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Preface

This volume contains the papers presented at MCU 2018: the 8th Conference on
Machines, Computations and Universality, held during June 28–30, 2018 on the
campus of the IUT de Fontainebleau at the University of Paris-Est Créteil, Fon-
tainebleau, France. This edition was co-located with the 17th International Conference
on Unconventional Computation and Natural Computation (UCNC 2018).

The MCU series of international conferences traces its roots back to the mid-1990s,
and has since been concerned with gaining a deeper understanding of computation
through the study of models of general purpose computation. MCU explores compu-
tation in the setting of various discrete models (Turing machines, register machines,
cellular automata, tile assembly systems, rewriting systems, molecular computing
models, neural models, concurrent systems, etc.) and analog and hybrid models (BSS
machines, infinite time cellular automata, real machines, quantum computing, etc.).
There is a particular (but not exclusive) emphasis given on the following:

– The search for frontiers between decidability and undecidability in the various
models. (For example, what is the smallest number of pairs of words for which the
Post correspondence problem is undecidable, or what is the largest state-symbol
product for which the halting problem is decidable for Turing machines?)

– The search for the simplest universal models (such as small universal Turing
machines, universal rewriting systems with few rules, universal cellular automata
with small neighborhoods and a small number of states, etc.)

– The computational complexity of predicting the evolution of computations in the
various models. (For example, is it possible to predict an arbitrary number of time
steps for a model more efficiently than explicit step by step simulation of the
model?)

– How parallelism can be connected to decidability, complexity and universality.
– Universality and undecidability in continuous models of computation.

Previous MCU conferences took place in Famagusta, North Cyprus (2015), Zürich,
Switzerland (2013), Orléans, France (2007), Saint Petersburg, Russia (2004), Chişinău,
Moldova (2001), Metz, France (1998), and Paris, France (1995). More information on
MCU 2018 can be found at https://mcu2018.lacl.fr/.

This year, the number of submission was very low (10) but all in the scope of the
conference. Each submission was reviewed by at least three (and on average 3.3)
Program Committee members. The committee decided to accept seven papers for
presentation and publication in these proceedings. The submission process was handled
through EasyChair and went smoothly as usual.

The program also includes five invited talks.

– Erzsébet Csuhaj-Varjú provided in “Watson-Crick Complementarity, L Systems,
Computation” a survey on properties of such systems that apply derivation on a



string or its complement with special emphasis on the computational power of the
different variants.

– Rudolf Freund presented in “Control Mechanisms for Array Grammars on Cayley
Grids” a huge survey on all the results on systems in this area, including variants
and computing power.

– Natasha Jonoska presented in “The Shape of Computation” models and a topology
for computation that build objects from nano to macro scales and in particular
DNA-based ones.

– Michel Raynal introduced in “A Pleasant Stroll Through the Land of Distributed
Machines, Computation, and Universality” non-compubatility issues in distributed
computing which differ from the classic context: The abstract state/dynamics of the
system is concerned, not the output.

– Damien Woods presented in “Molecular Computation with DNA Self-Assembly”
recent work with both theoretical and experimental results in the field.

We are thankful to EasyChair for the easy management of the submissions as well as
preparing the proceedings.

We want to thank everybody in the Organizing Committee who worked hard to
make this edition successful.

Partial financial support for the conference was provided by IUT de Sénart-
Fontainebleau, the University of Paris-Est, Laboratoire d’Algorithmique Complexité et
Logique, the University of Paris-Est Créteil (UPEC), and Faculté des Sciences et
Technologies of the University of Paris-Est Créteil. We also thank the administration of
IUT de Fontainebleau for the perfect infrastructure made available to MCU 2018.
Finally, we would like to thank our secretaries Nathalie Gillet and Flore Tsila for
extensive assistance in organizing the event and for smoothly running the conference.

The editors warmly thank the Program Committee, the organizers, the invited
speakers, the authors of the papers, the external reviewers, the speakers of informal
presentations, and all the participants for their contribution to the success of the
conference.

June 2018 Jérôme Durand-Lose
Sergey Verlan
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Watson-Crick Complementarity,
L Systems, Computation

Erzsébet Csuhaj-Varjú

Faculty of Informatics, ELTE Eötvös Loránd University, Pázmány Péter sétány
1/c, Budapest 1117, Hungary
csuhaj@inf.elte.hu

Watson-Crick Lindenmayer systems (WL systems) are variants of L systems, inspired
by the well-known phenomenon of the double helix of DNA. These systems are
defined over a DNA-like alphabet (each letter has a complementary letter and this
relation is symmetric). Depending on whether or not a special condition holds, the
derivation step is applied either to the string or to its complementary string. The trigger
for turning to the complementary string is given by a language over the DNA-like
alphabet of the system: if the generated string is an element of the trigger, then the
derivation continues with its complementary string, otherwise the obtained string is
considered. For a DNA alphabet V ¼ fa1; . . .; an; �a1; . . .; �ang, n� 1, a trigger TR�V� is
called standard if it consists of all words of V� which have more occurrences of barred
letters than non-barred ones. The first model, the Watson-Crick D0L system, with
standard trigger, was introduced in [9, 10].

A network of Watson-Crick L systems (an NWL system) is a finite set of WL
systems over a common DNA-like alphabet and with the same trigger. The WL sys-
tems act on their own strings in a synchronized manner and after each derivation step
communicate some of the obtained words to the other WL systems of the network. The
condition for communication (the communication protocol) is based on the trigger for
turning to the complementary string. The first variant of these models, the network of
Watson-Crick D0L systems, was defined in [5].

Watson-Crick L systems and their networks have been examined in detail during
the years (see, for example [1–3, 6, 8, 11–14]).

In this talk, we provide a survey on properties of WL systems and NWL systems,
with special emphasis on their computational power, in particular on the computational
completeness of the different variants. We discuss decidability problems of WL sys-
tems with standard and with regular triggers and with the customary and with certain
relaxed forms of derivation (for example, problems of stability, ultimate stability,
sequence and language equivalence of WD0L systems). We report how WL systems as
computing devices with infinite runs may “go beyond Turing” [4]. In case of networks
of WL systems, we focus on their properties concerning communication: for example,
string population growth at the components under functioning, black and white wholes,
communication patterns.

Our overview uses new approaches, motivated by a recent generalization of WD0L
systems to discrete Watson-Crick dynamical systems [7]. Some open problems,
research directions for future study are also proposed.



Acknowledgement. Supported by grant No. 120558, NKFIH–National Research,
Development and Innovation Office, Hungary.
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Control Mechanisms for Array Grammars
on Cayley Grids (Abstract)

Rudolf Freund

Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

In this paper, the computational power of several control mechanisms for specific
variants of (sequential, isometric) array grammars generating arrays on Cayley grids of
finitely presented groups is investigated. Using #-context-free array productions
together with control mechanisms as control graphs, matrices, permitting and forbidden
rules, partial order on rules or activation and blocking of rules the same computational
power is obtained as when using arbitrary array productions.



The Shape of Computation

Nataša Jonoska

Department of Mathematics and Statistics, University of South Florida, Tampa,
Florida, USA

We are used to think about computation as processes performed by our various elec-
tronic devices. Theoretically, we often characterize computation through models
describing, or simulating, symbol manipulation and/or compositions of logic gates
operating on binary alphabet. On the other side, one can think of the processes that
occur in our 3D world (from nano to macro level) as results of “shape processing”
operations. The “shape” can result of a computation, or describe the computational
process itself.

Self-organization of 3D objects can be seen as computational result. A complex
structure, sometimes even without it achieving minimal energy conformation, can
result from local information processing between modular components, and the final
shape can actually represent the answer to a computational question. An example of
such computational shape formation is the molecular self-assembly, in particular DNA
self-assembly. We present four models that describe computations by construction of
complex spatial formations and show an experimental proof-of-principle for one such
model. Further, we associate an algebra to DNA origami whose elements and their
product correspond to different assemblies.

One can also consider the “shape” of the assembly process, that is, the computa-
tional process itself, and describe it by directed spatial graphs. In this way computations
can have different graph topologies. How do these topologies distinguish computa-
tions? We show a way to associate topology, and a topological measure for assembly
processes.



A Pleasant Stroll Through the Land
of Distributed Machines, Computation,

and Universality

Michel Raynal1, 2 and Jiannong Cao2

1 Institut Universitaire de France and Univ Rennes, IRISA CNRS Inria, France
2 Department of Computing, Polytechnic University, Hong Kong

raynal@irisa.fr

Not only the world is distributed, but more and more applications are distributed.
Hence, a fundamental question is the following one: What can be computed in a
distributed system? The answer to this question depends on the environment in which
evolves the considered distributed system, i.e., on the assumptions the system relies on.
This environment is very often left implicit and nearly always not formulated in terms
of precise underlying requirements. In the extreme case where the environment is such
that there is no synchrony assumption and the computing entities may commit failures,
some problems become impossible to solve. Given a distributed computing problem, it
is consequently important to know the weakest assumptions (lower bounds) that give
the limits beyond which the considered distributed problem cannot be solved. This
paper is a short introduction to this kind of issues. It is made up of short sections, each
addressing an important point of the theory of distributed computing. Its style is
voluntarily informal.

Keywords: Agreement � Asynchronous system � Atomicity � Concurrency �
Consensus object � Consensus number � Crash failure � Distributed complexity �
Distributed computability � Distributed computing � Environment �
Fault-tolerance � Impossibility result � Indistinguishability � Message adversary �
Message-passing system � Non-blocking � Obstruction-freedom �
Progress condition � Read/write system � Synchronous system � Task �
Universal construction � Wait-freedom



Molecular Computation with DNA
Self-Assembly

Damien Woods

Inria, Paris, France

The field of algorithmic self-assembly is concerned with the theory and practice of
molecules sticking together to grow computational structures in an autonomous
bottom-up fashion. Theoretical work is concerned with characterising the computa-
tional expressiveness of self-assembly models. Practice is concerned with using
molecules, such as DNA, to implement algorithmic self-assembly programs in the
wet-lab. The presentation will cover both topics. First, there will be an introduction to
what it means to compute during a self-assembly process, an overview of some
computational models, as well as basic mathematical results. Attendees will then hear
about how one goes about designing and experimentally implementing algorithmic
self-assembling DNA tiles in the wet lab, and will see some of our latest results from
recent joint work with David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin
and Erik Winfree.
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Control Mechanisms for Array Grammars
on Cayley Grids

Rudolf Freund(B)

Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

Abstract. In this paper, the computational power of several control
mechanisms for specific variants of (sequential, isometric) array gram-
mars generating arrays on Cayley grids of finitely presented groups is
investigated. Using #-context-free array productions together with con-
trol mechanisms as control graphs, matrices, permitting and forbidden
rules, partial order on rules or activation and blocking of rules the
same computational power is obtained as when using arbitrary array
productions.

1 Introduction

As a natural extension of string languages (e.g., see [31,32]), arrays on the d-
dimensional grid Z

d have been introduced and investigated since more than
four decades, for example, see [6,26]. Applications of array grammars and array
automata especially can be found in the area of pattern and picture recognition,
for instance, see [29,30,33].

Following some ideas of Csuhaj-Varjú and Mitrana [7], the investigation of
arrays on Cayley grids of finitely presented groups was started in [22], pre-
sented at MCU 2013 in Zürich, Switzerland; first definitions and results for array
automata on Cayley grids can be found there. Array grammars and automata
on Cayley grids then were investigated in more detail in [23]. As a first example
of arrays on a Cayley grid of a non-Abelian group we refer to [1], where arrays
on the hexagonal grid were considered.

In this paper, first the notions and definitions for arrays defined on Cayley
grids of finitely presented groups as well as for array grammars generating sets
of such arrays are recalled from [23]. Following the general notions for regulated
rewriting based on the applicability of rules as introduced in [21], then the con-
trol mechanisms using control graphs, matrices, permitting and forbidden rules,
partial order on rules or activation and blocking of rules are defined. We elab-
orate some relations between these control mechanisms in the general setting
of sequential grammars as already done in [21] and also prove some new ones.
When using #-context-free array productions in the underlying array grammars,
together with any of these control mechanisms, the same computational power
as with arbitrary array productions can be obtained.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Durand-Lose and S. Verlan (Eds.): MCU 2018, LNCS 10881, pp. 1–33, 2018.
https://doi.org/10.1007/978-3-319-92402-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92402-1_1&domain=pdf


2 R. Freund

2 Preliminaries

The set of integers is denoted by Z, the set of positive integers by N, the set
of non-negative integers by N0. An alphabet V is a non-empty set of abstract
symbols. Given V , the free monoid generated by V under the operation of con-
catenation is denoted by V ∗; the elements of V ∗ are called strings, and the empty
string is denoted by λ; V ∗ \ {λ} is denoted by V +. The cardinality of a set M
is denoted by |M |.

For the basic notions and results of formal language theory the reader is
referred to the monographs and handbooks in this area as [8,31,32], and for the
basics of group theory and group presentations to [25].

2.1 Groups and Group Presentations

Now let G = (G′, ◦) be a group with group operation ◦. As is well-known, the
group axioms are

– closure: for any a, b ∈ G′, a ◦ b ∈ G′,
– associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
– identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e for all a ∈ G′, and
– invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

Moreover, the group is called commutative, if for any a, b ∈ G′, a ◦ b = b ◦ a.
In the following, we will not distinguish between G′ and G if the group operation
is obvious from the context.

For any element b ∈ G′, the order of b is the smallest number n ∈ N such
that bn = e provided such an n exists, and then we write ord (b) = n; if no such
n exists, {bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) = ∞.

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings

in
(
B ∪ B−1

)∗ and two strings as different unless their equality follows from
the group axioms, i.e., for any a, b, c ∈ (

B ∪ B−1
)∗, abb−1c = ac; using these

reductions, we obtain a set of irreducible strings from those in
(
B ∪ B−1

)∗,
the set of which we denote by I (B). Then the free group generated by B is
F (B) = (I (B) , ◦) with the elements being the irreducible strings over B ∪ B−1

and the group operation to be interpreted as the usual string concatenation,
yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group
G if every element a from G can be written as a finite product/sum of elements
from B, i.e., a = b1 ◦ · · · ◦ bm for b1, . . . , bm ∈ B. In this paper, we restrict
ourselves to finitely presented groups, i.e., having a finite presentation 〈B | R〉
with B being a finite generator set and moreover, R being a finite set of relations
among these generators. In a similar way as in the definition of the free group
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generated by B, we here consider the strings in B∗ reduced according to the
group axioms and the relations given in R. Informally, the group G = 〈B | R〉 is
the largest one generated by B subject only to the group axioms and the relations
in R. Formally, we will restrict ourselves to relations of the form b1◦· · ·◦bm = c−1

with b1, . . . , bm, c ∈ B, which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e;
hence, instead of such relations we may specify R by strings over B yielding the
group identity, i.e., instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these
strings then are called relators).

Example 1. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 2. The cyclic group of order n has the presentation 〈{a} | {an}〉 (or,
omitting the set brackets, written as 〈a | an〉); it is also known as Zn or as the
quotient group Z/Zn.

Example 3. Z is a special case of an Abelian group generated by (1) and its
inverse (−1), i.e., Z is the free group generated by (1). Z

d is an Abelian group gen-
erated by the unit vectors (0, . . . , 1, . . . , 0) and their inverses (0, . . . ,−1, . . . , 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group where the torsion group may be written
as a direct sum of finitely many groups of the form Z/pkZ for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z.

Remark 1. Given a finite presentation of a group 〈B | R〉, in general it is not
even decidable whether the group presented in that way is finite or infinite.
If we consider (infinite) groups where the word equivalence problem u = v is
decidable, or equivalently, there is a decision procedure telling us whether, given
two strings u and v, uv−1 = e, then we call 〈B | R〉 a recursive or computable
finite group presentation.

2.2 Cayley Graphs

Let G = 〈B | R〉 be a finitely presented group with G′ denoting the set of group
elements. Then we define the corresponding Cayley graph of G with respect
to the generating set B as the directed graph C (G,B) = (G′, E) with the
set of nodes G′ and the set E of directed edges labeled by elements of B by
E = {(x, a, y) | x, y ∈ G′, a ∈ B, xa = y}, i.e., from an element x an edge labeled
by the generator a leads to y if and only if xa = y.

As can be seen directly from the definition, the Cayley graph for a group G
depends on its presentation by the generator set B and the relators in R.

Example 4. The dihedral group D∞ corresponds with the Cartesian product
of Z and Z2. One presentation of D∞ is as

〈
r, s | s2, (sr)2

〉
, another one is

〈
r, s | r2, s2

〉
, the Cayley graph of which can be represented easily in the following

way:

. . . srs
s

�
s

sr
r

�
r

s
s

�
s

e
r

�
r

r
s

�
s

rs
r

�
r

rsr . . .
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In this presentation, both generators have order two; on the other hand, an
infinite line can be obtained by taking the group element rs and its powers
(rs)n for n ≥ 0, as the order of rs is infinite.

The Cayley graph for the presentation of D∞ as
〈
r, s | s2, srsr

〉
can be

depicted as follows:

. . . sr2
r←− sr

r←− s
r←− sr−1 r←− sr−2 . . .

s �� s s �� s s �� s s �� s s �� s

. . . r−2 r−→ r−1 r−→ e
r−→ r

r−→ r2 . . .

As s is self-inverse, instead of the two directed edges s �� s often only the
corresponding non-directed edge | s is depicted, i.e.,

. . . sr2
r←− sr

r←− s
r←− sr−1 r←− sr−2 . . .

| s | s | s | s | s

. . . r−2 r−→ r−1 r−→ e
r−→ r

r−→ r2 . . .

The lower and the upper lines are going into opposite directions, which nicely
fits as a representation of double-stranded DNA molecules, i.e., the lower line
going from the left 5′-end to the right 3′-end, whereas the complementary upper
line goes from the right 5′-end to the left 3′-end.

Example 5. The hexagonal grid is the Cayley graph assigned to the presentation
of the group

〈
a, b, c | a2, b2, c2, (abc)2

〉
. As all three generators a, b, c are self-

inverse and the direction of these elements indicates which generator is meant,

we obtain a simpler picture for the hexagonal grid by replacing a ↗↙ a,
b
�
b

,

and c ↘↖ c by �, −, and �, respectively. Both representations are depicted in
the following:

c ↘↖ c a ↗↙ a � �

a
b

�
b

ab a − ab

c ↘↖ c a ↗↙ a c ↘↖ c � � �

b
b

�
b

e abc b − e abc

a ↙↗ a c ↘↖ c a ↙↗ a � � �

c
b

�
b

cb c − cb

a ↙↗ a c ↘↖ � �

3 Arrays and Array Grammars

In this section we generalize the concept of d-dimensional arrays to arrays
defined on Cayley grids. Let G = 〈B | R〉 be a finitely presented group with
B = {e1, . . . , em} and G′ denoting the set of group elements; moreover, let
C (G) be the Cayley graph of G with respect to B. Throughout the paper we
will assume that B−1 ⊆ B, i.e., B contains all inverses of its elements. For paths
in the Cayley graph this means that for each path v = w1 → ... → wn = w in
C (G) from v to w also its inverse w = wn → ... → w1 = v is a path in C (G).

A finite array A over an alphabet V on G′ is a function A : G′ → V ∪ {#},
where shape(A) = { v ∈ G′ | A(v) �= # } is finite and # /∈ V is called the
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background or blank symbol, i.e., the nodes of C (G) get assigned elements of
V ∪ {#}. We usually will write A = {(v,A(v)) | v ∈ shape(A)}.

By V G we denote the set of arrays over V on G′, any subset of V 〈G〉 is called
an array language over V on G. With respect to the finite presentation of G by
C (G), instead of V G we also write V C(G).

The empty array in V G has empty shape and is denoted by ΛG. Ordering
the generators in B in a specific way as e1 < · · · < em, for each array A =
{(v,A(v)) | v ∈ shape(A)} in V 〈G〉 \ {ΛG} we get a canonical representation as
a list 〈(v1,A (v1)) , . . . , (vn,A (vn))〉 such that {vi | 1 ≤ i ≤ n} = shape (A) and
vi < vi+1, 1 ≤ i < n, with respect to the length-plus-lexicographic ordering
of strings with the elements of G written as sums of the elements in B (the
length-plus-lexicographic ordering ≺ is a well-ordering, where for two strings u
and v, u ≺ v if either |u| < |v| or |u| = |v|, u = xay, v = xby, and a < b).
In terms of C (G) this means that the elements of the array are listed in the
length-plus-lexicographic ordering of the paths in C (G) seen from the origin
(the identity).

Example 6. Consider the hexagonal grid from Example 5. Then the “position”
abc can also be reached by taking the path cba from the “origin” (the identity
e). Hence, with taking the ordering a < b < c, the canonical representation of

the array A = {(ab,X), (abc, Y ) | v ∈ shape(A)} ∈ {X,Y }C(〈a,b,c|a2,b2,c2,(abc)2〉)
is 〈(ab,X), (abc, Y )〉.
Example 7. A d-dimensional array is an array over the free group Z

d. If we
take the unit vectors ek = (0, . . . , 1, . . . , 0) and their inverses (0, . . . ,−1, . . . , 0),
the resulting Cayley graph is the well-known d-dimensional grid, which in the
2-dimensional case can be depicted in the following way, where each horizontal

line − represents the two directed edges
(1,0)

�
(−1,0)

and each vertical line | represents

the two directed edges (0,−1) �� (0, 1):

...
...

...
...

...
| | | | |

· · · − (−2, 1) − (−1, 1) − (0, 1) − (1, 1) − (2, 1) − · · ·
| | | | |

· · · − (−2, 0) − (−1, 0) − (0, 0) − (1, 0) − (2, 0) − · · ·
| | | | |

· · · − (−2,−1) − (−1,−1) − (0,−1) − (1,−1) − (2,−1) − · · ·
| | | | |
...

...
...

...
...

With respect to the origin (0, 0), the four vectors (1, 0) , (−1, 0) , (0, 1) , (0,−1)
are known as the von Neumann neighborhood, whereas adding the diagonal posi-
tions (1, 1) , (−1, 1) , (−1,−1) , (1,−1) yields the Moore neighborhood and thus a
different Cayley grid based on these eight generators for Z

2:
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...
...

...
· · · (−1, 1) − (0, 1) − (1, 1) − · · ·

| � | � |
· · · (−1, 0) − (0, 0) − (1, 0) − · · ·

| � | � |
· · · (−1,−1) − (0,−1) − (1,−1) − · · ·

...
...

...

For any v ∈ G′, the translation τv : G′ → G′ is defined by τv(w) = w ◦ v
for all w ∈ G′, and for any array A ∈ V C(G) we define τv(A), the corresponding
array translated by v, by

(τv (A)) (w) = A (
w ◦ v−1

)
for all w ∈ G′.

An array A ∈V C(G) is called k-connected if for any two elements v and w in
shape (A) there is a path v = w1 → · · · → wn = w in C (G) with {w1, . . . , wn} ⊆
shape (A) such that for the distance in C (G) between wi and wi−1, d (wi, wi−1),
we have d (wi, wi−1) ≤ k for all 1 < i ≤ n; the distance d (x, y) between two
nodes x and y in C (G) is defined as the length of the shortest path between x
and y in C (G). The subset of k-connected arrays in V C(G) is denoted by V C(G)k .

Example 8. Consider the set of one-dimensional arrays over the alphabet {a}∗,
i.e., {a}C(〈(1),(−1)〉), which in a simpler way we will also write as {a}Z1

. Then the
1-dimensional array {((0) , a) , ((k) , a)} ∈ {a}Z1

is m-connected, i.e., in {a}Z1
m ,

if and only if m ≥ k.

3.1 Array Grammars

For a finitely presented group G = 〈B | R〉 with the set of elements G′, we define
an array production p over V and G as a triple (W,A1,A2), where W ⊆ G′

is a finite set and A1 and A2 are mappings from W to V ∪ {#} such that
shape (A1) �= ∅, where again the shape is defined to exactly contain the non-
blank positions, i.e., shape(A1) = { v ∈ W | A(v) �= # }. We say that the
array C2 ∈ V C(G) is directly derivable from the array C1 ∈ V C(G) by the array
production (W,A1,A2) if and only if there exists a v ∈ G′ such that, for all
w ∈ G′ \ τv (W ), C1 (w) = C2 (w), as well as, for all w ∈ τv (W ), C1 (w) =
A1 (τ−v (w)) and C2 (w) = A2 (τ−v (w)), i.e., the sub-array of C1 corresponding
to A1 is replaced by A2, thus yielding C2; we also write C1 =⇒p C2.

As we already see from the definitions of an array production, the condi-
tions for an application to an array B and the result of an application to B, an
array production (W,A1,A2) is a representative for the infinite set of equiv-
alent array productions of the form (τv (W ) , τv (A1) , τv (A2)) with v ∈ G′.
Hence, without loss of generality, we can assume e ∈ W (e is the identity in
G) as well as A1 (e) �= #. Moreover, we often will omit the set W , because it
is uniquely reconstructible from the description of the two mappings A1 and
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A2 by Ai = { (v,Ai (v)) | v ∈ W }, for 1 ≤ i ≤ 2. Thus, in the following,
we represent the array production (W,A1,A2) also by writing A1 → A2, i.e.,
{(v,A1 (v)) | v ∈ W} → {(v,A2 (v)) | v ∈ W}. If |W | = 2, i.e., W = {e, v} for
some v ∈ G′, then, for {(e,A1 (e)) , (v,A1 (v))} → {(e,A2 (e)) , (v,A2 (v))} we
will only write A1 (e) vA1 (v) → A2 (e) A2 (v). If |W | = 1, i.e., W = {e}, we
simply write A1 (e) → A2 (e).

An array grammar (over C (G)) is a septuple

GA = (C (G) , N, T,#, P,A0,=⇒GA
) ,

where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩T = ∅, # /∈ N ∪T ; P is a finite non-empty set of array productions
over V , where V = N ∪ T ; A0 ∈ V C(G) is the initial array (axiom), for which,
as usually done in the literature, we shall assume A0 = {(v0, S)}, where v0 ∈ G′

is the start node, and S ∈ N is the start symbol. Moreover, =⇒GA
denotes the

derivation relation induced by the array productions in P . In the examples given
below, we will omit =⇒GA

in the description of the array grammars.
We say that the array B2 ∈ V C(G) is directly derivable from the array

B1 ∈ V C(G) in GA, denoted B1 =⇒GA
B2, if and only if there exists an array pro-

duction p = (W,A1,A2) in P such that B1 =⇒p B2. Let =⇒∗
GA

be the reflexive
transitive closure of =⇒GA

. The array language generated by the array grammar
GA, L (GA), is defined by

L (GA) =
{

A | A ∈ TC(G), A0 =⇒∗
GA

A
}

.

An array production p = (W,A1,A2) in P is called

– #-context-free (of type #-CFA), if |shape (A1)| = 1, i.e., shape (A1) = {e},
and A1 (e) ∈ N ;

– context-free (of type CFA), if it is of type #-CFA and A2 (e) �= #;
– strictly context-free (of type SCFA), if it is of type #-CFA and

shape (A2) = W .

For X ∈ {ARBA,#-CFA,CFA, SCFA}, an array grammar G is called
to be of type X, if every array production in P is of the corresponding type,
where ARBA means that there are no restrictions on the form of the array pro-
ductions. The family of k-connected array languages generated by array gram-
mars on C (G) of type X is denoted by Lk (C (G) -X); the family of arbitrary
array languages generated by array grammars on C (G) of type X is denoted by
L (C (G) -X).

The main difference between array grammars of type #-CFA and of type
CFA is that already by the definition of the array productions of type CFA
it is guaranteed that all intermediate arrays derived from the initial arrays as
well as the terminal arrays are k-connected, if all W in the array productions
(W,A1,A2) are k-connected due to the condition that no symbol can be erased,
i.e., replaced by the blank symbol #. On the other hand, array productions of
type #-CFA allow symbols to move as far as they want from their original
position:
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Example 9. Consider the #-context-free 1-dimensional array grammar

G1 =
(
Z
1, N = {S,A} , T = {a} ,#, P,A0 = {((0), S)}) ,

P = {(0)S(1)# → (0)a(1)A, (0)A(1)# → (0)#(1)A, (0)A → (0)a} .

According to our conventions, in a simpler way we can write

P = {S(1)# → aA,A(1)# → #A,A → a} .

The array language generated by G1 is the subset of {a}Z1

that can be written
as {(0)a(m)a | m ∈ N} and thus for no k and no type X of array grammars is
in Lk

(
Z
1 − X

)
.

For arbitrary and #-context-free array grammars the condition to only con-
sider languages of k-connected arrays corresponds to intersecting the generated
array language with V C(G)k , which can be carried out by arbitrary array gram-
mars by themselves (which will be proved later, see Lemma 2), but is a condition
imposed from “outside” when dealing with #-context-free array grammars. Yet
as later we are going to show that some #-context-free array grammars equipped
with specific control mechanisms can simulate any arbitrary array grammar this
makes no difference any more.

Example 10. Let G = 〈B | R〉 be a finitely presented group and x ∈ G with
ord (x) = ∞. Let b1 ◦ . . . ◦ bk be the canonical representation of x in 〈B | R〉;
then ({xn | n ∈ Z} , ◦) is an infinite subgroup of G, and xn �= xm for n �= m.
Hence, along this “line” we can argue many results obtained for Z

1, e.g., we can
argue that, for any Cayley grid C (〈B | R〉),

L (C (〈B | R〉) , CFA) ⊂ L (C (〈B | R〉) , ARBA) ,

because the inclusion directly follows from the definitions, and the strictness
follows from the well-known corresponding result for string languages using as a
witness the language (L) =

{
a2n | n ∈ N

}
and the representation of the strings

in it as 1-dimensional arrays. As a small technical detail we have to mention that
for x = b1 ◦ . . . ◦ bk, b1, . . . , bk ∈ B, such witness languages have to be expanded
by the homomorphism hk with hk (a) = ak for every symbol a in the alphabet,
as in C (〈B | R〉) we now have to fill k positions instead of only one in Z

1.
Such infinite lines can be found in various Cayley graphs described so far.

For example, consider the presentation of D∞ as
〈
r, s | r2, s2

〉
from Example 4;

its Cayley graph . . . srs
s

�
s

sr
r

�
r

s
s

�
s

e
r

�
r

r
s

�
s

rs
r

�
r

rsr . . . can somehow be

seen as the line (rs)n, n ∈ Z, when only taking the elements having a canonical
representation of even length.

Remark 2. The possibility to compute along such infinite lines is also impor-
tant if we want to (describe how to) simulate computations of a Turing machine
– or similar computationally complete mechanisms (for strings) – using spe-
cific variants of (controlled) array grammars on Cayley graphs. For instance, for
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any computable finite group presentation of a group 〈B | R〉, we can effectively
construct an encoding of any array language in L (C (G) -ARBA) given by an
(arbitrary) array grammar and vice versa. The finite group presentation of the
group 〈B | R〉 being computable is crucial for this result.

For simulating array grammars of type C (G) -ARBA, a special normal form
we call marked normal form is very helpful; it has already been described for 1-
dimensional array grammars in [20] as a special variant of the Chomsky normal
form for array grammars, shown, for example, in [16].

Lemma 1 (marked normal form). For every array grammar of type
C (G) -ARBA

GA = (C (G) , N, T,#, P, {(v0, S)} ,=⇒GA
) ,

we can effectively construct an equivalent array grammar of type C (G) -ARBA

ḠA =
(
C (G) , N ′, T,#, P ′,

{(
v0, S̄

)}
,=⇒ḠA

)
,

such that N ⊆ N ′ and all array productions in P ′ are of one of the following
forms:

1. ĀB → CD̄, where A,B,C,D ∈ N ′ ∪ T , or
2. #̄ → #.

Before the final array production #̄ → # is applied, any intermediate array
derived from the initial array

{(
v0, S̄

)}
contains exactly one barred symbol.

We omit the proof as the arguments given in [20] for 1-dimensional array
grammars can be taken over for the general case of arbitrary array grammars
over Cayley grids.

We now exhibit the promised algorithm how array grammars with arbitrary
rules can filter out the terminal arrays which are k-connected.

Lemma 2 (filtering out all k-connected arrays). Let k ∈ N. For every array
grammar of type C (G) -ARBA

GA = (C (G) , N, T,#, P, {(v0, S)} ,=⇒GA
) ,

we can effectively construct an equivalent array grammar of type C (G) -ARBA

G′
A =

(
C (G) , N ′, T,#, P ′, {(v0, S′)} ,=⇒G′

A

)
,

such that L (G′
A) contains exactly those arrays from L (GA) that are k-connected.

Proof (sketch). According to Lemma 1, without loss of generality we may assume
that GA is in the marked normal form. First, we replace every terminal symbol
a ∈ T by a corresponding non-terminal symbol Xa in all the array productions
from P , which allows us to simulate any derivation of GA in a suitable way
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with the only difference that instead of the terminal symbols a ∈ T we have the
corresponding non-terminal symbols Xa in all arrays occurring in any derivation.

Finally, instead of applying the final rule #̄ → # we move the bar to a
symbol Xa and apply the rule X̄a → a. This terminal seed a at some position
v0 now may propagate the signal become terminal to all positions v in the array
derived so far which allow for a k-connected path on non-blank symbols from
v0 to v by using the rules of the form buXc → bc, b, c ∈ T , and any u being
an element from the underlying group reachable from e in at most k steps in
C (G). This condition guarantees that when no rule is applicable any more, the
obtained subarray only containing terminal symbols is k-connected, hence, if no
non-terminal symbol has remained, the final array is terminal and k-connected.

As a technical detail we mention that to obtain the empty array we immedi-
ately apply the array production #̄ → #. ��
Remark 3. The idea of first working with non-terminal symbols Xa instead of
terminal symbols a and then turning them into the corresponding terminal sym-
bols a can be taken over for any arbitrary array grammar. Hence, without loss
of generality, we may always assume that any array production contains at least
one non-terminal symbol in the array on its left-hand side, i.e., in any array
production {(v,A1 (v)) | v ∈ W} → {(v,A2 (v)) | v ∈ W} we find at least one
v1 ∈ W such that A1 (v1) ∈ N .

Therefore, throughout the rest of the paper, when using the notion of an
array grammar of type C (G) -ARBA we will assume this condition to hold.

4 Standard Control Mechanisms

In this section we recall the notions and basic results for the general model of
sequential grammars equipped with specific control mechanisms as elaborated
in [21], based on the applicability of rules, as well as for the new concept of
activation and blocking of rules as exhibited in [3,4].

Although in this paper we are only dealing with array grammars (over a Cay-
ley graph C (G)), the control mechanisms will be defined for arbitrary sequential
grammars; hence, we first recall the notion of a general model for sequential
grammars, and then also the control mechanisms are introduced for this general
model.

4.1 A General Model for Sequential Grammars

We first recall the main definitions of the general model for sequential grammars
as established in [21], grammars generating a set of terminal objects by deriva-
tions where in each derivation step exactly one rule is applied to exactly one
object.

A (sequential) grammar Gs is a construct (O,OT , w, P,=⇒Gs
) where

– O is a set of objects;
– OT ⊆ O is a set of terminal objects;
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– w ∈ O is the axiom (start object);
– P is a finite set of rules;
– =⇒Gs

⊆ O × O is the derivation relation of Gs.
Each of the rules p ∈ P induces a relation =⇒p⊆ O × O with respect to
=⇒Gs

. A rule p ∈ P is called applicable to an object x ∈ O if and only if
there exists at least one object y ∈ O such that (x, y) ∈ =⇒p; we also
write x =⇒p y. The derivation relation =⇒Gs

is the union of all =⇒p, i.e.,
=⇒Gs

= ∪p∈P =⇒p. The reflexive and transitive closure of =⇒Gs
is denoted

by ∗=⇒Gs
.

Specific conditions on the rules in P define a special type X of grammars
which then will be called grammars of type X.

The language generated by G is the set of all terminal objects that can be
derived from the axiom, i.e.,

L (Gs) =
{

v ∈ OT | w
∗=⇒Gs

v
}

.

The family of languages generated by grammars of type X is denoted by L (X).
Let Gs = (O,OT , w, P,=⇒Gs

) be a (sequential) grammar of type X. If for
every Gs of type X we have OT = O, then X is called a pure type, otherwise it
is called extended ; X is called strictly extended if for any grammar Gs of type
X, w /∈ OT and for all x ∈ OT , no rule from P can be applied to x.

In many cases, the type X of the grammar allows for one or even both of the
following features:

A type X of grammars is called a type with unit rules if for every gram-
mar Gs = (O,OT , w, P,=⇒G) of type X there exists a grammar G′

s =(
O,OT , w, P ∪ P (+),=⇒G′

s

)
of type X such that =⇒Gs

⊆ =⇒G′
s

and

– P (+) =
{
p(+) | p ∈ P

}
,

– for all x ∈ O, p(+) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(+) is applicable to x, the application of p(+) to x yields x

back again.

A type X of grammars is called a type with trap rules if for every gram-
mar Gs = (O,OT , w, P,=⇒G) of type X there exists a grammar G′

s =(
O,OT , w, P ∪ P (−),=⇒G′

s

)
of type X such that =⇒Gs

⊆ =⇒G′
s

and

– P (−) =
{
p(−) | p ∈ P

}
,

– for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

In the following, we shall deal with array grammars of type C (G) -ARBA
and C (G) -#-CFA. In the general framework of sequential grammars as defined
above, an array grammar over C (G) of type ARBA or #-CFA originally
defined as

GA = (C (G) , N, T,#, P,A0,=⇒GA
)
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should be written as

GA =
(
(N ∪ T )C(G)

, TC(G),A0, P,=⇒GA

)

which should be kept in mind for the definitions of the control mechanisms given
below.

For applying the general results on the relation between different control
mechanisms as elaborated in the rest of this section to array grammars of the
types C (G) -ARBA and C (G) -#-CFA, the following feature of these types is
essential in some cases:

Lemma 3. The types C (G) -ARBA and C (G) -#-CFA for array grammars
over a Cayley grid C (G) are strictly extended types with unit rules and trap
rules.

Proof. According to Remark 3, C (G) -ARBA can be seen as a strictly extended
type for the succeeding proofs; C (G) -#-CFA is a strictly extended type already
by definition.

Now let
GA = (C (G) , N, T,#, P, {(v0, S)} ,=⇒GA

)

be an array grammar of type C (G) -ARBA or C (G) -#-CFA.
Then for every array production p = (W,A1,A2) the corresponding unit rule

is p+ = (W,A1,A1), which, when being applied, obviously does not change the
underlying array.

Moreover, for the trap rules, take a new non-terminal symbol F , the trap
symbol, which never can be erased any more, and for every array production
p = (W,A1,A2) we then define the corresponding trap rule p− = (W,A1,FW )
with FW (v) = F for all v ∈ W , which, when being applied, prohibits the derived
array to become terminal no matter how the derivation proceeds.

In sum, we conclude that both C (G) -ARBA and C (G) -#-CFA are strictly
extended types with unit rules and trap rules. ��
Remark 4. The constructions given in the preceding proof verbatim hold true for
the type C (G) -CFA, as the additional restriction that the non-terminal symbol
in the array on the left-hand side of the array production must not be replaced
by the blank symbol # does not affect the validity of the construction, hence,
C (G) -CFA is a strictly extended type with unit rules and trap rules, too.

On the other hand, C (G) -SCFA only is a strictly extended type with trap
rules, as for a rule p = (W,A1,A2) with |W | > 1 no unit rule p+ not changing
the underlying array can be found, as this would violate the condition that all
positions �= e in W have to be occupied by non-blank symbols in A2.

4.2 Graph-Controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a con-
struct

GGC = (Gs, g,Hi,Hf ,=⇒GC)
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where Gs = (O,OT , w, P,=⇒G) is a grammar of type X; g = (H,E,K) is a
labeled graph where H is the set of node labels identifying the nodes of the
graph in a one-to-one manner, E ⊆ H × {Y,N} × H is the set of edges labeled
by Y or N , K : H → 2P is a function assigning a subset of P to each node of
g; Hi ⊆ H is the set of initial labels, and Hf ⊆ H is the set of final labels. The
derivation relation =⇒GC is defined based on =⇒Gs

and the control graph g as
follows: For any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if

– u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
– u = v, no p ∈ K (i) is applicable to u, and (i,N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗

GGC
(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H, then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i,N, j), then the graph-controlled grammar is said to
be without applicability checking ; the corresponding families of languages are
denoted by L (X-GC) and L (X-P ), respectively.

As a special variant of graph-controlled grammars we consider those where
all labels are final; the corresponding family of languages generated by graph-
controlled grammars of type X is abbreviated by L (

X-GCallfinal
ac

)
. By defini-

tion, programmed grammars are just a subvariant where in addition all labels
are also initial.

The notions with/without applicability checking in the original definition for
string grammars were introduced as with/without appearance checking because
the appearance of the non-terminal symbol on the left-hand side of a context-
free rule was checked, which coincides with checking for the applicability of this
rule in our general model; in both cases – applicability checking and appearance
checking – we can use the abbreviation ac.

4.3 Matrix Grammars

A matrix grammar (with applicability checking) of type X is a construct

GM = (Gs,M, F,=⇒GM
)

where Gs = (O,OT , w, P,=⇒G) is a grammar of type X, M is a finite set of
sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and F ⊆ P . For w, z ∈ O
we write w =⇒GM

z if there are a matrix (p1, . . . , pn) in M and objects wi ∈ O,
1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

– wi =⇒Gs
wi+1 or

– wi = wi+1, pi is not applicable to wi, and pi ∈ F .
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L(GM ) =
{
v ∈ OT | w =⇒∗

GM
v
}

is the language generated by GM . The
family of languages generated by matrix grammars of type X is denoted by
L (X-MATac). If the set F is empty, then the grammar is said to be without
applicability checking (without ac for short); the corresponding family of lan-
guages is denoted by L (X-MAT ).

We mention that in this paper we choose the definition where the sequential
application of the rules of the final matrix may stop at any moment.

4.4 Random-Context Grammars

A random-context grammar GRC of type X is a construct

(Gs, P
′,=⇒GRC

)

where

– Gs = (O,OT , w, P,=⇒G) is a grammar of type X;
– P ′ is a set of rules of the form (q,R,Q) where q ∈ P , R ∪ Q ⊆ P ;
– =⇒GRC

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRC

y if and only if for some rule (q,R,Q) ∈ P ′, x =⇒q y and, moreover,
all rules from R are applicable to x as well as no rule from Q is applicable
to x.

A random-context grammar GRC = (Gs, P
′,=⇒GRC

) of type X is called a
grammar with permitting contexts of type X if for all rules (q,R,Q) in P ′ we
have Q = ∅, i.e., we only check for the applicability of the rules in R.

A random-context grammar GRC = (Gs, P
′,=⇒GRC

) of type X is called a
grammar with forbidden contexts of type X if for all rules (q,R,Q) in P ′ we
have R = ∅, i.e., we only check for the non-applicability of the rules in Q.

L(GRC) =
{
v ∈ OT | w =⇒∗

GRC
v
}

is the language generated by GRC . The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are
denoted by L (X-RC), L (X-pC), and L (X-fC), respectively.

4.5 Ordered Grammars

An ordered grammar GO of type X is a construct

(Gs,≺,=⇒GO
)

where

– Gs = (O,OT , w, P,=⇒G) is a grammar of type X;
– ≺ is a partial order relation on the rules in P ;
– =⇒GO

is the derivation relation assigned to GO such that for any x, y ∈ O,
x =⇒GO

y if and only if for some rule q ∈ P x =⇒q y and, moreover, no rule
p from P with q ≺ p is applicable to x.

L(GO) =
{
v ∈ OT | w =⇒∗

GO
v
}

is the language generated by GO. The fam-
ily of languages generated by ordered grammars of type X is denoted by L (X-O).
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4.6 General Results

We now recall the main results and proofs established for the control mechanisms
introduced so far in [21].

Theorem 1. For any arbitrary type X,

L (X-MATac) ⊆ L (
X-GCallfinal

ac

) ⊆ L (X-GCac) and

L (X-MAT ) ⊆ L (
X-GCallfinal

) ⊆ L (X-GC) .

Proof (see [21]). Let GM = (Gs,M, F,=⇒GM
) be a matrix grammar with

Gs = (O,OT , w, P,=⇒Gs
) being a grammar of type X; let

M = {(pi,1, . . . , pi,ni
) | 1 ≤ i ≤ n}

with pi,j ∈ P , 1 ≤ j ≤ ni, 1 ≤ i ≤ n. Then we construct the graph-
controlled grammar GGC = (Gs, g,Hi,Hf ,=⇒GC) with g = (H,E,K), H =
{(i, j) | 1 ≤ j ≤ ni, 1 ≤ i ≤ n}, K ((i, j)) = {pi,j}, 1 ≤ j ≤ ni, 1 ≤ i ≤ n, and

E = {((i, j) , Y, (i, j + 1)) | 1 ≤ j < ni, 1 ≤ i ≤ n}
∪ {((i, j) , N, (i, j + 1)) | 1 ≤ j < ni, 1 ≤ i ≤ n, pi,j ∈ F}
∪ {((i, ni) , Y, (j, 1)) | 1 ≤ j ≤ n, 1 ≤ i ≤ n}
∪ {((i, ni) , N, (j, 1)) | 1 ≤ j ≤ n, 1 ≤ i ≤ n, pi,j ∈ F}

as well as Hi = {(i, 1) | 1 ≤ i ≤ n}. As we have assumed that the sequential
application of the rules of the chosen matrix may stop at any moment, we have
to take Hf = H. By this construction it is guaranteed that GGC simulates
a derivation in GM correctly by choosing a matrix to be simulated in a non-
deterministic way and then applying the rules from this matrix in the desired
sequence; the application of a rule pi,j may be skipped if and only if pi,j ∈
F ; hence, GGC is without applicability checking if and only if GM is without
applicability checking, which observation completes the proof. ��

The following theorem shows that forbidden contexts can simulate a partial
order relation on the rules:

Theorem 2. For any arbitrary type X, L (X-O) ⊆ L (X-fC).

Proof (see [21]). Let Gs = (O,OT , w, P,=⇒G) be a grammar of type X. Con-
sider the ordered grammar GO = (Gs,≺,=⇒GO

) of type X and the correspond-
ing grammar with forbidden contexts GfC =

(
Gs, PfC ,=⇒GfC

)
of type X

where

PfC = {(p, ∅, Q (p)) | p ∈ P} with
Q (p) = {q | q ∈ P, p ≺ q} .

It is easy to see that L (GfC) = L (GO), because a rule p ∈ P can be applied in
GfC if and only if no rule from Q (p) is applicable which is the same condition
as for the applicability of p in GO. ��
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Yet also the reverse inclusion holds, provided the type X allows for trap rules:

Theorem 3. For any type X with trap rules, L (X-fC) ⊆ L (X-O).

Proof. Let Gs = (O,OT , w, P,=⇒G) be a grammar of type X and consider the
grammar with forbidden contexts GfC =

(
Gs, PfC ,=⇒GfC

)
of type X with

PfC = {(p, ∅, Q (p)) | p ∈ P} .

We now extend the underlying grammar Gs by the trap rules p− for all rules p
in P , thus obtaining the grammar

G′
s =

(
O,OT , w, P ∪ P (−),=⇒G′

s

)

where, according to the definition of grammars with trap rules,

– P (−) =
{
p(−) | p ∈ P

}
,

– for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

As X is a type with trap rules, G′
s again is of type X.

