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Foreword

We have proved that we will not be assimilated. We have demonstrated that our culture has 
a viability that cannot be suppressed. … [A]s the years go by, the circle of the Ojibway gets 
bigger and bigger. Canadians of all colours and religion are entering that circle. You might 
feel that you have roots somewhere else, but in reality, you are right here with us. – Grand 
Chief John Kelly (quoted in Saul 2008, p. 29)

From 2005 to 2008, I held a faculty position in the Department of Mathematics, 
University of Regina. While I was there, the dean of the Faculty of Science decided 
that everyone employed by the faculty would have to take “Aboriginal Awareness” 
training. I went to see the dean to try to convince her that as a Mohawk, I was 
already quite aware, and besides, I had taught Aboriginal Studies at the University 
of Toronto, I had designed the first two courses in Queen’s University’s Indigenous 
Studies program, I had spent 8 months in a Mohawk language immersion program, 
I had worked for 4 years at First Nations University of Canada, and so on. I felt that 
my time could be better spent in other pursuits.

“No,” said the dean. “Everyone takes the training. You, me, everyone. No 
exceptions.”

All right then.
When the big day arrived, the facilitators of the workshop divided us into groups 

of about four each to play an Aboriginal awareness quiz show, presumably designed 
to educate while humiliating the less aware members of the group. At stake was a 
set of four beaded keychains for the winning team. The dean chose to join my team.

I vowed not to hold back. If I could not spend my time productively in mathemat-
ics as I wished, I would at least spend it in the pursuit of a winning of some kind. 
And I felt that all my years of learning and experience should be worth something: 
a beaded keychain, at the very least.

I answered question after question correctly, building a comfortable lead over all 
the other teams. The dean seemed pleased. Everything was going well, and then we 
were given the question, “What percentage of the land of Saskatchewan is treaty 
land?”

Even though I did not know the exact answer offhand, I hit the buzzer immedi-
ately like I always did, thinking I could rely on my general knowledge and my 
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mathematical prowess to arrive at a better answer than any of the other teams in a 
few seconds. Based on a memory of a map of Saskatchewan I had seen which 
included reserve lands, and some population numbers I had available, I answered, 
“One percent.”

Wrong. So very wrong. Not even close. In fact, every other team had a better 
answer than me.

Now it was my turn to be humiliated. The dean looked at me with confusion and 
concern, possibly with a vision of a beaded keychain eluding her grasp. I could only 
stare in surprise as the facilitators chose the team with the best answer, and then 
revealed the correct answer.

“The percentage of land in Saskatchewan which is treaty land is 100%.”
Ah, of course. The entirety of Saskatchewan is covered by numbered treaties, 

mainly Treaties 4, 5, 6, 8, and 10, but also small parts covered by Treaties 2 and 7. 
Every square inch of the province is governed by conscious agreement between 
Indigenous parties and the Crown. It was a humbling, enlightening, and educational 
moment for me. And despite our setback, my team recovered and we went on to win 
the coveted beaded keychains. Mine continues to be one of my prized possessions.

When I recounted the story to the late Elder Ken Goodwill, he said, “That is 
important to understand,” and then he told me another story. He said he was involved 
in a meeting in northern Saskatchewan, when a non-Indigenous member of the 
group suggested that it might be a good idea to end the treaties. Ken said that an old 
Indian man spoke up at that point. He said, “I guess we could talk about getting rid 
of the treaties. But then, where would all you white people live?”

There is a variety of lessons that could be taken from the above stories. There are 
two that I would like to focus on: first, Indigenous culture and issues are founda-
tional to Canada; and second, Indigenous culture and issues continue to be a neces-
sary part of anything Canadian, including this book, even if the Indigenous 
connection is not immediately apparent. John Ralston Saul writes,

The original party, the Aboriginal, is built upon a philosophy that has interdependence at its 
core. This is the opposite of such European ideas as the melting pot, which was picked up 
by our neighbor as a way of explaining how you could get a new kind of European-style 
purity out of a mix of peoples. The idea of difference is central to indigenous civilization. 
These differences are not meant to be watertight compartments, not vessels of purity. It is 
all about how to create relationships that are mixed in various ways and designed to create 
balances. It is the idea of a complex society functioning like an equally complex family 
within an ever-enlarging circle. That is the Canadian model. (Saul 2008, p. 107)

With that notion of interdependence and mixed relationships in mind, I read the 
chapters of this book searching for connections to Indigenous cultures, issues, and 
peoples, and I was pleased to find a connection, sometimes strong and sometimes 
tenuous, in every chapter of the book. I would like to share my findings with you 
now.

Many of the chapters of this book are directly about Indigenous mathematics 
education: “Indigenous Perspectives in School Mathematics: From Intellect to 
Wisdom” (Aikenhead); “Drawing upon Indigenous Knowledges to Transform the 
Secondary Mathematics Classroom” (Lunney Borden); “Introduction to Students at 

Foreword



vii

Risk: Case Studies of Often Unheard Students” (Kajander); “Considering Indigenous 
Perspectives and Mathematics Education: Stories of Our Experiences As Teachers 
and Teacher Educators” (Sterenberg and O’Connor); “My Favourite Mistakes: 
Experiences Teaching Cree Students in Northern Communities” (Newell); 
“Exploring Math Through Social Justice Context Problems” (Mamolo, Thomas, 
and Frankfort); and “Social Justice and the Teaching and Learning of Mathematics” 
(Russell) all mention Indigenous students or cultures explicitly. Many of the 
researchers above have produced a considerable body of work in Indigenous math 
and science education. It is a great pleasure to see them continue their work in this 
volume. Mamolo et al.’s and Russell’s chapters are also about social justice more 
broadly, which is relevant to many other groups within our circle.

Numerous chapters in the book are about community more generally, which is of 
course a concern of Indigenous people: “An Unexpected Adventure” (Childs and 
Holm) and “Considering Both Academic and Social Domains: Increasing Student 
Engagement in At-Risk Classrooms” (Jao). Three other chapters emphasize the 
notion of students as partners and working with students rather than doing to stu-
dents: “Re-framing Testing to Better Fit Within Problem Solving Classrooms: Ways 
to Create and Review Tests” (Rapke, Hall, & Marynowski); “Enhancing Mathematics 
Teaching and Learning Through Sound Assessment Practices” (Suurtamm); 
“Assessment: Broadening Our Conceptions to Improve Our Practice” (Pai). The 
chapter by Davis et al. (“Steps Toward a More Inclusive Mathematics Pedagogy”) 
speaks to inclusivity and growing the circle. The 400-year-long tradition of 
Indigenous people in this country welcoming immigrants is honored in: “Learning 
Mathematics When Students Are New to Schooling and New to English” (Barwell, 
Kubota-Zarivnij, and Culotta) and in Minority students: “Success in Grade 9 
Applied Mathematics Courses” (Macaulay).

Respect for culture, of one kind or another, can be found in “On Teaching and 
Learning Mathematics from a Cultural-Historical Perspective” (Radford, Miranda, 
and Lacroix); “Culturing Affect, Affective Cultures” (Roth); “Support to Thrive: 
Raising Resilience in Students in Secondary Schools” (Hurlington); and “Transition 
from Secondary to Tertiary Mathematics: Culture Shock—Mathematical Symbols, 
Language and Reasoning” (Burazin and Lovric), in which mathematics is respon-
sible for a culture shock with which many Indigenous students and Indigenous 
people in general are familiar.

Many of the chapters of the book discuss or use some of the tools of Indigenous 
education: the emphasis of action over object, process over product, and verb over 
noun; the use of stories as powerful communication and teaching tools; working 
with the land, or with more abstract landscapes, or the environment more generally; 
the establishment of good interpersonal relationships as a foundation for learning 
and development; teaching by example; holism, the understanding that for health 
and strength we should be aiming for not only intellectual development but also 
physical, emotional, and spiritual development; the importance of opening our eyes 
and using all of our senses; and finally, the value of studying practical problems 
which may be relevant to our own lives. I am not claiming that those tools are absent 
in other traditions; after all, everyone is descended from one Indigenous people or 
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another, all of whom may have had similar educational tools. Rather, I am suggest-
ing that it is not a surprise that we find those tools in a volume by Canadian scholars, 
because the Canadian spirit is really the Indigenous spirit, as John Ralston Saul 
points out.

The idea of reemphasizing verbs and action in mathematics, in the manner of 
Indigenous thought, is quite explicit in Lisa Lunney Borden’s chapter (“Drawing 
upon Indigenous Knowledges to Transform the Secondary Mathematics 
Classroom”); Lunney Borden has written extensively on the subject. Verbs, action, 
and process are also important topics in “Mathematical Mindsets for the Teaching 
and Learning of Mathematics” (Pyper) and “Digital Technology in Teaching 
Mathematics Competency: A Paradigm Shift” (Chorney), which discuss under-
standing the concept of reflection versus providing a name for it, and the sociopoliti-
cal amplification of that difference. Pai (“Assessment: Broadening Our Conceptions 
to Improve Our Practice”) discusses the notion of assessment as a process.

The use of stories as teaching tools appears in “Powerful Stories: The Hitchhiker’s 
Guide to the Secondary Math Curriculum Landscape” (Taylor, Lala, Ouellet, and 
Knebel); “Building Thinking Classrooms” (Liljedahl); “Improving Students’ 
Approaches to Learning High School Mathematics” (McFeetors); “‘Canada Is 
Better’—An Unexpected Reaction to the Order of Operations in Arithmetic” 
(Zazkis); “Culturing Affect, Affective Cultures” (Roth); and in “My Favourite 
Mistakes: Experiences Teaching Cree Students in Northern Communities” (Newell). 
Zazkis’s chapter is notable for its use of a completely made-up story. The use of 
untrue stories and myths to approach a truth is another technique in Indigenous 
education.

The notion of a landscape or environment, physical or abstract, appears in 
“Powerful Stories: The Hitchhiker’s Guide to the Secondary Mathematics 
Curriculum Landscape” (Taylor et al.); “Live(d) Topographies: The Emergent and 
Dynamical Nature of Ideas in Secondary Mathematics Classes” (Thom and 
Glanfield); “Bottles and Bridges: Sample Classroom Tasks Created by Beginning 
Teachers” (Atiya, Luca, and Kajander); “Success in Grade 9 Applied Mathematics 
Courses” (Macaulay); and in “‘Canada Is Better’—An Unexpected Reaction to the 
Order of Operations in Arithmetic” (Zazkis). I would also like to note that Florence 
Glanfield is Indigenous; I hesitated to single her out, because other authors may 
have Indigenous blood or family ties of which I am unaware. For example, one 
study concludes, “The results indicate that, in each region [of four regions in 
Québec], more than half of the participants have at least one Amerindian ancestor in 
their genealogy” (Vézina et al. 2012, p. 99). (On the other hand, one might argue 
that the Indigeneity of any individual is irrelevant, if we admit that the whole culture 
of Canada is Indigenous.) However, in Florence’s case, Indigeneity goes hand-in- 
hand with a long-standing commitment to Indigenous education and social justice.

The value and importance of interpersonal relationships appears in “A Teacher’s 
View – It’s a Path, Not a Gap: A Relationship-Based Approach to Mathematics and 
Well-Being” (Boland and Tranter); “Building Capacity in Grade 9 Mathematics: 
Case Studies from a Collaborative Inquiry Project in Applied level Mathematics” 
(McDougall and Ferguson); “Considering Both Academic and Social Domains: 
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Increasing Student Engagement in At-Risk Classrooms” (Jao); “Assessment: 
Broadening Our Conceptions to Improve Our Practice” (Pai); “Culturing Affect, 
Affective Cultures” (Roth); and “Support to Thrive: Raising Resilience in Students 
in Secondary Schools” (Hurlington). The latter chapter also discusses teaching by 
example, as does “My Favourite Mistakes: Experiences Teaching Cree Students in 
Northern Communities” (Newell).

Holistic approaches, for example, recognizing that balance and well-being is 
associated with the development of not only intellectual capacity but physical, emo-
tional, and spiritual, appear in “Observing for Mathematical Proficiency in 
Secondary Mathematics Education” (Corrêa); “Considering Both Academic and 
Social Domains: Increasing Student Engagement in At-Risk Classrooms” (Jao); 
“Assessment: Broadening Our Conceptions to Improve Our Practice” (Pai); 
“Culturing Affect, Affective Cultures” (Roth); and “A Teacher’s View – It’s a Path, 
Not a Gap: A Relationship-Based Approach to Mathematics and Well-Being” 
(Boland and Tranter).

The Indigenous value of opening our eyes and using all our senses, “noticing,” is 
one that I have had difficulty explaining to non-Indigenous people, who are some-
times insulted by the suggestion that they are not observing well. The issue is that 
non-Indigenous culture is full of theories and assumptions, mental filters that liter-
ally get in the way of seeing the world as it truly is. Saying that “the tipi is a cone” 
is a perfect example of a theory (solid Euclidean geometry) getting in the way of the 
reality of tipis, preventing one from noticing that they are much more complicated 
and irregular structures than cones, with a tradition that rivals that of Euclidean 
geometry. Another illustration of the concept is the following almost Zen-like story:

… a Ute student was asked to determine how much his brother would have to spend on 
gasoline if he wanted to drive his truck from the reservation to Salt Lake City. Instead of 
estimating (or generalizing) a response, or attempting to calculate an answer based on the 
information presented in the request, the student responded quite simply: “My brother does 
not have a pickup” (Leap 1988, p. 176)

The idea of opening one’s eyes, or “noticing,” is a feature of “Reflecting on Good 
Mathematics Teaching: Knowing, Nurturing, Noticing” (Oesterle); “Teaching 
Mathematics and Developing Citizenship: How to Use Contexts to Enhance 
Problem-Based Learning” (Savard), which discusses authentic tasks in the Canadian 
context; “Teaching Probability in Junior High School Through Problem Solving: 
Construction and Analysis of a Probabilistic Problem” (Martin, Oliveira, and Theis); 
and “Promoting Students’ Reasoning About Statistical Inference Through 
Engagement with a Problem-Based Instructional Activity Involving the Use of 
TinkerPlots© Software” (Saldanha and Thibault), which shows how statistics and 
statistical inference can help us understand social and political world better. The 
chapter by Banting, Vashchyshyn, and Chernoff (“In No Uncertain Terms: 
Encouraging a Critical Stance Toward Probability in School”) discusses the “Ludic 
fallacy,” the misuse of games to model real-life situations (Taleb 2010, p. 122). The 
use of visual and tactile senses is a feature of “Learning Algebra with Models and 
Reasoning” (Kajander).
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Practical problems are found in “Supporting Mathematical Creativity Through 
Problem Solving” (Hoshino); “Problem Solving in the Secondary Classroom” 
(Godin); “Modelling in Secondary Mathematics Education: Moving Beyond Curve 
Fitting Exercises” (Caron); and “Teaching a University Bound Statistics Course” 
(Gardner), which references Statistics Canada’s extensive collection of Indigenous 
statistics; and “Planning a Unit by Starting with the End in Mind: Unit and Lesson 
Planning” (Holm) which also mentions popcorn, a variety of corn, a food domesti-
cated by Indigenous researchers nearly 10,000 years ago, which then spread 
throughout the Americas and then to the rest of the world.

The (extremely) alert reader will note that I have found an Indigenous connection 
to every chapter in the book, with one exception: “Encouraging Able Students: An 
Example of Composition of Linear Polynomials” (Barbeau). For a while I puzzled 
over how to connect Ed Barbeau’s elegant discussion of a bit of pure mathematics 
to any of the Indigenous themes above, and I could not think of a way. However, 
earlier I promised you a connection between every chapter of the book and 
Indigenous cultures, issues, and peoples. The connection I finally found was truly 
astonishing. Over 30 years ago, Barbeau corresponded with a young Indigenous 
student who was interested in mathematics but struggling with problem solving at 
the competitive level. Barbeau sent dozens of problems to the young man, and 
endured his inelegant responses, patiently mentoring him. Thanks in part to Ed 
Barbeau’s encouragement and faith in the student’s potential, the young man 
decided to pursue a degree in mathematics and eventually completed a PhD in pure 
mathematics. I know the story well (though for a while today it escaped me, oddly) 
because that young Indigenous man was me. I would like to take this unusual oppor-
tunity to express my heartfelt gratitude to the one person who, more than any other, 
started me on the path which would eventually lead me to becoming a 
mathematician.

The lesson I take from the story above is that there should even be room in our 
circle for pure mathematics, with no obvious connection to Indigenous issues, or 
social justice issues, or culture, or whatever else, because pure mathematics can be 
a joy and a guiding light, something like a North Star but really more like a light-
house because it is attainable. We do not know in advance who will be drawn in, but 
we can hope there will be more, many more in the years to come, and that some of 
them, at least, will be Indigenous. I would like to close with one final quotation from 
John Ralston Saul’s book:

And so I find that our education is increasingly one aimed at training loyal employees, even 
though the state and the corporations are increasingly disloyal. What we should be doing is 
quite different. It turns on our ability to rethink our education and our public expectations 
so that we create a non-employee, non-loyal space for citizenship. After all, a citizen is by 
definition loyal to the state because the state belongs to her or him. That is what frees the 
citizen to be boisterous, outspoken, cantankerous, and, all in all, by corporatist standards, 
disloyal. This is the key to the success of our democracy.

The Aboriginal idea of a circle is based upon the idea of tension. We need to redesign 
our education to do the same. When I say it needs to be about thinking, not training, I could 
equally say it needs to be about engagement and aggressive debate, not about smooth exper-
tise and passive service. (Saul 2008, p. 318)
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I hope I have convinced you that Indigenous people are more than just an object 
of study or a problem to be solved; I hope I have convinced you that Indigenous 
culture and thought can contribute to enhancing mathematics education, and that 
Indigenous education has solutions to some of the difficulties that we, Canadians 
and all other human beings, face. That the question is what we, Indigenous people, 
have to offer to Canada, and to the world, not just what you have to offer to us.
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Preface

 A Northern Vision of Mathematics Education

The landscape of Canadian mathematics education has both unique and universal 
challenges, and this volume seeks to illuminate this diversity in an international 
context.

Each section of the volume includes a range of cultural perspectives: cultural 
both in the sense of language and ethnicity, as well as the more situated culture of 
the teaching context. Alternatively stated, each section includes, where possible, 
voices from our Indigenous cultures, French-language culture, and also from the 
more contextual cultures of research, mathematics education, and classroom teach-
ing. While in some cases the chapters written by classroom teachers have been 
coauthored by researchers (see, for example, Parts I and II), other sections include 
the voices of classroom practitioners on their own. We also interpret this breadth of 
approach to include the transition to post-secondary education, as well as to include 
students at-risk, as well as able and creative students.

Canadian curricula, as is the case internationally, have been significantly chang-
ing over the past 20 years, and this change is ongoing. While the overall direction of 
this evolution is toward problem solving, vocal exceptions to this vision have dis-
rupted this progression.

Many mathematics educators, perhaps by nature, are not political creatures, and 
all too often have quietly shaken their heads at poorly informed rhetoric and catchy 
headlines, which proclaim the need for a return to a traditional approach to teaching 
mathematics. Our volume seeks to expose such inflammatory sentiments by pre-
senting a research-based view of the current landscape, inclusive of the challenging 
realities of day-to-day classroom teaching in the Canadian context.

The book is divided into six sections. Part I introduces the cultural-historical 
evolution and context of the Canadian landscape. Part II addresses inclusivity, 
including a focus on traditionally less successful learners. Part III takes a varied 
stance to relationships and affect in mathematics education. In Part IV, problem 
solving as a learning paradigm is specifically examined in our context. Part V 
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focuses on the day-to-day reality of assessment and planning in classrooms. And 
lastly, Part VI focuses on enhanced content and the transition to higher level math-
ematics. Based on our organization of this volume, sections may be read separately, 
in order, or in any order.

As is the tradition of the “Advances in Mathematics Education” series, each sec-
tion of the book is introduced by a preface written by an experienced Canadian 
mathematics educator—our Elders. The chapters are then situated in an interna-
tional context via the section commentaries contributed by international scholars. 
Taken together, this pluralistic landscape seeks to inform secondary mathematics 
education both here in Canada and also, thanks to the international context, with a 
global perspective.

Thunder Bay, ON, Canada Ann Kajander 
Saskatoon, SK, Canada  Egan J Chernoff 
Waterloo, ON, Canada  Jennifer Holm 
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Part I: Preface – On Changing 
the Landscape: Ecclesiastes Vs. Heraclitus

Rina Zazkis and Nathalie Sinclair

In the summer of 2017, acknowledging Canada’s 150th anniversary, the BBC fea-
tured an article, “How Canada became an education superpower”. (See http://www.
bbc.com/news/business-40708421) The article praised the Canadian education sys-
tem, indicating that “Canada has climbed to the top tier of educational ranking.” The 
theme of equity was a major thread describing Canadian education. The following 
quotes exemplify this thread:

• “Rather than a country of extremes, Canada’s results show a very high average, 
with relatively little difference between advantaged and disadvantaged 
students.”

• “Despite the different policies in individual provinces, there is a common com-
mitment to an equal chance in school.”

• “It is a remarkably consistent system. As well as little variation between rich and 
poor students, there is very little variation in results between schools, compared 
with the average for developed countries.”

• “There is a strong sense of fairness and equal access.”

It seems that the chapters in this section challenge the claims of equal chances and 
equal access. In particular, the chapters that focus on Indigenous ways of knowing 
(Aikenhead and Lunney Borden) highlight the lack of equity that has long pervaded 
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“What has been will be again, what has been done will be done 
again; there is nothing new under the sun.”
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in the school mathematics curriculum in Canada (and everywhere else). Interestingly, 
both these chapters make the argument that in order to increase equity—and increase 
the success rate for Indigenous students—we need to think about changing mathe-
matics, and not just changing the curriculum, or the way mathematics is taught. For 
Aikenhead, this would involve a shift in mathematics as an intellectual activity 
towards mathematics as being about wisdom. For Lunney Borden, the necessary 
shift is more specifically in language, and, in particular, in a move away from the 
nounification that is common in the mathematics discourse, and towards verbs—
towards movement and spatio-temporal ways of interpreting and describing the 
world. This move can be seen as a return to the ancient, performance-based mathe-
matics that eventually—with the help of paper-and-pencil technology—evolved 
into its current depersonalised, decontextualized and detemporalised state (Balacheff 
1988). While such a verbified approach may better support students’ initial concep-
tual understanding, we wonder how they can then shift to the more objectified style 
of formal mathematics; and indeed, whether they must in order to participate in the 
mathematics-infused STEM disciplines for which we are trying to prepare them.

While the BBC article praised Canada, especially referring to the results of 
TIMSS, there were no voices of praise, excitement or acknowledgment of achieve-
ment from within Canada. This is a phenomenon that Rodney et  al. (2016) and 
Chorney et al. (2016), in analyzing Canadian newspaper articles about PISA scores, 
have ascribed to the central metaphors used in making meanings about mathematics 
education in the media. These include the metaphor that mathematics education is 
at war (in which case, what would victory look like?) and that there are only two 
distinct ways of teaching school mathematics (discovery learning vs. rote learning; 
how ironic they are both labelled as types of ‘learning’). As long as parents and the 
public perceive that current mathematics teaching no longer centrally involves 
memorisation of “basic facts”, the war will be lost. In this vein, Boland and Tranter 
note: “Although Canadian students tend to fair well when compared internationally, 
some parts of Canada continue to struggle to improve math achievement results. For 
example, in Ontario, only 50 percent of Grade 6 students met the provincial stan-
dard in 2016/17, down from 57 percent in 2013, this despite a 60-million-dollar 
provincial investment in a ‘renewed math strategy’ (Education Quality and 
Accountability Office).”

For very different reasons (unrelated to TIMSS scores), in this book Radford, 
Miranda and Lacroix argue for the “practical need to improve teaching and learning 
of mathematics”. They claim that the, “best teaching practices have to include the 
dimension of the student—the student as a social being in the making.” They exem-
plify teaching according to a cultural-historical theory, a theory that supports the 
design of activities in which students “show responsibility, care, and solidarity 
towards the others.” Their chapter highlights an ethical dimension of mathematics 
education, but one that is less in terms of equity than in terms of the teacher–student 
relationship.

The role of care is echoed in Boland and Tranter’s chapter, who advocate for the 
importance of “strong and supportive teaching relationships” and for the need to 
care not just for their careers, but for their well-being. The theme of care reminded 
us of the work of Julie Long (2008, 2011), who used Nel Noddings’ concept of care, 
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but extended it to focus on the way in which teachers can be seen as caring about 
mathematics as well, and not just about students (and possible tensions that can 
emerge). We find it interesting to consider how caring about mathematics might be 
involved both in developing the kinds of student–teacher relationships that Radford 
et al. as well as Boland and Tranter refer to, and in changing mathematics in the way 
that both Aikenhead and Lunney Borden discuss. Might it be possible to think that 
“attention to mathematics IS one of the ways to care about students,” as Zazkis et al. 
(2013, p. 209) have argued? Here, caring is not framed in terms of well-being and 
building relationships, but rather through attending to strategies that will promote 
student learning.

Within the voices of critique and dissatisfaction, there are clear calls for change. 
Taylor, Lala, Ouellet and Knebel are critical of the current standard curriculum, 
which—as the authors suggest—does not capitalise on children’s intellectual capa-
bilities and sophistication. They bring up another axiological issue in addition to 
that of ethics, which is aesthetics, in arguing that the current curriculum fails to 
evoke the kind of aesthetic responses and experiences that for many, are the raison 
d’être  of mathematics.  Indeed, they see mathematics as a veritable goldmine of 
breath-taking beauty: “we just need the courage to bring that into the classroom and 
(by the way) to stop worrying about whether we are preparing our kids for calcu-
lus.” They call for investigations to be at the centre of mathematics curriculum, 
choosing content that will encourage curiosity and creativity.

Aikenhead argues for decolonizing curriculum, purging from it “non-essential 
Platonist content” and basing it on “a cultural belief about school mathematics” 
(though we found no explicit examples in his chapter for the content he terms “non- 
essential”). While both chapters argue for fundamental change in school mathemat-
ics curriculum, we wonder whether the ideas of Taylor et al. and those of Aikenhead 
are compatible. How might their approach, in which the curriculum is re-formulated 
in terms of “powerful stories” align with Aikenhead’s criticism that the current cur-
riculum carries a nineteenth-century hegemonic, Platonist discourse of formal 
mathematics? Are the powerful stories of mathematics Platonic in nature, in terms 
of feeding off timeless, abstract truths, or might some productive alignment be pos-
sible? Or might Taylor’s notion of “powerful stories” have the potential of aligning 
with an Indigenous worldview?

Across the whole collection of chapters, we also read powerful stories about dif-
ferent research settings, as well as about the researchers themselves. For example, 
Radford et al. tell a story of the journey of two students describing and interpreting 
Cartesian graphs, and how a teacher supported this journey by triggering and chal-
lenging students’ understanding. Lunney Borden’s story is of the personal journey 
of a teacher in a new environment. While not explicitly framed as such, these stories 
both illustrate teaching relationships that support learning. Thom and Glanfield, 
using the theoretical framework of Pirie and Kieren, explore the collective of a 
mathematics classroom and tell a story of ideas that emerged in an algebra class and 
how they were supported and shaped by whole-class conversation. The authors 
challenge the typical unit of analysis in education research, which is the individual 
student or teacher, and instead attempt to conceptualise mathematics learning as a 
collective enterprise.

Part I: Preface – On Changing the Landscape: Ecclesiastes Vs. Heraclitus
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In our opening two quotations there is a signalling of dichotomy, of polar oppo-
sites that cannot be reconciled: are things always changing or are they always stay-
ing the same? Such dichotomies also emerged in our reading of the chapters, as we 
have tried to show in our discussion of the discourse of mathematics (Lunney 
Borden), of the role of caring in mathematics education (Radford et al. and Boland 
& Tranter) and of the kinds of stories we tell or worldviews we have about mathe-
matics (Taylor et al. and Aikenhead).

But we can perhaps superpose the dichotomies, in a kind of quantum state where 
the two exist simultaneously. Change endures; and what is not new under the sun is 
the fact that we will always seek to change, not least in our effort to improve which-
ever aspects of learners’ experience of mathematics we value at any given time.

Maybe Ecclesiastes can be reconciled with Heraclitus.
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Part I: Preface

Walter Whiteley

Learning and teaching mathematics and statistics lives within the wide cultural con-
text of mathematical and statistical practices in many areas of work and of play 
across our cultures. We notice that mathematics and statistics are not homogeneous, 
even as practiced by pure and applied mathematicians and statisticians. The formal 
logical face (echoed as the Platonist description in Aikenhead) is not what most 
mathematicians and statisticians live as researchers (Burton 2004), nor is it what is 
typically found in our upper level post-secondary mathematics and statistics class-
rooms. The chapters here better match the observations that the cognitive bases of 
mathematical learning, even of proofs, are much more diverse and engaging (Tall 
et  al. 2012). More broadly, the insights of books such as The way we think 
(Fouconnier and Turner 2002), connect working with multiple representations and 
simulations across multiple disciplines, including mathematics, with how cognitive 
blending connects among multiple representations.

Learning and teaching mathematics in grades 7–12 happens within the enclosing 
schooling landscape, with a past horizon of early years and a future school horizon 
for the students in post-secondary education and in activities outside of schooling. 
The experiences of teaching and learning mathematics and statistics along, and 
beyond, all those horizons are already changing. Those changes on and beyond 
those horizons should have major impacts on teaching and learning mathematics in 
grades 7–12 over the next decades. There is, however, a risk that the experiences of 
teachers at those horizons may be crystalized in memory and may not incorporate 
those emerging changes and what they have to offer as support for positive changes 
within grades 7–12 classrooms.

Within this changing landscape, the current high school “maths” curriculum 
appears relatively static, focused on developing algebra and preparing for calculus. 
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This curriculum often lacks both the breadth and the coherence that rich experiences 
in mathematics and statistics can offer. As Taylor, Lala, Ouellet, and Knebel observe, 
discussions of content become a ‘laundry list’ of content (Whiteley and Davis 
2003), the opposite of the wider contexts and the collective processes that all of the 
chapters in this section invite us to notice and explore. Unfortunately, the ‘static’ 
high school curriculum is often held in place by perceptions of calculus as the only 
gateway into post-secondary mathematics based studies. This view is also visible in 
the positions of professional bodies in programs such as Engineering, Physics and 
sometimes even Mathematics. If students are retained beyond the first year of post- 
secondary education, this narrow focus fades. Unfortunately, during this arid period 
at the end of high school and the beginning of post-secondary, important segments 
of the potential student population are pushed out through lack of interest and for 
lack of other skills, such as spatial reasoning (see the links under ENGAGE below).

As additional context, I highlight three ongoing developments which I antici-
pate will have a growing impact on teaching and learning mathematics across the 
landscape. Additional connections can be found with the themes in the chapters of 
this section.

A first example of developments across this landscape is the building recognition 
of the critical role of spatial reasoning. A recent book on Early years spatial reasoning 
(Davis and The Spatial Reasoning Study Group 2015) reminds us that students enter 
schooling with a wide range of spatial experiences, having spent their entire lives 
learning and exploring in 3D. Spatial reasoning strengths (or weaknesses) have a con-
tinuing impact on people’s learning over our entire lives (ENGAGE n.d), including 
through the impact of losing spatial reasoning as we age (Possin 2010). Unfortunately, 
spatial reasoning is too often invisible in our mathematics classroom in the curriculum 
content and in the mathematical processes practiced. This absence immediately dis-
advantages and can exclude substantial portions of the students for whom spatial 
reasoning is their strength, while formal algebra and routine computations are a weak-
ness. Surprisingly, spatial reasoning has a larger place in the Ontario Social Science, 
History, and Geography curriculum, across all grades, than in the Ontario Mathematics 
curriculum (Ontario Ministry of Education 2005a, b, 2000, 2013).

This separation of the high school curriculum from children’s early cultures and 
from young adult visual cultures is a broad problem for inclusive teaching. It can be 
a filter for the early grades (e.g., the linearized number line—essential for success 
by grade and primarily learned in school). It continues as a filter to full access in 
upper level mathematics, statistics, science and engineering courses (ENGAGE). In 
grades 7–12, spatial reasoning can support work with graphing and manipulatives 
(Radford et al.) and in the verb-based and spatialized culture of “enough” and ges-
tures described by Lunney Bordon. The absence of spatial reasoning is part of what 
Aikenhead observes in the formalized, Platonist presentation of “mathematics,” 
which excludes many cultures which have strong and wide spatial practices. Among 
the missing cultures with richer spatial reasoning are both the current practices of 
professionals in engineering, physics, biology and broad interdisciplinary fields and 
the cultures in other high school classes in science and social science which students 
experience in parallel with their mathematics classes.

W. Whiteley
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A second example of a changing focus is the process of simulation: following a 
story with a sequence of steps which can be experienced and played with, and asso-
ciated computational thinking. These simulations and companion algorithms under-
lie key processes of The way we think: switching and blending among representations 
(Fouconnier and Turner 2002). The associated cognitive blending is shared within 
communities within the back and forth pathways which are highlighted in the chap-
ter of Thom and Glanfield. These processes of simulation and algorithms are now 
appearing across the spectrum—in elementary grades, in post-secondary class-
rooms, and in the lives of students outside the mathematics curriculum. In the chap-
ter of Radford et al., we notice the students experimenting with a simulation—something 
that is even richer when they have access to range-finders to test their tentative sto-
ries. A broader richer exploration can occur if they are invited to consider the graph 
if Pierre is holding the range-finder pointing backwards, with the same motions. 
This invites the students to transform the frame of reference, something that might 
well happen in a physics classroom. The powerful, rich stories of Taylor et al. are 
other ways of combining multiple representations—with implicit simulations we 
explore the same actions in the different representations. Without the rich stories, 
the teaching and learning is not drawing on the way we think!

A final example of what is underrepresented, and is likely to form a bigger part 
of high school classrooms, is Statistics. Already in New Zealand, all grades from 1 
to 12 have a curriculum called “Mathematics and Statistics” (Ministry of Education 
2014). (If you wonder how children in grades 1–4 reason with statistics—they do it 
with visual/spatial simulations, supported by the software iNZight.) In Ontario, 
Probability and Data Management is in every grade 1–8 and after a gap, in grade 12. 
Increasingly, post-secondary programs require some course and initial mastery in 
statistics. However, many high school teachers complete their preparation in math-
ematics and in education, feeling unprepared to support this change and teach such 
material. Most teachers recognize statistics is ‘different’ than what they learned in 
their mathematics courses or what they practice in other parts of the current curricu-
lum. It is a critical error to assume statistical reasoning and decision making is 
simply applied probability—and lack of a good background is a real loss when the 
teachers have the opportunity to implement change.

Throughout the chapters in this section, there is a strong emphasis on learning in 
context, within relationships and within communities (Radford et  al.; Thom & 
Glanfield; Boland & Tranter). There are reminders that the larger sweep of the indi-
vidual pieces of mathematics could form connected stories, and rich investigations 
are often smaller but powerful stories (Taylor et  al.) that carry us forward. As 
Aikenhead explores, and Lunney Borden powerfully illustrates, for Indigenous stu-
dents these mismatches of their cultures and contexts with their classrooms needs to 
be bridged and reworked. This includes reworking the stories for the mathematics 
and even the words, practices and relationships that carry the learning and meaning 
that should be broadly recognized as appropriate for powerful mathematics. Notice 
that the core story within Boland’s chapter additionally describes the impact of 
relationships in a setting both on the boundary of elementary schooling and high 
school, and in a context where a majority of the students were Indigenous and at 
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risk of not moving along within the strange (even alien) culture of high school 
“maths.” The context is changing and the context for teaching and learning is open 
to further change.

Change is a long-term process. As A.J. Coleman once observed, in Switzerland 
one plans such change in curriculum over an arc of at least a decade. To cite another 
example, when the then Soviet Union was updating their geometry curriculum, the 
first step was to write a textbook for preparing future teachers. After a decade of 
preparing teachers and sending them out into the schools, it was time to roll out the 
curriculum and texts for the students! So different than what most teachers and stu-
dents experience in Canada, when the teachers may only see the curriculum a few 
months before they asked to implement it, and the texts may not even arrive when 
the semester starts. We must all do better.

Change in schools is also collective. Even working within a static set of mathe-
matics and statistics topics, a mutually supportive group of teachers can still inte-
grate new ways to support students’ collective and individual learning. One can 
spatialize the curriculum (Davis and The Spatial Reasoning Study Group 2015), and 
can develop student’s capacities to learn well through collaborations, using multiple 
approaches. Building these processes and capacities may initially slow down the 
short-term ‘progress’ through topics, but research evidence is that over several years 
the learning accelerates and there is more time and space to explore widely and fol-
low their passions while discovering the ‘prescribed curriculum’ which has also, 
almost incidentally, been covered. We have the opportunity of celebrating the diver-
sity of students and the many ways students reason, connect, and communicate.

Adapting to changing landscapes, and even changing the landscapes ourselves, 
requires patience, hope, confidence and resilience over the long term. In turn, this 
requires communities of continuing support among peers, and from parents and 
ministries. Together, we can develop communities that build these relationships 
over multiple years.
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 Peter

 The Beginning

On April 9th 1969 at 4 pm I was standing along with a few others outside the high 
wall surrounding Harvard Yard throwing packets of food, bread and cheese, and 
juice boxes to some two to three hundred of our fellow students inside. Why was I 
outside and not inside? I was not sure but was certainly conscious of my inner tur-
moil. In just over 2 months I was scheduled to be a new father and a new PhD; it was 
not clear which would come first but both were calling me to be a responsible adult 
on one side and a revolutionary on the other and anyway why was there a difference 
between the two.

I lived on Everett Street, facing the wall a couple of blocks away. I was awakened 
at 5 am the next morning by the shouting and screaming as the Cambridge police 
took the students away sending 40 of them to Emergency. I went to the window but 
could not see anything. I looked back at Judith, 7 months along, who thankfully did 
not wake, and I vowed that in the many professional years ahead of me I would find 
another way to help steer the change that was so clearly on its way.

And now the times are changin’.
Look at everything that’s come and gone.
Sometimes when I play that old six-string.
I think about you, wonder what went wrong.
(Adams and Vallance 1984, track No. 6)

The short-lived occupation of Harvard Yard was specifically a reaction against the 
Harvard administration for its support of the military in the wake of the terrible war 
in Vietnam, but more generally it was a signal to us all that the change that was on 
its way would be profound and we simply did not trust the establishment to manage 
it properly. You see the 60s was an extraordinary decade for education, opening in 
the wake of the 1957 Soviet launch of Sputnik and closing with Neil Armstrong’s 
1969 landing on the moon. These events prompted large government investments in 
science, engineering and mathematics at all levels of education. And one might have 
asked just how was all that money to be spent?

This question was highlighted that very year with the appearance of Teaching as 
a subversive activity (Postman and Weingartner 1969) and ever since that time, Neil 
Postman has been one of my gurus. This early somewhat informal work opens with 
a catalogue of some of the leading thinkers of the day as well as some of the ways 
education could go wrong:

The institution we call ‘school’ is what it is because we made it that way. If it is irrelevant, 
as Marshall McLuhan says; if it shields children from reality, as Norbert Wiener says; if it 
educates for obsolescence, as John Gardner says; if it does not develop intelligence, as 
Jerome Bruner says; if it is based on fear, as John Holt says; if it avoids the promotion of 
significant learning, as Carl Rogers says; if it induces alienation, as Paul Goodman says; if 
it punishes creativity and independence, as Edger Friedenberg says; if, in short, it is not 
doing what needs to be done, it can be changed; it must be changed. (p. 5)
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But what exactly is this change to look like? That question has been around for a 
long time. The goal of this chapter is to highlight a few of the twentieth century 
milestones for that question and to review briefly some of the reasons that educa-
tional change is so difficult and how the situation differs at the elementary and 
secondary levels. I will also point to some encouraging recent progress.

I end this section with a quote from a 1995 Postman book The end of education. 
[That’s a mischievous use of the word “end.” One thinks right away of an ending, 
but in fact Postman intends (mostly) the other meaning of the word: end as goal or 
objective.]

What this means is that at its best, schooling can be about how to make a life, which is quite 
different from how to make a living. (p. x)

I seize here on the precious word “life” and that will form the core concept for the 
chapter.

 The First Half-Century

Alfred North Whitehead (1861–1947), philosopher and scientist, and John Dewey 
(1859–1952), philosopher and humanist, both wrote definitive essays on education 
and their ideas are needed today more than ever. For both of them, what happens in 
the classroom must be significant for the life of the student at that very moment. The 
fact of the matter is that from their time almost 100 years ago, to the present, this 
significance has too often been postponed to the future. Here’s Whitehead (1929) 
commenting on the assertion that you cannot do mathematics until you have mas-
tered the technical pieces:

The mind is an instrument; you first sharpen it, and then use it… Now there is just enough 
truth in this answer to have made it live through the ages. But for all its half-truth, it embod-
ies a radical error which bids fair to stifle the genius of the modern world… The mind is 
never passive; it is a perpetual activity, delicate, receptive, responsive to stimulus. You can-
not postpone its life until you have sharpened it… There is only one subject-matter for 
education, and that is Life in all its manifestations. (p. 6)

It is ironic that this dominant idea, that students must wait till university before 
being confronted with real mathematics, is what is responsible for the fact that so 
few of them (at most 25%) have anything close to technical mastery of the disci-
pline. This is not only an irony; it is a catastrophe as it engendered the “math wars” 
that for the past 25 years have pretty much sabotaged any liberal-minded attempt at 
school curriculum renewal.

It is certainly true that mastery of any complex procedure, whether it belongs in 
sports, the creative arts, or academics, requires what is often called “automaticity” 
and this typically requires hours of routine practice. But it is equally true that chil-
dren (and adults!) love to investigate and discover things and these activities, if they 
clearly point towards ends that are rich and compelling, can initiate and sustain that 
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technical practice. And by the way, humans happen to enjoy time spent in the 
 single- minded company of routine tasks (knitting, musical scales, solving equa-
tions) that they can master, especially those that can hide unexpected variations.

For us, Whitehead’s point is that the riches of mathematics need to be brought 
into the life of the student at that very moment. And the big question, the question 
that inspires this essay, is how is this to be done?

John Dewey also accepts the fact that education must prepare the student for the 
future and that it is not a simple matter to find the right way to do that, but he also 
emphasizes that one thing we must not lose is “the organic connection between 
education and personal experience” (Dewey 1938, p. 8).

What, then, is the true meaning of preparation in the educational scheme? In the first place, 
it means that a person, young or old, gets out of his present experience all that there is in it 
for him at the time in which he has it. When preparation is made the controlling end, then 
the potentialities of the present are sacrificed to a suppositious future. When this happens, 
the actual preparation for the future is missed or distorted. ... We always live at the time we 
live and not at some other time, and only by extracting at each present time the full meaning 
of each present experience are we prepared for doing the same thing in the future. This is 
the only preparation which in the long run amounts to anything. (Dewey 1938, p. 20)

Again we ask how we do this and still prepare our students for a world that is tech-
nologically hugely more complex than the world of Whitehead and Dewey. Dewey 
(1938) talks about the importance of framing an intelligent theory (or perhaps a 
philosophy) of life experience for guiding the growth process, otherwise we are “at 
the mercy of every intellectual breeze that happens to blow” (p. 21). The problem 
remaining with us today is to translate Dewey’s guiding vision into a concrete cur-
riculum narrative.

In his chapter The rhythm of education, Whitehead (1929) describes at length a 
structure for this narrative. He lays down the three stages of education: Romance, 
Precision and Generalization and requires that we honour these, and further warns 
that if in our haste we short-change the critical first one, the second will wither and 
cannot deliver the ultimate fruit of education: the wisdom of the final stage.

 The Past Half-Century

I now jump into the second half of the century where this same life-affirming mes-
sage is found in the 1976 report on the mathematical sciences in Canada commis-
sioned by the Science Council of Canada (Beltzner et al. 1976). The report noted an 
“informed opinion that the teaching of mathematics at the elementary and second-
ary school in Canada is unsatisfactory” and it places a good part of the responsibil-
ity on the shoulders of the mathematical community (p. 113). It proposes that the 
primary aim of the school mathematics curriculum should be “an understanding of 
what mathematics is” (p. 117) and it cites David Wheeler that “it is more useful to 
know how to mathematize than to know a lot of mathematics” (p. 119).
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A significant outcome of this report was the inaugural meeting in 1977 of the 
Canadian Mathematics Education Study Group (CMESG/GCDEM), a community 
of mathematicians, mathematics educators, graduate students and teachers that has 
met annually ever since and unfailingly provides the collaboration and life-force for 
much of the Canada’s contribution to the study of mathematics education. I will cite 
one such contribution and that is Whiteley and Davis (2003), a manifesto addressed 
to the Canadian Mathematical Society asserting that the structure of our K-12 math-
ematics curriculum “is an obstacle to student learning of mathematics. Over- 
specified and fragmented lists of expectations misrepresent what mathematics is 
and militate against deep and authentic engagement with the subject.” (p. 83). In 
addition, the document referenced above all the ability to think mathematically. 
This is a phrase we are encountering increasingly in the literature, but my experi-
ence is that there is little attention paid to mathematical thinking in the “delivered” 
secondary curriculum.

 Powerful Stories

My view is that a significant story, or more generally a collection of related stories 
that together form a significant narrative, can provide the power needed to propel 
our mathematics students towards a complete engagement, one that includes techni-
cal and conceptual fluency and develops mathematical thinking.

I call such stories “powerful.” In literature a story is powerful if it opens the way 
to a significant human experience. So also in mathematics, a story is powerful if it 
opens the way to a significant experience of doing mathematics. The stories I look 
for have a sense of completeness and a natural organic connection to the framework 
of technical skills that supports them. They must also be accessible but nevertheless 
have the potential to soar. Gadanidis et al. (2016) call this a “low floor with a high 
ceiling” (p. 2). Finally, aesthetics plays a huge role in my selection of good stories, 
indeed it plays the definitive role. Much has been written about “motivation” in the 
learning of mathematics, and it is certainly true that different students respond posi-
tively to different types of experience, but my view is that all students have a natural 
response to beauty, indeed, aesthetics just might be the universal motivator. 
Gadanidis et al. (2016) refer to “the aesthetic that makes the experience (of mathe-
matics) human” (p.  2). Certainly mathematicians discover early in life the deep 
connection between truth and beauty.

Yet when I mention the beauty of mathematics to high school graduates, they 
often express surprise at the connection. The reason is perhaps that beauty is not 
displayed as a central feature of school mathematics and thus even when it succeeds 
in getting into the classroom, it has little staying power. Seymour Papert (1980, as 
cited in Sinclair 2006) observes that “if mathematics aesthetics gets any attention in 
the schools, it is as an epiphenomenon, an icing on the mathematical cake, rather 
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than the driving force which makes mathematical thinking function” (p 192). Anne 
Watson (Sinclair and Watson 2001) comments on this nicely:

I had a growing disaffection with this pedestrian approach to awe and wonder in mathemat-
ics, as if there were common sites for expressing awe, like scenic viewpoints seen from a 
tourist bus, whose position can be recorded on the curriculum as one passes by, enroute for 
something else. Spontaneous appreciation of beauty and elegance in mathematics was not, 
for me, engendered by occasional gasps at nice results, nor by passing appeals to natural or 
constructed phenomena such as the patterns in sunflowers or the mathematics of tiling. 
(p. 39)

That’s a nice phrase: “scenic viewpoints from a tourist bus.” The subtext is: “that’s 
not where I live!” This is the reason that I believe that the investigations we bring 
into this new curriculum model must be “significant,” for example sustained narra-
tives that connect well with the given mathematical curriculum. Otherwise they 
have little chance of performing as Papert’s “driving force.” By the way, Papert has 
some fascinating things to say about mathematics and aesthetics and I recount these 
in the Suggestions for further reading.

 Moving Forward––The Challenges

Over the past year we have worked with rich problems of this type in different set-
tings (workshop, classroom) with a variety of students in grades 9–12, mostly in the 
university preparation stream, and we have learned a lot about what they can do and 
what they find challenging. Some do not manage to gain a reasonable level of mas-
tery of the methods, but certainly they are all given a significant view of the majesty 
of a mathematical landscape.

Our ultimate objective is to find 4 years worth of good stories at the secondary 
level. Certainly these stories must fit the prescribed curriculum, but in moving to a 
narrative focus, we find ourselves encountering a wider set of mathematical con-
structions, perhaps intrinsic to the story itself, perhaps raised in the inquiry process 
by the students themselves, and we need to be open to the pursuit of these. I am 
thinking here of concepts that are found in probability, geometry, logic, discrete 
optimization, combinatorics, game theory, stability of physical systems etc. To the 
extent that such topics find themselves naturally arising, they will of course need 
some adaptation and teacher buy-in. Most mathematics teachers at the secondary 
level have a reasonable mathematical background, but they tell me that it takes just 
about the whole term to cover the mandated technical material, so they would find 
it difficult to incorporate the activities I am discussing here. My own colleagues in 
Canadian universities are also wary of these ideas. They already find their students 
“unprepared” and they suggest that my model could make the situation worse.

I must say that when I look at the list of topics in, say, the Ontario Grade 10 
Academic course,1 I find it hard to believe it takes the whole 4+ months to get that 

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied).
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done––because I have seen with my own eyes the remarkable things that grade 10 
students can do in a week. I can only conclude that in the standard classroom, these 
students are working at half or quarter throttle. Perhaps the reason for this is that 
ever since their early years most (but not all) of these students have seen no compel-
ling reason to invest serious effort into the mathematical activities they have 
encountered.

There is little space in the conventional normative and normalizing classroom for wonder, 
for sustained engagement, for obsession, for playful bodies. But we do not seem willing to 
teach, or even to talk about, the very qualities that animate most mathematicians’ life-work. 
In fact, it is not hard to make the case that precisely the opposite is being taught of mathe-
matics: certainty instead of wonder, detachment instead of engagement, touring instead of 
dwelling, observing instead of obsessing, scripted performances instead of playful acts. 
(Davis 2001, p. 23)

There seems to be good evidence that, at least at the elementary level, kids are 
capable of more mathematical sophistication than the standard curriculum assumes:

Elementary school teachers work hard to cover grade-specific math curriculum expecta-
tions, but what if this is not enough? Ginsburg (2002) suggests that “children possess 
greater competence and interest in mathematics than we ordinarily recognize” and that they 
should be challenged to understand big mathematical ideas and to “achieve the fulfilment 
and enjoyment of their intellectual interest” (p. 7). This position is supported by Joan Moss 
and her colleagues in their work with functions in Grade 4 (Moss et al. 2008). By develop-
ing a stimulating, mathematically rich context for the content that students have to learn, 
teachers can address grade-specific curriculum expectations while offering students the 
pleasure of mathematical surprise. Young students, these researchers have shown, benefit 
from opportunities for using imagination and sensing mathematical beauty. (Gadanidis 
2012, p.1)

My view is that in secondary mathematics we are effectively telling our students 
that we do not think they are clever or imaginative enough to handle the ideas that 
we, as mathematicians, find interesting and challenging. That strikes me as a smug, 
elitist attitude that shortchanges the student and the subject itself. One thing I know 
is that we do not need to fear that our young students will let us down. They are 
imaginative and resourceful (and even hungry) and simply need to be given prob-
lems they can respond to and succeed at. Nor need we fear that our subject will let 
us down. Mathematics is a veritable goldmine of breath-taking beauty––we just 
need the courage to bring that into the classroom and (by the way) to stop worrying 
about whether we are preparing our kids for calculus.

Let me end with a story. Twenty-five years ago Mattel™ marketed a Barbie doll 
that said “Math class is tough.” There was storm of protest and the red-faced com-
pany hastily withdrew the doll. That was totally the wrong response; mathemati-
cians should have stood up and pointed out that tough jobs require tough tools and 
we are lucky that mathematics provides these. These days, trucks and heavy-duty 
cleansers are praised for their toughness but that is nothing compared with the task 
of landing a spaceship on an asteroid or designing a code that is easy to implement 
and hard to break. The fact of the matter is that kids really love the feeling that they 
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are doing a tough job—all they need is some real indication that their hard work is 
leading to success.

 Kariane

This essay for me is a giant puzzle holding many pieces whose assembly might well 
significantly improve the high school mathematics experience. Towards the end of 
our Additional suggestions for further reading we say: “What we need to do is let 
go of the imperative that all our kids need mastery of a substantial list of basic tech-
nical skills before they can climb the mathematical tree.” I believe that this list is so 
mind numbing that it becomes difficult for anyone, let alone a high school student, 
to take a step back and see the greater picture. Instead of knowing how all the con-
cepts work together, and how much beauty and power they can generate, many 
students end up trying to memorize each of them with the hope that it will all work 
out on the exam.

Reflecting on my own experience as a high school student, that certainly was the 
case for me. My 16-year-old self was anxious, unaware of her strengths, but cer-
tainly aware of her weaknesses—and one of these was mathematics. I was an aver-
age student until I failed miserably the first exam of Secondary 5. When I managed 
to get over the shock and the shame, I realized two things. The first is that if math-
ematics was required, it must be doable. The second is that I cannot be that dumb. 
Hence, success was within my reach, and through introspection, I realized that 
memorizing mathematics was probably not working for me. That is what I have 
been doing instinctively for years, but I had no fundamental understanding of any of 
it. Therefore, I learned how to learn math, and underlying that important process 
was a change in my motivation: I was now learning mathematics for its own sake. 
Middleton and Spanial (1999) would call this mastery goals. On the other hand, ego 
goals define success in a discipline relative to others. In terms of achievement, “stu-
dents with mastery goals tend to perform better than those with ego goals regardless 
of the learning situation” (Middleton and Spanial 1999, p.74). This could explain 
my shift from underachievement to being successful in mathematics.

The question that remains is how we might replicate this for other students. 
Studies showed two important things regarding this question. The first is that stu-
dents’ intrinsic motivation (linked to mastery goals) towards mathematics decreases 
significantly throughout high school (Gottfried et  al. 2007, p.  325). The second 
important lesson is that “the decline in academic intrinsic motivation is not a general 
developmental or ontogenetic one, nor is it inevitable” (Gottfried et al. 2001, p.10).

One way to remedy this decline is by implementing an inquiry-based classroom. 
By using such a model, students “are less likely to develop ego goals than are stu-
dents in more traditional classrooms” (Middleton and Spanial 1999, p.  74). 
Moreover, they tend to believe that success in mathematics is defined by their 
attempts to understand and explain their thinking (Middleton and Spanial 1999, 
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p.74). My hope is for discovery and investigation to be at the centre of the new face 
of mathematics in Canada.

 Divya

While thinking about what to write for this chapter, I stumbled upon the article 
titled, “School mathematics as a special kind of mathematics” (Watson 2008). One 
of several responses to Watson’s thoughts was Mendrick (2008) who stated three 
reasons for why she believed there will always be a difference between the two 
types of math. These were:

• School students do not get paid for doing mathematics
• They do not apply for opportunities to do it
• Even when they have an identity that is invested in being good at it, mathematics 

never defines them in the way that one’s employment does

Mendrick’s list made me think back to Peter’s comments. He stated:

My view is that in secondary mathematics we are effectively telling our students that we do 
not think they are clever or imaginative enough to handle the ideas that we, as mathemati-
cians, find interesting and challenging. That strikes me as smug, elitist attitude that short-
changes the student and the subject itself.

Like Peter, I also find that we are creating this “elitist attitude” with mathematics. 
Whether or not we feel we can accept Mendrick’s three differences, I feel that they 
also show this attitude; that mathematicians are simply too different from their stu-
dents. I find this to be a huge problem, as it can create many misconceptions for 
students, specifically regarding creativity and discovery in mathematics.

While I am now following a career in mathematics, in high school I fell victim to 
these misconceptions. Throughout my life, I have always been interested in mathe-
matics. This was encouraged by my family, who promoted my curiosity in the sub-
ject. However, school did not. As I went through my high school years, I felt less 
interested in mathematics as I was constantly feeling as though I was not chal-
lenged. Therefore, like the students that Peter mentioned, I found physics more 
interesting, and so I decided to major in physics in university. However, my constant 
curiosity made me keep up with mathematics, and I eventually transferred into 
Applied Mathematics.2 If it was not for the opportunities I was given and the encour-
agement from my family, I would never have found my place in mathematics, and 
seen how much there is to discover.

Finally, I want to come back to Mendrick’s thoughts. Even given that school 
mathematics will not be exactly like the mathematics done by mathematicians, there 
should not be such a disconnect between the two. Just like mathematicians, students 

2 This term refers to one of the two course pathways in Ontario secondary classrooms (Applied and 
Academic).
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should feel encouraged to use their curiosity and creativity to help them learn chal-
lenging mathematics. Perhaps then can we put an end to this elitist attitude.

 Stefanie

Our research aims to enrich the learning of mathematics at the secondary level by 
engaging students with powerful stories. Our recent project presented grade 10 stu-
dents with rich problems involving transformations and matrix multiplication (see 
Fig. 1). My encounter with these students clearly pointed to a lack of drive and 
interest towards their usual mathematical activities. The students would ask, “What 
is the purpose of learning this stuff? I’ll never use it again outside of this class-
room!” Other students failed to connect our activities with their idea of mathematics 
as they would ask, “At what point will we begin to do math?” I had similar questions 
in my own past, as had the authors of the previous two testimonies. It is not easy to 
answer these questions but they certainly suggest that the learning of school math-
ematics could be improved.

We all strive to find a purpose in our efforts and feel there is a reason for our time 
spent learning. We call the activities of our project “powerful stories” because they 
are designed to have the power to guide the learner towards the feeling of a worth-
while purpose. This seems to be lacking in the material presented in the curriculum 
today.

Mehta et al. (2016) interviewed four Fields medal recipients to highlight how 
mathematicians view mathematics from a creative and artful perspective that is 
lacking in the high school curriculum. The authors suggest that the current curricu-
lum limits students’ ability to wonder, to develop a sense of the field of mathematics 
and to envision themselves as mathematicians.

These profiles [of the four mathematicians] tell us that success in mathematics comes with 
passion and play, and from seeking connections across fields and disciplines. They provide 
a very different view of mathematics—as a living, artistic, organic structure, that mathema-
ticians actively construct in order to find truth and beauty in the world. We believe that this 
view of mathematics has significant implications for how we think of teaching and learning 
in this domain. It offers a novel and humanistic way of thinking about how to engage educa-
tors and learners in mathematical ideas. (p. 18)

We hope that by providing students with powerful stories, we will be able to help 
them to encounter mathematics from this perspective, be more engaged by the mate-
rial, and be motivated to endure longer as they construct their own reasons for pur-
suing mathematics (Fig. 1).

P. Taylor et al.
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Fig. 1 Factoring transformations (www.Math9-12.ca, Transformations Example 6)
This example embraces both computational thinking (CT) and spatial reasoning (SR) and is 
designed for Ontario Grade 10 or 11 Academic (i.e., university mathematics/science preparation). 
Here T is a linear transformation, and students are required to factor it as a given composition of 
what we have taken as “basic” transformations—dilations D, rotations R and horizontal shears S. 
The task is to find the parameters a, b, h and θ. In a sense, the basic transformations act as the 
“primes” of the system and the problem is to “factor” T as a “product” of these primes. There are 
two approaches, geometric using coordinate geometry and triangle trig, and algebraic using matrix 
multiplication and solving equations.
At first sight this seem like a difficult problem, and it does take some focused thinking to put all 
the pieces together. Having done that with a few examples, one can almost see an “algorithm” 
emerge; it is however sophisticated, both in its geometric and algebraic form, and it would be dif-
ficult to implement without a good grasp of the basic ideas and techniques.
For this particular transformation T, the reader will notice that there is an obvious and simpler 
factorization as a rotation followed by a dilation. But the sequence given here—a dilation followed 
by a shear followed by a rotation—is not so easy to find. The answer is a = 5/2, b = 12/5, h = 7/24 
and tanθ = 4/3.

Powerful Stories: The Hitchhiker’s Guide to the Secondary Mathematics Curriculum…
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 Additional Suggestions for Further Reading

 The Role of the Aesthetic in Mathematical Discovery

Much has been written about the beauty of mathematics, that for mathematicians it 
is a significant experience and the deep pleasure that it brings motivates them in 
their work. Based on this, it is a great pity that this experience is rarely to be found 
in the school classroom. But there is a strand of philosophical thought going back at 
least to Poincare that makes a stronger and more essential argument; it says that the 
aesthetic is a central component of the mathematical experience in that serious 
mathematics simply cannot be done without it. As a result, the failure to place the 
aesthetic experience at the centre of the mathematics classroom is more like a disas-
ter, certainly a token of failure for folks who would construct a more sophisticated 
curriculum. There is quite a large literature that discusses this idea (Google: Poincare 
mathematics aesthetics) but I find Seymour Papert’s (1980, p. 190–197) presenta-
tion of the mechanism at work here to be the clearest and the most intuitive.

Here is the idea. The mind has two components: the conscious which operates 
logically, and the unconscious which does not. Problems of a mathematical nature, 
when received, go to the conscious to be worked on and are often simply solved. But 
problems which are harder or less familiar, or even less well-formulated, after some 
preliminary analysis and a bit of struggle, are dispatched to the unconscious where 
they might reside for some time. During this interval, while the conscious mind is 
occupied with the business of living, these problems are quietly worked on but in 
quite a different way. The unconscious mind uses aesthetic criteria, the elegance, 
harmony and order found in patterns, to make value judgements, to decide what to 
transform and how, what to accept and what to reject. At some point, when it is 
“ready,” it throws the results back to the conscious mind, often taking it by surprise 
(Poincare tells a now famous story of this happening as he was stepping onto a bus). 
But armed with this transformed version of the problem, the mind can now apply its 
prowess with logic to evaluate the configuration and hopefully move the solution 
forward. If this story provides a reasonable account of reality, it must follow that 
both aspects of mind deserve to be trained and that a child ought to receive both a 
logical and an aesthetic education.

Our objective here is to conclude with a mention of the many Canadian research-
ers who have emphasized the fundamental role played by the aesthetic in the math-
ematical experience and have worked to carry this idea into our secondary schools. 
A brief search of the literature suggests that this is a hopeless task; there is so much 
wonderful work, one cannot decide where to stop. I (PDT) will mention a few major 
influences on my own life. First mention goes to my former PhD student (shared 
with my colleague Bill Higginson) Nathalie Sinclair (Simon Fraser) whose wonder-
ful book Mathematics and beauty (2006) argues that students are fundamentally 
aesthetic beings and provides examples and activities to move the curriculum in this 
direction. Ed Barbeau (University of Toronto) places the aesthetic experience at the 
centre of a rich array of problems he has developed over the years. He has argued, 
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along with many others, for an investigative “capstone” course in the final year of 
high school, perhaps with the theme of optimization. Such a course could happily 
replace the standard functions/calculus grind and at the same time provide excur-
sions into geometry, probability, combinatorics, and game theory––all excellent 
areas for the development of an aesthetic mathematical experience. Finally, I cite 
Walter Whiteley’s (York University) persistent inspirational work building a case 
for the return of geometry. These personal mentions are followed by a host of oth-
ers. Many of these can be captured in their work and from east to west I mention 
Math circles (Nova Scotia), and the amazing magazine publications Accromαth 
(Quebec) and Pi in the sky (PIMS). I find these sites remarkable for the deep, beauti-
ful and accessible mathematics they provide. There is a cruel paradox here. These 
publications are rich enough to easily fuel the secondary mathematics curriculum 
and they would give our students an inspiring and sophisticated experience far 
removed from the text-books that are currently in use. But our current ideas of the 
nature and structure of the school mathematics curriculum would need a fundamen-
tal change.

 Embracing a Sophisticated Experience in the School 
Mathematics Classroom

Three prominent Canadian websites that embrace the significance of rich mathe-
matical structures in school mathematics are:

Computational Thinking in Math Education www.ctmath.ca/about/
Math for Young Children (M4YC) http://www.mathforyoungchildren.ca/.
Spatial Reasoning Study Group (SRSG). http://www.spatialresearch.org/group

The much-cited essay Lockhart’s A mathematician’s lament (2002) imagined 
what would have happened if music instead of mathematics had been the subject 
considered essential for all students to “learn.” The idea here is that school mathe-
matics would perhaps be richer and more artistic if we let go of the idea that it was 
so important for the future of all our students. Well, I would like to say that differ-
ently. Mathematics is as important for all our students as English and history and 
science and music and art and physical education, and the list could go on. What we 
need to do is let go of the imperative that all our kids need mastery of a substantial 
list of basic technical skills before they can climb into what Dan Kennedy (1995) 
calls the mathematical tree. I would go so far as to predict that if we effectively let 
go of that list, and spend our mathematics time more like they spend time in art 
class, the overall level of technical proficiency will actually go up rather than down.

Kennedy, D. (2007). Climbing around the tree of mathematics [Special Issue]. 
Mathematics Teacher, 100, 80–85.

Lockhart, P. (2002). A mathematician’s lament. New York, NY: Bellevue Literary 
Press.
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On Teaching and Learning Mathematics 
from a Cultural-Historical Perspective

Luis Radford, Isaias Miranda, and Gilbert Lacroix

Abstract In this chapter, we discuss some ideas of a cultural-historical theory of 
the teaching and learning of mathematics. The basic ideas emerged from, and have 
evolved during, an ongoing long-term collaboration between researchers and teach-
ers. Since its inception, this long-term collaboration has sought to offer an alterna-
tive to child-centred individualist educational perspectives. It endeavours to 
understand and foster mathematics thinking, teaching, and learning conceived of as 
cultural-historical phenomena. This collaboration has led to what has been termed 
the theory of objectification. We illustrate the basic ideas through the discussion of 
a classroom episode where what is at stake is the production and understanding of 
graphs in a grade 10 mathematics class.

Keywords Teaching and learning · Graphs · Multimodality · Gestures · Ethic · 
Theory of objectification

 Introduction

The collaboration between researchers and teachers featured in this chapter goes 
back to the introduction of a new mathematics curriculum in Ontario in 1997. The 
revamping of the curriculum was accompanied by a new set of expectations and 
qualitative forms of assessment that posed a significant number of challenges for the 
teachers. The time was ripe for a collaboration between school boards and universi-
ties. Our collaboration with school boards started in 1998 with the constitution of a 
research team that included teachers from the two French school boards in Sudbury, 
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Ontario, in addition to Luis Radford and a group of his prospective teachers from 
Laurentian University’s Teacher Education Program.

At the time, mathematics education research was still heavily influenced by the 
principles of constructivism—and it still is, although perhaps in a more moderate 
measure. Constructivism exerted, indeed, a great influence on the English speaking 
world, particularly in North America. Its main tenet is that the student is the pro-
ducer of his or her own knowledge. This tenet is an evolved formulation of the 
central idea behind the “student-centred” pedagogy—one of the two pedagogical 
paradigms that emerged with the educational reform at the dawn of the twentieth 
century (Radford 2014). Constructivism, as it was formulated by Cobb and his col-
laborators (e.g., Cobb and Yackel 1996), appealed to mathematics educators and 
teachers as it offered a way out of the transmissive model of direct teaching. Despite 
the new possibilities that such an approach brought to the fore, its theoretical formu-
lation was not without its problems. One of them, which was particularly important 
to us, was the excessive emphasis on the child. The constructivism tenets move the 
teacher to the sideline and make learning a private and subjective enterprise. Yet, it 
was obvious that the learning that was unfolding before us in the classrooms where 
we were working was much more complex. Teachers were doing much more than 
simply assisting the students. They were literally organically involved in the stu-
dents’ learning. We felt that we needed to formulate learning in different theoretical 
terms and to stress, in particular, its more collective oriented nature. Another point 
that was essential to us and that, in our view, was oversimplified in constructivism 
was the question of the nature of knowledge. Since according to constructivism, 
knowledge is what results from the student’s actions, knowledge is something sub-
jective. For us, knowledge is not a subjective or psychological phenomenon. 
Knowledge is something cultural and historical. These and other considerations led 
us to try to rethink the question of teaching and learning.

Our purpose is not to make a detailed analysis of the differences between con-
structivism and the cultural-historical approach that we developed. If we mention 
the problems that we found in constructivism it is to provide the reader with a back-
ground of our practical actions in the classroom and our ensuing theoretical cogita-
tions. With this chapter we seek to contribute to the general pedagogical problem 
related to the identification of best teaching and learning practices when these prac-
tices are considered from a cultural-historical approach. In particular, we seek to 
provide insights into manners in which teachers can recognize, identify, and pro-
mote collective ways of learning. Our interest is in moving pedagogical understand-
ing beyond the traditional interpretation of learning as the reproduction of known 
procedures to solve familiar problems and beyond the constructivist view according 
to which it is the student who constructs her or his own knowledge. We hope that the 
data we present will provide the classroom teacher with opportunities to reflect on: 
(1) the active and tremendously important role teachers play in the growing of the 
students’ mathematical understanding; (2) new courses of action to promote deep 
conceptual understanding based on the variety of methods that students bring to the 
fore when they engage in collective activity, and (3) the ethical dimension that 
underpins all teaching and learning.

L. Radford et al.
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 An Example of a Mathematics Lesson: Making Sense 
of Cartesian Graphs

In the rest of the article we discuss a mathematics lesson and the main ideas of our 
approach. The mathematics lesson that we would like to discuss here comes from a 
grade 10 class. It is about making sense of a Cartesian graph in a technological 
environment based on a graphic calculator TI 83+ and a probe—a Calculator Based 
Ranger or CBR (a wave sending-receiving mechanism that measures the distance 
between itself and a target).

In previous lessons, the students became familiar with the calculator graph envi-
ronment and the CBR. In these lessons, they had dealt with a fixed CBR and one 
moving object. In the lesson that we will discuss here, the students were provided 
with a graph, a drawing, and a story. The graph showed the relationship between the 
elapsed time (horizontal axis) and the distance between two moving children (verti-
cal axis) as measured by the CBR (see Fig. 1).

Here is the story at the heart of the lesson: “Two students, Pierre and Marthe, are one 
metre away from each other. They start walking in a straight line. Marthe walks behind 
Pierre and carries a calculator plugged into a CBR. We know that their walk lasted 7 
seconds. The graph obtained from the calculator and the CBR is reproduced below.”

As in all our lessons, our task design is based on interrelated problems that 
require the students to think and discuss at deep levels of conceptualization. 
Furthermore, the students are encouraged to work in small groups of two or three, 
to suggest ideas, to try to improve the ideas of other students, to challenge the ideas 
of others when they see fit, and to support each other. The lesson discussed here was 
divided into three parts. In the first part, the students had to suggest interpretations 
for the graph. In the second part of the lesson they tested their interpretation using 
the CBR in the corridor in front of the classroom: they had to reproduce the given 
graph. In the third part of the lesson, the various small groups reconvened in the 
classroom and the teacher organized a general discussion and debate; the goal of 
which was to end up in a critical appraisal of ideas. We do not report here the second 
and third parts of the lesson. Before we present the students’ strategies, we start first 
with a comment on knowledge about Cartesian graphs in particular, and knowledge 
in general.

Fig. 1 Left, the drawing of Pierre and Marthe. Marthe has the calculator in her right hand and the 
CBR in her left hand. Right, the graph given to the students

On Teaching and Learning Mathematics from a Cultural-Historical Perspective
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 Knowledge

A Cartesian graph is a complex mathematical representation. It serves to depict, in 
specific ways, certain relationships between things. More specifically, through a 
Cartesian graph, mathematicians depict a co-variational relationship between vari-
ables. Mathematicians use Cartesian graphs as representation or artifacts for deal-
ing with and thinking of cultural realities in a mathematical manner. To do so, they 
resort to a sophisticated geometric-analytic syntax and a complex manner of con-
veying meanings. Now, the syntax and meanings associated with a Cartesian graph 
have evolved historically and have undergone a continuous process of refinement. 
They bear the imprint and sediments of the cognitive activity of previous genera-
tions. What this means is that the knowledge associated with Cartesian graphs is 
historical and cultural. But because of the highly historical refinement, the making 
and interpreting of Cartesian graphs are not a trivial endeavour for the students. The 
same can be said of the syntaxes and meanings associated with equations, functions, 
probabilities, and any mathematical domain.

Knowledge in general, and knowledge about Cartesian graphs in particular, offer 
students potential situated ways of thinking, acting, and experiencing the world. 
Knowledge exists as potential cultural-historical ways in which to reflect and 
engage in the world.

The fact that it is potentially possible to think of certain parts of our cultural real-
ity in terms of Cartesian graphs or equations or probabilities, etc., does not amount 
to asserting that the students will end up doing so (this is, in fact, what happened in 
the lesson that we discuss here, as we will see below). It is here where learning is 
required.

 Learning

We consider learning as a collective material, embodied, and ideational process 
where multiple voices and actions become entangled as teachers and students 
engage in mathematics classroom activity. Of course, not all entanglement of teach-
ers’ and students’ voices adds up to learning. Learning is about learning something. 
In our example, it is about thinking and taking action mathematically through the 
use of Cartesian graphs. We need hence to define learning in more specific terms. It 
is here where the concept of objectification intervenes.

Specifically, a process of objectification is a social, active, creative, imaginative 
process through which students gradually become critically conscious of histori-
cally constituted cultural meanings and forms of thinking and action. Within this 
context, understanding the making and meaning of a graph, the way it conveys 
information, and the potentialities it carries for thinking and acting upon our world, 
rests on processes of objectification underpinned by one’s voice, others’ voices and 
historical voices.

L. Radford et al.
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Let us turn to an excerpt from the lesson that comes from one three-student group 
(a previous analysis of the data was presented in Radford et al. 2008; Radford 2009). 
The students were Maribel (M), María (MJ) and Carla (C). The students discussed 
the problem for a few minutes. In Line 1 (L1), Maribel gives a summary of the 
group discussion:

1 M: (Moving the pen on the desk, she says) He [Pierre] moves away from 
Marthe for 3 s and then (moving the pen further along the desk; see Fig. 2, 
Picture 1), he stops, so he might have like dropped something for 2 s, and 
(moving the pen back this time; see Fig. 2, Picture 2) he returns towards 
Marthe.

2 C: Well, even though he moves away, but [thinking of the third segment of the 
graph] he returns back to…I don’t know.

3 MJ: Well, if she walks with him, so, it [the graph] doesn’t really make sense!

 Embodiment and Sensuous Actions

The students’ first interpretation rests on the idea of “absolute motion.” The seg-
ments AB, BC, and CD are interpreted as Pierre moving away, stopping, and com-
ing back. Although the students’ current interpretation does not yet resonate with 
the expected mathematical interpretation, we can see that such an interpretation has 
been forged through a complex coordination of perceptual, kinaesthetic, symbolic, 
and verbal elements. After watching the video again and again (and many other 
videos too over the course of the years), we became convinced that the students’ 
gestures are not merely redundant mechanisms of communication (e.g., Edwards 
et al. 2009; Nemirovsky 2003) but a key part of the process of objectification. This 
was observed time and again in the course of our continuous work with teachers and 
students. In more general terms, in the processes of objectification, recourse is made 

Fig. 2 Pictures 1 (left) and 2 (right). Maribel moves the pen on the desk, then stops to signify that 
Pierre is idle (segment BC) and Pierre returns towards Marthe
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to the body (e.g., kinesthetic actions, gestures), signs (e.g., mathematical symbols, 
graphs, written and spoken words), and artifacts of different sorts (e.g., rulers, cal-
culators, and so on). All these signs and artifacts used in the processes of objectifica-
tion we call semiotic means of objectification. Maribel’s dynamic gesture is an 
example of semiotic means of objectification.

If we come back to the previous passage and investigate it in more detail, we 
realize that through gestures and their synchronic link with movement verbs (“to 
move away,” “to come back”), Maribel offers an attempt at making sense of the 
graph. It is at the end of this episode that María reminds her group-mates that Marthe 
is moving too, so that, according to the current interpretation, the graph “doesn’t 
really make sense!” Twenty seconds later, Maribel offers a refined interpretation 
that tries to address the issue raised by María:

4 M: Well technically, he walks faster than Marthe…right?
5 MJ: She walks with him, so it could be that […] She is walking with him, so he 

can walk faster than her (She moves the pen on segment AB; see Fig. 3). 
[He] stops (pointing to points B and C)…

6 M: No, there (referring to the points B and C) they are at the same distance…
7 C: (After a silent pause, she says with disappointment) Aaaaah!

The graph interpretation has changed: In L4, Maribel introduces the two-variable 
comparative expression “X walks faster than Y.” In L5, María reformulates Maribel’s 
idea in her own words while producing a more sophisticated interpretation. Indeed, 
L5 contains three ideas: (1) Marthe walks with Pierre, (2) Pierre walks faster than 
her, and (3) Pierre stops. Although improved, the interpretation, as the students real-
ize, is not free of contradictions. Even if, at the discursive level, Marthe is said to be 
walking (L5), segment AB is still understood as referring to Pierre’s motion (see 
Fig. 3). However, segment BC is interpreted not in terms of motion but of distance 
(L6). Moreover, it is interpreted as the distance between Pierre and Marthe. So, 
while segment AB is about Pierre’s motion, segment BC refers to something about 
both children. The oddity of the interpretation leads to a tension that is voiced by 
Carla in Line 7 with an agonizing “Aaaaah!” The partial objectification bears an 
untenable incongruity.

Fig. 3 MJ moves the pen 
from A to B, meaning 
Pierre’s motion (L5)

L. Radford et al.



33

 The Ethical Dimension

In our approach, the interaction and communication between students, and between 
students and teachers are framed by a communitarian ethic through which students 
are encouraged to show openness toward others, responsibility, solidarity, care, and 
critical awareness. In the previous episodes, we see, indeed, that the students take 
responsibility in the teamwork. They listen to the other ideas, and try to improve 
them or challenge them. This communitarian ethic (e.g., Radford 2012) does not 
appear spontaneously in the classroom. Teachers nurture it by encouraging the stu-
dents to engage responsibly with others (e.g., Radford 2014). For instance, if the 
teacher notices that one of the students is not following, he/she may intervene and 
ask the other students if they are making sure that everyone understands. He/she may 
also ask the student who may not seem to be engaging/understanding to ask for help.

 The Teacher

Let us come back to the students’ discussion about the graph. The students contin-
ued discussing and arrived at a new interpretation: Pierre and Marthe maintained a 
distance of 1 m apart throughout, but they could not agree on whether or not this 
interpretation was better than, or even compatible with, Maribel’s interpretation 
(L4). Having reached an impasse, the students decided to call the teacher (T). When 
he arrived, María explained her idea, followed by Maribel’s opposition. It is this 
opposition that is expressed in L8:

8 M:  No, like this (moving the pen along segment AB) would explain why like, 
he goes faster, so it could be that he walks faster than her…

9 T: Then if one is walking faster than the other, will the distance between 
them always be the same?

10 M: No, (while moving the pen along AB, she says) so he moves away from 
the CBR and then. … What happens here (pointing to segment BC), like?

11 MJ: He takes a break.
12 T: So, is the CBR also moving?
13 M: Yes.

In L9, the teacher rephrases in a hypothetical form the first part of Maribel’s 
utterance (L8) to conclude that, under the assumption that Pierre goes faster, the 
distance cannot be constant.

The philosophy behind our approach is to leave the students to engage with the 
mathematics problems as much as they can. Once they have gone as far as they can, 
the teacher intervenes. His/her role is not to merely assist the students. His/her role 
is to engage with the students and to try to challenge them to move the students’ 
strategies further or to suggest other paths. The suggestion of other paths that may 
not have been noticed by the students is what we see in the previous excerpt.
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Indeed, we see that the teacher’s strategy helps move the students’ discourse to a 
new conceptual level. Maribel’s L10 utterance shows that the focus is no longer on 
relative speed but on an emergent idea of relative distance. The gesture is the same 
as María’s in Fig. 3, but its conceptual content is different. However, as shown in 
L10, the students still have difficulties providing a coherent global interpretation of 
the graph. How to interpret BC within the new relative motion context? Drawing on 
Maribel’s utterance (L10), the teacher suggests a link between Marthe and the CBR, 
but the idea does not pay off as expected. The teacher then tries something 
different:

14 T: OK. A question that might help you…A here (He writes 0 at the intersec-
tion of the axes and moves the pen along the segment 0A). What does A 
represent on the graph? (He moves the pen several times between 0 and 
A; see Fig. 4)

15 MJ: Marthe.
16 T: This here is 0? We’ll only talk about the distance. OK? (He moves the pen 

again as in Line 14)
17 MJ: 1 metre.
18 T: It represents 1 metre, right?…1 metre in relation to what?
19 M: The CBR.
20 T: OK. So, does it represent the distance between the two persons?
21 M: So this (moving the pen along the segments) would be Pierre’s movement 

and the CBR is 0.
22 MJ: (Interrupting) First he moves more…

Capitalizing on the emerging idea of relative distance, the teacher’s strategy now 
becomes to call the students’ attention to the meaning of a particular segment–the 
segment 0A. He captures their attention in three related ways: writing (by writing 0 
and encircling the point A); gesturing (by moving the pen back and forth between 0 
and A); and verbally (L14). In L15, point A is associated with Marthe. In L16, he 
formulates the question in a more accurate way, and takes advantage of the answer 
to further emphasize the idea of the relative meaning of the distance. Line 21 

Fig. 4 The teacher moves 
the pen back and forth 
between 0 and A

L. Radford et al.



35

includes the awareness that the CBR has to be taken into account, while L22 is the 
beginning of an attempt at incorporating the new significations into a more compre-
hensive account of the meaning of the graph.

The students thus entered into a new phase in their process of knowledge objec-
tification. They continued discussing in an intense way. Here is an excerpt:

23 C: He moves away from her, he stops then comes closer.
24 M: But she follows him.… So, he goes faster than she does, after, they keep 

the same distance apart.

In L23, Carla still advocates for an interpretation of the graph that suggests a 
fragile understanding of relativity of motion. In the first part, she makes explicit 
reference to Marthe (“He moves away from her”), but in the second and third parts 
of the utterance, Marthe remains implicit. In L24, Maribel offers an explanation that 
overcomes this ambiguity. Even though the segment AB is expressed in terms of 
rapidity, the previously reached awareness of the effect of rapidity in the increment 
of distance makes the interpretation of BC coherent. The recapitulation of the stu-
dents’ efforts is made by Maribel, who, before the group starts writing their inter-
pretation, says: “Maybe he [Pierre] was at 1 metre (pointing to A) and then he went 
faster; so now he is at a distance of 2 metres (moving the pen in a vertical direction 
from BC to a point on the time axis; see Fig. 5); and then they were constant and 
then (referring to CD) they slowed down. Would that make sense?”

The students succeeded in refining their mathematical understanding, although 
some edges still remained to be polished. In the interpretation of CD, Maribel did 
not specify in which manner they slowed down. Was it Pierre who slowed down? 
Was the reduction of distance the effect of Marthe increasing her speed? Was it 
something else? These questions were discussed in the final general classroom dis-
cussion. In writing their answer, this group, however, realized that something impor-
tant was missing. Naturally, writing requires one to make explicit, and thereby make 
very explicit relationships that may remain implicit at the level of speech and ges-

Fig. 5 Left, Maribel makes a vertical gesture that goes from BC to the time axis. Right, we have 
indicated this gesture by an arrow). This gesture is a generalization of the teacher’s gesture (see 
Fig. 4)
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tures. Maribel’s activity sheet contains the following answer: “Pierre moves away 
from Marthe by walking faster for 3 seconds. He is now 2 metres away from her. 
They walk at the same speed for 2 seconds. Pierre slows down for 2 seconds so he 
gets closer to Marthe.”

 Discussion

As noted in the introduction, we are interested in promoting best teaching practices 
that are likely to foster deep student conceptual understanding through forms of col-
lective learning. The example discussed in the previous section shows how the inter-
action between students and the teacher triggered sensuous actions that are 
supportive of the learning process. The example shows how the teacher challenged 
the students’ evolving understanding, pushing their conceptualization to new levels. 
But our interest is not only in the mathematical content. We challenge the idea that 
best teaching practices are about the mathematical content only. Best teaching prac-
tices have to include the dimension of the student—the student as a social being in 
the making. This is why we are also interested in nurturing classroom collective 
activities that foster an ethical dimension of solidarity, cooperation, and responsibil-
ity. In the example presented here, we see the teacher very attentive to the students’ 
needs. The teacher is deeply engaged in the students’ learning and well-being. To 
the commitment of the teacher, the students respond with a similar other-oriented 
commitment that keeps the activity unfolding. This ethical commitment appears not 
only on the discursive level, where the participants attend responsibly to what the 
others are saying, but also on the embodied level of gestures, posture or body posi-
tion, and the engagement with mathematical signs.

 Concluding Remarks

In this chapter, we discussed, in broad terms, an approach to the teaching and learn-
ing of mathematics that emerged out of a collaboration between a research team at 
Laurentian University and several French school boards in Ontario. This long-term 
collaboration arose out of practical needs to improve the teaching and learning of 
mathematics and led to the elaboration of a cultural-historical educational theory—
the theory of objectification. Such a theory provides insights into the design of tasks 
that engage the students at deep levels of conceptualization and encourage evolved 
forms of human collaboration based on a communitarian ethic where students show 
responsibility, care, and solidarity towards the others. The theory is based on a mul-
timodal methodology that provides room for the interpretation of the students’ 
understanding of mathematics and the teachers’ role in teaching.
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In the example that we discussed here, our analysis suggests that one of the most 
important difficulties in understanding the graph was overcoming an interpretation 
based on a phenomenological reading of the segments in terms of absolute motion, 
and attaining one that put emphasis on relative relations. Instead of representing the 
state of an object in reference to a fixed point, points in the second case represented 
and came to signify relationships between them and a moving point. As we saw, the 
logic of interpreting a Cartesian representation of relative motion became progres-
sively apparent for the students through intense discussions. The phenomenological 
interpretation of the graph was replaced by one centred on relative distances. Crucial 
in this endeavour was the teacher’s intervention. The teacher was indeed able to cre-
ate what in Vygotskian terms we can refer to as a successful zone of proximal devel-
opment (Vygotsky 1978) that afforded the evolution of meanings both at the 
discursive and gestural levels. Thus, after his intervention, in the same way that 
words became more and more refined, so too did gestures: while the students’ first 
gestures were about Pierre’s motion, their last gestures were related to distances in 
a meaningful relational way.

The successful creation of a zone of proximal development was due to the teach-
er’s ability to find a common affective and conceptual ground for the evolution of 
the students’ meanings. The teacher brought out the students’ meanings from 
behind, as it were, and helped them push their meanings beyond their initial loca-
tions. The coordination of words with the sequence of similar gestures and signs in 
the Cartesian graph (see Fig. 4) helped the students understand the meaning of the 
segment 0A in the context of the problem. The segment 0A entered the universe of 
discourse and gesture, and its length started being considered as the initial distance 
between Pierre and Marthe at the beginning of their walk. Without teaching the 
meaning directly, the teacher’s interactional analysis of the meaning of segment 0A 
was understood and generalized by the students in a creative way (see Fig. 5).
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This chapter acknowledges school mathematics’ 200 years of hegemony and high-
lights its hidden cultural nature. In the nineteenth century, academics and govern-
ments independently created two major obstacles that have severely depressed 
Indigenous students’ high school graduation rates. First, academic educators defined 
school mathematics as being decontextualized, value-free, non-ideological, purely 
objective in its use, and universal in the sense of being the only legitimate way of 
mathematizing. Secondly, the Canadian Federal Government established Indigenous 
residential schools. Today in the twenty-first century, mathematics educators know 
how to mitigate the consequences of both obstacles, yet the secondary curriculum 
by and large carries on its nineteenth century function.

 The Rise of Platonist School Mathematics

The nineteenth century definition of school mathematics has a historical context. 
What we call “mathematics” today evolved over the ages in various civilizations, 
from which early European mathematicians appropriated what made sense to them 
(Ernest 2016b). A mechanism for this appropriation, based on language-laden cog-
nition (Kawasaki 2002), describes how a concept can have worldview presupposi-
tions implicitly attached to it.

For example, the concept of circle in school mathematics has a cluster of 
Eurocentric peripheral concepts such as point and plane, as well as associated 
peripheral values such as intellectual purity, consistency, and objectivity. If a math-
ematics textbook stated, “Indigenous medicine wheels have circle properties,” then 
the phrase “circle properties” refers to a decontextualized meaning of the term “cir-
cle” with its cluster of peripheral Eurocentric concepts. The textbook author has not 
understood, or has purposefully ignored, the contextualized subjective, holistic and 
spiritual peripheral concepts connected to an Indigenous meaning of circle.

Culture-based peripheral concepts get lost in translation. Thus, imagine the chal-
lenge for Indigenous speaking students when they unknowingly bring their uncon-
scious peripheral concepts into their mathematics class that pretends to have none. 
Similarly, imagine the implicit ideas that were lost in translation when early 
European mathematicians appropriated concepts from ancient Egyptian, Hindu, 
Arabic and Chinese cultures (Aikenhead 2017a, section 4.4). This appropriation 
unconsciously stripped away ancient peripheral concepts, and unconsciously 
replaced them with European peripheral concepts associated with the culture of 
European mathematicians.

The European renaissance version of mathematics slowly found a home in elite 
British universities during seventeenth to eighteenth century England. In this Age of 
Enlightenment, mathematics had to compete for a place in Cambridge’s and 
Oxford’s stringent curricula comprised of ancient languages, religious studies, his-
tory, and the classics. A curriculum’s difficulty was thought to prepare the mind for 
any future event, occupation, or profession (Willoughby 1967). Decontextualized 
abstractions ensured difficult content. Channelling Plato’s dichotomy “World of 
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Ideas” versus “Phenomenal World” (Kawasaki 2002, p. 25), mathematics instruc-
tors divorced their ethereal abstract subject matter from the context of worldly 
events. This explains their “Platonist” moniker.

A Platonist belief about mathematics assumes “a static but unified body of cer-
tain knowledge. Mathematics is discovered, not invented” (Ernest 1988, website 
quote). This belief promotes a “doctrine that mathematical entities have real exis-
tence and that mathematical truth is independent of human thought” (Collins 
English Dictionary 1994). An acultural, decontextualized, value-free, non- 
ideological, objective school subject flourished in the competition for a place in the 
British elite Latin Grammar Schools, which began to teach mathematics as prereq-
uisites for entrance to elite universities (Willoughby 1967).

The Industrial Revolution (eighteenth to nineteenth centuries) led to the estab-
lishment of the British public education system, quickly adopted in Canada. 
Mathematics became a core subject at a time when tensions escalated between two 
opposing philosophies of public education: academic elite versus practical rele-
vance (Layton 1981) that would contextualize Platonist mathematics content in the 
everyday world actually experienced by students and adult citizens employed in, for 
example, business, manufacturing, bureaucratic and professional occupations.

Married to an absolutist philosophy, the Platonists defended their territory by 
eschewing practical utility and marginalizing mathematics’ human features, such as 
its values and ideologies, plus its roles in everyday life. This stance was taken even 
though Platonists’ knowledge could be identified with such values as generalizabil-
ity and such ideologies as quantification (Corrigan et  al. 2004). Ernest (1991) 
described what happened: “[T]he values of the absolutists [were] smuggled into 
mathematics, either consciously or unconsciously, through the definition of the 
field” (p.  259). In the end, Platonist’s elitism won the battle over practical 
relevance.

What clever smuggling strategy did Platonists use to define school mathematics? 
First, they drew on a binary, “logical versus irrational,” invented by “Western cul-
ture dating back to Socrates, Plato, and Aristotle” (Hall 1976, p. 213), in order to 
construct their own theoretical binary: “formal mathematical discourse” versus 
“informal mathematical discourse” (Ernest 1991, pp.  259–260). Then they arbi-
trarily assigned the highly abstract decontextualized aspects of mathematics to the 
formal discourse category, which would be their discipline of school mathematics. 
This assignment was consistent with the ancient Greek philosophy proclaiming 
mathematics content is to be discovered as abstract objects that constitute the uni-
verse, rather than being invented by humans (Aikenhead 2017a, b).

The informal discourse category comprised everything that would have made 
school mathematics a human endeavour; for example, the application of Platonist 
mathematics in political-societal-economic contexts (Skovsmose 2016); its presup-
positions, ideologies, and values by which it operates; its history; and its prefer-
ences that guide mathematicians. Informal mathematical discourse was suppressed 
so effectively that most mathematics educators seem unaware of it today. Ernest 
(1991) characterized the Platonist’s strategy as illusionary: “[A]t the heart of the 
absolutist neutral view of mathematics is a set of values and a cultural perspective, 
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as well as an ideology which renders them invisible” (p. 260). In 1921, Einstein had 
proposed a parallel explanation, described in Aikenhead (2017a, section 4.2.1). 
Simply put: a surreal version of mathematizing became institutionalized; a human-
istic version was suppressed.

Political-social-economic power, rather than evidence-based practice, has suc-
cessfully maintained the Platonist dogma until recently for three reasons: it provides 
school mathematics with the highest status among school subjects; it allows other 
institutions to use students’ success at mathematics as an unquestioned objective 
screening device for post-secondary education and for employers, whether or not 
student assessment is objective and whether or not the high school mathematics 
content relates to the post-secondary program or the occupation; and it guarantees 
that “prestige, control, authority, and power are gained by the knower” (Russell 
2016, p. 75). Russell and Chernoff (2013) described this social screening function 
as “unethical” (p. 109).

The Platonist ideology of quantification demands that outcomes of schooling be 
commodified so that achievement can be assessed numerically (Ernest 2016a). This 
quantified worth of students, teachers, and educational jurisdictions is so simplistic 
it immeasurably distorts reality (Aikenhead 2017a, section 9.4). Quantification con-
veys a false aura of objectivity (Aikenhead 2008). Simply put, political expediency 
trumps quality education defined as “the human dimensions of knowing” (Ernest 
2016a, p. 53). Even worse, the allocation of a government’s “resources for testing is 
the main argument to justify math contents” in curricula (D’Ambrosio 2016, p. 33).

 The Rise of Cultural School Mathematics

The Platonist belief was challenged when anthropologists discovered that in all cul-
tures mathematical systems developed in tandem with people’s everyday cultural 
activities (Wilder 1981). Bishop’s (1988) research identified six fundamental types 
of mathematizing found in most major cultures: counting, locating, measuring, 
designing, playing, and explaining. “Mathematics, as an example of a cultural phe-
nomenon, has a ‘technological’ component” (p. 146). Bishop characterized mathe-
matics as a symbolic technology for building a relationship between humans and 
their social and physical environments.

Cultural practices are based on a group’s collective worldview. A clash between 
most Indigenous students’ worldviews and the worldview endemic to Platonist 
school mathematics tends to make mathematics foreign to many students (Aikenhead 
2017a, section 3.3). The clash, for example, could be due to an epistemic dissonance 
caused by different expectations of learners. Conventional school mathematics 
expects an intellectual understanding by students—thinking with the content largely 
in analytical-deductive ways.

On the other hand, Indigenous mathematizing expects a wisdom understand-
ing—thinking, doing, living, and being with a mathematizing process in a holistic 
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way (Aikenhead and Michell 2011). To Indigenous students, their culture’s 
 mathematizing seems richer and makes common sense. Differences in expectations 
between an intellectual and wisdom tradition of understanding creates degrees of 
alienation and marginalization for most, but not all, Indigenous students entering 
mathematics classrooms. This worldview-based clash also exists to varying degrees 
for many non-Indigenous students (Aikenhead 2017a, section 9.3; Nasir et  al. 
2008), depending on how closely a student’s worldview harmonizes with a Platonist- 
like worldview.

Different worldviews explain differences between cultures; such as between an 
Indigenous student’s home culture and the culture of school mathematics with its 
Western or Euro-American cultural features (Aikenhead 2017a, b; Ernest 1988; 
Russell and Chernoff 2013). These features include, for example, an epistemology 
of consistency, an ontology that embraces Cartesian duality, and an axiology of 
objectivity; as well as Skovsmose’s (2016) mathematics in action.

Ernest (1988) replaced a Platonist belief with a cultural belief by hybridizing the 
formal and informal discourse dichotomy into one category, a Euro-American 
school mathematics (Aikenhead 2017a, section 4.2). He characterized mathematics 
“as a dynamically organized structure, located in a social and cultural context” for 
problem solving; and a “continually expanding field of human creation and inven-
tion” (as cited in Aikenhead 2017a, p. 26).

 The Political-Social Context of Reconciliation

The crucial importance of diminishing Indigenous students’ cultural clashes with 
Platonist school mathematics becomes evident in Canada’s twenty-first century era 
of reconciliation, which emerged in direct response to Indigenous people having 
endured colonial genocide (Woolford et al. 2014). Colonial genocide took the form 
of marginalization, violence, engineered starvation, cultural erosion, and unrelent-
ing racism (Daschuk 2013). It continues today as neo-colonialism causing 
Indigenous people to suffer degrees of deprivation in education, social assistance, 
housing, health care, employment, and criminal justice. This is the context of teach-
ing mathematics in today’s Canadian classrooms that include Indigenous students.

One example of neo-colonialism is hearing a mathematics teacher complain, 
“The [Indigenous] students who come to our school have serious gaps in their edu-
cation” (FNESC 2011, p. 29). By framing the issue as a lack of background knowl-
edge, teachers implicitly fault the students. What actually happened, however, is 
Canada’s colonization forced an “educational debt” on Indigenous students and 
their families (Bang and Medin 2010, p. 1023). It is this debt that the teacher is actu-
ally complaining about; a debt not caused by students. Teachers are expected to help 
pay it off through teaching mathematics in an anti-discriminatory way, such as 
teaching according to a cultural understanding of the subject, which contextualizes 
mathematics in both Canadian mainstream culture and local Indigenous cultures. 
The quoted teacher’s deficit model of teaching disregarded the asset model: “being 
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open and accepting of students’ worldviews and experiences … teachers can tap 
into the holistic and experiential resources of students and treat these resources as 
assets for academic success” (Aikenhead and Michell 2011, p. 142). What began as 
a teacher’s “objective” assessment of Indigenous students’ background knowledge 
has turned out to be an ethical judgement over a teacher’s responsibilities towards 
Indigenous students. Similarly, what is considered to be an objective screening pro-
cess of high school students becomes a discriminatory act against one of the three 
founding nations of Canada; the one that originally taught the other two how to 
survive. Such discrimination is systemic racism to be sure (Alberta Education 
2006).

What went unnoticed by the complaining teacher is the fact that the Platonist 
strategy to define a mathematics curriculum solely as formal mathematics discourse 
and to suppress its informal discourse, seriously increased the culture clash for 
Indigenous students; thus lowering graduation rates. A Platonist curriculum and 
Canadian residential schools have similar effects on high school graduation rates; 
albeit different degrees of racism, but systemic racism nonetheless.

Residential schools were a centre piece of colonial genocide: kidnapping chil-
dren for long periods of time (TRC 2016). The Federal Government’s policy to kill 
the Indian and save the child was severely enacted by church-run schools, from 
about 1834–1996. Thousands died. Those who did survive to reach high school 
were usually offered manual labour type of courses: a decision that prevented stu-
dents from graduating from high school.

Taking responsibility to alter a deficit teaching approach to an asset approach is 
one way for educators to engage in reconciliation (TRC 2016). Another way is for a 
Ministry of Education to transform a nineteenth century Platonist curriculum into a 
twenty-first century curriculum based on a cultural belief about school mathemat-
ics. The transformation amounts to a shift from a narrow intellectual understanding 
to a broader wisdom understanding of school mathematics as cultural practices.

 Implications of a Culture-Based Mathematics

Since the 1980s, research and development (R&D) projects have successfully 
explored ways to mitigate culture clashes between Indigenous students’ home cul-
ture and the culture of Platonist curricula and conventional classrooms. Two types 
of R&D programs are generally evident in the literature: those drawing upon 
Indigenous mathematizing (e.g., ethnomathematics), and those being fully cross- 
cultural (illustrated below). Aikenhead (2017a, section 8) describes and critiques 10 
such projects, most of which represent the first type of R&D project.

The first type investigates, on occasion, Platonist school content contextualized 
in some Indigenous mathematizing. When this type of instruction takes place, 
something unexpected occurs consistently. Not only do Indigenous students’ math-
ematics scores rise dramatically (e.g., Lipka and Adams 2004; U.S.  Congress 
HRSECESE 2008), but non-Indigenous students’ average achievement increases 
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noticeably (e.g., Furuto 2014; Nelson-Barber and Lipka 2008; Richards et al. 2008; 
Rickard 2005). Such research studies expose serious shortcomings in conventional 
school mathematics. Where are the research studies supporting Platonist mathemat-
ics? Is tradition a legitimate rationale, in light of this evidence-based practice?

Teaching materials must be developed to support teachers. This is accomplished 
within a framework of respect by collaborating with Indigenous Elders, knowledge 
holders, teachers, and community members; illustrated by Aikenhead (2017a, sec-
tions 6.1 & 8). Indigenous artifacts or processes are usually chosen so that mathe-
matics educators can superimpose a Platonist concept or image onto the artifact or 
process, and then teach it in a mathematics lesson. A detailed language-laden cogni-
tive model for this transformation is explained by Aikenhead (2017a, sections 4.4 & 
6.3) in terms of a sequence of steps: superimposition, deconstruction and recon-
struction. Student interest and engagement is heightened by using concrete 
Indigenous examples in mathematics classes. But some significant culture clashes 
still remain (Aikenhead 2017a, section 9.3). A more extensive transformation of 
school mathematics is required.

The second type of R&D project adds to the first type by changing Platonist 
school mathematics into culture-based school mathematics—Euro-American 
school mathematics. Curriculum content is drawn from mainstream Canadian cul-
tural artifacts and processes having an analogic meaning in Platonist mathematics. 
In this context the Platonist content is taught to students. Some innovative teachers 
already do this to some extent. But there is more to add.

Some mathematics lessons need to include what Platonists once concealed: 
informal mathematical discourse; that is, certain ideologies, values, and presupposi-
tions embedded in the culture of Euro-American mathematics and how it is used in 
political-social contexts (Aikenhead 2017a, sections 4.2.1 & 4.5; Skovsmose 2016). 
On an age-appropriate basis, teachers will make explicit this cultural nature of 
Platonist mathematics. Some peripheral concepts will be selected from a triad of 
sources: Platonist mathematics, mainstream society, and Indigenous 
mathematizing.

In short, Euro-American mathematics differs from, but coexists with, other 
culture- based mathematical knowledge systems (Bishop 1988). This means that 
“cross-cultural Euro-American mathematics” (Aikenhead 2017a, p. 42, emphasis 
added) will be an amalgam of formal (Platonist) and informal (cultural) mathemati-
cal discourses, plus the intermittent inclusion, to a non-tokenistic extent, of 
Indigenous mathematizing (the first type of R&D project). This combination effec-
tively diminishes most culture clashes between Indigenous students’ cultural self- 
identities and the culture of school mathematics—Euro-American mathematics. 
The triad combination (listed just above) illustrates that different cultures have 
unique ways of inventing a symbolic technology in order to build a relationship 
between people and their political, social, economic and physical environments.

At the same time, a twenty-first century curriculum needs to be purged of non- 
essential Platonist content (Aikenhead 2017a, b, sections 2.4 & 10.2). “Most sec-
ondary students” experience degrees of dissonance with the worldview endemic to 
a Platonist belief (Aikenhead and Elliott 2010, pp. 334–335). Mukhopadhyay and 
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Greer (2012) challenge the “supremacist position maintained by many  mathematician 
educators who regard abstract mathematics as the crowning achievement of the 
human intellect, and school mathematics as the transmission of its products” 
(p. 860). Criteria for choosing curriculum content must focus on “crucial concepts” 
(Jorgensen 2016) that answer the perennial questions, “Why do we need to know 
this?”, “When will I ever use this?” Political promises about a nation’s competitive 
edge in globalized markets, or about strengthening students’ critical thinking, do 
not stand up to scrutiny (Aikenhead 2017a, b).

For the “24 percent” of high school students living in OECD (Organisation for 
Economic Co-operation and Development) countries who anticipate a future in a 
science-related occupation (OECD 2016, p.  113), a highly challenging pre- 
professional, pre-calculus, culture-based pathway can be designed with a greater 
emphasis on need-to-know Platonist content, compared to a full culture-based math-
ematics curriculum for the 76% majority of students. A one-size-fits-all conven-
tional curriculum does not represent twenty-first century realities (Russell 2016). 
Most students respond by “playing Fatima’s rules” (Aikenhead 2006, p. 28) to make 
it appear as if meaningful learning has occurred, when it has not; only credentials 
have been acquired.

 Implications for Teachers

Cross-cultural school mathematics involves modifying instruction. In the spirit of 
reconciliation, teachers and students will move back and forth between the culture 
of Euro-American school mathematics (i.e., the amalgam of Platonist content and 
its cultural features that include its actions in society) and the culture of a local 
Indigenous community; with an emphasis on the former. Cross-cultural Euro- 
American mathematics is implemented within a culturally responsive or place- 
based pedagogy (Aikenhead et al. 2014; Michell et al. 2008, respectively). Teachers 
cannot effectively begin, however, without experiencing a cultural immersion (at 
least 2 days to begin with) designed and run by Indigenous Elders and/or knowledge 
holders (Aikenhead et al. 2014). Academic workshops are simply ineffective.

Professional development must also include readings about the twenty-first cen-
tury cultural understanding of the nature of mathematics, followed by self-reflection 
and discussions within teacher networks; all dedicated to reversing the nineteenth 
century Platonist indoctrination of students, teachers, and the general public. In 
some cases, strategies used in cult deprogramming should not be ignored because 
some teachers’ professional identities and belief systems are being challenged. 
Patient, supportive, ego-centred approaches are needed. This takes time.

Teachers’ transformation is a life-long journey along a path of reconciliation. 
The journey should begin with small innovations, and progress should be measured 
in years, not months. Progress is accelerated when teachers are mindful of students’ 
diverse recurrent learning strengths (Aikenhead et  al. 2014). Examples include: 
visual more than verbal, oral more than written, and reflective more than 
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 trial-and- error. An acquaintance with features of the local Indigenous language is 
equally beneficial (Aikenhead 2017a, section 6.4).

 Conclusion

“There are powerful forces at work keeping cultural domination and institutional 
racism in place, for it serves the interests of capital and the politically powerful” 
(Ernest 1991, p. 268). By suppressing the cultural nature of school mathematics, 
and by dismissing Indigenous mathematizing as irrelevant, a Platonist belief about 
school mathematics works against any agenda to decolonize its curriculum. A 
Platonist form of racism is simply anti-reconciliation.

Because the composition of today’s high school mathematics was mainly estab-
lished by a narrow nineteenth century definition of the subject, it is reasonable to 
redefine the subject today in an evidence-based, inclusive, transparent way; and in 
terms of a twenty-first century cultural understanding of Euro-American mathemat-
ics. This redefinition will renew a mathematics curriculum from only offering intel-
lectual understandings, to promoting wisdom understandings.

Many Indigenous students respond positively to cross-cultural, Euro-American 
school mathematics, judged by their dramatically increased achievement. Most 
non-Indigenous students’ achievement profits as well. The result is a win-win situ-
ation for all students.
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Live(d) Topographies: The Emergent 
and Dynamical Nature of Ideas 
in Secondary Mathematics Classes

Jennifer S. Thom and Florence Glanfield

Abstract In this chapter, we consider the images, meanings, and metaphors pro-
voked by the phrase in the title of the opening section of the book: The Changing 
Landscape. Inspired by our Indigenous and ecological sensibilities, we develop new 
images, meanings, and metaphors that illuminate the collective nature of secondary 
mathematics classes. We explore the Pirie-Kieren (1989) model in terms of how it 
relates to the collective level of the class. Using a video based excerpt from a sec-
ondary mathematics class, we map the observed ideas onto the Pirie-Kieren model 
as they emerge and evolve, moment to moment. The results reveal a dynamic ide-
ational topography of the classroom. Through illustrative exemplars and the analy-
ses that accompany these, we reflect on how paying attention to the ideas of the 
class as live(d) topographies occasion new questions for further investigation into 
mathematics classroom collectives.

Keywords Ideas · Ideational activity · Emergence · Dynamics · Ever-changing 
landscape · Live(d) topographies · Pirie-Kieren model · Collective · Secondary 
mathematics classroom

 Introduction

When we, Florence and Jennifer, set to work on the chapter together, we were sur-
prised to discover that our work began immediately upon reading the section title 
for the book: The changing landscape of teaching and learning mathematics. Drawn 
to the words “landscape” and “changing”, we wondered how these terms might help 
us to better understand a mathematics classroom. In this chapter, we examine the 
words “landscape” and “changing” first as concepts and second as metaphors. 
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Following this, we describe and propose how the emergence and evolution of math-
ematical ideas in a class can be imagined and mapped as a live(d) topography.

Given our Indigenous and ecological sensibilities, we acknowledge with grati-
tude, a mathematics education research collective to which we belong. The work of 
this collective entails the modelling of classroom dynamics (McGarvey et al. 2015). 
Our thinking for this chapter was inspired by this research.

 (Re)Conceptualizing Meanings of Landscape and Change

Focusing first on the concept of landscape, we considered its everyday meaning; 
that is, “all the visible features of an area of land” (Landscape 2017). As we dis-
cussed possible ways in which the definition could be applied to mathematics teach-
ing and learning, we moved into another conversation about the places where we 
grew up. The following descriptions were shared:

Florence was born and raised in the boreal forest of Northeastern Alberta. There 
are muskeg; a variety of trees such as spindly black spruce, jack pine, aspen, white 
spruce and willows; different kinds of berries such as cranberry, blueberry, and sas-
katoon; and many species of animals and birds. The land, once home only to 
Indigenous peoples such as the Cree, Dené, and Métis, is now home to settlers of all 
descents. As well, beneath the boreal forest lie vast deposits of oil sands and minerals. 
Today, there are many natural-resource development plots in this region of Alberta.

Jennifer was born, raised, and lives on Vancouver Island, British Columbia. 
Located at the Southwestern edge of Canada, it is the largest North American island 
in the Pacific Ocean. The mountains make up the backbone of the island while the 
network of rivers and lakes flow through each region. Salal, huckleberry, Garry 
Oak, Arbutus, and ancient forests of Western Red Cedar and Douglas Fir grow here. 
Trout, black bear, cougar, deer, elk, wolf and marmot are just some of the animals. 
Today, there are people from many diverse cultures. However, historically, 
Vancouver Island was home to 53 Indigenous cultural groups, European settlers, 
and the Chinese. The influence of these cultures is still seen in the land use, food, 
traditions, buildings, educational system, and arts.

It is interesting that while we come from the same Canadian homeland, our par-
ticular landscapes are vastly different, each characteristically unique to its location. 
Even more compelling, is how “all the visible features” of each region—that is, the 
land, water, plants, animals, weather systems and cultures—are not so much ‘parts’ 
that make up each landscape as they are the dynamic and collective expression of 
the interconnected patterns and recursive relations that give rise to and sustain it 
(Bateson 1972). For example, think about how the air, wind, and precipitation con-
tinuously shapes the visible features of the landscape of Northeastern Alberta com-
pared to the landscape of Vancouver Island. Now consider how these ever-changing 
features of each region affect the way that the air currents flow or the direction from 
which the wind blows, or even the type of precipitation that falls from the sky. No 
feature of a landscape can be reduced to a single entity or separated from the whole.
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Another consequence of expanding our focus beyond the visible features of land-
scapes involves recognition of how landscapes are constantly coemerging, coevolv-
ing, and cohering. Thus, by not assuming features to be only ‘things’ but also 
investigating how such aspects of landscapes are in fact, “distinctive features of a 
sphere of activity” (Landscape 2017) occasions potential for new insight. A land-
scape then as that which co-emerges and co-evolves is not some thing that is changed 
or unchanged. Instead, as continuous interrelationships, a landscape is inherently 
collective, constant, and recursive events of be(com)ing. Any and all landscapes are 
(ever)changing.

 The Classroom as Landscape and Mathematical Ideas 
as a Topographical Feature

Consistent with current research that conceptualizes the classroom as a learning 
system and metaphorizes it as a living body (e.g., McGarvey et al. 2017), we con-
ceive the classroom as a changing landscape. As such, mathematics teaching and 
learning are not events attributable to individual (human) agents. Rather, as distrib-
uted activity inherent in complex systems, we understand mathematics teaching and 
learning to be distinctive features of activity that give rise to the classroom as land-
scape, thus, the classroom as a collective functions as a teaching and learning eco-
system in and of itself (Davis and Simmt 2003).

By comprehending the classroom as an ever-changing landscape, it is possible to 
identify other dynamic aspects within it. For example, the emergence and activity of 
mathematical ideas is one feature of the classroom that interests us greatly. Focusing 
on this particular aspect, we are curious what insights might arise when we move 
deeper and metaphorically conceptualize mathematical ideas and the dynamics of 
those ideas as live(d) topographies.

The term, topography, originates from the Greek word topos meaning “place” 
and graphein meaning “to write.” Put together, topography literally translates as 
“the writing of place.” Traditional topographical studies involve the identification of 
a region’s surface features such as mountains and hills, slopes, bodies of water, and 
conditions of the terrain. Such studies serve to represent specific locations and pro-
vide environmental information for making decisions about land use (Christopherson 
2002). However, in other fields of social sciences research, topographical studies 
examine human experiences in place. Here, the notion of place means more than 
material features and includes the complex and multiple ways that human knowl-
edge and interactions shape the environment and vice versa (Walter 1988).

In this chapter, we take mathematical ideas to be a topographical feature of the 
classroom landscape. We consider ideas to be a critical aspect that gives rise to and 
thus, distinguishes the sociomaterial terrain (Katz 2001) of a classroom. Moreover, 
as an emergent and dynamic feature of the classroom, mathematical ideas contrib-
ute to creating the mathematics class as an “interrelated place full of its own diver-
sity, relations, multiplicity, history, ancestry and character” (Jardine 2003, para. 3).
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In the next section, we review the Pirie-Kieren model and theory. Following this, 
we demonstrate how we use the model to map the mathematical ideas of an algebra 
class. We then examine the dynamics of the ideas as they emerge and evolve as a 
live(d) ideational topography. In this manner, our work complements other concur-
rent studies within our research collective that inquire into the specific mathematics 
content and ideational network(s) of a classroom (e.g., McGarvey et al. 2015).

 The Pirie-Kieren Model as a Map for Live(d) Ideational 
Topographies

To map a live(d) topography of mathematical ideas within the landscape of a class-
room, we use the Pirie-Kieren model as our map. In 1989, Susan Pirie and Tom 
Kieren introduced the Pirie-Kieren model of a dynamical theory for the growth of 
mathematical understanding (see Fig.  1). The authors described mathematical 
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Formalising

Observing

Structuring
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Fig. 1 The Pirie-Kieren model of a dynamical theory of the growth of mathematical 
understanding
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understanding to be non-hierarchical and “leveled but non-linear. It is a recursive 
phenomenon and recursion is seen to occur when thinking moves between levels” 
(1989, p.  8). Similarly, we see these qualities of mathematical understanding as 
characteristic of the ever-changing nature of ideas in a mathematics classroom. 
Thom and Pirie (2006) also pointed out that sophistication of understanding is not 
simply having a command of formal conceptualizations but also demonstrating flex-
ibility to move back and forth through informal and formal ways of making sense of 
the mathematics.

The Pirie-Kieren model consists of eight realms of understanding represented by 
nested but unbounded circles. Each realm characterises a particular quality of 
understanding, while at the same time, is fractal-like, self-similar to, and compatible 
with the other seven realms. Moving from the centre out, they are as follows: 
Primitive Knowing, Image Making, Image Having, Property Noticing, Formalising, 
Observing, Structuring, and Inventising.

Primitive Knowing is the source from which all new understanding grows and 
encompasses all knowledge—right, wrong or otherwise, that the learner or group 
brings to bear to some specific mathematics. Image Making is the action of generat-
ing distinctions about previous knowing in order to create new meaning. Importantly, 
“image” includes physical, verbal and mental forms of acting and expressing.

Image Having is putting an idea into action without needing to (re)create any of 
its conceptual meaning. Property Noticing involves making distinctions, seeing 
connections among images, and predicting why the qualities, effects or relation-
ships within the given mathematics exist.

Formalising is the generation of a method or common quality from the distin-
guished properties that no longer depends on the specific images associated with it. 
Observing is the reflection on, and the coordination of, formal activity.

Structuring involves explaining or theorizing about formal observations in a logi-
cal manner. Finally, Inventising is when there is a breaking away from previous 
meaning(s), enabling new queries and the possibility for completely different con-
cepts to emerge.

Two other features in the Pirie-Kieren model are folding back and “don’t need” 
boundaries. Folding back occurs when an event at an outer level prompts the need 
to move inward and work more informally to ‘thicken’ understanding before pro-
ceeding on with the mathematics. Folding back is not a ‘redoing’ of what has 
already been; it is reintegrating and making further sense of earlier understanding. 
“Don’t need” boundaries are indicated by the three thicker rings in the model in 
Fig.  1. Each of the rings is considered a “don’t need” boundary because once 
 understanding crosses one of these boundaries, it becomes matter of fact hence, any 
inner meanings that gave rise to the outer understanding are assumed to be known 
and are no longer necessary for mathematical activity to continue.

While much of the research that uses the Pirie-Kieren model focuses on assess-
ing the understanding of the individual, we like other researchers, see potential in 
the model for exploring collective phenomena of a mathematics classroom (Davis 
and Simmt 2003; Kieren and Simmt 2002; Martin and Towers 2003, 2015; Pirie and 
Kieren 1994). We are interested in how the model might be used to observe and 
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interpret the ideational activity within a mathematics classroom. By paying atten-
tion to the emergence and dynamics of ideas, we are keen to find out how new 
insight—theoretical and practical—might inform mathematics teaching and learn-
ing in the classroom.

 An Illustrative Example of a Live(d) Ideational Topography

In this section, we analyze a 10-min video episode and corresponding transcripts from 
a secondary algebra lesson. The episode, Bike and Truck (NCTM 2014), involves a 
collective (whole class) conversation that focuses on two graphs that are on the same 
grid. The first graph, Graph 1, features a vehicle that moves at a constant rate over 
time for a fixed distance. The second graph, Graph 2, represents a vehicle that does 
not move at a constant rate over the same time and distance as the vehicle in Graph 1.

As we studied the video and transcripts of the lesson, we examined the gestures, 
utterances, explanations, and intonations of the class for the ideas made available to 
the collective. We then used the Pirie-Kieren model to map the ideas as well as their 
activity (see Figs. 2, 3, 4, 5 and 6). The resulting map, when observed in real time, 
renders an ever-evolving ideational topography. As such, the map makes visible the 
levels at which ideas emerged and the ways in which these are taken up or not taken 
up by the collective.

Fig. 2 Ideational topography of the mathematics classroom after 50 s of the episode

Fig. 3 Ideational topography of the mathematics classroom after 2.5 min of the episode
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The first idea (see “1” in Fig. 2) emerges in the Image Having realm of the Pirie- 
Kieren model. The idea appears in the form of a conjecture about the movement of 
the vehicle represented in Graph 2. At the level of Image Having, there is no engage-
ment in (re)making sense of the idea. Here, there is reference to the horizontal por-
tion of Graph 2 and the statement that the vehicle is moving along in a straight path 
during this period of time.

As seen in Fig. 3, Idea 1 persists as the conjecture is discussed. When specific 
aspects about the distance, time, and rate of the vehicle movement in Graph 2 arise 

Fig. 4 Ideational topography of the mathematics classroom after 5.0 min of the episode

Fig. 5 Ideational topography of the mathematics classroom after 7.5 min of the episode

Fig. 6 Ideational topography of the mathematics classroom after 10 min of the episode
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in the discussion, we observe Idea 1 move to Property Noticing. Two new ideas also 
appear during this time—one about constant rate (see “2” in Fig. 3) and the other 
about the vehicle stopping (see “3” in Fig. 3). Both emerge in Image Having early 
on in the discussion. Interestingly, neither idea is taken up any further during this 
period.

After 5 min, Idea 3 persists as it folds back to Image Making, relating the stop-
ping of the vehicle to a flat surface. We interpret this event to signify the making of 
new meaning about Idea 3 in relation to Graph 2.

Further, during the 2.5 min of the episode, Idea 4 (see “4” in Fig. 4) emerges at 
Property Noticing. This new idea involves the comparison of the two graphs to 
determine which vehicle reached a particular distance first. We observe Idea 4 to 
continue to persist within Property Noticing. As the idea persists, terms such as 
domain and range are brought forth. These more formal terms move Idea 4 closer to 
but not across the “don’t need” boundary that lies between Property Noticing and 
Formalising.

Two new ideas appear after 7.5 min of the episode (see “5” and “6” in Fig. 5). 
Idea 5 focuses on determining over what period of time the vehicle represented by 
Graph 2 drove fastest. This idea first arose at Property Noticing. However, as it 
becomes more analytic in form, Idea 5 like Idea 4 approaches the “don’t need” 
boundary between Property Noticing and Formalising. Idea 5 then moves to 
Formalising when an explanation is offered for why a particular portion of Graph 2 
was the steepest. Idea 5 continues but does not remain in Formalising; it folds back 
to Property Noticing and then further to Image Having as the class continues to 
focus on the reading of Graph 2. The idea then returns to Property Noticing when an 
explanation becomes necessary. Similar to Idea 5, Idea 6 emerges in Property 
Noticing. As an explanation, Idea 6 shifts attention from the vehicle represented in 
Graph 2 to the comparison of the vehicles represented in Graphs 1 and 2.

At the end of the 10-min episode, Idea 6 persists as the vehicles represented in 
Graphs 1 and 2 are compared. Additionally, we observe the suggestion of an equa-
tion as the seventh and final idea that appears as Formalising (see “7” in Fig. 6).

 Reflections and New Questions

Papert (1980) argued that the richness of the environment, or in our words, the land-
scape of a mathematics classroom, included the powerful ideas of children. The 
work we have shared in this chapter attempts to make visible the ideational activity 
within the collective instructional practices, mathematical tasks, and teacher- student 
engagements of a classroom. Dynamic in real time, the resulting live(d) topography 
“simultaneously turns on, reveals, and specifies the [ideational] relations” (Katz 
2001, pp. 720–721) that distinguish this secondary mathematics classroom as an 
ever-changing landscape.

As a result, the observations we made by paying attention to the activity of the 
ideas of this class occasion new questions for further investigation into mathematics 
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classroom collectives. For example: Why is it that certain ideas seem to persist 
while other ideas appear and then get left behind? Why do some ideas arise and then 
become latent only to later be taken up again? What kinds of constraints enable or 
make difficult, the movement of an idea across different realms of the Pirie-Kieren 
model? In what ways do the “don’t need” boundaries and folding back shape the 
dynamical activity of a class’ ideas? And, how might the mapping of ideas inform 
researchers, teachers and students themselves about the richness or sophistication of 
a particular mathematical idea? Framed within the Pirie-Kieren model, we see the 
study and mapping of live(d) topographies as providing generative theoretical and 
metaphorical grounds for further inquiry into how the emergence and dynamics of 
ideas are shaping as well as being shaped by the local pedagogical terrain of the 
mathematics classroom.
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Drawing Upon Indigenous Knowledges 
to Transform the Secondary Mathematics 
Classroom

Lisa Lunney Borden

Abstract In our current Canadian context, there is a considerable push to address 
the needs of Indigenous learners in mathematics, yet many attempts to do so by 
textbook publishers often result in trivializing of Indigenous knowledge. The frame-
work shared in this article, demonstrates ways to draw upon Indigenous ways of 
knowing, being and doing in four key areas: (1) The need to learn from Mi’kmaw 
language, in particular the verb-based nature of Indigenous languages; (2) The 
importance of attending to value differences between Mi’kmaw concepts of math-
ematics and school-based mathematics, in particular ideas of ‘enough’, number as 
play, and the importance of space; (3) The importance of attending to ways of learn-
ing and knowing, approaches rooted in spatial reasoning; and (4) The significance 
of making ethnomathematical connections for students; in particular lessons learned 
from the Show Me Your Math program. Alongside the description of the framework, 
pedagogical suggestions are presented that demonstrate how these ideas might be 
enacted in practice. This work stands as an example of how educators and commu-
nity members can work together relationally to decolonize mathematics by drawing 
upon community ways of knowing, being and doing.

