to ALGOL. J. Assoc.
Comput. Mach. 9, 350–371 (1962)

https://doi.org/10.1007/BFb0028785
https://doi.org/10.1007/BFb0028785
https://doi.org/10.1007/3-540-60246-1_137
https://doi.org/10.1007/3-540-60246-1_137
https://doi.org/10.1007/978-3-319-58747-9_14


120 V. Geffert and Z. Bednárová

14. Hartmanis, J., Lewis II, P., Stearns, R.: Hierarchies of memory limited computa-
tions. In: IEEE Conference on Record on Switching Circuit Theory and Logical
Design, pp. 179–190 (1965)

15. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Boston (2001)

16. Iwama, K.: ASPACE(o(log log n)) is regular. SIAM J. Comput. 22, 136–146 (1993)
17. Mereghetti, C.: Testing the descriptional power of small Turing machines on non-

regular language acceptance. Int. J. Found. Comput. Sci. 19, 827–843 (2008)
18. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs (1967)
19. Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843.

Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58355-6
20. Yakaryılmaz, A., Say, A.: Tight bounds for the space complexity of nonregular

language recognition by real-time machines. Int. J. Found. Comput. Sci. 24, 1243–
1253 (2013)

https://doi.org/10.1007/3-540-58355-6

	Minimal Useful Size of Counters for (Real-Time) Multicounter Automata
	1 Introduction and Preliminaries
	2 Weak Space Bounds
	3 Two-Way Devices
	4 Strong Space Bounds and/or Determinism
	5 Concluding Remarks
	References