We now define the ordered grammar

GO = (G′
s,≺,=⇒GO

)

which by definition again is of type X, with the partial order ≺ on the rules in
P ∪ P (−) as follows:

for any p ∈ P, p ≺ q− for all q ∈ Q (p) .

This guarantees that L (GfC) = L (GO), as a rule p ∈ P can be applied in
GO if and only if no rule from Q (p) is applicable which is the same condition as
for the applicability of p in GfC . On the other hand, the application of a rule in
P (−) can never lead to a terminal result. ��

The following result is an immediate consequence of the two previous theo-
rems:

Corollary 1. For any type X with trap rules, L (X-fC) = L (X-O).

As all the types defined for array grammars on Cayley grids in this paper
are at least types with trap rules as argued above, see Lemma 3 and Remark 4,
we obtain:

Corollary 2. L (X-fC) = L (X-O) for all types C (G) -Y with Y ∈
{ARBA,#-CFA,CFA, SCFA}.

Matrix grammars (with applicability checking) can simulate random context
grammars for any arbitrary type X with unit rules and trap rules:
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Theorem 4. For any arbitrary type X with unit rules and trap rules,

L (X-RC) ⊆ L (X-MATac) .

Proof. Consider a random-context grammar GRC = (Gs, PRC ,=⇒GRC
) where

Gs = (O,OT , w, P,=⇒G) is a grammar of a type X with unit rules and
trap rules; then we define the matrix grammar with appearance checking
GM = (G′

s,M, F,=⇒M ) of type X as follows: for each rule (p,R,Q) ∈
PRC , R = {ri | 1 ≤ i ≤ m}, Q = {qj | 1 ≤ j ≤ n}, m,n ≥ 0, we take the

matrix
(
r
(+)
1 , . . . , r

(+)
m , q

(−)
1 , . . . , q

(−)
n , p

)
into M . In that way we obtain G′

s =
(
O,OT , w, P ′,=⇒G′

s

)
where

P ′ = P ∪
{

r(+), q(−) | r ∈ R, q ∈ Q for some (p,R,Q) ∈ PRC

}

and F =
{
q(−) | q ∈ Q for some (p,R,Q) ∈ PRC

}
. As X is a type with unit

rules and trap rules, all the elements of GM are well defined. Obviously, for all
x, y ∈ O we have x =⇒(p,R,Q) y if and only if x =⇒(

r
(+)
i ,...,r

(+)
m ,q

(−)
1 ,...,q

(−)
n ,p

) y,

which implies L (GM ) = L (GRC).
As a technical detail we mention that when the application of rules in

the sequence of the matrix
(
r
(+)
i , . . . , r

(+)
m , q

(−)
1 , . . . , q

(−)
n , p

)
stops before hav-

ing reached the end with applying p, either the underlying object has not yet
changed as long as only the unit rules have been applied or else has already been
trapped by the application of one of the trap rules, hence, no additional terminal
results can arise from such situations. ��

Omitting the forbidden rules and applicability checking, respectively, from
the (proof of the) preceding theorem we immediately obtain the following result:

Corollary 3. For any arbitrary type X with unit rules,

L (X-pC) ⊆ L (X-MAT ) .

The main results elaborated for the relations between the specific regulating
mechanisms in [21] and in this paper are depicted in the following diagram; most
of these relations even hold for arbitrary types X.

Theorem 5. The inclusions indicated by vectors as depicted in Fig. 1 hold, the
additionally needed features of having unit and/or trap rules indicated by u and
t, respectively, aside the vector:
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L(X-GCac)

L X-GCallfinal
ac

)

L(X-Pac) L(X-MATac)

L(X-GCallfinal)

L(X-P )
L(X-MAT )

L(X-RC)

u, t

L(X-fC)

L(X-O)

t
L(X-pC)

u

L(X)

Fig. 1. Hierarchy of control mechanisms for grammars of type X.

5 Grammars with Activation and Blocking of Rules

We now recall the definition of sequential grammars with activation and blocking
of rules in a similar way as introduced in [3–5].

A grammar with activation and blocking of rules (an AB-grammar for short)
of type X is a construct

GAB = (Gs, L, fL, A,B,L0,=⇒GAB
)

where Gs = (O,OT , w, P,=⇒G) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function fL, A,B are
finite subsets of L × L × N, and L0 is a finite set of tuples of the form

(
q,Q, Q̄

)
,

q ∈ L, with the elements of Q, Q̄ being of the form (l, t), where l ∈ L and t ∈ N,
t > 1.

A derivation in GAB starts with one element
(
q,Q, Q̄

)
from L0 which means

that the rule labeled by q has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by Q as activations
of rules and Q̄ as blockings of rules have to be taken into account in addition
to the activations and blockings coming along with the application of the rule
labeled by q. The role of L0 is to get a derivation started by activating some rule
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for the first step(s) although no rule has been applied so far, but probably also
providing additional activations and blockings for further derivation steps.

A configuration of GAB in general can be described by the object derived so
far and the activations Q and blockings Q̄ for the next steps. In that sense, the
starting tuple

(
q,Q, Q̄

)
can be interpreted as

({(q, 1)} ∪ Q, Q̄
)
, and we may also

simply write
(
Q′, Q̄

)
with Q′ = {(q, 1)} ∪ Q. We mostly will assume Q and Q̄ to

be non-conflicting, i.e., Q∩Q̄ = ∅; otherwise, we interpret
(
Q′, Q̄

)
as

(
Q′ \ Q̄, Q̄

)
.

Given a configuration
(
u,Q, Q̄

)
, in one step we can derive

(
v,R, R̄

)
, and we

also write
(
u,Q, Q̄

)
=⇒GAB

(
v,R, R̄

)
,

if and only if

– u =⇒G v using the rule r such that (q, 1) ∈ Q and (q, r) ∈ fL, i.e., we apply
the rule labeled by q activated for this next derivation step to u; the new sets
of activations and blockings are defined by

R̄ =
{
(x, i) | (x, i + 1) ∈ Q̄, i > 0

} ∪ {(x, i) | (q, x, i) ∈ B} ,
R = ({(x, i) | (x, i + 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})

\ {
(x, i) | (x, i) ∈ R̄

}

(observe that R and R̄ are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);
or

– no rule r is activated to be applied in the next derivation step; in this case
we take v = u and continue with

(
v,R, R̄

)
constructed as before provided R

is not empty, i.e., there are rules activated in some further derivation steps;
otherwise the derivation stops.

The language generated by GAB is defined by

L(GAB) =
{
v ∈ OT | (

w,Q, Q̄
)

=⇒∗
GAB

(
v,R, R̄

)
for some

(
Q, Q̄

) ∈ L0

}
.

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said
to be a grammar with activation of rules (an A-grammar for short) of type X;
the corresponding family of languages is denoted by L (X-A).

5.1 AB-Grammars and Graph-Controlled Grammars

Already in [21] graph-controlled grammars have been shown to be the most
powerful control mechanism, and they can also simulate AB-grammars with the
underlying grammar being of any arbitrary type X.

Theorem 6. For any type X, L (X-AB) ⊆ L (X-GCac).
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Proof. Let GAB = (G,L, fL, A,B,L0,=⇒GA
) be an AB-grammar with the

underlying grammar G = (O,OT , w, P,=⇒G) being of any type X. Then we
construct a graph-controlled grammar

GGC = (G, g,Hi,Hf ,=⇒GC)

with the same underlying grammar G. The simulation power is captured by the
structure of the control graph g = (H,E,K). The node labels in H, identifying
the nodes of the graph in a one-to-one manner, are obtained from GAB as all
possible triples of the forms

(
q,Q, Q̄

)
or

(
q̄, Q, Q̄

)
with q ∈ L and the elements

of Q, Q̄ being of the form (r, t), r ∈ L and t ∈ N such that t does not exceed
the maximum time occurring in the relations in A and B, hence this in total is
a bounded number. We also need a special node labeled ∅, where a computation
in GGC ends in any case when this node is reached.

All nodes can be chosen to be final, i.e., Hf = H. Hi = L0 is the set of initial
labels, i.e., we start with one of the initial conditions as in the AB-grammar.

The idea behind the node
(
q,Q, Q̄

)
is to describe the situation of a configu-

ration derived in the AB-grammar where q is the label of the rule to be applied
and Q, Q̄ describe the activated and blocked rules for the further derivation steps
in the AB-grammar. Hence, as already in the definition of an AB-grammar, we
therefore assume Q ∩ Q̄ = ∅.

Now let g(l) denote the rule r assigned to label l, i.e., (l, r) ∈ fL. Then, the
set of rules assigned to

(
q,Q, Q̄

)
is taken to be {g(q)}. The set of rules assigned

to ∅ is taken to be ∅.
As it will become clear later in the proof why, the nodes

(
q̄, Q, Q̄

)
are assigned

the set of rules {g(l) | (l, 1) ∈ Q, l �= q}; we only take those nodes where this set
is not empty.

When being in node
(
q,Q, Q̄

)
, we have to distinguish between two

possibilities:

– If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

R̄ =
{
(x, i) | (x, i + 1) ∈ Q̄, i > 0

} ∪ {(x, i) | (q, x, i) ∈ B} ,
R = ({(x, i) | (x, i + 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})

\ {
(x, i) | (x, i) ∈ R̄

}

(observe that R and R̄ are made non-conflicting) as well as – if it exists –
t0 := min{t | (x, t) ∈ R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node

(
p, P, P̄

)

where p ∈ {x | (x, t0) ∈ R} and

P̄ =
{
(x, i) | (x, i + t0 − 1) ∈ R̄, i > 0

}
,

P = {(x, i) | (x, i + t0 − 1) ∈ R} .

If t0 := min{t | (x, t) ∈ R} does not exist, this means that R is empty and
we have to make a Y-edge to the node ∅.
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– If g(q) is not applicable to the object derived so far, we first have to check
that none of the other rules activated at this step could have been applied,
i.e., we check for the applicability of the rules in the set of rules

Ū := {g(l) | (l, 1) ∈ Q, l �= q}

by going to the node
(
q̄, Q, Q̄

)
with a N-edge; from there no Y-edge leaves, as

this would indicate the unwanted case of the applicability of one of the rules
in Ū , but with a N-edge we continue the computation in any node

(
p, P, P̄

)

with p, P , P̄ computed as above in the first case. We observe that in case R̄
is empty, we can omit the path through the node

(
q̄, Q, Q̄

)
and directly go

to the nodes
(
p, P, P̄

)
which are obtained as follows: we first check whether

t0 := min{t | (x, t) ∈ Q, t > 1} exists or not; if not, then the computation
has to end with a N-edge to node ∅. Otherwise, a N-edge goes to every node(
p, P, P̄

)
with p ∈ {x | (x, t0) ∈ Q} and

P̄ =
{
(x, i) | (x, i + t0 − 1) ∈ Q̄, i > 0

}
,

P = {(x, i) | (x, i + t0 − 1) ∈ Q} .

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated by the
graph-controlled grammar with taking a correct path through the control graph
and finally ending in node ∅; due to this fact, we could also choose the node ∅
to be the only final node, i.e., Hf = {∅}. On the other hand, if we have made
a wrong choice and wanted to apply a rule which is not applicable, although
another rule activated at the same moment would have been applicable, we
get stuck, but the derivation simulated in this way still is a valid one in the
AB-grammar, although in most standard types X, which usually are strictly
extended ones, such a derivation does not yield a terminal object. Having taken
Hf = {∅}, such paths would not even lead to successful computations in GGC .

In any case, we conclude that the graph-controlled grammar GGC generates
the same language as the AB-grammar GAB , which observation concludes the
proof. ��

We remark that in the construction of the graph-controlled grammar given
in the preceding proof, all labels could be chosen to be final.

In the case of graph-controlled grammars with all labels being final, for any
strictly extended type X with trap rules, we can show an exciting result exhibit-
ing that the power of rule activation is really strong and that the additional
power of blocking is not needed.

Theorem 7. For any strictly extended type X with trap rules,

L (
X-GCallfinal

ac

) ⊆ L (X-A) .

Proof. Let
GGC = (Gs, g,Hi,Hf ,=⇒GC)
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be a graph-controlled grammar where Gs = (O,OT , w, P,=⇒G) is a strictly
extended grammar of type X with trap rules; g = (H,E,K), E ⊆ H×{Y,N}×H
is the set of edges labeled by Y or N , K : H → 2P is a function assigning a
subset of P to each node of g; Hi ⊆ H is the set of initial labels, and Hf is the
set of final labels coinciding with the whole set H, i.e., Hf = H.

Then we construct an equivalent A-grammar

GA = (G′
s, L, fL, A, L0,=⇒GA

)

as follows:
The underlying grammar G′

s is obtained from Gs by adding all trap rules,
i.e., G′

s =
(
O,OT , w, P ′,=⇒G′

s

)
with P ′ = P ∪{p− | p ∈ P}. G′

s again is strictly
extended and w /∈ OT , hence, also in GA rules have to be applied before terminal
objects are obtained. For any node in g labeled by l with the assigned set of rules
Pl we assume it to be described by Pl = {pl,i | 1 ≤ i ≤ nl}. For all q ∈ P we
take the labels lq− into L as well as (lq− , q−) into fL.

We now sketch how the transitions from a node in g labeled by l with the
assigned set of rules Pl can be simulated. The assumption that all nodes are
final is crucial for this construction. Arriving in some node, one of the following
situations is given:

1. the underlying object is terminal and therefore no rule from P is applicable
any more, as X is a strictly extendable type; hence, we may stop in this node
and extract the underlying object as a terminal result of the derivation, as
all nodes are final;

2. the underlying object is not terminal, but no rule from
⋃

i∈H Pi is applica-
ble any more; hence, even when continuing the derivation following a path
through the control graph only using N-edges, the derivation cannot yield a
terminal object any more; therefore, in such a case, we need not continue the
derivation;

3. the underlying object is not terminal, no rule pl,i in Pl, 1 ≤ i ≤ nl, is appli-
cable, but there is still some node k reachable from node l following a path
through the control graph only using N-edges that contains an applicable
rule;

4. the underlying object is not terminal, but there is some rule pl,i in Pl, 1 ≤
i ≤ nl, which is applicable.

For the simulation of these situations by the A-grammar, we therefore can
restrict ourselves to the cases where when applying a rule we follow a path
starting with a Y-edge and continuing with only N-edges until we reach a node
containing a probably applicable rule; observe that such a path can only consist
of the Y-edge, too.

In order to simulate a rule pl,i in Pl, 1 ≤ i ≤ nl, we take all activations
into A which allow us to simulate the application of pl,i and to guess with
which pk,j probably to continue afterwards. Hence, we consider all paths without
loops h0 = l − h1 − · · · − hn = k in the control graph g which start with a
Y-edge and continue with only N-edges. For any such path we introduce labels
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((l, i), h1, . . . , (k, j)) in L and ((l, i), h1, . . . , (k, j)) : pl,i in fL; the set of all labels
describing such paths from node l to any node k is denoted by Ll,i. Moreover,
we use the following activations in A:

– ((l, i), h1, . . . , (k, j)), {lq− | q ∈ ⋃
1≤i≤n−1 Phi

}, 1) is used to check in the next
step that no rule along the path from node l to node k is applicable; observe
that for n = 1 the set

⋃
1≤i≤n−1 Phi

is empty and the whole activation can
be omitted;

– in the second next step only the designated rule pk,j can be applied, i.e., we
take ((l, i), h1, . . . , (k, j)), Lk,j , 2) into A; as with every label in Lk,j the rule
pk,j is assigned, the intended continuation is prepared.

How can a derivation in the A-grammar be started? As w /∈ OT , at least one
rule must be applied to obtain a terminal object; hence, we check all possibilities
that a rule in an initial node in Hi or along a path in g following only N-edges
from such an initial node can be applied (observe that there are only finitely
many paths without loops of that kind through the control graph); for each such
rule pl,i in node l we take all labels from Ll,i into L0. As by construction pl,i is
applicable it is guaranteed that any continuation of the computation will follow
a Y-edge in g and thus the simulation in GAC

will follow the simulation of an
applicable rule as described above.

In total, the construction given above guarantees that the simulation of a
computation in GGC by a computation in GA starts correctly and continues
until no rule can be applied any more. As we have assumed all nodes in g to
be final and X to be a strictly extended type, i.e., no rules can be applied to
a terminal object any more, the only condition to get a result is to obtain a
terminal object at the end of a computation. This observation completes our
proof. ��

As programmed grammars are just a special case of graph-controlled gram-
mars with all labels being final, we immediately infer the following result:

Corollary 4. For any strictly extended type X with trap rules,

L (X-Pac) ⊆ L (X-A) .

Combining Theorems 6 and 7, we infer the following equality:

Corollary 5. For any strictly extended type X with trap rules,

L (
X-GCallfinal

ac

)
= L (X-A) .

6 Results for Array Grammars on Cayley Grids

In many papers on control mechanisms for string grammars, the proof for show-
ing that when using arbitrary productions any new control mechanism can be
simulated is omitted, often simply citing the Church-Turing thesis, which usually
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is a legitimate claim as any formal proof would be tedious although bringing no
new insights.

In case of array grammars on Cayley graphs the situation is more delicate: as
long as the underlying group presentation is computable, one might still easily
argue with the Church-Turing thesis as long as – for infinite groups – there is
also an infinite path in the Cayley graph, which is obvious if there is a group
element of infinite order – see the examples in Subsect. 2.2 and Example 10 as
well as Remark 2. Yet even if there is no such element (for examples of such group
presentations we refer to [23]), in a nondeterministic way, we can find lines of
arbitrary length for the necessary computations, as by definition the out-degree
of every node is bounded, hence, by König’s infinity lemma such a path must
exist; it is important to observe that these paths need not be computable in the
general case. Therefore, in the general case of Cayley grids we need an algorithm
that works directly with the power inherent to arbitrary array productions.

Theorem 8. For any control mechanism Y ,

Y ∈ {O, fC, pC,RC,P, Pac,MAT,MATac, GC,GCac, A,AB},

L (C (G) -ARBA-Y ) ⊆ L (C (G) -ARBA) .

Proof (sketch). Given any array grammar with the control mechanism Y and
with the underlying sequential array grammar being of type ARBA, we can
construct an equivalent sequential array grammar of type ARBA as follows:

The simulation of the application of an array production is obvious. The main
difficulty which usually arises is to check that a specific array production is not
applicable at any position in the array derived so far. In order to accomplish
this task, from the beginning of the derivation we mark all positions ever visited
by an array production with non-blank symbols which store the parent-children
relation, i.e., as a child the information from where the underlying position has
been affected is stored, and as a parent the information which children have
been“born” is stored. Then, whenever we want to check that a specific array
production is not applicable at any position in the Cayley grid, we send out a
checking signal which propagates from the start node along the parent-children
relations; whenever a node in the Cayley graph has no children any more and the
array production under question is not applicable from that node, a No-signal
is back-propagated along the children-parent relations, i.e., when all children
have answered No and the rule under consideration is also not applicable at
this current position in the Cayley graph, a signal No can be sent back from
this parent node to its own parent. This algorithm ends in a successful way if
the start node has received all No-answers from its children and the rule under
consideration is also not applicable from the start node. Such information then
can be moved along in the Cayley grid to a node where an array production is to
be applied under the condition that specific other productions are not applicable
in the whole current array.

This idea not only works for forbidding rules or for array grammars with a
partial ordering on the rules, but also for simulating the passing from one node
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to another one in the control graph of a graph-controlled grammar along an
N-edge as well as for checking that no activated rule is applicable.

At the end of the simulation, the intermediate non-terminal symbols have to
be erased or to be changed into their corresponding terminal symbols including
the blank symbol; we here also refer to the algorithm described in the proof of
Lemma 2. ��

Already an order relation on the rules is sufficient as a control mechanism to
obtain L (C (G) -ARBA):

Theorem 9. L (C (G) -ARBA) ⊆ L (C (G) -#-CFA-O) .

Proof (sketch). Let the array language be given by an array grammar

GA = (C (G) , N, T,#, P, {(v0, S)} ,=⇒GA
)

on C (G) in marked normal form, see Lemma 1. The underlying finitely presented
group is G = 〈B | R〉, G′ denotes the set of group elements.

We now sketch how to construct an equivalent array grammar

GO = (G′
s,≺,=⇒GO

) .

simulating the derivations in GA.
The main idea is to first generate a workspace of non-terminal symbols X#

representing the blank symbol; such symbols X# still occurring in the derived
array at the end of a simulation of a derivation in GA finally will be erased as to
be described later in the proof. Moreover, at the very beginning we generate a
control symbol at some place, chosen in a non-deterministic way, not interfering
with the workspace needed for the simulations of the application of rules in
GA. In the general case, another construction is needed for that than the one
exhibited in [16] for 1- and 2-dimensional array grammars. The main task then
is to show how a marked array production ĀvB → CD̄, where A,B,C,D ∈ N ′,
can be simulated by using a suitable order relation on the rules in GO.

We first sketch how to obtain the control symbol and the workspace: Instead
of starting with {(v0, S)} we use a new start symbol S′ and the new initial array
{(v0, S′)}. Using one of the rules S′v# → S′′HA and then the rules HAv# →
#HA for any v ∈ B, the initial control symbol HA can move to any position
(node) in the Cayley graph. At some moment we use the rule HA → H0, which
ends this travel and then allows the rule S′ → S̃ to be applied; this rule is
“dominated” by the rules in H− \ {H0 → F}, i.e., S′ → S̃ ≺ p for all p ∈
H− \ {H0 → F}, where H− = {X → F | X ∈ VH} and VH denotes the set of
all variants of the control variable H like HA at the beginning.

Notation: In the following, the set of rules “dominating” a rule p will be written
as P (p ≺), i.e., P (p ≺) = {q | p ≺ q}.

In general, the idea with the variants of the control variable H is to guide
the application of another rule p by, instead of checking for the presence of the
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specific variant Hv of H, ensuring the absence of all other variants of H, using
the rule relations p ≺ q for all q ∈ {X → F | X ∈ VH \ {Hv}}; hence, we also
write P (p ≺) = {X → F | X ∈ VH \ {Hv}}.

The next task is to generate sufficient workspace of symbols X# surrounded
by a layer of symbols X̃# on the border to the remaining environment of blank
symbols:

We start with

p0 = {(e, S̃} ∪ {(v,# | v ∈ B} → {(e, S̃} ∪ {(v, X̃# | v ∈ B}
P (p0 ≺) = {X → F | X ∈ VH \ {H0}}.

Iteratively, now a new “layer” of symbols X# is added by first generating
symbols X̂# from the symbols X̃#, then renaming the symbols X̃# to X# and
finally renaming the symbols X̂# to X̃#, which is accomplished by the following
rules p and the corresponding “dominating” set of rules P (p ≺):

1. H0 → H1, P (H0 → H1 ≺) = {S̃ → F};
2. for all v ∈ B,

p1v = {(e, X̃#), (v,#)} → {(e, X̃#), (v, X̂#)},

P (p1v ≺) = {X → F | X ∈ VH \ {H1}},
H1 → H2, P (H1 → H2 ≺) = {p1v

− | v ∈ B},
where p1v

− is the trap rule corresponding to the rule p1v, i.e.,

p1v
−

= {(e, X̃#), (v,#)} → {(e, F ), (v, F )};

3. for all v ∈ B,

p2v = X̃# → X#,

P (p2v ≺) = {X → F | X ∈ VH \ {H2}},
H2 → H3, P (H2 → H3 ≺) = {p2v

− | v ∈ B};
4. for all v ∈ B,

p3v = X̂# → X̃#,

P (p3v ≺) = {X → F | X ∈ VH \ {H3}},
H3 → H1, P (H3 → H1 ≺) = {p3v

− | v ∈ B};
the iteration can start again with 2.

5. In order to stop the iteration, instead of H3 → H1 we use the rule
H3 → H, P (H3 → H ≺) = {p3v

− | v ∈ B}.

For the simulation in GO we assume the marked array productions in GA to
be labeled, i.e., we write p : ĀpvpBp → CpD̄p.

1. We start the simulation of the application of p : ĀpvpBp → CpD̄p with
indicating the intention to do that by the rule H → H1

p for the control
symbol;
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2. we continue with marking exactly one symbol Bp as B′
p by

p1 = Bp → B′
p,

P (p1 ≺) = {X → F | X ∈ (VH \ {H1
p}) ∪ {B′

p}},

H1
p → H2

p , P (H1
p → H2

p ≺) = PF ,
PF = {{(e,X), (v,#)} → FF | X ∈ N ∪ {X#}}},
i.e., no blank symbol inside the workspace is allowed yet;

3. we now make a “#-hole” inside the workspace in such a way that the only
non-terminal symbol having “access” to this blank position should be Āp by

p2 = B′
p → #,

P (p2 ≺) = {X → F | X ∈ (VH \ {H2
p})},

H2
p → H3

p , P (H2
p → H3

p ≺) = PF \ {Āpvp# → FF};
4. the “#-hole” made in the previous step now is filled correctly by

p3 = Āpvp# → CpD̄p,

P (p3 ≺) = {X → F | X ∈ (VH \ {H3
p})},

H3
p → H, P (H3

p → H ≺) = PF .

Using the sequence of rules as described above, we finally have simulated
the application of the rule p : ĀpvpBp → CpD̄p and reached the control symbol
H again, which allows us to continue with simulating the next rule. At some
moment we have to guess whether we can switch to the terminal procedure
eliminating all non-terminal symbols:

1. We start with H → Ht; the only symbols allowed in the current array in order
to obtain a terminal array are terminal symbols, the workspace symbols X#

and X̃# as well as (one) symbol X̄# indicating that in the simulated array
grammar GA in marked normal form the final rule X̄# → # could be applied;
hence, we take

P (H → Ht ≺) = {X → F | X ∈ (V \ (T ∪ {X#, X̃#, X̄#}))};

2. for all X ∈ {X#, X̃#, X̄#}, we take

pX = {X → #},

P (pX ≺) = {X → F | X ∈ (VH \ {Ht})};

3. if all other non-terminal symbols have been erased, finally the control symbol
Ht can be erased, too, using the rule H → #, with

P (H → # ≺) = {X → F | X ∈ (V \ {Ht})};
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According to the construction of GO and the explanation given above we
conclude that L(GO) = L(GA). ��

Looking at the general results collected in Theorem 5 we see that a partial
order on the rules is the weakest control mechanism in the inclusion line of the
control mechanisms

O − fC − RC − MATac − GCallfinal
ac − GCac

and therefore we immediately infer the following result:

Corollary 6. For any control mechanism Y ,

Y ∈ {
O, fC,RC,MATac, GCallfinal

ac , GCac

}
,

L (C (G) -ARBA) ⊆ L (C (G) -#-CFA-Y ) .

A similar result can be shown for programmed array grammars by proving
the following equality:

Lemma 4.

L (C (G) -#-CFA-PCac) = L (
C (G) -#-CFA-GCallfinal

ac

)
.

Proof. It is sufficient to show

L (C (G) -#-CFA-PCac) ⊇ L (
C (G) -#-CFA-GCallfinal

ac

)
,

which can be proved using standard arguments already used for proving similar
results for strings in [8] and for 1- and 2-dimensional arrays in [16]:

Given a graph-controlled array grammar with all nodes being final, we take
a new non-terminal symbol S′ as the new start symbol, i.e., instead of starting
with {(v0, S)} we use new initial array {(v0, S′)}, and add one additional node
to the control graph, to which we assign the new array production S′ → S; from
this new node, Y-edges lead to every initial node in the original control graph.

As the new set of initial nodes we now can take every node in the new control
graph, as the only array production applicable to the new initial array {(v0, S′)}
is the new array production S′ → S assigned to the new node (which in fact
could be the only initial node). Having all nodes being initial and final ones, the
constructed new graph-controlled array grammar is a programmed one, too. ��

Combining all the general results elaborated in this section, we obtain the
main theorem of this paper for sequential array grammars on Cayley graphs with
control mechanisms:

Theorem 10. For any control mechanism Y ,

Y ∈ {
O, fC,RC,Pac,MATac, GCallfinal

ac , GCac, A,AB
}
,

L (C (G) -#-CFA-Y ) = L (C (G) -ARBA) .
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Proof. For Y ∈ {
O, fC,RC,MATac, GCallfinal

ac , GCac

}
, the result follows from

Corollary 6 and Theorem 8.

For Y = Pac, we apply the result stated in Lemma 4, i.e.,

L (C (G) -#-CFA-Pac) = L (
C (G) -#-CFA-GCallfinal

ac

)
.

For Y ∈ {A,AB}, we can use the general result stated in Corollary 5, i.e.,

L (
C (G) -#-CFA-GCallfinal

ac

)
= L (C (G) -#-CFA-A) .

Moreover, even using activation and blocking of rules does not add addi-
tional computational power beyond L (C (G) -ARBA), as has been shown in
Theorem 8. ��

Based on Lemma 2, we obtain similar results for languages of k-connected
arrays; the corresponding families of languages of k-connected arrays are marked
with subscript k, i.e., we write Lk instead of L:

Theorem 11. For any control mechanism Y ,
Y ∈ {O, fC,RC,Pac,MATac, GCac, A,AB},

Lk (C (G) -#-CFA-Y ) = Lk (C (G) -ARBA) .

7 Summary and Future Research

The notion of arrays as well as the concept of array grammars can be extended
from the d-dimensional grid Z

d to arrays defined on Cayley graphs of finitely pre-
sented groups. We have investigated arrays defined on Cayley graphs of finitely
presented groups and shown that the families of languages of such arrays gener-
ated by arbitrary array grammars coincide with those generated by #-context-
free array grammars equipped with one out of various control mechanisms – con-
trol graphs, matrices, permitting and forbidden rules, or activation and blocking
of rules. These results only need a few direct proof constructions, yet most of
them directly follow from general results obtained for the relation between these
control mechanisms for sequential grammars of arbitrary type.

Besides #-context-free array productions there are other types of rules to
be considered in this framework of arrays defined on Cayley graphs of finitely
presented groups together with these control mechanisms. For example, we are
going to investigate whether similar results can be obtained when using insertion
and deletion rules on arrays, for example, see [14,20]. Theorem 8 still remains
valid when using array insertion and deletion rules together with the control
mechanisms considered in this paper, yet showing that array insertion and dele-
tion rules together with different control mechanisms reach the computational
power of arbitrary array grammars needs careful proofs again.

There are also other control mechanisms to be considered, for example, using
the structural power of tissue P systems, i.e., in a network of cells different rules
are applicable in different cells, and the application of a rule sends the current
array to another cell, for example, see [14,20].
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Another interesting topic is to consider accepting array grammars with con-
trol mechanisms, an investigation already having been started two decades ago,
see [10]: a given input array is accepted if it can be reduced to the initial array
(in the accepting case better called the goal array). The type of an accepting
array production (W,A2,A1) is defined as the type of the corresponding gen-
erating array production (W,A1,A2). In [10] specific results for d-dimensional
accepting array grammars together with the control mechanisms of having an
order relation on the rules or control graphs were established.
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Abstract. Not only the world is distributed, but more and more appli-
cations are distributed. Hence, a fundamental question is the following
one: What can be computed in a distributed system? The answer to this
question depends on the environment in which evolves the considered
distributed system, i.e., on the assumptions the system relies on. This
environment is very often left implicit and nearly always not formulated
in terms of precise underlying requirements. In the extreme case where
the environment is such that there is no synchrony assumption and the
computing entities may commit failures, some problems become impos-
sible to solve. Given a distributed computing problem, it is consequently
important to know the weakest assumptions (lower bounds) that give
the limits beyond which the considered distributed problem cannot be
solved. This paper is a short introduction to this kind of issues. It is
made up of short sections, each addressing an important point of the
theory of distributed computing. Its style is voluntarily informal.
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What is Distributed Computing?

An Informal Definition. “Distributed computing arises when one has to solve
a problem in terms of distributed entities (usually called processors, nodes, pro-
cesses, actors, agents, sensors, peers, etc.) such that each entity has only a partial
knowledge of the many parameters involved in the problem that has to be solved.
[...] Distributed computing can be characterized by the term uncertainty. This
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uncertainty is created by asynchrony, multiplicity of control flows, absence of
shared memory and global time, failure, dynamicity, mobility, etc. Mastering
one form or another of uncertainty is pervasive in all distributed computing
problems. A main difficulty in designing distributed algorithms comes from the
fact that each entity cooperating in the achievement of a common goal cannot
instantaneously obtain the current state of the other entities, it can only know
their past local states” which are not necessarily mutually consistent” (Extract
from the preface of [44]).

On a more humorous side, there is Lamport’s famous quotation defining a
distributed system, namely,

“A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.”

The previous sentences state that a distributed system/algorithm runs on
a distributed machine (i.e., a machine composed of several computing devices),
and the way these devices interact combined with their possible failures can have
a strong impact on what can be computed.

Birth Certificates. Since Lamport’s seminal article “Time, clocks, and the
ordering of events in a distributed system” [28], and other articles such as, to
cite only two more among many other articles, namely, “Impossibility of dis-
tributed consensus with one faulty process” By Fischer et al. [16], and “Wait-free
synchronization” by Herlihy [19]1, distributed computing is no longer a set of
tricks or recipes, but a domain of Informatics with its own concepts, sane foun-
dations, methods, and applications.

The Basic Unit of Distributed Computing

From a function ... While the basic unit of sequential computing is the notion
of a function, the basic unit of distributed computing is the notion of a task, which
was formalized in several papers (e.g., see [20,22,23] to cite a few). Intuitively, a
task is a distributed function, which takes into account the fact that the inputs
of the problem we want solve are distributed.

... to a task. A task T () is made up of n processes p1, ..., pn (computing entities),
such that each process has its own input (ini denoting the input of pi) and must
compute its own output (outi denoting the output of pi). Let I = [in1, · · · , inn]
be an input vector (let us notice that a process knows only its local input,
it does not know the whole input vector). Let OUT = [out1, · · · , outn] be an
output vector (similarly, even if a process is required to cooperate with the
1 These articles were awarded the “Dijkstra Prize” (in 2000, 2001, and 2003, respec-

tively). As stated in https://en.wikipedia.org/wiki/Dijkstra Prize, this prize “is
given for outstanding papers on the principles of distributed computing, whose sig-
nificance and impact on the theory and/or practice of distributed computing has
been evident for at least a decade”.

https://en.wikipedia.org/wiki/Dijkstra_Prize
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pif ()x y = f (x)

T ()

A task T () (distributed computing)

A function f () (sequential computing)

ini outi

Output OUT ∈ T (I)Input IN

Fig. 1. Function vs (distributed) task

other processes, it has to compute its local output outi, and not the whole
output vector). A task T is defined by a set I of input vectors, a set O of
output vectors, and a mapping T from I to O, such that, given any input vector
in ∈ I, the output vector OUT (cooperatively computed by processes) is such
that OUT ∈ T (IN ). The case n = 1 corresponds to sequential computing (see
Fig. 1), and, in this case, a task boils down to a function.

Distributed Computing �= Parallel Computing

This section is inspired from [42], where fundamental differences between dis-
tributed computing and parallel computing are investigated in more details.
These differences rest in the fact that a task is distributed by its very definition.
This means that the processes, each with its own inputs, are geographically dis-
tributed and need to communicate to compute their outputs. The geographical
distribution of the computing entities is a not a design choice, but is an input of
the problem which gives its name to distributed computing.

Parallel Computing. In parallel computing, the inputs are, by essence, cen-
tralized. When considering the left part of Fig. 1, a function f(), and an input
parameter x, parallel computing addresses concepts, methods, and strategies
which allow to benefit from parallelism when one has to implement f(x). The
input x is given, and (if any) its initial scattering on distinct processors is not
a priori imposed, but is a design choice aiming at obtaining efficient imple-
mentations of f(). The essence of parallel computing is to look for (or create)
independent parts of a computation and, thanks to the independence of these
computation units, manage them in an appropriate way in order to reduce as
much a possible the computation time.

Distributed Computing. Differently, the essence of distributed computing is
not on looking for efficiency but on coordination in the presence of “adversaries”
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(globally called environment) such as asynchrony, failures, locality, mobility, het-
erogeneity, limited bandwidth, restricted energy, etc. From the local point of
view of each computing entity, these adversaries create uncertainty generating
non-determinism, which (when possible) has to be solved by an appropriate
algorithm.

A Synoptic View. In a few words, parallel computing is on the decomposi-
tion of a problem in independent parts (to benefit from the existence of many
processors), while distributed computing is on the cooperation of pre-existing
entities (in a given environment). Parallel computing is an extension of sequen-
tial computing in the sense that any problem addressed by a parallel algorithm
can be solved –maybe very inefficiently– by a sequential algorithm. Differently,
there are distributed computing problems that have neither a counterpart, nor
a meaning, in sequential computing (e.g., the distributed termination detection
problem in failure-free distributed systems [41]), and the consensus agreement
abstraction in failure-prone distributed systems [44]).

Round-Based Synchronous Message-Passing Systems

Computing Model. From a structural point of view, this model can be repre-
sented by a connected graph where each vertex is a computing entity (process),
and each edge corresponds to a bi-directional communication channel. The pro-
cesses execute a sequence of rounds, and every round is made up of three phases:

– First phase: each process sends a message to all or a subset of its neighbors.
– Second phase: each process receives a message from each of its neighbors,
– Third phase: each process execute a local computation.

The fundamental synchrony property, which characterizes this model, is the fact
that a message sent during a round r is received during the very same round r.
This means that, if processes may crash, there is a bound on messages transfer
delays. Actually the rounds are provided for free by the model, which ensures
their progress [5,41]. An example of a synchronous run is depicted on the left of
Fig. 2.

p3

p1

p2

p3

r = 2 r = 3r = 1
p1

p2

Fig. 2. Synchronous vs asynchronous computing model

The Notion of Locality. Let us consider a reliable synchronous message-
passing system. If at the first round (r = 1) each process sends its local input



38 M. Raynal and J. Cao

to its neighbors, and then, at every round r > 1, sends them what it learned in
the previous round (r − 1), after a number of rounds equal to the diameter of
the communication graph, any process knows the whole input vector.

The notion of a local algorithm was introduced in [29]2 and the associated
model denoted LOCAL has been investigated in [37]. The locality notion has
first been used to study complexity issues of distributed algorithms on graphs
(such as vertex coloring, minimum independent set, minimum vertex cover, etc.),
and has then addressed more general decision problems. In a local algorithm, a
process is restricted to collect data from other processes which are at distance at
most x (i.e., in at most x rounds), where x is smaller than the network diameter,
or even a constant.

The main question is then: “Given a distributed graph problem, is it possible
to solve it with a local algorithm?” This question is fundamental from a scala-
bility point of view. As a simple example, the optimal vertex coloring problem
is not local, while verifying if an arbitrary vertex coloring is such that no two
neighbor vertices have the same color can be solved in one round.

The Notion of a Message Adversary. Let us now consider that there is a dae-
mon (called message adversary), which, at every round, can suppress messages.
Given a message adversary, characterized by its evil power (which is known by
the processes), which problems can be solved in the corresponding failure-prone
distributed synchronous system? These notions where introduced in [45,46] (with
a different vocabulary).

As a simple example, it is shown in [27] that, even if processes do not known
the graph diameter, it is possible for each process to compute any computable
function on the input vector, if, at every round, the message adversary can
suppress all messages on all channels except on the channels defining a spanning
tree unknown to the processes. Moreover, the message adversary can define a
different (unknown) spanning tree at at every round.

Communication in Failure-Prone Asynchronous Systems:
Read/Write vs Message-Passing

On Failures. A distributed system may suffer different kind of failures. A pro-
cess may crash (unexpected definitive halting), or commits a more severe failure
by behaving in an arbitrary way (i.e., maliciously or not, the process executes a
code different from the one specified by its algorithm). Such a process is called
Byzantine process. Byzantine failures were introduced in [31]3.

If communication is by message-passing, channels can be unreliable by drop-
ping messages (message alteration can be solved with error-detecting codes).
Byzantine fault-tolerance and messages losses are not addressed here (the inter-
ested reader is referred to [44]).

2 This paper received the Dijkstra Prize in 2013.
3 This paper received the Dijkstra Prize in 2005.
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In the following, n denote the number of processes, and t an upper bound on
the number of processes that a model allows to crash.

Read/Write Model and Message-Passing Model. Let us consider a dis-
tributed system composed of n processes, denoted p1, ..., pn, where a process
adversary may crash any subset of t of them. Each process is asynchronous,
which means that it progresses at its own speed, which can vary arbitrarily, and
is never known by the other processes. We use the following notations where CA
stands for “Crash Asynchronous”.

– CARWn,t [∅] denotes the previous distributed model where the processes com-
municate by reading and writing atomic registers.

– CAMPn,t [∅] denotes the previous distributed model where the processes com-
municate by sending and receiving messages through channels. It is assumed
that any pair of processes is connected by a bi-directional channel. Example
an execution in this model is described on the right side of Fig. 2.

Let us notice that, while the notion of a round is given for free in the syn-
chronous system model, it is not in an asynchronous system model. However it
is possible for the processes to build a sequence of rounds. Considering the model
CAMPn,t [∅], and assuming each message carries the round number in which it
was sent, during a round r, a process can wait round r messages from at most
(n − t) processes (including itself), before locally proceeding to the next round.
It follows that the processes execute a sequence of asynchronous rounds (which
means that two processes are not necessarily at the same round at the same
time). Moreover, a process discards the round r messages arriving after it stops
waiting for round r messages.

Read/Write on Top of Message-Passing. A simple, but important, ques-
tion concerns the equivalence of these distributed computing models. Simulate
CAMPn,t [∅] on top of CARWn,t [∅] is easy: A channel can be implemented with
two queues of atomic read/write registers, one for each direction of the channel.

As far the other direction is concerned, it was proved in [2]4 the following

Theorem: It is impossible to build an atomic read/write register on top of
CAMPn,t [∅] if t ≥ n/2.

The intuition that explains the impossibility to build an atomic read/write
register in CAMPn,t [∅] relies on the fact that, when t ≥ n/2, half or more
processes may crash in a run. More precisely, as any number of processes may
crash, it is possible to construct executions in which the system “partitions” in
two set of processes such that, while there is no crash, the messages between the
two partitions take – in both directions– an arbitrarily long time, making the
processes in each partition believe that the processes in the other partition have
crashed. The system can then progress as two disconnected subsystems.

4 This paper received the Dijkstra Prize in 2011.
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Let CAMPn,t [t < n/2] denote CAMPn,t [∅] restricted by the environment
assumption t < n/2. Several algorithms (each with its own features) building
atomic read/write registers in CAMPn,t [t < n/2] have been proposed (e.g., [2,35]
to cite a few; see [44] for a pedagogical presentation).

A Fundamental Notion: Indistinguishability

A fundamental notion associated with impossibility results in distributed com-
puting is the notion of indistinguishability [4,39]. This is related to the fact
distributed computing has to cope with the uncertainty created by the adver-
saries managing the environment, namely, here the net effect of asynchrony and
failures.

Assuming an algorithm that solves a given problem, the indistinguishability-
based strategy to prove its impossibility (or a lower bound) consists in playing
with asynchrony and failures to produce two executions E1 and E2 such that
there is a process pi that should output a result out1 in E1, and a result out2 �=
out1 in E2, but pi cannot distinguish E1 and E2. In both E1 and E2, it executed
the same sequence of steps, and produced the same sequence of local states. The
fact that both E1 and E2 can be produced by the assumed algorithm entails a
contradiction from which follows the impossibility (or a lower bound).

Concurrent Objects and Progress Conditions

This section is inspired from [43].

Concurrent Objects. A concurrent object is an object that can be accessed
(possibly simultaneously) by several processes. From both practical and theoret-
ical point of views, a fundamental problem of concurrent distributed program-
ming consists in implementing high level concurrent objects, where “high level”
means that the object provides the processes with an abstraction level higher
than the atomic hardware-provided instructions. While this is well-known and
well-mastered since a long time in the context of failure-free systems [7], it is far
from being trivial in failure-prone distributed systems (e.g., see textbooks such
as [40,49] for the read/write model, and such as [44] for the message-passing
model).

Progress Conditions. Deadlock-freedom and starvation-freedom are the two
progress conditions encountered in failure-free asynchronous systems. As their
implementation is based on lock mechanisms, they are not suited to asynchronous
crash-prone systems. This is due to the fact that, as it is impossible to distinguish
a crashed process from a slow process, a process that acquires a lock and crashes
before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited to crash-
prone asynchronous systems have been proposed. Given an object, we have the
following.



A Pleasant Stroll Through the Land of Distributed Machines 41

– The strongest progress condition is wait-freedom (WF) [19]. It states that,
any operation (on the object that is built), issued by a process that does not
crash, terminates. This means that it terminates whatever the behavior of the
other processes. This can be seen as the equivalent of the starvation-freedom
progress condition encountered in failure-free systems.

– The non-blocking progress condition (NB) states that at least one of the
processes, that do not crash, returns from all its object operations [25]. This
progress condition is also called lock-freedom. It can be seen as the equivalent
of deadlock-freedom in failure-free systems.

– The obstruction-freedom progress condition (OB) states that a process that
does not crash will be able to terminate its operation if all the other processes
hold still long enough [21]. This is the weakest progress condition.

While wait-freedom and non-blocking are independent of the concurrency and
failure pattern, obstruction-freedom is dependent from it. Asymmetric progress
conditions have been introduced in [26]. The computational structure of progress
conditions is investigated in [50].

Notion of a Universal Construction

Universal Construction in Distributed Computing. The notion of a uni-
versal construction for concurrent objects built on top of message-passing dis-
tributed systems was first introduced by Lamport [28]5 under the notion of state
machine replication. (See also [8,44,47,48] for surveys on fault-tolerant state
machine replication.)

It was then addressed by Herlihy [19] in the context of concurrent objects
built on top of a read/write asynchronous crash-prone distributed system
(CARWn,t [∅]). The concurrent objects that are considered are the ones (a)
defined by a sequential specification and (b) with total operations (i.e., any
object operation returns a result; as an example, pop() on an empty stack returns
the default value ⊥).

Let PC be a progress condition. A PC-compliant universal construction is a
algorithm that, given the sequential specification of an object O (or a sequential
implementation of it), provides a concurrent implementation of O satisfying the
progress condition PC (Fig. 3).

Sequential specification

of an object Z

PC-compliant implementation

of object Z

PC-compliant
universal construction

Fig. 3. PC -compliant universal construction

Universal Concurrent Objects. Let us consider in the following the strongest
progress condition, namely wait-freedom. It is shown in [19]6 that a WF-
5 This paper received the Dijkstra Prize in 2000
6 This paper received the Dijkstra Prize in 2003
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compliant universal construction can be built from atomic read registers AND
consensus objects (Fig. 4). This is why consensus is called a universal object.

Sequential specification

of an object Z of object Z

WF-compliant implementationAtomic read/write registers

Consensus objects

Fig. 4. WF-compliant universal construction

Consensus objects are used, in a WF-compliant universal construction, to
ensure that, despite asynchrony and process crashes, the processes agree on the
sequential order in which operations on the object that is built are applied to its
internal representation. (This internal representation can be stored in the shared
memory or in the local memory of each process in the model CARWn,t [∅], or in
the local memories in of the processes in the model CAMPn,t [∅].) The important
point (as explained below) is that read/write registers alone are not sufficient
to design a WF-compliant universal construction. A tutorial-oriented survey on
such universal constructions can be found in [43].

Consensus Object. A consensus object is a one-shot concurrent object that
has a single operation, denoted propose() (one-shot means that a process invokes
propose() at most once). When a process pi invokes propose(v), we say “pi pro-
poses value v”. When its invocation terminates, pi obtains a value w, and we
say “pi decides w”. The consensus object is defined by the following properties.