Keywords Mathematics education · Indigenous education · Mi’kmaq · 
Verbification · Verbifying · Spatial reasoning · Decolonizing education · 
Ethnomathematics

I taught secondary mathematics for 10 years in We’koqma’q First Nation and dur-
ing that time I learned a great deal from my students about how I needed to shift my 
pedagogical practices to match the ways of knowing that worked for them. I was not 
a perfect teacher, many things went not so well, but I remained open to questioning 
my practices and constantly working to do better; to be a better teacher for my 
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students. Over the years I became a mathematics leader for the Mi’kmaw1 schools 
in Nova Scotia that are part of Mi’kmaw Kina’matnewey2 (MK). I shared what I 
was learning from my students and my own classroom experiences with other teach-
ers within the MK organization and in public schools. These experiences informed 
my decision to take a leave from my teaching job to pursue doctoral studies.

When I first began my doctoral program, I thought it might be possible to develop 
lesson ideas and modules that would be living examples of how to transform math-
ematics education for Mi’kmaw students. I had visions of creating resources similar 
to those that had been developed amongst the Yup’ik for the Math in a Cultural 
Context program (University of Alaska Fairbanks n.d.). I quickly realized that this 
could not be the first step. It was apparent to me that before I could begin working 
with participants to develop Mi’kmaw mathematics materials, I needed to have a 
greater understanding of where the conflicts were arising for Mi’kmaw students.

 The Context

For nearly 50 years, Indigenous communities in Canada have been arguing for local 
control of education and meaningful inclusion of Indigenous ways of knowing, 
being, and doing in the curriculum (Assembly of First Nations 2010). Emerging 
from these early calls for local control, numerous scholars have explored how math-
ematics and science might be taught in Indigenous contexts (Cajete 1999; Cole 
1998; MacIvor 1995), and have focused attention on the tensions between Indigenous 
and non-Indigenous ways of knowing, being, and doing (Aikenhead 1996), the ben-
efits of Indigenous languages in schools (Battiste 1987), and the emergence of 
teaching and learning from local contexts, practices, and land (Basso 1996; Garrison 
1995). With this focus on the needs of Indigenous learners, many provincial/territo-
rial ministries developed mandates to integrate Indigenous perspectives in K-12 
curricula (e.g., Alberta Learning 2002; Ontario Ministry of Education 2007). With 
the release of the Truth and Reconciliation Report (2015), these mandates have 
become even more of a priority as ministries attempt to respond to the calls to 
action: particularly a need to develop culturally appropriate curricula. While many 
schools seem to have ideas of how to do this in literacy, social studies, and even sci-
ence, how to best do this in mathematics still seems elusive for many.

In a recent synthesis of knowledge pertaining to Indigenous mathematics and 
science education in Canada, a clear focus on the importance of working  relationally 

1 Mi’kmaw is used as an adjective, Mi’kmaq is used as a noun. The traditional territory of the 
Mi’kmaq, known as Mi’kma’ki, contains all of Nova Scotia, Prince Edward Island, parts of New 
Brunswick, Quebec in the Gaspé Region, and Maine. There are also many Mi’kmaw people living 
in Newfoundland and Labrador.
2 Mi’kmaw Kina’matnewey is a collective of 12 Mi’kmaw communities in Nova Scotia who are 
part of a jurisdictional agreement for education with the federal government. MK communities 
boast an 88% graduation rate, nearly double the national average for Aboriginal children in 
Canada. For more on MK see http://kinu.ca/
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with communities emerged as a significant theme in the work reviewed (Wiseman 
et al. 2017). The report emphasised the importance of honouring community knowl-
edge as a starting point for learning and allowing mathematics and science to emerge 
in meaningful ways. However, as I flip through the pages of ministry approved 
textbooks for teaching high school mathematics, I see attempts to “infuse” 
Indigenous content that, sadly, are far removed from this vision. Buying a Métis 
flag, contrived word problems about making jingle dresses, or linear systems about 
building and selling Inukshuks (Davis et al. 2010) are merely an attempt to throw a 
coat of Indigenous paint on a pretty standard textbook question, and a rather poor 
attempt at that. These types of tasks show a lack of respect for Indigenous ways of 
knowing, being and doing and tend to further trivialize and marginalize Indigenous 
knowledges. My goal in this chapter is provide insight into how we can honour and 
learn from Indigenous knowledges to transform how we teach mathematics in the 
secondary classroom.

For this chapter I will draw upon a framework model for transforming mathemat-
ics education for Mi’kmaw students that I developed during my doctoral work 
(Lunney Borden 2010). While the model was developed while working with teach-
ers and elders in two Mi’kmaw elementary schools, the themes that emerged have 
as much to say about secondary teaching as they do elementary teaching. I will draw 
upon my own experience as a secondary mathematics teacher to show what the 
implications of the model might look like in a secondary mathematics classroom.

 The Framework

Using a process of mawikinutimatimk meaning coming together to learn together 
(e.g., Lunney Borden and Wagner 2013), I worked with teachers and elders in two 
MK community schools over a period of 1 year. We discussed the issues and com-
plexities that arise in mathematics teaching and learning in MK schools. Through 
these conversations, four key areas for transformation emerged as themes: (1) the 
need to learn from Mi’kmaw language, (2) the importance of attending to value dif-
ferences between Mi’kmaw concepts of mathematics and school-based mathemat-
ics, (3) the importance of attending to ways of learning and knowing, and (4) the 
significance of making ethnomathematical connections for students. At the heart of 
the model is meaningful personal connections for students (see Fig. 1). The various 
aspects of the framework are interconnected and likely the framework is incom-
plete; however, the ideas provide insights for beginning conversations with com-
munity members in any given context.

In my work, language seemed to be the dominant starting point and all other 
things could be linked back to language. Examining the Indigenous language of a 
given community context would provide a starting place for transforming mathe-
matics teaching and learning. As one participant shared, even the students who 
come to school speaking English are not necessarily thinking in English ways, 
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rather they are using L’nui’ta’simk (Our peoples ways of thinking) which are embed-
ded in Mi’kmaq language.

In working with local Indigenous communities, understanding how Indigenous 
languages are structured and used within the community can be highly beneficial to 
teachers of mathematics, recognizing of course that some communities do not have 
as much access to language or as many speakers as others.

In my own school, we often had conversations about language and enjoyed dis-
cussion about how to describe mathematics and science terms in Mi’kmaq. One 
colleague and elder, with deep language knowledge seemed to find great joy in these 
discussions and, as such, was always willing to entertain my inquiries. I learned a 
lot by asking questions such as “What is the word for…?” or “Is there a word 
for…?” to better understand how mathematical concepts are described in the lan-
guage (e.g., Lunney Borden 2012). Gathering words that can be used to describe 
mathematical concepts, provides insight into concepts that may prove to be poten-
tial strengths for building a mathematics program.

Similarly, awareness of mathematical concepts that have no translation in the 
Indigenous language exposes the taken-for-granted assumptions that are often pres-
ent in existing curricula. For example, the word flat is not commonly used in the 
Mi’kmaq language and no simple translation can be made, yet is frequently used in 
mathematics classrooms. In my doctoral work I describe a student who, when asked 
to say something about her cube explained that “It can sit still!” and firmly placed 
in on the floor rather than talking about it having a flat face. The action of sitting still 
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is more consistent with Mi’kmaw language structures than the flatness of the face. 
An elder had said the same thing about the bottom of a basket to me—“It can sit 
still”—when I was asking her for a word for flat and suggested this as a possible 
context in which ‘flat’ might be used.

Perhaps the most important thing I learned from language was that the underly-
ing grammar structures of the Mi’kmaq provided incredible insight into how my 
students were thinking about mathematical concepts. My research has shown that 
the prevalence of nominalisation (turning processes into nouns) in mathematics 
stands in direct contrast to the verb-based ways of thinking inherent in the Mi’kmaw 
language. Indigenous languages in Canada are verb-based and Mi’kmaq, like many 
Indigenous languages, contains a sense of action and motion that is not inherent in 
the static and fixed presentations of school mathematics.

How we speak the world is how we see the world. As Inglis (2004) has shared, 
“The Mi’kmaw language grammatically encodes details concerning how speakers 
experience the world and how a speaker and the person spoken to connect with and 
evidence this experience” (p.  400). Leroy Little Bear (2000) has explained this 
insight into worldview having argued that “language embodies the way a society 
thinks” (p. 78). It was this way of thinking that emerged in the stories told to me and 
the insights shared with me during my doctoral research. As I reflected on my own 
teaching experiences in light of this insight, I began to see how Mi’kmaw ways of 
knowing were evident in how my students talked:

“Here, garbage this!” (Throw this in the garbage.)
“Hey miss camera me!” (Take my picture.)
“On the light!” (Turn the light on.)

Nouns became verbs in these sentences which is consistent with the verb based 
nature of Mi’kmaq. Henderson (2000) has described how Indigenous languages 
such as Mi’kmaq have a verb-rich structure that enables “an active relationship 
between the elements of a particular environment” (p.262). This sense of flux, 
action, motion was apparent in the way my students were also talking about math-
ematics and as a teacher, I began to draw upon a verb-rich approach to discussing 
concepts in class.

One example I like to share is the concept of slope. Slope is defined as the ratio 
of the change in the y-value to the change in the x-value in a linear relation, or rise 
over run. It reflects the steepness and direction of a linear graph. One year I had 
students singing “rise over run” to the tune of Band on the Run; though entertaining, 
it lacked effectiveness. At some point, perhaps out of desperation rather than design, 
I began asking my students questions like “How is the graph changing?” “How do I 
get from one point to the next point on the graph?” “Where does it start?” (Pointing 
to the y-axis as a place from which it goes forward and back.) Suddenly my students 
were having very different discussions about slopes of linear graphs. They could 
explain how the graph moved over and up or over and down. They began to discuss 
how the graph was changing and were able to explain where this “changing” was 
represented in the table of values and the equation. In short, using more verbs, 
focusing more on action and process rather than things became a more appropriate 
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way to teach this concept—and, as it turned out, many concepts. This became a 
process I have described as the verbification of mathematics (Lunney Borden 2011).

Unfortunately, mathematics as taught in schools puts too much emphasis on 
nouns (Schleppegrell 2007). This prevalence of nominalisation (turning processes 
into nouns) in mathematics stands in direct contrast to the verb-based ways of think-
ing inherent in the Mi’kmaw language. Verbifying our discussions in mathematics 
class, focusing on processes and actions rather than things, creates opportunities to 
learn in a way that honours that action and flux of Indigenous ways of knowing. But 
what could verbification look like in the classroom? Let us consider some 
examples.

As I described above, teaching the concept of slope was a moment where I 
shifted my ways of talking about this concept and learned a great deal about what 
my students understood and could explain. The shift in questioning helped students 
to focus on how the graph was being formed, how it was made. This enabled stu-
dents to talk about the graph with a sense of motion—“go over 2 and up 3 and over 
2 and up 3” and so on. As students described how to make the graph, they were 
really describing the rate of change of the graph. Questions like, “what happens if 
we only go over 1?” enabled students to determine the slope of the graph without 
having to talk about the rise or run. The students were then able to connect this rate 
of change to how the table of values was changing and where this value appeared in 
the equation. Soon students were making connections across various representa-
tions of a linear function in a way that focused on how these patterns were being 
formed.

This notion of how graphs are formed or how they are changing can be employed 
in a variety of context involving patterns and functions. As I began to think about the 
process of verbifying my mathematics class, I reflected upon the ways in which I 
taught transformations of quadratic functions. Thinking now about how we ask stu-
dents to describe these functions using vertical and horizontal translations, reflec-
tions, and stretches, it seems almost silly to have so many nouns to describe what is 
basically moving a graph around, flipping it upside down, and making it wider or 
skinnier. This is really about parabolas in motion, yet we nominalize this process 
and turn it into a series of transformations—things. Fortunately, dynamic graphing 
software opens up great possibilities for focusing more on motion. Students can be 
asked to explore what happens to the graph when various changes are made in the 
equation. They can examine graphs in a dynamic way that is consistent with the 
verbifying approach. This is not to say that they will never learn the language of 
transformations, but rather, they will explore concepts and once they figure it out, 
they can name it. Students can go from the informal exploration that is rooted in 
motion, to generalizations about how changing the equation changes the graph, to 
learning that these changes have names. When we figure it out, we name it, just like 
mathematicians do.

Focusing student attention on how things are made or how they are changing, 
brings their thoughts to process and actions. This works with functions and can also 
be used when exploring patterns. A typical question in mathematics class might give 
students a picture or description and ask them to describe the pattern rule, make a 
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table of values showing the input and output, identify the variables, and so on. 
Consider a pattern like the one given in Fig. 2 where a student might be asked to find 
the pattern rule and predict the number of circles in for the 10th, 50th or 100th term.

A more active approach we could take to this question is to invite students to 
build the pattern using concrete materials, and explain how they create the next one. 
This focus on how it can be built brings attention to the act of creating the pattern.

Barton (2008) has argued that

A proper understanding of the link between language and mathematics may be the key to 
finally throwing off the shadow of imperialism and colonisation that continues to haunt 
education for indigenous groups in a modern world of international languages and global 
curricula. (p. 9)

Verbifying mathematics is an approach that draws upon the grammatical structures 
of Indigenous languages, and as such, upon the ways of knowing embedded in those 
languages. In my experience, this approach is not only incredibly helpful in support-
ing Indigenous students, it is actually a much better way to invite all students into a 
space of mathematical reasoning.

 Values

It is also important for educators to think about how mathematical ideas are used 
and valued in the community context. It is important to understand how numerical 
and spatial reasoning emerge in the context of the community culture. I have often 
asked elders questions about how much or how many to determine ways in which 
quantity might be used within the community. These questions were almost always 
met with a response of tepiaq (enough) accompanied by a spatial gesture showing 
the shape of enough. These discussions with elders made evident that spatial reason-
ing was highly valued in the community as it pertained to matters of survival. While 
there are highly complex ways to count in the Mi’kmaw language, with numbers 
being conjugated to fit the various contexts, numerical reasoning was seen as useful 
in play as number does not tell you enough when it came to matters of survival. If 
we consider mathematics to be about examining quantity, space, and relationships 
(Barton 2008) then it becomes important to build a curriculum that values these 

Term 1 Term 2 Term 3 Term 4

Fig. 2 Patterning example
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concepts in a way that is consistent with, rather than in opposition to, the way these 
concepts are valued within the culture.

We have seen in various Show Me Your Math3 projects over the years, how elders 
make use of spatial reasoning in various informal contexts such as baking or making 
baskets. Too often, school mathematics values numerical or quantitative reasoning 
over spatial reasoning and treats number as essential for young children in mathe-
matics. This approach positions many children as incapable in mathematics even 
though they may have strong spatial skills. This closely links to the ways of know-
ing in the model which is described next.

 Ways of Knowing

Language and values also influence the preferred ways of learning in any commu-
nity context. It was evident in this community context that a mathematics program 
should provide children with opportunities to be involved in learning focused on 
apprenticeship with time for mastery, and hands-on engagement with concrete rep-
resentations of mathematical ideas. Furthermore, building from a valuing of spatial 
reasoning, it was recommended that a mathematics program should place visual 
spatial learning approaches on equal footing with the already dominant linear- 
sequential approaches, providing more ways to learn so that more students can 
learn.

Spatial reasoning is an important part of mathematics teaching and learning at all 
levels. I often was mindful of finding ways to help my students to hold mathematics 
in their hands in my secondary mathematics classroom. This often meant finding 
ways to model mathematics with hands on materials such as building patterns with 
linking cubes, using real world experiments to collect data and create functions, or 
rolling cans to model trig functions. Spatial models helped my students to make 
sense of the mathematics they were learning. The area model in particular became 
an important representation for expanding and factoring and supported student 
learning in ways I had not expected. Many students were easily able to expand bino-
mials or factor trinomials using algebra tiles with a focus on area (see Fig. 3).

As I progressed in my own career with the use of these models, my students 
gained more experience with these tools and were able to work flexibly with them. 
The students who had more experience with them were able to easily adapt the 
model to new contexts. One class in particular, when learning how to multiply two 
higher-order functions adapted the area model to support this operation and noted 
the like terms line up along the diagonal (see Fig. 4).

This same class also drew upon the area model to explore ways to rewrite qua-
dratic functions in standard form into transformational form. Without any explicit 
teaching, I invited this class to consider how they might change a function such as 
y  =  x2  +  4x  +  3 into transformational form. I did not expect an answer, rather 

3 See http://showmeyourmath.ca/ for more on this program.
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 provided this as a question to think about over the weekend as we were to begin the 
unit on completing the square the next week. To my surprise, the students took only 
moments to do this. When I asked how they had gotten the answer they drew me an 
area model (see Fig. 5).

Creating opportunities for students to work with spatial models for various math-
ematical concepts, allows these students different ways to engage with ideas. I often 
hear secondary teachers critique the use of concrete models as something not rele-
vant in high school, but I have seen the tremendous benefits of these models for my 
students and cannot emphasize enough how important it is to use these consistently 
across all grades.

 Cultural Connections

In addition to community language, values, and ways of learning being included in 
a mathematics program, it is also essential to make meaningful and non-trivializing 
connections to the community cultural practices. This involves examining how the 

(x + 4)(x + 2) = x2 + 6x + 8 x2 – 3x – 10 = (x + 2) (x - 5)

Fig. 3 Area model example

2x2

(2x2 + 3x – 4)(x2 – 4x + 2) = 2x4 – 5x3 – 12x2 – 10x – 8

2x4 3x3x2 –4x2

–8x3

–8

–12x2 –16x

4x2 6x

+3x –4

–4x

+2

Fig. 4 Example of 
adapting area model for a 
new context
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school-based mathematics can be pulled in (Doolittle 2006) through identifying 
types of reasoning inherent in the community that can help students to make sense 
of the school-based mathematics. It also means creating learning experiences that 
help students see that mathematical reasoning is a part of their everyday lives, and 
has been for generations. The success of Show Me Your Math, a program that invites 
students to be mathematicians who investigate mathematics in their own commu-
nity contexts, suggests that engaging students as researchers and authors of content 
is also an important component of a culturally based mathematics program (e.g., 
Lunney Borden and Wagner 2011; Wagner and Lunney Borden 2012).

We have seen secondary class projects that focused on making hand drums, play-
ing the traditional game of waltes, making canoe paddles, moccasins, shawls, and 
mittens. We have seen students examine the thermodynamics of a sweat lodge and 
the structure of a wi’kwam. Each of these projects began with the cultural practice 
and allowed mathematics to emerge in ways that did not privilege Western knowl-
edge over Indigenous knowledge but rather brought them together in a holistic way. 
Recently, I spoke with a young teacher who had herself done a Show Me Your Math 
project in high school and she explained to me that it was the first time that she saw 
that mathematics could be related to the things she liked to do and was good at. She 
is an excellent basket maker and was able to use her basket making skills to connect 
to mathematics. With Show Me your Math, Indigenous knowledges are allowed to 
take a central role in our mathematics classes without simply imposing western 
mathematics upon cultural artefacts.

y = x2 + 4x + 3

y + 1 = (x + 2)2

Add 1 to both sides to complete the square.

Fig. 5 Model for 
completing the square

L. Lunney Borden
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 Concluding Thoughts

Decolonizing mathematics for Indigenous students requires much more than a few 
superficial questions in textbooks. While learning from cultural practices in a more 
ethnomathematical sense like Show Me Your Math can provide a great space to 
honour Indigenous knowledges, real transformation requires that we move beyond 
such culturally based investigations to consider more deeply how ways of knowing, 
being, and doing can inform our pedagogical practices, choices of tasks, and ways 
of engaging in learning and teaching. The framework I have presented and the con-
nections to practice are offered as examples of what is possible when you work 
relationally with community members and collectively come to understand what 
mathematical reasoning could mean in the context of the community. While some 
of these practices may be appropriate for other contexts, what is most important is 
that teachers and community members work together to determine the unique needs 
of their own context and work with promising practices that address those needs.
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A Teacher’s View – It’s a Path, Not 
a Gap: A Relationship-Based Approach 
to Mathematics and Well-being

Tom Boland and David Tranter

Abstract It might appear, at first, that mathematics education and the development 
of well-being have little in common. However, a deeper look at the developmental 
nature of mathematics education reveals the inextricable connection between the 
two areas. An emphasis on strengthening relationships serves both mathematics 
education and the development of well-being. This chapter introduces the 
relationship- based approach to education, the eight conditions that support student 
success, and provides an example of how a school implemented this approach to 
improve mathematical proficiency, while also strengthening student well-being.

Keywords Relationship-based teaching · Well-being · Third path · Mathematics 
and Well-being · Mathematical achievement

A note about language: Throughout this chapter we have chosen to use “they” and 
“them”, as opposed to she/he or her/him, as a singular, gender-neutral pronoun. This 
is becoming a more common practice and we see it an important to our overall 
theme of true relationship-based teaching.

In 1995, the World Health Organization adopted the Statement on health promot-
ing schools, and called upon all countries to develop schools that implement “poli-
cies and practices that respect an individual’s well-being and dignity, provide 
multiple opportunities for success, and acknowledge good efforts and intentions as 
well as personal achievements” (World Health Organization n.d., para. 5). This idea 
was then taken up in Canada by the Pan-Canadian Joint Consortium for School 
Health (2015), whose mission is “to work collaboratively across the education and 
health systems to support the learning, health and well-being of children and youth 
in school communities” (p. 4). Today, most provincial and territorial governments 
have made student health and well-being a central focus in education. In the 
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 classroom, more teachers are teaching conventional subjects, along with concepts 
such as self-regulation, growth mindset, and positive mental health.

The growing expectation that teachers should explicitly support student well- 
being may seem, at first, to have no obvious connection to mathematics. At first 
blush, the two subjects seem quite separate. Mathematics is a precise discipline 
often associated with stepwise processes in search of clarity. Well-being, on the 
other hand, is highly ambiguous. There are no formulas for happiness, no proce-
dures for fulfillment. However, mathematics and well-being may have more in com-
mon than is first apparent. For example, consider the question, “What personal 
skills or attributes support proficiency in mathematics?” Then consider, “What 
skills or attributes strengthen well-being?” The answer to these two questions over-
lap. Qualities such as focus, persistence, creativity, self-awareness, impulse control, 
a willingness to take risks, and self-confidence are as important to success in math-
ematics, as they are for the development of well-being.

The aim of this chapter is to make the case that teaching mathematics and sup-
porting student well-being are not independent activities. The two areas need not be 
taught separately. It will be argued that mathematics is learned more successfully 
when taught with student well-being in mind, and that well-being is strengthened 
when students experience success in mathematics. The connection between these 
two subjects is clearly not in regard to their content. In fact, a sole emphasis on 
content—the what of teaching—can perpetuate the belief that the two subjects are 
entirely separate. However, when the focus shifts to the how of teaching, the con-
nection is revealed, as well as an approach that can serve to simultaneously improve 
the instruction of both mathematics and the development of well-being. Specifically, 
this approach—the relationship-based approach—emphasizes the central impor-
tance of strengthening relationships, with students, parents and caregivers, as well 
as colleagues and partners in education. This chapter will outline some basic tenets 
of the relationship-based approach and then provide a real-life example of how the 
approach was used by an entire school to improve mathematical proficiency, while 
also purposefully supporting well-being.

 A Relationship-Based Approach to Mathematics

The relationship-based approach has been discussed at length elsewhere (Tranter 
et  al. 2018). In brief, the approach contends that academic achievement and the 
strengthening of well-being should be done simultaneously, and that an understand-
ing of, and emphasis on, the relational nature of teaching and learning will increase 
success in both areas. An important part of the relationship-based approach are the 
eight conditions that are required for students to succeed. These conditions describe 
in greater detail the hierarchical series of needs that create a school-based environ-
ment for all students to thrive. The conditions are:
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 1. Safety: Students need to feel emotionally safe in order to explore and learn. 
Some students express their emotional needs in ways that may not be direct or 
effective, but it is all they know. Educators should respond to student needs, 
rather than react to their behaviours.

 2. Regulation: Students can become dysregulated from too much stress and too 
little support. Dysregulation can come in different forms and often leads to 
greater sensitivity to further stress. Students need regulating relationships and 
supportive environments.

 3. Belonging: Belonging is a feeling that comes from all the moments of connec-
tion with others. Educators make demands on their students, which are usually 
experienced as disconnections. Therefore, educators should connect with their 
students as frequently as possible.

 4. Positivity: Every student has unseen potential. Students are more likely to dis-
cover and express their potential when the educator/student relationship is truly 
positive and consistently supportive. Positive feelings lead to optimal 
functioning.

 5. Engagement: All people tend to act to conserve their limited supply of mental 
effort. Learning is especially depleting. Organize academic tasks in order to 
maximize the use of mental effort, while building in multiple opportunities for 
students to replenish themselves.

 6. Identity: Educators can hold unconscious biases that can advantage some stu-
dents and disadvantage others. Educators should strive to remove unintended 
barriers to education by actively supporting the unique qualities that define the 
identity of each student.

 7. Mastery: Students need regular experiences of success. Educators should strive 
to set tasks that are at the right level of challenge for each student. A feeling of 
accomplishment is essential to help motivate students to continue to learn.

 8. Meaning: Student need to feel fulfilled by the work they do. Education is mean-
ingful when students can see its purpose. When students understand why school 
is important, and experience the activities of school as relevant, they are moti-
vated by the intrinsic value of learning.

It is worth noting that engagement in academic learning is the fifth condition. This 
suggests that students will struggle to learn unless they first feel emotionally safe, 
self-regulated, feel that they belong, and are part of an environment that is positive 
and hopeful. As well, within the context of mathematics, some other key ideas of the 
relationship-based approach are:

Put the relationship first. Mathematics instruction should occur within strong and support-
ive teaching relationships. The emphasis should be first on developing and maintaining the 
relationship, and then on mathematics education. Students who struggle in mathematics 
will be more open about their struggle with a teacher they feel safe with and trust. They may 
be more apt to persevere when they genuinely feel that their teacher understands them and 
believes in them. As well, it is through a genuine teacher-student relationship that the learn-
ing needs of the student can be best identified.
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Understand the student. This goes well beyond simply knowing what the student can 
do, and what they cannot. It also includes understanding the student’s deeper conceptual 
awareness of math, as well as knowing their learning style, their strengths, and study habits. 
It should involve striving to know the student as a person, their temperament, their interests, 
their social circumstances, and personal struggles. All of these factors combine to influence 
how they learn.

Provide responsive and relevant instruction. Supporting the student to learn requires 
teaching that is responsive to their needs. As with other subject areas, it is important to teach 
the student, not the subject. The emphasis should be on what the student requires in order 
to move forward, to progress on their terms; not on rigid expectations that have been pre- 
selected or arbitrarily laid out in a curriculum. Most teachers would likely agree that teach-
ing is more about facilitating learning than simply imparting information. As such, effective 
questioning and prompting, and the ability to differentiate instruction based on individual 
student needs becomes an important aspect of guiding students. Sometimes, one of the 
hardest things for a teacher to do is to simply be patient while a student perseveres through 
a period of appropriate struggle; to not jump in and give away a correct solution to a prob-
lem. To effectively teach means giving students problems that are meaningful to them, ones 
for which they do not have an immediate solution, and then facilitate learning while they 
figure it out. Then, through student-focused questioning, appropriate prompting, and sup-
port as they make generalizations, new concepts are fully acquired and procedures are 
effectively developed.

Student growth requires teacher growth. A thorough assessment should also include a 
self-assessment on the part of the teacher. They should ask themselves what mathematics 
knowledge they may need to acquire in order to better support the student. There is a signifi-
cant difference between knowing mathematics, and knowing mathematics in a deeper and 
more meaningful way that supports teaching. Mathematics education requires an under-
standing such that teachers are able to help students make sense of different concepts and 
ideas. They need to truly appreciate the learning trajectories relevant to different mathemat-
ical topics so that they can move students ahead, or review previous material, in the interest 
of constructing new knowledge and understanding. Therefore, teachers need to embrace 
lifelong learning and commit to constantly improving.

 Case Example

Tom Boland had the opportunity to be part of a school improvement team lead by 
principal Eric Frederickson at McKellar Park Central Public School1 in Thunder 
Bay, Ontario, throughout the 2015/2016 and 2016/2017 school years. The school’s 
student population is roughly 85% Indigenous, many of whom come from families 
that live below the low-income cut-off. Mathematics scores on standardized provin-
cial tests were historically low. The school decided to adopt a relationship-based 
approach to increase mathematical proficiency, as well as student well-being. In 
planning the approach, mathematics education was first reframed as a developmen-
tal “journey”, rather than a problem that required an immediate solution. In this 
way, teachers were freed from the pressure to push their students to make quick 
gains, and instead take more time to reflect on the needs of their students.

1 Explicit permission was granted to use the school name and principal in discussion of the case 
example.
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The initiative began by engaging all staff in professional learning related to 
teaching from a relationship-based approach. The training focused on the intercon-
nection between relationships and learning, as well as recognizing and addressing 
student needs (both learning and emotional needs), along with key strategies such as 
thinking relationally about student behaviour, becoming attuned to students, and 
teaching that is intentional and responsive (Tranter et al. 2018).

Given the importance of caregiver and parent relationships, the next step was to 
increase the sense of connection between the school and the home. Many Indigenous 
parents and caregivers were directly impacted by the residential school system and, 
as such, often had an ambivalent relationship to education. With this in mind, the 
school held regular “family fun nights” where families were invited to participate in 
non-academic, recreational activities and meals.

Staff were provided with mathematics professional learning that focused on con-
tent knowledge as well as on teaching based on “where students were” in their 
learning, as opposed to teaching directly to the grade-based curriculum and offering 
“remedial math programs.” The training required staff to become more familiar with 
researched-based, developmental continuums that highlighted mathematical learn-
ing trajectories, and intervention resources that targeted big mathematical concepts 
rather than grade-based skills and procedures.

The entire school community was also trained on the impact that abuse and 
neglect can have on brain development and how trauma can create challenges for 
students in academic settings. Teaching strategies were introduced that were consid-
ered to be “trauma-sensitive” and greater consideration was given to the impact that 
the physical environment of classrooms and common areas can have on some stu-
dents. As a result, there was a significant effort to instill a sense of calm throughout 
the school. This included the use of warm colours on walls, the elimination of clut-
ter, the softening of lighting, consistently using calm voices, and introducing calm 
sounds (e.g., quiet music) whenever possible. Staff were sensitized to the benefits of 
such environmental conditions, rather than simply being instructed to implement 
them. As a result, changes were made with clear awareness and a sense of purpose.

Students were also engaged in activities designed to support emotional self- 
regulation such as deep breathing exercises and mindfulness. These activities 
became a regular part of every child’s school experience. Staff also made an explicit 
commitment to supporting the well-being of each student, as well as supporting one 
another. Every student in the school came to identify at least one (and in most cases, 
more) caring adults that they could count on. When behavioural interventions were 
required, staff worked to respond to the underlying needs of the behaviour, rather 
than simply focusing on punitive measures or compliance.

Students, caregivers, and parents soon commented on the improved school cli-
mate, often noting in particular that the school felt more inviting and friendlier. Staff 
expressed a renewed sense of hope and optimism. As relationships between teachers 
and students deepened, the need for behavioural interventions declined sharply. 
Problems were recognized earlier and addressed within the classroom, resulting in 
significantly less time away from learning for most students. Attendance and 

A Teacher’s View – It’s a Path, Not a Gap: A Relationship-Based Approach…



78

 lateness improved significantly. Detentions were seldom necessary and suspen-
sions, over a three-year period, went from 23 to 0.

Teachers used evidenced-based diagnostics to determine where each student was 
mathematically and used this as their starting point. Most classes had “guided math 
groups” (similar to guided reading groups), as a way to manage the various starting 
points. Student and teacher self-efficacy demonstrably improved. Mathematical 
interventions primarily based on strengthening conceptual understanding (e.g., 
intervention designed to facilitate a conceptual awareness of integer operations, as 
opposed to simply targeting how to multiply and divide integers) resulted in more 
frequent instances of student success.

As a result, the students of McKellar Elementary School demonstrated increas-
ing improvement over time on the provincial standardized test for mathematics. 
Since implementing the relationship-based approach, the number of student who 
met the provincial mathematics standard went up by 89% in grade 3 and 21% in 
grade 6. These are extraordinary improvements, made more meaningful by the 
improvements made in virtually all aspects of student performance and behaviour, 
including that the students appeared to enjoy school more.

 In Sum

Although Canadian students tend to fair well when compared internationally, some 
parts of Canada continue to struggle to improve mathematics achievement results. 
For example, in Ontario, only 50% of grade 6 students met the provincial standard 
in 2016/2017, down from 57% in 2013, this despite a 60-million-dollar provincial 
investment in a “renewed math strategy” (Education Quality and Accountability 
Office n.d.). It can be tempting to believe that students who are “behind” in mathe-
matics need to get “caught up” simply through increased mathematics instruction. 
However, to do so would be to ignore the context that surrounds the student’s strug-
gle. It can also be easy to differentiate subject areas based on their content, rather 
than considering the skills they have in common. Mathematics and well-being are 
distinct in respect to the what of education, but are closely related when it comes to 
how proficiency is best gained. Shifting the focus of mathematics from a largely 
academic pursuit, to one that is best learned through caring and responsive relation-
ships, and by ensuring that all of the conditions for learning and development are in 
place, improves mathematics and student well-being at the same time. As counter-
intuitive as it may initially seem to teachers, letting go of the narrow pursuit of 
mathematics, and instead understanding mathematics education within its relational 
context, can often lead to even greater gains, not just in math, but in overall growth 
and development.
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Part I: Commentary – The Changing 
Landscape of Teaching and Learning 
Mathematics

Luckson M. Kaino

Part I of the book focuses on what is to happen or is happening inside and outside 
the mathematics classroom in Canada, in the effort to re-think innovative and better 
ways of teaching and learning mathematics. In the context of mathematics teaching, 
the exploration of various ways, and in particular Indigenous strategies and their 
integration into the school mathematics curriculum, should be considered signifi-
cant towards the effectiveness of teaching and learning mathematics. For example, 
the artifacts available in the local environments are important tools to be used in 
teaching in order to bridge the gap between what is usually taught in the classroom 
and what exists outside the classroom, i.e. in society. Radford, Miranda and Lacroix 
indicate that knowledge is cultural and historical and emphasize that teaching and 
learning practices have to be considered from a cultural-historical approach. In this 
case, mathematics teachers should have knowledge to recognize, identify and use 
the materials around (in the environment) to promote the best ways of teaching. By 
using the cultural-historical approach, Radford et al. emphasize fostering deep stu-
dent conceptual understanding through forms of collective learning, trying to move 
away from the constructivism approach which is student-centered and which the 
author believes tends to sideline the role of the teacher.

The forms of collective learning by Radford et al. are emphasized by Thom and 
Glanfield, who explain about ideational activities with instructional practices in 
teacher-student engagements in classroom instruction. Thom and Glanfield argue 
that creation of richness of the environment among teachers and students creates 
useful ideas to children. In this setup, ideas generated in the classroom bring power-
ful ideas among learners. As argued by Taylor, Lala, Ouellet, and Knebel, the ideas 
generated in class in the form of stories illustrate the richness of mathematics into 
the student’s life. The latter as further argued, makes the connection between math-
ematics and the personal student life whereby the student is able to mathematize and 
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think mathematically. Taylor et  al. maintain that powerful stories open ways to 
reflect on student experiences in doing mathematics in real life.

Aikenhead provides a historical perspective on the rise of Platonist and Cultural 
schools of mathematics and explains the implications of a culture-based mathemat-
ics. In a culture-based mathematics, the teacher should not assume that learners are 
blank, i.e., they do not know anything about what the teacher wants to teach. 
Learners come from different cultural settings with some rich ideas about mathe-
matical structures and these can be used by the teacher to teach effectively for better 
understanding of the material taught. Lunney Borden emphasizes the importance of 
good working relations with the community to develop a culturally appropriate 
mathematics curriculum. The emphasis is on the use of Indigenous language as a 
way to transform the teaching and learning of mathematics. Borden argues that 
language embodies the way the society thinks and the processes of doing things. 
Lunney Borden’s argument which is in agreement with findings in literature, prem-
ises that if the artifacts available in the environment are used in the class activities 
they can develop knowledge of concepts that lead to the generation of mathematical 
rules and principles.

The above experiences by researchers gear to Boland and Tranter’s brand of 
‘well-being’ that is described by the authors to make the connection between the 
school and the students’ parents. The parent-school relation approach of inviting 
parents to get involved in school mathematical social activities is intended to get 
parents acquainted with their students’ school life. The purpose of such activities is 
to shape the behavior of students and improve their performance in mathematics. 
Such activities are conducted in conjunction with student guided group activities on 
their well-being.

The papers in Part I of this book are rich in enlightening various processes for 
learners to appreciate and develop interest not only to learn mathematics but also to 
improve performance in the subject. The aim here is to provide ways for long-term 
retention of mathematical knowledge. The articles in this part of the book would be 
useful to college teachers, curriculum developers, students, policy makers and inter-
ested persons in improving ways of teaching and learning mathematics.

L. M. Kaino
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Part II: Preface – The Particular, 
the Generic and the General Once More: 
Looking into Aspects of Canadian 
Mathematics Classrooms

David Pimm

While the section title focuses on inclusion, what caught my attention most when 
reading the chapters that constitute this section was the variety of foci and voices 
employed in them, not least in regard to making claims or suggestions about prac-
tices, about teachers and teaching, and about students and learning. And about vari-
ous aspects of risk, of being at risk and living with a history of risk.

Apart from a historical or text-based approach, mathematics education explora-
tions tend to fall into two broad (though not distinct) types: studying what is (usu-
ally while trying to avoid having the studying interact with or affect the thing 
studied) and making something happen and studying that (often with the intention 
or desire to alter what is). Both types are present here, often flagged as ‘studies’ and 
‘projects’ respectively, and both are potentially interesting and useful. I could (but 
will not) give my sense of which chapters are which, and could even offer reasons 
as to why I see them that way. Instead, I feel it better simply to make a couple of 
observations across the contributing chapters and then withdraw.

There is a considerable amount of site-specific examination, though less atten-
tion was given to what extent the specificity (of focus, of location, of population, of 
…) mattered. Six of the chapters relate to work done in Ontario, while the Oesterle 
autobiographical chapter did not seem specifically rooted in British Columbia 
(where the author resides and teaches), and the Sterenberg and O’Connor, and Davis 
et al. ones engaged with contexts and settings taking place in Alberta.

‘Particular,’ ‘generic’ and ‘general’ are categories quite commonly discussed in 
mathematics and can crop up in interesting places in mathematics education too, I 
feel. And while they naturally come up in regard to the directly addressed material 
(whether specific connectives like ‘than’ in Barwell, Kubota-Zarivnij and Culotta, 
or specific students in the Kajander piece—though ‘amalgam’ was an interesting 
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word she used that suggested the growing technique of creating composite individu-
als—an interesting oxymoron), I also noticed them explicitly in Davis et al.’s delib-
erate presentation of generic classroom question forms, as well as in McDougall 
and Ferguson’s, Macaulay’s, and Pyper’s chapters which all attempt to offer direct 
suggestions and advice to presumed teacher-readers (something which, in passing, 
indirectly and gently goes against a sense of readership inclusion).

This set of distinctions also showed up in terms of variation of textual voice, with 
a strong ‘I’ voice (Oesterle’s distinctive, introspective, autobiographical account), 
occasional (varying) ‘you’ voices (such as in the Sterenberg and O’Connor, 
Macaulay, and Pyper chapters, for example), as well as academically more familiar 
third-person and/or passive framing of text, as well as a ‘we’ one (McDougall and 
Ferguson) and a plural-voice one (I/we, in Childs and Holm). Each of these stylistic/
voice decisions perhaps points towards a different intention with regard to the spe-
cific, generic and general in relation to address. (Though it is important to recall, as 
in mathematics itself with geometric diagrams – which are can be particular, generic 
and/or general  – or determining the sign of a function across a whole interval 
between zeroes by examining the sign of its value at one point, that it is feasible, 
indeed, often productive to work on the general by means of working on the specific 
in the presence of others.)

The term (acronym) ‘ELL’ sounds like a commonality category, but, as the 
Barwell et al. chapter indicates, it is not, in that there is wide variation within it. My 
interest was caught by their account of the ‘messiness’ of language development 
and whether there was a presumed mutual independence of the triadic elements or 
trajectories provided. In addition, there was, for me, a far bigger question of the 
necessity of schooling for learning mathematics. The issue of student reticence and 
its potential sources added to the very human and moving particulars provided in 
Kajander’s instances, as well as the wealth of prior experience and inexperience 
that, in different ways, is also addressed by Macaulay. Some links across chapters 
also included work on and in relation to mindsets, to habits of mind, and to Shulman’s 
(1986) ‘pedagogical content knowledge’ and its ever-growing set of variants—a 
phenomenon which is echoed one effect of Skemp’s promotion of Stieg Mellin- 
Olsen’s distinction between ‘instrumental’ and ‘relational’ understanding that led to 
an explosion of attempts to differentiate types of understanding.1

But I am left thinking most about the Davis et al. chapter and its picking apart of 
certain generic classroom teacher structural/discursive moves in relation to ques-
tioning, while advising a moving back into the particular of individual student atten-
tion and understanding. One thing that was seen as StandardizEd was a sequence of 
questions addressed to an individual student by the teacher in a whole-class setting. 
Yet this too has a generic element of working on the whole class’s understanding 
through working on an individual’s understanding in a public setting, not unlike a 

1 It was brought to my attention some years ago by Stieg Mellin-Olsen, of Bergen University, that 
there are in current use two meanings of this word [‘understanding’]. These he distinguishes by 
calling them ‘relational understanding’ and ‘instrumental understanding’. (Skemp 1976, p. 20).
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master class, at times. Caleb Gattegno worked regularly this way. And this got me 
thinking hard about it once more.
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Abstract This chapter is based on an action research project with the mathematics 
teaching staff of a school that serves special needs students from grades 2 to 12. 
Now in its fifth year, and with the aim of refining practices to ensure that all students 
have the opportunity to learn, the collaboration has adopted the analogy that “learn-
ing to teach differently is like learning another language.” This framing has high-
lighted the complexities, difficulties, and strategies associated with shifting from 
highly familiar standardized, teacher-centered classroom practices to more authen-
tic emphases that are consonant with reform efforts. In this chapter, we report on the 
power of this frame to effect transformations in teachers’ beliefs and actions, while 
also highlighting how easily one’s “native language” can seep into, undermine, and 
obscure efforts at transformation. By way of initial example, through action research, 
strategies have been implemented to ensure teachers are constantly aware of multi-
ple learner interpretations, yet there is a persistent recurrence in classrooms of ques-
tions of the form “Can anyone tell me…?” We argue that such questions may be 
indicative of a mode of directive teaching that is aimed at a “representative learner,” 
in contrast to a mode of responsive teaching that is attentive to the sense(s) that each 
learner might actually be making.

Keywords Learner interpretations · Sense-making · Teacher language · Inclusive 
practices
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 Introduction

Imagine this happens in a classroom that you are invited to observe: it is mathemat-
ics time, and Robyn gathers the attention of learners who settle into their assigned 
seats. Robyn announces the topic of the lesson, signals a need “to remind ourselves 
about what we did yesterday,” directs all the children to a page from a resource 
containing a series of questions, and guides the learners through the questions. Each 
student is called on by name to contribute an answer, and each responds correctly.

With that brisk review of the previous lesson completed, Robyn announces the 
day’s topic as she approaches a whiteboard with a marker. She introduces a question 
and leads learners through a sequence of steps as she explains some of the principles 
at play. Once completed, she writes a second example on the board and invites stu-
dents to emulate what they just watched. They attempt to do so.

Something interesting unfolds during this guided work. Noticing that several 
students are struggling with the same detail, Robyn calls for the group’s attention 
and mentions that she’s “noticed a common problem.” She walks to where the ques-
tion is written on the board and places her hand to conceal a piece of it before ask-
ing, “Can anyone tell me…?”1 A few hands go up, and Robyn points at one student 
who offers a correct response. Robyn repeats it as she reveals what was behind her 
hand. She then points at a different part of the question and asks, “Who knows…?” 
Several hands go up instantly and wait to be noticed. Robyn selects a learner to 
answer, but this time follows up with a request of the same learner to explain. As the 
student speaks, Robyn repeats, rephrases, and highlights aspects of the explanation. 
When finished, Robyn asks, “Does everyone see…?” She looks for and receives 
nods from a few of the students she had noticed struggling a few minutes earlier. 
Smiling, she directs students back to the task at hand. A few minutes later, that task 
is reviewed and another practice question posed. It is taken up in very much the 
same way. Students are then directed to their textbooks, and a set of questions for 
independent practice is assigned.

Our guess is that this scenario will feel familiar to most readers—even though we 
did not indicate grade level or topic. With much of school mathematics, it seems, 
such details are not always important. The teaching and learning of so many topics 
across so many levels can be fitted to a generic script.

In this chapter, we focus on two specific aspects of that familiar script: the inter-
locutory style and lesson format. On the former topic, we look specifically at the 
sorts of questions posed by the teacher. On the surface, they might appear intended 
to invite participation, to monitor comprehension, and ensure engagement. We sug-
gest that they might actually have the opposite effect—that is, that they exclude 
rather than include.

We then pull the camera back to look at the familiar structure of mathematics 
lessons, and we offer a similar argument. As with the interlocutory style, these 

1 We have deliberately omitted the detail of the topic and problem here and in the subsequent 
teacher questions, for reasons that we explain in the next paragraph.
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 lessons might be intended to involve students—and, indeed, in the context described 
above there was clear evidence of behavioural compliance. However, it is not at all 
clear that the structure sponsors the sort of conceptual engagement for all students 
that we believe most mathematics teachers desire.

 Context

We are currently in the fifth year of a seven-year design-based action research proj-
ect with the mathematics teaching staff of a single school that spans both elemen-
tary and secondary grade levels. An explicit goal of this collaboration is to transform 
classroom practice in ways that support mathematical understanding, nurture 
healthy attitudes toward the discipline, and positively affect achievement. Our foci 
are simultaneously theoretical and practical, oriented by the conviction that prac-
tices are rooted in particular ways of looking at mathematics and learning—and, 
reciprocally, that every theory has practical entailments. Thus, for example, our 
collaborative group might wonder together about the enacted theories that support 
the practice of asking anonymous questions of the form “Can anyone tell me…?”, 
“Who knows…?”, and “Does everyone see…?”

On that point, while our account of Robyn’s lesson is true to a lesson that she 
taught, the pedagogical trajectory is hardly unique. In fact, with only very minor 
variations, the account could be used to characterize many lessons we have observed 
with different teachers at different levels.

Our current focus on observing lesson structures and teachers’ questioning strat-
egies is actually a recent development in the project. Our initial strategy in this 
shared project of transforming mathematics teaching practices was to infuse cutting- 
edge research into the school through a course-based master’s program taken by a 
self-selected group of 10 teachers. We hoped that infusion would occasion shifts in 
thinking, talking about, and enacting mathematics pedagogy. To a limited extent, it 
did have that effect—at least, for most of the teachers involved in the cohort. 
However, in spite of efforts to spread the knowledge more broadly within the 
school—through, for example, school-wide lesson studies led by cohort members—
few mathematics lessons seemed to break from the mould depicted in our opening 
anecdote.

Some critical reflection on the part of all participants in the project prompted the 
realization that meaningful and sustained change in teaching practice would require 
much more than an infusion of ideas through a subset of teachers. To re-orient the 
work, we proposed a school-wide project of “changing the discourse,” organized 
around an analogy between transforming one’s teaching practices and learning a 
new language. This analogy has proven to have both interpretive and pragmatic 
value. On the side of interpretation, it has helped participants appreciate the com-
plexity of changing practice. Just as speaking a new language is not a simple matter 
of replacing one set of words with another, shifting teaching practices involves 
entirely new webs of association around what it means to do, to learn, to know, and 
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to teach mathematics. On the pragmatic side, learning to “speak the language of 
reform math fluently” has been greatly enabled by sharing the project across a com-
munity, dwelling in an immersive setting, and having access to “expert speakers” 
who can highlight inconsistencies and offer advice.

With this analogy in place, and with the expanded engagement of all mathemat-
ics teachers up to grade 8, the third and fourth years of the project have proved to be 
quite revealing.

 Questions That Are Not Questions: Educating in Exclusionary 
Ways

Within the project, the two educational sensibilities under investigation—that is, 
analogically, the two languages under study—have been labeled “StandardizedEd” 
and “AuthenticEd.” In terms more familiar within the mathematics education com-
munity, these sensibilities map onto, respectively, traditional teaching practices and 
reform-oriented classrooms.

We have opted for the terms standardized and authentic rather than the tradi-
tional and reformed pairing because, among project participants, there is a general 
agreement that some of the conceptual and theoretical commitments associated with 
the educational sensibilities are more readily apparent in this pair of words. For 
example, standardized, which educationists borrowed from industry, signals expec-
tations of sameness—in outcomes, across curriculum experiences, and so on. In 
contrast, authentic tends to summon associations with personalized experiences that 
unfold in real situations. Thus, whereas the traditional/reform dyad often seems to 
focus attentions on teaching practices, within this community the standardized/
authentic dyad seems to invite more nuanced, wider-ranging conversations about 
why teachers might be doing what they are doing.

It is beyond the scope of and space in this chapter to elaborate on the fine-grained 
differences between StandardizedEd and AuthenticEd. Many of the key differences 
have been examined at length elsewhere (Davis et al. 2015). However, for our cur-
rent purposes, the following highlights are relevant. StandardizedEd is suggestive of 
a comfort and fluency with those approaches to schooling that focus on a one-size- 
fits-all program of study, age-based grade levels, uniform performance outcomes, 
and efficient instruction. It is underpinned by intertwined metaphoric assumptions 
that knowledge is a possessable object, learning is the acquisition of 
knowledge, and teaching is concerned with delivery of and/or instruc-
tion on building content.2 AuthenticEd, in contrast, draws on emerging under-
standings of human learning and personal development. It recognises that personal 
knowing is rooted in idiosyncratic personal histories and subject to a diversity of 
current influences. In turn, that means that the learning outcomes in any classroom 

2 We follow a convention in the cognitive science literature in the use of small caps (small caps) 
to signify metaphors.
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will be varied, and possibly even incompatible (i.e., authentic)—no matter how 
similar (i.e., standardized) the classroom experiences. Authentic education 
approaches thus attend both to each learner’s unique history and to learners’ neces-
sarily unique interpretations. In terms of webs of association, in AuthenticEd, ideas 
tend to revolve around vocabularies fitted to knowledge as a coherent network 
of associations, learning as construing associations, and teaching as 
occasioning such construals.

In each case, we understand an educational sensibility as a distinct and coherent 
network of associations that manifests itself in terms of a coherent vocabulary and 
a readily discerned set of practices. For example, in StandardizedEd, the following 
metaphors are among the many that are treated as synonymous to teaching: clari-
fying content, conveying information, delivering content, directing, 
instructing, explaining, presenting, and telling. Within AuthenticEd, teach-
ing is more often characterized and enacted in terms of a very different cluster of 
metaphors: guiding, triggering associations, signalling connections, 
relating, occasioning, and challenging. For this reason, reiterating our orient-
ing analogy, occasioning a shift in educational sensibility from standardized to 
authentic is analogous to learning a different language.

With this backdrop in place, let us revisit Robyn’s lesson. What language is 
likely being spoken when the actual topic of conversation (i.e., the concept being 
studied) does not seem to be relevant to the structure of the lesson? Or to the grade 
being taught? Or to the teacher and learners involved? Or, more specifically, in what 
language does it make sense to pose such questions as “Can anyone tell me…?”, 
“Who knows…?”, and “Does everyone see…?”

Gadamer (1990) categorized these sorts of queries as “pedagogical.” Contrasted 
with “hermeneutic” questions (posed by someone who does not have but sincerely 
desires an answer) and “rhetorical” questions (posed by someone who neither 
knows nor expects an answer), the pedagogical question is not really a question at 
all—because the asker either already knows the answer or is not really interested in 
the answer. Such queries, he argued, only make sense in contexts such as traditional 
classrooms and game shows, where knowledge is treated as though frozen into 
object-like bits. In these contexts, the “asking” is really a thinly disguised “telling,” 
a sort of ventriloquizing through which the questioner’s articulations are made to 
emanate from the mouths of answerers.

The prevalence of such questions within StandardizedEd does not mean that real, 
hermeneutic questions are not asked. During Robyn’s lesson, for example, many 
students posed genuine questions. But these questions came from the learners rather 
than the teacher, were corralled to the independent practice portion of the lesson, 
and seemed more concerned with getting things right than with understanding the 
concept at hand—that is, with ensuring that the output of the efforts was fitted to a 
standardized expectation.

Phrased in quite different terms, a genuine question entails a sharing of control. 
It is an invitation for other’s participation. But there is no surrender of power with a 
pedagogical question. Even though the pedagogical question appears to be an invi-
tation for someone else to speak, authority for whatever answer rests with the 
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inquisitor. In asking “Who can tell me …?”, Robyn is clearly in command. The 
lesson reflects a culture of management and control; objectives must be achieved in 
the allotted time as efficiently as possible. Deviations are unwelcome, and attending 
to the immediate and specific needs of each learner is a secondary concern that is 
pushed to the margins of the lesson. We have witnessed this quality of StandardizedEd 
again and again—in, for example, worries about covering the curriculum, prepping 
students for exams, coping with pressures from parents, and getting to the next 
activity in the lesson plan.

All of these constructs make perfect sense within the control-oriented, planning- 
obsessed, and learner-blind language of StandarizedEd. But none make sense in the 
language of AuthenticEd.

 Ribboned Design, Rather Than Block Plan: Educating 
in Inclusionary Ways

One day, after observing a sequence of lessons that resembled Robyn’s, one mem-
ber of the research team mentioned to another that he had felt increasingly “on 
edge” as each lesson unfolded. The other observer confessed similar feelings. As 
they tried to unpack their responses, they came to quick agreement that the discom-
fort was due in large part to the fact that neither had been able to get reads on stu-
dents’ understandings. Moreover, that lack of information on student sense-making 
seemed to be because of (and not, as one might expect, in spite of) the questions that 
the teacher asked.

We took that insight to some of the teachers involved in the project, and there 
was ready agreement that it was an important observation. At the same time, we 
realized that, as a possible prompt to help people critique their own practices, it was 
likely inadequate—for the sorts of reasons identified a few paragraphs up. Concisely, 
for teachers who spoke only StandardizedEd, homing in on a single element of the 
work (such as the types of questions that were being asked) ran a risk of inviting 
excuses rather than sponsoring deep reflection. So, the group wondered, if the topic 
of “questioning” is too small, and the topic of “teaching” is too large, what might an 
appropriate chunk of classroom life be? It took some discussion, but eventually the 
suggestion of focusing on the format of a lesson arose.3

Consider the structure of Robyn’s lesson: it comprised four distinct stages. First, 
students were primed for the day’s topic with a focused review. Second, the teacher 
offered an example-based exposition of a new topic. Third, learners worked through 
other similar examples under the teacher’s supervision. Finally, time was allotted 
for independent seatwork, during which Robyn made herself available to those 

3 Proponents of “lesson study” (e.g., Cerbin 2011; Lewis et al. 2009) have alighted on a similar 
insight about the granularity of focus for meaningful impact, but whereas the focus of lesson study 
(at least in its original form) is the iterative refinement of specific lesson content, in ours the 
focus is on examining the structures of teaching.
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needing focused help. These four chunks will be familiar to almost anyone who has 
attended a modern school, which is to be expected. They have served as the core 
elements of a standardized lesson across many generations.

So how might one describe a lesson in AuthenticEd?
We will bypass the several months of our iterative discussion-observation- 

revision process, and leap straight to the current state of our answer to that question. 
Our first point of agreement, informed by research into cognitive load theory (van 
Merriënboer and Sweller 2005) and variation theory (Marton and Booth 1997), was 
that the image of the lesson needed to shift from blocks of activity to ribbons of 
activity, guided by the following principle:

• RIBBONING: Whenever encountering a potentially novel discernment that is 
necessary to a concept, probe student understandings.

That is, RIBBONING is a deliberate interruption of the notion of standardized, 
one-size-fits-all explanation. It arises in the realization that mathematical concepts 
and operations typically involve many features, and missing any one of them will 
derail a learner. In terms of teaching practice, RIBBONING entails a shift in ques-
tioning practice. It makes little sense in this approach to ask “Can anyone tell 
me…?” since the point of ribboning is to get frequent and direct feedback from each 
student on his or her understandings.

Our initial thought, some months ago, was that a focus on RIBBONING might 
be sufficient to shift practice substantially. It did for some but did not for many. In 
fact, several teachers readily subsumed it into their earlier practices. That is, they 
asked more questions, but those questions tended to be in StandardizedEd, of the 
variety that Robyn asked in our opening anecdote. Our second principle was intro-
duced in response to this tendency:

• MONITORING: Ensure that every student is able and obligated to provide feed-
back that is audible/visible to the teacher for each ribboned query.

In terms of the theoretical and research basis of this principle, we link 
MONITORING to the literature on metacognition and self-directed learning. In 
brief, it is a teaching act that compels every learner to make their thinking explicit 
at every juncture of the lesson—driven by the coupled convictions that more power-
ful learning happens when the teacher has fine-grained insights into student under-
standing and learners themselves have frequent opportunity to make their thinking 
explicit. Additionally, in this frame, divergent interpretations can potentially become 
rich sites for exploration and elaboration. That is, the point of MONITORING is not 
simply to ensure everyone can answer each question; it is also an opportunity for the 
teacher to become more familiar with the interpretive breadth within the classroom 
community. Underlying these notions is the radical constructivist insight that learn-
ing cannot be determined by teaching, since it is not about ingesting a truth but 
about construing coherent sense out of one’s unique set of experiences. On all these 
counts, this conception of monitoring makes much more sense in AuthenticEd than 
it does in StandardizedEd.
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As with our preliminary thought about RIBBONING, when we collectively 
invented this mode of MONITORING, our assumption was that it would be the 
magic bullet. Surely a teacher who is asking frequent, genuine questions and then 
ensuring feedback from every learner could not help but teach authentically. And, 
once again, we were confronted by the distorting power of StandardizedEd. As we 
observed teachers become more adept at and more comfortable with RIBBONING–
MONITORING, we noticed a new issue: in a manner reflective of a typical stan-
dardized lesson, most continued with the planned trajectory of their lessons, 
regardless of the sorts of answers they were getting to the questions they were ask-
ing. A third practical emphasis was thus introduced:

• ADAPTING: Revise/devise/improvise tasks, explanations, and other engage-
ments to fit with demonstrated understandings.

As with MONITORING, ADAPTING is a notion that makes much more sense 
in AuthenticEd than in StandardizedEd. Anchored to the mastery learning and the 
teaching-as-improvisation (e.g., Shem-Tov 2011) literatures, the principle here is 
that it makes little sense to press on until an adequate understanding of the notion at 
hand is demonstrated. If students are unable to answer questions in one lesson rib-
bon, it does not make sense to introduce the next one.

Teachers, of course, did not dispute the sense of this suggestion. However, it was 
heavily criticized as largely impracticable. Issues with coverage, time constraints, 
and the inevitability of “the kid who does not get it no matter what you do” were 
raised. These concerns have not gone away, and we do not expect them to vanish 
any time soon. Even when one starts to become functional in a new language, it 
takes much, much longer to start to think in that language. In terms of classroom 
practice, all the teachers have demonstrated some level of success with the 
AuthenticEd RIBBONING–MONITORING–ADAPTING cycle, but their con-
cerns, criticisms, and frustrations continue to be overwhelmingly expressed in the 
language of StandardizedEd.

In particular, one aspect of standardized teaching practices revealed itself as 
especially powerful and resilient at this stage. Several teachers noted that, in their 
efforts to structure lessons around fine ribbons rather than course blocks, very often 
they and their students were able to glide through topics with few glitches … but 
with no coherent understandings by the end of the lesson sequence. A grade 7 lesson 
on “order of operations” stood out as a case in point. Rather than simply imposing 
the BEDMAS rule,4 as she had in previous years, this time Elaine examined the 
topic by systematically looking at what happened when different orders were fol-
lowed, aiming at generating principles that might be used to settle on a final order-
ing rather than simply imposing what would otherwise look like a set of arbitrary 
rules. Students followed each micro-step of the analysis, but when it came time to 
consolidate them into a general guideline for computation, the “concept” appeared 
to exist as a set of disconnected fragments rather than a coherent idea. The percep-

4 BEDMAS (Brackets, Exponents, Division & Multiplication, Addition & Subtraction) is one of 
many  acronyms used to help learners  remember the order of operations for basic arithmetic 
and algebraic manipulations.

B. Davis et al.



97

tion was that this fragmentation was a consequence of the RIBBONING emphasis, 
and so the research group proposed a fourth point of emphasis:

• CONNECTING: Move between “part” and “whole” when ribboning to ensure 
that learners do not lose sight of the concept under study.

This emphasis is perhaps less a strategy and more the overarching imperative 
that weaves itself through the previous three emphases. The core of this emphasis is 
that teachers’ capacities to communicate—that is, to make sense of student articula-
tions and to frame things in manners accessible to students—are less about precise 
vocabulary and more about (1) the robustness and flexibility of their own mathemat-
ical understandings, anchored to commitments to attend to the usually tacit instan-
tiations that enable those understandings (Davis and Renert 2014) and (2) the extent 
to which they appreciate (and act on the appreciation) that people make their own 
sense of things. The former enables conversations; the latter compels them.

Rephrased, like each element of the RIBBONING–MONITORING–
ADAPTING–CONNECTING arc, this one is motivated by reform mathematics’ 
commitment to the development of relational understanding (Skemp 1976)—that is, 
to developing a robust yet flexible network of coherences that can withstand or that 
can be adapted when subjected to tests of its viability.

 Keeping It Real: Recognizing the Inevitable Hybridity 
of Teaching Practices

To re-iterate what we are up to in this research, we recognize that the project of 
transforming teaching practice is immensely difficult, in large part not because it is 
hard to identify ineffectual and indefensible approaches, but because of the invisi-
ble, entrenched, and broadly enacted webs of association that afford those approaches 
their coherence. Kelly (2010) makes the point more poetically:

ideas never stand alone. They come woven in a web of auxiliary ideas, consequential 
notions, supporting concepts, foundational assumptions, side effects, and logical conse-
quences and a cascade of subsequent possibilities. Ideas fly in flocks. To hold one idea in 
mind means to hold a cloud of them. (pp. 44–45)

And so, for example, it is a mistake to think that Robyn’s teaching might be mean-
ingfully reformed if she embraced a different mode of questioning—simply because 
that mode is not an isolated practice. It flies in a flock with other practices and asso-
ciated beliefs. Removing or altering a member of this flock is unlikely to have much 
impact on that flock’s character or trajectory.

That is not to say that we do not need to pay attention to specific practices. On 
the contrary, in our ongoing efforts to design an effective strategy to support teach-
ers’ professional growth, we are compelled to reconcile the profound limitations of 
human consciousness and the vastness of flocks of ideas that might need to be 
changed. One of the major findings of cognitive psychology over the last century is 
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that the human mind can only juggle a few details at any given moment—and, prag-
matically, this limitation means that a teacher who is working to make practice more 
effective really cannot handle much more than a single focus, such as asking more 
genuine questions.

It is for precisely these reasons that we have chosen our core analogy that chang-
ing teaching practice is like learning a new language and developed our  
four- emphasis strategy of RIBBONING–MONITORING–ADAPTING–CONNE-
CTING. Following on a half-century of cognitive science research into analogical/
associative reasoning, we are aware that figurative devices such as analogy, meta-
phor, metonymy, and image can “smuggle” much into one’s thinking. These devices 
operate by triggering webs of association beneath the surface of conscious aware-
ness. Similarly, each of the elements in our four-emphasis cycle is simultaneously a 
manageable piece of practical advice and a distillation of a great deal of theoretical 
and empirical work. Each is fitted to the constraints of consciousness, but designed 
in acknowledgement of the vastness of ideational systems.

All that said, we would be risking a lie if we were to close this chapter by inti-
mating that we think we have figured things out and that all signs are pointed toward 
smooth sailing for mathematics teaching practice in this school. Such impressions 
reflect neither our goals nor our current realities. On the contrary, we are interested 
in emergent issues and aiming to offer teachers “just in time” challenges. To that 
end, it is fair to say that every participant in the project is grappling with one or 
another personalized challenge.

Across these labours, it is also fair to say that most members of our collaborative 
team find assurance in our core analogy, aware that this work is going to take time, 
it can only happen in community, and that it is difficult. On the last point, anyone 
who has experienced the demands and frustrations associated with learning a new 
language will have a sense of what participants are facing. To complicate matters, it 
is important to recognize that StandardizedEd continues to be the overwhelmingly 
dominant language of modern schooling. Its power and resilience are enabled by the 
fact that no other flock of educational associations could be better fitted to the mod-
ern culture of productivity and commerce. Hence, no matter how attentive one might 
be to the differences between standardized education’s teaching-as- instructing 
and authentic education’s teaching-as-engaging, it would be unreasonable to 
expect that teachers could ever avoid StandardizedEd. That’s certainly what partici-
pants are experiencing in this project. Even the most impressive emerging moments 
of authentic teaching are actually hybrids in which authentic imperatives are injected 
into the routines of a predominantly standardized teaching regime.

However, our mention of that inevitable hybridity is not an acknowledgement of 
limitation. Rather, for us, it is the very focus of the work. A powerful side of produc-
tive tension arises where a commitment to authentic classroom practices meets an 
awareness of the pervasiveness of the artifacts of StandardizedEd—manifest in 
learning objectives, evaluation tools, classroom resources, lesson structures, school 
architectures, and so on. Teaching authentically does not entail ignoring these struc-
tures, but it does require a recognition that the core assumption of StandardizedEd 
is untenable for twenty-first-century classrooms. No matter how precisely articu-
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lated or rigidly regulated, learning can never be determined (even by StandardizedEd’s 
structures), which makes it difficult to pre-specify what authentic mathematics 
teaching should look like. On this note, we were asked by a reviewer of our chapter 
to include a second vignette that would parallel the vignette with which we opened 
our chapter—one that, rather than describing a StandardizedEd lesson, would exem-
plify an AuthenticEd lesson and that might be instructive, for example to a novice 
teacher. We gave this request careful thought, but decided not to attempt to include 
such a vignette. When introducing a new flock of ideas, a singular vignette, even 
though intended as illustrative, has the tendency to coalesce attention on specific 
teaching strategies or teacher behaviours that are then taken to be prescriptive. Our 
intent here has been to set out the conditions that make authentic teaching possible, 
rather than to prescribe techniques for teaching. Authentic teaching involves attun-
ement to and anticipation of emergent possibilities of learning moments for all 
learners. It calls for a readiness to harness the power of the collective learner as well 
as the individual, throughout the lesson, in order to surface a range of possible views 
on what is being learned through activity. To engage authentically means to be both 
inclusive and deliberate in pedagogy—inclusive, in that one intentionally prioritizes 
the voices that constitute the collective, and deliberate, in that one purposefully 
welcomes so-called deviations from a lesson timeline to engage in critical conversa-
tions with learners. Engaging authentically also calls for listening to students’ 
responses to understand the kinds of coherences being construed, and creatively 
responding in ways that foster students’ agency and interest in relation to a topic or 
subject matter.
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Learning Mathematics When Students Are 
New to Schooling and New to English

Richard Barwell, Kathryn Kubota-Zarivnij, and Debby Culotta

Abstract Teaching mathematics to students who are new to schooling and new to 
English, such as, in particular, refugee arrivals in Canada, is particularly challeng-
ing. In this chapter, we describe some aspects of our work with a group of teachers 
at a Catholic school in Toronto, in which we collaborated to find ways to support the 
many such students in the school. The chapter includes an overview of key ELL 
mathematics learning principles arising from research, mathematics classroom 
learning examples that illustrate these principles, and discussion of school-wide 
strategies. Examples include activities designed to support both mathematics and 
language learning in relation to the topics of multiplicative and proportional reason-
ing, and money.

Keywords Refugees · English language learners

 Introduction

In the second half of the twentieth century, Canada accepted refugees fleeing from 
several conflicts, including people escaping from Hungary, Uganda, Chile, Vietnam 
and Kosovo. More recently, Iraqis and Syrians have come to Canada to escape the 
violent conflicts in their homelands and neighbouring countries. The arrival of children 
in such circumstances presents challenges for education systems in general and for 
teachers in particular. Despite the recurring nature of migration and the significance of 
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migration to Canadian society, there is little research or guidance for teachers on how 
to develop effectively the mathematics learning of refugee and immigrant students.

How do students learn mathematics when they do not speak English and have very 
limited school experience? What would a whole-school approach for improving stu-
dent learning and achievement in mathematics look like in a school with about 75% 
of the students requiring specialized English Language Learners (ELL) instruction?

In this chapter, we describe some aspects of our work with a group of teachers at 
a school in Toronto, in which we collaborated to find ways to support the many 
students in the school who were new to schooling and new to English. More specifi-
cally, in this chapter, we

• outline some key ELL mathematics learning principles arising from research;
• describe some mathematics classroom learning examples that illustrate ELL 

mathematics learning principles in the design of learning tasks, lessons and 
mathematics instructional strategies;

• examine a few school-wide strategies used to develop ELL learners’ mathemati-
cal understanding and language production.

The observations, findings and suggestions about ELL students’ learning of 
mathematics presented in this chapter were derived from the collaborative, mathe-
matical work of classroom, special education and ELL teachers in a Toronto Catholic 
elementary school. Approximately 75% of the 700 students at the school are from 
the Middle East and speak Assyrian and/or Arabic. These students are new to Canada 
and do not speak English. For many of them, ranging from kindergarten to grade 8, 
this school is their first experience of formal education. In addition, about 20% of 
the students are from Nigeria and Ghana, and many of these students are also refu-
gees with limited schooling. The remaining 5% of the students represent a smatter-
ing of various ethnicities and cultures. In Ontario, grades 7 and 8 are considered part 
of “Intermediate Senior” certification; that is, teaching mathematics in these grades 
is a component of secondary level mathematics teacher certification. While this 
chapter mostly focuses on ELL students in grades 7 and 8, many of the points made 
also apply to senior grades and our examples cover a wider range of grades.

In this school, a whole-school approach to mathematics professional learning 
involves every teacher, including ELL teachers, grouped by division (pre-primary, 
primary, junior and intermediate), who participate in monthly mathematics study 
group sessions, along with the district school board’s mathematics program coordi-
nator, mathematics consultant, mathematics coach and school principal. The profes-
sional learning group in the school has been studying “mathematics for teaching” 
(Thames and Ball 2010; Davis and Renert 2014) for several years to improve the 
precision and depth of their mathematics pedagogical content knowledge, with an 
emphasis on the analysis and use of mathematics learning trajectories (Clements 
and Sarama 2014; Sztajn et al. 2012) in order to co-construct effective instructional 
strategies that improve ELL students’ learning of mathematics. As well, this group 
aimed to better understand ELL student readiness for learning mathematics (e.g., 
mathematics content, cultural background and experiences, learning skills) and to 
become familiar with and apply research findings about promising ELL mathemat-
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ics learning and teaching practices. In 2015, the group aimed to study specifically 
the structure of mathematics language development in relation to student learning of 
mathematics concepts. Consequently, the members of the mathematics study group 
sought out a mathematics education researcher who specializes in ELL mathematics 
learners to work with them during their study group sessions.

The study group sessions focused on the teachers’ questions and dilemmas, such as

• How can I improve my intermediate students’ communication of their mathe-
matics understanding more effectively?

• How do we better monitor ELL student learning, track progress and develop next 
steps in a timely manner?

• What does ELL students’ mathematical thinking tell us? What are our next steps?
• How do we include ELL students with no prior mathematics knowledge (brand 

new to the country, never been to school before) throughout a mathematics 
lesson?

• What mathematics content do we teach all ELL students who have not been to 
school at all or for several years prior to the classroom?

In this chapter, then, we offer an account of some aspects of these teachers’ mathe-
matical work.

 What Does Research Say About Supporting ELLs 
in Mathematics?

While there is little research on mathematics teaching and refugees, there is rather 
more work on ELLs, including recent immigrants and new arrivals (e.g., Barwell 
2009; Barwell et al. 2016; Moschkovich 2010). Based on the discussions of this 
school-based mathematics study group, the following key ideas, synthesized from 
this literature, seemed most relevant to the participants’ questions.

First, research shows that, in the right conditions, children can learn and be suc-
cessful learning mathematics in a second or additional language (e.g., Barwell 2009, 
pp. 3–6 for a general discussion). Research in bilingual education has shown that it 
takes several years to develop academic language skills in a second or additional 
language, and that developing these academic language skills is important for aca-
demic performance (e.g., Cummins 2000). This finding has been extended to math-
ematics learning specifically. For example, Clarkson’s (e.g., 2007) research with 
immigrants to Australia showed that students who developed academic language 
skills in either English, or their home language, or both, performed just as well as 
children who only spoke English, and some performed better. Meanwhile, 
 long- standing research into mathematics taught in French immersion programs in 
Canada also suggests that learning mathematics in a second language does not nec-
essarily lead to lower performance and can be linked with higher performance 
(Turnbull et al. 2001; Lapkin et al. 2003; Swain and Lapkin 2005). The important 
point to take from these research findings is that ELLs can, in principle, succeed: it 
may take time, and the right conditions need to be created, but success is possible.
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Second, the language of mathematics, in any language, is complex. While vocab-
ulary is perhaps the most salient feature of mathematical language, for students and 
teachers, in some ways it is also the least problematic. Consider the following exam-
ple from an Ontario grade 9 provincial mathematics assessment (EQAO 2014):

The following is the formula for the area of a circle: A = πr2. If the radius of a 
circle is 1.25 cm, which of the following is closest to its area?

• 15. 4 cm2

• 7. 9 cm2

• 4. 9 cm2

• 3. 9 cm2

Clearly to understand this question, students need to know what a formula is or what 
a circle is. There are, however, several other important language demands in math-
ematics apart from vocabulary (e.g., Moschkovich 2013). Logical connectives, such 
as and, because, if, and or are important in constructing mathematical arguments 
and can be challenging for ELLs (e.g., Dawe 1983), perhaps because they involve 
the co-ordination of syntax and logic. In the above test item, the word if is an impor-
tant part of the question.

Mathematics also involves the use of some particular sentence genres, including 
definitions, conjectures, questions and explanations. The Ontario grade 8 mathe-
matics curriculum, for example, suggests that students should be able to explain 
“why a square with an area of 20 cm2 does not have a whole-number side length” 
(Ontario Ministry of Education 2005, p. 112). Constructing an explanation involves 
more than knowing why; it involves using language in a particular, mathematical 
way. Mathematical language demands also include the common use of deixis—
words that ‘point.’ In the test item shown above, for example, the words “the follow-
ing” are used twice, but refer to different things on each occasion. Mathematical 
language demands also include the interpretation of the organization of mathemati-
cal texts, which may include symbolic expressions, graphs, diagrams, and so on. In 
the above test question, students need to realize that the symbol A is conventionally 
used to indicate area, and hence the A in the formula, the word area in the question 
and the four possible solutions are all referring to the same thing.

Third, researchers in second language education have long argued that language 
production (i.e., speaking and writing) is just as important as hearing or reading for 
the learning process. Swain (2000), for example, argues that, among other things, 
language production prompts deeper, more focused processing of the target lan-
guage. She also argues that meaningful dialogue is an effective way to expose stu-
dents to speaking in a second or additional language. In mathematics education, 
there is supporting evidence that this principle applies to ELLs in mathematics 
classrooms. Both Khisty (1995) and Moschkovich (1999) have shown how ELLs 
need to participate actively in meaningful mathematical discussion in order to 
develop proficiency in the language of mathematics in English, as well as in math-
ematics. In Khisty’s (1995) and Moschkovich’s (1999) studies, meaningful dialogue 
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was facilitated by mathematics teachers, through strategies that included using mul-
tiple ways to talk about a particular mathematical idea, revoicing students’ ideas 
using more conventional mathematical language, and ensuring that the focus of 
discussion remains on the mathematical ideas, rather than on linguistic details. 
Indeed, there is a well-documented tension in second language mathematics class-
rooms between attention to mathematical content and attention to mathematical lan-
guage (Barwell 2012), although both seem to be important.

Some researchers have proposed models for the development of mathematical 
language in a second language, in which students’ mathematical language develops 
along three trajectories (e.g., Clarkson 2009; Setati and Adler 2001). These trajec-
tories are from first language to second language, from everyday language to math-
ematical language, and from spoken language to written language. The proposed 
models assume that students can move along various combinations of these three 
trajectories, such as developing everyday ways to talk about mathematics in the first 
language, then everyday ways to talk about mathematics in English, then develop-
ing mathematical language in English, and finally developing written mathematical 
English. In reality, students’ language development in mathematics is likely to be 
messier, with everyday and mathematical language developing in spoken and writ-
ten forms, in English and possibly in students’ home languages, simultaneously.

Finally, research has shown that bilingual students make use of many communi-
cative resources to participate in mathematical meaning making (e.g., Barwell 2005; 
Moschkovich 2009; Planas 2014; Setati 2005). These resources include

• their own experiences of the world;
• the different languages they may know;
• their knowledge of mathematics and mathematical language;
• concrete materials, graphs, diagrams;
• deixis (e.g., this one, that one);
• other students’ ideas and interpretations;
• multiple representations (e.g., models, symbols, gestures, writing);
• different types of talk (e.g., expository, exploratory).

This list underlines the wide variety of ways in which ELLs make sense of and make 
meaning in mathematics, and through which they can develop mathematical lan-
guage. These resources offer teachers something to work with, even when working 
with students who are new to English.

Based on this brief review of research relevant for the questions raised by the 
teacher study group, the following principles for teaching mathematics with ELLs 
can be proposed. According to age and over time, teachers can

• ensure students have the opportunity to talk and write mathematical language;
• include and address mathematical language objectives alongside mathematics 

objectives as part of planning;
• combine language learning and mathematics learning in the same activity;
• work with colleagues who have expertise in language learning and teaching.
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In working with ELLs, teachers can discuss students’ mathematical thinking with 
them using the following strategies:

• listening to make sense;
• posing questions to provoke further thinking;
• revoicing using more mathematical language (written or spoken);
• drawing attention to important mathematical ideas;
• drawing attention to important mathematical language (visually, verbally, …).

Based on these research-based ideas, the teachers in the intermediate division math-
ematics study group conceived specific lesson design and teaching strategies to use 
in their classrooms. These strategies are discussed in the next section.

 Examples from Teachers’ Work

Each year there is an influx of ELL student enrollment at the school. Most of the 
ELL students are Middle Eastern refugees who have not been schooled at all or, at 
least, not for several years prior to school enrollment. The district school-board 
policy requires all students to be enrolled in age-appropriate grades, and conse-
quently most of the ELL student refugees have significant difficulty engaging with 
the age-appropriate mathematics curriculum. Therefore, the teachers have set the 
standard that ELL students must develop specific foundational mathematics knowl-
edge during their first two years at this school.

Guided by the grade 9 and 10 mathematics curriculum, the teachers (with sug-
gestions from their local secondary school mathematics teachers) identified several 
mathematics concepts and strategies that every student needed to understand and 
practise. Using the grade-by-grade Ontario mathematics curriculum (Ontario 
Ministry of Education 2005) as a curriculum trajectory, specific mathematics con-
cepts in each grade were identified as learning goals that every student must attain 
(i.e., number and operations, equivalence, multiplicative and proportional relation-
ships). Based on their observations of the ELL students’ mathematical learning 
readiness and needs, the teachers emphasized student learning of (1) mental math-
ematics strategies for addition, subtraction and multiplication; (2) equivalence of 
numeric expressions (addition, subtraction and/or multiplication); and/or (3) pro-
portional reasoning across the different strands of mathematics. Such learning goals 
prompted the teachers to aim towards collectively identifying and organizing math-
ematics content relative to those three identified areas, so that from kindergarten to 
grade 8 mathematical coherence would be constructed in relation to precise math-
ematics scaffolding as a differentiated learning practice.

The teacher study groups began their mathematics professional learning by 
examining the mathematical details of different definitions of proportional reasoning 
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in order to discern key concepts, models and mathematical contexts. An example of 
their notes are as follows:

• Small (2013) stated that “proportional reasoning involves the deliberate use of 
multiplicative relationships to compare quantities and to predict the value of one 
quantity based on the values of another.”

• According to Lesh, Post and Behr (1988), “proportional reasoning is a form of 
mathematical reasoning that involves a sense of co-variation and of multiple 
comparisons, and the ability to mentally store and process several pieces of 
information. Proportional reasoning is very much concerned with inference and 
prediction and involves both qualitative and quantitative methods of thought” 
(p. 93).

• “The essence of proportional reasoning is the consideration of number in relative 
terms, rather than absolute terms. … Proportional reasoning involves thinking 
about relationships and making comparisons of quantities or values” (Ontario 
Ministry of Education 2012, p. 3).

From these proportional reasoning definitions, the teachers selected several key 
concepts and terms that would inform the focus of the language and mathematics 
learning goals, such as: reasoning, multiplicative relationships, compare, quantities, 
predict, value. For example, mathematics learning goals included the multiplicative 
relationships of quantity, such as double (2 times), triple, halve, and twice, within 
measurement contexts (linear, capacity, mass, money, time) by using objects for 
direct comparison (e.g., half as long, double the hour, a dime [10 cents] is double the 
value of a nickel [5 cents] or $0.05 × 2 = $0.10). These goals included multiple 
representations of measurements, using concrete materials, labelled diagrams, mod-
els, several symbols and English words.

The language learning goals were relative to the mathematics proportional rea-
soning learning goals. For example, language learning goals focused on differentiat-
ing the language structure for terms like than (comparative) and then (sequential), 
as well as the use of patterned phrases and sentences that could organize students’ 
communication of their mathematical reasoning systematically and for student 
accessibility. Language learning goals also emphasized students’ co-construction of 
patterned phrases and sentences, which distinguished student explanations, ques-
tions, hypotheses and summary statements (pseudo definitions). As well, mathemat-
ics vocabulary was used for the purpose of concisely distinguishing mathematical 
concepts from one another.

 Proportional Reasoning Using Spatial Reasoning and Linear 
Measurement

Using the research findings from the Math for Young Children (M4YC) project 
(Moss et al. 2015), the kindergarten teachers in the group emphasized the sig-
nificance of developing students’ spatial reasoning skills at every opportunity. 

Learning Mathematics When Students Are New to Schooling and New to English



108

The teachers hypothesized that ELL students’ development of mathematical 
concepts and mathematical language would be accessible within a concrete mea-
surement context. What problems about this table (see Fig. 1) could be posed to 
develop ELL students’ mathematical thinking and language?

Using the non-standard, uniform lengths of the small and large rod, the teachers 
brainstormed problems like

• How many small rods would it take to measure the length of 1 side of the table?
• How many small rods are needed to be the same length as 1 large rod?
• How many large rods would it take to measure the lengths of 4 sides of the table?
• How many small rods would it take to measure the lengths of 4 sides of the table? 

How do you know?
• What is the relationship between the small rod and the large rods?

The teachers anticipated several key details to develop the “language of mathemat-
ics,” in terms of

• mathematics concepts—length using non-standard uniform units, multiplicative 
comparison (e.g., half, double of a length, 2 times as much as), rectangle, side 
length of a rectangle (e.g., 2 pairs of same size lengths), perimeter of a rectangle 
(e.g., 2 pairs of opposite side lengths are the same, so that the perimeter of a 
rectangle is the sum of 2 pairs of opposite side lengths);

Fig. 1 Table image
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• mathematics vocabulary—shorter, longer;
• representational model—length of bar;
• relational patterned statement—“If … then …”, greater than, less than.

When the teachers realized that a learning trajectory linear measure could be 
described in terms of transitions from qualitative, to additive, to multiplicative rea-
soning, they refined their questions to be specific and intentional about the kinds of 
mathematical thinking the students could use to build from previous learning 
discussions:

• Qualitative (Attribute)—“Tell me something about the large rod and the small 
rod” (e.g., The small rod is shorter than the large rod. The large rod is longer than 
the small rod;

• Additive—“How many small rods makes the same length as one large rod?” 
(e.g., two short rods is the same length as one large rod);

• Multiplicative—“Compare the small and large rods. If you have two large rods, 
then how many short rods do you need?” (e.g., the small rod is half as long as the 
large rod, the large rod is double the length of the small rod).

In this case, the problems the teachers created and revised reflected their introduc-
tory use of mathematics vocabulary (e.g., shorter, longer) for the purpose of prompt-
ing the ELL students to describe comparative length measurement attributes, using 
the logical connective “than.” The lengths of different objects in the classroom were 
directly compared with finger gestures showing difference in lengths between two 
objects, in order to consolidate the meaning of shorter and longer. The students in 
grades 3 to 8 understood that both objects needed to be aligned on one end and then 
the length at the other end showed the difference in the length. The structure of 
comparative sentences, like “The small rod is shorter than the larger rod” and “The 
larger rod is longer than the small rod” were used with gestures as the students were 
comparing the lengths of different objects in the classroom. These observations 
focus on the use of logical connectives (than) to form their observation and explana-
tions using their direct linear measures.

The teachers’ subsequent questions (e.g., “How many small rods would it take to 
measure the length of one side of the table?”), with gestures inferring the compari-
son of lengths, prompted the students to take a more active response and directly 
compare the lengths of the rods. They cut out paper models directly from the dia-
gram of the small and large rod and physically compared the lengths by folding the 
larger rod and superimposing the small rod over it. The ELL students happily 
reported through gesturing with their fingers the quantities 2 and 1, which was 
 complemented with other students’ words, such as that it took “2 small rods to make 
1 large rod” and that “the small rod is half of the large rod.” These explanations 
include the use of logical connectives (and, because, then) to communicate the 
sequence of actions they took for their direct linear measurement.

Thus, the introductory proportional reasoning concepts, double and half within a 
concrete measurement context, provided the ELL students with greater awareness 
of the relationship between double and half, as well as differentiating between the 
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explanatory statements that use “than” for comparison and “then” for sequencing of 
mathematical observations and explanations. The students’ use of these patterned 
statements is leveraged and further developed in the next example.

 Proportional Reasoning Using Canadian Coins

Because the ELL students are also new to Canadian culture, the teachers anticipated 
that student learning of proportional reasoning would be more meaningful and better 
understood if it was situated within the functional aspects of the students’ daily lives. 
Learning about Canadian currency was of great interest to the students. The follow-
ing example was developed for use with ELL students in grades 3 to grade 8. The 
Ontario mathematics curriculum requires students to work with money up to total 
amounts of $5.00 using all the different coins. In the school, the students exchange 
coins, like toonies (two dollars, $2 or $2.00), loonies (one dollar, $1 or $1.00) and 
quarters (25 cents, 25¢ or $0.25) in order to make purchases during $2 pizza lun-
cheon, popcorn snack sales during school dances and school baked goods sales.

During a mathematics study group session, the teachers co-constructed a bansho 
(board-writing) plan, which is reproduced below. It is a record of the teachers’ prep-
aration for and anticipation of the students’ co-constructed mathematics and lan-
guage learning during a lesson, which is focused on determining money amounts in 
relation to the multiplicative relationship between coin values. Also, enfolded in the 
lesson is the relationship between arrays of objects (coins), repeated addition of 
objects and the equivalent multiplication expression. The mathematical annotations 
on the bansho (board writing)  plan are organized to make explicit students’ co- 
constructed ideas within the structure of patterned number equations, which can be 
later leveraged when grade 7 and 8 students develop relationships between the 
structure of number equations and algebraic equations for linear relations.

Look at Fig. 2. (Note that at the time of this study, one cent coins were still in use. 
The coins have since been discontinued, but cents are still used in calculations, so 
one cent units can still be represented with other unit chips.) What do you notice 
about the teachers’ thinking about the “language of mathematics?”

This bansho (board-writing) plan (see Fig. 2) represents the anticipated student 
responses to the lesson problem, “How many nickels would it take to have 75¢?” as 
well as the key mathematical details that are co-constructed by the students as a 
result of class discussion (i.e., explanation, analysis, questions, comments), about 
the student solutions.

Japanese bansho has been “interpreted and adapted so that it complements the 
Ontario curriculum’s emphasis on teaching and learning mathematics through prob-
lem solving and supports the current exploration of collaborative approaches to 
knowledge building in the classroom” (OME 2011, p. 2). Bansho (board writing) is

• a mathematics instructional strategy that makes explicit students’ mathematical 
thinking and provokes students’ collective knowledge production through strate-
gically coordinated discussion, organization and mathematical annotation of stu-
dents’ solutions to a lesson problem
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• an assessment for (and as) learning strategy that enables the teacher and students 
to discern the range and relationships between mathematical ideas, strategies and 
models of representation

• a classroom artifact that is constructed collectively by the teacher and students in 
order to display the mathematical relationships derived from students’ solutions; 
it can be organized and used as a mathematics learning landscape or as a math-
ematics anchor chart. (OME 2011, p. 2)

The teacher’s bansho (board-writing) plan focused on integrating several number 
concepts and relationships, using the measurement context of money, such as

• coin images in relation to coin names
• coin names in relation to coin values
• coin values in relation to other coin values
• skip counting to repeated addition to determine a sum
• grouping to multiplication arrays to determine a product
• the functional use of the associative property for multiplication and the distribu-

tive property for multiplication.

The ELL students were aware that the Canadian penny coin (1¢) was no longer in 
circulation as of February 4, 2013. The teachers believed it was necessary to include 
it as a unit coin from which multiplicative relationships among the coins nickel (5¢), 
dime (10¢), quarter (25¢), loonie (100¢ or $1) and toonie (200¢ or $2) could be 

Fig. 2 Coins bansho (board-writing) example
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explored. ELL students were very interested in understanding the multiplicative 
relationships between cents and dollars, as they could apply that knowledge directly 
into their everyday school experiences (e.g., purchasing pizza lunch, paying for 
school trips) and shopping at the local grocery store and shopping malls.

The teachers emphasized the coordination of students’ mathematical talk for 
learning mathematics and for learning the language of mathematics. Their lesson 
plan showed that they believed that the “language of mathematics” involves more 
than mathematics vocabulary (e.g., naming coins, such as nickels and quarters). It 
includes the use of logical connectives (e.g., and, because, if, then, so), which pro-
vides a structure for making explicit multiplicative relationships between the num-
ber of coins and coin values using patterned mathematical statements and equations. 
The number of coins were modelled in groups and arrays, which required the stu-
dents to interpret the text and graphics of the types and number of coins, coin values 
and money amounts. Different sentence structures were used repeatedly to show 
logical mathematical arguments using patterned statements, to represent equiva-
lency between repeated addition and multiplication expressions, as well as the intro-
duction to the grades 7 and 8 concept of a linear relation or constant rate of change 
(e.g., as the number of columns increases by 1, then the number of nickels increases 
by 3 or the amount of money increases by 15¢).

Thus, in the design of this work on proportionality, the teachers found ways to 
integrate:

• mathematics learning goals relating to money, number and multiplicative 
relations;

• mathematical process goals relating to organising and explaining thinking;
• and language learning goals, including vocabulary and sentence structures for 

explanations.

The regular use of patterned ‘if – then – because’ sentences, for example, should 
support students simultaneously to develop mathematical reasoning and the lan-
guage of mathematical reasoning.

 Discussion

The context for mathematics teaching at this Toronto school is extremely challeng-
ing. Teaching mathematics to heterogeneous groups of students, including students 
who have attended the school from kindergarten alongside refugees who have only 
recently arrived in Canada, are beginning learners of English and have little or no 
prior schooling, is demanding. Teachers need to attend to the mathematics learning 
needs of all these students. The research literature offers some valuable insights 
relating to teaching mathematics to ELLs. There is much less literature, however, on 
teaching mathematics to students with little prior schooling, or on teaching mathe-
matics to refugees, let alone teaching mathematics in the context of all three of these 
challenges.
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Nevertheless, the teachers from the mathematics study group used the key points 
identified in this chapter to analyze their mathematics teaching practices and develop 
concrete strategies that would improve the support of the ELL students in their 
mathematics classes. These strategies included

• linking mathematics and language learning objectives;
• identifying a range of linguistic features, including vocabulary, logical connec-

tives, and sentence structures, as relevant for a particular mathematics unit;
• using sentence patterns to support the development of explanations, definitions, 

etc.;
• including and linking different representations of mathematical concepts and 

related mathematical language structure using concrete materials, labelled dia-
grams, models, several different symbols and the written word;

• planning language and mathematics learning trajectories within bansho (board- 
writing) preparation.

As a result, the mathematics study group was able to make some progress towards 
addressing their original questions. This work was not without its tensions. For the 
teachers and the principal, it is undoubtedly overwhelming to have 90–95% of the 
student population at some stage of ELL development. Because this Catholic ele-
mentary school has an ongoing stream of ELL learner registrations throughout the 
year (usually of refugee status), the teachers experienced difficulty in creating 
timely next steps instruction for each ELL learner relative to the current mathemat-
ics learning goals set for the whole class.

Tracking ELL student learning and progress is a priority at the school, with 
regards to classroom assessments, board standardized tests at grades 2, 5 and 7, as 
well as EQAO provincial standardized assessments. Based on the teacher’s infer-
ence of the school’s provincial assessment scores from 2012–2015, there has been 
improvement over the last 4 years (i.e., from 15% to 27% for grade 6 students who 
are achieving at level 3 or 4). Yet, the teachers were disheartened that the reported 
student scores continued to be significantly below the provincial average. However, 
the grade 3 students had shown greater achievement increases over the same three- 
year period (i.e., 22% to 37% are achieving at level 3 or 4). Also, they noted a 
 consistent achievement score differential between the grade 3 and grade 6 students. 
The local school improvement team (ELL and divisional teacher representative) 
analyzed the EQAO mathematics student scores further and reported that every ELL 
student showed improvement from grade 3 to 6. So, what accounts for the lower 
EQAO achievement on the junior mathematics assessment?

At this school, learning mathematics through problem solving is about all stu-
dents co-constructing mathematical ideas, methods and strategies by explaining 
their methods and asking their classmates questions for clarification and mathemati-
cal details. In particular for the ELL students, the teachers reported that it would take 
about 3 to 6 months for them to actively engage in the mathematics class by solving 
lesson problems (individually or in pairs), responding during class discussions and 
building on other students’ ideas with comments and questions. The teachers inferred 
that ELL students’ minimal oral participation is not solely attributed to their minimal 
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use of the English language, as Middle Eastern refugee children have learned to 
mistrust any institution. Several teachers recounted how younger ELL students stood 
silent and still; an older ELL student explained, “Our parents tell us to be quiet and 
say nothing when asked questions.”

During the first few months of school, ELL students’ mathematical communi-
cation is limited to head nodding, pointing at the board-writing, the use of symbols 
for simple calculations. Because bansho (board-writing) provides a visual struc-
ture for students, much of the ELL students’ processing of the mathematics learn-
ing is only evident through their note-taking. Teacher emphasis of particular parts 
of the bansho (board-writing) in relation to ELL students’ note-taking focuses stu-
dents on particular parts of their notes. ELL students’ classmates often interpret 
what is written on the board, not while note-taking, but when the class is finished 
and the other students have left. It is common for early-stage ELL students to go to 
the chalkboard and listen to ELL classmates with more advanced English profi-
ciency explain each part of the board-writing (mathematics terms, explanations, 
labeled diagrams, student solutions to one lesson problem) and ask them questions 
to check for their classmate’s understanding of the written record of the class’s 
mathematical discussion. It is at this time that ELL students are orally communi-
cating their mathematical understanding. Throughout a lesson, it is common to see 
some ELL students read aloud their notes, while other ELL students shake their 
head, say nothing, divert their gaze to their desk and/or put their head down on 
their desk.

This work raises important questions for research. The questions and challenges 
identified by teachers at this Catholic elementary school in many cases have not 
been adequately addressed by researchers. There is clearly a need for substantial 
research on teaching mathematics to refugee children, who have often made long 
and arduous journeys, lived in multiple unstable situations, who may have been 
traumatized and who may continue to suffer from psychological problems. These 
students, more often than not, have had little or no formal schooling prior to their 
attendance at an urban school, like this Catholic elementary school. For many of 
these children, attending a school like the one described provides them with a safe, 
stable, routine and a caring environment. Mathematics has a place in this 
 environment. The work we have described shows that success is possible, but much 
remains to be done.
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Introduction to Students at Risk: Case  
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Abstract Students deemed at risk in mathematics, as chosen by their classroom 
teachers, were studied in this series of case studies of grades 7, 8 and 9 students. A 
researcher shadowed each student individually during several mathematics periods 
per week over a full semester, in order to allow a relationship with each participant 
to develop. A wide range of different student characteristics, as well as teacher 
behaviours, was observed across the cases. Not only was it found that many students 
were disenfranchised with mathematics, a broad range of other issues were observed. 
These included reading difficulties, attendance issues, home life challenges, low 
self-esteem, and extreme shyness. The relatively long duration of the study and the 
one-on-one nature of the intervention allowed the researcher to develop a relation-
ship with the participants, which may have contributed to the willingness of the 
students to share their thoughts and feelings in a way that would not have been pos-
sible with the classroom teacher working alone. Differences in teacher style were 
also found, from more traditional, to a teacher who deeply believed in reform-based 
learning, but was highly challenged by the environment to the point of reverting at 
times to more traditional practices.

Keywords Students at risk · Mathematics teaching · Secondary · Struggling 
students in mathematics · Case studies of mathematics students · Self-concept and 
mathematics

It is often the case that prospective teachers of mathematics choose teaching because 
their own school mathematical experiences were positive ones. Yet typically, both in 
practica and early in their career, new teachers may find themselves assigned to non- 
university bound mathematics classes, such as the Applied1 stream in Ontario. 

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied).
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The extreme angst, fear, apathy and insecurity felt by many of the students in such 
classrooms (Balfanz et al. 2006; Hannula 2006) are simply beyond the experience 
base of many more able mathematics students—including those who choose to 
become mathematics teachers. Here, case studies of students in three different such 
intermediate classrooms, who were deemed by their teachers to be “at risk” in math-
ematics, are presented. These case studies may be very eye-opening for those who 
have mostly experienced success in their own mathematics learning. The contribu-
tion of this study is its in-depth description of the participants, who, through learn-
ing to trust the researcher, shared their fears and struggles with respect to the 
learning of mathematics. The level of pain experienced by each participant in their 
mathematics class was far greater than we ever imagined.

 Context

This study took place about 10  years ago in Northwestern Ontario, and while 
slightly dated by now, nevertheless provides rich and thick examples of classrooms 
typical to the time many current teacher candidates were themselves students in 
intermediate (grades 7 to 9) classrooms. The study came about in the context of a 
study of professional learning groups (Kajander and Mason 2007), in which teach-
ers in one such group expressed the desire to learn more about students at risk, and 
willingly offered up their classrooms for such a study. Funding was obtained, and an 
initial group of about ten students in various schools and classrooms were identified 
by their teachers who were in the above professional learning group. A graduate 
student was chosen, permissions obtained, and visits to each of the student partici-
pants were set up. The graduate student researcher, a young female student who we 
felt would be minimally intimidating to the participants, sat one on one with each 
participant for two to three full mathematics periods for an entire semester. Data 
sources included detailed researcher field notes, student work samples, and student 
attendance and grade records. This extended time commitment allowed the partici-
pants to develop a relationship of trust with the researcher, sharing with her personal 
information not typical of a formal research study.

 Participants

Data collection as noted above involved about ten student participants. Given the 
large number of classroom visits, up to 40 per participant, a large volume of data 
resulted, and some commonalities in traits were observed; thus, six illustrative cases 
were chosen on which to focus in more depth. The three cases presented here are an 
amalgam of these six cases which were selected for publication at the end of the 
study (Kajander et al. 2008). For the sake of brevity, the three students described to 
follow are drawn from these cases, encompassing their characteristics. One example 
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each from a grade 7, 9 and Grade 9 Applied (the non-university mathematics/sci-
ence stream in Ontario) class is provided here.

 Results

 Brian

Brian was a quiet and well behaved student in a grade 7 classroom. The teaching 
environment was a traditional one, in which discussion was not particularly encour-
aged. Lessons were provided formally by the teacher. When the teacher asked a 
question during a lesson, wrong student responses were treated with comments such 
as “does anyone have a better answer?” After each lesson, students were to work on 
their own on assigned work, individually at their desks. During each day’s mathe-
matics seatwork, students were allowed to ask a maximum of two questions: one of 
a classmate, and one to the teacher.

Brian was deemed by the teacher to be falling behind in mathematics, so she 
assigned him to work on some remedial mathematics workbooks of about grade 5 
and 6 levels. He was required to do this while sitting at a desk alone in the hall. 
Occasionally the teacher would collect Brian’s work and grade it, and that was his 
main feedback from the teacher. Of course his working in the hall alone meant he 
was missing the current day’s grade 7 lesson.

When our study began, the researcher observed a few class lessons, and then 
joined Brian at his hallway desk. When Brian appeared stuck by a question, she 
would ask him what he found difficult. It became clear very soon that Brian’s main 
difficulty was with reading the question. For example, Brain struggled with a ques-
tion which he read as asking for the perimeter of a “potato”; once he was able to 
understand it was actually a “patio” he was to measure, he was able to complete the 
question independently and correctly.

While Brian did have some other characteristics which may have added to his 
difficulties, such as a tendency to messiness and lack of organisation, his overall 
mathematics performance improved greatly once he was receiving assistance with 
his reading.

 Diane

Diane was a grade 8 student in a school with an open concept design, which thus 
had noisy classrooms. Her teacher believed strongly in the importance of real world 
contexts in learning, group work, use of manipulatives and so on, and in fact had 
been moved to this particular school to work with the students at this school, which 
was viewed as a challenging one, as he was acknowledged as a strong teacher.
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The teacher tried very hard to engage the students in contextual tasks that might 
interest them. However, the students were very distracted by the noise level from 
other classrooms. When a lesson which required the use of manipulatives was used, 
the students were very disruptive and used the manipulatives in other ways, such as 
to make “guns.” Finally, in frustration, the teacher put the materials away, causing 
the students working on the task to become angry as they could now no longer com-
plete it as written. An interesting side note to this case is that as the term progressed, 
the teacher became more and more dispirited. Originally brought to the school as a 
skilled teacher to deal with this group of students, he resorted more and more to 
traditional lessons, without the use of materials. His enthusiasm and energy were 
observed to significantly flag during the year, and by the end of the semester he 
appeared very discouraged.

In this school, as well as in this class, there was a large percentage of self- 
identified Indigenous students in the classroom (up to about one third overall), and 
Diane was one of these. Diane sat at the back, and rarely spoke during lessons. She 
was extremely reticent when it came to any sort of group work and would hang back 
from it. If she had a question when working on assigned work, or did not under-
stand, she simply stopped working. Sometimes she stopped even after writing down 
a correct answer. When asked why by the researcher she responded that “it’s prob-
ably wrong.” Diane simply refused to go up to the teacher’s desk, either to pick up 
materials or manipulatives, collect or submit work, or to ask a question. When 
something needed to be picked up she would whisper to the researcher, “can you 
go?” Her fear of approaching the teacher seemed to stem from past trauma when 
asking teachers for help. She explained to the researcher that teachers had gotten 
angry with her in the past, and she had simply shut down. Whether real or imagined, 
this fear was very real to her. She was convinced the teacher did not want to talk 
with her as she was “so bad at math,” and she was sure he would get angry.

Diane’s struggles may have stemmed as well from things other than her reticence 
to participate. Her attendance was very poor and on average she missed about a third 
of the classes due to absence or lateness. Sometimes she was required to stay home 
to babysit her siblings. She had also moved a great many times over the last number 
of years, often attending two different schools during a given school year or being 
away from school altogether for months.

The only way Diane seemed to do any substantial work was when the researcher 
sat next to her and encouraged her. She did not always need help with the mathemat-
ics; sometimes simple words of encouragement were all she needed to complete a 
question. Yet she was very reticent to speak with the teacher when he approached 
her, and would absolutely not approach him herself. We did not at any time witness 
any behavior from the teacher that seemed to cause this response; rather, we had the 
sense that it stemmed from past experiences in mathematics.

Encouraged individually by the researcher, Diane did begin to do a bit of math-
ematics work, and showed some progress. She did not own a pencil case or basic 
supplies, and appeared happy to receive these as a gift from the researcher. We had 
a sense that this relationship between the two of them contributed to her progress. 
On the last day of the study, I witnessed Diane’s farewell to the researcher, who had 
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by now become her helper and friend. “Who will help me now?” she whispered 
plaintively, with tears in her eyes. It was the saddest moment I have ever felt during 
a research project, and touches me to this day.

 Susan

Susan was in a Grade 9 Applied mathematics course, an Ontario course for non- 
university mathematics or science bound students. The teacher appeared to care 
deeply about her students, however her practice was typically traditional. Students 
sat at individual desks in rows. The teacher taught a formal lesson at the beginning 
of each class, which went on for quite a while, often at least 40 min. It was  obviously 
carefully prepared, and neatly presented, yet students’ attention drifted after about 
10 min. The students’ off task behavior was carefully timed to take place when the 
teacher was not looking at them—we had the sense as observers that the teacher 
simply had no idea what was going on when her back was turned.

As soon as the teacher-directed portion of the lesson was over, Susan asked to 
leave to “go to the washroom.” She usually left the room at least once, if not twice, 
after the lesson for extended periods. When she did sit with the researcher, she often 
appeared distracted and disinterested, and often asked wildly off-task questions 
such as “do you think animals can get high?”

Nearly all the assigned homework tasks and questions were highly abstract, and 
Susan displayed almost no interest in the material. One question which involved a 
perimeter of a room had her slightly more interested. In a subsequent question, she 
had to find the area of a right angle triangle inside a rectangle. She could not remem-
ber the formula for triangle area, but she came up with the idea on her own that she 
could take half of the rectangle area. Other instances which suggested a grasp of the 
material indicated that her issues were more to do with motivation and interest than 
ability. When the researcher suggested that she might need her mathematics credits 
to graduate from high school, Susan responded that she planned to collect unem-
ployment insurance as a way to get by in life.

Samples of student work in the classroom illustrate the decontextualized nature 
of much of the work, which often involved terms and definitions rather than prob-
lems which might be relevant to the students. For example, see Fig. 1.

In the provided example, note that the feedback given was not descriptive but 
rather judgemental and evaluative—the “thinking cap” stamp marked by the teacher 
on the bottom right of the paper might suggest that the student should simply try 
harder. Formative feedback was not evident in the sample. Note also the very decon-
textualized and formal nature of the questions.

As when working with Diane, the researcher provided encouragement, appropri-
ate questions, and gentle nudges to Susan to stay on task. At the beginning of the 
project, Susan had failing grades, but by the end had improved enough and engaged 
in enough work to earn an overall pass in the course. She remained relatively unmo-
tivated throughout however.
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 Discussion and Conclusions

The case studies presented here provide a backdrop for some of the subsequent 
chapters in this volume, such as those by Macaulay (Part II) and Jao (Part III), 
whose studies share ways of supporting struggling students more effectively. 
Keeping in mind some of the characteristics of the students at risk in the current 
chapter might help to motivate and ground the further readings on supporting stu-
dent learning with more reticent mathematics learners.

In a subsequent paper reporting on the current case study work, we summarized 
some of the issues as follows:

The students in the study demonstrated varying characteristics and levels of mathematical 
understanding. However, most were significantly disengaged from the mathematics class-
room activities; attendance and attention span were problems for some. All appeared shy, 
unmotivated, and/or hesitant to ask questions. All appeared to be significantly lacking in 

Fig. 1 Sample of graded student work. (Note the “Thinking Cap” stamp on the bottom right 
corner)
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self-confidence. In some cases, these underlying issues and frustrations had manifested 
themselves into substantial behaviour problems: they were completely off task. (Kajander 
et al. 2008, p. 1058)

Readers are encouraged to seek solutions to these observations in subsequent 
chapters, as well as in their own classroom teaching experiences. It may be impor-
tant to remember the response of the grade 8 teacher in this study however, and how 
he became more and more discouraged: working with students at risk can indeed be 
emotionally challenging for teachers. It may help to remember that, for such stu-
dents, the behaviours described may have developed in response to years’ worth of 
bad experiences in mathematics. Teachers can hardly expect to undo this all at once. 
Further, it must be understood that many of these students’ difficulties were broader 
than simply having gaps in their mathematical knowledge.

Although I had worked in such classrooms myself as a teacher prior to engaging 
in this study, the particular design of this study allowed me a window into these 
students’ feelings, the likes of which I had not seen before. The depth of their pain 
and suffering in mathematics class, as well as for some in other aspects of their 
lives, was an eye-opener.

Later chapters in this volume report on more recent work in grade 9 classrooms 
which has strong potential to improve our understanding of best practices for such 
disengaged students. The importance of such efforts cannot be over-estimated.
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Abstract In this chapter, we report on the results of a 4-year professional develop-
ment projects focusing on improving teaching and learning for grade 9 students in 
Ontario. The participants were administrators, department heads and teachers from 
four secondary schools out of ten involved in a mathematics professional develop-
ment project. At each school, an implementation team was responsible for identify-
ing the mathematics strands to be  investigated, share resources, discuss and 
implement teaching practices, collaborate on assessment (particularly moderated 
marking), and co-teaching/peer coaching. The university research team visited the 
participating schools to support their Mathematics Implementation Team twice per 
year. We describe four case studies to illustrate the various ways in which these 
participants improved the provincial large-scale mathematics assessment test scores 
from 80 to 256%. This study shows that professional development is more effective 
when administrators, department heads and teachers participate cohesively  with 
university partners to improve mathematics learning in schools.

Keywords Middle school mathematics · Teacher professional development · 
Teacher inquiry · School improvement

This chapter describes a 4-year professional development project that involved 10 
schools, 10 school administrators, and 60 teachers of Grade 9 Applied level math-
ematics across two Ontario school boards. In the Ontario grade 9 and 10 curricula, 
Academic level courses are the most rigorous, focusing on abstract concepts in 
mathematics, while Applied level courses are less rigorous, emphasing practical, 
concrete applications of concepts. This study yielded statistically significant 
increases in students’ year-over-year scores on Ontario’s annual Education Quality 
and Accountability Office (EQAO) large-scale mathematics assessments. Over the 
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4-year professional development project, on average, the percentage of students at 
Level 3 (meeting the Provincial standard) or 4 (exceeding the Provincial standard) 
more than doubled. Students, who were previously underperforming relative to 
Provincial EQAO averages, were now performing at or close to Provincial norms.

With some variation in the degree of improvement among schools, 
the Collaborative Inquiry Project was, overall, successful in improving teaching as 
well as student learning in Grade 9 Applied mathematics. This result is significant 
as research has indicated that 85% of students who fail a mathematics course in 
grade 9 eventually drop out of school in the Toronto District School Board (Brown 
2008). Students, normally considered at-risk for failing, can be provided with a 
mathematics program that will help their chance at success (Kajander et al. 2008). 
Recent provincial test data suggest that half as many students in Ontario Applied 
level classrooms are reaching the provincial standard compared with the number of 
students doing so in Academic courses.

The Collaborative Inquiry Project research demonstrated that a collaborative 
teacher professional learning community is essential for supporting improved stu-
dent learning and further suggested that the social contexts of the professional 
development, such as workshops, online communication, and assistance by mathe-
matics implementation teams, are central to the sustainability of professional devel-
opment initiatives has also supported the importance of community and social 
context in professional development in Ontario.

 Literature Review

Studies have linked student academic success to the knowledge and pedagogical 
skills of their teachers (Baumert et al. 2010; Darling-Hammond and Sykes 1999; 
Firmender et al. 2014; Fullan et al. 2006; Glazerman et al. 2009; Hattie 2009; Nye 
et al. 2004; Slavin and Lake 2008; Wilson et al. 2001). Teaching is an extraordi-
narily complex profession, requiring a mastery of foundational content knowledge 
(Ball et  al. 2008; Mitchell et  al. 2014), as well as a sophisticated repertoire of 
instructional strategies, and the ability to flexibly tailor practices to particular situa-
tions and the needs of individual learners (Bransford et al. 2005; Cole and Knowles 
2000; Turner-Bisset 2001). It is not surprising, therefore, that teacher professional 
development is the focus of a great deal of research.

Where traditional “one shot” sessions, delivered primarily through lecture or 
other transmission-oriented methods, have been found to be largely ineffective 
(Arbaugh 2003; Gojmerac and Cherubini 2012; Hattie 2009; Warren-Little 1999), 
successful interventions typically employ a combination of some or all of the fol-
lowing elements: job-embedded learning, collaborative (peer) inquiry, attention to 
and tracking student performance, institutional and administrative support, the pro-
vision of time and other resources, and a commitment to continuous, sustained, and 
intensive engagement in professional development initiatives (Avalos 2011; 
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Darling-Hammond et al. 2009; Guskey 2000; Hawley and Valli 1999; Holm 2014; 
Jao 2013; Jao and McDougall 2015; Kajander and Mason 2007; Suurtaam and 
Vezina 2010). While there is a lack of agreement regarding the relative merits and 
efficacy of particular methods (e.g., action research vs. lesson study), there does 
appear to be a growing consensus that effective professional development requires 
a skilful interweaving of the above-mentioned factors (Berliner 2005; Fullan 2001, 
2005; Guskey 1995, 2000, 2003; Hammerness et al. 2005; Hawley and Valli 1999; 
Jao and McDougall 2016; Lieberman and Wilkins 2006; McDougall and Jao 2009; 
McDougall et al. 2010).

Recent innovations in professional learning for teachers have included a wide 
variety of collaborative approaches to professional development. Collaborative 
teacher development has been shown to be successful in enhancing teacher learning 
as well as driving improvements in student learning (Holm 2014; Jao and McDougall 
2015; Kazemi and Franke 2004; Little 2003; Nelson and Slavit 2008; Slavit and 
Nelson 2010; Soine and Lumpe 2014). A vehicle for creating community and reduc-
ing isolation, collaborative, school-wide professional development has been found 
to be effective in creating a sense of shared community (Darling-Hammond et al. 
2009; Huffman et al. 2003). For teachers, being part of an implementation team is 
important, especially when the team includes strong administrative support 
(Egadawatte et  al. 2011; Macaulay 2015; McDougall and Jao 2009; McDougall 
et al. 2010). With respect to mathematics, the focus of the current study, research 
has shown that teachers who believe that they are part of a capable instructional 
team support higher student achievement on mandated assessments of mathematics 
performance (Goddard 2001; Macaulay 2015; Ross and Gray 2005).

A series of case studies were used to create a conceptual framework called the 
“Ten Dimensions of Mathematics Education.” The Ten Dimensions were developed 
to help elementary and secondary school teachers better understand the many ele-
ments of effective mathematics instruction, and to identify areas of improvement 
(McDougall et  al. 2006). The framework has also been helpful for teachers to 
improve the performance of special needs students (Egadawatte et  al. 2011; 
McDougall and Jao 2009; McDougall et al. 2010). Framed within a social construc-
tivist perspective (Bartlett and Burton 2007; Cobb and Yackel 1996; Copsey-Haydey 
et al. 2010), the research conducted in Grade 9 Applied level mathematics helped us 
to better understand how teachers work in collaborative inquiry teams and how they 
integrated their new experiences into existing knowledge structures.

 Method

The research study was a professional development project involving 10 schools, 10 
school administrators, and 60 teachers of Grade 9 Applied level mathematics across two 
large urban Ontario school districts. The data was primarily collected through interviews 
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with teachers and administrators via two sets of school visits, four full- day workshops, 
and an online wiki for shared resources.

The schools were selected based on ranking in the bottom one-third on the EQAO 
scores for the Grade 9 Applied level classes in the two boards. A critical component 
of the Collaborative Teacher Inquiry Project was the establishment of a Mathematics 
Implementation Team at each participating school. Comprised of an administrator, 
the department head of mathematics or curriculum leader, and three to five partici-
pating teachers, the team was responsible for identifying the mathematics strands 
that would be investigated, sharing resources, discussing and implementing teach-
ing practices in mathematics, collaborating on assessment (particularly moderated 
marking), and co-teaching/peer coaching. Twice per year, the research team visited 
participating schools to support their Mathematics Implementation Team.

The participants attended four in-service sessions per year at the Ontario Institute 
for Studies in Education (OISE), completed personal reflections about their partici-
pation and learning in these sessions, completed the Beliefs and Attitudes Survey 
(McDougall 2004), and were interviewed by one of the researchers. The Beliefs and 
Attitudes survey was used to identify the areas of improvement from the Ten 
Dimensions of Mathematics Education (McDougall 2004).

 Findings

We will describe two schools in the 2-year professional development project, fol-
lowed by a description of 2 of the 4-year schools. We have selected the four schools 
that initially had EQAO scores where fewer than 20% of the students were at pro-
vincial standard to illustrate the implementation strategies that they used as well as 
the overall impact of the project (Table 1).

 School A

School A is situated in northwest Toronto. At the time of the study, the school had a 
culturally diverse population of approximately 750 students, representing an array 
of cultures, backgrounds, and languages. School A offered courses at both Academic 
and Applied levels, as well as two special programs: a cross-curricular enriched 
program in science, mathematics, and computer science, and a specialized arts 
program.

Table 1 EQAO score increases for schools A and B

School EQAO prior to study EQAO year one EQAO year two Percentage increase

A 9 16 32 256
B 14 30 35 150
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 Implementation Strategies

The implementation team adopted the Ontario Ministry of Education Targeted 
Implementation and Planning Supports for Revised Mathematics (TIPS4RM) 
resources and materials. The TIPS4RM resources were downloaded from the 
EduGAINS website, which hosts the Ontario Ministry of Education-developed 
resources that support Kindergarten to grade 12 policies and programs to improve 
teaching and learning. Their lesson plans incorporated more student-centred 
approaches to teaching through cooperative learning and group work, and included 
rich performance tasks such as creating a children’s storybook to describe distance- 
time graphs, and investigating relationships between variables by performing exper-
iments. The department invested in and utilized technology including: an interactive 
whiteboard (Mobi View), response systems (clickers), and online simulations 
(Gizmos) for learning. One team member was very comfortable with technology 
and provided a motivating and supportive presence for the others.

The team conducted half-day numeracy meetings every 5 weeks to discuss teach-
ing, assessment, and evaluation strategies, as well as to collaborate on lesson plan-
ning, unit planning, and additional projects, such as field trips. The teachers 
also collaborated informally and a result of both formal and informal collaboration, 
teaching methods, strategies, and resources were shared and discussed to a much 
greater extent than before.

 Impact of the Project

The teachers reported that incidents of problem behaviour and student-teacher con-
flicts in their Grade 9 Applied level mathematics classes declined since the imple-
mentation of the teaching strategies discussed during the workshops. Where teachers 
placed a greater emphasis on assessment for learning and increased the role of 
observation and conversation in the classroom, more opportunities for mathematics 
talk occurred between teachers and students, as well as among students, increasing 
learning engagement.

The learning environment improved greatly with the incorporation of technology 
for instructional and assessment purposes. Utilizing an interactive whiteboard in con-
junction with Internet resources, such as consumer websites and online simulations, 
made learning more dynamic and relevant to students’ everyday lives. The incorpora-
tion of clickers into lessons provided students and teachers with immediate feedback 
that informed student learning and teaching practices. Using manipulatives (for 
example, 3D relational solids) to investigate the volume of three-dimensional solids 
grounded student learning in real-life tactile objects. Finally, focusing on building 
healthy relationships and rapport with and between students created a safe and posi-
tive learning environment where learning was a common objective.
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The team noted that some students with a prior history of poor attendance did not 
improve in spite of changes made. They also noted that the sharing of reform teach-
ing approaches and strategies with teachers new to the Grade 9 Applied course were 
not always effective. In the future, the team plans to use demonstration classrooms to 
model new approaches and strategies to teachers new to the Grade 9 Applied math-
ematics course. School A will continue to use technology and new instructional prac-
tices in mathematics classes and expand those strategies to other classes; however, 
the team is seeking ways to provide extra time for staff training in the use of technol-
ogy. As an additional incentive for all teachers to become more comfortable using 
technology, an online learning community (Moodle) is being created for Grade 9 
Applied classes as well as other mathematics courses. As an outcome, the percentage 
of students who attained the grade 9 mathematics credit grew from 64% to 84%.

 School B

School B is a mid-sized high school located in northeast Toronto. Fifty-four percent 
of their students spoke a primary language other than English, and 12% of the stu-
dent body had been in Canada for fewer than 5 years.

 Implementation Strategies

The Implementation Team determined the need for extra practice materials that were 
missing from the TIPS4RM resources. The teachers in School B decided to create a 
student workbook that contained the TIPS4RM materials, resources from the project 
wiki, as well as other helpful resources they either developed or located. In an effort 
to give their students a sense of confidence, they decided to begin the year with a unit 
on measurement, as most students find this one of the easiest strands. Another strat-
egy was the use of tablet computers daily in class. The course materials were loaded 
on the tablets and teachers used the projector to illustrate the work.

The teachers incorporated practice questions found on the EQAO website into 
classes regularly throughout the semester. Additional EQAO review sessions were 
held for students after school on a regular basis.

 Impact of the Project

The teachers reported that their lesson structure became more standardized on the 
three-part lesson plan. They also used a variety of instructional strategies in the 
classroom, particularly the use of cooperative learning strategies. The students 
worked in pairs and small groups on a regular basis in class. The teachers made a 
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strong effort to explain the learning goals for the lesson at the beginning of class and 
to consolidate knowledge at the end of the class.

Before the project, the collaboration amongst teachers was low, only connecting 
formally once or twice per month. During the project, the teachers met and collabo-
rated almost daily. They rotated the responsibility to prepare common assessments 
such as tests, quizzes, and rich tasks.

There was an increase of positive interactions between students and teachers, as 
the students preferred having a workbook geared to the course expectations, rather 
than a traditional textbook. The students were able to make a connection with the 
content of the lessons that were presented via the tablet over  text written on the 
blackboard. The students also recorded more examples from the tablet than they had 
previously  from the blackboard. This increased student achievement improved 
student- teacher relationships.

The team also reported better class attendance. Students increasingly initiated 
the organizing of solutions to mathematics problems without being directed. Other 
teachers within the department who did not teach Grade 9 Applied level students 
noticed how frequently the Grade 9 Applied level teachers were communicating. 
This had the positive effect of increasing discussion about mathematics teaching 
within the department as a whole. In addition, resources were created for Grade 10 
Applied level teachers to use at the beginning of their course to make links to the 
Grade 9 Applied level course. The percentage of students who attained the grade 9 
mathematics credit grew from 54% to 77% (Table 2).