– Validity. If a process decides a value, this value was proposed by a process.
– Agreement. No two processes decide different values.
– Termination. The invocation of propose() by a process that does not crash

terminates.

Validity and Agreement are safety properties. Validity relates the outputs to
the inputs, and Agreement gives its meaning to the output. Termination is a
liveness property, stating that the progress condition of a consensus object is
wait-freedom.

Consensus as a Task. The task notion was presented in Fig. 1. For ease of
exposition, let us consider binary consensus, where only the values 0 and 1 can
be proposed by the processes. We show here that consensus is a task. To this
end, we have to define the set I of input vectors, the set O of the possible output
vectors, and the mapping T () from I to O. We have the following.

– I = { all vectors of 0 and 1 }.
– O = {[0, . . . , 0], [1, . . . , 1]}.
– Let X0 = [0, . . . , 0], and X1 = [1, . . . , 1].
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• T (X0) = X0, and T (X1) = X1.
• T (any vector �= X0,X1) ∈ O.

Relations between concurrent objects and tasks are investigated in [10].

A Fundamental Impossibility Result: FLP85

The Impossibility Result. This is (one of) the most important impossibility
result(s) of distributed computing. It was first established by Fischer, Lynch,
and Paterson in 1985 (hence its name) in the context of asynchronous message-
passing systems7 (system model CAMPn,t [∅]). It was then extended to the case
of asynchronous read/write systems [30] (system model CARWn,t [∅]).

Theorem: There is no deterministic algorithm implementing a consensus
object in the system CAMPn,t [∅] or CARWn,t [∅].

It is important to notice that this impossibility holds even for t = 1, is not
related to a specific communication medium, and is independent of the domain
of the values that can be proposed. More, as expressed below, neither it is related
to the local computability power of the computing entities.

The Nature of the Impossibility Result. The following citation (from [22])
captures what makes different the nature of sequential computability (as
described for example in [18]), and the nature of distributed computability.

“In sequential systems, computability is understood through the
Church-Turing Thesis: anything that can be computed, can be computed
by a Turing Machine.

In distributed systems, where computations require coordination
among multiple participants, computability questions have a different fla-
vor. Here, too, there are many problems which are not computable, but
these limits to computability reflect the difficulty of making decisions in
the face of ambiguity, and have little to do with the inherent computational
power of individual participants.”

Universal Objects

Read/Write Registers. These objects constitute the cells of the tape of a
Turing machine, and are consequently universal in sequential computing, and
more generally, in failure-free parallel computing (as any problem that can be
solved “in parallel” can be solved sequentially). As a simple example, mutual
exclusion can solved in CARWn,t [t = 0] (read/write-based mutex algorithms are
described and analyzed in several textbooks such as [40,49]).

7 [16] This paper received the Dijkstra Prize in 2002



44 M. Raynal and J. Cao

Consensus Objects. As we have just seen, read/write registers are no longer
universal in CARWn,t [∅]. Differently, in the presence of asynchrony and crash
failures, consensus objects are universal. This means that, while not all con-
current object defined by a sequential specification can be implemented on
top of CARWn,t [∅] and CAMPn,t [t < n/2], they can in the system models
CARWn,t [CONS] and CAMPn,t [t < n/2,CONS], where CONS states that the
corresponding model is enriched with consensus objects.

Consensus Numbers in Enriched Read/Write Systems

Hardware-Provided Synchronization Operations. A lot of machines (e.g.,
multiprocessors, multicore) provide processes with specialized hardware opera-
tions, whose aim is to help programmers manage synchronization issues. Such
operations are encountered under the names Test&Set(), Compare&Swap(),
LL/SC, Fetch&Add(), etc. (For more information on these operations, the inter-
ested reader can consult textbooks such as [24,40,49]).

XX being any of the previous synchronization-oriented operation, let
CARWn,t [XX] denote the system model CARWn,t [∅] enriched with the oper-
ation XX. An important question is then the following one: from a computabil-
ity point of view, is CARWn,t [XX] stronger than CARWn,t [∅]? Given XX1 and
XX2 �= XX1, have CARWn,t [XX1] and CARWn,t [XX2] the same computability
power, or is one of them stronger than the other?

Consensus Numbers and the Consensus Hierarchy. The previous question
was posed and answered by M. Herlihy, who introduced the notion of a consensus
number of an object [19].

Let us consider an object type T . The consensus number of the objects of
type T (denoted CN (T )), is the greatest integer x, such that it is possible to
implement consensus in a system of x processes with any number of read/write
registers and objects of type T . If there is no largest x, CN (T ) = +∞.

From a universal construction point of view, the objects of type T1 are
stronger than the objects of type T2, if CN (T1) > CN(T2). This defines a
hierarchy on the “universality power” of objects in the presence of asynchrony
an crash failures. More precisely we have the following, where memory loca-
tions are considered as objects accessed by one of the previous synchronization
operations.

– The consensus number of read/write registers is 1. It follows that all the
objects that can be implemented in CARWn,t [∅] have consensus number 1.
This the case of the (non-trivial) snapshot object introduced in [1], and the
renaming object [3,9].

– The consensus number of Test&Set(), Fetch&Add(), a stack, or a queue is 2.
– Let a k-window read/write register be an object that stores only the k last

written values, and whose read operation returns this sequence of at most k
values. The consensus number of this object is exactly k [33].
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– The consensus number of Compare&Swap(), LL/SC, and a few others, is +∞.

This establishes a hierarchy on the computability power of each synchronization
operation –taken individually– provided by some machines, in the presence of
asynchrony and process crash-failures. This is important as soon as one wants
to be able to cope with failures in multicore machines.

Circumventing Consensus Impossibility in Asynchronous
Systems

The basic communication object in CAMPn,t [∅] is the uni-directional channel,
where only one process send messages, and only one other process receives mes-
sage. This object has consensus number 1. Moreover, it is not possible to enrich a
message-passing system the model with an additional operation such as the pre-
vious hardware-provided synchronization operations. This means that implement
consensus in CAMPn,t [t < n/2] requires additional assumptions of a different
nature. We examine in the following four approaches that have been proposed
to solve this issue.

Synchrony Assumptions. As consensus can be solved in a synchronous
message-passing system, a first approach consists in enriching the system model
CAMPn,t [∅] with a synchrony assumption as proposed in [13,14]8. The most
common of these assumptions is called eventual synchrony. It assumes that there
is an unknown, but finite, time τ after which the system behaves as a synchronous
system.

Failure Detectors. Failure detectors have been introduced in [11,12]9. A failure
detector is an oracle that provides each process with information on failures.
Several types of failure detector have been proposed, each with precisely defined
quality of service, formulated as a set of properties (the important point is that,
a failure detector is not defined from specific features on a distributed machine).

A failure detector can be unreliable in the sense that it can give erro-
neous information on failures. Their interest lies in the fact that, given an
object O impossible to implement in CARWn,t [∅], or CAMPn,t [∅], they allow
to state the weakest information on failures that, when added to CARWn,t [∅],
or CAMPn,t [∅], allow to implement the O.

As an example the weakest failure detector that allow to implement con-
sensus in CARWn,t [∅], or CAMPn,t [t < n/2], is denoted Ω (hence, from a
notation point of view, consensus can be implemented in CARWn,t [Ω] and
CAMPn,t [t < n/2, Ω], Ω provides each process pi with a read-only local variable
leaderi satisfying the following properties:

– Validity. For any process pi and at any time, leaderi contains a process iden-
tity (which can change with time).

8 The second of these papers received the Dijkstra Prize in 2007.
9 These papers received the Dijkstra Prize in 2010.
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– Eventual leadership. There a finite, but unknown, time τ after which the local
variables leaderi of all the processes contain forever the same process identity,
and this identity is the one of a process that does not crash.

Said differently, there is a finite anarchy period during the variables leaderi can
contain arbitrary values (e.g., each process is its own leader), after which these
local read-only variables stabilize to the same identity of a non-crashed process.

Distributed algorithms implementing Ω in message-passing systems have
been proposed (a chapter of [44] is devoted to such algorithms). Each of these
algorithms considers that the underlying system satisfies some specific behav-
ioral assumptions. For the model CARWn,t [∅], an algorithm implementing Ω
from very weak synchrony additional assumptions, is described in [15].

Conditions. The condition-based approach to solve asynchronous consensus
consists in identifying subsets of input vectors, such that if the actual input
vector belongs to the considered subset, consensus can be solved. Such a subset
is called a t-legal condition. If adding another vector to the condition makes it
not t-legal, the condition is maximal.

Let dist(I1, I2) be the Hamming distance between the input vectors I1 and
I2 (number of entries in which they differ), and equal(a, I) be the number of
entries of I whose value is a. It is shown in [34] that a subset of input vectors C
is a t-legal condition if there is a function h() : C �→ V (where V is the set values
that can be proposed, in our case V = {0, 1}) such that

– ∀I ∈ C : equal(h(I), I) > t,
– ∀I1, I2 ∈ C :

(
h(I1) �= h(I2)

) ⇒ (
dist(I1, I2) > t

)
.

The intuition that underlies the condition-based approach is the following.
Given a condition C, each of its input vectors allows a proposed value to be
selected as the decided value. This value is extracted from the input vector with
the function h(), i.e., h(I) is the value decided from I. When looking at the
definition of t-legality, the first item states that, to be decided, a value must be
“present enough” in the input vector, while the second item states that input
vectors from which different values are decided must be “enough far apart” to
prevent ambiguity. A relation linking the consensus condition-based approach
and error-correcting code was established in [17].

An example of a condition is the one that favors the most present value in
the input vector. Given an input vector I, let first(I) be its most frequent value,
second(I) its second most frequent value, and let equal(second(I), I) = 0 when I
contains a single value. This condition C is defined as follows.

C = {I such that
(
equal(first(I), I) − equal(second(I), I)

)
> t}.

Randomization. The use of random oracles to build a consensus object was
introduced in the early eighties in [6,38]10. Considering binary consensus, each
10 These papers received the Dijkstra Prize in 2015.



A Pleasant Stroll Through the Land of Distributed Machines 47

process can invoke a function denoted random() which returns each of 0 and 1
with probability 1/2.

The termination property of consensus has to be slightly modified to take
into account randomization. The corresponding algorithms are round-based, and
the termination property becomes: the probability that a process that does not
crash decides by round r tends to 1 when r tends to +∞. So, from a randomized
algorithm point of view, these consensus algorithms are Las Vegas algorithms.

A randomized binary consensus algorithm has been recently proposed for
Byzantine message-parsing systems in [32], which is optimal in the number of
messages exchanged at every round (O(n2)), the expected number of rounds
(O(n2)), and t-resilience (t < n/3). This algorithm also tolerates an adversary
which can read the content of the messages, and controls their delivery order
according to their values. (In a Byzantine system, a process not only may crash,
but may also behave arbitrarily). A reduction of multivalued consensus to binary
consensus, suited to Byzantine message-passing systems has been recently pro-
posed in [36], which requires t < n/3, a constant number of communication
steps (each requiring n2 messages). Let us notice that, due the fact that its
non-determinism cannot be anticipated, randomization seems an appropriate
approach to cope with Byzantine processes.

Complexity vs Computability

Computability and complexity are the two lenses that allows us to understand
and master computing. The following table presents the main issues encountered
in distributed computing, when considering these lenses. (The interested reader
will find more developments in distributed computing theory-oriented textbooks
such as [4,20,37,40,49]).

Synchronous Asynchronous

Failure-free Complexity Complexity

Failure-prone Complexity Computability

A special thanks to J. Durand-Lose for his careful reading of a draft of this
article.
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Abstract. We introduce new possibilities to control the application of
rules based on the preceding application of rules which can be defined
for a general model of sequential grammars and we show some similar-
ities with other control mechanisms such as graph-controlled grammars
and matrix grammars with and without appearance checking, as well as
grammars with random context conditions. Using both activation and
blocking of rules, in the string and in the multiset case we can show com-
putational completeness of context-free grammars equipped with the con-
trol mechanism of activation and blocking of rules even when using only
two nonterminal symbols. With one- and two-dimensional #-context-free
array grammars, computational completeness can already be obtained by
only using activation of rules.

1 Introduction

Nearly thirty years ago, the monograph on regulated rewriting by Dassow and
Păun [2] already gave a first comprehensive overview on many concepts of regu-
lated rewriting, especially for the string case. Yet as it turned out later, many of
the mechanisms considered there for guiding the application of productions/rules
can also be applied to other objects than strings, e.g., to n-dimensional arrays
[4]. Even in the field of P systems [9,13] where mostly multisets are considered,
such regulating mechanisms were used [1]. As exhibited in [5], for comparing
the generating power of grammars working in the sequential derivation mode,
many relations between various regulating mechanisms can be established in a
very general setting without any reference to the underlying objects the rules are
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working on, using a general model for graph-controlled, programmed, random-
context, and ordered grammars of arbitrary type based on the applicability of
rules.

In the following section, we recall some notions from formal language theory
as well as the main definitions of the general framework for sequential grammars
elaborated in [5]. Then we define the new concept of activation and blocking of
rules based on the applicability of rules within this general framework for regu-
lated rewriting. In Sect. 3 some general results for sequential grammars using the
control mechanism of activation or activation and blocking of rules are estab-
lished. Specific results on computational completeness for strings, multisets, and
arrays as underlying objects then are shown in Sect. 4. In Sect. 5 we establish
our main results for strings and multisets showing that context-free (string and
multiset) grammars with activation and blocking of rules are computationally
complete even when only two non-terminal symbols are used, which establishes
a sharp border as one non-terminal symbol is not sufficient. Finally, a summary
of the shown results and some future research topics extending the notions and
results established in this paper are given in Sect. 6.

2 Definitions

After some preliminaries from formal language theory, we define our general
model for sequential grammars and recall some notions for string, array, and
multiset grammars in the general setting of this paper. Then we formulate the
models of graph-controlled, programmed, matrix grammars with and without
appearance checking, as well as random-context grammars, based on the appli-
cability of rules.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N0, and
the set of positive integers (natural numbers) by N. An alphabet V is a finite
non-empty set of abstract symbols. Given V , the free monoid generated by V
under the operation of concatenation is denoted by V ∗; the elements of V ∗ are
called strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by V +.
Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol
ai in x is denoted by |x|ai

; the Parikh vector associated with x with respect to
a1, ..., an is

(|x|a1
, ..., |x|an

)
. The Parikh image of a language L over {a1, ..., an}

is the set of all Parikh vectors of strings in L, and we denote it by Ps (L). For
a family of languages FL, the family of Parikh images of languages in FL is
denoted by PsFL.

A finite multiset over the finite alphabet V , V = {a1, ..., an}, is a mapping
f : V −→ N0 and represented by 〈f (a1) , a1〉 ... 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, ..., an is (f (a1) , ..., f (an)). In
the following we will not distinguish between a vector (m1, ...,mn) , its repre-
sentation by a multiset 〈m1, a1〉 ... 〈mn, an〉 or its representation by a string x
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having the Parikh vector
(|x|a1

, ..., |x|an

)
= (m1, ...,mn). Fixing the sequence of

symbols a1, ..., an in the alphabet V in advance, the representation of the mul-
tiset 〈m1, a1〉 ... 〈mn, an〉 by the string am1

1 ...amn
n is unique. The set of all finite

multisets over an alphabet V is denoted by V ◦.
For more details of formal language theory the reader is referred to the mono-

graphs and handbooks in this area [2,11].

2.2 A General Model for Sequential Grammars

We first recall the main definitions of the general model for sequential grammars
as established in [5], grammars generating a set of terminal objects by derivations
where in each derivation step exactly one rule is applied to exactly one object.
This does not cover rules involving more than one object – as, for example,
splicing rules – or other derivation modes – as, for example, the maximally
parallel mode considered in many variants of P systems [9].

A (sequential) grammar G is a construct (O,OT , w, P,=⇒G) where

– O is a set of objects (often an infinite set);
– OT ⊆ O is a set of terminal objects;
– w ∈ O is the axiom (start object);
– P is a finite set of rules;
– =⇒G⊆ O × O is the derivation relation of G.

We assume that each of the rules p ∈ P induces a relation =⇒p⊆ O ×O with
respect to =⇒G fulfilling at least the following conditions: (i) for each object
x ∈ O, (x, y) ∈ =⇒p for only finitely many objects y ∈ O; (ii) there exists a
finitely described mechanism as, for example, a Turing machine, which, given
an object x ∈ O, computes all objects y ∈ O such that (x, y) ∈ =⇒p. A rule
p ∈ P is called applicable to an object x ∈ O if and only if there exists at
least one object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The
derivation relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The
reflexive and transitive closure of =⇒G is denoted by ∗=⇒G.

In the following we shall consider different types of grammars depending on
the components of G (where the set of objects O is infinite, e.g., V ∗, the set of
strings over the alphabet V ), especially with respect to different types of rules
(e.g., context-free string rules). Some specific conditions on the elements of G,
especially on the rules in P , may define a special type X of grammars which
then will be called grammars of type X. The language generated by G is the set
of all terminal objects (we also assume v ∈ OT to be decidable for every v ∈ O)
derivable from the axiom, i.e.,

L (G) =
{

v ∈ OT | w
∗=⇒G v

}
.

The family of languages generated by grammars of type X is denoted by L (X).

Let G = (O,OT , w, P,=⇒G) be a grammar of type X. If for every G of type
X we have OT = O, then X is called a pure type, otherwise it is called extended ;
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X is called strictly extended if for any grammar G of type X, w /∈ OT and for
all x ∈ OT , no rule from P can be applied to x.

In many cases, the type X of the grammar allows for one or even both of the
following features:

A type X of grammars is called a type with unit rules if for every grammar
G = (O,OT , w, P,=⇒G) of type X a grammar G′ =

(
O,OT , w, P ∪ P (+),=⇒G′

)

of type X exists such that =⇒G ⊆ =⇒G′ and

– P (+) =
{
p(+) | p ∈ P

}
,

– for all x ∈ O, p(+) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(+) is applicable to x, the application of p(+) to x yields x

back again.

A type X of grammars is called a type with trap rules if for every grammar
G = (O,OT , w, P,=⇒G) of type X a grammar G′ =

(
O,OT , w, P ∪ P (−),=⇒G′

)

of type X exists such that =⇒G ⊆ =⇒G′ and

– P (−) =
{
p(−) | p ∈ P

}
,

– for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

2.3 Specific Types of Objects

String Grammars. In the general notion as defined above, a string grammar
GS is represented as (

(N ∪ T )∗
, T ∗, w, P,=⇒P

)

where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, w ∈ (N ∪ T )+, P is a finite set of rules of the form u → v
with u ∈ V ∗ (for generating grammars, u ∈ V +) and v ∈ V ∗ (for accepting
grammars, v ∈ V +), with V := N ∪ T ; the derivation relation for u → v ∈ P
is defined by xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the well-known
derivation relation =⇒GS

for the string grammar GS . In the following, we shall
also use the common notation GS = (N,T,w, P ) instead, too. We remark that,
usually, the axiom w is supposed to be a non-terminal symbol, i.e., w ∈ V \ T ,
and is called the start symbol.

As special types of string grammars we consider string grammars with arbi-
trary rules and context-free rules of the form A → v with A ∈ N and v ∈ V ∗.
The corresponding types of grammars are denoted by ARB an CF , thus yielding
the families of languages L (ARB), i.e., the family of recursively enumerable lan-
guages (also denoted by RE), as well as L (CF ), i.e., the family of context-free
languages, respectively. Observe that the types ARB and CF are types with
unit rules and trap rules (for p = w → v ∈ P , we can take p(+) = w → w and
p(−) = w → F where F /∈ T is a new symbol – the trap symbol).

We refer to [5] where some examples for string grammars of specific types
illustrating the expressive power of this general framework are given.
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Array Grammars. We now introduce the basic notions for n-dimensional
arrays and array grammars, for example, see [4,10,12].

Let d ∈ N. Then a d-dimensional array A over an alphabet V is a func-
tion A : Z

d → V ∪ {#}, where shape (A) =
{
v ∈ Z

d | A (v) �= #
}

is finite
and # /∈ V is called the background or blank symbol. We usually write A =
{(v,A (v)) | v ∈ shape (A)}.

The set of all d-dimensional arrays over V is denoted by V ∗d. The empty
array in V ∗d with empty shape is denoted by Λd. Moreover, we define V +d =
V ∗d \ {Λd}.

Let v ∈ Z
d, v = (v1, . . . , vd). The translation τv : Z

d → Z
d is defined by

τv (w) = w + v for all w ∈ Z
d, and for any array A ∈ V ∗d we define τv (A), the

corresponding d-dimensional array translated by v, by (τv (A)) (w) = A (w − v)
for all w ∈ Z

d. The vector (0, . . . , 0) ∈ Z
d is denoted by Ωd.

A d-dimensional array rule p over V is a triple (W,A1,A2), where W ⊆ Z
d

is a finite set and A1 and A2 are mappings from W to V ∪ {#} such that
shape (A1) �= ∅. We say that the array B2 ∈ V ∗d is directly derivable from the
array B1 ∈ V ∗d by the d-dimensional array rule (W,A1,A2), i.e., B1 =⇒p B2,
if and only if there exists a vector v ∈ Z

d such that B1 (w) = B2 (w) for all
w ∈ Z

d \ τv (W ) as well as B1 (w) = A1 (τ−v (w)) and B2 (w) = A2 (τ−v (w)) for
all w ∈ τv (W ), i.e., the subarray of B1 corresponding to A1 is replaced by A2,
thus yielding B2. In the following, we shall also write A1 → A2, because W is
implicitly given by the finite arrays A1,A2.

A d-dimensional array grammar GA is represented as
(
(N ∪ T )∗d

, T ∗d, {(v0, S)} , P,=⇒GA

)
where

– N is the alphabet of non-terminal symbols;
– T is the alphabet of terminal symbols, N ∩ T = ∅;
– {(v0, S)} is the start array (axiom) with S ∈ N and v0 ∈ Z

d;
– P is a finite set of d-dimensional array rules over V , V := N ∪ T ;
– =⇒GA

is the derivation relation induced by the array rules in P according to
the explanations given above, i.e., for arbitrary B1,B2 ∈ V ∗d, B1 =⇒GA

B2 if
and only if there exists a d-dimensional array rule p = (W,A1,A2) in P such
that B1 =⇒p B2.

A d-dimensional array rule p = (W,A1,A2) in P is called #-context-free,
if shape (A1) = {Ωd} and A1 (Ωd) ∈ N . A d-dimensional array grammar is
said to be of type d-ARBA, d-#-CFA if every array rule in P is of the corre-
sponding type, i.e., an arbitrary and #-context-free d-dimensional array rule,
respectively. The corresponding families of d-dimensional array languages of
type X are denoted by L (X), i.e., L (d-ARBA) and L (d-#-CFA) are the fami-
lies of recursively enumerable and #-context-free d-dimensional array languages,
respectively.

Observe that the types d-ARBA and d-#-CFA are types with unit rules
and trap rules – for p = (W,A1,A2), we can take p(+) = (W,A1,A1) and
p(−) = (W,A1,AF ) with AF (v) = F for v ∈ W , where F is a new non-terminal
symbol – the trap symbol.
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Multiset Grammars. Gm =
(
(N ∪ T )◦

, T ◦, w, P,=⇒Gm

)
is called a multiset

grammar ; N is the alphabet of non-terminal symbols, T is the alphabet of ter-
minal symbols, N ∩ T = ∅, w is a non-empty multiset over V , V := N ∪ T , and
P is a finite set of multiset rules yielding a derivation relation =⇒Gm

on the
multisets over V ; the application of the rule u → v to a multiset x has the effect
of replacing the multiset u contained in x by the multiset v. For the multiset
grammar Gm we also write (N,T,w, P,=⇒Gm

).
As special types of multiset grammars we consider multiset grammars with

arbitrary rules as well as context-free (non-cooperative) rules of the form A → v
with A ∈ N and v ∈ V ◦; the corresponding types X of multiset grammars are
denoted by mARB and mCF , thus yielding the families of multiset languages
L (X). Observe that mARB and mCF are types with unit rules and trap rules
(for p = w → v ∈ P , we can take p(+) = w → w and p(−) = w → F where F is
a new symbol – the trap symbol). Even with arbitrary multiset rules, it is not
possible to get Ps (L (ARB)) [7]:

L (mCF ) = Ps (L (CF )) � L (mARB) � Ps (L (ARB)) .

2.4 Register Machines

As a computationally complete model able to generate/accept all sets in PsRE =
Ps (L (ARB)) we use register machines/deterministic register machines:

A register machine is a construct M = (n,LM , RM , p0, h) where n, n ≥ 1, is
the number of registers, LM is the set of instruction labels, p0 is the start label,
h is the halting label (only used for the HALT instruction), and RM is a set of
(labeled) instructions being of one of the following forms:

– p : (ADD (r) , q, s) increments the value in register r and continues with the
instruction labeled by q or s,

– p : (SUB (r) , q, s) decrements the value in register r and continues the com-
putation with the instruction labeled by q if the register was non-empty,
otherwise it continues with the instruction labeled by s;

– h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s) q = s;
in this case we write p : (ADD (r) , q). Deterministic register machines can accept
all recursively enumerable sets of vectors of natural numbers with k components
using exactly k + 2 registers, for instance, see [8].

2.5 Graph-Controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a con-
struct

GGC = (G, g,Hi,Hf ,=⇒GC)

where G = (O,OT , w, P,=⇒G) is a grammar of type X; g = (H,E,K) is a
labeled graph where H is the set of node labels identifying the nodes of the
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graph in a one-to-one manner, E ⊆ H × {Y,N} × H is the set of edges labeled
by Y or N , K : H → 2P is a function assigning a subset of P to each node of
g; Hi ⊆ H is the set of initial labels, and Hf ⊆ H is the set of final labels. The
derivation relation =⇒GC is defined based on =⇒G and the control graph g as
follows: For any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if

– u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
– u = v, no p ∈ K (i) is applicable to u, and (i,N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗

GGC
(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H, then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i,N, j), then the graph-controlled grammar is said to
be without applicability checking ; the corresponding families of languages are
denoted by L (X-GC) and L (X-P ), respectively.

The notions and concepts with/without applicability checking were introduced
as with/without appearance checking in the original definition for string gram-
mars because the appearance of the non-terminal symbol on the left-hand side
of a context-free rule was checked, which coincides with checking for the appli-
cability of this rule in our general model; in both cases – applicability checking
and appearance checking – we can use the abbreviation ac.

2.6 Matrix Grammars

A matrix grammar (with applicability checking) of type X is a construct

GM = (G,M,F,=⇒GM
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, M is a finite set of
sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and F ⊆ P . For w, z ∈ O
we write w =⇒GM

z if there are a matrix (p1, . . . , pn) in M and objects wi ∈ O,
1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

– wi =⇒G wi+1 or
– wi = wi+1, pi is not applicable to wi, and pi ∈ F .

L(GM ) =
{
v ∈ OT | w =⇒∗

GM
v
}

is the language generated by GM . The
family of languages generated by matrix grammars of type X is denoted by
L (X-MATac). If the set F is empty, then the grammar is said to be with-
out applicability checking ; the corresponding family of languages is denoted by
L (X-MAT ).

Remark 1. We mention that in this paper we choose the definition where the
sequential application of the rules of the final matrix may stop at any moment.
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2.7 Random-Context Grammars

The following general notion of a random context-grammar had already been
introduced in [1,6] in a similar way before it was formulated in [5].

A random-context grammar GRC of type X is a construct (G,P ′,=⇒GRC
)

where

– G = (O,OT , w, P,=⇒G) is a grammar of type X;
– P ′ is a set of rules of the form (q,R,Q) where q ∈ P , R ∪ Q ⊆ P ;
– =⇒GRC

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRC

y if and only if for some rule (q,R,Q) ∈ P ′, x =⇒q y and, moreover,
all rules from R are applicable to x as well as no rule from Q is applicable to
x.

A random-context grammar GRC = (G,P ′,=⇒GRC
) of type X is called a

grammar with permitting contexts of type X if for all rules (q,R,Q) in P ′ we
have Q = ∅, i.e., we only check for the applicability of the rules in R. A random-
context grammar GRC = (G,P ′,=⇒GRC

) of type X is called a grammar with
forbidden contexts of type X if for all rules (q,R,Q) in P ′ we have R = ∅, i.e.,
we only check for the non-applicability of the rules in Q.

L(GRC) =
{
v ∈ OT | w =⇒∗

GRC
v
}

is the language generated by GRC . The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are
denoted by L (X-RC), L (X-pC), and L (X-fC), respectively.

2.8 Grammars with Activation and Blocking of Rules

We now define our new concept of regulating the application of rules at a specific
moment by activation and blocking relations.

A grammar with activation and blocking of rules (an AB-grammar for short)
of type X is a construct

GAB = (G,L, fL, A,B,L0,=⇒GAB
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function fL, A,B are
finite subsets of L × L × N, and L0 is a finite set of tuples of the form

(
q,Q, Q̄

)
,

q ∈ L, with the elements of Q, Q̄ being of the form (l, t), where l ∈ L and t ∈ N,
t > 1.

A derivation in GAB starts with one element
(
q,Q, Q̄

)
from L0 which means

that the rule labeled by q has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by Q as activations
of rules and Q̄ as blockings of rules have to be taken into account in addition
to the activations and blockings coming along with the application of the rule
labeled by q. The role of L0 is to get a derivation started by activating some
rule for the first step although no rule has been applied so far, but probably also
providing additional activations and blockings for further derivation steps.
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A configuration of GAB in general can be described by the object derived so
far and the activations Q and blockings Q̄ for the next steps. In that sense, the
starting tuple

(
q,Q, Q̄

)
can be interpreted as

({(q, 1)} ∪ Q, Q̄
)
, and we may also

simply write
(
Q′, Q̄

)
with Q′ = {(q, 1)} ∪ Q. We will always assume Q and Q̄ to

be non-conflicting, i.e., Q ∩ Q̄ = ∅. Given such a configuration
(
u,Q, Q̄

)
, in one

step we can derive
(
v,R, R̄

)
, and we also write

(
u,Q, Q̄

)
=⇒GAB

(
v,R, R̄

)
if and only if

– u =⇒G v using the rule r such that (q, 1) ∈ Q and (q, r) ∈ fL, i.e., we apply
the rule labeled by q activated for this next derivation step to u; the new sets
of activations and blockings are defined by

R̄ =
{
(x, i) | (x, i + 1) ∈ Q̄, i > 0

} ∪ {(x, i) | (q, x, i) ∈ B} ,
R = ({(x, i) | (x, i + 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})

\ {
(x, i) | (x, i) ∈ R̄

}

(observe that R and R̄ are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);
or

– no rule r is activated to be applied in the next derivation step; in this case
we take v = u and continue with

(
v,R, R̄

)
constructed as before provided R

is not empty, i.e., there are rules activated in some further derivation steps;
otherwise the derivation stops.

The language generated by GAB is defined by

L(GAB) =
{
v ∈ OT | (

w,Q, Q̄
)

=⇒∗
GAB

(
v,R, R̄

)
for some

(
Q, Q̄

) ∈ L0

}
.

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said
to be a grammar with activation of rules (an A-grammar for short) of type X;
the corresponding family of languages is denoted by L (X-A). Moreover, an A-
grammar is called an A1-grammar if for all (p, q, t) ∈ A we have t = 1, which
means that only the rule applied in one derivation step activates the rules which
can be applied in the next step; in this case we may only write (p, q) instead of
(p, q, 1). Moreover, in L0 we may simply list the labels of the rules to be applied
in the first step.

Example 1. Consider the string grammar GS =
(
(N ∪ T )∗

, T ∗, w, P,=⇒P

)
with

N = {A,B,C}, T = {a, b, c}, w = ABC, and the set of rules
P = {A → aA,B → bB,C → cC,A → λ,B → λ,C → λ},
as well as the A1-grammar
GA = (G,L, fL, A, L0,=⇒GA

) with
L = {pa, pb, pc, pA, pB , pC}, and, writing p : r for the pairs (p, r) in fL,
fL = {pa : A → aA, pb : B → bB, pc : C → cC}

∪ {pA : A → λ, pB : B → λ, pC : C → λ}
A = {(pa, pb) , (pb, pc) , (pc, pa) , (pc, pA) , (pA, pB) , (pB , pC)} , and

P0 = {pa, pA}
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The underlying string grammar generates the regular set {a}∗ {b}∗ {c}∗,
whereas the A1-grammar GA generates {anbncn | n ∈ N0}: starting with the
rule labeled by pa from L0, the rules corresponding to the sequence of labels
papbpc is applied n ≥ 1 times, and finally we switch to the sequence of rules
given by pApBpC whereafter no rule can be applied any more. Starting with pA
yields the empty string.

3 General Results

In this section, we elaborate some general results holding true for many types
of grammars, some even holding for any type X, whereas some of them rely on
specific conditions on X.

3.1 Matrix Grammars and A1-Grammars

Our first results show a close connection between matrix grammars without
appearance checking and A1-grammars:

Theorem 1. For any type X, L (X-MAT ) ⊆ L (X-A1).

Proof. Let GM = (G,M,F,=⇒GM
) be a matrix grammar with the under-

lying grammar G = (O,OT , w, P,=⇒G) being a grammar of type X; let
M = {(pi,1, . . . , pi,ni

) | 1 ≤ i ≤ n} with pi,j ∈ P , 1 ≤ j ≤ ni, 1 ≤ i ≤ n.

We construct the equivalent A1-grammar

GA = (G,L, fL, A, L0,=⇒GA
) ,

L = {li,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ,
fL = {(li,j , pi,j) | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ,
A = {(li,j , li,j+1) | 1 ≤ j < ni, 1 ≤ i ≤ n}

∪ {(li,ni
, lj,1) | 1 ≤ j ≤ n, 1 ≤ i ≤ n} ,

L0 = {li,1 | 1 ≤ i ≤ n} .

We mention that according to our definitions the sequential application of the
rules of the chosen matrix may stop at any moment if the next rule cannot be
applied, in which case also the simulation in the A1-grammar stops. ��

For the special cases of strings, multisets, and arrays as underlying objects,
also the reverse inclusion holds:

Theorem 2. For X ∈ {CF,mCF} ∪ {d-#-CFA | d ∈ N},

L (X-A1) ⊆ L (X-MAT ) .
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Proof. The rules in the set of rules P of the underlying sequential grammar G
in the given A1-grammar

GA = (G,L, fL, A, L0,=⇒GA
)

are labeled by elements from the set L of labels. We extend the set of non-
terminal symbols N in G to N ′ by allowing the additional symbols to store the
information which rules can be applied in the next step:

N ′ = N ∪ {〈X,M〉 | X ∈ N,M ⊆ L}.

From GA we then construct the equivalent matrix grammar

GM = (G′,M,=⇒GM
)

as follows: G′ contains N ′ instead of N as set of non-terminal symbols, and the
set of rules R′ in G′ includes all rules from G and in addition all the rules used
in the matrices described below.

– As starting matrix we use (S → 〈S,L0〉), where S is the start symbol (in G as
well as in G′). From now on, every object derived in G′ contains exactly one
symbol from {〈X,M〉 | X ∈ N,M ⊆ L} until in the last step the terminal
object is derived.

– A derivation step in G by applying the rule labeled by p with the non-terminal
symbol X on its left-hand side now is simulated in G′ by any of the matrices

(〈X,M〉 → X, r(p), Y → 〈Y,K〉).

with p ∈ M and K = {q | q ∈ L, (p, q) ∈ A} is the set of all rules enabled by
the application of the rule labeled by p in the A1-grammar GA.

In the first step, we regain the non-terminal symbol X from 〈X,M〉, then
the rule r(p), i.e., the rule labeled by p, is applied, and finally we non-
deterministically choose any non-terminal symbol Y still occurring in the
derived object to carry the information which rules can be applied in the
next step.

We finally observe that only when the application of the last rule yields a terminal
object, the final rule Y → 〈Y,K〉 cannot be applied any more, thus also ending
the derivation in the matrix grammar GM in a correct way. ��
Corollary 1. For X ∈ {CF,mCF} ∪ {d-#-CFA | d ∈ N},

L (X-MAT ) = L (X-A1) .

3.2 Random Context Grammars and AB-Grammars

For any type X with unit rules, random context grammars of type X can be
simulated by AB-grammars of type X.
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Remark 2. In order to keep proofs shorter, in the following, instead of specifying
the set of rules P , the set of labels L, and the function fL assigning rules to the
labels separately, we will only specify the corresponding labeled rules of the form
l : r with l ∈ L, r ∈ P , and (l, r) ∈ fL. Moreover, for X ∈ {A,B}, instead of
(p, q, t) ∈ X, we write (p, q, t)X .

Theorem 3. For any type X with unit rules, L (X-RC) ⊆ L (X-AB).

Proof. Let (G,R,=⇒GRC
) be a random context grammar with the underlying

grammar G = (O,OT , w, P,=⇒G) being of a type X with unit rules, where

R = {(ri, Pi, Qi) | 1 ≤ i ≤ n} , ri ∈ P, 1 ≤ i ≤ n,
Pi = {pi,j | 1 ≤ j ≤ mi, 1 ≤ i ≤ n} ,mi ≥ 0, 1 ≤ i ≤ n,
Qi = {qi,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} , ni ≥ 0, 1 ≤ i ≤ n.

Then we construct an AB-grammar GAB of type X as follows:

GAB = (G′, L, fL, A,B,L0,=⇒GA
) ,

G′ = (O,OT , w, P ′,=⇒G′) ,
P ′ = P ∪ {r+ | r ∈ P} ;
L0 = {lri | 1 ≤ i ≤ n} ;

the application of a random context rule (ri, Pi, Qi) is simulated by the following
sequence of labeled rules together with suitable activations and blockings of rules:

– lri : ri
+, (lri , lri,1)A, (lri , l̄ri,j ,mi + j)A, 1 ≤ j ≤ ni; at the beginning, the

checking of all rules which should not be applicable is initiated, and the
sequence of applicability checkings for the rules in Pi is started;

– lri,j : pi,j
+, (lri,j , lri,j+1)A, 1 ≤ j < mi;

– lri,mi
: pi,mi

+, (lri,mi
, l̂ri , ni + 1)A; when all rules in Pi have been checked

to be applicable, the application of rule ri after further ni steps is activated;
yet if any of the rules in Qi is applicable, then this application of rule ri is
blocked;

– l̄ri,j : qi,j
+, (l̄ri,j , l̂ri , ni − j + 1)B , 1 ≤ j ≤ ni;

– l̂ri : ri, (l̂ri , lrk), 1 ≤ k ≤ n; after the successful application of rule r we may
continue with trying to apply any random context rule from R.

We finally observe that only unit rules and no trap rules as in other simulations
known from [5] are needed to obtain this result. ��

3.3 AB-Grammars and Graph-Controlled Grammars

Already in [5] graph-controlled grammars have been shown to be the most pow-
erful control mechanism, and they can also simulate AB-grammars with the
underlying grammar being of any arbitrary type X.

Theorem 4. For any type X, L (X-AB) ⊆ L (X-GCac).
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Proof. Let GAB = (G′, L, fL, A,B,L0,=⇒GAB
) be an AB-grammar with the

underlying grammar G = (O,OT , w, P,=⇒G) being of any type X. Then we
construct a graph-controlled grammar GGC = (G, g,Hi,Hf ,=⇒GC) with the
same underlying grammar G. The simulation power is captured by the structure
of the control graph g = (H,E,K). The node labels in H, identifying the nodes
of the graph in a one-to-one manner, are obtained from GAB as all possible triples
of the forms

(
q,Q, Q̄

)
or

(
q̄, Q, Q̄

)
with q ∈ L and the elements of Q, Q̄ being of

the form (r, t), r ∈ L and t ∈ N such that t does not exceed the maximum time
occurring in the relations in A and B, hence, this in total is a bounded number.
We also need a special node labeled ∅, where a computation in GGC ends in any
case when this node is reached.

All nodes can be chosen to be final, i.e., Hf = H. Hi = L0 is the set of initial
labels, i.e., we start with one of the initial conditions as in the AB-grammar.

The idea behind the node
(
q,Q, Q̄

)
is to describe the situation of a configu-

ration derived in the AB-grammar where q is the label of the rule to be applied
and Q, Q̄ describe the activated and blocked rules for the further derivation steps
in the AB-grammar. Hence, as already in the definition of an AB-grammar, we
assume Q ∩ Q̄ = ∅.

Now let g(l) denote the rule r assigned to label l, i.e., (l, r) ∈ fL. Then, the
set of rules assigned to

(
q,Q, Q̄

)
is taken to be {g(q)}. The set of rules assigned

to ∅ is taken to be ∅. As it will become clear later in the proof why, the nodes(
q̄, Q, Q̄

)
are assigned the set of rules {g(l) | (l, 1) ∈ Q, l �= q}; we only take

those nodes where this set is not empty.
In node

(
q,Q, Q̄

)
, we have to distinguish between two possibilities:

– If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

R̄ =
{
(x, i) | (x, i + 1) ∈ Q̄, i > 0

} ∪ {(x, i) | (q, x, i) ∈ B} ,
R = ({(x, i) | (x, i + 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})

\ {
(x, i) | (x, i) ∈ R̄

}

(observe that R and R̄ are made non-conflicting) as well as – if it exists –
t0 := min{t | (x, t) ∈ R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node

(
p, P, P̄

)

where p ∈ {x | (x, t0) ∈ R} and

P̄ =
{
(x, i) | (x, i + t0 − 1) ∈ R̄, i > 0

}
,

P = {(x, i) | (x, i + t0 − 1) ∈ R} .

If t0 := min{t | (x, t) ∈ R} does not exist, this means that R is empty and
we have to make a Y-edge to the node ∅.

– If g(q) is not applicable to the object derived so far, we first have to check
that none of the other rules activated at this step could have been applied,
i.e., we check for the applicability of the rules in the set of rules

Ū := {g(l) | (l, 1) ∈ Q, l �= q}
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by going to the node
(
q̄, Q, Q̄

)
with a N-edge; from there no Y-edge leaves, as

this would indicate the unwanted case of the applicability of one of the rules
in Ū , but with a N-edge we continue the computation in any node

(
p, P, P̄

)

with p, P , P̄ computed as above in the first case. We observe that in case R̄
is empty, we can omit the path through the node

(
q̄, Q, Q̄

)
and directly go

to the nodes
(
p, P, P̄

)
which are obtained as follows: we first check whether

t0 := min{t | (x, t) ∈ Q, t > 1} exists or not; if not, then the computation
has to end with a N-edge to node ∅. Otherwise, a N-edge goes to every node(
p, P, P̄

)
with p ∈ {x | (x, t0) ∈ Q} and

P̄ =
{
(x, i) | (x, i + t0 − 1) ∈ Q̄, i > 0

}
,

P = {(x, i) | (x, i + t0 − 1) ∈ Q} .

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated by the
graph-controlled grammar with taking a correct path through the control graph
and finally ending in node ∅; due to this fact, we could also choose the node ∅
to be the only final node, i.e., Hf = {∅}. On the other hand, if we have made
a wrong choice and wanted to apply a rule which is not applicable, although
another rule activated at the same moment would have been applicable, we
get stuck, but the derivation simulated in this way still is a valid one in the
AB-grammar, although in most standard types X, which usually are strictly
extended ones, such a derivation does not yield a terminal object. Having taken
Hf = {∅}, such paths would not even lead to successful computations in GGC .

In any case, we conclude that the graph-controlled grammar GGC generates
the same language as the AB-grammar GAB . ��

4 Special Results for Specific Objects

4.1 Special Results for Arrays

In both the one- and the two-dimensional case, it has been shown, see [4], that
even matrix grammars without ac are sufficient to generate any recursively enu-
merable array language, i.e., for d ∈ {1, 2}, L (d-#-CFA-MAT ) = L (d-ARBA)
(the main reason for such a result is the “#-sensing” ability of the rules of type
d-#-CFA). Based on Theorem 1, we immediately infer the following result:

Theorem 5. For d ∈ {1, 2},
L (d-#-CFA-A1) = L (d-#-CFA-MAT ) = L (d-ARBA) .

4.2 Special Results for Strings

It is well-known, for example see [2], that L (CF -RC) = L (ARB). Based on
Theorem 3, we immediately infer the following result:

Theorem 6. L (CF -AB) = L (CF -RC) = L (ARB) = RE.
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4.3 Special Results for Multisets

As in the case of multisets the structural information contained in the sequence of
symbols cannot be used, arbitrary multiset rules are not sufficient for obtaining
all sets in Ps (L (ARB)). Yet we can easily show that with AB-grammars we
obtain the following:

Theorem 7. PsRE = Ps (L (ARB)) = L (mARB-AB).

Proof. It is folklore, for example see [7] and [5], that

PsRE = Ps (L (ARB)) = L (mARB-fC) = L (mARB-RC) ,

hence, by Theorem 3, we also obtain PsRE = L (mARB-AB). ��

5 Computational Completeness for Context-Free
AB-Grammars with Two Non-terminal Symbols

In this section, we state our main results for context-free string and multiset
grammars showing that computational completeness can already be obtained
with two non-terminal symbols, which result is optimal with respect to the num-
ber of non-terminal symbols.

Theorem 8. Any recursively enumerable set of strings can be generated by a
context-free AB-grammar using only two non-terminal symbols.

Proof. (Sketch) The main technical details of how to use only two non-terminal
symbols A and B for generating a given recursively enumerable language follow
the construction given in [5] for graph-controlled grammars. The most impor-
tant to be shown here is how to simulate the ADD- and SUB-instructions of
a deterministic register machine with the contents of the two working registers
being given by the number of symbols A and B; only at the end, both numbers
are zero, whereas in between, during the whole computation, at least one symbol
A or B is present. The initial string is A, and one A is also the last symbol to
be erased at the end in order to obtain a terminal string.

In the following, we use X to specify one of the two non-terminal symbols
A and B, and Y then stands for the other one. For any label p of the register
machine we use two labels p and p′. The simulations in the AB-grammar work
as follows:

– p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, q, 1)A, (p′, q′, 2)A;

– p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, s, 1)A, (p′, s′, 2)A;

in both cases, the application of the rule labeled by p blocks the rule labeled
by p′; in any case, for the next rule labeled r to be simulated, both r and r′ are
activated, again r′ following r one step later.
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For the halting label h, only the labeled rule h : A → λ is to be activated.
��

This result is optimal with respect to the number of non-terminal symbols:
as it has been shown in [3], even for graph-controlled context-free grammars one
non-terminal symbol is not enough, hence, the statement immediately follows
from Theorem 4.

We now show a similar result for multiset grammars.

Theorem 9. Any recursively enumerable set of multisets can be generated by
an AB-grammar using context-free multiset rules and only two non-terminal
symbols.

Proof. Given a recursively enumerable set of multisets L over the terminal alpha-
bet T = {a1, . . . , ak}, we can construct a register machine ML generating L in
the following way: instead of speaking of a number n in register r we use the nota-
tion ar

n, i.e., a configuration of ML is represented as a string over the alphabet
V = T ∪ {ak+1, ak+2} with the two non-terminal symbols ak+1, ak+2.