 School C

School C is located in the northwest area of Toronto, and had 1100 adolescent stu-
dents and 1400 adult students.

 Implementation Strategies

The teachers were focused on the use of learning goals in the planning and imple-
mentation stages of the project. The teachers ensured that the students were aware 
of the learning goals at the start of the unit, and were familiar with the success 

Table 2 EQAO score increases for schools C and D

School
EQAO prior 
to study

EQAO year 
one

EQAO year 
two

EQAO year 
three

EQAO year 
four

Percentage 
increase

C 12 10 19 27 31 158
D 20 23 37 31 36 80
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criteria. This was done by sharing rubrics with the students at the beginning of the 
unit so that students were aware of the expectations when completing assignments. 
The teachers used Learning Goals Exit Cards, as well as descriptive feedback on 
assignments.

A differentiated learning strategy was used by the teachers to help their weak 
students understand fully, at their own pace, the requirements while providing more 
difficult questions for stronger students. The learning goals, whether they were easy 
or difficult, helped give students an opportunity for success.

The grade 9 implementation team was able to share and demonstrate a variety of 
effective instructional strategies as a result of team teaching. A Math Coach sup-
ported the co-teaching process, and teachers were able to discuss and practice a 
wide range of successful strategies used by other schools. Both weak and strong 
students were monitored through the use of a Data Wall.

One member of the implementation team ran an after-school numeracy class for 
grade 9 mathematics students to attend for extra support. The school also organized 
a two-week summer program for incoming grade 9 students to bolster literacy and 
numeracy skills.

 Impact of the Project

The school C Grade 9 Applied mathematics implementation team increased the 
amount of collaboration amongst teachers. All of the teachers were enthusiastic and 
open to suggestions. There was an increase in the rapport between teacher and stu-
dent. The teachers developed a classroom culture in which students were not afraid 
to take risks. As a result, students were not resistant to answer questions, suggest 
solutions or share their work.

The project provided an excellent example to other teachers in the department 
about ways in which collaboration can increase the effectiveness of classroom 
teachers when delivering the course curriculum. For example, the English depart-
ment was brought into the Math Department’s Professional Learning Cycle. 
Consequently, English teachers adopted some of the same instructional 
strategies.

The teachers found a number of opportunities for collaboration. Those areas 
included lesson planning  creating  opportunities to observe each other teach and 
debrief their practice. Time was also given to focus on evidence-based instructional 
strategies and track students’ achievement on a Data Wall. All Grade 9 Applied 
mathematics teachers were expected to use TIPS4M materials, investigations, and 
activities in class.

There were some challenges over the four years the school was involved in this 
project. Some teachers found it difficult to change their teaching practice to the 
extent that students became engaged collaboratively during the mathematics period. 
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Turnover in the Grade 9 Applied teaching team also affected consistency of 
approach. In addition, the percentage of students who attained the grade 9 mathe-
matics credit was about 86%.

 School D

School D is a mid-sized collegiate in the eastern area of Toronto. Twenty percent of 
grade 9 students had been in Canada for fewer than 5 years, and 130 had an IEP or 
were supported by Academic Resources. Approximately 45% of the grade 9 stu-
dents were transferred from grade 8 without successfully completing grade 8 math.

 Implementation Strategies

There were a number of implementation strategies that were used by the teachers. 
As an outcome of an OISE Professional Development session, the teachers changed 
the course sequence in order to improve results in geometry and algebra. The teach-
ers now start with Measurement at the beginning of the course to encourage a more 
balanced approach. This is particularly helpful to those students having difficulty 
with number sense and numeration.

They also incorporated the use of more manipulatives and technology (TI’Nspire 
calculators, SMART board and clickers). There were full department sessions on 
the use of TI’Nspire calculators. There were two full-day SMART board training for 
the entire mathematics department plus an additional day on clickers and use of the 
document camera. The teachers compiled SMART board-ready activities for each 
other to access on specific topics facilitating the use of SMART board technology in 
class. They also actively participated in OISE sessions on instructional strategies, 
student tasks, summative evaluations, and the use of technology.

The grade 9 implementation team also participated in co-teaching opportunities 
with other schools and hosted several co-teaching demonstration sessions by the 
school district program department. The culture within the department has changed 
to one where there is constant conferencing and frequent communication about 
instruction for Grade 9 Applied and all other courses.

The teachers focused on assessment practices. They provided on-going student 
feedback through both formative and summative assessment and student conferenc-
ing. The use of weekly quizzes provided students with timely feedback that was 
descriptive and could inform the teachers about students understanding, allowing 
teachers to revisit concepts as needed. The teachers and department head collabo-
rated constantly with other Grade 9 Applied level mathematics teachers—daily 
communication of topics and pacing, same assessments used—including a weekly 
quiz on Friday.
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The teachers created rich tasks for each unit and shared them with one another. 
They embedded EQAO materials throughout the course and in the student work-
book. They used the three-part lesson planning format, as well as collaborative plan-
ning sessions, to enhance the teaching practices. The department promoted a 
cross-curricular approach to numeracy by creating an in-school Numeracy Day with 
a motivating guest speaker.

 Impact of the Project

There were a number of significant impacts of the project on the teachers, the math-
ematics department, and the school. The Grade 9 Applied level team constantly 
conferred on the Grade 9 Applied course, with daily communication about pacing, 
assessment, and instruction.

The grade 9 teachers found that their students were more engaged after experi-
encing increased success. This ceated a positive learning environment, with active 
student participation. There was a decrease in “math phobia” and students were 
willing to approach their teacher for help and clarification. This was partly the result 
of increased access and use of technology and manipulatives by all Grade 9 Applied 
mathematics teachers. In addition, the percentage of students who attained the grade 
9 mathematics credit was about 86%.

We did notice a decrease in the scores during the third year of the study. In this 
year, the department head and two of the experienced Grade 9 Applied level teach-
ers stopped teaching the course and were replaced by two new teachers. We feel that 
there should be some continuity amongst the teachers so that the knowledge can be 
shared in the team.

 Summary

The Collaborative Teacher Inquiry Project focused on the improvement of instruc-
tional strategies for teachers of Grade 9 Applied level mathematics courses, with the 
overall goal of improving student achievement and engagement in mathematics. An 
additional purpose was to investigate collaborative inquiry as a professional devel-
opment strategy for both experienced and inexperienced secondary school teachers. 
The project provided teachers with the opportunity to refine their instructional prac-
tices through inquiry and collaboration with colleagues both in and outside their 
schools.

Teachers found that collaboration with other departments was both  necessary 
and helpful. The special education departments assisted with practice EQAO exams 
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and support for students with IEPs, while, in some schools, other subject depart-
ments found ways to infuse mathematics into their courses. Overall, the teachers felt 
that both internal and external  professional development and collaborative effort 
made this project successful.

Consistency of staffing was a challenge in many of the schools. Teachers were 
concerned that staffing changes would affect the efficacy of a successful team. Some 
teams wanted to ensure that the team remained together for another year to further 
implement the changes required for the course, while others wanted to continue 
their collaboration as a group and redirect their efforts towards another course and/
or grade level. Teachers felt that keeping the team intact was preferable in order to 
sustain growth; however, when staff changes were inevitable, many were able to 
bring new colleagues up to speed during the course of the project.

The most noticeable change was the extent to which teachers took responsibility 
for student learning by the end of the project. Many of the teachers found that their 
students experienced greater success and developed confidence in their mathemat-
ics studies as the teachers changed the teaching-learning dynamic in the classroom. 
They found that increased student engagement and better achievement led to 
improved attendance and in class participation. The non-traditional delivery of the 
curriculum made the most positive outcome  for the students as well as the 
teachers.

The primary benefits of the project were that the teachers and administrators col-
laboratively investigated, discussed and implemented evidence-based teaching and 
assessment strategies and techniques, which culminated in  improvement in the 
achievement of students enrolled in Grade 9 Applied level mathematics. The teach-
ers and administrators learned about strategies and resources that proved successful 
for teachers in other schools and in other school boards. Teachers found ways to 
meet the challenges that they faced in their school environment and to grow as 
reflective practitioners. As a result of teachers working collaboratively to improve 
credit attainment, EQAO scores also rose—significantly, in most schools.

There will always be students with such challenging circumstances such as gaps 
in knowledge of basic mathematics concepts, students with learning disabilities, 
immigrant students learning English, and students living in poverty with the ramifi-
cations these issues often bring. Despite the diversity in their students’ backgrounds, 
the teachers in this project had a significant and positive effect on the outcomes of 
many grade 9 students.

For more papers on these projects, please see (Egadawatte et al. 2011; Jao and 
McDougall 2015; Jao and McDougall 2015; McDougall et al. 2010, 2013; Stoilescu 
et al. 2015). Other recent work (Holm 2014; Holm and Kajander 2015; Macaulay 
2015).
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Courses

Alison Macaulay

Abstract Streaming—the practice of sorting students into ability groups or 
streams—is a common practice in many jurisdictions around the world, and often 
favoured for mathematics classrooms. Research has established, however, that 
streaming leads to lower outcomes for those students who are placed in the lowest 
streams (or tracks). This paper begins with a discussion of the literature on stream-
ing, highlighting the issues that contribute to the disparity in student achievement.

The paper then moves in to a discussion of streaming in the province of Ontario, 
Canada where grade 9 students who take the lower—or Applied mathematics 
course—are more likely to not reach the provincial standard on the provincial 
assessment than they are to reach it. The paper highlights findings from case study 
research of four Ontario schools that have bucked this trend and can boast strong, or 
unusual, performance for all of their grade 9 mathematics students, regardless of 
course selection. The research is distilled into ten recommendations for Applied 
mathematics classroom settings.

This paper offers practical advice for teachers who aim to create mathematics 
learning environments where all students can thrive.

Keywords Applied mathematics · Streaming · Tracking · Effective mathematics 
teaching

This chapter describes some of the outcomes of recent research around best practices 
in non-university stream classes at the grade 9 level. These best practices are 
described based on data collected from Ontario schools which showed strong 
scores, or unusual growth, on provincial assessment scores in Grade 9 Applied 
mathematics.1 Based on this research, recommendations for teachers are described. 

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied).
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The practice of separating grade 9 students into different levels of courses, referred 
to as streaming, will be discussed first.

 Streaming

In many jurisdictions, students will be streamed at some point during their secondary 
schooling, usually at the grade 9 or 10 level. This process involves sorting and 
grouping students into different courses, based on their perceived ability, for the 
purpose of instruction (Oakes 1985). The typical rationale for streaming is an effi-
ciency argument (Van Houtte 2004)—presumably when students are placed in 
homogeneous classes or groupings, teachers can adapt the materials, level, and pace 
of instruction to better meet the needs and cognitive level of individual students. 
This thinking implies a fixed mindset towards mathematics learning and a belief 
that students have relatively static levels of ability and should therefore be taught 
accordingly (Boaler et al. 2000). It is worth noting here that mathematics teachers 
are more likely to support streaming than are teachers from any other discipline 
(Talbert 1995). In Ontario, for example, for students to switch from the Applied 
(non-university mathematics/science stream) pathway to the Academic (university) 
pathway, they must take a transfer course. No other discipline has this requirement. 
This fact, in and of itself, is worthy of reflection.

Although streaming mathematics courses is prevalent in Canadian and North 
American secondary schools, the practice is not supported by research. In fact, 
researchers have demonstrated that when they control for ability level and socioeco-
nomic status, being in the top stream accelerates achievement and being in the low 
stream significantly reduces achievement, especially for mathematics (EQAO 2012; 
Gamoran and Berends 1987; Hamlin and Cameron 2015; Slavin 1990). Furthermore, 
the achievement between students in the high and low streams becomes more and 
more unequal over time (Gamoran 2002), resulting in gaps that inevitably widen as 
students progress through the grades. In the province of Ontario, for example, there 
is a solid decade of provincial assessment data that shows students in the higher 
stream of grade 9 mathematics are twice as likely as their counterparts in the lower 
stream to reach the level of achievement that the Ontario Ministry of Education has 
set as “the provincial standard” on the provincial assessment, which is equivalent to 
a “B.” There is also a solid base of evidence that demonstrates poor, working-class, 
and minority students are disproportionately labeled as slow learners in elementary 
schools and assigned to the lowest streams in secondary schools (People for 
Education 2013). For example, there are about four times as many students with 
special needs in the Applied stream of grade 9 mathematics in Ontario. To make 
matters worse, there is a third and even “lower” stream in Ontario, which is exempted 
from the provincial assessment altogether. This indicates that by default, most at- 
risk students are streamed into the “lower” and less academic streams, making them 
especially vulnerable to under-achieving in mathematics.

In Ontario, the curriculum is structured around pathways, which are linked to 
post-secondary destinations. The Academic courses have been designed to prepare 
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students for university, while the Applied courses have been designed for students 
who plan to go to college or directly to the workplace. Perhaps because of a bias that 
most teachers have (being university-educated themselves), the Applied course is 
often viewed as being less rigorous, and “basic.” This is certainly not the intent of 
the curriculum, but nonetheless, students often get labelled as Applied kids and 
often students are counselled to “move down to Applied” if they show any sign of 
struggle in the Academic course.

Many researchers have shed light on why it is that streaming—whatever you call 
it, or how you package it—actually derails student performance. They have found, 
quite simply, that students in the lower streams have less opportunity to learn than 
their peers in higher streams. For example, Oakes (1982, 1986) established that 
students in high stream classes have a more rigorous curriculum, higher quality 
instruction, and lessons that engage higher-level thinking skills. Moreover, teachers 
place more emphasis on reasoning and inquiry skills in the more academic streams. 
In contrast, instruction in lower stream classrooms has been found to be more frag-
mented with an emphasis on isolated bits of information, instead of sustained 
inquiry (Hattie 2002). As such, students in lower stream settings are more likely to 
be subject to drill-and-practice activities that focus on memorization. This emphasis 
arises because there is often a perception amongst mathematics teachers that stu-
dents cannot engage in problem solving and higher order thinking until they have 
“the basics” mastered. The inquiry focus of Ontario’s curriculum, for example, is 
often relegated to “Problem Solving Fridays” or End of Unit tasks, instead of being 
the mainstay of teaching that the curriculum calls for.

Gamoran, Nystrand, Berends and LePore (1995) found that questioning patterns 
differ significantly in the different streams. For example, students in lower stream 
classes will answer five times more multiple-choice, true/false, and fill-in-the-blank 
style questions than those in higher streams (Gamoran and Mare 1989). Consequently, 
these students have much lower expectations placed on them and they are not 
expected to be critical thinkers (Callahan 2005). They are very likely, therefore, to 
spend their time reading textbooks and filling in worksheets (Gamoran et al. 1995). 
This lack of opportunity to learn challenging mathematics contributes to the gap in 
performance between streams (Balfanz and Byrnes 2006). This situation also 
becomes an issue of institutionalized expectations, or lack of them, the consequence 
of which is a demoralizing and demotivating setting for the children who end up in 
the lowest streams (Rubin 2008).

As might be expected, studies have also suggested that streaming has a negative 
effect on the attitudes, self-esteem, and motivation of students that are placed in 
the lower-ability groups (Berry et al. 2002; Callahan 2005). Students internalize 
labels, become alienated and develop anti-school attitudes that put them at risk of 
delinquency, dropping out, and other social problems (Ireson et al. 2002; Slavin 
1990).
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 What Can Teachers Do?

In view of this evidence, it can reasonably be argued that the very nature of streaming 
can set up teachers, and their students, for low outcomes and levels of success. 
Notwithstanding this fact, many secondary school teachers will find themselves 
working within a streamed environment at some stage of their career. The question, 
then, is what teachers can do to optimize teaching and learning in low stream 
settings.

Through my own research, I conducted case studies of Ontario schools that have 
been extremely successful on the provincial assessment for grade 9 mathematics, in 
both the Applied and Academic courses. Specifically, my research was concerned 
with discerning the practices that are effective in supporting student achievement 
and success in the Applied level course. I have distilled my findings into ten power-
ful and promising practices that appear to have supported high levels of mathemat-
ics learning for students in low stream environments.

 1. Have and hold high expectations for students in Applied classrooms.

As was discussed, sorting and sifting students into streams assumes that there are 
students that are more and less able to undertake study in the discipline. A by- 
product of this approach is that teachers, and even students, develop mindsets about 
what students are and are not capable of, depending on the stream in which they are 
placed. In some classrooms, students in lower streams are assigned less complex 
and low-demand tasks because the assumption is that they are not capable of higher 
level thinking. In the high performing schools that I studied, I found that quite the 
opposite was true of the classrooms that I visited. These schools were chosen as 
case studies because they consistently—over 5 years—performed above the provin-
cial average, for both the Academic and Applied courses on the provincial mathe-
matics assessment. Over this time, these schools also had a performance gap 
between the two courses that was smaller than the provincial gap. Given the scope 
of my research, I did not study low achieving schools, so I cannot comment on what 
may or may not be happening in those environments. What I am able to report, 
however, is what was common to four schools that have had outstanding success 
with provincial assessment results in grade 9 mathematics.

In order to determine what kind of thinking was being required of students in the 
high achieving, and lower-streamed, classrooms, I used a taxonomy to analyze the 
level of work that the students had been assigned during my classroom visits. This 
taxonomy, developed for The International Mathematics and Science Study 
(TIMSS), distinguishes the cognitive dimensions of a task by specifying the think-
ing processes that are needed to successfully complete it:

The first domain, knowing, covers the facts, concepts, and procedures students need to 
know, while the second, applying, focuses on the ability of students to apply knowledge and 
conceptual understanding to solve problems or answer questions. The third domain, reason-
ing, goes beyond the solution of routine problems to encompass unfamiliar situations, com-
plex contexts, and multi-step problems. (Grønmo et al. 2013, p. 24)
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These dimensions are further articulated by verbs that can be associated with math-
ematical tasks, as outlined in Fig. 1. I found that without exception, the level of 
work assigned in the case study classrooms reached the highest cognitive level of 
reasoning. The students were being asked to do more than carry out mathematical 
procedures; they were asked to apply them in novel contexts and then reason about 
the results.

It is also worth mentioning here that oftentimes teachers, with all of the best 
intentions, will scaffold more complex tasks for students that they perceive to have 
weak abilities. The problem with this is that by overly scaffolding these kinds of 
tasks, the thinking is actually being done for the students. If you think of the brain 
as a muscle, then it actually needs to be exercised in order to grow. If students are 
never given the opportunity to think, then they will not expand their capacity to 
think. Saying this, it is important that teachers set their students up for success by 
creating the conditions that will help them to engage in the thinking and subsequent 
learning.

An effective strategy to engage students in thinking and problem solving is to be 
open to a wide variety of approaches. In my study, teachers reported that students in 
Applied classrooms are less formulaic in their thinking and approach problems 
more creatively. It is very critical to play to this strength by accepting a wide variety 
of strategies and methods, even if they do not “look pretty” or follow conventional 
formats. This is actually more helpful to students in the long run because they will 
be better equipped to solve problems intuitively, instead of relying on formulas that 
they may or may not remember correctly.

The descriptions of the remaining practices will provide more direction on how 
to best support thinking mathematics classrooms.

 2. Build confidence and efficacy for students.

Typically, students in the lower streams have lower levels of confidence and 
efficacy when it comes to mathematics. At the very least, the nature of the streaming 

Fig. 1 Cognitive Skills. 
From “TIMSS 2015 
Assessment Frameworks,” 
by TIMSS & PIRLS, 
http://timssandpirls.bc.edu/
timss2015/downloads/
T15_Frameworks_Full_
Book.pdf, pp. 25–27. 
Copyright 2013 by the 
International Association 
for the Evaluation of 
Educational Achievement
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process has signaled to them that they are not capable of higher levels of mathemat-
ics. My research of low stream classrooms revealed that teachers in these settings 
find many of their students to be disenfranchised, and even traumatized, by their 
prior experience of mathematics. These students express strong sentiments about 
not liking mathematics, not being good at mathematics, and not seeing how math-
ematics matters to them. For many, their history with mathematics education has not 
been very positive. Many of them have experienced mathematics as working in 
isolation on drill and practice activities to build their skills. As such, the teachers 
reported that one of their first goals was to help students to repair their relationship 
with mathematics and the damage caused by the perceived stereotype of what it says 
about you if you are a student in Applied mathematics. To do so, they worked to 
quickly foster a feeling of success and comfort in the classroom. An important strat-
egy was to begin the course in areas that students traditionally do well in, such as 
measurement or geometry. This got students off to a strong start in the course and 
helped to build their confidence and efficacy—their belief that they were capable of 
doing mathematics.

It is also important to value the learning and strengths that students bring to the 
classroom. Recognizing that the students are not blank slates is imperative, and so 
too is activating their prior knowledge so that they understand what they are learn-
ing now is simply building on what they already know. It is always a good idea for 
teachers to peruse the prescribed curriculum for the grade that precedes the one they 
are teaching. This will help them to understand the mathematical content and skills 
that students should already have been exposed to. This, in turn, will provide insight 
into how new learning might be anchored by prior knowledge and experience. By 
way of example, one of the expectations in the Ontario Grade 9 Applied mathemat-
ics course is that students “construct table of values and graphs to represent linear 
relations derived from descriptions of realistic situations” (Ontario Ministry of 
Education 2005, p. 42). If teachers look at the curriculum that precedes grade 9, 
they will see that students actually began recording patterns on a table of values in 
grade 5 and plotting them graphically using ordered pairs in grade 6. By grade 7, 
students represent and describe linear growing patterns algebraically and in grade 8 
they use algebraic equations to describe linear patterns. Therefore, to treat this 
expectation as brand new learning can be a great dis-service, and even monotonous, 
to the students. Using diagnostic tasks is a great way for teachers to see who has 
mastered certain skills, who might need support, etc. for the upcoming learning.

 3. Capitalize on the social nature of adolescents.

Research has demonstrated that learning and making sense of mathematics is a 
social enterprise (Kilpatrick et al. 2001; Newman and Holzman 1996; Sfard et al. 
1998; Spillane 2000). Therefore, using collaborative grouping in Applied class-
rooms is an important strategy, especially given the social nature of adolescents. 
Working within these supportive structures, students can together investigate math-
ematical concepts and solve mathematical problems. In collaborative groups, stu-
dents become resources for one another’s learning, allowing individuals to go 
beyond what they might be able to do on their own.

A. Macaulay



145

It is important to recognize that students in lower streams might not necessarily 
have experience in working this way during mathematics class. Many of them may 
be more accustomed to working alone, doing different mathematics than the rest of 
their classmates. Some of them might not be comfortable with sharing their thinking 
with others because they may not have a history of being called upon to do so. As 
such, it is important to support students in working collaboratively with one another. 
This involves making the classroom a supportive space where students know that it 
is okay to make mistakes and in fact, learn from doing so. Getting students comfort-
able to work in these ways will require persistence and support on the part of the 
teacher. A good strategy that I have observed to get students to work collaboratively 
is “Think—Pair—Share.” Here, after assigning a task or problem, the teacher gives 
students a couple of minutes of individual think time to reflect and strategize. Then, 
students are paired with a partner to share their thinking. This sharing gives all stu-
dents an opportunity to rehearse and refine the articulation of their thinking. From 
here, students can then be assigned to larger groupings, if desired. With this 
approach, all students will come to class discussions with their own ideas, or are the 
very least, an idea from their partner.

The teachers that I observed through my research also embedded clear 
accountability structures. They would precisely articulate their expectations for the 
students: e.g., “There are ten minutes left and then I want to hear from each group 
what you found out.”

 4. Use a variety of resources that engage students in active and hands-on learning.

In the classrooms that I studied, teachers did not limit the learning experience for 
their students to a textbook. Instead, they used a variety of resources that both met 
the needs and interests of their students and provided opportunities for active, 
hands-on, and experiential learning. A popular resource was the Ministry of 
Education’s TIPS for Revised Mathematics, or TIPS4RM, which is freely available 
at www.edugains.ca on the mathematics homepage. This resource provides three- 
part lessons designed to address the expectations outlined in the Ontario mathemat-
ics curriculum. These lessons can be used as is, or modified by the teacher to meet 
the needs of his or her students.

I found that the teachers also offered open access to mathematical thinking tools 
such as manipulatives, calculators, and pencils, and expected students to use them 
to show and explain their thinking. They also made widespread use of instructional 
technologies, such as interactive whiteboards, that help students to conceptualize 
and connect mathematical ideas.

The teacher talk around the use of manipulatives and technology positioned both 
as being tools for thinking, which can actually help the students to think through a 
problem. In essence, these tools allow students to engage in “doing mathematics” in 
the way that mathematicians would (OME 2005). The general sentiment was that 
these tools are especially important in Applied classrooms because the courses have 
been designed to be very “hands on” and appeal to the concept that students learn 
by doing. In this sense, manipulatives and other concrete materials can act both as a 
hook and a support to doing the mathematics. The importance of meaning-making 
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needs to be underscored here. Oftentimes teaching in lower streams will default to 
a skills approach and a focus on “the basics.” When students learn skills in isolation 
and out of context, they are hard pressed to use those skills appropriately in any 
meaningful way. In order to learn to think mathematically, students need to do more 
than rehearse someone else’s mathematics. They must be engaged in the mathemati-
cal enterprise, which involves problem solving, making conjectures, reasoning, 
reflecting, connecting ideas and communicating thinking.

It is also important to point out that there is not a long history of manipulative use 
in secondary schools. Teachers in these settings will often forgo their use altogether 
(Kajander and Zuke 2007; Suurtamm and Graves 2007). In this sense, new teaching 
graduates have an important role in trail-blazing innovative ways of learning for 
both students and teachers. Support for the use of manipulatives can be found on 
Ontario’s Edugains website at http://www.edugains.ca/newsite/math/manipulative_
use.html.

 5. Maintain a rigorous pace.

In the case study classrooms that I studied, I was struck by the rigorous nature of 
the lessons that I observed. In all cases, the teachers had chunked their lessons into 
10–15-min learning episodes with a short mid-lesson break where students could 
get up, move around, and re-focus their energies. Figure 2 illustrates the agenda for 
one such lesson.

This lesson design is in fact supported by brain science (Sousa 2006). 
Neuroscientists have discovered that our working memory is where we build, take 
apart, and rework ideas that will eventually be discarded or put into our long-term 
memory. Researchers have established that working memory is capable of handling 
only a few items at a time. This implies that depth of learning over breadth of learn-
ing should be considered in lesson design.

Brain research has also established that a newly learned idea is likely to fade 
from working memory and be discarded unless something else is done with it. Any 
new learning, therefore, is best retained when students have adequate opportunity to 
re-process it. Therefore, different experiences within a lesson will reinforce new 
learning, increasing the chance that it will be put into long term memory.

Fig. 2 Sample 75 minute 
lesson agenda
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Researchers have also determined that the capacity to process new learning is 
also time bound and is about 10 to 20 min for the adolescent learner. This means that 
an adolescent can process an item in working memory for 10 to 20  min before 
fatigue or boredom sets in. In order for the adolescent to continue to focus, there 
needs to be a change in how he or she is dealing with the item. In teaching terms, 
this means the need for different learning experiences within the same lesson, as 
illustrated by the different activities outlined in Fig. 2.

 6. Provide a rich learning environment in Applied classrooms.

A rich learning environment must attend to the emotional, as well as academic 
needs of the students. As previously discussed, it is important that the classroom be 
a supportive space that is respectful of all learners. It is important that all thinking is 
valued and that all students feel that they have a voice. Again, this may require per-
sistence on the part of the teacher who may, for example, need to help students 
understand how to respectfully disagree with one another by offering an opposing 
line of thinking. For more on how to build a “Math Talk” community, refer to 
Bruce’s research monograph (2007) on student interaction in the mathematics 
classroom.

Expectations should be set high and clearly communicated to students in applied 
classrooms. The use of a lesson agenda, as illustrated in Fig. 2, is a great way to 
inform students of what will be happening during the lesson and also signals high 
expectations. Providing frequent prompts is also helpful: e.g., “In five minutes I 
want to hear from each group what strategy you used to solve the problem.”

It is also important that the classroom space reflect that this is a place of learning. 
One observation that I have made in Ontario schools is that there is often very little 
posted in secondary classrooms. Teachers tell me that this is because they regularly 
have to share classroom spaces; teachers will not necessarily have their own class-
rooms, and instead move from room to room throughout the day. This practice is not 
very supportive of students, however, especially when they are coming from very 
rich classroom spaces in elementary school. Having established this, the case study 
classroom spaces that I visited for my study were not typical.

In these classrooms, a clear account of the mathematics content that had been 
covered during the course was evident by just looking at the walls. There were a 
variety of teacher, student, and co-created visuals including charts and word walls, 
that provided both an anchor to and record of student learning. These records of 
learning can be extremely helpful to students who may have poor organizational and 
note taking skills because they can refer back to them when needed or prompted. 
Having student work posted is also beneficial because it allows students to see the 
variety of ways in which others approached a problem.

 7. Skill building in context.

A common practice in mathematics classrooms is to begin the school year or 
semester with a review of material that was covered in the previous grade or course. 
Some teachers will devote several weeks to this review. Teachers in my study did 
not favour this practice. Instead, they preferred to work review of skills into their 
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lessons, on an as needed basis. Figure 2 demonstrates, for example, how one teacher 
began her lesson with a skill building activity. On this particular day, students prac-
ticed the skill of mentally multiplying. For example, 18 × 6 is the same as 2 × 9 × 6 
or 2 × 54, which is equal to 108. This skill would come in handy later in the lesson 
when students were conducting an investigation of the sum of the interior angles of 
a polygon [S = (n−2) × 180°]. In this way, practicing the skill was purposeful, rel-
evant, and seamless to instruction.

 8. Provide samples of what good work looks like and engage students in self- and 
peer-assessment.

There is more and more research that demonstrates that self-regulation and the 
monitoring of one’s own learning has a huge impact on student achievement (OME 
2010). When students understand the criteria for success, they are better positioned 
to actually be successful. Therefore, developing, or co-constructing success criteria 
can be an important strategy in Applied classrooms. It is also important to help stu-
dents monitor their own progress in meeting the criteria by having them reflect on 
their own work to assess their progress. Providing models of good work can facili-
tate this process. Similarly, when students help peers to assess their work, they 
become more adept at articulating the criteria and operationalizing it in their own 
work.

When getting started, a teacher may want to look to outside sources for examples 
of criteria and student exemplars, such as those based on Ontario’s provincial 
assessment, available at http://www.eqao.com/en/assessments/grade-9-math/Pages/
example-assessment-materials-2015.aspx. Over time, though, teachers should strive 
to collect their own student samples, based on tasks that can be used again in subse-
quent years.

 9. Provide students with frequent, oral, and descriptive feedback.

In my research of Applied classrooms, I heard repeatedly from the teachers that 
it is important to monitor the progress of each and every student and to connect with 
students on an individual basis to provide them with oral and descriptive feedback 
that can move their learning forward. Teachers would accomplish this in a variety of 
ways. For example, many of the teachers used some kind of exit strategy such as a 
“Ticket out the door” where students would independently answer a question related 
to the day’s lesson. This allowed teachers to immediately target those students who 
may be having difficulty by providing remediation during the next lesson, or facili-
tating peer support by pairing someone who was struggling with a concept with 
someone who had mastered it.

A really important strategy for all of the case study teachers was to monitor 
students when they were at work during the classroom activities. As students were 
involved in investigations, for instance, the teacher would move about the room 
engaging in conversations and observations of students as they were at work. 
Interacting with students in this way gives teachers a much better sense of what 
students are thinking than can be surmised by simply looking at a piece of written 
work. It is during these kinds of interactions that the teacher can gather more 
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 qualitative descriptions of what it is that students can do, where they struggle, and 
what might be next steps for their learning.

 10. Foster productive dispositions around mathematics by sharing the wonder and 
beauty of the discipline.

As was discussed previously, oftentimes students in Applied settings have been 
traumatized by their experience of mathematics. Couple this with the damage 
caused by the stereotype associated with lower stream classes, and it is not hard to 
understand why students in Applied classrooms may not come to the class with the 
most positive of attitudes. It is very important to be mindful of this and to under-
stand that an essential part of the work with these students will be to help them to 
build a positive relationship with mathematics and to begin to see themselves as 
capable and competent. The strategies discussed thus far will help.

Sharing the love and joy of mathematics is also imperative. Mathematics is an 
elegant, creative, and beautiful enterprise and too often students do not witness this 
in their experience of school mathematics. Bringing interesting mathematics puz-
zles, anecdotes, and stories of mathematical interest and application to the students 
helps them to develop a more robust appreciation of what mathematics is, the often- 
compelling history behind it, and the importance of it to daily life and living. 
Enthusiasm is contagious and when teachers are truly passionate about their disci-
pline, students perk up and take notice.

An example might be the illustration of how the Fibonacci sequence and Golden 
Ratio, are reflected in nature. Doing a simple internet search will result in many 
examples that can be shared with students, such as flower petals; pinecones; fruits 
and vegetables such as apples, cauliflower, and pineapples; tree branches; galaxies, 
animal bodies; and hurricanes. Good sources for these kinds of materials are the 
Illuminations page on the NCTM website at illuminations@nctm.org or the enrich-
ing mathematics activities found on the NRICH website at http://nrich.maths.org/
frontpage. Investigating famous mathematics thinkers and writers such as Martin 
Gardner will also yield many great mathematical ideas to share with students.

In closing, it is vital that teachers think very carefully about the context in which 
he or she is teaching. An important part of this requires understanding the learner 
and what we can do to best support them in our teaching practice.
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Reflecting on Good Mathematics Teaching: 
Knowing, Nurturing, Noticing

Susan Oesterle

Abstract What does it mean to be a “good” mathematics teacher? Ultimately, the 
answer to this complex question depends on the goals of mathematics education and 
on one’s beliefs about teaching and learning. This chapter describes the evolution of 
one mathematics teacher’s views as practice, research, and changing curricula have 
influenced her understanding. She reflects on how attention to three particular 
aspects can support effective mathematics teaching: knowing, not merely the math-
ematics content, but developing mathematics-knowledge-for-teaching (Shulman 
1986; Ball, Thames and Phelps 2008); noticing, as applied to the subject matter, the 
students, and oneself as teacher (Mason 1998, 2002); and nurturing habits of mind 
(Cuoco, Goldenberg and Mark 1996; Lim and Selden 2009), in particular fostering 
a growth mindset in students (Dweck 2006; Boaler 2015). She also advocates for 
the importance of mathematics teachers holding a growth mindset with respect to 
their own teaching.

Keywords Teacher effectiveness · Mathematics-knowledge-for-teaching · Teacher 
noticing · Mathematical habits of mind · Growth mindset · Reflective practice

My entire career I have strived to be a good mathematics teacher. As a student, I 
enjoyed mathematics tremendously—I loved the structure, the beauty, the utility, 
and the challenge. I also enjoyed teaching—explaining ideas to others and feeling 
satisfaction as they experienced their “aha” moments. Becoming a mathematics 
teacher was a natural step for me. In the early days of my teacher education, my 
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naïve view was that these attributes were all I would need to be good at it: a love for 
and knowledge of the mathematics that I would teach, and an ability to communi-
cate or explain the mathematical ideas to others. While these were a good start, they 
were just the tip of the iceberg, with so much more to be found below the surface. 
Over the years, through a combination of experience and academic research, I have 
come to appreciate just how much more there is to the craft of teaching mathemat-
ics. In particular, there is more to know than the mathematics itself, and more to 
nurturing than sharing my love of math.

 What Is “Good” Mathematics Teaching?

Not surprisingly, when I started to teach, I taught the way that I had been taught. My 
own high school mathematics classes had followed a very predictable, structured 
format:

 1. possibly some review of previous topics;
 2. introduction of a new topic by the teacher at the board which included defini-

tions, key ideas, and worked examples; followed by
 3. seat work for the students, typically a list of exercises, assigned from the text 

book.

Depending on the teacher (or the day), the seat work was sometimes done indepen-
dently or sometimes collaboratively with others seated nearby. This is what I was 
used to. This is what I liked as a student. And this is what was expected of me as a 
student teacher.

What did it mean to me to be a “good” mathematics teacher at that time? I felt 
satisfied that I was doing a “good” job if my explanations and demonstrations were 
clear enough so that the students could experience success in answering the assigned 
questions, both in the short term (in the classroom that day) and in the longer term 
(on an in-class test). If the students had fun with the assigned questions, that was 
ideal, but it was a bonus.

On the surface, there was nothing wrong with this—but the problem was that it 
was very superficial. Over time I began to wonder: was I teaching mathematics or 
was I teaching students how to memorise and follow procedures? Certainly the 
approach that I (and many others) were taking allowed students to be successful 
(i.e., to pass) their mathematics course through memorisation and regurgitation. 
Years later as a post-secondary instructor, time and time again I would encounter 
students who had done well in high school but were unable to use and apply rules 
and processes in new contexts; or students who, unsuccessfully, still tried to memo-
rise procedures and apply them blindly in situations where deeper analysis was 
needed. These students had a difficult time adjusting to college-level mathematics. 
At the same time, other students did make that transition successfully—having been 
taught definitions, rules and procedures, at some point they learned to use this 
knowledge flexibly, to apply it appropriately in novel contexts, and to build on it. 

S. Oesterle



155

Was it how they were taught that made the difference? Was it natural ability? What 
was I doing (or not doing) to promote that kind of mathematics learning? What did 
I need to know and do to be a “good” mathematics teacher? Indeed, what is “good” 
mathematics teaching?

As with all interesting questions, there are no simple nor definitive answers. 
One’s understanding of what constitutes “good” mathematics teaching will depend 
heavily on one’s beliefs, particularly beliefs about mathematics and about teaching 
and learning. Space precludes a detailed discussion of the various perspectives and 
their implications, however I will touch on some perspectives that I have found use-
ful in framing my ever-evolving understanding.

With respect to mathematics, I have become sensitive to a distinction between 
mathematics and school mathematics, where the latter can sometimes be conceived 
of as a finite body of knowledge, consisting of facts, procedures and methods for 
solving particular problems. School mathematics can also include what might be 
called “every-day mathematics”: practical numeric and geometric content and skills 
that are intended to support real-life problem solving and decision making. However, 
the mathematics I experienced as a graduate student went beyond this—it included 
unsolved problems, brought out deep and powerful connections between concepts, 
and demanded both rigorous justification as well as flexibility, creativity and insight. 
My understanding of “good” mathematics teaching, even at the pre-college level, 
has come to include approaches that convey a fuller scope of what mathematics is, 
beyond the definitions and the routines, to include genuine problem solving, and 
further, to provide at least a glimpse of the structure, the beauty and the mysteries of 
the subject of mathematics. Of course most of our students will not pursue more 
advanced mathematics, but there is much to be gained by opening their eyes to the 
possibilities.

With respect to teaching and learning, my initial approach when I started teach-
ing was very much based on a transmission model: the view that knowledge can be 
transferred from the mind of the teacher to the mind of the student. Since that time 
my perspective has been deeply enriched by other models, including constructivism 
(e.g., Pirie and Kieren 1992) which recognises that the learner constructs his/her 
own knowledge, using prior knowledge and understandings as a scaffold for new 
information and new connections. Further, social constructivism highlights the role 
of community and context in the construction of knowledge, while the emergent 
perspective (Cobb and Yackel 1996) incorporates both cognitive and social factors 
in its analysis of learning. There are many other theories, of course, which can con-
tribute to our understanding of teaching and learning. In turn, this understanding 
should inform and shape the pedagogical choices we make in our efforts to be 
“good” mathematics teachers.

My personal shift toward a more emergent view means that teaching mathemat-
ics is no longer merely about covering the content and crafting clear explanations; 
it is about creating and providing classroom experiences and activities that provide 
an opportunity for learners to construct their own understandings and build a solid 
scaffold for future mathematics learning. To be a “good” mathematics teacher, one 
needs to be “effective” and the “effect” should be (at least in part) a long-term 
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 positive change in learners that not only increases their knowledge but gives them a 
stronger base upon which to build. What does it take to be such a teacher?

 What Does a “Good” Mathematics Teacher Need to Know?

Knowing the mathematics is essential, but just knowing the mathematics (the defini-
tions, the facts, the processes) that are being taught is not enough. In his seminal 
article, Shulman (1986) called this subject content knowledge, but distinguished it 
from knowledge of the curriculum and resources (curricular knowledge), and most 
importantly, from pedagogical content knowledge (PCK). PCK specifically 
addresses “the ways of representing and formulating the subject that make it com-
prehensible to others” (p. 9). Ball, Thames, and Phelps (2008) further parsed PCK 
to highlight and distinguish between “knowledge of content and students” (KCS) 
and “knowledge of content and teaching” (KCT) (p. 389). With KCS, the teacher 
knows and understands the relationship between the students and the mathematics. 
He/she can anticipate students’ difficulties, is aware of common misconceptions, 
and knows what will interest and motivate them. With KCT, the teacher is able to 
sequence content and examples effectively, can call on and apply a variety of repre-
sentations as needed, and can respond to student comments and questions appropri-
ately in-the-moment.

Another useful description of what mathematics teachers need to know was pre-
sented by Ma (1999), in her comparative study of Chinese and US teachers. She 
identified a “profound understanding of fundamental mathematics” (PUFM) (p. 
xxiv) as the distinguishing characteristic that allowed the Chinese teachers to con-
sistently out-perform the American teachers on specific teaching tasks. This included 
specific mathematics content knowledge, but went beyond to include “awareness of 
the conceptual structure and basic attitudes of mathematics inherent in elementary 
mathematics and the ability to provide a foundation for that conceptual structure 
and instil those basic attitudes in students” (p. 124).

Simply knowing the mathematics is not enough—to be effective, teachers need a 
deep and connected knowledge of mathematics, of mathematics and teaching, and 
of mathematics and their students. We need to know more than the content—and 
just as importantly, we need to teach more than the content.

 More than Content—Nurturing Habits of Mind

Ma’s (1999) description of PUFM talks about “basic attitudes of mathematics” (p. 
xxiv). Of course, as teachers we cannot forget about the affective component. We 
want our students to have positive attitudes towards mathematics, to have self- 
confidence, to appreciate its power and its beauty and ideally to enjoy it. But there 
is more to this than one might think: certainly more than simply setting students up 
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for success, engaging in aesthetically pleasing activities or playing games in math 
class. Over the last two decades there has been increasing attention drawn to the 
notion of “mathematical habits of mind.”

One of the first references to this in the mathematics education literature was in 
1996, by Cuoco, Goldenberg, and Mark. In it, their motivation was not the affective 
aspects of mathematics teaching, rather, they were questioning the appropriateness 
of defining the mathematics curriculum (as has been the custom) around specific 
lists of topics. They pointed out the impossibility of predicting exactly what math-
ematics future graduates will need, given how quickly our modern world is chang-
ing. They argued that it would make more sense to build a curriculum around 
“mathematical habits of mind”, by which they meant the authentic ways of engag-
ing with mathematics characteristic of mathematicians.

A curriculum organized around habits of mind tries to close the gap between what the users 
and makers of mathematics do and what they say….[It] lets students in on the process of 
creating, inventing, conjecturing and experimenting…. It is a curriculum that encourages 
false starts, calculations, experiments, and special cases. (p. 376)

In their characterisation, they identified instantiating with examples, generaliz-
ing/abstracting, thinking in terms of functions, mixing deduction and experiment, 
and “pushing the language” as examples. Since that time many others have devel-
oped these ideas further. Lim and Selden (2009) provide a good overview. Informed 
by these further elaborations, I have come to see mathematical habits of mind as 
encompassing “those ways of thinking and those inclinations and beliefs about how 
to think that are typically useful and productive in the exploration, creation, and use 
of mathematics” (Oesterle et al. 2016, p. 54). This has both a cognitive and an affec-
tive aspect.

Cognitive aspects of mathematical habits of mind include: noticing patterns, 
making and investigating mathematical conjectures, and developing and evaluating 
mathematical arguments and proofs (cf., NCTM 2000). Ultimately these highlight 
the importance of sense-making. Affective aspects include curiosity, a sense of won-
der, perseverance, willingness to play and take risks, and a positive attitude towards 
making mistakes. The cognitive and affective are closely related. Perseverance and 
self-efficacy are supported by possessing strategies for dealing with being “stuck” 
when tackling a difficult problem. Mason, Burton, and Stacey (2010) identify two 
particular strategies, “specialising” (reducing a problem to a simpler case) or “gen-
eralising” (looking for connections to related problems), both of which are typical 
and productive approaches employed in solving problems.

A teaching approach that fosters mathematical habits of mind aims to provide 
students with strategies for solving problems and learning mathematics that are 
transferable across content topics and contexts. These habits of mind should support 
students in building the desired deep connected understanding of the mathematics 
content and open their experience to authentic mathematics. While opportunities to 
engage in mathematics the way that mathematicians do (e.g., questioning, conjec-
turing, persisting, verifying, proving) can be found within common school mathe-
matics topics, occasional extra-curricular digressions can help promote mathematical 
habits of mind. For example, activities involving fractals or topics in number theory 
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can provide rich ground for exploration, offering insights into the beauty and nature 
of mathematics. Unsolved problems in number theory, in particular, are accessible 
to younger students and can help debunk pervasive views that mathematics knowl-
edge is finite and complete.

Such digressions are easier to justify when the formal curriculum explicitly iden-
tifies development of mathematical habits of mind as an objective. This seems to be 
increasingly the case in modern curricula. As far back as 2000, in their Principles 
and standards for school mathematics, the National Council for Teachers of 
Mathematics (NCTM 2000) made a distinction between the mathematics content 
that students are expected to learn (“Content Standards”) and what they called 
“Process Standards”, which included:

• problem solving: including “ways of thinking, habits of persistence and curios-
ity, and confidence in unfamiliar situations” (p. 52);

• reasoning and proof: including noticing “patterns, structure, or regularities in 
both real-world situations and symbolic objects” (p. 56), asking “if those patterns 
are accidental or if they occur for a reason” (p. 56), making and investigating 
mathematical conjectures, and developing and evaluating mathematical argu-
ments and proofs;

• communication: including learning to be “clear and convincing” (p.  60), and 
developing “a language for expressing mathematical ideas and an appreciation of 
the need for precision” (p. 60); and

• representations: including acquiring “a set of tools that significantly expand their 
capacity to think mathematically” (p. 67), and to be able to “use representations 
to model and interpret physical, social, and mathematical phenomena” (p. 70).

The Western and Northern Canadian Protocol (2006) mathematics curriculum, 
cooperatively developed by seven provinces and territories incorporated some of 
these ideas, providing a list and description of more general proficiencies that stu-
dents were meant to develop (e.g., communication, reasoning, visualisation) along-
side learning the particular content outlined in pages of Key Performance Indicators 
(KPIs). However, the list of proficiencies appeared only in the front-matter to the 
curriculum package, and as a result were missed by most teachers, who went straight 
to the KPIs. The tradition of content-focussed instruction was and is difficult to 
upset. Recently, in British Columbia, a new curriculum has been implemented, 
which raises the profile of the more general proficiencies even further. In this ver-
sion, mathematical habits of mind have been pulled to the forefront (BC Ministry of 
Education 2013, 2016).

This has implications in terms of classroom teaching. To facilitate developing 
mathematical habits of mind, “good” mathematics teaching will require providing 
opportunities for students to:

• make sense of mathematics: to explore, to make and challenge conjectures, to 
notice what is the same and what is different, to visualize;

• reason and prove: to use logic and reasoning based on shared assumptions and 
understandings to justify thinking, both to themselves and to others;

• explore multiple solutions and representations. (Oesterle et al. 2016, p. 59)
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Allowing opportunities for students to work with peers provides a natural situation 
that requires communication and clarification of definitions, notation, and concep-
tual understanding. At the same time, this can present challenges: students can lead 
each other astray, certain students can dominate discussions to the detriment of oth-
ers, fear of making mistakes can paralyse progress. Teachers need to be aware of 
and help to build classroom norms (Yackel and Rasmussen 2002) that will support 
collaborative learning and thinking. Liljedahl (2012) suggests specific strategies 
that can facilitate this, including making relatively simple changes to classroom 
layout. He also makes recommendations for effective grouping strategies and 
approaches to handling student questions.

From my own observations, successful navigation of the transition from high 
school to college/university mathematics would be facilitated by some particular 
habits of mind, including

• expecting the mathematics to make sense, rather than simply accepting a proce-
dure or method that appears to be arbitrary;

• willingness to begin on a problem, even when the solution path isn’t evident 
(linked to confidence and persistence);

• having a sense of when to ask for help or talk to someone or switch tracks—
while persistence is important, getting locked in to an unproductive approach for 
too long can be very ineffective and inefficient; and

• having an ability to move between the concrete and the abstract and be aware of 
this shift.

Particular approaches that may facilitate these include, providing mathematical 
experiences that allow for sense-building, allowing opportunities for non-routine 
problem solving, and explicit teaching of metacognition.

 Nurturing a “Growth Mindset”

Hand in hand with helping our students develop mathematical habits of mind, and 
in fact essential to it, is supporting them in adopting a ‘growth mindset’ (Boaler 
2015; Dweck 2006) with respect to the learning of mathematics. Students with a 
growth mindset see doing well in mathematics as the result of hard work and effort, 
as opposed to those with a more fixed mindset, who believe that either you have a 
gift for mathematics or you don’t. Mindset plays an important role in students’ 
response to making mistakes and also in perseverance. With a fixed mindset, errors 
are signals that you are not good at math, and that persistence is futile. With a 
growth mindset, making mistakes is an opportunity for learning and a signal that 
you need to think further/deeper or try harder.

There are some simple things that teachers can do to help students develop or 
keep a growth mindset. Starting with a growth mindset oneself is helpful, as is 
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attending to how one issues praise. Saying “Aren’t you smart?” gives credit to natu-
ral ability, while “Good work!” puts the focus on the effort. Sharing alternative 
solution strategies can demonstrate that there are different valid ways to solve prob-
lems. This can be facilitated by simply asking the right types of questions, ones 
“that allow for multiple solution paths” (Jacobbe and Millman 2009, p.  299). 
Explicitly modelling and discussing reflection and metacognition, productive habits 
of mind in their own right (Mason et al. 2010), gives students opportunities to expe-
rience and notice positive results of their own and others’ choices and efforts.

 Becoming a “Good” Mathematics Teacher

As important as supporting a growth mindset in students with respect to their learn-
ing of mathematics, is having a growth mindset with respect to one’s own teaching 
of mathematics. Kilpatrick, Swafford and Findel (2001) call this a “productive dis-
position”: perceiving oneself as in control of one’s own learning, seeing oneself as 
a lifelong learner whose learning is “generative”, built through the study of curricu-
lum materials, from analyzing practice and from interactions with students (p. 384). 
The emphasis is less on being a “good” mathematics teacher, and more on becoming 
a “good” mathematics teacher—a life-long endeavour.

One simple yet helpful notion I have encountered with respect to supporting my 
own reflective practice is that of “noticing”. The importance of noticing is not a new 
idea—considerations of noticing go back to Dewey, although more recently “teacher 
noticing” has become an area of education research in its own right (e.g., Sherin 
et al. 2011). John Mason’s Researching your own practice: The discipline of notic-
ing (2002) offers a practical guide to enhancing one’s sensitivity to noticing in order 
to be aware of opportunities, make informed choices, and transform one’s teaching 
practice over time.

In the context of the mathematics classroom, there are three (not mutually exclu-
sive) key areas that I have found to be particularly useful to attend to: the students, 
the mathematics, and the students-and-the-mathematics. The first almost goes with-
out saying—the students themselves pull one’s attention. To respond appropriately, 
to provide opportunities for learning, it is essential to notice their actions and inter-
actions, their needs in the moment. Noticing what motivates them, what frustrates 
them, what challenges them and inspires them, and then responding to those obser-
vations through changes in practice can contribute to building one’s Knowledge of 
Content and Students.

Noticing the mathematics also seems to be inevitable, but it can be taken for 
granted. Concepts and methods learned decades before can become routine and 
automatic. We can forget what made a concept difficult to grasp or why a particular 
notation might be confusing. The challenge in teaching mathematics is to notice 
this, and to be able to “unpack” (Ball and Bass 2000) the ideas for new learners. To 
do this one needs to slow down and re-notice that which has become taken for 
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granted. More than this, it can be enlightening to stay alert and open to seeing new 
connections, even within mathematics content that one thinks one knows well. It has 
never ceased to amaze me how I can continue to learn new mathematics, often as a 
result of a student question. Attending to the mathematics, looking for the connec-
tions, pushing for one’s own deeper understanding of the concepts helps build the 
“profound understanding of mathematics” identified by Ma (1999).

Noticing the students-and-the-mathematics is about being aware of what stu-
dents are or are not attending to. They may not see what the teacher sees, or it may 
not mean the same thing to them. An example of this that has been studied is the use 
of the equals sign. Students often interpret it to mean “calculate” rather than as a 
symbol establishing equivalence (Knuth et al. 2006). This leads to difficulties in 
completing open sentences like: 6 + 3 = □ + 4 (e.g., writing 9 as the “solution”), and 
contributes to later difficulties in distinguishing between expressions and equations. 
In algebra, when asked to factor an expression, students will sometimes go too far, 
writing x2 + 4x + 3 = (x + 3)(x + 1) = x = −3 or −1, expecting that the equals sign 
demands a numerical response. Being or becoming aware of misconceptions and 
attending to what students know and what prior knowledge they are drawing on to 
understand new concepts builds Knowledge of Content and Teaching (KCT), sup-
porting better choices for how to introduce and develop mathematical ideas.

 Rising to the Challenge

Over the years, my understanding of what constitutes “good” mathematics teaching 
has changed considerably. It has been shaped through reflection on my own practice 
and observations of my students, but it has also been reinforced by new curricula 
and mathematics education research. This new understanding has demanded 
changes in my practice—but with change comes challenge. It can be difficult to give 
up teaching the way we were taught, especially if it worked for us. For experienced 
teachers, it can be difficult to alter the way we have been teaching, especially if it 
seems to “work” for at least some significant portion of our students. But genera-
tions of students who become adults who “hate math” and pervasive avoidance of 
mathematics in North America, suggests that what we have been doing is not 
“working.”

Despite the difficulties, it is critical that we as mathematics teachers take steps to 
rise to the challenge. This means continuing to learn mathematics, to build our own 
deep and connected understanding of the subject, but also to build our knowledge of 
mathematics-and-students and our knowledge of mathematics-and-teaching to 
inform our pedagogical choices. It means keeping the big picture in mind, nurturing 
mathematical habits of mind and a growth mindset in our students. It means ‘notic-
ing’ the mathematics, the students, the students-and-the mathematics, and of course, 
noticing our own practice in order to make positive change. Resources to support 
teachers abound—there is not shortage of advice, books, professional development 
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opportunities, and research studies. So much so, that it can seem overwhelming at 
times. The key is to remember, above all, that “becoming” a good mathematics 
teacher is a life-long endeavour and that even the smallest steps toward the ultimate 
goal of building students’ capacity to learn, use, and appreciate mathematics is a 
step in the right direction.
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or a way of organizing your thoughts into a coherent manner. In the secondary 
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mathematical thinking may be challenging, it is necessary in the process of the 
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might mean to know mathematics, and explores mathematical mindsets and how 
knowing mathematics can be supported by mathematical habits of mind.
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 Thinking Mathematically and Mathematical Mindsets

A mindset is a way of thinking, or a way of organizing your thoughts into a coherent 
manner. A mindset is also a way of thinking about your talents and abilities. For 
example, if you are considering your talents and abilities with respect to mathemat-
ics, you are likely thinking about a mathematical mindset. There are strategies, 
structures, and tactics, as well as general rules about conventions and analogy that 
help us to think and then to problem solve mathematically. Many people who work 
with mathematics appreciate the facts that have been constructed over time and the 
imagination often required to pull everything together—knowledge, problem solv-
ing, reasoning, communication—to solve something mathematical (see Skemp 
1971, for more reading on schemas and the organization of knowledge).

Teachers of mathematics come to mathematics classrooms from a diversity of 
mathematical backgrounds (e.g., statistics, engineering, geometry, financial applied 
mathematics). It is not unreasonable to appreciate that as a group, teachers ‘do’ 
math, or rather, think through the mathematics of a particular problem in individu-
ally diverse ways. In the classroom, teachers are the most visible and present role 
model helping students develop a mathematical mindset and the associated automa-
ticity and fluency (e.g., mathematical habits of mind) of calculation, algebraic sim-
plification, or problem solving. Teachers can overtly present mathematical thinking 
when they talk aloud while writing notes, or talk through their problem solving 
steps and decisions as they work through a problem or come up with a solution. 
However, teachers’ mathematical thinking is often hidden and unspoken, or left to 
be deciphered by students after classwork is done and class notes are reviewed later 
in school or at home.

How are secondary school mathematics teachers’ mathematical mindsets differ-
ent from their students’ mathematical mindsets? That is a very good question, and 
one that should perhaps be at the forefront of lesson planning. Thinking about the 
teaching of mathematics concepts and how individually these concepts lead to the 
development of more complex and interconnected concepts provides a jumping off 
point to understand what “knowing” mathematics is all about. I put quotation marks 
around “knowing” because there is a particular way to consider ‘knowing’ mathe-
matics, and it is not necessarily tied to the common definitions and understanding of 
terms such as “knowledge” with which we are familiar in curriculum documents.

 What Does It Mean to Know Mathematics? What Does It 
Mean to Do Mathematics?

Knowing and doing are not necessarily synonyms. Perhaps “knowing” is less about 
“knowing the mathematics” and more about knowing to act in a particular way, with 
appropriate tools and strategies, calling upon necessary concepts and skills at a 
particular moment in time. The mathematics one knows can be the necessary 
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concepts and skills, but the doing may be the performance of mathematical action. 
Consider then, mathematics as a verb rather than a noun; during mathematical prob-
lem solving what actions and knowledge does one call upon, what mathematical 
mindsets are drawn upon, and what habits of mind automatically appear?

Some pertinent and relevant frameworks for how we perform mathematically 
will be valuable to understand how “knowing” mathematics can be more like action 
than passivity. To consider mathematics as a verb rather than a noun, we can exam-
ine the words used to describe mathematics. For example, in the latest Ontario 
mathematics curriculum Achievement Categories have been added to the way the 
curriculum is described. Knowledge is one of four Achievement Categories. The 
other Achievement Categories are Application, Thinking, and Communication. An 
implication of Knowledge being identified as one Achievement Category of the 
mathematics to be learned is that the authors of the curriculum feel knowing some-
thing is only part of the story, or one way to think of the mathematics to be learned. 
Clearly, the authors of the curriculum also feel learners should be able to apply 
mathematical knowledge and skills “to make connections within and between vari-
ous contexts” (i.e., in familiar contexts, or new contexts), use “critical and creative 
thinking skills and/or processes,” and communicate and “convey meaning through 
various forms” (Ontario Ministry of Education 2005, pp. 20–21). The verb forms of 
these Achievement Categories are to know, to apply, to think, and to communicate, 
however, these verb forms do not seem to be particularly informative of how to do 
the mathematics. For that, we can turn to the Harvard Balanced Assessment Project 
(Harvard 1995).

The Harvard Balanced Assessment Project was started in 1993 with a purpose to 
develop innovative mathematics assessment tasks—that means, to create mathemat-
ics tasks (or problems) and develop a method to assess the mathematics used in the 
tasks. In the process of deciding how to assess mathematical thinking presented in 
the solutions, the team also examined the nature of the mathematics they were try-
ing to assess. The team came up with two big ideas to describe the mathematics they 
wanted students to be experiencing and learning, and to think about assessing math-
ematics: (a) rather than a content-process sense of mathematics to know and an 
answer to find, there is an object-action sense of mathematics concepts and skills to 
work with and actions to be taken with these concepts and skills, and (b) a general 
framework for how people do mathematics, the actions of mathematics, which some 
call the Harvard verbs of mathematical inquiry. These verbs are, hypothesising, 
modeling/formulating, transforming/manipulating, inferring/drawing conclusions, 
and communicating (Harvard 1995).

Take a moment to think about a mathematics question you might see in a text-
book: perhaps it has some words to describe a context, or a bit of a story. Often the 
first action would be to guess, or hypothesise, where the solution will end—with a 
number, an expression, a proof, etc. The next action would be to model the situation 
numerically or graphically, which might lead to formulating an algebraic expression 
or equation. The next action might be to transform the equation so it is more easily 
solved for the unknown, or substitute some values and manipulate an expression. 
Once some work or calculations have been completed, an inference or conclusion 
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about the correctness of the answer or the fit of the answer to the question occurs, 
and the whole process is communicated in some way: for example, writing a solu-
tion or a proof, or explaining it verbally to a peer. While these familiar mathematical 
actions are often the usual process, they are not always performed linearly. 
Sometimes these actions are performed recursively; sometimes these actions are 
performed in small chunks or cycles of one or two actions. I have used a puzzle 
image to help remember that this can be a rather dynamic process (see Fig.  1). 
Thinking of mathematics from the perspective of being a verb rather than a noun 
transforms the sense of knowing or doing mathematics into an active and inquisitive 
activity that might require tools such as computer technology, graphing calculators, 
or manipulative materials, and might be a collaborative effort of working together.

Now let’s look at another way to describe and explain what could be happening 
when someone does mathematics. For this, I use the work from John Mason (e.g., 
Mason and Spence 1999) and his conceptualization of “knowing-to.” The big idea 
behind “knowing-to” is that people need to know to act before anything can be 
accomplished. However, knowing one needs to act requires “knowing” other things 
as well. The following illustration in Fig. 2 represents Mason and Spence’s graphic 
conceptualization of “knowing-to.” Notice all the ways of knowing presented in the 
image.

Knowing-to is the overarching sense of knowing to act to complete a task, such 
as solving a system of linear equations. Knowing-to act requires one knows-about 

Fig. 1 Harvard verbs of 
mathematical inquiry as a 
puzzle image
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the reasons for acting (knowing why), knows the facts relevant to the situation 
(knowing that), and knows a procedure that might/could work (knowing how). 
Knowing-to is the ultimate goal:

once the moment of knowing-to takes place, knowing-how takes over to exploit the fresh 
idea; knowing-that forms the ground, the base energy upon which all else depends and on 
which actions depend; knowing-why provides an overview and sense of direction that sup-
ports connection and modification if difficulties arise en route. (Mason and Spence 1999, 
p. 146)

I suggest here, that success is more about having a mathematical mindset as 
described in this chapter, and less about imitation and regurgitation of solutions to 
familiar questions. Hence, the development of a mathematical mindset is important. 
So, how does one go about developing a mathematical mindset? Developing a math-
ematical mindset will require learning skills, those behaviours of planning or 
hypothesising, action or manipulation and transformation, observation, inference, 
and reflection that constitute knowing-to act without having to be given a solution 
pattern to follow. Developing a mathematical mindset will require persistence when 
the solution does not appear quickly, the independence and inter-dependence of 
individual and teamwork when necessary and appropriate, and the judgement to 
know-to act at any given moment. To develop a mathematical mindset, one must 
have learning skills, or what can be called habits of mind.

 Habits of Mind

Costa and Kallick (2008) explored the emerging conceptions of intelligence and 
how these conceptions have been changing. Most importantly, intelligence is being 
better understood as a changing state of mind and that the growth of intelligence is 
a reflection of self-regulation and metacognitive skills (see Dweck 2006 for more on 
growth mindsets). Costa and Kallick (2008) present habits of mind as a “set of 
behaviours that discipline intellectual processes” (p. 12), and “a pattern of intellec-
tual behaviours that leads to productive actions” (p. 16). Table 1 lists their 16 habits 
of mind.

Fig. 2 From Mason and 
Spence (1999, p. 145), 
illustrating the relationship 
between knowing-about 
and knowing-to
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Table 1 lists general habits of mind, developed with the purpose of providing con-
crete behaviours that can be identified, noticed, and cultivated to help students become 
more disciplined in their approach to thinking and learning, and to get into the habit 
of behaving intelligently. These habits of mind act as learning-skills and what is 
desired is an automaticity, or fluency, of use. If these habits of mind can be drawn 
upon automatically, that is, to become habits, then learning occurs more readily.

It is not a far reach to imagine that automaticity of habits of mind and the associ-
ated increase in learning leads to other automaticity, such as algebraic and algorithmic 
fluency—for example, the ability to multiply numbers quickly, to calculate with frac-
tions quickly, simplify algebraic expressions quickly, or to solve equations quickly. It 
is beneficial for learners to have some automaticity in their work, to count on some 
habits to get them through the long calculations in complex processes. For example, 
when finding a solution to a moving object problem in a senior grade of mathematics, 
it is very helpful to automatically recall the necessary differentiation rules and be 
mechanically proficient to get to the point of the problem, which was to answer the 
question posed in a particular situation. However, this is just the knowing-that and 
knowing-how of mathematics. What about the knowing-why and knowing-to aspects 
of thinking mathematically? Is it possible to have automaticity, fluency, or habits of 
mind for mathematical thinking like the Harvard verbs of mathematical inquiry?

Hypothesising, modeling/formulating, transforming/manipulating, inferring/
drawing conclusions, and communicating are very concrete, and visible performed 
mathematical actions evident in mathematics solutions. These can be habitualized 
into automatic actions. In general, for any mathematical problem solving context, 
could there be behaviours of mathematical thinking to support the development of 
mathematical mindsets?

Table 1 Sixteen habits of 
mind (Costa and Kallick 
2008, pp. 18–39)

Persisting
Managing impulsivity
Listening with understanding and 
empathy
Thinking flexibly
Thinking about thinking (metacognition)
Striving for accuracy
Questioning and posing problems
Applying past knowledge to new 
situations
Thinking and communicating with clarity 
and precision
Gathering data through all senses
Creating, imagining, innovating
Responding with wonderment and awe
Taking responsible risks
Finding humour
Thinking interdependently
Remaining open to continuous learning
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Cuoco, Goldenberg, and Mark (1996) suggest eight mathematical habits of 
mind: pattern sniffing, experimenting, tinkering, inventing, describing, visualizing, 
conjecturing, and guessing. Pattern sniffing is about searching for and being able to 
recognize regularity as well as the excitement of finding hidden patterns. This is 
very much like the realization that the commutative property works in many situa-
tions but not in subtraction. Experimenting draws on a sense of play that comes 
from making different hypotheses or conjectures and following each path of think-
ing for a while to see where it leads. Not every path must come to a successful 
endpoint, sometimes the experimenting suggests paths not to follow. Experimenting 
is closely related to tinkering—the process of taking things apart and putting them 
back together. For example, if a solution requires a number of steps, does a different 
order of those steps result in the same solution?

“Tinkering with existing machines leads to expertise at building new ones” 
(Cuoco et al. 1996, p. 380). Inventing is a mathematical habit of mind that has pro-
vided the field of mathematics with wonderful new and different ways of under-
standing the world around us, for example, the development of non-Euclidean 
geometry, and fractal geometry. As a language with symbols and grammatical struc-
tures, describing mathematics requires precision and accuracy of notation, express-
ing oneself coherently and presenting a convincing argument, in both written and 
oral manners. Visualizing the multiplication of two binomials as the multiplication 
of the length and width for the area of a rectangle, or visualizing place-value as a 
mental strategy for multiplying two-digit numbers, or visualizing three-dimensional 
space while working a solution on a flat piece of paper are examples of powerful 
mathematical habits of mind. Conjecturing and guessing are the two remaining 
mathematical habits of mind but they are not the same. Conjecturing is more about 
predicting outcomes based on available evidence; guessing requires one to think of 
something “out of the blue,” which often in conjunction with other mathematical 
habits of mind can lead to new insight on a challenging or familiar problem.

 Putting It All Together

Notice the parallel between these behaviours, the mathematical habits of mind, and 
the actions of the Harvard verbs of mathematical inquiry. These mathematical habits 
of mind describe how one can think, as well as, how one can act. For example, a 
habit of experimenting as an automatic behaviour when confronted with a mathe-
matical problem can be made visible as an action of trying various approaches, 
strategies, and/or tools. Habits of mind can be leveraged for both behaviours and 
automaticity of action for the development of a mathematical mindset.

To conclude this chapter, I present playing games as a means to integrate think-
ing mathematically and the development of mathematical mindsets through general 
and mathematical habits of mind. Playing games requires everyone to know that 
there are rules to any game and the enjoyment of playing a game comes from fol-
lowing the rules. As long as everyone is willing to play a game (a mindset), the rules 

Mathematical Mindsets for the Teaching and Learning of Mathematics



172

will be followed. This is most obvious when someone tries to cheat in a game—that 
cheater is called out loudly and vigorously by fellow players (knowing-why). 
Playing games requires knowledge of the strategies used by oneself (manipulating, 
transforming) and the other payers and the interactions of those strategies (commu-
nication). Many games require players to listen to others (communication) and 
simultaneously think about past knowledge (inferring, habits of mind) and consider 
new situations, to work collectively, individually, or even make temporary alliances 
as necessary in order to win the game (habits of mind). Playing games requires 
behaviours of habitualized actions for fast and effective game play, as well as the 
behaviours required for learning and improving the play of the game.

Automaticity of actions and the development of the technical skills of game play 
and game strategies are necessary for speed, accuracy, and efficient play. Think 
about the ability to play complex board games such as chess, or backgammon that 
require knowledge of board piece movements (knowing-that), and long- and short- 
term strategies (knowing-how, pattern sniffing). There is a persistence (habits of 
mind) to following the rules of a game. Players must manage their impulsivity and 
play fairly with each other, and take turns (habits of mind). Some games demand 
creativity, and many games involve an element of risk (habits of mind). The habit of 
mind of finding humour may not be present in all games, but games are clearly not 
played again if they are not fun—humour is understood as playing fair, enjoying 
winning and losing, and playing with good sportsmanship.

Let’s move to a mathematics classroom context and example, and apply the prin-
ciples of mathematical mindsets, mathematical habits of mind, and game play. 
Consider the skill of algebraic manipulation in the process of solving multi-step 
linear equations, such as solving for ‘x’ in 3(x−5) + 9 = 12. The ultimate end-result 
is a solution that might look like Fig.  3. To the dismay of many mathematics 
 teachers, the necessary thinking of each step in the algorithm often seems elusive 
for some students. This may be because many students do not perceive they will 
require such mathematical thinking and ability in their future lives, and these 

Fig. 3 Algebraic 
manipulation to solve a 
multi-step linear equation
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thoughts get in the way of learning the formal algebraic process presented in the 
solution. As students often say, “I am never going to use this in my life, why do I 
have to learn it now?”

I am a teacher and not a fortune teller, so I do not have the ability to foretell 
whom of these students will or will not need such algebraic facility and fluency in 
their future. However, considering mathematics for mathematics sake, solving 
equations is a skill that underlies so many other mathematics concepts, as well as 
learning in many different areas, such as accounting, business, retail, the trades, etc. 
Additionally, and pragmatically, this mathematical skill of solving equations is a 
curriculum expectation that will appear on the final exam and in future mathematics 
courses. So how does the teacher get students to learn to solve equations?

What if students’ game habits of mind were leveraged? What if learning mathe-
matical habits of mind piggy-backed on game habits of mind? The following is a 
possible unit set in a grade 9 mathematics course. It starts with a hook, a story, 
something to distract students’ attention away from their expectations of being in a 
mathematics class. Something or someone currently culturally relevant works very 
well, such as a current YouTube street magician. “Have you seen them do this!?” 
“Pick a number between one and ten; multiply it by 2; add 3; tell me your answer,” 
then the street magician tells the original number. Teachers know this is just mem-
ory work, and moving backwards through the calculations. However, for students, 
there can be an element of power that they can do a ‘trick’ and be ‘smart’ with 
mathematics once they realize the process. The next step though, is to leverage the 
possible game aspect and the habits of game play to move students from relying 
only on mental abilities to a needed outcome of writing formal algebraic solutions 
on paper.

The unit is presented as a developing process of learning the game and gradually 
increasing the complexity of the game. The following is the unit, loosely scheduled 
as a day-by-day plan.

Day 1. “What if there is a game board for this trick? Maybe it would look like 
this…” (see Fig. 4).

The rules of the game initially involve (a) writing the game board, and (b) filling in 
the board spaces. This can be practiced by playing the game with peers and com-
pleting the game board each time. A completed game board could look like 
this—the prompts from the lead player are typed at the top of the game board and 
then follow the arrows when writing on the game board. See Fig. 5.

Day 2. The next phase of the game is to

 (a) write the game board,
 (b) fill in the board spaces,
 (c) decide on a letter to use instead of “?” that we have been putting in the “Pick 

a number” box so far. The usual letter we seem to use for something unknown 
is “x”, and this seems reasonable to students in this game, and

 (d) write the answer “x = …” to the right of the game board.
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Pick a number ?

x 2 + 2

– 3+ 3

15 15

6

Playing the Game

Get the starting number

“You started with 6!”

“Pick any number between 1 and 9”
“Multiply that number by 2 – keep your answer in your head”
“Add 3 to that number – keep your answer in your head”
“What is the value you are thinking of right now?”

A possible answer is 15.

Answer Take the answer

Fig. 5 A completed game board

The Game Board

Pick a number Get the starting number

Answer Take the answer

Fig. 4 The game board
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Day 3. The next phase of the game is to

 (a) write the game board,
 (b) fill in the board spaces,
 (c) write each calculation on the side of the game board as the step is done.

See Fig. 6. Notice the right column of boxes of the game board (moving up the 
page) have been replaced by the sentences of each calculation (moving down the 
page).

Day 4. Finally, writing the street magician’s verbal prompts on the board in order 
creates an equation; if students have not realized it yet, they see they have been 
solving equations. This realization turns into another feeling of power because 
students now know they CAN solve equations, that solving equations is just 
going backwards through the calculations, and that the order of the calculations 
spoken by the magician, follows the order of operations students already know.

Notice, all the steps necessary for an algebraic solution appear beside the game 
board, as they appear in the “More formal method” on the right in Fig. 7.

Because a game format was used, following the rules of a game is an ingrained habit 
of mind. The last step of the game is always to write “x = …” the numerical 
result.

 Where Are the Mathematical Mindset, and the Mathematical 
Habits of Mind?

The mathematical mindset is evident through two lenses, the Harvard verbs of 
mathematical inquiry, and Mason and Spense’s knowing-to perspective. For exam-
ple, hypothesising exists for both the person calling the game and the person 

Fig. 6 Two examples for Day 3
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listening to the game or reading the solution—what could the answer be? Does the 
answer make sense? Modeling and formulating exists in the creation of a game 
board—writing the game as it is called by the first person as an equation, and then 
writing the thought processes to arrive at the unknown number as mathematical 
expressions on paper. Transforming and manipulating exists as the writing of the 
game progresses towards the formal algebraic solution to solve linear equations. 
Inferring and drawing conclusions exists as a reflection moment reaching back to 
the hypothesis—is the answer correct for the game? And finally, communicating 
exists in various formats—verbal and written. Written communication may also be 
left to the student’s comfort level and teacher’s discretion of which written format 
of a game board to use: as a modified game board (the left side of Fig. 7), or as the 
more formal algebraic solution (the right side of Fig. 7).

Alternatively, knowing-that is the mathematics of the order of operations to find 
the number the other person started with in the game. Knowing-how is the use of the 
order of operations backwards to solve the game, and forwards to write the verbal 
instructions down onto paper as an equation. Knowing-why is the understanding 
that order matters when performing calculations in the context of a grade 9 mathe-
matics solving linear equations curriculum expectation. This understanding gives 
students the personal feeling of knowing-to solve linear equations, and possibly 
have the tools to solve almost any equation with some ease.

Game behaviours are great support for the development of mathematical habits 
of mind. For example, there are patterns to experiment with and tinker with as 
 students play the game described here with more than two operations, or with larger 
ranges of numbers. Conjecturing and guessing naturally emerge as students invent 
game play that uses numbers that fall afoul of division rules (e.g., not everything is 
easily divisible by three if the game calls for “multiply by three,” especially if cal-
culations are still being performed mentally rather than with a calculator). Visualizing 
the solving of equations mentally, and then as a game, and then as a formal algebraic 

Fig. 7 Game board with corresponding formal algebraic solution
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process on paper provides numerous opportunities for describing the process of 
solving equations as well as explaining what is really going on with the numbers as 
a solution is determined.

 In Conclusion

Underlying this chapter has been the appreciation of mathematical mindsets that are 
present in the diversity of who people are and where their mathematics knowledge 
has come from. As you read the chapter, you might have reflected back on your own 
mathematical thinking as this chapter described what “doing mathematics” could 
be, and explored understanding mathematical thinking from the perspective of 
mathematical mindsets and the mathematical habits of mind one calls upon in the 
process of learning and doing mathematics.

Teachers are encouraged to continue to critically reflect upon their mathematical 
mindset and mathematical habits of mind, as well as their general habits of mind. 
These skills, behaviours, and knowledge will be invaluable in professional 
practice.

Additionally, imagine the diversity of thinking that exists for those students who 
have not had the same amount or level of mathematical experience as a teacher—
how do students think through a problem, or decide on the necessary concept or 
skill to use in the next step of the solution? Imagine the potential for developing 
students’ mathematical mindsets through general and mathematical habits of mind.
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 Introduction

Current curriculum changes encourage pre-service teachers to incorporate 
Indigenous perspectives into their mathematics classrooms. However, many pre- 
service and in-service teachers grapple with how to respond in respectful and 
authentic ways. As teachers and teacher educators, we have experienced shifts in 
our own ways of thinking as we responded to these changes. In this chapter, we 
provide a brief summary of policy and curricular initiatives in a Canadian context 
and present stories of our experiences to help pre-service teachers who are begin-
ning to consider links between Indigenous perspectives and mathematics. Resources 
for further reading are listed at the end of this chapter to help you extend your own 
understanding.

In a Canadian context where calls to action are made in response to the Truth and 
Reconciliation Commission (Truth and Reconciliation Commission of Canada 
2012) and where the United Nations Declaration on the Rights of Indigenous 
Peoples (United Nations 2008) has been recently adopted, it becomes important for 
teachers to engage in the decolonization of education. Both documents acknowl-
edge the need to rebuild relationships with First Nations, Métis, and Inuit peoples 
and these have important implications for teachers.

In an effort to address this need, significant program changes in school 
mathematics have been made across Canada that encourage teachers to consider 
Indigenous perspectives. For example, the Common curriculum framework for K-9 
mathematics: Western and Northern Canadian protocol (Alberta Education 2006) 
that informs programs of studies in British Columbia, Alberta, Saskatchewan, 
Manitoba, Northwest Territories, Yukon Territory, and Nunavut now includes 
Indigenous perspectives as broad statements are made about teaching and learning: 
“Teachers need to understand the diversity of cultures and experiences of 
[Indigenous] students,” and “A variety of teaching and assessment strategies is 
required to build upon the diverse knowledge, cultures, communication styles, 
skills, attitudes, experiences and learning styles of [Indigenous] students” (p. 3). 
Similarly, the Ontario curriculum, grades 1–8: Mathematics (Ontario Ministry of 
Education 2005) states:

Learning activities and resources used to implement the curriculum should … enable 
students to become more sensitive to the diverse cultures and perceptions of others, 
including Aboriginal peoples. For example, activities can be designed to relate concepts in 
geometry or patterning to the arches and tile work often found in Asian architecture or to 
the patterns used in [Indigenous] basketry design. (p. 28)

While mathematics program documents for Quebec (Gouvernement du Québec, 
2001) and the Atlantic provinces (Atlantic Provinces Education Foundation, 1996) 
do not specifically identify a focus on Indigenous perspectives, they include a con-
sideration of the cultural diversity of all students. Presumably this could include 
Indigenous students.

These initiatives challenge pre-service teachers to shift their ways of knowing 
that are typically based on a Euro-Western perspective. As teachers and teacher 
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educators, we have considered possibilities of enacting an Indigenous perspective 
within our own educational contexts. Here are our stories of this journey in hopes 
that they will provide examples of such possibilities.

 Gladys’ Story

My consideration of different ways of knowing began during an undergraduate class 
where I listened to the story of a Blackfoot elder. I was profoundly jolted when she 
asked us to consider what it would be like to live in a community without children. 
Thus began my own quest to better understand our treaty history and my role within 
this context. During my teaching career, I encountered some Indigenous students 
and during my graduate learning, I became friends with colleagues who were 
Indigenous. When I became a professor, I was invited to work alongside colleagues 
who were teaching in First Nation schools. My learning began within these relation-
ships as I struggled to make sense of who I was as a white teacher engaged in teach-
ing and research within Indigenous settings (Donald et al. 2012). I began reading 
articles and books written by Indigenous researchers and teachers to help me under-
stand how I might integrate Indigenous Knowledges into my teaching of 
mathematics.

In order to integrate Indigenous Knowledges and mathematics curriculum in 
respectful and appropriate ways, I needed to develop a deeper understanding of 
Indigenous Knowledges. In the Blackfoot context in which I live and work, balance 
and harmony with the environment are recognized as part of the knowledge system 
(Bastien 2004; Cajete 1994, 2000; Peat 2002). Battiste (2002) links Indigenous 
Knowledges to particular “landscapes, landforms, and biomes where ceremonies 
are properly held, stories properly recited, medicines properly gathered, and trans-
fers of knowledge properly authenticated” (p. 13). Little Bear (2000) describes the 
land as integral to the Native American mind.

As I grew to better understand Indigenous ways of knowing, I became interested 
in how mathematics could be reframed. I now believe that mathematics can be 
defined and understood in many different ways. To help you gain a better under-
standing of these various perspectives, I draw parallels and distinctions between 
views of mathematics and Ogawa’s (1995) perspectives of science. Drawing on 
Ogawa’s proposal of three subcategories of science of interest to educators, I find it 
useful to consider Indigenous mathematics, Western mathematics, and Personal 
mathematics. Indigenous mathematics refers to the mathematics in a particular cul-
ture that reflects a collective worldview. Examples of Indigenous mathematics could 
include Australian mathematics (Watson and Chambers 1989), Japanese Wasan 
mathematics (Aikenhead 2017), Polynesian mathematics (Ball 2013), or Māori 
mathematics (Barton et al. 1998). Ogawa describes Western modern science as “a 
collective rational perceiving of reality, which is shared and authorized by the sci-
entific community” (p. 589). Rather than focusing on natural phenomena, “Western 
modern science pertains to a Cartesian materialistic world in which humans are seen 
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in reductionistic and mechanistic terms” (p. 589). Similarly, Western mathematics 
could be described as Eurocentric, focused on Platonist values (Aikenhead 2017; 
Bishop 1990; Ernest 1989), and one that emphasizes abstraction. Personal mathe-
matics is unique to each person and involves personal observations or explanations 
of the world. Like Ogawa, I recognize a relativistic perspective of mathematics and 
note that worldviews and knowledge systems are deeply connected.

 Kevin’s Story

My understanding of different ways of knowing was influenced by the magical 
times my father would recite poetry to me by Robert Service. These poems had ele-
ments of frontierness, adversity, Indigenous culture, and the power of the natural 
environment and the north. Subconsciously, this had a tremendous impact upon my 
life, as I arrived in Whitehorse in my ‘71 Volkswagon van with my Bachelor of 
Education diploma fresh off the presses. While teaching in the Yukon Territory, I 
had the opportunity to teach many students of different cultures and backgrounds. 
With that cross-cultural exposure came the challenge to effectively relay the cur-
riculum in a meaningful and an engaging manner to meet the wide range of learning 
needs, cultural and social conditions.

As I acknowledge the influence colonial forces and Western-style practices in 
educational institutions have had upon Indigenous identities, I began my search for 
a teaching path with the recognition that I am a product of those colonial forces, 
whether I am cognisant or not, and bring an identity and a certain way of thinking 
that may not always be consistent with Indigenous worldviews. I refer to my posi-
tion as “non-Indigenous teacher.” While I may be White, I am Canadian, of Irish 
descent, a proud Quebecer, English Montrealer and Northerner with a specific past 
and identity that aligns me with much more than “whiteness,” as I believe it is the 
people, communities and environments that surround us that create a sense of place 
in which we define our identity. This principle is what guides the practice of place- 
based education.

Experiential and place-based programs of study encourage students through field 
activities, a multiple perspective curriculum and active exposure to social, cultural 
and political issues to venture ‘outside the box’ of the conventional education sys-
tem. Students are asked to develop beliefs that are based on their own critical assess-
ment; differing opinions and ways of thinking are encouraged. Through 
student-centered learning initiatives and cooperative work, learners develop a cog-
nition that values multiple perspectives (O’Connor 2009).

The notion of interconnectedness and the understanding of the relation between 
things, which is a key component to experiential learning and some Indigenous 
thought, becomes a necessary component of curriculum design. Many experiential 
and place-based programs are developed around the principle of integration, in 
which people are able to learn more effectively when they are able see things in 
relation to other things.
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I have always been at odds with traditional Western forms of knowledge. It 
separates areas called mathematics from those areas referred to as art and spirituality 
or religion. I have a common understanding of the interconnectedness of all things. 
With respect to mathematics education, I believe forms of knowledge are integrated 
and need to be taught in such a form. Knowledge is relational; it is shared with all 
living things. This has fuelled my passion for constructivist learning and its applica-
tion in school programs. I believe this theory of learning that is in accordance with 
place-based and experiential initiatives best serves students in the process of learn-
ing about themselves and their place in the natural world. Place-based learning is 
developed with the notion that things thrive because of the web of interconnected-
ness between an individual and the community and between the community and 
nature. Also, everything we do affects everything else around us.

 Exemplars

When we reflect on our stories, we are able to identify some of the qualities that we 
believe are necessary to have as teachers who are beginning to consider how to 
integrate mathematics and Indigenous perspectives. Forming relationships with 
Indigenous communities is imperative and when engaging in this process, Kevin 
suggests that pre-service teachers need to be respectful as guests in the community; 
need to understand the web of interconnectedness among individuals, the commu-
nity, and nature; and need to engage in reflective thought and critical analysis of 
their actions while teaching (O’Connor 2006). Gladys notes that establishing mean-
ingful and trusting relationships with Indigenous teachers and students takes time, 
energy, thoughtfulness, and an ethical commitment to attend to the particularities of 
the context (Donald et al. 2012).

Throughout our experiences of teaching and learning, we acknowledge that we 
are non-Indigenous. Yet we have stories that include an Indigenous context and 
lived experiences with Indigenous people. We are also cognisant that we are prod-
ucts of the colonial forces that have traditionally dismissed Indigenous ways of 
knowing in exchange for the dominant Western paradigm. Throughout our journeys 
to better understand our role in integrating Indigenous Knowledges and mathemat-
ics, we have been guided by two approaches, namely culturally-responsive educa-
tion and learning from place.

 Culturally-Responsive Education

In North America, teachers, knowledge holders, and researchers in Indigenous 
communities have considered various ways of integrating Indigenous Knowledges 
and mathematics curriculum from culturally responsive perspectives. One such 
example is Math in a Cultural Context, a culturally based mathematics curriculum 
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for Yup’ik students in Alaska (Lipka 1994; Lipka et  al. 2005). It was developed 
jointly in collaboration with Yup’ik elders, teachers, schools, and communities; 
what makes this curriculum unique is the emphasis on starting from the elders’ 
knowledge.

The Transformative education for Aboriginal math and science learning at the 
University of British Columbia supports the work of Nicol and Archibald (2009) 
who focus on creating and living culturally responsive mathematics education in 
both rural and urban settings and consider how we can use community, culture, and 
place as inspirations for mathematics. Nicol and Archibald consistently emphasize 
the importance of forming strong relationships with Indigenous communities.

The Show Me Your Math project in Atlantic Canada was developed by Lunney 
Borden, Wagner, and Johnson (in press) and Elders of Mi’kmaw communities (see 
Lunney Borden, this volume). This yearly fair brings together members of the 
Indigenous community as students demonstrate how mathematics and Mi’kmaw 
ways of knowing intersect. Their research considers how teachers can learn from 
students’ Indigenous language and from cross-cultural understandings.

These examples of how culturally responsive education can be enacted in specific 
cultural contexts offer insights when considering the integration of Indigenous 
Knowledges and school mathematics. In these projects, accumulated generational 
knowledges of living in a particular place are incorporated into mathematics cur-
riculum through traditional stories, activities such as star gazing and the study of 
patterns used on clothing. Through our own informal experiences of engaging in 
culturally-responsive education, we have come to understand the importance of 
designing mathematical activities situated in places relevant to the experiences of 
the children in the community, of including elders in the process, and of attending 
to content knowledge, contextual knowledge, and pedagogical knowledge.

 Learning from Place

Researchers in North America are beginning to better understand student learning 
from place. When Gladys began her research and teaching within the framework of 
learning from place, she met with elders from the Blackfoot nation (Sterenberg and 
Hogue 2011). This informed her work with high school students (Sterenberg 2013) 
where she worked in partnership with teachers in a First Nation community where 
they took the students on two field trips to sacred Blackfoot sites, one of which was 
to the Big Rock. The elder who was with them began their visit with an offering and 
stories of Napi, a Blackfoot trickster. Students engaged in using trigonometry, simi-
lar triangles, Pythagorean Theorem and Global Positioning Systems to describe the 
place. The teacher summarized her thoughts on the impact of learning from place:

I believe that integrating the curriculum and finding math in the land made students feel 
more connected to their land and community, definitely pride of who they were, concern for 
the care and treatment of traditional sites, certain of their place and belonging in the 
Blackfoot Territory and culture, and in their place in Canada, safe to express themselves 
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mathematically, confident in their knowledge and skills in math, and engaged with math 
with a positive attitude. I believe that they felt like math was more human and more social 
than they had previously thought and that that was an acceptable way to see it; and that their 
ways of knowing are valid and can carry them into any subject. (Sterenberg 2013, p. 104)

 Conclusion

Though our experiences, we have come to understand that Western and Indigenous 
mathematics can be viewed as having complementary strengths. Recognizing the 
strengths of each view will maximize mathematical learning for all students. 
According to researchers, a cross-cultural approach to mathematics represents a 
much needed paradigm shift (Aikenhead and Huntley 1999; Antone 2000; Corbiere 
2000; Corsiglia and Snively 1995; Davidson 2002; Ezeife 2002; Lewis and 
Aikenhead 2001). Integrating Indigenous and Western knowledge systems holds 
generative possibilities for mathematics education.

Through our own study of multiple perspectives of mathematical thinking and 
knowing, we have come to know mathematics and ourselves in a different way. 
Calls to action made in response to the Truth and Reconciliation Commission (Truth 
and Reconciliation Commission of Canada 2012) include the development of strate-
gies to eliminate the educational gaps between Indigenous and Non- Indigenous 
Canadians, the development of culturally appropriate curricula, and the incorpora-
tion of principles that respect and honour treaty relationships. It is our belief that all 
students benefit from curricula that incorporates Indigenous knowledges and our 
hope that the teaching and learning of mathematics can support these calls to action.
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A Teacher’s View – An Unexpected 
Adventure
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Abstract This chapter examines a current secondary school teacher’s journey of 
being the Department Chair in a Northwestern Ontario school. His journey is high-
lighted by different insights that were gained from working with other teachers with 
different beliefs about how to effectively teach mathematics. In fulfilling his role as 
Department Chair, many reforms and initiatives were taken with his teachers, lead-
ing to different reactions from the other teachers in his mathematics department. 
The chapter highlights the stories of this “unexpected” journey while supporting it 
with research about professional development and the potential challenges of work-
ing with other teachers with strong (and differing) beliefs about teaching and learn-
ing mathematics. The hope is that this chapter will inform teachers in a similar role, 
facing similar challenges, in gaining some clarity on how to enact changes within 
secondary schools in order support the learning of secondary students in 
mathematics.

Keywords Beliefs · Professional development · Department chair · Secondary 
teachers

In our experiences, teachers working together has been an important aspect of the 
profession. Sometimes these collaborations are teacher driven and organic, and 
other times they are ministry, school board, or principal directed. Each type of col-
laboration brings its own positives as well as challenges, but collaboration is some-
thing that teachers need to learn to navigate and often accept. Many studies in current 
research examine teachers working together to make changes and improve their own 
teaching practices and how these collaborations can be effective professional  
development (i.e., Brahier and Schäffner 2004; Hord 2009; Vescio et  al. 2008). 
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Vangrieken, Meredith, Packer, and Kyndt (2017) provided a review of what they 
termed “teacher communities” to look at the effectiveness of teachers working 
together. This term places professional learning groups (PLCs) and communities of 
practice (CoP) under a single umbrella term. Shulman and Shulman (2004) note that 
a community that a teacher belongs to can have an impact on the beliefs and prac-
tices of that teacher. This chapter focuses on the firsthand account of a secondary 
school mathematics teacher (Jarron) as he worked with colleagues on supporting 
and developing practices that would ultimately support the students they taught. 
Following the account, the observations are linked to literature studies wherever 
possible in order to provide a structure for some of the underlying ideas of teachers 
working together. The purpose of this chapter is not meant to define the types of 
teacher collaboration, but simply to highlight the complexities and some of the les-
sons learned along the way that can create a culture of teacher collaboration.

 Jarron’s Adventure

I have been teaching mathematics for over 16 years, 14 of those as the department 
chair. Needless to say there have been many observations, reflections and “a-ha” 
moments along the way. It certainly has not been a smooth ride, but few things are. 
The following is a collection of some of those observations. Perhaps they will be 
useful to others as signposts in their own respective journey.

 Observation #1: Changing Personal Practices

It is safe to say that the majority of new teachers “teach the way they were taught,” 
at least in the beginning. This is neither a good thing nor a bad thing, it is just what 
seems to happen when the overwhelming amount of job expectations crash home on 
a new teacher. Figuring out what to teach and how quickly, classroom management, 
the political circus, etc. can be daunting, not to mention that new teachers seldom 
get a timetable or courses that would minimize some of those challenges. Teaching 
in several departments, or even schools, in the most difficult behavioural classes, 
and the “sink or swim” mentality of colleagues can lead to more job stresses than 
are perhaps necessary. So when everything is quite chaotic, it is completely under-
standable that new teachers, and even experienced teachers, rely on the method of 
teaching that they remember, are confident in, and after all, got them through the 
course as a student.

It is with this thought in mind, that we take our first major step forward. The les-
sons that were good for us as individuals leave a deep imprint; an imprint that when 
challenged by something different, say an alternative pedagogical approach, can 
lead to a very defensive and fixed mindset—cognitive dissonance. From my own 
experience, I taught like the teachers of my youth. I ridiculed and denied the use of 
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manipulatives, specifically algebra tiles, for years as a waste of time and not con-
nected enough to traditional algebra. I taught trigonometry for a year before I actu-
ally figured out what the ratios really represented. I have made mistakes in bunches. 
It is safe to say, I was trying to be a good teacher, but not really succeeding.

There are two moments when it all changed. The first is when I bought my first 
house. Teaching was no longer the “possible” career choice; it was THE career 
choice, because I had bills to pay and a major financial responsibility. The second 
happened one semester later, when I became the department chair. I was no longer 
responsible for just my own professional growth; I now had to help others with their 
growth as well. These two events may seem common to some people, but they were 
paradigm shifting for me. From that day forward, my own teaching practices became 
more dynamic, more open-minded, and more energetic. For me, I cannot ask any-
one to do a job or a task that I am not prepared to do myself. I cannot ask people to 
use algebra tiles and other manipulatives unless I am prepared to; so I dove in and 
explored. The result was that I am now a huge algebra tile user, and it has expanded 
my practice into numerous other topics and strategies. I have even gone as far as 
making video lessons using algebra tiles for mobile (internet) use.

I share this story with you because I was very fortunate to have a distinct point in 
my career that changed my path. A lump of clay has limitless potential, but if it is 
never shaped, molded, fired and glazed, it remains a lump of clay and not a precious 
vase.

 Observation #2: Traffic Light Analogy for Professional 
Development

As a department chair, I have worked with colleagues within my own department, 
from other departments, other schools, other boards, and other provinces. After a 
while, you begin to recognize colleagues that have undergone the same experience 
you have and are vibrant and brimming with energy and excitement for their job. 
These people are affectionately called “Greens,” because they are ready to GO on 
any new idea or initiative, they take little motivation, and even less supervision or 
prompting. The opposite of green is “Red.” These folks have either never had their 
moment of refinement, or they had it and have been broken or worn down along the 
way. They are difficult to move out of their set ways, teach the same way every year, 
and contribute little in terms of energy or enthusiasm to the school or department. 
“Yellows” are in the middle, they can be swayed and will try new things, but it takes 
a lot of prompting and reminding. Yellows do not oppose or resist but do not move 
too far on their own. The important point to remember about the colours is that they 
are a descriptor of the person’s career location and not their personality. It is quite 
possible to have a colleague be a “red” at meetings and professional development, 
but then be your basketball-coaching partner or weekend running mate. Career 
mindset and social likeability are very separate concepts. A “red” at a meeting is 
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frustrating and can impede the process, but this does not imply they are a bad per-
son. Also, the colour can change depending on the topic or given activity; a “green” 
usually stays “green,” but “yellows” and “reds” can change quite quickly and with-
out advanced warning. All and all, it makes for a very dynamic and challenging 
environment to try and lead and guide as the department chair. I share these thoughts 
because they serve as vital background information for the journey we embarked on 
as a department over the past few years.

 Observation #3: “The Plan”

I was asked if my Grade 11 UC (university bound) class would like to be part of a 
trial run of an entrance test for a provincial college. The test would be 70 multiple 
choice questions done over two periods on various numeracy concepts (arithmetic, 
percent, ratios, fractions, etc.) with the one caveat being that no calculators were 
allowed. The reward for class participation was a honourarium being paid to the 
department to be used for mathematics resources, texts, etc.

I felt it would be a good experience for my students and the extra cash for the 
department would be an added bonus, but before I let them try the test I felt it neces-
sary to ensure that their non-calculator skills were refreshed and ready to be used. I 
remember the question that started the journey we are on, it seemed simple enough 
for a grade 11 class: 14 × 16. Out of a class of 23 students, only one student came 
up with the correct answer (224). I was shell shocked. We spent the next few days 
reviewing multiplication and division strategies before attempting the test. Needless 
to say, 70 multiple choice questions with no calculator was not an uplifting experi-
ence for the students, but it was for me. I took the news back to our department PLC 
(Professional Learning Committee) and it started dialogue on how we can ensure 
that students that graduate from our institution have the mental math skills that are 
expected of them in the work world, but no longer hold a prominent place in the 
curriculum (elementary or secondary).

When I shared my experience with my department, all of the different colours, 
Green, Yellow and Red had insights into what to do—to me this was a huge success 
already. We had buy in from everyone on the need to do something, the how and 
what we were going to do would take a bit more time to iron out.

In the end, we developed a strategy we affectionately named “The Plan.” Each 
block would last about 2 weeks, would start with a pre-assessment, have several 
short (10 min) mini lessons on a very specific topic, say adding, and would culmi-
nate with a post assessment to gauge how much progress was made. All work would 
be calculator free, written calculations or mental math would be acceptable but no 
technology, multiplication tables or outside assistance. We hoped to hit the following 
topics during the semester: addition, subtraction, multiplication, division, percent, 
fractions, ratios, but quickly found out that was too ambitious. In the end, we settled 
on addition, subtraction, multiplication and division; with each topic being scaled up 
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in difficulty for the corresponding grades, i.e., Grade 12U addition problems would 
be significantly more challenging than a Grade 9 Applied1 level.

As the chair of the department and supposed curriculum leader, I felt it my 
responsibility to seek out the current teaching methods being used at all schooling 
levels and bring that information back to share with the department. I found it to be 
a very interesting and enlightening journey, and I was excited to share some of the 
“new” methods with my colleagues, which is where we hit our first major road 
block. The aforementioned “teach the way I was taught” and the “Red” resistance to 
change all leapt to the forefront. The hot topics were the area model for multiplica-
tion versus the “old school” column model of multiplying (see Fig. 1 for an exam-
ple) and dividing numbers using repetitive subtraction versus long division (see 
Fig. 2 for an example). The discussion spanned several PLC meetings, even getting 
to the point where we would ambush fellow colleagues who were not in the depart-
ment to see what they remembered of multiplication and division from their youth, 
how they would solve a problem we gave them, and then countering their technique 
with an alternate strategy to see if they liked the new one more. In the end we did 
not achieve consensus immediately amongst ourselves, but we did expand our over-
all knowledge of the topic and albeit somewhat reluctantly expanded the teaching 
repertoire of most of the department.

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied). Grade 12U are courses in the university mathematics 
or science pathway in Ontario schools.

Fig. 1 Solving 24 X 13. The area model is on the left and the “traditional” method is on the right. 
(Please see Kajander, Part VI, this volume for creating area models with algebra tiles.)

Fig. 2 Solving 1354 ÷ 8. 
Repetitive subtraction is on 
the left and long division is 
shown on the right
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We are now in our second full year of working on “The Plan,” and it has met with 
varying levels of success. Fitting in the extra teaching time has been a challenge 
with all department members. It seems so simple a concept, use 10 minutes a day, 
three times a week to teach some mini lessons, but with our densely packed curricu-
lum it is easy to lose sight of trying to fit those mini lessons in.

 Observation #4: Dealing with Change

The only thing constant in this life is change. As we move into our second year of 
“The Plan” we still have hurdles for timing but our dynamics in terms of green, yel-
low and red lights within the department has changed dramatically.

The challenges of a small school mean staffing can change quite radically and 
quite abruptly. From one term to the next, we moved from having the full comple-
ment of red, yellow and green, to now only having yellows and greens. Needless to 
say the conversations, goals and energy at meetings has changed dramatically. 
While I am enjoying the new dynamics and I am grateful for the ease at which we 
currently meet, I am also aware that next semester it could be very different. It is in 
the more positive times that it becomes necessary to establish department norms and 
expectations that everyone can buy in on. This gives precedent and structure for 
when things become less harmonious.

 Observation #5: Mathematics Initiatives

If what you are doing is built on solid evidence and student need, stick with it. We 
started this journey 2 years ago because we recognized the need for improved stu-
dent skills, specifically in the mental math realm. We had evidence to support our 
decision, we gathered different strategies and began to implement them immedi-
ately. Recently our board began implementing initiatives to improve mental math 
strategies and more skill based activities in the elementary level. The need we rec-
ognized early on, was validated by the board’s recognition of the same need, only 
we had a head start on the process. The key is always the evidence. We live in a 
world where decisions must be supported with facts, especially decisions that may 
go against the grain. Non-calculator skill based practice is a polarizing subject in the 
mathematics realm at this time. The inquiry model versus skill-based learning has 
stakeholders at all levels expressing their opinion. Personally I believe a balance 
between both inquiry and skills is needed for success. The skills need to be in place 
to allow for meaningful inquiry, but the inquiry gives the purpose on why we need 
to learn the skills. The two concepts feed each other, not just in mathematics but 
science as well.

In summary, these are observations from my career to date. They are just that, 
observations, not rules or absolutes. Hopefully these observations will lend some 
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insight into your own career, the career of your peers, or will be at the very least an 
entertaining insight from the education realm.

 Links to Literature

 Observation #1: Changing Personal Practices

According to Festinger’s theory (1957), at a core level, people want thoughts, atti-
tudes, and beliefs to be “balanced.” When dissonance occurs, then there is a desire 
to make changes to one’s thoughts, attitudes and/or beliefs to restore the balance 
(Heider 1946). In Jarron’s example, his dissonance came from outside forces. In 
order to retain balance, he made changes in his practice so that balance was restored 
as he found success in using the new practices that he was bringing into his class-
room. In essence these experiences causing imbalance allowed for a shift in his 
beliefs about teaching secondary mathematics. Philipp (2007) notes that “beliefs 
might be thought of as lenses that affect one’s view of some aspect of the world or 
as dispositions toward action” (p.  259). Some research suggests that efforts to 
change teacher practices in mathematics have failed partially because of not 
accounting for the beliefs of the teachers impacted (Grant et al. 1994; Handal and 
Herrington 2003). In a department head role or working with a colleague, there 
could be a variety of differing beliefs at play in a single school. Finding a way to 
cause dissonance with the beliefs of the teachers can be a vehicle for change. 
Gregoire (2003) adds that these changes in beliefs also need to be accompanied with 
a way to increase teacher efficacy in the new methods in order for changes to be 
effective.

 Observation #2: Traffic Light Analogy for Professional 
Development

Research has indicated that team community and collegial support is important for 
making changes in teacher practices to develop strong teachers (Graham 2007). In 
looking at those on the stoplight, the “green” individuals are going to be those col-
leagues who are inspiring to work with and bring new ideas and will reflect on 
practices with you, but they do not necessarily need the teacher community support. 
The “yellow” teachers on the other hand will need the teacher community as a vital 
portion of their growth and change in order to keep them motivated and moving 
forward. McNeal and Simon (2000) argue that “norms and practices do not change 
simply by virtue of the teacher using his [sic] authority to assert the new set of rules 
accompanied by student compliance” (p. 506). Instead teachers need experiences 
that have them analyze or question their own beliefs and practices (Grant et  al. 
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1994). By relating this back to the stoplight analogy, the “red” teachers will be set 
in their beliefs and not easy to change. In Holm and Kajander (2015), one of the 
teachers could have been described as a “red” teacher and it was not until an experi-
ence that forced him to confront what he thought he knew about teaching mathemat-
ics that he began to think about other ways to teach. In thinking about teacher 
communities, not only paying attention to beliefs, but also how entrenched they are 
in those beliefs becomes an important consideration in working together. The 
“green” teachers would potentially be more fluid and flexible in their beliefs and 
open to new possibilities. In the end, teacher communities need to prioritize chang-
ing practices while creating a place for teachers to engage in learning in order to 
benefit the students (Vescio et al. 2008).

 Observations #3 and 5: “The Plan” and Mathematics Initiatives

These types of collaborative groups are great for professional development since 
there is also easier access to the relevant knowledge since it is contained in the 
school itself (Webb et al. 2009). In 2004, DuFour noted that “the best staff develop-
ment happens in the workplace rather than in a workshop” (p.  63). This can be 
exemplified in Jarron’s observations made about the test being given to the students 
and the resulting departmental changes. A workshop could have told the group of 
teachers what to do, but bringing the group together to pool resources and try ideas 
was effective in making a real difference.

One caveat here in these observations is to note that the teacher community did 
not just make “The Plan” and leave it be, they took more of an action research 
approach to the change. “Action research aims to design inquiry and build knowl-
edge for use in the service of action to solve practical problems” (Punch 2009, 
p.  136). These ideas fit into the work of DuFour and Eaker (1998) who defined 
professional learning communities by including elements of action research: action 
orientation and experimentation, continuous improvement, and results orientation. 
As seen with Jarron’s observations, it is this cycle of continuous improvement with 
a focus on results and then trying out new methods that drives practice by refining 
strategies for teachers’ classrooms. By focusing on this cycle together, the teacher 
group created a shared personal practice that would include newer strategies that 
would ultimately benefit their students.

These observations align with the research call for teacher communities to be 
based in testing and reflecting on research-based strategies (Eaker 2002; Eaker et al. 
2002; Hord and Sommers 2008; Gojmerac and Cherubini 2012) and teachers look-
ing for ways to improve their personal practices (DuFour and Eaker 1998). Aligning 
with the observations provided by Jarron, the teacher group collaboration combined 
teacher needs and beliefs based on their classroom observations with the theories of 
researchers, as Bednarz et al. (2007) has noted is important. The Ontario Ministry of 
Education (2007) encourages a focus on results by keeping student learning at the 
centre of the teacher discussions through teachers who are reflective of their teaching 
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and consider student achievement when making instructional decisions. This can be 
seen clearly in Observation #5. The push in the group was to keep students at the 
front of the decisions about what to keep working with and what would need to be 
changed. Ultimately the teachers have seen firsthand that working together is leading 
to improvements in student achievement which has also been noted in the research 
(i.e., Vescio et al. 2008).

In the end, teacher communities can serve an important role in the developing 
practices of teachers and the learning of students. Research has shown that working 
collaboratively is important to the field and has an impact on teacher retention 
(Webb et al. 2009). As seen in the observations provided by Jarron, these groups 
necessarily need to focus on the needs of their own classrooms, but also push to 
make changes and then test those changes to examine the results. The beliefs of the 
teachers involved in the teacher community can also have an impact by either forc-
ing them to stay still (“red”) or leaving them open to make changes and work on 
their own (“green”). The need for a catalyst moment to be an impetus to change was 
also highlighted by the observations. As Jarron believes, it is important that teachers 
“Prepare the child for the path, not the path for the child.”
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Part II: Commentary – Shifting 
to a Culture of Inclusion

Kim Beswick

 Introduction

The chapters that comprise this section are essentially about what “good” mathe-
matics teaching is and how teachers come to practice “good” mathematics teaching. 
Such teaching is often characterised as student-centred or reform-oriented and con-
trasted with traditional or teacher-centred pedagogy, although Davis et al. suggest 
the alternate and rather broader descriptors, StandardizedEd and AuthenticEd. 
Inclusion requires a focus on the needs of all learners and hence is necessarily 
student- centred but such a stance alone does not prescribe pedagogy with any degree 
of specificity. That is a subtler matter and one that relates to aims of the teacher and 
the of education system and society in which she/he works.

It is unsurprising that the teaching advocated for the learners who are the focus 
of the chapters in this section is the kind of teaching that we know is effective for all 
learners but I begin this commentary with some remarks about what “good” math-
ematics teaching might be and the ways in which this relates to inclusive practice. I 
then make some comments about the role of professional learning and particularly 
the promotion of strategies as a means of promulgating inclusive teaching of math-
ematics, and on the notion of a culture of inclusion. Together, these remarks form a 
backdrop against which I comment briefly on the individual chapters. I finish with 
a reminder of the complexity of teachers’ careers and cumulative nature of the 
learning.

K. Beswick (*) 
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 Inclusive Mathematics Teaching

Mathematics educators have articulated goals for school mathematics in terms of 
what it means to learn and do mathematics; to think mathematically. Notably, 
Kilpatrick et al. (2001) described the goal of school mathematics as the develop-
ment of mathematical proficiency. Versions or subsets of the five strands that they 
saw as comprising mathematical proficiency—conceptual understanding, proce-
dural fluency, strategic competence, adaptive reasoning, and productive disposi-
tion—feature in, for example, the mathematics curricula of Australia (ACARA 
2017), Ontario (Ontario Ministry of Education 2005a, b), and Singapore (Singapore 
Ministry of Education 2012). Although the messages about what it means to learn 
and do mathematics, that is, to be mathematically proficient, captured in the process 
strands of these curriculum documents can be undermined by other government 
agendas such as standardised testing regimes (e.g., Australia’s National Assessment 
Program: Literacy and Numeracy), they provide some guidance for teachers about 
what it is they are mandated to achieve, and from this pedagogy should follow. It 
could be argued that any pedagogy that enables all students to develop mathematical 
proficiency is “good” and inclusive pedagogy. The degree to which teachers aim to 
develop their students’ mathematical proficiency is related to their understanding of 
that concept and the extent to which they agree that it is the aim of school 
mathematics.

Hersh (1986) suggested a reciprocal relationship between teachers’ beliefs about 
the nature of mathematics and the way that they teach it:

One’s conception of what mathematics is affects one’s conception of how it should be pre-
sented. One’s manner of presenting it is an indication of what one believes to be most 
essential in it …The issue, then, is not, “What is the best way to teach?” but, “What is 
mathematics really all about?” (p. 13)

Mathematics teachers’ beliefs about what it is that they are trying to teach are foun-
dational to how they go about teaching it, but it is also true that teachers may have 
differing contexts in mind when they consider what they are aiming to achieve. 
Many teachers will be thinking about mathematics in terms of school mathematics 
as defined by curriculum content (Beswick 2012) rather than mathematical profi-
ciency. They may also answer the question differently according to the students that 
they have in mind or in front of them. The “most essential” elements of mathematics 
for students deemed low attainers is more likely to be automatic recall of basic facts, 
and facility with life related (although often contrived) calculations than it is to be 
understanding powerful mathematical ideas or developing the capacity to reason or 
solve problems (Beswick 2017). Even teachers who endorse mathematical profi-
ciency of the sort described by Kilpatrick et  al. (2001) may place conscious or 
unconscious caveats around that goal. They believe mathematical proficiency is 
important BUT: these students need to be ready for the external examination or stan-
dardised test; students must master “the basics” first; or it is not realistic for these 
students. We know that mathematics teachers tend to believe that mathematical abil-
ity is innate (Boaler and Sengupta-Irving 2016); a belief that is almost certainly 
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linked to the resistance, uniquely staunch among mathematics teachers compared to 
their colleagues teaching other subjects, to teaching mathematics in mixed-ability 
groups (Horn 2006) and one that militates against mathematics teachers believing 
that they can influence student learning (Boaler and Sengupta-Irving 2016).

In addition to the beliefs of individual teachers, the culture that teachers create in 
their classrooms cannot be insulated from the broader culture in which they are situ-
ated because teachers are necessarily members of the societies in which they live 
and work. In many Western societies, including Canada, the increasing focus on 
education and particularly education in Science, Technology, Engineering and 
Mathematics (the so-called STEM disciplines), as a driver of economic growth it is 
unlikely that the nature of proof or the beauty of mathematical structures rate highly 
in most teachers’ minds when thinking about what is most important in what they 
are trying to achieve as teachers of mathematics. The extent to which various cate-
gories of learners are marginalised or deemed to be low attainers or experiencing 
difficulties in learning mathematics can thus be seen as socially, culturally and polit-
ically constructed (Broderick et al. 2012). We know that not all students are afforded 
the same opportunities to learn (Schmidt et al. 2015). Differences accrue from a 
range of factors that combine to constitute varying levels of socioeducational advan-
tage and not all of the contributing factors can be influenced directly by schools or 
teachers. Nevertheless, some factors, like the opportunity to learn defined in the 
Program for International Assessment (PISA) as exposure to content (Schmidt et al. 
2015), can be. Teachers have a responsibility to work to mitigate the impacts of 
socioeducational disadvantage as well as disability.

 Teacher Development

Nespor (1987) pointed out that teachers change their practice when they see a need to 
change and have an alternative available that they regard as feasible. Although more 
recent research has not contradicted this formulation it is apparent that, even when 
Nespor’s conditions are in place, change is usually neither a simple nor easy process. 
Reid and Zack (2010), for example, drew attention to the vulnerability of teachers 
engaged in changing their practice and to the importance of emotional engagement in 
the process. Pui-Wah (2008) implicitly incorporated both Nespor’s (1987) precondi-
tions for change and Reid and Zack’s (2010) observations about teachers engaged in 
change in her concept of meta-learning ability. From her case- studies of kindergarten 
teachers Pui-Wah (2008) identified the capacity to identify and confront problems in 
current practice, and persistence and determination in seeking alternative approaches 
as essential teacher qualities that enable change. Confronting problems connotes the 
emotional work involved in Nespor’s (1987) idea of seeing a need to change, and 
persistence and determination convey an active approach to finding a plausible alter-
native paradigm. Pui-Wah (2008) challenged developmental models of teacher 
change grounded in studies of novice and expert teachers that, simplistically inter-
preted, suggest that experience and growth go hand-in hand.
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The social context of teacher learning has increasingly been recognised, largely 
based upon work on communities of practice (e.g., Wenger 1998). More recently the 
importance of collaboration to the success of professional learning communities has 
been stressed (Jäppinen et al. 2016). Related to the emphasis on the social context 
of teacher learning is the notion of culture, comprising the values and norms shared 
by members of a collective (e.g., a class, school, or education system). MacNeil 
et  al. (2009) stressed the importance of the principal to the culture of a school. 
Analogously teachers are crucial to establishing and maintaining the culture of their 
classes. Teacher development is supported in a culture in which “beliefs, values, 
attitudes, expectations, ideas and behaviours” are aligned with the desired change 
(MacNeil et al. 2009, p. 74). An individual teacher’s shift toward inclusive practice 
is thus more likely to occur and to be sustained when the beliefs and values that 
underpin that shift are shared by colleagues, the school leadership, and ideally by 
society. In spite of the importance of culture, relatively little research has investi-
gated the nature and development of culture among mathematics teachers, and 
although much of the literature about culture that can be found in relation to leader-
ship applies, groups of teachers engaged in teaching mathematics share in a particu-
lar epistemic culture related to the subject they teach (Knor-Cetina 1999).

Alongside this social emphasis is the longstanding acknowledgement that learn-
ing is an individual process in which the life and work experiences of individual 
teachers interact (Connelly and Clandinin 1985). Professional learning or develop-
ment is essentially biographical and hence “filled with plateaus, discontinuities, 
regressions, spurts and dead ends” (Huberman 1995, p. 196). A particular profes-
sional development event, program or project is just one more experience and hence 
although conventional wisdom concerning effective professional development 
emphasises the importance of long term engagement there is evidence that one of 
events occurring at an opportune time can have significant impact (Beswick et al. 
2017).

In spite of the unpredictability of teachers’ development that arises from the 
complexity outlined above, professional development programs and projects are 
designed to influence teachers in some particular direction and/or to foster some 
change in pedagogy that is deemed desirable. Different programs are based on dif-
ferent frameworks intended to encapsulate the change that is hoped for. These can 
take the form of sets of principles (e.g., Muir, 2008), lists of practices or strategies 
(e.g., Sullivan 2011), or contrasting paradigms (e.g., Boaler and Sengupta-Irving 
2016). While most have merit they are necessarily incomplete having been com-
piled or selected based on various judgements about priorities and the perceived 
needs and interests of participating teachers. In the course of their careers teachers 
may encounter many such formulations of desirable practice. Questions arise as to 
how teachers make sense of the latest encapsulation of good practice in relation to 
their own experience and current knowledge, and the community in which they are 
currently working.
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 Comments on Individual Chapters

Six of the chapters warrant their place in a section ostensibly about inclusive cul-
tures in mathematics classrooms by being situated in a context involving one or 
other group of learners considered marginalised by “usual” mathematics teaching: 
special needs learners (Davis et al.), English language learners (Barwell, Kubota- 
Zarinnij, & Culotta), disengaged low attainers (Kajander; McDougall & Ferguson), 
and Indigenous learners (Sterenberg & O’Connor). Inclusion requires attention to 
all learners as individuals: their thinking, life-experiences to date, and particular 
needs. By considering learners who might be considered “difficult cases” we can 
learn much that is of value for all learners. The danger is that we restrict our atten-
tion to cases where business as usual is clearly not satisfactory and fail to apply the 
learning more broadly. The remaining four chapters (Childs & Holm; Oesterle; 
Pyper; Sterenberg and O’Connor), chronicle authors’ personal stories of learning to 
teach mathematics. Sterenberg and O’Connor siuate their reflections in the context 
of Canadian policy and curriculum initiatives.

Davis et al. describe four strategies that emerged from their work with teachers 
working with special needs learners that draw attention to particular aspects of 
teaching that are important and situate these with the notions of StandardizedEd 
versus AuthenticEd. Each of these are underpinned by deep seated metaphors of 
beliefs that drive teaching and explain the difficulty of shifting practice. Teaching is 
an outworking not only of what the teacher believe mathematics is (Hersh 1986) but 
also of what is understood about the nature of knowledge, and what it means to learn 
and to teach. The chief value of this chapter is in drawing attention to these things 
for, although the strategies identified have resonance with many other mathematics 
classrooms and certainly not only those for students identified as having special 
needs, it is the underpinning principles and the process of arriving at the strategies 
in such a way that the teachers own them that is powerful and most likely to be 
transferable in the sense of underpinning future work with other groups of teachers. 
The comparison of learning to teach differently with learning another language rec-
ognises the difficulty of not just changing particular actions but of shifting one’s 
paradigm and nicely explains the ease with which teachers slip back into familiar 
ways of operating. As Davis et al. state, teachers, like language learners, need to 
have many opportunities to produce the new pedagogy, often imperfectly, in order 
eventually to achieve fluency in it.

The importance of producing language is taken up by Barwell et al. in a literal 
sense. Learners of mathematics need to produce mathematics just as English lan-
guage learners need opportunities to write and speak English. In the context of 
mathematics classrooms, they need opportunities to produce English communica-
tion of mathematics. Although the context in which the work reported by Barwell 
et al. was conducted was challenging in the extreme, the questions posed and strate-
gies that emerged could usefully be asked and applied in any context.

Part II: Commentary – Shifting to a Culture of Inclusion



204

Kajander highlights the need to attend to individuals, and the power of doing so, 
and also to the need to be cognisant of students’ affective states. Disengagement can 
be a quiet phenomenon that that does not necessarily attract the teacher’s attention; 
it can place students at risk of being ignored. As Davis et al. illustrated students can 
be engaged in trying to get answers; that is in the performance of school mathemat-
ics but disengaged from meaningful learning. One of the students that Kajander 
describes, as well as the classes discussed by McDougall and Ferguson and by 
Macaulay, was in the Year 9 Applied mathematics stream that appears to be usual in 
Ontario. Macaulay reviews literature that shows that students in lower ability 
streams have reduced opportunities to learn mathematics as a result of less rigorous 
curriculum, lower academic expectations and poorer quality teaching. None of the 
authors challenge the association of applications of mathematics with lower ability 
(actually prior attainment). Attempting to develop inclusive practice within what is 
an inherently exclusionary structure strikes me as an attempt to staunch an arterial 
bleed with a tiny sticking plaster. Nevertheless, mathematics teachers whose power 
does not extend to structural change, are compelled to attempt inclusive pedagogy 
in these settings and it is testament to their determination and that of their learners 
that positive change can be made. At least as moving as the stories of the three stu-
dents is that of Diane’s teacher retreating from non-traditional teaching in the face 
of classroom management difficulties. In classrooms constituted of learners who 
have been labelled by their assignment to the class as incapable, it is surprising how 
infrequently the accumulated frustration and insult do not manifest in rebellion.

For McDougall and Ferguson positive change was defined as improvement of 
standardised test scores for Year 9 Applied mathematics students. The improve-
ments achieved, from a low base, by most schools are impressive and worthwhile 
even though arguably more, or at least equally important goals related to mathemat-
ical proficiency and students affect may not have been furthered in the process. 
McDougall and Ferguson illustrate how a relatively large scale project can be cus-
tomised by individual schools and although there is a tendency to equate student- 
centred pedagogy with specific practices like group work, the authors’ observation 
that at the end of the project teachers tended to take greater responsibility for stu-
dent learning suggests deeper change might have occurred.

After discussing the ways in which streaming contributes to lower attainment 
Macaulay describes four Ontario schools that achieved higher than expected results 
for year 9 students. She summarised the approaches used as ten recommendations 
for teachers of the Applied stream. None of these are surprising and would be sound 
recommendations for teachers of any students. Macaulay’s research was focussed 
on practicalities but it would have been interesting to have explored the beliefs of 
the teachers of the Applied students in these schools and the extent to and ways in 
which school cultures may have supported their efforts. Although the achievement 
gap between students in the Academic and Applied streams was less than that for 
the province overall, there still was a gap. This points to a problem ameliorated 
rather than solved. Although teachers have limited influence beyond their class-
rooms, researchers in these contexts have an obligation to be mindful of the broader 
correlates of achievement gaps. For example, socio-economic status is related to 
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students’ learning both directly as well as through reduced opportunity to learn 
(Schmidt et  al. 2015). One of the negative impacts of standardised testing and 
 associated achievement norms is that it normalises gaps related to such things as 
SES or subject stream.

Oesterle summarises what she has learned from her teaching career in terms of 
knowing, nurturing and noticing. The knowledge referred to aligns with various 
categories distinguished in the mathematics education literature. Nurturing refers to 
students’ mathematical “habits of mind.” It encompasses the strands of mathemati-
cal proficiency and Oesterle makes the link between these, particularly productive 
disposition, and developing a growth mindset. She also acknowledges the impor-
tance of teachers having a growth mindset in relation to their own learning—a point 
made by Kilpatrick et al. (2001) but often overlooked. Noticing, as described by 
Oesterle, amounts to paying attention to students and their learning. The description 
of good teaching provided in this chapter amounts to current orthodoxy in mathe-
matics education, drawing upon a variety of influential ideas. Pyper provides simi-
larly mainstream advice to pre-service teachers, focussing particularly on 
mathematical habits of minds and taking a dynamic view of what it means to know 
mathematics. The question that Oesterle’s account raises in my mind but that she 
does not answer is why is it that she has developed an orientation to her teaching of 
constantly seeking to improve whereas other teachers do not? What is it that makes 
the difference? Similarly, how has Pyper come to his views? Is the experience of 
becoming a teacher educator, as Oesterle and Pyper have, necessary or sufficient 
and if it is, what is it about that experience that makes it potent?

For Childs (Childs & Holm), the pivotal experience seems to have been assum-
ing responsibility for mathematics teaching in his school, rather than becoming a 
mathematics educator. Childs and Holm outline a series of “observations” that they 
see as leading to their emphasis on collaboration for teacher learning, and of estab-
lishing a school culture in which that is the norm. Is it the experience of being or 
feeling responsible for other teachers’ learning, either as a mathematics teacher 
educator or as a head of department in a school, that triggers growth? Might such 
experiences stimulate an intensity or quality of reflection on one’s views that is rare 
in the context of everyday school teaching?

Sterenberg and O’Connor also reflect on their journeys toward culturally respon-
sive teaching. They describe how they have come to see Western and Indigenous 
mathematics as complementary. Theirs is a story of learning to respect all learners 
that, common to all of the accounts of inclusive practice in this section, has implica-
tions for mathematics teaching for all learners. Their stories are different but include 
encounters with Indigenous culture and learners. What is it about these encounters 
that was powerful and how can teachers who have not had similar experiences 
develop similar awareness and sensitivity?

What is the research contribution of personal stories of development such as 
those of Oesterle; Pyper; Childs and Holm; and Sterenberg and O’Connor, and 
Kajander’s account of her encounters with individual students? First, they illustrate 
Huberman’s (1995) point about the unique and non-linear nature of teachers’ careers 
and remind us that even though we devise programs and processes based on research 
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and that these may appear to be broadly effective in whatever way we have defined 
that, individual teachers will, like learners in any context, respond in idiosyncratic 
ways. Not all schools, for example, showed improvements in standardised test 
scores despite participating in the same program (McDougall & Ferguson). Second, 
and relatedly, they can remind us that there is a lot going on in teachers’ work lives. 
When teachers reflect on the trajectory of their career a range of largely unplanned 
experiences and opportunities are interpreted as a coherent sequence that led them 
to where they currently are (Huberman 1995). Those who work with teachers need 
to be aware that the impact of their input into the experience of individual teachers 
cannot be predictable. Nevertheless, lessons can be learned from commonalities in 
individual stories, including from the questions that they raise. They can also high-
light particular aspects of practice in particularly powerful ways such as Kajander’s 
reminder to attend to the emotional connotations of teachers’ beliefs as a means of 
helping teachers to reflect on their beliefs and their implications for students, or 
Sterenberg and O’Connor’s foregrounding of respect and cultural appropriateness.

 Concluding Remarks

The overall impression gained from considering this collection of chapters is that it 
is not the particular recommendations that are used to frame teachers’ efforts to 
change practice or that arise from their work, but rather it is the experience of the 
process of change; working with colleagues (including in unstructured and informal 
ways) to generate principles, lists of strategies, or processes that are meaningful to 
them in their context, that is powerful. There is no definitive formulation of inclu-
sive pedagogy that can be transferred from one context to another, although differ-
ing formulations have commonalities. We can, however, learn from the processes by 
which others learned and were supported to learn. We make progress by distilling 
general principles, not to tell others to implement, but to underpin our own work 
with colleagues.

Regardless of whatever progress has been made in understanding how shifts in 
pedagogy occur, the models encapsulated in these chapters in both the descriptions 
of projects and accounts of personal journeys can be understood in terms of 
Huberman’s (1995) open collective development cycle. Although conceived as a 
collaborative model in formal professional development contexts, the model is read-
ily applicable to an individual who has normal informal access to colleagues and 
external sources of information perhaps in the form of literature or colleagues in 
other schools or universities. It can also be considered to operate over a longer time 
period than the duration of most professional development projects and repeated in 
different ways throughout a teacher’s career.

In this model conceptual inputs (e.g., from university researchers, informal 
encounters colleagues, or personal reading) give rise to the sharing of experiences 
in a collaborative context or perhaps internally as an individual becomes conscious 
of particular elements of his/her experience. Further inputs lead to the development 
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of new methods and experimentation with them. This process may be supported by 
outside experts or colleagues, or driven by personal attention to the data provided by 
students. Huberman (1995) presents the next part of the cycle as exchanges of data 
with colleagues or external experts who may assist with analysis and provide further 
inputs leading to further experimentation. Further external inputs may occur before 
the new method is either applied or abandoned and the cycle repeated. The process 
can be seen as continuous across an individual teacher’s career including as that 
teacher moves between schools or, as was the case for several of the authors, into 
pre-service teacher education contexts. The learning about how to create inclusive 
classroom cultures is in the process of becoming an inclusive teacher/educator.
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Through an Ethic of Care: Insights 
from the Work of Julie Long

Elaine Simmt

In my reflection on the papers from “Fostering relationships,” I raise the concept of 
care – care as an ethical stance in teaching. “An ethic of care emphasizes the particu-
lar, as carers recognize and respond to individuals, as well as attending to context” 
(Long 2008, p. 116). I raise this concept of care for two reasons: firstly, because care 
is a theme that emerged for me from the papers, as I read about the ways in which 
particular teachers interact with learners to enhance their educational experiences; 
and secondly, I raise it to insert into this volume the contributions of a Canadian 
scholar who had much to contribute but too little time to make those contributions. 
In my reading each author in this section points to relationships among teachers and 
learners that are fostered through care.

Canadian scholar and mathematics teacher educator Julie Long1 explored the 
notion of care within the context of teaching children mathematics. She explains her 
orientation to care.

While my use of the words care and caring includes both an emotional aspect and an intel-
lectual aspect, its main focus is an ethical stance. An ethic of care is a way of living, of 
teaching and learning, of considering dilemmas, and of working with others. It goes beyond 
helping, beyond being nice or polite. It requires intellectual work and is associated with 
emotional risk, just as studying mathematics involves work and risk. (Long 2008, p. 24)

In her work she asked an important question: How does a teacher care for students 
and mathematical ideas? In Long’s response she uses conceptions of caring actions 
initially explored by Nel Noddings: profound attention and reciprocity. She extends 
Noddings’ work by nuancing the notion of proximity (pp.  49–50). These caring 
actions, Long asserts, are found in mathematics classrooms where the mathematics 

1 Dr. Julie Long passed away at the age of 42 in March 2016. Julie was an assistant professor of 
elementary education at the University of Alberta.
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teacher focuses on sense making, takes seriously student questions, accepts mis-
takes as opportunities for learning, helping students learn to deal with their frustra-
tion, and by encouraging students to make conjectures. (Importantly, she includes 
caring for mathematics as an element of this ethic.) Underpinning all of these 
actions she asserts is profound attention; listening being one form of profound 
attention. “If you care you must listen” (student cited in Long 2008, p. 51). From 
listening, Long notes reciprocity can emerge with teacher and learner responding to 
one another. The back and forth of give and respond contributes to the caring rela-
tionship (p. 58). Finally, she explains how proximity is about the physical, emo-
tional and intellectual closeness needed for the teacher and students to relate with 
each other and mathematics. With these concepts in mind, I turn to the chapters in 
this section.

As I read each chapter I considered the relationships being described and I began 
to connect to the conceptions of care that Long wrote about. Roth’s paper begins by 
describing a teacher who attends to both the intellectual and affective dimensions of 
a student’s cognition. Hurlington’s and Jao’s analyses focus on the relationships 
between the intellectual and social needs of the learner. Chorney’s study examines 
the teacher’s actions and interactions with learners within the constraints of con-
forming to external and systemic demands for assessment. Newell, reflects on his 
actions as an inexperienced teacher as he attempted to build relationships with stu-
dents when he arrived as the “new teacher” to their schools.

Roth (as both teacher and researcher) reflects on his own teaching experiences 
with students who disengaged from participating in mathematics classes to address 
the importance of the intellectual and the affective dimensions of cognition. He 
comments on how his own negative experiences with mathematics impacted him 
emotionally. However, it is those experiences that he believes led to the empathy he 
had for his learners: a student who was seen as “slow” by others, a disengaged stu-
dent, and a class of “slow learners.” He suggests that although he was able to work 
with these learners because of his empathy for them, it took him many years to 
identify and connect with the theoretical work that explained the complicit relation-
ship between intellect and affect when they are “[t]aken together with the practical 
aspects of life” (Roth, this volume). As Roth explains, “both are integral parts of a 
human relation; and the relations with other persons are the genetic origins of all 
higher psychological functions and personality.” Long too makes the connection of 
the emotional and intellectual aspects of learning to the caring relationship. I believe 
Roth demonstrates another aspect of this ethic of care in his work as a researcher by 
trying to understand his teaching relationships and actions through theorizing them. 
Long posits that the teacher’s ethic of care must include learners and mathematics, 
I would like to suggest that as researchers there must be care for the researched and 
care for the educational theories we explore.

Turning to the chapter by Hurlington, where he explores building student resil-
iency, provides another example of focused teacher attention. He claims, “[t]he first 
principles of all resilience enriching classroom environments comes back to devel-
oping meaningful relationships with student.” In this study, the teacher’s attention 
(much like a talent scout) is focused on the strengths and talents of learners. By 
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paying attention to and acknowledging student strengths, talents and existing 
knowledge the teacher can act to enhance student resilience. Long would agree that 
by teachers focusing on learners’ strengths rather than weaknesses and deficiencies 
teachers demonstrate an ethic of care.

Jao reports that teachers who focus on reinforcing student strengths have positive 
effects on learner engagement in at-risk classrooms. The teachers in Jao’s study 
endeavoured to enhance student engagement in the mathematics class by focusing 
on social interaction in the classroom among students and with the teacher, as well 
as interaction with concrete materials from which the learners could make meaning 
of mathematical concepts. The teachers in this study demonstrated an ethic of care 
through their invitations to learners to participate in small groups and by providing 
academic and social support for the learners’ development. To be more specific, 
Long’s (2008) notion of proximity (closeness) is manifested in the choices the 
teacher makes to have students work with each other in small groups. In Long’s 
study the she noted that “[t]heir proximity [of teachers and students] creates a physi-
cal, personal, and intellectual intimacy as Karen [the teacher] works to be close to 
them, to who they are, and to what they might be thinking” p. 68). Jao reports the 
students in the at-risk classrooms became more engaged as they experienced these 
kinds of caring actions.

Chorney’s paper provides an illustration of a teacher whose actions may be seen 
as a counter example to the ones explicated above. In this study, learners were pro-
vided with digital materials that resulted in deep exploration of the mathematics 
under consideration—at least as witnessed by the researcher. However, the depth of 
the learners’ meaning making “went unappreciated [by the teacher] because of the 
institutional socialization of the teacher to evaluate the students quantitatively based 
on content rather than qualitatively based on critical thinking” (Chorney, this vol-
ume, abstract). In the paper, Chorney describes the teacher’s interaction with a pair 
of learners as one in which only cursory attention was paid to the learners meaning 
making because the teacher was only concerned with them expressing the expected 
answer. The teacher did not linger in close proximity to the learners (Long 2008) 
observing what they were doing, nor did the teacher listen to them with a hermeneu-
tic ear (Davis 1996). A teacher listening for a particular answer fails to create a 
space of interaction from which a caring teacher-learner relationship becomes a site 
of meaning making, for both teacher and learner. Chorney’s paper contributes to the 
critique of the hegemony of summative assessment that is focused on correct 
answers, and the negative interaction pattern between teacher and student that 
impedes the caring act of listening for student meaning making.

The account and reflection by Newell speaks to the complexities of building 
relationships when teachers and students not only do not know each other, but when 
the context too is unfamiliar to the teacher; in this case the situation involves a nov-
ice teacher in an unfamiliar community. Newell describes some experiences from 
his early years of teaching and then discuss the lessons he learnt about listening. A 
lesson that Long’s work suggests is critical to an ethic of care.

Together the group of papers in this section provide insight into caring relation-
ships between teacher and learners (and mathematics). I close this commentary 
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wondering how can teacher educators begin to focus pre-service teachers’ attention 
on an ethic of care. One possibility is to use Julie Long’s descriptive and detailed 
narratives as well as the theoretical tools she developed to examine pedagogical 
relationships and actions. A close study of her work provides valuable insights into 
teaching with an ethic of care.
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Culturing Affect, Affective Cultures

Wolff-Michael Roth

Abstract Psychological theories of learning employed in mathematics education 
separate intellect and affect. As a result, if affect (emotions) enters investigations of 
mathematical thinking and understanding at all, it is considered as an outside force 
or condition that generally diminishes cognition. This, however, is a hidden form of 
Cartesianism that separates the ideal-mental from the sensual-bodily aspects of 
being in the world. A very different approach was proposed in the notes of the 
Russian psychologist L. S. Vygotsky near his death. In the Spinozist-Marxian take 
of these writings, we find a “unity/identity of intellectual and affective processes” 
no longer “divorced from the full vitality of life, from the motives, interests, and 
inclinations of the thinking individual” (Vygotsky LS. The collected works of L. S. 
Vygotsky, vol. 1: Problems of general psychology. Springer, New  York, 1987, 
p.  50). Educators therefore can foster mathematical thinking and understanding 
only when they address not only the intellectual side, but affect in intellect. In this 
chapter, I start with the seeds of the Spinozist-Marxian take found in Vygotsky’s last 
writings and develop them into a post-constructivist account of affect in intellect, 
which constitutes the foundation of an approach that cultures affect—in the senses 
of cultivating and making affect a cultural feature—and thereby leads to affective 
cultures of mathematics education that inherently foster thinking and 
understanding.

Keywords Concrete human psychology · Emotion · Vygotsky · Mead · Post- 
constructivist epistemology

Psychological theories of learning employed in mathematics education, including 
constructivism, separate intellect and affect. As a result, if affect (emotions) enters 
investigations of mathematical thinking and understanding at all, it is considered as 
an outside force or condition that generally diminishes cognition. This, however, is 
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a hidden form of Cartesianism that separates the supersensual (ideal, mental) from 
the sensual (bodily) aspects of being. A very different approach was proposed by the 
Russian psychologist L. S. Vygotsky, sometimes called the “Mozart of psychology.” 
In personal notes written near his death, he complained about the traditional 
approaches to understanding knowing and learning that equally were taken (and are 
so to the present day) by scientific and interpretive psychology. He wrote that in 
these theories “thinking itself became the thinker of thought,” an autonomous 
stream of thought (Vygotsky 1987, p. 50). In the Spinozist-Marxian spirit marking 
his last writings, he sought to reestablish the unity/identity of intellectual and affec-
tive aspects of psychological phenomena. But whereas many readers might expect 
that this unity/identity be established within the classroom alone, such expectation 
would be unwarranted. The unity/identity that Vygotsky sought extended beyond 
the individual’s activity in any one classroom. He would have qualified much of 
mathematics education research today as “divorced from the full vitality of life, from 
the motives, interests, and inclinations of the thinking individual” (Vygotsky 1987, 
p. 50, emphasis added). For fear of losing the fundamental message in this para-
graph, consider the following experiences that have shaped my life as a teacher not 
only when they happened but also many years later when the past caught up with me 
in my life as a university professor writing about affect in the mathematics class-
room life.

 Affect and Mathematics Teaching—An Auto/Ethnographic1 
Grounding

In 2012, I received an email from Paul, a student I had taught mathematics some 
30 years earlier. After presenting himself in the attempt to help me remember him, 
Paul wrote: “You seemed to understand that even though my marks in most classes 
were barely at the passing grade, I had potential, and that the marks were not a 
reflection of my potential. Most teachers I had assumed I was ‘stupid,’ you made me 
realize they were wrong.” He also noted, “As far as teachers go, I thank you for 
being one of the most positive influences on me.”

Paul grew up in an isolated village on the lower north shore of the St. Lawrence 
River (province of Quebec), connected by dirt road to a few other villages—none 
more than a few hundred souls, if that much; the entire part of the country is acces-
sible only by boat or plane. The village students desiring to go beyond ninth-grade 
had to attend boarding school 1000 miles away from home. I remember having been 
asked by his parents to come over to their house to talk about Paul’s future. Even 
though Paul had not done well in most of his classes other than those that I taught 

1 Auto/ethnography is one of several research methods (apprenticeship being another one) whereby 
the  researchers investigate cultural patterns in  their own practices (e.g., Roth 2005). The  key 
to the success of the method is not to wallow in one’s own feelings but to approach actions as rigor-
ously as if they were those of someone else.
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him (mathematics, science, and physical education/arts), I did indeed encourage 
him and his parents to continue schooling. I had liked the kid and had done every-
thing I could to help him with his insecurities, which also came out in physical 
education and arts classes that I was teaching. Why had they chosen me, an outsider 
to the village rather than the school principal, who was from that village or any other 
teacher with longstanding roots in the community? The parents had called me over, 
they said, because they knew that over 90% of the students returned from the fall 
term to spend Christmas at home, never returning to the distant high school where 
they tended to fail miserably. The parents did not want Paul to have to go through 
the experience of attending high school far away without the support of his family. 
But Paul, like all others whom I had taught mathematics, succeeded (which I attrib-
uted to the fact that the students had covered part or all of tenth-grade mathematics 
by ninth-grade). He finished high school and Cégep,2 started doing “residential con-
struction and renovation and then went into commercial and industrial.” He had 
found his calling. Over the years, he developed a strong understanding of all trades; 
and most recently he moved into supervision, and management of projects, includ-
ing the installation of a large oil well system in Alberta.

In the preceding sketch, readers can see the importance of the affective dimen-
sion in teaching generally. Affect is not just some abstract thing out there but a 
characteristic of the relation we all have with other human beings. Some sociolo-
gists consider the affect constituting and communicated in concrete relations with 
others the glue that holds together society as a whole (Collins 2004). It was in our 
relation that Paul realized that he was not stupid as he considered other teachers to 
think about him (perhaps because of the grades); indeed, it was the relation itself 
that was the genetic origin of this realization. Such a relation and the realization that 
comes with it is not reducible to an intellectual act but is affective through and 
through. It was that relation where Paul felt that the other teachers were wrong; and 
it was out of the feeling that came with the relation that he dared making the jump 
to the distant boarding school and subsequently into Cégep. In this particular 
instance, it was not just in mathematics—and the other classes—that was influenced 
by the affective dimensions of our teacher–student relation but also his school life 
more generally. Although other teachers said or seemed to be saying that he was 
“dumb,” his feeling of our relation mitigated that judgment for him. In fact, going to 
finish high school meant having to leave behind the family, the close-knit commu-
nity, and a specific culture and to exchange these for city life. This is a tremendous 
emotional step to take for a 14-year-old who had never seen more than his own and 
a neighboring village.

I had started teaching in that very village after having graduated with a master’s 
degree in physics and without any teacher education training. The lack of jobs dur-
ing an economic crisis led me to apply for a teaching position in the Canadian north. 
One of the precepts that guided my teaching since the instant that I first stepped into 
a classroom career arose from the experience of having had to repeat fifth-grade, 

2 Cégep is a publicly funded post-secondary and college education system where students get gen-
eral degrees required for university admission or technical training.
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and most importantly because I had flunked mathematics. As in Paul’s case, teach-
ers thought that I was a dumb village kid who had come to the city to go to grammar 
school. Like Paul, I eventually did well. I even took mathematics as a major in col-
lege and as a minor during my master’s degree; and, a few years after teaching Paul, 
I completed a doctoral minor in statistics. But it was that early experience of failing 
a grade that later made me attentive not only to the intellectual needs of my students 
but also—something I really understood only many years later—their affective 
(emotional) needs. Because I had failed, I could truly empathize—a verb formed 
from the prefix em-, a derivation of in-, and -pathy, a word particle forming nouns 
denoting feeling and being affected. It literally means to feel the feelings of another. 
I was feeling for and with Paul; and it was with and out of this feeling that I related 
to Paul. But we can only feel what another feels if we have felt it before and if we 
take the perspective of another on our own feelings (Mead 1972); otherwise we only 
grasp the feelings intellectually, which is not the same as feeling them. But I knew 
what Paul and students like him felt because I had felt it before.

The recent exchange with Paul also brought up another memory: that of Earl, one 
of his classmates. Earl had been in a similar situation. He had already repeated 
seventh-grade and now, in eighth-grade, he was considered a “bit slow.” Because of 
the large range of abilities in my classes—which in any single class ranged from 
first- to tenth-grade reading ability—I had the students work in three- to four- 
member groups with approximately the same needs and capacities. Each group 
wrote up a weekly contract that stated what it would be doing and learning.

One Monday morning, Earl approached me saying that he did not feel like doing 
mathematics. I asked, “So what do you want to do instead?” “Read my novel.” I told 
him to go ahead but not to disturb the others in his study group. And so it happened. 
Earl read while his peers continued fulfilling their contract.

The next morning, Earl approached me again.

 – Sir, I don’t feel like doing math, he said.
 – What do you feel like doing?
 – Read my novel.
 – Okay, go ahead. Same rule as yesterday: no bothering others.

Tuesday passed the same way as Monday, Earl sitting by himself reading his 
novel while his peers worked on their contract. Wednesday morning, we repeated 
the exchange; and we played the same little drama on Thursday and on Friday. But 
there was a change at the end of the week. After class, as students were getting ready 
to leave for the weekend, Earl came to me.

 – Sir, thanks for letting me read the novel. I just realized that I am way behind the 
others.

 – Yea, so?
 – I promise you, Earl replied, in 3 weeks I will have caught up with them.
 – Okay, that’s a deal.

On the following Monday morning, Earl began doing mathematics without any 
ado. He did so all week. Then, a week later, he not only had caught up with the 

W.-M. Roth



219

 others, but he was indeed leading the group. Throughout the year, there was never 
another instance of that kind. Earl had become the leader of his group and its work 
schedule.

The year passed by and I had forgotten about the episode when Earl approached 
me on the last day of school. “Sir,” he says, “you know, I love mathematics.” “That’s 
great.” “And you know why?” “No, why?” “I knew all year that I do not have to do 
mathematics whenever I do not feel like doing it.”

In this instance, affect, too is written all over the story. Earl did not feel like doing 
mathematics. In contrast to what happens in most schools and in most classes, he 
was not forced to do it—not for an entire week. Whatever it was, the feeling of not 
wanting to do mathematics did not return for the remainder of the year. In part it had 
to do with knowing that he did not have to do mathematics if he did not feel like. He 
was and felt in control over his activity, which allowed him to do mathematics when 
he was emotionally prepared—rather than at the arbitrary time and for the arbitrary 
duration when the school had scheduled mathematics. As a result, he not only did 
mathematics but also started liking the subject matter. These were not just words but 
he showed it in his deeds by becoming the leader of his group. At the end of the year, 
the group had covered at mastery level (achievement levels above 80%) about one- 
third of the curriculum of the following year. In this case we also observe the role of 
affect for the whole person, where there is a hierarchy of needs at any one point in 
time. During the week when the episode occurred, reading his novel was higher up 
in the hierarchy of his school-related needs; and those needs pertaining to school 
were only part of the sensible contexture (Schütz 1932) of all of his life-process and 
personal needs.

The importance of students’ affective needs, though I did not realize it in this 
way at the time, became more evident during subsequent years of teaching in a 
Newfoundland town. I was homeroom teacher to a class of “slow learners,” that is, 
the students from the bottom achievement quartile (bottom 25%) of all ninth-grade 
students in that high school. Some of the students already had repeated one or two, 
and one young woman even 3 years; and they stayed in school (frequently being 
absent) because the governmental child allowances were contingent on their pres-
ence in school. During the non-teaching time that I was required to spend with 
them in the classroom, the male students often challenged me to arm wrestling 
matches; and while we were competing, the female students were leaning on us and 
had their arms on and around our shoulders. Male and female students made me 
feel like a father or uncle to them. I sensed they were seeking (and getting) an 
affective relation that they did not get at home or elsewhere. It felt like they were 
seeking (and perhaps in need of) the warmth of a human relation. At the time—or, 
depending on the subject matter, separately with them individually—I was told 
what I initially thought was the domain of the guidance counselor (whom the stu-
dents did not trust) or parents (with whom they did not feel comfortable talking 
about their problems). It was here that I came to realize the importance of consider-
ing students as real people, for whom mathematics (or science, or school) consti-
tuted only a fraction of their intellectual and affective life-processes. Having to go 
to court because caught with a case of beer, being pregnant, or being subject (or 
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witness) to an abusive  relation among their own parents all were so much more 
important than factoring a polynomial; and these other aspects of life were all-
consuming. Indeed, all of these relations constitute the personality of an individual 
(Mead 1972; Vygotsky 1989). It is thus important for researchers and mathematics 
teachers alike to take into account the whole person rather than the individuals 
reduced to their “mathematics identity.”

For the longest part of my career as a teacher and then as a research professor, the 
epistemologies I knew were only concerned with the intellectual aspects of learn-
ing—and this is especially the case with the latest educational ideology, constructiv-
ism. If there are emotions at all in that theory, then it is considered to be an outside 
force, something that affects—generally diminishes—(rational) thinking. In (radi-
cal, social) constructivist theory, mathematics students and teachers are said to con-
struct their emotions or they are asked about their emotions and all researchers 
thereby get is emotion talk not emotion itself. It was only when I delved more 
deeply into the work of L. S. Vygotsky, especially his work of the last 18 months of 
his life, that I found a theory that was overcoming the body–mind (psychophysical) 
problem and with it a way of approaching the unity/identity of intellect and affect. 
Taken together with the practical aspects of life, both are integral parts of a human 
relation; and the relations with other persons are the genetic origins of all higher 
psychological functions and personality (Mead 1972; Vygotsky 1989). The conse-
quences of this approach are clear: educators foster mathematical thinking and 
understanding only when they indeed address not only the intellectual side, but 
affect in intellect. In his later work, Vygotsky was deeply influenced by two books: 
B. Spinoza’s Ethics and K. Marx and F. Engels’ The German ideology. In the fol-
lowing, I show with empirical materials from a mathematics class the Spinozist- 
Marxian seeds that Vygotsky was sowing in his last writings. I develop the seeds 
into a post-constructivist account of affect in intellect, which constitutes the founda-
tion of an approach that cultures affect—in the senses of cultivating and making 
affect a cultural feature (e.g., Collins 2004)—and thereby leads to affective cultures 
of mathematics education that inherently foster mathematical thinking and 
understanding.

 Affect in the Mathematics Classroom: A Cultural-Historical 
Perspective

The works of Vygotsky have been taken up increasingly in the Anglo-Saxon schol-
arly literature over the past several decades. There are two main problems that have 
impeded an appropriate take-up of these works: (a) many Russian terms have been 
inappropriately translated, thereby falsifying what was actually written, including 
the use of the adjective “mental” rather than the “psychical” or “psychological” that 
are found in the original and translations into other languages; and (b) the radical 
reversal of Vygotsky’s theoretical position near the end of his life, which remained 
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misunderstood in his last texts and became more widely available only with the 
recent publication from his personal notebooks (e.g., Vygotsky 2010). As a result of 
the poor, truncated, and considerably alterated translations into English, readers of 
Vygotsky in this language were not familiar with the fact that he always wrote about 
the person and the psyche as a whole rather than about mind (brain) and mental 
development. The psychological development he was writing about inherently 
includes the affective side of personality. Even though Vygotsky was interested in 
achieving a holistic psychology, he realized near the end of his life that much of his 
theory had been reproducing the Cartesian split. He found in the works of Spinoza 
a starting point for theorizing the unity/identity of body and mind, and therefore the 
unity/identity of intellect and affect. In the works of Marx, who was deeply influ-
enced by the Spinozist and materialist philosopher L. Feuerbach, Vygotsky found a 
way of thinking about the person holistically; and, at the end of the last book that he 
actually finished, Thinking and speech (Vygotsky 1987), he quotes Marx concern-
ing the materiality of consciousness: “language is the real consciousness, which 
also exists in practice for other people, and only therefore also for exists myself” 
(Marx and Engels 1978, p. 30). The quotations in the opening paragraph of this 
chapter derive from the first chapter of Vygotsky’s book and are nearly identical to 
phrases that appear in the preface of The German Ideology (Marx and Engels 1978), 
a book that was first published during the last year of Vygotsky’s life. The editors 
state that in the Ideology, “Marx and Engels explain the nature and function of 
thinking, the intellectual needs, interests, inclinations and feelings of humans”; 
importantly, these authors show that “the decisive cause of their change and devel-
opment are grounded in the material life of society” (p. x).

The following episode takes us into a fourth-grade mathematics classroom in 
northern Ontario, where the two regular teachers in this French immersion class-
room have gotten together with a mathematics educator from the local university to 
implement a pre-algebra curriculum (Radford and Roth 2011). The students are 
presented with the story of a girl, who received for her birthday a piggybank con-
taining $6. She decided to save $3 each week. The students, working in small 
groups, are asked to (a) model what the girl is doing using goblets and different 
colored chips and (b) fill a table of values, where the partially filled second and third 
row call for additive (3+6, 3+3+6, etc.) and multiplicative representations of the 
piggybank contents (1×3+6, 2×3+6, etc.). One of the cameras follows a group of 
students (Aurélie, Thérèse, Mario) where trouble is emerging when they begin try-
ing to fill up the table of values. Aurélie has already pounded repeatedly on the desk, 
has thrown herself against the backrest of the chair, and no longer is trying. Thérèse 
gives the appearance to succeed such that others ask her what she is doing; but there 
is little interaction with the other two students. Mario has tried but eventually raises 
his hand to call the teacher (Jeanne), who eventually starts working with him. She 
has made him reread the story; and they already have worked through the composi-
tion of the $9 in the first goblet representing the piggybank at the end of Week 1. 
They already have had a couple of tries at decomposing the piggybank contents of 
the second week when they get to the lesson fragment of interest here (see Fig. 1).
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Fig. 1 In this fragment from an algebra lesson, the teacher (right) assists students generally and 
Mario specifically in moving from a physical model of the story about saving money in a piggy-
bank to its presentation in a table of values. From left to right are Aurélie, Thérèse, Mario, and 
Jeanne
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The lesson fragment is replete with manifestations of affect. Even in Jeanne’s 
voice and speech contents, impatience is notable enough for Mario to react to it. 
They have already spent repeated cycles of decomposing the contents of the first 
and second week when she asks Mario how much there should already be in the 
piggybank (i.e., at the beginning of the second week), the reply states an unexpected 
12 as answer. We can see that Mario is affected, and his intonation manifests exas-
peration as he invites Jeanne to look, pointing with both hands to the table of values 
and goblets. In the third panel (Fig.  1), while Jeanne apparently makes another 
attempt at taking him through the reasoning, Mario’s head is supported by his hand, 
his eyes staring at the table of values as if in resignation. Once Jeanne’s saying has 
ended, Mario states that he is not understanding, and the sentence fragment “that 
makes–” may well have been the beginning of “that makes no sense.” We observe 
affect manifesting itself: in Mario’s exasperation suggesting “what” and in Aurélie’s 
pounding the desk with her right hand (final panel, Fig. 1).

Affect appears all over the episode. We do not need to hear what the participants 
say about how they feel. We see, hear, and sense (feel) exasperation and frustration 
rather than having to intellectually grasp it. The participants do not have to interpret 
the situation. They live in their mutual affects without having to think about “what 
is the other trying to communicate?” There is impatience that manifests itself in 
Jeanne’s voice, while she is asking a mathematical content-related question. Affect 
here is in the concept: “It’s composed of what?” As soon as we watch the videotape, 
affect is there for us. We see here what Vygotsky realized near the end of his life in 
a set of notes entitled “The Lightening Bolts of Spinoza’s Thought”: “affect [is] in 
perception” and “affect [is] in concept” (Vygotsky 2010, p.  92). The concept of 
affect, therefore, is not reducible to something metaphysical (supersensual). Instead, 
“the concept of affect is an active state” (p. 92). Affects (emotions) are written all 
over human movements and gestures, and, thus, all over a situation (Mead 1972). 
That is, there is a unity/identity of a scientific concept and the physical phenomenon 
of affect, just as Spinoza had theorized it to be and just as a Spinozist-Marxian con-
ception would have it.

It is easily seen that communication has both material-sensual and intellectual- 
supersensual dimensions. These two characteristics cannot be taken apart. This is 
another one of the key points in the fundamental revision Vygotsky brings about 
during the final months of his short life. Sound itself is physical, but in its use as part 
of exchanges among humans, it also has a supersensual dimension: there is an intel-
lectual component. The problem he identified—both in psychology and linguis-
tics—is the splitting of the two characteristics of the sounds that come from our 
mouths, as if they were elements, independent components from which the larger 
phenomenon can be built (Vygotsky 1987). But it is apparent in and from the pres-
ent example that the (intellectual) sense of the word is irremediably tied to the bodily 
sense (hearing) and thereby to affect. Thus, the sound-word is the relation between 
two people, here Jeanne and Mario, precisely because it is part of the physical world 
(Mead 1972). This becomes even more evident in the following analysis of a small 
part of the original episode, with pauses included (see Fig.  2). The transcription 
takes into account that responding to something another person says or does means 
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actively attending, and it is the transformation of the original act and the additions 
on the part of the respondent that has the reply as its outcome. That reply therefore 
cannot be attributed to the speaker because it essentially is the transformation of 
what another speaker has said to which the current speaker adds; it is only the sec-
ond part of an inherently social act that the first speaker initiated (Mead 1972).

The transcription highlights two different dimensions that are integrated into a 
single whole (Roth 2017). On the one hand, the transcription captures what happens 
simultaneously (arranged vertically), which makes salient that the event includes 
not only talking but also actively receiving (grey). On the other hand, a participant 
first actively attends (hears) and then replies (horizontal arrangement). We denote 
the entire event as responding, which includes actively receiving and replying as its 
two constitutive parts. Actively receiving has two characteristics: it is active but also 
passive-receptive. If someone speaks but we do not actively attend to it, we might 
eventually say, “Sorry, what did you say?” Thus, to hear and act upon what another 
says, we have to be active: we attend. But we, as any recipient, are affected: we are 
given and receive something initially unknown to us. Recipients do not know what 
is coming at them while actively attending to another. Consider the fragment spoken 
in slow motion, beginning with: “t w e l v e d o l l a r s….” 
As the sounds unfurl from the mouth of Jeanne, they simultaneously ring in Mario’s 
ears. When Jeanne arrives at “t w e,” Mario already is being affected but he can-
not know by what. He cannot grasp what is coming at him until the Saying has 
ended and the Said of the statement is available in its entirety. In actively attending 
to another, the recipient (Mario) makes himself vulnerable. Unsurprisingly then stu-
dents feel insulted, made fun of, belittled, and affected in other unexpected and 
undesired ways: precisely because they open up and attend to the other (importantly, 
to the mathematics teacher). If a student is scared to approach her mathematics 
teacher, as some mathematics education studies have reported in the past (e.g., 
Walshaw 1999), this is a manifestation of affect forewarning the student that there 
may be another unpleasant encounter, should she dare asking for help.

Fig. 2 This transcription fragment involving the teacher Jeanne and the student Mario also con-
tains what the recipient hears

W.-M. Roth



225

The transcription (Fig. 2) also helps us understand that thinking requires going 
beyond the individual brain case, where the “constructions” are said to be located. 
Vygotsky (1987), immediately prior to noting that psychological research was theo-
rizing thinking to be an autonomous force, invites his readers to conduct “a causal 
genetic analysis of thinking and speech” (p. 49). For an example, consider Mario. 
Because he actively attends to Jeanne’s Saying, his thinking (which transforms the 
Saying) is affected by something coming at him from the outside (i.e., 
“t w e …”). In turn, he acts and changes his environment. Specifically, his 
reply acts on and thereby affects Jeanne, something outside of Mario. The effect of 
his reply is available to him only in Jeanne’s subsequent actions. That is, any think-
ing extends beyond the mere words he produces and right into the perception of the 
effect these words have on the other. The process of thinking attributable to him 
therefore constitutes an arc: from outside, to inside, and to outside again (Il’enkov 
1977). The causal origin of thinking is outside, and the effects of thinking are out-
side again. Mind here exists in the coming and going of an exchange relation with 
another person (Mead 1972). This allows us to understand the implications of 
Vygotsky’s work derived by a philosopher of philosophy: “the very existence of the 
mind is possible only at the borderline where there is a continual coming and going 
of one into the other, at their dynamic interface” (Mikhailov 2001, p. 20). This com-
ing and going is not merely intellectual. Recipients of communication are affected. 
The episodes show that such coming and going is affective through and through—
which, when “neutral,” may be hard to detect (e.g., Collins 2004). Thought and 
affect are but characteristics of that single process of the mutual generation of the 
self and other.

Speakers do not and cannot fully grasp3 what they are saying or doing until after 
having seen its effect (Vygotsky 1987). This is so because any speaker only initiates 
a social act, which is completed in and through the reply (Mead 1972). There is an 
effect because whatever Jeanne says actually is affecting Mario. But Jeanne is not in 
control over how Mario is affected and how he completes the social act (communi-
cating). This social act is affecting Mario not merely cognitively by means of the 
content of her speech. It is affecting Mario literally: physically and emotionally. 
Mario is affected by the saying that is coming at him and that he cannot initially 
grasp. He is affected a second time by the reply that his own reply has brought forth. 
Thus, when Jeanne says, “You don’t understand that” and then elaborates, “it’s what 
I am trying to help you understand,” then it also can be heard as a complaint. Mario 
does not understand even though Jeanne is trying to explain it to him. Readers who 
do not see this second affectation immediately may want to consider what would 
have happened had Jeanne intended to make a joke but had Mario announced to be 
insulted. Now Jeanne would have been a perpetrator not because she intended to be 
one but because she would have been made to be one. Every reader will have had 
sufficient life experience to know that Jeanne now would be in a position where she 
had to explain that no, she did not intend insulting him and that she only meant to 

3 Unless they simply reproduce by heart an existing text, which nobody does in everyday 
conversation.
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joke. Whatever Mario had said before and thereby affected Jeanne, her reply would 
have been turned into an insult ex post facto and without anything she could have 
done against it. But it then becomes a fact of life that she has to deal with.

The preceding shows that Jeanne indeed is exposing herself in speaking. In 
speaking, she has taken a risk because she cannot know how she will have affected 
(future perfect sense) those who actively attend to her Saying. When Mario ques-
tions with exasperation “what?”, he says that he does not understand, then this can 
be heard as a negative evaluation of an attempt at helping him. Aurélie’s pounding 
the desk with her fist also is a reply to and a negative evaluation of what has just 
been said. Although speech generally is recipient-designed, that is, speakers have 
among others an in-order-to motivation to be understood, Jeanne has not spoken in 
a manner that allows understanding; the impossibility to understand is a fact that is 
manifested in and can be obtained from the students’ reactions. The students thereby 
also are (implicitly) teaching Jeanne about the inadequacy of her earlier attempt at 
explaining what to do and how to understand the task.

Mario and Jeanne eventually get to the point where, as their relation, the contents 
of the cells in the third column are produced. The core of that achievement is pro-
duced over a few turns in which affect also is inscribed (Fig. 3).

The fragment (Fig. 3) shows how Mario comes to fill the cell in the second row 
(the first containing the number of the week) and third column of the table of values. 
He does not do it on his own but in reply to the preceding utterances. It is not Jeanne 
who gets the answer and the table filled, for Mario provides these. The outcome is 
the result of their exchange, in which Jeanne and Mario are irreducible parts. More 
so, it is as the exchange that the outcome exists. A few minutes later, after the 
teacher has left and after Mario has completed the table of values, he announces, 
“Me, I now understand.” Tracing backwards, we see that this newfound  understanding 

Fig. 3 When Mario eventually says with satisfaction that he now understands (how to do the task), 
the genetic origin of this new capacity will have been the exchange relation depicted in this frag-
ment concerned with the contents of the piggybank at the end of the third week
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of how to do the translation from the physical model (goblets) to the more abstract 
mathematical representations in additive and multiplicative form was this relation 
first. Here the emphasis is on was, for the understanding did not somehow mysteri-
ously exist in the relation. This relation exists in the form of a material connection 
between them whereby the sound-words literally create a resonance. That relation 
is the algebraic formulation of the piggybank (goblet) contents.

Again, affect is written all over this fragment. First, the replies do not come from 
a computer; they are not the results of some disaffected thinking machine (mind). In 
each of the three instances of “three dollars,” the intonation is rising, as it tends to 
do in questions. That is, “three dollars” is not just a constative statement. Jeanne 
(and, vicariously, any observer) does not have to interpret what Mario says but she 
hears him ask a question, “Is it three dollars?” That is, Mario is doing two things 
simultaneously: making a statement but doing so tentatively, and, in being uncer-
tain, also asking whether the statement is correct. Uncertainty and tentativeness are 
affective qualities, and these are produced together with the semantic qualities of 
the two-word combinations. As a result, each of these three instances is tinged by 
intellect and affect, and they are practical as well, because they affect their recipi-
ents. One and the same sound has affective (sensible, practical) and intellectual 
(supersensible) qualities, and that sound, resonating in the mouth of one and in the 
ear of the other, belongs to both; being in resonance is their relation. There are not 
two elements—i.e., the material and the intellectual (semantic)—not two parts put 
together to compose a word in the way chemical compounds are made from ele-
ments. Instead, there is only one phenomenon, sound, which has both sensible 
(material practical, affective) and supersensible (intellectual) qualities (Vygotsky 
1987). Vygotsky was right in criticizing linguistics and psychology. His concrete 
human psychology—in the same way as Mead’s (1972) social behaviorist psychol-
ogy—gets us back to the fullness of life as we live it out in our classrooms, in real 
affectively charged relations with other human beings.

The fragment also exhibits the important role of the teacher, a role that present- 
day computers will not be able to fill (even if these can beat human players at the 
game of Go or chess). Jeanne already knows how to do tasks of that kind. That is, 
the higher psychological function already exists in what she can do (her practice). 
But doing the task here is spread over their relation so that we observe a “renewed 
division into two of what had been fused in one…the experimental unfolding of a 
higher process…into a small drama” (Vygotsky 1989, p. 58). That is, how to articu-
late the piggybank (goblet) content in algebraic terms exists as the relation, as a 
small drama. This algebraization exists as a social drama, and even though Jeanne 
and later Mario play out this small drama on their own, it is social nevertheless (cf., 
Mead 1972). This fact is most clearly seen in the renewed unfolding over two per-
sons what was and will again be fused into one. Importantly, as all drama, is affec-
tively colored. When Jeanne left the group, Mario began acting upon himself; and 
when he sees the results and knows them to be correct, he also knows that he under-
stands. We can now see that Vygotsky (1989) was right when he wrote: “the means 
of acting upon oneself is first a means of acting on others and the action of others on 
one’s personality” (p. 56).
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The Jeanne–Mario relation is affective—each participant affecting, and being 
affected by, the other merely by speaking to, thus acting on, the other. The relation 
is also affective-emotional, as seen, in the uncertain, tentative, and perhaps anxious 
production of the reply, which then is received with apparent enthusiasm and satis-
faction. That satisfaction is not merely a characteristic of Jeanne; as integral part of 
the sound, it also rings in Mario’s ear and thereby is affecting him. We hear that 
satisfaction again when Mario announces to have achieved understanding. Similarly, 
when the words from Mario’s mouth manifest frustration and perhaps discourage-
ment, those same sounds ring in Jeanne’s ears and thereby are affecting her. In part, 
there is also frustration manifest in her voice, though it disappears again when she 
makes yet another attempt at helping Mario. The preceding episode shows that 
Aurélie, too, is affected. Thus, not only Mario’s words and actions but also Aurélie’s 
pounding of the desk manifest frustration. That is, even though Jeanne clearly is 
oriented and talking to Mario, Aurélie is affected, acting upon Jeanne’s explanation 
simultaneously with her peer.

 Successful Teaching by Culturing Affect

This chapter is about more than just a little addition to mainstream educational psy-
chology for the mathematics educator. As the preceding section shows, affect is not 
just something to be thought of as existing within the body of individuals. Instead, 
affect is written all over social situations. It exists in the form of resonances, an 
important dimension of which is available in and communicated by means of speech 
(intonation, rhythm) but which manifests itself in other visible bodily rhythms as 
well (Roth 2011). We can therefore speak of affective (classroom) cultures, and 
these can be cultured. This recognition is precisely what led to the title of this chap-
ter: the culturing of affect leads to affective cultures. I now understand in a new way 
my early experiences of teaching, some of which I present above. I now understand 
that students were willing to go to the limits of their capacities because there was an 
affective classroom culture. It allowed students to take risks (including not doing 
mathematics for a week) without fear of failure, and, of course, the more they suc-
ceeded while taking risks, the better they got at succeeding even when and perhaps 
because of taking risks.

In the classroom example, I had to leave out everything else from the lives of 
Mario, Aurélie, or Jeanne.4 To understand their participation and affective relations 
to the task and others, however, requires us to take a look at the whole persons 
(Radford and Roth 2011). What persons do and how they do it is a function not 
merely of the specific activity but of the place that this activity has in the life of the 
person as a whole. Why this is so is not apparent from traditional learning theories; 
but it is apparent from the cultural-historical approach, where personality is under-
stood as the “totality of societal relations” (Vygotsky 1989, p. 68). It is the social 

4 Another reason is that the original research did not collect such data.
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structure of these relations that determine the place of individual psychological func-
tions, including those that relate to the contents and processes of mathematical prac-
tices. Most importantly, “the dynamic of the personality is drama” (p. 67). That is, 
each encounter with another person—mine with Paul or Earl, Jeanne’s with Mario 
or Aurélie—is a relation that contributes to the formation of personality. In writing 
about personality formation, I not only highlight that students are becoming—lov-
ing, fearing, or hating mathematics; able or not able to algebraize some everyday 
situation. I also intend emphasizing that we, teachers, are continuously becoming—
getting better at teaching, being fulfilled by our contributions to the becoming of 
students, or, in the worst-case scenario, we may be burning out. All of this becoming 
is not an abstraction but the very essence of our being with others, for our affective, 
sense-giving relations toward one another are relations generative of ourselves.

The descriptions and analyses in this chapter suggest that the classroom is a 
place that affects the teacher, who is integral to and a constitutive part of this affec-
tive culture. Teachers are not machines, but affective human beings in relations with 
others that inherently are affective. Students expose themselves to the risks: when 
they listen, attempt a task, and participate in relations. But the classroom also is a 
risky place for the teacher because they expose themselves and thereby make them-
selves vulnerable. Such vulnerability on the part of teachers and students alike are 
possible in an affective culture. We teachers can do a lot to culture affect.

Some readers may now want to ask me for some recipe how to achieve an affec-
tive culture. I do not have recipes, such as those offered by present-day quacks 
claiming to have simple solutions, but I know a good starting point. Sociologists of 
emotion recognize that every interaction has ritual form, and these interaction ritu-
als are emotion transformers (Collins 2004). When interaction participants focus on 
a common thing (i.e., object/motive) and are aware of one another’s focus, “they 
become caught up in each other’s emotions” (p. 108). Important here is the “com-
mon thing,” which in the examples from my own teaching existed in the learning 
contracts that the students established with me and over which they had control. We 
had these learning contracts in common. In the class of Jeanne, Mario was trying to 
take up the object/motive without knowing exactly what it was that he had to do. I 
showed how the two got “caught up in each other’s emotions.” So he and Jeanne still 
shared an object/motive, and it was that common orientation hat also contributed to 
the ultimate success and the related affect. The same was not the case for Aurélie. 
As teachers, we have to work on creating conditions that offer possibilities to have 
common things so that students like Aurélie stay with mathematics.
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Abstract Resilience refers to the capacity to return to good mental health after 
being exposed to challenging experiences or environments. Teachers are well posi-
tioned to observe and provide support for children and thereby bolster their resil-
ience. Through the development of relationships and mentorships, teachers of 
mathematics can positively affect the development of children by focusing on and 
leveraging their strengths to overcome challenges. These ecological constructions 
of resilience afford a greater responsibility to schools and other environments to 
support the processes of development with children.

Keywords Ecological resilience · Educational resilience · School · Adolescence · 
Teachers

 Introduction

Often in education, teachers rely on deficit approaches to student success, and this 
may be particularly true in mathematics (Henderson and Milstein 2003). This 
approach has merit: we can determine what students do not yet know, cannot yet do, 
or do not yet believe, and facilitate the development of the knowledge, skills and 
attitudes essential to support their growth. Intuitively, this is a time-honoured 
approach: once we identify their weaknesses we can develop their strengths. To add 
contemporary flair, we may even ask students to identify their own weaknesses and 
begin the building process from there. Deficit-focused approaches to student growth 
can feel satisfying and effective because it is about capturing and redressing what is 
not there. Furthermore, deficit-focus approaches are particularly easy for teachers to 
track students’ progress. However, these approaches do not work for all students. A 
focus on strengths rather than weaknesses and on creating learning environments 
where strengths are celebrated can enhance student learning. This paper explores 
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insights I have gathered from resilience research and considers how strength-based 
approaches can be used to ensure classrooms are supportive environments for stu-
dent growth.

 Considering Support: A School Case Study

I was working at a school recently where students were asked to provide informa-
tion about themselves in a social survey about the supports they have in their 
lives. In particular, students were asked to reflect on the supports that allow them 
to be successful at school. The results were analyzed and, using z-scores, a group 
of students who acknowledged that they were struggling were identified as outli-
ers. To better understand who the outliers were, students who had existing and 
identified special needs (e.g., special education, recent immigrants with English 
language needs, reluctant learners and alternative education) were removed from 
the list as they are already provided additional support at school. The remaining 
list was comprised of students who were generally academically successful but 
who had identified themselves as having lower than desirable levels of supports in 
their lives; they openly acknowledged their need for more support at home and at 
school. When teachers were subsequently asked to review the list of outlier stu-
dents, the most common response from them was one of disbelief: “She is doing 
really well in my class! They should not be on this list! There must be a mistake. 
This student doesn’t need any additional support. He is a good student who never 
gets in trouble and pays attention in class.” This moment of educational cognitive 
dysphoria should give all educators a reason to pause: students self-identified that 
they were struggling and in need of assistance and their teachers rejected their 
self-identification and request for assistance. This is, in part, caused by the under-
lying principle that teachers often use to frame their concept of success: a strong 
academic score. In effect, this is a type of positivity bias. The question that it 
forces us to ask is if a strong academic performance in a class is not enough, what 
do students actually need to feel success at school and can we (as teachers) give 
it to them?

 What Is Resilience?

Fundamentally, teaching is about robustly connecting new information to well- 
established prior learning. If we are beginning from what students already know 
and concepts they already own, rather than focusing on their deficits or weak-
nesses, we become focused on their strengths and abilities. This is the founda-
tion of a resilience framework for educational success. Resilience is a 
strength-based approach to learning and growth. The term resilience has its 
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etymological roots in the Latin word resilre which means “to jump back, recoil.” 
Its current usage has been adapted from material science where it is used to 
capture the property of materials to return to their previous shapes after being 
distorted by external forces (Condly 2006; Luthar et al. 2000). In social science 
literature, it has come to be defined as a “class of phenomena characterized by 
good outcomes in spite of serious threats to adaptation or development” (Masten 
2001, p. 228).

Early conceptions posited that resilience was a purely psychological phenomena 
borne out of an individual’s psychic abilities. For example, individuals who did not 
take themselves too seriously, were able to laugh at their mistakes, and who had a 
strong sense of personal identity would manifest higher levels of resilience. The 
initial work done by Werner and Smith (1982) with children in orphanages in 
Hawaii demonstrated the importance of these internal strengths. Their seminal lon-
gitudinal study indicated that most of these seriously disadvantaged children 
matured into positive prosocial contributing members of society. The simple hope 
was that if researchers could distil the personal characteristics that allowed indi-
viduals to overcome challenges and create the conditions to replicate and instill 
those characteristics in others, they could facilitate success widely in society. 
Additional research indicated that there were social factors that could facilitate 
resilience characteristics in youth (Greene 2002; Luthar 2003; Walsh 2002). These 
social conditions, known as protective factors, included elements such as growing 
up in a stable healthy and financially advantaged family. Masten (2001) noted that 
“the great surprise of resilience research is the ordinariness of the phenomena. 
Resilience appears to be a common phenomena that results in most cases from the 
basic human adaptational systems” (p. 221). The general success of individuals as 
manifested through resilience, could be understood as “ordinary magic” (Masten 
2001, p. 227).

Contemporary conceptions of resilience have grown to be more nuanced and 
sensitive to personal lived experiences. Amongst these newer approaches to 
understanding the phenomena of resilience is an ecological sensibility. Ungar 
(2004) argued that “ecological approaches to the study of risk and resilience 
are informed by Systems Theory and emphasize predictable relationships 
between risk and protective factors, circular causality and transactional process 
that foster resilience” (p. 342). In the light of the work of Urie Bronfenbrenner 
(1979) on ecological systems theory, resilience can be understood as growth 
environments that bolster an individual’s growth mindset. The environment of 
support cannot be ignored in exploring resilience—it influences personal resil-
ience factors (e.g., Fraser and Galinsky 1997). A postmodern and ecologically 
sensitive definition of resilience is offered by Ungar (2015) as follows: “In the 
context of exposure to significant adversity, resilience is both the capacity of 
individuals to navigate their way to the psychological, social, cultural and 
physical resources that sustain their wellbeing, and their capacity individually 
and collectively to negotiate for those resources to be provided in culturally 
meaningful ways” (para. 2).
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 How Do Schools Affect Resilience?

At its core, ecological resilience is about the development of relationships. School 
is a central developmental and social environment where relationships are key for 
many students—if for no other reason than the amount of time that students spend 
there. A healthy school community allows students to experience a sense of belong-
ing. In educational contexts, Goodenow (1993) has defined that sense of belonging 
as “the extent to which students feel personally accepted, respected, included and 
supported in the school environment” (p. 80). Thus a range of studies (Brown et al. 
2001; Garmezy 1991; Henderson and Milstein 2003; Katz 1997; Masten and 
Obradovic 2006; Moore and Lippman 2005; Rutter 1979; Thomsen 2002) has indi-
cated the important role that schools play in supporting resilience development.

Donnon and Hammond’s (2007) work on the Youth Resiliency Framework indi-
cates that there are 11 resiliency factors that are essential for youth. These factors 
integrate the seminal concepts of developmental strengths and assets (e.g., Benson 
2007). One of these factors is commitment to learning at school which involves 
three developmental strengths: achievement, school engagement and homework. A 
second factor, however, is school culture which involves school boundaries (clear 
rules and expectations), school bonding (safety at school), caring climate (collegial-
ity and caring environment) and high expectations (appropriate goals and personal 
excellence). In essence, this indicates that school culture plays a greater role in 
bolstering student resilience than the academic aspects of school. While caution 
must be used in extrapolating these types of data, anecdotally, teachers acknowl-
edge that these school level data map directly into classroom settings as classrooms 
are a microcosm of the larger school community. Classroom environments have as 
much to do with resilience supports as do academic progress and success (Henderson 
and Milstein 2003). Students who experience school as a supportive environment do 
better in and beyond school than those who do not. Furthermore, classrooms are 
learning collaboratives in which positive relationships to peers and positive peer 
influence play a role (Donnon and Hammond 2007). To be clear: learning is about 
relationships and resilience is about relationships. A classroom environment in 
which positive relationships are nurtured and encouraged will provide a fertile 
learning foundation, an environment that encourages openness and vulnerability 
and a place where students are encouraged to do their best. These conditions will 
only exist when the relationships in the classroom are positive and affirming.

 Culturally Meaningful Classrooms

An important element of the resilience definition (posited by Ungar above) is that of 
cultural appropriateness. Well intentioned teachers have often offered what they 
themselves considered to be excellent support that was not well received or appreci-
ated by their students. This can happen in situations where the support is not 
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culturally appropriate. For example, offering extra help to students at lunch time 
requires teachers to altruistically give up a part of their well-deserved lunch break 
or preparation time. When students do not show up for that extra support that can be 
frustrating. However, some students head home during their lunch break to provide 
support to their families by looking after younger siblings or aging grandparents, to 
give a break to parents who are caregivers, to participate in important religious rites 
or to get the physical activity they need in order to face the rest of the school day 
amongst a myriad other reasons. Students might need and want the academic sup-
port but may be unable to accept it in the form in which it was offered. Scheduling 
that academic support at another time (perhaps before or after school) or in another 
way (online rather than in person) might work better for some students. Without 
question, there must be realistic limits to the number of options for support that an 
individual teacher can offer, yet, if the opportunities offered fail to meet the cultural 
needs of students, then it cannot have its intended effect.

The entire exploration of classroom culture is beyond the scope of this article; 
however, it warrants attention for any educator who hopes to provide an environ-
ment that bolsters resilience in students. Programs like TRIBES TLC have sought to 
provide the parameters for these enriched classroom environments (e.g., Benard 
2005). The first principles of all resilience enriching classroom environments comes 
back to developing meaningful relationships with students. Healthy relationships 
require open and clear communication. The currency of relationships is vulnerabil-
ity (e.g., Brown 2012) which demands teachers to be willing to take concrete steps 
to learn from their students about how to support them. Teachers who inquire of 
their students (and their families) about which supports they need and how to best 
deliver those supports will generally find eager engagement and willing partner-
ships. Where once this type of inquiry would have required many hours of personal 
contact, today’s technology allows teachers to rapidly facilitate contact with stu-
dents and parents to seek guidance about appropriate supports. Are students com-
pleting their homework each night or are they attending to other family 
responsibilities? Is there someone at home who understands mathematics well 
enough to assist with assignments? Is mathematics treated as a scary subject that 
you either “get” or not, or as an unimportant triviality (“you are never going to use 
this stuff in the real world”)? These issues can only be recognized and addressed 
when teachers engage in conversation with students and become aware of their 
home lives and contexts. If modern classrooms demand anything, it is customiza-
tion where students are not essentialized and treated as identical buckets to be filled 
but rather, as William Butler Yates famously suggests, fires needing to be lit in 
unique and specialized ways.

There are many examples that illustrate the importance of supportive learning 
communities. A particularly fascinating anecdotal scenario is that of skater culture 
(i.e., recreational skate board users). Learning how to passively ride a skateboard is 
relatively easy; learning how to master tricks on the skateboard is particularly ardu-
ous. Many skaters would characterize themselves as marginalized youth who do not 
identify with positive school experiences. They often find school as an environment 
where they do not feel engaged. However, it is not that skaters cannot be motivated 
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and engaged as they clearly display these characteristics in relation to skateboard-
ing. Getting good at skateboarding requires hours of practice, tenacious repetition 
and an invariable acceptance of getting hurt. Skaters frequently suffer injury as they 
develop their skills. Despite this frustration and risk of injury they persist in learning 
new skills and perfecting essential ones. Their resolve is driven not only by a per-
sonal sense of accomplishment and self-esteem but also by the culture of the skate 
park. At the skate park, there is a physical environment that provides obstacles that 
encourage users to attempt new challenges and to approach barriers with new skills. 
The physical environment matters to the development of growth. The skate park 
also provides an essential relational environment supported by meaningful relation-
ships. New skaters are supported by experienced ones. They pick them up when 
they fall, they encourage them when they fail, and they give advice and suggestions. 
Intermediate skaters who succeed in landing new challenging tricks are celebrated 
by the community. People clap, cheer and whistle when a great trick has been com-
pleted. When they are injured, while they may be laughed at or teased, they are 
offered a helping hand and are celebrated for attempting a new difficult skill. Finally, 
advanced skaters are revered and honoured while providing tutorials and master 
classes for their peers. They are video recorded and the community may gather to 
evaluate and assess the technical aspects of their tricks. Your life outside of skating 
is never questioned—if you can skate then you are afforded respect. The skate park 
provides an insight into strength-based resilience-focused environments. Here in 
this youth-centred, youth-organized and youth-created culture, learning is rich, 
performance- based and self-sustaining. It is an environment that respects attempts, 
honours errors and problem solving, and challenges stagnation. It is a rich growth 
environment.

 Safe and Sound: Resilience Approaches in Mathematics

A classroom environment that encourages the development of resilience charac-
teristics in students is one in which students are comfortable with the teacher, 
their peers and themselves (Masten and Coatsworth 1998; Thomsen 2002). 
Counterintuitively, students do not have to be comfortable with the course con-
tent. When students are feeling supported in the environment they are willing to 
take more risks which encourages deep learning. A safe learning environment will 
encourage the development of good coping skills and meaningful adaptability. 
These are particularly important characteristics for the enhancement of inquiry, 
critical thinking and problem solving. Inquiry, critical thinking and problem solv-
ing all require risk taking. Drawing from the skater culture example, the elements 
of risk taking are, at minimum, influenced by environmental factors. All learning 
demands risk taking which fuels growth mindset. Students need to be convinced 
to step beyond “I can’t do it” to “I can’t do it yet, but I am willing to try and with 
help, eventually I know I will.”
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In an earlier chapter in Part II (Kajander) in this volume provides case study 
examples of students identified as at-risk in mathematics by their teachers. The stu-
dents in these cases demonstrate varying levels of dislike, fear, low self-confidence, 
apathy, and general angst related to mathematics. Attendance in some cases is very 
poor. Students were observed to be passing notes, asking for washroom passes, or 
demonstrating other types of disengagement during mathematics classes. The teach-
ers generally responded by attempting to provide mathematics-specific feedback, or 
by cajoling students to try harder. See Fig. 1 for the “Thinking Cap” stamp provided 
as feedback on student work (Kajander, Part II, this volume). Resilience theory sug-
gest that these students can be better supported by creating a strength-focused 
growth-centred environment.

The need for resilience-bolstering environments are critical in mathematics 
classrooms because mathematics requires an environment where willingness to try 
is celebrated as a strength. The mathematics classroom can mirror the growth mind-
set richness of a skate park when students feel safe taking risks, using unconven-
tional approaches to problem solving and exploring real world issues.

A common maxim amongst resilience focused practitioners is that they are “tal-
ent scouts.” A talent scout is someone who looks for and identifies strengths in 
individuals first and foremost. They are not naïve—it is not that they fail to recog-
nize that individuals have weaknesses, they have simply chosen to focus on 
strengths. Strengths can leverage the limitations of weaknesses. Teachers have the 
ability to reverse the typical construction of the learning environment where suc-
cessful students are accepted in the classroom. Instead, the classroom comes to 
accept all students by recognizing their strengths which allows them to be success-
ful. Focusing on strengths puts growth mindset at the centre of learning (Boaler and 
Dweck 2016). By honouring and operationalizing strengths, students learn not to be 
controlled by their weaknesses—real or perceived. Teachers, classrooms and 
schools can attend to this by applying established resilience principles.

Bonnie Benard’s 2004 seminal meta-analysis of resilience research yielded a 
praxis focused book entitled Resilience: What we have learned. In it she summa-
rizes what research indicates as the three most important elements of resilience 
practice: caring relationships, high expectations and opportunities for meaningful 
participation. Each of these elements of resilience practice can be applied to the 
mathematics learning environment.

 Caring Relationships in the Mathematics Classroom

Students who have difficulty succeeding at school do not fail to make gains because 
they cannot learn; the far more likely reason is that they do not feel that school is an 
inclusive caring environment for them. As mentioned earlier, resilience is about 
strengthening relationships. Everything that can be done to support prosocial bond-
ing needs to be done. This is accomplished by taking time to learn about students: 
their lived experiences, their awarenesses, their skills and abilities, their learning 
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strengths, character strengths, learning preferences and interests. In this way, teach-
ers can leverage this knowledge to great effect in the selection of the examples and 
case studies that they use in guiding students’ growth. Since mathematics is every-
where and permeates every aspect of life, there are countless ways to approach 
content. Successful teachers have been doing this very effectively for aeons: stu-
dents who are car obsessed get car-related problems to solve, while students who 
love cooking have opportunities to solve problems related to that. I once knew a 
teacher who ensured that every student was assigned the role of hero in mathematics 
word problems throughout the year focusing questions to match personalized areas 
of interest for students each time. Teachers can demonstrate caring relationships in 
very simple ways including introducing themselves to students and their parents at 
the start of the course, encouraging the idea of continued support through extra help 
sessions (including schedules and contact information), providing overviews of 
foundational concepts essential to success in this course, reinforcing a “Yes, you 
can!” growth mindset and direction for getting help beyond the teacher (including 
peer mentorship). Furthermore, elsewhere (Hurlington 2010) I have advocated for 
the importance of encouraging students to get to know each other and to rely on 
each other as academic supports. The permutations of possible working groups in a 
classroom of 30 provides students many opportunities to learn from each other. 
Beyond strengthening their academic abilities, the capacity for youth to recognize 
strengths in others is an important life skill. When mathematics is treated as a sub-
ject in which getting the right answer is more important than critical thinking and 
discussion, relationships can be ignored with limited detriment. Conversely, when 
mathematics is understood to be about patterns, beauty and thought, then conversa-
tion and discussion are essential. Conversation, discussion and debate cannot be 
accomplished in an environment devoid of caring relationships.

It is worth noting that a mathematics learning environment in which caring rela-
tionships are central, risk taking is celebrated, and individual interests are acknowl-
edged will enrich the depth of problem solving. Students at all levels of academic 
performance will be willing and able to explore more challenging problems to 
solve. As Atiya, Luca and Kajander (Part IV, this volume) suggest, weaker mathe-
matics students do not need to be deprived of rich learning opportunities; however, 
they will only be able to approach such problem solving when they are confident 
that they will be supported. Their tolerance for abstract concepts is a function of the 
trust they have in the teacher’s interest in them as individuals. Thus mathematics 
teachers must become “talent scouts” who seek to identify and celebrate the 
strengths their students. This extends from knowing what students lives are like to 
individual feedback provided on assignments and class work. Teachers can acknowl-
edge what aspects of a multistep computational solution was done correctly before 
indicating where errors were made. Additionally, when peer-to-peer relationships 
are meaningful and positive, students can discuss problem solving approaches in a 
collaborative way. For example, a placemat activity in which a problem is posed and 
each student is asked to propose and record an approach for solving that problem 
can allow a greater level of discourse in a safer small group environment.
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 High Expectations in the Mathematics Classroom

It is easy to assume that students have high expectations for their own academic 
performance but this is not always true. If we learn from role models, students who 
are accustomed to relationships and environments where very little to nothing is 
expected of them, may come to believe that they simply cannot succeed. In the 
environment of caring relationships it becomes possible to disrupt negative mes-
sages and beliefs about self-worth and success. In a caring environment, everyone 
should have the highest expectations for academic growth. Teachers who know their 
students can work with them to establish realistic growth-oriented goals for success. 
High expectations are not only for academic growth but for social growth as well. 
As such, an environment of high expectations is one in which clear, consistent, 
collaboratively-created and constructive boundaries are taught, modeled and main-
tained. Students who are offered the opportunity to co-create rules will have an 
easier time defending and respecting the rules. Goals need to follow a spectrum of 
challenge from readily accessible to stretch achievements. All the while teachers, 
parents and peers form a cheering squad to celebrate incremental successes. 
Furthermore, it is important to note that high expectations for academic perfor-
mance cannot fail to recognize the importance of mistakes and errors. As Boaler and 
Dweck (2016) indicate, making mathematical mistakes in a friendly caring environ-
ment will offer insight and growth to the entire learning community. When students 
are held to high expectations in classroom environments that they do not perceive as 
protected by caring relationships, their instinct is to hide their mistakes to protect 
themselves from derision. Should a student’s growth mindset be supported by an 
environment buttressed by caring relationships, they will be far more willing to take 
the risks necessary for collaborative collegial critical learning.

Environments of high expectation are not instinctive for many students but as we 
learn from the skater example, growth can only be realized with meaningful oppor-
tunities to practice skills. This practice is not simply mechanical repetition. Some 
researchers (e.g., Foster 2013), have advocated techniques for developing procedural 
fluency in mathematics which involves a balance of practice and performance of 
concepts rather than an obsession with computational algorithms. Foster’s use of 
connected algebraic expressions (in which students are provided a foundational alge-
braic framework where multiple solutions are derived) demonstrates an opportunity 
for students to develop skills in a collaborative, mastery learning approach. These 
approaches allow students to recognize the importance of having discussions with 
peers which results in better awareness of approaches of problem solving. Ultimately, 
students will recognize that they can solve problems in many ways which solidifies 
high expectations not only in terms of correct answers but robustness of thinking. 
This approach explores problem solving as puzzles which adds a degree of excite-
ment while demanding excellence. Teachers can plan activities and assessments in 
such a way that students have the opportunity to improve on previous performances 
and track their own successes. Such procedural fluency encourages growth mindset, 
which underpins a sense of high expectation for mathematical proficiency.
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 Opportunities for Meaningful Participation 
in the Mathematics Classroom

The frequent cry of students in moments of educational frustration is “when am I 
ever going to use this again!” In mathematics, students must see that there are 
practical applications for learning and refining their knowledge and skills. 
Everyone needs to participate in activities that provide them opportunities for 
meaningful participation. Which practitioner (teacher or otherwise) relishes the 
opportunity to participate in meetings where the result is a foregone conclusion 
or the decision making authority lies multiple bureaucratic or political layers 
away? For students, engagement in such activities is no less soul destroying than 
it is for anyone else! Learning is about engaging imagination and the need for a 
mathematical imagination comes before the need for abstract computational pro-
ficiency. Students need to participate in situations where they can genuinely feel 
that they can influence the end result or where they can affect positive change. 
Meaningful participation means “that youth are encouraged to make the world a 
laboratory for exploring the ramifications of their positive actions” (Hurlington 
2010, p. 4). Within classrooms, students need to know that their voice is being 
heard and their experiences are being honoured. Assignments or projects that 
engage students in authentic problem solving (while maintaining a culturally 
appropriate frame) are often the most fascinating and challenging because they 
engage imaginations. Again, offering students the opportunity to choose prob-
lems from their own lives that they can solve using their skills can lend a strong 
sense of legitimacy. Furthermore, in a throwback to bucolic scenes of the single 
room schoolhouse that concurrently offered learning for children from grade 1 to 
8, there can be deeply meaningful opportunities for participation for students who 
are helping to support their younger colleagues. Much has been made of the value 
of peer tutoring both for the tutor and tutee while taking pressure off the teacher. 
In a caring environment, students can be trusted to provide support to each other 
in respectful and authentic ways.

Rather than focusing on individual mathematical skills that need to be per-
fected, teachers can work with students to determine individual culturally appro-
priate real- world problems that can be solved. In such cases, students develop 
skills as they need them to solve actual problems. This approach removes a level 
of abstraction which allows students to see the usefulness of particular mathemati-
cal procedures and approaches. Furthermore, students are given the ability to 
affect the direction of the content or approaches that are used in the class. For 
example, students exploring correlations can collect data from their lived experi-
ences to demonstrate the strengths of relationships and then discuss potential 
explanations with their peers. For many students, this would feel like a more 
authentic approach to mathematics which would defy arguments against meaning-
ful applicability.
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 Conclusion: School as a Refuge

In the introduction, we considered a school where students were asked about their 
awareness of their ecological resilience. A group of students previously hidden from 
view were suddenly illuminated by their answers to the resilience inquiry. They did 
not have the support they needed from home, school, peers and family that would 
lead to optimal growth. In every classroom and school, there are similar students—
those who are completing acceptable academic work, who keep to themselves and 
who avoid antisocial antics but are feeling unsupported. According to resilience 
research, academic success does not provide a complete view of success in or 
beyond school. In order for students to flourish, they need healthy relationships and 
prosocial environments that demand them to accept positive growth as critical to a 
successful and meaningful life.

When it is recognized that students have complex lives beyond their academ-
ics, teachers can have a profound impact on those lives. Students can have great 
lives beyond their academics; they can have great academics in spite of their 
very challenging lives—our responsibility is not to overlook either. As talent 
scouts, it becomes the duty of the teacher to recognize strengths as strengths and 
every student as an individual worth building a meaningful relationship with; 
however, a talent scout also listens carefully to what students are and are not 
saying about themselves and the supports they have. Positivity bias can lead 
teachers to look past significant indicators of risk, challenges and frustrations 
because students are performing well academically. Students with high anxiety 
can present as high academic performers while struggling to maintain a healthy 
sense of self and of good mental coping. This is particularly true for mathemat-
ics learning environments where students may feel elevated levels of anxiety on 
a daily basis.

When it is at its most effective, school operates as a refuge. Many students rely 
on the school community to provide them an environment where they can be 
accepted, respected and directed. Some educational professionals may bristle at 
this suggestion arguing that school ought not to be expected to exact so high a soci-
etal function. Whether we desire this responsibility or not, the reality is that school 
may be one of the only environments where youth are esteemed for their strengths 
rather than denigrated for their weaknesses. The easy functional deficit-oriented 
views of youth can never elevate or inspire them to greatness. Strength-based 
views, on the other hand, recognize what students have, who they are and what they 
believe as an initial platform for growth. Resilience does not ignore weaknesses or 
inabilities; it simply demands that they are never treated as the defining character-
istics of one’s life. This idea is communicated plainly by Mark Katz (2016) in his 
aptly named book Children who fail at school but succeed at life: Lessons from 
lives well-lived: “There’s never anything so wrong with us that what’s right with us 
can’t fix” (p. 236).
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From a design perspective, every teacher—every day—has the ability to con-
struct a classroom environment that provides a strong platform for ecological 
resilience for students. Beyond the seemingly quotidian tasks of lesson planning 
and assessment, teachers need to interrogate their interactions with students at all 
levels. Teachers who take the time to metacognate on creating caring relation-
ships, setting high expectations and providing opportunities for meaningful par-
ticipation will provide strength-focused environments that can effectively bolster 
resilience in their students to allow them to weather the times of personal and 
academic stress.

In conclusion, a final thought is warranted regarding what teachers and other 
educational practitioners believe about themselves and their own growth. 
Teachers who no longer believe that their students have much to teach them are 
at risk of professional brittleness. Such teachers need only to immerse them-
selves in new learning (of almost any kind) to push their professional growth and 
deepen their sense of empathy for the complexities and challenges their students 
are facing. In effect, this type of continual learning educates teachers to the 
importance of hope and optimism (e.g., Brown 2012) as a function of growth and 
development. Resilience development is a continual human process that applies 
to all people. When teachers acknowledge their ongoing growth, it provides stu-
dents with a model to mirror and admire. Teachers are lifelong learners, mentors 
and models. In the words of author Robert Fulghum, “Don’t worry that children 
never listen to you; worry that they are always watching you” (as cited in Zimmer 
2003, p. 182). Students need to see that teachers are just as willing to engage in 
their own professional and private learning and growth, that they have their own 
strengths and weaknesses and that they not only create supportive relationships 
but benefit from them as well. Students need to know that teachers grow in 
strength-focused environments—if for no other reason than to convince them 
that today is a good day to begin the life-long journey of building a grander sense 
of growth.
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Digital Technology in Teaching 
Mathematical Competency:  
A Paradigm Shift

Sean Chorney

Abstract I analyze a simple classroom situation in which students in a mathemat-
ics classroom use a computer application to engage in a mathematical activity. The 
technology allowed the students to engage in deeper mathematical thinking than 
was previously possible, but this depth went unappreciated because of the institu-
tional socialization of the teacher to evaluate the students quantitatively based on 
content rather than qualitatively based on critical thinking. New digital technology 
has made possible a reconceptualization of what it means to do and to learn math-
ematics. These changes in technologies, however, do not align with the expected 
requirements of teaching. This chapter looks at evaluation of mathematical knowl-
edge by a teacher as a sociopolitical issue, for new developments in digital technol-
ogy have made some perennial challenges, such as evaluation, more pronounced.

Keywords Sociopolitical · Content · Competency

 Introduction

I was a high school teacher for 20 years, and in retrospect I realize that my working 
conception of how mathematics is learned was informed more by external forces 
than my own thinking, beliefs, wishes, and training. I was being led by curriculum 
guides, examinations, departmental norms, and the need to report out. It may be 
common to think of these things as insignificant to the actual teaching of mathemat-
ics, but they are more influential than one might think.

The school administration and provincial government establish expectations in 
the general practice of learning and teaching. Teachers are required to conform to 
the standards determined by curriculum writers and administrators. Teachers have 
to report out in the form of grades. The practice of giving marks and reporting out 
is widespread all over the world and has a long history. It has positioned the teacher 

S. Chorney (*) 
Simon Fraser University, Burnaby, BC, Canada
e-mail: sean_chorney@sfu.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92390-1_24&domain=pdf
mailto:sean_chorney@sfu.ca


246

to not only teach but also to assess student learning. The assessor role affects what 
the teacher sees. And in the act of quantifying student learning, mathematics, which 
has the potential of being deep and rich, often becomes shallow and flat. 

In this chapter I explores a situation where two students engage in a rich mathe-
matical activity using digital technology but the teacher sees something different. 
The teacher frames the situation so that the activity aligns with his evaluative expec-
tations. There have been two recent notable changes in mathematics education in 
recent years: students are now using digital technology more than in the past and 
teachers are supposed to put more value on general mathematical skills (“curricu-
lum competencies” in addition to “content”). However, there is a tension when these 
changes are met with unchanged institutional priorities. Mathematical competency 
is compromised when teachers are expected to give out grades. To understand stu-
dents’ activities in mathematics in a meaningful way takes time that is cut short if 
one is constantly evaluating them for the purposes of reporting out. And the stimula-
tion of competency by new technology is making starker the shortcomings of a 
focus on grades. This chapter sees mathematical practice as a social endeavor but 
also, in the spirit of Guttierez’s (2013) notion of the sociopolitical, argues that top- 
down institutional influence affects the teaching and learning of mathematics.

 What Are We to Value in Mathematics Teaching?

 The Curriculum

In British Columbia (BC), there has been a restructuring of the curriculum (BC 
Ministry of Education 2015). The K–9 curriculum was changed to reflect a twenty- 
first century approach to learning. (The revised grades 10–12 have partially been 
implemented with a full implementation occurring in September,  2018). In each 
school subject, there are now two objectives: mastering content and developing cur-
ricular competency. For mathematics, content is such things as knowing how to 
solve one-variable linear equations or factor a trinomial, and knowing that opposite, 
reciprocal, and inverse all mean different things. The curricular competencies are 
what we might call the dispositions of the mathematician or the kinds of things 
mathematicians do. Examples of this outcome might include reasoning, estimating 
reasonably, communicating, and justifying. These two expectations can be seen as a 
distinction of knowledge and skills.

When I have asked teachers what they want their students to walk away with 
from classes, they almost always speak about the sorts of things found on the com-
petency list rather than the content list. They want their students to be active, think-
ing citizens who can use mathematics to help them make decisions. So if we ask 
what the practice of mathematics is, we can ask whether mathematics is content and 
proper technique, such as remembering and implementing the quadratic formula, or 
practicing mathematical competencies such as conjecturing, justifying, and testing. 
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It is reasonable to say that mathematics in a classroom should include both content 
and competency. In the episode outlined below we see content being valued, but not 
competency.

 The Digital Technology

Digital technology gives students the opportunity to act like mathematicians 
(Sinclair et al. 2016). When given a problem in a mathematically rich digital envi-
ronment, students are able to do things they could not before. They can now engage 
with continuous and variable mathematical objects. Mathematical expression shifts 
to a visual-dynamic system of expression (Rotman 2008). In a traditional classroom 
of paper, whiteboards, overhead projectors, and textbooks, most things remain 
static. The images and diagrams of the textbook do not move. Though the numbers 
and symbols students draw on their paper do go through a process of construction, 
once set on paper they do not move. There is the textbook, the exercise book, the 
teacher, the upcoming test, and the students’ questions; and these are all parts that 
we hope connect in sophisticated ways. Attempting to forge relations between all 
these things is what the traditional classroom looked like.

Digital technology can offer more. Ironically, although digital technology is 
based on discrete (non-analog) bits of information, it presents visual and audible 
data in a way that is closer to the continuous flow of real life. There are certain 
mathematical ideas, such as continuity (dragging a point) which cannot be expressed 
in words, but which can be shown through actions on a computer. The Geometer’s 
Sketchpad (Jackiw 2001), the digital technology used in this episode, offers ways to 
drag geometrical objects. This is not possible in traditional environments. So digital 
technology offers new and unique opportunities for students to engage in a high 
quality mathematics.

Digital technology can also offer students new environments; for example, the 
black box sketch. In a black box sketch, a mathematical relationship is hidden and 
the only way to reveal it is to move things around on the screen to see what happens. 
The results of a motion will often highlight the properties of the mathematical rela-
tionship, which in turn aids in identifying the relationship itself. With movement, 
the student is able to observe and hypothesize. In the black box sketch described in 
this episode there were only two points on the screen: one labeled A and one labeled 
B. When A is dragged, B moves in a mathematical path.

 The Students and the Task

The teacher in this classroom was open-minded and modern in trying a digital tech-
nology. He was not averse to trying new things. He had used The Geometer’s 
Sketchpad in a recent Master’s program and now was trying some of the activities 
he had experimented with in the program. But while the technology was not part of 
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traditional practice, he still had to mark and evaluate in the traditional way. The 
result was a clash of worlds. On the one hand, the students were engaged in a rich 
environment where they were able to act like mathematicians, but on the other hand, 
the teacher was in a position that did not match the new environment. The teacher 
moved around the classroom evaluating student activity and constantly checking to 
see whether it was achieving what he wanted: the identification of a mathematical 
concept that had been taught the previous year, but without the technology.

This raises a question about the use of digital technology. What kinds of teaching 
outcomes might there be in having students work with it? Is providing a rich digital 
environment such as The Geometer’s Sketchpad about providing an opportunity for 
students to explore and conjecture? Or is it about being able to better master con-
tent? Although the ideal answer here would be both, I would argue that it should be 
more about the former than the latter. And this is because the computer offers a 
variety of opportunities that were not traditionally available. Stimulating compe-
tency is one of their comparative advantages. Computers provide a deep and dense 
environment, one with a lot to consider and act upon. In this environment, problems 
and situations may be more difficult to reproduce. This creates a new challenge 
because there is no simple, clear-cut way how to evaluate student exploration. 
Evaluating students’ understanding of and practice using a mathematical concept is 
often presented in a repeated form, such as a factoring worksheet. When evidence is 
needed for a percentage or letter grade, parents and administrators are satisfied that 
it was based on a repeatable kind of problem. Its fairness is less open to dispute. 
Opening up the mathematics classroom to more generalized skills gives rise to the 
problem of evaluating where repetition is harder to bring about.

The episode presented in this chapter is based on data that resulted from a 
research project that looked at the use of digital technology integrated into the math-
ematics classroom. It was chosen because it exemplifies the tension between per-
ceptions of teacher and students. I (the researcher) had set up a video camera to film 
two students while I directly observed the classroom activity. Most of my data came 
from the video recorder, which captured the sounds and sights of the girls interact-
ing with the computer, each other, and the teacher. Because of the discrepancy 
between what the teacher and the students saw and did, I requested an interview 
with the teacher and with the students to try to understand what each was thinking 
and doing after the activity. The students were interviewed together. The teacher 
brought in a black-box sketch for the students to work on. He chose the concept of 
reflection, which had been formally introduced the previous year. Reflection exists 
when the distance from a reflection line is preserved in movement and also points 
on a reflection line are invariant (Ng and Sinclair 2015).

There were 29 students in a grade 10 classroom. Students were paired up and 
assigned to work on a set of black-box sketches. The two girls had used The 
Geometer’s Sketchpad once before, but had never used a black-box activity. They 
took turns moving the mouse and exploring the environment. On the teacher’s rec-
ommendation, they had chosen the command ‘trace,’ which meant that all their 
dragging on the screen would leave a trace. Both girls were thoughtful in their 
movements, as one can see from watching the movements of their mouse along with 
their head movements.
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Once, when Vanessa had her hand on the mouse and was dragging point A, she 
asked out loud, “What happens if I drag over here?” Vanessa says this as she drags A 
slowly and with deliberation across a path she had just created. Here is an example of 
fulfilling the curricular competency to “Use tools or technology to explore and create 
patterns and relationships, and test conjectures” (BC Ministry of Education 2015). 
When Jessica was exploring with the mouse, she retraced the lines she had just drawn. 
Looking for consistency, she was presumably looking to see whether the identi-
fied relationship consistently held true (Fig. 1). As mentioned earlier, this is a way to 
determine consistency. While it might be a very likely conclusion that the same thing 
will happen if you travel on the same path as before, it is the testing of such a conjec-
ture that makes it mathematically rich. Communicating and reasoning are evident in 
this comment from Jessica: “If it goes up, it goes across.” When she said this, she 
moved her point A in one direction while point B went in another direction.

Vanessa seemed to have understood what the relationship was because she started 
helping Jessica with some of her dragging and moved her hand along the ‘invisible’ 
line of reflection (Fig. 2).

After Jessica moved point A upward again, she asked Vanessa, “You said this 
one, right?” as she pointed at her vertical line. Vanessa replied, “No, no, no.” 
Communication and explaining are apparent here. Finally Vanessa said to Jessica, 
“Can I try something?” She has a conjecture. Vanessa cleared the screen and drew 
wavy lines that intersect (Fig. 3).

Jessica said, “woahhhh,” took the mouse, and drew a line through the waves, 
instantiating the reflection line. As she dragged, her head was angled in the same 
way as the reflection line (Fig.  4). The teacher came over, watched for a few 
moments, and looked at the image on the screen. He asked Jessica if she had 
 determined the relationship. Jessica was silent; and when the teacher asked again, 
she said, “I’m trying to think of how I can word it correctly.”

Fig. 1 Retracing lines
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Fig. 2 Pointing at hidden reflection line

Fig. 3 Instantiating the reflection line

Fig. 4 Drawing the 
reflection line
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In this episode, the mathematical activity was not hidden from the camera. It 
seems quite clear that the girls were exploring. The evidence for this is that they 
were initially dragging the point A around the screen. There is evidence that they 
were conjecturing when Vanessa asked, “Wait can I try something?” To conjecture 
is to propose an idea and a follow-up would be to check whether this idea is true 
when tested. The students were given the opportunity to do exactly that. And 
although neither girl verbally articulated what they were thinking, they presented it 
on the screen. That they were investigating is indicated by the question “What hap-
pens if I drag here?” They were creative when Vanessa’s curving lines outlined and 
drew attention to the reflection line. They were communicating both through words 
and through pointing and gesturing. They were debugging by erasing their traces. In 
so many ways they were being thoughtful, reflective, and inquiring. The digital 
technology and the black box activity constructed their experience as rich and 
sophisticated.

 The Teacher

The teacher came by three times, in between working with other students, and asked 
the girls if they had figured out the relationship. The girls did not answer the first 
two times. We don’t know the reasons for not answering, but it is not that important. 
What is important is that the teacher, in his haste, moved on when the girls could not 
give him the answer he was looking for. When he came by for the third and final 
time, the curves from Vanessa’s drawing were visible, but the teacher was still ask-
ing the same question: can you name the relationship? He spent a bit more time with 
the girls this time, but when he looked at the screen and saw Jessica holding the 
mouse, he asked if she could explain the relationship for what he saw on the screen. 
She responded, “I’m trying to think of how I can word it correctly.” Even that 
response alone hints that she has engaged in the activity in a deeper way than simply 
being able to name it. She is valuing the response to such an extent that she cannot 
apply words to the phenomenon. Yet the teacher, eager to move on from this activity, 
was just hoping to hear the word “reflection.”

Later, in the teacher’s interview, he said, “I asked the students to figure out the 
relationship. It is a grade 9 topic. I thought it’d be easy, but many students could not 
state the relationship as reflection.” Later in the interview, the teacher shared that he 
thought the activity was not very helpful because it did not live up to his hopes that 
students would able to identify the relationship sooner. He also hinted that he had 
wanted to use this activity as review, as an opportunity to recall a topic from the 
previous grade. But it turned out not to be as simple as he had hoped.

As I reflect on this episode and what the teacher said, I also go back to my own 
experiences and think of the many times I did not have time or resources to spend 
looking to see what students actually achieved or created. This is not a commentary 
on how hard teachers work or how little time they have to cover the curriculum. It 
has more to do with the pressure they are under to value signs of learning that allow 
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them to give a report for each student. This requirement leads to a failure in the 
teaching of mathematics. What is the right way to assess or evaluate students? What 
are the right signs? Students are engaging in mathematics in sophisticated ways, but 
can teachers evaluate them in terms of their own preoccupation with countable 
outcomes?

Although McGarvey (2014), a professor from the University of Alberta, is address-
ing early learning of mathematics, her call to teachers is relevant here too: “the chal-
lenge for an educator is to be aware of the potential mathematical objects that could 
arise with and through objects, understand children’s learning in relation to those 
objects, and also be attuned to new possibilities for acting in the space” (p.  10). 
Content (as opposed to competency) can be easily assessed if presented simply and 
evaluated based on correct answers. But curricular competencies of reasoning, justi-
fying, and communicating are much more difficult to see—and, if seen, report on.

Mathematical thinking has often been associated with cognitive psychology 
(Sternberg and Zhang, 2001). That perspective suggests knowledge is something 
either present or not present. In our episode, the teacher came to the conclusion that 
Vanessa and Jessica did not know the mathematical relationship because they 
did not say “reflection.” In the teacher’s concluding that the girls did not know the 
concept, he is implicitly expressing the idea that mathematics consists of the final 
answers or in being able to clearly state a word that summarizes all the previous 
processes. Much of this problem emerges from the administrative, parental, and 
curriculum pressure that come with the teacher’s role. One overriding concern is the 
need to produce a letter grade. The desire to evaluate on some objective basis is not 
unreasonable, but the potential consequences of seeking to fulfill that desire are not 
always understood. When the teacher sees the inability to use the term “reflection” 
as an index of a student’s inadequacy, he is implicitly acceding to extrinsic pressures 
on how to teach mathematics. It is extrinsic in the sense that it arises not from a 
concern with mathematics, but a concern with processing. It is tempting to conclude 
that the girls did not really understand the mathematics, but this temptation should 
be resisted as we can see in this episode that the students were engaged deeply in the 
phenomenon of reflection. They also expressed many competencies of the mathe-
matics curriculum, but simply could not name the phenomenon.

One might ask how one ought to characterize a mathematical object: by its con-
ventional name, or the name points to. The position of the teacher in a social struc-
ture makes him susceptible to external pressure from administration, curriculum, 
and parents. These pressures direct the teacher’s expectations and actions, such as 
in asking questions. As demonstrated by this episode, by having the teacher con-
tinue to ask them to name the phenomenon, the students are guided to see mathe-
matics only in terms of correct answers. Had the students made the connection with 
the term they were taught in grade 9, thinking “aha, reflection—what we studied last 
year”—the activity and the exploring may have been ignored.

With the activity outlined above, it is important to reconfigure what a teacher 
sees and acknowledge that the absence of the answer is not tantamount to failure 
because there are other ways a concept can be interacted with. Reflection is dynamic 
by its very nature. While there are many static images of reflection, it is not possible 
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to determine whether something is a true reflection and not just two identical look-
ing objects until something moves. By analogy, one sees in a movie a person stand-
ing still in front of what appears to be a mirror with their reflection in it. Then they 
move but the “reflection” does not move. It is then you know you are not seeing a 
reflection. It is similar for the mathematical concept that metaphorically uses the 
name reflection. Without being able to move something and determine whether 
properties remain invariant, naming the mathematical relationship is premature. 
Expecting a particular answer to a mathematical relationship may ignore the neces-
sary stage of checking.

 Reanimating Mathematics

The interaction of teacher and student outlined in the episode is the result of the 
teachers being a part of an institutional hierarchy: one with a certain incentive struc-
ture. The resulting expectations of the teacher do not fit with the rich activity of the 
girls. There is a sort of injustice.1 The varied student experience of mathematics 
made possible by technology is not getting its due from the teacher. In order for it 
to do so, expectations that fit with the non-content side of the BC standards need to 
be developed. I draw on this episode to communicate the need rethink the mathe-
matics classroom situation. This is necessary in order to make a break from tradition 
and to acknowledge something we may be unaware of. More often than not, “school 
mathematics serves to obscure things that otherwise were previously visible to [stu-
dents]” (Guttierez 2013, p.  48). Vanessa and Jessica were both engaging with a 
mathematical concept, yet were not aware of the richness of their work. The teacher 
was not there to validate what they were experiencing and encourage them to pro-
ceed. The girls were doing mathematics, but the teacher reported out that they were 
not. Dylan William (2003) indicates that adopting a particular definition of mathe-
matics is as much a moral decision as an epistemological enterprise. The questions 
teachers ask convey the kind of mathematics they value. If content, which is easier 
to assess than skills, is stressed by a teacher, students will come to see mathematics 
as a body of knowledge rather than an attitude or an approach. The point here is not 
just that individual teachers need to see more and be more aware, and it is not that 
there needs to be a change in the content of the curriculum. The discrepancy between 
student activity and the reporting on that activity means that at the institutional level 
we must find a way to encourage the development and exercise of curriculum com-
petency and find a way to appreciate it in the reporting. This may require more 
subjective grading. Regardless, we must find grading and valuing methods that fit 
what we want to achieve in education rather having our education truncated to allow 
for ease in reporting.

1 Justinian, Digest, 1.1.10 (AD 530–533): Iustitia est. constans et perpetua voluntas ius suum 
cuique tribuendi ([The virtue of] justice is the constant and perpetual will to render to each his 
due.) See also first sentence of Justinian, Institutes (AD 535).
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Boylan (2007) states that “by highlighting features such as authority, diversity 
and conflict, [it is] suggest[ed] that mathematics classrooms …be seen as communi-
ties of political practice” (p. 1). The issue in this episode is expressed in the differ-
ence between the students’ and the teacher’s perspective. While it may be argued 
that the problem of the differing views was based on a breakdown of communica-
tion, I suggest that since the teaching and learning of mathematics was affected it 
becomes a sociopolitical issue (Gutierrez, 2013). Gutierrez argues that it is impera-
tive to be aware of how and when invisible power structures of the institution deter-
mines who is successful and who is disadvantaged through the very act of its 
policies. She writes, “Taking the sociopolitical turn means deconstructing the taken- 
for granted rules and modes of operating and making the familiar seem strange, not 
as a kind of intellectual exercise, but as a means to open up possibilities for some-
thing new” (p. 56).

Technology changes what students can do, and what they do affects what they 
can see and understand. During my time as a high school teacher, I too would prob-
ably have interpreted the girls’ lack of a response as simply not knowing the mate-
rial. However, if I had realized that mathematics is not a black-and-white matter and 
had had a fuller understanding of what mathematical knowledge consists in, I may 
well have taken note of other signs of progress in the student’s work. Such aware-
ness would have fostered a more constructive engagement with the students.

I draw on this episode not to argue that questions oriented toward grading should 
be completely avoided. Rather, I want to emphasize that the burdens that teachers 
now work under discourage them from appreciating signs of competency, in par-
ticular the wonderful new ways that are possible with new technology. Mathematics 
is capable of being even more interesting than it already is—and interesting to stu-
dents who might not see its attractions as currently taught.
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Abstract This chapter describes the teaching practices that three mathematics 
teachers in at-risk contexts used to increase student engagement and enhance  student 
learning. Qualitative data were collected in the form of teacher interviews, class-
room observations and teacher journals. Findings show that these teachers consid-
ered aspects of both social (e.g., creating a classroom community and developing a 
teacher-student relationship) and academic (e.g., using technology, manipulatives, 
group work and student-centered activities) domains of student engagement in their 
teaching, but to varying degrees and with different emphases. All teachers noted that 
these strategies also appeal to their students’ characteristics as early adolescents.
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Student engagement has direct implications on student retention and academic suc-
cess (Lowe et al. 2010; Mergendoller et al. 1988). Students who are engaged with 
school will find the experience rewarding and enjoyable (Marks 2000); whereas, 
disengagement leads to rebellion, disruptive behaviour, academic disinterest, and 
failure (Hand 2010). Student engagement is particularly fragile during adolescence, 
a developmental period in which youth undergo many physical and emotional 
changes (Archambault et  al. 2009). To support early secondary school students, 
teachers may consider components within two domains for student engagement: 
social and academic. Following a brief summary of some of the relevant literature, 
three case studies of teachers who used different emphases to support student engage-
ment will be presented. The cases are all situated in Ontario’s Grade 9 Applied1 level 
classrooms. In the province of Ontario, students in grades 9 and 10 are generally 

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied).
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streamed into two levels: Applied and Academic. Students in the Applied level 
stream tend to transition into the workplace or to college programs after completing 
their secondary diploma; whereas, students in the Academic stream tend to seek 
entry into university programs. Research has shown that Applied level classrooms 
are contexts often associated with poor engagement (Brown 2008; King et al. 2005).

 Social Engagement

Often, adolescents are self-aware and fragile (Archambault et al. 2009; Carnegie 
Council on Adolescent Development 1989). In this tentative stage of development, 
teachers should act to reassure their adolescent students and encourage them to 
persevere. Teachers should develop students’ self-confidence, personal identity, and 
autonomy (Archambault et  al. 2009). Adolescent students need to feel like they 
belong. Students who have a sense of membership in their learning community are 
more likely to make an effort in their learning and persevere through academic chal-
lenges that they may face along the way (Solomon et al. 2000). Schools need to 
foster an environment in which students feel both invited and supported. In addition 
to developing student-teacher relationships, teachers can create a classroom- 
learning environment that fosters a sense of community (Hargreaves et al. 1996).

Teachers’ support can have an impact on students’ feelings of belonging and 
engagement (Libbey 2004). Rosenfeld et al. (2000) found that middle and secondary 
school students who felt that their teachers cared about them were more engaged. 
Additionally, if the teacher conveys his or her high expectations of the student, this 
can positively influence student engagement and achievement (Rubie-Davies, 2015).

Within their classrooms, teachers need to create an environment in which their 
adolescent students can thrive. These environments should be equally inviting to 
students and in these positive social-emotional spaces, teachers can further incorpo-
rate specific teaching strategies that encourage student engagement.

 Academic Engagement

Canadian classrooms are growing in diversity (Hutchinson 2016; Statistics Canada 
2013). In order to meet the needs of all students, teachers must differentiate their 
instruction and this can be done in many different ways. Some students may learn 
better in smaller groups while their peers may learn better through independent 
work. Some require scaffolding to help them understand a concept, while others do 
not. Some students are visual learners while others are auditory. In classrooms 
where teachers do not vary their teaching approach, students’ interest may wane 
resulting in an increased risk of academic failure (Karp and Voltz 2000).

Research has shown that teachers in more engaging classrooms use numerous 
research-based practices. This includes teachers connecting material to prior 
 knowledge, making learning challenging and relevant, using appropriate student 
tasks, and keeping cultural and technological conditions consistent (Luke et al. 2003; 
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Pressley et al. 2003). The use of rich learning tasks provides teachers with an oppor-
tunity to use many of these desirable practices. Tasks are “rich” if they are challenging 
for students (Raphael et al. 2008). These meaningful activities should integrate math-
ematics curriculum as well as allow students to focus on a broad range of ideas rather 
than smaller, discrete concepts (Sullivan et al. 2009). Additionally, the tasks should be 
open-ended to allow for students to explore rather than direct students on a prescribed 
pathway of learning. Teachers should also use tasks and activities that are matched to 
their students’ interests. By making mathematics learning relevant to the students’ 
lives, the students can become more invested in their learning (Bobis et al. 2011).

Another way that teachers can make mathematics relevant to adolescent learners 
is through the use of technology (Gee 2003). Students use technology in their daily 
lives, and removing this component of their lifestyle would detract from a school’s 
attempt to provide a welcoming space to students. Adolescents use computers, the 
Internet, iPods, gaming systems, and cellular phones, among others. If teachers can 
incorporate these tools into their teaching, student engagement will be easier to 
maintain. Technology can have benefits on student achievement by enhancing stu-
dent understanding (National Council of Teachers of Mathematics 2000). Examples 
of technology that are commonly used in the mathematics classroom include: 
(graphing) calculators, interactive whiteboards (e.g., SMARTBoard technology), 
virtual manipulatives (e.g., ExploreLearning’s Gizmos), and immediate response 
devices (e.g., i > clickers).

Raphael et al. (2008) suggested that it is not the type of practice that teachers use 
to stimulate student engagement but rather the quantity of practices. They asserted 
that the sheer diversity of practices ensures that students are engaged. Based on 
personal preference, classroom resources, and contextual considerations, teachers 
will choose to implement their own complement of teaching practices. Not only 
should teachers personalize the strategies that they use to increase student engage-
ment within the academic domain, considerations within the social domain will also 
be unique to individual teachers.

 Recent Research

To follow, a study which investigated the practices used by Grade 9 Applied level 
mathematics teachers to increase student engagement is described. To represent the 
diversity and individualization of how teachers enact their approach to increase stu-
dent engagement, I share the cases of three teachers: Benjamin, Mathieu, and Nadia. 
All are teachers at secondary schools in a large urban city in Southern Ontario. The 
teachers were participating in the Collaborative Teacher Inquiry Project (Jao and 
McDougall 2015, 2016) and thus, engaging in professional development sessions 
and were actively focusing on improving their instructional strategies for the Grade 
9 Applied Mathematics course. I used interviews,2 classroom observations, and 

2 In the following sections, participant quotes are referred to by participant name and the interview 
number (e.g., B1: Benjamin, interview 1).
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teacher journals to explore the teachers’ beliefs and practices. Findings suggest that 
these teachers considered aspects of both social and academic domains of student 
engagement in their teaching but to varying degrees and with different emphases. 
All names of schools and teachers are pseudonyms.

 The Case of Benjamin – A Balanced Approach

Benjamin showed a relatively balanced focus in his teaching. He created a learning 
environment that supported his students’ social needs (social domain) and used 
teaching strategies to improve student achievement (academic domain). This bal-
ance could be attributed to his desire to integrate new teaching strategies and 
improve upon those that he already used. Through professional development oppor-
tunities and in working with colleagues, Benjamin sought out new student tasks and 
activities and was keen to discuss adaptations and modifications to existing 
strategies.

In the following quote, Benjamin discussed one student whom he described as 
going from disengaged at the beginning of the semester to being fully engaged by 
the end:

I have one student who, at the start of this semester, I thought would be a non-attender, 
because that is what he is in most of his other classes. But he is engaged by a number of the 
strategies that we have used and he does not miss class ever. [T]here is certainly a proudness 
[sic] when I see him in the hallway and he says, “How is it going?” I think that in providing 
engagement and just giving him some sort of validity in the classroom has been huge. (B1)

Benjamin’s description of this student demonstrated that he considered factors in 
both the social and academic domains for student engagement. Within the social 
domain, Benjamin mentioned that there has been an increase in this student’s self- 
confidence. Benjamin encouraged his students and often validated them by reinforc-
ing their strengths. In the academic domain, Benjamin noted that the inclusion of a 
variety of teaching strategies had a positive effect on this particular student. Again, 
as evidenced by an improved attendance record, Benjamin believed that the strate-
gies that he used in class were compelling enough for this student to make the deci-
sion to attend class more often. In addition to creating a community that supported 
self-conscious students and using a variety of teaching strategies, Benjamin consid-
ered social factors such as developing relationships with his students and providing 
opportunities for students to develop relationships with one another.

Specific academic factors considered by Benjamin included using small group 
learning to meet individual’s needs and support the learning community; and using 
the Targeted Implementation and Planning Supports for Revised Mathematics 
(TIPS4RM) for Grades 9 Applied (Ontario Ministry of Education 2005) and 
 technology to provide opportunities for student-centered learning, rich learning 
tasks, and allowing for interactive learning contexts. Lesson plans found in the 
TIPS4RM resource integrate multiple components of mathematics curricula and a 
variety of learning experiences for students. In this research-based resource, a 
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student- centered, inquiry-based approach is valued and conceptual understanding is 
prioritized over procedures and algorithms.

Benjamin personally valued building a community as a learning environment, 
thus ensuring that he created a positive, supportive and inclusive space for his stu-
dents. These social and academic domains intersected via specific strategies that 
support the notion of community (e.g., cooperative learning). Similar to the work of 
Sullivan et al. (2006), all of the factors demonstrated by Benjamin’s practice took 
into consideration the characteristics of the early adolescent, especially developing 
positive relationships with peers and the influence that they had on one another. 
Figure 1 is a visual representation of the interaction between the factors considered 
by Benjamin to increase student engagement.

 The Case of Mathieu – A Focus on the Academic Domain

Mathieu focused on the academic domain of student engagement. As a result of a 
new initiative at his school to invigorate the Grade 9 Applied Mathematics program, 
Mathieu implemented the TIPS4RM resources and a variety of technologies into his 
teaching. Although initially skeptical of how much this approach would impact the 
students, after seeing his students’ attitudes towards mathematics change and seeing 
the increase in student engagement, Mathieu continued to use these teaching 
approaches. Mathieu described his current approach as a way to increase student 
engagement:

In my class, we use the new methods, which are working in pairs, student interaction and 
group work. The kids are always engaged and do the richer type problems where they have to 
collaborate, work together, try to come up with a solution so it is mostly student driven. So the 
teacher is more or less just a facilitator who gives directions. We try to get the kids engaged 
every day. So they are doing stuff. Hands-on. So they are not sitting there being bored. (M2)

Through Mathieu’s description, we can see his focus on factors within the academic 
domain. These teaching strategies allowed students to become interested in learning 
the material and supported their developing mathematics understanding. At the 
same time, Mathieu realized that, to best implement these academic practices into 
his teaching, he needed to step back from his formerly authoritarian approach in the 

Fig. 1 Interaction of 
Benjamin’s factors for 
student engagement. This 
figure illustrates the 
interaction between the 
factors considered by 
Benjamin to increase 
student engagement
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classroom. Although this approach did not align with his laid-back character, he saw 
that his students were used to this environment from other mathematics contexts 
and he found it easy to maintain.

With these new student-centered approaches during which students often 
engaged in cooperative learning, Mathieu’s role changed as he had to let the stu-
dents work together and construct their own knowledge. This immediately appealed 
to Mathieu in that he did not need to maintain control of the learning situation and 
thus could sit back, not worry about having something happening at all times, and 
just support the students when they needed him.

As a result, Mathieu began to consider the factors within the social domain of 
student engagement, for example, by creating an environment in the mathematics 
classroom that was similar to the students’ regular environment so that the students 
felt comfortable in the mathematics classroom and so that it could be a community 
in which they could belong. Thus, the emphasis on belonging to a community as 
discussed by Solomon et al. (2000) was only realized after Mathieu implemented 
academic factors to create a student-centered environment. This environment dem-
onstrated to Mathieu the benefits for a community on his students’ social needs. The 
relaxed classroom environment that Mathieu created allowed students to feel a 
sense of independence. Eccles et al. (1991) stated that independence is appealing to 
early adolescent learners. Figure  2 is a visual representation of the interaction 
between the factors considered by Mathieu to increase student engagement.

 The Case of Nadia – A Focus on the Social Domain

For Nadia, student engagement extended beyond students being interested in the 
mathematics content. Nadia explained that, especially for Applied level students, 
students showed their engagement on a personal level. If students were engaged, 
they would connect with their peers and their teacher on a personal level. Even after 
students completed the mathematics work for the class, Nadia said that engaged 
students would continue to linger. Engaged students will socialize with their peers 
and develop a stronger relationship with the teacher. Nadia said that she could tell if 
a student was engaged based on their communication in the classroom. During the 

Fig. 2 Interaction of 
Mathieu’s factors for 
student engagement. This 
figure illustrates the 
interaction between the 
factors considered by 
Mathieu to increase student 
engagement
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lesson portion of the class, Nadia said that a student was engaged if there was active 
communication (verbal and non-verbal). Students would remain engaged through-
out the class regardless of whether or not mathematics learning was happening. 
Nadia explained what student engagement meant to her:

When I think about student engagement, all I can think about is [students’] communication 
with [the teacher]. Talking to you. It could be about their work. That is my hope, usually, 
but it is not always the case and sometimes it is just about their life, or religion, the way they 
think about the religion or so on. Sometimes it is just about their life…with the Grade 9 
Applied [stream], they become more personal. (N1)

Nadia had limited experience with the Grade 9 Applied course prior to participat-
ing in the Collaborative Teacher Inquiry Project. Although Nadia expressed that she 
was confident with her content knowledge for the course, she shared that her com-
fort level with the teaching strategies and approaches best received by the Grade 9 
Applied Mathematics students was still in development. Nadia explained that these 
approaches were different from those that she used with the Academic stream and 
upper year courses. Although Nadia was eager to integrate new approaches into her 
teaching (e.g., manipulatives), she shared that she needed time to process how to use 
the strategies herself as a learner before being able to consider how to present and 
facilitate their use in the classroom. Of this, she said:

Everything is new. I cannot do everything. I need my own time to do well. I need to be 
comfortable and to be comfortable, I need to be able to put in my own time. As a teacher, 
you need to be comfortable first. And it has to be your style. (N2)

In part, due to her hesitation to fully implement various academic approaches, 
Nadia’s consideration of the social domain for her students’ engagement shone. As 
Murray (2009) described, a trusting relationship between a teacher and student has 
positive benefits on student engagement. Nadia’s personality and obvious care of her 
students was the foundation of the relationship that she developed with her students. 
Additionally, as Nadia cultivated her arsenal of teaching strategies, these new teach-
ing practices were often guided by her being able to strengthen the student- teacher 
 relationship and to provide additional support to these learners who may have wavering 
self-confidence. Archambault et al. (2009) also indicated that increasing student self-
confidence may support student engagement. Figure 3 is a visual representation of the 
interaction between the factors considered by Nadia to increase student engagement.

Fig. 3 Interaction of 
Nadia’s factors for student 
engagement. This figure 
illustrates the interaction 
between the factors 
considered by Nadia to 
increase student 
engagement
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 Final Thoughts and Considerations for Teacher Education

The cases of Benjamin, Mathieu, and Nadia show that these three Grade 9 Applied 
Mathematics teachers considered factors of social and academic domains for stu-
dent engagement. Within these domains, the teachers were cognizant of character-
istics of the adolescent learner. Specifically within the social domain, key factors 
considered by all teachers included developing students’ self-confidence, creating a 
sense of community and belonging, developing relationships (student to student, 
and student to teacher). Within the academic domain, teachers use a variety of fac-
tors including issues of program planning, meeting individual needs, programs to 
support student learning, cooperative learning, student-centered approaches, stu-
dent mathematical communication, student tasks, and technology.

The teachers shared that developing student self-confidence is a critical compo-
nent of increasing student engagement for early adolescent learners. Each of the 
three teachers’ practices showed evidence that developing student self-confidence is 
a factor within the social domain for student engagement. Additionally, the teachers 
fostered developing student self-confidence within their teaching practices targeted 
for academic engagement.

Student engagement can be examined through two domains (social and aca-
demic). These domains, and the factors found within, are not independent. Mathieu’s 
original focus solely on the academic domain for student engagement and incorpo-
rating investigative activities and rich tasks shifted Mathieu’s classroom towards a 
student-centered model. This model encouraged classroom discussions amongst 
peers and took control away from Mathieu. The increased peer interaction, initially 
intended for academic gains, was also socially beneficial to the students. For Nadia, 
the strong teacher-student relationships that she developed to support her students 
within the social domain also had academic benefits. As a result of the personal sup-
port and encouragement from Nadia, her students felt that they too could be 
 academically successful. The rich tasks found in the TIPS4RM resource had mul-
tiple benefits across academic factors. For example, Benjamin used these student- 
centered tasks to allow his students to learn across a range of concepts as well as to 
help support construction of knowledge.

Some teachers may focus on one domain more than the other as a means to 
increase student engagement. Additionally, teachers may choose to prioritize one 
domain over another as a result of their personal comfort with that domain. Nadia’s 
teaching practice, for example, focused on the social domain as a result of her devel-
oping comfort with new academic instructional strategies such as technology and 
manipulatives. Mathieu, on the other hand, was comfortable with technology and 
personally valued a hands-on and interactive approach to learning. Thus, Mathieu 
focused on developing these academic factors in his teaching as a means to increase 
student engagement highlighting the impact of teacher self-efficacy on practice 
(Bruce and Ross 2008) and the natural tendency for teachers to individualize their 
practices (Siegel 2005).
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These findings have implications on our teacher education practices. The cases 
of Benjamin, Mathieu, and Nadia show varied ways in which teachers can attend to 
academic and social domains for student engagement and some challenges they 
faced in expanding their approach to teaching. Thus, it may be of value to reflect on 
current models and priorities for professional development to better support teach-
ers seeking to develop their teaching practice to meet the needs of at-risk students. 
Firstly, professional development initiatives encouraging teachers to implement 
new or “best” practices teachers should be thoughtfully examined. Is the profes-
sional development providing enough opportunity to allow teachers to be fully com-
fortable with the approaches? Schools and school boards should be encouraged to 
reconsider the traditional, one-day workshops that are still consistently used for 
professional development as they are limited in the resources and experiences 
needed for teachers to implement the presented ideas into their practice (Stein et al. 
1999). In contrast, professional development initiatives where teachers can engage 
in collaborative models such as co-teaching and peer coaching to follow up on new 
strategies learned may counter these challenges (Jao 2013). Secondly, a more con-
certed effort to acknowledge both the social and academic domains for student 
engagement must be made. Professional development tends to focus on the aca-
demic domain, yet unless a student’s social needs are met, academic approaches 
will not be as effective (Fredricks et al. 2004; Li and Lerner 2011). Without recog-
nizing the positive potential benefits of both domains, it will be a challenge to keep 
at-risk students interested and engaged in their education.
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A Teacher’s View – My Favourite  
Mistakes: Experiences Teaching Cree  
Students in Northern Quebec
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Abstract The experiences of a recently graduated (non-Indigenous) teacher are 
told in this first person account of 5 years of teaching in Canada’s far north. Although 
pre-service teachers often take courses meant to prepare them for working with 
Indigenous populations, this chapter reminds readers that much more than initial 
knowledge is involved. While relationship-building remains an important goal, 
these stories of first-hand experiences portray this process as more subtle, complex, 
and gradual than originally thought. Shared in the chapter are personal experiences 
and anecdotes, changes made based on some insights from various sources both in 
and out of school, a description and examples of attempts to teach students some of 
the mathematics curriculum from the Cree School Board, and finally a synopsis of 
the gratitude and humility felt by the author for the experience.

Keywords Indigenous education · Mathematics and Indigenous communities · 
Mathematics in northern communities · Northern schools · Novice teachers’ 
experiences in the north

We call it “pulling a punch.” Remember the expression, “He doesn’t pull any 
punches,” meaning your supervisor is very frank with you. He does not soften his 
blows when he verbally rebukes you. In this case, my student Gary had pulled his 
punch, completely. The knuckles on his clenched hand tickled those tiny, white 
facial hairs just below the bottom of my eye socket. He had stopped his fist from 
connecting, from driving into my face. At that moment, I recalled that my Special 
Education professor’s assistant’s question, “What did the teacher do to provoke 
that?” I heard this question during a conversation a year prior. It was regarding a 
report that a student had physically assaulted their teacher somewhere in Canada. 
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The purpose of this chapter is to share my experience as a recently graduated and 
inexperienced teacher, who began their teaching career in Canada’s north.

While I had taken some courses which, on paper, might have prepared me, 
my reality was far different. I needed to better understand the context where I was 
teaching. My education to that point was important; however, I was unaware of the 
how the community would perceive my behaviour. I did not understand how to 
establish mutual trust and respect. I did not realize how to conceive of my students’ 
needs: not only in education but in their general lives in the village. Lastly, it terms 
of teaching math, I did not appreciate the difficulties that students could experience 
in trying to learn a subject like math.

After a period of almost 5 years teaching students in three different communities, 
a reader might expect that someone like myself would have some very solid advice 
for those who are interested in teaching there. However, the sum of my experience 
to date still includes a humbling reticence. And honestly, I find this reserve is an 
asset. Life in Cree communities is an amalgam of history, politics, culture, lan-
guage, etc. and much of it convoluted by various aspects of colonialism and Cree 
people trying to find themselves between a minimum of two very different worlds. 
In so many of the conversations that I have had with different people, many who are 
more knowledgeable than me about life among the Cree, I continually hear the catch 
phrase, “It’s complicated.” I do not want to be glib or trite. Hardly. I am trying to 
share an understanding to which I have given a great deal of thought. Hence, I can 
share some of my experiences that shaped my limited understanding to date. These 
are not all my experiences. The mistakes I made in this article mainly occurred 
when I taught in one northern community. However, my sharing may offer the 
reader a point of departure for reflection, conversation and further exploration. I will 
share how I came to teach in Cree communities. I will explain further my experience 
with my student Gary whom I described above and how that situation devolved. 
Then I will share some changes that I made based on some insights I had from vari-
ous sources. Finally, I will offer a description of my attempts to teach my students 
some of the mathematics curriculum from the school board. I will end with an 
understanding of the gratitude and humility that I feel from my experience.

I have avoided naming any of the individuals because I find that many of the peo-
ple I know there would not be comfortable being named in an article for publication.

 My Journey

I received my Bachelor of Education degree from the Lakehead University Faculty 
of Education on Friday, May 18th, 2012. Twelve weeks later, on Friday, August 
10th, my 16-year-old son Merrick and I pulled out of our driveway in Toronto, 
Ontario, Canada. For the next 2 days, we drove some 1400 km (870 miles) to a Cree 
community on the eastern coast of James Bay in northern Quebec. I would teach a 
Secondary 2 (grade 8) class at a school in a village of less than a thousand people. 
Four years earlier, Merrick and I had read an article in the Wheels section of The 
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Saturday Star entitled, Solo to James Bay-and back again (Wheels 2008). The 
author had driven north in a BMW X6 from Toronto to James Bay. We were excited 
to make the trip together. This day we drove into our dream in my 2006 Saturn Ion 
Sedan. Supposedly I had prepared for this experience at Lakehead with course num-
ber 4416-FC called Aboriginal education with Professor Dolores Wawia. As well, I 
had completed a workshop at OISE (Ontario Institute for Studies in Education of 
the University of Toronto) called Beginning to teach in an Indigenous way. I had no 
idea what I was in for. I will provide some stories of my experiences. They are 
offered as illustrative rather than representative. They may provide the reader with 
a glimpse of the possible challenges one might experience there.

I never anticipated what would happen after Gary was escorted to the vice prin-
cipal’s office. His mother came into the room. I joined a meeting with the principal, 
vice principal, the student and his mother. In the crowded little office, the mother 
was visibly upset.

She glared at me. “What were the three swear words?”
The rule in my class was that students were sent to the Student Support Room 

after their third recorded swear word of the day. (In the Student Support Room, an 
on-duty teacher answers any questions and offers support to students in an unused 
classroom after they are taken out of class for disruptive behaviour. Students have a 
quieter, less distracting space and the teacher’s support for completing their work.) 
The schoolwide rule was that a student is sent to the Student Support Room after they 
swear once in class. For myself, students’ swearing was either the familiar expres-
sion in response to some pain or discomfort (sh*t!); or a crude way to emphasize an 
opinion (that f***in’ jerk!), or a test behaviour used by some students to explore just 
how much they could disrupt the classroom (sh*t, f***, sh*t, f***, sh*t, f***!). My 
difficulty was that I did not experience foul language here in a Cree village as I had 
experienced in southern Ontario. Outside of school, parents, professionals, even 
teachers used this vocabulary. Not necessarily in the classroom, but I soon gathered 
that this was familiar diction in families and in the community. It did not have the 
social impact that I am accustomed to. Similarly, English swears are almost mean-
ingless among French speaking Quebecers. I began to see myself as a stranger in the 
community, who was using a fabricated norm from a very different culture. I arbi-
trarily forced this onto these students. That did not mean that foul language was not 
used to disrupt classes and undermine a teacher’s authority. It was. However, for me 
to make a meaningful response, I felt I had to make an adjustment. Eventually I 
changed the rule in my classroom. A student would go to the Student Support Room 
after three, instead of one swear in class. So, each student received two warnings 
before they received a consequence. That’s how we had arrived at the question, 
“What were the three swear words,” that Gary’s mother had yelled at me. Whatever 
the words were, I shared them with her, however she kept crying and insisting that I 
was at fault. I do not recall how the meeting ended, but while we were leaving the 
office the tone felt as if the issue was not settled. The principal had not stated how 
she understood the situation. We left the room and the student returned home with 
his parent instead of finishing the day. I was told later that the principal had agreed 
with the mother. She had understood that my choice was racially motivated.
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Later, I learned that this student had been suspended from other schools. When 
these incidents had occurred in the past, the mother brought her son to another com-
munity and so another school, to avoid the suspension. On a Parent/Teacher Night I 
had had a conversation with this mother regarding her son. She had struck me then as 
very intelligent and reasonable. She agreed with me that her son could have a very 
disruptive impact on a classroom. At that time, I understood that we might work 
together, parent and teacher, to help him focus his behaviour in a more constructive 
manner. Still, her son did not respond to my efforts to engage him. After the classroom 
incident, this parent-teacher understanding changed. She now felt her son’s situation 
was the result of my sinister motives. As it happened, the principal agreed with her.

Let me share how complicated this situation was. Although the vice principal 
persuaded the principal to suspend the boy, it meant that the principal was taking a 
personal risk. She is Cree and was born into the community. There were community 
members who were upset about the decision. I had seen this community pressure 
before when a colleague of mine was accused of hitting a student. For my col-
league’s science class, he had organized a “hot water to ice” demonstration on a 
winter day when the outside temperature was below −40°C. An interesting example 
of this experiment is found at https://www.youtube.com/watch?v=2LFtYUUXJlE. 
A student stood on a small desk so that he could reach the open window above him. 
He intended to throw some very hot water out of the classroom window into the 
intensely cold air outside and see it instantly change into powered ice crystals before 
it reached the ground. However, the safety of this situation was threatened by  a 
second student who was agitating the desk that on which the first student was stand-
ing. He might fall, and possibly spill some freshly boiled water onto himself and the 
class looking on. When the delinquent student did not response to the teacher’s 
requests to stop, he patted him on the head to get his attention.

The student immediately strode to the administration to report that he had been 
struck by his teacher. As it happened, my student Gary’s smart phone video of the 
incident eventually  exonerated my colleague, yet some in the community were 
resentful over the decision to support the teacher from out of town instead of the 
student from the village. Months later community members let me know that there 
were still resentments regarding the favourable resolution for the teacher. The situ-
ation could be revisited from a few other perspectives; however, the point is that a 
teacher who is not well known by a community can easily be misunderstood, receive 
no benefit from any doubt and offend a community. Furthermore, school adminis-
trators who choose to support such an “outsider” risk losing their support from 
parents and community leaders when they make such a decision. The principal’s 
situation was problematic for her in this instance and later in my own.