We start with one ak+1 and first generate an arbitrary multiset over T step
by step adding one element am from T and at the same time multiply the number
of symbols ak+1 by pm, where pm is the m-th prime number. At the end of this
procedure, for the multiset a1

n1 . . . ak
nk we have obtained am

nm in each register
m, 1 ≤ m ≤ k, and ak+1

p1
n1 ...pk

nk in register k+1. As for example, already shown
in [8], only using registers k + 1 and k + 2, a deterministic register machine M ′

L

simulating any number of registers by this prime number encoding can compute
starting with ak+1

p1
n1 ...pk

nk and halt if and only if a1
n1 . . . ak

nk ∈ L. Only with
halting, all registers of M ′

L are cleared to zero, i.e., we end up with only one ak+1

in ML when this deterministic register machine M ′
L has reached its halting label

h. So the last step of ML before halting is just to eliminate this last ak+1. During
the whole computation of ML, the sum of symbols ak+1 and ak+2 is greater than
zero. Hence, it only remains to show how to simulate the instructions of a register
machine, which is done in a similar way as in the preceding proof; we use X to
specify one of the two non-terminal symbols ak+1 and ak+2, and Y then stands
for the other one, i.e., X,Y ∈ {ak+1, ak+2}. For any label p of the register
machine we use two labels p and p′. The simulations in the AB-grammar work
as follows:

– a non-deterministic ADD-instruction p : (ADD(X), q, s) is simulated by
branching into two deterministic ADD-instructions even twice:
p : X → X and p′ : Y → Y with (p, p′, 1)B as well as
(p, (p,X, q), 2)A, (p, (p,X, s), 2)A, and (p′, (p, Y, q), 1)A, (p′, (p, Y, s), 1)A;
in the third step of the simulation, we already know whether X is present or
else we have to use Y ; this now allows us to simulate the four deterministic
ADD-instructions (p, α, β) : (ADD(X), β), α ∈ {X,Y }, β ∈ {q, s}, in a sim-
pler way by using the rules
(p, α, β) : α → αX
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and the activations
((p, α, β), β, 1)A, ((p, α, β), β′, 2)A;

– p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, q, 1)A, (p′, q′, 2)A;

– p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, s, 1)A, (p′, s′, 2)A;
in both cases, the application of the rule labeled by p blocks the rule labeled
by p′; in any case, for the next rule labeled r to be simulated, both r and r′

are activated, again r′ following r one step later;
– for the halting label h, only the labeled rule h : ar+1 → λ is to be activated.

When the final rule h : ar+1 → λ is applied, no further rule is activated, thus
the derivation ends yielding the multiset a1

n1 . . . ak
nk ∈ L as terminal result. ��

6 Conclusion

We have considered the concept of regulating the applicability of rules based on
the application of rules in the preceding step(s) within a very general model for
sequential grammars and compared the resulting computational power with var-
ious other control mechanisms based on the applicability of rules in the under-
lying grammar, in particular with graph-controlled and matrix grammars as
well as random context grammars. Even only using the structural features of
the sequences of applied rules, yet not taking into account the features of the
underlying objects (e.g., strings, multisets, arrays), general simulation results
are obtained. Then we also established some special computational complete-
ness results: for one- and two-dimensional array grammars, only the activation
of rules is needed when using #-context-free array rules; for strings and multisets,
both activation and blocking of rules were needed when using only context-free
rules. For computational completeness for strings or multisets with context-free
rules, only two non-terminal symbols are necessary, which is a sharp result, as
only one non-terminal symbol is not sufficient.

The concept of activation and blocking of rules can also be used when rules
are applied in parallel, which is an attractive idea for the area of P systems
where multiple variants of parallel derivation modes are common.
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Abstract. We study languages and formal power series associated to
(variants of) the Hammersley process. We show that the ordinary Ham-
mersley process yields a regular language and the Hammersley tree pro-
cess yields deterministic context-free (but non-regular) languages. For
the Hammersley interval process we show that there are two relevant
variants of formal languages. One of them leads to the same language as
the ordinary Hammersley tree process. The other one yields non-context-
free languages.

The results are motivated by the problem of studying the analog of
the famous Ulam-Hammersley problem for heapable sequences. Towards
this goal we also give an algorithm for computing formal power series
associated to the Hammersley process. We employ this algorithm to set-
tle the nature of the scaling constant, conjectured in previous work to
be the golden ratio. Our results provide experimental support to this
conjecture.

1 Introduction

The Physics of Complex Systems and Theoretical Computing have a long
and fruitful history of cooperation: for instance the celebrated Ising Model
can be studied combinatorially, as some of its versions naturally relate to
graph-theoretic concepts [20]. Methods from formal language theory have been
employed (even in papers published by physicists, in physics venues) to the
analysis of dynamical systems [13,21]. Sometimes the cross-fertilization goes in
the opposite direction: concepts from the theory of interacting particle systems
[12] (e.g. the voter model) have been useful in the analysis of gossiping proto-
cols. A relative of the famous TASEP process, the so-called Hammersley-Aldous-
Diaconis (HAD) process, has provided [1,2] the most illuminating solution to
the famous Ulam-Hammersley problem [17] concerning the scaling behavior of
the longest increasing subsequence of a random permutation.
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In this paper we contribute to the literature on investigating physical models
with discrete techniques by bringing methods based on formal language theory
(and, possibly, noncommutative formal power series) to the analysis of several
variants of the HAD process: We define formal languages (and power series)
encoding all possible trajectories of such processes, and completely determine
(the complexity of) these languages.

The main process we are concerned with was defined in combinatorially in
[9], and in more general form in [4], where it was dubbed the Hammersley tree
process. It appeared naturally in [9] as a tool to investigate a version of the
Ulam-Hammersley problem that employs the concept (due to Byers et al. [7]) of
heapable sequence, an interesting variation on the concept of increasing sequence.
Informally, a sequence of integers is heapable if it can be successively inserted
into the leaves of a (not necessarily complete) binary tree satisfying the heap
property. The Ulam-Hammesley problem for heapable sequences is open, the
scaling behavior being the subject of an intriguing conjecture (see Conjecture 19
below) involving the golden ratio [9]. Methods based on formal power series can
conceivably rigorously establish the true value of this constant. We also study
a (second) version of the Hammersley tree process, motivated by the analogue
of the Ulam-Hammersley problem for random intervals [3] (see Conjecture 20
below).

The outline of the paper is the following: In Sect. 2 we precisely specify the
systems we are interested in, and outline the results we obtain. In Sect. 3 we
discuss the combinatorial and probability-theoretic motivations of the problems
we are interested in. This section is not needed to understand the technical
details of our proofs. In Sect. 4 we prove our main result: we precisely identify the
Hammersley language for every k ≥ 1. The language turns out to be regular for
k = 1 and deterministic context-free but non-regular for k ≥ 2. The result is then
extended to (the analog of) the Hammersley process for intervals. In this case, it
turns that there are two natural ways to define the associated formal language.
The “effective” version yields the same language as in the case of permutations.
The “more useful” one yields (as we show) non-context-free languages that can
be explicitly characterized. We then proceed by presenting (Sect. 9) algorithms
for computing the power series associated to these systems. They are applied to
the problem of determining true value of scaling constant (believed to be equal
to the golden ratio) in the Ulam-Hammersley problem for heapable sequences.
In a nutshell, the experimental results tend to confirm the identity of
this constant to the golden ratio; however the convergence is slow, as the
estimates based on the formal power series computations we undertake (based
on small values of n) seem quite far from the true value. The paper concludes
(Sect. 11) with several discussions and open problems.

2 Main Definitions and Results

We are interested in the following variant of the process in [4], totally adequate
for the purpose of describing the heapability of random permutations, defined
as follows:
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Definition 1. In the process HADk, individuals appear at integer times t ≥ 1.
Each individual can be identified with a value Xt ∈ R, and is initially endowed
with k “lives”. The appearance of a new individual Xt+1 subtracts a life from
the smallest individual Xa > Xt+1 (if any) still alive at moment t.

We can describe combinatorially the evolution of process HADk in the fol-
lowing manner: each state of the system at a certain moment n can be encoded
by a word of length n over the alphabet Σk = {0, 1, . . . , k} obtained by discard-
ing the value information from particles and only record the number of lives.
Thus particles are arranged in the increasing order of values, from the smallest
to the largest.

Example 2. Consider the state sX of the system HAD2 after all particles with
values X = [5, 1, 4, 2, 3] have arrived (in this order). Then in the state sX particle
5 has 0 lives, particle 1 has two lives, particle 4 has 0 lives left, particle 2 has
two lives, particle 3 has two lives left. Consequently, the word wX encoding sX

is 22200.

Given this encoding, the dynamics of process HADk on random permutations
can be described in a completely equivalent manner as a process on words: given
word wk encoding the state of the system at moment k, we choose a random
position of wk, inserting a k there and subtract one from the first nonzero digit to
the right of the insertion place, thus obtaining the word wk+1. This first nonzero
digit need not be directly adjacent to the insertion place, but separated from it
by a block of zeros. These zeros will not be affected in the word wk+1. Figure 1
presents the snapshots of all possible trajectories of system HAD2 at moments
t = 1, 2, 3.

Example 3. If we run the process HAD2 on sequence X from Example 2, the
outcome is a multiset of particles 1, 2 and 3, each with multiplicity 2, encoded
by the word 22200.

2

21

211 220 212

22

212 221 222

Fig. 1. Words in the Hammersley tree process (k = 2). Insertions are boldfaced. Posi-
tions that lost a life at the current stage are underlined.

We are interested in the following formal power series that encodes the large-
scale evolution of process HADk, and the associated formal language:
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Definition 4. Given k ≥ 1, the Hammersley power series of order k is the
formal power series Fk ∈ N(< Σk >) defined as follows: given word w ∈ Σ∗

k ,
define Fk(w) to be the multiplicity of word w in the process HADk.

The Hammersley language of order k, Lk
H , is defined as the support of Fk,

i.e. the set of words in Σ∗
k s.t. there exists a trajectory of HADk that yields w.

Example 5. F2(212) = 2, F2(220) = 1, hence 212, 220 ∈ L2
H . On the other hand

200 �∈ L2
H , since F2(200) = 0.

Definition 6. For w ∈ Σ∗
k and a ∈ Σk, denote by |w|a the number of copies of a

in w. Given k ≥ 1, word w ∈ Σk is called k-dominant if the following inequality
holds for every z ∈ Pref(w): |z|k − ∑k−2

i=0 (k − i − 1) · |z|i > 0. We call the
left-hand side term the structural difference of word z.

Observation 1. 1-dominant words are precisely those that start with a 1. On
the other hand, 2-dominant words are those that start with a 2 and have, in any
prefix, strictly more twos than zeros.

Our main result completely characterizes the Hammersley language of
order k:

Theorem 7. For every k ≥ 1, Lk
H = {w ∈ Σ∗

k |w is k-dominant}.
Corollary 8. Language L1

H is regular. For k ≥ 2 languages Lk
H are determin-

istic one-counter languages but not regular.

In [3] we considered the extension of heapability to partial orders, including
intervals. We also noted that, just as in the case of random permutations, hea-
pability of random intervals can be analyzed using the following version of the
process HADk:

Definition 9. The interval Hammersley process with k lives is the stochastic
process defined as follows: The process starts with no particles. Particles arrive
at integer moments; they have a value in the interval (0, 1), and a number of
lives. Given the state Zn−1 of the process after step n − 1, to obtain Zn we
choose, independently, uniformly at random and with repetitions two random
reals Xn, Yn ∈ (0, 1). Then we perform the following operations:

– First a new particle with k lives and value min(Xn, Yn) is inserted.
– Then the smallest (if any) live particle whose value is higher than

max(Xn, Yn) loses one life, yielding state Zn.

The state of the process at a certain moment n comprises a record of all the real
numbers chosen along the trajectory:, (X0, Y0, . . . , Xn−1, Yn−1), even those that
do not correspond to a particle. Each number is endowed (in case it represented
a new particle) with an integer in the range 0 . . . k representing the number of
lives the given particle has left at moment n.

Just as with process HADk, we can combinatorialize the previous definition as
follows:
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Definition 10. Process HADk,INT is the stochastic process on (Σk ∪ {�})∗

defined as follows: The process starts with the two-letter word Z1 = k�. Given
the string representation Zn−1 of the process after step n − 1, we choose, inde-
pendently, uniformly at random and with repetitions two positions Xn, Yn into
string Zn−1. Xn, Yn may happen to be the same position, in which we also choose
randomly an ordering of Xn, Yn. Then we perform (see Fig. 2) the following oper-
ations:

– First, a k is inserted into Zn−1 at position min(Xn, Yn).
– Then a � is introduced in position max(Xn, Yn) (immediately after the newly

introduced k, if Xn = Yn).
– Then the smallest (if any) nonzero digit occurring after the position of

the newly inserted � loses one unit. This yields string Zn.

It turns out (see the discussion at the end of Sect. 3) that there are two
languages meaningfully associated to the process HADk,INT . The first of them
has the following definition:

Xn

·2·Zn−1 = 2 · 0 · 2 · 0 ·

Yn

min{Xn, Yn} max{Xn, Yn}

22·Zn = 2 · 0 � 1 · 0 ·

Fig. 2. Insertion in process HAD2,INT . Insertion positions are marked with a dot.
Positions affected by the insertion are in bold.

Definition 11. Denote by Lk
H,INT , called the language of the interval Hammer-

sley process, the set of words (over alphabet Σk ∪ {�}) generated by the process
HADk,INT .

The second language associated to the interval Hammersley process is defined
as follows:

Definition 12. The effective language of the interval Hammersley process,

L
k,eff
H,INT , is the set of strings in Σ∗

k obtained by deleting all diamonds from some
string in Lk

H,INT .

Despite the fact that the dynamics of process HADk,INT is quite different
from that of the ordinary process HADk (a fact that is reflected in the coefficients
of the two power series), and the conjectured scaling behavior is not at all similar
(for k ≥ 2), our next result shows that this difference is not visible on the actual
trajectories: the effective language of the Interval Hammersley process coincides
with that of the “ordinary” Hammersley tree process. Indeed, we have:
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Theorem 13. For every k ≥ 1, L
k,eff
H,INT = Lk

H = {w ∈ Σ∗
k |w is k-dominant}.

The previous result contrasts with our next theorem:

Theorem 14. For k ≥ 1 the language Lk
H,INT is not context-free.

In fact we can give a complete characterization of Lk
H,INT similar in spirit to

the one given for language Lk
H in Theorem 7:

Theorem 15. Given k ≥ 1, the language Lk
H,INT is the set of words w over

alphabet Σk ∪ {�} that satisfy the following conditions:

1. |w|� = |w|/2. In particular |w| must be even.
2. For every prefix p of w, (a) |p|� ≤ |p|/2 and (b) s(p) + (k + 1)|p|� ≥ k|p|.

Finally, we return to the power series perspective on the Ulam-Hammersley
problem for heapable sequences. We outline a simple algorithm (based on
dynamic programming) for computing the coefficients of the Hammersley power
series Fk.

Theorem 16. Algorithm ComputeMultiplicity (Fig. 3) correctly computes series
Fk.

We defer the presentation of the application of this result to Sect. 10.

Input: k ≥ 1, w ∈ Σ∗
k

Output: Fk(w)
S := 0. w = w1w2 . . . wn

if w �∈ Lk
H

return 0
if w == ‘k‘

return 1
for i in 1:n-1

if wi == k and wi+1 �= k
let r = min{l ≥ 1 : wi+l �= 0 or i + l = n + 1}
for j in 1:r-1

let z = w1 . . . wi−1wi+1 . . . wi+j−11wi+j+1 . . . wi+r . . . wn

S := S + ComputeMultiplicity(k, z)
if i + r �= n + 1 and wi+r �= k

let z = w1 . . . wi−1wi+1 . . . wi+r−1(wi+r + 1)wi+r+1 . . . wn

S := S + ComputeMultiplicity(k, z)
if wn == k

let Z = w1 . . . . . . wn−1

S := S + ComputeMultiplicity(k, z)
return S

Fig. 3. Algorithm ComputeMultiplicity(k, w)
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3 Motivation and Notations

Define Σ∞ = ∪k≥1Σk. Given x, y over Σ∞ we use notation x � y to denote the
fact that x is a prefix of y. The set of (non-empty) prefixes of x is be denoted
by Pref(x).

A k-ary (max)-heap is a k-ary tree, non necessary complete, whose nodes
have labels t[·] respecting the min-heap condition t[parent(x)] ≥ t[x]. Let
rgeq1, and let a1, b1, . . . , ar > 0 and br ≥ 0 be integers. We will use nota-
tion [a0, b0, . . . , at, bt] as a shorthand for the word 1a00b0 . . . 1ar0br ∈ Σ∗

1 (where
00 = ε, the null word).

The following combinatorial concept was introduced (for k = 2) in [7] and
further studied in [3–5,9,10,15]:

Definition 17. A sequence X = X0, . . . , Xn−1 is max k-heapable if there exists
some k-ary tree T with nodes labeled by (exactly one of) the elements of X, such
that for every non-root node Xi and parent Xj, Xj ≥ Xi and j < i. In particular
a 2-heapable sequence will simply be called heapable [7]. Min heapability is defined
similarly.

Example 18. X = [5, 1, 4, 2, 3] is max 2-heapable: A max 2-heap is displayed in
Fig. 4. On the other Y = [2, 4, 1, 3] is obviously not max 2-heapable, as 4 cannot
be a descendant of 2.

5

1 4

2 3

Fig. 4. Heap ordered tree for sequence X in Example 18.

Heapability can be viewed as a relaxation of the notion of decreasing
sequence, thus it is natural to attempt to extend to heapable sequences the
framework of the Ulam-Hammersley problem [17], concerning the scaling behav-
ior of the longest increasing subsequence (LIS) of a random permutation. This
extension can be performed in (at least) two ways, equivalent for LIS but no
longer equivalent for heapable sequences: the first way, that of studying the
length of the longest heapable subsequence, was dealt with in [7], and is reason-
ably simple: with high probability the length of the longest heapable subsequence
of a random permutation is n− o(n). On the other hand, by Dilworth’s theorem
[8] the length of the longest increasing subsequence of an arbitrary sequence
is equal to the number of classes in a partition of the original sequence into
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decreasing subsequences. Thus it is natural to call the Hammersley-Ulam prob-
lem for heapable sequences the investigation of the scaling behavior of the number
of classes of the partition of a random permutation into a minimal number of
(max) heapable subsequences. This was the approach we took in [9]. Unlike the
case of LIS, for heapable subsequences the relevant parameter (denoted in [9] by
MHSk(π)) scales logarithmically, and the following conjecture was proposed:

Conjecture 19. For every k ≥ 2 there exists λk > 0 s.t., as n → ∞, E[MHSk(π)]
ln(n)

converges to λk. Moreover λ2 = 1+
√
5

2 is the golden ratio.

The problem was further investigated in [4,5], where the existence of the
constant λk was proved. The equality of λ2 to the golden ratio is less clear:
authors of [4] claim it is slightly less than φ. Some non-rigorous, “physics-like”
arguments, in favor of the identity λ2 = φ was already outlined in [9], and
is presented in [10], together with experimental evidence. Here we bring more
convincing such evidence.

The intuition for Conjecture 19 relies on the extension from the LIS prob-
lem to heapable sequences of a correspondence between LIS and an interactive
particle system [1] called the Hammersley-Aldous-Diaconis (shortly, Hammer-
sley or HAD) process. The validity of correspondence was noted, for heapable
sequences, in [9]. The generalized process was further investigated in [4], where
it was called the Hammersley tree process.

To recover the connection with random permutations we will assume from
now on that the Xi’s in process HADk are independent random numbers in
(0, 1). The proposed value for λ2 arises from a conjectural identification of the
“hydrodynamic limit” of the Hammersley tree process (in the form of a com-
pound Poisson process).

As n → ∞ a “typical” sample word from the Hammersley process HAD2

will have approximately c0n zeros, c1n ones and ∼c2n twos, for some constants1

c0, c1, c2 > 0. Moreover, conditional on the number of zeros, ones, twos, in a typ-
ical word these digits are “uniformly mixed” throughout the sequence. Experi-
mental evidence presented in [10] seems to confirm the accuracy of this heuristic
description.

A proof of the existence of constants c0, c1, c2 was attempted in [9] based on
subadditivity (Fekete’s lemma). However, part of the proof in [9] is incorrect.
While it could perhaps be fixed using more sophisticated tools (e.g. the sub-
additive ergodic theorem [19]) than those in [9], an alternate approach involves
analyzing the asymptotic behavior of process HADk using (noncommutative)
power series ([6,18]).

Understanding and controlling the behavior of formal power series Fk may be
the key to obtaining a rigorous analysis that confirms the picture sketched above.
Though that we would very much want to accomplish this task, in this paper we
resign ourselves to a simpler, language-theoretic, version of this problem, that
of computing the associated formal language.

1 Nonrigorous computations predict that c0 = c2 =
√
5−1
2

, c1 = 3+
√
5

2
..
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The Ulam-Hammersley problem has also been studied [11] for sets of random
intervals, generated as follows: to generate a new interval In first we sample
(independently and uniformly) two random x, y from (0, 1). Then we let In

be the interval [min(x, y),max(x, y)]. In fact the problem was settled in [11],
where the scaling of LIS for sets of random intervals was determined to be
limn→∞

E[LIS(I1,...,In)]√
n

= 2√
π
.

Several results on the heapability of partial orders were proved in [3]; in par-
ticular, the greedy algorithm for partitioning a permutation into a minimal num-
ber of heapable subsequences extends to interval orders. This justifies an exten-
sion of the Ulam-Hammersley problem from increasing to heapable sequences of
intervals. Indeed, in [3] we conjectured the following scaling law:

Conjecture 20. For every k ≥ 2 there exists ck > 0 such that, if Rn is a sequence
of n random intervals then limn→∞

E[#Heapsk(Rn)]
n = ck. Moreover ck = 1

k+1 .

Remarkably, it was already noted in [3] that the connection between the
Ulam-Hammersley problem and particle systems extends to the interval setting
as well. To prove a similar result for the interval Hammersley process we need to
“combinatorialize” the process from Definition 9, that is, to replace that defini-
tion (which employs (random) real values in (0, 1)) with an equivalent stochastic
process on words.

The combinatorialization process has some technical complications with
respect to the case of permutations. Specifically, for permutations the state of
the system could be preserved, with no real loss of information by a string rep-
resenting only the number of lifelines of the given particles, but not their actual
values. This enables (as we will see below in Sect. 9) an algorithm for computing
the associated formal power series.

To accomplish a similar goal for random intervals we apparently need to
take into account the fact that at each step we choose two random numbers in
Definition 9, even though only one of them receives a particle, since the second
one influences the state of the system. Thus, the proper discretization requires
an extra symbol � (that marks the positions of real values that were generated
but in which no particle was inserted), and is accomplished as described in
Definition 10 and the language from Definition 11.

A result that was easy for the process HADk but deserves some discussion
in the case of the interval process is the following:

Proposition 21. Consider the string wn ∈ Σ∗
k obtained by taking a random

state of the Hammersley interval process with k lifelines at stage n and then
“forgetting” the particle value information (recording instead only the value
in Σk ∪ {�}). Then wn has the same distribution as a sample from process
HADk,INT at stage n.

Proof. The crux of the proof is the following

Lemma 22. The ordering of the values X0, Y0,X1, Y1, . . . , Xn−1Yn−1 inserted
in the first n steps in the Hammersley interval process (disregarding their number
of lifelines) is that of a random permutation with 2n elements.
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Proof. Xi, Yi have the same distribution, both are random uniformly distributed
variables in (0, 1). Thus to simulate HADk,INT for n steps one needs 2n random
numbers in (0,1), which yields a random permutation of size 2n.

This discussion motivates the language-theoretic study of trajectories of the
interval Hammersley process HADk,INT as well. In that respect Definition 12
seems better motivated than Definition 11. Indeed, due to the presence of dia-
monds, words in the Definition 12 are not “physical”, as diamonds do not neces-
sarily correspond to actual particles. On the other hand one can easily obtain an
algorithm (similar to the ComputeMultiplicity algorithm presented above) that
computes multiplicities for “extended words” in the process HADk,INT such
as those in the Definition 11. Hence the study of this second language is moti-
vated on pragmatic grounds, as a first step to investigating Fk,INT , the formal
power series of multiplicities in the interval Hammersley process. We defer this
investigation to the journal version of the paper.

4 Proof of the Main Result

The proof of Theorem7 proceeds by double inclusion. Inclusion “⊆” is proved
with the help of several easy auxiliary results:

Lemma 23. Every word in Lk
H starts with a k.

Proof. Follows easily by appealing to the particle view of the Hammersley pro-
cess: the particle with the smallest label x stays with k lives until the end of the
process, as no other particle can arrive to its left.

Lemma 24. Lk
H is closed under prefix.

Proof. Again we resort to the particle view of the Hammersley process: let w ∈
Lk

H be a word and u = x0 . . . xn−1 be a trajectory in [0,1] yielding w. A non-
empty prefix z of w corresponds to the restriction of u to some segment [0, l],
0 < l < 1. This restriction is a trajectory itself, that yields z.

Lemma 25. Every word in Lk
H has a positive structural difference.

Proof. Let w ∈ Lk
H and let t be a corresponding trajectory in the particle process.

Let λ be the number of times a particle arrives as a local maximum (without
subtracting a lifeline from anyone). For i = 1, . . . , k let λi be the number of time
the newly arrived particle subtracts a lifeline from a particle currently holding
exactly i lives. λ, λ1, . . . , λk ≥ 0. Moreover, λ > 0, since the largest particle does
not take any lifeline.

By counting the number of particles with i lives at the end of the process,
we infer: |z|0 = λ1, |z|1 = λ2 − λ1, · · · |z|k−1 = λk − λk−1. Finally, |z|k = λ +
∑i−2

i=0 λi.(∗)
Simple computations yield λi+1 = |z|0+. . .+|z|i, for i = 0, . . . , k−1. Relation

(*) and inequality λ > 0 yield the desired result.
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Together, Claims 23, 24 and 25 establish the fact that any word from Lk
H is k-

dominant, thus proving inclusion “⊆”. To proceed with the opposite inclusion,
for every k-dominant word w we must construct a trajectory of the process
HADk that acts as a witness for w ∈ Lk

H .
We will further reduce the problem of constructing a trajectory Tz to the

case when z further satisfies a certain simple property, explained below:

Definition 26. k-dominant word u is called critical if |u|k−
k−2∑

i=0

(k−1−i)·|u|i = 1.

The above-mentioned reduction has the following statement:

Lemma 27. Every k-dominant critical z is witnessed by some trajectory Tz.

Proof. By induction on |z|. The base case, |z| = 1, is trivial, as in this case z = k.
Inductive step: Assume the claim is true for all the critical words of length

strictly smaller than z’s. We claim that w1, the word obtained from z by deleting
the last copy of k and increasing by 1 the value of the letter immediately to the
right of the deleted letter, is critical.

Indeed, it is easy to see that the structural difference of w1 is 1. Clearly the
deleted letter could not have been the last one, otherwise deleting it would yield
a prefix of z that has structural constant equal to zero. Also clearly, the letter
whose value was modified in the previous constraint could not have been a k,
by definition, and certainly is nonzero after modification. So w1’s construction
is indeed correct. As |w1| = |z| − 1, w1 satisfies the conditions of the induction
hypothesis.

By the induction hypothesis, w1 can be witnessed by some trajectory T . We
can construct a trajectory for z by simply following T and then inserting the last
k of z into w1 in its proper position (thus also making the next letter assume
the correct value).

We now derive Theorem 7 from Lemma 27. The key observation is the follow-
ing fact: every k-dominant word z is a prefix of a critical word, e.g. z′ = z(k−2)λ

where λ = |z|k − ∑k−2
i=0 (k − i − 1) · |z|i − 1 ≥ 0.

By Lemma 27, z′ has a witnessing trajectory Tz′ . Since the existence of a
trajectory is closed under taking prefixes, Theorem 7 follows.

5 Proof of Corollary 8

Proof. For k = 1 the result is trivial, as L1
H = 1Σ∗

1 . The claim that Lk
H is a

deterministic one-counter language for k ≥ 2 follows from Theorem 7, as one can
construct a one-counter pushdown automaton Pk for the language on k-dominant
words.

The one-counter PDA has input alphabet 0, 1, 2, . . . , k. Its stack alphabet
contains two special stack symbols, the bottom symbol Z and another “counting”
symbol ∗. The transitions of Pk are informally defined as follows:
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– Pk starts with the stack consisting of the symbol Z. If the first letter is not
a k, Pk immediately rejects. Otherwise it pushes a ∗ on the stack.

– on reading any subsequent k, Pk pushes a ∗ symbol on stack.
– on reading any symbol i ∈ 1 . . . k − 2, Pk attempts to pop k − i− 1 stars from

the stack. If this ever becomes impossible (by reaching Z), Pk immediately
rejects.

– Pk ignores all k − 1 symbols, proceeding without changing the content of the
stack.

– If, while reaching the end of the word, the stack still contains a star, Pk

accepts.

To prove that Lk
H , k ≥ 2, is not regular is a simple exercise in formal lan-

guages. It involves applying the pumping lemma for regular languages to words
wk,n = kn(k−1)+10n ∈ Lk

H . We infer that for large enough n, wk,n = w1w2w3,
with w2 nonempty and consisting of k’s only, such that for every l ≥ 0,
w1w

l
2w3 ∈ Lk

H . We obtain a contradiction by letting l = 0, thus obtaining a
word z that cannot belong to Lk

H , since |z|k ≤ (k − 1)|z|0. ��

6 Proof of Theorem13

It is immediate that Lk
H ⊆ Lk,eff

H,INT . Indeed, every trajectory of the process
HADk is a trajectory of the process HADk,INT as well: simply restrict at every
stage the two particles to choose the same slot.

For the opposite inclusion we prove, by induction on |t|, that the outcome
w of every trajectory t of the interval Hammersley process belongs to Lk

H . The
case |t| = 0 is trivial, since w = k.

Definition 28. Given a word w over Σk, word z is a left translate of w if z
can be obtained from z by moving a k in w towards the beginning of w (we allow
“empty moves”, i.e. z = w).

Lemma 29. Lk
H is closed under left translates. That is, if w ∈ Lk

H and z is a
left translate of w then z ∈ Lk

H .

Proof. By moving forward a k the structural constants of all prefixes of w can
only increase. Thus if these constants are positive for all prefixes of w then they
are positive for all prefixes of z as well.

Now assume that the induction hypothesis is true for all trajectories of length
less than n. Let t be a trajectory of length n, let t′ be its prefix of length n − 1,
let w be the yield of t and z be the yield of t′. By the induction hypothesis
z ∈ Lk

H . Let y be the word obtained by applying the Hammersley process to z,
deleting a life from the same particle as the interval Hammersley process does to
z to obtain w. It is immediate that w is a left translate of y (that is because in
the interval Hammersley process we insert a particle to the left of the position
where we would in HADk). Since y ∈ Lk

H , by the previous lemma w ∈ Lk
H .
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7 Proof of Theorem14

Define the language Sk = Lk
H,INT ∩ {k}∗ �∗ {k − 1}∗�∗.

Lemma 30. Sk = {kc+d+e �c+e (k − 1)c �c+d |c, d, e ≥ 0}.
Proof. The direct inclusion is fairly simple: let w ∈ Sk. define c to be the number
of letters (k − 1) in w. Since there are no diamonds in between the (k − 1)’s,
all such letters must have been produced by removing one lifeline each by some
k’s. Thus the number of stars in between the k’s and (k − 1)’s is c + e, with e
being the number of pairs (k, �) that did not kill any particle that will eventually
become a k − 1.

On the other hand the number of k’s is obtained by tallying up c (for the
c letters that become k − 1, needing one copy of k each), e (for the pairs (k, �)
where � belongs to the first set of diamonds) and d (for d pairs (k, �) with � in
the second set of diamonds).

For the reverse implication we outline the following construction:
First we derive ke�e. Then we repeat the following strategy c times:

– We insert a k at the beginning of the k − 1 block (initially at the end of the
word) and the corresponding � at the end of the word.

– With one pair k, � (with � inserted in the first block) we turn the k into a
k − 1.

Finally we insert k pairs (k, �), with � in the second block.

The theorem now follows from the following

Lemma 31. Sk is not a context-free language.

Proof. An easy application of Ogden’s lemma: We take a string s ∈ Sk,

s = kc+d+e �c+e (k − 2)c�c+d

with c, d, e ≥ p (where p is the parameter in Ogden’s Lemma. We mark all posi-
tions of k − 1. Then s = uvwxy, with uviwxiy ∈ Sk for all i ≥ 0. The “pumping
blocks” v, x cannot consist of more than one type of symbols, otherwise the
pumped strings would fail to be a member of {k}∗ �∗ {k − 1}∗�∗.

Therefore no more than two blocks (of the four in s) get pumped. One that
definitely gets pumped is the first block of diamonds. Taking large enough i we
obtain a contradiction, since the block that fails to get pumped will eventually
have smaller length than the (pumped) first block of diamonds.

8 Proof of Theorem15

Proof. The inclusion ⊆ is easy: given w ∈ Lk
H,INT , conditions 1. and 2(a) hold, as

the process HADk
INT inserts a digit (more precisely a k) before every diamond.
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As for condition 2(b), each � takes at most one life of a particle. The total
number of lives particles in p are endowed with at their moments of birth is
k(|p| − |p|�). These lives are either preserved (and are counted by s(p)), or they
are lost, in a move which (also) introduces a � in p. Thus k(|p|−|p|�) ≤ |p|�+s(p),
which is equivalent to b.

The inclusion ⊇ is proved by induction on |w|. What we have to prove is that
every word that satisfies conditions 1–2 is an output of the process HADk,INT .

The case |w| = 2 is easy: the only word that satisfies conditions 1–2 is easily
seen to be w = k�, which can be generated in one move.

Assume now that the induction hypothesis is true for all words of lengths
strictly less than 2n, and let w = w1 . . . w2n be a word of length 2n satisfying
conditions 1–2.

Lemma 32. w2n = �.

Proof. Let p = w1 . . . w2n−1. By condition 2(a), |p|� ≤ (2n − 1)/2, hence |p|� ≤
n − 1. Since |w|� = n, the claim follows.

Lemma 33. w1 = k.

Proof. Let q = w1. Since |q|� ≤ 1/2, w1 must be a digit. Since s(q) ≥ k|q| = k,
the claim follows.

Let now r be the largest index such that wr = k. Let s be the leftmost
position s > r such that ws = �. Let t be the leftmost position t > s such that
wt �= �, t = 2n + 1 if no such position exists.

Consider the word b obtained from w by a. deleting positions wr and ws. b.
increasing the digit at position wt by one, if t �= 2n + 1. Note that, if t �= 2n + 1
then wt �= k, by the definition of index r. Also, |b| = 2n − 2 < 2n.

w is easily obtained from b by inserting a k in position r and a diamond in
position s, also deleting one lifeline from position t if t �= 2n+1. To complete the
proof we need to argue that b satisfies conditions 1–2(a), (b). Then, by induction,
b is an output of the process HADk,INT , hence so is w.

Condition 1 is easy to check, since |b| = 2n − 2, and b has exactly one � less
than w, i.e. n-1 �’s. As for 2(a)–(b), let p be a prefix of b. There are four cases:

– Case 1: 1 ≤ |p| < r: In this case p is also a prefix of w, and the result follows
from the inductive hypothesis.

– Case 2: r ≤ |p| < s − 1: In this case p = w1 . . . wr−1wr+1 . . . w|p|+1. Let
z1 = w1 . . . . . . w|p|+1 be the corresponding prefix of w.
The number of diamonds in p is equal to the number of diamonds in z1. Since
z1 does not end with a diamond (as |p| < s − 1), the number of diamonds in
z1 is equal to that of its prefix u of length |p|. By the induction hypothesis
|p|� = |u|� ≤ |u|/2 = |p|/2. So condition 2(a) holds. On the other hand
s(p) + (k + 1)|p|� = (s(z1) − k) + (k + 1)|z1|� ≥ k|z1| − k = k|p|, so 2(b) holds
as well.

– Case 3: s−1 ≤ |p| < t−2: Thus p = w1 . . . wr−1wr+1 . . . ws−1ws+1 . . . w|p|+2.
Let z2 = w1 . . . . . . w|p|+2 be the corresponding prefix of w of length |p| + 2
and z3 the prefix of w of length s − 1.
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The number of diamonds in p is equal to the number of diamonds in z2 minus
one. By the induction hypothesis, this is at most |z2|/2 − 1, which is at most
(|p| + 2)/2 − 1 = |p|/2. Thus condition 2(a) holds. Now s(p) + (k + 1)|p|� =

(s(z2) − k) + (k + 1)(|z2|� − 1) = (s(z3) − k) + (k + 1)(|z3|� + |z2| − |z3| − 1)
≥ k|z3| − k + (k + 1)(|p| + 2 − |z3| − 1) = (k + 1)(|p| + 1) − |z3| − k

= (k + 1)|p| − |z3| + 1 > k|p| + 1 + (|p| − |z3|) > k|p|

so condition 2(b) is established as well. In the previous chain of (in)equalities
we used the fact (valid by the very definition of t) that for all s ≤ i < t,
wi = �.

– Case 4: t − 2 ≤ |p| ≤ 2n: ] In this case p = w1 . . . wr−1wr+1 . . . ws−1ws+1 . . .
(wt+1) . . .. Furthermore, p ends with w|p|+2 (if |p|+2 �= t) and with w|p|+2+1
(if |p| + 2 = t). Let z4 = w1 . . . . . . w|p|+2 be the prefix of w of length |p| + 2.

– |p|� = |z4| − 1 ≤ |z4|/2 − 1 = (|p| + 2)/2 − 1 = |p|/2.
– On the other hand s(p)+(k+1)|p|� = (s(z4))−k+1)+(k+1)(|z4|−1) ≥

k|z4| − k + 1 − k − 1 = k · (|p| + 2) − 2k = k|p|.
so conditions 2(a)–(b) are proved in this last case as well.

9 Proof of Theorem16

Justifying correctness of algorithm ComputeMultiplicity is simple: a string w can
result from any string z by inserting a k and deleting one life from the closest
non-zero letter of z to its right. After insertion, the new k will be the rightmost
element of a maximal block of w of consecutive k’s. The letter it acts upon in z
cannot be a k (in w), and cannot have any letters other than zero before it.

The candidates in w for the changed letter are those letters l succeeding the
newly inserted k such that 0 ≤ l ≤ k − 1 and the only values between k and
l are zeros. Thus these candidates are the following: (a) letters in w forming
the maximal block B of zeros immediately following k (if any), and (b) The first
letter after B, provided it has value 0 to k−1. Since we are counting multiplicities
and all these words lead to distinct candidates, the correctness of the algorithm
follows.

For k = 1 the algorithm ComputeMultiplicity simplifies to a recurrence for-
mula: Indeed, in this case there are no candidates of type (b) We derive:

F1([a1, b1, . . . , as, bs]) =
∑s

i=1:
ai>1

∑
j,l≥0

j+1+l=bi

F1([a1, . . . , ai − 1, j, 1, l, ai+1, . . . , bs])

+
∑s

i=1:
ai=1

∑
j,l≥0

j+1+l=bi

F1([a1, . . . , ai−1, bi−1 + j, 1, l, ai+1, . . . , bs]) if bs > 0, otherwise

F1([a1, . . . , as, 0]) =
∑s−1

i=1:
ai>1

∑
j,l≥0

j+1+l=bi

F1([a1, . . . , ai − 1, j, 1, l, ai+1, . . . , as, 0])

+
∑s−1

i=1:
ai=1

∑
j,l≥0

j+1+l=bi

F1([a1, . . . , ai−1, bi−1 + j, 1, l, ai+1, . . . , bs]) + F1([a1, . . . , as − 1, 0]).

In spite of this, we weren’t able to solve the recurrence above and compute
the generating functions F1 or, more generally, Fk, for k ≥ 1. An inspection of
the coefficients obtained by the application of the algorithm is inconclusive: We
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w 1 10 11 100 101
F1(w) 1 1 1 1 2
w 110 111 1000 1001 1010

F1(w) 2 1 1 3 5
w 1011 1100 1101 1110 1111

F1(w) 3 5 3 3 1

w 2 21 22 211 212 220 221
F2(w) 1 1 1 1 2 1 1
w 222 2111 2112 2120 2121 2122 2201

F2(w) 1 1 3 2 3 3 1
w 2202 2210 2211 2212 2220 2221 2222

F2(w) 3 1 1 2 2 1 1

Fig. 5. The leading coefficients of formal power series (a) F1. (b) F2.

tabulated the leading coefficients of series F1 and F2, computed using the Algo-
rithm3 in Figs. 5(a) and (b) The second listing is restricted to 2-dominant strings
only. No apparent closed-form formula for the coefficients of F1, F2 emerges by
inspecting these values.

10 Application: Estimating the Value of the Scaling
Constant λ2

The computation of series F2 allows us to tabulate (for small value of n) the
values of the distribution of increments, a structural parameter whose limiting
behavior determines the value of the constant λ2 (conjectured, remember, to be
equal to 1+

√
5

2 ).

Definition 34. Let w be a word that is an outcome of the process HADk. An
increment of w is a position p in w (among the |w| + 1 possible positions: at
the beginning of w, at the end of w or between two letters of w) such that no
nonzero letters of w appear to the right of p. The number of increments of word
w is denoted by #inck(w). It is nothing but 1 plus the number of trailing zeros
of w.

Let L be an alphabet that contains Σk for some k ≥ 1. Given a word w ∈ L∗

we denote by s(w) the sum of the digit characters of w.

The fact that increments are useful in computing λ2 is seen as follows: con-
sider a word w of length n that is a sample from the HADk process. Increments
of w are those positions where the insertion of a k does not remove any life-
line, thus increasing the number of heaps in the corresponding greedy “patience
heaping” algorithm [9] by 1. If w has t increment positions then the probability
that the number of heaps will increase by one (given that the current state of
the process is w) is t/(n + 1).

What we need to show is that (as n → ∞) the mean number of positions
that are increments in a random sample w of length n tends to λk. Therefore
the probability that a new position will increase the number of heaps by 1 is
asymptotically equal to λk/(n+1). The scaling of the expected number of heaps
follows from this limit.
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Fig. 6. Probability distribution of increments, for k = 2, and n = 5, 9, 13, 1000000.

n 2 3 4 5 6 7
E[#inc2] 1.0 1.166 1.208 1.250 1.281 1.307

n 8 9 10 100 100000 1 mil
E[#inc2] 1.329 1.347 1.363 1.520 1.575 1.580

Fig. 7. The mean values of the distributions of increments.

In Fig. 6, we plot the exact probability distribution of the number of incre-
ments (from which we subtract one, to make the distribution start from zero)
for k = 2 and several small values of n. They were computed exactly by employ-
ing Algorithm 3 to exactly compute the probability of each string w, and then
computing #inc2(w). We performed this computation for 2 ≤ n ≤ 13. The
corresponding expected values are tabulated (for all values n = 2, . . . , 10) in
Fig. 7.

Unfortunately, as it turns out, the ability to exactly compute (for small
values of n) the distribution of increments does not give an accurate esti-
mate of the asymptotic behavior of this distribution, as the convergence seems
rather slow, and not at all captured by these small values of n. Indeed, to
explore the distribution of increments for large values of n, as exact compu-
tation is no longer possible, we instead resorted to sampling from the distri-
bution, by generating 10000 independent random trajectories of length n from
process HAD2, and then computing the distribution of increments of the sam-
pled outcome strings. The outcome is presented (for n = 100, 100000, 1000000,
together with some of the cases of the exact distribution) in Fig. 6. The distri-
bution of increments seems to converge (as n → ∞) to a geometric distribution
with parameter p =

√
5−1
2 ∼ 0.618 · · · . That is, we predict that for all i ≥ 1,

limn→∞ Pr|w|=n[#inc2(w) = i] = p · (1 − p)i−1. The fit between the (sampled)
estimates for n = 1000000 and the predicted limit distribution is quite good:
every coefficient differs from its predicted value by no more than 0.003, with the
exception of the fourth coefficient, whose difference is 0.007. Because of the for-
mula for computing averages, these small differences have, though, a cumulative
effect in the discrepancy for the average E[#inc2(w)] for n = 10000000 account-
ing for the 0.03 difference between the sampled value and the predicted limit: in
fact most of the difference is due to the fourth coefficient, as 4 × 0.007 = 0.028.
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Conclusion 1. The increment data supports the conjectured value λ2 = 1+p =
1+

√
5

2 .

We intend to present (in the journal version of this paper) a similar investigation
of the value of constant ck in Conjecture 20.

11 Open Questions and Future Work

The major open problems raised by our work concerns the nature and asymp-
totic behavior of formal power series Fk, Fk,INT . An easy consequence of
Corollary 8 is

Corollary 35. For k ≥ 2 formal power series Fk, Fk,INT are not N-rational.

Open Problem 1. Are formal power series F1, F1,INT N-rational? (We con-
jecture that the answer is negative).

Note that Reutenauer [16] extended the Chomsky-Schützenberger criterion
for rationality from formal languages to power series: a formal power series is
rational if and only if the so-called syntactic algebra associated to it has finite
rank. We don’t know, though, how to explicitly apply this result to the formal
power series we investigate in this paper. On the other hand, in the general
case, the characterization of context-free languages as supports of N-algebraic
series (e.g. Theorem 5 in [14]), together with Theorem14, establishes the fact
that series Fk,INT is not N-algebraic.

Open Problem 2. Are series Fk N-algebraic? (Conjecture: the answer is neg-
ative).
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Abstract. A simple semi-conditional (SSC) grammar is a form of reg-
ulated rewriting system where the derivations are controlled either by a
permitting string alone or by a forbidden string alone and is specified
in the rule. The maximum length i (j, resp.) of the permitting (for-
bidden, resp.) strings serves as a measure of descriptional complexity
known as the degree of such grammars. In addition to the degree, the
numbers of nonterminals and of conditional rules are also counted into
the descriptional complexity measures of these grammars. We improve
on some previously obtained results on computational completeness of
SSC grammars by minimizing the number of nonterminals and/or the
number of conditional rules for a given degree (i, j). More specifically,
we prove that every recursively enumerable language is generated by an
SSC grammar of (i) degree (2, 1) with at most eight conditional rules
and nine nonterminals, (ii) degree (3, 1) with at most seven conditional
rules and eight nonterminals and (iii) degree (3, 1) with at most nine
conditional rules and seven nonterminals.

Keywords: Simple semi-conditional grammars
Computational completeness · Descriptional complexity measures

1 Introduction

Context-free grammars play a vital role both in theory and practice. These
grammars were invented by Chomsky [1,2] to describe the structures of words
in sentences of natural languages. Soon, this idea was carried over to the study
of artificial languages, most notably to the first high-level programming lan-
guages; see [9]. Already in these first papers, the decisive difference between the
power of context-free grammars and that of general phrase-structure grammars
was recognized; the latter describe the class of recursively enumerable (RE)
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languages. One of the key issues in many theoretical studies is therefore the
following question: With what kind of control mechanisms, or regulations, can
a context-free grammar describe all of RE? Examples of such regulations on
context-free grammars are graph-controlled, programmed, matrix, random con-
text, scattered context and also (simple) semi-conditional grammars. Another
related issue investigated in formal language theory is the following question:
How much of the available resources (e.g., how many nonterminals) is needed to
achieve certain computability power with a given computational or, in our case,
grammatical device? We refer to [3–5] to showcase the importance and history of
nonterminal complexity for regulated context-free grammars. Another classical
measure of descriptional complexity is the number of rules of a grammar [3,18].
With semi-conditional (SC) grammars, a variant of this measure is of special
interest, counting in only the so-called conditional rules, which are the rules
that are regulated and hence not truly context-free; clearly these are the rules
which are responsible for (S)SC grammars to characterize RE [14–16,18]. This
paper deals only with SSCG and not with SCG and hence a literature survey on
non-simple semi-conditional grammars is avoided. In a nutshell, going from SCG
to SSCG seems to necessitate more resources (nonterminals, conditional rules).
Hence, none of our results puts us into a position to improve on the existing
descriptional complexity results for SCG. On the other hand, this paper improves
the existing results on the descriptional complexity measures of nontermainals,
or conditional rules or both in obtaining computational completeness of SSC.

A semi-conditional grammar is an extension of context-free grammar in which
each rule is associated with two strings called the permitting and forbidden
string. A rule can be applied to a sentential form w only if w contains the
permitting string (i.e., positive context) and does not contain the forbidden
string (i.e., negative context) as a subword. The maximal length of the permitting
string (say i) and the forbidden string (say j) constitutes the degree of the
grammar and is denoted by (i, j). A semi-conditional grammar is termed simple
(and is denoted by SSCG for short) if for each rule at most either the permitting
string or the forbidden string is present; refer to [14]. If both these control strings
are absent in a rule, then the rule is said to be an unconditional. Otherwise the
rule is termed conditional.

The descriptional complexity of an SSCG is measured by its number of non-
terminals and its number of conditional rules. It is known that even simple
semi-conditional grammars of degree (1, 1) are computationally complete, i.e.,
they characterize the family RE of recursively enumerable languages; see [11].
However, nothing is known on the nonterminal complexity in this case. Our
focus is therefore on minimizing (as much as possible) the number of nontermi-
nals and/or the number of conditional rules required by SSCG of degree (2, 1)
and (3, 1) which characterize RE. To arrive at such results, it is often helpful
to make use of other similar results and to simulate the normal forms of type-0
grammars. We refer to [8] for several normal forms of type-0 grammars provided
by Geffert.
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Table 1. Races of descriptional complexity measures of SSCG to describe RE; #CR
and #NT denote the number of conditional rules and nonterminals, respectively.

Degree (i, j) # CR # NT Reference Degree (i, j) # CR # NT Reference

(2, 1) 12 13 [15] (3, 1) 8 11 [18]

(2, 1) 10 12 [18] (3, 1) 8 9 [16]

(2, 1) 9 10 [10] (3, 1) 7 8 Theorem 2

(2, 1) 8 9 Theorem 1 (3, 1) 9 7 Theorem 3

We summarize the main results of this paper and also the previous results
from the literature, on which it improves, in Table 1. Notice that if we neglect
the number of conditional rules as a descriptional complexity aspect—especially
for Theorem 3, which is rather a trade-off result—then our results in this paper
improve on all previously published ones. Obviously, a kind of race going on—
striving for more and more succinct descriptions of RE. Here, we improve on the
existing results on nonterminals, or conditional rules or both to obtain compu-
tational completeness using SSCG; see Table 1.

A reader might wonder why the number of unconditional rules in SSCG is not
accounted for in Table 1. It does not play a role in the descriptional complexity
of SSCG, since the number of unconditional rules (S → x, 0, 0) of SSCG which
simulating a context-free rule S → x of Geffert normal form is unbounded,
because the number of context-free rules in Geffert normal form is unbounded.
Hence a bound on the number of unconditional rules in SSCG is not studied in
literature and so we follow this tradition in this paper.

Notice that this type of mechanisms can be quite tricky to handle when
it comes to reducing both the number of conditional rules and the number of
nonterminals. Quite recently, Oladele and Isah claimed in [17] that for every
recursively enumerable language, there is an SSC grammar of degree (2, 1) with
no more than six conditional productions and seven nonterminals. However,
the simulation presented in the paper is incorrect and hence we do not include
the claim of [17] in Table 1. The bug in the result is the non-context-free rules
AA → λ and BBB → λ are not properly simulated, as the simulation does not
check, e.g., that at least two A’s appear in the sentential form side-by-side.

2 Preliminaries and Definitions

In this paper it is assumed that the reader is familiar with the fundamentals
of language theory and mathematics in general. Let N denote the set of non-
negative integers. Let Σ∗ denote the free monoid generated by a finite set Σ
called the alphabet under an operation termed concatenation, where λ denotes
the unit of Σ∗, also called the empty string. Any element of Σ∗ is called a
word or string (over Σ). Any subset of Σ∗ is called a language. A word v is a
subword (or substring) of x ∈ Σ∗ if there are words u,w such that x = uvw. Let
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sub(x) ⊆ Σ∗ denote the set of all subwords of x ∈ Σ∗. Clearly, sub(x) is a finite
language. Given a word w ∈ Σ∗, |w| represents the length of w.

2.1 Semi-conditional Grammars

A semi-conditional grammar is a quadruple G = (V, T, P, S), where V is the total
alphabet, T ⊂ V is the terminal alphabet, S ∈ V \ T is the starting symbol, P
is a finite set of productions of the form (A → x, α, β) with A ∈ V \ T , x ∈ V ∗,
α, β ∈ V + ∪ {0}, where 0 �∈ V is a special symbol, intuitively meaning that the
condition is missing. We extend the length function by setting |0| = 0 for this
special symbol. The production l : (A → x, α, β) ∈ P (with label l) is said to be
conditional if α �= 0 or β �= 0, and unconditional otherwise. The string α is called
the permitting string and β is called the forbidden string, as formally explained
now. The production labeled l can be applied on a string u ∈ V ∗(V \ T )V ∗ if
and only if A ∈ sub(u) and (α ∈ sub(u) or α = 0) and (β �∈ sub(u) or β = 0).
Under these conditions, u = u1Au2 will be transformed into v = u1xu2, which
is denoted by u ⇒l v. When no confusion exists on the rule being applied we
avoid mentioning the label and we simply write u ⇒ v. The language of G is
defined as L(G) = {w ∈ T ∗ | S ⇒∗ w} , where ⇒∗ denotes the reflexive and
transitive closure of ⇒. An SSCG is said to be of degree (i, j), where i, j ∈ N,
if in every rule (A → x, α, β) of P we have |α| ≤ i and |β| ≤ j. We denote by
SSCG(i, j; p, n), a family of languages generated by SSCGs where (a) (i, j) is its
degree, (b) p is an upper bound on the number of conditional production rules
and (c) n is an upper bound on the number of nonterminals.

2.2 Geffert Normal Forms

In [8], quite a number of normal forms for type-0 grammars have been derived.
They all differ by the number of nonterminals that are used and also by the
number of non-context-free rules. We will hence speak of (n, r)-GNF to refer
to a Geffert normal form with n nonterminals and r non-context-free rules.
However, all these normal forms characterize the class of recursively enumerable
languages, or RE languages for short.

The best known normal form is the (5, 2)-GNF with nonterminals S (the
start symbol) and A,B,C,D that uses context-free rules with S as its left-hand
side; after using the context-free rules, in a second phase non-context-free erasing
rules AB → λ and CD → λ are applied to finally derive a terminal string t ∈ T ∗.
The derivation in a grammar in (5, 2)-GNF proceeds in two phases, where the
first phase splits into two stages. In phase one, stage one, rules of the form
S → uSa are used, with u ∈ {A,C}∗, a ∈ T . In stage two, rules of the form
S → uSv are used, with u ∈ {A,C}∗ and v ∈ {B,D}∗. Also, rules of the form
S → uv are available [7] that prepare the transition into phase two, where the
erasing non-context-free rules are used exclusively.

We now discuss two other normal forms of type-0 grammars due to
Geffert [8]. We summarize a list of important properties of these normal forms
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in two propositions. The properties basically follow from the constructions of
these normal forms and from what is well-known about (5, 2)-GNF.

A type-0 grammar is said to be in (4, 2)-Geffert Normal Form (in short (4, 2)-
GNF) if it has exactly four nonterminals S,A,B,C and non-context-free erasing
rules of the form AB → λ and CC → λ. This normal form is obtained from the
more classical one (using nonterminals S,A,B,C,D) by applying the morphism
A 
→ CAA, B 
→ BBC, C 
→ CA and D 
→ BC to all rules. This implies:

Proposition 1. The following properties hold for (4, 2)-GNF grammars:

1. If S ⇒∗ w, then w ∈ {CA,CAA}∗{S,CC, λ}{BC,BBC}∗T ∗.
2. No sentential form derivable in the grammar contains any of the substrings

BA, AAA, BBB, CCC.
3. If S ⇒∗ w, with w = w′t, where w′ ∈ {A,B,C}+ and t ∈ T ∗, then w′

contains a most one occurrence from {AB,CC} as a substring. This also
rules out ABCC and ABAB as substrings of sentential forms.

4. Again, the derivation proceeds in two phases, the first one split into two stages.
Only in phase two, the central part (either AB or CC) will appear.

A type-0 grammar is said to be in (4, 1)-Geffert Normal Form (in short (4, 1)-
GNF) if it has exactly four nonterminals S,A,B,C and a single non-context-
free erasing rule of the form ABC → λ. This normal form is obtained from the
more classical one (using nonterminals S,A,B,C,D) by applying the morphism
A 
→ AB, B 
→ C, C 
→ A and D 
→ BC to all rules. This implies:

Proposition 2. The following properties hold for (4, 1)-GNF grammars:

1. If S ⇒∗ w, then w ∈ {A,AB}∗{S,ABC, λ}{BC,C}∗T ∗.
2. No sentential form derivable in the grammar contains any of the substrings

CA and BBB.
3. If S ⇒∗ w, with w = w′t, where w′ ∈ {A,B,C}+ and t ∈ T ∗, then w′

contains exactly one occurrence from {ABC,AC,ABBC} as a substring. We
refer to this substring as the central part of w. Notice that only with ABC
as central part, possibly w′ ⇒∗ λ as intended in a derivation that yields a
terminal string.

4. Again, the derivation proceeds in two phases, the first one split into two stages.
Only in phase two, a central part will appear.

2.3 Changing the Order of Rule Applications

It is well-known that in a context-free grammar, two rules r1 : A → u and
r2 : B → v, with A �= B, can be applied independently on a sentential form w in
the following sense: Whenever w ⇒ w′ ⇒ w′′ by first applying r1 and then r2,
then we also have w ⇒ w̄ ⇒ w′′ by first applying r2 and then r1. In other words,
we could defer the application of r1 by first applying r2, as an application of r2
cannot render r1 inapplicable, because A �= B.

This easy argument is no longer true within regulated rewriting. However,
in the case of simple semi-conditional grammars, weaker variants of this argu-
ment still hold. For instance, if r2 : (A → u, 0, 0) is an unconditional rule
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and r1 : (B → v, α, 0) is a conditional rule, then we can defer applying r1
if A /∈ sub(Bα). Similarly, if r2 : (A → u, 0, 0) is an unconditional rule and
r1 : (B → v, 0, β) is a conditional rule with |β| = 1, then we can defer applying
r1 if A �= B and sub(u) ∩ sub(β) = {λ}. In fact, also weaker conditions would
suffice to ensure applicability; it simply has to be avoided that new forbidden
substrings are created by first applying r2. In particular, if the symbols occurring
in A and u are different from the symbols occurring in α or β, and if A �= B,
then we can defer applying r1. Clearly, this argument can also be iteratively
applied. This will allow us to argue that in certain simulations, without loss of
generality, always the unconditional rules are applied first. In particular, we can
avoid discussing derivations where a sequence of applications of unconditional
rules is interrupted by applying some conditional rules and then continuing to
apply unconditional rules. We will refer to this type of reasoning by saying by
rule-deferring arguments. This type of argument also applies under some addi-
tional conditions if r1 is a conditional rule. We will use it in many places below
to shortcut otherwise quite lengthy proofs. Let us make this more to the point
by describing the situation found in the following proofs in the form of a lemma.

Lemma 1. Assume G = (V, T, P, S) is an SSCG with all unconditional rules
being of the form (S → x, 0, 0) only, where x contains at most one occurrence
of S, and the conditional rules are either of the form (Y → y, α, 0) with S /∈
sub(Y α) or of the form (Y → y, 0, β) with |β| = 1, then we can assume (w.l.o.g.)
that any derivation S ⇒∗ w first starts by applying unconditional rules and then
ends by applying conditional rules.

Proof. Let S ⇒∗ w be a derivation of w in G. As S is the start symbol and S
does not occur in conditional rules by assumption, any such derivation starts
with a sequence of rule applications of unconditional rules. In contradiction to
our claim, we consider a derivation that then continues with some shortest pos-
sible sequence of applications of conditional rules but then again switches back
to using an unconditional rule, say, of (S → v, 0, 0). Namely, if there existed a
counter-example to our claim, then there would also exist a counter-example with
a shortest possible sequence of applications of conditional rules as postulated.
Assume that (Y → η, α, β) was the last conditional rule applied in the described
sequence. Then, our previous considerations show that we can switch the order
of said last conditional rule application and the (hitherto following) application
of (S → v, 0, 0). This contradicts the minimality of the chosen sequence of appli-
cations of conditional rules, as now (after deferring applying (Y → η, α, β)) we
have found a derivation of w with a shorter sequence of applications of condi-
tional rules, followed by the applications of unconditional rules. �

However, although this type of argument appears to be quite simple, there
are certain subtleties that should be taken care of. For instance, the reader might
have wondered why we put down the condition |β| = 1 for the forbidden context
condition β for r2 above. However, if u = λ within r2, then it could be the case
that a new forbidden context of length two or larger is created by executing r1
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before r2. As we are dealing with semi-conditional grammars of degree (i, 1) only
in this paper, this caveat is not that important to us.

3 Main Results

In this section, we present the main results of this paper stated in Table 1.

3.1 SSCG of Degree (2, 1)

In the following, we show that 9 nonterminals and 8 conditional rules are suf-
ficient to achieve computational completeness using a simple semi-conditional
grammar of degree (2, 1). This result improves on a result of Masopust [10]
(SSCG(2, 1; 9, 10) = RE) in terms of both the nonterminals and the conditional
rules, maintaining the degree. The arguments in the proof rely on a pretty exten-
sive discussion of cases, which somehow indicates that it might be difficult to
achieve further improved computational completeness results with this degree.

R1: (A → #$A′ , 0 , A′) R5: (C′ → λ , A′A′, 0)
R2: (B → B′ , 0 , B′) R6: (A′ → #, A′$ , 0)
R3: (C → C′$#, 0 , # ) R7: ($ → # , ## , 0)
R4: (B′ → A′ , B′C′, 0 ) R8: (# → λ , 0 , $)

Fig. 1. Simulating rules of SSCG(2, 1; 8, 9) for ABC → λ.

Theorem 1. For each RE language L, there is an SSCG(2, 1) with only nine
nonterminals and eight conditional rules for L, i.e., SSCG(2, 1; 8, 9) = RE.

The basic idea of the simulation of rule ABC → λ (as shown in Fig. 1) is to
first mark ABC as #$A′B′C ′$# with the first three rules and then verify that
the according replacements occurred side-by-side.

Proof. Consider some RE language L ⊆ T ∗ represented by a type-0 gram-
mar G = ({S,A,B,C}, T, P, S) in (4, 1)-GNF. G is simulated by a simple
semi-conditional grammar of degree (2, 1) G′ = (V, T, P ′, S), where V =
N ∪ {A′, B′, C ′,#, $} ∪ T and P ′ = {(S → x, 0, 0) | (S → x) ∈ P} ∪ R where R
is the set of 8 conditional rules listed in Fig. 1. Obviously, |V \ T | = 4 + 5 = 9.

We first prove that L(G) ⊆ L(G′). The intended derivations of phase one of
the given (4, 1)-GNF grammar can be simulated by the same rules (i.e., S → x)
of G′. The following shows the intended simulation of the erasing rule ABC → λ,
according to the rules presented in Fig. 1. Here, we assume that S ⇒∗ uABCvt
according to G, i.e., u ∈ {A,AB}∗, v ∈ {BC,C}∗, t ∈ T ∗.

uABCvt ⇒3 uABC ′$#vt ⇒2 uAB′C ′$#vt ⇒1 u#$A′B′C ′$#vt

⇒4 u#$A′A′C ′$#vt ⇒5 u#$A′A′$#vt ⇒6 u#$#A′$#vt

⇒6 u#$##$#vt ⇒7 u#$#4vt ⇒7 u#6vt ⇒6
8 uvt. (1)
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To prove the reverse part, i.e., L(G′) ⊆ L(G), consider a sentential form w
derivable by the simulating grammar G′ that is also derivable by the (4, 1)-
GNF grammar G. If w contains S, then on applying the unconditional rule
(S → x, 0, 0) of P ′, we could simulate the context-free rule S → x of G and
get a resultant string w′ as desired. Alternatively, we could have applied any
of the rules R1, R2, or R3 on w. As w stems from phase one of G, we know
that w = uSvt with u ∈ {A,AB}∗, v ∈ {BC,C}∗, t ∈ T ∗, see Proposition 2.
By rule-deferring arguments (Lemma 1), we can avoid discussing what might
happen if rules R1, R2 or R3 are applied on w = uSvt, as unconditional rules
have to be applied afterwards anyways to finally derive a terminal string.

Henceforth, we assume that phase one has been correctly simulated and hence
w = uSvt derived w′ = uαvt. By Proposition 2, w′ = uαvt with u ∈ {A,AB}∗,
α ∈ {ABC,AC,ABBC}, v ∈ {BC,C}∗, t ∈ T ∗, i.e., α is the central part.

Consider w′ ⇒ w1. As w′ ∈ ({A,B,C} ∪ T )∗, only rules R1, R2, or R3 are
applicable. Notice that R2 introduces B′ which never occurs in any negative
context but in R2 itself; however, it occurs in the positive context in R4. As we
need to apply R4 in order to be able to apply R5 and then possibly R6, we can
assume in our discussion that, w.l.o.g., first rule R2 was applied. Hence, w1 is
obtained from w′ by replacing any occurrence of B in w′ by B′.

Now, we consider the possibilities for w1 ⇒ w2. Looking at Fig. 1 again, it is
clear that only R1 or R3 are applicable.
Case (i): w1 ⇒1 w2. So, some occurrence of A in w1 was replaced by #$A′.
None of the rules R1, R2 or R3 is applicable any more (in particular R3 is not,
as # was introduced). As # is to the left of $, R6 is not applicable. As C ′ is not
present, R4 and R5 are not applicable. Hence, the derivation is stuck.
Case (ii): w1 ⇒3 w2. This means that some occurrence of C in w1 was replaced
by C ′$#. How could we continue for w2 ⇒ w3 now? The only rule that is possibly
applicable now is R1, turning one occurrence of A into #$A′. None of the rules
R1, R2 or R3 is applicable any more. As {A′A′, A′$} ∩ sub(w3) = ∅, neither
R5 nor R6 applies. Hence, only R4 might apply within w3 ⇒ w4, which means
that we can think of having obtained w4 from w′ by replacing the substring BC
by A′C ′$# and one occurrence of A by #$A′. Recall that we introduced the
decomposition w′ = uαvt. Now, the substring BC could be found in αv, while
an occurrence of A could be only present in uα. Looking at the possibilities
for w4 ⇒ w5, one observes that either R2 or R5 was applied. After possibly
applying R2, it can be observed that now, only (possibly) R5 is applicable,
leading us to the same string as if we had first applied R5 and then R2 (in
particular, applying R5 first would not block any possibilities for applying R2).
W.l.o.g., we can assume w4 ⇒5 w5. As R5 requires the substring A′A′ in w4, this
means that w5 was obtained from w′ = uαvt by replacing the substring ABC by
#$A′A′$#. As α ∈ {ABC,AC,ABBC}, the case α = ABC is enforced. We now
consider w5 ⇒ w6. Again, we can argue that applying R2 on w5 gives no real
progress, as the next rule that must be applied is then R6. So, we can, w.l.o.g.,
assume that w5 ⇒6 w6, as using R6 does not block R2.
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Hence, w6 = u#$A′#$#vt or w6 = u#$#A′$#vt. No rule is applicable in
the former case and hence in the latter case, we look at w6 ⇒ w7 now. We can
either apply R2 or R6. Again, some rule-deferring argument applies, so that we
can assume that w6 ⇒6 w7 = u#$##$#vt without loss of generality. Now, on
w7, rules R1, R2 or R7 apply. While the application of R2 is independent of
the other two and may hence be deferred (see Cases A and B), this is not true
for a possible application of R1, because this rule application introduces a new
occurrence of $ in particular, and applying R7 then gives a new situation, as in
particular this newly introduced occurrence of $ can now vanish again, which
is not possible in a situation where R7 is not applicable. An application of R7
replaces one occurrence of $ by #, leading to three possible results. Alterna-
tively, we could first apply R7 on w7 and then R1 to the resulting string, which
is studied in Case A below. Now, or alternatively later, R2 might apply, so that
again we could defer this application; see Case B and consider only the case
when R7 is applied on w7; see Case C.

Case A: We have to apply some thoughts if there is some occurrence of
A within u of w7 = u#$##$#vt that can be turned into #$A′ to get
u1#$A′u2#$##$#vt = w8. On w8, either R2 or R7 would apply. As the order of
application of rules can be swapped, it is sufficient to consider only the case when
R7 is applied; applying R2 is discussed in Case B below. This leads to w8 ⇒3

7 w11

with w11 = u1##A′u2#6vt. Apart from applying R2 now (which can be again
deferred to Case B), only R8 is applicable which yields w11 ⇒8

8 w19 = u1A
′u2vt.

For further continuation of derivation, see Case B below when α = β = λ.
Case B: Applying R2 on w′′ = u1αA′u2βvt where α ∈ {#$,##, λ} and
β ∈ {#$##$#,#4$#,#$#4,#6, λ}.
In Case A discussions, we see that the application of R2 in each step is possible
only if we assume that u2 = Bu′

2 or that u2β = λ and v = Bv′. Applying R2
under these assumptions, we get w′

1 = u1αA′B′u′
2βvt or w′

1 = u1αA′B′v′t. No
other rule application is possible except applying R4 in the latter case which
yields the same as the former case when α = u′

2β = λ and v = Cv′. Now,

w′
1 = u1A

′B′Cv′t ⇒3 u1A
′B′C ′$#v′t ⇒4 u1A

′A′C ′$#v′t
⇒5 u1A

′A′$#v′t ⇒2
6 u1##$#v′t ⇒7 u1####v′t ⇒4

8 u1v
′t (2)

This derivation is possible only when, in w6, AB ∈ sub(u), v = Cv′ or
A ∈ sub(u), v = BCv′. When the central part of w6 vanishes, the u and v
parts merge and this leads to another occurrence of ABC in the center. Equa-
tion (2) shows the simulation of ABC → λ of this newly occurred ABC which is
allowed. One might wonder whether R1 can be applied on some A in sub(u1) in
the penultimate step in Eq. (2). Such an R1 application will disable any further
rule application since there is a # after u1. This acts like a (right) guard and
particularly A′# is not a permitted string to apply any rule.

Case C: w7 = u#$##$#vt ⇒7 w8.
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In this case, either w8 = u#$####vt or w8 = u####$#vt. In either case,
rules R1, R2 or R8 are applicable. By a rule-deferring argument, we assume that
we prefer applying R7 over applying R1 or R2. Applying R7 on either possible
variant of w8, we get w9 = u######vt. Again by a rule-deferring argument,
we can assume to apply R8, specifically, apply R8 repeatedly for six times on w9

to get w15. In other words, w9 ⇒6
8 w15 = uvt. Obviously, w′ ⇒∗ w15 corresponds

to applying the deletion rule ABC → λ once on w′, and this is in fact the
intended simulation. Finally, observe that the deferred applications of R1 or R2
in these discussions correspond to the discussions of Case (i) (and another rule-
deferring argument given before) that also proves that this line of continuation
would get stuck. By induction, L(G′) ⊆ L(G). �

As an illustration of the work of the previous construction, assume that
w = AABABCCBCab (i.e., w = (A(AB(ABC)C)BC)ab) could be derived
using phase one of the Geffert normal form grammar. Clearly, our simulating
grammar can derive w as well, using unconditional rules only. Now, we could
terminate (using a sequence of 15 rule applications simulating ABC → λ, here
emphasized by underlining, as detailed in Eq. (1)) with

w = AABABCCBCab ⇒15 AABCBCab ⇒15 ABCab ⇒15 ab .

Alternatively, using the variation explained in Cases A and B above, we could
derive ab as follows. Here, writing ⇒7 refers to the first seven derivations
in Eq. (1) and writing ⇒10 refers to Eq. (2) which corresponds to applying
A′B′C → λ.

w = AABABCCBCab ⇒7 AAB#$##$#CBCab ⇒1

A#$A′B#$##$#CBCab ⇒3
7 A##A′B#6CBCab ⇒8

8

AA′BCBCab ⇒2 AA′B′CBCab ⇒10 ABCab ⇒15 ab.

In the following, we show that the central parts AC,ABBC of (4, 1)-GNF
(according to Proposition 2) cannot be removed by the rules shown in Fig. 1.

ACab ⇒3 AC ′$#ab ⇒1 #$A′C ′$#ab.

ABBCab ⇒1 #$A′BBCab ⇒2 #$A′BB′Cab ⇒3

#$A′BB′C ′$#ab ⇒4 #$A′BA′C ′$#ab ⇒2 #$A′B′A′C ′$#ab.

According to the above discussions, none of the rules from R1 to R8 could be
applied neither on #$A′C ′$#ab (in the former case) nor on #$A′B′A′C ′$#ab
(in the latter case) and hence both the derivations get stuck.

3.2 SSCG of Degree (3, 1)

In the next theorem, we improve on the existing results in terms of both the
number of conditional rules and the number of nonterminals. In [16], Okubo
showed that each recursively enumerable language can be generated by a simple
semi-conditional grammar of degree (3, 1) with 8 conditional productions and 9
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nonterminals, based on a simulation of a type-0 grammar in (4, 1)-GNF. Okubo’s
simulation used two border markers $ and #; here we show that only one border
marker # is sufficient to achieve the desired result.

Theorem 2. For each RE language L, there is an SSCG(3, 1) with no more
than seven conditional production rules and eight nonterminals that describes L.

As with the previous result, the simulation of ABC → λ again proceeds
by first marking the central part ABC, this time as #A′B′C ′. However, with
permitting context of length three, it is far easier to verify that the three replaced
symbols A, B, C form a contiguous subword.

R1: (A → #A′, 0 , # ) R5: (B′ → λ, A′B′#, 0 )
R2: (B → B′ , 0 , B′) R6: (A′ → λ, #A′# , 0 )
R3: (C → C′ , 0 , C′) R7: (# → λ , 0 , A′)
R4: (C′ → # , A′B′C′, 0 ) r: (S → x , 0 , 0 )

Fig. 2. Simulation of ABC → λ and of S → x by SSC(3, 1; 7, 8)

Proof. We assume that the recursively enumerable language L ⊆ T ∗ is described
by some type-0 grammar G = (N,T, P, S) in (4, 1)-GNF, with N = {S,A,B,C}.
We are going to describe an SSCG(3, 1) G′ = (V, T, P ′, S) for L, with V =
N ∪{A′, B′, C ′,#}∪T . The particular non-context-free erasing rules ABC → λ
is simulated by the simple semi-conditional rules given in Fig. 2.

The intended derivations of phase one of the given (4, 1)-GNF grammar can
be simulated by the same rules (i.e., S → x) of G′. The intended simulation of
the erasing rule ABC → λ is as follows. Assume that S ⇒∗ uABCvt according
to G, i.e., u ∈ {A,AB}∗, v ∈ {BC,C}∗, t ∈ T ∗.

c uABCvt ⇒1 u#A′BCvt ⇒2 u#A′B′Cvt ⇒3 u#A′B′C ′vt

⇒4 u#A′B′#vt ⇒5 u#A′#vt ⇒6 u##vt ⇒7 u#vt ⇒7 uvt.

This shows that L(G) ⊆ L(G′).
Conversely, consider some sentential form w ∈ (N ∪T )∗ of G′. By induction,

we can assume that w is also a sentential form of G. We are going to argue
that after some further derivation steps of G′, either the derivation is stuck, or
some sentential form is produced that is also a valid sentential form in G. By
induction, this would show that L(G′) ⊆ L(G).

As w is a valid sentential form in G, it is possibly part of the derivation
taking place in phase one in this (4, 1)-GNF grammar only. If w contains S,
then on applying the unconditional rule (S → x, 0, 0) of P ′, we could simulate
the context-free rule S → x of G and get a resultant string w′. By rule-deferring
arguments, we need not discuss applying any of the rules R1, R2, or R3 on w.
As w stems from phase one of G, we know that w = uSvt with u ∈ {A,AB}∗,
v ∈ {BC,C}∗, t ∈ T ∗, see Proposition 2.
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In order to have some fruitful derivations, we assume that w = uSvt ⇒∗

w′ = uαvt where u ∈ {A,AB}∗, α ∈ {ABC,ABBC,AC}∗ is the central part,
v ∈ {BC,C}∗, t ∈ T ∗, see Proposition 2. Considering the possibilities for w′ ⇒
w1, it is clear that only rules R1, R2 or R3 are applicable. The case discussion
can be simplified based on the following claims.
Claim 1: If any of the rules R1, R2 or R3 is applied, all of them have to be
applied, one after the other, and the order of rule applications does not matter.

Namely, if w′ ⇒1 w1, then A′ is introduced. In order to eliminate A′ again
(which must be done in any terminal derivation), R6 must be applied in some
later stage. But this requires # to occur twice in the string. The second occur-
rence of # cannot been introduced by re-applying R1 and can be introduced by
R4. However, R4 requires each of A′, B′, C ′ to be present in the string, so that
all of the rules R1, R2 and R3 must have been applied before R4 can be applied.
Similarly, if w′ ⇒3 w1, then C ′ is introduced. To get rid of C ′ again, R4 has to
be used. This ensures that all of the rules R1, R2 and R3 have to be applied
before R4. Finally, if w′ ⇒2 w1, then B′ is introduced. B′ is further processed
only with R5, which requires A′ to be introduced (by applying R1), effectively
to the left of B′, and also # should be introduced. But as # is to occur to the
right of B′, it cannot be the # occurrence introduced when applying R1. Hence,
R4 had to be executed before, so that again all of the rules R1, R2 and R3
must have been applied earlier. Looking at the (negative) context conditions, it
is clear that the order of rule applications is irrelevant.
Claim 2: If any one of the rules R1, R2 or R3 are applied, then no other rules are
applicable but the mentioned ones. If two rules from R1, R2 or R3 are applied,
then again no other rules are applicable but the mentioned ones.

This claim can be easily seen by looking at the permitting context of R4, R5
and R6, which requires all of the rules R1, R2, R3 to be applied, as discussed
before. Neither R7 applies, as # (if present) sees A′ to its right.
Claim 3: On applying all of the rules R1, R2, R3 and only these, none of these
rules is applied twice.

This is seen by looking at the forbidden contexts of these rules. As a con-
sequence, after applying all of the rules R1, R2, R3 exactly once, some rule
different from these must be applied. This fact is made more precise in the
following claim.
Claim 4: After applying all of the rules R1, R2 and R3, Rule R4 has to be
applied next.

According to the previous three claims, we only need to discuss w′ ⇒1 w1 ⇒2

w2 ⇒3 w3. Hence, w3 contains exactly one occurrence of A′, B′, C ′, and of #.
This alone restricts the possible next rules to R4 and R5. But, as we have argued
above, A′B′# /∈ sub(w3). This shows the claim.

Now, reconsider the structure of w′ = uαvt, where u ∈ {A,AB}∗, α ∈
{ABC,ABBC,AC}∗ is the central part, v ∈ {BC,C}∗, t ∈ T ∗. As we have to
apply R4 on w3, A′B′C ′ ∈ sub(w3), which requires that ABC ∈ sub(w′). This
completely determines the structure of w′ that we have to consider, which is
w′ = uABCvt, which also yields that w3 = u#A′B′C ′vt. As the only applicable
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rule on w3 is R4, we arrive at w4 = u#A′B′#vt. We could now either apply R3
or apply R5. However, as w4 ⇒3 w5 does not create new permitting contexts
and as then w5 ⇒5 w6 is enforced, we can defer applying R3 now. So, we are
left with w4 ⇒5 w5. Hence, w5 = u#A′#vt. We could now apply one of R2, R3,
R6. However, as applying R2 or R3 does not create new permitting contexts
(because A′ is always missing in the correct position), we can defer applying
these rules. Therefore, we are left with w5 ⇒6 w6 = u##vt. We can now apply
R2, R3 or R7. Again, we can argue that we can defer applying R2 and R3, i.e.,
w6 ⇒7 w7 = u#vt. Once more, we can defer applying R2 and R3, so that only
w7 ⇒7 w8 = uvt. This is in fact the intended derivation.

By induction, it is true that L(G′) ⊆ L(G). �
The following result is the currently best one if we focus on the nonterminal

complexity of SSCG(3, 1), as we can bring it down to seven. However, the number
of conditional rules increases when compared to the previous theorem, and also
when compared to Okubo’s result. It is still an open question if six nonterminals
suffice in order to describe all RE languages by SSCGs.

Theorem 3. For every RE language L, there is an SSCG(3, 1) with only seven
nonterminals and 9 conditional rules describing L, i.e., SSCG(3, 1; 9, 7) = RE.

R1: (A → $1$2 , 0 , $2) R5: (C → $2$1, 0 , $2)
R2: (B → $2$3, 0 , $3) R6: (C → $3$2, 0 , $3)
R3: ($1 → $3 , $1$2$2, 0 ) R7: ($1 → $3 , $2$2$1, 0 )
R4: ($2 → λ , $3$2$2, 0 ) R8: ($2 → λ , $3$2$3, 0 )
R9: ($3 → λ , 0 , $2) r: (S → x , 0 , 0 )

Fig. 3. Simulating rules of an SSCG(3, 1; 9, 7) grammar for AB → λ, CC → λ, S → x.

The idea of this simulation already differs from the previous ones by using a
different normal form, namely, (4, 2)-GNF to start with. The effect of this mea-
sure is that we might gain on the number of nonterminals, because less context
information needs to be checked, but we lose on the number of conditional rules
compared to the previous result. One main trick is to find a simulation where
both AB → λ and CC → λ are simulated in a way that rules can be re-cycled.
Otherwise, more nonterminals and more rules would be needed.

Proof. Consider a type-0 grammar G = (N,T, P, S) in (4, 2)-GNF. We con-
struct a simple semi-conditional grammar G′ = (V, T, P ′, S) where V = N ∪
{$1, $2, $3} ∪ T and P ′ = {(S → x, 0, 0) | (S → x) ∈ P} ∪ R where R is the
set of 9 conditional rules listed in Fig. 3 such that L(G′) = L(G). Obviously the
number of nonterminals |V \ T | of G′ is seven.

We first prove L(G) ⊆ L(G′). The context-free rules S → x of G are incorpo-
rated without any context conditions into G′. The non-context-free erasing rules
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AB → λ and CC → λ are simulated by the simple semi-conditional rules given
in Fig. 3.

The intended simulations are as follows:

cAB ⇒1 $1$2B ⇒2 $1$2$2$3 ⇒3 $3$2$2$3 ⇒4 $3$2$3 ⇒8 $3$3 ⇒2
9 λ.

CC ⇒5 C$2$1 ⇒6 $3$2$2$1 ⇒7 $3$2$2$3 ⇒4 $3$2$3 ⇒8 $3$3 ⇒2
9 λ.

We first prove some properties of our grammar G′ to facilitate proving the
reverse inclusion L(G′) ⊆ L(G).
Claim 1: If w ∈ V ∗ with $1, $2, $3 /∈ sub(w), then only the unconditional rules
(S → x, 0, 0) or the rules R1, R2, R5, R6 given in Fig. 3 might apply.
Claim 2: If w ∈ V ∗ with $1, $2, $3 /∈ sub(w), and if w ⇒x w′ ⇒r w′′ using some
conditional rule given in Fig. 3, with x ∈ {1, . . . , 9}, and some unconditional
rule r in G′, then there is also a valid derivation w ⇒r v ⇒x w′′.
Proof of Claim 2: As w′ ⇒r w′′, S has to be present in w′ (and hence in w,
because none of the conditional rules ever touch S). But then, we could also first
apply r to w, arriving at v, and then v ⇒x w′′, as the applicability conditions
of none of the conditional rules can be influenced by applying an unconditional
rule in G’. By induction, this implies the following claim.
Claim 3: Any derivation S ⇒∗ w of G′ can be split, w.l.o.g., into two phases:
first, only unconditional rules are applied, and then, only conditional ones.
Claim 4: If S ⇒∗ w ∈ V ∗ with $1, $2, $3 /∈ sub(w), and if w ⇒2 w′ ⇒∗ w′′ or
w ⇒5 w′ ⇒∗ w′′ in G′, then w′′ /∈ T ∗.
Proof of Claim 4: If w ⇒2 w′ or w ⇒5 w′, then both $2 and $3 occur in w′,
each of them exactly once, but no $1 occurs. Hence, none of the rules listed in
Fig. 3 might apply. Possibly, we could apply an unconditional rule r, leading to
some string w′′. According to the proof of Claim 3, then we could re-arrange the
derivation so that we arrive at a situation where we need not consider them. In
particular, we can conclude that w′′ /∈ T ∗.

Now, consider a sentential form w derivable by a simulating grammar G′ as
well as by the (4, 2)-GNF G. According to Claim 3, we can assume that the
derivation process of G′ that we are observing is split into two phases. If w
contains S, then we are still in the first phase; on applying the unconditional
rule (S → x, 0, 0) of P ′, we simulate the context-free rule S → x of G and get a
resultant string w′ that is also derivable in G.

Alternatively, we have reached the second phase. As w is also a sentential
form of G, w = uαvt where u ∈ {CA,CAA}∗, α ∈ {λ,CC}, v ∈ {BC,BBC}∗

and t ∈ T ∗; see Proposition 1. If w ∈ T ∗, nothing has to be shown, so that we
may assume that uαv �= λ. Incidentally, also within G, we must have reached
phase two, so that only rules AB → λ or CC → λ apply. Moreover, Claims 1
and 4 together show that in G′, Rules R1 or R5 apply to make any progress,
leading to w ⇒ w′. Now either $1$2 or $2$1 is a substring of w′, but S is not, as
we are in the second phase. Therefore, if w′ ⇒ w′′, then either Rule R2 or R6 was
applied to w′. Hence, w′′ contains exactly one occurrence of $1 and of $3 and two
occurrences of $2. This means that the only applicable rules are now Rules R3,
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R4, or R7. In order to apply them, we must find three symbols from {$1, $2, $3}
occurring next to each other. This necessitates that w′ ⇒ w′′ was implemented
by replacing a B or a C next to the substring $1$2 or $2$1 of w′. In turn, this
substring corresponded to a symbol A or C in w that was replaced to obtain
w′. We are now discussing all possible different scenarios for w = xXY yt with
t ∈ T ∗, XY ∈ {A,B,C}2 and x, y ∈ {A,B,C}∗ with the idea that w′′ = xξyt,
with ξ ∈ {$1, $2, $3}4.
w ⇒1 w′ ⇒2 w′′: If X = A, then Y = B, so that w′′ = x$1$2$2$3yt. If we now
apply R4, then the derivation gets stuck. The only remaining applicable rule
would be R3, yielding w′′′ = x$3$2$2$3yt. We mark this situation as (*). Now,
only Rule 4 is applicable, then only R8 and then (only) R9 (twice), leading
to xyt, which actually corresponds to applying AB → λ as a rule in G (as
desired). Notice that on x$3$3yt, obtained after deleting $2 from w′′′ by using
R4 and then R8, we could also apply R1 or R5. But doing so, it is not possible to
produce any of the permitting substrings for rules R3, R4, R7 or R8, which would
be necessary to continue, so that this line of discussion knows no continuation.
If X = B and Y = A, then w′′ = x$2$3$1$2yt. As in particular none of the
permitting strings of rules R3, R4, R7 or R8 is a substring of w′′, the derivation
is stuck.
w ⇒1 w′ ⇒6 w′′: If X = A, then Y = C, so that w′′ = x$1$2$3$2yt. From here
on, no rule is applicable. If X = C and Y = A, then w′′ = x$3$2$1$2yt. Again,
no rule is applicable.
w ⇒5 w′ ⇒2 w′′: Assuming X = C and Y = B, we get w′′ = x$2$1$2$3yt. From
here on, no rule is applicable. If X = B and Y = C, then w′′ = x$2$3$2$1yt.
Again, no rule is applicable.
w ⇒5 w′ ⇒6 w′′: Now, X = Y = C, but still, there are two possibilities for w′′:
(a) w′′ = x$2$1$3$2yt. From here on, no rule is applicable. (b) w′′ = x$3$2$2$1yt.
Now, both Rules R4 and R7 are applicable. However, after applying R4, the
derivation is stuck. On applying R7 instead, we arrive at w′′′ = x$3$2$2$3yt, a
situation previously discussed under (*). Hence, xyt can be finally derived. Now,
w ⇒∗ xyt corresponds to applying the rule CC → λ of G to w, as desired.

By induction, the claimed inclusion L(G′) ⊆ L(G) follows. �
This concludes the presentation of our results. We assume that considering

even longer permitting contexts would help further reduce the other parameters
of descriptional complexity, but as a degree of (4, 1) was never attacked before,
we refrain from attempting this here. However, as we have seen in this paper that
going from permitting contexts of length two to permitting contexts of length
three allows us to save nonterminals and/or conditional rules, we would expect
further trade-offs when allowing for permitting contexts of length four.

4 Conclusions

Though (simple) semi-conditional grammars of degree (1, 1) are known to char-
acterize RE [11] (based on [13]), the construction of this result is not helpful to
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get any bounds on the nonterminal complexity of such systems. We pose it as an
open question to construct a (simple) semi-conditional grammars of degree (1,
1) using only (any) fixed amount of nonterminals. The problem is still open even
if we let the permitting or forbidden conditions to be sets of strings instead of
strings, which brings us into an area usually called random context grammars.

Some further concrete research questions come to mind when comparing the
results of this paper with those of the recent paper [5] that focused on gen-
eral (i.e., non-simple) semi-conditional grammars. (a) Both with degree (2, 1)
and with degree (3, 1), the number of nonterminals as well as the number of
conditional rules increases when imposing simplicity on semi-conditional gram-
mars. Is it always the case that simple semi-conditional grammars have to be
less succinct compared to the general semi-conditional case? (b) With the gen-
eral case, the nonterminal complexity could be further lowered when allowing
for an unbounded number of conditional rules. For instance, five nonterminals
are sufficient to describe any RE language with semi-conditional grammars of
degree (3, 1). No results of this type are known for SSCG. Conversely, it seems
to be open to find any non-trivial statement ruling out computational complete-
ness for (S)SCG’s with a certain (low) number of nonterminals. (c) For general
semi-conditional grammars, some results are known for degree (2, 2); see [5],
trading the length of the forbidden context for the number of conditional rules
when compared to the best results for degree (2, 1). No interesting descriptional
complexity results are known for simple semi-conditional grammars of degree (2,
2). Is there any principal reason why the length of the forbidden context should
not matter for SSCG?

Let us finally discuss two related families of grammars.

(i) If we attach only sets of forbidden words, also called forbidding sets, to the
rules of context-free grammars, then the grammar is called a generalized
forbidding grammar. In this case, an upper bound on the size of the forbid-
ding set is also taken as a (new) descriptional complexity measure. If we
denote by GFG(j, k; p, n) the family of languages generated by generalized
forbidding grammars, where j denotes the maximum length of a forbidden
string, k denotes the maximum cardinality of a forbidding set, p denotes
the number of conditional rules and n denotes the number of nonterminals,
then it is proved in [12] that each of the following classes equals RE. (A)
GFG(2, 4; 11, 10); (B) GFG(2, 6; 10, 9); (C) GFG(2,∞; 9, 8); where ∞ signals
that there is no bound on this parameter. We leave it for future study to
improve on the above-stated results of [12].

(ii) An interesting fact is that the counterpart grammars of the above, namely
generalized permitting grammars, are proved to be strictly included in the
class of context-sensitive languages; see [6]. This shows the importance of
the forbidding condition compared to the permitting condition.
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Abstract. We show that, for nondeterministic and alternating machines
with weak space bounds, the minimal space that is required for
accepting a nonregular language by real-time or one-way multicounter
automata is (log n)ε. The same space is required for two-way multicounter
automata, independent of whether they are deterministic, nondetermin-
istic, or alternating, and of whether they work with strong or weak space
bounds. On the other hand, for deterministic, nondeterministic, and
alternating machines with strong space bounds, and also for determinis-
tic machines with weak space bounds, we show that the minimal space
required for accepting a nonregular language by real-time or one-way
multicounter automata is nε. All these bounds hold both for unary and
general nonregular languages. Here ε represents an arbitrarily small—
but fixed—real positive constant; the “space” refers to the values stored
in the counters, rather than to the lengths of their binary representation.

Keywords: Space complexity · Pushdown automata
Counter automata · Real-time automata

1 Introduction and Preliminaries

The minimal amount of necessary resources is one of the fundamental research
directions in complexity theory. By the space hierarchy theorem [14], we know
that with a small increase in space s(n) we can solve new problems that could not
be solved before: if a function s2(n) grows faster than s1(n), then there exists
languages that can be accepted with space bound s2(n) but not with space
bound s1(n). (For more details and an advanced version, we refer the reader
to [8].) This holds both for (i) strong space bound s(n) that refers to the space
used by any computation path, on all inputs of length n, and for (ii) weak space
bound s(n) that refers to the minimal space that is required for an accepting
computation path, for all accepted inputs of length n. (Some other variants of
space complexity have also been considered in the literature, see [11,17,19].)

However, there is a gap between s2(n) = log log n and s1(n) = 0: each
language accepted with space below log log n is necessarily regular, and hence
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accepted with no requirements on the worktape space.1 For this reason, a work-
tape the size of which is bounded by o(log log n) is not useful. This result
was gradually improved, beginning with two-way deterministic Turing machines
with strong space bounds and ending by an argument for two-way alternat-
ing machines with weak space bounds [1,14–16]. The first nonregular language
accepted by a two-way deterministic machine using this minimal useful space,
i.e., with strong space bound O(log log n), appeared already in [14].

Moreover, unary languages need a special attention, since they may require
resources that are different from those for languages built over general (or binary)
alphabets [3,4,11,17]. This is because a recognizer, already having too little
space to remember an input head position, must also cope with the lack of
any structure along the input. The first unary nonregular language accepted
deterministically with strong space bound O(log log n) was presented in [2]. The
two-way alternating machines using O(log log n) space can actually be quite
strong, e.g., they can recognize some unary languages the binary coded versions
of which are PSPACE-complete [10].

It turns out that the minimal space bounds for one-way machines accepting
nonregular languages are different, namely [1,14]: log n for deterministic, non-
deterministic, and alternating machines with strong space bounds, and also for
deterministic machines with weak space bounds, but log log n for nondetermin-
istic and alternating machines with weak space bounds.

Also in the one-way case we do have unary nonregular witness languages
matching these lower bounds: the language {1p : p is a prime} can be accepted
by a one-way deterministic Turing machine with strong space bound O(log n) [19,
Sect. 3.1] and the language L introduced by (2) in Sect. 2, by a one-way nonde-
terministic Turing machine with weak space bound O(log log n) [4] (see [17]).

The minimal useful space resources for one-way machines do not change even
if we require a computation in real-time, by machines that move the input head
forward in each computation step. Clearly, all lower bounds presented above for
one-way machines must also hold for real-time machines. Second, these bounds
cannot be raised up: the unary nonregular witness language accepted by a real-
time deterministic (hence, also nondeterministic or alternating) Turing machine
with strong space bound O(log n) appeared in [20], the unary nonregular lan-
guage accepted by a real-time nondeterministic (hence, also alternating) machine
with weak space bound O(log log n) in [3].