If a person might take this information as a reason to condemn Indigenous com-
munities across Canada, they might want to recall that most Indigenous people are 
aware of a long-standing history of abuse at the hands of Canadian bureaucrats and 
officials such as teachers. One need only read the history of Duncan Campbell Scott 
(n.d.): the history of his work carrying out the Canadian federal policy of forcibly 
sending Indigenous children to Residential Schools far from their homes (Hanson 
2009), and all of the problems that policy has made (Joseph 2015) to gain a basic 
understanding of the history of this Canadian tragedy. When I heard the personal 
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stories of individuals and family members who bore this burden over the genera-
tions I responded this way. I understand that a great hurt, a grief, a wound of shame 
and self-reproach is held by Indigenous peoples in Canada. Furthermore, the Indian 
Act withheld the tools that families might have used to recover from that ongoing 
catastrophe were denied them. In Residential Schools, children were forced to live 
away from their families, their language, culture and their traditions. In its place, 
they lived in an atmosphere of cruelty, deprivation and abuse. Gary’s mother coped 
with the consequences of her boy’s difficulties at school by moving him to an alter-
nate school, where he (she) might avoid those consequences. I am sure that more 
than one reader has noted that choice was less than adequate parenting. I do not 
disagree. Only I have seen this familial pattern many times over in northern 
Indigenous communities. The Residential School intended to “kill the Indian in the 
child” (as cited in Farber 2017, para. 3). That meant the parenting skills that Gary’s 
grandparents  intended to convey to his mother  were not there when she needed 
them. They knew the punishment, disrespect and cruelty of Church run schools and 
not the love, forgiveness and parental guidance that was traditional to Cree ways of 
living. As Gary’s teacher, I attempted as best I could, to stand inside my classroom, 
to accept that these were his parents’ circumstances and to accept that there was 
little I could do but to take this incident into consideration in my endeavours to grow 
as an effective teacher in this situation.

I had arrived in the community with a vision that I would enthusiastically reach 
out to the parents of my students so that I might include them, their knowledge of 
and connection with their children as a way to support each of my students. I had 
learned how to make bread from my father and intended to make an impression with 
that very skill. I sent a letter home with each student requesting the opportunity to 
drop by to each of parent’s home with my freshly baked loaf of bread. Then I could 
ask parents and guardians what my students’ personal preferences were, how they 
liked to learn, what were good strategies to help their student with issues such as 
shyness. I was trying overtly and directly to initiate a supportive rapport with these 
parents. In the end, even though I got some lovely complements regarding my bread, 
I did not really develop the rapport for which I had hoped. The parents who agreed 
to my request and invited me into their homes shared superficial things regarding 
their children that I already knew. Some seemed hesitant and others even stressed, 
overtly uncomfortable with my presence in their home. After a month or more of 
this, one student was even adamant that I was trying to seduce his mother and 
refused to give her the letter. Other families, I heard, had surmised that I was trying 
to make a covert inspection of their homes so I might judge the quality of their home 
and family. Furthermore, I had intended that each student would attend the meeting 
with their parents. None of the students did so. Some may have been at home how-
ever they refused to join the conversation. Usually, they were out with their friends. 
The entire project did not work out as I expected.

In retrospect, I look back on that time and see myself rushing into peoples’ 
homes, asking my questions, yet never finding a comfortable rapport with my stu-
dents’ parents. I did find that having a rapport with parents was important. Many 
times, my requests for help with their child, brought about a small but effective 
change in attitude. One that I could not have cajoled from a student.
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 New Directions

My formula for arriving at an effective rapport in the community now involves a 
different set of physics. An important factor is attraction rather than promotion. 
Today, community members need to discover me from a distance. Word gets around. 
In the meantime, I listen to people and hear what they are trying to tell me. Many 
times, they are just trying to make me laugh. It is a wonderful feeling to discover 
how funny most community members are in most of their interactions.

Another quality that I have learned to acknowledge is how guarded people can 
behave with an individual who is not an accepted member of their community such 
as myself. There was once when one of my classes was discussing various responses 
to bullying. One of the options was to “Talk to your teacher.” I asked the class if 
anyone would be willing to talk to me about it if they were to experience a bullying 
incident. Maybe there were one or two hands raised. More likely it was none. I 
asked the class, “Is there a reason that it’s so difficult to share that kind of informa-
tion with me?” Their answer was almost unanimous, “You’re too new!”

Wary is normal. It is a kind of cautious, guarded approach that I must never 
understand as an overt dislike of someone like myself even though on occasion it is 
expressed exactly as that. Instead it is a matter of self-care. It is more heightened 
than I am accustomed. I now recognize it and accept it. For example, one of my 
classroom management techniques is an on-the-spot mini-conference. I will ask a 
child who is having difficulty behaving appropriately in class to step just outside to 
the classroom door. There is relative privacy there. I ask them what is going on that 
they need to behave so disruptively. At times, a student may tell me the details of 
something that is bothering them. Sometimes they will only acknowledge that they 
are “having a bad day.” When I ask if it is something that they can tell me about, they 
may provide details regarding their situation to help me understand and support 
them better. Often, they refuse, even to recognize my question. There is a familiar 
shrug and, “I don’t know.”

“Okay Gary,” I said, “but please remember I am here to support you as your teacher. 
If we both know you are struggling today, we can find a way to help you get 
through class without all this difficulty. Is there something going on, say at 
home?”

“Yes.”
“Can you tell me about it?”
“No.”
“Can you talk to Maisy (a trusted school counselor) about it?”
“No.”
“Okay, I am going to go easy on you for now Gary, but I want you to keep the Maisy 

option in mind, okay?”
“Okay.”
“So, let’s go back into class, you’ll only have to answer the first two questions 

instead of all four. I can help you. However anymore in class disruptions and I 
expect you to speak with Maisy, understood?”
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“Yes.”
“Nice goin’.”

My new set of physics was that rapport develops largely with trips around the 
sun. That is, every year that passes and I have shown my students, their parents and 
the community the kind of respect that they deserve, our trust will grow. From my 
hasty foray into my first community, armed with my fresh loaves of bread, I learned 
to just let people see me. I do not necessarily recommend this for others, however I 
eventually kept my curtains open most of the time. This is partly because I need a 
lot of sunshine to maintain my positive state of mind. However, my idea was to let 
local people see me in my home. I dressed appropriately for that kind of exposure. 
I went about my time at home in full view of anyone who glanced in. People did not 
stare. Apart from passing glances, they paid no attention at all to me. But it was clear 
that I had nothing to hide. I was exactly as I portrayed myself. I made my meals and 
cleaned my house. I played my guitar and entertained friends. In one community, I 
read in a chair that sat right beside a window that was feet away from one to the 
paths that walkers used. On occasion, I would almost jump out of my seat when 
some of my students were walking past my window on their way home from hockey 
practice. They said, “Hello” very suddenly and loudly, breaking my concentration 
on whatever I was reading and frightened me. The prank never failed to get a laugh 
from all of us.

Whereas once, I was “too new,” eventually students and some parents tried to 
ensure that I would teach their children the following year. According to periodical 
anonymous class evaluations, students described me as “funny’ and “fair,” however 
also as “strict,” “boring,” and “too perfect.” Towards the end of the year, that same 
class asked me, “Are you my teacher next year?” “Will you be here next year?” I 
have several degrees, diplomas and certificates to support my position as a profes-
sional teacher. I count these as “nice to haves” now. Today, time in the community 
is a concrete, hard won commodity and especially if I have found a way to work 
with my students so that it visibly improved my class attendance. That commodity 
is measured in trips around the sun.

Let me elaborate. Firstly, as most teachers experience in different parts of the 
world, students initially test teachers when they begin the school year. They want to 
have a concrete sense of what the teacher’s actual instead of spoken boundaries are 
and how they will maintain them. My experience in these Cree communities is that 
this process is exaggerated. The first year a teacher is in a community, students are 
aware that the teacher has no rapport with their parents and relatives. Furthermore, 
I understand there is a resentment towards teachers who come for a short time (1 or 
2 years) and then leave. This means there are students who believe they must take 
advantage of the situation. There is more than the usual disrespectful and disruptive 
behaviour in the new teacher’s class. Students usually attempt to gain attention from 
and impress their classmates and peers. “Such is the stuff that great stories are 
made.” I have heard stories of classes who attempted to make a teacher cry and 
some of their “successes.” I am told by families in these Cree communities that they 
often see teachers come and go to a point that they are hurt and become defensive 
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about participating in a rapport with other short-term teachers. On the other hand, 
the teachers who are perennial members of these communities tend to experience a 
familiar affinity with most community members, especially with students and their 
parents. Although they do experience their own difficulties with certain students, 
these are either resolved with a conversation or some contact with the family, or 
there are deeper problems present that other school board professionals must help 
with. The first time I returned to a community for my second year, I experienced 
some of this more familiar rapport. I had learned to approach community members 
in a less forward manner than the year before and I found that students were more 
willing to take direction from me.

One of the reasons that a steadiness of rapport made sense to me was that expe-
rienced teachers adjusted for the needs they perceived in their students. Many chil-
dren had a history of what my first teaching mentor called “sadness.” She told me 
that “our students experience too much sadness in their lives outside of school as it 
is.” She did not want to bring them into more with her teaching. Let me offer some 
examples. During the time that my student Gary was in my class, an older brother 
of his was taken into police custody and put on trial for murder. Following my men-
tor’s lead, I purposely did not broach this subject. I wanted my class to be a place 
where he and his classmates were away from the trauma of that event. I am not sure 
if this was a mistake or not. It might have been helpful to have asked if there was 
anything I could do to help, and to show him some understanding and concern. 
However, I followed his lead and did not broach the topic. However, in the confer-
ence with his mother and the school administrators, I understood her apparent hys-
teria was partly due to her trauma from her other older son’s mistake and the 
consequences that she, her son and their family were experiencing.

I mentioned earlier that a boy in one class refused to deliver my home visit 
request to his mother because he believed that I was trying to seduce his mother. His 
parents were divorced and I was unaware of any subsequent relationships that his 
mother had had that might have interfered with his rapport with her. Still, it made 
sense that he experienced some difficulty with his mother so that he may have 
thought of me as a threat to his own connection with his mother. I never did meet his 
mother and would not have known her if she had stood in front of me. He remained 
adamant for the school year. I let it go.

Lastly, I was struck by how strongly community members were affected by death 
of individuals in the village. This was especially so for the young who died. I was 
told of one boy who had died attempting rescue his friends in a river. Another, who 
had experienced a freak accident on a ski mobile. In the middle of a school day, I 
even learned that one of my students had taken his own life. These communities are 
very close. Tragedies, whether by family dysfunction, natural causes or accidents, 
affected students (community members) almost in silent, unspoken ways. So that as 
a teacher, it is important for me to take this into account in my planning. I offer these 
examples, because they may give the reader a sense of how I understood my men-
tor’s meaning of her term, sadness.

I am sure that many teachers over the world have experiences like this. Even 
though I am not alone, I do feel that this awareness is meaningful and useful in the 
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context of that setting. When I started my first Moral and Religious Education 
(MRE) class for a group of Secondary 4 (grade 10) students I launched into the class 
with a topic regarding Indigenous Canadians that was prevalent in my mind: 
Residential Schools. In my own class on Indigenous teaching at Lakehead, I had 
learned a great deal about the Federal Canadian policy of forcing Native Canadian 
children to go to school in what is called the Residential Schools system. I was out-
raged and indignant over this history of my country because we Canadians claimed 
a kind of international moral authority. I wanted to encourage these students to 
express their anger and indignation regarding this history too, even though we had 
hardly spent time getting to know each other. They treated me with either curiosity, 
indifference or distain. Typical to many students, there was an ambivalence about 
spending any time learning with me, especially when it came to matters of Cree his-
tory and experience. “I can’t learn anything about Cree people from some white guy 
from Toronto!” I was told by one very bright and outspoken student.

However, more to the point, I had asked them to think about “sad” things. This 
was a first foray into realizing that the children I taught already were dealing with 
far too much tragedy than most children are asked to cope with. I recall in a conver-
sation with one principal regarding a girl in a different school. She, on the one hand, 
could be very engaged and on the other hand, would respond to the small conse-
quences she received for her disruptive behaviour with first an absolute refusal to 
cooperate and then long utterances of grief with her head down on her desk crying 
inconsolably. On many occasions, she would joke with me regarding blatantly sex-
ual matters. She refused to accept my directions that such exchanges were not 
appropriate for any teacher to participate in with their students. My principal 
explained to me that in the case of this child, she may have been exposed to some 
blatant sexual impropriety in her home, possibly including her own participation. 
She was 10 years old. She had gone in and out of court ordered foster homes. My 
role was to help her manage her way through her school days as best I could and to 
rely on support staff when it was too difficult for her to remain in class. I wanted to 
hug such children yet I knew that such a gesture was too intrusive to be consoling. 
Instead, I had to offer them a place where they could feel safe and their wounds 
were not shameful. That was task enough.

There were students who sometimes came to me to inform me about the abuse 
that they were experiencing in their homes at the hands of their parents. I discussed 
this with the administration and only once actually called Youth Protection Services. 
The idea that I share here is that on the day in my first Moral and Religious 
Education (MRE) class, my expedition into the topic of my students’ grandparents’ 
 experiences in Residential Schools was my introduction to the ongoing impact of 
Residential Schools, and the abuse wrought then that still impacts families today. 
Certainly, there are communities who are beginning to deal with it more and more 
explicitly. However, as a teacher I should understand, that I must give great care to 
difficult topics. My manner of often speaking plainly and frankly about the difficul-
ties of life needs to be weighed with the needs of some of the students who were in 
my classes, especially when I have not really developed a workable rapport with 
them.
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A community member gave me some help. I sat many times with this Cree man. 
He was unusual because he had avoided the forced deprivation that came with atten-
dance at a Residential School. Instead, he had lived in the bush with his extended 
family, avoiding the shame that his peers had known. My role in these conversations 
involved active listening, that is, listening and asking questions to clarify my under-
standing as we proceeded. Even if I offered a different opinion, I used it within the 
context of the conversation, less to make a point but more to clarify a something I 
was struggling to comprehend. He occasionally shared how he had experienced his 
early education. For example, he said his mother had suggested to him that he sit 
near the circle of adult and elder men in his community and listen to their conversa-
tions. He could hear the experiences and stories that were meaningful to these men. 
He could gather information that was meaningful to himself and related to the world 
where he lived. By sitting quietly, he showed these men his respect. By listening and 
later asking questions of his family members, he could clarify his learning of the 
traditional ways of his people and how adults lived.

Later, I had a similar experience. I had flown into another Cree community one 
summer to interview for a teaching job. On the morning of the interview, I sat at a 
table in the restaurant of my hotel to have my breakfast. Different men walked into 
the dining hall and sat at this same table with a coffee or some breakfast until the 
table was full. It turned out, this was an event for senior men of the community that 
took place regularly at the very table where I sat. I was not asked to leave. I became 
quietly fascinated and I followed the advice of my friend’s mother, listening to these 
men’s conversation. I could not understand the conversation in Cree. However, 
enough of it was in English that I heard these men speak of their lives and their 
times. There was a great deal of humour, so when I was asked a question by one of 
these men, I was comfortable to answer. They learned where I was from and what 
my business was in town. There was not a lot of advice. I mostly recall laughter. My 
main memory was how honoured I felt to have been included in this circle and to 
have learned as much about their community as I had in a very short time. Although 
it was not identical to my friend’s experiences as a boy, I had witnessed the aspect 
of traditional Cree education that he had shared with me.

Another attribute of Cree education was the phrase, “Watch and learn.” Often 
when I attended a traditional Cree event such as a Goose dance or a sweat lodge 
ceremony, I asked many different questions so that I might understand what I was 
witnessing and experiencing. For some, my inquisitiveness was unwelcome. I was 
told, “Watch and learn.” At the goose dance, it came my turn to dance solo around 
the Goose Lodge. I imitated the far more proficient dancers as best I could from 
what I had seen. Let’s say my efforts were appreciated.

I soon learned that teaching is often less a matter of words and more a matter of 
actions. “You join us hunting Cariboo to learn to hunt Cariboo”; “You watch me 
back up a trailer with my pickup to learn how to do that”; “You watch me negotiate 
to learn how to negotiate.” To learn something, it made sense better to watch and 
then imitate. Words were almost a blunt, ineffective instrument compared to model-
ing and imitation. One very experienced teacher told me that he could settle an 
unruly class by asking them to take down notes. He would write out the history that 
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his students were expected to know, and they would copy it in their notebooks. It fit 
the imitation model and made it safe for students to complete their classwork. There 
were no mistakes, awkward feelings, or difficulties of that nature. This information 
suggested to me that I had to make this uncomfortable exercise as safe and glitch 
free as possible to encourage students’ confidence. I decided to try “watch and 
learn” in my class.

 Mathematics

This brings us to teaching mathematics. Thus far I have explained that I developed 
a complicated understanding of the needs of many of my students. Let me show you 
a lesson plan for helping my students begin to confront the daunting task of learning 
division. It is a scaffolded lesson that attempts to expand the students’ proximal 
areas of development. The title at the top of the lesson plan is, “Division using 
Subtraction and Comparing to Multiplication” (see Appendix). The format of the 
lesson plan is a template provided by the school board that I used to fabricate an 
example of what I might have used in January of 2013 during my first-year teaching 
for the school board. My diagnostic evaluation revealed that almost the entire class 
was not able to complete division problems. The very topic was a source of anxiety 
for some students. I decided that I must make it familiar by first drawing upon their 
comfort with their subtraction skills. Then I could help them to compare their results 
to their growing understanding of multiplication using area models. If area models 
did not work, a student could use other manipulatives, however some students strug-
gled to focus when manipulatives were in the classroom. Experienced teachers may 
have experienced students initially responding to manipulatives as a toy and distrac-
tion, either using them as building blocks or throwing them at their friends. This 
issue was more persistent in this classroom than in others I had experienced, so I 
was frugal using them. The point is that it is helpful to have a variety of methods for 
students to interact with a problem and as much as area models were useful and less 
disruptive, other options were sometimes necessary for individual students.

In section “New directions” of the lesson plan, called “Categories of Instructional 
Strategies,” note that the box called, “Cooperative Learning” is highlighted. 
Students were expected to work with one or two partners to solve these problems if 
they were comfortable. My experiences in teacher education suggested an approach 
called “reform,” or “problem-based learning” (National Council of Teachers of 
Mathematics, 2000). Such an approach requires students to be actively involved in 
a task: exploring, discussing, asking questions, and defending their ideas. I was try-
ing to get the students more accustomed to this style of learning.

In section “Mathematics”, called “Core Learning,” you may notice the words 
emphasized, “Watch and Learn!” The presentation format here would be a “Think 
Aloud” where I show students how I solve a problem and I expect them to imitate 
me in the same way that I was told to do when I was learning traditional Cree cer-
emonies. Also in section “Mathematics”, you see three sections displayed almost as 
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three pictures. They compare to the seven pages of worksheets entitled “Division, 
Subtraction and Multiplication.” The point of these worksheets is to offer practice 
and to minimize any appearance of something intimidating. The problems are delib-
erately simple and do not involve remainders. The first problem in each of the sec-
tions is solved as a way for students to compare and imitate. The pages of area 
models are deliberately made large and take up a lot of space to help students feel 
confidence. Students may go through the problems with the teacher if they need to. 
They are expected to first finish the subtraction exercise at the start and then turn to 
the area model of the problem they are solving as shown consecutively on the rest 
of the pages. As the students move through the three sections, with the teacher, they 
will take on more responsibility to make the area model.

• The first is made for them.
• The second they will outline the area from a larger area model by choosing the 

height and width themselves.
• In the third they will get an empty rectangle and choose the height and width, 

then draw in the area model on their own.

You may be uncomfortable at just how easy this is for Secondary 2 (grade 8) 
students. To be clear, this is an aspect of the scaffolding. The strategy is to win the 
students’ confidence first and guide them towards eventually understanding the 
reciprocal nature of multiplication and division. In another community, I often lis-
tened to a teacher friend who taught high school mathematics to Secondary 3, 4 & 
5 (grades 9, 10 & 11). He insisted on several occasions that I ensure that my students 
(his future students) understand the operation of multiplication as the repeated addi-
tion of a number a specific number of times and with a known and predictable sum 
or product. He and other teachers throughout the school board have students who 
learn and complete their high school graduation requirements. The school board is 
working and succeeding at increasing the number of students who do fulfill those 
requirements. There is still a culture that makes this difficult.

Different families will have different approaches towards school and academic 
achievement. Some of this may depend on some of the issues that I have already 
shared such as the functionality of a family. However, it goes beyond this. I found 
that priorities are often different where I was teaching than where I went to school 
in Massachusetts or Ontario. Sports, outdoor activities such as hunting, fishing, 
trapping, and just “being on the land,” as well as a person’s general state of mind 
seem to influence attendance and participation at school. Parents take children out 
of school to hockey, broomball, baseball, and basketball tournaments in a manner 
that does impact their schooling. Parents often take their children “in the bush” 
when they go there. I was told by many community members that experience on the 
land is held in very high regard by most Cree people. It is not questioned as a reason 
to take students out of school, however like the sports, it does have an impact on 
academic results. I have given homework to students who were going with their 
family into the bush, however it was not always done and even if it were completed 
it would certainly not have replaced a student’s participation in class with their 
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peers. These cultural differences are very significant to these students’ learning, but 
may be foreign ideas to curriculum designers.

Lastly, a concept that I found unfamiliar to me but was cited as a frequent reason 
to delay school work came in phrases like, “I don’t feel like it.” In all the three com-
munities that I lived in, I heard this presented to me as valid reason to delay work. 
To a certain extent, I came to respect it because it could have merit given a stu-
dent’s circumstances. However, I have described how students dealt with low levels 
of confidence and unusual anxiety over their schoolwork. Their state of mind influ-
enced their attendance and participation at school. Some parents have reported to 
me that they have allowed a student to stay home for just this reason. Certainly, 
these circumstances motivate me to engage students in their studies as best I can so 
that they do “feel like” coming to school. However, this situation together with cir-
cumstances like taking students to sports events or into the bush gives me the 
impression that school and academic achievement is less of a priority—or a differ-
ent priority—amongst the Cree with whom I worked. In fact, I theorize that chang-
ing such priorities (that is doing something even though one does not feel 
motivated) is almost a way of denying or losing one’s identity. The ability to listen 
to one’s personal motivation on any given day is accepted as valid. Does one sur-
render this common understanding to conform to an alien norm that only makes 
sense in circumstances that are not understood as natural and familiar? Still, the 
point is that academic achievement, although lauded amongst the Cree when it hap-
pens, is not made such a priority as I have seen in most of North America, Europe 
and the Middle East where I have travelled. That does impact the level of academic 
attainment that one sees in Cree territory. I have watched my students struggle 
almost between two worlds: one Cree and the other post modern Western culture. I 
have only met a few who seem to have come to adequate terms with it. I do not envy 
them the problem.

 Concluding Thoughts

I left Toronto in August 2012 knowing that I would learn something, however not 
knowing exactly what it would be. Sitting here in Toronto in August of 2017, I am 
different person. I came to love the students, their families and community members 
who I grew to know. I learned a massive amount of compassion and appreciation for 
people who are like me and not like me. I would say it is mostly the laughter that I 
recall with students, villagers and the other staff with whom I worked. I once saw a 
video of some Indigenous communities inviting people like myself to come and 
teach in their communities. An elder in the community spoke suggesting that when 
an individual comes to their village, it is best to come with a humble attitude: one 
that is open to hearing, learning and understanding about who these people are and 
how they live. I can only repeat her wisdom. When I arrived in my third Cree vil-
lage, I had already spent several years teaching and participating in two other Cree 
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communities. I arrived with an attitude that I already knew. What did I already 
know? Now, I am not sure, but my approach made it more difficult to become the 
part of the community that I thought I wanted to be in. I recall asking people how I 
could join any of the sweat lodges. One person would tell me to ask another and 
then that individual would suggest some other person, until I never participated in a 
sweat lodge. I experienced two sides of participating in a community: one with my 
humility and one without.

If you choose to teach in the Cree communities, I suggest that you first establish 
firm workable relationships with your colleagues, and while you do that attend the 
feasts, the sports events, enjoy the hunting and fishing as much as you are willing to 
and even try your hands with the local grandmothers at traditional crafts. Participate 
in the Pow Wow’s, sweat lodges, and other traditional ceremonies and always arrive 
with a mind as open as you can make it. There will likely be birthday parties and 
gatherings that are more familiar to you amongst your colleagues. These are impor-
tant too. I recommend that you plan a longer stay than just one or 2 years. You will 
make it past your difficult first year and learn many ways to teach and to reach stu-
dents. One of the especially wonderful things about teaching for the school board 
was collaborating with my colleagues. We needed each other’s support. Colleagues 
offered us empathy and compassion for our struggles. They had fantastic ideas for 
us to gain some success where we struggled. And we had the same for them. For me, 
it was a wonderful adventure.
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Part III: Commentary – Fostering 
Relationships in the Work of Teaching 
Mathematics

Reidar Mosvold

A prima facie purpose of mathematics teaching is that students learn mathematics, 
but the work of teaching mathematics is also relational work that serves a more far- 
reaching function. The five chapters in this section investigate different aspects of 
the relational work of teaching mathematics. This commentary will address three 
issues. Firstly, it will provide a brief overview of some critical issues in educational 
research, along with some perspectives on research on mathematics teaching. 
Secondly, it will discuss the perspectives on mathematics teaching as relational 
work that are presented in the chapters. Some chapters focus on attending to 
students’ learning and difficulties; other chapters focus more on developing 
relationships with the students. Thirdly, the contributions of the chapters will be 
discussed in terms of possibilities and constraints.

 Introduction

Research on students’ mathematical learning and development has long been 
abounding. In comparison, considerably fewer studies accentuate mathematics 
teaching. Among studies that seem to target mathematics teaching, many emphasize 
issues related to students or classroom organization more than the actual work of 
teaching. There is, however, a growing body of research on mathematics teaching, 
and efforts have been made to initiate a conceptualization of the work of teaching 
mathematics (e.g., Ball and Forzani 2009).1 In their overview of research on 

1 In this chapter, the terms “mathematics teaching” and “the work of teaching mathematics” are 
used interchangeably to describe everything mathematics teachers do to help their students learn 
(cf. Ball and Forzani 2009).
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mathematics teaching and classroom practices, Franke et  al. (2007) distinguish 
between three strands of research. A first strand focuses on teachers’ facilitation of, 
and participation in, the mathematical discourses in classrooms. A second strand 
of research investigates the establishment of classroom norms for teaching and 
learning mathematics. Finally, a third strand of research emphasizes the building of 
relationships for doing and learning mathematics. The five chapters in this section 
relate primarily to this third strand of research.

This commentary will consist of three main sections. The first section will pro-
vide a context by elaborating on some critical issues in educational research in 
general along with some core aspects in research on the relational work of teaching 
mathematics. The second section will highlight some important perspectives in the 
five chapters. Finally, the last section will contain a discussion of how these chapters 
may contribute to research on mathematics teaching.

 Research on Education and Mathematics Teaching

In the past decades, educational research has developed immensely. Political and 
economic interest in research has increased—in particular related to measurement 
in education—and international comparison studies like TIMSS (Trends in 
International Mathematics and Science Study) and PISA (Programme for 
International Student Assessment) have received more and more attention. The 
political acclaim of measurement and comparative studies has led to an increased 
focus on quality, effect and outcome in schools. Biesta (2009), who is one of many 
critics of this development, suggests that there is a need to revisit the question of 
purpose in education. In his discussion of the “learnification” of education, he 
makes a distinction between three core functions of education. The first describes 
education as qualification. Education has always focused on providing students 
with skills and knowledge that are needed to qualify them for work or further stud-
ies. The second function of education relates to how we become members in society 
through education, and Biesta describes this as socialization. Finally, a third func-
tion of education is to support the development of individuals—a function that can 
be labelled as subjectification. When discussing teaching in general and mathemat-
ics teaching in particular, it can be useful to have these three functions of education 
in mind—especially since there appears to be a tendency of focusing mainly on the 
first in discussions of mathematics teaching and learning.

In light of the developments in educational research in general, it is interesting to 
notice how Franke et al. (2007) emphasize the relational aspects when discussing 
conceptualizations of mathematics teaching. Building relationships constitutes one 
of three main strands in their discussion of research on mathematics teaching and 
classroom practices. Their discussion of teaching as relational work draws upon 
Lampert (2001), who is considered a main proponent of this view; Lampert argues 
that teaching is by and large about developing relationships (cf. Franke et al. 2007). 
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In concert with their managing of all the problems and demands that arise in the 
classroom, teachers have to develop and preserve generative relationships with stu-
dents as well as content (Lampert 2010).

Fostering relationships can be described as establishing bonds between teachers 
and students—and among students—and understanding of other people’s identities 
is crucial for this to happen. The fostering of relationships, then, goes beyond 
attending to students’ mathematical thinking, and it involves getting to know their 
histories, the experiences they have made in and outside of school, their cultural 
background, and everything else that constitutes their identity. Research on the rela-
tional aspects of mathematics teaching thus typically attends to issues around iden-
tity and culture (Franke et al. 2007).

 Perspectives of the Chapters

The work of teaching mathematics is complex, and no one study can attend to all its 
intricacies. Although all of the five chapters in the present section approach teaching 
as relational work, there is considerable variation among them. A main contribution 
of these chapters is in the richness of the relational aspects that are described. From 
these descriptions, two main themes can be identified. Firstly, some of the chapters 
appear to consider the relational work of teaching in terms of attending to students’ 
thinking (Chorney and Hurlington). Secondly, another group of chapters concen-
trates more on the process of developing relational and affective perspectives (Jao, 
Newell, and Roth). Whereas the first group of chapters focuses more on student 
thinking and learning, the other group appears to focus more on developing students 
as whole persons. In this section, some main perspectives relating to these two 
themes will be highlighted.

Attending to student thinking is at the heart of teaching (Franke et al. 2007), but 
teachers as well as researchers might have different approaches to this core aspect 
of the work of teaching mathematics. Studies that are grounded in cognitivism and 
constructivism often tend to focus on identifying students’ errors, difficulties, or 
misconceptions. Hurlington has a different approach to the work of attending to 
student thinking and learning. Hurlington contends that mathematics teachers 
should focus on students’ strengths rather than their weaknesses. Instead of having 
a diagnostic approach to identifying students’ weaknesses, Hurlington suggests that 
teachers should become “talent scouts”. His theoretically based argument rests on 
the concept of resilience. The term is often used in material science to describe the 
ability of materials to recover and return to their previous state after distortion. In 
his chapter, Hurlington uses the term to describe students’ ability to take advantage 
of their resources and have a good outcome despite the challenges and risks that 
are involved in the process. When focusing on students’ strengths instead of their 
weaknesses, Hurlington argues, teachers might contribute to diminishing the risk of 
failure and support students’ learning and growth.
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Chorney introduces some different perspectives to the discussion of attending to 
student thinking when he investigates how top-down requirements regarding assess-
ment might prohibit the work of teaching. In the empirical examples presented, we 
observe how two girls are involved in mathematical explorations with technological 
tools. Although their explorations appear promising, the teacher ends up consider-
ing the interaction with technology as a failure since the girls are not able to produce 
the response that is required for assessment in time. Chorney argues that some 
important mathematical competencies—like reasoning, justifying and communicat-
ing—are more difficult to report on than “plain” knowledge of content.

Whereas Hurlington and Chorney investigate different aspects of the relational 
work of teaching in terms of attending to student thinking, the other three chapters 
of this section focus more on how the relational work of teaching might contribute 
to developing students as whole persons. In her study of the teaching practices of 
three mathematics teachers in “at-risk contexts,” Jao concentrates on the students. 
Unlike the three chapters in the previous category, however, Jao emphasizes the 
students’ need to feel like they belong. She suggests that the students’ level of 
engagement and achievement can be influenced by teachers’ support, and classroom 
organization and features of classrooms are emphasized in the discussions of the 
work of teaching. In particular, building community through collaborative problem 
solving and student-centered approaches is highlighted.

For Newell, fostering relationships with students and their family appears to be a 
foundational component of the work of teaching mathematics. Where Jao concen-
trates on what features of classrooms and classroom organization might stimulate 
the building of community, Newell attends more squarely to the work of building 
relationships. His chapter on teaching mathematics in Cree communities indicates 
that this process can be extremely challenging and time-consuming. Through first- 
person narratives, Newell provides insights into the cultural challenges of attempt-
ing to conduct the work of teaching mathematics in the Cree culture—as an 
inexperienced teacher, who is considered to be an outsider by the community. The 
fact that the first half or so of his chapter goes by before he even starts focusing on 
mathematics teaching is illustrative of the intricacies that are involved in the rela-
tional work of teaching. Understanding students’ culture and identity is necessary to 
build relationships (Franke et  al. 2007), and Newell experiences that academic 
achievement as such is considered a threat to the culture and identity of the mem-
bers in the Cree community. He concludes that it is necessary to enter such com-
munities with humility and willingness to hear, learn and understand who other 
people are and how they live.

Finally, Roth presents a different set of perspectives on the relational work of 
teaching in his chapter on culturing affect. His primary focus is on the aspects of 
teaching that relate to helping students develop self-confidence and positive affects 
towards mathematics and themselves as mathematical learners. In doing this, Roth 
develops a perspective on mathematics teaching that goes beyond acquisition of 
knowledge. Instead of focusing on students’ cognitive development, Roth accentu-
ates the development of students’ affect. He describes this aspect of the work of 
teaching in terms of “culturing affect,” and he thereby emphasizes the 
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 communicational and relational work of helping students develop their mathematical 
identities—corresponding with Biesta’s (2009) descriptions of subjectification as a 
function of education. However, Roth warns against reducing students to mathemat-
ical identities only, and instead attempts to take them into account as whole persons. 
Through the example of his interaction with Earl, Roth illustrates what can also be 
described as an act of allowing students’ agency of their own learning—with the 
result of a change in the student’s affect towards mathematics.

 Possibilities and Constraints

In the beginning of his chapter, Roth observes that mathematics education research 
tends to adopt psychological theories of learning, and he criticizes the tendency in 
these theories to separate intellect and emotion. This criticism is well-founded, but 
another problematic aspect can be added to the discussion of this adoption of theo-
ries. Not only do the adopted psychological learning theories have a tendency to 
separate intellect and emotion, but most of the theories that are adopted from other 
fields are also theories of learning rather than theories of teaching. Using theories 
of learning as a starting point for studies of teaching might be problematic in and of 
itself. In the following discussion of possibilities and constraints of the chapters in 
this section, these dubious theoretical underpinnings will be a recurrent issue.

Interestingly enough, the chapter in this section that appears to have the most 
explicit focus on teaching is also the chapter with the least explicit theoretical foun-
dation. Newell has a predominant focus on the work of teaching, but his account is 
practice-based rather than theory-based. He does not explicitly define teaching, but 
the implicit view of teaching appears to correspond with that of Ball and Forzani 
(2009), where teaching is defined as everything a teacher does in order to help stu-
dents learn. From Newell’s vivid account, some important insights emerge concern-
ing challenges that might be embedded in the work of developing relationships with 
the students. His account also indicates that proficiency in the work of teaching 
needs to be developed in—or in close proximity with—practice (cf. Ball and Cohen 
1999). Newell’s chapter thus stands as a reminder of the importance and utility of 
careful investigations of records of practice in the endeavor to further develop 
research on mathematics teaching.

Emphasizing practice-based approaches does not, however, imply that theoreti-
cal perspectives should be disregarded in studies of teaching. Roth’s chapter is illus-
trative of  how careful and critical application of theoretical perspectives can be 
productively combined in analysis of practice. His chapter provides a strong 
reminder of considering students as whole persons, and not only to focus on the 
extent to which they manage to acquire a prescribed knowledge of content. This 
emphasis on supporting students’ overall development as individuals corresponds 
well with Newell’s perspectives. Roth also reminds us that teachers as well as stu-
dents are constantly in a state of “becoming.” This perspective is reminiscent of 
Freire’s (1970) descriptions of liberating education, where teaching is described as 
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a process where teacher and students engage in dialogue with the purpose of devel-
oping knowledge through collaborative reinvention. Engaging in such a process 
results in shared responsibility and agency between teachers and students, and this 
involves risk—a point that is shared by Roth and Hurlington.

Roth criticizes traditional cognitive theories of learning, while Hurlington accen-
tuates student learning. Hurlington uses the metaphor of teaching as coaching, and 
suggests that teachers better support student learning by highlighting their strengths 
rather than their weaknesses. Chorney employs a theoretical perspective that differs 
from that of Hurlington when he describes teaching as social and sociopolitical 
work. This theoretical perspective seems to trigger a focus on how curriculum and 
policy might influence mathematics teaching in certain directions. In particular, he 
discusses how emphases in curriculum and policy regulations may limit the possi-
bilities of using digital technologies in mathematics teaching. The focus in his study 
relates strongly to the theoretical perspectives applied, but it is, of course, important 
to highlight that this is a dialectical relationship.

Finally, Jao does not specify any particular theoretical foundation, but she draws 
upon other research that accentuates teaching in terms of supporting development of 
student engagement. In her investigation of the teaching practices of three mathe-
matics teachers, she has a main focus on how teachers organize the students and the 
classroom environment.

 Conclusion

The work of teaching mathematics is complex, and research on mathematics teach-
ing highlights a variety of perspectives (e.g., Franke et al. 2007). The five chapters 
in the present section mostly attend to the relational work of teaching mathematics. 
Based on the highlighted perspectives and the discussions of the contributions from 
these five chapters, two claims can be made. One relates to constraints in the present 
research; the other accentuates some possibilities.

First, research on mathematics teaching might be constrained by its attempts to 
adopt and deploy theories from other fields. Roth argues in his chapter that many of 
the theories that have been adopted from psychology are limited in that they distin-
guish between intellect and affect, and more dynamic perspectives of the interplay 
between intellect and affect might be more productive. In addition, one might argue 
that it is problematic to adopt and use theories of learning in studies of teaching. 
Lortie (1975) called for the development of a professional language of teaching. 
Four decades later, it seems like the field of mathematics education research is still 
in need of both language and theories of teaching. More conceptual work needs to 
be done in studies of mathematics teaching, and conceptualizations of mathematics 
teaching should strive towards capturing the dynamic interactions between mathe-
matical and pedagogical aspects of the work of teaching. Although the theoretical 
foundations used in the five chapters in this section—and in many other studies of 
mathematics teaching—show potential in highlighting particular aspects of either 
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mathematical or pedagogical demands, few seem to be able to sufficiently capture 
the interplay between mathematics and pedagogy. Adopting theoretical frameworks 
from other fields might highlight certain aspects of this interplay, and studies that 
adopt such frameworks might end up providing useful insight into issues that are 
related to teaching, but these studies often fail to focus on the actual work of teach-
ing. As a result, studies that apply adopted theoretical frameworks tend to empha-
size some aspects that are relevant to teaching, but outright consideration for the 
complex dynamics of the actual work of teaching often seems to be missing.

A second point relates to a more general discussion about the purpose of educa-
tion. Some have argued, like Biesta (2009), that there is a need to take up the ques-
tion of purpose in education. Research on mathematics teaching and learning tends 
to have a predominant focus on qualification, which is unnecessarily narrow. Some 
of the chapters in this section challenge this narrow perspective on education as 
qualification. For instance, the chapters by Roth and Newell go beyond a discussion 
of qualification in their discussions of how teachers might support students’ devel-
opment—both as individuals and as members of a community. Further investiga-
tions along these lines might provide important contributions to the development of 
more integrated conceptualizations of the work of teaching mathematics that bal-
ance the different functions of education.
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Part IV: Preface – Enhancing Problem-
Based Learning

Thomas Kieren

Because the seven papers in this section (and those from other sections) are very 
diverse in their central interests they necessarily point to different ways in which the 
“enhancing” in the title is used. As I read the titles of papers Mamolo, Thomas and 
Frankfort; Russell; and Sterenberg and O’Connor, for example, one might say that 
the ‘enhancement’ pointed to will occur through the social focus of the problems 
and or the nature of teaching/learning/curriculum. In any case the titles of said 
papers as well as that of Savard themselves suggest that enhancement will arise 
through use of problems related to or appropriate to the social milieu in which the 
class exists. On the other hand some papers (Martin, Oliverira, & Theis; Saldanha 
& Thibault; Mamolo et al.) point to enhancement of problem based learning through 
the selection particular mathematical kinds of problems At least two (Godin; Atiya, 
Luca, & Kajander), at least nominally, focus on the teacher and the teaching role 
and the education for teaching in settings aimed at enhancing problem work. The 
point I am making is that such “enhancing” has many interpretations and many 
goals. Thus it offers the reader a diverse read but more importantly allows for the 
education of the reader with explicit interest in some form of enhanced problem 
based learning.

Perhaps even more importantly, although there are five other parts in this vol-
ume, each of these parts have papers which either add to the richness of the enhance-
ment of problem based learning or connect to thinking that leads in that direction. 
In reading Part IV, it seems useful to augment this reading with selections of interest 
in other parts—they are certainly there. For example the chapter from Peter Taylor, 
Lala, Ouellet, and Knebel (Part I, this volume) is replete with historical references 
to the work of Whitehead and Dewey who insist that the curriculum must not 
errantly get stuck on a long list of skills which must be sharpened BEFORE students 
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can do the rich work of problem solving—that is experience mathematics knowing 
as a form of living or being. Taylor et al. also cites contemporary writing of Brent 
Davis who makes the same point differently—he provides a set of mathematics 
teaching/learning actions which are life opening contrasted with related actions 
which are narrowing. Davis was part of a rich problem based mathematics project 
[see, for example, ZDM, Vol. 47, Apr. 2015, Preciado-Babb et al.] where the project 
provided evidence of mathematical growth to the school authorities using the 5 
strands of mathematical activity developed and described by Kilpatrick, Swafford, 
and Findell in their 2001 book. In other words the problem oriented teaching learn-
ing of students could be shown to meet the variety mathematics goals [including 
mathematical proficiency]. Taylor himself makes the point that such proficiencies 
are likely to be all enhanced in a problem rich environment. And illustrates this with 
student approaches to sophisticated mathematical problems.

Mathematics educators have a rich base of work on problem solving and the 
ways it can contribute to mathematics education which even provide a mathematical 
base for the work discussed in Part 4 and more broadly in this book. Of course there 
is Pólya’s famous How to solve it (1945 and more recently, 2010) which has been 
available to support mathematical problem solving in the school mathematics cur-
riculum for decades and of course relates the enhancing problem based learning 
here. Polya’s Mathematics and plausible reasoning (1954) provides a complex base 
for the kind of reasoning and mathematical actions which go beyond the typical 
school mathematics curriculum problems—such problems and actions included in 
the diversity of writing in Part IV.  Secondly we have the work of John Mason, 
Burton, and Stacey (1982/2010) of Thinking mathematically replete with both prob-
lems and strategies which relate to both applied problems [e.g. taxation choices] and 
more typical mathematics problems- again supporting the diversity of enhanced 
problem solving advocated in part 4. Thus there is a philosophical as well as math-
ematical problem solving support for the diversity of enhanced problem based 
learning advocated here The reader will profit from pulling out the nature of 
enhancements of problem based learning in these papers.

Below I provide three examples of the sketches of the approaches to “Enhancing 
problem-based learning.” The first basis for enhancement is based on the changes in 
matter meant, taught, and learned as affecting and being affected by changing the 
structuring of the environment for learning but also radically altering the structure 
of the instructional sequence of lessons. The second is based in enhancing the math-
ematical qualities of student experience. The third is the kinds of enhancing learn-
ing materials, particularly here physical materials and their uses in enhancing and 
extending problem based learning.

The first example arises in looking at Peter Liljedahl’s on “Building a thinking 
mathematics classroom”. In reading this paper, you will be shown what he sees as 
radical changes in both the environment and the content and quality of materials and 
inter-actions with students which he sees as inherently linked and resulting in a 
daily pattern of enhanced problem based learning. Each class starts with a problem, 
presented orally to both encourage listening but also inter-action among students, 
who are also working in daily changing randomly assigned groups. This focus on 
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problem actions and student inter-actions and is enhanced by all vertical surfaces 
(e.g., white boards, student work on papers, models) being engaged by students to 
produce and inter-act about showable, shareable mathematical products. Thus stu-
dents are in a ‘defronted” (Liljedahl’s term) classroom (the foci of attention is radi-
cally changed). Although students questions showing a “shut down” of thinking 
(asking, “Is this right?”) are acknowledged by the teacher or others, only those 
questions or comments which promote further thinking are taken up and elaborated 
upon. Liljedahl sees this physical, interactive, mathematical classroom setting as 
involving a daily cycle of three different action types (of which I provide a short-
ened précis here): Element I: dividing up the class in random groups and situating 
student workspaces so as to defront the class and thus promote student interaction 
and autonomy; Element II: providing an orally assisted problem presentation (which 
may be a problem outside of the curriculum or a curricular one that is new to the 
class); this is followed by interaction of work in a defronted environment as well as 
responses to keep focus on thinking questions both aimed at autonomous student 
mathematical actions; Element III: the final element of the sequence involves “lev-
eling to the bottom”, providing a summation of the work of the class in such a way 
as to allow all students to have a sense of the ideas developed so far; then providing 
hints and extensions to foster extension of individual and group mathematical activ-
ities; assessment exercises and finally prompting students make mindful notes about 
the days work for their own use. These three segments of this cycle are repeated and 
renewed on a daily basis and of course situates the teacher in the middle of the inter-
action. I want to make 2 points with this brief description of Liljedahl’s “class-
room.” I want to point out that the class set-up; the inter-actions; the use and meaning 
of tasks; and questions about work on them; the use and rhythm of assessment;and 
student records of and reflections on work are all different from a ‘normal” second-
ary school mathematics class For the teacher and the students that things are differ-
ent here. Second, this is but one pattern of enhancement of problem based learning, 
but one that shows the content, contextual, pedagogical, and instructional complex-
ity in accomplishing such enhancement.

The second aspect of enhancing problem based learning points to a mathematical 
character of such change. This is vividly seen in Hoshino’s paper the title of which 
suggests that mathematical creativity is a motor for such enhancement. You will see 
in this paper how Hoshino shows the difference between using “brute force in solv-
ing a mathematical problem and using mathematical information cleverly to do the 
same result but this result is a pattern built on patterns (e.g., problem 2). The point 
Hoshino seems tome to be making is that pattern perception and pattern use go hand 
in hand with enhanced problem-based learning—that problem based learning is 
enhanced by students’ learning to use knowledge they already have to look at prob-
lems differently. He notes that this has a second enhancement factor which he names 
early in the paper: the ability to solve hard problems by converting them into (dif-
ferent) simpler patterns. On my reading this suggests (and is shown emphatically in 
Problem 4) that coming to see problems as related to one another is a mathematical 
basis for enhancing problem-based learning.
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A third contributor to enhancing problem based learning the use of concrete and 
other materials (e.g., tables graphs, apps). One of the many examples of this is seen 
in Part VI in Ann Kajander’s paper on “Learning algebra with models and reason-
ing”. In supporting such a relationship she suggests that ‘ the argument that problem 
based learning and hands-on material based learning take too long is contradicted 
by the benefit of the creation of connections of ideas to other ideas, often supporting 
more than one set of curriculum expectations at a time. Note the connection of this 
argument to a parallel argument from Hoshino’s paper above. Using materials and 
connecting these materials to mathematical expressions and ideas are mathematics 
eliciting acts. Being able to move with facility and between materials based math-
ematical actions; diagrammatic illustrations; informal but powerful symbolic sche-
mas; and formal more standard mathematical expressions and being aware of the 
mathematical equivalences among them are critical aspects of enhanced problem 
based mathematics.

From my reading of the some of papers from Part IV and other papers in this 
book, suggests that the task of redeveloping mathematics curriculum and related 
teaching and assessment is not an easy task. But the papers I have read suggest that 
this volume contains solid ideas on how this might and is already happening in 
Canadian schools.
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Building Thinking Classrooms

Peter Liljedahl

Abstract In this chapter I first introduce the notion of a thinking classroom and 
then present the results of over 10 years of research done on the development and 
maintenance of thinking classrooms. Using a narrative style I tell the story of how 
this research began and led first to the notion of a thinking classroom and then to a 
research project designed to find ways to help teachers build such a classroom. 
Results show that there are a number of relatively easy to implement teaching prac-
tices that can bypass the normative behaviours of almost any classroom and begin 
the process of developing a thinking classroom.

Keywords Problem solving · Thinking · Group work · VNPS

 Motivation

My work on the research presented in this chapter began over 10 years ago when I 
was invited to help June implement problem solving in her grade eight classroom. 
June had never done problem solving with her students before, but with its promi-
nence in the recently revised curriculum, she felt it was time. June was aware of my 
interest in problem solving, so she reached out to me one day late into the school 
year.

June, as it turned out, was neither interested in co-planning nor co-teaching. 
What she wanted from me was simply a collection of problems she could try with 
her students. I was expecting to have a greater level of involvement in the lesson, but 
June was firm on her conditions. We eventually arrived at a compromise whereby I 
would supply the appropriate problems for June to use with her grade eight stu-
dents, and she would let me watch her implement them within her classroom.

The first problem I gave her to use was a problem that I had had much success 
with grade eight students.
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If 6 cats can kill 6 rats in 6 minutes, how many will be needed to kill 100 rats in 50 minutes? 
(Lewis Carroll, cited in Wekeling 1995, p. 34)

June accepted this problem in good faith and used it the next day. It did not go well. 
A forest of arms immediately shot up and June began to frantically move around the 
room to answer questions. Many students gave up quickly so June also spent much 
effort trying to motivate students to keep going. In general, there was some work 
attempted when June was close by and encouraging the students, but as soon as she 
left the trying stopped. This continued for the whole 40 min period.

The following day I was back with a new problem. The results were as abysmal 
as they had been on the first day. The same was true of day three. Over the course of 
three 40 min classes we had seen little improvement in the students’ efforts to solve 
the problem, and no improvements in their abilities to do so. So, June decided it was 
time to give up. Her efforts to bring problem solving to her students had been met 
with resistance and challenge and resulted in few, if any, rewards.

I wanted to understand why the results had been so poor, so I asked June if I 
could stay and observe her and her students in their normal classroom routines. She 
agreed to this. After three full days of observation I began to discern a pattern. That 
the students were lacking in effort was immediately obvious, but what took time to 
manifest was the realization that what was missing in this classroom was that the 
students were not thinking. More alarming was the realization that June’s teaching 
was predicated on an assumption that the students either could not, or would not, 
think. The classroom norms (Yackel and Rasmussen 2002) that had been estab-
lished in June’s class had resulted in, what I now refer to as, a non-thinking class-
room. Once I realized this I proceeded to visit other mathematics classes—first in 
the same school and then in other schools. In each class I saw the same basic behav-
iour—an assumption, implicit in the teaching, that the students either could not or 
would not think. Under such conditions it was unreasonable to expect that students 
were going to be able to spontaneously engage in problem solving.

What was missing for these students, and their teachers, was a central focus in 
mathematics on thinking. The realization that this was absent in so many classrooms 
that I visited motivated me to find a way to build, within these same classrooms, a 
culture of thinking, both for the student and the teachers. I wanted to build, what I 
now call, a thinking classroom—“a classroom that is not only conducive to thinking 
but also occasions thinking, a space that is inhabited by thinking individuals as well 
as individuals thinking collectively, learning together, and constructing knowledge 
and understanding through activity and discussion” (Liljedahl 2016a, p. 364).

 Early Efforts

Classroom norms, once established, are difficult to change (Yackel and Rasmussen 
2002). My early efforts to build thinking classrooms revealed that even when a 
teacher is motivated to get their students to think, their initial efforts to do so are 
rarely rewarded by comparable changes in student behaviour. Quite the opposite, 
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many of the teachers I was working with were met with resistance and complaints 
when they tried to make changes to their practice.

From these experiences I realized that if I wanted to build thinking classrooms—
to help teachers to change their classrooms into thinking classrooms—I needed a set 
of tools that would allow teachers to bypass any existing classroom norms. These 
tools needed to be easy to adopt and have the ability to provide the space for stu-
dents to engage in thinking, unencumbered by their rehearsed tendencies and 
approaches when in their mathematics classroom.

This realization moved me to begin a program of research that would explore both 
the elements of thinking classrooms and the traditional elements of classroom prac-
tice that block the development and sustainability of thinking classrooms. I wanted 
to find a collection of teacher practices that had the ability to break students out of 
their classroom normative behaviour—practices that could be used by teachers that 
had previously entrenched the classroom norms that now needed to be broken.

 In Pursuit of Thinking Classrooms

My research to find the elements and teaching practices that fostered and sustained 
thinking classrooms has been ongoing for over 10 years. I initially explored my own 
teaching, as well as the practices of more than 40 classroom mathematics teachers. 
From this emerged a set of 11 elements that were found to permeate mathematics 
classroom practice—elements that account for most of whether or not a classroom 
is a thinking or a non-thinking classroom. These 11 elements of mathematics teach-
ing became the focus of my research. They are

 1. the type of tasks used, and when and how they are used;
 2. the way in which tasks are given to students;
 3. how groups are formed;
 4. student work space while they work on tasks;
 5. room organization, both in general and when students work on tasks;
 6. how questions are answered when students are working on tasks;
 7. the ways in which hints and extensions are used while students work on tasks;
 8. the autonomy students have while working on tasks;
 9. when and how a teacher levels1 their classroom during or after tasks;
 10. the ways in which students record notes;
 11. and assessment, both in general and when students work on tasks.

1 Levelling is a term introduced by Schoenfeld (1985) to describe a teacher’s actions to bring a 
whole class up to the same level of understanding. It is specifically used in the context of closing 
off and debriefing an activity where students have been asked to solve a task on their own. After 
some period of time the teacher will close of the activity by showing how the question is to best 
solved or by calling on a student who completed the task to do the same. Liljedahl and Allan (2013) 
showed that levelling produces student behavior antithetical to the goals of the teacher.
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June’s class, for example, was one in which

 1. practice tasks were given after she had done a number of worked examples;
 2. students either copied these from the textbook or from a question written on the 

board;
 3. students had the option to self-group to work on the homework assignment 

when the lesson portion of the class was done;
 4. students worked at their desks writing in their notebooks;
 5. students sat in rows with the students’ desks facing the board at the front of the 

classroom;
 6. students who struggled were helped individually through the solution process, 

either part way or all the way;
 7. there were no hints, only answers, and an extension was merely the next prac-

tice question on the list;
 8. students had little to no autonomy in how they engaged in tasks, usually work 

sheets or work out of the textbook;
 9. when “enough time” time had passed June would demonstrate the solution on 

the board, sometimes calling on “the class” to tell her how to proceed;
 10. students wrote down what June wrote on the board at the front of the room;
 11. and assessment was always through individual quizzes and tests.

This was not, as determined earlier, a thinking classroom.
Each of these elements were something that needed exploring and experimenta-

tion. Many were steeped in tradition and classroom norms (Yackel and Rasmussen 
2002). As such, research into each of these was done using design-based methods 
(Cobb et al. 2003; Design-Based Research Collective 2003) within my own teach-
ing practice as well as the practices of more than 400 teachers participating in a 
variety of professional development opportunities. This approach allowed me to 
vary the teaching around each of the elements, either independently or jointly, and 
to measure the effectiveness of that method for building and/or maintaining a think-
ing classroom. Results fed recursively back into teaching practice, each time lead-
ing either to refining or abandoning what was done in the previous iteration.

The challenge, however, was to figure out how to shift a teaching practice when 
it was determined that a particular teaching method needed to be abandoned. Early 
results indicated that small shifts in practice, in these circumstances, did little to 
shift the behaviours of the class as a whole. Larger, more substantial shifts were 
needed. These were sometimes difficult to conceptualize. In the end, a contrarian 
approach was adopted. That is, when a teaching method around a specific element 
needed to be abandoned, the new approach to be adopted was, as much as possible, 
the exact opposite to the practice that had shown to be ineffective for building or 
maintaining a thinking classroom. For example, when sitting showed to be ineffec-
tive, we tried making the students stand. When levelling to the top failed we tried 
levelling to the bottom. When answering questions proved to cause learned help-
lessness we stopped answering questions. Each of these approaches then needed 
further refinement through the iterative design-based research approach, but it gave 
good starting points for this process.
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 Results

Through this process a number of results eventually began, at first slowly, to emerge. 
In what follows I will present, in brief, the results of the research done on each of 
these eleven elements and discuss how they hold together as a framework to build 
and maintain thinking classrooms.

 The Type of Tasks Used

Lessons need to begin with good problem solving tasks. In the beginning of the 
school year, or when first attempting to transform a classroom, these tasks are highly 
engaging, non-curricular, collaborative tasks that drive students to want to talk with 
each other as they try to solve them (Liljedahl 2008). After a period of time (usually 
2–3  weeks) these should gradually be replaced with curricular problem solving 
tasks that permeate the entirety of the lesson and emerge rich mathematics 
(Schoenfeld 1985) that can be linked to the curriculum content to be ‘taught’ that 
day. These curricula tasks can simply be questions from the textbook provided they 
are new to the students and present something that is problematic for them.

 How Tasks Are Given to Students

As much as possible, tasks need to be given orally. If there are data, diagrams, or 
long expressions needed these can be provided on paper or projected on the wall, 
but the instructions pertaining to the activity of the task need to be given orally. This 
very quickly drives the groups to discuss what is being asked, focuses groups on the 
mathematics, and reduces the urge to individually decode instructions on a page.

 How Groups Are Formed

Grouping and regrouping needs to be frequent and visibly random. Ideally, at the 
beginning of every class a visibly random method is used to create groups of 2–3 
students who will work together for the duration of the class. These groups will 
work together on any assigned problem solving tasks and sit together or stand 
together during any group or whole class discussions. Frequent randomization will 
fundamentally transform the social structure of the classroom within 3  weeks 
(Liljedahl 2014, 2016a, in press a) and build the type of community needed to 
autonomously maintain a thinking classroom.
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 Student Work Space

The work on these aforementioned tasks needs to be done with groups standing and 
working on vertical non-permanent surfaces such as whiteboards, blackboards, or 
windows. This makes visible all work being done, not just to the teacher but to the 
groups doing the work. To facilitate discussion, there is only one felt pen or piece of 
chalk per group. The use of vertical non-permanent surfaces will increase eagerness 
to start, increase discussion, participation, and perseverance amongst the group 
members, and facilitate the mobility of knowledge between groups (Liljedahl 
2016a, in press a).

 Room Organization

The classroom needs to be de-fronted. The teacher must let go of one wall of the 
classroom as being the designated teaching space that all desks are oriented towards. 
The teacher needs to address the class from a variety of locations within the room 
and, as much as possible, use all four walls of the classroom. It is best if desks are 
placed in a random configuration around the room, and away from the walls.

 How Questions Are Answered

It turns out that students only ask three types of questions: (1) proximity ques-
tions—asked when the teacher is close; (2) stop thinking questions—most often of 
the form “is this right” or “will this be on the test”; and (3) keep thinking ques-
tions—questions that students ask so they can get back to work. Only the third of 
these types should be answered. The first two need to be acknowledged, but not 
answered.

 How Hints and Extensions Are Used

Once a thinking classroom is established, it needs to be nurtured. Student engage-
ment should be maintained through the teacher’s judicious and timely use of hints 
and extensions (Liljedahl 2016a, b, in press b). Flow (Csíkszentmihályi 1990, 1996) 
is a good framework for thinking about this. Hints and extensions need to be given 

P. Liljedahl



313

so as to keep students in a perfect balance between the challenge of the current task 
and their abilities in working on it. If their ability is too high the risk is they get 
bored. If the challenge is too great the risk is they become frustrated.

 Student Autonomy

Providing of hints and extensions in a timely fashion is difficult when there are 
10–12 groups in the class. If students have autonomy to interact with other groups, 
however, they will manage much of this on their own as they use each other to pro-
vide help when they are stuck and to seek increased challenge when they are done 
(Liljedahl in press b). Simply providing this autonomy is not enough, however. 
Students need to be shown that this autonomy exists, and feel its value. As such, the 
teacher needs to build autonomy by deliberatively pushing students towards other 
groups when they are stuck or need an extension.

 When and How a Teacher Levels Their Classroom

Rather than using levelling to bring a whole class up to the same level of under-
standing (levelling to the top) discussions need to happen at a level that all students 
can understand (levelling to the bottom). That is, when every group has passed a 
minimum threshold the teacher should pull the students together to debrief what 
they have all achieved. At this time the teacher will either go over one or more of the 
students’ solutions or work through a new problem together with the class as a 
whole. This helps reify and formalize the work the students have been doing and 
should constitutes the ‘lesson’ for that particular class.

 Student Notes

After the levelling has occurred students need to write some notes for themselves. 
These notes should be based on the work that is already existing on the boards and 
can come from their own work, another group’s work, or a combination of work 
from many groups. As part of the levelling process, teachers can highlight particular 
parts of the work that is on the boards, but it is important that the students select 
themselves, and synthesize and reorganize notes on their own. Students younger 
than grade 8 will need guidance as to what to write down.
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 Assessment

Assessment in a thinking classroom needs to be mostly about the involvement of stu-
dents in the learning process through efforts to communicate with them where they are 
and where they are going in their learning. It needs to honour the activities of a think-
ing classroom through a focus on the processes of learning more so than the products, 
and it needs to include both group work and individual work (Liljedahl 2010).

 Taken Together

This research also showed that these are not all equally impactful or purposeful in 
the building and maintenance of a thinking classroom. Some of these are blunt 
instruments capable of leveraging significant changes while others are more refined, 
used for the fine-tuning and maintenance of a thinking classroom. Some are neces-
sary precursors to others. Some are easier to implement by teachers than others 
while others are more nuanced, requiring great attention and more practice as a 
teacher. And some are better received by students than others. From the whole of 
these results emerged a three tier hierarchy that represent, not only the bluntness and 
ease of implementation, but also an ideal chronology of implementation (see 
Table 1).

These stages can be envisioned as a set of cycles working in sequence and 
together to build a thinking classroom (see Fig. 1).

Since their emergence, these eleven tools and the aforementioned stages, have 
been used to successfully build thinking classrooms in hundreds of mathematics 
classrooms from kindergarten to grade 12 (Liljedahl 2016a) with transformative 
effects on students’ thinking, engagement, and enjoyment as well as teachers’ sus-
tained practice.

Table 1 Eleven elements as chronologically implemented

Stage one Stage two Stage three

Begin lessons with tasks Use oral instructions Level to the bottom
Form visibly random groups Defront the classroom Use hints and extensions to 

manage flow
Use vertical non-permanent 
surfaces

Answer only keep thinking 
questions

Use assessment as 
communication

Build autonomy Use mindful notes
bluntness

difficulty of implementation
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Teaching Mathematics and Developing 
Citizenship: How to Use Contexts 
to Enhance Problem-Based Learning

Annie Savard

Abstract Teaching and learning mathematics through problem-based learning is 
highly promoted all around the world. This student-centered approach highlights 
the fact that students are sense makers. In this regard, the contexts presented in the 
problems given to students should serve the purpose of learning by providing mean-
ing to construct. On the other hand, the contexts should also serve the purpose of 
teaching mathematics by designing meaningful problems for students and guiding 
them in the learning process of making sense of mathematics within a meaningful 
context. This book chapter discusses three different uses of contexts to enhance 
problem-based learning when teaching mathematics: for designing mathematical 
tasks, for interpreting or situating students’ thinking, and for developing citizenship 
competencies. In order to illustrate the three different uses, two learning situations 
will be presented and analyzed using these lenses: the culture present in contexts, 
the mathematical knowledge targeted, and critical thinking as part of citizenship 
competencies.

Keywords Problem-based learning · Socio-cultural contexts · Critical thinking · 
Citizenship competencies

 Contexts Presented in Problems

Problems presented to students might serve different purposes. For instance, they 
might be presented to them in order to apply new mathematical knowledge devel-
oped in different contexts, or they can be a vehicle to develop new mathematical 
knowledge in a contextualized situation (Savard and Polotskaia 2017). A 
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contextualized situation is usually a situation where the context presented is a real-
life scenario (Jackson et al. 2012). A situation usually gives more information about 
the context: the situation provides a problem, but also a rationale to perform a task. 
A task is what to do to in order to solve the problem, or, in other words, the question 
to investigate. The literature sometimes refers to authentic tasks, because the class-
room is genuinely connected to the real world (Newmann et al. 2007). The authen-
ticity is supposed to be a context familiar to students. For instance, it makes sense 
in Canada to have contexts about snow and low degrees. But it might does not make 
any sense for students who never experienced snow and cold winter. Authentic tasks 
should be real: the situation really happens in students’ environment. Otherwise, 
this kind of task is inspired by real-life situations (Holtman et al. 2011).

A contextualized situation aims to better prepare students to face the realities and 
problems in society (Savard 2015). At this end, the problems to investigate should be 
complex, because they require multiple steps to find answers and thus lead students 
to make choices among the mathematical concepts and processes used and justify 
these choices. The complexity of these problems also refers to the fact that the imme-
diate solution is not obvious and that many solutions or answers are possible (Stein 
et al. 2000). In addition to that, students will have the opportunity to explore more 
than one mathematical concept or process (Savard and Manuel 2016). They will have 
to conduct some investigations and thus present different solutions to discuss (Smith 
et al. 2009). They might be allowed to use different tools to perform the task: a cal-
culator or a digital tool such as a spreadsheet or a mathematical application. In this 
chapter, I consider complex tasks as a learning situation, where a problem is given to 
students in order to explore and investigate the context using mathematical models. 
The task presented in the learning situation is, in fact, the problem to solve, and a 
learning situation might have more than one task. Thus, a learning situation should 
have many mathematical concepts and processes to be mobilized by students. A 
mobilization is the selection and the use of knowledge in situ, e.g., according to the 
contextualized situation. A mobilization is not only the use of knowledge: it implies 
a transformation of it according to the situation presented.

 Use Contexts to Teach Mathematics and Develop Citizenship

In order to use contexts to enhance problem-based learning, I present how to use 
context in designing mathematical tasks, in interpreting or situating students’ solu-
tions, and in developing citizenship.

 Using Contexts to Design Mathematical Tasks

Designing a mathematical task involves identifying the mathematical knowledge 
to be developed and contexts familiar to students that could be used. At this end, 
the situation presented to students should be accessible to them, and thus have a 

A. Savard



319

strong relationship between the mathematical knowledge to be developed and the 
context to be used. In fact, this relationship is so strong that if it is not present, it 
can create learning obstacles. For instance, students might not mobilize the 
expected mathematical knowledge or the context itself might be an obstacle. Thus, 
they might say that they do not understand the problem and therefore they are not 
able solve it.

In order to support students to learn, when designing a mathematical task, it is 
also important to anticipate students’ thinking in regard to the whole situation: the 
context presented, the mathematics involved, and the potentiality to develop high 
thinking skills such as critical thinking and decision making. The choice of the situ-
ation is then crucial. One starting point to select the context of the situation might 
be to look at an event or a phenomenon coming from familiar socio-cultural con-
texts. The socio-cultural context is mainly about the culture present in the society. 
For example, socio-cultural context could be about sports (hockey, baseball, soc-
cer), arts (music, movie, tv show), economy (shopping, saving, advertising), medias 
(internet, Facebook), science (scientific experiment), technology (building a bridge) 
or everything coming from daily life (school life, cooking, cleaning). The event or 
the phenomenon to be studied coming from the socio-cultural context is presented 
in the situation, and a problem should arise in order to create the need for students 
to study the event or the phenomenon. Mathematical knowledge is needed for study-
ing the event or the phenomenon. Thus, students need to create mathematical mod-
els of the situation in order to solve the problem. The mathematical models will 
allow them to mobilize mathematical concepts and processes to perform the task 
and thus solve the problem. Using the solutions and answers when looking back at 
the situation might support the development of critical thinking: a citizenship 
competency.

In order to see the different contexts in a situation, let’s look at two mathematical 
situations taken from the Organization for Economic Cooperation and Development 
(OECD) triennial Program for International Student Assessment (PISA) 2012 
(2013). Those situations present two different socio-cultural contexts to be mathe-
matically modelized by students, where critical thinking is needed to solve the task 
and where the situation has a strong potential to address political issues. Figures 1 
and 2 present the two situations. Can you identify the elements of each context in 
the given situation?

 Using Contexts to Interpret Students’ Solutions

The three different contexts in a situation are helpful to interpret and situate stu-
dents’ solutions or students’ thinking. For instance, if a student is not familiar with 
climbing in the first situation, he might not think about going down after he went up. 
Thus, he might choose 9 km as the distance to be used instead of 18 km. This infor-
mation is helpful to know because the teacher can then make a precise intervention 
with the student. At this end, Tables 1 and 2 show the knowledge to be used by 
students for each context.
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 Using Contexts to Develop Citizenship

As we can see in the two tables, there is a possibility to capitalize on the socio- 
cultural and the mathematical contexts to support students in developing citizen-
ship. In fact, two citizenship competencies are offered: gaining more information on 
ethical and political issues; and developing critical thinking and decision-making.

It is easy to use the sociocultural context to find connections with ethical or 
political issues. Those could be presented or discussed when launching the task to 
students in order to give a better picture of the socio-cultural context. For example, 

Fig. 1 Climbing Mount Fuji
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the socio-cultural context in the Climbing Mount Fuji problem (see Fig. 1) presents 
an out-door activity open to the public. It is relevant to address the point that the 
authorities have a certain control on when it is open. Discussing the reasons why it 
is open to the public will allow students not only to think about safety but also about 
the closing hours. It provides them a better access to the task by being more familiar 
with the context and the important information. In the case of the DVD Rental prob-
lem (see Fig. 2), the socio-cultural presents information about personal finances and 
consumerism. The mathematical context provides solutions to be discussed in the 
socio-cultural and in the citizenship contexts. Thus, having membership fees and 
different rental fees and then calculating the difference is an important aspect for 
making financial decision about personal finances. In this case, the solution of the 
problem provides important information to be discussed at the end. In fact, critical 
thinking might be developed after solving the task when comparing the fees and 
discussing when it is worth it to be a member. It is important to refer back to the 
other contexts and not just move on to another task when the solution is provided.

Critical thinking might be developed in many places. Critical thinking is making 
judgments using relevant criteria. It involves taking in to consideration the situation 
to be evaluated and the relevant elements to take in to consideration. It is about 
questioning the facts, the phenomenon and the conclusions. Making informed deci-
sions implies using critical thinking when assessing different options or choices 

Fig. 2 DVD rental
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before selecting one. Critical thinking could be developed when discussing the 
socio-cultural context or the citizenship context, when modeling and solving the 
problem in the mathematical context, and when using the solution to refer back to 
the socio-cultural and the citizenship contexts. If we look at the socio-cultural and 
citizenship contexts in the Climbing Mount Fuji problem (see Fig. 1), many places 
could be used to develop critical thinking. As stated earlier, discussing the reasons 
why it is open to the public will bring students to think in terms of safety. Climbing 

Table 1 Knowledge to be used in the situation Climbing Mount Fuji

Contexts Situation Knowledge to be used

Socio-cultural 
context

1. Mount Fuji is a dormant 
volcano in Japan.

Determinate the days in the calendar from 
1 July to 27 August;

Mount Fuji is only open to the 
public for climbing from 1 July 
to 27 August each year.

About 200,000 people climb Mount Fuji 
during this time.

2.The Gotemba walking trail up 
to Mount Fuji is about 9 
kilometres (km) long.

Walking included going back to the 
starting point.

Walkers need to return from their 
walk by 8 pm.

Using time until 8 pm.

Time needed for the meal break 
and rest.
3. Toshi wore a pedometer to 
count his steps on his walk along 
the Gotemba trail.

Pedometer counts steps.

Mathematical 
context

1. On average, about how many 
people climb Mount Fuji each 
day?

Calculate an average using the numbers of 
days and the number of people;
Performing division;
Rounding.

2. Using Toshi’s estimated 
speeds, what is the latest time he 
can begin his walk so that he can 
return by 8 pm?

Walkers need to return from a18 km walk 
by 8 pm.
He walks up the mountain at 1.5 
kilometres per hour on average, and down 
at twice that speed. These speeds take into 
account meal breaks and rest times.
Calculate time: 1 h = 60 min

3. Estimate Toshi’s average step 
length for his walk up the 9 km 
Gotemba trail. Give your answer 
in centimetres (cm).

22,500 steps on the way up for 9 km;
Transfer m to cm;
Proportionality.

Citizenship 
context

Tourism: economy and 
sustainability

Critical thinking:

Climbing: sports, safety How many people a day is possible 
considering 200,000 people in that time;
Speed is faster going down;
Climbing at night it is dangerous;
Estimate an average step length in cm.
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in the dark is not safe; therefore, the place is closed at night and thus it does make 
sense that the place closes at 8:00. It is also possible to develop critical thinking 
when making estimation about length or time when modelizing and solving prob-
lems. Thus, estimating involves a possible answer, which means that this answer 
should be close to the reality. This back and forth movement between the different 
contexts or within one context shows the complexity of solving problems. It also 
highlights the cognitive demand needed to make sense of the problem, modelize it 
and solve it, while being critical all the time, especially when making decisions 
about the process. In this sense, teaching mathematics using problem-based learn-
ing is more than giving a problem to solve to students: it is having them engage and 
participate in our world.
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Table 2 Knowledge to be used in the situation DVD Rental

Contexts Situation Knowledge to be used

Socio-cultural 
context

A store rents DVD and computer games. 
People can be members or not and the 
price is different for members.

Rental fees are lower for members;
There is an annual membership.

Mathematical 
context

1. Troy was a member of the DVD rental 
store last year. Last year he spent 52.50 
zeds in total, which included his 
membership fee. How much would troy 
have spent if he had not been a member 
but had rented the same number of 
DVDs?

Annual membership of 10 zeds has 
to be deducted from the total 
amount in order to find the number 
of DVD rent. Use this number to 
find the amount of DVDs rented for 
a non-member

2. What is the minimum number of 
DVDs a member needs to rent to cover 
the cost of the membership fee?

Find 10 zeds as a difference 
between minimum DVDs rents by 
members and non-members.

Citizenship 
context

Making financial decision about 
membership.

Critical thinking:
The value of the membership, 
smaller rental fees for members
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Additional Suggestion for Further Reading

Again, I recommend the Mathematics Education and Society website, which aims to promote 
discussion about the social, ethical, and political dimensions of mathematics education. The 
website provides access to the past conference proceedings on the latest research in mathemat-
ics education: http://www.mescommunity.info

I recommend you to take a look on the Organization for Economic Cooperation and Development 
(OECD) website, section Program for International Student Assessment (PISA). This interna-
tional organization provides information about teaching mathematics in international environ-
ments: http://www.oecd.org/pisa/

This book chapter focuses on the implication of modelize or mathematize a situation or a problem. 
In order to support your students to create models before computing, I would recommend this 
website on virtual manipulatives. Even older students need support when mathematize: http://
nlvm.usu.edu
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Teaching Probability in Junior High School 
Through Problem Solving: Construction 
and Analysis of a Probabilistic Problem

Vincent Martin, Izabella Oliveira, and Laurent Theis

Abstract This text proposes a probabilistic problem aimed at teaching probability 
through problem solving in the first 2 years of junior high school. This problem’s 
adaptability in terms of its level of complexity and the ease of adjusting it to stu-
dents’ level of mathematical development makes it highly versatile.

As we will see, the problem is rich owing to the connection it draws between the 
theoretical and frequentist approaches via its consideration of the characteristics of 
probability and probabilistic thinking. Indeed, even if connecting these two 
approaches is desirable in the context of teaching probability, such a connection 
represents a significant challenge for teachers (Martin V, Theis L. Can J Sci Math 
Technol Educ 16(4):1–14, 2016). This likely explains why these two approaches are 
rarely addressed in their multiplicity or complementarity (Caron F. Splendeurs et 
misères de l’enseignement des probabilités au primaire. In: Proceedings of the 
« Colloque annuel du Groupe de didactique des mathématiques du Québec », Trois- 
Rivières, Québec, 2002; Nilsson P, Eckert A. Interactive experimentation in proba-
bility—opportunities, challenges and needs of research. In Proceedings of the 
thirteenth international congress on mathematical education, Hamburg, Germany, 
2016).

Finally, the text will conclude with a discussion of the use of this problem for 
teaching probability by reviewing the teacher’s challenges in managing the prob-
lem, as well as its mathematical potential and the favourable context it represents 
for students deemed to be in difficulty in mathematics.
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 Teaching Mathematics Through Problem Solving

Problem solving1 has been given a central place in mathematics learning in the con-
text of numerous studies in mathematics education and in didactique des mathéma-
tiques, with the intent of bringing the student’s mathematical activity closer to that 
of the mathematician (Mary and Theis 2007). Even so, the very notion of problem 
solving in mathematics is shrouded in semantic vagueness. Törner et al. (2007) have 
noted that problem solving has several meanings depending on the country, and that 
these meanings have changed over time both within and across countries.

In Québec, Lajoie and Bednarz (2012, 2014a, b) have shown that problem solv-
ing has been central to the teaching and learning of mathematics in the province’s 
school system since the beginning of the twentieth century. In doing so, these 
authors have observed an evolution in the meaning of the notions of problem and 
problem solving over time in this context.

Among others, this echoes the reflections of Nesher et al. (2003), Francisco and 
Maher (2005) and Theis and Gagnon (2013), who have all noted the polysemous 
nature of the notion of problem.

Given the importance of (and semantic vagueness surrounding) problem solving, 
we believe it is important to state our definition of the term here. To do so, we take 
up certain elements of the definition set forth by Astolfi (1993). This definition of 
problem solving is largely used in the didactique des mathématiques community. To 
support our definition, we also refer to research on mathematical problem solving 
by Schoenfeld (1985).

Hence, we define a problem as a mathematical task that allows a student to 
develop new knowledge through real mathematical activity. According to Astolfi 
(1993), to generate such activity, the problem must be designed so as to enable the 
student to engage in the task without initially having all the means he/she requires 
to solve it. This means the problem must represent a genuine challenge for students, 
i.e., it must offer them sufficient resistance but without being perceived as lying 
beyond their grasp.

According to Schoenfeld (1985), solving a mathematical problem implies an 
intellectual challenge for the individual and not merely the application of algo-
rithms. Hence, in his view, if the individual has immediate access to the solution, the 
task is in fact an exercise rather than a problem. This is why Schoenfeld (1985) 
asserts that the definition of a problem is relative. The status of a mathematical task 
as a problem is not inherent, but rather depends on the prior knowledge of the indi-
vidual, as well as the particular relationship between the individual and the task. 
Astolfi (1993) likewise states that a problem allows a student to develop new 

1 In this text, rather than speaking in terms of a “problem situation” and “resolving a problem situ-
ation,” we will use the expressions “problem” and “problem solving” in order to establish corre-
spondence between the world of Francophone research in didactique des mathématiques, on one 
hand, and the world of Anglophone research on mathematics education, on the other. We are aware 
of the important semantic nuances between these terms, but given that this is not the topic of the 
text, we have chosen not to further address the issue here.
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 knowledge by overcoming a planned conceptual obstacle; the problem is therefore 
constructed specifically to allow the student to overcome a given obstacle.

Consistent with this definition, we would like to propose a probabilistic problem, 
which, as we will see, makes it possible to work on conceptual issues of probability 
and of probabilistic thinking.

 Characteristics of Probability and Probabilistic Thinking

The development of probabilistic thinking in (future) citizens, whether in or outside 
of school, is a topic that has sparked the interest of numerous researchers for many 
years (Jones and Thornton 2005; Martin and Thibault 2016; Shaughnessy 1992). 
Indeed, “for more than half a century, numerous studies have been conducted on the 
development of probabilistic reasoning and on the learning and teaching of proba-
bility” (Martin and Thibault 2016, p. 80, our translation).

Several reasons may account for the importance assigned to this topic. First, 
probability has a significant place in our societies in a context where probabilistic 
thinking is useful to many professions and where random events affect individuals 
in their everyday lives to varying degrees (Albert 2006; Batanero et al. 2014). For 
example, individuals face random situations in contexts related to health, the envi-
ronment, consumption, management, and recreation (diagnosis and choice of 
treatments, weather forecasts, gambling and lotteries, financial planning, board 
games, etc.).

The teaching of probability is also prescribed in the educational programs of 
many countries (including Canada, Italy, the United States, Australia and the United 
Kingdom), often starting in elementary school or at least (junior) high school (Caron 
2002; Gattuso and Vermette 2013; Jones et al. 2007; Savard and DeBlois 2005).

However, probability is generally perceived by teachers as being difficult to 
teach and therefore raises a number of challenges (Batanero and Diaz 2012; Stohl 
2005). Among other things, these challenges have to do with the conceptual com-
plexity of probability and with the resulting impacts on developing probabilistic 
thinking. Examples include the non-deterministic nature of probability, which 
strongly sets it apart from other areas of mathematics that are all deterministic in 
nature (Savard 2008; Scheaffer 2006). Unlike arithmetic, for example, where the 
same operation always generates the same result, random experiments do not always 
yield the same outcome from one experiment to another owing to sample variabil-
ity—even if they are conducted under the same conditions.

Furthermore, numerous studies have shown that another issue of developing 
probabilistic thinking is the presence, among children and adults alike, of probabi-
listic conceptions2 that are generally strongly anchored and difficult to change 

2 Probabilistic conceptions, which appear as probabilistic reasoning, are associated with the notions 
of chance, probability and relationships to randomness. The presence of these conceptions can lead 
to difficulties with learning or teaching probability. However, rather than labelling them as miscon-
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(Fischbein and Schnarch 1997; Kahneman et  al. 1982; Pratt 1998; Savard 2014; 
Shaughnessy 1992).

Finally, another issue associated with developing probabilistic thinking is the 
existence of different probabilistic approaches depending on the situation and the 
context (Batanero 2014; Borovcnik and Kapadia 2016; Chernoff and Sriraman 
2014; Jones et  al. 2007). In the classroom context, the most frequently adopted 
approach is the theoretical or classical approach. In this approach, probability is 
calculated based on the relation between the number of favourable outcomes and 
the number of possible outcomes for a given event for which all outcomes are con-
sidered equiprobable. The frequentist (or frequential, experimental, experiential or 
empirical) approach involves measuring the relative frequency of a given event on 
the basis of a series of observed data. Specifically, through trials and the compila-
tion and organization of their outcomes, a stabilization of relative frequency is 
observed, with a view to finally tending toward the probability of a possible event 
occurring. The subjective or personalist approach for its part has its roots in Bayes’ 
theorem, and consists in an individual or group’s numerical evaluation of the 
strength or degree of a belief through a more or less intuitive analysis of available 
information.

The problem we would like to propose takes into account issues related to the 
learning and teaching of probability and more specifically the issue of connecting 
the frequentist and theoretical approaches. Indeed, the problem is conducive to such 
a connection, which represents a significant challenge for teachers. This connection 
will be examined further in the text.

 Description of the Probabilistic Problem

The probabilistic problem3 we set forth here comprises three tasks respectively 
involving a roulette, a pair of four-sided dice, and a bottle. Depending on the cur-
riculum, the probabilistic issues underpinning this problem are addressed at differ-
ent times in students’ probability instruction. For example, the problem connects 
with probability issues introduced at the end of elementary school under the Québec 
education program (Gouvernement du Québec 2006) or at the beginning of junior 
high school (grades 7–9) under Western Canada’s Common Curriculum Framework 
for K-9 Mathematics (Western and Northern Canadian Protocol 2006).

ceptions, following on Savard (2008), we choose to refer to them as probabilistic conceptions. This 
designation, which is neutral with respect to such reasoning, appears more accurate to us in that 
these conceptions are fairly common, and can develop, weaken, be modified or evolve with experi-
ence (Savard 2014).
3 The problem we propose here was originally developed in the context of doctoral studies by 
Martin (2014). The author’s doctoral thesis afforded the possibility of studying the didactical 
methods used by two 5th–6th grade elementary teachers (students 11–12  years old) to teach 
probability.
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The aim of the problem is to bring students to determine the probability of win-
ning associated with each task, then to compare all three in order to determine 
which respectively offers the highest odds of winning, the lowest odds of winning, 
and neither the highest nor the lowest odds of winning. The problem’s structure 
calls for twofold action, namely determining and comparing the odds of winning. 
Figures 1, 2 and 3 provides a visual representation of the roulette, the pair of dice, 
and the bottle.

The roulette (Fig. 1) has no swivel, needle, or marble to indicate an outcome. It 
is simply a paper disk divided into 12 black, grey and white angular sectors (pie- 
shaped pieces).4 Each colour has the same likelihood of being obtained, i.e., 1 out of 
3, since the total of the angles of each angular sector for each colour is 120°. 

4 The original version of the roulette as used by Martin (2014) was a colour version with blue, red 
and yellow angular sectors; however, in the present text, these have been respectively replaced by 
grey, white and black angular sectors.

Fig. 1 Visual 
representation of the 
roulette

Fig. 2 Visual 
representation of the pair 
of dice

Fig. 3 Visual 
representation of the bottle
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However, the number of angular sectors of each colour varies: the roulette com-
prises 3 black, 4 white and 5 grey angular sectors. To prevent students from directly 
seeing that all three colours have the same odds of being obtained, the differently 
coloured angular sectors have varying dimensions (non-equiprobable outcome) and 
are asymmetrically distributed across the roulette, with no two angular sectors of 
the same colour ever being adjacent. To win at the roulette, one would need to fall 
on one of the black angular sectors (if the roulette were capable of producing a trial 
outcome). Given that the black angular sectors cover a third of the roulette, the odds 
of winning at this task are 1 out of 3.

Next, the pair of four-sided dice (Fig. 2) is composed of a white die and a black 
die, which are regular tetrahedrons whose four respective faces are identical equilat-
eral triangles.5 To win at this task, one would need to obtain a sum of 5. There are 4 
possible arrangements of outcomes in order to obtain this sum (1 and 4; 2 and 3; 3 and 
2; and 4 and 1), out of a total of 16 possible outcomes. The odds of winning at this 
task are therefore 1 out of 4. Finally, the probabilistic bottle (Fig. 3) is inspired by 
Brousseau et al. (2002) and has been used in several recent studies, including those of 
Briand (2005, 2007), Rioux (2012), Martin (2010, 2014) and Nilsson (2014; Nilsson 
and Eckert 2016). The bottle contains a total of 5 marbles, i.e., 1 black marble and 4 
white marbles. When turning the bottle upside down, only one marble can fit through 
the bottleneck, thus revealing the marble’s colour. Since the bottle is opaque (with the 
exception of a small part of the bottleneck), trials are the only way to find out its 
content and the odds of winning. To win with the bottle, one must draw a black 
marble. The theoretical odds of winning with this task are therefore 1 out of 5.

 Analysis of the Problem’s Probabilistic Issues

This problem entails certain potential probabilistic issues for teachers and their stu-
dents, which require analysis in order to be able to offer a rich experience with 
probability learning.

 Didactical Examination of the Connection Between the 
Frequentist and Theoretical Approaches

The importance of connecting the frequentist and theoretical approaches when 
teaching probability has been emphasized by several authors (Batanero 2014; Jones 
and Thornton 2005; Prodromou 2012; Steinbring 1991; Stohl 2005). Batanero 
(2014) in particular notes that this connection makes it possible to address the notion 

5 Unlike other types of dice, with a four-sided die, the outcome is not given by the top face, but 
rather by the sum of the upper vertex of the four-sided die, with each side being numbered 1– 4. 
This type of die has 3 numbers on each face, i.e., one at each angle. When the die is cast on a flat 
surface, it is the upward facing vertex that indicates the outcome, with the same number showing 
on each bordering angle.
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of sample variability from the non-deterministic perspective of probability, as well 
as to access the underlying logic of the problem to be solved. Similarly, Savard 
(2008) states that taking variability into account in the frequentist approach makes 
it possible to reason about uncertainty rather than staying restricted to deterministic 
reasoning. She also points out that the frequentist approach allows for working on 
probabilistic conceptions with students, which is impossible when exclusively using 
the theoretical approach.

The problem that we propose creates tension between the frequentist and theo-
retical approaches.6 Indeed, given the respective characteristics of the tasks, it would 
be impossible to address them all using the same probabilistic approach. Whereas 
the roulette demands reasoning in line with the theoretical approach (given that it 
precludes the conducting of trials), the bottle demands reasoning in line with the 
frequentist approach (given that it precludes the calculation of the theoretical odds 
of winning based on the relation between favourable and possible outcomes).

For its part, the pair of dice7 enables reflection on the odds of winning in line with 
the frequentist and theoretical approaches, given that it enables trials as well as the 
calculation of theoretical probability.

The respective characteristics of the tasks therefore demand parallel, or even 
connected, use of the two probabilistic approaches. The connection between the 
different approaches is therefore not just to be found in each individual task, but 
essentially in the effort of comparison between all three tasks.

The pair of dice and the bottle make it possible to work on the connection 
between the frequentist and theoretical approaches from the outset. With the pair of 
dice, the connection between the two probabilistic approaches can be made both 
ways, i.e., from the frequentist approach to the theoretical approach and vice versa. 
It is possible to run trials to determine a probability, then to make a hypothesis on 
theoretical probability; yet it is also possible to calculate the theoretical odds of win-
ning, then to confirm them with trials.

With the bottle, the connection is necessarily made from the frequentist approach 
to the theoretical approach. Given the impossibility of counting the number of pos-
sible outcomes and favourable outcomes, trials in line with the frequentist approach 
must take place before theoretical probability can be calculated. Hence, it is the 
performance and systematic compilation of a sufficient number of trials that enables 
a hypothesis on the composition of the bottle (the number of black marbles and 
white marbles it contains), and thus the associated theoretical probability. This 

6 It is worth noting that the problem, like the PFEQ education program for elementary and junior 
high school in Quebec, entirely sets aside the subjective approach and focuses exclusively on the 
two probabilistic approaches.
7 The choice to use four-sided rather than six-sided dice is based on two main arguments. First, the 
smaller number of possible outcomes associated with the pair of four-sided dice leads to a faster 
stabilization of relative frequency for the results obtained through trials. Second, the task of obtain-
ing a certain sum of outcomes with two six-sided dice has frequently been used in textbooks and 
instructional research, whereas conducting the same task with a pair of four-sided dice is much less 
frequent. This ensures that the odds of winning associated with the different sums of possible 
outcomes are not known from the outset.
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bridge between the stabilization of relative frequency and theoretical probability 
can therefore be established by the teacher through a reflection on the law of large 
numbers8.

This said, hypotheses about the bottle’s composition may be made at different 
steps of the problem solving process. It is highly likely that with the bottle, hypoth-
eses will arise successively and be refined as the number of trials increases. 
Hypotheses may therefore be qualitative in nature (“there seem to be more marbles 
of a given colour”) at first, then become quantitative when the level of certainty 
increases with a greater number of trials (“the bottle might have one or two black 
marbles,” then “the bottle very likely has only one black marble”).

These hypotheses on the composition of the bottle are possible because the num-
ber of marbles in the bottle is known. Knowing that the bottle contains five marbles, 
of which at least one is black and one white, it is possible to ascertain four possible 
compositions (i.e., 1b-4w, 2b-3w, 3b-2w and 4b-1w). From this point, different 
theoretical probabilities can be associated with these compositions:

• 1 black marble and 4 white marbles make for winning odds of 20%;
• 2 black marbles and 3 white marbles make for winning odds of 40%;
• 3 black marbles and 2 white marbles make for winning odds of 60%;
• 4 black marbles and 1 white marble make for winning odds of 80%.

If the number of marbles in the bottle were not known, this reflection on the bottle’s 
potential composition and the associated theoretical probabilities would not be possi-
ble. This information is therefore necessary to enable the shift from the frequentist to 
the theoretical approach, since not knowing the number of marbles in the bottle pre-
cludes any hypothesis on the bottle’s composition based on trials conducted with it.

 Examination of Feedback Given to Students During Problem 
Solving

In Astolfi’s (1993) view, it is important for a problem’s structure to provide students 
with feedback in order to confirm different strategies for problem solving. However, 
the problem and its component tasks offer little feedback and few prospects of con-
firmation, which is directly tied to the non-deterministic nature of probability. No 
proof can truly confirm students’ reasoning, given that each additional trial can 
increase their relative level of certainty, but fails to deliver an exact and final answer.

Consequently, students must essentially debate and discuss ideas in order to 
obtain feedback that will help confirm their hypotheses in the context of the prob-
lem. Astolfi (1993) suggests in this regard that in general, problem solving should 
be done in teams, and different moments of group work should be orchestrated via 
an instructional approach that fosters debate and information exchanges.

8 This law states that the higher the number of trials, the closer the probability (arising from the 
trend observed based on the frequency of outcomes) should come to the theoretical probability 
(Bernouilli,1713, in Borovcnik and Peard 1996).
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The teacher can also be a source of feedback and confirmation, depending on the 
nature of the instructional methods employed with students.

This said, a calculation of theoretical probability can be confirmed, whether by a 
peer or the teacher. In the case of the pair of dice, which makes it possible to 
approach the problem from the frequentist approach and from the theoretical 
approach, confirmation of the calculation of theoretical odds of winning can come 
from a sufficient number of trials, which shows the stabilization of frequency around 
the theoretical probability (expected outcome).

Moreover, to confirm the accuracy of hypotheses on the bottle’s content during 
problem solving, a model can be used, as we have observed in a different experi-
ment conducted with a bottle (Martin and Theis 2011). In this experiment, students 
were put into heterogenous groups to attempt to determine the content of bottles 
similar to the one used here. The students then put a certain number of black and 
white pieces of plastic into an open-top container in order to reproduce what they 
hypothesized to be the content of the bottle. The students used the model to conduct 
drawings in order to test their different hypotheses on the bottle’s content, by com-
paring the outcomes obtained with the model against those obtained with the bottle. 
This idea of using a model to test a hypothesis on the bottle’s content also featured 
in an experiment performed by Brousseau et al. (Brousseau et al. 2002).

 Discussion on the Use of This Problem in the Classroom

To conclude this text, we would like to go beyond analysis of the problem’s proba-
bilistic issues to open a discussion on its use in the classroom, in light of the teach-
er’s challenges in managing it in the heat of the action, as well as its mathematical 
potential and the favourable learning context it offers for students deemed to be in 
difficulty in mathematics.

 The Challenges of Managing the Problem

When it comes to managing this problem in the classroom, several probability- 
related elements can come into play in the teacher’s decision-making.

First, to be able to make an in-depth connection between the frequentist and 
theoretical approaches, it is fundamental for the three tasks to be addressed jointly. 
The bottle demands a connection from the frequentist to the theoretical approach, 
whereas the problem taken as a whole prompts a comparison of the probabilities 
stemming from different approaches—neither of which students are used to doing 
in school.

Establishing this connection in the classroom requires that one take into account 
certain aspects, such as the number of trials needed to confirm the probability asso-
ciated with the bottle: What level of certainty is needed? In this case, the teacher 
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will have to deal with the variability of the trial outcomes. If the trial outcomes do 
not seem to converge towards the theoretical probability, what is the teacher to do? 
Conclude hastily or erroneously? This would constitute an unacceptable solution. 
Rather, what is needed is to pursue trials and continue working on the notion of vari-
ability, for example with the help of other tools such as a simulator. These different 
choices lead to different actions and to different kinds of learning in students.

Another element to consider has to do with the potential strategies established by 
the students, for example using a possibility tree, a double-entry table, a list of pos-
sible outcomes, illustrations, bar graphs, pictograms, circular diagrams, etc. Yet the 
more extensively the teacher introduces (or imposes) problem solving strategies at 
the beginning of the sequence, the more limited the potential for students’ mathe-
matical activity. Allowing students to experiment and to compare among themselves 
can be an important driver of success in addressing the problem. In this vein, Astolfi 
(1993) maintains that the problem is designed to allow the student to refine strate-
gies together with peers, and to overcome the conceptual obstacles in line with the 
development of knowledge itself. In this context, preparing to anticipate and recog-
nize different strategies that students might use does not mean explicitly teaching 
these strategies from the outset.

 The Problem’s Mathematical Potential

The problem we have proposed in this text, in our view, has significant mathemati-
cal potential, as it constitutes a promising avenue for students (including those 
deemed to be in difficulty in mathematics) to experience real mathematical activity 
in the context of learning probability. The particular nature of probability and the 
place the subject is given in school are specific characteristics of this problem that 
make it possible to go beyond the beaten paths of traditional instruction to offer a 
rich learning experience, as they open the way for creative problem solving strate-
gies and reasoning that mark a break from routine mathematics (Martin 2010, 
2014). Concretely speaking, problem solving that draws a connection between the 
frequentist and theoretical approaches supports students’ probabilistic thinking.

Certain characteristics of the problem thus give it the potential to nurture real 
mathematical activity in students. First, the problem calls for simultaneous work on 
three tasks, thus producing openness to a connection between approaches and the 
need to compare probabilities using various methods. Second, it leads to different 
odds of winning that are relatively similar, thus avoiding overly easy or even obvi-
ous comparison of the results obtained for each task. Third, the problem demands 
argumentation in order to express one’s view on the task that offers the greatest odds 
of winning. This is conducive to the development of students’ probabilistic thinking 
via the debate and sharing of ideas needed to solve the problem.
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 A Favourable Context for Students Deemed to Be in Difficulty 
in Mathematics

In our view, solving this problem constitutes a favourable learning context. Indeed, 
this problem, which proves complex and open from a mathematical standpoint, 
clearly comes under a logic of mathematical teaching-learning through problem 
solving. When using the bottle task (Martin 2010) or the problem at large (Martin 
2014), we have observed surprising mathematical performance by students deemed 
to be in difficulty in mathematics through the solving of probabilistic tasks. These 
students have demonstrated a good level of understanding of the mathematical con-
cepts at play. Moreover, they often were able to suggest and carry out task-related 
strategies that proved mathematically sound and were even recognized as valid by 
peers and by the teacher when concluding the activity.

For students deemed to be in difficulty in mathematics, probability thus seems to 
have a much less negative connotation than the other branches of mathematics stud-
ied in elementary and in junior high school. This may be because it generally has 
only a small place in the teaching of mathematics in the classroom. Furthermore, the 
little time devoted to this mathematical content within the classroom puts all the 
students on equal footing when faced with probabilistic tasks.
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Beginning to choose, create and use inquiry-based problem tasks in teaching may 
initially seem daunting for new teachers, especially those who were themselves 
schooled in a traditional paradigm. The transition from direct instruction to the use 
of problem solving tasks remains challenging for many teachers (Holm & Kajander, 
2015). While other chapters in this book describe helpful strategies in making this 
shift, this chapter focuses on the experience by describing a specific task created by 
pre-service teachers. It serves as a sample of what can be achieved even by less 
experienced teachers.

 Classroom Vignette

Consider the following scenario, drawn from previous research (Kajander et  al. 
2008). A young enthusiastic teacher of a Grade 9 Applied1 (the name of the “non- 
academic” mathematics course stream in Ontario, for non-STEM students) class 
decides early on in the course to use a problem task found on some of her Ministry 
of Education sample lesson plans. So far this year, this class has only been taught 
using traditional, teacher directed lessons, which involve extended formal teacher 
presentations of as long as 40 min. On a given day, with no transitional experiences 
for students, an exploratory geometry task using Geoboards is given to the class. 
The task is an open-ended investigative problem involving determining areas of 
various shapes that students are to solve in a hands-on manner using a strategy of 
their choice.

What do you think happened in this scenario? Do you think the students began 
exploring with excitement? In fact, the lesson was not at all what the teacher had 
hoped for; the students claimed they had “no idea what to do,” and soon the elastics 
from the Geoboards began flying around the room. The teacher swore she would 
never try this type of lesson ever again as “they don’t work with these kids.” The 
implication was that problem solving only “works” with more academically-able 
students.

 Making the Transition

If we reflect on the above scenario, it might be obvious that the students were cor-
rect … they did not know what to do. This was likely not a flaw of the task at all, 
rather the students likely did not have experience with the kinds of skills needed to 
work effectively in problem-based environments, nor did the teacher provide this 
support. One important aspect of moving from traditional to more inquiry-based or 
problem-based learning environments is that students must be given the 

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied).
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opportunity—with support—to develop the new kinds of skills required—the skills 
related to problem solving. And yes, teachers themselves may need the opportunity 
to develop these skills as part of supporting their students’ development.

For example, students need opportunities to explicitly develop various strategies 
for solving new problems, such as trial and error, using a model, trying a simpler 
problem, working backwards, and discussing their ideas in small groups. One way 
to support this evolution might be to gradually make classroom tasks more and 
more open, as students develop more strategies. For example, while task instruc-
tions used early on might suggest to students that they make a chart and graph their 
data in order to determine what is happening, tasks used later might leave the 
approaches and representations much more open to students’ own decisions.

Another important requirement is to find or create the right problems. ‘Right’ in 
this case means interesting and motivating to the students in question, and appropri-
ate to their learning and problem solving capacity at the given time. Contexts should 
be those within the students’ experiences—I remember once using a textbook prob-
lem about water levels and the locks in a canal, and being met with blank stares 
from my Northwestern Ontario students … locks were on door knobs, not water-
ways, in their world views! Just enough teacher support to keep students from get-
ting frustrated (but no more than absolutely necessary) is helpful (see other chapters 
on the transition to problem solving such as Liljedahl, Part IV, this volume).

 Introduction to Types of Tasks

The sample tasks provided here are examples of problems that were within the com-
fort level of the less experienced teachers who designed them. Thus, while the tasks 
strive to provide contexts that might be engaging for students, and include ‘real 
world’ elements, the actual tasks are relatively structured. This may make them less 
daunting entry points for both new teachers and students new to problem-based 
learning. The idea is that, rather than giving up on problem solving all together as 
did the teacher described earlier, teachers develop gradually, along with their stu-
dents, as they continue to work towards fully implementing problem solving in their 
own classroom contexts. The shift can happen gradually, by continuing to make the 
tasks more and more open with expanded student choices, as students develop the 
necessary process skills.

As will be explained to follow, the first task may be considered an example of a 
Learning Task, and the second task as an Assessment Task. An important question in 
the transition to problem-based learning is assessment. A traditional test often does 
a poor job of assessing problem solving, yet assessing performance on a task, with-
out students having opportunities to develop the kinds of problem solving abilities 
(such as representing or reasoning) to be assessed, may be unfair. A practical sug-
gestion which we have found helpful in supporting such transitions with students, 
particularly with reluctant learners, is the idea of using a learning task/assessment 
task pair. Students have the opportunity to develop some of the required problem 
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solving skills on a learning task (with teacher support and substantive feedback), 
and then demonstrate such development in a follow up task, which is in turn graded 
with a rubric.

 Practical Considerations

In my (Ann’s) own teaching in regions and classrooms with significant attendance 
issues, I have found that giving students tasks written down on problem-sheets (or 
available online) can be helpful. This means that if necessary, students can be work-
ing on the tasks at different times and paces. In cases with a great deal of variance, 
using different coloured paper to print the tasks may be a very quick way to deter-
mine which students are working on what tasks when.

The idea of learning tasks/assessment tasks is to create and use two different 
problem tasks which share the same curriculum expectations or topics. Both can be 
problem-based tasks, but they are used for slightly different purposes. The learning 
task is provided first so that students can work on a task with support from their 
peers and the teacher as necessary. Once completed, students can submit their work 
to the teacher for detailed feedback (not grades). Good descriptive feedback can 
help the students know what they did well, and what they might work on next to 
improve. Students should receive this substantive feedback before continuing with 
the next task. (A few skills-based or “textbook” questions might fit well here if a 
day is needed by the teacher to write this feedback—but it is critically important 
that the feedback be given to the students in a very timely manner and before they 
move to the next task.) The assessment task (sometimes called a performance task) 
looks like a different task to students in that it might involve a different problem 
context. However, the underlying content expectations are either the same as, or a 
subset of, those used on the learning task. This second task then gives students the 
opportunity to make use of the teacher’s feedback to demonstrate improvement. 
The assessment task can then be graded for marks (along with providing further 
feedback of course). This type of lesson structure may be particularly helpful for 
students who have had less experience working in a problem-based environment—
the learning task helps students build appropriate problem solving strategies in a 
collaborative environment.

If tasks are to be drawn from outside sources, it is important to revise them for 
your current student audience. In our experience, good tasks rely on a brainstorm 
combination of answers to “what excites and interests my students?” and “what are 
the important or overall curriculum goals I am trying to develop and assess with my 
students?” (see Holm, Part V, this volume, on backwards design for more on this 
topic). Once some ideas are at hand, the next step is to decide which will be the 
learning task, and which the assessment task. As a rule of thumb, since the learning 
task is not graded, it may be easier to use a group task, or the one with the most 
potential for measurement errors or different solutions, as the learning task. For 
example, students might collect their own data in the learning task, which means 
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that there may be both measurement errors as well as varying solutions. For the 
assessment task however, grading may be streamlined if students are given data (or 
directed to a website from which to draw the data). If the data varies from student to 
student, then the teacher is faced with re-solving the problem with new data for each 
student task to be graded.

 Sample Classroom Tasks

The following examples were designed initially as problems for a Grade 10 
Academic (mathematics/science university stream, in Ontario, for students often 
referred to as STEM students) class. However, they might also serve as application- 
type tasks (meaning the students may have seen the methods or techniques before 
but are now applying them to new contexts) for a Grade 11 Functions course. As 
well, they could be modified for use in other courses, including non-academic 
courses.

The proposed tasks relate directly to a number of Expectations in the Ontario 
grade 9/10 curriculum (Ontario Ministry of Education 2005), for example,

• collect data that can be represented as a quadratic relation, from experiments 
using appropriate equipment and technology (e.g., concrete materials, scientific 
probes, graphing calculators), or from secondary sources (e.g., the Internet, 
Statistics Canada); graph the data and draw a curve of best fit, if appropriate, 
with or without the use of technology (Sample problem: Make a 1 m ramp that 
makes a 15° angle with the floor. Place a can 30 cm up the ramp. Record the 
time it takes for the can to roll to the bottom. Repeat by placing the can 40 cm, 
50 cm, and 60 cm up the ramp, and so on. Graph the data and draw the curve of 
best fit.); (p. 48)

• solve problems arising from a realistic situation represented by a graph or an 
equation of a quadratic relation, with and without the use of technology (e.g., 
given the graph or the equation of a quadratic relation representing the height of 
a ball over elapsed time, answer questions such as the following: What is the 
maximum height of the ball? After what length of time will the ball hit the ground? 
Over what time interval is the height of the ball greater than 3 m?). (p. 49)

However, in some Western provinces, outcomes are less prescriptive as to the 
method in which quadratics are to be learned. For example, the Grade 11 Foundations 
of Mathematics curriculum in British Columbia (Western and Northern Canadian 
Protocol 2008) states that students are to “Solve a contextual problem that involves 
the characteristics of a quadratic function” (p. 64), while the Alberta outcomes refer 
generally to quadratics in standard form rather than the collection of primary data 
generating them (Alberta Education 2008). However the front matter in the grade 
10–12 Program of Study does state that “problem solving is to be employed 
 throughout all of mathematics and should be embedded throughout all the topics” 
(Alberta Education 2008, p. 6).
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 Implementing the Tasks

It is important, when designing or selecting student tasks, that teachers try the tasks 
themselves in advance. This allows the tasks to be tailored to students in the group, 
as well as alerting teachers to possible questions students may have, as well as how 
long the tasks are likely to take to complete. It is interesting to note just how many 
curriculum expectations can in fact be addressed with tasks such as these, and often 
teachers actually trying out the tasks themselves makes this even more evident, as 
teachers find themselves using more of the curriculum than expected.

The learning task provided here as an example was initially co-created by new 
teachers, as part of a course assignment in a teacher education program, and illus-
trate what is possible even for less experienced teachers in terms of task design. As 
you, as a teacher, progress in experience supporting problem-based learning, you 
can work towards designing tasks which are more and more ‘open,’ meaning that 
students are given more and more responsibility and choice in their work. It might 
be noted also that whether a task is more of a problem solving task (meaning the 
students do not have a known method or formula at hand to solve the problem and 
for which finding a method is what the task is all about), or an application task 
(meaning the students have seen appropriate methods before but now are being 
asked to combine or apply the methods in new ways or contexts) depends not just 
on the task itself, but on the students’ prior knowledge (e.g., Alberta Education 
2008). The tasks to follow were initially designed as ‘problems’ for a Grade 10 
Academic course; however, if they were used in a grade 11 course where students 
had more experience with quadratic functions, they might be classed as ‘applica-
tions’. The second provided task might be used as an assessment task, following the 
first task used as a learning task.

The assessment task was created for students in a particular location, using infor-
mation familiar to them, and would be best if it was modified to the local area in 
question. Indeed the connection to the land and its geography may be particularly 
important to some students, particularly Indigenous students. A sample rubric is 
shown with the assessment task, and one should always be provided to students 
along with the task. It might of course be necessary to modify the rubric based on 
the grade level and type of course.

Take a moment to read the learning task provided at the end of this article 
(Appendix 1). Ideally, try it out! Predict the type of function that will result. We are 
carefully omitting to provide the chart of the data collected when this task was 
tested, as it may be tempting to (mis)use the task by actually providing the data to 
the students. One important point of the task is to have students collect and observe 
the data firsthand. However, a sample graph drawn from our test of the learning task 
is provided to follow, for discussion purposes; note that the x-axis represents time in 
seconds, and the y-axis is volume in mLs. The task itself relates to water remaining 
in a punctured pop bottle; it is suggested to read (and ideally try out) the task pro-
vided in Appendix 1 of this chapter before continuing on to look at the sample graph 
provided after the task.
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In examining the graph (your own or the provided one), you may be surprised at 
how little variance there is of the data points from the curve of best fit. So (as teach-
ers), we have evidence from trying the task out that the task and resultant data will 
be clear enough for students to observe the mathematical phenomena independently. 
This is an important feature of a successful classroom task.

When using a new task with students, even experienced teachers should not 
expect the task to be perfect. Several iterations of a particular task (or its rubric) may 
be needed before it really works well; this is to be expected.

To follow are the sample tasks and a suggested rubric. Readers are encouraged to 
try the tasks, imagining how they might use, modify or improve them in their own 
practice.

 Appendices

 Appendix 1: Learning Task

Pop Bottle Water Flow Problem
Your pop bottle was accidentally pierced by a nail when you set your grocery bag 
down on the ground. Oh no! There goes your pop. You wonder if you will have time 
to run home and empty the rest of the pop still in the bottle into a new container 
before it’s all gone.

Your task here is to determine how fast a 2 L bottle will drain.
To simulate this situation, you will be doing an investigation of how quickly 

water flows from a small hole near the bottom of a 2 L pop bottle. You will work in 
pairs to perform the experiment.

You will need the following materials:

• 2, 2 L pop bottles per pair
• Graduated cylinder or measuring cup (one per pair, 100 mL minimum)
• Masking tape and several multi-coloured sharpies (permanent)
• Funnel or cone shaped paper cup with the end cut off (one per pair)
• Large container (one per pair) such as a bucket, and access to water
• Calculator and stop watch—or cell phones! (one per pair)
• Utility hook to safely pierce the bottle (one per pair) (Fig. 1)

Procedure
 (A) Label the volume for every 100 mL of liquid in the pop bottle. The steps below 

provide one possible way to do this.

 1. Start with taking a strip of masking tape that extends the entire length of the 
2 L pop bottle

 2. Using the graduated cylinder, measure 100 mL of water
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 3. Pour the water into the pop bottle, then mark the water level on the masking 
tape

 4. Label the 100 mL on the tape
 5. Repeat steps 2–4 for each new 100 ml until you reach 2000 mL
 6. Pour the water in the other (unmarked) pop bottle using your funnel
 7. Make a hole on the (labelled) bottle using the utility hook. Your hole should 

be around the 100 mL mark
 8. Cover your hole with a piece of masking tape
 9. Pour the water back into the (labelled) bottle with the covered hole, making 

sure the water level is at the 2000 mL mark (Fig. 2)

 (B) Next you will measure the flow of the water. Here is one possible way to do 
this:

 1. When ready to begin, pull the masking tape from the hole, allowing the 
water to drain into the bucket or a sink, (this experiment could also be done 
outside) and begin the timing

 2. After 20 s one of the team members will signal the end of that time interval, 
and the other member will mark the water height on the masking tape

 3. Continue until the water level reaches the level of the drain hole and thus the 
draining stops

Fig. 1 Materials
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Observations and Predictions
Describe in words what you observed. For example, did the water appear to flow out 
at the same rate? When was it the strongest? How does this make sense?

Create a table showing the volume left in the bottle at each 20 s time interval.

Data Analysis
Graph your data. (Discuss in your group which variable to use for which axis of the 
graph and why). Hand sketch a curve of best fit to the data points.

Use the graph you created, make as many observations about the situation as 
possible. Here are a few questions you might consider (among others):

• What is the initial point you graphed? What does this represent?
• Is the graph a straight line or a curve? How does this make sense in the context?
• Is the rate of flow the same or different early on in the timing compared to later? 

Does this agree with your observation of the water flow? How does this relate to 
the shape of the graph? Why might this be the case?

• What happens when the volume remaining above the hole is very small? What is 
the slope of the graph as it nears this point? Why does this make sense?

• The slope of the graph represents how fast the resultant or ‘dependent’ (y-value) 
variable is changing. Discuss how the slope of your graph relates to the current 
context and how this makes sense.

• Use technology to find the equation of your graph. If you now graphed this new 
function (the one provided by the technology) would you get your exact graph? 
Why or why not? Does the graph of the function provided by the calculator 
extend beyond the graph you have? If so, what might you do to be sure the 
 function models your graph properly? (hint: think domain and range, i.e. the 
regions on the graph to which the experiment applies)

Fig. 2 Measuring the water volume
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• What point makes sense as the ‘minimum’ value of the graph?
• Use technology to identify the approximate vertex of the graph. How does the 

vertex relate to the minimum value?
• Use technology to change the format of the function to ‘vertex form.’ Explore the 

values given in this provided function: why might this form be called ‘vertex 
form’? What does this algebraic form provide?

• Calculate the y-intercept using the function. How does this agree with the con-
text of the pop bottle? Is the value what you might expect, and why or why not?

• The axis of symmetry of this type of graph is the vertical line through the vertex. 
Where would that be on your graph?

And the conclusion:

• How long would you have to find another container if you wanted to be sure you 
had at least half of your pop left after the leak started?

Your Conclusions
Write a paragraph describing the overall results of the experiment and what you 
learned about modelling real world phenomena. What does the data and the math-
ematical model you found tell you about the rate at which the water flows from the 
bottle? What other contexts might have similar types of mathematical models?

Challenge Extension
If time is available, explore algebraic techniques for moving back and forth between 
standard form (the form likely provided by the technology) and vertex form (Fig. 3).

2500
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1500
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0
0 50 100 150 200 250 300 350 400 450

time in seconds

Pop bottle water volume vs time

y=0.0094x2 - 8.3398x + 1999.5
R2 = 0.9999

Partial Solution to Learning Task

Fig. 3 Sample solution graph
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 Appendix 2: Assessment Task

Rope Bridge Problem
Your little brother Ray has just started high school and is a bit shy. Ray would like 
to ask a classmate out who really wants to go to a new park, with a picturesque 
canyon. The canyon has a suspended rope bridge across it. The only problem is, Ray 
is a bit afraid of heights and after being on a rope bridge previously on a family 
vacation, he felt dizzy after 1 min. Ray has gone out to the park and was able to read 
the first three signs on the bridge, showing the horizontal distance across the gorge 
and the height of the bridge at that point. He couldn’t see any farther without going 
across. Can you help Ray figure out the horizontal distance across the gorge, using 
your mathematics skills? Is it likely that he and his friend will make it across the 
bridge within 1 min at a leisurely walk before Ray feels faint? Will there be any time 
to stop on the bridge?

Here are the first three signs Ray is able to see, with the values showing horizon-
tal distance, and height from the bottom of the gorge, respectively (Fig. 4).

Analyse this situation in as much detail as you can, using your knowledge of 
quadratic relations, since the bridge floor (the curve on which the height and width 
are noted) seems to be a fairly flat parabola. Note that the signs refer to the height of 
the floor of the bridge from the baseline as marked. Use technology as appropriate. 
Since you have decided to show your hard work to your math teacher, be sure to 
include as much mathematical detail, such as a chart, graph, equation of the bridge 
floor, and all of your mathematical reasoning, as possible. You may need to make 
some assumptions or simplifications along the way—be sure to state these. Also, 
find out for Ray what the lowest point of the bridge is before it starts to slope 
upwards again.

Make a scale model of the bridge using string, push pins, cardboard and markers. 
Label all relevant information.

What will you advise Ray?

Partial Solution
A quadratic regression calculator should give a =  10; b  =  −0.1683333…; and 
c = 0.0072222…. These can be simplified to fractions (Table 1).

baseline

10 m

0m,10m

3m,9.56m

6m,9.25m

Fig. 4 Diagram of the gorge
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Promoting Students’ Reasoning About 
Statistical Inference Through Engagement 
with a Problem-Based Instructional Activity 
Involving the Use of TinkerPlots Software

Luis Saldanha and Mathieu Thibault

Abstract Our chapter describes the use of a problem-based sequence of instruc-
tional activities designed to provoke the emergence of high school students’ reason-
ing about statistical inference—the web of sophisticated ideas entailed in drawing 
conclusions about a population with confidence based on information obtained from 
samples randomly drawn from that population. We illustrate the activity’s potential 
for occasioning such reasoning with highlights from students’ thinking and class-
room discussions that emerged among a group of grade 9 students as they engaged 
with the activity, which revolved around the use of a dynamic and interactive data 
exploration software called TinkerPlots.

Keywords Statistics · Informal inference · Problem-based learning · students’ 
reasoning · Dynamic software · Random sampling · Activity sequence · Data 
analysis

 Introduction

Over the last three decades statistical topics and concepts have increasingly made 
their way into school mathematics curricula around the world (Gattuso and Vermette 
2013). In North America this is evidenced by the specification of entire curricular 
strands and associated learning objectives devoted to statistics and probability in 
professional resource documents (Gouvernement du Québec 2016; National 
Council of Teachers of Mathematics 2000). These documents, as well as various 
textbook series aligned with them, evidence an increased focus on having students 
work with and appreciate the role of data and its analysis as part of the activity of 
doing statistics and engaging in statistical thinking. However typical statistics 
instruction in schools still relies heavily on textbook activities that present data in 
static forms, in contexts that focus on having students apply formulas (e.g., 
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calculating means), and that tend to convey concepts as isolated “topics” and “things 
to do” rather than certain ways of thinking that can help one understand and solve a 
problem. In our view, statistical thinking can more easily be engendered in contexts 
that move beyond the above-mentioned narrow aspects to present data in dynamic 
contexts, involving the use of simulation and software tools now widely available, 
to engage students in ways that promote thinking aligned with the logic of statistical 
inquiry.

One particular area of statistical thinking that is both accessible and important to 
the education of high school students is that of making data-based conclusions 
about a population on the basis of samples randomly drawn from it—that is the 
thinking entailed in making statistical inferences. Indeed, a sub-area of statistics 
learning and instruction generally referred to as informal inference (Ben-Zvi and 
Garfield 2004) has recently received much attention, and has benefitted from nota-
ble instructional innovations and resources emanating from the international com-
munity of statistics education researchers. Informal inferential reasoning refers to 
“the cognitive activities involved in informally drawing conclusions or making pre-
dictions about ‘some wider universe’ from data patterns, data representations, sta-
tistical measures and models, while attending to the strength and limitations of the 
drawn conclusions (Ben-Zvi et  al.  2007)” (Garfield and Ben-Zvi 2008, p.  268). 
Other authors (Pfannkuch 2008; Wild and Pfannkuch 1999) have added that infor-
mal inferential reasoning involves drawing interconnections among ideas of distri-
bution and measures of center and variability, all within a cycle of activity involving 
inquiry into data in context. Whereas the sophisticated machinery of formal statisti-
cal procedures and tests usually taught at the college level are thought to be inap-
propriate for high school students, the qualifier informal in the above nomenclature 
signals the idea that the reasoning and ways of thinking that underlie such formal 
procedures are both accessible to students at the high school level and worthy of 
learning in their own right. Beyond that, such reasoning and ways of thinking have 
the potential to provide a conceptual basis for understanding more formal proce-
dures later in students’ educational trajectories. Against this backdrop, and in the 
interest of highlighting the importance of inferential reasoning for high school stu-
dents, this chapter offers an example and a vision for the teaching and learning of 
statistical inference that we see as a rich and viable alternative to typical approaches 
still evident in many school textbooks and classrooms.

 Instructional Activity Sequence

 An Overview

Our example consists of a sequence of instructional activities enacted within an 
intact grade 9 mathematics class (involving 14 and 15 year-old students) at a subur-
ban high school in the southwestern United States. The activity sequence (adapted 
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from Key Curriculum Press 2012)1 revolved around the contextual situation pre-
sented in Fig. 1, involving the use of sampling to test a claim that a genetically 
modified version of a species of fish in a population tends to grow longer that the 
“normal” version of the species.

The broad aim of the instructional sequence was to provide students with occa-
sion to investigate and develop the idea of making an inference from a random 
sample to a population. More specifically, the sequence emphasized the variability 
amongst a statistic calculated for samples of a common size chosen from a particu-
lar population, and it culminated in a comparison of the variability across distribu-
tions of that sample statistic generated from repeating the selection of such samples 
of different sizes. The investigation emphasized the following two big statistical 
ideas: (a) random sampling can be used to draw conclusions about a sampled popu-
lation (the whole of which is generally inaccessible), and (b) sample statistics com-
puted for larger samples have distributions that tend to vary less than distributions 
of the same statistic computed for smaller samples. These ideas provided cross- 
cutting themes for the investigation that was structured so as to engage students in a 
cycle of inquiry involving six interconnected levels of activity and thinking repre-
senting an elaboration of the fundamental stages of the investigative process of a 
statistical study (Franklin et al. 2005; NCTM 2000; Wild and Pfannkuch 1999): (1) 
posing a question; (2) generating data through sampling to inform the question; (3) 
representing and organizing the data graphically, and constructing a relevant sample 
statistic; (4) analyzing and interpreting the represented data and statistic; (5) repeat-
ing the underlying sampling process and thinking of sampling variability as a cen-
tral consideration; (6) drawing conclusions about a population on the basis of the 
previous levels and the reasoning that emerged within them.

The investigation unfolded over an activity sequence comprised of three 
60–75  min lessons.2 The use of TinkerPlots—an interactive and dynamic data 
exploration software  (Konold and Miller 2017)—played a central role in the 

1 Adapted from the activity entitled Fish-Length Distributions, downloaded from http://www.tin-
kerplots.com/activities/data-analysis-and-modeling-activities
2 These lessons were part of a longer instructional sequence in which students engaged, parts of 
which are beyond the scope of this chapter.

Fig. 1 The contextual situation for the instructional sequence

Promoting Students’ Reasoning About Statistical Inference Through Engagement…
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 investigation, both as a virtual sampling simulator and a tool for promoting the 
development of students’ targeted imagery, as will be described shortly.

 A Detailed View

Lesson 1
The opening lesson introduced students to the Fish farmer scenario as an anchor 
problem for the instructional sequence: A skeptical fish farmer wants to test the 
claim made by the company that supplies the fish for his pond that the genetically 
engineered fish tend to grow longer than normal fish. In the first part of this investi-
gation, prior to divulging the farmer’s approach to investigate the problem (as pre-
sented in the parenthetical statement in Fig. 1), students were prompted to consider 
how the fish farmer might go about testing this claim. Issues of data collection and 
selecting a representative sample were discussed, providing occasion for students to 
reflect on, and propose, possible ways in which the farmer might proceed. Students 
were then presented with the farmer’s approach: when the fish were fully grown, he 
caught 43 fish at random from the pond and measured each of their lengths. Students 
then examined a TinkerPlots data file containing the lengths of the two types of fish 
in the farmer’s sample of 43 fish. Working in pairs on a laptop computer, students 
explored this data by creating a dot plot of the sample separated into the two types 
of fish and using TinkerPlots’ graphical tools to compare the lengths across the two 
groups (see Fig. 2).3

Students were subsequently asked the following sequence of questions regarding 
the sample they had analyzed, all of which were presented to them in structured 
worksheets:

• What did you notice about the sample?
• Did you conclude that the genetically modified species in the pond tends to grow 

longer than the normal version of the species?
• If so, how much longer do they tend to grow?