Taking into account that the above bounds cannot be decreased, a natural
question arises, namely, if we cannot improve the results by the use of even
simpler computational models. For example, a machine may use a simpler kind
of memory, like a pushdown store or a finite number of counters.

Several results should be mentioned. First [3], some nonregular languages can
be accepted by two-way deterministic pushdown automata with strong space
bound O(log log n), and also by real-time nondeterministic pushdown automata
with weak space bound O(log log n). Thus, using a pushdown store instead
of a worktape does not increase the minimal useful space. Since each unary

1 Throughout the paper, log x denotes the binary logarithm of x.
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context-free language is regular [13], only unary regular languages are accepted
by one-way nondeterministic pushdown automata, but their alternating coun-
terparts can simulate any alternating machine that uses linear space [5].

Consider now one-way machines using one counter instead of a pushdown
store. We have a real-time alternating automaton recognizing a unary nonregular
language by the use of one counter with weak space bound O(log n) [3], but only
unary regular languages are accepted by one-way nondeterministic machines
using one counter, by argument that all unary context-free languages are regular.

The primary computational model studied in this paper is a real-time
automaton recognizing a unary language by the use of a finite number of coun-
ters, but several results easily extended to more powerful models.

First, we present a unary nonregular language that can be accepted by a real-
time nondeterministic automaton using four counters with weak space bound
O(log n). Then, by increasing the number of counters—but keeping the real-
time processing of the input—we reduce the weak space bound for this language
to O((log n)ε), where ε represents an arbitrarily small, but fixed, real positive
constant. Next, we show that this upper bound cannot be decreased: with weak
space bound (log n)o(1), even two-way alternating (hence, also real-time nonde-
terministic) multicounter automata can recognize only regular languages. This
gives an answer to a question stated in [20]—namely, we have shown that real-
time nondeterministic and two-way alternating multicounter automata need the
same amount of useful space (i.e., the alternation does not help here, even if a
two-way head is available). This clearly carries over to all models with compu-
tational power in between.

For completeness, we also show that O((log n)ε) is the minimal useful space
for recognizing unary nonregular languages by two-way multicounter automata,
independent of whether they are deterministic, nondeterministic, or alternating,
and of whether they work with strong or weak space bounds.

Finally, we present a unary nonregular language accepted by a real-time
deterministic automaton using two counters with strong space bound O(n1/2).
By increasing the number of counters while keeping the real-time processing, we
reduce the strong space bound for this language to O(nε). Also here the achieved
bound cannot be decreased to no(1), neither for one-way alternating (hence, nei-
ther for deterministic or nondeterministic) multicounter machines with strong
space bounds, nor for one-way deterministic multicounter machines with weak
space bounds. This improves [20, Theorem 11] that presents, for each j > 1, a
nonregular language recognized by a real-time deterministic automaton using
j counters with strong space bound O(n1/j). This result did not give a single
witness language accepted with space O(nε) at all but a sequence of languages
with decreasing space bounds and the size of input alphabets growing in j.

The bounds obtained in this paper are summarized in Table 2.
We assume the reader is familiar with the standard models of finite state

automata and pushdown automata (see, e.g., [12,15,19]).
A nondeterministic multicounter automaton is a nondeterministic machine

equipped with a finite state control, a read-only input tape, and, for some � ≥ 0,
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with � counters, containing initially zeros. The set of operations with a counter C
consists of testing its contents for zero (C ?= 0), increasing by one (C := C +
1), decreasing by one (C := C − 1), and no change (C := C). The action of
the multicounter machine depends on the current state, the symbol currently
scanned by the input head, and which of the counters contain/do not contain
zeros. In one step, the machine changes its state, moves its head at most one
position along the input tape (forward, backward, or no move), and updates its
counters, independently (increase, decrease, or no change). The computation is
aborted, if the machine tries to decrease a counter containing zero.2 Under the
space used by counter we mean the value stored in the counter.

A multicounter automaton is one-way, if it never moves its input head back-
ward, otherwise it is two-way. A two-way machine has its input enclosed in
between two endmarkers. A real-time machine is a restricted one-way variant in
which the input head moves forward in each computation step.

As usual, a given computation path is accepting, if it starts in the initial state
and halts in any accepting state. For one-way machines, acceptance requires
halting in an accepting state after reading the entire input.

A deterministic machine can be obtained from nondeterministic version by
claiming that there is allowed at most one possible transition at a time. An alter-
nating machine is obtained from nondeterministic machine by partitioning the
state set into the sets of existential and universal states, disjointedly. In the exis-
tential states, the machine chooses one from among possible executable steps,
but in the universal states it follows all possible branches in parallel. (For more
details, see, e.g., [1,5,7,9,19].)

2 Weak Space Bounds

Here we shall present the minimal space that is required for accepting a nonreg-
ular language by multicounter real-time automata with weak bounds on space.

We begin by constructing a real-time nondeterministic machine accepting a
unary nonregular language by the use of four counters, working with weak space
bound O(log n). To this aim, consider the following function:

f(n) = the smallest positive integer not dividing n.

To give an idea how the function f(n) develops, Table 1 shows some values. It
is well-known [2,6,19] that f(n) can be bounded by O(log n). For our purposes,
we shall need a more exact upper bound, derived in [3, Lemma 6]:

f(n) < 2· log n , for each n ≥ 3. (1)

2 Equivalently, the counter may be viewed as a special case of the pushdown store,
the contents of which are always in the form �Xh, where � denotes the bottom-of-
pushdown-store-endmarker.
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Table 1. Some values of function f(n).

n 0 1 2 3 4 5 6 · · · 12 · · · 60 · · · 420 · · · 840 · · ·
f(n) +∞ 2 3 2 3 2 4 <5 5 <7 7 <8 8 <9 9 · · ·

Next, consider the following unary language:

L = {1n : f(n) is not equal to a power of 2}. (2)

For the special case of n = 0, we have f(n) = +∞ and 10 ∈ L. Historically, the
complement of L was the first known unary nonregular language accepted with
only O(log log n) space, by a two-way deterministic Turing machine with strong
space bound [2]. Later, in [4] (see also [17]), it was shown that the language L
(but not its complement) can be accepted by a one-way nondeterministic Turing
machine, with the same—but weak—space bound O(log log n). Quite recently [3],
this was improved by showing that L can also be accepted by a real-time nonde-
terministic machine, still keeping the weak space bound O(log log n). Both in [4]
and in [3], the machines for L are based on the observation that, for each n > 0,

1. 1n ∈ L if and only if there exist two positive integers k and i satisfying
2i < k < 2i+1, such that n mod k �= 0 and n mod 2i = 0.

2. Moreover, if 1n ∈ L and n ≥ 3, the membership can be certified by taking
k = f(n) and 2i = 2�log k�. This gives 2i < k < 2· log n, by (1).

The conditions in (1) guarantee that 1n ∈ L, the item (2) gives an upper bound
on the values 2i and k that certify the membership in L. These properties allow
us to construct a machine for a minor modification of L:

Theorem 1. There exists a unary nonregular language—namely, L′ = L·{1},
for L introduced by (2)—accepted by a real-time nondeterministic automaton
using four counters with weak space bound O(log n).

Proof. We first present a nondeterministic machine A for L accepting in a non-
standard way, using a set of accepting configurations rather than the set of
accepting states. Then we shall replace A by A′ for L′ that accepts by classic
halting in an accepting state.

At the very beginning on the given input 1n, our nondeterministic machine A
for the language L nondeterministically chooses between n ≤ 6 and n ≥ 7.

Short inputs with n ≤ 6 are solved without using the counters at all.
Consider now the case of n ≥ 7. The recognition is based on the facts

presented by the items (1) and (2) above. That is, the machine A nondeter-
ministically guesses an integer k > 0 different from a 8 power of two, takes
2i = 2�log k�, which ensures that 2i < k < 2i+1, and checks whether the condi-
tions n mod k �= 0 and n mod 2i = 0 are satisfied. To compute the length of
the input modulo k, the machine uses two counters, denoted here by C1 and C2.
Similarly, to compute n modulo 2i, we use another two counters, C3 and C4.
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Fig. 1. The counters in the course of a computation that guesses k = 9, with 2i = 8.

Starting with counters that are all empty the main problem is the initial
assignment of values k and 2i to the counters C1 and C3, respectively, in such
a way that 2i < k < 2i+1. Recall that A should be a real-time machine and
should move its input head forward in each computation step. To make this
tricky procedure easier to follow, we shall describe manipulation with C1, C2 and
C3, C4 separately. The reader is referred to Fig. 1.

First, let us describe the work with the counters C1 and C2 which are used
to guess k > 0 and to compute the length of the input modulo k. With respect
to k, the computation is divided into two phases (see also Fig. 1, top):

First k -phase: Moving k symbols to the right along the input, A guesses an
integer k > 0 and saves this value in C1. More precisely:

– In each step, reading one symbol from the input, A increases the counter C1;
the counter C2 does not change. This is repeated in a loop, the moment of
leaving this loop is chosen nondeterministically.

That is, in each step, A nondeterministically chooses between carrying on and
leaving the first k-phase.3 Clearly, at the moment when A decides to leave this
phase, C1 = k (the number of input symbols read so far) and C2 = 0.

Second k -phase: From this moment on, the counters C1 and C2 are used to com-
pute the length of the input modulo k. This is quite straightforward, A switches
between the following two sweep modes:

– Odd sweep: reading one input symbol, A decreases C1 and increases C2. When
C1 becomes empty, A switches to even-sweep mode below.

3 An important detail is that leaving this loop is disabled, whenever C3 = 0 or C4 = 0.
This ensures that we cannot choose k be equal to a power of two—to be described
later.
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– Even sweep: reading one symbol from the input, A decreases C2 and
increases C1. When C2 = 0, A switches to odd-sweep mode.

Thus, we keep C1 + C2 = k, which ensures counting the length of the input 1n

modulo k. Clearly, when the end of the input is reached, we have C1 �= 0∧C2 �= 0
if and only if n mod k �= 0.

Second, consider the work with the counters C3 and C4. These two counters
are used to compute the length of the input modulo 2i, for 2i = 2�log k�. Counting
modulo 2i runs in parallel with counting modulo k, described above. Among
others, this means that the two procedures manipulating with C1, C2 and C3, C4

share the same input head, moving this head one position to the right in each
computation step. With respect to 2i, the computation is divided into three
phases (see Fig. 1, bottom).

First 2i-phase: After this initialization, we set C3 := 1 and C4 := 0:

– In the first two steps, reading the first two symbols from the input, A increases
C3 from 0 to 1; the counter C4 does not change.

Second 2i-phase: This involves the standard use of the counters C3 and C4 to
multiply, repeatedly, the actual value by the factor of two. This is done by
switching between the following two sweep modes:

– Odd sweep: reading two input symbols, A decreases C3 by 1 and increases C4

by 2. When C3 becomes empty, A switches to even-sweep mode below.
– Even sweep: reading two symbols in two steps, A decreases C4 by 1 and

increases C3 by 2. When C4 = 0, A switches to odd-sweep mode.

Thus, starting with C3 + C4 = 1 after the first 2i-phase and iterating this way
i sweeps, for some i > 0, we get C3 + C4 = 2i, with either C3 = 0 or C4 = 0,
depending on parity of i.

The whole process prepares to terminate when the procedure manipulating
the counters C1 and C2 (described above, running in parallel) nondeterministi-
cally decides to switch from the first k-phase to the second k-phase. This means
that the final value k has been fixed at this moment. When this happens, the
current sweep of the second 2i-phase (no matter whether it is odd or even) is
fixed as the last one, which is kept in the finite state control. The current sweep
of the second 2i-phase is still going to be completed, that is, we carry it on
until we get C3 = 0 or C4 = 0, depending on parity of i. After that, A switches
from the second 2i-phase to the third 2i-phase—to be described below. More
precisely, depending on parity of i, we switch either from the odd sweep of the
second 2i-phase to the even sweep of the third 2i-phase or, vice versa, from the
even sweep of the second 2i-phase to the odd sweep of the third 2i-phase.

Let us calculate how many symbols are read from the input in the course
of the first two 2i-phases. Let i be the total number of sweeps iterated in the
second 2i-phase—including the one in which the final value k has been fixed,
i.e., during which A switches nondeterministically from the first k-phase to the
second k-phase. It is easy to see that the second 2i-phase reads exactly

∑i−1
j=1 2j =
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2i−2 symbols in the first i−1 sweeps and exactly
∑i

j=1 2j = 2i+1−2 symbols in
the first i sweeps. Since, by Footnote 3, the machine A cannot switch from the
first k-phase to the second k-phase whenever C3 = 0 or C4 = 0, the final value
k must be fixed in the middle of the i-th sweep of the second 2i-phase. Taking
into account that exactly 2 symbols were read during the first 2i-phase, we get:

2i < k < 2i+1. (3)

This implies that the input tape segment traversed in the course of the first two
2i-phases is of length 2i+1. Using (3), it is also easy to see that 82i = 2�log k�.

Third 2i-phase: From this moment on, the counters C3 and C4 are used to com-
pute the length of the input modulo 2i. Since we have traversed 2i+1 input
symbols in the first two 2i-phases, which is an integer multiple of 2i, and the
second 2i-phase ends with C3 + C4 = 2i, with either C3 = 0 or C4 = 0 (depending
on parity of i), counting modulo 2i can be implemented in the same way as in
the second k-phase, using C3, C4 instead of C1, C2:

– Odd sweep: reading one symbol from the input, A decreases C3 and
increases C4. When C3 = 0, A switches to even-sweep mode below.

– Even sweep: reading one symbol from the input, A decreases C4 and
increases C3. When C4 = 0, A switches to odd-sweep mode.

Thus, at the end of the input, C3 = 0 ∨ C4 = 0 if and only if n mod 2i = 0.
Finally, by definition, A accepts if it reaches the end of the input

– in the second k-phase with C1 �= 0 ∧ C2 �= 0 and, at the same time,
in the third 2i-phase with C3 = 0 ∨ C4 = 0.

The above nondeterministic machine A accepts an input 1n if and only if
1n ∈ L. However, A accepts in a somewhat nonstandard way, by getting to an
accepting configuration (situation) rather than to an accepting state. Now we
replace A by a new machine A′ that simulates A but,

– each time A gets to an accepting situation, i.e., each time A is in the second
k-phase with C1 �= 0 ∧ C2 �= 0 and, at the same time, in the third 2i-phase
with C3 = 0 ∨ C4 = 0, the machine A′ nondeterministically decides whether
to carry on the simulation or to stop by reading one more symbol from the
input and switching to its unique final state. The same applies to the special
path handling short inputs of length n ≤ 6.

This changes A for L to A′ that accepts L′ = L·{1} by classic halting in a unique
accepting state at the end of the input. 	


As the next step, we shall show that the space used in Theorem 1 can be
decreased to O((log n)ε), where ε represents an arbitrarily small, but fixed, real
positive constant, but using more than four counters. To this aim, let us show
that we can save a substantial amount of space by simulating one counter with
the help of two counters, preserving the real-time processing of the input.
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Theorem 2. Each automaton A using a counter C the space of which is
bounded by s(n)—not excluding that A may also utilize some other computa-
tional resources—can be replaced by an equivalent automaton A′ utilizing the
same computational resources as A but, instead of the counter C, it uses two
counters C1 and C2, both of them with space bound s′(n) ≤ O(s(n)1/2). More-
over, if A is a real-time machine, so is A′.

Proof. A counter C with space bound s(n) can be simulated by two coun-
ters C1, C2 with space bound O(s(n)1/2), based on the one-to-one correspon-
dence between N, the set of natural numbers, and N×N. (See, e.g., [19, Theo-
rem 3.2.3].) The main problem to be fixed here is making such simulation real-
time: each single-step operation with C should be simulated in one step, since the
new machine A′ is forced to move its input head forward in each computation
step.

The current value in the counter C of the original machine A will be repre-
sented by three quantities, namely, by two values stored in the counters C1, C2,
and by a sweep mode s ∈ {even, odd}, kept in the finite state control. This dou-
bles the number of finite control states of the original machine. Initially, A′ starts
in even sweep mode and both counters are empty,4 that is, s = even, C1 = 0, and
C2 = 0. All other computational resources of the original machine A—including
its current final control state and its head along the input tape—are manipulated
in a straightforward way.

The main idea behind this implementation of a counter is simple: when
A′ simulates several operations C := C + 1 in a row, it imitates a sweep along a
line in a two-dimensional grid. In the course of this sweep, the current coordi-
nates in the grid are given by 〈C1, C2〉 and satisfy, for some v ≥ 0, the condition
C1 + C2 = v. When, sweeping along this line, A′ hits either of the axes of the
coordinate system (that is, when C1 = 0 or C2 = 0), the machine switches the
sweep mode, from even to odd or vice versa. After that, A′ starts a sweep that
goes to the other axis in the grid along a new line, keeping this time a new
invariant, C1 + C2 = v + 1 instead of C1 + C2 = v. The operation C := C − 1 is
implemented as backing up along this zigzag trajectory towards the origin 〈0, 0〉.
The point 〈C1, C2〉 = 〈0, 0〉 corresponds to C = 0. Figure 2 (left) reflects the main
idea, Fig. 2 (right) displays a more detailed transition table.

Both C1 and C2 are bounded by (2·C)1/2� ≤ O(s(n)1/2). It is also easy to
see that one step of the original machine is simulated by exactly one step. 	


By the use of the previous theorem, we can decrease the space requirements
for arbitrarily many counters, down to O(s(n)1/2), preserving the real-time pro-
cessing of the input.

Lemma 3. For each � ≥ 0, each automaton A using � counters with space
bound s(n) can be replaced by an equivalent automaton A′ using 2·� counters
with space bound s′(n) ≤ O(s(n)1/2). This holds for all computational models
listed in the statement of Theorem 2. In particular, if A is a real-time machine,
so is A′.
4 Throughout the entire computation, s = even if and only if C1 + C2 is even.
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Fig. 2. A real-time simulation of one counter by two smaller counters.

Proof. Let A be a machine equipped with � counters, denoted here by C1, . . . , C�.
Each of these counters works with space bound s(n). Now, by repeated appli-
cation of Theorem 2, for i = 1, . . . , �, we can replace the i-th counter Ci by
a pair of new counters, C′

i and C′′
i . This also requires to keep a sweep mode

si ∈ {even, odd} in the finite state control. Both C′
i and C′′

i work with space bound
s′(n) ≤ O(s(n)1/2). Thus, for each i ∈ {1, . . . , �}, the intermediate machine uses
the counters Ci+1, . . . , C� working with space bound s(n) together with the coun-
ters C′

1, . . . , C′
i and C′′

1 , . . . , C′′
i working with space bound s′(n). In addition, the

intermediate machine manipulates all sweep modes s1, . . . , si ∈ {even, odd} in
the finite state control, simultaneously. In the end, for i = �, we obtain an
equivalent machine A′ using 2·� counters, all of them working with space bound
s′(n) ≤ O(s(n)1/2). The price we pay is that A′ uses ‖Q′‖ = 2�·‖Q‖ states,
where ‖Q‖ denotes the number of states in the original machine A. 	


The space reduction presented in Lemma 3 can be improved, by repeating
the application of this lemma h times:

Lemma 4. For each h ≥ 0 and each � ≥ 0, each automaton A using � counters
with space bound s(n) can be replaced by an equivalent automaton A′ using 2h·�
counters with space bound s′(n) ≤ O(s(n)1/2h). This holds for all computational
models listed in the statement of Theorem 2. In particular, if A is a real-time
machine, so is A′.

By taking h = log(1/ε)� in the above lemma, we then get:

Theorem 5. For arbitrarily small, but fixed, real constant ε > 0, each automa-
ton A using � counters with space bound s(n) can be replaced by an equivalent
automaton A′ using �′ < 2�/ε counters with space bound s′(n) ≤ O(s(n)ε).
This holds for all computational models listed in the statement of Theorem 2. In
particular, if A is a real-time machine, so is A′.

We are now ready to establish one of the main results, showing that (log n)ε is
the smallest possible weak space bound for accepting unary nonregular languages
by multicounter real-time automata:
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Theorem 6. There exists a unary nonregular language—namely, L′ = L·{1},
for L introduced by (2)—such that, for arbitrarily small, but fixed, real constant
ε > 0, it can be accepted by a real-time nondeterministic automaton using �′ <
8/ε counters with weak space bound O((log n)ε).

Proof. From Theorem 1 we know the language L′ is accepted by a real-time non-
deterministic automaton using four counters with weak space bound O(log n).
By Theorem 5 we get, for each ε > 0, an equivalent real-time nondeterministic
automaton using �′ < 8/ε counters with weak space bound O((log n)ε). 	


The above upper bound cannot be decreased. That is, the constant ε > 0
in O((log n)ε) cannot be replaced by a function r(n) satisfying limn→∞ r(n) =
0, even if we use a more powerful computational model—utilizing the power
of alternation and/or two-way input head movement, and even if the witness
nonregular language is quite arbitrary—not necessarily unary:

Theorem 7. If a two-way alternating automaton recognizes a nonregular lan-
guage, using a finite number of counters with weak space bound s(n), then
s(n) /∈ (log n)o(1).

Proof. Suppose that some nonregular language is accepted by a two-way alter-
nating automaton using some � counters with weak space bound s(n). Such
machine can be replaced by an equivalent two-way Turing machine using one
worktape, keeping the contents of all counters in binary, separated by a spe-
cial symbol. The total length of this worktape can be bounded by s′(n) ≤
�·(2 + log s(n)) = log((4·s(n))�). By [16], if a two-way alternating Turing
machine accepts a nonregular language with weak space bound s′(n), then
s′(n) /∈ o(log log n). Hence there exist a real constant e0 > 0 and an infinite
sequence of input lengths n1 < n2 < n3 < · · · such that, for each i ≥ 1,
we have s′(ni) ≥ e0· log log ni = log((log ni)e0). But then log((4·s(ni))�) ≥
log((log ni)e0), and s(ni) ≥ 1

4 ·(log ni)e0/�, for infinitely many input lengths. Thus,
s(n) /∈ (log n)o(1). 	


We point out that the constant e0 > 0 in the proof of the above theorem
(given by the proof in [16]) is smaller than one and makes our lower bound
dependent also on the number of states in the original multicounter machine.

3 Two-Way Devices

This section shows that also for two-way multicounter automata the minimal
useful space is O((log n)ε). For two-way devices, the bound is independent of
whether the machines are deterministic, nondeterministic, or alternating, and of
whether they work with strong or weak space bounds.

Theorem 8. There exists a unary nonregular language—namely, L introduced
by (2)—accepted by a two-way deterministic automaton using two counters with
strong space bound O(log n).
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Proof. On the given input 1n, for n > 0, our two-way machine A equipped with
the counters C1 and C2 runs a loop for k = 2, 3, 4, . . . , until it finds the first k
not dividing n. In order to check whether a number k divides n, the machine
traverses across the entire input, counting modulo k in the same way as in the
second k-phase in the proof of Theorem 1. Thus, a traversal starts from one of
the endmarkers with C1+C2 = k and with either C1 = 0 or C2 = 0. If k divides n,
the machine reaches the opposite endmarker with either C1 = 0 or C2 = 0 again.
After that, A increases C1 + C2 from k to k + 1 and starts a new traversal across
the input in the opposite direction. This is repeated until A gets to the opposite
endmarker with C1 > 0 ∧ C2 > 0.

When this happens, C1 + C2 = k = f(n). From this moment on, the input
head does not move—parked at one of the endmarkers. It only remains to check
whether k = C1 + C2 is not equal to a power of 2. This is quite simple; we first
move the contents of C2 to C1 by decreasing C2 and increasing C1, until we get
C2 = 0 and C1 = k. Next, we divide the contents of C1 by two. Thus, in a loop,
we decrease C1 by 2 and increase C2 by 1. When the counter C1 reaches zero, the
original value in C1 has been halved, but now it is stored in C2. By swapping
the roles of C1 and C2, we can halve this value again, ending this time with a
result stored in C1. This halving is repeated until we find out that we have tried
to halve a value that is odd. Then, A accepts if this last value was greater than
one, i.e., the last integer division by two must not end with empty counters.

The trivial case of 10 ∈ L is resolved at the very beginning: A verifies whether
n = 0 by checking whether the first symbol to the left of the left endmarker is
the right endmarker.

Clearly, by (1), the counters are bounded by k = f(n) ≤ O(log n). 	

By applying Theorem 5, we then get:

Theorem 9. There exists a unary nonregular language—namely, L introduced
by (2)—such that, for arbitrarily small, but fixed, real constant ε > 0, it can
be accepted by a two-way deterministic automaton using �′ < 4/ε counters with
strong space bound O((log n)ε).

Also this upper bound cannot be decreased since, by Theorem 7, even a
two-way alternating multicounter automaton with weak space bound s(n) ∈
(log n)o(1) recognizes only a regular language.

4 Strong Space Bounds and/or Determinism

Here we present the corresponding minimal space that is required for accepting
nonregular languages by real-time multicounter automata with strong bounds on
space, and also for real-time deterministic machines with weak bounds on space.
It turns out that, for these computational models, the corresponding minimal
space is nε. To this aim, consider the following language:

L′′ = {1(n1+n2)·(n1+n2+1)/2+n1 : n1, n2 ∈ N, (n1 + n2) mod 2 = 0}. (4)
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Theorem 10. There exists a unary nonregular language—namely, L′′ intro-
duced by (4)—accepted by a real-time deterministic automaton using two coun-
ters with strong space bound O(n1/2).

Proof. Our machine A traverses across the entire input and counts its length.
The operation C := C + 1 is simulated by the use of two counters, C1, and C2,
in the same way as in Theorem 2. This also requires to keep a sweep mode
s ∈ {even, odd} in the finite state control. By definition, let even be the only
initial and, at the same time, the only final state of A.

Clearly, A accepts if and only if it halts with s = even after reading the
entire input, with any values C1 ≥ 0 and C2 ≥ 0 in the counters. But (see also
Footnote 4) this configuration is reached for each C1, C2 ∈ N such that C1 + C2 is
even. This condition gives δ = C1 and hence the desired configuration is reached
after reading C symbols from the input, where

C =
∑C1+C2−1

v=0 (v + 1) + δ =
∑C1+C2

v=1 v + C1 = (C1 + C2)·(C1 + C2 + 1)/2 + C1. (5)

Thus, A is a real-time deterministic machine accepting L′′. Moreover, as shown
in the proof of Theorem 2, we have C1 +C2 < (2·C)1/2� = (2·n)1/2� ≤ O(n1/2).

In only remains to show that L′′ accepted by A is not regular. First, for
any given h > 0, take C1 = 2·h and C2 = 0. Since C1 + C2 = 2·h is even, the
machine A reaches these two values in the counters with s = even, after reading
C = h·(2h+3) symbols from the input—this value C is obtained by using C1 = 2·h
and C2 = 0 in (5). Thus, for each h > 0, the input 1h·(2h+3) is accepted but,
since s = even and C2 = 0, the procedure presented in the proof of Theorem 2
switches the sweep mode to odd after reading one more symbol from the input.
Moreover, the sweep mode will not change in the subsequent C1 + C2 = 2·h
steps, and hence A rejects 1h·(2h+3)+i, for each i = 1, . . . , 2·h + 1. Consequently,
this language cannot be accepted by a deterministic finite state automaton with
fewer than 2·h + 2 states, since, after getting into a cycle the length which is
bounded by 2·h + 1, such automaton cannot accept one input and then reject
the next 2·h + 1 inputs in a row. Since h > 0 can be chosen arbitrarily large,
this rules out all finite state automata. 	


Also here the space requirements can be decreased by using more counters,
by application of Theorem 5 on the machine constructed in Theorem 10:

Theorem 11. There exists a unary nonregular language—namely, L′′ intro-
duced by (4)—such that, for arbitrarily small, but fixed, real constant ε > 0, it
can be accepted by a real-time deterministic automaton using �′ < 4/ε counters
with strong space bound O(nε).

The above upper bound is optimal and cannot be decreased for one-way
machines with strong space bounds, even if we use the power of alternation. The
same holds for one-way deterministic machines, even if we use a less restrictive
weak space bound, not taking into account space used on inputs that are rejected:
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Table 2. Minimal space used by multicounter automata accepting nonregular lan-
guages. All these bounds are tight both for unary and general languages.

Stronga Weaka Two-wayb

Deterministic nε nε (log n)ε

Nondeterministic nε (log n)ε (log n)ε

Alternating nε (log n)ε (log n)ε

aBoth real-time and one-way
bBoth strong and weak

Theorem 12. If a one-way alternating automaton recognizes a nonregular lan-
guage, using a finite number of counters with strong space bound s(n), then
s(n) /∈ no(1). The same holds for weak space bounds in the case of one-way deter-
ministic multicounter machines.

Proof. The known lower bounds for accepting nonregular languages state that
s′(n) /∈ o(log n) both for one-way alternating Turing machines with strong
space bounds and for one-way deterministic Turing machines with weak space
bounds ([1,14], [19, Sect. 5.2]). The rest of argument mirrors the proof of The-
orem 7, using n instead of log n the lower bound s′(n) /∈ o(log n) for one-way
Turing machines gives us the lower bound s(n) /∈ no(1) for one-way multicounter
machines. 	


5 Concluding Remarks

We have studied the minimal useful space that is required for recognizing non-
regular languages by automata using a finite number of counters. The primary
computational model was a real-time machine recognizing a unary language, but
several results easily extended to a more general setting. All tight bounds are
summarized in Table 2. The results in this table are derived by combining the
upper bounds obtained in Theorems 6, 9, and 11 with the lower bounds obtained
in Theorems 7 and 12, using also some trivial relations between upper and lower
bounds for weaker and stronger computational models.

Both for unary and general nonregular languages, and both for real-time
and one-way multicounter machines, the tight bounds do not differ. Allowing an
unrestricted number of computation steps in between two forward moves along
the input does not help to decrease the minimal useful space. Neither does the
use of alternation instead of nondeterminism, for the same computational model.

We conjecture that if we fix the number of counters to some constant �, all
bounds nε in Table 2 will change to Θ(n1/�) while (log n)ε to Θ((log n)1/�). The
argument would require a more efficient use of counters in upper bounds and,
at the same time, a more precise analysis of the lower bounds.

However, we cannot exclude the possibility that, with the same number of
counters, alternation may become more powerful, especially for small values �,
below 4. For example, we know a real-time alternating automaton recognizing
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a unary nonregular language by the use of one counter with weak space bound
O(log n) [3], but only unary regular languages are accepted by one-way non-
deterministic machines using one counter. Second, it is well known that each
recursively enumerable language can be accepted by a one-way deterministic
automaton with two counters [18] (see also [15]), but the values in the counters
are double-exponential in space used by the original Turing machine, and hence
such simulation is far from being real-time. The best known upper bound for
a real-time deterministic automaton recognizing a unary nonregular language
by the use of two counters is O(n1/2), presented in Theorem 10. For two-way
deterministic machines using two counters, this bound drops to O(log n), in
Theorem 8. It is not clear whether these bounds cannot be decreased by the
use of nondeterminism. For a small fixed number of counters, it is even not
clear whether the bounds required for recognizing unary and general (or binary)
nonregular languages do differ.
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Kévin Perrot, Pacôme Perrotin(B), and Sylvain Sené

Aix-Marseille University, Toulon University, CNRS, LIS, Marseille, France
pacome.perrotin@lis-lab.fr

Abstract. Boolean automata networks (BANs) are a generalisation of
Boolean cellular automata. In such, any theorem describing the way BANs
compute information is a strong tool that can be applied to a wide range
of models of computation. In this paper we explore a way of working with
BANs which involves adding external inputs to the base model (via mod-
ules), and more importantly, a way to link networks together using the
above mentioned inputs (via wirings). Our aim is to develop a powerful
formalism for BAN (de)composition. We formulate two results: the first
one shows that our modules/wirings definition is complete; the second one
uses modules/wirings to prove simulation results amongst BANs.

Keywords: Boolean automata networks · Modules · Wirings
Simulation

1 Introduction

Boolean automata networks (BANs) can be seen as a generalisation of cellular
automata that enables the creation of systems composed of Boolean functions
over any graph, while cellular automata only operate over lattices of any dimen-
sion. The study of the dynamics of a BAN, that describes the set of all com-
putations possible in such a system, is a wide and complex subject. From very
simple networks computing simple Boolean functions to possibly infinite net-
works able to simulate any Turing machine, the number of configurations always
grows exponentially with the size of the network, making any exhaustive exam-
ination of its dynamics impractical. The study of such dynamics is nevertheless
an important topic which can impact other fields. BANs are for example used
in the study of the dynamics of gene regulatory networks [8,12,17] in biology.

Many efforts to characterise the dynamics of BANs have already been put
forward. For example, some studies [1,14] examine the behaviour of networks
composed of interconnected cycles. The modularity of BANs has been studied
from multiple perspectives. In particular from a static point of view [2,13], and
a functional one [4,7,16]. In this paper, we explore a compositional approach to
BANs that allows to decompose a BAN into subnetworks called modules, and to
compose modules together in order to form larger networks. We define a module
as a BAN on which we add external inputs. These inputs are used to manipulate
c© Springer International Publishing AG, part of Springer Nature 2018
J. Durand-Lose and S. Verlan (Eds.): MCU 2018, LNCS 10881, pp. 121–136, 2018.
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the result of the network computation by adding extra information. They can
also be used to interconnect multiple modules, making more complex networks.
Those constructions resemble the circuits described in Feder’s thesis [9], and
modules can be seen as a generalisation of circuits over any update mode.

Section 2 discusses the possible motivations for a (de)compositional study of
BANs. Section 3 introduces BANs and update modes, and Sects. 4 and 5 develop
a formalism for the modular study of BANs, justified by a first theorem showing
that any network can be created with modules and wirings. We also present an
application of our definitions to BAN simulation in Sect. 6, leading to a second
theorem stating that composing with local simulations is sufficient to (globally)
simulate a BAN. Finally, Sect. 7 presents and analyses two illustrations of the
principles presented in Sect. 2.

The demonstrations of all results are available on the arxiv version of this
paper (reference 1802.10400).

2 Motivations

BANs, despite being very simply defined locally, become complex to analyse
as the representation of their dynamics grows exponentially in the size of their
networks. BANs have been proven to be Turing-complete [5] and as most of
Turing-complete systems are able to show complex and emergent properties.

Yet, an important number of networks can be partially understood when
viewed through the lens of functionality (what an object is meant to achieve).
Functionality enables to use abstraction to reduce the considered network (or
some part of it) to the computation of a function or the simulation of a dynamical
system. Assuming a functionality of the parts of a network can let us conclude
on the functionality of the network itself, at the cost of letting aside an absolute
characterisation of its dynamics (which is often practically impossible). Such
a functional interpretation aims at offering the possibility to make verifiable
predictions in a short amount of time.

It is not known if every Boolean automata network can be cut into a rea-
sonable amount of parts to which one can easily affect a functionality. We will
justify our present argument by illustrating it in Sect. 7.

3 Boolean Automata Networks

3.1 Preliminary Notations

Let us first describe some of the notations used throughout the paper. Let f :
A → B be a mapping from set A to set B. For S ⊆ A we denote f(S) = {b ∈
B | ∃a ∈ S, f(a) = b}. We denote f

∣
∣
S

the restriction of f to the domain S,
f
∣
∣
S
: S → B such that f

∣
∣
S
(a) = f(a) for all a ∈ S. Let dom(f) be the domain of

f , and g ◦f the composition of f then g. For f and g two functions with disjoint
domains of definition, we define f � g as the function defined such that:
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f � g(x) =
{

f(x) if x ∈ dom(f)
g(x) if x ∈ dom(h) .

We denote B = {0, 1} the set of Booleans. For K a sequence of m elements,
the sub-sequence from the i-th element to the j-th element is denoted K[i,j].
We sometimes define functions without naming them with the notation a �→ b,
signifying that for any input a the function will return b. For example, the
function n �→ 2 × n is a function that takes a number n and returns the value of
n multiplied by 2.

3.2 Definitions

A BAN is based upon a set of automata. Each automaton is defined as a Boolean
function, with arity the size of the network. Each variable of the function of
each automaton is meant to correspond to an automaton in the network. By
considering a configuration of Boolean values over this network, we can compute
the Boolean function of each automaton and obtain a Boolean value for each
automaton (i.e. a local state). These values can be used to update the global
state of the network, that we call a configuration. If we decide to update the value
of each automaton at once, the update mode is parallel. However, if only one
automaton is updated at each time step, the update mode is sequential [10,15].

Definition 1. A configuration on a set S is a function x : S → B.

A BAN F defined over the set S associates a Boolean function to each element
of S. Each of theses functions is defined from the set of all configurations of the
BAN, S → B, to the Boolean set, B.

Definition 2. For S a set, a Boolean automata network (BAN) F is a function
F : S → (S → B) → B.

For each s ∈ S, we denote fs = F (s) the local function of automaton s.
For s ∈ S we denote xs = x(s). A function x is a configuration at a given

time over the network. Thus, we can define our function fs to be part of the set
(S → B) → B. This way, a BAN F can be defined as a function from the set
S to the set (S → B) → B. We find again that the set of all BANs over S can
simply be defined as S → (S → B) → B. For any BAN F and configuration x,
we can define the configuration which is computed by F from x. A naive way
to do so would be to define x′ = F (x) such that x′

s = fs(x) for every s; this
definition however is very limiting: it only allows parallel updates of our system.
In a general definition of BANs, a computation of a BAN should allow updates
of only a subset of the functions of the network. Slight changes to the update
mode of a BAN can deeply change its computational capabilities [3,11]. Most
results that assume a parallel update mode cannot be applied to a sequential
network; the reciprocal is also true. We set the following definition of an update
over our BAN to be as general as possible.
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Definition 3. Any δ ⊆ S is an update over S.

One can apply multiple consecutive updates to a BAN to effectively execute
the BAN over an update mode. An update mode is simply a sequence of updates
that is denoted Δ, where Δk is the kth update of the sequence. We define the
union operator between updates modes as it will be useful for the proof of our
last theorem.

Definition 4. Let Δ, Δ′ be two update modes over a set S. The union of Δ
and Δ′ denoted Δ∪Δ′ is the update mode defined as (Δ∪Δ′)k = Δk ∪Δ′

k. The
size of Δ ∪ Δ′ is the maximum among the sizes of Δ and Δ′.

We assume that Δk = ∅ if k is greater than the size of Δ. Given an update δ,
we can define the endomorphism Fδ over the set of all configurations. For every
configuration x, we set Fδ(x)(s) = fs(x) if s ∈ δ, and Fδ(x)(s) = x(s) if s /∈ δ.
In other words, the value of s in the new configuration is set to fs(x) only if
s ∈ δ, otherwise the Boolean affectation of s remains xs. Now, we can define the
execution of F in a recursive way.

Definition 5. The execution of F over x, under the update mode Δ, is the
function FΔ : (S → B) → (S → B) defined as FΔ[1,k](x) = FΔk

(FΔ[1,k−1](x)),
with FΔ[1,1](x) = FΔ1(x).

Throughout this paper we represent BANs as graphs called interaction
graphs. Interaction graphs are a classical tool in the study of BANs. For a BAN
F defined over S, the interaction graph of F is the oriented graph G = (S, ε),
where (s, s′) ∈ ε if and only if the variable xs influences the computation of the
function F (s′).

4 Modules

Modules are BANs with external inputs. Such inputs can be added to any local
function of a module, and any local function of a module can have multiple
inputs. When a local function has n inputs, the arity of this function is increased
by n. These new parameters are referred to by elements in a new set E: the
elements of E describe the inputs of the module; those of S describe the internal
elements of the module. To declare which input e ∈ E is affected to each function
fs, we use function α.

Definition 6. Let S and E be two disjoint sets. An input declaration over S
and E is a function α : S → P(E) such that {α(s) | s ∈ S} is a partition of E.

For each s, α(s) is the set of all external inputs of function fs. The parti-
tion property is important because without it, some input could be assigned to
multiple nodes, or to no node at all, which is contrary to our vision of input.
To simplify notations, we sometimes denote Es = α(s). Now, let us explicit the
concept of a module.
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a b c

a1
a2

a3
b1 b2

c1

Fig. 1. Interaction graph of the module detailed in Example 1.

Definition 7. A module M over (S,E, α) is defined such that, for each s ∈ S,
M(s) is a function M(s) : (S ∪ Es) → B.

If M is a module defined over (S, ∅, s �→ ∅), M is also a BAN. To com-
pute anything over this new system, we need a configuration x : S → B and a
configuration over the elements of E.

Definition 8. An input configuration over E is a function i : E → B.

Let x be a configuration over S, and i an input configuration over E. As x
and i are defined over disjoint sets, we define x� i as their union. Such an union,
coupled with an update over S, is enough information to perform a computation
over this new model.

Definition 9. Let x be a configuration over S and i an input over E. Let δ be
an update over S. The computation of M over x, i and δ, denoted Mδ(x � i),
is the configuration over S such that Mδ(x � i)(s) = fs(x � i

∣
∣
Es

) for each s ∈ δ,
and Mδ(x � i)(s) = x(s) for every s ∈ S \ δ.

In the following example, we assume a total order over S ∪ E, allowing us
to intuitively write configurations as binary words. For example, x = 101 means
x(a) = 1, x(b) = 0 and x(c) = 1.

Example 1. S = {a, b, c}, and E = {a1, a2, a3, b1, b2, c1}. We define α such that
α(a) = {a1, a2, a3}, α(b) = {b1, b2} and α(c) = {c1}. Let M be a module over
(S,E, α), such that M(a) = xb ∨ a1 ∨ a2 ∨ a3, M(b) = ¬xb ∨ xc ∨ ¬b1 ∧ b2, and
M(c) = ¬c1. Let x = 101, i = 000010 and δ = {a, b}. We get that Mδ(x � i) =
M{a,b}(101�000010) is such that Mδ(x�i)(a) = fa(x�i

∣
∣
Ea

) = 0, Mδ(x�i)(b) =
fb(x � i

∣
∣
Eb

) = 1, and Mδ(x � i)(c) = x(c) = 1. Therefore Mδ(x � i) = 011. A
representation of this module is pictured in Fig. 1.

Let us now define executions, while considering that the input configuration
can change over time.

Definition 10. Let t > 1. Let I = (i1, i2, . . . , it−1) be a sequence of input con-
figurations over E, X = (x1, x2, . . . , xt) a sequence of configurations over S,
and Δ an update mode over S of size t. (X, I,Δ) is an execution of M if for all
1 ≤ k < t, xk+1 = MΔk

(xk ∪ ik).
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This definition allows for variation over the inputs over time. As this par-
ticular feature is not needed throughout this paper, we also propose a simpler
definition of executions over modules which only allows fixed input values over
time.

Definition 11. Let i be an input configuration over E. The execution of M over
x ∪ i with update mode Δ is an endomorphism over the set of all configurations,
denoted MΔ. It is defined as MΔ[1,k](x � i) = MΔk

(MΔ[1,k−1](x � i) � i), with
MΔ[1,1](x � i) = MΔ1(x � i).

5 Wirings

The external inputs of a module can be used to encode any information. For
instance, we could encode any periodic (or non-periodic) sequence of Boolean
words into the inputs of a given module. We could also encode the output of a
given BAN or module, combining in some way the computational power of both
networks. Such a composition of modules is captured by our definition of wirings.
A wiring is an operation that links together different inputs and automata from
one more or modules, thus forming bigger and more complex modules.

We decompose this compositional process into two different families of oper-
ators: the non-recursive and the recursive wirings. The first ones connect the
automata of one module to the inputs of another; the second ones connect the
automata of a module to its own inputs. A wiring, recursive or not, is defined by a
partial map ω linking some inputs to automata. Let us first define non-recursive
wirings.

Definition 12. Let M , M ′ be modules defined over (S,E, α) and (S′, E′, α′)
respectively, such that S, S′ and E,E′ are two by two disjoint. A non-recursive
wiring from M to M ′ is a partial map ω from E′ to S.

The new module result of the non-recursive wiring ω is denoted M �ω M ′ and
is defined over (S ∪S′, E ∪E′ \dom(ω), αω). The input declaration of M �ω M ′

is αω(s) = α(s)\dom(ω) (in particular, αω(s) = α(s) if s ∈ S). Given s ∈ S∪S′,
the local function M �ω M ′(s), denoted fω

s , is defined as

fω
s (x � i) =

{

fs(x
∣
∣
S
�i

∣
∣
Es

) if s ∈ S

f ′
s(x

∣
∣
S′�i

∣
∣
E′

s\dom(ω)
�(x ◦ ω

∣
∣
E′

s
)) if s ∈ S′ .

In this new module, some inputs of M ′ have been assigned to the values
of some elements of M . Such assignments are defined in the wiring ω. For any
s ∈ S ∪ S′, the function M �ω M ′(s) (denoted fω

s ) is defined over (S ∪ S′ ∪
αω(s)) → B. In the case s ∈ S′, the image of x � i is given by f ′

s which expects
a configuration on S′ ∪ E′

s: the configuration on S′ is provided by x, and the
configuration on E′ is partly provided by i (on E′

s\dom(ω)), and partly provided
by (x ◦ ω) (on dom(ω) ∩ E′

s).

Definition 13. Let M be a module over (S,E). A recursive wiring of M is a
partial map ω from E to S.
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With ω defining now a recursive wiring over a module M , the result is similar
if not simpler than in the definition of non-recursive wirings. The new module
obtained from a recursive wiring ω on M is denoted �ω M and is defined over
(S,E \dom(ω), αω) with the input declaration defined as, for any s ∈ S, αω(s) =
α(s) \ dom(ω). Given s ∈ S, x and i, the local function �ω M(s) is denoted fω

s

and is evaluated to fω
s (x � i) = fs(x � i

∣
∣
Es\dom(ω)

�(x ◦ ω
∣
∣
Es

)).
Recursive and non-recursive wirings can be seen as unary and binary opera-

tors respectively, over the set of all modules. For any ω, we can define the oper-
ators �ω and �ω. For simplicity we define that M �ω M ′ = ∅ and �ω M = ∅

if the wiring ω is not defined over the same sets as M or M ′. Notice that both
the recursive and non-recursive wirings defined by ω = ∅ are well defined wiring.
They define two operators, �∅ and �∅, that will be useful later on.

Property 1. The following statements hold.

(i) ∀M, �∅ M = M .
(ii) ∀M,M ′, M �∅ M ′ = M ′ �∅ M .
(iii) ∀M,M ′,M ′′, M �∅ (M ′ �∅ M ′′) = (M �∅ M ′) �∅ M ′′.

For simplicity of notations, we will denote the empty non-recursive wiring as
the union operator over modules: M ∪ M ′ = M �∅ M ′.

It is quite natural to want to put two modules together, by linking the input
of the first to states of the second, and conversely. Our formalism allows this
operation in two steps: first, use a non-recursive wiring to connect all of the
desired inputs of the first module to states of the second module. Then, use a
recursive wiring to connect back all of the desired inputs of the second module
to states of the first module.

We now express that recursive and non-recursive wirings are expressive
enough to construct any BAN or module, in Theorem 1. Our aim is to show
that for any division of a module into smaller parts (partitioning), there is a way
to get back to the initial module using only recursive and non-recursive wirings.

Definition 14. Let (S,E, α). Let P be a set such that {Sp | p ∈ P} is a partition
of S. We define the corresponding partition of E as {Ep =

⋃

s∈Sp
α(s) | p ∈ P}.

Definition 15. We can now develop the corresponding partition of the input
declaration, and define the partition of M itself. For every p ∈ P , we define
αp = α

∣
∣
Sp

over Sp and Ep.

Definition 16. For every p ∈ P , let Qp verify Qp ∩ S = ∅ and |Qp| = |S|,
and let τp : S → Qp be a bijection. For any p ∈ P , the sub-module Mp over
(Sp, Ep ∪ τp(S \ Sp), αp) is defined for s ∈ Sp as, for all x : S → B and for all
i : E → B,

Mp(s)(x
∣
∣
Sp

�ip) = M(s)(x � i),

where ip(e) = i(e) if e ∈ Ep and ip(e) = x(τ−1
p (e)) if e ∈ τp(S \ Sp).



128 K. Perrot et al.

In the previous definition, the purpose of each Qp is to work as a representa-
tion of the set S for every sub-module Mp. Without it, every module Mp would
have used the set (S \ Sp) ∪ Ep as input set. However our definition of wiring
requires the input sets of the wired modules to be disjoint from each other. The
sets Qp are a workaround to bypass this technical point.

a b

cd

a b

cd

S

Sr

Ss

St

Fig. 2. Interaction graphs related to Example 2. The interaction graph of the original
module is on the left and the interaction graphs of the partition of M are on the right.
Notice that we did not represent the input sets E, Qr, Qs and Qt.

Example 2. Let S = {a, b, c, d}, E = {e}, P = {r, s, t} and Sr = {a, d}, Ss = {b}
and St = {c}. For each p ∈ P , we define Qp = {ap, bp, cp, dp}. In the module
Mr, αr(a) = ∅ and αr(d) = {br, cr}. In the module Ms, αs(b) = {as}. In the
module Mt, αt(c) = {e}. The modules Mr,Ms and Mt are defined over disjoint
sets and can be wired (see Fig. 2 for an illustration).

As a reminder, the union operator over modules is defined to be the result
of an empty non-recursive wiring.

Theorem 1. Let M be a module and {Mp | p ∈ P} any partition of that module,

then there exists a recursive wiring ω such that M = �ω

(
⋃

p∈P Mp

)

.

Sketch of Proof. We construct ω to wire every link lost in partition P .

Theorem 1 allows to say that our definition of wiring is complete: any BAN
or module can be assembled with wirings. It can be reworked more algebraically.
Let M denote the set of all modules (which includes ∅), and for any n ∈ N, let
Mn denote the set of all modules of size n (we have M =

⋃

n∈N
Mn). For any

subset A ⊆ M we denote A
ω

the closure of A by the set of wiring operators
⋃

ω{�ω,�ω}. The following result is a direct corollary of Theorem 1.

Corollary 1. The set of all modules is equal to the closure by any wiring of the
set of modules of size 1,

M = M1
ω
.

Every module in M1 is of size 1, but as the set of inputs E of a module is
not bounded, the set M1 is infinite. In our opinion, this corollary is enough to
demonstrate that our definition of modules and wirings is sound.
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6 Simulation

BANs are by nature complex systems and sometimes, we like to understand the
computational power of a subset of them by demonstrating that they are able
to simulate (or be simulated by) another subset of BANs. By simulation, we
generally mean that a BAN is able to reproduce, according to some encoding,
all the possible computations of another BAN.

Simulation is a powerful way to understand the limitations and possibilities
of BANs. It is still difficult to prove if any two BANs simulate each other. In the
present paper our aim is to prove that the property of simulating any BAN can be
reduced in some cases to the property of locally simulating any Boolean function.
Locally simulating a function means that a module reproduces any computation
of that function, when the parameters of the function are encoded in the module
inputs. Our claim is that if we can locally simulate every function of a BAN, in a
way such that the simulating modules are able to communicate with each other,
then we can simulate the same BAN with a bigger module which is obtained by
a wiring over the locally simulating modules. In this context, modules become a
strong tool to reduce the complexity of simulation (which is a global phenomena)
to a local scale, which is more tractable.

Let us go into further details. For F a BAN over the set S, our aim is to
simulate F . For this purpose, for each a ∈ S, we create Ma, a module which
is defined over some sets (Ta, Ea, αa) and locally simulates the function fa. To
assert this local simulation we need to define a Boolean encoding φa over the
configurations of Ma. We also need to define how these modules communicate
with each other, and in the end how they will be wired together. For any couple
a, b ∈ S such that a �= b, we define the set Ua,b as a subset of Ta. This set
represents all the automata of Ma that are planned to be connected to inputs
of Mb. We can say that the elements of Ua,b are the only way for the module
Ma to send information to the module Mb. We define which information is
sent from Ma to Mb at any time with a Boolean encoding φa,b over the set
of configurations on Ua,b. By definition we always have that if Ua,b �= ∅, then
φa(x

∣
∣
Ta

) �= • ⇒ φa,b(x
∣
∣
Ua,b

) = φa(x
∣
∣
Ta

). This means that if a module encodes

an information (• being the absence of information, i.e. in this case φa(x
∣
∣
Ta

)
equals 0 or 1), the same information is sent from that module to each module
that is meant to receive information from it. In other words, all encodings are
coherent.

Now that our modules are set to communicate with each other, we only need
to wire them to each other. The precise nature of this wiring is defined, for every
pair a, b ∈ S such that a �= b, by the function Ia,b : Eb → Ua,b which we call
interface between a and b. By definition:

– for every s ∈ Ua,b, there exists e ∈ Eb such that Ia,b(e) = s (surjectivity);
– for every b ∈ S,

⊔

a Ia,b is a total map from Eb to
⋃

a Ua,b.

With such an interface defined for every pair (a, b), the final wiring connecting
all modules together is decomposed in two steps. The first one empty-wires every
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Td

Ud,a, Ud,b

T

Fig. 3. Interaction graphs of the modules detailed in Example 3. The interaction graph
of the original BAN is on the left and the interaction graph of the simulating BAN is
on the right. The simulating BAN is decomposed into four sub-modules, one for each
node in S. Notice that we did not represent the input sets Ea, Eb, Ec and Ed. The
connections between the sets Ta, Tb, Tc and Td are based upon the interfaces defined
in the example.

module together, the second one applies a recursive wiring which is defined as
the union of every interface Ia,b. The last condition that we have stated over the
definition of an interface lets us know that the obtained module has no remaining
inputs; it can be considered as a BAN, defined over T =

⋃

a∈S Ta. All these sets
are illustrated in Fig. 3.

Example 3. Let S = {a, b, c, d}. Let Ta = {e, f, g, h}, Tb = {i, j, k}, Tc = {l,m}
and Td = {n}. Let T = Ta ∪ Tb ∪ Tc ∪ Td. Let Ea = {eg, eh}, Eb = {ei, ek, e′

k},
Ec = {em} and Ed = {en}. Let Ua,b = {f, g}, Ub,c = {j}, Uc,d = {l}, Ud,a =
Ud,b = {n}, and any other U set empty. We will define interfaces as the following:
Ia,b(ei) = f , Ia,b(ek) = g, Ib,c(em) = j, Ic,d(en) = l, Id,a(eh) = n, Id,a(eg) = n
and Id,b(e′

k) = n (see Fig. 3).

Definition 17. Let A be a set. A Boolean encoding over A is a function φ :
(A → B) → ({0, 1, •}), such that there exists at least one x such that φ(x) = 0
and one x such that φ(x) = 1.

For x : A → B (a Boolean configuration over a set A), φ(x) = 1 means that
x encodes a 1, φ(x) = 0 means that x encodes a 0, and φ(x) = • means that x
does not encode any value. Each φa is defined as an encoding over Ta, and each
φa,b as an encoding over Ua,b.
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By definition we enforce that

if Ua,b �= ∅, then φa(x
∣
∣
Ta

) �= • ⇒ φa,b(x
∣
∣
Ua,b

) = φa(x
∣
∣
Ta

).

Given a BAN on S and some a ∈ S, let us now define the local simulation of
function fa by a module Ma. We want to express that given any configuration
x : S → B, all the configurations x′ : Ta → B and input configurations i′ : Ea →
B such that x′, i′ encode the same information as x, the result of the dynamics
on x′, i′ in the simulating module must encode the result of the dynamics on x
in the simulated automaton. To express that x′ encodes the state of a in x is
easy: φa(x′) = xa. To express that i′ encodes the state of all b �= a in x requires
an additional notation. On the one hand we have φb,a : (Ub,a → B) → ({0, 1, •}),
and on the other hand we have i′ : Ea → B describing the input-configuration of
module Ma, and Ib,a : Ea → Ub,a describing the interface from b to a. To plug
these objects together, we put forward the hypothesis that if Ib,a(e) = Ib,a(e′),
then i′(e) = i′(e′) for any e, e′ ∈ Ea. This hypothesis is justified by the fact that
the wiring applied by Ib,a enforces the value of two inputs connected to the same
element to be the same. Now, we define i′ ◦ I−1

b,a the configuration over Ub,a such
that i′ ◦ I−1

b,a (s) = i′(e) for any e such that Ib,a(e) = s. By our hypothesis this
configuration is well defined.

Definition 18. Let a ∈ S, fa be a Boolean function over S and Ma a module
over (Ta, Ea, αa), with φa (resp. φb,a) a Boolean encoding over Ta (resp. Ub,a).
Given a finite update mode Δ over Ta, Ma locally simulates fa, denoted by
Ma ≺Δ fa, if for all x : S → B,

1. and for all x′ : Ta → B such that φa(x′) = xa,
2. and for all i′ : Ea → B such that for all b �= a we have φb,a(i′ ◦ I−1

b,a ) = xb,
3. we have:

φa(MaΔ(x′ � i′)) = fa(x).

This local simulation can be defined on a wide range of update modes Δ.
To ensure that the simulation works as planned at the global scale, we restrict
the range of update modes Δ used for the local simulations, to those where no
automata with input(s) are updated later than the first update.

Definition 19. An update mode Δ over a module M is defined to be input-first
if for all k > 1 and all s ∈ Δk, we have α(s) = ∅.

Definition 20. We define that M is able to input-first simulate f if there exists
an input-first Δ such that M ≺Δ f .

Intuitively, such update modes let us make parallel the computation of mod-
ules; all information between modules is communicated simultaneously at the
first frame of computation (update), followed by isolated updates in each mod-
ule. To define global simulation, we introduce the global encoding Φ : (S →
B) → (S′ → B) ∪ {•} which always verifies that for all x′ : S′ → B, there exists
x : S → B such that Φ(x) = x′.
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Definition 21. Let F and F ′ be two Boolean automata networks over S and S′

respectively. We define that F simulates F ′, denoted by F ≺ F ′, if there exists a
global encoding Φ such that for all x′, x such that Φ(x) = x′, and for all δ′ ⊆ S′,
there exists a finite update mode Δ over S such that Φ(FΔ(x)) = F ′

δ′(x′).

Given the definitions of local and global simulation, for any BAN F over a
set S, we define each module Ma as earlier, each defined over (Ta, Ea, αa), along
side each set Ua,b, Ia,b and each encoding φa, φa,b.

Theorem 2. Let F be a BAN over S. For each a ∈ S, let Ma be a module
over (Ta, Ea, αa) that locally simulates F (a) in an input-first way. There exists
a recursive wiring ω over T =

⋃

a∈S Ta such that

�ω

(
⋃

a∈S

Ma

)

≺ F .

Sketch of Proof. We prove that the execution of the module M obtained from
the wiring ω can be built from the execution of each Ma. We apply the hypothesis
of local simulation on each Ma, and obtain a global simulation.

This theorem helps us investigate if every BAN can be simulated by a BAN
with a given property, hence justifying that theoretical studies can impose some
restrictions without loss of generality. If every function f can be locally simulated
by a given module with a property P, and if property P is preserved over wirings,
then we know that any BAN can be simulated by another BAN with the property
P. This is formally proven for the following cases.

Corollary 2. Let F be a BAN. There exists F ′ such that F ′ ≺ F and every
function of F ′ is a disjunctive clause.

Corollary 3. Let F be a BAN. There exists F ′ such that F ′ ≺ F and every
function of F ′ is monotone.

Sketch of Proof. Both of theses results are obtained by replacing the automata
of F by modules that locally simulates them. For disjunctivity, the module has
one automaton for each clause of the conjunctive normal form of the simulated
function, and one for the result (using De Morgan’s law we convert the outer
conjunction to a disjunction). For monotony, we use a lemma that shows that
we can always construct a monotone function from any function at the cost of
duplicating each variable. Using this lemma we construct a network with twice
the automata which locally simulates any function. The results are obtained by
the Theorem 2.

It can seem strange that this particular theorem applies to BANs and not
to modules (as it would be a more general result). Such a result would need a
definition of simulation between modules, and such a definition would imply an
interpretation of the information provided by the simulating module’s inputs.
We choose not to develop this particular idea, as this theorem was only meant
to apply to BANs, but a generalisation of this result to modules would be a good
subject for future works.



A Framework for (De)composing with Boolean Automata Networks 133

a b
c

d e

f

g

h

++

+

−

−

−
−

+ −+

−−
+

a b
c

d e
f

g

h

++
−

−
−

−

−+

+

−

+

−
+

F

M1 M2
M3

Fig. 4. Representation of a handmade Boolean automata network F next to the three
different modules M1, M2 and M3 that compose it. The function of each automaton is
defined as a disjunctive clause with a positive literal for each incident “+” edge, and a
negative literal for each incident “−” edge. For example, fh(x) = xc ∨ ¬xe.

7 Examples

To illustrate and justify the notions that are presented in Sect. 2, we shall now
present two examples of BANs that can be partially understood by cutting
them into modules. The first example is a toy BAN illustrated in Fig. 4. In this
representation we assume the function of each automaton to be a disjunctive
clause with one literal for each incident edge, the sign of which dictates the sign
of the literal.

Looking at this example, it does not seem easy to express the entire behaviour
of the BAN F . Its representation is a strongly connected graph with multiple
interconnected positive and negative cycles. Yet, cutting this graph into multi-
ple modules and analysing the functionality of each of them is an easy way to
understand interesting parts of the dynamics of the network.

By assuming the decomposition of F as shown in Fig. 4, we can start to
attach a functionality to each module. Module M1 is a positive cycle, where the
configuration xa = xd = 1 is a fixed point (whatever the input). Its functionality
can be identified as a “one time button” that cannot be pushed back. Module
M2 is a negative cycle, which are known for their long limit cycles. The difference
here is that as M2 has two inputs, its behaviour can be stabilised into a fixed
point by a fixed input. For example, the fixed point xb = xe = 1, xc = 0 can
be obtained with the constant input ib = 1, ie = 0. Finally, the module M3 is
acyclic and thus only computes the Boolean function ¬ig ∨ (¬ih ∧ ih′). It follows
that M3 stabilises to a fixed point under any constant input.

This simple analysis leads us to the following conclusion: every fair execution
(meaning executing every automaton an infinite amount of time) of F which
verifies xa = xd = 1 at any moment stabilises into a fixed point. This is true
because xa = xd = 1 implies that the “one time button” of M1 is pushed in,
which locks the behaviour of M2 into a fixed point, which leads M3 to compute
a Boolean function over a fixed input. This somewhat informal demonstration
has led us to a conclusion that was not easily implied by the architecture of the
network, showcasing the usefulness of understanding networks as composition of
parts to which one can assign functionalities.
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Start SK Cdc

Rum1

Ste9

PP Slp1

Cdc25 Mik

Cdc*

Fig. 5. Representation of the network simulating the cell cycle sequence of fission
yeast extracted from [6]. Activating interactions are represented by simple arrows and
inhibiting interactions by flat arrows. The detail of each node’s function is available in
the original paper.

The second example is drawn from a model predicting the cell cycle sequence
of fission yeast [6]. This network is represented in Fig. 5, and can be decomposed
into a more abstract network, where each node represents a module of the original
network. This network is represented in Fig. 6 and its modules are constructed as
follows: C = {Rum1, Ste9},D = {Cdc,Cdc∗}, F = {Cdc25}, G = {Mik}, I =
{Start, SK}, J = {PP, Slp1}. A quick analysis of these modules leads us to sort
them into three categories: cycles (C,D), functions (F,G) and igniters (I, J).
Let us now explain this organisation in an informal way.

The two cycle modules C and D are organised in a 4-cycle of negative
feedback which means that if considered separately from the rest of the net-
work, those two modules would behave as antagonists: in most cases, when the
automata of C (resp. D) are evaluated to 1, the automata of D (resp. C) will be
evaluated to 0. Modules F and G can be viewed as functions which help D and
C respectively to be evaluated to 1; they both are influenced by J in different
ways. Modules I and J are called igniters because they turn themselves to 0
every time they are evaluated to 1, but not before influencing the other nodes.
Module I inhibits C when activated, and can be considered as the input of the
whole network. Module J is activated by D, activates C and G, and inhibits F .

From this we can conclude that if the network stabilises, it will more likely
stabilise by evaluating C to 1 and D to 0. This conclusion arises from the fact
that D activates J , which in turn inhibits D directly, but also inhibits F (which
activates D) and activates G (which inhibits D). This also means that F will
be evaluated to 0 and G to 1. Finally, I and J will naturally be evaluated to
0 because of the natural negative feedback that compose them. This particular
evaluation of the network (only C and G to 1) is actually the main fixed point
of the network’s dynamics put forward in [6] and is named G1. This shows that
such a fixed point can be described without the need to compute the 210 = 1024
different configurations of the network and their dynamics.
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C D G

I J F

Fig. 6. Abstract representation of the interactions between the modules C,D, F,G, I
and J based upon the network represented in Fig. 5.

8 Conclusion

The two theorems formulated in this article tell us that seeing BANs as modular
entities is a way to discover useful results. With the simple addition of inputs
to BANs, we have expressed a general simulation structure that can be used to
understand the computational nature and limits of given properties over BANs.
Let us underline that all the definitions and results can be applied to BANs and
modules defined over countably infinite sets of automata and inputs.

Wherever Turing-completeness is observed, complex behaviours emerge that
cannot be simply or quickly formulated from the basic rules of the computation.
In such situations, the solution is either to compute every single possibility to
capture the whole dynamics of the observed system, or to simplify the model. We
believe that the framework developed in this paper is a strong candidate to enable
us to decompose complex networks into parts with tractable functionalities, and
to make conclusions about the whole network at a cheaper cost. This approach is
still very informal at this moment and will be the focus of further developments.
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Abstract. Interval-valued computing is a kind of massively parallel
computing. It operates on specific subsets of the interval [0,1) – unions
of subintervals. They serve as basic data units and are called interval-
values. It was established that this system (in its unrestricted version)
has computing power equivalent to Turing machines, by a rather sim-
ple observation. However, this equivalence involves an infinite number
of interval-valued variables. In this paper, a more refined equivalence is
established using only a fixed number of interval-valued variables. This
fixed number depends only on the number of states of the Turing machine
– logarithmically. This method makes it also possible to extend interval-
valued computations into infinite length to capture the computing power
of red-green Turing machines.

Keywords: Unconventional computing
Massively parallel computing · Interval-valued computing
Red-green Turing machines · Simulation · Hypercomputation

1 Introduction

Interval-valued computing is a kind of massively parallel computing. It oper-
ates on specific subsets of interval [0, 1) – unions of subintervals. They serve
as basic data units, these are called interval-values. The operators are – aside
from pointwise Boolean ones and shifts to left and right – a kind of zooming,
so called product [6]. This operator is a 1-dimensional analogue of the zooming
operator in optical computing on pictures [12]. It is natural to involve the other
operators if the interval-values are considered as bit sequences indexed by [0, 1).
The massive parallelism of this computing concept lies in the fact that these
operators are executed in one unit, all at once. It is similar in this aspect to bit
vector machine computation [11].
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It was established in [6] that this system (in its unrestricted version) has com-
puting power equivalent to Turing machines, by a rather simple observation. In
this unrestricted version, the interval-valued computation sequence is generated
by an arbitrary Turing machine, so it is easy to simulate any Turing machine
by an unrestricted interval-valued computation and vice versa. However, this
equivalence involves an infinite number of interval-valued storage places. If we
restrict the interval-valued computation, then the arising computation class can
have a restricted computing power.

If the first argument of a product operator applications is restricted to
[
0, 1

2

)

and the length of computation sequence is restricted polynomially, then we get
a characterization of PSPACE [6]. A stronger restriction to characterize NP is
found in [9,10].

In this paper, a more refined Turing equivalence is established. For any given
Turing machine, we give a representation of its configurations by some fixed num-
ber of interval-values. It is also shown that its configuration transition function
can be implemented by a fixed length interval-valued computation sequence.
This sequence can be looped then indefinitely until acceptance. By this way,
we give an interval-valued computation sequence which is using a fixed num-
ber of interval-valued variables (storage places) and simulates the given Turing
machine.

This fixed number of used interval-valued variables and fixed length of a loop
cycle grow logarithmically along with the number of states of the Turing machine
but do not change along the size of input. The larger is the size of work tape
the more dense is the information representation in interval-values occuring in
this computation – the main advantage of this paradigm, massive parallelism,
is deployed. Of course, the length of simulating interval-valued computation
cannot be restricted polynomially to capture full computing power of Turing
machines. This interval-valued computation sequence contains products not only
with

[
0, 1

2

)
but we conjecture that one can transform into such a form.

After this achievement, the computing power of interval-valued computing
is enough to simulate not only ordinary Turing machines, but even red-green
Turing machines, if one allow infinitely looping interval-valued computations on
a finite number of interval-valued variables.

We note that it is a novelty to the previous papers [6–10] that input word
appears not only as an encoded sequence of operators but it has an explicit
representation in the interval-values itself. It somehow takes better advantage of
the massive parallelism of this paradigm.

The organization of this paper is the following. In Sect. 2, the preliminaries
are enumerated, mainly the notions concerning red-green Turing machines. In
Sect. 3, the definitions are given. In Sect. 4, an example of an infinite running
interval-valued computation is given where the input is not a discrete word but a
specific interval-value. We will extract the binary digits of any real number a (in
[0, 1]) by an interval-valued computation starting on input interval-value [0, a).
It is the first example where an interval-valued computing sequence executes a
task that is non Turing computable (if a is a non recursively enumerable real).
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We can remark that this is the first example where interval-valued computing
manifests itself as an analog computing system. In Sect. 5, we state and prove our
main results. In Sect. 6 we pose some open problems related to interval-valued
computing.

2 Preliminaries

Turing machines are the best known universal models of computation. However,
there are well-known non computable problems in these models. Motivated in
this way or other way, some theoretical extensions of classical computing theory
are developed, these extensions, including hypercomputation models usually deal
with infinite computations.

One of the newest extensions of the Turing machine that is capable to com-
pute the “uncomputable” is the red-green Turing machine [3] that we recall
briefly. A red-green Turing machine (for us) is essentially a deterministic Turing
machine that is performing an ω-computation on a finite input without halting.
Its set of states is partitioned to red and green states such that the initial state
is a red state. When, during a computation the state is changed from red to
green or vice versa, a “mind change” happens. The “acceptance condition” of
the computations is based on counting the number of mind changes: a computa-
tion is “recognizing” if no red states are visited infinitely often, but there are one
or more green states that are visited infinitely often. It is known that all recur-
sively enumerable languages are recognised by computations with at most one
mind change. Observe that a red-green Turing machine could reject an input in
two essentially different ways: either “stabilizing the computation” in red states
(that is never to have a mind change to a green state after a point of the com-
putation, it is equivalent to have an even number of mind changes during the
computation) or by never stabilizing in any color (i.e., to have infinitely many
mindchanges during the computation). However, the model allows computations
recognizing some input after any odd (finite) numbers of mind changes.

Since this model is also capable to recognise the complement of any recur-
sively enumerable language, it is clearly more powerful than the traditional com-
putational model, i.e., traditional Turing machines. We note that there are other
computational models proven to be equivalent to the red-green Turing machines,
e.g., red-green register machines, and Watson-Crick T0L systems [1,2].

3 Interval-Valued Computations: Definitions

The notions of interval-valued computing have been coined in [4] and formulated
first in mathematical precision in [5]. Interval-valued computations were designed
to solve decisional problems, e.g., q-SAT [5] and also to compute functions, e.g.,
prime factorization is done by an interval-valued computation in [7].

In this section we restate the paradigm to remain self-contained.
We extend the notion of accepting runs by allowing ω-runs where some kind

of fixation of a given interval-value means acceptance. In this way we describe
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a model which is already more general than the previously used variants and
capable to capture computing power of red-green Turing machines.

An interval-value is a subset of the interval [0, 1) which is a finite union of left-
closed, right-open subintervals. The set of interval-values is denoted by V. The
maximal subintervals of an interval-value are called its components. Maximality,
of course, is to be understood as maximality for inclusion. The first component
of the interval-value is its leftmost component in the usual sense: [a, b) is the
first component of v ∈ V if and only if [0, a) ∩ v = ∅ and [a, b) ⊆ v and b �∈ v.

Operators of interval-valued computation are Boolean set operators AND,
OR, NOT , and three other: PRODUCT , RSHIFT , LSHIFT . NOT is a unary
operator, all the others are binary. For the sake of denotational simplicity, we
consider also NOT as a binary operator where the second operand is superfluous.

A computation sequence is a finite sequence indexed by natural numbers, the
first element is the constant FIRSTHALF and every other element consists of
a triplet (op, i, j) where op is an operator and i, j are positive integers less than
the index of the actual element.

The value of an interval-valued computation is defined by induction of
the length of the computation. Let S denote an interval-valued computation
sequence, its value, denoted by ‖S‖ is the interval-value that is obtained by the
last operation of the sequence S. Let S→k denote the prefix of S with last ele-
ment index k. First ‖FIRSTHALF‖ is fixed to

[
0, 1

2

)
. If the last element of S

is (op, i, j), containing a Boolean operator, then

– ‖S‖ = ‖S→i‖ ∪ ‖S→j‖ if op is OR,
– ‖S‖ = ‖S→i‖ ∩ ‖S→j‖ if op is AND,
– ‖S‖ = [0, 1) \ ‖S→i‖ if op is NOT .

The function Flength : V → R can be defined by Flength(v) = b − a if [a, b)
is the first component of v. If such a component does not exist (v = ∅) then
Flength returns 0. The left-shift operator will shift the first interval-value to
the left by the first-length of the second operand and remove the part which is
shifted out of the interval [0, 1) (i.e., below 0). As opposed to this, the right-shift
operator is defined in a circular way, i.e., the parts shifted above 1 will appear
at the lower end of [0, 1). In this definition we write interval-values in their
“characteristic function” notation instead of the above subset notation. That is,

for any A ∈ V and x ∈ [0, 1), A(x) =
{

1, if x ∈ A,
0, otherwise.

The binary operators Lshift and Rshift on V are defined in the following
way. If x ∈ [0, 1) and A,B ∈ V, then

Lshift(A,B)(x) =
{

A(x + Flength(B)), if 0 ≤ x + Flength(B) ≤ 1,
0, in other cases

Rshift(A,B)(x) = A(frac(x − Flength(B))).
Here the function frac gives the fractional part of a real number, i.e., frac(x) =

x − �x�, where �x� is the greatest integer which is not greater than x.
Let A and B be interval-values and x ∈ [0, 1). Then the product of A and

B includes x if and only if B(x) = 1 and A
(

x−xB

xB−xB

)
= 1, where xB denotes
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the lower end-point of the B-component including x and xB denotes the upper
end-point of this component, that is, [xB , xB) is the maximal subinterval of B
containing x. The product of A and B is zooming out the interval-value A onto
the components of B.

For visual examples on operations we refer to Fig. 1. Further examples, espe-
cially on shifts and product, are shown, e.g., in figures no 1 and 2 in [6], on
page 211.

Fig. 1. Examples of some interval-valued operators, NOT stands for negation, UNION
for or (disjunction), INTERSECT for and (conjunction), LEFT and RIGHT for left-
and right-shift, respectively.

As we defined earlier, an interval-valued computation sequence is a sequence
S0, S1, . . . starting with a constant FIRSTHALF as S0 and continuing with
operator applications on so far constructed interval-values. For example, we
denote the fact, that the value Sk is the product of the values of Si and Sj

by Sk = (PRODUCT, i, j). ‖S→k‖ means the interval-value of the computation
sequence to Sk. As a start, ‖FIRSTHALF‖ is set to [0, 1

2 ). In the example,
‖S→k‖ is the product of the values of Si and Sj .

Let Σ be a finite alphabet, without loss of generality, it can be simply {0, 1}
and let L be a language over Σ. (If |Σ| > 2 then, by an appropriate coding, all
the following definitions, statements and proofs go through without any essential
change, only technical details making them less followable.) In previous papers
interval-valued computations are used in the following way to decide a language:
L ⊆ Σ∗ is decidable by a linear interval-valued computation if and only if there
is a positive constant c and a logarithmic space algorithm A with the following
properties. For each input word w ∈ Σ∗, A constructs an interval-valued com-
putation sequence A(w) such that |A(w)| is not greater than c|w| and w ∈ L if
and only if ‖A(w)‖ is nonempty. A language L ⊆ Σ∗ is decidable by a polyno-
mial interval-valued computation if and only if there is a positive constant c, an
integer k ≥ 0 and a logarithmic space algorithm A with the following proper-
ties. For each input word w ∈ Σ∗, A constructs an interval-valued computation
sequence A(w) such that |A(w)‖ is not greater than c|w|k and w ∈ L if and only
if ‖A(w)‖ is nonempty.

We note that in this paper we make the input word (w ∈ Σ∗) to appear in the
computation sequence as an encoded input interval-value. It fits into the previous
framework of language decision because we will write a logspace algorithm to
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construct the mentioned encoded interval-value from w. We underline that it is
a novelty (versus the previous papers) that the input word appears not only as
an encoded sequence of operators but it has an explicit representation in the
interval-value itself.

The computing power of red-green Turing machines is equivalent to that of
non-deterministic circular Turing machines [3,13]. To capture this computing
power one has to extend the original interval-valued computing system. It is
quite natural to consider ω-length interval-valued computation sequences.

The first question arising here is how to measure resource complexity in this
kind of interval-valued computations. The computation length is no further rel-
evant, of course. The more relevant and reasonable measure can be the minimal
number of needed storage places of interval-values that is enough to execute an
infinite computation sequence. Let us call such a storage place a variable. If the
interval-value of a member in the computation sequence is not used later (that
is, if its index does not occur later in the computation sequence, as operand)
then the execution of the sequence can reuse its variable for storing newer com-
putation subresults. It may occur that infinitely many indices are used later in
the sequence infinitely often. In this case, the measure is surely infinite. How-
ever, in some cases, the execution can be performed, by reuse of variables (we
call this recycling), utilizing only a finite number of such storage places. In this
cases, we will say that the computation sequence use only a fixed number of
interval-valued variables. In this paper we do not give the exact numbers only
establish that this number is fixed for a given computation sequence.

The second question arising here is what an appropriate accepting condition
can be. We will establish that the following condition is fine for the purpose of
capturing the computing power of ordinary Turing machines:

there is an assigned variable Accepting storing an interval-value involved in
the computation sequence. The computing sequence is accepting by definition if
and only if its interval-value stabilizes in [0, 1). (Normal Acceptance Condition)

If the purpose is to capture computing power of red-green Turing machines:
there are two assigned variables (Red and Green) storing interval-values

involved in the computation sequence. The computing sequence is accepting by
definition if and only the interval-value of Green infinitely often [0, 1) but that
of Red is not. (Red-green Acceptance Condition)

4 On Infinite Interval-Valued Computation Sequences

In our computations, the first interval-value is fixed. In this paper, we use either
FIRSTHALF = [0, 1

2 ) or an input interval [0, a) with a real number 0 ≤ a ≤ 1.
Because of the fixed first interval-value, it can easily be seen by induction (con-
sidering the defined operations on interval-values) that only [ )- type interval
components are used in the computations of the next sections. Moreover, if we
start the computation sequence with FIRSTHALF , each interval-component
[b, c) that occurs in the computation in an interval-value has the property that
both b and c are of the form x

2m for some integers m ≥ 1, 0 ≤ x ≤ 2m.
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Actually, the largest value m that is needed to express all components of
the interval-values of the computation sequence, gives a kind of resolution of
the actual computation. This resolution is connected to the number of used
PRODUCT operations: multiplying FIRSTHALF by an interval-value (with
the property that its components can be expressed with a value m), the compo-
nents of the resulted interval-value can be expressed with the number m′ = m+1.
One may assign bit sequences to the interval-values (with resolution m), based
on the fact that the segments

[
x
2m , x+1

2m

)
(for integer values 0 ≤ x ≤ 2m − 1)

are included in the interval-value or not. In this notion, the multiplication by
FIRSTHALF doubles the number of stored bits in an interval-value. This mea-
sure, the bit-height of a computation, was introduced in [6] where a PSPACE-
complete problem, namely the q-SAT, was solved by linear interval-valued com-
putation using the product operator only in a way that one of its operand
was always FIRSTHALF . In this way, an interval-valued computation uses
a dynamically changing amount of information in interval-values, i.e., growing
number of bits can be coded into an interval-value as the computation pro-
ceeds. We note that in other possible variations of interval-valued computing,
other types of interval-values can occur, e.g., having components of types [b, c]
and/or (b, c). One may also use further interval-values which may not be com-
putable by the described operations from FIRSTHALF by any finite sequences
of computation. Such a change may affect the computing power of the system
significantly. In this paper we consider infinite computations and in the next part
of the section we present computations which uses also an input interval-value.

As an example, we demonstrate an infinite interval-valued computation
sequence that writes out for an input interval-value [0, a) the binary digits of
a, for an arbitrary real a ∈ [0, 1]. The number a can be any real, even a Chaitin
constant or any not recursively computable real constant. The only “magic” is
that the computation gets exactly [0, a) as input. What does it mean – output
of an interval-valued computation? It is a word over {0, 1}, initially the empty
one. We extend the list of operations by a statement (OUTPUT, i) – it has
value that of ‖S→i‖ and as side effect, writes a bit into the output. This bit is
true if ‖S→i‖ = [0, 1) and false if ‖S→i‖ = ∅, other cases remain undefined. It
is somewhat different to the definition of output in [7] and in [8] – we want to
describe a better separated output.

Instead of RSHIFT , LSHIFT , AND and OR we use the more readable
operator symbols RIGHT , LEFT , INTERSECT , UNION , resp. We give the
following computation sequence in a somewhat shortened fashion – using the
Boolean operator UNION for more than 2 arguments, as abbreviations.

Let S0 be the input interval-value. Then the computation can be executed
in an infinite loop as follows. For any nonnegative integer i, let

S13i+1 = FIRSTHALF , and
S13i+2 = (NOT, 13i + 1),
S13i+3 = (INTERSECT, 13i, 13i + 2),
S13i+4 = (NOT, 13i + 3),
S13i+5 = (LEFT, 13i + 4, 13i + 4),
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S13i+6 = (RIGHT, 13i + 5, 13i + 1),
S13i+7 = (LEFT, 13i + 3, 13i + 1),
S13i+8 = (UNION, 13i + 3, 13i + 5, 13i + 6, 13i + 7),
S13i+9 = (OUTPUT, 13i + 8),
S13i+10 = (PRODUCT, 13i + 1, 13i + 8),
S13i+11 = (LEFT, 13i, 13i + 10),
S13i+12 = (RIGHT, 13i + 11, 13i + 11),
S13i+13 = (UNION, 13i + 11, 13i + 12).

Fig. 2. Writing out the first binary digit of a real number a ∈ [0, 1] for three different
possible input numbers. Left: a case, where the first binary digit is 1. Middle: a case
when the first binary digit is 0. Right: the special case of a = 1, with the whole [0, 1)
as input. The shown sequences do not only give the first output bit (line 9), but also
prepare the new interval-value which can be used (similarly as the input interval-value)
to produce the second and further digits of the original input.

This computation, when i = 0, writes out the first binary digit of a in its
9-th step and then prepares the interval-value to the next cycle by constructing
[0, 2a−1) if a > 1

2 and just [0, 2a) otherwise. From S14, the previous computation
is “recycling” the variables substituting S13 into S0. This means that, actually,
we do not need to “store” every interval-value that is obtained for a long time,
but during the computation we need to remember only the last 13 interval-
values, thus, a fixed constant 13 “slots” of an “interval-valued memory” would
be enough to manage this computation.

It is easy to see that this computation writes out while its ω-run all digits
of a one by one (if a = 1 then it is written out as eternally repeating 1’s).
Further, it can run utilizing only 13 interval-values (or maybe few more because
of using abbreviations in our description). We underline that, apart from our
only constant interval-value FIRTSHALF , we need a fixed number of interval-
values to continue the computation process, recycling the variables.

We could write all the interval-values in such formulae as

S0 = [0, a), S1 =
[
0,

1
2

)
, S2 =

[
1
2
, 1

)
,
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and

S3 =

⎧
⎨

⎩

∅ if a ≤ 1
2

[
1
2 , a

)
if a > 1

2

.

To be concise, we write a table showing 3 typical cases and tracking the
first 13 steps (see Fig. 2). The main technical difficulty in constructing of this
sequence lies in handling the various cases in a uniform way.

5 Interval-Valued Computations for Turing Machine
Simulation

In this section a simulation of Turing machines is made possible by a represen-
tation of Turing machine configurations using a fixed number of interval-valued
variables, where ‘fixed’ means fixed for a given Turing machine. This number
depends logarithmically on the number of states of the machine.

Without any loss of generality, a Turing machine is assumed to have states
{0, . . . , 2s − 1} for some integer s ≥ 0 with initial state 0 and accepting state
set {2s − 1}. We think of a state as an s-length bit sequence (q1, . . . , qs). In this
view, the null vector maps to the initial state and q1 = 1∧ . . .∧ qs = 1 expresses
that the state is accepting.

Further, the tape alphabet is restricted to {0, 1} and the machine cannot
write a blank symbol. The empty word is avoided as input word. These are not
essential restrictions on Turing machines concerning only computation univer-
sality. Every Turing decidable language can be decided by a Turing machine
restricted in these ways, it can be seen introducing a new blank symbol, han-
dling the old one as an ordinary tape symbol and by some other input transla-
tions. These restrictions make the following parts of this paper technically more
readable.

For the sake of illustration we take an example Turing machine M with state
set {0, 1, 2, 3} and with the following program:

q1 q2 Tape q′
1 q′

2 Tape′ Move

0 0 0 0 1 1 →
0 0 1 0 0 0 ◦
0 1 0 1 0 0 →
0 1 1 1 1 1 ←
1 0 0 1 1 0 →
1 0 1 1 0 1 ◦
1 1 0 0 1 0 ◦
1 1 1 1 1 1 ◦
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We use 6 + s interval-valued variables to represent the configurations of a
Turing machine where s is the number of bits representing the states. We should
mention that the following computations use more interval-valued variables than
the below named ones – for temporary storage reasons. By careful examination of
them (in the following computations), one can exactly determine their number.
We will only point out that this cardinality is finite for a given Turing machine.
The identifiers of these interval-values are

First, Last, End,Head, Tape,Accepting

and
Qi (1 ≤ i ≤ s).

As usual, a configuration of Turing machine T consists of

– a description of the nonempty part w of the tape,
– the position p of the head on it and
– the description of the actual state q.

These interval-valued variables describe a configuration (w, p, q) (where w ∈
{0, 1}∗, 1 ≤ p ≤ |w|, q = (q1, . . . , qs) ∈ {0, 1}s) by the following configuration
representing rules. Let n be the only nonnegative integer such that 2n < p ≤
2n+1.

First =
[
0,

1
2n+1

)

Last =
[
1 − 1

2n+1
, 1

)

End =
[ |w| − 1

2n+1
,

|w|
2n+1

)

Tape =
⋃

1≤i≤|w|,wi=1

[
i − 1
2n+1

,
i

2n+1

)

Head =
[
p − 1
2n+1

,
p

2n+1

)

Qi =
[
p − 1
2n+1

,
p

2n+1

)
if qi = 1 and Qi = ∅ if qi = 0.

In Fig. 3, an initial configuration of M is shown for the input word 10110
represented by these initial interval-values. For the input word 10110, the value
of n is 2, 1

2n+1 = 1
8 .

We can notice that the reason why a finite number of interval-values is enough
to represent all the configurations is that we utilize massively parallel data rep-
resentation in these interval-values.



Interval-Valued Computations and Red-Green Turing Machines 147

Fig. 3. Interval-values after initialization for input 10110.

Using this representation, we can establish the following theorem:

Theorem 1. (i) There is a logspace algorithm (let us call it A) that constructs
an infinite interval-valued computation sequence to a given deterministic Turing
machine T and to a given input word w that is accepting (in the normal sense)
if and only if T accepts w. The number of the used interval-valued variables is
fixed for a given machine and is growing logarithmically along the number of the
states of T .

(ii) There is a logspace algorithm (B) that constructs an infinite interval-
valued computation sequence to a given red-green Turing machine T and to a
given input word w that is accepting (in the red-green sense) if and only if T
accepts w. The number of the used interval-valued variables is fixed for the given
machine and is growing logarithmically along the number of the states of T .

Proof. (i)
The basic difficulty in construction of such a computation lies in the absence

of possibility of investigation of cases and switch in the execution accordingly to
the result. It must remain uniform in all cases. This problem can be tackled by
the following trick. We compute an interval-value that is different in the different
cases and use it in a uniform way that works in every case.

The initial part of the computation created by A has to set up the represen-
tation of initial state according to w.

Let n = max(0, �log2(|w|)� − 1). It is the least nonnegative integer that
2n < |w| ≤ 2n+1 (except if |w| = 1, in this case we start by a higher density
what is really needed for technical simplicity).

For the sake of readability, we always write a new variable for interval-
values, but, by a more careful investigation, one can always establish that only
a finite number of them is really needed, using recycling. Further, we write
I := PRODUCT (J,K) for I := (PRODUCT, j, k) if the index of J and K is
just j and k, resp. The same for RIGHT , LEFT , AND, OR and NOT – the
last is written in unary form.

F := FIRSTHALF , I0 := F ,
(∀k ∈ {0, . . . , n − 1}) Ik+1 := PRODUCT (F, Ik),
T0 := ∅, S1 := In,
(∀p ∈ {1, . . . , |w|})
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if wp = 1 then Tp := Tp−1 ∪ Sp,
if p = |w| then End := Sp,

Sp+1 := RIGHT (Sp, In),
Tape := T|w|, First := In, Last := RIGHT (First,NOT (First)).
Head := First, Accepting := ∅.
This assures that ‖In‖ =

[
0, 1

2n+1

)
and all the configuration representing

variables are set correctly respect to representing rules above.
In this part, only in this case (later not), we demonstrate what we under-

stand under variable recycling. The length of the initial part of the computation
sequence depends linearly from |w|, the length of the input word. However, it
is enough to use a fixed number of interval-valued variables (F , I, T and S,
and some more, for temporary stored results) and recycle them by the following
modification of the original algorithm part. We chose writing indices on these
variables to understand better the details of the computation. We remark that
operation I := ∅ is also an abbreviation – the empty set can be combined from
the value of FIRSTHALF by some Boolean operations.

F := FIRSTHALF , I := F ,
(∀k ∈ {0, . . . , n − 1}) I := PRODUCT (F, I),
T := ∅, S := I,
(∀p ∈ {1, . . . , |w|})

if wp = 1 then T := T ∪ S,
if p = |w| then End := S,

S := RIGHT (S, I),
Tape := T , First := I, Last := RIGHT (First,NOT (First)).
Head := First, Accepting := ∅.
We will use a computation sequence that can extract the first component

of an arbitrary interval-value I by a fixed length computation, i.e., obtain the
interval-value that is exactly the first component of I.

Claim. There exists an interval-valued computation sequence of length less than
10 that starts with an arbitrary interval-value and the value of its last member
(the value of the computation) is the first component of the input interval-value.

Proof. The computation can be constructed in the following way. Operation
MINUS should be considered as the usual abbreviation for a Boolean combi-
nation from AND and NOT . The first component appears in Fc.

Fc1 := LEFT (I, I), F c2 := LEFT (Fc1, NOT (I)),
F c3 := RIGHT (Fc2, NOT (I), F c4 := RIGHT (Fc3, I),
F c := MINUS(I, Fc4).
If I = [0, b) (0 ≤ b ≤ 1), then Fc1 = Fc2 = Fc3 = Fc4 = ∅ and Fc is I,

correctly.
If I = [a, b) (0 < a < b ≤ 1), then Fc1 = [max(2a − b, 0), a), Fc2 = Fc3 =

Fc4 = ∅ and Fc is I, correctly.
If I = [a, b) ∪ [c, d) ∪ M (0 < a < b < c < d < e ≤ 1,M ∩ [0, e) = ∅) then

Fc4 = [c, d) ∪ M and then Fc is [a, b), correctly and
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if I = [0, b) ∪ [c, d) ∪ M (0 < b < c < d < e ≤ 1,M ∩ [0, e) = ∅) then
Fc4 = [c, d) ∪ M and then Fc is [0, b), correctly again.
The computation uses variables Fc1, . . . F c4, F c and some temporary interval-
values. This accomplishes the proof of this statement. ��

We continue now with the proof of Theorem 1. A (the algorithm to create
the computation sequence) will work in an infinite loop from now on, after the
initial phase.

The cycle begins here, at Step 1 : it is to increase tape density if needed –
first, because of a right move of machine head. This can be executed by taking
product with an interval-value π that takes value either

[
0, 1

2

)
or [0, 1) depending

on density increase is needed for this reason or not. So, first π will be computed
as follows.

Let π0 be the intersection of End, Last and Head and the Boolean combina-
tion of Q0, . . . , Qs, Tape ∩ Head that expresses the pairs of machine states and
tape symbols that prescribe a move to right by the program of T . π0 will get
value

[
1 − 1

2n+1 , 1
)

if a move-to-right is needed and ∅ if is not.
Now, π1 := LEFT (π0, F IRSTHALF ), π2 := RIGHT (π1, π1),
π3 := NOT (π2).
‖π3‖ is

[
0, 1

2

) ∪ [
1
2 + 1

2n+1 , 1
)

if a move-to-right is needed and [0, 1) if is not.
π can be correctly computed then as the first component of π3.

If π is got then
Tape := PRODUCT (π, Tape),
First := PRODUCT (π, F irst),
Head := PRODUCT (π,Head),
Last := RIGHT (First,NOT (First)) (this uses the new value of Left)
and End := Head. (also uses the new value)
We note that these steps do not move the head to the right just set up the

“playground” more dense to have space enough to move right later.
Step 2 is to increase tape density if needed - second, because of a left move

of machine head. This can be executed also by a product operator involving
the appropriately computed interval-value, but also right shifts (with the actual,
new value of Head) of variables Tape, Head, Q1,. . . ,Qs are needed (to make
space for a later move to the left with the head and the state representation
interval-values).

In Step 3, the computation generated by A changes the content of actual
tape cell. An interval-value δ will be determined that is equal to Head if tape
change is needed and ∅ if not.

Let δ be the union of

– intersection of Head, Tape and the Boolean combination of Q0, . . . , Qs and
Head ∩ Tape that expresses machine states that prescribe a tape cell change
from 1 to 0

– intersection of Head, NOT (Tape) and the Boolean combination of Q0,. . . ,Qs

and Head ∩ NOT (Tape) that expresses machine states that prescribe a tape
cell change from 0 to 1.
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If δ is got then A should generate a step Tape := Tape XOR (Head ∩ δ)
and the new content of the Tape is correctly set. XOR, as expected, can be
combined from some Boolean operators in the usual way.

In Step 4, in a similar way, the computation generated by A determines into
an interval-valued variable whether change in the first state bit is needed or not
and, using XOR, determines the new interval-value of Q1. We note that the
old interval-value of Tape (before Step 3) is needed to do this step. This can be
solved by storing temporarily also the previous value of Tape. Also the other
interval-values for Qi(i ∈ {1, . . . , s}) will be determined.