This part of the lesson concluded by having students decide, on the basis of the 
particular given sample, which type of species in the pond has a more variable 
length. Students were to support their answers to these questions by referring to the 
TinkerPlots graphs they had produced. Their responses formed the basis of whole- 
class discussions that syncopated their individual and paired work around the ques-
tions. A big statistical idea made explicit in this part of the lesson was that if a 
randomly selected sample is assumed to be representative of the sampled popula-
tion, then it can be used as a basis for making claims about that larger population.

The lesson concluded with a sequence of three reflection questions designed to 
provoke students to anticipate the results of a thought experiment:

3 As part of the lead-up to the instructional sequence, students had already learned to use such 
TinkerPlots tools to represent and organize univariate data sets.
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• What would you expect to see if a different sample of 43 fish was selected from 
the farmer’s pond?

• Would you expect to draw a different conclusion about the fish in the pond based 
on a different sample?

• Is a sample of 43 fish large enough to draw a conclusion about all the fish in the 
pond, and how confident are you about this?

These concluding questions were intended to provoke the emergence of the key idea 
that the expected random variability amongst samples chosen from the same popu-
lation problematizes the confidence one may have in an inference based on any 
individual sample. This idea was emphasized in instruction in an effort to motivate 
exploring the results of repeated sampling as a method for studying the long-term 
pattern of variability in the samples’ statistic (i.e., its distributions) with the aim to 
inform one’s confidence about conclusions drawn from samples to a population.

Lesson 2
The second lesson began by revisiting the issue of confidence about inferences in 
the context of discussing students’ responses to the concluding questions from 
Lesson 1. Discussions recapped the idea that sampling outcomes are expected to 
vary from sample to sample, were the sampling process repeated under similar con-
ditions, and that such variability therefore poses a problem for making inferences to 
an underlying population on the basis of any individual sample. This provided a 
natural segue into the main part of the lesson, which entailed explicit and systematic 
use of repeated sampling and attention to its resulting variability. Here students 
were first introduced to TinkerPlots’ sampler as a tool to simulate the selection of 
random samples of 43 fish from the fish farmer’s pond (the population). Then, 
working in pairs on a laptop computer, students used the sampler tool themselves to 
simulate the selection of 43 fish from the pond (a predetermined population pro-
vided to them in the TinkerPlots file). Students’ tasks around this initial use of the 
sampling simulator were, first, to observe its results and explain what the sampler 

Fig. 2 A TinkerPlots dot plot of the sample of 43 fish lengths overlaid with boxplots and display-
ing the median length of each group within the sample

Promoting Students’ Reasoning About Statistical Inference Through Engagement…
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made by describing the information recorded in a data table generated in real time 
as the simulation unfolded, and, second, to create a graph of the resulting sample 
separated into two groups—lengths of the genetically modified fish and the normal 
fish in the sample—and displaying the median of each group (see the top part of 
Fig. 3). A concluding prompt asked students if, on the basis of their simulated sam-
ple, they would draw similar conclusions about the population of fish that they had 
in Lesson 1 (which type of fish tends to grow longer and how much longer it tends 
to grow).

The lesson then moved to a more systematic exploration of sampling variability 
by having students use the sampling simulator to first generate several samples of 
size 43, and then of size 15, from the simulated fish population (see Fig. 3). Students 
recorded the median length of each type of fish in a sample, and the difference 
between these medians as a measure of the group differences (i.e., difference 
between the median length of two types of fish in a sample). Fig. 3 displays the 
TinkerPlots set-up that the instructor and students used in this part of the 
investigation.

The simulator (left hand tool) used a mixer to represent the population of mixed 
fish. Each selected sample of 43 fish was represented in a case table displaying 
individual fish’s type and length. The table was in turn linked to a dot plot display-
ing the distribution of lengths of fish in the sample, separated by type and showing 
the median of each type as well as the difference between medians using TinkerPlots’ 
ruler tool. Each row of the table at the bottom of Fig. 3 recorded the value of the 
three measures for a sample (the median length of each type of fish and the  difference 
between those medians) generated by running the simulation once. The four repre-
sentations displayed in Fig. 3 were dynamically linked and automatically updated 
with the results of each new repetition of the simulated sampling experiment 

Fig. 3 A TinkerPlots simulation of the repeated sampling of 43 fish from a population of 625 fish. 
The bottom table shows the three measures recorded for seven trials of the sampling experiment

L. Saldanha and M. Thibault



359

(enacted by clicking the “run” button in the mixer tool). As such, students were able 
to record and observe the emergence of the values of the three measures in a table 
and to track the variability among them as the sampling process was repeated. 
Students explored the patterns in these measures; they identified similarities and 
differences among the resulting medians and among the difference between the 
medians for the collection of seven samples, and they used their observations as a 
basis for proposing how this might help test the claim that genetically engineered 
fish tend to grow longer than normal fish in the larger population. Below is a sample 
of the specific questions posed to students around this part of the activity:

• What similarities and differences do you observe in the medians?
• Can your observations help the fish farmer make a decision about the company’s 

claim? Please explain.

Class discussions around this part of the exploration showcased students’ per-
ceived patterns, culminating with a general consensus that the genetically engi-
neered fish in the population were inferred to be “between 4 and 7 centimeters 
longer” than the normal fish. This part was then repeated for samples of 15, fol-
lowed by having students compare the results for the two sample sizes and decide 
whether the smaller sample size was sufficient to conclude which type of fish tends 
to grow longer. This part unfolded around the specific questions displayed below:

• Compare what you observed about the medians for these samples of 15 fish with 
what you noticed about the medians for the samples of 43 fish.

• Is 15 fish a big enough sample to decide whether the genetic fish tend to be lon-
ger than the normal fish? Please explain.

• Is 15 fish a big enough sample to decide how much longer the genetic fish tend 
to be than the normal fish? Please explain.

Lesson 3
The final lesson built on the activities and issues raised in Lesson 2 by having stu-
dents examine the effects of sample size on the variability of the difference between 
median lengths of fish that they had previously explored for only seven samples. 
The lesson began with a demonstration and discussion of the TinkerPlots simulation 
of selecting 50 samples of size 15 from the simulated fish population (following the 
set up shown in Fig. 3), culminating with the presentation of a graph of the distribu-
tion of the difference in median lengths for each of the 50 simulated samples as 
shown in Fig. 4.

Discussions around this demonstration centered on having students track and 
explain the process of how the dot plot of the sampling distribution resulted from 
the sampler in terms of the various intermediate objects produced by the simulation 
and shown in the TinkerPlots window, as displayed in Fig. 3. This activity aimed to 
help students build and solidify their imagery of the repeated sampling process and 
their meaning for the resulting distribution of the sampling statistic displayed in 
Fig. 4. The accompanying activity prompts also assessed the strength and robust-
ness of students’ imagery by having them work backwards from a particular point 
on the dot plot and explain what it represented and the process that produced it. The 
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activity prepared students for the subsequent part of Lesson 3, which required that 
they be able to decode and interpret a sequence of such dot plots coherently.

In the second part of Lesson 3, students examined and interpreted a sequence of 
five distributions of the difference in median lengths, each for 50 simulated samples 
of a different size drawn from the fish population. Students examined and inter-
preted these sampling distributions in relation to the increases in sample size. A 
subset of these distributions and the accompanying activity prompts are displayed 
in Fig. 5.

The first prompt (Question 4) aimed to orient students’ attention to the fact that 
the clustering of the sample statistic becomes increasingly condensed (its variability 
decreases) with increasing sample size. A group discussion of this observation 
ensued which involved eliciting students’ ideas about how to describe and measure 
the pattern of the observed variability. This discussion was followed by prompting 
students to use this pattern as a basis for choosing a sufficiently large sample in order 
to confidently infer whether genetically modified fish tend to grow longer than nor-
mal fish in the population (Question 5). The final prompt (Question 6) asked students 
to estimate how much longer genetically modified fish tend to grow than normal fish. 
These questions culminated in a group discussion about the trade-off between the 
competing interests of maximizing sampling accuracy and minimizing sample size.

 Selected Highlights of Students’ Reasoning and Engagement

As mentioned earlier, the activity sequence described above unfolded within a grade 
9 mathematics class. The students had previously been exposed to some rudimen-
tary statistical topics in their prior grades, such as computing the mean and finding 
the median of a set of quantitative data values, and constructing histograms and dot 
plots of data. However, the ideas addressed in the activity sequence, the use of 

Fig. 4 A sampling distribution and accompanying prompts of the opening activity of Lesson 3
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TinkerPlots to engender a dynamic and visual imagery of data and its analysis, and 
participating in activities and class discussions that encouraged them to explain and 
share their thinking about the ideas addressed was new to the students. It turned out 
that, in large part, students engaged enthusiastically with the activities and the use 
of TinkerPlots, eagerly voicing their thinking with regard to those ideas in a whole- 
class setting. In addition, students exhibited evidence, both individually and as a 
group, of having developed some habits of mind and ways of thinking that we see 
as coherent with statistical reasoning, albeit at an informal level. We present a few 
brief highlights of such evidence by way of illustrating the kinds of thinking that 
emerged out of the students’ engagement with the activity sequence, which we 
believe has the potential to occasion such thinking among other groups of students. 
We present these highlights around the following themes that speak to two particu-
lar affordances of the instructional sequence:

 Attention-Orienting Role of the Activity

The orienting prompts and reflection questions in the activities provided rich oppor-
tunities for students to notice patterns of dispersion in the distributions that resulted 
from the repeated sampling simulations. As a particular case in point, in Lesson 2 
students’ written responses to the question of what they noticed in the results of the 
7 repetitions of sampling fish (see table at bottom of Fig. 3) evidenced three salient 
features when considered as a whole4:

4 Words in bold font in the written responses indicate evidence of specific features that were salient 
to the students quoted.

Fig. 5 Task prompts and a subset of the sequence of distributions used in the final activity of 
Lesson 3
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 1. A large proportion of the students noticed either a specific value or a range of 
values around which the median lengths of each or either type of fish was clus-
tered around or bounded. This is illustrated by the following student response:

S23: The Normal fish medians stayed between 22.5–25  cm. The genetic fish 
stayed above 25 cm and the normal stayed below 26. Yes, because the median 
of the genetic fish was a few centimeters better than the normal. The differ-
ence in size ranged from 3.5–8.5 cm.

 2. Equally prevalent was students’ explicit attention to how lengths of the two type 
of fish compared in terms of their medians, which enabled them to provide a 
“unanimous tendency” argument that the median length of the modified species 
exceeded that of the regular fish in every sample observed as a basis for inferring 
that the modified species is the larger one in the population. This line of reason-
ing is illustrated by the following student response:

S17: All the medians for Normal fish are around 22 and 23. All the medians for 
genetic fish are around 25–28. The genetics are all longer in length and range 
between 2 and 7 cm longer than Normal fish. Yes, they show that genetics 
grow larger than normal fish. Out of all 7 samples, genetics were all 
longer.

 3. Although less prevalent, many students also attended explicitly or implicitly to 
the variability in the median lengths of fish generated in the repeated sampling, 
as illustrated in the following student response:

S9: The normal medians are all around 23, while the genetics medians are all 
around 27. There isn’t much variance. The genetic medians are always a few 
cm higher. The genetic fish are superior to the normal fish. The genetic fish 
are consistently an average of 4 cm longer, through multiple samples. The 
first sample wasn’t a fluke – the normal fish are shorter, and the company was 
right.

 Discussion-Promoting Role of the Instructional Environment

Class discussions proved to be productive vehicles for helping students articulate 
and externalize their thinking about what they noticed in the activities. The excerpt 
below is from a discussion in Lesson 2 about the variability of the median lengths 
of fish observed in the samples of 15 fish versus samples of 43 fish; it focuses 
around one student’s response to the question of whether the sample size of 15 is 
sufficient to draw a conclusion about the population of fish, as displayed in Fig. 6:

The associated discussion excerpt illustrates the kind of reasoning that can 
emerge through engagement with the activity, evidencing a sensitivity to the idea of 
variability in sampling data and citing too much variability in the data as a reason 
for not being able to make a confident claim about the underlying population (see 
Fig. 6):
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Teacher: How about the person that made these (sampling results for both sample 
sizes are projected on the white board), S9?

S9: Um, there was a lot more, um, variance [inaudible] the fifteen fish one.
Teacher: Variance in what?
S9: Um, in the differences and in the medians.
Teacher: So across the samples, there’s a lot more variability in the differences 

between medians; than is the case here (points to the data for sample 
size 43). Does anybody else see that?

S18: Huh huh.
Teacher: Really?
S18: Yeah, I don’t see that. No, I don’t.
Teacher: How do we help see that? Can you- can you help us out, S9? Like, what 

makes you see that?
S9: On the last one, they go from, like, three point five to five.
Teacher: Okay, so we’re looking at the range of values, right?
S9: Yeah.
Teacher: Three point five to five.
S9: On the right one, they go from, like, two point five to eight.
Teacher: So, that’s a bigger range, right? You get it?
S9: Yeah, a bigger range.
S18: Yeah, I get it.

Overall, the class discussions evidenced students’ abilities to coordinate two 
things: 1) their expectation that the sample statistic’s value will vary among sam-
ples, and 2) their emerging understanding that such variability is not haphazard but 
is instead constrained to a (possibly) predictable range of values. The ability to bal-
ance and coordinate these two ideas is an important component of statistical think-
ing (Rubin et al. 1990).

 Concluding Remarks

As we argued at the start of our chapter, typical statistics instruction tends to still 
focus on having students learn procedures and calculate the value of standard mea-
sures (such as the mean of a set of data values). It is far rarer to see classrooms 
where data are presented in a dynamic setting, promoting a view of random sam-
pling as a process that naturally incurs variability in its outcomes, and provoking 

Fig. 6 One student’s data values and her response to a question made on the basis of the data
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students to explicitly attend to and take into consideration such variability when 
drawing conclusions about an underlying population. This focus on developing stu-
dents’ imagery of variability is highlighted in the statistics education literature cited 
earlier in our chapter as a central component of developing a meaningful and coher-
ent understanding of statistical inference (Ben-Zvi and Garfield 2004; Garfield and 
Ben-Zvi 2008; Pfannkuch 2008; Rubin et  al. 1990; Wild and Pfannkuch 1999). 
Indeed, we view the development of such imagery as a prime example of “the cog-
nitive activities involved in informally drawing conclusions or making predictions 
about ‘some wider universe’ from data patterns, data representations, statistical 
measures and models, while attending to the strength and limitations of the drawn 
conclusions (Ben-Zvi et al. 2007)” (Garfield and Ben-Zvi 2008, p. 268). Our chap-
ter offers one example reflecting a vision of how such imagery might be promoted 
in instruction. The instructional sequence we have described exploited dynamic and 
interactive features of the TinkerPlots software to support students in developing 
two related mental images: (1) a foundational image of sampling as a (hypotheti-
cally) repeatable process, and in turn (2) a sense of the variability they might rea-
sonably expect if the sampling process were repeated multiple times under identical 
conditions.

Finally, we hasten to add that the students who participated in this sequence of 
activities reported having enjoyed working with TinkerPlots. Students also appreci-
ated the openness of the inquiry-based context and the emergent learning milieu that 
encouraged them to share different points of view and ideas, as well as tools and 
approaches for exploring such. These aspects of the statistics learning and teaching 
environment described here are important not only in their own right, but also for 
their potential to create a milieu where students’ thinking is revealed to teachers, 
thereby providing them with important information that they may use as a basis for 
understanding and evaluating such thinking and for providing feedback to students. 
We therefore hope that the example presented here will be of interest to teachers of 
statistics at the high school level, and we encourage interested readers to explore the 
web site http://www.tinkerplots.com/ where both the software and the activity 
worksheets that formed the basis of the instructional sequence described here can be 
obtained.
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I teach at a small liberal arts and sciences university in Squamish, British Columbia, 
where I offer a course called Mathematical problem-solving. In this course, under-
graduate students develop the four key takeaways of a liberal arts education: critical 
thinking, creativity, oral communication, and written communication. As a teacher 
of mathematics, I am biased in my belief that mathematics develops these four take-
aways (or skills) in a way that no other subject can. For many years, the core of my 
teaching practice has been developing these four skills in my students, through 
carefully-chosen problems ranging from logic puzzles to contest questions.

I acquired this pedagogical viewpoint through a lifetime of studying mathemat-
ics, which has enabled me to make tangible impacts to my community: creating a 
new risk-scoring algorithm for high-risk marine cargo; reducing wait times at the 
Canadian border; serving as the mathematics consultant for three Canadian TV 
game shows; helping a billion-dollar professional baseball league design a schedule 
to cut down on greenhouse gas emissions; working with local organizations and 
companies to manage their staff scheduling; and implementing a roommate- 
matching program and course registration system at my university. In the process of 
solving these real-life problems, I have realized that a deeper skill was involved, a 
skill that I have worked hard to cultivate in my teaching practice: the ability to solve 
hard problems by converting them into equivalent simpler problems.

I believe that this skill is not just essential for post-secondary students; if we can 
foster this mathematical problem solving ability in our secondary students, perhaps 
we could inspire more students with the message that mathematics is beautiful and 
powerful and relevant to everything in this world: challenging strong students who 
find classroom mathematics too easy and irrelevant while motivating weaker stu-
dents who would see that mathematics is accessible, and has important applications 
to the issues they care about.

I offer several problems in this chapter, to illustrate how “applied problem solv-
ing” can develop this key skill in our students, to recognize when a hard problem 
can be converted into a problem that is both equivalent and simpler.

There are numerous solutions to the problem as shown in the below figure. 
Readers are encouraged to try the problem before reading further!

Example Problem One: In the diagram, a circle is inscribed in a (large)

square, and a (small) square is inscribed in the circle. What is the ratio

of the areas of the two squares?

One approach is to let the small square have side length 1, and show that the side 
length of the large square must be √2. This can be done by noticing that the side 
length of the large square must equal the diameter of the circle, which must equal 
the diagonal of the small square, which must be √2 by the Pythagorean Theorem.

This proves that the ratio of the two areas must be √2 × √2 = 2.
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But there is a cleaner solution, once we realize that we can solve this problem by 
converting it into an equivalent simpler problem. The key is to recognize and exploit 
rotational symmetry.

We rotate the inner square 45 degrees clockwise (Fig. 1).
We then draw a vertical line and a horizontal line passing through the centre of 

the circle (Fig. 2).
Once we have done this, we can quickly see that the area of the large square has 

to be twice the area of the small square!
This beautiful solution illustrates that the heart of mathematics is not about mem-

orizing formulas or rules, but rather about problem solving and detecting patterns, 
insight, and structure to uncover truth. Most of us assume that the inner square has 
to remain in a fixed position, while we can develop a better solution by breaking a 
self-imposed constraint, to use a simple idea (of a 45 degree rotation) to convert a 
difficult problem into one that is surprisingly simple and elegant as shown in the 
below figure

Fig. 1 By rotating the 
inner square 45 degrees, 
we develop a key insight

Fig. 2 A visual proof that 
the outer square is double 
the area of the inner square
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Example Problem Two:

There are many squares and rectangles, of all sizes, that appear in a 3x3 grid.

For example, there are twelve 1 x 2 rectangles: six horizontal and six vertical.

How many squares and rectangles, of all sizes, appear in this diagram?

Again, readers are encouraged to solve the problem themselves before reading 
further. As a challenge, once you have solved the problem in one way, can you think 
of another method?

One natural approach to solving this problem is to enumerate all possible cases, 
where we consider squares and rectangles of all possible dimensions, to get the cor-
rect answer of 36 (as shown in the below table).

Case # of squares/rectangles

1 × 1 squares 9
1 × 2 rectangles 12
1 × 3 rectangles 6
2 × 2 squares 4
2 × 3 rectangles 4
3 × 3 squares 1
Total 36
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But if we do this, we miss out on the underlying structure. Here is an equivalent 
solution, where we consider the dimensions (length and height) of each square and 
rectangle (as shown in the below table).

Length Height
# of squares/
rectangles

1 1 9
1 2 6
1 3 3
2 1 6
2 2 4
2 3 2
3 1 3
3 2 2
3 3 1
Total 36

From here, we notice that the answer is 9 + 6 + 3 + 6 + 4 + 2 + 3 + 2 + 1, which 
is equivalent to (9 + 6 + 3) + (6 + 4 + 2) + (3 + 2 + 1) = 3(3 + 2 + 1) + 2(3 + 2 + 1) 
+ 1(3 + 2 + 1) = (3 + 2 + 1)(3 + 2 + 1).

Surely there is a reason for such a beautiful answer. Take a moment to ponder 
this!

Indeed there is a reason. Instead of enumerating all possible cases, notice that 
every square or rectangle in our 3 × 3 grid consists of two vertical sides and two 
horizontal sides. Once we choose our two vertical sides and two horizontal sides, 
our square or rectangle is uniquely determined.

Specifically, what we do is look at each line in our 3 × 3 grid. We label our four 
vertical lines with the letters A, B, C, D, and label our four horizontal lines with the 
letters E, F, G, H shown in the below figure.

A
E

F

G

H

B C D

Notice that each selection of two vertical lines and two horizontal lines traces out 
a unique square or rectangle. For example, if we select the two vertical lines A and 
C, as well as the two horizontal lines F and G, then the four lines intersect to form 
this 1 × 2 rectangle (as shown in the below figure).
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A
E

F

G

H

B C D

Conversely, given any square or rectangle, we can uniquely map it to the selec-
tion of two vertical lines and two horizontal lines by extending the sides until it hits 
the labels. For example, this 3 × 1 rectangle must map to the vertical lines B and C, 
and the horizontal lines E and H (as shown in the below figure).

A
E

F

G

H

B C D

By making this mapping, we have in fact constructed an equivalent problem 
which might be useful. In other words, we have shown that the problem of counting 
the number of squares and rectangles in a 3 × 3 grid is completely identical to the 
simpler problem in as shown in the below figure.

Do you see how this is both simpler and equivalent to the previous problem of 
counting squares and rectangles? Since there are six ways of choosing her female 
friends (AB, AC, AD, BC, BD, CD) and similarly six ways of choosing her male 
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friends, the correct answer must be 6 × 6 = 36. In fact, this use of the Fundamental 
Counting Principle may be familiar to intermediate students, if they have completed 
a unit in elementary probability.

Thus, to solve the problem of determining the number of squares and rectangles 
in a 8 × 8 checkerboard grid, we do not need to enumerate all possible cases; instead, 
what we do is convert this problem into an equivalent simpler problem, the above 
“Ticket Problem” where Mrs. Smith has nine female friends and nine male friends. 
Can you see why the 8 × 8 checkerboard relates to the scenario with nine friends of 
each gender?

In this problem, the correct answer is 36 × 36 = 1296, since we can show that 
there are 36 ways that Mrs. Smith can choose two out of the nine females, and 36 
ways that she can choose two out of the nine males. This is a much more elegant 
solution than manually enumerating all the cases.

Please explore the problem as shown in the below figure on your own or in a 
small group before reading on.

In your work, you might have noticed that the most inefficient solution is 
7:00 PM, by having each of the seven clubs meeting in hour-long slots, one right 
after the other. We can save time by combining slots where no conflict occurs: for 
example, having the Calculus and Geology clubs meeting at the same time, since no 
student belongs to both clubs. This produces a solution whose answer is 6:00 PM.
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Eventually, students find the correct answer of 3:00 PM by determining a way 
that the seven clubs can meet in 3 h-long slots, through trial and error. For example, 
here is one possible 3-h solution:

12 PM to 1 PM: Astronomy, Geology
1 PM to 2 PM: Economics, Dance
2 PM to 3 PM: Food Studies, Biology, Calculus

A common approach is to make an 8 × 7 table with students’ names in the rows 
and clubs in the columns, to see where the possible conflicts arise. Through such a 
table, students determine which clubs can meet together and which ones cannot, and 
find a solution such as the one above.

Once students find a solution for 3 h, they are asked whether there exists a solu-
tion for 2 h. They quickly see that no 2-h solution exists, since Michael and Joe each 
belong to three different clubs: since each of them needs at least 3 h to complete 
their meetings, the entire group needs at least 3 h as well.

Despite satisfaction with solving the problem, students remark that making a 
56-element table is tedious and lengthy. They realize that all is required is to deter-
mine which clubs have conflicts—e.g., Astronomy and Biology cannot meet at the 
same time because one individual belongs to both clubs: what matters is that there 
is an individual belonging to both clubs, not who that individual is.

Through this process, we motivate the key idea of solving scheduling problems 
using graph theory, to show that the above scheduling question can be solved by 
creating a “conflict graph” on seven vertices (representing the seven clubs denoted 
by the letters A, B, C, D, E, F, G), where two vertices are joined by an edge if and 
only if some individual belongs to both clubs, and would therefore have a conflict if 
both clubs scheduled their meetings at the same time.

For this particular problem, the conflict graph has seven vertices and twelve 
edges, and looks like Fig. 3.

Now we colour the vertices, with each colour representing a time slot. For exam-
ple, if we colour vertex A red, then we see that we cannot assign red to vertices B, 
C, D, E, F, since each of those five clubs has a conflict with vertex A. Thus, we must 
use a different colour.

What is the fewest number of colours we need to ensure that no edge is joined by 
two vertices of the same colour? Do you see how the answer to this question must 
be the same as the fewest number of time slots needed to schedule all the student 
clubs?

G B

C

DE

F

AFig. 3 Representing the 
problem as a conflict graph
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We show that only three colours are required. To do this, we let A be red, E be 
blue, and F be green. Then, B and C must be green (since they are both adjacent to 
the red vertex A and the blue vertex E), which in turn forces D to be blue and G to 
be red. Therefore, we have found a valid 3-colouring (Fig. 4).

In the above picture, we see that no edge connects two vertices of the same 
colour. Thus, we are guaranteed a solution to the seven-club scheduling problem by 
simply assigning time slots to the three colours: Red  =  12  PM–1  PM, 
Blue = 1 PM–2 PM, and Green = 2 PM–3 PM. Indeed, we can quickly verify that 
this is the exact same solution as what was given earlier.

A natural question is whether two colours suffice. To see why this is impossible, 
note that AEF is a triangle, representing the three different clubs Michael is in. And 
so each of these three points must be assigned different colours; thus we require at 
least three colours, i.e., at least three time slots.

Many mathematical problems can only be solved in routine and mundane ways. 
However, if secondary students see problems that can be solved in both a routine 
way and a surprising innovative way, then many unexpected benefits arise: a greater 
confidence in doing mathematics, a deeper appreciation for the beauty of mathemat-
ics, a development in one’s creativity, as well as the opportunity to engage in applied 
problem solving. These skills and opportunities would help secondary students in so 
many ways, and serve them well for their future.

Various resources, geared towards secondary students and their teachers, are 
available at www.richardhoshino.com. Please use whatever you wish, free of charge.

Additional Suggestions for Further Reading

Hoshino, R. (2015). The math Olympian. Victoria: Friesen Press.
Hoshino, R., Polotskaia, E., & Reid, D. (2016). Problem solving: Definition, role, and pedagogy. 

In S. Oesterle, D. Allan, & J. Holm (Eds.), Proceedings of the 2016 annual meeting of the 
Canadian Mathematics Education Study Group /Groupe Canadien d’Étude en Didactique des 
Mathématiques (pp. 151–162). Kingston: CMESG/GCEDM.

Liljedahl, P. (2015). Building thinking classrooms: Conditions for problem solving. In S. Oesterle 
& D.  Allan (Eds.), Proceedings of the 2015 annual meeting of the Canadian Mathematics 
Education Study Group/Groupe Canadien d’Étude en Didactique des Mathématiques 
(pp. 131–138). Moncton: CMESG/GCEDM.

Vakil, R. (1996). A mathematical mosaic: Patterns & problem solving. Burlington: Brendan Kelly 
Publishing Inc.
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AFig. 4 Our solution, with 
red={A,G}, blue={D,E}, 
green={B,C,F}
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 Purpose and Scope

This chapter presents tasks and task structures for incorporating enriching, socially 
relevant mathematical explorations in secondary school learning.

 1. What are Social Justice Context Problems (SJcp)?

 SJcp are in-depth, inquiry-based mathematical explorations that engage learners 
with authentic contexts and mathematical practices that aim to broaden and 
foster:

 (a) Critical awareness of social injustices in the lived experiences of Canadians;
 (b) Sophisticated mathematical thinking and decision-making while reinforcing 

important mathematical procedures and practices;
 (c) Awareness of the relevance of mathematics for understanding and address-

ing various issues affecting individuals in Canada and beyond.

 2. Why use SJcp in secondary school mathematics classrooms?

 (a) Because mathematics is necessary for understanding world issues and social 
trends;

 (b) Because different contexts for rich mathematical activity can help teachers 
reach, support, and motivate a greater variety of learners;

 (c) Because students care about such issues, and these issues are important.

 3. What are the goals of this chapter?

 (a) To equip teachers with structures and supports for incorporating SJcp into 
their practices, with different topical foci to meet the needs and interests of 
their particular students;

 (b) To highlight classroom examples, tools, and resources for engaging with 
SJcp, and that could serve as models for formulating other SJcp;

 (c) To invite critical reflection on the types of contexts and mathematical prac-
tices that we value for our students (and why).

 Structures for Task Design

Structures frame how we think about SJcp, how we elicit, recognise, and value dif-
ferent ways of learning, and how we direct and focus student engagement.

 Rich Learning Tasks (Flewelling and Higginson 2001)

Rich Learning Tasks are designed to give students opportunities to engage in inquiry, 
experimentation, investigation and problem solving. In doing so, students learn with 
understanding, use their knowledge in an integrated and authentic fashion to make 
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sense of ideas, situations, concepts, and procedures, and develop the habits, atti-
tudes, and skills necessary for a life of sense-making.

Rich Learning Tasks allow students to

• Explore, investigate, and challenge ideas and issues;
• Pose and answer their own questions about the situation;
• Choose and apply math and non-math skills and use them purposefully;
• Learn and practice problem solving skills in authentic ways and contexts;
• Gain independence and confidence in mathematics;
• Formulate, discuss and defend their ideas, approaches and solutions;
• Carry out, modify, and extend a plan, an idea, or an approach;
• Identify, select, and apply math tools, knowledge and procedures; and
• Justify, summarize, and communicate results and conclusions.

Rich tasks are lengthy, and are intended to last several hours or days. Sustained 
and persistent mathematical activity is essential for raising achievement in second-
ary mathematics—as Watson (2006) points out:

It is simply impossible to learn mathematics if one is constantly changing topic, or task, or 
doing related but irrelevant tasks, or only doing the easy bits, or being praised for trivial 
performance. A problem with a fragmented, mechanistic approach to teaching mathematics 
is that learners who find mathematics hard are thus often taught in ways which make it hard-
est for them to learn it. (p.103)

 Teaching Math for Social Justice (Gutstein 2006)

This framework was developed by Gutstein through his work with underprivileged 
middle school students. It emphasizes a needed balance between two sets of peda-
gogical goals for enriched student learning and engagement: Social Justice 
Pedagogical Goals, and Mathematics Pedagogical Goals (Table 1).

Table 1 Teaching math for social justice – pedagogical goals

Social justice pedagogical goals Mathematics pedagogical goals

Reading the world 
with mathematics

Using math to understand 
world issues, inequities, 
disparities and 
opportunities.

Reading the 
mathematical word

Developing mathematical 
power, understanding, and 
literacy.

Writing the world 
with mathematics

Using math to take action 
and initiate changes in 
your community and 
beyond.

Suceeding 
academically in a 
traditional sense

Succeeding in school, 
standardized tests, and 
post-secondary school.

Developing 
positive social and 
cultural identities

Being able to see yourself 
as able, confident, 
competent, and valuable.

Changing one’s 
orientation to 
mathematics

Seeing math as relevant, 
connected, and powerful 
for understanding real 
issues

Exploring Math Through Social Justice Context Problems
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 Examples and Resources

These examples come from our own practices; we highlight some of the prompts, 
contextual resources, technology, worksheets, and assessment guides used.

 1. Food equity – Exploring the Nutrition North Canada program
 2. Bullying in schools – Creating a safe space to play

 Food Equity – Exploring the Nutrition North Canada Program

Nutrition North Canada (NNC) is a Government of Canada subsidy program to 
provide Northerners in isolated communities with improved access to perishable 
nutritious food. NNC is part of the Government of Canada’s Northern Strategy 
(http://www.nutritionnorthcanada.gc.ca).

 Context and Background

This exploration focuses on NNC’s services to Nunavut, in comparison to students’ 
local experiences. The focus on Nunavut is for two main reasons: Nunavut has the 
lowest (current) population density of provinces and territories, and its far north 
communities have a strategic purpose (arctic sovereignty).

Some facts about Nunavut:

• Nunavut has approximately 30,000 residents, with about 56% of residents under 
the age of 25

• Stats Canada reports that the median family income in Nunavut in 2010 was 
$62,680 per year, which is among the lowest in Canada

• Even with NNC program, food costs can be quite high:
 – $14 for 2 L of milk, $16.89/kg for red peppers
 – Major Canadian city approximate prices: $5 for 2 L of milk, $4.39/kg for red 

peppers

 Overview of the Mathematical Explorations

A version of the task, including context, background reading, and some resources, 
is included in Appendix A. Curricular connections are presented in Appendix B, and 
a list of supplementary resources for exploration is included in Appendix C. The 
task is further discussed in Mamolo and Thomas (2014).

A. Mamolo et al.
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The main goals of the explorations are to critically examine the controversy 
around NNC and to explore mathematically whether the program is affordable, sus-
tainable, effective, or equitable (Table 2).

 Bullying in Schools – Creating a Safe Space to Play

Approximately 1 in 3 teenagers have experienced bullying (www.bullyingstatistics.
org). Schools across Canada are increasingly trying to support and empower victims 
of physical, emotional, psychological, or cyber-bullying. Students are also express-
ing keen interest in fair treatment of one another, and in knowing what they can do 
to prevent bullying from happening.

 Context and Background

This exploration focuses on understanding bullying behaviour, strategies for 
addressing bullying situations, and ways of supporting victims of bullying. A main 
focus of the exploration is on the design of a school playground which could reduce 
the effects of bullying in schools. The hook includes a non-verbal video called The 
Bully Dance (www.nfb.ca/film/bully_dance) (Fig. 1). It depicts some of the com-
plexities of bullying situations and behaviours as it follows the lives of a few key 
characters over several days. Students can be asked to reflect on different aspects of 

Table 2 Food equity – task questions

The questions (abbreviated) Associated math activity and pedagogical goals

Q1: What is the weekly cost of 
groceries for a family of four in your 
area? Explain and compare your results 
with data from remote northern 
communities.

Explore and analyse data; make decisions about how 
to compare (e.g., using primary or secondary data, 
different groceries) and which tools to use; problem 
solve; formulate ideas and approaches; use math to 
understand possible disparity; develop math 
understanding, literacy, and skill.

Q2: Determine and compare costs of 
living and household income of a 
family of four in your neighbourhood. 
Represent the data in multiple ways; 
what do the different representations of 
the data tell you?

Investigate and analyse data; pose and answer 
questions; problem solve; formulate ideas and 
approaches; carry out and extend a plan; identify, 
select, and apply math tools; justify and communicate; 
develop math understanding; practice for academic 
success; see math as relevant and connected; use math 
to understand opportunities

Q3: Write an opinion piece about the 
NNC service to Nunavut. Analyse the 
goals of NNC; include a critique of the 
subsidy package, its cost effectiveness, 
its affordability, etc.

Justify, summarize and communicate results and 
conclusions; use math to understand issues; use math 
to take action in your community; see math as relevant, 
connected, and powerful for understanding world 
issues; develop mathematical understanding and 
literacy.

Exploring Math Through Social Justice Context Problems
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the film, and to address in private communication with the teacher aspects which 
may have made them feel uncomfortable, surprised, or curious.

 Overview of the Mathematical Explorations

A version of the task, including a preliminary assignment, a group project, and an 
individual reflection is included in Appendix D, along with sample rubrics. 
Curricular connections are presented in Appendix B.

The main goals of the explorations are to think critically about the impact of bul-
lying and to explore mathematically ways of reducing bullying occurrences within 
pragmatic schoolyard constraints (Table 3).

Fig. 1 Bully Dance (Perlman 2010)

Table 3 Bullying in schools – task questions

The questions (abbreviated) Associated math activity and pedagogical goals

Q1: Create a proposal for a new 
school playground design that could 
reduce the effects of bullying at 
minimal cost.

Investigate; pose and answer questions; formulate and 
discuss ideas and approaches; identify and select math 
tools; communicate; see math as relevant and connected.

Q2: Create a blueprint of a 
playground that could minimize 
bullying, given a set of criteria and 
requirements, such as dimensions, 
types of structures, costs, and 
constraints.

Pose and answer questions; choose and apply skills; 
problem solve; formulate and discuss ideas; carry out 
and modify a plan; identify, select, and apply knowledge 
and procedures; use math to take action and initiate 
changes; develop math understanding; see math as 
relevant and connected.

Q3: Reflect individually on your 
playground design, bullying 
prevention, and bullying awareness.

Pose and answer questions; gain independence and 
confidence; justify, summarize, and communicate results 
and conclusions; see yourself as able, confident, and 
valuable.
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 Modifications and Extensions

An advantage of using Rich Learning Tasks in teaching is their receptiveness to 
adaptation, differentiation, and extension.

For the NNC exploration, further questions can invite investigations that touch 
on different curricular expectations and mathematical skills, for example:

• How is food transported to remote locations? Does time of year make a 
difference?

• What different routes could be taken (with what modes of transportation)? Can 
you find an optimum route?

• How are the subsidies being passed on to the consumer? Or distributed across 
communities?

For the bullying exploration:

• How common is bullying and who does it affect? Do different groups experience 
bullying at different rates? Or through different means?

• What if we had less money to spend on the playground? What changes would 
you make and why? What if we had more money to spend?

• How could your playground be designed differently, if the shape were a (circle, 
pentagon, etc.) with the same area as before?

 Incorporating Technology

Food disparity is also a very serious world issue, and UN data can afford insight into 
which countries are most affected. The free, online software GapMinder (www.
gapminder.org) provides dynamic visual representations of data that can be explored 
and analysed (see Fig. 2), which can provide both a scaffold for interpreting data 
trends, as well as a means to extend conversations, questions, and exploration. 
GapMinder allows the user to manipulate and select various parameters, and has 
been touted as an important tool for helping individuals read the world with math-
ematics (e.g., Rosling 2006).

Math literacy and communication can also be enhanced via the use of digital 
technologies. For example, infographics can be designed easily using free, online 
software such as Piktochart (www.piktochart.com), which offer user-friendly tools 
for infographic design (Fig. 3). Infographics can be used either to read the world 
with mathematics (presenting data to students), or to write the world with mathe-
matics (having students create their own).

By posing and exploring their own questions about data and its visual representa-
tions, and by creating a tangible product informed by their investigations, students 
gain the confidence to see themselves as competent in interpreting, doing, and com-
municating important mathematics.

Exploring Math Through Social Justice Context Problems
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Fig. 3 Food insecurity in 
Canada. (From google 
images)

Fig. 2 Global food supply/person by income/person (gapminder.org)
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 Further Examples of Tasks

Researchers and teachers are actively working to incorporate social justice issues in 
math classrooms at all levels, and with different goals and mathematical foci.

 Exploring Real Data

• Gutstein’s (2005) “We are not a minority” activity uses a photo of a billboard 
showing Che Guevara and the caption “We are not a minority.” The photo 
prompts students to explore the mathematics involved in this statement and to 
compute the percentage of the world’s population made up of people of colour.

• Frankenstein (2006) developed a task to critically examine how the unemploy-
ment rate is determined in the U.S. The task provided students with different 
categories of labourers along with the number of people in each category. 
Students examine which groups should be considered unemployed, and calculate 
rates according to personal and governmental criteria.

 Smoothing Out the Math

• Stocker’s (2006) “Disabled by prejudice” lesson begins with background reading 
regarding challenges faced by people with physical disabilities. The lesson then 
includes 14 questions, some of which parallel common textbook presentations of 
word problems. The bite-sized problems tangentially relate the math content to 
the social issues addressed.

• Esmonde and Quindel (2006) created a project to help students explore global-
ization, labour and the environment with linear programming. The project 
involves an imaginary shoe company and made-up data regarding the costs for 
labour, materials, and shipping in both Indonesia and California. The project is 
supplemented with resources about globalization and impact.
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 Appendices

 Appendix A

Nutrition North Canada is a subsidy program that seeks to improve access to 
perishable healthy food, as well as country or traditional foods, in isolated northern 
communities. It was launched on April 1, 2011 and is based on a market-driven 
model. The subsidy is transferred to retailers and suppliers that apply and are 
selected to register with the program, which then must pass on the savings to con-
sumers. There are some conditions for communities to be eligible for the program, 
such as the lack of year-round surface transportation (i.e. no permanent road, rail or 
marine access). In some places, like Nunavut, residents are upset that non- perishable 
basics like flour are not subsidized under the new program. They must cope with a 
cost of living that can be significantly higher than many other places in Canada. You 
can find more facts on this program at: http://www.nutritionnorthcanada.ca/

Nunavut has approximately 30,000 residents, with about 56% of residents under 
the age of 25. Statistics Canada reports that the median family income in Nunavut 
in 2010 was $ 62,680 per year, which is among the lowest in Canada. Despite this, 
cost of living can be quite high. Due to the challenges of vast distances, a small but 
growing population, the high cost of materials and labour, and extreme climate, it is 
difficult to maintain Canada’s high standards of living in Nunavut. This is one of the 
reasons that the federal government has included Nunavut in the Nutrition North 
Canada program.

In addition to subsidizing food costs, one of the goals of NNC is to provide cultur-
ally appropriate nutrition education and health initiatives, working in conjunction 
with the Canadian government. However, recent media attention to the NNC has 
questioned the effectiveness of the program, suggesting that prices have increased 
since its implementation, and they question why basic necessities such as flour are not 
being subsidized (e.g. see: http://www.cbc.ca/news/canada/north/story/2012/06/09/
north-nunavut-food-price.html). It is unclear if the needs of Nunuvat’s residents are 
being met, and whose responsibility it is to provide for these needs.

 1. What is the weekly cost of groceries for a family of four in your neighbourhood? 
Please explain how you determined this. Then, compare your result with data 
about Nunuvat from the Aboriginal Affairs and Northern Development Canada 
website, which has documented costs of food in remote northern communities 
(see: http://www.aadnc-aandc.gc.ca/eng/1100100035986/1100100035987).

PART A: Introduction – What is Nutrition North Canada (NNC)?

PART B: The Project – Exploring NNC in Nunuvat

A. Mamolo et al.
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 2. Determine the cost of living of an average family of four in your neighbourhood 
and compare it with the household income of an average family of four in your 
neighbourhood. Represent the data in two different forms. What do the results 
tell you? Do the different representations give different insights into the data? 
Please explain.

Note: Statistics Canada website offers helpful information for this question. 
Visit: http://www12.statcan.ca/census-recensement/2006/dp-pd/fs-fi/index.cfm?
LANG=ENG&VIEW=D&format=flash&PRCODE=01&TOPIC_ID=7

 3. A local newspaper has asked you to write an opinion piece about the Northern 
Nutrition Canada’s service to Nunuvat. Analyse the goals of the NNC program 
in relation to the needs of Nunuvat’s residents. Your analysis should include, but 
need not be limited to, a critique of the subsidy package, its cost effectiveness, 
and its affordability.

 Appendix B: Canadian Curricular Connections

Food equity – Exploring the Nutrition North Canada program

General categories of expectations ON WNC

Primary data collection (surveys) 7, 8, CM11, DM12 9, FM12
Secondary data collection 7, 8, CM11, DM12 9, FM12
Data display 7, 8, CM11, DM12 9, FM12
Populations and sampling 7, 8, CM11, DM12 9, FM12
Sampling bias 7, 8, CM12, DM12 9, FM12
Use of data to make inferences and convincing 
arguments

7, 8, DM12 WM11, FM12

Critical analysis of data in the media CM12, DM12 WM12, FM12
Indices (e.g. CPI) CM12, DM12

Bullying in schools – Creating a safe space to play

General categories of expectations ON WNC

Proportional relationships 7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Percent, ratio, rate 7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Quantity 7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Area 2-D 7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Volume, Capacity and Surface Area 7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Whole Numbers, Decimals, Integers, 
Fractions

7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Solving Multi-Step Problems 7, 8, 9D, 9P, 10D, 
10P

7, 8, 9, WM10, WM11, FM10, 
FM11

Exploring Math Through Social Justice Context Problems

http://www12.statcan.ca/census-recensement/2006/dp-pd/fs-fi/index.cfm?LANG=ENG&VIEW=D&format=flash&PRCODE=01&TOPIC_ID=7
http://www12.statcan.ca/census-recensement/2006/dp-pd/fs-fi/index.cfm?LANG=ENG&VIEW=D&format=flash&PRCODE=01&TOPIC_ID=7


388

Mathematics Courses Legend

Ontario (ON) 7 – Grade 7 Mathematics; 8 – Grade 8 Mathematics; 9D – Grade 9 
Principles of Mathematics (Academic); 9P – Grade 9 Foundations of Mathematics 
(Applied); 10D – Grade 10 Principles of Mathematics (Academic); 10P – Grade 10 
Foundations of Mathematics; CM11 – Foundations for College Mathematics, Grade 
11; CM12 – Foundations for College Mathematics, Grade 12; DM12 – Mathematics 
of Data Management, Grade 12

Western and Northern Canada (WNC) 7 – Grade 7 Mathematics; 8 – Grade 8 
Mathematics; 9 – Grade 9 Mathematics; WM10 - Apprenticeship and Workplace 
Mathematics, Grade 10; WM11  – Apprenticeship and Workplace Mathematics, 
Grade 11; WM12 – Apprenticeship and Workplace Mathematics, Grade 12; FM10 – 
Foundations of Mathematics and Pre-Calculus, Grade 10; FM11 – Foundations of 
Mathematics, Grade 11; FM12 – Foundations of Mathematics, Grade 12.

 Appendix C: Web-Based Resources NNC Program

Consumer Price Index

http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/cpis01a-eng.htm
Cost of the Revised Northern Food Basket in 2012–2013
http://www.nutritionnorthcanada.gc.ca/eng/1369313792863/1369313809684
Cost of the Nutritious Food Basket – Toronto 2013
http://www.toronto.ca/legdocs/mmis/2013/hl/bgrd/backgroundfile-61625.pdf
Eating Well with Canada’s Food Guide – First Nations, Inuit and Métis
http://www.hc-sc.gc.ca/fn-an/food-guide-aliment/fnim-pnim/index-eng.php-a1
Fact Sheet: Revised Northern Food Basket
http://www.nutritionnorthcanada.gc.ca/eng/1369314079798/1369314090524
Fact Sheet: The Nutrition North Canada Program
http://www.nutritionnorthcanada.gc.ca/eng/1367932314461/1367932387670
Food Secure Canada
http://foodsecurecanada.org/community-networks/northern-remote-food
Food Mail Program
http://publications.gc.ca/collections/Collection/R2-221-2002E.pdf
A National Nutritious Food Basket
http://www.hc-sc.gc.ca/fn-an/surveill/basket-panier/index-eng.php
Nutritious Food Basket – Guidance Document
http://www.mhp.gov.on.ca/en/healthy-communities/public-health/guidance-docs/

NutritiousFoodBasket.PDF
Nutrition North Canada
http://www.nutritionnorthcanada.gc.ca/eng/1351088285438/1351088295799
The Revised Northern Food Basket
http://publications.gc.ca/collections/collection_2008/inac-ainc/R3-56-2007E.pdf
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 Appendix D: Bully Project Worksheets and Rubrics

 PLAYGROUND ANTI-BULLY PROJECT: PROPOSAL

School playgrounds are the time to bond with pupils around the school and to enjoy 
the few minutes of fresh air with friends. However, the current era lives in fear of 
travelling outside. May it be the weather or the legends created by students around 
the school, students are not willing to go outside during recess. After watching the 
short film “The Bully Dance”, it is evident that some students are disturbed by bul-
lies. In this assignment, you will discuss with your group members to make a school 
friendly playground to minimize bullying in the school.

Objective
In a group of 4–5, create a school playground that will reduce bullying and be of 
minimum cost.

Proposal
Brainstorm various ideas leading to the problem of the bullying in the school play-
ground. Create a letter to the principal regarding the idea of bullying in the play-
ground and the relation for the creation of a new playground to solve this issue. In 
your letter, remember to include:

 – Date and Time of letter
 – Principal’s name and address of school
 – Introduction, body, and conclusion
 – Closing Statement (Example: Regards, Thanks, Sincerely, etc.)
 – What bullying is Why your group is deciding to this
 – What is the relationship with bullying and the playground
 – How does your playground differ from the current playground
 – How is your playground going to be cost effective
 – How will your playground be captivating for students
 – Where can students go to report bullying (Example: Teachers, Senior Students, 

etc.)
 – Are there any danger precautions
 – Will there be restrictions in your playground

Assessment Rubric

Area of achievement and expectations
Limited 
level 1

Some 
level 2

Considerable 
level 3

Thorough 
level 4

Format structure of the letter includes all the 
required details (such as date, school address, 
principal’s name, paragraph structure, etc.)
Bullying information that includes examples 
from the short film ‘the bully dance’ as well 
as ideas that were brought up during the class 
reflection.
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Area of achievement and expectations
Limited 
level 1

Some 
level 2

Considerable 
level 3

Thorough 
level 4

Draft diagram of the playground is included 
and contains sufficient detail in order to 
demonstrate the effectiveness of reducing 
bullying.
Explanation and breakdown of the costs 
associated with building the playground.
How will your playground reduce bullying 
behaviour at school and how will this be 
measured?

 PLAYGROUND ANTI-BULLY PROJECT: THE DESIGN

This assignment will explore the issue of bullying in schools. As a student, it is your 
responsibility to make any school environment friendly for students. In your group, 
discuss and brainstorm ideas that relate to the solutions of bullying in a school envi-
ronment. With these ideas, create the perfect model of a playground where bullying 
is near negligible. Your playground must be able to accommodate all grades from 
kindergarten to grade 8.

Objective
Create a blueprint of a playground that minimizes all forms of bullying.

Procedure
You are given a budget $100,000 as an annual budget. Your playground will be run 
under a rental business and your school can only give a buffer range of $1000 if you 
need it. There are three land sizes:

 – 4000 × 4000: $30,000
 – 6000 × 6000: $40,000
 – 8000 × 8000: $50,000

Your playground must have a minimum of 2 playground activities:

 – double swing set: $10,800
 – single slide: $10,350
 – double slide: $25,000
 – triple swing set: $17,500
 – seesaw: $10,000
 – soccer playground: $30,000 (will take 700 ft2)
 – basketball playground: $30,000 (will take 300 ft2)
 – baseball field: $30,000 (will take 850 ft2)

Each centimetre on your layout will be measured to a scale of 25 cm in reality. 
There are also other restrictions:
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 – the playground must be attached to the school
 – there must be 2 entrances from the playground to the school
 – there must be three teachers and teachers must be able to cover a 15 cm radius
 – there must be at least 30% of free land for school kids to roam around
 – the parking lot must be attached to the playground

Assessment Rubric

Area of achievement and expectations
Limited 
level 1

Some 
level 2

Considerable 
level 3

Thorough 
level 4

Layout/blueprint is labeled in correct format 
with all calculations provided (such as 
dimensions of land plot, total free space, 
estimate of activity and sizes)
Understand the use of 3-D dimensions to 
portray structural placements by using correct 
scales to ensure safety of all structures.
Use mathematical logistics to justify reasons 
behind separation of activities and areas of 
activity.
Use real-life application to layout certain 
activities in correct areas to ensure high 
priority of structural stability.

 PLAYGROUND ANTI-BULLY PROJECT: INDIVIDUAL WRITE-UP

Description
After watching the film “The Bully Dance”, you should realize that bullying is a 
very serious problem that happens in the real world. Reflect on what you learned 
after watching the short video, what are your thoughts about bullying, how your 
design of the playground will reduce or prevent bullying, why bullying should be 
stopped, what you can do to stop bullying and if bullying happens at your school. 
Summarize a few points on a page. You may also include your personal experiences 
with bullying. For example, if you’ve been bullied, if you witnessed someone else 
being bullied and what you did about it/what you should have done.

Task
Select at least 3 points to write on:

• What you learned from the video?
• What you think about bullying?
• How your design will prevent bullying?
• Experiences with bullying (if applicable)
• What are ways to prevent bullying?
• Why bullying should be stopped?
• Does bullying happen at your school?
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Your write up should include at least two paragraphs covering at least three of these 
points.
Assessment Rubric

Area of achievement and expectations
Limited 
level 1

Some 
level 2

Considerable 
level 3

Thorough 
level 4

Summary of what bullying is from your own 
experience and what you learned from 
viewing the video.
Explanation of why your group chose the 
design of your playground.
How does your playground design promote 
anti-bullying.
Explanation of how your anti-bully design 
will be used by all members of the school 
community at the present time and in the 
future.
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Social Justice and the Teaching 
and Learning of Mathematics

Gale Russell

Abstract Social justice seeks to identify, understand, and ultimately remove ineq-
uities from all aspects of life. This chapter discusses ways that social justice and 
mathematics teaching and learning can intersect within the classroom, and beyond: 
social justice issues as contexts for applying mathematics or as an impetus for creat-
ing of new mathematical knowledges, processes, and tools; and teaching and learn-
ing mathematics through socially just pedagogical approaches.

Keywords Social justice · Mathematics · Teaching · Learning · Worldview · 
Indigenous · Traditional western

Social justice has been defined in many different ways and from very different per-
spectives, such as political, legal, and social perspectives. In this chapter, social 
justice will be discussed from an educational perspective. Even within this particu-
lar context, however, social justice can be viewed very differently.

Perhaps in broadest of terms, social justice focuses on identifying, understand-
ing, and ultimately removing inequities from social contexts. Within education, 
social justice is often embraced in two ways: having students explore, understand, 
and even take action regarding social justice issues in their school, community, or 
the world; and by teaching in socially just ways in the classroom.

In the first case, issues such as safe drinking water for all Canadians, global 
warming, or missing and murdered Indigenous women can become a topic to be 
studied by students through one or more of their school classes. This kind of social 
justice in education is often most effectively introduced by tapping into concerns 
and questions that the students raise rather than based upon a teacher’s own 
interest.

The second way that social justice enters into classrooms is in response to ineq-
uities resulting from pedagogical choices, classroom structures and environments, 
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and institutional policies. Teaching and learning are inherently political acts, and 
classroom expectations, school policies, pedagogical approaches, and other tradi-
tions determine (explicitly or implicitly) who is advantaged or disadvantaged within 
the classroom. The processes of privileging ultimately determine who is oppressed 
within the classroom, be it based upon race, gender, assumed ability or disability, 
and limitations placed upon learning opportunities. Classrooms grounded in social 
justice challenge such notions of power and sites of oppression, many of which are 
so engrained in the past that they have been unquestioningly accepted as inevitable 
in the present.

In this form of seeking to embed social justice within the practices and environ-
ments of teaching and learning, the “‘ism’ words—racism, classism, sexism, het-
erosexism, ableism, etc.” (Sensoy and Diangelo 2009, p.  348) are exposed, 
scrutinized, and reformed. Teaching with social justice in mind recognizes that 
socio-economic, gender, racial, and sexual orientation (to name but a few of the 
isms) inequities often not only underlie, but continue to propagate gaps in student 
performance, poor sense of identity, and disinterest in learning. Fundamentally, 
teaching with social justice in mind means taking actions to counter the resulting 
power inequities and oppressions that enter into every classroom and demands just-
ness for all students, regardless of who they are or where they come from.

Ultimately, in teaching and learning contexts, “Social justice is recognizing and 
acting upon the power that we have for making positive change” (Dell’Angelo 
2014, para. 2), and as teachers, it is our responsibility to enact social justice in all of 
our classrooms. What such teaching and learning can look like in a mathematics 
classroom will now be considered.

 Social Justice As a Context for Mathematics Teaching 
and Learning

Kumashiro (2001) tells us that:

If science and mathematics classrooms have traditionally taught science and math in only 
certain contexts and attempted to answer only certain questions, then students can be invited 
to learn sciences and maths in different contexts (Frankenstein and Powell 1994), and use 
sciences and maths to answer different kinds of questions and solve different kinds of prob-
lems, especially problems relevant to their own lives (Ladson-Billings 1995). (p. 7)

In other words, using mathematics as a set of tools and ways of knowing to under-
stand and engage with social justice issues, contexts, and questions used in the 
classroom plays a crucial role in learning. While an inquiry project into social jus-
tice issues related to pension plans (and the lack of pension plans) might be very 
relevant to a particular teacher, high school students may not see the relevance of 
such an undertaking either from a social justice or mathematics perspective.

A topic such as carbon taxing however, may be engaging and of great importance 
to students, whether they are coming from an environmental perspective, from a 
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family farm that requires gas to operate its equipment, or as a new car owner who 
enjoys cruising the streets of their home community. Likewise, if the students are in 
a course preparing them for academic post-secondary pursuits, the topic of costs for 
post-secondary education and variances across Canada and the world might be one 
that the students are interested to explore, and possibly take action upon. Or perhaps 
your students have been learning that “we are all treaty people,” but they are having 
a hard time understanding what that means and what the implications are for them 
and the other people of Canada. Maybe your students are already becoming politi-
cally active by taking sides on a local debate surrounding gender neutral wash-
rooms. All of these topics of social justice can also become contexts for mathematics 
teaching and learning.

Using mathematics as one set of tools for exploring such issues can help students 
(and their teachers) come to a better understanding of the issue, how it impacts 
them, and what they could choose to do in response to it, as well as providing a 
reason for learning certain mathematical concepts and procedures. The key is to get 
to know your students and their interests and concerns. Listen to what they want to 
talk about, and then look for how you can tie the mathematics they are expected to 
learn to the issues they identify and discuss.

Jonathan Osler (2007) makes the following recommendations when engaging in 
social justice issues in the mathematics classroom:

• Make sure the mathematics connection is strong. “Fit the issues to the math,”
• Talk to your students about what issues they are interested in,
• Use broad open-ended questions about the issue for setting the context of the unit 

or project,
• Start the unit or project by introducing the issue, not the mathematics, and
• Introduce the mathematics as it is needed or wanted. (p. 7)

The first of these recommendations reminds us as teachers that ultimately we are 
responsible for teaching the students mathematics and that social justice issues are 
to be thought of as vehicles for facilitating that learning. Conversely, however, Osler 
reminds us that the social justice issue is the impetus for learning and doing the 
mathematics, so it is important to start with the issue and bring the mathematics in. 
This notion is reaffirmed in his final recommendation, that is, to hold off on intro-
ducing or developing any mathematics until the students have a need for it. In so 
doing, a teacher can thereby prevent the issue seeming contrived by the students.

The website http://radicalmath.org/ provides a number of examples of social jus-
tice issues that can be used at different grades and courses of mathematics, and it is 
organized by mathematics topic, social justice issue, and resource type. Such a 
resource is always helpful, but do not forget that the integration of social justice into 
any classroom needs to be in response to student interests and curricular content, 
and not the presence of a ready-made lesson.

When embarking upon this kind of integration of social justice issues and math-
ematics teaching and learning, assessment and evaluation are also often topics that 
require addressing. Assessment (without evaluation) of such instances of integra-
tion, as the collection of evidence of learning, can easily be done for both student 
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understanding of the social justice issue and of the mathematics in whatever ways 
the teacher feels appropriate. However, an assessment can also become an evalua-
tion, but at this point, the teacher needs to be very careful that what is being evalu-
ated is what the curricular goals, outcomes, objectives, or standards are for the class 
they are teaching. If the curriculum is only speaking to students’ learning of math-
ematics content, then that is what the evaluation of students should speak to—the 
mathematics content.

For some, this differentiation between what is assessed and what is evaluated is 
seen as highly problematic, questioning why one would have the students engage 
with the social justice issue if their mark does not reflect how well they did in that 
regard, and ultimately asks the question of why the social justice issue was even 
raised. For others, the fact that students now are more knowledgeable about the 
issue, and about how mathematics can be used in making sense of social justice 
issues is justification enough. This is a quandary that each teacher must engage with 
in their own terms. Many find their comfort zone in a more middle ground—where 
the mathematics learned is graded, but social justice issues and engagement are also 
reported in some separate manner (for example, a separate grade, a rubric score, or 
an anecdotal record) which can also be communicated to the students and parents or 
guardians.

Done thoughtfully and respectfully, the incorporation of social justice issues in 
mathematics class can bring greater meaning and value to the mathematics that 
students are learning. Such incorporation helps to address the question of “when am 
I ever going to need this stuff” (a common refrain in mathematics classrooms) as 
well as providing some students who may have always felt that they had no way to 
connect with mathematics experiences that allow them to interact with mathematics 
in meaningful and relational ways.

The second way that social justice and mathematics can be brought together 
within the mathematics classroom focuses on the ways in which mathematics is 
taught and learned. In this approach, the social justice of the pedagogical approaches 
chosen as well as the kinds of knowledge and ways of knowing being valued are 
under consideration.

 Teaching and Learning Mathematics in Socially Just Ways

The teaching and learning of mathematics in socially just ways is directly tied to the 
notion of anti-racist education. Often when hearing the term “anti-racist education,” 
people think of “multicultural education”; however, the intent of the two approaches 
is different, and in fact, both can occur within the same classroom. The focus of 
multicultural education is on helping students appreciate and understand cultures 
beyond their own (and often their own as well), with the underlying purpose being 
to prepare students to live and work successfully within multicultural settings. Anti- 
racist education, on the other hand, focuses on changing policies and structures 
within the educational system that promote the labelling of students on the basis of 
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their ethnic or socio-economic backgrounds; physical, emotional and mental abili-
ties; gender; and so on. So, whereas multicultural education promotes student 
understanding and valuing of all cultures, anti-racist education acts to ensure that no 
inequities based upon racial and other forms of stereotyping and oppression exist in 
the classroom.

For example, while multicultural education might promote students’ understand-
ing of Indigenous mathematics by providing students with experiences and knowl-
edge related to various examples from Indigenous cultures; anti-racist education 
would challenge and deny the stereotyping, and resulting oppression, of Indigenous 
students as being mathematically deficient. This belief that Indigenous people are 
inherently inferior at mathematics is something which has been documented through 
(highly flawed) scientific research and it continues to be reinforced by some teach-
ers and educational partners when they are interpreting statistical data showing high 
drop-out rates and high failure rates for Indigenous students in both mathematics 
and science. From an anti-racist education perspective, these beliefs would not only 
need to be revealed for their misinterpretation and misrepresentation of the situa-
tion, but also for the damage done by such racist beliefs and statements. Furthermore, 
anti-racist education would openly challenge these beliefs and theories, and deny 
them any power or authority within the classroom (and ultimately beyond the 
classroom).

Perhaps the most perplexing part of trying to engage in anti-racist education (for 
the purposes of social justice, or otherwise) is being able to identify when oppres-
sion is occurring and how. As Gutiérrez (2013) notes:

The rush to move onto the next mathematical concept (or response to intervention proce-
dure) almost ensures that we will not ask why this concept? Who benefits from students 
learning this concept? What is missing from the mathematics classroom because I am 
required to cover this concept? How are students’ identities implicated in this focus? (p. 37)

These are all questions which require serious contemplation when focusing on 
teaching for, about, and through social justice. Blake (2015) expands on these ques-
tions by arguing that teachers and students should be expected to reflect upon ques-
tions such as:

• Who makes decisions and who is left out?
• Who benefits and who suffers?
• Why is a given practice fair or unfair?
• What is required to create change?
• What alternatives can we imagine? (para. 3)

Ultimately, all of these questions come down to an interrogation and reflection upon 
what kinds of knowledge and ways of knowing are being valued within the class-
room, because what is being valued tells us where we are, where we need to go, and 
how we might get there.
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 One Approach to Teaching and Learning Mathematics 
in Socially Just Ways

Although their book does not explicitly attempt to connect to teaching and learning 
mathematics in socially just ways, Sullivan and Lilburn’s (2002) Good questions for 
math teaching: Why ask them and what to ask? provides a possible place to start—
that of creating open questions (also referred to as inquiry questions, true problems, 
and so on). In this resource, one approach given to creating what the author’s title a 
“good question” out of a closed question is by working backward:

This is a three-step process.

• Identify a topic.
• Think of a closed question and write down the answer.
• Make up a question that includes (or addresses) the answer. (p. 7)

In the mathematics classroom, a closed question is one that, by the way it is written 
and by when it is given, there is clearly a single answer being sought and a specific 
procedure or algorithm to be used. Moreover, that procedure or algorithm would be 
one that has already been explicitly and directly taught and demonstrated to stu-
dents. Let’s consider a question given in the text:

The children in the Smith family are aged 3, 8, 9, 10, and 15. What is their average age? 
(Sullivan and Lilburn 2002, p. 8)

In most classrooms, this would be seen as a closed question, with both the teacher 
and students knowing exactly what is expected to be done. Reading this question, it 
is easy to assume that the students have been provided an algorithm such as “add all 
the numbers up and divide by the number of numbers ( x x x x

n
n1 2 3+ + +…+  as the 

formula)” in class, along with a few examples, and this is the typical word problem 
at the end of the practice exercises.

There are many changes that can be made to this question to make it more open, 
but let’s consider just one: The five children in a family have a mean age of 9. How 
old are the children? This new question is more open in at least two ways: there are 
many possible answers (9, 9, 9, 9, 9; and 7, 8, 9, 10, 11 are just two of them), and 
with the removal of the family name, Smith, all students can better relate to who is 
in the family and, for some students, may even invite them to think about different 
kinds of families (single parent, middle-class, Muslim, Greek, same-sex parents and 
so on). A further editing of the question could remove the fact that there must be five 
children to make it even easier for the students to see themselves in the question (be 
they from a single child family or a family with 15 children). This further edit can 
in some cases add too much openness and confusion to start the students with, but 
it may be good for individuals that cannot relate to a family with five children.

When moving to this type of question for the purposes of instruction and learn-
ing, as a teacher you need to be prepared for students to provide challenges to your 
thinking and interpretation of the question and how you will respond to them. As 
noted earlier, five children aged nine is a possible mathematical solution, but some 
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students (and teachers) might not say it is a realistic one. However, for some stu-
dents, quintuplets (although extremely rare) may be a family reality, but so might a 
blended family made up of two sets of twins and one child born less than a year 
before or after one of the sets of twins. Thus, this question as rewritten is now allow-
ing different kinds of knowledge (about family structures as well as mathematics) to 
be acknowledged and valued.

Some students may also propose children who were still-born being included, 
and hypothetically might argue for a solution of 0, 0, 0, 0, 0, 45. Other students 
might consider fractional ages 9 ½ versus 9. These proposals, if you have antici-
pated at least some of them, need not interfere with the intended mathematical 
learning. Instead, they open up the potential for greater learning and engagement by 
the students.

This type of learning in mathematics also considers and values the many differ-
ent ways that students may be attempting to solve and answer the problem. As a 
teacher using this type of question, you will need to anticipate as many ways that the 
students might engage with the task. Will they do it concretely or visually, and if so 
how? Might some students build 5 towers of 9 linking cubes each and then move 
cubes from one tower to another to get different “ages?” Or perhaps they would put 
all the cubes of the towers together and “deal them out” into five piles of different 
sizes. What of the student who concludes “their ages must total 45.” How does the 
student know this, and how does it relate to the other representations that are being 
presented? As all of the emerging approaches are being discussed and connected to 
each other, big ideas related to averages (or, to be mathematically correct, arithmetic 
means) emerge that are often missed when only the formula is taught: the idea of a 
total to be shared amongst a group or set and the role of balancing and compensation 
in the determining of an average.

Through the work on this problem, the formula stated earlier, and even this form: 

n

i
nx

n

=

∑
1

, can be drawn out through the discussion and generalized and abstracted. In 

this way, the students are entering into the solving of the problem through their ways 
of thinking and their knowledge which in turn is both valued and connected to a for-
mula that they have co-constructed and that is now available for any student to use.

 Combining the Two Approaches

Social justice experiences in the mathematics classroom can also be a combination 
of using social justice issues as a context for mathematics and the teaching and 
learning of mathematics in socially just ways. For example, consider the issue of the 
infectious diseases epidemics that are on the rise worldwide: Ebola, the Zika Virus, 
mumps, tuberculosis, antibiotic resistant superbugs, and so on. Each has substantial 
statistical data available to analyze mathematically through z-scores and probabili-
ties, confidence intervals and margin of error, function regressions and so on. 
However, there is also the possibility of cultural mathematical knowledges, 
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mathematics that has never been formally valued, even acknowledged, in Western 
mathematics that can enter into the classroom when exploring such topics. Consider, 
for example, the case of the Navajo Plague.

In 1993, the Centre for Disease Control (CDC) was called in to investigate a 
highly infectious and deadly disease that was ravaging the populations of the Navajo 
reservations in the Four Corners (the area where Arizona, Colorado, New Mexico 
and Utah meet). Young and healthy people in these communities were contracting a 
cough and then, often within a day or two, were dead. One CDC researcher, who 
was part Navajo, asked the communities what their healers had said about the dis-
ease, but no one had asked the healers, explaining that this was clearly a new mod-
ern infectious disease. This researcher, however, decided to go and speak to a healer. 
The healer showed the researcher a photo of a sand painting done many years earlier 
by another healer. In great detail, the sand painting told the story of at least 3 years 
of excessive rain, followed by the increased growth of a particular conifer, and the 
resulting increase of a very particular kind of mouse. This mouse was then shown 
going into the Navajo homes, the majority of which still had dirt floors. It then 
showed how the failure to properly clean up the faeces and urination of these mice 
resulted in the people in the homes dying from a disease with the same symptoms 
as what was being currently seen. The researcher was shocked, realizing that this 
sand painting was depicting what science knew about the transmission and preven-
tion of transmission of the Hanta Virus. Upon reporting these findings to the head of 
the CDC investigation however, the researcher was told that in no way could this be 
the Hanta Virus because the deer mouse that carries the virus (and which was shown 
in the sand painting) was not endemic to the region. The CDC continued testing for 
other virulent and modern diseases, such as the Ebola virus, and it was only much 
later that they did test for the Hanta Virus, and the test was positive. By then, many 
people had died and communities surrounding the Four Corners reservations were 
banning Navajo people from their businesses for fear of their contracting of the 
“Navajo Plague.” (For more information on this situation, see The Scalpel and the 
Silver Bear by Ariso Alvord and Cohen Van Peet 1999.)

So, what is the relevance of this story to mathematics understanding, teaching, 
and learning? There are no computations, no mathematical models, and no trend 
analyses present. But, there is statistical thinking and hundreds of years of evidence. 
It is just that the statistics and evidence were not documented, represented, and 
analysed in the ways that Western mathematics (and science) values. This is statisti-
cal knowledge that has been embedded in culture and oral traditions that are differ-
ent from those of Western mathematics and science. It is statistical knowledge that 
has been shared over the centuries through stories and sand paintings. And, it is 
statistical knowledge that, if it had been valued, could have saved so many lives and 
community relations. Thus, it is mathematical knowledge worth knowing, and 
worth valuing.

This is not to say that Western mathematics (and science) should be replaced by 
Indigenous knowledges and ways of knowing. The Western mathematics absolutely 
serves valuable purposes, but so do other mathematical kinds of knowledge and 
ways of knowing. It is all about context or place, because that defines the knowledge 
of most value to the knower. As Kumashiro (2001) argues,
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mathematics and sciences can be taught in ways that constantly look beyond what is being 
learned and what is already known. … educators can approach the teaching of maths and 
sciences in paradoxical ways: simultaneously learn about the contributions of science and 
math, while exploring ways that science and math have closed off further learning, privi-
leged only certain knowledge, and in the process, contributed to oppression. Educators can 
teach students to be not only mathematicians and scientists, but also math critics and sci-
ence critics. (p. 7)

As future mathematics teachers, and as continuing mathematics learners, you, as 
pre-service teachers, have the opportunity to open up mathematics teaching and 
learning, shifting from the singular and authoritative view of Western mathematics 
and create space for many kinds of mathematical knowledge and mathematical 
ways of knowing. In so doing, learners of mathematics, being given the opportunity 
to come to mathematics in their own ways and being invited to build connections 
between different mathematical knowledges and ways of knowing, can develop 
greater mathematical competence, confidence, and fluency.
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A Teacher’s View – Problem Solving 
in the Secondary Classroom

Shawn Godin

Abstract In this chapter we examine problem solving in the secondary classroom 
from the point of view of a practicing teacher. Problem solving will be explored as 
a means of learning mathematics as well as a goal unto itself. Sample problems to 
engage students are discussed with references to the points in the curriculum where 
the problem is relevant. Connections will be made to other pedagogical practices 
such as the use of technology and cooperative learning. We will also discuss consid-
erations for the classroom teacher in the assessment of student work. Finally, we 
will discuss some sources of nice problems.

Keywords Problem solving · Cooperative learning · Technology · Assessment

 Introduction

Problem solving lies at the very heart of mathematics. All of the mathematics that 
we teach came from someone’s need to solve a problem, their discovery of a pattern, 
or their generalization of some previously known facts. The most important role of 
mathematics in the school curriculum is to expose students to problem solving, both 
concrete and abstract. This chapter describes the on-going efforts of a secondary 
teacher of mathematics in Ontario to shift his classroom practice to have a greater 
emphasis on problem solving as both a means of learning mathematics and a valu-
able skill unto itself. “Solving problems is not only a goal of learning mathematics 
but also a major means of doing so. … By learning problem solving in mathematics, 
students should acquire way of thinking, habits of persistence and curiosity, and 
confidence in unfamiliar situations that will serve them well outside the mathemat-
ics classroom” (National Council of Teachers of Mathematics [NCTM], 2000, 52).

Problem solving is of such importance that it is one of the five process strands 
focused on by the NCTM (2000). The mathematical curricula from many regions 
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use the NCTM’s Standards as a stepping stone; as such, problem solving has a cen-
tral role in these mathematics curricula. In Ontario, for example, all three Ontario 
mathematics curricula contain the following quote: “Problem solving forms the 
basis of effective mathematics programs and should be the mainstay of mathemati-
cal instruction. It is considered an essential process through which students are able 
to achieve the expectations in mathematics, and is an integral part of the mathemat-
ics curriculum in Ontario” (Ontario Ministry of Education 2005a, pp. 11–12, 2005b, 
pp. 12–13, 2007, p. 18). The Ontario mathematics curricula include seven mathe-
matical process expectations attached to all mathematics courses. Five of these pro-
cess expectations are derived directly from the five process strands of NCTM 
(problem solving, reasoning and proving, connecting, representing, communicat-
ing), while the other two (reflecting, selecting tools and computational strategies) 
have strong connections to the problem solving process. Problem solving is seen as 
a thread that ties all the mathematical processes together as well as a vehicle for 
their development. “The mathematical processes are interconnected. Problem solv-
ing and communicating have strong links to all the other processes. The problem- 
solving process can be thought of as the motor that drives the development of the 
other processes” (Ontario Ministry of Education 2007, p. 17).

In the past, problem solving may have been seen by some teachers as those hard 
application questions that reside in section C of the textbook exercises. Although 
these have their place, there are many other ways that problem solving can be used 
to help students learn and understand mathematics. The purpose of this chapter is to 
examine various ways that problem solving can be used effectively in your class-
room as well as considering its coordination with other parts of your classroom 
activities from the perspective of a current high school mathematics teacher.

Throughout this chapter, ties to courses in the Ontario mathematics curricula will 
be made. In Ontario, students must earn at least three mathematics credits in order 
to graduate. Courses in grade 11 and 12 are divided into three categories based on 
the destination of the student. Students may take university preparation courses, 
college preparation courses or workplace preparation courses. Courses in grades 9 
and 10 are broken into three categories and serve as prerequisites of courses in later 
grades. Academic courses1 are prerequisites for the university preparation courses, 
Applied courses are prerequisites for the college preparation courses and Locally 
Developed courses are prerequisites for workplace preparation courses.

In Ontario, students’ knowledge and skills are broken down into four broad cat-
egories: knowledge and understanding, application, communication, and thinking. 
The three curriculum guidelines define these categories, outline considerations for 
the assessment and evaluation of student work and provide a rubric, the achieve-
ment chart, to help guide teachers in the development of their own tasks and evalu-
ation tools (Ontario Ministry of Education 2005a, pp. 18–23, 2005b, pp. 17–22, 
2007, pp. 23–29).

1 See McDougall and Ferguson (Part II this volume, para. 1) for a discussion of two of the possible 
Ontario pathways (Academic and Applied).
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 Learning Through Investigation

In many instances students will have the background knowledge to develop fully, or 
partially, a concept with little scaffolding from their teacher. Encouraging students 
to think ideas through for themselves, or with a group, gives the concept a firmer 
grounding than if the students were just told it as a fact.

For example, in the Ontario Grade 10 Academic mathematics course curriculum, 
students need to “explore the development of the sine (cosine) law within acute 
triangles” (Ontario Ministry of Education 2005b, p. 51). The language implies an 
investigative approach, rather than just presenting students with the formula. 
Although student reproduction of the development of each of these laws is not 
required, students can benefit by exploring related problems. For example, consider 
the problem in Fig. 1.

Students will attack this problem in many different ways: from measurement on 
a scale diagram or manipulative like a geoboard; to technologically assisted solu-
tions using dynamic geometry software; or just doing a search of the internet. Some 
students who have been introduced to right triangle trigonometry will explore what 
happens if the given triangle is decomposed into right triangles, which will lead to 
a solution. Students can then be prompted to generalize the situation.

The variety of methods can lead to some rich discussions about the various types 
of solutions. The measurement method is fairly quick but lacks a precision that may 
be needed in similar problems. The dynamic geometry solution gives us an answer 
but without further investigation, does not give us any idea where the result came 
from. The internet search will give us a formula but not, without further reflection, 
any idea of why it works.

The collection of the varied ways of solving the problem complements each 
other. Students who used trigonometry may not have generalized the idea into a 
formula, but the development of the formula will be much easier understood and 
retained. Similarly, students who used other methods may better appreciate the need 
for the formula and see its connection with prior learning. When the students are 
presented with the development of the law, either from a student’s solution or 
teacher presentation, they will be intellectually invested to a higher degree than if 
either law was presented solely as a lecture. Teachers benefit from these types of 
explorations because students will often come up with novel ways of looking at 
things that can be incorporated into their own practice. In all cases students benefit 
from seeing a problem solved in different ways, because it builds stronger connec-
tions and possibly introduces methods that might be used in future problems.

An important idea, when presenting students with problems, is to let the student do 
the thinking. There exist many examples of problems and activities where the think-

If given DABC where ÐB = 72°, ÐC = 53° and AB = 9.5 cm,
determine, to the nearest tenth of a centimetre, the length of AC.

Fig. 1 A problem to introduce the sine law
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ing is done for the students. In these problems students are presented with the steps 
needed to solve the problem, and they just need to follow them rather than construct-
ing and following their own plan. You and your students are better served to strip 
things down as much as possible and provide support as needed (see Meyer 2010).

 Engaging Prior Knowledge

I use the problem in Fig. 2 in the first few lessons of Grade 9 Academic mathemat-
ics. This problem is great for getting students to “think outside the box,” since most 
students quickly claim to be done and provide me with the results: 1, 4, 9, 16, 25, 
36, 49, 64, 81 and 100. Upon finding out that they have less than a third of the 
results, they get back to work. Through their exploration you will have an opportu-
nity to remind them of areas of triangles and squares, decomposing shapes to deter-
mine area, complementary angles, the Pythagorean theorem and the fact that the 
process of squaring a number and taking the square root of a number are inverse 
operations on the positive real numbers. As well, the problem foreshadows slope 
and its relation to parallel and perpendicular lines from later in the course, ties into 
the distance between two points that they will investigate in grade 10, and ties into 
the problem in number theory of writing numbers as the sum of two squares.

This problem requires students to access past knowledge, and possibly see the 
connection between concepts that they had not seen before. Also, by being related 
to material students will study in the present course, it gives the chance to tie into 
this activity later in the year. You can see a more in-depth discussion of the problem 
in Godin (2011).

 Turning the Student into the Teacher

In our role as teachers, we will regularly construct questions with the answer and 
method of solution in mind and go through a problem solving process ourselves in 
the act of developing a question. We can give similar tasks to our students. In the 
Ontario grade 12 university preparation course Calculus and Vectors, students are 
asked to “4.7 solve problems relating to lines and planes in three-space … involving 
distances … or intersections” (Ontario Ministry of Education 2007, p. 110). A typi-
cal exercise would involve giving the equations of two lines and asking for their 
point of intersection or the distance between them if they do not intersect. We can 
turn this process on its head by asking a question like the one in Fig. 3.

A square is constructed on an 11 by 11 pin geoboard. What
are all the possible areas for the square?

Fig. 2 An introductory problem for grade 9 students
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The problem in Fig. 3 is not overly difficult, but that is not the point. As it stands 
many students will have an entry point and be able to demonstrate some understand-
ing of course material. What makes the problem interesting is that there are a variety 
of ways you can solve it, and there are many connections that can be made to mate-
rial inside and outside the course. If students understand that you are interested in 
the thoroughness of their solutions, this one question can give insight into the stu-
dents’ knowledge and understanding of many of the concepts and skills from the 
vectors part of the course. Students could bring into their solution any, or all, of the 
following: algebraic and geometric representations of vectors; equations of lines 
and planes; parallel and skew lines; lines parallel to a plane; the dot and cross prod-
uct, and other vector operations, and their properties; intersections of lines with 
lines or planes; length of vectors; unit vectors; spanning sets. As such, their discus-
sion could hit on all four expectations from the Geometry and Algebra of Vectors 
strand.

 Novel Problems

It is useful to present students with problems that are out of the ordinary. To solve 
the problem students need to use some very specific skills or knowledge, although 
their method of solution as well as other skills that are used may be varied. For 
example, in both the Ontario Grade 9 Academic and Grade 9 Applied mathematics 
curricula, students are asked to “solve problems involving … volumes of … cylin-
ders” (Ontario Ministry of Education 2005b, pp. 37, 45). The problem in Fig. 4 is 
non-standard and forces students to use the idea of volume of a cylinder.

With either audience, you could accompany the problem in Fig. 4 with some 
experiments involving water and cylinders to have the students understand what is 
happening and to help formulate their method of solution. This problem originally 
appeared as question #25 of the 2002 Pascal contest run by the Centre for Education 

Determine the equation of a line that is a distance of 5 units from
the line with equation r = (7, –2, –1) + k(8, –3, 4), k Œ .

®

Fig. 3 Reimagining a typical exercise

A student has two open-topped cylindrical containers. The larger container has a height
of 20 cm, a radius of 6 cm and contains water to depth of 17 cm. The smaller 
container has a height of 18 cm, a radius of 5 cm and is empty. The student slowly
lowers the smaller container into the larger container. As the smaller container is
lowered, the water first overflows out of the larger container and then eventually pours
into the smaller container. Determine the depth of the water in the smaller container
when the smaller container is resting on the bottom of the larger container.

Fig. 4 An out of the ordinary volume problem

A Teacher’s View – Problem Solving in the Secondary Classroom
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in Mathematics and Computing at the University of Waterloo. You can check out the 
full contest and solutions online at www.cemc.uwaterloo.ca. My analysis of the 
problem can be found in Godin (2013).

The wonderful thing about mathematics contests is that they are full of problems 
that are not of the standard variety. You can find many wonderful problems that you 
can use in your classes and others that will inspire you to construct your own prob-
lems that may be more appropriate for your students.

The last example (Fig. 4) was the last problem of a contest, which means that it 
is very difficult for the target audience. As such, few students may be able to come 
up with a correct solution. Although there is value in incorrect and incomplete solu-
tions, most often you want problems that will engage all of your students. With this 
in mind, I recently came up with the problem in Fig. 5, inspired by the cylinder 
problem, but which allowed a greater portion of my class to successfully complete 
the problem.

Much of the same ideas are used in the solution, but with fewer layers, making it 
easier for students to generate and execute a plan successfully. Most of the student 
groups solved the problem without errors, although some rounded their final result 
without thinking to give a close, but incorrect answer. This problem could also be 
used as a warm up for the original contest problem.

 Real World Problems

Another great venue for problem solving is open-ended, real world problems with 
no exact answer. A beautiful example of this is a problem by a colleague of mine, 
Alex Overwijk, a master of creating real world problems.

I will summarize his problem. He had students throw cards, one at a time, into a 
box a fixed distance away. The students collected lots of data so that they could 
estimate their rate of successfully throwing cards in a box. The teacher performed 
the experiment as well and let the students know his rate. The problem that they 
were faced with is this: each student would be in a match against Alex. Alex would 
give each student a “head start” by starting them with some cards already in the box. 
The students then had to determine how long the match should last so that they beat 
Alex and the contest was close (to make it more exciting). Students then analyzed 
the problem and came up with a strategy that they could then use to determine their 
desired time, which they could test with an actual match. Alex used this problem 
with his Grade 10 Applied class with great success. The full write-up of the prob-
lem, with examples of student work, is available online (Overwijk 2015). It is worth 

You have a cylindrical vase that has diameter 10 cm and height 20 cm. Water is put
in the vase to a depth of 15 cm. You also have a collection of spherical glass marbles
with diameter of 2 cm. Determine the maximum number of marbles that can be added
to the vase without spilling any water.

Fig. 5 A lead up problem to the problem in figure 4
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checking out Alex’s blog, http://slamdunkmath.blogspot.ca, for other examples of 
his work.

 Technologically Aided Explorations

One of the most powerful types of software for student mathematical discovery is 
dynamic geometry software like The Geometer’s Sketchpad and Geogebra. These 
platforms allow students to search for patterns as well as discover and describe 
geometric theorems using their own methods and words.
Many specific, and a few overall expectations from the Ontario Mathematics cur-
riculum, for example, mention dynamic geometry software. Some of these involve 
a “low end” use, for example from the Frade 11 Foundations for College Mathematics 
course: “2.2 verify, through investigation using technology … the sine and cosine 

law (e.g., compare, using dynamic geometry software, the ratios 
a

Asin
, 

b

Bsin
, and 

c

Csin
 in triangle ABC while dragging one of the vertices)” (Ontario Ministry of 

Education 2007, p. 73). Others are more open-ended and allow for a deeper use of 
the tool. In both the Ontario Grade 9 Academic and Applied mathematics courses, 
one of the overall expectations is “verify, through investigation facilitated by 
dynamic geometry software, geometric properties and relationships involving two- 
dimensional shapes” (Ontario Ministry of Education 2005b, pp.  36, 44), which 
allows for many possible tasks.

The task in Fig. 6 allows students to discover as many attributes of medians as 
possible, as well as possibly explaining why some work. For example, a student 
should be able to explain that a median cuts a triangle into two triangles of equal 
area. They may also be able to explain that when three medians are drawn, the six 
triangles that are formed all have the same area. Yet they may not be able to explain 
why the three medians cross at a common point, but that is fine.

 Working in Groups

One of the first considerations you must make before presenting a problem to the 
students is how they are going to work on it. You have the two extremes: alone or in 
a group, as well as a range of blended options. It is important for students to have 
the opportunity to work on their own, as well as to collaborate with others, so you 

In a triangle a median is a line segment joining one of the vertices of the
triangle to the midpoint of the opposite side. Explore medians in a triangle;
determine as many properties as possible.

Fig. 6 A dynamic geometry investigation
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must build into your practice occasions for both to happen. You can blend the two 
extremes in various ways. For example, you could give a problem to the students 
and have them work quietly alone for 5 min to come up with a strategy, then they 
could be put into groups where they would share their strategies, and pick one in 
which they will solve the problem. If time permits, they could also resolve the prob-
lem with a different strategy so that they could better compare the two strategies. At 
the other end, you could have students solve the problems alone, for example as a 
homework assignment, then get together in groups to discuss their solutions and 
write up a “perfect” solution.

 Assessing and Evaluating Problem Solving

You may be wondering how to assess and evaluate problem solving in the class-
room. It depends on the purpose of the problem solving task. If you are using prob-
lem solving to get at deep understanding of the mathematics curriculum, or for 
concise and insightful selection of mathematical tools, then the evaluation tools 
would be ones for knowledge and application such as those given in the achieve-
ment chart (Ontario Ministry of Education 2005a, pp. 22–23, 2005b, pp. 20–21, 
2007, pp. 28–29) with a written product work well. The problem in Fig. 3 would be 
a case where problem solving is occurring, but we, as teachers, are interested in the 
depth of the students’ knowledge and understanding of the concepts in the course. 
Much of the details of the problem solving process will be lost in any written work 
the students may hand in. Any false starts the students made or observations by trial 
and error will probably not show up in their final written work. They may have also 
discovered an insightful concise solution, but think that the teacher is looking for 
something more algebraic so their write-up leads to the answer they got from the 
insightful connection, but it is written up in a way such that the original idea is lost. 
As such, in this situation it would be better to evaluate knowledge, communication 
and application more so than thinking (problem solving). There will be other places 
that we can evaluate thinking and problem solving more effectively.

If we want to assess our students’ thinking, we must come up with ways to spe-
cifically get at it. One way is to have students keep a record of their problem solving 
process. They would write down their plan, and why they are doing it. If they run 
into any snags as they go through the process of solving the problem, they record it, 
as well as any reflections on reworking the plan. As such, you could have a student 
give you the solution and all their thoughts as they occurred, including errors that 
they made along the way, as a map of their problem solving process. You could then 
provide the student with some detailed feedback to help them further develop their 
problem solving skills. To be effective, the feedback must come quickly while the 
problem and process are still fresh in the student’s mind. This could be accom-
plished either by conferencing with the student, or by collecting work from a small 
sample of the class to allow you to get the feedback back to the students quickly. 
Given the extra work being done by the students and the time constraints for the 
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teacher to provide feedback, this is a worthwhile exercise that could be done a cou-
ple of times during the course.

A second way to get at the thinking is to interview the students after they have 
solved the problem. Asking the students why they did certain things, if they ran into 
any roadblocks and what sort of things they thought of upon completion can be 
quite insightful. Many times students will go through a problem correctly, but when 
you ask them why you find out it was based on an erroneous idea that somehow paid 
off. This can lead to deeper probing into the nature of the misunderstanding. On the 
other hand a student may hand in a very humdrum solution, but the thinking behind 
their decisions, and observations that they made along the way may prove to be very 
insightful.

Another great way to get at thinking, especially when students are working in 
groups, is to just listen to their conversations. Being a fly on the wall allows you to 
hear some great conversations between students. Insightful students are forced to 
communicate their ideas to their collaborators and convince them that their ideas are 
valid. The teacher needs to build a classroom environment such that group activities 
are not just about getting the answer but are about the group understanding of the 
problem and its solution. If it is each group member’s duty to explain their ideas to 
others, and to question when they do not understand, rich learning takes place and 
the teacher can observe many things, including the thought process of the students.

 Finding Good Problems

Another thought that will probably come to mind is “where can I get some nice 
problems?” As seen in Fig. 4, mathematics competitions are a great place to access 
good problems. The Centre for Education in Mathematics and Computing hosts 
over a dozen mathematics and computer contests each year, and their website, www.
cemc.uwaterloo.ca, contains over 100 past contests as well as other resources for 
mathematics teachers. The Canadian Mathematical Society (CMS) also hosts its 
own mathematics contest, the Canadian Open Mathematics Challenge, which leads 
to the Canadian Mathematical Olympiad. On the CMS website, https://cms.math.
ca/, are copies of past contests, plus links to other Canadian mathematics competi-
tions as well as other resources for teachers and students. The Art of Problem 
Solving is an American website, set up by former members of the USA mathemati-
cal Olympiad team, to aid students in problem solving. There are hundreds of old 
competitions, and other free resources on their website: https://artofproblemsolv-
ing.com/. They also sell books and offer online courses that students can take to 
help them be better mathematical problem solvers. Crux Mathematicorum is an 
international problem solving journal published by the CMS. Although most of the 
current content of the journal is not accessible to most high school students, the 
earlier issues had more material that students could work with. All past issues are 
available online at https://cms.math.ca/crux/. The Mathematical Association of 
America is a professional organization for mathematicians, like the CMS. Although 
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most of their material is aimed at University teachers and students, they do sell some 
problem solving books and have some journals on their website, www.maa.org, that 
could be useful to a high school teacher. Finally, the author writes a column in the 
Ontario Mathematical Gazette, available from the Ontario Association for 
Mathematics Education: www.oame.on.ca. There are many other international 
mathematics competitions, journals and websites that teachers can use as resources.

 Conclusion

Doing mathematics is not about solving 20 exercises of the same type, which is 
more suited to building a specific skill. Doing mathematics is about solving real 
problems. This involves us to, as Ms. Frizzle from The magic school bus says, “Take 
chances! Make mistakes! Get messy!” (Scholastic 2017, para. 1). Mathematics is a 
beautiful and useful subject. Problem solving allows students to experience both of 
these worlds as well as better engaging them in the learning process.
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Part IV: Commentary – Characteristics 
of Mathematical Challenge  
in Problem-Based Approach to Teaching 
Mathematics

Roza Leikin

There is a strong consensus among mathematics educators, researchers and instruc-
tional designers that mathematical problem solving is among the central means—
and ends—of school mathematics education. Different ideas, practices and studies 
in the field of mathematical problem solving are reflected in the volumes, chapters, 
and papers published over the course of the last 30-plus years (Felmer et al. 2016; 
Lester and Charles 2003; Schoenfeld 1985; Silver 1985). The problem-based 
approach to teaching mathematics assumes that students are presented with authen-
tic problems that are meaningful for them, and that can be solved using mathemati-
cal tools available to them. The problem-based approach seeks to develop new 
mathematical knowledge and skills through solving such problems. Moreover, when 
solving these problems the students are assumed to develop appreciation for the 
power of mathematics to solve problems from different fields of life and science.

Cai (2010) argues that mathematics teaching is a system of interrelated dimen-
sions that include the nature of classroom tasks, their content and context, the teach-
er’s role, the classroom culture, mathematical tools, and concern for equity and 
accessibility. The collection of works in this section of the book demonstrates the 
richness and variability of problem-based approaches to teaching mathematics des-
ignated and advanced by the members of the Canadian mathematics education 
community.

In this response chapter, I address the nine manuscripts in this volume that are 
devoted to the problem-based approach to teaching and learning mathematics. 
Interestingly, the authors differ in their views on what constitutes good problems, 
the corresponding goals of mathematical instruction, teachers’ role in the 
 management of the problem solving process and the ways in which different partici-
pants of the problem solving session can be supported when solving the problems.
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 Good Problems

Problem-based approach to learning unifies choices of “good problems” by the 
authors. All the tasks that the authors use are non-routine and directed at communi-
cation among students about the problems, and activation and development of criti-
cal reasoning and decision making. Overall, the authors tend to share the three 
preferences or their combinations: non-routine mathematical problems, context- 
based problems that require modeling, and curricular-related problems accompa-
nied by specific explorative design.

 Non-routine Mathematical Problems

For Liljedahl, good problem solving tasks are highly engaging, non-routine, col-
laborative tasks that encourage mathematical discussion among students as part of 
the problem solving process. These problems promote students’ mathematical 
thinking (“developing a thinking classroom”) and allow regulation of the level of 
mathematical challenge, such that the level of challenge can be fit to each student in 
the class. The importance of the non-curricular nature of mathematical tasks is also 
addressed by Hoshino, who suggests choosing problems from logic puzzles and 
contest questions, and by Godin, for whom “mathematics competitions are a great 
place to access good problems.” Godin categorizes good problems as follows: 
investigation tasks, novel problems, real world problems and technologically aided 
explorations. The significance of technological tools is also addressed by Saldanha 
and Thibault, who describe activities that can be done with the use of TinkerPlots, 
an interactive and dynamic data exploration software that advances statistical 
reasoning.

 Context-Based Meaningful Problems

In Savard’s view, meaningful problems must guide students to make sense of math-
ematics within a meaningful context and require mathematical modelling of the 
situation described in the problem in order to solve it. When solving these problems, 
mathematical knowledge is needed to study the event or the phenomenon. Similarly, 
according to Martin, Oliveira and Theis, mathematical tasks should allow students 
to develop new knowledge through real mathematical activity.

Emphasis on the problems’ context both as means and ends of the educational 
process is made by several authors. Interestingly, social justice and citizenship unify 
several chapters. Savard stresses the importance of the careful choice of the problem 
context to make solving problems intriguing to students, and argues that choosing a 
context associated with citizenship develops both students’ citizenship skills and 
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their mathematical knowledge and skills. Such problems encourage critical think-
ing, advance awareness of cultural context, and connect cultural context to the 
mathematical knowledge to be developed.

Russell maintains that social justice can be embraced by mathematics education 
in two ways: as a context for mathematical problem solving, and by teaching math-
ematics in socially just ways. In line with the first way, Mamolo, Thomas and 
Frankfort describe their experiences of incorporating social justice context prob-
lems related to the variety of topics that meet students’ needs and interests into 
problem-based practices, thus making mathematics learning meaningful for stu-
dents. In this context, mathematics serves as a tool for “understanding world issues 
and social trends.” The authors introduce tasks that present authentic problems and 
allow students to choose which mathematical (and non-mathematical) tools and 
skills to use in solving. They also require students to discuss and defend their solu-
tions. Mathematical exploration is an integral part of these good problems.

 Explorative Design of Curricular Problems

While focusing on content-related areas (e.g., statistics in the chapter by Saldanha 
& Thibault, and probability in the chapter of by Martin, Oliveira, & Theis) the 
authors stress the importance of careful choice of appropriate didactical settings and 
problem solving approaches. For example, Martin, Oliveira and Theis stress the 
mathematical power of the combination of different approaches to solving probabil-
ity problems while Saldanha and Thibault emphasize explorative technology-based 
learning involving dynamic and visual imagery of data, as well as the importance of 
encouraging students to share ideas and explain their thinking.

Martin, Oliveira, and Theis stress that good problems should engage students 
and allow them to discover for themselves some of the means needed for solving, 
using comparison, connection, and sharing of ideas.

 Instructional Setting and Teachers’ Roles in Monitoring 
Problem Solving Activity

One of the central roles of a teacher is devolution of good tasks to learners (Brousseau 
1997; Steinbring 1998). When assigning cognitively demanding tasks to a particular 
classroom, teachers should “feel” their students, in order to ensure that the students 
are capable of solving the task. Moreover, development of students’ mathematical 
reasoning is linked to the knowledgeable choice of challenging mathematical tasks 
and the integration of the tasks in appropriate settings (Choppin 2011).

Teachers ought to provide each and every student with learning opportunities that 
fit their abilities and motivate them to learn. Teachers should create an instructional 
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setting that supports and advances the problem solving process. All the authors stress 
that problem solving should be appropriate to students’ knowledge and problem 
solving capacity at the given time. Investigation, exploration and challenging ideas 
are the core elements of the problem solving activities in this section of the book. All 
the chapters in this section address these aspects with different levels of detail.

Liljedahl introduces 11 elements that determine the effectiveness of problem 
solving activities, and that encourage mathematical thought in students. These ele-
ments include starting a lesson with the task, random arrangement of small groups, 
use of oral instructions, defronting the classroom and answering “keep thinking” 
questions only. Liljedahl suggests providing students with autonomy, using hints and 
extensions to allow flow and “levelling to the bottom.” Martin et al. suggest that one 
of the critical features of the problem solving setting is the problem’s adaptability, 
that is, its level of complexity and the ease of adjusting it to students’ levels of math-
ematical development. Another way of adjusting the instructional level is providing 
students with opportunities to explicitly develop various strategies for solving new 
problems, such as trial and error, using a model, trying a simpler problem, working 
backwards, and discussing their ideas in small groups (Atiya, Luca, & Kajander).

Atiya et al. focus their attention on the ways to support development of begin-
ning teachers’ proficiency and beliefs in managing problem-based instruction. They 
suggest gradually making classroom tasks more and more open, as students develop 
more strategies. An additional practice of “turning students into teachers” is sug-
gested by Godin. Godin also acknowledges the importance of implementing a vari-
ety of settings, incorporating group work, independent work, and different 
combinations of the two in order to allow all students to participate actively in 
problem solving activities.

 Mathematical Challenge As a Core Element of a Problem- 
Based Approach to Teaching Mathematics

Mathematical challenge, which is an interesting and motivating mathematical diffi-
culty that a person can overcome at a particular stage (Leikin 2007, 2014), is a uni-
fying characteristic of all the mathematical activities, tasks and problems described 
in this section of the volume. Here I suggest a theoretical model of a mathematical 
challenge embedded in a problem solving activity (Fig. 1). This model can shed 
light on the collection of papers observed here and suggests an additional lens for 
the analysis of problem solving activities suggested by the authors. The model com-
prises several complimentary elements, which can enhance and support each other 
in the creation of mathematically challenging situations. These elements include (a) 
intrinsic (conceptual) characteristics of mathematical problems and tasks which are 
in the center of mathematical activity; (b) characteristics surrounding a problem or 
a task such as socio-mathematical norms, instructional setting and (c) individual 
characteristics of the participants, such as their familiarity with the topic of the prob-
lem or their problem solving proficiency (see Fig. 1).
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The level of cognitive demand (Silver and Mesa 2011) of a particular task 
depends on the type and conceptual characteristics of the task, such as conceptual 
density, mathematical connections, and the logical relationships required for solv-
ing the problem (Leikin 2009, 2014; Silver and Zawodjewsky 1997). The openness 
of a problem solving task also determines its level of cognitive demand. For exam-
ple, open-ended problems allow multiple answers to a problem along with critical 
evaluation of completeness of the set of answers (e.g., Pehkonen 1995). Open-start 
problems are usually multiple solution tasks (MSTs  – Leikin 2007) that require 
solving the problem using multiple solution strategies, through activation of mental 
flexibility and mathematical connections. Tasks such as sorting tasks, problem pos-
ing tasks and investigation tasks are both open-start and open-end problems. Several 
chapters in this book  section  (e.g., Saldanha & Thibault and Martin, Oliveira & 
Theis) include excellent examples of mathematical investigation tasks. Mathematical 
challenge can be strengthened by the use of a non-mathematical context and the 
requirement to design a mathematical model that represents this context (see exam-
ples in Savard and in Martin, Oliveira & Theis). The mathematical challenge embed-
ded in a task can be increased by socio-mathematical norms such as requirement of 
preciseness, explanation and justification, comparison and classification (Leikin 
2014; Silver and Mesa 2011) and can be varied by instructional setting, for 
 example, as described in the chapters by Atiya, Luca and Kajander, Liljedahl and 
Goding. The familiarity of the topic and associated problem solving proficiency as 
well as personal characteristics of the participants are additional criteria that char-
acterize the solver rather than the problem.

The chapters in this section of the book present a variety of ideas expressed by 
researchers, teacher educators and mathematics teachers who share their authentic 
experiences and the methods that they find effective in mathematics teaching. One 

Fig. 1 Characteristics that determine mathematical challenge
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of the most challenging aspects of the mathematics lesson management is making 
the mathematical problems that students solve challenging to each student in the 
classroom. While different chapters refer to different components of mathematical 
challenge to different extents, the collective account describes a rich collection of 
challenging problem-based activities that can be used by teachers in their classes 
and by mathematics educators in teacher education settings.

Rather naturally, the practices described in these chapters can serve as an excel-
lent playground for researchers who are interested in getting a better understanding 
of which approaches are more effective for the development of students’ mathemat-
ical knowledge, skills and problem solving expertise along with the development of 
students’ motivation and self-esteem in learning mathematics. The model of math-
ematical challenge suggested here can serve as a framework for the analysis of the 
quality of problem-based teaching of mathematics.
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Part IV: Commentary – Doing Is  
Not the Same As Thinking or Construing

John Mason

 Introduction

It is well known and widely experienced that mathematical problem solving in gen-
eral, and algebra in particular, form a watershed for many students. Something puts 
people off, whether in how it is presented (for example, when algebra is treated 
simply as “arithmetic with letters” and problems consist of burying arithmetic 
calculations in some context), whether in the switch from ‘working forwards 
towards an answer’ to ‘working backwards starting from one or more unknowns’ 
(Bednarz et al. 1996), whether in apparent lack of relevance or future usefulness, 
whether in transition to a different format of school as institution, or some 
combination of these and other factors. The chapters in this section delineate various 
ways in which teachers and teacher educators are trying to make a difference, trying 
to get students engaged with mathematics and involved in mathematical thinking.

As Martin, Oliveira, and Theis (this volume) point out, the very term problem 
solving is problematic, as it is used to refer to tasks ranging across a wide spectrum 
from the routine to the exploratory or investigative, and from the very familiar to the 
completely novel.
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 Fostering and Sustaining Mathematical Thinking

The issue of how to engage students so as to develop their mathematical thinking 
and their disposition to think mathematically is not a new one: Robson (2000) 
suggests that 3000 years ago or more Egyptian scribes were called upon to make 
their mathematical exercises relevant by placing them in a practical context from 
outside of mathematics. The result was a collection of spurious problems involving, 
for example, vastly unrealistic quantities of different grades of grain. It seems that 
the scribes were intent on showing off computational facility, such as their ability to 
deal with calculations involving 1/7.

Educational researchers have taken up the baton of engagement, enquiring into it 
from many directions. The list of contributory or influential factors is extensive 
(e.g., Skilling 2014). The authors in this section continue this line of enquiry.

The mathematics curriculum up until the twentieth century was in most countries 
and in most instances, arrived at by stripping away any context from calculations 
thought to be currently important and which therefore are likely to be useful in the 
future. Students are then taught to carry through those calculations in the context of 
mathematics, or more accurately, numeracy. Put another way, teaching has been and 
usually still is assumed to be about training student behaviour so that learners can 
carry out operations on numbers. Applications to non-mathematical contexts tend to 
follow only after presumed mastery of procedures. Typical of this were the early 
mathematics texts known as Abaci, commissioned by patrons for use by the sons of 
merchants, as for example the book by the artist and mathematician Piero della 
Francesca (1412–1492) (e.g., Davis 1977). This focus belied or obscured the thrust 
of developments in geometry through the needs of renaissance artists, and the 
playfulness and inquisitiveness of mathematicians in every age.

The USMES project (Lomon et al. 1975) in the USA typified a wholescale switch 
to ‘relevance’ by basing instruction around work on a variety of projects or 
explorations, and only introducing mathematical techniques when students ran up 
against a need for them. At the other end of the spectrum, mathematical investigations 
have been promoted in the UK by the Association of Teachers of Mathematics from 
the 1960s to the present as the basis for teaching mathematics. Originally, these 
were mostly based in the context of mathematics itself, inspired by the work of John 
Wallis (1616–1703) and what he called ‘my method of investigation,’ which so 
irritated Pierre Fermat. Other projects (e.g., MES, MiS-UK and MiS-USA) have 
positioned themselves on this spectrum in various ways. Burkhardt (1981) parodied 
textbooks with his ‘alphabet’ of task types: Action, Believable, Curious, Dubious 
and Educational tasks (p. 8), reinforcing disdain for the impracticality of so many 
problems found in mathematics textbooks through the ages.

An often overlooked dimension of engaging students is the observation that 
everyone takes pleasure in using their own natural powers. Small amounts of 
endorphins seem to be released when using your own powers; further pleasure is 
available from developing those powers within a mathematical context. Often 
described in terms of developing confidence, self-esteem, or agency, for me what 
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lies at the heart of the matter is the use of one’s own powers, rather than being 
subjected to the results of teachers and textbook authors displaying their powers but 
usurping the learners’ use of their own powers. Students are then typically being 
called upon to ‘do likewise,’ when ‘likewise’ means carrying out routines or 
procedures already laid out by past experts (Gillings 1972; see also Witmer 1968). 
If only it were a simple matter to recognise precisely what ‘likewise’ implies!

There is more to ‘doing’ mathematics than carrying out procedures, and the com-
plexity of this emerges through the chapters in this section. Von Glasersfeld (1988) 
captured this with: “To do the right thing is not enough; to be competent one must 
also know what one is doing and why it is right” (p. 328). Knowing in the moment 
to act, and knowing then how to act and why that action is appropriate, combine to 
make effective or competent action a complex issue, whether working with stu-
dents, novice teachers, or experienced teachers (Mason and Spence 2000). There 
are several layers of awareness that constantly need refreshing and developing, from 
mathematical knowledge, maturity and sophistication, to how to work with others, 
be they students, teachers or teacher educators (Mason 1998).

It is well known that mathematical knowledge, meaning ‘having mathematical 
actions become available when needed’ (strictly, when the teacher or assessor thinks 
they should become available), is not a robust notion, since students appear to recall 
little from one institution to the next, one year to the next, one course to the next, 
even one week to the next. The notion of transfer was invented to try to piece 
together why ideas apparently mastered at one time were not available later 
(Detterman and Sternberg 1993), which is of course the ‘likewise’ issue. Transfer 
morphed into situated cognition as a description of basically the same phenomenon 
from a mostly sociological rather than a largely psychological perspective (Brown 
et al. 1989; Greeno et al. 1993; Watson and Wimbourne 2008). The abiding issue 
was, is, and continues to be, how gaps between contexts over which transfer occurs 
can be induced to widen, or how situatedness broadens, so that actions developed in 
one context become available in another. Here the issue is not whether learners have 
displayed an action in the past, but whether, in the future, an appropriate action 
becomes available; whether they know, in the moment, to act (Lai 2012; Mason and 
Spence 2000).

 Engaging Learners and Teachers

Attempts to switch to an investigative, exploratory mode of problem solving often 
run up against an all too familiar phenomenon: students seem willing only to do 
what they have already been told how to do, with little enthusiasm or evidence of 
actually engaging, actually thinking (Atiya, Luca, & Kajander, this volume). I ran 
into this myself not long ago when I was called in to work with the staff of a private 
school who had set their students some novel and challenging problems only to have 
the students literally down-tools, fold-arms, and refuse to do anything because they 
had not been told what to do. A paradoxical feature is that these same students will 
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spend hours trying to master a computer game, and some will do the same mastering 
skateboards and other sports skills.

Faced with students refusing to engage when asked to think rather than to carry 
out learned procedures in recognised contexts, Peter Liljedahl (this volume) 
advocates an extreme response. He systematically replaces institutional and teacher 
habits with their ‘opposite’ so as to force both teachers to act freshly, and students 
to respond freshly. The result is fresh experience and positive response from teachers 
and students alike. It seems to be a highly successful strategy, and highlights why so 
many other approaches have been at best marginally successful: habits, including 
expectations of oneself and of mathematics courses, are major obstacles to growth.

Jogging people out of deeply established habits is one way, perhaps even the 
most effective way of circumventing what has come to be known as System 1, the 
automatic reactive aspect of human psychology (of Dual Systems Theory, see 
Kahneman 2012), and indeed also circumventing System 1.5, the emotionally- 
based energy that can stimulate reactions (for an extended version of Dual Systems 
theory based on ancient psychology, see Mason and Metz 2017). See also Von 
Glasersfeld (1988) who recognised the ‘reluctance to change’ that we all exhibit in 
one way or another.

Others have approached the same problem less dramatically, by easing learners 
into mathematical thinking rather than dropping them in the middle of a full 
exploration requiring mathematical thinking. The aim is to awaken the inner witness, 
the monitor, the executive (Mason et al. 1982/2010; Schoenfeld 1985), so that initial 
impulses can be ‘parked’ and System 2 (cognitive consideration) can be invoked 
prior to acting so providing a more considered response.

Atiya and colleagues (this volume) take a gentler approach. They advocate a 
period of transition, gradually increasing the openness of the tasks. They also try to 
select tasks which they think will be interesting and motivating to the students in 
question, as well as appropriate to their learning and problem-solving capacity at 
the given time. Over a period of 25 years at the Open University we used the week- 
long summer schools to offer students short but challenging tasks which we knew 
from experience would lead to many if not most students experiencing some aspect 
of mathematical thinking: for example, specialising in order to get a sense of 
underlying structural relationships; generalising; imagining and expressing what 
they were imagining in pictures, diagrams and emerging notation; and modelling by 
isolating structural relationships, expressing them and dealing with the resulting 
mathematical problem (Mason 1996). This experiential, even phenomenological 
approach provided the basis for developing a vocabulary for mathematical actions 
which then became available to students to use with and for themselves (through 
their inner witness, monitor, or executive) in their future studies. Some indirect 
indications of effectiveness of this approach is evidenced by the many undergraduates 
at the University of Warwick over some 20 years, who took a course in their third 
year based on the same ideas (Mason et al. 1982/2010) and later commented on how 
helpful the course had been in their studies. Many expressed the wish that they 
could have taken the course earlier in their career. This has been echoed in 
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universities and teacher education establishments all over the world (e.g., Gourdeau 
2017; Yusof and Tall 1999).

Gauging what is relevant, or what can become relevant, is no easy matter. Young 
teachers may be prone to using contexts of importance to themselves (e.g., home 
decorating, shopping, mortgages) while older teachers may be prone to problems 
involving investments and pensions, neither of which cut to the heart of the interests 
of adolescents. On the other hand, attempts to invoke learners’ particular interests 
can also backfire, when they are seen as an intrusion into a world the adult no longer 
inhabits, and indeed are likely to get ‘wrong.’ The Realistic Mathematics Education 
project (Treffers 1987; Treffers and Goffree 1985) makes use of Freudenthal’s 
principle that through imagination, learners can come into contact with and ‘make 
real for themself’ contexts that may not be immediately familiar. What is ‘real’ is 
what can be imagined, not simply what one currently lives. Through the exercise of 
imagination learners can experience possibilities that they might never have come 
into contact with without the school institution, which aligns with Vygotsky’s 
notion of scientific concepts: what can be encountered at school that would otherwise 
be unlikely to be encountered.

Problem solving can be seen as one aspect of critical thinking, creativity, and 
learning to communicate effectively. Richard Hoshino (this volume) focuses on 
these possibilities particularly. He seeks to provide learners with experience of 
parking the first action that becomes available to them and seeking a cleverer or 
more insightful approach. He also chooses his tasks so that there are unexpected 
connections between them which come to the surface when looking at the underlying 
reasoning rather than at the surface format. This could be seen as a form of the 
variation principle: varying the context but keeping the actual reasoning invariant 
(Marton 2015). Hoshino describes how he begins with relatively simple tasks, 
hoping that their confidence and self-esteem will grow so that they are willing to 
engage with challenging tasks rather than ‘downing tools’ at the first hurdle. He 
conjectures that by experiencing both routine and insightful approaches, learners 
will develop confidence in doing mathematics, an appreciation for the beauty of 
mathematics, a development of their creativity, and appreciation of mathematical 
thinking being used.

 The Role of Context

The role of context and in particular the cultural assumptions and influences under-
pinning the way contexts are described and used is an ongoing question in mathe-
matics education which is taken up by Annie Savard (this volume). This has echoes 
of a curious circularity in research into medieval social customs. Historians make 
use of mathematical word problems of the time in order to learn about social cus-
toms, assuming that textbook authors are reflecting concerns of the time. But as 
already mentioned in the context of ancient Egypt, teachers know perfectly well that 
the contexts are often spurious, based on the author’s assumptions about what will 
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interest students, and usually lying at the E-for-educational end of Burkhardt’s 
spectrum. Nevertheless, there must be some insights into perceived cultures of a 
historical period by looking at the contexts provided for applying mathematical 
actions to non-mathematical contexts. Learning to extract relationships from 
contextual situations is the essence of mathematical modelling and of abstraction, 
and so perhaps there is no magic wand. Rather, what probably matters most is the 
teachers’ commitment to and engagement with the contexts provided, drawing on 
learners to use and develop their powers.

To be sufficiently challenging, a task has to depend on some complexity of the 
situation so that students are called upon to draw on what they know about the 
context. They may have to ignore some details as irrelevant or too complex while 
making use of other unspoken ones. But this too has drawbacks: students may not 
know enough about the context, or they may know too much. They may over 
complicate what was intended as a dressed-up mathematical question (Cooper and 
Dunne 2000; Lave 1992). Savard points out that the contextual situation may act as 
motivation for resolving the task as set. It can of course also inhibit engagement 
where students believe that the context is ‘not for them’ or otherwise fail to recognise 
its potential relevance. As mentioned earlier, relevance is more to do with the 
realisable, with ‘what can become real’ than it is about immediate life experiences. 
Savard stresses the interplay between the cultural assumptions made by use of a 
particular context, the mathematical concepts and actions being targeted from the 
curriculum, and the importance of critical thinking as part of growing into full 
participatory citizenship.

 Aiming for Social Justice

Mamolo, Thomas, and Frankfort (this volume) describe how they try to use mathe-
matical problem solving as a vehicle for raising issues of social justice. They 
describe in-depth, inquiry-based mathematical explorations which engage learners 
with authentic contexts and mathematical practices that aim to broaden and foster a 
number of features: critical awareness of social injustices in the lived experiences of 
Canadians; sophisticated mathematical thinking and decision-making while 
reinforcing important mathematical procedures and practices; and awareness of the 
relevance of mathematics for understanding and addressing various issues affecting 
individuals in Canada and beyond.

Roots of such an approach go back at least to the work of Stieg Mellin-Olsen 
(1987) in Denmark, the “Real Problem Solving” movement typified by the work of 
Johnny Baker at the Open University (Open University 1980) who was in turn 
inspired by the USMES project. More recently the Realistic Mathematics Education 
project (Treffers 1987; Treffers and Goffree 1985) with its American offshoot Maths 
in Context (MiC-USA) and a parallel project Realisable Mathematics in the UK 
(MiC-UK) have been attracting attention, while Ole Skvovemose (1994) and 
colleagues in Denmark, the Shell Centre at Nottingham, and Dick Lesh and 
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colleagues (Lesh and Fennewald 2010) are among the many who have all enriched 
and extended this domain. There is an international meeting with this focus 
biannually under the heading Mathematics Education and Society (MES). The issue 
of how to use mathematics to awaken learners to cultural-socio-political issues 
through using mathematics has been discussed by numerous authors in recent years.

Unfortunately there are pitfalls in using social justice themes as contexts for 
mathematical thinking, as Gale Russell (this volume) points out. It is for example, 
all too easy for the social issue to dominate to the extent that the mathematics 
becomes trivial. She recommends introducing topics by tapping into concerns and 
questions that the students raise rather than based upon a teacher’s own interest. 
Furthermore, and equally important, it is necessary to maintain consistency between 
the classroom ethos and modes of interaction, and the social justice issues one might 
choose to highlight, because the teaching of mathematics itself, the pedagogic 
choices made, actions enacted and ethos developed are all part of the issue. Russell 
brings to the fore ways in which the teacher can deal with inequities resulting from 
pedagogical choices, classroom structures and environments, and institutional 
policies.

Russell also raises the issue of what is being assessed in courses with a strongly 
social equity theme. Is it learners’ appreciation of the social issues, learners’ 
appreciation and comprehension of some mathematics, or some combination of 
these? This raises a major question: what do students make of these courses? To 
what extent is the pursuit of social justice actually influencing learners, at what age 
are they most easily sensitised to these issues, and to what extent is the learning of 
mathematics developed in this way?

Mamolo et al. articulate possibilities and ways of thinking about both issues of 
social justice issues and of mathematics, using the slogans reading the world with 
mathematics; writing the world with mathematics; and developing positive social 
and cultural identities (through mathematics) as triggers for awareness and action. 
It is to be hoped that righting the world with mathematics is a possible outcome, at 
least in the long run!

 Informing Task Design

As Atiya and colleagues (this volume) point out, it is not always easy to maintain a 
balance between what might catch learners’ interest and what mathematical 
concepts, procedures, themes and powers form the curriculum. For example, as 
Russell points out, attempts to use term-long themes in primary school so as to 
integrate all the subjects often trivialises mathematics, displaying it as a bit of 
add-on arithmetic using a few numbers, but not part of the central appreciation and 
comprehension of the theme.

Pairing a learning task with an assessment task is but one of the interesting prac-
tices emerging from Atiya et al. It certainly makes sense from the point of view of 
the learners, but even more so from the point of view of a teacher, because being 

Part IV: Commentary – Doing Is Not the Same As Thinking or Construing



426

careful and thoughtful about the pairing could make a big difference to learners’ 
experience. It is all too easy to select a task, then select another task for assessment 
purposes, without checking that the underlying reasoning and thinking are in 
reasonable if not full alignment (see previous remarks about transfer and 
situatedness).

The term rich tasks may have been originated by Afzal Ahmed (1987), but it has 
spread across the globe, at least in the English-speaking world (e.g., Flewelling and 
Higginson 2001). It has since become joined with the notion of low threshold – high 
ceiling which may have originated in educational computing but has been 
considerably developed and exploited in the NRiCH project in the UK (NRiCH). It 
transpires that it is not so much the task itself that is rich, but rather how it is used. 
Most tasks can be used richly, and most tasks can be used poorly, impoverishing 
what is potentially available. Very few tasks are ‘teacher proof.’ In other words, the 
affordances, whether pedagogic or mathematical (or indeed psychological or social) 
have to be within the attunements of the teacher, and accessible to the students 
(Gibson 1979). Put another way, the affordances of a task may not emerge unless 
someone, usually the teacher, is attuned to notice and exploit them, bringing them 
to the surface and prompting learners to articulate them for themselves. As 
considerable research has demonstrated, self-explanation is a powerful contribution 
to learning (Chi and Bassok 1989; Chi et al. 1989; Renkl 2002).

In the context of probability, Vincent Martin and colleagues (this volume) pro-
vide a detailed rationale for the construction of a specific three-fold task, based on 
the principle of contrasting situations concerning probability in which only a fre-
quentist approach can be taken, situations in which only an empirical approach is 
possible, and situations in which both are possible. It is this kind of detail which is 
so desperately needed by the mathematics education community so as to inform and 
inspire others in their design of tasks. Martin et  al. take into account both the 
mathematical awareness (frequentist and empirical evaluation of probability) 
constituting the topic, and pedagogical issues and justifications. It is to be wished 
that textbook authors and worksheet designers would take similar care over 
corresponding details.

Luis Saldana and Mathieu Thibault (this volume) make use of the notion of an 
anchor problem or problem setting, with variations, which reappear over a number 
of lessons, in related problems. This approach aligns with the principle of variation 
(Marton 2015, with roots back into the 1980s), also known as variation theory, 
which suggests that something is available to be learned only when it has been 
varied in proximal time and space. A Shanghai version of this principle talks about 
varying the problem context but keeping the problem itself the same; varying the 
problem but keeping the context the same; and varying both (Huang and Lee 2016). 
This principle has multiple levels of interpretation when addressing the mathematical 
notions of mean and standard deviation because mathematically, these devices are 
for summarising a set of data taking into account the scope of variation around some 
central value. In order to appreciate (the use of) and comprehend (the import and 
internal relationships of) a mathematical concept, students similarly need to become 
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aware of the scope of variation or generality encompassed by definitions and 
theorems.

The notion of ‘good tasks,’ which on the surface seems so reasonable, depends 
on what you want to achieve. For example, Russell (this volume) uses an example 
of sensitivity to family size and composition to illustrate how a task with limited 
scope and cultural relevance (5 children with an average age of 9: what could their 
ages be?) might be responded to by children, and could be tinkered with, in order to 
open up awareness of different possible family compositions. The teacher needs to 
be prepared for unusual details that students might come up with, and the task can 
be made more or less accessible by varying the social assumptions embedded in it.

At the Open University, I found that setting a short task in which many students 
would naturally use mathematical thinking was most successful. They afforded an 
opportunity to draw attention to what many had done naturally, to label it, and so to 
provide a vocabulary for talking about specific actions contributing to mathematical 
thinking. This translated into the tasks of Thinking mathematically (Mason et al. 
1982/2010) which was designed initially for use with teachers to introduce an 
effective vocabulary for talking about mathematical thinking. Recently I ran into the 
same issue again in which experienced mathematicians, mathematics educators and 
teachers struggled with some problems I had set them, and struggled even more to 
articulate what mathematical actions they tried and what they could, in retrospect 
have tried.

 Pedagogic Choices

Guy Brousseau (1997) formed the notion of a didactic tension which is always pres-
ent in classrooms:

The more clearly and precisely the teacher describes the behaviour being sought, the easier 
it is for the learners to display that behaviour without generating it from themselves (Mason 
and Davis 1989). (p. 284)

In other words, training of behaviour appears to be easier and more direct than 
provoking learners to educate their awareness (Mason 1994). Vincent Martin and 
colleagues (this volume) formulate a variation of the tension:

the more extensively the teacher introduces (or imposes) problem solving strategies at the 
beginning of the sequence, the more limited the potential for students’ mathematical 
activity. Allowing students to experiment and to compare among themselves can be an 
important driver of success in addressing the problem.

I read this as a plea for an experiential or phenomenological stance to ‘teaching 
problem solving,’ which might more usefully be called ‘teaching through problem 
solving’ or even ‘teaching investigatively’ (Jaworski 1994; Williams 1989). Shawn 
Godin (this volume) describes his attempts in this direction, seeing problem solving 
not as an add-on but as the heart and core of mathematics. In this he is in complete 
alignment with Paul Halmos (1980) among many others.
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The effect of direct instruction in which labels are presented prior to experiences 
for which those labels might be useful, is to dull the students potential for enriching 
their own experience, turning what is to be learned into ‘things to be memorised’ 
rather than emerging through and based on experience. Returning to the issue of 
transfer and situatedness mentioned earlier, having an action become available is 
much more likely if that action is linked to vibrant experience.

As with any learning environment, affordances are not necessarily recognised, 
either by the teacher or by the students. That is why pedagogy remains a vital 
contribution mediating between learner and task. Examples include promoting 
learners in considering and discussing modelling assumptions, and the influence on 
the task and or its resolution coming from social forces and individual psychology.

 Learner Experience

The didactic transposition put forward by Chevellard (1985) suggests that expert 
awareness is transformed into instructions in behaviour for students. When an expert 
comes across a mathematical relationship, or a way of approaching a concept, and 
experiences a desire or hope that learners could experience a similar awareness, 
they are tempted to construct a task for learners that will in some way, they hope, 
reproduce that awareness. They embark on a transformation of their own experience 
into a sequence of instructions for learners to follow. Unfortunately the transformation 
is usually too great for learners to get even a taste of what the expert experienced. 
Instead, learners carry out the instructions but gain little or nothing from the 
experience. As William James (1890) said in a different context, “A succession of 
feelings does not add up to a feeling of that succession” (p. 628), which can be 
recast as “A succession of experiences does not add up to an experience of that 
succession” (Mason and Davis 1989, p. 275). Put another way, “one thing we do not 
seem to learn from experience, is that we do not often learn from experience alone: 
something more is required” (Mason 2002, pp. 8, 68). That ‘something more’ is 
reflection on action, as Schön (1983) put it. But even more powerful is when there 
is awareness in the moment so as to inform a fresh choice of action, whether 
mathematical or pedagogical. Schön called this reflection in action, and it is the 
invocation of System 2 of dual systems theory (Kahneman 2012). This is the aim 
and work of the discipline of noticing (Mason 2002, 2012).

Luis Saldanha and Mathieu Thibault (this volume) bring to the surface again the 
issue of whether students become aware of their thinking when they are immersed 
in responding to the questions and prompts from teachers. When students are 
immersed in a task, experience suggests that they are unlikely to be aware of the 
nature of the questions, probes and prompts provided by the author or the teacher. A 
major role for teachers is to act as ‘consciousness for two” (Bruner 1986, pp. 75–76), 
prompting learners to withdraw briefly from the action so as to reflect upon, to 
become explicitly aware of, actions that are proving to be effective, and actions that 
are not. Labelling these can then provide reference points so that in the future 
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teachers and learners both can refer back to previous experience in order to enrich 
current experience. This is the essence of scaffolding and fading (Seeley Brown 
et al. 1989; see also Love and Mason 1992). It seems to be the most effective way 
of informing action in the future.

 Exploring for Oneself

It is tempting to describe details of a pedagogic approach using the word ‘should’, 
and to berate oneself when things don’t go according to hope and expectation, again 
by using ‘I should have …’. I have found it useful to replace ‘should’ with ‘could.’ 
It stops me from feeling guilty about what I have done, and emphasises what I could 
do, and would prefer to do, in the future. This applies equally to students and to 
teachers. I have great admiration for Peter Liljedahl’s ‘contrarian approach’ which 
is proving to be both practical and effective in generating novel pedagogic actions. 
The combination of novelty with being able to imagine oneself carrying out such an 
action in one’s own situation is indeed powerful. I am also sure that when he is 
working with teachers the contrariness comes across creatively rather than 
negatively, as more of an invitation than a confrontation.

What is certain, and what these chapters articulate, is that no matter how confin-
ing or restricting the institutional and peer pressures, there is always room for exper-
imentation, for trying to enact fresh pedagogic actions, and for trying to find 
alternative ways to bring learners into contact with core mathematical themes and 
actions, as well as social and psychological forces. One valuable contribution to 
such an enquiring stance is to work with colleagues on mathematical tasks, as Atiya 
and colleagues (this volume) point out. At first these can be working through tasks 
that are going to be offered to learners, so as to become as deeply aware of possibili-
ties, affordances, and necessary attunements as possible. Discussing which actions 
proved to be effective, and which not, and describing salient moments to each other 
serves to enrich and refine a vocabulary for pedagogic and mathematical actions.

 Seeking Evidence

On the face of it, it seems perfectly reasonable to ask for evidence that this or that 
approach to engaging learners is effective. However the situation is much more 
complicated than it appears on the surface (Biesta 2007). To start with, the notion of 
‘an approach’ is far too vague, too indefinite to be reliably tested for, either by 
observation or by randomised control trials. It is very rarely possible to reproduce 
the classroom ethos, the pedagogical choices and awarenesses, the mathematical 
experience and maturity which underpin someone’s description of ‘what they do.’ 
As a metaphor for transformations that take place in and beyond classrooms, cause-
and-effect is far too limited, too imperfect to be used as the basis for decisions 
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(Mason 2016). A much more fruitful metaphor is of a chemical ‘soup’ in which 
transformations take place and equilibria are established around which conditions 
vary, aided or impeded by various catalysts. Other peoples’ articulation of their 
explorations provides insight and inspiration for others, but not recipes.

Although medicine is often held up as a model to be followed in education, there 
is a huge difference between administering drugs or other such treatments and 
trying to provoke people to develop their powers, modify their dispositions, and 
internalise new concepts and new procedures, in short, to educate their awareness 
(Gattegno 1970). Even doctors find that there are rarely trials that take into account 
all of the details and factors that they know about their particular patients. 
Furthermore, just as you would not consult an actuary about your personal life- 
prospects, it would not make sense to consult a report of some large randomised 
controlled trial for what is likely ‘to work’ in your particular situation, unless all of 
the known influences are explicitly taken into account in the trial. Statistics give 
indications about an overall picture, not about the specifics of individuals. Without 
some claim for, indeed evidence of influence, if not cause-and-effect, correlational 
studies can be at best indications for consideration.

Thus it is that I am unable to provide either statistical studies or even systematic 
observational studies for the effectiveness of courses based on Thinking 
mathematically (Mason et al. 1982/2010), and this is mirrored in chapters in this 
section. No attempt is given to prove that such and such an approach ‘works.’ 
Rather, what these chapters provide is detailed description of what the authors do 
and have actually done. They are laying out the details of their ‘approach’. What we 
cannot know is whether there are other factors and influences at play than those 
articulated by the authors, which contribute to making their approach effective. 
What learners appear to be doing, whether in class or on an examination, tells us 
little about what they are actually thinking and construing.
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Part V: Preface – Planning and Assessment: 
Teachers and Students As Central Actors

Carolyn Kieran

Part V of this volume offers the reader six chapters dedicated to the theme of 
“Planning and assessment.” While five of the six chapter titles suggest a greater 
emphasis on the assessment aspect, consideration is also given to planning in all 
chapters. Current perspectives on assessment view the planning for effective learn-
ing and for the kind of assessment that will be used to provide feedback related to 
that learning as being closely intertwined (Black and Wiliam 1998). One way of 
thinking about planning and assessing is that of two points on a continuum, points 
that can be overlapping or even far apart, depending on one’s particular focus at the 
moment. Yet another way of interpreting the planning-assessing continuum is from 
the actor’s point of view, that is, according to whether the center of interest is the 
teacher or the learner or both. The recently coined phrase, assessment as learning 
(OME 2010)—wherein students monitor and assess their own learning—highlights 
the attention being given to students within the planning-assessing process, an atten-
tion that is reflected in the chapters herein.

In her chapter on “Enhancing mathematics teaching and learning through sound 
assessment practices,” Christine Suurtamm provides a useful overview of the cur-
rent state of the assessment field:

Currently, with a different understanding of how students learn that recognizes that students 
need to work with mathematical ideas in order to develop an understanding of those ideas, 
assessment is seen as on-going, constantly looking at students’ understanding, and making 
teaching and learning decisions based on what that understanding looks like. … Thus there 
is a move away from assessing merely through paper-and-pencil tests to the use of a range 
of assessment strategies that recognize the multi-faceted mathematical actions that are part 
of doing mathematics and provide multiple opportunities for students to show what they 
know and can do.
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While assessment can have many different purposes, Suurtamm argues that its main 
purpose is to support and enhance student learning. In line with this argument, she 
then elaborates on what she sees as the four central components of sound classroom 
assessment:

• ongoing and embedded in instruction;
• using a variety of assessment strategies;
• reflecting meaningful mathematics;
• including students in the assessment process.

In developing the idea that sound assessment requires planning, Suurtamm suggests 
the use of a long-term-planning template that includes recording of the daily lessons 
or activities, the curricular expectations addressed by each, the corresponding math-
ematical processes, and the assessment opportunities offered by each lesson. The 
assessment could be diagnostic, formative, or summative; the assessment strategy 
could involve, for example, an observation, a quiz, or student conferencing; and the 
focus of the assessment could be some component of the curricular expectation, 
informal assessment of prior learning, a particular mathematical process, or perhaps 
a learning skill.

Adopting a similar perspective on classroom assessment as an ongoing process, 
the chapter by Jimmy Pai, titled “Assessment: Broadening our conceptions to 
improve our practice,” emphasizes as well that (i) assessment is a humanistic activ-
ity wherein the ways in which teachers elicit, attend, interpret and act depend on 
many factors, (ii) a positive classroom culture is necessary for student learning and 
for assessing that learning, and (iii) assessment can serve formative, summative, 
and/or interpersonal functions, depending on the actual circumstances. He encapsu-
lates his stance as follows: “Assessment processes are always in play for a mathe-
matics teacher, and include preparations for, acting in, and reflections upon, 
moments that support learning in the classroom.”

Pai argues that, in order to access the learning that is occurring, student thinking 
must be elicited during the assessment process. He plans for this by employing—
within a variety of problems, some of them student-generated—such strategies as, for 
example, having students write on vertical whiteboards their emerging ideas, which 
are easily sharable and revisable in the light of classroom discussion. He also has 
students maintain a mathematical processes portfolio that documents their reflections 
on the improvements they have been making with respect to seven specific mathe-
matical processes. However, eliciting student thinking is only part of the assessment 
process; equally important are attending and responding to student thinking.

One of Pai’s strategies in this latter regard is to observe different groups in the 
midst of their problem-solving, sometimes to listen carefully to what they are say-
ing and at other times to ask for clarifications—depending on whether the students 
are still trying to grapple with understanding an idea or are a little further along in 
their thinking. In his descriptions of these strategies, Pai’s attention to the interper-
sonal function of assessment is palpable. As noted earlier in his chapter, “the dual-
ism [of the summative and formative functions of assessment] does not capture the 
emotional dynamics of the assessment processes, which may be helpful to consider 
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if assessment is to be envisioned as a process of being with students, as its root word 
assidere suggests.” Such sensitivity of the teacher toward the learner throughout the 
entire assessment process, and the accompanying strategies for operationalizing this 
sensitivity—along with the chapter’s insightful approaches to formative and sum-
mative assessment—do indeed contribute to a broadening of conceptions of the 
assessment process.

A useful tool for analyzing student thinking within assessment is offered in the 
chapter by Priscila Dias Corrêa, titled “Observing for mathematical proficiency in 
secondary mathematics education.” Corrêa suggests that the model of mathematical 
proficiency described in Kilpatrick et al. (2001) can serve as a foundation for inter-
weaving task design and assessment within a framework involving five vital com-
ponents of mathematical proficiency: conceptual understanding, strategic 
competence, procedural fluency, adaptive reasoning, and productive disposition.

Corrêa presents two fairly complex modeling tasks that were engaged in by a 
class of senior high school students (11th grade), who worked in small groups and, 
as they worked, progressively recorded individually in journals their assumptions 
about the tasks and how they were attempting to find appropriate solutions. By 
means of fragments collected from students’ journals, audio and video recording 
transcripts, and post-class interview transcripts, Corrêa assembles detailed portraits 
of two students’ modeling activity—portraits that are finely annotated and then dis-
cussed within the context of the five mathematical proficiencies.

In her chapter, Corrêa argues that analyzing students’ mathematical activity in 
terms of Kilpatrick et al.’s model of mathematical proficiency not only allows for 
assessing students’ work in a more holistic way rather than simply assessing for the 
correct answer, but also attests to the various abilities that can be promoted by math-
ematical tasks designed to invoke the various strands of mathematical proficiency. 
She concludes that by “recognizing the assorted nuances of students’ mathematical 
thinking and skills, teachers are potentially prepared to identify students’ needs and 
plan their classes accordingly.”

Planning is the main theme of the chapter by Jennifer Holm, titled “Planning a 
unit by starting with the end in mind: Unit and lesson planning.” Her focus begins 
with an examination of curricular expectations with their specific outcomes. These 
outcomes are then turned into learning goals. Holm argues that each learning goal 
should be created with six characteristics in mind: (1) a learning goal identifies 
knowledge and skills from the curriculum expectations, (2) a learning goal is incre-
mental and scaffolded, (3) a learning goal is expressed in language meaningful to 
students, (4) a learning goal uses clear, concise language, (5) a learning goal is 
specific and observable, and (6) a learning goal is stated from the student’s perspec-
tive. Once the learning goals for the unit have been determined, Holm emphasizes 
the importance of anticipating the difficulties that students might encounter, as well 
as considering the issue of essential prior knowledge for the unit in question. Holm 
follows up on her suggestions for unit planning with the planning of a lesson, which 
she exemplifies with one of her favourite tasks, the “Popcorn picker” task.

While, at first glance, this chapter may appear to be focusing on planning in 
general, it does in fact carry a strong message on a central aspect of planning that is 
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related to assessment. It concerns the clarity of the learning goals. In order for learn-
ing goals to be effective, students must know the milestones they need to hit in order 
to meet the unit goal. Students need to be aware of the goals of a lesson, as well as 
understand what they mean, so that they can monitor their own learning progres-
sion. Black and Wiliam (1998) define assessment as “all those activities undertaken 
by teachers—and by their students in assessing themselves—that provide informa-
tion to be used as feedback to modify teaching and learning activities” (p. 140). 
Holm’s chapter, with its dual focus on the formulation of explicit learning goals by 
the teacher, and on students’ monitoring their progress with respect to these goals, 
addresses the double-actor aspect of assessment involving both teachers and stu-
dents that has been emphasized by Black and Wiliam.

In the chapter by P. Janelle McFeetors, titled “Improving students’ approaches to 
learning high school mathematics,” we obtain insights into students’ assessing and 
improving their own processes of learning. McFeetors argues that typical study- 
resources tend to offer rather general strategies for managing time, completing 
homework, and taking tests, but stop short of addressing how students might per-
sonalize these strategies, how they might further develop them from their current 
approaches to learning mathematics. Wanting to explore this issue more deeply, she 
worked with a group of grade 12 students who were enrolled in a course called 
Mathematical learning skills that was oriented toward assisting them in succeeding 
in their pure mathematics course. At the beginning of the research project, the stu-
dents listed in their journal some of the prescribed ways of learning mathematics 
such as study, review, copy notes, work with others, and do homework; but these 
descriptors did not elaborate on the steps that students would need to take in order 
to operationalize these learning strategies.

By means of three vignettes, McFeetors illustrates how the students gradually 
developed “processes for learning; examples of these processes of learning (juxta-
posed with [the more general] strategies in parentheses) included creating summary 
sheets (study), making and using cue cards (review), creating various forms of notes 
(copy notes), collaborating with peers (work with others), and learning from home-
work (do homework).” These learning processes were both personal and dynamic in 
that they evolved as the students learned to perfect them.

McFeetors concludes by offering three key ideas that supported students in 
developing learning processes and which provided them with the means to assess 
and improve their own mathematical understanding: (i) the students benefitted from 
having opportunities to discuss and work on their approaches to learning mathemat-
ics; (ii) the students willingly engaged in developing learning processes when they 
noticed a teacher listened to what they were already doing and where they wanted 
to improve in order to succeed in mathematics class; and (iii) the students developed 
learning processes from suggestions that were offered rather than prescriptions told.

The student is also central to the chapter by Tina Rapke, Jennifer Hall, and 
Richelle Marynowski, titled “Re-framing testing to better fit within problem- solving 
classrooms: Ways to create and review tests.” The chapter focuses on the use of two 
assessment strategies developed by the researchers: strategies that permit instruc-
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tors to design assessments based on student thinking related to assessments and 
strategies that assist students in assessing themselves.

The first assessment strategy involved students in developing exams to help 
them prepare for exam writing. During this process, some students created ques-
tions that others did not understand, leading to discussion of these questions and 
further learning. The instructor then created the “actual” exam by choosing some 
of the questions, with a few adaptations, from the students’ practice exams, 
thereby using student thinking about exam questions as a means for developing 
the actual assessment.

The second strategy combined exam writing, exam reviewing, and response revi-
sion in a process that involved the use of summative exams in formative ways. This 
strategy began with students writing an actual closed-book exam. This was followed 
by the reviewing of instructor-selected student responses to exam questions and the 
subsequent revising by students of their own exam responses. Rapke et al. point out 
that the exam-reviewing process, which focused on actual student responses to 
exam questions, gave students the opportunity to see examples of their peers’ think-
ing and consequently to analyze and revise their own thinking: “Students indicated 
that they learned by comparing, analyzing, critiquing, and providing feedback on 
student responses.”

Rapke et al. argue that their approach, despite the fact that it comprises the use of 
“traditional” exams, illustrates how such exams can be utilized in meaningful ways, 
when students are actively involved in, and their thinking is at the heart of, the 
exam-preparation and exam-reviewing process. This chapter thus provides an addi-
tional tool for learners to assess their own understanding and for teachers to gather 
feedback on that understanding.

To conclude, Part V of this volume offers many novel insights on the multi- 
faceted complexity of planning and assessment in mathematics education, insights 
that will be of interest not only to the seasoned reader of the assessment literature 
but also to the beginner in this field. Along with its contributions to the various 
courses of action by which planning for learning and for assessment might be 
approached, as well as different ways of conceptualizing and engaging in assess-
ment, it also highlights the manner in which teachers and students co-participate as 
central actors within the planning-assessing process.

References

Black, P., & Wiliam, D. (1998). Inside the black box: Raising standards through classroom assess-
ment. Phi Delta Kappan, 80(2), 139–148.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn 
mathematics. Washington, DC: National Academy Press.

Ontario Ministry of Education [OME]. (2010). Growing success: Assessment, evaluation, and 
reporting in Ontario schools, grades 1 to 12 (1st ed.). Retrieved from http://www.edu.gov.
on.ca/eng/policyfunding/growSuccess.pdf.

Part V: Preface – Planning and Assessment: Teachers and Students As Central Actors

http://www.edu.gov.on.ca/eng/policyfunding/growSuccess.pdf
http://www.edu.gov.on.ca/eng/policyfunding/growSuccess.pdf


441© Springer International Publishing AG, part of Springer Nature 2018 
A. Kajander et al. (eds.), Teaching and Learning Secondary School 
Mathematics, Advances in Mathematics Education, 
https://doi.org/10.1007/978-3-319-92390-1_41

Planning a Unit by Starting with the End 
in Mind: Unit and Lesson Planning

Jennifer Holm

Abstract This chapter starts with using a grade 10 content strand from the Alberta 
Program of Studies to illustrate how to plan a unit by starting with the end curricular 
goals of the unit. A framework is presented and filled out within the chapter to pro-
vide concrete examples of one possible way to plan a secondary mathematics unit. 
From the completion of the unit planning guide, a discussion is built on how to 
decide where start the unit by focusing on where students currently are in their 
understandings. Next, the chapter explores planning a lesson using a modification 
of the three-phase lesson plan. An example of a lesson is created and described in 
the chapter. Strategies on how to both plan and implement an inquiry-based lesson 
are discussed throughout the example.

Keywords Unit planning · Three-phase lesson plan · Backward planning · 
Secondary mathematics planning

Lesson planning is one activity that teachers engage in every day of their career. 
“Effective lessons establish a clear purpose and objectives for both teacher and stu-
dents. They connect with students’ prior knowledge, capture students’ interest, and 
provide opportunities for meaningful practice inside and outside the classroom” 
(Expert Panel on Student Success in Ontario 2004, p. 46). Having a clear goal for 
teaching makes planning a lesson much simpler by focusing on the essential under-
standings to be covered each day.

The chapter begins by looking at a framework to use to plan a unit in mathemat-
ics. The framework begins with the curricular expectations set out for the grade 
level. From here, the planning looks at writing learning goals, anticipating student 
struggles and identifying prior knowledge, and then considering planned support for 
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the unit. Using a completed template of the unit plan, a discussion about how to plan 
a single lesson within the unit is discussed in order to provide an illustrative exam-
ple of planning within mathematics.

 Unit Planning

Alberta Assessment Consortium (2015) and the Ontario Literacy and Numeracy 
Secretariat (n.d.) both note that planning should begin by looking at the end goals 
first. What is meant by this is that all planning needs to begin with the curriculum 
document that details what all students should learn during the school year. Across 
Canada, provincial Ministries of Education have created guidelines for determining 
what needs to be taught in schools. Alberta calls theirs a Program of Study and 
Ontario uses the term Curriculum. For the basis of this chapter, I have chosen to use 
Alberta’s Program of Study for grade 10C in the strand of Measurement to show as 
an illustration.

Since planning should begin by examining the expectations set out for the grade 
level, I will begin there as well. Figure 1 gives a blank template that I will fill in as 
I move through the chapter to illustrate how a teacher might plan a mathematics 
unit. This template was adapted from templates found in the Alberta Assessment 
Consortium (2014) and Pilot and Walter-Rowan (2014). Beginning with the 
Measurement strand in grade 10C, there is only one general outcome specified: 
Develop spatial sense and proportional reasoning (Alberta Education 2008). Within 
this outcome, there are four specific outcomes to serve as the guideline for planning 
the unit (see Fig. 2): solve problems that involve linear measurement, using: SI and 
imperial units of measure, estimation strategies, and measurement strategies; apply 
proportional reasoning to problems that involve conversions between SI and impe-
rial units of measure; solve problems, using SI and imperial units, that involve the 
surface area and volume of 3-D objects, including: right cones, right cylinders, right 
prisms, right pyramids, and spheres; and develop and apply the primary trigonomet-
ric ratios (sine, cosine, tangent) to solve problems that involve right triangles 
(Alberta Education 2008, p. 13). By starting with the expectations or outcomes from 
the Ministry, a clear picture of what should be accomplished in any given unit by the 
end of the school year is established. To ensure a strong curricular link in a mathe-
matics program, teachers can set out each of the planning sheets for the different 
units within the curriculum first and then find areas of overlap or where some multi- 
strand units may be supported. This will also provide some ideas of how to revisit 
concepts throughout the year to ensure deep understanding is achieved and main-
tained. For the purposes of this chapter, only the single unit will be addressed to 
serve as an illustration. These specific outcomes are then turned into the learning 
goals that will drive the learning within the classroom.
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 Learning Goals

“Learning is easier when learners understand what goal they are trying to achieve, 
the purpose of achieving the goal, and the specific attributes of success” (Chappuis 
and Stiggins 2002). Each learning goal should be created with six characteristics in 
mind (Ontario Ministry of Education 2011) in order to make them useful for teach-
ers and students. First, a learning goal “identifies knowledge and skills from the 
curriculum expectations” (Ontario Ministry of Education 2011, p.  11). Learning 
goals in this unit would focus around the specific skills students would need in order 

Curriculum Outcomes Learning Goals Anticipated Struggles/ Prior
Knowledge 

Planned Support / 
Resources

1. Solve problems that 
involve linear 
measurement, using:
· SI and imperial units 

of measure
· estimation strategies
· measurement 

strategies.

2. Apply proportional 
reasoning to problems 
that involve conversions 
between SI and imperial 
units of measure.

3. Solve problems, using 
SI and imperial units, 
that involve the surface 
area and volume of 3-D 
objects, including:

· right cones
· right cylinders
· right prisms
· right pyramids
· spheres.

I will solve problems using 
SI and imperial units of 
measure.
I will estimate 
measurements for linear 
problems.
I will use different 
measurement strategies.

I will convert between SI 
and imperial units of 
measure.
I will solve problems that 
involve conversions 
between units of measure.

I will determine and apply 
the surface area formula of 
(each shape individually).
I will determine and apply 
the volume formulas of 
(each shape individually).
I will solve problems using 
surface area and volume 
of right cones.
I will solve problems using 
surface area and volume 
of right cylinders.
I will solve problems using 
surface area and volume 
of right prisms.
I will solve problems using 
surface area and volume 
of right pyramids. 
I will solve problems using 
surface area and volume 
of spheres.

List from 1-9 curriculum where 
these come in
Cannot remember conversion 
between SI units.
Struggles with imperial units.

Difficulty with 
multiplication/division 
operations.
Remember conversions.

Unable to identify the different 
shapes.
Needs to know what surface 
area and volume are.
Has difficulty with area of 2-D 
shapes (or cannot identify the 2-
D shapes)

NCTM Illuminations

www.mathclips.ca
(Geometry)

www.edugains.ca/newsite/m
ath/tips.html: Unit 7: Surface
area and volume 

4. Develop and apply the 
primary trigonometric 
ratios (sine, cosine, 
tangent) to solve 
problems that involve 
right triangles.

I will develop and apply 
sine, cosine, and tangent 
to solve problems with 
right triangles

Can identify a right triangle.
Struggles with remembering 
where the hypotenuse, opposite 
and adjacent sides are.
Difficulty with using a protractor 
to measure sides.
Struggles with 
multiplication/division 
operations.

Trigonometric Functions: 
http://mathies.ca/activities.ht
ml

Trigonometry:
www.mathclips.ca 

www.edugains.ca/newsite/m
ath/tips.html: Unit
2:Trigonometry 

Grade: 10C         Unit of Study: Develop spatial sense and proportional reasoning.

Fig. 2 Sample grade 10 unit on spatial sense and proportional reasoning
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to meet the unit goal of developing spatial sense and proportional reasoning. Each 
of the specific outcomes details specific skills for students to master to meet the 
overall unit general outcome.

Second, a learning goal is “incremental and scaffolded” (Ontario Ministry of 
Education 2011, p. 12). In order for a learning goal to be effective, students would 
know the milestones they need to hit in order to meet the unit goal. By focusing on 
the specific steps to follow, teachers would be able to plan lessons no matter where 
students currently are at in their learning. In the example of this unit, before students 
can “solve problems, using SI and imperial units, that involve the surface area and 
volume of … right cylinders” (Alberta Education 2008, p. 13), students would need 
to “calculate surface area and volume of right cylinders.” To do this they would also 
need to have a working definition and understanding of right cylinders, surface area, 
and volume. Previous outcomes related to an understanding of circles would also be 
important in order to fully understand how surface area and volume of a right circu-
lar cylinder can be derived and understood.

Third, a learning goal is “expressed in language meaningful to students” 
(Ontario Ministry of Education 2011, p. 13). If a student does not understand the 
learning goal, then it is not useful for him or her to support learning. In Growing 
success (Ontario Ministry of Education 2010), assessment as learning is described 
as students monitoring their own learning as they progress toward the learning 
goals. Students would need to be aware of the goals of the lesson, as well as 
understand what they mean so that they can help to monitor their own learning 
progression.

Fourth, a learning goal uses “clear, concise language” (Ontario Ministry of 
Education 2011, p. 45). Learning goals should be written in such a way that stu-
dents can easily understand their meaning. Making the statements brief will allow 
 teachers to focus on the important concepts of the lesson, but also convey to stu-
dents what their target is for the lesson. It is also important to keep the mathemati-
cal terminology in the learning goal so that students are being exposed to the 
correct and precise mathematical vocabulary. It would then be important for a 
teacher to ensure students understand what the mathematical terms mean through 
the lesson progression.

Fifth, a learning goal is “specific and observable” (Ontario Ministry of Education 
2011, p. 14). It is important to choose verbs that are associated with what a teacher 
will see students doing in order to evaluate if they are meeting the expectations. A 
verb like “understand” is not measurable since it could mean different things to 
different people. How would one decide if a student really “understands” a concept 
and to what level they understand it? Using the example unit planning guide, for 
the second curriculum outcome, a learning goal like “I will understand SI and 
imperial units of measure” does not give information about what students are 
expected to do. Verbs like identify, solve, and convert would detail specific actions 
that can be observed and measured as a result of the lesson. In this example, a 
learning goal of “I will convert between SI and imperial units of measure” details 
exactly what students would be doing (or not doing) if they are working toward 
that curriculum outcome.
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Finally, a learning goal is “stated from the student’s perspective” (Ontario 
Ministry of Education 2011, p. 14). If students are to be monitoring their own learn-
ing, then they need to see that the goals are set for them. I like to use “I will…” 
statements for my learning goals in order to convey to students that this is something 
they are striving for and that I do not expect them to already have the knowledge.

In most cases, the curriculum outcomes in the example could just be restated as 
learning goals by separating them and putting them into the student’s perspective. In 
some cases, however, the outcomes may need to be adapted in order to create learn-
ing goals that are appropriate for classroom use. For example, “derive, through the 
investigation and examination of patterns, the exponent rules for multiplying and 
dividing monomials, and apply these rules in expressions involving one and two 
variables with positive exponents” from Ontario would need to be adapted (Ontario 
Ministry of Education 2005, p. 5). Since the outcome is not scaffolded, clear or 
concise, it would need to be altered to make it an effective learning goal. This expec-
tation would most likely need to be split into several smaller learning goals in order 
for it to be useful within the classroom and to conform to the suggestions for writing 
learning goals. An example learning goal for this expectation could be “I will derive 
exponent rules for multiplying and dividing monomials.” See Fig.  2 for sample 
learning goals created for this unit. Once the learning goals for the unit have been 
determined, the next task would be to determine the anticipated struggles of stu-
dents as well as what prior knowledge is essential for the different areas within the 
unit, as is described next.

 Anticipated Struggles/Prior Knowledge

An important area that I have found is often overlooked in planning is anticipating 
struggles. As a new teacher, this could be difficult to consider in advance if a teacher 
has not taught the specific grade level prior to this. Keep this section available so that 
it can be expanded on as the unit progresses and to give ideas for the next time the unit 
is taught. Considering anticipated struggles prior to a lesson can help with deciding 
what resources and supports may be needed before the lesson hits a rough patch. Prior 
knowledge is another area to consider at this point in the planning. By identifying 
what topics a student should already have learned in the previous year(s) (or unit as 
the case may be), a teacher may have a potential source for areas when students are 
struggling in the current unit. For example in looking at the learning goal “I will solve 
problems, using SI and imperial units, that involve the surface area and volume of 
right cylinders,” students should have mastered the outcomes related to circumference 
and area of circles from grade 7  in order to support development of right circular 
cylinders. Figure  2 shows some other examples of previous knowledge and some 
anticipated struggles for the unit. This example is not meant to be an exhaustive list; 
instead it is an illustration for the purposes of this discussion.

The Literacy and Numeracy Secretariat (n.d.) discusses anticipating student 
responses and stresses that teachers need to try their activities prior to using them in 
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a classroom. Once deciding where students may struggle and what they should have 
already learned, then having some supports already planned out can be a time saver 
when a student starts to struggle in the unit.

 Planned Support/Resources

For this section, consider different resources or programs available to help students 
if they are struggling with the unit. These resources could be other textbooks or 
activities that are known to support planning. I use this section to also list some 
provoking questions for the unit so that I can use them once I have decided which 
learning goals to address first with my students.

Once a higher-level plan for the unit is created, the next step is to look at indi-
vidual tasks or lessons to use with students. Figuring out where the class is beginning 
from, a teacher can begin to create lessons and activities that are designed to move 
students forward from where they are towards the unit goals. The next section of the 
chapter illustrates how to use the unit planning guide to create a specific lesson.

 Lesson Planning

There are different formats that are suggested for creating a lesson in mathematics. 
Especially early in a teaching career, a good lesson plan can be a life saver. There 
are many templates online, for example, eworkshop.on.ca has a three-part lesson 
plan template with a description of each of the parts to help with planning (http://
www.eworkshop.on.ca/edu/pdf/Mod18_lesson_template.pdf). One nice feature of 
this template is that each section discusses both what the teacher would be doing, as 
well as what students should be doing. “Student voice is recognized and valued dur-
ing the three-part lesson, as students articulate and reflect on their understanding” 
(Literacy and Numeracy Secretariat n.d., p. 4). In Ontario the three-part lesson plan 
uses before, during, and after as the names of the phases. My favourite lesson plan 
to use is a modification of the three-part lesson with a little bit of a different bend on 
the three parts. Dan Meyer calls this modification the Three-Act Task on his blog 
(http://blog.mrmeyer.com/). In this type of lesson plan, students would not be given 
a problem and all the information up front to explore, but would instead be given 
some sort of prompt or video to discuss and ask questions about. The mathematics 
lesson would come from one of the questions created about the prompt, and then 
students would determine the types of information that they need in order to answer 
that question. In this lesson there is also a fourth part to the lesson. Figure 3 shows 
a summary all of the parts of the lesson plan.

In order to find good problems or tasks to use there are many different resources. 
A good resource would be to refer to Part IV within this book. I like to use the 
Three-Act Tasks from Dan Meyer’s blog, so I will be using one as an example 
throughout the remaining portion of this chapter.
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In looking back at my unit planning guide, I would first determine where  students 
are in order to plan a lesson that would push their understandings forward. For this 
example, I am going to concentrate on Specific Outcome #3 (see Fig. 2), specifically 
addressing right circular cylinders. Since I would first assess where my students are 
in their understanding, I would now know that my students are able to find the area 
of circles and rectangles. They are also familiar with the shape of a right circular 
cylinder, so I know I could build my next lesson from there to push their understand-
ings further. An example of a task that students could now do would be Popcorn 

Fig. 3 Lesson plan template and description of the sections
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Picker from Dan Meyer’s collection of math tasks (http://threeacts.mrmeyer.com/
popcornpicker/). The next portion of the chapter will detail each of the parts using 
this task; however, see Fig. 4 for the completed lesson plan.

Part 1 of the lesson would be to activate the learning by setting up an interesting 
context. In the lesson plan illustrated here it would be showing the first video (listed 
as Act 1). This is a chance for students to examine a video related to the context or 
something to spark their interest. After putting out the idea, ask students to generate 

Fig. 4 Sample lesson plan for exploring right cylinders
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any questions that they thought of as they were listening or watching. Stress that the 
questions do not necessarily have to be mathematical, but what did they wonder 
about as they were observing. In this example, the video shows a gentleman (Dan 
Meyer) making a right circular cylinder out of a sheet of paper and then filling it 
with popcorn. He uses a blank piece of paper and then makes a cylinder length-wise 
and width-wise. At this point, I would ask students what do they wonder about the 
video. Hopefully one of my students would bring up the question “Which cylinder 
holds the most popcorn?” I would then ask students to use what they know about 
right cylinders to make an estimation about which cylinder they think holds more, 
or if they think they hold the same, and why. We could debate the ideas for a little 
while in order to set up the inquiry for the rest of the class period. At this point, I 
would move into the second part of the lesson. A teacher knows it is a good task 
when the question becomes obvious to students.

Part 2: Let them explore the task. Do not give all the information up front. Part 
of the fun of this portion of the lesson is to let students decide what they need to 
know and how to figure out that information. What is important? What do they 
notice? Let them engage with the mathematics, but keep a close eye and be there to 
deal with questions and ask questions when groups or individuals get stuck. In the 
example lesson plan, students would need to know the size of the paper and how it 
was orientated. In this example, there is an image in Act 2 to specify to students that 
both cylinders are made out of 8 ½ by 11 paper, with one being 11 inches tall and 
the second being 8 ½ inches tall. Students would then be able to work with the ideas 
to create calculations. As the teacher, I would be moving between groups and asking 
questions about what they are doing. I would not be telling them where to go and 
would be avoiding validating their answers. This is a time for the students to explore 
and for me to observe and facilitate their learning. During this portion of the lesson 
it would also be important to have materials for the students to physically act out the 
problem to gain an understanding of the problem.

Part 3: Discuss the task and summarize findings. The Literacy and Numeracy 
Secretariat (2010) discusses some different ways to have students share their work 
such as a Gallery Walk or Math Congress. The idea would be to have students pres-
ent their solutions and solution methods in order to start the conversation about the 
goals of the lesson. During the consolidation portion, it is imperative to help stu-
dents see the connections between the mathematical concepts (Expert Panel on 
Student Success in Ontario 2004). “Without consolidation, mathematics remains a 
set of isolated facts and algorithms” (Expert Panel on Student Success in Ontario 
2004, p. 47). In my experience, this is where inquiry-based mathematics lessons are 
most likely to fall apart. I have seen fabulous lessons where this part is either skipped 
or the conversations get away from the teachers. Van de Walle et al. (2015) extend 
this idea that this portion of the lesson “is often neglected in the planning process 
and short-changed when class time runs out” (p. 55). A great task can just be a task 
if there is not a chance to bring students together on the mathematical ideas. Van de 
Walle et al. (2015) note that in this third part of the lesson, “the critical piece is help-
ing students make connections between strategies and to highlight the mathematics” 
(p. 55). In this case, it is important to return to the learning goal of the lesson “I will 
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solve problems, using SI and imperial units, that involve the surface area and vol-
ume of right cylinders” and decide what are the important mathematical under-
standings within the task. In this task, students should come to the understanding 
that the surface area of the curved surfaces in both cylinders is the same; however, 
the volume is different. A discussion about why the volume is different is important 
at this point and how students could predict which cylinder has the larger volume 
based on what they know about right circular cylinders, and specifically circles.

Part 4: Providing extensions or new questions that arise from the task. Dan Meyer 
calls this part of the problem the “sequel”. His suggestions of the possible sequels 
to this task are “Can a rectangular piece of paper give you the same amount of 
 popcorn no matter which way you make the cylinder? Prove your answer.” “How 
many different ways could you design a new cylinder to double your popcorn? 
Which would require the least extra paper?” “Is there a way to get more popcorn 
using the exact same amount of paper? How can you get the most popcorn using the 
same amount of paper?” Another possible extension for the task would be the 
Perfume problem since it applies extra knowledge about the surface area and vol-
ume (Fig. 5).

 Conclusion

Starting planning at the beginning of the year by looking first at the curriculum 
goals can lead to ensuring that learning is always focused on the outcomes of the 
class. Creating learning goals up front can allow for the topics to be revisited 
throughout the year in order to create a program of learning that is goal oriented and 
allows for connections between topic areas. Once creating the unit plans for the 
entire grade, it can be easier to look for cross overs between the topics to allow for 
multiple units to be discussed during different lessons. This also helps to move away 
from this idea of a “laundry list” and toward thinking about the topics of study in a 
broader context. As Peter Taylor (2017) noted in his presentation, “The high school 
mathematics laundry list. Our students do not need it. Neither does the world. Those 
few who need it will master it—because they need it and they love it” (slide).

The Goodsmell perfume producing company has a new line of perfume and is designing
a fancy new bottle for it. Because of the expense of the glass required to make the
bottle, the surface area must be less that 150 cm2. The company also wants the bottle to
hold at least 100 mL of perfume. The design under consideration is the shape of a
cylinder. Determine the maximum volume possible for a clyindrical bottle that has a
total surface of less than 150 cm2. Determine the volume to the nearest 10 mL. Report
the dimensions of the bottle and corresponding surface area and volume.

Fig. 5 Grade 9 exemplar problem (Ontario Ministry of Education 2000)
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 Introduction

Several research studies in mathematics education currently address the teaching 
and learning of mathematics at the secondary level. Studies may suggest pedagogi-
cal approaches to be used in the daily teaching of mathematics, or may suggest 
formative and summative assessment approaches to evaluate students’ mathemati-
cal work. Recent research about the design of mathematical tasks and assessments 
(Burkhardt and Swan 2013; Swan and Burkhardt 2012) highlights important aspects 
that should be considered when assessing students’ mathematical work.

Preferably, mathematical tasks and mathematical assessments should be inter-
woven. That is to say that, the assessment of students’ mathematical work when 
solving mathematical tasks should consider all the skills that are supposed to be 
prompted and fostered by the task. In other words, tasks and assessment should be 
developed and thought of together so that students’ mathematical learning can take 
maximum advantage of this relation.

This chapter intends to shed some light in the analysis of students’ mathematical 
work, by means of connecting Kilpatrick et al.’s (2001) theory of mathematical pro-
ficiency to the work students present when doing mathematical tasks. The main 
advantage of looking into mathematical proficiency is that it analyses students’ 
work based on a holistic theory that takes into consideration the range of students’ 
abilities that should be sought when planning and creating a mathematical task. In 
addition, this mathematical proficiency theory can take into account various expres-
sions of how students solve their mathematics tasks. Finally, a strength of using 
mathematical proficiency as the basis of this analysis is that mathematical profi-
ciency does not overvalue procedures in students’ mathematical work. Procedures 
are important aspects of students’ mathematical work, but so too are other features 
of their work, such as concepts, strategies, reasoning and attitudes.

This chapter starts off by briefly explaining the theoretical background that sup-
ports the current analysis in terms of assessment needs. Then, it describes Kilpatrick 
et al.’s (2001) mathematical proficiency model and uses it to analyse the work done 
by two different students in two different tasks. Finally, the chapter concludes with 
some conjectures and comments for the teaching of mathematics.

 Theoretical Background

Swan and Burkhardt (2012) assert that for high-quality assessment eight principles 
should be taken into consideration. According to the authors an assessment tool 
should (1) address curriculum requirements in a balanced way; (2) encompass tasks 
that are acknowledged as worthwhile; (3) fit its purpose; (4) be challenging but still 
accessible; (5) focus on reasoning instead of on results; (6) present tasks about 
genuine contexts; (7) encourage decision making; and (8) be clear in terms of its 
demands. Swan and Burkhardt’s principles speak to the consistency that should 

P. D. Corrêa



455

exist between the assessment tool and the assessment itself. By following these 
principles, an assessment tool can potentially promote mathematical thinking and 
mathematical abilities that should be acknowledged and evaluated. However, Swan 
and Burkhardt argue that many current assessment practices do not address these 
assessment principles. Assessment practices are usually focused on individual and 
disconnected elements, based mainly in procedural knowledge (Swan and Burkhardt 
2012).

In a similar perspective, Henningsen and Stein (1997) discussed and recognized 
that building conceptual connections with previous knowledge; emphasizing mean-
ing; and requiring explanations, thinking processes and strategies are essential for 
maintaining engagement in high-level thinking mathematical tasks. These features 
highlight that engaging in and solving mathematical tasks is not only about proce-
dural knowledge. Other skills are necessary and desired. Therefore, these skills 
should also be taken in consideration when assessing students’ mathematical work. 
Consistent with that, Burkhardt and Swan (2013) speak to the necessity of a reliable 
tool for students’ assessment; they assert that “research is needed to show how stu-
dent performances on conceptual and problem solving tasks might be reliably mea-
sured and reported. Otherwise examiners and teachers will continue to assess 
fragments rather than complete performances” (p. 438).

In sum, if students are to face tasks that (1) address genuine situations, (2) 
demand mathematical curriculum knowledge, (3) are challenging, (4) require stu-
dents’ autonomy and decision making, (5) focus on reasoning, (6) acknowledge 
mathematics worthiness, and (7) are engaging, then students’ work will definitely 
encompass and work on different and various mathematical skills that should be 
assessed. The present chapter offers Kilpatrick et al.’s (2001) mathematical profi-
ciency model as an assessment option that looks into comprehensive factors. 
Kilpatrick et al. assert that “initial learning with understanding can make learning 
more efficient” (p. 123). As such, the authors’ model of mathematical proficiency 
draws attention not only for procedural knowledge but also to other factors that 
contribute to students’ mathematical understanding. For Kilpatrick et al., the five 
essential strands that compose students’ mathematical proficiency are conceptual 
understanding, strategic competence, procedural fluency, adaptive reasoning and 
productive disposition (Table 1).

Procedural fluency is commonly the only strand focused on in assessment. This 
might be due to the fact that in mathematics students are commonly encouraged to 
write down the procedures they use to solve tasks, instead of explaining their under-
standings, strategies and/or reasoning. In some situations, understandings, strate-
gies and reasoning can be inferred from procedures, but these inferences are not 
always a reliable picture of students’ mathematical thinking and proficiency. In 
other words, students’ written materials are predominantly about procedural flu-
ency, which reflects only part of students’ mathematical proficiency. Bearing in 
mind that students’ mathematical learning should be ideally assessed formatively 
and as a whole, Kilpatrick et al.’s (2001) mathematical proficiency model is a good 
option to holistically analyse students’ work when solving mathematical tasks. On 
the other hand, it is relevant to note that students write down more than procedures, 
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only if they are prompted to. That is to say that, mathematics tasks should encourage 
or directly ask for students’ understanding, strategies and reasoning. This chapter 
next describes two examples that show how the five strands of mathematical profi-
ciency can be expressed in students’ mathematical work.

 Assessing Students’ Work Through Mathematical Proficiency

Task 1 (Fig. 1) and Task 2 (Fig. 3) were implemented in a senior high school in 
Alberta, Canada, in a grade 11 mathematics course. Modeling tasks were used in 
order to prompt and allow for the emergence and use of relevant mathematical 
skills. Students worked in groups of three or four, discussing and sharing their ideas. 
Students had two consecutive 80 min classes to work on each task and they had 
individual journals to record their work.

Following each task, there are two interpretive diagrams (Figs. 2 and 4) illustrat-
ing the work done for each task by two different students. These diagrams present 
fragments of students’ work and discourse while doing the task. Fragments were 
collected from students’ journals, audio and video recordings transcripts, and post- 
class interview transcripts (for one of the students only). Italics are used to represent 
students’ verbatim quotations. A grey ellipse-shaped arrow shows the chronological 
order in which task fragments were gathered. Fragments that are not overlapped by 
the grey arrow were collected during interviews. Fragments are categorized accord-
ing to the five strands of Kilpatrick et al.’s (2001) mathematical proficiency model, 

Table 1 Description of Kilpatrick et al.’s (2001) strands of mathematical proficiency

Conceptual 
understanding

Speaks to students’ retrieval, connection and comprehension of mathematical 
ideas, content and representations. Allows students to better retain and (re)
construct knowledge, gets students ready to detect conceptual errors, requires 
students to “learn less” (once content is interrelated), and provides students 
with confidence.

Strategic 
competence

Involves formulating, representing and solving problems. Allows students to 
realize similarities in tasks’ structure, to identify relations between 
mathematical elements, and to figure out different solving models or 
representations when faced with non-routine situations, which stimulates 
flexibility and productive thinking.

Procedural 
fluency

Refers to the appropriate and flexible use of procedures, as well as to the 
comprehension of them. Without enough procedural fluency, procedures may 
be compartmentalized, students’ mathematical understanding may be 
superficial, and problem solving skills may be impaired.

Adaptive 
reasoning

Alludes to the ability of building logical connections between mathematical 
ideas, contents and circumstances. It is not only about formal proofs, but also 
about argumentation, justification and reasoning.

Productive 
disposition

It is necessary if students are to develop the other four strands; and it is 
determinant on students’ academic achievement. It is about acknowledging 
and believing in the benefits of mathematics, and about trusting in one’s own 
ability to do and learn mathematics.
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revealing different nuances of students’ work that are present in an everyday math-
ematics class. These nuances can and should be acknowledged and assessed.

Students were supposed to analyse Task 1 (Fig. 1) and make their own assump-
tions to solve it. There were many possible correct answers, and different solutions 
and conjectures were welcome. This chapter presents the interpretive diagram 
designed out of Rick’s work for Task 1 (Fig. 2), in which initial investigation is 
based on the fact that each runner is supposed to run a different fraction of the total 
medley distance. As seen in fragment one of Rick’s interpretive diagram, Rick 
retrieves his mathematical knowledge about ratios and connects with the given data 
in the problem, demonstrating conceptual understanding. In the post-class inter-
view (fragment ten), Rick explains his notes from fragment one, confirming his 
conceptual understanding about the whole process. When asked about why he used 
fractions (fragment eight), he clarifies that by using fractions he gets exact values 
instead of approximate values, which would be the case if he was working with 
decimals. This explanation shows Rick’s adaptive reasoning, given his ability to 
logically relate fractions and decimals.

Going back to Rick’s classroom notes, in fragment two, he demonstrates adap-
tive reasoning by presenting an argument based on runners’ stamina to explain why 
a certain runner should be running a certain distance. Still based on this reasoning, 
in fragment three, Rick shows strategic competence by supposing that the runner of 
the 400 meter leg (shortest leg) should be at maximum 1.6 m/s faster than the runner 
of the 1600 meter leg (longest leg). That is the strategy he understands will make the 
problem reasonable. In the interview (fragment nine), Rick explains his strategy and 
logically relates the different speeds and the different distances. He connects his 

Fig. 1 Task 1 – Distance medley relay
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analysis with mathematical content by stating that 1.6 m/s would represent the max-
imum difference between speeds. His explanation on this matter speaks both to 
conceptual understanding and adaptive reasoning.

In fragment four, Rick shows conceptual understanding when retrieving his 
knowledge about fractions and connecting them to the task. He then chooses a cor-
rect procedure based on fractions and correctly applies it to find out runners’ speeds, 
demonstrating procedural fluency. Rick explains he has one runner as his main ref-
erence and assumes even speed increments for every 400 meters increase in dis-
tance, which speaks to his strategic competence. He obtains these speed increments 

Fig. 2 Rick’s mathematical work for Task 1
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(8/15) by dividing the maximum difference (1.6 m/s) by 3. His explanation about 
the procedure confirms his conceptual understanding and his procedural fluency. 
By assuming one runner as a reference, by affirming he knows what the problem is 
about, and by making informed guesses to solve the task, Rick is in fact presenting 
evidence of his belief in his ability to do mathematics, which in turn demonstrates 
his productive disposition.

In fragment five, Rick demonstrates conceptual understanding by retrieving his 
previous knowledge about average, connecting it to the task and coming up with an 
equation to balance out runners’ speeds. This equation serves the purpose of repre-
senting and solving the problem, which is about strategic competence. Fragment 
five also speaks to Rick’s procedural fluency as it illustrates the procedure he 
chooses to correctly solve the equation. However, as Rick acknowledges, he makes 
a mistake and needs to come up with a new equation. This new equation is presented 
in fragment six, alongside an explanation that makes clear his conceptual under-
standing about what was wrong in the first equation. The mistake is that Rick does 
not consider a weighted average in his first equation. Rick shows conceptual under-
standing by retrieving mathematical content again and connecting to the task, but 
this time mathematical content about weighted average. Strategic competence is 
demonstrated again when Rick balances runners’ speeds out with a weighted aver-
age in his final step to represent and solve the task. To make this move, Rick’s notes 
demonstrate adaptive reasoning because he logically relates weighted average with 
the fact that different runners run different legs in size. His explanation in fragment 
six speaks to his conceptual understanding about weighted average as well. Rick 
shows procedural fluency when he chooses a correct procedure to solve the equa-
tion, at a right moment, and performs it correctly, getting to his final answer this 
time. By admitting he made a mistake, by redoing the equation and solving it again, 
Rick shows productive disposition by means of his persistence and confidence in his 
ability to do mathematics.

As fragment seven shows (an interview fragment), Rick believes he would even-
tually get to an answer, although sometimes it seemed it would take longer. He also 
says it was fun to engage in a task similar to what mathematicians do. Finally, he 
affirms that this kind of task is not as restricting as usual mathematics tasks, which 
gives him more autonomy to make his own choices. All of these assertions reinforce 
Rick’s belief in his capacity to do and learn mathematics, which speaks to his pro-
ductive disposition towards mathematics.

In Task 2 (Fig. 3), students were welcome to justify their conjectures based on 
examples, given that they did not formally study logarithms before. Clara’s work is 
analysed for Task 2. In fragment one of Clara’s interpretive diagram (Fig. 4), she 
starts off by correctly performing a binary search procedure in order to understand 
the task. Her approach shows an example of how procedural fluency can be used to 
understand a task. Clara also asks questions to better understand the mathematical 
content behind the binary search, which speaks to her conceptual understanding. 
When asking if the searched items in the binary search should be in order or not, she 
logically relates an ordered binary search to an unordered one, demonstrating her 
adaptive reasoning. In fragment two, Clara again shows procedural fluency by 
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correctly performing another binary search and also a linear search to better under-
stand the task. Then she works on her adaptive reasoning by comparing the two 
results to make sense of both kinds of search.

In fragment three, Clara demonstrates strategic competence when she comes up 
with a way to calculate the number of searches in the linear case. As such, she also 
shows conceptual understanding about the linear search, given that this understanding 
is necessary for her to figure out the number of necessary searches. Then, in fragment 

Fig. 3 Task 2 – Binary search
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four, she shows conceptual understanding about the binary search procedure, because 
she connects the procedure to the fact that it is necessary to keep halving the number 
of searched items. Based on this understanding, she demonstrates strategic compe-
tence by figuring out what she needs to do to find out the number of searches in the 
binary case. In fragment five, Clara chooses to reproduce the binary search proce-
dure again, however, at this time, she presents a different sort of strategic compe-
tence. She decides to look into the discarded options as well. In this way, she works 

Fig. 4 Clara’s mathematical work for Task 2

Observing for Mathematical Proficiency in Secondary Mathematics Education



462

on her adaptive reasoning by logically comparing both situations under analysis in 
order to try to understand the problem, find differences and similarities, and figure 
out a solution. When she states that it is just about “halving and choosing a side” she 
demonstrates understanding about the procedure she is implementing, which speaks 
to her procedural fluency. In fragment six, her discourse demonstrates both concep-
tual understanding and procedural fluency because she not only correctly explains 
the procedure, but she also identifies, analyses and explains the particular situation 
in which there is an even number of items to be searched.

Finally, based on the teacher’s input about arithmetic and geometric sequences, 
Clara works on her conceptual understanding by trying to connect her work so far 
with arithmetic sequences (fragment seven). She also demonstrates adaptive 
 reasoning when wondering about the logical relation between the arithmetic 
sequences content and the linear and binary searches. Nevertheless, she does not 
present a conclusion about this possible connection. Clara needs some prompting to 
formalize her ideas mathematically. After visualizing how she could do that, in frag-
ment eight, she uses an example to validate what she called “the formula to find the 
number of binary searches” (n = 2t). She shows procedural fluency by choosing a 
correct procedure and a right moment to apply it, and she also describes and per-
forms the procedure correctly. Solving this example speaks to her strategic 
 competence, given that the example presents the strategy she uses to answer the 
task’s initial question, that is, the strategy she uses to justify why the binary search 
is faster than the linear search in the worst case scenario. As for productive disposi-
tion, researcher’s field notes attest to Clara’s interest in the task. Although she has 
moments of discouragement, she asks for help and tries to understand the prompts 
she is given. At the end of the task, she expresses productive disposition by drawing 
and verbalizing her contentment for being able to learn and do mathematics, as can 
be seen in fragment nine. Clara’s work assessment is entirely based on her in-class 
work since she did not participate in an interview.

 Final Considerations

The above examples were not provided to exhaust the analysis of students’ work in 
terms of Kilpatrick et al.’s (2001) model of mathematical proficiency. Rather, they 
were intended to have a two-fold purpose: (1) explore how Kilpatrick et al.’s math-
ematical proficiency model assesses more than solely mathematical procedures, 
addressing students’ work in a more holistic way; and (2) attest for the various abili-
ties that can be promoted by mathematical tasks, which in turn are of relevance for 
the development of mathematical proficiency.

As the interpretive diagrams illustrate, students’ journals, students’ comments 
during tasks or during interviews, and researcher’s field notes provide evidence that 
the five strands of mathematical proficiency were in place during students’ work 
when solving the tasks. Indeed, when students analyse the task, and develop a 
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 strategy to tackle and solve it, different and varied abilities and thinking processes 
can be observed. These skills should definitely be acknowledged when assessing 
 students’ work, because they address the different nuances of students’ mathemati-
cal thinking that compose the learning processes that tasks are to promote. These 
skills can be categorized under Kilpatrick et al.’s (2001) five strands of mathemati-
cal proficiency.

To illustrate the importance of the assessment of all five strands of mathematical 
proficiency in students’ work, Rick’s situation is further discussed in this closing 
section. Rick’s interpretive diagram (Fig. 2) shows that before he balances runners’ 
speeds out into an equation to solve the task—which might be considered by some 
as the most relevant part of the solution—many other important aspects of his 
mathematical thinking and abilities were in place. Rick demonstrates strategic 
competence when structuring his solution, for instance, when defining which run-
ner was running each leg and when defining the increment in runners’ speed. Then, 
Rick works on conceptual understanding, adaptive reasoning, and productive dis-
position, given that he respectively expresses understanding about the concepts 
involved in the task, logical reasoning that supports his thinking, and confidence 
while developing his solution. What this means is that even if Rick had not formal-
ized an equation to finish the task, or had finished the task with the first wrong 
equation he got, he would still have worked on at least four of the five strands of 
mathematical proficiency, which indicates a lot in terms of students’ mathematical 
learning.

It is up to us—mathematics teachers—to look at students’ work and acknowl-
edge when there is more than formal procedures or final right answers to assess. 
When a student does a lot of relevant work before getting to the final answer and—
based on teacher’s assessment—mistakenly concludes it has no value, this student 
may believe that mathematics is too hard and that (s)he has no capacity to do math-
ematics. This may be the moment when the teacher “loses” her/his student. 
Therefore, it is extremely relevant to highlight the conceptual, the strategic, the logi-
cal, the procedural and the attitudinal value of students’ work. Kilpatrick et al.’s 
(2001) mathematical proficiency model serves the purpose of helping teachers in 
this challenging but essential work. By recognizing the assorted nuances of stu-
dents’ mathematical thinking and skills, teachers are potentially prepared to identify 
students’ needs and plan their classes accordingly.
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Re-Framing Testing to Better Fit  
Within Problem-solving Classrooms:  
Ways to Create and Review Tests
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Abstract We offer two alternative strategies to simply giving paper-and-pencil 
mathematics tests that use student thinking as a basis, which we identify as a key 
underpinning of teaching in problem-solving classrooms. Using student thinking as 
a basis refers to the idea that teaching is inseparable from, grounded in, and formed 
by students’ ideas. Specifically, we discuss (1) involving students in developing 
tests to help them prepare for writing tests and (2) reviewing test material by having 
students compare, analyze, and critique their classmates’ test responses and 
subsequently revise their own work. These two strategies are re-castings of the 
traditional paper-and-pencil test. Teachers can use the strategies to promote deep 
approaches to learning and, as a result, help students to perform better on tests.

Keywords Novel assessment methods · Testing · Student thinking

We offer two alternative strategies to simply giving paper-and-pencil tests that use 
student thinking as a basis, which we identify as a key underpinning of teaching in 
problem-solving classrooms. Using student thinking as a basis refers to the idea that 
teaching is focused on and has student contributions at its heart. In this chapter, we 
describe two assessment strategies that use student thinking as a basis and that have 
been implemented and researched in post-secondary mathematics classes that were 
aimed at helping students transition from secondary school. Specifically, we discuss 
(1) involving students in developing tests to help them prepare for writing tests and 
(2) reviewing test material by having students compare, analyze, critique, and 
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provide feedback to their classmates’ test responses and subsequently revise their 
own work. These two strategies are re-castings of the traditional paper-and-pencil 
test. Teachers can use the strategies to promote deep approaches to learning and as 
a result help students to perform better on tests.

 Student Thinking As a Basis for Teaching in Problem-solving 
Classrooms

The idea of using student thinking as a basis in problem-solving classrooms can be 
seen in various publications. For example, the National Council of Teachers of 
Mathematics (2014) asserts that effective mathematics teaching “engages students 
in solving and discussing tasks that promote mathematical reasoning and problem- 
solving” and “uses evidence of student thinking to assess progress toward 
mathematical understanding and to adjust instruction continually in ways that 
support and extend learning” (p. 56). In other words, effective teaching in problem- 
solving classrooms focuses on students’ ideas, as their ideas are essential and 
required to adjust instruction.

Similarly, the classrooms that inspired Yackel and Cobb (1996) to develop their 
theory of sociomathematical norms were problem-solving-based and emphasized 
student thinking. Specifically, lessons in these classrooms began with a problem and 
ended in “whole-class discussions where children explain and justify the 
interpretations and solutions they develop during small-group work” (Yackel and 
Cobb 1996, p. 460), thus making student thinking part of the classroom discourse. 
Schoenfeld (2014) also advocates for teaching that uses student thinking as a basis. 
He created a rubric that teachers can use to reflect on their teaching, on which the 
highest rating is achieved when “the teacher solicits student thinking and subsequent 
instruction responds to those ideas, by building on productive beginnings or 
addressing emerging misunderstandings” (p. 408). Without student thinking, it is 
not possible for teaching to achieve a high rating because there would be no 
productive beginnings or misunderstandings shared. Accordingly, in Schoenfeld’s 
conception, teaching emphasizes and draws on students’ ideas.

The point being that if students’ ideas are foundational for mathematics teaching 
then they should also be for assessment. Galbraith (1993) warns us that teaching and 
assessment should share in core tenets, as “it is inappropriate to look at alternative 
modes of assessment without asking about associated teaching approaches and 
assumptions underlying both” (p. 79). 

 Deep Approaches to Learning

The importance of students’ perspectives on their learning context (including 
assessment) and the influence of students’ perspectives on their learning can be 
traced back to Marton and Säljö’s (1976) foundational work on how students 
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conceptualize learning. In their work, they looked at deep and surface approaches to 
learning. Surface approaches to learning involve ideas about “hoop jumping” and 
memorizing, whereas deep approaches to learning are associated with learning to 
understand and seeing things from different points of view. Specifically, Marton 
et  al. (1993) came up with six ways that people conceptualize learning: “(a) 
increasing one’s knowledge, (b) memorizing and reproducing, (c) applying, (d) 
understanding, (e) seeing something in a different way and (f) changing as a person” 
(p. 277). These researchers explain that the first three categories are linked to surface 
approaches to learning while the last three categories are descriptions of deep 
approaches to learning. In other words, deep approaches to learning can be evidenced 
by students describing their learning in terms of understanding or seeing things 
from different perspectives/angles.

 Assessment Strategies That Use Student Thinking As a Basis

In the following sections, we discuss two practical strategies that focus on students’ 
ideas in problem-solving classrooms. While these strategies were implemented and 
researched in post-secondary mathematics classrooms, they can easily be translated 
into practice at the secondary level, as the post-secondary classrooms either involved 
secondary mathematics content or focused on helping students transition from 
secondary to post-secondary mathematics courses.

 Strategy 1: Involving Students in Developing Exams to Help 
Them Prepare for Exam Writing

The first strategy was researched (Rapke 2016, 2017) in a Canadian technical insti-
tute’s upgrading mathematics course, which included topics from the province’s 
Grade 11 curriculum. The course was taken by students who lacked experience with 
secondary mathematics topics. They took the course as a prerequisite to prepare 
them to complete technical programs such as lab technician, electrician, and legal 
assistant. In this course, the students worked with the instructor to co-develop a final 
exam, as per the following steps, which took two three-hour sessions to complete:

• In groups of three or four, students developed practice exams that consisted of 
six open-ended questions and accompanying solution keys, including point 
allocation. Students crafted original questions, as well as modified the values 
within questions from class, assignments, and the course textbook. At least one 
of the six questions had to be original.

• In these groups, students practised for the “actual” exam by writing each other’s 
practice exams (e.g., students in Group 1 wrote Group 2’s practice exam and 
vice-versa). They completed each other’s practice exams individually, and were 
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instructed not to talk with classmates or use resources other than a pen or pencil 
in order to mimic the “actual” exam conditions.

• The same paired groups assessed their classmates’ written responses to the prac-
tice exams and assigned grades to the practice exams.

• The instructor posted all practice exams and student-generated solution keys on 
the course website for study purposes.

• The instructor created the “actual” exam by choosing and modifying the values 
of five questions from students’ practice exams, as well as crafting one additional 
question.

This strategy uses student thinking as a basis because creating practice exams 
would not be possible without students’ ideas on what questions to include on the 
exam. Furthermore, results from the study, which involved post-course interviews 
with students, establish that developing exams with students promotes the use of 
deep approaches to learning when preparing to write an exam (Rapke 2016). The 
deep approaches to learning reported in the interviews were evident in this process 
through reports of seeing things from different viewpoints and learning for 
understanding (Marton et al. 1993).

In terms of learning for understanding, one participant commented that the pro-
cess of creating the exam “was really good ‘cause [pause] we get to review and if 
there was something that I missed and I still don’t understand it, hopefully, I can 
understand it now that we are going to put that on the final.” This quotation illustrates 
deep approaches to learning as the participant specifically mentioned understanding. 
In terms of changing the values within existing questions to craft practice exam 
questions, another participant said that:

You’re looking at math from a different point of view. If you can actually [pause] now if I 
look at a question, I kind of see, like, [pause] you can kind of think of how it was created 
too, to solve it. Like, how did someone put this together to make this equation?

Many comments that the students made about seeing things from different 
perspectives referred to changing the numbers within questions about solving 
polynomial equations for real roots. For example, one student said that he 
experienced difficulty in “mak[ing] the questions and having them work out. I was 
a little anxious in not knowing what to put in there.” The student clarified that “what 
ended up happening was we changed our numbers so there was [sic] no zeros.” That 
is, he saw a new relationship between the coefficients of a polynomial and its zeros. 
These students’ comments provide strong evidence of deep approaches to learning, 
as per Marton et al.’s (1993) conception, as these students described seeing things 
from different points of view. Moreover, the quotations evidence how this process 
supported students as they prepared to write an exam. Thus, having students create 
practice exams uses student thinking as a basis, provokes deep approaches to 
learning, and helps students prepare for writing exams.

T. Rapke et al.



469

 Strategy 2: Reviewing Tests by Having Students Compare, 
Analyze, Critique, and Provide Feedback to Their Classmates’ 
Test Responses

Another strategy successfully implemented in a first-year university mathematics 
course involved students writing a traditional closed-book test. This course was 
focused on supporting students who were mathematics majors to transition from the 
secondary to post-secondary level. However, rather than the instructor simply 
grading and returning the tests, the students engaged in a process, termed the Active 
Exam Review Process (AERP), that involved reviewing instructor-selected student 
responses to test questions and students revising their own exam responses (for 
more information, see Rapke and Hall 2016). Thus, the AERP involves the use of 
summative assessments (assessments that summarize learning) in formative ways 
(assessments that are used to move learning forward).

Specifically, the AERP was comprised of the following steps:

• Individually, students wrote a closed-book mathematics test, using only a pen or 
pencil.

• The instructor reviewed all students’ responses to each test question and selected 
both acceptable responses and responses that were representative of 
misunderstandings. For instance, misunderstandings could include text that was 
logically flawed, did not flow, or could have been more concise.

• The selected responses were anonymized (i.e., names removed) and photocopied 
for use in the in-class portion of the AERP.

• Working in small groups, students reviewed the provided responses to each test 
question and identified acceptable responses. Students compared, analyzed, 
critiqued, and provided feedback to their classmates’ test responses.

• Then, the original tests (without any feedback; the instructor provided feedback 
and marks on photocopies of the tests) were returned to the students, who had the 
chance to revise their own responses based on their discussions with peers about 
the provided responses. Each student could earn an additional few points on her/
his initial test grade based on these revisions.

To illustrate the process, we provide an example from the first-year university 
mathematics course where the AERP was employed. The process was completed 
for the test question: Prove that for every non-negative integer n, 2n>n. Figure 1 
shows an example of feedback that students provided to the instructor-selected 
responses. Specifically, the student is indicating that the response contains a logical 
flaw (Notice that 2 k ≱ k + 1 for all non-negative integers). The student identified 
the misconception in their feedback (purple writing) by underlining the “flawed” 
text and asking the question, “What if k = 0?”
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As with the first strategy discussed, the AERP is focused on students’ mathemat-
ical ideas as it relies on students’ test responses. Namely the use of student responses 
to test questions gave students the chance to see examples of their peers’ thinking 
about the mathematical topics on the test and provided the instructor with opportu-
nities to address misunderstandings that arose on the test.

As discussed in detail elsewhere (Rapke and Hall 2016), having students engage 
in the AERP and consider their classmates’ ideas is conducive to deep approaches 
to learning. Markedly, in student surveys about the AERP, nearly all the students (17 
of 18, 94.4%) discussed the learning opportunities inherent in analyzing others’ 
mistakes and correcting their own mistakes. One student indicated that she was 
using deep approaches to learning in the AERP when she said that the process “lets 
you understand what you did wrong and improve so for next time you know the 
proper way of doing it.” This comment evidences deep approaches to learning, as 
the student used the word “understand” to describe her experiences. There is also 
evidence that the AERP promotes deep approaches to learning as the students were 
able to see things in different ways through being exposed to new approaches to 
respond to test questions. For example, a student asserted that “I learned what 
mistakes I made and got a new approach to address the questions better.” The AERP 
promotes deep approaches to learning by supporting students to understand the 
mistakes that they made on tests and having students engage with different/better 
approaches to solve a mathematics problem.

 Conclusion

Assessment in problem-solving classrooms should not be something that is done to 
students but rather with students by focusing on and having students’ ideas at the 
heart of assessment. It is in this way that students employ deep approaches to 
learning and thus experience more success on tests.

The first strategy is clearly focused on student thinking. The teacher made the 
“actual” test from a pool of student-developed questions. During the process, some 
students identified questions that they did not understand. Thus, developing the 
practice exam supported them to understand the questions. In the second strategy, 
student thinking was a basis as students’ test responses were used to review the test. 
Students indicated that they learned by comparing, analyzing, critiquing, and 

Fig. 1 Sample student work for test question
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providing feedback on student responses. Specifically, students said that they were 
offered different approaches/perspectives to solve problems, which would help 
them avoid making the same mistakes on future tests.

While many scholars have critiqued the continued focus on “traditional” tests as 
they can lead students to memorize and reproduce information, as well as spend 
time on test-taking strategies rather than meaningful learning (Miller and Parlett 
1974; Struyven et al. 2005; Willingham 2002), in this chapter, we have provided 
ways to utilize such tests in meaningful ways, resulting in deep approaches to learn-
ing. Hence, some of the deficiencies of “traditional” tests can be overcome in prob-
lem-solving classrooms through the use of novel strategies for teaching and learning. 
Furthermore, the re-casting of the traditional paper-and-pencil test described here 
aligns teaching and assessment in problem-solving classrooms because both share 
the core tenet of using student thinking as a basis.
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Enhancing Mathematics Teaching 
and Learning Through Sound Assessment 
Practices

Christine Suurtamm

Abstract This chapter reflects current thinking in assessment and provides con-
crete examples of what this might look like in a secondary mathematics classroom. 
The chapter begins with an overview of principles of sound classroom assessment, 
particularly as they relate to mathematics teaching and learning.

The chapter then discusses the components of sound classroom assessment that 
include assessment as ongoing and embedded in instruction, using a variety of 
assessment strategies, reflecting meaningful mathematics, and including students in 
the assessment process. Discussion of these components includes practical exam-
ples, strategies, or templates that teachers can use at the secondary level in mathe-
matics. A variety of assessment strategies are explored and include observations, 
conferencing, questioning, performance assessment, and portfolios. Suggestions for 
building an overall assessment plan conclude the chapter.

Keywords Assessment · Assessment strategies · Formative assessment · Planning 
for assessment · Secondary mathematics

The word “assessment” is regularly used to mean many different things. It might 
bring to mind large-scale assessment, or end of unit tests or quizzes, or it might 
mean the ongoing questioning, listening, and responding to student thinking that 
teachers do in every aspect of their classroom activity. During the mid-1900s, when 
models of learning were more closely aligned with an acquisition model that saw 
students as taking in facts and procedures, assessment often was viewed as a means 
to see how much of the information students actually ingested through performance 
on an end-of-unit test. Currently, with a different understanding of how students 
learn that recognizes that students need to work with mathematical ideas in order to 
develop an understanding of those ideas, assessment is seen as on-going, constantly 
looking at students’ understanding and making teaching and learning decisions 
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based on what that understanding looks like. Current perspectives of mathematics 
teaching and learning value mathematical understanding through student engage-
ment in problem solving and argumentation. Furthermore, these perspectives recog-
nize the importance of aligning assessment and instruction, including mathematical 
actions in assessment tasks, and designing and using assessments in equitable ways. 
Thus there is a move away from assessing merely through paper-and-pencil tests to 
the use of a range of assessment strategies that recognize the multi-faceted mathe-
matical actions that are part of doing mathematics and provide multiple opportuni-
ties for students to show what they know and can do.

 Purposes of Assessment

Assessment has many different purposes from reporting student progress to parents, 
determining what program a student might enter, providing feedback to students 
about next steps, or providing information to teachers to guide their instructional 
moves. Although assessment may be conducted for many reasons, the central pur-
pose of assessment should be to support and enhance student learning (Joint 
Committee on Standards for Educational Evaluation 2003; Wiliam 2007). This mes-
sage is reflected in many provincial curriculum and assessment policy documents. 
For instance, the mathematics curriculum documents of the Ontario Ministry of 
Education state “The primary purpose of assessment and evaluation is to improve 
student learning” (Ontario Ministry of Education 2005, p. 18).

This focus on improving student learning puts students at the heart of the assess-
ment process. It is interesting to note that assessment derives from the Latin word 
assidere, meaning “to sit beside or with” (Wiggins 1993). Thus the origin of the 
word assessment further suggests that it is a process done with students, not to stu-
dents (Klein 1966).

Assessment discussions often focus on the distinctions between formative and 
summative assessments. If evidence is used to inform teaching and learning with a 
view to improve learning, then the assessment would be considered to have a forma-
tive purpose (Black and Wiliam 2009). If, instead, the evidence gathered from an 
assessment is used to report on student learning at a particular point in time, then the 
assessment could be considered to be serving a summative purpose (Black and 
Wiliam 2009; Wiliam 2015).

However, assessments themselves are neither formative nor summative (Wiliam 
2015). Rather, it is how the evidence generated by the assessment is used and the 
types of inferences that are made that make an assessment formative or summative. 
For instance, although a teacher might design an end of unit test as a summative 
task, the feedback provided on that test might also inform teaching or provide infor-
mation to students to improve future learning (Brookhart 2001; Earl 2013). Thus, 
the assessment is serving both formative and summative purposes.

Increasingly there has been an emphasis on including more formative assessment 
in teaching mathematics as the use of formative assessment has been shown to 
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enhance student learning for all students, but particularly for those who might be 
deemed struggling learners (Black and Wiliam 1998).

 Components of Sound Classroom Assessment

Sound classroom assessment is ongoing and embedded in instruction, uses a variety 
of assessment strategies, reflects meaningful mathematics, and includes students in 
the process. The following discusses each of these components and includes exam-
ples of what this might look like in a mathematics classroom.

 Ongoing and Embedded in Instruction

Research suggests that assessment should be integrated into all aspects of teaching 
and learning in a seamless manner to inform instructional decisions in ways that 
promote student learning (Carless 2007). Students’ learning is supported when the 
moment-by-moment actions and decisions that teachers make during teaching are 
informed by evidence of students’ understanding (Leahy et  al. 2005). However, 
these actions and decisions require focused attention in order to make students’ 
mathematical thinking and understanding evident.

Terry, a Grade 10 teacher, integrates formative assessment within her lessons, 
particularly in the way that she questions, listens, and responds to student thinking. 
For instance, Terry began one lesson by modeling a linear relationship with stacked 
linking cubes. She asked the students, “What kind of relation is this?” She allowed 
many students to answer as she was looking for the different ways that students 
could describe relations. After they focused their attention on the relation being 
linear she asked, “Why is it linear?”, “How do you know?” and “Is there anything 
else that you notice?” to promote a discussion that prompted students to listen to 
other students’ responses to encourage their reasoning and to expand their under-
standing of particular concepts.

Terry then presented color-coded linking cube models of quadratic relationships 
such as in Fig. 1. Terry worked with the class to create a table of values for the 
model, and together they determined and discussed the characteristics of the 
relationship.

Groups were then asked to create a quadratic relationship with specific criteria 
using different colored blocks. After students had created their relationships, Terry 
led a discussion about the models and asked “What does that mean that those two 
models are equal?” She paraphrased a student response and then asked, “… how 
could I verify, how could I prove that they were equal?” Terry encouraged all of her 
students to respond and worked with their responses, whether they were correct or 
incorrect.
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Throughout this lesson, Terry encouraged her students to consider not only what 
they were doing and how they were doing it, but to question why, by thinking about 
what makes a relation linear or quadratic. Terry claimed that her questioning not 
only provided feedback to the students but that she learned a great deal about her 
students’ prior knowledge, misconceptions, and current understanding of mathe-
matical ideas through creating a dialogue with thought-provoking questions, atten-
tive listening, and responses that develop the conversation. Terry also used the 
responses of students to adjust her pedagogical moves (Suurtamm 2012).

There are many ways that teachers provide opportunities to elicit and listen to 
student thinking such as observations during problem solving, informal interviews 
during class, or using focused questions during mathematical discussions, as Terry 
did. These methods allow teachers to be responsive to students’ understandings and 
adjust instruction as well as deal with particular understandings with individual 
students. These opportunities to elicit student thinking can be incorporated into les-
sons, even in the planning stages. It might be useful to think ahead of time of the 
kinds of questions that could be asked to make student thinking visible. These ques-
tions could occur in a whole class discussion, in individual interviewing, or in con-
ferencing with small groups as they work on problem solving.

 Using a Variety of Assessment Strategies

There are several reasons why using a variety of assessment strategies is important. 
One is that using a variety of strategies takes into account that students show their 
understanding in different ways. Some students may perform well on a test whereas 
others may be able to verbally explain their thinking or demonstrate their thinking 
using mathematical thinking tools such as graphing software or concrete materials. 
Another reason to use a variety of assessment tools is so that students have multiple 
opportunities to show what they know and can do. In other words, we are not just 

Relationship 1st Diff. 2nd Diff.

Fig. 1 Model of quadratic 
relationship and its first 
and second differences
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giving them one chance to demonstrate their achievement of a particular curriculum 
expectation or standard. A third reason to use a variety of assessment strategies is 
that mathematics is a complex process with multiple actions. Assessment strategies 
need to assess the full range of mathematical actions (Suurtamm et al. 2010). Thus, 
assessment practices that include observations, interviews, performance tasks, 
reflective journals, projects, portfolios, presentations and self-assessments are an 
essential part of implementing current approaches to teaching mathematics (NCTM 
1995; Wiliam 2007). The following table (Table 1) provides some of the assessment 
strategies (things students do) and tools (used by teachers to assess the things stu-
dents do) that might be useful to mathematics teachers.

Tests, quizzes, and marking schemes might be some of the more familiar assess-
ment methods in mathematics, however, other assessment strategies are also emerg-
ing in mathematics classes (Suurtamm et al. 2010). A teacher might, for instance, 
give the students a rich task, or problem, to work on that could take an entire instruc-
tional period. The teacher might use this task as a way to assess how students engage 
in mathematical processes, or to assess an expectation that requires students to 
make conjectures or engage in investigation. She may use portable technology to 
video record groups of students as they work and thus have a record of her observa-
tions. Rather than using a marking scheme to assess the student work, the teacher 
may want to use a combination of an observation rubric where she records how 
students engage in the problem or the types of models they build or use. She might 
also use another rubric to assess the student’s thinking in the written work that the 
student submits that explains his/her solution and thinking. Because the solutions 
will be qualitatively different, the use of a rubric with descriptors would seem more 
appropriate than a marking scheme. In creating a rubric, a teacher needs to consider 
the criteria that will be assessed. Some teachers find it useful to create a check-bric, 
a combination of a rubric and a checklist, (see Fig. 2) which clearly lists the criteria 

Table 1 Assessment tools 
and strategies

Strategies Tools

Tests Marking scheme
Quizzes Rubric
Interviews Check-bric
Rich tasks Checklist
Conferencing Comments
Projects

Criteria Levels
1 2 3 4

Clear descriptor of criteria 1

Clear descriptor of criteria 2

Clear descriptor of criteria 3

Fig. 2 Template for a Check-bric
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that the teacher is looking for on the left hand side. It is assumed that the teacher 
would have established a clear understanding with the students as to what each of 
the levels corresponding to each criteria might look like.

 Reflecting Meaningful Mathematics

Since classrooms focus on developing student reasoning and sense making, and on 
the mathematical processes that students engage in when doing mathematics, then 
assessment must take these into account (NCTM 2009). Assessments should reflect 
the mathematics that is important to know and do and should present a comprehen-
sive picture of what mathematics is (NCTM 1995, 2000, 2014). Assessing complex 
processes is not an easy task and generally cannot be done through an easy-to-score 
paper and pencil test. All too often what is assessed is what is easiest to assess, such 
as manipulation of symbols or an application of a formula, rather than what is more 
complex but which more closely resembles the important process of doing mathe-
matics, such as problem solving or reasoning and proving.

In considering the types of assessments that might be included in the planning 
process for a unit or term, consideration needs to be given to the curriculum expec-
tations that are being assessed. For instance, consider how to assess the following 
examples of curriculum expectations:

 1. “Students will make connections, through investigation with technology, 
between changes in a real-world situation that can be modelled using a periodic 
function and transformations of the corresponding graph (e.g., investigate the 
connection between variables for a swimmer swimming lengths of a pool and 
transformations of the graph of distance from the starting point versus time)” 
(grade 11; Ontario Ministry of Education 2007, p. 66).

 2. “Students will analyze puzzles and games that involve spatial reasoning, using 
problem-solving strategies” (grade 10; Alberta Education 2008, p. 32).

For the first example, a paper and pencil test might not be able to determine how 
students make connections between real-world situations and graphical models 
through using technology in investigations. It might be necessary to have an obser-
vation component while students are investigating as well as a written component 
explaining their thinking. In the second example, students might do a project where 
they focus on two or three games and discuss how spatial reasoning is involved. 
This might be through a presentation to the class and the teacher might use an obser-
vation rubric during the presentation or conference with the student after the presen-
tation to be sure that the student explains his or her thinking.

Thus, a teacher needs to consider the wide array of curriculum expectations 
being assessed and align the assessment strategies to the curriculum expectations. It 
is helpful to pay attention to the verbs in the curriculum expectations as the verbs 
tend to tell us the student actions that we should be observing and assessing. The 
nouns help to tell us the mathematical concepts that we should see developing. 
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Assessing mathematics includes assessing the mathematical processes to better 
understand not just what students have learned but how they learn, as this helps 
teachers determine next steps (Hunsader et al. 2014).

 Including Students in the Assessment Process

Current approaches to classroom assessment emphasize the role of the student in 
the assessment process (c.f. Earl 2013). Wiliam (2007) suggests that as teachers 
engage students in formative assessment, students develop ownership for their own 
learning and act as resources for one another. Students might take part in developing 
and applying assessment criteria or improving their peer- and self-assessment skills 
(Bleiler et al. 2015; Moss and Brookhart 2009; Shepard 2001). Engaging students 
in the co-creation of assessment criteria and using samples of student work to dis-
cuss criteria helps students recognize high quality work and helps them to improve 
their own work. When students are clear about criteria they are able to provide or 
select evidence of their own learning. For instance, Bleiler et  al. (2015) provide 
evidence of the value of students co-constructing rubrics in college mathematics 
classes.

Many teachers use portfolios that require students to select evidence of their 
achievement of content areas or their use of mathematical processes. Within these 
portfolios, students also explain why they have selected the particular pieces of 
student work and how those pieces demonstrate their learning. Thus, students 
develop the metacognitive skills to self assess.

Many teachers regularly conference with students to review with each student 
the evidence of student achievement that the teacher has recorded. In this way the 
teacher and student might determine whether the student needs other assessment 
opportunities to show what they know and can do (Suurtamm and Arden 2017). In 
this way, assessment is transparent and involves the student in the assessment 
process.

 Making an Assessment Plan

When doing a unit plan, it is helpful to also consider the assessment opportunities 
within that plan. In determining what those assessment opportunities might look 
like, focus on the mathematical actions suggested by the verbs in the curriculum 
expectations, as well as the mathematical concepts that are to be assessed. Consider 
what types of assessments might address both the nouns and verbs in the curriculum 
expectations. Also, consider the ways that you will know what students know at the 
beginning of a unit, during the unit and at the end of the unit. At the beginning of a 
unit, you might consider having students work in pairs solving a problem that con-
nects to their prior knowledge on the first day of the unit. In this way, you can 
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circulate throughout the class and listen to students working together to hear the 
ways students already understand the concepts that underlie the new unit. For 
instance, in starting a unit on operations with integers, a teacher might have students 
“teach” one another some simple operations with integers so that the teacher can 
hear what students remember but also how they remember it. For instance, in adding 
integers, are students drawing a number line, using the model of a thermometer, 
using colour coding, or talking about “good guys” and “bad guys”? (See Fig. 3 for 
possible student representations).

By listening to the conversations, the teacher can then build on the models and 
the language that the students already know. For instance, the teacher will know 
whether or not most students are familiar with a number line and therefore might 
choose to start the unit with that model. Midway through the unit, the teacher might 
consider a quiz and provide descriptive feedback to the students on areas they seem 
to know and areas where they need some extra support. The unit may also address 
expectations that call for students to investigate, build models, describe, or explain. 
This might call for a performance task that engages students in an activity so that the 
teacher can observe or conference with students as they work on the task and record 
the ways in which they engage in mathematical actions.

Sound assessment requires planning. A template similar to the one in Fig.  4 
might help a teacher to think ahead about assessment opportunities in their unit or 
long range planning. In this template, the teacher would record the daily lessons or 
activities in the first column, the curriculum expectations that are being addressed in 
the second column, and the mathematical processes in the third column. Then 

Fig. 3 Possible student representations of −3 + 4
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assessment opportunities for each lesson would be considered. The activity or les-
son might provide the opportunity for either a diagnostic, formative, or summative 
assessment. The strategy to be used (e.g., observation, quiz, student conferencing) 
would be specified as well as an indication of the focus of the assessment. It might 
be on some component of the curriculum expectation, informal assessment of prior 
learning, a particular mathematical process, or perhaps a learning skill (such as 
team work or perseverance).

This planning allows the teacher to see the range of assessment opportunities and 
to choose which will be used and when. Consideration should be given to what is 
being assessed and how it is being assessed so that a full range of mathematical 
actions are assessed and a variety of strategies are used, thus taking into account 
many of the components of sound classroom assessment discussed above.
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Improving Students’ Approaches  
to Learning High School Mathematics

P. Janelle McFeetors

Abstract Within the routines of high school mathematics classrooms, learning 
strategies like copying notes, doing homework, and studying for tests play a 
prominent role for students. These strategies can become meaningless labels for 
students when implemented with a goal to complete a product in relation to systemic 
expectations. Students can bring into view how they learn mathematics through the 
process of learning to learn mathematics, thereby improving both how they learn 
and their mathematical understanding. In this chapter, I report on a study with grade 
12 students where they developed meaningful approaches to learning high school 
mathematics. Vignettes of three of the students’ experiences illustrate how our 
conversations and working together led to their development of learning processes. 
Viewed as dynamic and authentic, learning processes are approaches used to make 
sense of mathematical content which students develop and refine for themselves. 
They fulfill a primary intention to learn and are responsive to who the students are 
as learners. Three ideas with specific suggestions to support learning to learn 
mathematics in high school are given: provide opportunities to create and improve 
learning processes, listen to students’ current approaches and intentions, and invite 
improvements in learning through suggestions.

Keywords Learning processes · Learning to learn · Conversation

High school mathematics students often do homework and study for tests without 
support to consider how these actions could aid their mathematical learning. 
However, students can attend to how they learn mathematics through the process of 
learning to learn mathematics. Learning to learn is making sense of approaches to 
learning, improving the approaches, and using them for greater success. Teachers 
can integrate elements into mathematics class to scaffold students’ learning to learn. 
In this chapter, I explore the limitations of learning strategies and suggest the 
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development of customized learning processes. These alternative approaches are 
illustrated through the use of three student vignettes and are followed by suggestions 
on how routines can be incorporated into mathematics class for developing learning 
processes.

 What Are Learning Strategies?

It is relatively easy to find how-to books on increasing achievement in school by 
using described strategies. Sometimes they focus on mathematics class (e.g., Bass 
2013), and in other instances they are about school subjects broadly (e.g., Muchnick 
and Muchnick 2013). Generally, the books present prescribed learning strategies of 
simple steps to manage time, do homework, and take tests. As a starting point these 
tips could be helpful, but often stop short of addressing how students could develop 
their own personalized approaches to fit who they are as learners.

While learning strategies exist in many high school mathematics classrooms, I 
studied them as I worked with grade 12 students over 4 months. They attended a 
high school located in a Western Canadian city and known for its superior academics. 
The students took Mathematics Learning Skills, a course to assist them in succeeding 
in their grade 12 pure mathematics course. Within the Learning Skills course, 
students were self-directed as they chose what homework (mathematics or other 
courses) to work on and often requested help from the teacher. The teacher answered 
mathematics content questions, provided extra practice, and led the class in setting 
study goals. As a former mathematics teacher and as a researcher, I assisted students 
with mathematics questions and coached their improvement of approaches to 
learning mathematics.

At the beginning of the research project, the students provided a list of learning 
strategies prescribed to them to learn mathematics: study, review, copy notes, work 
with others, and do homework. Learning strategies were ways students were told by 
their teachers to work on mathematics. Learning strategies became labels that did 
not reveal steps students would need to use to enact the strategies, emphasized work 
and product over learning and process, and Landers (2013) notes they do not 
necessarily hold the intention of meaning-making of mathematics content. These 
procedures are systematized by the normative structure of school without 
consideration of particular students and were externally imposed. The students tried 
to use strategies without making sense of or personalizing the approaches, 
simultaneously perceiving continued struggle in their mathematics learning. Against 
this backdrop, the students and I explored how to improve their ways of learning 
mathematics.
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 What Does the Development of Learning Processes Look 
Like?

Through the project, students began to reform their goals for learning mathematics. 
They shifted from a memorization-based approach to an interest in understanding 
why the procedures given worked on the questions they were completing. However, 
without any ideas of how to use homework, studying, copying notes and other 
strategies to learn in personally meaningful ways, students were frustrated with 
their struggles to make sense of mathematical ideas. It is within the search to use 
strategies to any effect where I captured the development of learning processes.

To begin, I offer three vignettes of students’ experiences in developing learning 
processes to illustrate the range of approaches in supporting learning to learn 
mathematics. Stories of particular individual’s growth are powerful moments from 
which we can learn (e.g., Bruner 1986; Clandinin and Connelly 2000). These 
vignettes are based on data collected in the study, including interactive journal 
writing, transcripts of group sessions where processes were developed, two 
transcribed interviews with each student, students’ working papers, and field notes. 
Over time, working individually as well as in small groups each of the students 
showed progress in their approaches to learning mathematics. The three student 
examples were selected to show several learning processes out of a broader range 
exhibited by the students.

 Vignette #1: Kylee’s Refining of Cue Cards

Kylee identified that she was “trying to improve my study habits.” Discussing 
approaches to studying often implied getting ready for a unit test in mathematics 
class. Tests were the primary form of assessment. Rather than following strategy 
advice like practice more questions to study, Kylee independently chose a different 
approach to make cue cards. After success with cue cards in biology, Kylee 
considered, “Okay, well maybe this will be useful in math because there’s a hundred 
and ten examples here but I only really need to know two of them. Right?” She 
began using the same process that helped her succeed in biology for mathematics.

She realized, “How much of my time I waste making Q-cards [sic] before my test 
when I could instead be studying them.” The limitation arose from directly 
transporting a study approach from one subject to another. In response to her journal 
I suggested, “For math class, would it help to make them after each new idea is 
presented in class so that you have a complete set to use the day before the test?” 
This led to a conversation, where Kylee noted the last five minutes of mathematics 
class would be better used making the cue cards than starting on homework. She left 
Learning Skills class excited to try the adaptation.
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Kylee began creating cue cards at the end of each mathematics class. Deciding 
what to put on cue cards required more than copying out what occurred in the 
lesson. During class, the teacher wrote out symbolic steps for examples from a 
workbook on the board with no record of word-based explanations for steps. Kylee, 
in order to create a cue card, needed to generalize from the specific examples toward 
word-based explanations to work on similar types of problems. She explained the 
process as, “I just wrote down…the main important points and maybe two examples. 
Writing it down is definitely learning it in my own ways instead of just how it is in 
the workbook.” Identifying ideas imbedded within the teacher’s worked examples 
allowed Kylee to learn from her homework beyond following symbolic steps. 
Figure 1 contains examples of two cue cards from an Exponential and Logarithmic 
Functions unit.

Kylee increased the complexity of intentions with the cue cards. Kylee also self- 
assessed when she used the cue cards as an informal check. She recounted her 
assessment focus: “To make sure I understand and then—it’s all definitely quite an 
active process.” At the end of the unit, Kylee used her cue cards to make connections 
across lessons which had been presented as discrete mathematics facts. Laying cue 
cards with an exponential graph and a logarithmic graph side-by-side, for example, 
helped her understanding the meaning of switching x and y variables symbolically. 
Her peer, Ashley, helped explain, “All the ideas come one after the other and then 

Fig. 1 Two of Kylee’s cue cards
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you understand…this is why this happens in this section because of what I learned 
last lesson.” While early use focused on instrumental understanding, her review 
with cue cards was a nascent approach to relational understanding (Skemp 
1976/2006). Kylee was making the mathematical content her own, rather than being 
given content through worked examples.

Kylee found a way to refine her existing approach of cue cards, an exemplar of 
students’ capability to generate their own learning processes. She demonstrates that 
possibilities to refine approaches emerge in conversation. In contrast to mandating 
a standard approach as with strategies, I viewed my offers of ideas as suggestions. 
Kylee confirmed this perspective when she stated, “You weren’t telling me to do 
something or getting mad because I did that on a math test. You were just 
encouraging.” She shaped a learning process of cue cards that was dynamic based 
on her intentions for use from generalizing steps to connecting ideas, and emphasized 
the process of learning over completing steps to produce a product.

 Vignette #2: Grace’s Multiple Ways of Explaining Mathematics 
Ideas

About 2  months into working with Grace, I presented ways of learning I had 
observed or heard her talk about using: take good notes, complete assignments, 
complete homework, list ideas after homework, review questions, break down and 
write steps, notice types of questions, and work with classmates. Grace responded, 
“Wow, that’s a lot!…Oh, I thought I only had two or three ways to learn math, kind 
of thing. Just never really think about it.” Drawing into Grace’s view the ways she 
was learning mathematics enabled her to improve her approaches. Over time, Grace 
developed processes to explain mathematical ideas both in oral and written forms.

Students are sometimes told by their mathematics teachers to work with peers. 
To implement her teacher’s instruction, Grace met regularly with peers to work on 
homework. Grace’s work with peers evolved from comparing answers to

But now, we actually talk about what’s actually happening with the question. ‘Cause when 
you know the answer, it’s like, “Oh, you know the answer. Whatever.”…So now we pick a 
question and then we all try to do it. And then we stop and then we explain, “You’re 
supposed to start with this.” Or “Oh, you have the wrong idea.”…And we discuss why 
you’re doing it.

The initial learning strategy pointed to a superficial aim of getting an answer. Grace 
came to see that in mathematics “the process is the most important. It’s not in the 
answer.” Developing a learning process as a collaborative approach to explain her 
thinking aloud fit who she was as a mathematics learner and illustrates early attempts 
to describe how a learning process evolved.

Grace also wrote down explanations on paper. She heeded a directive to “take all 
the notes,” which her peer Shane added was “like a drone—copy down all the 
notes.” Grace described that beyond scribing her teacher’s symbolic steps for 
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examples, she would “write down little notes for myself. Side notes…It’s writing 
the numbers and then beside it why you did it. It’s in my own words!” Grace’s 
generative approach is an example of “to comprehend a text means to transform it 
in such a way as to produce understanding, that is, to duplicate the author’s creative 
role and not simply the author’s message” (Borasi and Siegel 1990, p. 5). Creating 
why steps were sensible, not just how to perform them, illustrates how Grace’s side 
notes transformed her teacher’s text for understanding. Grace adapted writing side 
notes for mathematics ideas with an authorial stance to watching supplementary 
Khan Academy videos. She reported, “I’ve been going by the videos and just writing 
it down, making my own notes.” She applied the approach of explanations in a new 
context with the added benefit of making sense of specific ideas.

Grace shifted from submitting to external expectations toward intending explain-
ing in multiple ways as a meaningful approach to learning mathematics. Her growth 
in a process of creating various kinds of explanations—both oral and written—
throughout a unit allowed her to put mathematical ideas in her own words and 
impacted all of her learning processes. Grace articulated that using a variety of ways 
to explain over a unit allowed her to arrive at a “big theme, but then there’s actually 
so many—it’s almost like a tree branch. So there’s a lot of things branching out.” 
Furthermore, Grace was aware of her learning to learn mathematics, connecting her 
learning process of explanations to confidently say, “You can tell how I’m improv-
ing. …I actually understand what I’m doing.” Grace’s learning process demon-
strated her authority in how to learn mathematics meaningfully with an emerging 
identity as a mathematics learner.

 Vignette #3: Laurel’s Meaningful Approach to Homework

Laurel’s shift came in how she approached homework. Perhaps because of the 
relentlessness of assigned practice, homework as a strategy figured prominently in 
the students’ talk about mathematics class. Most students viewed homework as a 
task to be completed, typified in Shane’s question, “Is there a way to do homework 
well?” Laurel concurred:

Everyone’s always said, “Do your homework. The home study is the biggest thing.” So I 
noticed that I never did any homework, and it kind of caught up to me, ’cause there were 
questions in your homework right on the [unit] exam. And you’re like, “Well, you could 
have known that before the exam, and that’s an easy question.”

At first, the reward of marks for easy questions on tests caused Laurel to do 
homework. Her account continues, “And then I started noticing that I understood it 
all, and I didn’t need to know the question. I just needed to know how to do the 
question.” Laurel signals a different way of looking at homework questions: from 
remembering specific questions for the test to recognizing that questions could be 
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completed to make sense of a procedure. I see this as a critical moment of leaving 
behind a prescribed learning strategy and developing a learning process.

Laurel identified how she learned from homework: “So then once I start working 
through it and there’s examples, it makes sense to me, and I see the pattern and 
it—then it starts making sense.” Laurel saw two types of patterns within her 
homework. The first pattern was “not just doing the same questions over and over 
again. They all look the same, but there’s different steps to them and different ways 
you have to solve them.” The mathematical concept was similar across questions, 
but the concept was applied differently. The second pattern was “if you notice the 
steps are all the same, it’s a different question, but it’s the exact same steps.” The 
procedure was the same regardless of the question, which often differed by numerical 
coefficients. Laurel’s pattern-noticing in her homework illustrates that she was 
learning by looking for similarities across questions and solutions allowing her to 
state the main ideas of a lesson. Sfard (2003) emphasizes such pattern-noticing as 
attending to structure: “Learning mathematics implies seeing structures on many 
different levels” (p. 360). Figure 2 shows part of Laurel’s summary of main ideas 
from reflecting functions on a plane created after attending to patterns in homework.

Laurel’s shaping homework as a learning process demonstrates that homework 
can be a site for learning given a student’s intentions toward learning. In this case, 
Laurel began with a superficial intention for a learning strategy of completing 
homework because teachers valued it. Seeing positive results on test marks, she was 
then able to attend to what was occurring. In addition to the mathematical aspects of 
homework in noticing patterns, Laurel was able to express an approach that 
improved her disposition toward learning mathematics: “I come into every class just 
thinking, ‘I’m going to understand it.’…It’s about learning how you learn, which is 
kind of the basis of high school.” Her success indicated to Laurel that she was 
capable of both learning mathematics and improving how she learned. Laurel’s 
learning process positioned her dynamically as a learner of mathematics and 
empowered to continue shaping her learning.

Fig. 2 Laurel’s summary for reflecting functions
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 What Are Learning Processes?

As students inquired into the learning strategies they were told to use to learn math-
ematics, they were developing processes for learning. Examples of these processes 
for learning (juxtaposed with strategies in parentheses) included creating summary 
sheets (study), making and using cue cards (review), creating various forms of notes 
(copy notes), collaborating with peers (work with others), and learning from home-
work (do homework). Learning processes for mathematics are approaches students 
were agentic in developing to make sense of mathematical content and were aimed 
toward learning rather than completing. Learning processes have particular tech-
niques that are responses both to who the students are as learners and to where they 
are used within a unit of instruction. In this study, learning processes grew out of 
existing strategies or from ideas students had generated themselves, and the growth 
was demonstrated in customizing an approach that supported learning. In contrast 
to learning strategies, learning processes were perceived by the students as being 
dynamic and authentic.

Learning processes were dynamic because the students continued to shape them 
and noticed their peers doing the same. Students’ sense-making of mathematics 
content was supported by learning processes, suggesting the discipline of 
mathematics was seen as malleable and the content was of their own making. 
Learning processes positioned students as dynamic persons who developed a sense 
of authority in their approaches to learning mathematics, growing as mathematical 
learners. Learning processes were also authentic because students were aware of the 
effectiveness of a process as they developed it and could describe how it was 
developed, akin to Bigg’s (1988) deep learning where students “become actively 
involved and can reflect upon what they are doing so that they may improve their 
approach” (p. 135). Moving beyond a strategy as a label, learning processes were 
meaningful because students chose how to use them in accordance with their own 
intentions for learning. They were succeeding in their learning.

 How Can Students Develop Learning Processes 
for Mathematics?

The vignettes of students’ movement from learning strategies to learning processes 
offer insight into the possibilities for learning processes, but hint implicitly as to 
how these processes were developed by students. A focus on learning to learn in 
high school mathematics occurred through conversations among the students and 
me, especially as I shifted attention from solely a content-based focus to exploring 
with the students how they were making sense of the content.

Just as learning processes need to be developed by students to fit who they are 
and their intentions for learning mathematics, the processes of developing 
approaches to learning mathematics need to be responsive to particular teachers and 
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students within their classroom context. While a generalized step-by-step procedure 
for incorporating learning to learn in classrooms is problematic, in looking across 
the three students’ vignettes and considering the experiences of all of the students in 
the study three key ideas arose in helping students develop learning processes. 
Given the perspective of how students benefitted from these three key ideas, 
implications for high school mathematics teaching practice can be gained.

First, students benefitted from being given opportunities to discuss and work on 
approaches to learning mathematics. With an absence of these opportunities 
previously, Kylee provides an example of trying to do this independently in her 
initial use of cue cards. The discussions had to be purposeful on my part, especially 
on a day-to-day basis. For example, after assisting a student with a difficult 
homework question I would add a prompt at the end like, “What helped you get 
unstuck? How might you use that approach on your own?” The shift in attention 
supported students in beginning to think about how they were learning mathematics 
and showed that I valued not only the mathematics but also how they could succeed 
in learning. The opportunities often arose spontaneously through requests for help.

The moments also came in time allocated to work on learning processes. One 
small group of students met for about 20 min every three weeks to create a study 
approach of summary sheets, showing connected mathematics ideas and procedures 
across a whole unit. Ashley wished her teacher would “do one entire mind map of 
the chapter on big poster board with the class” in imagining regular development of 
a learning process in class. This kind of approach could be seamlessly incorporated 
into a review class at the end of a unit. Rather than another task to add into an 
already packed class time, opportunities to discuss and work on learning processes 
could happen as existing classroom routines are modified to focus on learning.

Second, students willingly developed learning processes when they noticed a 
teacher listened to what they were already doing and where they wanted to improve 
to increase their success in mathematics class. I interacted with the students by first 
listening to their experiences. Grace’s surprised reaction in viewing her list of ways 
of learning mathematics was not just about the length of the list, but also that 
someone had listened closely enough to make a list. A listening-based stance 
provided opportunities for me to hear the uniqueness of how each student approached 
learning. Van Manen (1986) states, “pedagogic thoughtfulness is sustained by a 
certain kind of seeing, of listening, of responding” (p. 12). From within a pedagogic 
relationship, a teacher is positioned to listen intently to students as individuals and 
learners.

Finding time to listen to each student individually within class time is difficult. 
An approach I have found effective as a teacher and researcher is interactive journal 
writing with students on a bi-weekly basis (Mason and McFeetors 2002). As I 
prompted students to describe their approaches to learning mathematics, I used 
interpretive listening in my replies to them by affirming what was working, by 
highlighting common themes that arose, and by making use of the students’ words 
as they described specific approaches. When I asked the students why they had 
volunteered for the research project, Laurel explained, “I just feel that it would be 
interesting if we could actually work something out and figure out how everything 
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worked for me.” She was willing to engage in developing learning processes which 
fit who she was as a learner in the context of having a conversation partner who 
listened. Interacting with students begins with listening to the students with a 
responsiveness that meets students where they are and envisioning together 
possibilities for improved learning.

Third, students developed learning processes from suggestions offered rather 
than prescriptions told. Many of the students had often been told to do more practice 
or to spend more time using existing strategies to little avail. Suggestions, rather, are 
ideas building from the students’ current capabilities and approaches. The 
perspective is not to fix what might appear to be deficient, but to personalize an 
approach with an intention to learn mathematics meaningfully. Often, I only 
happened to notice moments to offer suggestions by listening intently to what 
students were saying. My suggestions were framed with a tentative statement like “I 
wonder if …” or a prompt of “How does this element help you …?” and were 
invitations to a student to respond, to try, to imagine. Suggestions open up space to 
consider and then incorporate.

Peers were also sources of suggestions. More assertive than my tentative won-
dering, their description of a personal experience was a powerful yet non- prescriptive 
suggestion. Ashley explained the importance of “sitting down with other people and 
talking to them and asking them, ‘How are you doing this?’” Being able to ask peers 
for suggestions generated novel approaches to learning for many of the students. 
When going over a previous day’s homework in mathematics class, students could 
work in pairs or small groups to respond to questions like “Pick a more difficult 
question you succeeded with from your homework. How did you do the question? 
What part of yesterday’s notes does the question illustrate?” This approach would 
allow students to both confirm answers to homework questions and notice how they 
learned, freeing up the teacher to work with small groups of students on developing 
a learning process simultaneously. I found students willingly shared their learning 
processes because it helped them recognize they had ideas for learning worth 
incorporating.

 What Are the Possibilities from Here?

In my experience, high school mathematics students are willing and eager to engage 
in conversations about how to improve their approaches to learning. Kylee, Grace, 
and Laurel each provide specific examples of what it looks like when they find 
support at critical moments when they are trying to improve how they learn. No 
longer were learning strategies seen as tasks to complete because they were expected 
to; learning processes were imbued with meaning by the students and were taken up 
because the students had shaped the approach and the intentions for its use. The 
students exhibited a sense of authority as they expressed in what ways and for what 
effect they were creating particular learning processes.
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While students are interested in developing learning processes, they do need the 
support of their high school mathematics teachers. It begins in the forging of a 
pedagogical relationship where a teacher begins to see students as capable learners. 
Given small moments of time, conversations which begin with listening and contain 
suggestions for adaptation support students’ exploration of novel processes for 
learning. It is demanding work to bring into view learning as it is enacted. In order 
to succeed in learning high school mathematics, our students deserve opportunities 
to not only make sense of mathematical ideas but also opportunities to make sense 
of their own learning processes.

Through the developing of learning processes, students can begin to see them-
selves differently in relation to mathematics class. Many students came to see them-
selves as mathematical thinkers: persons able to understand mathematical ideas. 
The growth can also be profound, in that the possibility for empowerment exists 
when students see themselves as mathematical learners. The voices of two students 
close this chapter, illustrating the positive possibility for shaping who the students 
are through the development of learning processes:

Elise: But this class has really helped me figure out that there are ways that I can 
be creative, how I am, in order to learning something I find so boring. … 
I can learn it in a way that I know works for me.

Shane: All I’d have to do is just take note of how I learned this, and it will be use-
ful for future reference. Like in university, when I’m trying to learn some-
thing, I could just say, “This is what kind of learner I am, and I could do 
it this way, and this is how I learn.”
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A Teacher’s View – Broadening Our 
Conceptions of Assessment to Improve  
Our Practice

Jimmy Pai

Abstract In this chapter, I delve into the idea of assessment as being about much 
more than measuring student achievement. Instead, I argue that assessment is a 
process that involves eliciting, attending to, interpreting, and responding to student 
thinking. This process can serve formative, summative, and interpersonal functions, 
depending on the circumstances of the classroom. First, I establish a practical 
definition of assessment, drawing from the literature on assessment and noticing. I 
then elaborate on this definition by considering how student thinking can be elicited, 
attended to, interpreted, and responded to in secondary mathematics. Classroom 
examples from my own practice are used to illustrate statements and connections. I 
then discuss the summative functions of assessment, since these are often a source 
of particular concern for teachers. I conclude by reiterating that assessment processes 
are embedded in all aspects of teacher practice that involve interaction with student 
thinking, and that an expansion of our definition of assessment may subsequently 
support student learning.

Keywords Classroom assessment · Formative assessment · Summative 
assessment

 Introduction

Assessment is an important consideration in mathematics education, garnering 
much attention from educators, researchers (e.g., Suurtamm et al. 2016), and policy 
makers (e.g., National Council of Teachers of Mathematics [NCTM] 2000; Ontario 
Ministry of Education [OME] 2010). In my own experience as a secondary 
mathematics teacher, appreciation for the importance of assessment often depends 
on one’s perception of the form and function of assessment. For example, some of 
my teacher colleagues have often used the word ‘assessment’ interchangeably with 
‘quizzes’ or ‘tests.’ However, the literature on assessment indicates that assessment 

J. Pai (*) 
Ottawa-Carleton District School Board, Ottawa, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92390-1_46&domain=pdf


496

is far more powerful than a process for arriving at numbers that supposedly represent 
student learning (e.g., Harlen 2012; Suurtamm et al. 2016; Wiliam and Leahy 2007; 
Yorke 2011). In this chapter, I describe my own conceptualization of assessment as 
the processes of eliciting, attending, interpreting, and responding to student thinking. 
I begin by establishing a definition of assessment that has informed my practice.

 A Practical Definition of Assessment

The word assessment originated (Klein 1966) from the Latin word assidere, mean-
ing “to sit beside or with.” This suggests that assessment involves supporting stu-
dents on their learning journey, and not simply a process of arriving at a number that 
describes student achievement. In light of this, we must ask ourselves: What does 
assessment mean?

Assessment can be understood through its functions.1 Assessment functions sum-
matively when teachers elicit, interpret, and act on available information as part of 
their efforts to sum up evidence of student learning, which is often represented as a 
test score or grade. On the other hand, assessment functions formatively when 
teachers elicit, interpret, and act on available information in order to support students 
to form understandings. It is important to note that many researchers (e.g., Harlen 
2012; Wiliam and Leahy 2007) have noted that an assessment may serve either or 
both summative or formative functions, depending on how the information has been 
used. This dualism, however, does not capture the emotional dynamics (Stiggins 
2007) of the assessment processes, which may be helpful to consider if assessment 
is to be envisioned as a process of being with students, as its root word assidere 
suggests. In this vein, Pai (2016) suggested that assessment may also function 
interpersonally, which can improve, or make more difficult, the possibilities for 
ongoing or future assessment processes to serve formative or summative functions.

Purposefully paying attention to moments in the classroom, reflecting on them, 
and using them to inform future practices are among the critical processes of 
assessment. I found Mason’s (2002) work on noticing as “experiencing and 
exploiting moments of complete and full attention” (p. 27) to be helpful for better 
understanding assessment. As a teacher collects and reflects upon accounts of his or 
her interactions with students, he or she might “[develop] sensitivities by seeking 
threads among those accounts” (Mason 2002, p. 87). Paying attention to his or her 
own experiences in this way also encourages the teacher to break out of habitual 
responses.

1 I note that ‘assessment for/of/as learning’ can also be used to describe the functions of assessment 
(Daugherty and Ecclestone 2006; Earl 2003), and that there are many intersecting and intercon-
nected ideas between assessment for/of/as learning and formative/summative assessment. 
However, for the sake of brevity and clarity, in this chapter, I primarily utilize the terms formative 
and summative in subsequent discussions.
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In the effort to focus on what teachers think and do, I draw from the above litera-
ture to establish a practical definition of assessment, which will serve as a founda-
tion for the discussion in the rest of this chapter. The definition below is grounded 
in the literature on formative and summative assessment (e.g., Harlen 2012; Wiliam 
and Leahy 2007), as well as on noticing (e.g., Mason 2002):

Classroom assessment is an ongoing process of eliciting, attending, interpreting, and 
responding to student thinking, which may be influenced by teacher knowledge, experiences, 
and goals, as well as considerations for student experiences and classroom culture. 
Assessment may function formatively, summatively, and/or interpersonally, and particular 
functions that the process has served can only be determined retrospectively.

I deem this definition practical because I have found it helpful in thinking about 
and informing my practice. I elaborate below on the aspects of the definition that I 
have found to be particularly meaningful:

• Assessment is a process (e.g., NCTM 2000; Wiliam and Leahy 2007) that 
involves eliciting, attending, interpreting, and responding to student thinking 
(Pai 2016). These processes are always in play for a classroom teacher. Snapshots 
of learning, such as written tests, are products that cannot represent the rich 
tapestry of learning that is woven over time. Instead, assessment processes 
naturally involve moments in the classroom: observations, conversations, and 
interactions. This aspect of the definition helps me focus more on the dynamic 
action in the classroom rather than on isolated events, such as written tests, as I 
reflect on student achievement.

• How teachers elicit, attend to, interpret, and act on student thinking depend on 
many factors (Son and Sinclair 2010; Watson 2006) that might be categorized 
under teacher, student, relationships, and contexts (Pai 2016). This implies that 
assessment is a human (rather than mechanistic) process, and that there is no one-
size-fits-all assessment strategy. This aspect of the definition helps me to break 
free from the illusion that assessments are or can be designed to be objective.

• Positive classroom culture is an important consideration in the classroom (e.g., 
Heitink et al. 2016). Without students’ active participation in classroom activities, 
it becomes difficult for students to learn, and, for the purposes of assessment 
processes, difficult for the teacher to support learning. This aspect of the definition 
reminds me of the importance of paying attention to how students feel about 
mathematics and about themselves in relation to mathematics, and of fostering 
positive attitudes about mathematics and one’s abilities in mathematics.

• The descriptors ‘formative,’ ‘summative,’ or ‘interpersonal’ can only be deter-
mined retrospectively—that is, after an assessment process has occurred (e.g. 
Harlen 2012; Wiliam and Leahy 2007). Put another way, activities and teacher 
actions are not effective in and of themselves—their effectiveness in achieving a 
particular aim can only be evaluated in hindsight. This aspect of the definition 
reminds me that simply believing that certain activities have been helpful in giv-
ing rise to student learning does not automatically make it true. Instead, I need to 
listen carefully to students in order to make appropriate pedagogical decisions.

• Offering a mark is only one aspect of assessment (a summative function, in par-
ticular), and assessment encapsulates far more than grading (Harlen 2012; 
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Wiliam and Leahy 2007). This aspect of the definition reminds me that I must 
focus on facilitating an effective learning environment.

In summary, assessment, as I have framed it, is involved in every aspect of my 
teaching practice that involves eliciting, listening, and responding to students’ 
thinking. Assessment processes are always in play for a mathematics teacher, and 
include preparations for, acting in, and reflections upon, moments that support 
learning in the classroom.

 Eliciting Student Thinking During the Assessment Process

Teachers cannot read minds. In order to assess, therefore, teachers first need to 
access student thinking and learning. Thus, the eliciting aspect of the assessment 
process is about getting students to talk, write, and do mathematics. It is as simple 
and as complex as that. The following examples of eliciting are not meant to be 
presented as fail-safe strategies. Instead, they are ways of eliciting information 
about student learning that have worked for me, or considerations that have 
continued to improve my teaching.

For many reasons, vertical non-permanent surfaces (Liljedahl 2016) in my class-
room help to elicit information about student learning by encouraging student actions 
and conversations. The use of vertical non-permanent surfaces (VNPS) involves stu-
dents working together to tackle problems while standing and recording their thinking 
with non-permanent writing tools such as chalk or erasable markers. The non-perma-
nence of the recordings allows students treat the writings as helpful, yet temporary 
representations of their thinking. The fact that these representations are displayed on 
vertical surfaces allows students to easily share and discuss their ideas. When students 
are intrigued by strategies from other groups, the vertical boards help to facilitate 
conversations, and give students the opportunity to consider how others have tackled 
a problem when they feel lost while problem solving. For these reasons, I have found 
VNPS to be a helpful tool in eliciting information about student thinking.

Of course, in order to share their thinking, students also need problems to think 
about and to discuss. Godin (Part IV, this volume) discussed several types of 
problems and their roles in engaging students in problem solving, and provided 
some examples of how he presents tasks to students. It should be noted, however, 
that teacher decisions about the kinds of problems to use, as well as how he or she 
will present them, often depends on his or her goals, students, and classroom 
dynamic. In addition to the strategies that Godin (Part IV, this volume) has illustrated, 
I have also had success with engaging students in posing their own problems. One 
way I do so in my own classroom is through a series of related activities, spanning 
several days, where students examine a scenario and then develop their own related 
questions. To give an example, at the beginning of one such series, I showed stu-
dents an image of a Lego Star Wars play set (Fig. 1) and a Lego Friends play set 
(Fig. 2) (Pai 2015), and asked students to share what they noticed and wondered. 
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Fig. 1 Lego Star Wars play set, retrieved from https://shop.lego.com/en-CA/

Fig. 2 Lego Friends play set, retrieved from https://shop.lego.com/en-CA/
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Students engaged in conversations about stereotypes (e.g., why one set had more 
pink pieces than the other) and about mathematics (e.g., how much they cost per 
unit). Often discussions about social justice raised questions or made claims that 
mathematics was subsequently helpful for supporting. This then led to discussions 
about mathematics that were rooted in the contexts of their lived experiences. 
Students were thus willingly entering conversations involving mathematics, which, 
in the process of assessment, helps to generate information that I, as the teacher, can 
attend to, interpret, and act upon.

Besides mathematical ‘content’ such as factoring polynomials, I also believe it is 
important to elicit how students think mathematically as they engage in mathematical 
processes.2 I begin with explicitly discussing mathematical processes by 
co-constructing what it means to, for instance, problem solve. My students maintain 
a ‘mathematical processes portfolio’ throughout the semester documenting their 
reflections on their improvements with each mathematical process (see Fig. 3 for an 
example from a student in my Grade 12 Advanced Functions class). I have found 
that explicit acknowledgements and discussions about mathematical processes are 
helpful. Students are able to see that I value their thinking processes over ‘perfect 

2 For example, the Ontario Ministry of Education (e.g., OME 2007) identified the following 7 
aspects of mathematical processes: problem solving, reasoning and proving, reflecting, selecting 
tools and computational strategies, connecting, representing, and communicating.

Fig. 3 Sample Grade 12 student entry for portfolio
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answers.’ For example, ‘representing’ mathematics is one of the seven mathemati-
cal processes described in OME (2007). Throughout the semester, students see that 
developing multiple representations helps to better visualize strategies, to illustrate 
their thoughts, or to arrive at solutions. Unpacking students’ mathematical processes 
is important for both the students and the teacher. For the students, a focus on the 
processes helps to alleviate anxiety around solutions because it provides value to 
making mistakes. For me, the focus helps me to purposefully integrate mathematical 
processes in my interactions with students. Furthermore, by eliciting student 
thinking about mathematical processes, I can then listen and respond in ways that 
may improve, for example, their ability to represent mathematical ideas in different 
ways when solving a problem.

Finally, it is important to note that students may not always verbalize their think-
ing. It is important, then, to structure opportunities that allow students to represent 
their thinking through concrete materials, such as manipulatives. There are often 
mathematics inherent in the structure of manipulatives that afford thinking. For 
instance, as my students were using linking cubes to explore the painted cube task 
(e.g., Youcubed 2016), one group became stuck. They then decided to use colours to 
count and subsequently account for the cubes. This colourful three- dimensional 
representation then led them to develop several conjectures about possible patterns. 
In this case, the existence of the linking cubes helped to elicit their mathematical 
thinking and supported further conversations. In addition, student actions with the 
linking cubes also help me, often a fleeting observer, quickly attend to the mathe-
matical thinking that has surfaced.

 Attending and Responding to Student Thinking During the 
Assessment Process

Hunger is not alleviated simply by cooking—it also requires eating. In other words, 
it is not enough for a teacher to simply elicit mathematical thinking—he or she 
needs to also attend to, interpret, and respond to it. As indicated in my definition, it 
is important to recognize that assessments may serve formative, summative, and/or 
interpersonal functions, and that these functions are interrelated. In this section, I 
will briefly (constrained by the length of this chapter) discuss some ways of 
attending, interpreting and responding to opportunities for assessment, focusing 
primarily on teacher interpretations and teacher actions as part of the assessment 
process.

In the classroom, I often join different groups of students as they work on their 
VNPS. It is important that I listen to3 students when I am there. This means that I 
attend carefully to what students are saying and, as necessary, seek clarification on 
what they are thinking about as they work on a task. As I interpret what students are 

3 Davis’ (1994, 1997) work on listening has been influential in my thinking and in my practice.
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saying, I need to remember that they may still be negotiating meaning and develop-
ing their understanding, and as such, their explanations may not immediately repre-
sent their thinking. In some cases, I may say nothing at all, as students sometimes 
simply need to verbalize their thoughts in order to continue thinking. In other cases, 
I may wonder together with students—for instance, when the strategies that stu-
dents use are unexpected but are supported by their reasoning. When this happens, 
I find it is powerful for me to follow students’ reasoning and to continue thinking 
with them.