In Step 5, eventually moving the interval-valued variable End to the right
is implemented. The computation determines an interval-value μ that the right
shift with it is correct in both cases – if a shift is needed or not. It is a copy of
the interval-value of Head in the first case and ∅ in the second one. μ can be
computed as the intersection of Head, Tape, End and the Boolean combination
of Q0, . . . , Qs, Head and Tape that expresses machine state – tape symbol pairs
that prescribe a move to the right. Finally End is shifted to the right by μ.

Step 6 is similar to Step 5, but concerns left shift of variable End.
In Step 7, eventually moving the interval-valued variables Head and Q1,. . . ,

Qs to the right is implemented. The computation determines interval-values ν
that the right shift with it is correct in both cases – if a shift is needed or not.
It is a copy of the interval-value of Head in the first case and ∅ in the second
one. ν can be computed as the intersection of Head, Tape and the Boolean
combination of Q0, . . . , Qs, Head and Tape that expresses machine state – tape
symbol pairs that prescribe a move to the right. Finally Head and Q1, . . . , Qs

are shifted to the right by μ.
In Step 8 is similar to Step 7, but concerns left shift of Head and Q1,. . . ,Qs.
Finally, in Step 9, the value of Accepting can be computed from Q1∩ . . .∩Qs.

It is equal to Head if the state is accepting and ∅ if not. This has to be translated
it to [0, 1) if accepting and ∅ if not. The first part is X1 := NOT (Accepting),
X2 := PRODUCT (NOT (FIRSTHALF ), Accepting),
X3 := PRODUCT (FIRSTHALF,Accepting). This ensures that the following
condition holds:

X3 = [a, b) for some 0 < a < b < 1 if Accepting is nonempty and X3 is
empty if and only if Accepting is empty

The computation can be the following. We use one plus abbreviation, I =
FC(J) as an abbreviation to a computation sequence that is starting with the
interval-value of J and results in its first component, stored into variable I. We
track the values all the named variables for both the two relevant cases in Fig. 4.

After Step 9, the computation sequence generated by A has built all the
interval-values Tape, Head, etc. that represent the next configuration, thus
restarting it at Step 1 will result a loop that eternally generates, before Step
1, the next configurations of T one after the other. The acceptance condition
clearly should be applied to the interval-value Accepting. If Turing machine T
accepts w after n steps, then the computation sequence turns to be accepting
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Fig. 4. Step 9: growing up a nonempty interval in [0,1) while the empty input keeping
empty

exactly after n execution of the cycle. If T does not accept w, then the generated
interval-valued computation sequence never accepts w.

A is clearly logspace, it generates a looping interval-valued computation
sequence. The syntactic rules that generate the computation sequence are given
in the above proof, only the indices should be manipulated by A.

(ii) The proof of (ii) differs only the acceptance condition. The generated
computation sequence (by B) should differ between the two sets of states in T
(red vs. green states). So B introduces two interval-valued variables Red and
Green for continuously storing the “color” of the actual state in these variables
– Red has interval-value [0, 1) if the state is red and ∅ if green. Green behaves
in an opposite way. Based upon the value of Q1, . . . , Qs, in each loop cycle the
value of Red and Green can be updated by a Boolean combination of them
that describes the red state set. Then Red is equal to Head if the state is red
and empty if green. It should ‘expand’ the nonempty interval-value input into
[0, 1), while keep the empty one as empty. The method is an easy modification of
the method used in Step 9. Then the interval-valued computation will accept the
input word clearly exactly when T accepts w, as a red-green Turing machine. The
acceptance condition should be applied, of course, to interval-valued variables
Red and Green. If T accepts w, then the green Turing machine states occur
infinitely often but red states do not. This means that the simulating infinite
length interval-valued computation is accepting in the red-green sense. ��

We note that in the title we write equivalence of a modification of interval-
valued computing and red-reen Turing machines. The given simulation is only
one side of an equivalence. The other direction is quite obvious.

6 Conclusions, Further Remarks

It would be interesting to explore what density is allowed by today’s optical
technology. The investigated massively parallel model of computing remained
rather theoretical yet. It seems that it is related to quantum computing (QC) in
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its high inner parallelism. It is worth to investigate the relation between problems
solvable by this paradigm effectively and problems solvable by QC.

From the mathematical point of view, some interesting questions remain
open. Is the first-order theory of the Boolean algebra of interval-values extended
by the operations shifts and product decidable? Or at least, is the set of its valid
equations decidable?

From the infinite computational point of view, one can ask: is it possible to
encode a complete computation sequence of a Turing machine into one interval-
value, if one allow to take a new fixpoint operation what is similar to the star of
regular expressions?
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Abstract. We introduce a computational formalism that is deployable
within an arbitrary logical system. This formalism is intended to cap-
ture computation on an arbitrary system, both physical and unphysical,
including quantum computers, Blum-Shub-Smale machines, and infinite
time Turing machines. We demonstrate that for finite problems, the com-
putational power of any device describable via a finite first-order theory
is equivalent to that of a Turing machine. Whereas for infinite problems,
their computational power is equivalent to that of a type-2 machine.

Keywords: Physical computation · Computable analysis
Blum-Shub-Smale machines · Hypercomputation
Computability theory · The Church-Turing thesis

1 Introduction

Since the 1930’s various models of computation have been devised and indeed
utilised. While some of these have been grounded in what is clearly physically
possible (e.g. Turing machines [6,22], and quantum computers [16]), others have
instead found utility in computing in ways that, whilst not proven to be physi-
cally impossible, are questionably achievable (e.g. Type-2 machines [24], Blum-
Shub-Smale machines [4], and infinite time Turing machines [12]).

The diverse inequivalent nature of these formulations presents the question
of what a computation actually is, and if computation can be “unphysical” then
where does the boundary between “physical” and “unphysical” computation
lie? For example, is it the transfinite aspect of an infinite time Turing machine
that makes it “unphysical”? If so, then why is a quantum computer able to
“physically” compute with an infinite continuous space?

One resolution to these questions is to invoke the Church-Turing (CT) thesis
[6,7,22], often rendered as “Every effectively calculable function is computable
by a Turing machine,” and assume that it applies to any physical process we com-
pute with. This may seem to be a natural assumption, as the physical world pro-
vides us with the means to calculate. However, the Turing machine was designed
to mimic how a person mathematically calculates something, rather than how a
physical system might go about obtaining it. There are many aspects of physics
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we do not yet understand, so we cannot in good faith disregard computational
structures capable of violating the CT thesis and label them “unphysical”.

Indeed, even if we were to assume that the CT thesis defines physical compu-
tation, its implications are unclear. As given an arbitrary system S (“physical”
or not) it is not immediately apparent what a computation on S actually is.
Whilst a computation may typically be thought of as a sequential process gov-
erned by an algorithm [11], such a process requires an ordered acyclic notion of
time to be present within S. Not only does this effectively preclude computers
which make use of closed time loops [2], it also does not accurately reflect our
understanding of many real-world physical systems. For example, if we want to
describe the action of a fluid-mechanical system we use differential formulas such
as the Navier-Stokes equations [18]. However, this description does not directly
tell us how the system evolves at each moment in time, and since there remains
no general solution to the Navier-Stokes equations, we are in general unable to
extract an algorithm detailing its evolution.

So in an attempt to resolve the issue of what a computation with an arbitrary
system is, we introduce the concept of a theory machine, which will be formally
defined in Sect. 2.1. Theory machines are similar to sequential abstract-state
machines [11] as well as evolving multialgebras [10], in that their computations
occur on logical structures and attempt to correspond exactly to the computa-
tional models that they are describing. However unlike sequential abstract-state
machines and evolving multialgebras their computations do not necessarily occur
sequentially. Instead a theory machine’s computations are able to occur in an
atemporal manner by ensuring that the laws of the system are consistently sat-
isfied by the entire structure as a whole, rather than depending on a causally
ordered sequence of operations.1

A theory machine consists primarily of a set of logical sentences T which
describes the necessary aspects of a system that we wish to compute with. A
set of admissible inputs I and measurable outputs O are also part of a theory
machine. A key aspect of a theory machine is that for any Φ ∈ I we can obtain
a structure P in which P |= T ∪ Φ. Additionally, for each Φ ∈ I, there should
be at most one output Θ ∈ O such that T ∪Φ |= Θ, and for any Ψ ∈ O if Ψ �= Θ
then there is no structure which satisfies T ∪ Φ ∪ Θ ∪ Ψ . In which case given
any structure P satisfying T ∪ Φ, if we know that Θ ∈ O is true in P, then we
know that T ∪ Φ |= Θ. We then take T ∪ Φ |= Θ to mean that the output Θ is
computed by the machine on input Φ.

This mimics what happens when a person uses a physical system to carry out
a computation process. Indeed, as Horsman et al. argued in [14], for a person to
be capable of computing with a physical system they must be able to abstractly
represent the system and also possess a reasonably correct theory detailing how
the system behaves in the representation. Theory machines are based on this
argument, representing a physical system as a logical structure and describing
its theory as a logical theory T .

1 N.B. despite the similar name, theory machines are not related to the concept of a
“logic theory machine” found in [19].
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For example, suppose we wish to use a kinematic system of billiard balls to
carry out a computation. Such a system can be represented by a structure with
domain R and functions that specify the locations and velocities of the balls.
Hence we may theorise that R satisfies the axioms of real arithmetic [1,23] and
the functions obey the axioms of Newtonian mechanics. Together these axioms
may form our theory T for the system (Newtonian mechanics may not be a
perfect description of reality, but in many cases it is more than good enough for
making reasonable predictions).

Each input Φ ∈ I could consist of a non-contradictory description of the posi-
tions and velocities of the balls at some initial time t0. This description should
state what we know to be true about the input configuration, such knowledge
should arguably have a degree of uncertainty around it. For example, part of Φ
could state that at time t0 the x-coordinate of the 1st ball is located between
rationals q1 and q2. Whereas each output Θ ∈ O could be a description of a
finite precision position measurement at some final time t1.

As this is a real physical situation and Φ can be satisfied within finite error
bounds, it should always be possible to create a kinematic scenario from t0 to
t1 in which T ∪ Φ is satisfied. Due to imprecision of the input there are likely
to be many distinct scenarios that satisfy T ∪ Φ. However if we know that in
each of them only the output Θ is true, then the exact scenario created does not
matter, and the computation may be reliably achieved.

We believe that the computational aspects of any physical computational
device can be described by a theory machine. Indeed in Sect. 3 we demonstrate
how theory machines can be used to describe Turing machines, type-2 machines,
and Blum-Shub-Smale machines. Before explaining how the same is true for
quantum computers, fluid-based computers, and infinite time Turing machines.
Notably, the CT thesis is violated by some of these forms of computation, so in
Sect. 4 we restrict ourselves to finite first-order theory machines. We then prove
that a finite (respectively infinite) word function is decidable by a finite first-
order theory machine if and only if it is computable by a Turing (respectively
type-2) machine. Consequently, if we are to assume that the CT thesis applies
to real world calculations, then the computational capabilities of any physically
realisable system must be describable by a finite first-order theory machine.

Along with the above result we believe that the concept of a theory machine
could serve as a useful tool to help us understand how various different models
of computation compare to one another.

2 The Theory Machine

Before defining what a theory machine is, we should firstly make clear what we
mean when we refer to a logical system [21]. Informally, a logical system is a
formal system in which a semantic consequence relation can be defined, without
which a theory machine would be unable to compute. Examples of logical systems
include first-order logic, second-order logic, modal logic, and fuzzy logic [3,8,9].
When defining a theory machine we will avoid restricting ourselves to a particular
logical system, so as to not preclude any possible form of physical computation.
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Formally, each logical system LS has a fixed set of typed logical symbols
S, as well as a collection of principals detailing how to construct the formulas of
LSV from S, a set of typed symbols V, and an unbounded set of variables.

A structure A of LSV consists of a non-empty set of values V , along with an
operator Ot :⊆ V dt → V for each t ∈ V and some t ∈ S. Each logical system LS
has a well-defined notion of semantics detailing whether or not each formula φ of
LSV is true in A. This truth depends on the operators of A and which elements
of V the free variables of φ are assigned to. An LSV-sentence is a formula of
LSV in which there are no free variables.

We refer to the set V as a vocabulary of LS. For first order-logic the fixed
set S consists of the logical connectives and quantifiers {¬,∧,∨,→,↔,∀,∃}.
Whereas a vocabulary for first order logic is a set of relations, functions, and
constant symbols (e.g. V = {<,+, 0}). A sentence of first-order logic either has
no variables (e.g. 0 < 1), or every variable is within the scope of a quantifier
(e.g. ∀x(0 < (x + 1))).

Let B be an LSV -structure, and Φ,Θ be sets of LSV -sentences. We say that
B is an LSV-model of Φ if every sentence of Φ is true in B, and denote this
by B |=LSV Φ. We write Φ |=LSV Θ if every LSV -structure that models Φ also
models Θ. If Θ has an LSV -model then Θ is LSV-satisfiable.

Though the definition of a logical system here might seem rather vague. Our
key results and examples will each be given in terms of well-defined and well-
studied systems of logic (namely first-order logic (FO) and second-order logic
with equality (SO=)), so our conclusions will be similarly well-defined.

2.1 The Definition of a Theory Machine

We shall now define our principal concept of a theory machine and its method
of computation.

Definition 2.1. Let LS be a logical system and V a vocabulary of LS, an LSV-
theory machine is a triple M = (T , I,O) where:

– T is a set of LSV -sentences,
– I and O are sets of sets of LSV -sentences,
– For every Φ ∈ I the set T ∪ Φ is LSV -satisfiable,
– For every Φ ∈ I and Θ,Ψ ∈ O if Θ �= Ψ then the set T ∪ Φ ∪ Θ ∪ Ψ is not

LSV -satisfiable.

We call T the theory of M, call I the set of inputs of M, and call O the set
of outputs from M.
We say that M computes Θ ∈ O from Φ ∈ I if T ∪ Φ |=LSV Θ. We denote
this by M(Φ) = Θ. If for Θ,Ψ ∈ O where Θ �= Ψ there exists an LSL-model of
T ∪ Φ where Θ is true and another where Ψ is true then M does not compute
anything on input Φ and M(Φ) is undefined.

For a given physical computation system described by a theory machine M, the
theory T is intended to detail the laws that the system obeys.
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Each element of I is intended to be a description of some variable input
configuration (e.g. the positions of a collection of dials), it could be finite and
word-like, it could be an infinite real, it could be a function on reals, or any
number of possibilities. Whatever the case, if an object can be exactly defined
by some set of properties then it can be inputted into a theory machine. The
same is true for the outputs O, allowing us to take the output from one theory
machine and plug it in as an input to another theory machine.

Example 2.1. A set of sentences that defines the real number c ∈ [0, 1) with
binary expansion 0.b0b1. . . is

{
T k(c) ��bk

1
2

}
k∈N

. Where T (x) = 2x − �2x, and
��0≡< and ��1≡�.

In any theory machine we require that for each input Φ there always exists a
model in which Φ and the machine’s theory are satisfied, as if this was not the
case then inputting Φ would just not make sense within the system.

We also intend for it to be the case that every model of T ∪ Φ provides only
the output computed by the machine (if one exists). Hence the fourth condition
of Definition 2.1, which means that not only can we not have M(Φ) = Θ and
M(Φ) = Ψ for Θ �= Ψ , but there do not even exist two separate LSV -models of
T ∪ Φ in which Θ and Ψ are true.

Example 2.2. Let V = {R, f, c} where R is a unary relation, f a unary function,
and c a constant. A simple example of a FOV -theory machine is M = (T , I,O)
where:

– T = {∀x(R(x) ↔ R(f(x)))},
– I = {{R(c)}, {¬R(c)}},
– O = {{R(f(c))}, {¬R(f(f(c)))}}.

We then have M({R(c)}) = {R(f(c))} as in any model of T , if R(c) is true
then R(f(c)) must also be true, so T ∪ {R(c)} |=FOV {R(f(c))}. Whereas
M(¬R(c)) = {¬R(f(f(c)))} as given ¬R(c) by T we then have ¬R(f(c)) is
true and so ¬R(f(f(c))) is true, hence T ∪ {¬R(c)} |=FOV {¬R(f(f(c)))}.

For simplicity, in the examples and definitions below our logical systems will
contain the equality “=” as part of the fixed symbols of the system and in any
structure of the system “=” will satisfy the usual equality axioms [9] of being
an equivalence relation which preserves functions and relations.

Remark 2.1. In first-order logic if the number of symbols in the vocabulary V
is finite then we do not need equality to be part of the system. We just need
to add to the theory a finite set of sentences EQV that state that =∈ V is an
equivalence relation which preserves each of the functions and relations of V.

2.2 Describing Words as Sets of Logical Sentences

As many examples of computation systems take words as their inputs and out-
puts we naturally require a standard manner in which to write words as logical
sentences. Here we do this by assigning the values of a well-behaved sequence of
ground terms [11] to the symbols in the word.
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Definition 2.2. We call a sequence of ground terms {χi}i∈N a simple
sequence if every element is of the form χi = γ(σi(δ)) where δ is a ground
term, and γ(x) and σ(x) are terms with a single free variable x.

The idea behind a simple sequence of terms is that it expresses the repeated
application of a function, such as the “next symbol on the right” function. Hence
it can be easily and simply constructed. For a unary function f and a constant c
the sequence of terms {f i(c)}i∈N is a simple sequence, as is {(g ◦ f)i(h(c, c))}i∈N

for a unary function g and a binary function h.

Definition 2.3. Let X = {χi}i∈N be a simple sequence. For a set of constants
Σ with B �∈ Σ, the finite X -word set corresponding to the finite word w =
w0w1 · · · wn ∈ Σ∗ is:

Φw
X =

n⋃

i=0

{χi = wi} ∪ {χn+1 = B}.

The set of finite X -word sets from an alphabet Σ is Σ̂∗
X = {Φw

X | w ∈ Σ∗}.
The infinite X -word set corresponding to the infinite word u = u0u1 · · · ∈ Σω

is:

Ψu
X =

∞⋃

i=0

{χi = ui}.

The set of infinite X -word sets from an alphabet Σ is Σ̂ω
X = {Ψu

X | u ∈ Σω}.

Hence a finite X -word set Φw
X maps each term χi of X to the ith symbol in w.

So whilst X may be “simple” the X -word set may be arbitrarily complex.
The symbol B is intended to represent the “blank” symbol, hence χn+1 = B

implies that this is the end of the word. Note that if χi = γ(σi(δ)) then by adding
the sentence ∀x((γ(x) = B) → (γ(σ(x)) = B)) to the theory of a machine with
inputs from Σ̂∗

X we can ensure that χj = B for each j > n. Conversely as
an infinite word has no end there is no need for a blank symbol or the above
sentence.

Remark 2.2. Rather than invoking sentences constructed from simple sequences
we could have instead just required that there be a computable mapping from
the sets of words to the input and output sets. However, our intention here to
construct a concept of computation that does not itself rely on another formu-
lation of computation.

3 Examples of Theory Machines

We shall now demonstrate how various well-known examples of computation can
be described by theory machines in second-order logic with equality (SO=).
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3.1 Turing Machines

Let N be a deterministic halting Turing machine which computes the function
f : Σ∗ → Γ ∗. For simplicity, we shall take N ’s tape to be infinite in only the
rightwards direction, with a symbol L marking its leftmost tape cell. As it will
be relevant for future examples we will also take N to be a multi-tape Turing
machine, with the input written on tape 0 and the output written on tape 1.
The output consists of the tape 1’s contents to the immediate right of L up to
the first blank symbol.

Let N have tape alphabet Λ ⊃ Σ ∪ Γ , including “blank” tape symbol B �∈
Σ ∪ Γ , and L �∈ Σ ∪ Γ . Let N use the set of internal states Π with initial state
s0 ∈ Π and halting state s1 ∈ Π, and follow the set of rules R = {ρl}K

l=1. For
each l the rule ρl is of the form:

(tl, bl, il;ul, cl, jl; pl, kl) ∈ (Π \{s1})×Λ×N×Π×Λ×N×{LEFT,RIGHT}×N,

which is read as “if the machine is in internal state tl reading bl from the ilth
tape then go to state ul, replace the symbol being pointed to on the jlth tape
with cl, and move pl on the klth tape.” To avoid halting early, for each t ∈
Π \ {s1} and b ∈ Λ there is a rule of R beginning with (t, b). To prevent non-
determinism, every a rule of R that begins with t must look at the same tape,
so i = g(t) for some function g. To avoid falling off the left end if bl = L then
(cl, jl; pl, kl) = (L, i, RIGHT, i) in ρl, and if bl �= L then cl �= L.

We can then describe N as an SO=
VTM

-theory machine N = (T MR, Σ̂∗
X , Γ̂ ∗

Y),
with vocabulary VTM = VPA ∪ Λ ∪ Π ∪ {C,H, I, h}.

Where VPA = {<,�,+,×, 0, 1} are the usual symbols of Peano arithmetic,
and Λ ∪ Π consists of constant symbols. C,H, I are functions such that for time
step x, cell number y and tape number z; the cell contents are given by C(x, y, z),
the cell pointed to by the head is given by H(x, z), and the machine’s internal
state is given by I(x). The halting time is represented by the constant symbol
h, its value depends on the input.

To input and output N uses the simple sequences X = {C(0, n̂ + 1, 0)}n∈N

and Y = {C(h, n̂ + 1, 1)}n∈N, where for each n ∈ N we denote 1 + · · · + 1︸ ︷︷ ︸
n times

by n̂.

The theory of N is T MR = PA ∪ ITB ∪ ETR ∪ HTs1 , where PA is the set
of Peano arithmetic axioms [15], including the second-order induction axiom.2

The set ITB defines the initial configuration of the machine, ETR describes the
evolution of the machine, and HTs1 ensures the machine halts when it reaches
s1. As PA ⊂ T MR any model of T MR must be an expansion of the usual
structure of the natural numbers 〈N;<,�,+,×, 0, 1〉 [15]. Explicitly, the initial
configuration is given by:

ITB =

⎧
⎨

⎩

∀z((H(0, z) = 1) ∧ (C(0, 0, z) = L) ∧ (C(0, 1, z + 1) = B)),
∀y∀z((C(0, y, z) = B) → (C(0, y + 1, z) = B)),
I(0) = s0

⎫
⎬

⎭
.

2 This is the only second-order sentence in the theory of N , and as we shall see in
Example 4.2, it is unnecessary for describing a Turing machine computation.
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So by ITB, in any model A of T MR ∪ Φw
X the head of every tape points to cell

1 at time 0, the left-most cell of each tapes contains L, which is followed by a
B in every tape except for the 0th one. The input Φw

X =
⋃|w|−1

i=0 {C(0, î + 1, 0) =
wi}∪ {C(0, ˆ|w| +1, 0) = B}, specifies that at time 0 the word w ∈ Σ∗ is written
on the 0th tape followed by a B. So by the second sentence of ITB, at time 0
the contents of every cell that is neither defined by the input nor on the far end
is blank. We also have that at time 0 the internal state is s0, hence the initial
configuration of A must be the same as it is for N with input w. For evolving
this configuration we have:

ETR =
{

∀x(μ(tl,bl,il)(x, x) → (μ(ul,cl,jl)(x + 1, x) ∧ π(pl,kl)(x) ∧ νjl(x)))
}K

l=1
.

Each sentence of ETR implements a rule of R via the following three sorts of
terms. Firstly for each s ∈ Π, a ∈ Λ, and n ∈ N we have the term:

μ(s,a,n)(x1, x2) ≡ (I(x1) = s) ∧ (C(x1,H(x2, n̂), n̂) = a),

which indicates that at time x1 the internal state is s, and the cell pointed
to by the nth head at time x2 contains an a at time x1. Secondly for p ∈
{LEFT,RIGHT} and n ∈ N we have the term:

π(p,n)(x) ≡
{

H(x + 1, n̂) = H(x, n̂) + 1 if p = RIGHT,
H(x + 1, n̂) + 1 = H(x, n̂) if p = LEFT,

that states that at the time step after x the head on tape n is shifted to either
the succeeding or preceding tape position. Finally for each n ∈ N we have:

νn(x) ≡ ∀y∀z((¬(z = n̂) ∨ ¬(H(x, z) = y)) → (C(x, y, z) = C(x + 1, y, z))),

which ensures that the tape contents of any cell that is not on tape n or is not
being pointed to by a tape head, is preserved moving from time x to time x+ 1.
For halting we have:

HTs1 = {∀x((I(x) = s1) ↔ (h � x))} .

So the halting time h is the first time step of A that is in the state s1. The
output Φv

Y =
⋃|v|−1

i=0 {C(h, î + 1, 0) = vi} ∪ {C(h, ˆ|v| + 1, 0) = B}, is therefore
defined at this time.

Hence the configurations of A evolve from time 0 exactly as they do in the
Turing machine N with input w, and likewise the model outputs when the halting
state s1 is reached. As B �∈ Γ , the output is unique and is completely determined
by what happens prior to time h, thus it cannot be affected by whatever occurs
afterwards in A. Therefore by induction and the fact that N is deterministic and
halting, A |=SO=

VTM
Φv

Y if and only if v = f(w).

3.2 Type-2 Machines

Type-2 machines [24] generalise the concept of a Turing machine by enabling
it to take infinite inputs and give infinite outputs. To output an infinite word
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a type-2 machine must never halt and after writing each output symbol on its
output tape it moves right and never change that symbol. This way we can
stop a type-2 machine at any point and know that what it has written on the
output tape must be a correct initial segment of the output. Besides this a type-2
machine behaves identically to a multitape Turing machine.

Let TN be a type-2 machine taking inputs from Σω and giving outputs
in Γω. Let TN have rule set U , along with alphabet Λ and internal states Π
as in Subsect. 3.1. We can then describe TN as an SO=

VTM
-theory machine

T N = (T T MU , Σ̂ω
X , Γ̂ω

Y ), where X and Y are also the same as in Subsect. 3.1,
whilst the theory is T T MU = PA ∪ ITB ∪ TETU .

TN never halts, so there are no halting conditions, however h is still present
in the vocabulary and its purpose continues to be in defining the output. The
set TETU is the same as ETU except that for each rule that writes on the output
tape, the term μ(u,c,1)(x + 1, x) is replaced with:

τ(u,c)(x) ≡ (I(x + 1) = u) ∧ (C(h,H(x, 1), 1) = c).

So regardless of what time step T N is at, every entry of the output tape is
written on to it at time h. As the contents of every cell on tape 1 are eventually
defined and afterwards remain fixed, in any model of T T MU ∪ Ψu

X a unique
output of the form Ψv

Y = {C(h, î + 1, 1) = vi}∞
i=0, expresses these cell values.

Notably this means that the output time step h does not need to occur at
some transfinite time in order for the output to depend on the whole infinite
computation. Indeed h can take any value in N \ {0}. The atemporal nature of
this output is an example of how a theory machine is able to compute without
conforming to the usual assertion that any computational process must follow a
causal temporal order.

To compute an infinite sequence a type-2 computation requires an infinite
amount of time. However such a sequence can always be finitely computed to
an arbitrary degree, which means that despite the infinite resource usage it is,
in a sense, physically computable. An infinite type-2 computable sequence is
typically referred to as “computable”, however it is not immediately clear why
infinitely calculable sequences should be characterised by type-2 machines. The
CT thesis implies that finite calculable problems can be computed by a Turing
machine, and we believe that Theorem 2 in Subsect. 4.2 provides good evidence
for why this should extend to infinite calculable problems and type-2 machines.

3.3 Blum-Shub-Smale Machines

Blum-Shub-Smale (BSS) machines [4] are a form of algebraic computer that act
on rings. Usually on the reals or the integers with the usual ordering relation “<”.
Unlike type-2 machines, a BSS machine acting on the reals is typically viewed as
an idealised model of computation rather than a physically implementable one.

A BSS machine has a finite set of rules, each with an associated internal state.
These rules are either computation rules or branch rules. Computation rules take
the form (sk, Fk, sik) where Fk is a polynomial function. When applied to the
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ring element x the rule is read as “if the internal state is sk then apply Fk to
x before going to state sik .” Branch rules are of the form (sk, dk, sik , sjk) where
dk is a ring element. The rule is read as “if the internal state is sk and if x < dk

go to state sik , otherwise go to state sjk .”
Let S be a BSS machine acting on R via the rules P = {(sk, Fk, sik)}L

k=0 ∪
{(sk, dk, sik , sjk)}K

k=L+1, with initial state s0 and halting state s1. For simplicity
let the inputs and outputs of S lie in the interval [0, 1]. We can then describe S

as the SO=
VBSS

-theory machine S = (BSSP , ˆ{0, 1}
ω

Z0
, ˆ{0, 1}

ω

Zh
), with vocabulary

VBSS = VPA ∪ {N,B, T, V, I, h, 1
2} ∪ {s1, . . . , sK}.

Here VPA ∪ {h} are as in Subsect. 3.1, however instead of describing Peano
arithmetic, in the models of S the elements of VPA describe real arithmetic. To
describe the discrete time evolution of S we have the unary relation N which
defines N ⊂ R. For each x ∈ N the function I(x) gives the internal state at time
x, and V (x) gives the real number value of the machine at time x. The unary
functions B and T are used in defining the inputs, with B(Tn(y)) giving the nth
binary digit of y ∈ [0, 1]. Specifically B(y) = �2y and T (y) = 2y − �2y. Finally
the states of S are denoted by the constants {s1, . . . , sK}.

The inputs and outputs of S are respectively given by the simple sequences
Z0 = {B(T i(V (0)))}i∈N and Zh = {B(T i(V (h)))}i∈N. An input of the form⋃∞

i=0{B(T i(V (0))) = bi} states that V (0) = 0.b0b1 . . ., where 0.111 . . . = 1.
The theory of S is BSSP = RA ∪ IOB ∪ NT ∪ EV BP ∪ HTs1 where RA is

the set of axioms of real arithmetic [1,23], consisting of the first-order axioms of
a dense ordered field together with the second-order least-upper bound axiom.
The set IOB defines the functions used to describe the machine’s input and
output. The set of sentences NT defines the relation N(x) to be true iff x ∈ N.
Which allows EV BP to describe the implementation of the rules of P at natural
time steps. Finally HTs1 is as in Subsect. 3.1.

As RA ⊂ BSSP and VPA ⊂ VBSS every model of BSSP must be an expan-
sion of 〈R;<,�,+,×, 0, 1〉, the usual structure of the the real numbers [23]. At
time 0 the internal state of the machine should be s0 and the input should lie in
[0, 1], to ensure this and also define B and T we have:

IOB =

⎧
⎪⎪⎨

⎪⎪⎩

I(0) = s0, ∀x((B(x) = 0) ↔ (x < 1
2 )),

0 � V (0), ∀x((B(x) = 1) ↔ ( 12 � x)),
V (0) � 1, ∀x((x < 1

2 ) → (T (x) = (2 × x))),
( 12 + 1

2 ) = 1, ∀x(( 12 � x) → (T (x) = ((2 × x) − 1)))

⎫
⎪⎪⎬

⎪⎪⎭
.

To define the natural numbers within R we have:

NT =

⎧
⎨

⎩

N(0) ∧ N(h),
∀x((¬(x = 0) ∧ (x < 1)) → ¬N(x)),
∀x((0 � x) → (N(x) ↔ N(x + 1)))

⎫
⎬

⎭
.

Note that NT also ensures that h ∈ N. To apply the rules we have:

EV BP = {∀x(N(x) → φk(x))}L
k=0 ∪ {∀x(N(x) → βk(x))}K

k=L+1 .
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Where the kth computation and branch rules are respectively implemented by:

φk(x) ≡ (I(x) = sk) → ((V (x + 1) = Fk(V (x))) ∧ (I(x + 1) = sik)), and
βk(x) ≡ (I(x) = sk) → (((V (x) < dk) ∧ (I(x + 1) = sik)) ∨ (I(x + 1) = sjk)).

As Fk(y) is a polynomial function, it can be defined within φk(x) in terms of
+,×, 0, 1

2 , 1, possibly with the aide of some additional constants that can be
added to the vocabulary. Each dk can be similarly defined within βk(x), or it
can be defined as an additional constant in a similar manner to V (0).

Given all of this, in any model C of BSSP ∪ Ψu
Z0

the computation at time 0
begins as it should do at 0.u0u1. . . and in state s0, before evolving according to
the rules of P until it reaches state s1, at time h. Consequently the output set
Ψv

Zh
=

⋃∞
i=0{B(T i(V (h))) = vi} is true in C iff 0.v0v1. . ., is the output of S on

input 0.u0u1. . .. Hence S simulates the BSS machine S.
We can describe other types of BSS machines as theory machines by replac-

ing RA with the axioms of another ring, and adapting the input and output sets.
Some BSS machines are capable of deciding problems that are not computable
by either a Turing machine or a type-2 machine. For example a BSS machine
may be equipped with a binary encoding of the halting problem, which it can
then use to decide whether a given input halts. Notably though this requires a
theory machine with an infinitely large theory. For a real function to be com-
putable by a type-2 machine in a given encoding it must be continuous in that
encoding [24]. In contrast, BSS machines ignore the encoding, and are able to
implement discontinuous functions via the branch rules. Both of these capabili-
ties are achievable using machines described by a finite second-order theory.

3.4 Other Examples of Computation

Quantum Computers

Perhaps the most famous example of physical computation is quantum computa-
tion [16]. Quantum computers utilise quantum mechanics to efficiently perform
calculations that do not appear to be implementable by Turing machines in
polynomial time. A well-studied model of quantum computation is the quantum
circuit [16].

We can describe a quantum circuit as a second-order theory machine by
giving it the axioms of the complex numbers [1], which like those of real arith-
metic are all first-order sentences apart from the second-order least upper-bound
axiom. To implement a circuit with n qubits we can use a binary function V
with range C, and such that the value of V (x, y) is equal to the value of the
state y ∈ {|0〉, . . . , |2n − 1〉} at time x ∈ N. To apply a quantum gate to the kth
qubit at time x we can make V (x + 1, y) = (α × V (x, y)) + (β × V (x, y′)) for
some α, β ∈ C and each y. Where y′ is the state whose binary expansion is the
same as y in every digit except for the kth digit.

As any computable sequence of quantum circuits can be arbitrarily approx-
imated by a finite set of gates [16] we can use a Turing machine N as in Sub-
sect. 3.1 to generate the circuit before implementing it on V .
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Fluid-Based Computers

As noted in the introduction, theory machines are capable of computing in an
atemporal manner. This capability is exemplified by fluid-based computation, as
we require simultaneous differential equations (e.g. the Navier-Stokes equations
[18]) to understand how fluids evolve, we cannot in general translate these into
a finite set of rules and apply them at discrete sequential time steps.

Suppose we have a Newtonian fluid mechanical system contained within some
fixed rigid structure. To input we can adjust the initial state of the fluid at time
t0, whereas the output can be the state of the fluid at time t1.

We can describe this system as a theory machine by describing the pressure
at each time and space coordinate by a quaternary function P (x, y, z, t), and the
velocity vector of the fluid by three quaternary functions F1, F2, F3. To ensure
that these are functions from R

4 to R we can include the axioms of real arithmetic
RA [1,23] in the machine’s theory.3 It is then possible to define every partial
derivative of each of these functions. For example, the partial derivative of P in
the 1st dimension is the quaternary function ∂1P which satisfies:

∀x∀y∀z∀t∀ε∃δ(((0 < ε) ∧ (0 < δ)) →
((|((P (x + δ, y, z, t) − P (x, y, z, t)) − (∂1P (x, y, z, t) × δ))| < ε)).

The Navier-Stokes equations can then be implemented by writing them as sen-
tences of the theory.

The inputs and outputs of the system can each be described by a set of
sentences of the form Fi(a, b, c, 0) = d, where a, b, c, d ∈ Q. As the fluid flow is
continuous only a countable number of these are needed. The rigid boundaries
of the system can be similarly defined in terms of rational approximations.

Infinite Time Turing Machines

Infinite time Turing machines (ITT machines) [12] generalise the concept of a
Turing machine by allowing a computation to take an ordinal number of time
steps. At successor time steps they behave like a normal Turing machine, whereas
at limit ordinal time steps the contents of each cell becomes the limit supremum
of the previous contents (the tape alphabet of an ITT machine is {0, 1}). At
limit times the head of the machine is placed back to where it started, and the
internal state goes to a fixed limit state.

Typically ITT machines are not viewed as being physically implementable,
however we can describe any ITT machine by a second-order theory machine.
To do this we take the theory machine corresponding to a multi-tape Turing
machine in Subsect. 3.1 with alphabet {0, 1,L} and replace the induction axiom
of PA with the second-order well-foundedness axiom, which is satisfied by all
ordinal structures [20]. With this any model of the machine will be an expansion
of an ordinal structure, and what occurs at limit ordinal stages can then be

3 Unlike BSS machines, if such a device requires only finite precision to be implemented
correctly then the second order least upper bound axiom in RA is not required.
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simply stated. Indeed, to define the tape contents at any limit step x we can
invoke the limit supremum via ∀y∀z(C(x, y, z) = 0) ∨ (C(x, y, z) = 1) and:

∀y∀z((C(x, y, z) = 0) ↔ ∃p((p < x)∧∀q(((p < q)∧(q < x)) → (C(q, y, z) = 0)))).

4 Finite First-Order Theory Machines

As is clear from the above examples, theory machines have the potential for
super-Turing computation. Whilst this power could be explained by noting that
super-Turing computations always require an infinite space, the same is also
true for quantum computers, whose computations can be simulated by a Turing
machine [16]. Additionally quantum computers are generally believed to be phys-
ically realisable and are hence viewed as an example of physical computation,
despite their infinite space usage.

So why are some infinite computation systems “physical” when others are
“unphysical”? Well we argue that a device’s computational power can be char-
acterised by the class of the logical systems required to finitely describe the
device. We also assert that a device can be physically computed with only if its
computational aspects can be described by a finite first-order theory machine.

Definition 4.1. A finite first-order theory (FFOT) machine is a FOV -
theory machine M = (T , I,O) such that T is a finite set of sentences.

Example 4.1. Let N be a multi-tape Turing machine as in Subsect. 3.1. We can
describe N via the FFOT machine N − = (T MR, Σ̂∗

X , Γ̂ ∗
Y), in the same vocab-

ulary VTM as N and with the same input and output sets, the only difference
is that the theory is T M−

R = EQVTM
∪ PA− ∪ ITB ∪ ETR ∪ HTs1 .

Where EQVTM
consists of the axioms of equality for the vocabulary VTM

as in Remark 2.1, and PA− is the set of first-order Peano arithmetic axioms
[15], which excludes the second-order induction axiom. Now while there do exist
models of PA− which are not isomorphic to the usual structure of the natural
numbers, every model of PA− has an initial segment which is isomorphic to the
natural numbers [15], which is referred to as the standard part of the model.
Hence each model D of T M−

R contains a standard part.
By our reasoning in Subsect. 3.1 we know that in the standard part of D the

computation progresses as it should do. If it halts then it does so at the standard
part time step h, from which the output is defined finitely until a blank symbol
is found on the tape. Crucially this output cannot depend on what happens at
non-standard time steps, nor can h be reached early by the contents of the non-
standard tape cells, as the function H will never map to them at standard time
steps. Therefore the same output is still true in any model of T M−

R ∪ Φw
X .

The output of N is undefined if N does not halt on input w. In which case h
cannot lie in the standard part of any model of T M−

R ∪ Φw
X . At such a time the

configuration of the machine is independent of what occurs during the standard
part of the computation, which means that it could be anything, and is hence
not unique. Therefore N −(Φw

X ) must also be undefined.
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The standard way of formulating a computational problem is to view it as a
function from a set of words to a set of words. Thus in order to compare the
computational power of FFOT machines with other forms of computation we
require a reasonable way of stating that a word function can be computed by a
theory machine.

Definition 4.2. Let Σ and Γ be sets of symbols, and let f :⊆ Σa → Γ b for
a, b ∈ {∗, ω} be a word function problem.

We say that an LSV -theory machine M = (T , I,O) is able to compute f
if there exist sets of distinct constants Σ,Γ ⊆ V and simple sequences X ,Y such
that Σ̂a

X ⊆ I, Γ̂ b
Y ⊆ O and for every u ∈ dom(f) we have M(Υu

X ,a) = Υf(u)
Y,b ,

where Υv
Z,c = Φv

Z if c = ∗ and Υv
Z,c = Ψv

Z if c = ω.

So a theory machine is able to compute a word function if there exists a simple
way for a user to configure each admissable input word into the machine, such
that the function’s output can be simply read off from the machine. Note that
for a theory machine to be able to compute a function the whole of its domain
and co-domain must be contained within the input and the output sets. So we
cannot compute a partial function by removing the undefined elements from the
input or output sets, they must be undefined by the computation as well.

4.1 FFOT Machines and the Church-Turing Thesis

We now come to our main theorem.

Theorem 1. A finite word function problem f :⊆ Σ∗ → Γ ∗ is computable by
some Turing machine if and only if there exists a finite first-order theory machine
that is able to compute f .

Proof. (⇒) Let f :⊆ Σ∗ → Γ ∗ be computable, and let N be a deterministic
Turing machine that computes f . We are then able to compute f with the
FFOT machine N − in Example 4.1.

(⇐) Conversely, suppose that f :⊆ Σ∗ → Γ ∗ is computable by the FFOT
machine M = (T , I,O) with vocabulary V. By definition, for any w ∈ dom(f)
we have T ∪ Φw

X |=FOV Φ
f(w)
Y and this is true for no other element of Γ̂ ∗

Y . Hence
by Gödel’s completeness theorem [13] we have T ∪ Φw

X �FOV Φ
f(w)
Y , and there

exists a finite formal proof of the truth of Φ
f(w)
Y given T ∪ Φw

X .
As T ∪ Φw

X is a finite set of first-order sentences the set of all first-order
sentences provable from it is computably enumerable. Similarly as Y is a sim-
ple sequence, the sentences of Γ̂ ∗

Y are computably enumerable. We can therefore
construct a Turing machine M that, on an input of w, enumerates all sentences
provable from T ∪ Φw

X , while concurrently enumerating Γ̂ ∗
Y . By our above rea-

soning we know that Φ
f(w)
Y and only Φ

f(w)
Y is in both sets of sentences, so by

checking whether each enumerated sentence appears in both sets, M will even-
tually find Φ

f(w)
Y and know what f(w) is. Therefore M is able to compute f by

searching for Φ
f(w)
Y and outputting f(w) upon finding it. ��
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A consequence of this result is that the CT thesis can be reformulated as:

Every effectively calculable function is computable by a finite first-order
theory machine

(1)

Therefore, if the CT thesis is true and applies to physical calculations, then
it must be the case that the computational aspects of any obtainable physical
system is describable by a finite first-order theory machine.

We do not in fact need to limit ourselves to first-order logic, as the proof of
Theorem 1 relies on two facts; the fact that we can describe any Turing machine
by a finite first-order theory machine, and the fact that first-order logic is com-
plete. Neither of these properties are held solely by first-order logic, we therefore
have the following generalisation.

Corollary 1. Let LS be a complete logical system, let V be finite, and let C be
a class of LSV -theory machines with finite theories. If we are able to compute
any Turing machine computable problem by a theory machine in C then C is
computationally equivalent to the class of Turing machines.

4.2 FFOT Machines and Type-2 Machines

Type-2 machines can also be simulated by FFOT machines.

Example 4.2. Let TN be the type-2 machine from Subsect. 3.2, we can describe
TN via the FFOT machine T N − = (T T M−

U , Σ̂ω
X , Γ̂ω

Y ), in the same vocabulary
VTM as T N and with the same input and output sets, the only difference is that
the theory is T T M−

U = EQVTM
∪ PA− ∪ ITB ∪ TETU .

As in Example 4.1 every model E of T T M−
U has a standard part which is

isomorphic to the natural numbers. From Subsect. 3.2 we know that the output
of E is entirely defined by what occurs in the standard part of E. Thus the
output cannot be influenced by what happens at the non-standard time steps of
E, as if it was this would lead to a contradiction. Therefore if g :⊆ Σω → Γω is
computed by TN then T N − is able to compute g. As if g(u) is undefined then
TN on input u must only ever write on finitely many cells of the output tape. In
which case the rest of the values of C(h, y, 1) could be anything and T N −(Ψu

X )
is undefined.

Theorem 2. An infinite word function problem g :⊆ Σω → Γω is computable
by a type-2 machine if and only if there exists a finite first-order theory machine
that is able to compute g.

Proof. (⇒) This follows from Example 4.2.
(⇐) Suppose that g :⊆ Σω → Γω is computable by some FFOT machine

M = (T , I,O) with vocabulary V. As in the proof of Theorem1 it must be the
case that for any u ∈ dom(g) we have T ∪ Ψu

X |=FOV Ψ
g(u)
Y . By the compactness

theorem [9], for any finite subset Ω ⊂ Ψ
g(u)
Y , there exists a finite subset Δ ⊂ Ψu

X ,
such that T ∪ Δ |=FOV Ω. As otherwise by compactness there would exist a
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model of T ∪Ψu
X in which Ψ

g(u)
Y is false. Hence by Gödel’s completeness theorem

[13] there must exist a finite formal proof of the truth of Ω given T ∪ Δ.
Hence we can construct a type-2 machine TM , that on input u enumerates

the elements of Ψu
X , and from which it enumerates all sentences provable from

T ∪ Ψu
X . Hence as in the proof of Theorem1 TM is able to obtain the elements

of Ψ
g(u)
Y and sequentially output g(u). ��

In the original CT thesis an effectively calculable function is intended to be
finite. However if we were to assume that it could also be an infinite function,
then Theorem 2 and our reformulation of the CT thesis (1) collectively imply that
every effectively calculable infinite function is computable by a type-2 machine.

5 Conclusion and Future Work

As we did with a Turing machine we can convert the quantum computer in
Subsect. 3.4 into a FFOT machine by simply removing the least upper-bound
axiom from its theory. Any quantum computation can be finitely approximated,
which means that the completion of the complex numbers is not required for
such a theory machine to obtain the correct output.

Indeed it is this ability to approximate which separates the more physically
reasonable quantum computers and type-2 machines from the less physically
reasonable BSS and ITT machines, as we cannot obtain the outputs of the
latter pair through finite approximation. We are therefore unable to formulate
them in in any logic in which the compactness theorem holds [9], as Φ |=FOV Ψ
cannot be true if Δ |=FOV Ψ is false for every finite Δ ⊆ Φ. Hence whilst the
former “physical” computers can be described using first-order logic, the latter
“unphysical” computers cannot.

In future work we hope to develop a concept of atemporal complexity for the-
ory machines, ideally in a manner which is consistent with both Turing machine
and quantum complexity. We also intend to look into finite second-order systems
whose computational capabilities we suspect may be similar to that of ordinal
Turing machines [17]. Beyond this, we suspect that a relationship can be found
between a general class of theory machines and abstract transition systems [5].

In general we believe that the computational capabilities of arbitrary systems
(both physical and unphysical) can be characterised and separated by the logical
systems capable of describing them. For example it can be shown that a BSS
machine acting on R can be described by a “real” first-order logical system whose
structures are necessarily expansions of 〈R;<,�,+,×, 0, 1〉. However, such a
logical system is unable to describe ITT machines, which is consistent with the
fact that there are ITT-computable problems which are not BSS-computable. We
therefore believe that by studying models of computation via theory machines we
should be able to gain a clearer understanding of how and why distinct systems
differ in their ability to compute and their ability to efficiently compute.
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