Attending to student thinking, or listening, is an important action in and of itself. 
Listening to students is helpful in several ways. First, it helps me to establish a 
better understanding of what the students might have understood and what they are 
working toward understanding. In other words, listening may elicit more information 
about student thinking. Second, the presence of a listener may help students get 
‘unstuck’ while problem solving. This is because, in order to explain, students need 
to reiterate aspects of what they have done. Reiterations may lead to reflections, 
which may in turn lead to realizations about alternative strategies, representations, 
or solutions. This means that listening is a teacher action that can also further student 
thinking. Third, it is important for me to model listening so that my students learn 
to value the input from their classmates. This supports a positive classroom culture 
and may encourage more conversations in the classroom, which may facilitate 
future eliciting of student thinking.

Attending and responding to mistakes is another powerful teacher action: not 
only are mistakes valuable opportunities for learning, they also contribute to how 
students see themselves in relation to mathematics, which may subsequently impact 
how they participate (or not) in classroom activities. I find it important, then, to pay 
attention to instances when students attempt unfruitful strategies or reason 
inappropriately, and to be tactful when responding to their thinking. Depending on 
the student, I may ask him or her to explain the strategy or reasoning; in addition, I 
may ask for more examples or alternative representations that illustrate the points. 
Besides the teacher being able to better interpret the perceived mistake, in clarifying 
and thinking further, the student might identify inconsistencies on his or her own, 
and subsequently resolve the mistake. Another possible teacher response might also 
be to direct the student to think about how the strategies of other groups cohere with 
his or her thinking. The presence of VNPS is helpful in this situation, because the 
student is able to simply look over at other whiteboards without stepping away from 
his or her workspace.

As we attend to and interpret students’ mathematical thinking, we also cannot 
ignore existing power dynamics in the room. The most obvious one is the perception 
of a teacher in the position of power. In particular, I need to be cognisant of the fact 
that when I speak, at least in the beginning of a semester, my words carry weight. 
One implication of this, for me, is that I cannot only wonder and question when 
mistakes are made—I also need to offer wonderings and questions when students 
are successful with their strategies, lest students think that I only offer input when 
they are wrong. Besides perceptions about the teacher, students also hold perceptions 
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about each other, and I believe it to be helpful to recognize these and respond 
accordingly. For example, if a student is extremely hesitant about speaking to other 
students, I might give him the erasable marker and ask him to note down the thoughts 
of others on the group whiteboard. In addition, I might task this student with the role 
of asking clarifying questions to the others in the group, and to reiterate these ideas 
to me when I drop by. These considerations of power dynamics are important for 
being able to attend and respond to student thinking in a way that supports their 
learning.

When conversing with students, I also pay attention to mathematical processes. 
After introducing and co-constructing the meaning of terms related to mathematical 
processes (e.g., problem solving, connecting, reasoning), I sometimes explicitly 
refer to these terms when discussing strategies with students or posing questions 
about their thinking. Since my students keep a process portfolio throughout the 
semester, I also dedicate class time to discuss and encourage student reflection 
about mathematical processes. I believe it is important to refer to these metacognitive 
processes because it helps students see that I value these thinking processes as much 
as the products of their thinking. This in turn may help to improve how students 
think mathematically and view themselves in relation to mathematics, and may 
subsequently encourage mathematical activity in the classroom.

 Functions of the Assessment Process

My descriptions of the assessment processes in the previous sections may serve 
formative, summative, and/or interpersonal functions. It should be noted, however, 
that none of the teacher actions in my examples are meant to be presented as ideal. 
This is because acting appropriately is not algorithmic (e.g., Davis and Sumara 
2006), meaning that it is not true that certain actions will always yield the best 
outcomes, even in similar situations. Similarly, whether or not the assessment 
processes described above serve formative, summative, and/or interpersonal 
functions depends on a wide variety of factors, including context and the individuals 
involved. In the many instances I described, the actions may serve formative 
functions when the assessment process leads to an improvement in students’ 
mathematical thinking. Interpersonal functions may be served when the assessment 
process improves the rapport between teacher-student and student-student such that 
students are more likely to continue mathematical discussions and therefore allow 
for other assessment processes to take place. Summative functions can also be 
served, but sufficient information must be accumulated and considered before I am 
able to ‘sum’ up what a student has learned about a particular topic, strategy, or way 
of thinking mathematically. In my experience, the summative functions of 
assessment often give my colleagues (and myself) the most headaches; for this 
reason, the next section focuses on some aspects of the summative function.

A Teacher’s View – Broadening Our Conceptions of Assessment to Improve Our Practice



504

 The Summative Conundrum

What does it mean to ‘sum’ up learning if learning is an ongoing process? To side-
step the question somewhat, I believe that it is particularly difficult for a single 
assessment process to function summatively. In order to glimpse student 
understanding, it is necessary to create an image out of incomplete and interpreted 
puzzle pieces. These puzzle pieces are collected from several interactions with 
students and their thinking about mathematics, and can take permanent (e.g., 
written) or ephemeral (e.g., verbal) forms (e.g., Harlen 2012; Pai 2016). As such, 
the interactions mentioned in previous sections all have the potential to be an 
account of and/or an account for4 students’ mathematical thinking, depending on 
how they are used. Here, I elaborate on some strategies that have been helpful in 
serving the summative functions of assessment.

My students also add reflections (with respect to the mathematical processes) 
about their mathematical work into their portfolios. These portfolios, for example, 
can serve as mosaics that represent the ongoing process of learning (summative), 
but that also encourage conversations (interpersonal) and invite reflections and 
feedback about how to move learning forward (formative). The continued use, and 
reference to, portfolios is also helpful because it means that my students and I are 
following up on the co-constructions that we had worked on. This helps to further 
illustrate to students that I value how they think more than whether the products of 
their thoughts are ‘correct.’ During the semester, I often conference with individual 
students while they reflect on the contents of their portfolios. These instances 
provide me with opportunities to listen and offer feedback and wonderings. For 
example, I ask about their decisions to include certain pieces of work and not others, 
or how they elaborated on particular instances of their thinking that demonstrated 
mathematical processes.

Besides ongoing projects such as portfolios, there are also tests and quizzes in 
my classroom that provide students with opportunities to demonstrate learning. My 
tests and quizzes often include open questions that invite students to demonstrate 
their understanding through a variety of strategies, representations, or reflections 
(an example is provided in Fig. 4). Moreover, as tests and quizzes are returned with 
only feedback and no marks, I often act in ways that illustrate to students that these 
tests and quizzes are learning opportunities, and not isolated events. Students are 
then often given class time to respond to and reflect on the feedback and participate 
in one-on-one interviews. During these interviews, I ask specific questions that give 
students another opportunity to demonstrate what they were unable to show in 
writing on the test or quiz. Thus, in framing tests and quizzes as part of an ongoing 
process that helps both myself and the students better understand their learning, 
students are better able to focus on improving their mathematical thinking.

4 Mason (2002) distinguished between giving an account-of an event and accounting-for it. He 
identified an ‘account-of’ as an attempt to draw attention to something, and an ‘account-for’ as 
explaining the something that was accounted.
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The way that I design my course is also significant in helping students see learn-
ing as an ongoing process. During both teacher- and student-generated activities, 
several curriculum expectations are typically involved in students’ explorations. 
The series of activities involving Lego mentioned previously, for example, naturally 
involves many aspects of the grade 9 mathematics curriculum in Ontario (including 
linear relations, measurement and geometry, number sense, and algebra). Throughout 
the semester, then, students build familiarity with the concepts through repeated 
exposure and connections within different contexts. Since topics are revisited, each 
time in greater depth, students have many opportunities to strengthen their under-
standing, and to demonstrate their understanding to me. In other words, since ‘topic 
units’ no longer exist, the doors are never closed on students who are continuing 
their learning throughout the semester.

 Grading

The end of the semester is a different story. While some ways of summing up learn-
ing (e.g., conferencing with students or clinical interviews) can often also serve 
formative and interpersonal functions, in Ontario, as in many provinces and states, 
secondary teachers are required to provide a final grade in the form of a numerical 
value. Grades, often in the form of percentages, give the illusion of precision. Yorke 
(2011) pointed out that “finely graded scales […tend] to seduce assessors into 
believing that assessment can be conducted with a precision which it manifestly 
does not possess […], [calling for] the eradication of the false consciousness regard-
ing precision” (p. 265). Nonetheless, most teachers are faced with the immediate 
requirement of providing a grade.

Fig. 4 Robot cup stacking question from Grade 12 Advanced Functions test
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When forced to provide an aggregate number for a student, I lean on a variety of 
evidence as much as possible. Throughout the different conversations that I have 
with students, as well as through portfolios, interviews, and projects, I keep note of 
my interpretations and assumptions about particular students’ understanding. Using 
a Google spreadsheet, I share an evidence record with each student, which is 
organized in such a way that one can visually identify growth with respect to a 
particular topic. The example shown in Fig. 5 refers to the same topic (manipulating 
polynomials) evaluated over time through different tasks, such as observations and 
conversations (OA), major tasks or tests (T), as well as quizzes and formal interviews 
(Q). This document is shared with students so that my perceptions regarding their 
achievement is communicated to them. The evidence record also serves as an 
invitation for students to discuss their progress in the course. As I conference with 
students, we often begin with this document and move on to specific strategies that 
might help to improve their grades. I must note that the current structure of my 
evidence records is a work in progress, much like the individual evidence records of 
my students. I do not claim that it is a perfect system for deducing students’ level of 
achievement,5 but merely that it has been helpful for my navigation toward an 
aggregate numerical representation of student learning.

Arriving at a mark is not a perfect process. A realization of this imperfection, 
then, implies both freedom and significant responsibility on the part of the teacher. 
Teachers are no longer restricted to formulas, averages, and medians that spit out 
high stakes numbers; at the same time, they are unable to hide behind algorithms 
that feign a sense of objectivity. Personally, I feel a need to stand on rationales built 
on a multitude of varied experiences, as well as to invite students to discuss their 
perception of their progress.

5 In Ontario, levels R, 1, 2, 3, 4 are qualitative descriptors that integrate considerations of knowl-
edge, understanding, thinking, communication, and application (OME 2010) for different topics in 
the course. The mathematical processes are also woven into the same considerations.

Fig. 5 Evidence record
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 Conclusion

Assessment is far more than numbers, and it is far more than particular events, such 
as quizzes or tests. Rather, the assessment process embodies all teacher practices 
that involve eliciting, attending to, interpreting, and responding to student thinking. 
Throughout this chapter, I have elaborated on what I have established as a practical 
way of thinking about assessment in the mathematics classroom. For me, continuing 
to reflect on both the definition of assessment, as well as on assessment strategies, 
has helped improve my teaching practice. I hope the ideas in this chapter provide 
possibilities for readers to broaden their definitions of assessment in ways that 
honour its etymological roots—to sit beside or with their students on their journey 
of learning mathematics.
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Abstract This commentary focusses on the six papers related to Planning and 
Assessment through the lens of a South African researcher. Both countries acknowl-
edge the role of assessments to improve student learning outcomes. This set of 
papers focusses on different forms of assessment and how the teacher uses assess-
ments inside classrooms to improve the learning experience. There is a silence in 
the papers around the learning context and the history associated with the context. 
Drawing on the South African experience, the commentary explains how the socio-
economic context influences the learning processes.

I feel privileged to provide one of the international commentaries for the “Planning 
and assessment” section of the book Teaching and learning secondary school math-
ematics: Canadian perspectives in an international context. South Africa, a country 
in the Southern Hemisphere, is located 15,000 km from Canada.

Reading the six papers that constitute the Planning and Assessment section, I am 
struck by the commonalities of assessment issues in our countries, by the silences 
around context and history, and a yearning that one day my country will be able to 
focus much more on school and classroom practices to improve the teaching and 
learning of mathematics.

The six papers in the section emphasise the importance of assessments (in all its 
forms) and acknowledge that the key purpose of assessment is to improve student 
learning. The papers focus on pedagogical processes inside mathematics classrooms 
and make arguments for assessments as an integral part of good teaching practices, 
and providing students with skills on how to learn. The assessment process shifts 
from simply testing the acquisition of information to a continuous process of 
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finding out what students know and think using activities other than formal tests. 
In all of these activities which aim to improve the learning experiences, the role 
of the teacher is very important: the teacher must be engaged and incorporate the 
new ideas and strategies into lessons and the curriculum. The unspoken assumption 
in the papers is that all students would start from the same place.

My commentary perspective is as a researcher, embedded in a highly diverse 
country in terms of people, ethnic and racial backgrounds, languages, politics, reli-
gions, social stratifications and histories. South Africa is a young democracy (since 
1994) and only 12% of the 25–64 year old age group has a post-secondary educa-
tion (Statistics South Africa (Stats SA) 2016) compared to Canada where this figure 
is 64% (Statistics Canada 2011). South Africa as a lower middle income country, 
and has an economy one fifth the size of the Canadian economy (Central Intelligence 
Agency (CIA) n.d.). South Africa is characterised by high levels of income inequal-
ity with the Gini co-efficient at 0.63 in 2011 compared to Canada where the index 
was 0.34 in 2014 (World Bank n.d.). South Africa is grappling with overcoming the 
historical legacies of apartheid1 and aspires to be a country with lower levels of 
social and economic inequality.

Like other countries, South Africa has prioritised education and believes that 
higher educational levels would lead to better social and economic outcomes for 
individuals and the country. Since 1994, there have been massive investments and 
interventions to improve educational infrastructure; physical, pedagogical, human 
resources; and financial resources for children from low income households. We 
have observed some improvement in our educational outcomes: in the last 20 years 
our mathematical performance has moved from being classified as very low to low 
achievement (Reddy et al. 2016). South Africa and Canada participate in the Trends 
in International Mathematics and Science Study (TIMSS) and in TIMSS 2015, 
South Africa scored 372 and Canada 527 TIMSS points for mathematics.

South Africa participates in a number of international, regional and national 
assessment studies to measure the health of our educational system. These studies 
provide a deeper understanding of the health of our educational system. There is 
also school based assessment, which is made up of a continuous assessment compo-
nent and a year-end examination assessing knowledge and the application of knowl-
edge. The school based assessment has the dual purpose of assessing what students 
know and can do, leading to a judgement of pass or fail, and provides feedback to 
students and teachers to help improve practice and hence learning. A major assess-
ment milestone in the schooling system is the exit examination in the last year of 
schooling (grade 12). This ‘matriculation’ examination is a high stakes national 
examination, as these results determine the subsequent educational trajectory of 
each student. The assessment outcome from international studies and the matricula-
tion examination stimulates robust debate among the South African public. The low 
annual achievement results, and the position as the lowest in the rank order in the 
TIMSS, leads to newspaper headlines along the lines of ‘South African pupils are 

1 A discrimination policy used by the previous government regime of separate development based 
on racial classifications.
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the dunces of Africa,’ ‘Bottom of the class in maths’, and ‘Grade 3 flunkers sound a 
warning about our schools.’

Since 1994, South Africa has introduced a number of policies to inform the edu-
cation and training system. In 1995, the National Qualifications Framework (NQF) 
outlined a ladder of qualifications linking the training and education systems. This 
link between education and training shifted the focus away from what teachers were 
required to teach to what the student is required to understand and be able to do, 
i.e., the learning outcomes. In 1998, the country’s first outcome based education 
(OBE) school curriculum, Curriculum 2005, was implemented. Curriculum 2005 
represented a radical change from the apartheid curriculum and the goal of the 
 transformation of society was included in its objectives. While the intentions of 
C2005 were noble, there was a serious mismatch with the skills set of teachers and 
the conditions at schools required to implement this curriculum. Critique from 
many sectors of society led to the review of C2005 which confirmed that it concen-
trated too much on skills and the processes of learning, without sufficient specifica-
tion of content and knowledge. One of the consequences of this radical and 
un-implementable curriculum was that the average mathematics achievement score 
in TIMSS 1995, 1999 and 2003 did not change—a major disappointment for the 
new government who had implemented many structural reforms in education.

In 2003, the government introduced the Revised National Curriculum Statements 
(RNCS) which were an improvement, but still difficult for schools and teachers to 
implement. This has led to a proliferation of policy documents from national, provin-
cial and district departments trying to make it more understandable for the average, 
poorly trained South African teacher with limited subject knowledge—a legacy of 
apartheid and the uneven quality of teacher education (Hofmeyr 2010). In 2010, the 
government introduced the concise Curriculum and Assessment Policy Statement 
(CAPS) to provide more guidance and structure for teachers. This curriculum specified 
the content and provided details on what teachers ought to teach and assess. Schools 
were provided with structured textbooks, workbooks and teaching support materials.

The present CAPS documents gives expression to the knowledge, skills and val-
ues worth learning in South African schools. Like in Canada, the central purpose of 
assessment is to support and enhance student learning. However, given our history, 
the principles of social transformation, human rights, inclusivity, environmental and 
social justice and valuing the Indigenous knowledge systems remain important. I 
would like to expand further on “inclusivity” as one of the tenets for the organisa-
tion, planning, teaching and assessment of mathematics in school.

South Africa is a highly unequal country with a national curriculum: students 
start school at different points, but all students are expected to achieve the same 
outcomes. Given the high levels of income poverty and unemployment, government 
has subsidised the school fees for two thirds of school going students—thus our 
public schools are categorised as fee paying and no-fee paying schools. The general 
description for students in non-fee-paying schools is that they come from low 
income households, live in impoverished communities, attend schools with fewer 
resources and are taught by less knowledgeable teachers. One third of students 
attend fee paying school, generally living in middle class neighbourhoods and 
attending better resourced schools. Given the vastly different starting points of stu-
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dents entering school, the South African response to improve educational perfor-
mance is to focus on both what happens inside classrooms (pedagogical inputs and 
classroom climate) and the context in which students live and learn.

To illustrate the differences between students who attend fee paying and no-fee 
paying schools, I will use information generated from the TIMSS 2015 data2 (Mullis 
et  al. 2016). The general achievement level of students in fee paying schools is 
3.5–4 grades higher than those attending no-fee paying schools (452 vs. 343 TIMSS 
points). Parental education is a powerful indicator of the social capital of the house-
hold and is a predictor of future educational outcomes. 37% of students in no-fee 
schools and 65% of students in fee paying schools reported that their mothers’ have 
a post grade 12 educational qualification. This home educational difference trans-
lates to 11% students in no-fee schools and 34% students in fee-paying schools have 
at least one parent with a job in a professional occupation.

The physical resources in the home are different: 59% students in no-fee schools 
versus 75% students in fee paying schools reported having running tap water in their 
homes. South Africa has 11 official languages, but the language of teaching and 
learning is generally in one of two languages (English or Afrikaans). Test language 
proficiency is low, with 14% of students in no-fee schools and 59% of students in 
fee paying schools reporting that they ‘always’ speak the language of the test at 
home. The internet is a source of information for any student: 28% of students in 
no-fee schools and 53% of students in fee paying schools have internet connection 
at home. All of these household, educational and social assets matter in the kinds of 
learning experiences which students have and subsequently the educational out-
comes they achieve.

Home educational activities are different for students in these two environments: 
one third of parents in no-fee schools and a corresponding 41% in fee paying schools 
reported reading books to their children. 30% of parents with children who attend 
no-fee schools and 49% in fee paying schools reported that their children played 
games with shapes prior to entering Grade 1.

Given the difference in home environments, parents from the two school types 
rated their children’s readiness for school differently: 46% of children attending no- 
fee schools could recognise the alphabet and 22% could count up to 100 prior to 
entering Grade 1. The corresponding result for children attending fee-paying 
schools was 55% and 36% respectively.

Given these unequal starting points for children entering Grade 1, the expecta-
tion is that the schools will provide high quality inputs to reduce the inequality 
gap. While there have been inputs to schools and households to reduce inequality, 
the same has not yet been achieved inside schools and classrooms. There have 
been some changes in achievement outcomes, but this has been at a very slow pace. 
To improve achievement outcomes also requires having a cadre of high calibre 
teachers, with strong disciplinary knowledge, and good teaching, learning and 
assessment practices, especially in no-fee schools. It is only when this is in place 
that we can claim that we are on track to achieve the goals of inclusivity.

2 This is for the study conducted at the grade 5 level.
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As South African society works towards becoming more equal, we aspire for the 
discussions for improving mathematics learning shift towards examining the cur-
riculum and pedagogical practices in the classroom. At the moment, the South 
African challenge is both about improving what happens inside and outside schools 
and classroom. As Canada becomes more diverse, I would imagine it would be 
challenged to take into consideration, more significantly, outside classroom contexts 
to improve the learning for students.
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Part V: Commentary – On Measures 
of Measurement and Mismeasurement: 
A Commentary on Planning and Assessment

Bharath Sriraman

 Introduction

There is an old Indian fable which goes along the following lines:

A student who has memorized all night long for an examination the next day is seen walk-
ing very carefully along a cobble stoned path. On encountering a friend along the way, the 
student is asked why he is stepping so carefully. The student replies, “I am afraid if I fall 
down, I will not remember all the information I have memorized all night long, it could get 
easily jumbled up.”

This story has many morals and interpretations—and it is up to the reader, in this 
case the mathematics educator holding this book to decide what it really is. Before 
doing so, the six chapters in this section could very well serve as a compass or a 
guide to our interpretation because they delve deeply into issues surrounding plan-
ning and assessment in a mathematics classroom keeping the triage of the student, 
the lesson and the teacher in mind.

Several themes emerge from the six chapters which can be subsumed under the 
categories of homework and testing, alternative assessment, student understanding, 
and problem solving. Then there is also the issue of “scale”—which relates to the 
title of this commentary, i.e., what are we measuring through planning and assess-
ment: an individual student, an entire classroom, entire schooling systems, or an 
entire country? The question of scale is important since it relates to recommenda-
tions made in each of the six chapters on what is possible at a particular micro-level. 
More often than not, recommendations for planning and assessment that work at a 
classroom level are often not implementable at a school level or even a district level. 
For now, we leave these larger considerations aside and focus on the contents of the 
six chapters.
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 The Six Chapters

Holm’s chapter presents a necessary provocation—namely can we not plan a lesson 
with an end in mind? Is she suggesting we teach to the test? No! The end in this case 
is to further student understanding of concepts in mensuration. After a teacher 
implements an inquiry based lesson that relates to provincial standards in Ontario, 
Canada, Holm argues based on experience that great tasks simply remain “tasks” if 
no effort is made to consolidate and discuss what students have learned (and under-
stood) from engaging with the task. Allusions are made to what this consolidation 
and discussion might look like—in this case to specifically target understanding of 
the relationship between volumes and surface areas of right cylinders. And even 
more specifically basic understanding of how the radii of circles form a building 
block for 3-dimensional circular objects, and using the proper units of measure-
ment. The chapter closes with a specific extension task that conceivably “measures” 
all these aforementioned understandings. As an example of a lesson (task) that had 
a specific end in mind, it achieves the goals of measuring understanding by having 
students express their reasoning in words, and reveal their technical knowledge 
about surface areas and volumes of 3-D circular objects. However, what is not clear 
is ways in which a teacher might assign a score or a grade to this extension task, and 
whether or not is can be reformulated in a way that it can even be used as question 
that generated several related multiple choice item?

This question can be understood when seen through the lens of Corrêa’s chapter 
which follows Holm’s because it analyzes the relationship between ability and dem-
onstrated work. In other words, can the numerous formative tasks that led to the 
summative extension task be used to evaluate the entire spectrum of ability in the 
demonstrated mathematical work? Arguably a multiple choice assessment offends 
the reader’s sensibilities in some ways as it is tacitly assumed that open-ended items 
are better than multiple choice items. And this tacit assumption is further rooted in 
associating the former with “conceptual understanding” and the latter, viz., multiple- 
choice items with procedural understanding. We will come back to this at a later 
stage in the commentary in the context of situation the notion of “memory.”

Corrêa presents two very interesting tasks and uses Kilpatrick et al. (2001) math-
ematical proficiency model as an assessment tool. The first task, namely the dis-
tance medley relay task is used as an example where a coding scheme is revealed to 
the reader to gauge student understanding of proportional reasoning. I find this of 
interest as proportional reasoning is one area of mathematics education where many 
diagnostic instruments are available to pinpoint student errors (and deficiencies in 
understanding). Several well validated theories suggest that with age and experience 
students can tackle more complex proportional problems. In a nutshell, students 
move beyond the use of constant differences strategies to a building up strategy, and 
then to a multiplicative approach such as the unit-rate method. The development of 
these proportional reasoning concepts is not immediate, but rather a gradual process 
based on continual growth and progress coming from more progressive problems 
and strategies (Lamon and Lesh 1992). Taking a Piagetian stance, this development 
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happens at adolescent stages of maturity where additive approaches turn into multi-
plicative strategies that do not necessarily allow for the generalization to all cases. 
However, a formulation of a law concerning proportions becomes established that 
fits the scheme for solving proportions in its various situations (Lesh et al. 1988). 
This may explain why a student will utilize different approaches for individual tasks 
(Inhelder and Piaget 1958). The coding of the mathematical work of Rick on the 
distance medley task using Kilpatrick et  al. (2001) model reveals the interplay 
between procedural skill, conceptual understanding and elements of the problem 
solving cycle. While this is useful for the reader to appreciate both the student’s 
thought processes and the teacher’s ability to understand the student’s thinking, the 
question of whether such an approach to assessment can be scaled up or not is left 
unaddressed. While it does suggest that Kilpatrick’s mathematical proficiency 
model is a useful assessment tool, the constraints of time make it impractical for a 
teacher to be able to use this on an entire class homework set. This first caveat is 
important for the reader to note. Single cases are relevant as examples of good 
assessment practices, but become complicated when implementation is asked for on 
a larger measurement scale. The second caveat is that of inter-rater reliability—
would teachers from the same school teaching a similar classroom, and using simi-
lar tasks, code the student work in the same way?

These caveats offer the perfect segue to delve into Rapke, Hall and Marynowski’s 
chapter which scales things up for summative assessments that involve elements of 
mathematical problem solving. The question posed by these authors, is whether we 
can reframe testing to work within a classroom that emphasized problem solving. 
The mismatch between classroom assessment and classroom practice is one of the 
holy grails of the discipline of mathematics assessment. Without having technology 
as a confounding variable in this debate, it is well known that while activities in the 
classroom can emphasize student thinking, it is difficult to capture and thereby 
assess this on both formative and summative measurements (unless portfolios with 
fair rubrics are used). These authors make the bold suggestion of involving students 
in the development of tests—which can sound like heresy to the measurement 
orthodoxy. The second suggestion is to involve students as peer reviewers in assess-
ing other responses on tests. In a sense what is being proposed harks back to the 
days of oral testing, where students were posed problems by the teacher in front of 
the entire classroom, and provided feedback on their solution in the spirit of con-
structive criticism. While the claim of these authors is that these strategies are “re- 
castings of the traditional paper-and-pencil test [w]hich, teachers can use …[t]o 
promote deep approaches to learning and as a result help students to perform better 
on assessments” (Rapke et al., this volume) in a sense it is an appeal to a very old 
tradition of assessment going back to the Socratic method of elenchus-proof- 
refutation, which is found both in the Moore Method, as well as the Lakatosian 
heuristic (Sriraman and Dickman 2017).

Suurtamm calls for us to move beyond the century old notion of aligning models 
of learning that emphasized facts and procedures easily measurable through end-of- 
unit tests, into acknowledging that students learn differently in this century, and are 
able to develop and convey their mathematical understandings in multi-modal ways. 
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She writes that “current perspectives of mathematics teaching and learning value 
mathematical understanding through student engagement in problem solving and 
argumentation.” The upshot is a need to focus on alternatives to traditional paper- 
pencil testing which can “provide multiple opportunities for students to show what 
they know and can do.”

In a similar vein, the following chapter from McFeetors calls for customizing 
student learning and alternative approaches to a one-size-fits-all approach to home-
work and classroom routines. It is obvious that this chapter calls for differentiating 
instruction when possible and for being cognizant to multi-modal ways of represen-
tation available for lesson delivery, when students are able to work in customized 
classroom settings. Some limitations are also provided to such an approach.

Pai argues for expanding our current notions of the very idea of assessment, by 
calling on us to go beyond the idea of “measuring.” An argument is put forth for a 
more holistic process that provides “formative, summative, and interpersonal func-
tions, depending on the circumstances of the classroom.” In other words, it calls for 
a boutique like attention to the needs of specific classroom milieus in the context of 
the material that has been learned. This chapter contains a nostalgic undertone of the 
teacher being able to mathematically journey through the different stages of sophis-
tication of the student with mathematics. It also presumes a Lakatosian like ideal to 
a classroom where tangential questions and topics can become objects of curiosity 
and mathematical attention. Alas, as we all know—the day to day reality in a public 
school classroom is quite different from the lofty ideals on this chapter.

 What Is Assessment, Really?

So, we now return back to the fable and examine what it means in light of the six 
chapters that have addressed assessment and planning of mathematics lessons. In 
essence assessment is really about aligning instructional outcomes with (correct) 
responses on tests. It is also a reflection of the teacher, the teaching methods, and the 
learner and their learning methods. A class which performs poorly on a test can pose 
the following questions:

Is the test designed and written to assess (and thereby measure) what I have learned?
Or
Is the test designed and written to assess (and thereby measure) what I have not learned?

This is a fundamental question that is addressed to the writer of a test (or assess-
ment). Are learners being assessed based on outcomes that can be fairly measured 
on a test. i.e., are they posed problems at various levels of “sophistication” (e.g., 
based on Bloom’s taxonomy) on the mathematical material that has been covered? 
Is there a balance between items that call for recalling information (factual mem-
ory), and those that ask for applying and synthesizing information (deep 
memory)?
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An adaptation of a game theoretic diagram illustrates what the basic constituents 
of an assessment look like. Assuming an assessment is construed as a “test” or 
“game” or “battle” between the teacher and student, then four basic win-loss com-
binations can be generated from the constituents. In our case it is important to define 
what the terms “win” and “loss” mean in this situation to establish our own norm of 
“Nash equilibrium,” and the reader is urged to do so, based on the recommendations 
of the six chapters.

Teacher

Win Loss

Student

Loss Win

Aligned to learning (A) Factual Memory (fM)

Non-Alignment to learning

(Na)

Deep Memory (dM)

 

For instance an assessment that is aligned to learning and also calls for deep 
memory results in a win-win situation for the student, and the teacher (reflected in 
the measured score), as opposed to complete non-alignment to learning and reliance 
on factual memory which is NOT a win-win combination for neither student nor 
teacher (which will also reflect in the measured score). The former results in the 
equilibrium we desire and the latter in disequilibrium.

Scenario 1: A-fM Win-Loss
Scenario 2: A-dM Win-Win
Scenario 3: Na-fM Loss-Loss
Scenario 4: Na-dM Loss-Win

Scenarios 2 and 3 are in need of no explanation to the reader and can serve as 
tautological cases of the diagram (see explanation above). Scenarios 1 and 4 are 
Win-Loss and Loss-Win situations which are interesting to unpack as the reader 
would undoubtedly want to know who the winners and losers are in these 
situations.

Scenario 1 is a win for the teacher and a loss for the student because it results in 
a situation where students are taught behaviorally (think back to the push for math-
ematical reform in the 1970s in the U.S) and assessed exactly for each subskill or 
specific content covered. Think of a timed test with 20 problems that all call for the 
“skill” of addition. The scores might reflect well on the teacher as this form of learn-
ing does result in a “winning” score on a test, but is a loss for a student who has 
compartmentalized addition as the repeated invoking of factual memory—e.g., 
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align the numbers from right to left in columns, carry over when the sum of the 
digits is over 9, etc.

Scenario 4 is a loss for the teacher and a win for the student because a situation 
has arisen where the teacher has failed to design an assessment that can provide a 
student an opportunity to demonstrate deep memory but the latter is sufficient to do 
fairly well on any kind of assessments. Having introduced a rather old-fashioned 
term “memory” into this commentary on chapters that extol the virtues of problem- 
solving based classrooms and alternative modes of assessment, an apology (defense) 
is needed. So this commentary concludes with this defense.

 An Apology on Memory

The power of memory is great, very great, (my God). It is a vast and infinite profundity. 
Who has plumbed its bottom? This power is that of my mind and is a natural endowment, 
but I myself cannot grasp the totality of what I am. (St. Augustine of Hippo, Book X.8.15)

It is fashionable these days to confuse memory with memorization or rote learning. 
Mathematical memory is not this at all. To paraphrase St. Augustine of Hippo and 
much later Vadim Krutetskii, in the language of modern cognitive psychology, 
mathematical memory is that associated with an explicit memory system, thereby 
representing information which can be consciously recalled and explained. It is that 
which has resulted in deep structural insights into the nature of mathematics, at hav-
ing experienced its fluidity in abstraction and generalization processes in the context 
of the mathematics being learned. It is a deeper kind of memory that allows for 
persons to retrieve relevant information when needed and be adept at using it or 
adapting it. For instance not knowing the derivative of a function can be overcome 
with the mathematical memory that contains its definition as the limit of a differ-
ence function evaluated at zero—and being able to apply this to derive canonical 
derivatives. It is not the knee-jerk recall of information that is simply memorized for 
a particular day or test, but one that is retrievable due to the cultivation of all previ-
ous mathematical structures within the memory.

The moral of the story based on the six chapters and this interpretation of what 
mathematical memory means, is that the student who memorized all night long was 
about to take a test for which his deeper mathematical memory would not be 
accessed, and his performance on the test would be based on the ability to recall 
different pieces of information (un-related or even dystopic from one another). We 
are of course assuming the student is taking a math test and is not about to give a 
recitation or performance requiring memorized information. In other words, the test 
would not measure his true knowledge, one that has accumulated over time, but that 
which is superficial and easily cast from the mind. The six chapters provide ideas, 
suggestions, tasks and reflections about the different assessments that have worked, 
and ways in which these target deeper learning objectives, as opposed to simple 
recall of information or process. Mass testing for deeper student understanding and 
problem solving is not even at its infancy yet, as we have learned from tests like 
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PISA, item development and item coding is riddled with problems of cultural incon-
gruence, relevance, and mismatch with local or even national curricular goals. In 
mathematics, it makes more sense to adopt alternative modes of assessment starting 
at the grass roots level as many of the chapters in this section advocate. In time, we 
can hope to achieve this on a much larger scale provided this is one of our goals as 
researchers.
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Part VI: Preface – Broadening  
Mathematical Understanding  
Through Content

Gila Hanna

To help students improve their grasp of mathematics and make a successful transi-
tion from secondary to tertiary mathematics, the chapters in this part share the belief 
that it is necessary to broaden the students’ mathematical understanding by address-
ing, at the secondary level, topics such as number theory, probability and statistics, 
mathematical modelling, and classroom projects making use of innovative 
technology.

Rina Zazkis discusses the correct order of arithmetic operations by examining 
two mnemonics in current use, namely the Canadian BEDMAS (Brackets, 
Exponents, Division, Multiplication, Addition, and Subtraction) and the USA 
PEMDAS (Parentheses, Exponents, Multiplication, Division, Addition, and 
Subtraction), where in the latter the order of division and multiplication (D and M) 
is reversed. She then argues that the order of operations is not and should not be an 
arbitrary convention, and that there are sound mathematical reasons for it to be “B 
(brackets); E (exponents); DM (division and multiplication, whichever is first from 
left-to-right); and AS (addition and subtraction, whichever is first from 
left-to-right).”

The importance in the curriculum of mathematical models, as simplified repre-
sentations of real life situations, is the topic of the next two chapters. France Caron 
argues that the mathematics curriculum could benefit from an enhanced use of 
mathematical modeling. She presents examples of mathematical models, and points 
out to their potential contribution to the teaching of specific topics such as, linear, 
polynomial, and exponential functions. Ann Kajander draws attention to the value 
of modelling by citing a successful classroom example in which using a model to 
discover the rules for factoring a quadratic and completing the square helped stu-
dents solve a problem and promoted their understanding of high-level mathematical 
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processes. She also argues that modeling may well have the secondary benefit of 
giving students an effective tool to help them become more independent learners.

Statistics and probability are discussed in two of the chapters. Jeff Gardner 
argues that teaching statistics need not be just about plugging numbers into formu-
las such as those for mean, median, and standard deviation, as unfortunately com-
monly perceived by students. Rather it is about looking at a body of data and figuring 
out what it has to say. He shows how the teaching of statistics and the interpretation 
of data require and foster the development of analytical skills. At the same time he 
concedes that it is not an easy task, because one has to help students grasp many 
concepts, such as bias, inference, variability, and the reliability of a conclusion. Nat 
Banting, Ilona Vashchyshyn, and Egan Chernoff note that the topic of conditional 
probability gets short shrift in the mathematics and statistics curriculum. Through 
the analysis of a number of examples and the use of reverse engineering, they sug-
gest a better way of teaching Bayes’ theorem.

Edward Barbeau presents an example of composition of linear polynomials 
designed to encourage students to explore the idea of functions and combination of 
functions, to investigate the role of variables, to make conjectures, and to try to 
prove these conjectures. He argues that such a rich teaching situation has the advan-
tage of fostering students’ general competence and fluency while leading them to 
greater attention to detail, to structure and meaning, to reasonableness, and to 
consistency.

Andrijana Burazin and Miroslav Lovric reflect on the transition from secondary 
to tertiary mathematics, which in their opinion is nothing short of a “culture shock.” 
The chapter gives examples of topics to show just how poorly prepared secondary- 
school students often are for that transition. Burazin and Lovric point out that stu-
dents can be unfamiliar with mathematical symbols to the extent that they get 
confused when presented with a simple expression such as f (x, y), where both x and 
y represent independent variables, and that students have failed to develop logical 
reasoning skills due to the deplorable fact that proving theorems is not part of the 
Ontario mathematics curriculum.

G. Hanna



527© Springer International Publishing AG, part of Springer Nature 2018 
A. Kajander et al. (eds.), Teaching and Learning Secondary School 
Mathematics, Advances in Mathematics Education, 
https://doi.org/10.1007/978-3-319-92390-1_50

“Canada Is Better”: An Unexpected  
Reaction to the Order of Operations 
in Arithmetic

Rina Zazkis

Abstract In Canadian schools the acronym BEDMAS is used as a mnemonic, 
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I present my extended reaction to the following claim:

According to the established order of operation in arithmetic, division should be performed 
before multiplication.

I was deeply surprised by this assertion, which was voiced by an experienced sec-
ondary school teacher of Mathematics. However, as a way of addressing my sur-
prise, I presented the claim for discussion in two classes: a class of secondary 
mathematics teachers and in a class of prospective elementary school teachers. I 
share with the reader what happened in each class: surprising realizations, respect-
ful disagreements, reliance on mnemonics, search for counterexamples, attempts to 
deal with disconfirming evidence, robustness of prior knowledge, and … a declara-
tion of national pride.
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“According to the established order of operations in arithmetic, division should 
be performed before multiplication.” I was deeply surprised by this assertion, which 
was voiced by an experienced secondary school teacher of Mathematics. However, 
as a way of addressing my surprise, I presented the claim for discussion in two 
classes: in a class of secondary mathematics teachers, and in a class of prospective 
elementary school teachers. I share with the reader what happened in each class, 
presenting the above assertion as a student’s suggestion. Following the two stories, I 
introduce several theoretical constructs that serve as a lens for analyzing the stories.

 Order of Operations: Mathematical Convention 
and Acronyms

When several arithmetic operations appear in the same expression, confusion may 
occur with respect to the order in which operations are performed. To eliminate this 
confusion, an agreed upon convention is that multiplication and division precede 
addition and subtraction, exponentiation precedes multiplication and division, and 
brackets are introduced to suggest deviations of this order.

In Canadian schools1 the acronym BEDMAS is used as a mnemonic, which is 
supposed to assist students in remembering the order of operations: Brackets, 
Exponents, Division, Multiplication, Addition, and Subtraction. In the USA schools 
the prevailing mnemonic is PEMDAS, where P denotes parentheses, and it further 
assists memory with the phrase “Please Excuse My Dear Aunt Sally”. Note that 
while ‘parentheses’ and ‘brackets’ are synonyms, the order of division and multipli-
cation (D and M) is reversed in PEMDAS vs. BEDMAS.2

While there are researchers and educators who argue against the use of mnemon-
ics, as it does not support conceptual understanding and may lead to mistakes (e.g., 
Ameis 2011; Hewitt 2012), it is still a shared practice among many teachers, which 
is occasionally reinforced in textbooks.

For example, a variation on the following text from Musser et al. (2006), appears 
in a variety of textbooks used in mathematics courses for elementary school 
teachers.

To eliminate any ambiguity, mathematicians have agreed that the proper order of opera-
tions [italics in original] shall be Parentheses, Exponents, Multiplication and Division, 
Addition and Subtraction (PEMDAS). Although multiplication is listed before division, 
these operations are done left-to-right in order of appearance. Similarly, addition and 
 subtraction are done left-to-right in order of appearance. The pneumonic devise Please 
Excuse My Dear Aunt Sally is often used to remember this order. (p. 141)

1 With apology to Francophone colleagues, I refer here to Anglophone Canada. However, I learned 
recently that in some Francophone schools PEMDAS is used.
2 In the UK the analogous mnemonic is BIDMAS referring to Brackets, Indices, Division, 
Multiplication, Addition and Subtraction (Hewitt, 2012). Google search also reveals occasional 
use of BOMDAS, POMDAS or PODMAS.

R. Zazkis



529

 Order of Operations: Unintended Ambiguities, Learners’ 
Difficulties and Pedagogical Ideas

Several research studies focus on the inconsistencies that surface when arithmetic 
operations are interpreted by various calculation devices. For example, when trying 
to calculate 2 + 3 × 5 with the help of a hand-held calculator and entering the sym-
bols 2, +, 3, ×, 5, = in that order, the obtained result could be either 25 or 17, depend-
ing on whether or not the device is programed to acknowledge the order of 
operations. Additional difficulty is presented by so called ‘implied multiplication’, 
to which some calculating devices are programed to give priority (e.g., Joseph 
2014). Consider for example the expression 6 ÷ 2(1 + 2) (see Fig. 1), which has been 
a source of considerable confusion and ongoing web-based discussions.3

Calculators aside, order of operation errors are common among secondary school 
students (e.g., Blando et  al. 1989; Linchevski and Livneh 1999), among college 
students (e.g., Pappanastos et al. 2002), as well as among prospective teachers (e.g., 
Glidden 2008). In particular, Glidden (2008) reported a significant deficiency in 
prospective elementary school teachers’ knowledge of order of operations. While 
the majority of the 381 participants in his study acknowledged that multiplication 
has priority over addition (in 3 + 4 × 2), over a third erred in performing multiplica-
tion before division (in 24 ÷ 2 × 3) and addition before subtraction (in 9 − 4 + 3), 
which indicated an over-reliance on PEMDAS. In fact, no participant answered cor-
rectly all five simple arithmetic calculations in the administered questionnaire.

Acknowledging the problematic notion of order of operations, different ideas on 
teaching the topic are introduced. For example, Hewitt (2012) described an 

3 e.g., http://www.askamathematician.com/2011/04/q-how-do-you-calculate-6212-or-48293-whats- 
the-deal-with-this-orders-of-operation-business/; https://productforums.google.com/forum/ 
#!topic/websearch/kZkTv_WTSxA; https://answers.yahoo.com/question/index?qid=2011042715
5042AACb7d8

Fig. 1 Example of a calculator-enforced confusion
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 instructional software package ‘Grid Algebra’ that enables students to learn the 
order of operations without explicit instruction and without the use of mnemonics.

In order to emphasize the conventional order of operations in instruction, 
Gunnarsson et  al. (2016) added ‘superfluous brackets.’ That is, they recorded 
expressions of the form a ± b × c as a ± (b × c) in order to emphasize the priority of 
multiplication. In doing so, they followed a suggestion of Linchevsky and Livneh 
(1999) that brackets emphasize the intended structure of the expression and make 
the conventional rules more explicit. Their study did not find benefits in using super-
fluous brackets, and, in fact, students who did not use brackets for unnecessary 
emphasis performed better on order of operations tests.

Ameis (2011) recommended representing the order of operations as a triangle, in 
which the operation on the ‘top’ has the top priority (see Fig. 2). He further recom-
mended, working with prospective teachers, to rewrite division as multiplication, 

turning for example, 30 ÷ 2 × 15 to 30
1

2
15× × , in order to emphasize that division 

and multiplication have the same priority.
Similar suggestions include presenting hierarchy of operations as a chart or a list, 

where multiplication and addition appear on the same ‘level,’ above the level of 
addition and subtraction (e.g., Karp et al. 2015).

Writing stories that involve multiplication/addition or subtraction with multipli-
cation or division situations is suggested as an activity that reinforces the under-
standing or order of operations for middle school students (Golembo 2000) as well 
as for prospective teachers (Ameis 2011). Following the idea of story writing, 
Blackwell (2003) wrote a play for students to act out, in which students assume 
roles of different doctors and clarify how a complex operation has to be 
performed.

 Order of Operations Convention: Arbitrary or Necessary?

Is the conventional order of operations an arbitrary choice of mathematicians, or is 
there a mathematical reason behind this choice?

Hewitt (1999), considering school mathematics, distinguished between arbitrary 
and necessary features of mathematics. He described ‘arbitrary’ knowledge as 

powers

X ÷

+ –

Fig. 2 Order of operations 
triangle. (Adapted from 
Ameis 2011)
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knowledge one can get only by external means, such as read in a book or being told 
by a teacher, and “needs to be memorized to be known” (p. 3). On the other hand, 
he referred to ‘necessary,’ as aspects of mathematics of which students do not need 
to be informed. That is, “these are things which students can work out for them-
selves and know to be correct,” or “properties which can be worked out from what 
someone already knows” (p. 4). For example, the convention of writing x before y 
in the Cartesian coordinates is arbitrary, as alternative decisions could have been 
made. The choice to use a ‘decimal point’ as a symbol that separates integer and 
fractional parts of a number is arbitrary, as in fact, in several European countries the 
conventional symbol is a ‘decimal comma’ rather than a point. However, that the 
sum of the interior angles in a triangle is 180 degrees is a necessary outcome of the 
arbitrary decision to measure angles in degrees.

While Hewitt described most mathematical conventions as arbitrary, Kontorovich 
and Zazkis (2017) noted that some seemingly arbitrary (for students) mathematical 
conventions can be explained as choices for a reason. This position was exemplified 
pointing to the choice of superscript (−1), which is used to denote a reciprocal of a 
fraction and an inverse for a function. Considering a reciprocal as a multiplicative 
inverse explains the choice of the same symbol in both contexts (see also Zazkis and 
Kontorovich 2016). But what about the conventional order of operations?

While the conventional order of operations may appear as an arbitrary decision 
of mathematicians, it is actually a necessary result of interpreting/rewriting multi-
plication as repeated addition,4 and of interpreting/rewriting exponentiation as 
repeated multiplication. Consider for example 2 + 5 + 5 + 5 + 5 vs. 2 + 4 × 5. 
Obviously, 5 + 5 + 5 + 5 can be rewritten as 4 × 5. In order to assure that both 
expressions lead to the same result, multiplication should be performed before addi-
tion. Similarly, exponentiation should precede multiplication to assure that, for 
example, 5 + 23 and 5 + 2 × 2 × 2 lead to the same result.

As such, the prescribed order is necessary, it is not an arbitrary decision of math-
ematicians imposed to confuse students. However, regardless how the order of oper-
ations is introduced in school, what is often memorized and applied is a mnemonic, 
which, if not interpreted as intended, may lead to mistakes.

 Order of Operations: Attending to M-D and A-S Order

Researchers and teachers, mostly focusing on PEMDAS, which is most popular in 
the USA, noted students’ incorrect answers when the mnemonic is interpreted as the 
appropriate rigid order (e.g., Glidden 2008; Jeon 2012; Watson 2010). That is, stu-
dents’ mistakes resulted from giving priority to multiplication over division, or from 
giving priority to addition over subtraction.

4 Note that I do not claim that multiplication is a repeated addition, but that it can be interpreted/
rewritten as such.
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However, in Canada, the prevailing mnemonic is BEDMAS, which may lead to 
an alternative confusion. This is because carrying out division before multiplication 
out of order actually works. Consider for example 10 × 6 ÷ 2. Performing division 
before multiplication leads to the same result—10 × 6 ÷ 2 = 10 × 3 = 30—as carry-
ing out the operations in order left-to-right.

Is this a coincidence? In other words, is it a “general case” that

 
a b c a b c× ÷ = × ÷( )?  

The situation is easily resolved attending to (a) division is an inverse operation of 
multiplication and (b) multiplication is associative. Therefore, division can be per-
formed before multiplication and “out of order,” as

 
a b c a b a b a b c× ÷ = × × = × ×









 = × ÷( )1 1

c c
.
 

The fact that ‘division first’ (out of order) and ‘left-to-right’ (in order) execution 
lead to the same result presents a surprise for students who recall the ‘proper con-
ventional’ order, as well as to those that argue for ‘division first’ based on BEDMAS.5

But what about A-S? While addition before subtraction, when out of order, results 
in an error, subtraction before addition, when out of order, leads to a correct result. 
The reason is similar to the one described above: subtraction can be rewritten as 
addition of the opposite, and addition is associative. To elaborate,

 
a b c a b c a b c+ − = +( ) − = + −( )  

because

 
a b c a b c a b c+ − = + + −( ) = + + −( )  .  

The fact that D-M order works, but A-S does not, may present an additional layer of 
confusion to students exposed to BEDMAS.

 BEDMAS and Teachers

I follow the narrative inquiry methodology, where “narrative inquiry is aimed at 
understanding and making meaning of experience” (Clandinin and Connelly 2000, 
p.  80). I rely on Mason (2002) in distinguishing between account-of and 

5 In fact, Bay-Williams and Martinie (2015) noted that in Kenya students are taught to carry out 
division before multiplication, which seemingly contradicts that ‘left-to-right’ order as related to 
division and multiplication.
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accounting-for. The term ‘account-of’ provides a brief description of the key ele-
ments of the story, suspending as much as possible emotion, evaluation, judgment 
or explanations. This serves as data for ‘accounting-for’, which provides explana-
tion, interpretation, value judgment or theory-based analysis. In what follows the 
account-of is presented in two stories describing my experiences in two classes of 
teachers. The accounting-for is presented as my reflection, in which several theo-
retical constructs are used to analyze the stories.

 Story 1: Secondary Teachers

My first story is situated in the course “Foundations of Mathematics” for secondary 
mathematics teachers (n = 16), which is a part of a Master’s program in mathematics 
education. Building and strengthening connections between advanced mathematics 
and school mathematics was my explicit goal as I taught this course.

 Background: Conventions Task

One of the assignments for secondary mathematics teachers (to whom I also refer 
here as ‘students,’ as they were students in the course I taught) was to consider 
mathematical conventions. This assignment followed discussion on the choice of a 
particular mathematical convention, the use of superscript (−1) in different con-
texts. In prior research, prospective secondary teachers’ explanations of the “curi-
ous appearance” of superscript (−1) in the two contexts—inverse of a function and 
reciprocal of a fraction—were studied by Zazkis and Kontorovich (2016). It was 
found that the majority of participants do not attend to the notion of ‘inverse’ with 
respect to different operations, that is, do not view “reciprocal” as multiplicative 
inverse. Rather, the differences between the contexts were emphasized and analo-
gies were made to other words and symbols, whose meaning is context dependent.

In the conversation with students about the superscript (−1) similar ideas were 
initially voiced, but later an agreement converged towards a group-theoretic percep-
tion of inverse, as exemplified in two different contexts. This provoked interest in 
the choice of other mathematical conventions, conventions that are often introduced 
and perceived as arbitrary, rather than necessary (Hewitt 1999), without any particu-
lar explanation. The “Mathematical conventions task” was designed to address this 
interest. (For extended discussion on mathematical conventions see Kontorovich 
and Zazkis 2017.)

The idea behind this task was to extend a conversation on the choice of conven-
tions, and acknowledge either the arbitrary nature or the reasoning underlying some 
of these choices. The students were asked to write a script for a dialogue between a 
teacher and students, or between students, where interlocutors explore a particular 
mathematical convention and a reason behind it. The particular conventions were 
left for the students’ choice. The detail of the scripting task is found in Fig. 3.
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The task of writing a dialogue belongs to the family of scripting tasks developed 
and explored in prior research (e.g., Zazkis and Zazkis 2014; Kontorovich and 
Zazkis 2016). In my earlier research with colleagues (e.g., Zazkis et al. 2009, 2013, 
scripting tasks were referred to as “lesson plays”. It was acknowledged that scripted 
dialogues provide a lens for observing how script-writers imagine interaction with 
or among learners, and expose script-writers’ understanding of mathematics and 
their pedagogical moves.

 Attending to Order of Operations Convention

One of the repeated examples for a convention was order of operations when per-
forming arithmetic calculations. Below is an excerpt from the script written by 
Andy, who describes a conversation occurring in a Grade 8 class.

Sam:  Hey Mr. X, a couple of us can’t decide on answer to the following 
question:

 25 5 7 2 10 5+ × − × ÷  

Mr. X:  What do you mean?
Mary:  I bet them a dollar that they couldn’t get the correct answer to a question 

I made:

Fig. 3 Scripting task on mathematical conventions
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 25 5 7 2 10 5+ × − × ÷  

Sam:  Well I got 40. Jane says it’s 56. Tom believes it’s 436, and no one can 
agree on a solution.

Tom:  Mine is correct! I know it.
Mr. X:  Tom why do you say that?
Tom:  I had a process of how I did mine.
Mr. X:  How so?
Tom:  I just did one operation after another: 26 plus 5 times 7 and so on. See:

 25 5 7 2 10 5+ × − × ÷  

 30 7 2 10 5× − × ÷  

 210 2 10 5− × ÷  

 218 10 5× ÷  

 2180 5÷  

 436  

Sam:  I did something similar, but I started on the right side of the problem:

 25 5 7 2 10 5+ × − × ÷  

 25 5 7 2 2+ × − ×  

 25 5 7 4+ × −  

 25 5 3+ ×  

 25 15+  

 40  

Mary:  You guys did the operations in the wrong order.
Jane:  I agree with you Mary.
Mr. X:  What order would you suggest?
Jane:  Well I did the division first followed by multiplication, addition and 

subtraction.

 25 5 7 2 10 5+ × − × ÷  

 25 5 7 2 2+ × − ×  

 25 35 4+ −  

 60 4−  

 56  
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Tom:  I don’t understand why you started with division. Why would you start 
there?

Jane:  Everybody knows that’s the proper order to do operations.
Sam:  Mr. X is that correct?
Mr. X: Jane is correct. That is the correct order to do those operations.
Sam:  But why?
Mr. X:  A long time ago a group of people had a very similar situation that we 

have now. They were confused and couldn’t figure out who had the cor-
rect solution to a problem that involved the very operations you are hav-
ing problems with. It happened around the early fifteenth century in a 
small European kingdom, it was called the Kingdom of Math. The King 
of Math, as it were, was a very intelligent leader and believed that his 
people should always come together to solve their problems.

Jane:  Really, Mr. X, a kingdom of math?
Mr. X:  Oh yeah, they were a very progressive country. Several of the King’s 

subjects had come to him to settle a problem that they were having. They 
couldn’t decide on an order of the operations that needed to be used. 
Sound familiar?

Mary:  Very funny, Mr. X.
Tom:  So what did the King do?
Mr. X:  The king commanded his most trusted advisors, members of the Order of 

Knowledge, to look into the problem. It took several months before the 
Order had a response for the King. They proposed that the only way to 
solve this problem was for the King to proclaim an order to the operations 
so that everyone would know the correct way to solve the mathematical 
problem.

Sam:  That makes sense. Then everyone would follow the same order and no 
one would be confused about what steps to do first.

Andy offered the following comment at the end of the assignment:

I felt that there was only one reason that I could [tell] students: “We need to have an order 
that everyone follows so we can be consistent”. “This is the way we all do it”. “We” being 
us in the math community. Whether you’re in France, New Zealand, or Canada it’s the 
same. This is because we’ve all agreed to use the same order so as to have the same under-
standing of the operations. I tried to find an actual history of the order of operations, but 
couldn’t find anything concrete. So I decided to make up a story that would hopefully give 
them some connection to the problem and some entertainment along the way.

It is clear from Andy’s commentary that accompanied the script that he perceives 
the convention of order of operations as an arbitrary decision. The reasoning behind 
this choice, other than the need for consistency, was unclear to Andy and was not 
found when sought.

The teacher-character’s agreement with the student statement, “division first fol-
lowed by multiplication, addition and subtraction” could have been overlooked, as 
the result was correct. It is further unclear from the script whether the listed order 
refers to the general convention, or to the particular case. Nevertheless, both the 
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claim of “division first”, and the order in which the operations were performed in 
Jane’s example, attracted my attention. (Note also that addition appears to the left of 
subtraction in the explored example.) For simplicity, let us consider only the last 
short computation that involves multiplication and division only, 2 × 10 ÷ 5.

Performing “division first” means interpreting this calculation “as if” there are 
parenthesis around the operation of division 2 × (10 ÷ 5). But actually, “division 
first” and “in order of appearance” yields the same result. I wondered whether “divi-
sion first” is a shared belief among teachers, Andy’s classmates.

 Addressing “Division First” Assertion in Class

As a consequence of the “division first” suggestion in Andy’s script, the following 
assertion was presented to a class discussion:

Assertion: “According to the established order of operations, division should be performed 
before multiplication.”

It was presented as a student’s claim, for which a teacher’s response was sought. 
The teachers immediately started to explain the conventional order of operations, 
initially ignoring that the assertion related to multiplication and division only. When 
the focus was established, four students (out of a class of 16) agreed with the claim, 
while others insisted on the “left to right” order, when only division and multiplica-
tion appear in a computation. BEDMAS was the presented argument that supported 
the assertion.

However, the majority of students claimed that “division first” was wrong and 
attempted to find a counterexample, where giving priority of division over multipli-
cation vs. performing these operations in order they appear will lead to different 
results. (An analogous idea of “multiplication first” or “order does not matter” was 
suggested, but immediately rejected by a counterexample.)

When “simple” computations did not lead to a counterexample, students turned 
to more complicated examples. These examples included a longer chain of compu-
tations, fractions, and negative numbers. An additional conjecture was voiced that 
“division first” works only in case there is divisibility between the chosen numbers 
for division. This resulted in more complicated examples, but the conjecture was 
refuted after several tests.

In a class session, a search for a counterexample lasted for about 25  min. 
Counterexamples were sought for both sides of the argument, with a hope to find 
inconsistency between “division first”  (out of order) and “left-to-right in order” 
order of computation. There were occasional exclamations of “Eureka!”, which 
eventually resulted in double checking that uncovered computational errors. A fail-
ure to come up with a counterexample resulted in a conjecture that prioritizing divi-
sion over multiplication will always work.

Considerable scaffolding was needed to prove this conjecture. When someone 
suggested that “it works” because “division is just an inverse of multiplication”, I 
countered the claim with “multiplication is just an inverse of division” and “it 
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doesn’t work”. The suggestion of associativity was voiced only after the students 
were asked explicitly to consider in what ways division and multiplication are dif-
ferent. As a result of focusing on this difference, in the Lakatosian tradition (Lakatos 
1976) of refining claims in light of new evidence, the assertion was rephrased: 
Division can be (rather than should be) performed before multiplication.

 Robustness of Belief

The assertion presented for discussion for secondary school teachers caused sur-
prise to both supporters and objectors. Those who supported the conjecture based 
on BEDMAS were surprised to find out that performing addition before subtraction 
(A before S) does not lead to an expected result. Those who believed that conjecture 
was false, and claimed that division and multiplication have the same priority and 
should be performed in left-to-right order, were surprised to find out that giving 
priority to division indeed “works.”

Each group exhibited a robust “strength of belief” (Ginsburg 1997), based on 
knowledge that was entrenched and never questioned, as evident in a lengthy search 
for a counterexample. Extending the example space in search for counterexamples 
indicates, in accord with Zazkis and Chernoff (2008), that different counterexam-
ples have different convincing power.

The justification and reformulation of the assertion, based on associativity of 
multiplication, was readily accepted, and even came with an “AHA!” experience for 
some teachers. As such, it is curious why such an argument was hard for teachers to 
find on their own.

 Story 2: Prospective Elementary School Teachers

My next story is situated in a methods course on teaching mathematics for prospec-
tive elementary school teachers (PESTs, n = 21). This can be looked at as a “sample 
of convenience”: I was both concerned and excited with what happened in the class 
of secondary teachers, I wondered about the extent of the phenomenon and investi-
gated it in the next course I taught.

 Background: Written Questionnaire

As a preparation for a discussion on the order of operations, prospective elementary 
school teachers (in what follows, I also refer to them as students, as they were stu-
dents in the course I taught) were asked to respond to the questionnaire, see Fig. 4 
(the actual questionnaire had space for response between the items). The question-
naire consisted of five calculation tasks involving multiplication and division with 
“easy” numbers, so that the calculation did not require a calculator  (Task 1). It 
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further presented different claims of four characters on how the calculation should 
be carried out (Task 2). The names of the characters were chosen for ease of refer-
ence in a follow up discussion: Mary for “multiplication before division” claim, 
David for “division before multiplication,” Larry for “left-to-right order,” and Ned 
for no difference, that is, for “order does not matter” claim. The students had to 
express agreement or disagreement with each character.

 Class Discussion

Following completion of the questionnaires, a class discussion opened with asking 
the students with which character they agreed. A show of hands revealed that no one 
agreed with Ned or Mary, while five students agreed with Larry (performing opera-
tions left-to-right in order) and 16 students agreed with David (giving priority to 
division over multiplication), when only multiplication and division appear in a 
calculation. Arguments for either position were limited to “that’s just the rule” or 
“because of BEDMAS”. (Note that this vote is slightly different from the responses 
to the Task 2 of the questionnaire, and from the order implied in the results of cal-
culations in Task 1, summarised in Zazkis and Rouleau (2018)).

Fig. 4 Questionnaire (adapted) on multiplication and division order
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When offered an example of the form a × b ÷ c, the students appeared surprised 
that performing the operations left-to-right gave the same answer as giving priority 
to division. They recalculated the items in Task 1 of the questionnaire and became 
determined to find an example where a different order of operations resulted in a 
different answer. Examples of the form a ÷ b × c, where the order did matter, served 
as confirmation of the general disagreement with Mary, and rejection of the ‘multi-
plication first’ idea. (Note that this result is different from the studies with students 
exposed to PEMDAS, e.g., Glidden 2008).

When no example of the form a × b ÷ c was found with whole numbers, PESTs, 
similarly to secondary school teachers, attempted to involve calculations with nega-
tive numbers or fractions. However, unlike the secondary school teachers, PESTs 
attempted examples with ‘large’ numbers and used calculators to obtain the results. 
After unsuccessful attempts to find a disconfirming example, that is, an example 
where “division first” (out of order) and “left-to-right in order” result in a different 
number, a conjecture was raised, that either way ‘works.’ However, no one was able 
to explain why both approaches (in a × b ÷ c) led to the same answer.

Even after I led the class through a lesson on associativity, some students were 
still convinced that a counterexample could be found. The mismatch between the 
robust prior knowledge and the presented ‘evidence’ caused a significant discomfort 
to the participants. As one student explained later, “There were some people that 
definitely, almost still after the class seemed like “I don’t know if I believe it” 
because they’d always been taught to do it in a certain way.”

I then focused the class on the of A-S (addition/subtraction) order implied by 
BEDMAS.  While no one gave priority to addition in calculations of the form a 
− b + c, the fact that ‘subtraction first’ in a calculation of the form a + b − c leads to 
a correct result was overlooked. The PESTs appeared to have two ways of thinking 
about calculations containing addition and subtraction. While a few viewed subtrac-
tion as addition of the opposite number, the majority claimed that BEDMAS was 
applicable only when there was also multiplication or “higher order operations” 
involved in a calculation. The latter claim was explained referring to a common 
instructional sequence in elementary school, “You do not need BEDMAS if there are 
no other operations, like multiplying.” This claim can be seen as a reflection on the 
common exercises that students are exposed to when learning order of operations. 
Such exercises usually involve a longer sequence with different ‘levels’ of operations 
and do not invite learners to reconsider the order of the operations “on the same level.”

It appeared that the fact that “left-to-right” order of computation yields the same 
result as “division before multiplication” used to reinstate the belief in BEDMAS, 
contrary to my goal. The fact that S-A order “works” rather than A-S was insuffi-
cient evidence to abandon, or at least to reconsider and reinterpret the mnemonic.

 Beyond Canada

I shared with the PESTs that in some countries the order of operations is taught 
without any mnemonic, relying on personal experience. The students questioned 
how learners in those countries would know how to proceed.
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In an attempt to question the mnemonic conventional in Canada, I then intro-
duced PEMDAS, which is prevalent in the USA. The class reacted with initial dis-
belief. Several students attempted to ‘google6’ PEMDAS in order to check the 
information provided by their teacher. When google searches confirmed the infor-
mation I provided, some students still expressed surprize. This appeared to be based 
on their conviction that BEDMAS was a standardized international convention for 
working with the order of operations.

The observation that performing multiplication prior to division, which may 
result from PEMDAS and cause errors, did not lead to the expected re-interpretation 
of the mnemonic. Rather, it resulted in a claim that “our acronym is better,” or 
“Canada is better!” While I would not argue with the claim itself, I find the reason 
for this declaration of the national pride rather intriguing.

 Reflecting on the Two Stories

There are a lot of similarities in the reactions of the two classes to the “division first” 
assertion. These include the perception that the order of operations is an arbitrary 
invention, initial surprise when “division first” and “left-to-right in order” give the 
same result, search for counterexamples, and the repeated mention of BEDMAS. The 
main difference, however, is the reaction to the presented explanation as to “why” both 
methods result in the same answer. Secondary teachers accepted the explanation with 
the feeling of “I should have thought of this myself.” Elementary teachers expressed 
no interest in the explanation, repeating that “BEDMAS works” and ignoring the A-S 
part. In what follows I use several theoretical constructs to analyze the stories.

 On Cognitive Conflict

Cognitive conflict is a psychological state involving a discrepancy between cognitive struc-
tures and experience, or between various cognitive structures (i.e., mental representations 
that organize knowledge, beliefs, values, motives, and needs). This discrepancy occurs 
when simultaneously active, mutually incompatible representations compete for a single 
response. (Waxter and Morton 2012, p. 585)

In education in general (e.g., Piaget 1977), and in mathematics education in particu-
lar, cognitive conflict is considered as an impetus for learning. Several studies 
explicitly used cognitive conflict as a strategy to explore students’ ideas related to 
various mathematical concepts, such as division (Tirosh and Graeber 1990), average 
and measurement (Watson 2007), or fractions (Shahbari and Peled 2015).

Researchers suggested that overcoming or resolving a cognitive conflict is ben-
eficial in building understanding of a related mathematical content. In presenting 
the “division first” assertion a cognitive conflict was invoked in both groups, as the 

6 Obviously Google is a greater authority than the teacher, especially when the teacher questions 
conventions.
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calculations pointed to discrepancy between the expectations and the results. 
However, the two groups resolved the conflict in different ways. Secondary teachers 
accepted the conflict resolution based on their understanding of associativity, while 
prospective elementary school teachers retrieved to the familiar BEDMAS insisting 
that “it works.”

 On Mathematical Landscape

Wasserman (2016) introduced the topological metaphor of mathematical landscape. 
He considered the local mathematical landscape to be the mathematics being taught 
and the nonlocal mathematical landscape, as consisting of “ideas that are farther 
away” (p. 380). He suggested that this division “tackles the notion of mathematical 
knowledge beyond what one teaches” (p. 380). These metaphors are linked to the 
notion of “knowledge at the mathematical horizon”, focusing on teachers’ (rather 
than students’ or curricular) horizons, which Zazkis and Mamolo (2011) re- 
conceptualized as advanced mathematical knowledge used in teaching.

Applying Wasserman’s distinction to the conventional order of operations, it 
appears that “how to” belongs to teachers’ local mathematical landscape, but “why” 
belongs to the nonlocal mathematical landscape. Wasserman asserted that “teach-
ers’ development of and understandings about nonlocal mathematics must not only 
relate to the content of school mathematics, but to the teaching of school mathemat-
ics content” (p.  386). This is because exposure to advanced mathematics helps 
teachers in developing Key Developmental Understandings (KDUs) (Simon 2006), 
which change perceptions about content and influence mathematical connections, 
so in turn, have an impact on teaching.

I suggest that the notion of associativity, even if not so “advanced,” does not 
belong to teachers’ local mathematical landscape. That is to say, neither secondary, 
nor elementary school teachers explicitly teach associativity, and even when this 
property is acknowledged together with other properties of arithmetic operations, it 
is mentioned together with commutativity. To elaborate, operations discussed in 
school mathematics are either both commutative and associative, or neither com-
mutative nor associative, which results in frequent confusions between the two 
(Hadar and Hadass 1981; Zaslavsky and Peled 1996). Associativity appears as a 
property “on its own” when considering groups and their structure. As such, while 
the notion itself does not require advanced background, knowledge of advanced 
mathematics reshapes how associativity is perceived.

For both groups of teachers, associativity appeared to be found in the nonlocal 
environment, and the connection between local and nonlocal mathematics was not 
immediately articulated. Furthermore, I suggest that the discussion of the  assertion 
helped secondary teachers in connecting nonlocal mathematics (associativity) to 
local mathematics (order of operations) in a potential situation of contingency in 
their teaching. The notion of associativity, however, did not resonate with 
 prospective elementary school teachers, possibly because of the larger gap 
between their local and nonlocal mathematics.
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In relation to teachers’ mathematical knowledge Wasserman (2016) uses the 
terms ‘nonlocal’ and ‘advanced’ as almost synonymous, referring to knowledge of 
mathematics beyond what is taught in school (nonlocal)  and  knowledge that is 
acquired in university studies (advanced). While for a large variety of concepts 
nonlocal and advanced coincide, the example of order of operations demonstrates 
that ‘nonlocal’ is not necessarily ‘advanced,’ but situated beyond teachers’ “active 
repertoire” of knowledge used in teaching.

 On “Met-Before”

Tall (2013) used the term ‘met-before’ to refer to “a structure we have in our brains 
now as a result of experiences we have met before” (p. 23). He noted that a met- 
before can be supportive in some contexts, but problematic in others. For example, 
the met-before ‘take-away leaves less’ is supportive when considering whole num-
bers or measuring lengths of objects. However, the idea becomes problematic in the 
context of integers or infinite cardinal numbers. Tall maintains that curriculum 
designers focus mainly on supportive met-befores as a basis for future development. 
He suggests, however, that “a sensible approach to learning requires not only the 
building towards powerful ideas that will be encountered in the future but also 
addressing problematic issues in the present that may have long-term consequences” 
(ibid, p. 116).

My two stories demonstrate that BEDMAS met-before is indeed a “problematic 
issue” with “long-term consequences”. The robustness of BEDMAS presents diffi-
culty to abandon it altogether, or at least to interpret it consistently with the conven-
tion. This is because the mnemonic is located not only on teachers’ local mathematical 
landscape, but also—extending Wasserman’s constructs—on teachers’ shared local 
mathematical landscape, that is, it refers to a broadly shared teaching approach. A 
cognitive conflict experienced in a class session in teacher education course cannot 
uproot prior robust knowledge, but it may plant a seed for revisiting the issue when 
the subject is taught or when students ask questions.

 Conclusion with a Note on Teaching

With respect to the conventional order of operations in arithmetic, should division 
have priority over multiplication? If yes, why so? If not, does giving priority to 
 division lead to an incorrect result? These questions, and unexpected answers, 
were explored with two groups of teachers, secondary and prospective elementary. 
In the two stories above I described surprising realizations, respectful disagree-
ments, reliance on mnemonics, search for counterexamples, attempts to deal with 
disconfirming evidence, the robustness of prior knowledge, and … a declaration of 
national pride.
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Acknowledging the problematics presented by the popular mnemonic, particular 
ideas on how to avoid the unintentional order imposed by the mnemonic are intro-
duced by several authors. For example, Van de Walle et al. (2011) suggest “just use 
the acronym “BEDMAS” with the letters listed in rows to indicate order:

B = brackets
E = exponents
DM = division and multiplication (whichever is first from left-to-right)
AS = Addition and subtraction (whichever is first from left-to-right) (p. 492).

A similar presentation is reiterated by other authors (e.g., Golembo 2000).
Rather than writing the acronym’s letters in rows, teachers suggested recording 

it as BE
D

M

A

S
 or BE(DM)(AS) in order to highlight that operations of the same 

priority should be considered together (personal communication).
Surprisingly, these ideas center around how to interpret the mnemonic properly, 

rather than argue against it. However, I join several researchers and educators (e.g., 
Dupree 2016; Kalder 2012; Watson 2010) who call to abandon the use of mnemon-
ics in general, focusing on stronger connections among the arithmetic operations. In 
particular, Kalder (2012) pointed out that the particular mnemonics associated with 
the order of operations are confusing in introducing both correct (multiplication 
before addition) and incorrect (addition before subtraction) ideas.

It is unavoidable that some ideas of elementary mathematics have to be re- 
learned as their domain of applicability was limited to early experiences (Zazkis 
2011). Those are unavoidable met-befores. In other cases, such as BEDMAS, 
relearning would not be necessary if there were no misleading met-before. However, 
the mnemonic passed over from a teacher to a student creates a vicious cycle of 
mis-information.

I strongly believe that the acronym met-before can be avoided, rather than cre-
ated and then followed by suggestions on how it can be surmounted. After all, there 
are millions of students in non-English speaking countries that learn to apply the 
order of operations without any mnemonics. Tall (2013) emphasized that the term 
met-before applies to experiences that have both supportive and problematic aspects. 
The supportive aspect of BEDMAS is of course in assisting memory. But the prob-
lematic aspect is not only in incorrect applications of order in some situations. The 
problematic aspect is in reinforcing the view of mathematics as a collection of arbi-
trary rules.
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Modelling in Secondary Mathematics 
Education: Moving Beyond Curve  
Fitting Exercises

France Caron

Abstract Mathematical modelling is gaining greater attention as a goal of mathe-
matics education, but its transposition to school often passes by the main character-
istics and benefits of its integration. This chapter aims at providing a broader view 
on the integration of modelling in secondary mathematics, one that would better 
reflect the richness of the modelling process, for understanding both mathematics 
and the world around us.

Keywords Mathematical modelling · Modelling process · Mathematics education 
· Competencies · Technology · Interdisciplinarity

 Introduction

Mathematical modelling has been a topic of growing interest in mathematics educa-
tion. Conceived as a real life problem solving activity that has contributed to the 
development of mathematics, it can be promoted as a means to help learn mathe-
matics and motivate for new content, as connections with real world problems can 
enrich the meaning of the mathematics learned and allow for deeper understanding. 
Mathematical modelling can also be associated with a set of competencies that are 
key to tackling the increasingly complex problems that we as individuals or as soci-
ety may face, and as such, their development can be viewed as an important goal of 
mathematics education.

It is therefore no surprise that a number of secondary school curricula now refer 
to modelling as part of their objectives or suggested approaches for mathematics 
education. Yet, finding the right balance between the use of modelling and 
applications for enriching the content taught and the development of true modelling 
skills is not a straightforward task (Blum et al. 2002). A lack of tradition and the fear 
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of taking time away from the teaching of mathematics have often led to a reduced 
version of what modelling entails and of how it can be integrated in secondary 
school mathematics.

One such reduction has been to restrict to functions the set of models considered 
in the last years of secondary and to limit the modelling activity to finding the curve 
of best fit for a set of data points, typically with the help of technology. While curve 
fitting may be a valuable skill in approaching an unknown relationship between two 
variables, it can only bring a limited contribution to the understanding of a situation 
and of the mathematics that is used.

This chapter thus aims at providing a broader view on the integration of model-
ling in secondary mathematics, one that would better reflect the richness of the 
modelling process, the variety of models that can be used, and the many ways in 
which the learning of mathematics, science and other disciplines can benefit from a 
greater attention to modelling.

 Understanding Modelling

The word “modelling” has been used extensively in education, with a meaning 
much different than what is meant by mathematical modelling. Promoting 
mathematical modelling in school by no means suggests multiplying the number of 
occurrences where a teacher of mathematics acts as a “model” and exhibits the 
mathematical skills and attributes to be reproduced or developed by the students. 
Although there may be moments when a teacher of mathematics may elect to think 
aloud or show explicitly what should or could be done, this is not what mathematical 
modelling is about.

Mathematical modelling has to be understood as an aspect of the mathematical 
practice, one that is done by a practitioner of mathematics, be it a mathematician, an 
economist, a biologist, any citizen, a teacher or a student. Mathematical modelling 
is the process for building a mathematical model out of a real-life situation, and 
using that model to analyse the situation, understand it, address an issue, solve a 
problem, make a decision, etc. Mathematical models can help us do all this, because 
they are simpler than the situation from which they were built, they have a level of 
abstraction that makes them valid for a large class of problems and they can be 
turned into computation and simulation tools.

A mathematical model is indeed a simplified representation of a situation, one 
that captures the essential aspects of that situation with respect to a given goal the 
modeller has or has been given. Such representation can be done using different 
types of register or languages: graphical (with figures, diagrams, graphs, sketches), 
symbolic (typically a set of equations), numerical (table of values) and even verbal. 
A computer program can also be seen as a model, as it organizes in a programming 
language, entities (objects, variables, parameters), data, relationships (structures, 
equations) in a way so as to solve a problem or simulate and explore a situation. In 
a related way, a model of a situation can also be made out of concrete material. With 
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the variety of possible models, it is important to recognize that not all models have 
the same explanatory capacity (this also depends on who will use the model), the 
same degree of generality (the size of the class of problems or situations that a 
model can address) or the same power for generating solutions or predictions.

Mathematical modelling can be seen as a rather demanding and creative form of 
problem solving, one that acknowledges and addresses the complexity and messi-
ness of real-life situations. It has been described as a multi-stage and cyclic process 
(Blum et al. 2002). Many diagrams have been proposed to represent this process, 
some with as few as three phases, others with many more. I present mine (Fig. 1), 
which is strongly connected to the description found in Blum et al. (2002), with the 
addition of some elements which I feel are important to include.

Modelling starts with a given real-world situation and a goal for which that situa-
tion must be examined. The goal might be to predict the evolution of the situation, to 
understand how a particular phenomenon has emerged, to make a decision, to 
develop or optimize a system that would help manage the situation, etc. The situation 
is then simplified by making some assumptions that restrict the scope of the possi-
bilities to consider and by extracting from the initial situation some key entities 
(objects, attributes, variables, etc.) that characterize the situation with respect to the 
goal that is being pursued. Reformulating the goal in terms of these elements leads 
to the problem to be solved. Between the chosen elements of the situation, some rela-
tions can be anticipated, sketched or sometimes, even at that stage, clearly defined. 
These connections are typically derived from principles known by the modeller, but 
they can also be partly inferred from existing data, and together with the objects and 
attributes to which they refer, they form a structure with which the situation can be 
examined; a representation of this simplified version of the situation, which has not 
yet been fully mathematized, is what has been referred to as the real model.

Fig. 1 A representation of the modelling process
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Turning this real model into a mathematical model is the object of the following 
phase; although the resulting mathematical model can be original, at least for the 
modeller, one often builds on known mathematical models, by selecting them, 
combining them, and adapting them to the situation and for the problem to be 
solved. Reuse of known models was not included explicitly in the description of 
Blum et al. (2002), but we believe it is worth mentioning, as a way of acknowledging 
both the collective nature of model development and the efficiency of the process. 
Simply said, the wheel is not reinvented every time a new situation is encountered.

Once a mathematical model has been defined, one can call upon mathematical 
techniques to try to solve the problem and produce a solution or explore various 
scenarios. In order for a solution to be considered valid, it must not only be consistent 
with the model of the situation (e.g. by verifying the equations), but it must also be 
compatible with the initial situation; it must make sense within that context. This 
may lead the modeller to take a step back and revisit some of the initial assumptions, 
consider more variables, collect more (or better) data if deemed appropriate, attempt 
to generalize, and resume the whole process again.

In a recent document (Garfunkel and Montgomery 2016) produced for teachers 
by the Consortium for Mathematics and Its Applications (COMAP) and the Society 
for Industrial and Applied Mathematics (SIAM), a good example is provided to 
show how a simple question (Is it worth the drive across town for less expensive 
gas?) can get students to engage in the modelling cycle and iterate as they refine 
their analysis. They may start with a very modest data collection by looking for the 
current price for gas in two stations between which the distance is known. In struc-
turing the situation into a real model, they will identify key variables (cost, distance, 
fuel use) and try to establish connections between them (e.g., the more you drive the 
more fuel you use). In mathematising the model, they will produce equations. They 
will “do the math” in using these equations for a particular set of data. They will get 
to more sophisticated models as they as they attempt to generalize (At what point 
does the difference between the two prices makes it worth the drive?). They may 
redefine the real model in envisioning different road configurations, in revisiting 
assumptions (Is the extra-distance to drive really the double of the distance between 
the two gas stations? Is the fuel consumption really constant? Or the same on both 
roads?). They may eventually put things in a larger perspective, where new vari-
ables, parameters and a potentially revised purpose would be considered (What is 
the value of my time? Shouldn’t we consider also the cost on the environment?).

This is a very good illustration of how rich modelling can be in developing and 
refining critical analysis, and of the way this kind of activity may represent a change 
from typical learning activities in mathematics. First, the activity is very much 
iterative, and works best if it is conducted within a team where there is an exchange 
of ideas and a will to revisit initial assumptions and decisions. Specific cases and 
numerical values can be used at first to get a better feel for what is at play, and used 
again to validate a more general model. But it is really with a general model that one 
can answer the initial question by providing, in terms of different variables and 
parameters, the tipping point at which the decision should change. For this general 
model to appear, students must move away from their well-learned skill of 
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substituting values in expressions, and instead accept playing with the variables and 
the various relations that they will generate to structure and mathematize the 
situation. They do that by formalising some knowledge they might have of the 
situation (e.g., fuel consumption is measured in litres/100 km), making assumptions 
(e.g.  fuel consumption is constant) and/or using proportional reasoning (e.g. the 
longer the drive, the more fuel we use).

But what may appear fundamentally different in such a modelling activity when 
compared to a typical school mathematics task is the fact that there is not a single 
“good” answer; there is a trade-off to be made between the level of sophistication of 
the model and its usability for producing results in solving the problem or exploring 
the situation in the amount of time allotted for the task. The final model produced 
depends as much on the goals pursued by the modellers, the aspects of the situation 
that they want to address, the degree of simplification and generalisation that they 
are aiming for, as it does on their knowledge or experience of both the situation and 
the various mathematical tools that could help them address it. Consequently, a 
same situation can be presented to modellers of different levels of expertise or 
backgrounds, and lead to completely different models that may address well 
different aspects of the situation, or with different degrees of accuracy or 
generalisation. In a classroom, it is often at the moment of comparing the different 
models produced that a deeper understanding can be gained, of both the real-life 
situation and the mathematical tools that were (or could be) used to address it.

Yet, despite all the potential benefits, the time restrictions that may come with the 
curriculum often act as obstacles to greater presence of modelling activities in the 
class of mathematics. The iterative nature of the modelling process, the time required 
for a modelling activity to reap most of its anticipated benefits, the lack of guarantee 
that even a carefully chosen open-ended modelling problem will lead to some of the 
mathematical concepts and skills aimed for by the curriculum, may lead teachers to 
reduce the scope of modelling activities so as to realign them with the content to be 
covered. As the learning of functions and the solving of associated equations 
typically characterize the end of secondary mathematics, this has often led to 
consider curve fitting exercises as an appropriate compromise for opening to real- 
life applications of the functions taught at that level while developing the skills to 
extract a functional model from data. The next section will show the presence, 
benefits and limitations of this approach.

 Modelling Through Curve Fitting

Across the different school curricula in Canada, the capability of extracting a func-
tion of one variable from a set of data, with or without technology, is a skill often 
associated with learning objectives (or outcomes) in mathematics for the end of 
secondary. As example, The Common curriculum framework for grades 10–12 
mathematics, produced in 2008 by the Northern and Western and Northern Canadian 
Protocol (WNCP 2008) for Alberta, British Columbia, Manitoba, Northwest 
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Territories, Saskatchewan and Yukon Territory, and adapted in 2015 for the Nova 
Scotia grade 12 curriculum (NSDEECD 2015), has several expectations that use the 
following format:

• Graph data and determine the [specific] function that best approximates the data.
• Interpret the graph of a [specific] function that models a situation, and explain 

the reasoning.
• Solve, using technology, a contextual problem that involves data that is best rep-

resented by graphs of [specific] functions, and explain the reasoning.

Depending on the section of the curriculum where it appears, the expression 
[specific] takes the value of either “polynomial,” “exponential or logarithmic” or 
“sinusoidal.”

Looking for the function that best approximates a set of data, interpreting it and 
using it for solving a problem are thus presented as skills associated with modelling 
that must be developed. Not only are tasks that call upon these skills seen as 
applications of the functions taught, which might motivate for their study, but such 
tasks are generally perceived as opportunities to develop a greater working 
knowledge of these functions, their parameters and properties.

For instance, a teacher may ask her students to approximate authentic monthly 
average temperature data for their city collected over a 4  year interval with a 
sinusoidal function f such that f(x) = a sin (b ∗ (x − h)) + k, where x is the month. 
Such an exercise, with data that has so much meaning to Canadian students, may 
enrich their understanding of the different parameters of the sinusoidal function, 
especially if the reflection for finding the optimal values is not completely bypassed 
with a one-step sine regression procedure handled by a technological tool. Using a 
spreadsheet or any other graphing tool where the original data is compared with the 
value produced from a sinusoidal function of which the parameters are settable can 
open to trial and error investigation: although students may start with random trials, 
the complexity of having to find all four parameters will have them move to a more 
reflective approach; they will associate amplitude a with about half the difference 
between maximum and minimum values; they will seek how to stretch with the help 
of parameter b the 2π period over a 12 month period, they will see how the value of 
h can provide a phase shift to Spring; and they might get pleasant confirmation that 
the median temperature for a year (k) is above 0. Such investigation from authentic 
empirical data can also make students appreciate the inherent variability of nature, 
by seeing the variations in the monthly averages from one year to the next and 
studying the distribution of the errors (sinusoidal? uniform? normal?) made by “the 
best” functional model (Fig. 2).

Students can even explore climate change by wondering if variability alone could 
account for the difference in functions identified for two four-year intervals that 
would be thirty or fifty years apart. This may raise some new questions: can we still 
consider it a periodic function or must we account for the addition of an increasing 
function? Could we make reliable long term extrapolations from this data?

Encouraging such questions not only gives authentic data and the phenomenon 
of which they might testify the respect they deserve, but it also favours the 
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development of critical judgement at validation stage. This can go further with 
questions such as the following: even if monthly average temperatures follow a 
yearly cycle, is a sinusoidal function the best periodic function to consider, and if so, 
why? What could be the meaning of a continuous function between monthly 
averages? Should we remain with a discrete model and simply associate with each 
month a sequence of its average temperatures over the years? What is the goal of the 
model? What are we trying to achieve here?

Again, lack of time may prevent such discussion on models to take place in the 
mathematics class; curriculum orientation may even lead to manipulation of the 
data so that it almost perfectly fits the functions under study. Tides are an example 
of that, as they are often proposed as context where pure sinusoidal functions can be 
used to model their height at a given location; this can be seen in both textbooks in 
Quebec and in the Ontario curriculum sample problems. Yet, associating their height 
to a pure sinusoidal function ignores a fundamental characteristic of tides, in that 
their amplitude is not constant. The flux that makes tides results from a combination 
of forces exerted by the moon, the sun and the rotation of the earth, and these forces 
vary with distinct periodicities. As a result, there are days where the tides are 
stronger, a phenomenon well known by residents of coastal areas. Overlooking this 
aspect is an oversimplification of reality which is neither useful for practical 
purposes nor beneficial for the learning of science. And it does not do justice to 
mathematical modelling either.

A sum of sinusoidal functions is typically used to capture the complex behaviour 
of the height of tides, and the finding of the many parameters involved is well above 
the capacities of typical regression tools used by students. The computer models 

Fig. 2 Looking for a sinusoidal model for monthly averages of Montreal temperature over 4 years
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which produce predictions such as the one below are generally based on a deeper 
understanding and structuring of the physical phenomena at play (Fig. 3).

It would be very tedious for a student to come up through trial and error with an 
approximate model that could generate such a curve, even with only two sinusoidal 
functions (and a total of eight parameters) to account for the dominating forces. 
However, the exploration alone could provide interesting insight into both 
superposition of waves and addition of trigonometric functions.

While curve fitting and regression may help approach unknown relationship 
between two variables and develop initial intuitions, they can only bring limited 
contribution to the understanding of the situation at play. In fact, these techniques 
can be associated with the empirical paradigm of modelling (Maull and Berry 
2001) for which the main goal is to predict some behaviour. If the task of finding 
these relations is mainly left to the calculator or some other computing tool, then 
the experience of the modelling process, from the student perspective, is reduced 
to going directly from data to the mathematical model, with no control over the 
structuring and mathematising phases. Consequently, the epistemic contribution of 
such activities is rather low; it is mainly in the interpretation phase, when looking 
for the reasons behind the different parameters, that the student might gain back 
some of the benefits associated with modelling. In addition, the systematic use of 
preprogrammed regression procedures of which the theory is not taught at second-
ary level also runs the risk of implicitly promoting both the use of black boxes in 
mathematics and “subversion of reality by choices available on the menus of cal-
culators” (Galbraith 2007, p. 81). Not only should the quality of the predictions 
that are made under these conditions be questioned, but one should also wonder 
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about the impact on students’ conception of science (pure or applied) of producing 
models in such a way.

In order to understand the inner working of a situation and maintain control over 
the mathematical model used, one needs to move from the empirical paradigm 
(simply aimed at predicting from data) to the theoretical paradigm (aimed at under-
standing) in modelling the situation (Maull and Berry 2001). The next section will 
show how that can be achieved with secondary mathematics.

 Modelling Through Structuring: An Example

Adopting the theoretical paradigm entails “that the processes underlying the phe-
nomenon be studied, that appropriate laws suggested, and the laws compared with 
the data obtained” (Maull and Berry 2001, p. 80). The next activity provides an 
illustration of the passage from the empirical to the theoretical paradigm.

The activity originated from a team of students in a graduate course on the inte-
gration of modelling in mathematics education. As part of the assignments for the 
course was an open-ended project that required students to find an authentic situa-
tion where they had a goal to meet or a problem to solve, for which they could get 
some data, and that would benefit from mathematical modelling. This particular 
team, of which a member was a teacher of mathematics at a secondary school, 
wanted to develop a better appreciation of the impact of waste disposal. After a few 
phone calls, they managed to get some city data on the filling over the last 4 years 
of an urban landfill site that was nearing saturation. They then set for themselves the 
objective of studying the filling of the site and determining the year by which the 
landfill would no longer be usable.

The data consisted, for each of the 4 years, of the volume of waste that had been 
routed to the site as well as the remaining capacity, as assessed from aerial photos. 
Knowing the total capacity of the site and the remaining capacity at any given year, 
they could easily deduct the volume of accumulated waste in the site for each for the 
years. But because these values could not be linked by simple additive relationships 
with the amount of waste sent to the site, the team members fell back on curve fit-
ting for the evolution of the volume of waste over time (Fig. 4).

From the appearance of the curve for the volume of waste accumulated in the site 
and with the trendline options supported in Excel, they opted for a logarithmic func-
tion for which the optimal parameters provided by the tool gave them a correlation 
coefficient of 0.99.1 However, despite its almost perfect fit to the data points they 
had, the resulting curve did not seem to go in the right direction for extrapolation 
purposes. Moreover, in trying to interpret the model, the students could not make 
sense of this logarithmic function with respect to the situation (Fig. 5).

1 The years were renumbered from 1 to 4, as the Excel trendline tool only supports curve fitting 
with logarithmic functions of the form y = a ln x + b. Leaving the years to be greater than 2000 
could not allow for such rapid growth, and the “curve of best fit” was much further from the points.
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A paradigm shift was in order, which had the students move from the empirical 
to the theoretical, from a sceptical use of a regression black box to an iterative and 
more comprehensive experience of the modelling cycle.

The first step was coming back to the most intuitive relationships that had first 
been envisioned for approaching the situation. This led to defining the following 
recurrence relation for volume V of waste accumulated at the end of year n:

 
V n V n Q n( ) = −( ) + ( )1

 

where Q(n) is the value of waste brought to the site in year n. As shown in the left 
part of Fig. 6, the values generated by this very simple model with an initial value 
for V were systematically greater than the actual waste volume in the site, as 
deducted from the remaining capacity data. In looking for an explanation, one can 
figure out that some compaction must have taken place. A new model was thus 
created which introduced a mean compaction factor (c), applicable to all the waste:

Fig. 4 Data for the landfill problem

Fig. 5 Looking for a curve of best fit for the landfill problem
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V n c V n Q n( ) = −( ) + ( )( )1

 

A value of 0.92 for c provided rather close approximation to data. The model was 
further improved by considering two different compaction rates, one (a) for the old 
waste, already present in the site, and the other one (b) for the new waste routed to 
the site.

 
V n aV n bQ n( ) = −( ) + ( )1

 

Iterative manual adjustment of both parameters led to an excellent fit with the data 
for the volume used by the waste (using a = 0.94 and b = 0.85) (Fig. 6).

This iterative quest for the optimal parameters opened to an interesting interdis-
ciplinary reflection: of the old and the new, what waste will compress more? What 
is the meaning of a greater compaction factor? Would the waste at the bottom of the 
accumulation not be subject to greater pressure? Should the compression factor for 
the old waste vary with the amount of new waste introduced? Should more layers be 
considered?

What makes this work different from a typical curve fitting exercise is the fact 
that the fine-tuning of the model is done after some basic principles (of accumula-
tion and compaction of volume) have been formulated to structure the situation and 
define a generic model. The capacity to identify appropriate principles may depend 
on the experience with similar situations and/or knowledge of other disciplines. If 
crossing into another discipline can be an enriching opportunity for collaboration 
with a teacher of this other discipline, the difficulty of making it happen in a school, 
with both curricular and logistics constraints, can also act as an obstacle to introduc-
ing real-life situation modelling in the learning of mathematics. Yet, as we have 
shown here, with both this landfill site and the drive for cheaper gas, there are situ-
ations where the expression of applicable principles or reasonable substitutes can be 

Fig. 6 Modelling the landfill problem with recurrence relations
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quite intuitive, based on day-to-day experience or common sense. Generally one 
looks for what could change and how, what could cause growth or reduction, where 
proportionality might apply, or what would remain constant in a situation of change. 
The idea here is not so much to find “the right model” or to identify “the right prin-
ciples” up front, but to develop this cyclic approach of formulating principles and 
assumptions, expressing them mathematically, reviewing them with the data, and 
refining them if deemed necessary.

It is also worth noting that the model that was kept by the students as the most 
useful for their landfill problem was not expressed as a one variable real function, 
but stayed in the form of a recurrence relation. In fact, it is often much easier to 
characterize change than it is to come up with an adequate closed-form expression 
for the evolution of some variable over time, especially if that variable depends on 
the evolution of many other variables. This is the reason for the ubiquity of 
differential equations in modelling nature; we may know locally how entities 
influence each other or interact with one another, but it is much more difficult to 
predict the global outcome over time of their multiple interactions. There may not 
even be an analytical function to describe such evolution. But when recurrence 
relations are used to characterize change over time, the solution can be generated as 
a sequence, and this can be accomplished very efficiently with controlled use of 
technology (e.g., with spreadsheets).

As another element of interest in the selected model, the evolution of the waste 
volume depends on another variable (the amount of waste routed to the site) for 
which very little is known, except that it seems to decrease linearly over time. As 
this variable is controlled by human decision and may reflect conditions external to 
the system considered here (the availability of other landfill sites, the cost of 
diverting waste to these alternate sites, etc.), leaving this variable free and testing 
different scenarios was thought to be a better option than extrapolating it from the 
line of best fit. Recurrence relations also allow for such flexibility, and they also 
support the introduction of random variables.

One can also make use of system dynamics modelling software (such as Stella, 
VenSim or Insight Maker) to model the evolution of a situation where many variables 
interact. With these tools, models are built as diagrams through an iconographic 
interface: cumulative variables are modelled as stocks, and their interaction with the 
rest of the system as incoming or outgoing flows, which can be modulated with 
other variables, functions and equations. The tools are responsible for integrating 
over time the cumulative effects of these interactions. As the size of the time step is 
set by the user, one can move from discrete to “almost continuous” models, from 
difference equations to differential equations. As a possible way of modelling the 
landfill problem, the waste volume could be made a stock for which the routed and 
freshly compacted stock would act as inflow, while compaction of the old waste 
could be modelled as a “loss” (or an outflow) of (1 −  a)  ×  (old waste volume) 
(Fig. 7).

As models like this can easily be grown to include more variables and interac-
tions, the system dynamics approach has been used by biologists, geologists, econo-
mists, to simulate a wide array of phenomena ranging from alcohol absorption or 

F. Caron



559

spread of Lyme disease to the dynamics of societal inequality or the impact of fossil 
fuel burning on carbon dioxide concentration in air. Introducing students to this 
modelling approach could help them envision their possible contribution in tackling 
some of todays’ major challenges and the role mathematics could play in that 
respect.

 Enriching Modelling in Secondary Mathematics

Valuing structuring and mathematising in school mathematical modelling activities 
is not out of reach, as it can build on what is already done.

For one thing, recursion is already called upon, explicitly or implicitly, when 
students learn about the properties of some of the functions (linear, polynomial, 
exponential), or when they determine the probability of multiple events in traversing 
a tree diagram. In fact, when they are introduced to algebra from pattern sequences, 
students naturally approach such sequences in terms of recurrence relations (e.g., 
“it’s always 3 more than the one before”). But this way of modelling tends to 
disappear once the “real” function has set in, as students are often guided into 
replacing such expression of the relationship with a closed form for the general 
term, a form that will bring them closer to the function. In a way, students learn to 
move away from expressing change, as if there were always a direct analytical 
expression that could help predict the future. There may be a need to reaffirm the 
relevance of recurrence relations and difference equations as legitimate and powerful 
tools for modelling a situation, even within a curriculum that tends to focus on 
continuous functions. In the same way that we value multiple representations to 
describe the same mathematical object, students should also learn to value the 
multiple ways of establishing a relationship between variables, as one can enlighten 
the other. For instance, they could make use of systems dynamics software to 
investigate what happens when the value of the inflow is made proportional to the 
value of the stock, and have exponential functions emerge from such exploration. 

Fig. 7 Modelling the landfill problem with system dynamics software (Insight Maker)
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Then they could learn to add the effect of a limiting capacity on the growth rate and 
generate the logistics function.

Evidently, this is not to say that functions cannot or should not be used for struc-
turing a situation. Simple functions can often describe different aspects of a com-
plex situation. For instance, power functions and trigonometric functions are 
particularly useful in structuring space through geometric relationships. As shown 
in the activity proposed by Van Maanen (1991), an elaborate model that falls outside 
the regression capacities of a typical technological tool can be built through 
combination of simple functions, linking them with operations, variable substitution 
or function composition. Exploring geometry problems with dynamic geometry 
software can also serve as context for learning to model change through structuring, 
a context that may feel more manageable to address in a mathematics class.

But one should not overlook the value of using real life situations with their 
intrinsic complexity and authentic data, as this is where the need for simplification 
and structure is most solicited; this is where modelling can be quite creative and 
empowering. Generalized Fermi problems (How many dental hygienists should 
there be in a city?) or generic fairness questions (What should be a fair price for an 
airline ticket?) can be interesting entry points for learning to identify variables and 
express assumptions and principles. Although there may be a tradition of calculating 
without units in mathematics, maintaining their use throughout a modelling activity, 
as do our colleagues from other disciplines, can only help validate the relationships 
that are built. And one cannot overestimate the role of validation in maintaining 
control over a problem for which there is no longer a unique and straightforward 
solution.
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Learning Algebra with Models  
and Reasoning
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Abstract In traditional mathematics classrooms, the use of representations is often 
restricted to the “show your work” instruction, perhaps involving a diagram or 
graph. As such, models and representations may have a more limited use. 
Mathematicians however, often use rough diagrams, gestures, etc. to think about 
and discuss mathematical ideas as they evolve. Hence in a problem-based class-
room, encouraging students to make use of such models and representations as tools 
to think with can have a powerful effect. Such a use is very different from the 
assumption that models, such as in the form of physical classroom manipulatives, 
are tools to support struggling students. Rather, this chapter takes the stance that a 
vigorous use of models and reasoning can be highly mathematical, and effective for 
all students.

Many current Canadian curricula, as well as the Principles and standards for 
school mathematics (NCTM, Principles and standards for school mathematics. 
Author, Reston, 2000), have both Representation as well as Reasoning listed as 
learning processes. The use of models and modelling can support both of these 
processes.

As well as providing some background, this chapter provides a specific class-
room example, which may be useful in grade 9 or 10 classrooms. The lesson has 
been field tested in both grade levels, as well as in relatively more and less high level 
courses. Without exception, students have been able to discover the rules for factor-
ing a simple quadratics for themselves. As well as generating a useful factoring 
method, students are left with a conceptual understanding of how and why the 
method works, which may be helpful in terms of not having to memorize a mysteri-
ous procedure.

A secondary benefit of using models in learning may be that they may be a struc-
ture that help teachers move more and more towards encouraging increased student 
autonomy in learning. Once students have some effective tools with which to think, 
they may be able to become increasingly independent as learners.

A. Kajander (*) 
Lakehead University, Thunder Bay, ON, Canada
e-mail: ann.kajander@lakeheadu.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92390-1_52&domain=pdf
mailto:ann.kajander@lakeheadu.ca


562

Keywords Mathematics teaching · Mathematics learning · Models and modelling 
in learning · Models and reasoning · Teacher development · Learning algebra

The purpose of this chapter is to examine a models and modelling approach (Lesh 
and Doerr 2003) in classroom learning by exploring a sample mathematics topic. 
Such an approach may also support the transition of teacher practice from a more 
traditional paradigm to a conceptual one. A sample lesson using a models and mod-
elling approach (sometimes also called a models and reasoning approach, the term 
used here to emphasis the active nature of it) is provided at the end of the chapter to 
illustrate the concept.

Previous research (e.g., Holm and Kajander 2015; Kajander et al. 2008) suggests 
that it may be risky for teachers to attempt a problem-based lesson without building, 
for themselves and subsequently their students, the necessary mathematical under-
standings particularly of the mathematical processes. A models and reasoning 
approach may support such development, for both teachers and students. Further, 
models can be used in relatively more teacher-directed learning, as well as being 
helpful in supporting more and more student autonomy. Hence a models and rea-
soning approach may also be a helpful learning paradigm to use as teachers begin to 
shift their practice because the approach can be used with relatively more, as well as 
less, teacher direction and control.

 Learning with Understanding

A cornerstone assumption of problem-based learning is that, through the construc-
tion of meaning and understanding in a rich environment, students will develop 
conceptual understanding rather than isolated and decontextualized rule-based 
skills. An interesting topic of professional discussion is to brainstorm reasons why 
some experienced teachers remain hesitant to change their practice in the face of 
this mounting evidence; concerns may include nervousness about the right skills 
being learned, worries about curriculum coverage, beliefs about what students are 
and are not capable of, and perceived lack of classroom control. It may initially feel 
daunting to try to create lessons that involve students wandering around the class-
room, using materials, and making noise, when one is used to having strict control 
with students sitting quietly at individual desks working on assigned textbook ques-
tions. Yet, even more traditionally oriented teachers tend to agree that it is important 
that students develop conceptual understanding, gaining a sense of why the rules 
and methods make sense. The tension between these two sets of goals and beliefs 
may contribute to the slowness with which mathematics reform is being adopted at 
the secondary classroom level.

One way which may be helpful in supporting the transition of classroom environ-
ments from traditional structures to more conceptually oriented ones is the use of a 
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models and modelling approach in learning (Lesh and Doerr 2003), referred to here 
as a models and reasoning approach. In such an approach, different types of care-
fully selected concrete or visual models allow and encourage students to explore 
problems with gradually increasing autonomy. It is common in even traditional 
practices to ask students to finish or “explain” a given answer by including a model 
in the form of a graph or even a diagram, where the model is to be used to simply 
explain an answer in the sense of verifying it. However in the context of this chapter, 
and in line with what mathematicians often do when working on a new problem, a 
model can also be used as a tool with which to think and reason, and it is this latter 
use that is of interest here. This latter interpretation involves learning processes such 
as those mentioned in many Canadian curricula (e.g., Ontario Ministry of Education 
2005), as well as by the National Council of Teachers of Mathematics (NCTM 
2000), namely Representation, and also Reasoning and Proving. Using these pro-
cesses, we are able to help students understand the processes that mathematicians 
often use in their work, such as developing a representation or model of a given 
problem, and using it as a tool to help reason about a given problem—as opposed to 
simply “explaining” an answer after the thinking has taken place.

It should be noted that a mathematical model cannot only be a diagram or physi-
cal model made with manipulatives, but it can also be a mental image, and later, 
even an algebraic model. Gesture may also play a role (De Freitas and Sinclair 
2014). The modelling process then involves not just the construction of a suitable 
model, but its use, modification and manipulation, which are all part of the thinking 
process—and thus the modelling process draws in the mathematical learning and 
thinking processes of reasoning and proving along the way.

As mentioned, the use of models and modelling, or models and reasoning, as an 
approach to learning can be used even to some extent in a more teacher-directed 
classroom, and in this sense their use may also support a more gradual and comfort-
able transition to increased levels of problem-based learning. For example, a teacher 
might propose a problem to students, and then ask them to create a model to help 
think about the problem. Teachers can support the process by offering suitable 
manipulatives, or reminding students of other types of models used previously. 
These representations can then be shared in a whole group discussion. Ideally, stu-
dents would continue to work on the problem themselves using a model of their 
choice, but this process may also be handled in a slightly more Socratic manner with 
the teacher asking suitable questions to prompt constructions. Teachers and students 
can work collectively to develop more and more student voice in the explorations.

A great benefit of the use of models is that they may make mathematical pro-
cesses both evident, as well as, visibly interconnected. The argument that problem- 
based learning and hands-on learning takes too long is contradicted by the benefit of 
the creation of connections of the ideas to other ideas, often supporting more than 
one set of curriculum expectations at a time. One of many possible examples of 
such a classroom use of models in learning is summarized in the sample lesson to 
follow, aimed at the early secondary level.
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 Sample Lesson: Discovering the Rules for Factoring 
a Quadratic

The example to follow is simple for the teacher to set up, and directly builds on 
earlier conceptions of a particular mathematical model called the area model. The 
game-like quality of the lesson appeals to many intermediate students, and no alge-
bra whatsoever is needed in the first part of the activity, giving it a low floor and thus 
making it accessible to many learners.

While it is hoped that it would now be rare that students had neither seen an area 
model to represent multiplication, nor the use of algebra tiles by grade 9, these 
structures may still be used less frequently than might be ideal (Holm and Kajander 
2015). Thus, before embarking on the lesson to be described, a brief review of these 
ideas from the elementary curriculum may be needed for the students, and a sum-
mary of such a recap will be included to follow, to which the reader may refer as 
needed. The following outline is presented to review the salient development of 
content around this model in the curriculum from the elementary level up to early 
secondary. Depending on what students recall (or ever experienced), some aspects 
of these concepts may need reviewing with your students. In my own past classroom 
practice, I found that at least, a model of an example such as 23 × 14 was helpful in 
reviewing how two factors (say 23 and 14) generate an area and hence the product. 
Algebra tiles can then be introduced (or reviewed) and the idea extended to bino-
mial products such as (x + 3) (x + 4).

 The Area Model as the Product of Two Numbers

From early on in elementary mathematics, children understand 2 × 3 as two groups 
of three or three groups of two. It is not immediately obvious that these are the same. 
However, when the operation is viewed using an area model (see Fig. 1) we can 
identify the ideas of the two factors (here, 2 and 3), the product (here, 6), and the 
commutativity of multiplication, all embodied in this powerful representation. The 
factors are the side lengths, and the product is the area—and this is the fundamental 
premise of the model. More examples allow students to come to the conclusion that 
the construction of this model can always be used to model the process of multipli-
cation of two quantities.

Moving along in grade level from primary to junior (middle elementary) grades, 
the area model is a representation that allows the development of double digit 

Fig. 1 Area model of 
2 × 3
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 multiplication methods. For example, using base ten blocks, we recall that the ten or 
“long,” as well as the 100’s piece or “flat” (a 10 by 10 square) can also be used to 
illustrate 10 and 100 respectively (Fig. 2).

For example, creating an area model to represent 24 × 35 yields a rectangle with 
four distinct regions, namely 600, 100, 120 and 20. Take a moment yourself to 
sketch (or build) the rectangle using base ten blocks (or sketches of them) and locate 
these four sub-products, as well as how they are related to the initial two numbers. 
Explore a bit further to convince yourself that these sub-products also exactly com-
bine in a prescribed way to generate the traditional multiplication procedure. (By 
the way, after learning about multiplying using an area model, you may find your-
self preferring to multiply by a method more similar to a numeric version of the 
model, i.e., by adding the four sub-products in any order—I know I do!) A few of 
the possible numeric methods are shown in Fig. 3—and others are possible. Note 
that the second example shown in Fig. 3 aligns most directly with the “traditional” 
method, although the first one makes more sense in some ways—if we consider the 
largest sub-product as the most important quantity in terms of its effect on the 
answer, then this order of working is logical.

The beauty of the area model is that its use extends to the development of alge-
braic ideas. Indeed the area model with two digit factors is almost directly gener-
alised into the area model for binomial products such as (x + 4) (x + 5) or even 
(2x + 4) (3x + 5), making rules about how to expand these expressions obsolete. The 
key here is to have students imagine the variable length piece as a length that can 
change. When introducing these ideas to students, take a moment to have your stu-
dents visualise the “x” piece growing and shrinking in their minds, or demonstrate 
it using virtual algebra tiles. Figure 4 shows various “lengths” of such a variable tile.

Next, we need to think about how to represent x2. Given that 100 (or 102) is a 10 
by 10 square, it makes sense that x2 is also a square, with side length equal to the 

Fig. 2 A ten and a 
hundreds piece

Fig. 3 Sample numeric 
methods
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length of x. So now we are ready to model (x + 4) (x + 5). Before reading further, 
consider drawing a sketch yourself, or building a model with algebra tiles, of this 
expression.

Figure 5 shows one representation of such a model. The side lengths of the rect-
angular model are (x + 4) and (x + 5). Adding up the pieces here, we see that the 
model of (x + 4) (x + 5) contains one x2 piece, nine x pieces, and 20 units. The 
expanded expression is thus x2 + 9x + 20. We see that the expression x2 + 9x + 20 is 
‘factorable’ because the region can be made into an exact rectangle. Hence there are 
two terms (the side lengths) which can be multiplied together to yield the area. In 
other words, there are two (here, binomial) expressions which form the side lengths 
of a rectangle, whose product is the expanded form, shown in the area.

Fig. 4 Different representations of the variable x

Fig. 5 The area model for 
x2 + 9x + 20
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The concept of factoring is really the same idea (in reverse) as expanding, it’s 
just we are moving in the opposite direction. So the question “does x2 + 9x + 20 
factor, and if so what are the factors”, relates to the exploration “if I have an x2 
piece, nine x pieces, and 20 units, can they be arranged into a rectangle?” Before 
even mentioning any of this—or even the word “factor,” students might be offered 
the following activity to follow. We are now ready for the actual classroom lesson 
set up!

 Sample Lesson—Make a Rectangle Activity

 Set Up (Teacher Preparation)

A classroom set of algebra tiles, together with some ziplock bags (one filled bag per 
pair of students) is all that is required. In each bag, place sufficient algebra tiles to 
form a factorable expression, such as (using the previous example) an x2 piece, nine 
x pieces, and 20 units. Fill enough bags with different similar polynomials so that 
there are enough bags for each pair of students. A simple way to do this is to take a 
list of textbook factoring practice problems and use those as a guide. However, I 
highly recommend including at least a few that are not factorable—it is fairly easy 
to take a factorable expression and simply add or remove something from the final 
constant to create an unfactorable expression. For example, an expression such as 
x2 + 5x + 6 can be easily made unfactorable by adding one more unit tile. You may 
wish to number the bags so students know if they have used a given set yet.

 Introduction

Before beginning, review algebra tiles (and other content as above as necessary). 
Students should be able to recognise the x and x2 pieces in the bags, as well as of 
course the units. Students are to work in pairs, each being provided with a ziplock 
bag of materials as described. First, ask the students to explore the contents of the 
bag they received, and identify the pieces.

 Task

Students can be challenged to see if the tiles in their bag can be arranged into an 
exact rectangle and record their data about each example. If a rectangle can be 
made, they are also to record the side lengths of the rectangle. They are then to trade 
bags with another student pair and try another set. The goal of the lesson is for 
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students to be able to devise a way to predict if the contents of a given bag can be 
arranged into a rectangle (eventually without actually doing so), and if so what the 
side-lengths of the rectangle are (again, predicting without actually needing to 
build it). Once students have articulated a conjecture, they are to test it on several 
more cases.

At some point during the discussion it may become clear to students that they are 
in fact devising the rules of factoring simple quadratics, as some students will recall 
that the side lengths of the rectangle are the factors. It will likely be helpful to actu-
ally have this whole group discussion at some suitable point during or after the 
exploration. In a lesson structure called a three part lesson, such a sharing or con-
solidation phase is the third part of the lesson. It can be the hardest to plan because 
it must emerge from the students’ observations. However, teachers must know what 
to expect, and how to probe students to share their new understandings.

 Sharing

Student pairs can be asked to share their methods for predicting the factors with the 
whole group. The sum-product factoring method easily emerges as the shared out-
come; however, its understanding is drawn from a visual model which may endure 
in students’ minds and help with future recall. It is also important that the ways the 
idea is stated in the classroom are drawn from the students’ descriptions of their 
methods. Terminology and efficiency can be added later. Student conceptual under-
standing is the first goal.

 Summary

The one sample lesson provided in this chapter was meant to be illustrative of the 
use of models and reasoning as the basis of a lesson. While it is still the case that 
some teachers consider the use of manipulatives and models as a crutch for weaker 
students (Holm and Kajander 2015), it is argued here that the creation of models and 
their use in problem solving is an important and high level mathematical process. 
Many similar such lessons based on models are possible (for examples see Kajander 
and Boland 2014). Technology may also be helpful in model creation but it is also 
possible to deeply understand many ideas using physical manipulative construc-
tions. As further examples of the many possibilities, completing the square literally 
can mean just that, and the definitions of many of the conics lend themselves readily 
to physical models, involving perhaps thread, Styrofoam and pins. And as your les-
sons become more and more about (literally) constructing knowledge, so too will 
everyone’s deep understanding grow—including likely that of the teacher!
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In No Uncertain Terms: Encouraging 
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Abstract In this chapter, we question the tendency in secondary schools to present 
the notion of probability exclusively through scenarios where all necessary informa-
tion is readily available and appears to be wholly reliable. Such scenarios create the 
impression that probability is a fixed attribute of the objects that generate an event, 
obscuring the larger idea that the probability of an event is, rather, an enumeration 
of available information about the event in question, which may be subject to 
change. We highlight a family of problems suitable for use in the secondary school 
classroom where determining a solution requires not only a consideration of possi-
ble outcomes, but also the uncovering of assumptions regarding the process through 
which information about the event was obtained. The ambiguity provided through 
the presence of a middleman illustrates how differing sets of information may affect 
probability assessments, and encourages students to take a critical stance toward 
probability calculations.

Keywords Probability · Probability literacy · Secondary school mathematics

The widespread adoption of the study of probability into Canadian secondary school 
programs of study is about to enter its fourth decade. The topic became widely rec-
ognized as an important aspect of a robust education in mathematics through a 
sequence of standards documents from the National Council of Teachers of 
Mathematics—first, the Curriculum and evaluation standards (1989), and later, the 
Principles and standards for school mathematics (2000)—that cemented 
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expectations for data analysis and probability in the North American school class-
room. Similar reform documents were issued at this time around the globe (see 
Jones et  al. 2007), including the Western and Northern Canadian Protocol for 
Collaboration in Education (WNCP 2006, 2008).

However, although the topic has now become an established feature of mathemat-
ics curricula across Canada, we suggest that the nature of probability is often left 
unexplored, and potentially misrepresented, through problems that are composed 
entirely of events arising in overly-simplified contexts, whose underlying processes 
are either fully known or assumed to be fully known. Students are then left with the 
impression that probability is an unchanging mathematical feature of an object, 
where every possible event has a single, true probability of occurring that can be 
calculated from the given set of information. Through such sanitized contexts, the 
teaching and learning of probability tends to misrepresent the nature of probability, 
which is not a characteristic or attribute of the object or process that generates an 
event, but rather a quantification of information about the event in question. Providing 
problems where students have the opportunity to interrogate the assumptions under-
lying given information may help students appreciate the nature of probability as a 
statement of certainty, susceptible to change based on new information and on 
assumptions about what, how, and when information was obtained (Falk 1992; 
Nickerson 1996). The opportunity to engage with such problems may additionally 
help to foster a critical stance towards probabilistic claims and encourage the devel-
opment of probability literacy. In this chapter, we highlight a family of problems that 
may provide students with opportunities to inquire into the nature of probability and 
to foster the development of a critical stance regarding probability claims.

 The Nature of Things

A standard, fair, six-sided die is rolled. What is the probability that the die lands 6-up?
Two standard, fair, six-sided dice are rolled. If one of the dice lands 6-up, what is the prob-

ability that the sum of the two dice is 7?

Whether they feature dice, cards, coins, or balls in urns, probability problems in 
schools all tend to be presented in a similar way. First, a random generator is offered 
(in the above examples, a die), which is either declared to be fair, standard, or, in the 
rare case, explicitly given to be biased in a predictable and known way. If a reporter 
of information is named, they are assumed to have presented the information in an 
accurate, unbiased way. Second, although not always, a conditioning event is pro-
vided (in the second example above, it is revealed that one of the two dice lands 
6-up). Finally, the probability of an event involving the random generator(s) is 
requested.

Sanitized, seemingly free of ambiguity, and asking for the learner’s input only at 
the final step, probability problems in schools tend to eliminate any possibility of 
interrogation. Such problems are carefully worded so as to present clear and 
straightforward parameters in which the given probabilistic experiments take place. 
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We thus become habituated to think of every deck of cards as a standard deck of 
cards, every die as a fair die, and every reporter of information as unbiased. Even 
when there appears to be a gap in the given information (as we will present in this 
chapter), it is often left unexplored, and any space for interrogation is filled with 
unarticulated assumptions. Consequently, such problems tend to, somewhat para-
doxically, eliminate any and all uncertainty about the processes underlying events, 
the information known about the events, and how that information came to be 
known by the solver. As a result, the only uncertainty that appears to remain is the 
outcome of the experiment.

There is an additional, unintended consequence of encountering the notion of 
probability through such sanitized situations: the implication that every event has 
one true, unique probability of occurrence. For instance, in the first example above, 
“the” probability that a standard, fair die lands 6-up when it is rolled is typically 
determined as follows: A standard die has six sides, numbered from 1 to 6, and each 
side has an equal chance of being rolled, given that the die is fair. The desired out-
come is one among six possible outcomes, and therefore “the” probability is 1/6. 
While the second example presents a slightly greater computational challenge, the 
solution may be determined in a similar way. In both cases, and in the absence of 
further analysis, the computation of probability appears to uncover an attribute of 
the die, in the same way that we might measure its height, mass, or density. However, 
unlike height, mass, or density, probability is not a static feature of an event, but a 
dynamic one that changes depending on the status of our knowledge about the event 
in question.

As an example, consider the following simple classroom experiment proposed 
by Devlin (2014). A class of students is divided into two groups, and one group is 
given a die. The die is rolled and all of the members of the first group see the out-
come, whatever it happens to be. The instructor then asks the second group, who did 
not see the outcome of the roll, to assign a probability to the event that the die landed 
6-up. The theoretical calculation, based on the symmetrical attributes of the die, 
results in a response of 1/6. However, if the instructor assigns the same task to the 
first group, who saw the outcome of roll, they are forced to respond either with a 
probability of zero or one, because for them, there is no uncertainty about the out-
come. It is easier to see that the assigned probability, from the perspective of the first 
group, is based on available information regarding the scenario, rather than a pre- 
assigned theoretical value. However, both evaluations are in fact based on an enu-
meration of information, with the second group being privy to less information than 
the first. In other words, no probability exists within the die; the computation is a 
measure of what a group knows about the properties of the die with regards to the 
toss in question. It is in this sense that probabilities quantify our information about 
the world at any given moment in time.

However, in the absence of opportunities to gather information and question the 
assumptions underlying the calculations that generate probabilities, students are 
liable to develop the belief that events, both inside and outside the classroom con-
text, have a unique probability (Devlin 2014). Even Canadian curriculum docu-
ments have advocated this stance, stating, for example, that “many important 
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properties in mathematics do not change when conditions change. Examples of con-
stancy include […] the theoretical probability of an event” (Western and Northern 
Canadian Protocol 2008, p. 11). However, in our world, events either happen or do 
not happen, and consequently, probability cannot be a tangible characteristic of 
events, but rather represents “the status of our knowledge” based on the current set 
of given information, and allows us to build a stochastic model of what we perceive 
to be the reality (Borovcnik and Kapadia 2014, p. 42). In other words, probability is 
a quantified perception, an enumeration of the information available about a future 
event that one is privy to in advance (Devlin 2014; Gal 2005).

This fact is obscured by problems that present a world to learners that is assumed 
to be fully-known and unquestionable. In sum, problems of probability in schools 
tend to be, paradoxically, presented in no uncertain terms. It is this typical presenta-
tion of probability through contexts where all information is readily available and 
appears wholly reliable that denies students the opportunity to pose critical ques-
tions about the underlying processes or assumptions through which the information 
was obtained.

 Probability Literacy

While the distinction between probability as a characteristic of an event and prob-
ability as the quantification of information about an event may seem overly exacting 
or too abstract to be relevant at the school level, experiencing probability in this vein 
is critical. According to Konold (1989), viewing events as having a true, unique 
probability results in the pursuit of certainty that a probabilistic hypothesis is 
unequivocally correct—that is, not liable to change. However, if students focus on 
labeling events with specific, static probabilities but ignore the conditions under 
which these probabilities arise, Konold contends, somewhat hyperbolically, that “all 
of probability theory will evade them” (p. 92). Given this warning, the provision of 
tasks with the potential to inquire into the nature of probability as a quantification 
of available information is of importance to the teaching and learning of probability. 
The additional value of such tasks, where assumptions must be unearthed and the 
effects of differing sets of information may be observed, has the potential to help 
students foster a critical stance towards probabilistic claims, a key aspect of proba-
bility literacy.

A relatively recent addition to the gamut of literacies, a working model of prob-
ability literacy was proposed by Gal (2005), which includes both knowledge ele-
ments and dispositional elements (see Table 1). Notably, figuring probabilities (i.e., 
technical or computational skills) and language (i.e., terms related to the quantifica-
tion of uncertainty, such as possible, probable, and certain) are acknowledged to be 
key elements of probability literacy. However, these aspects tend to constitute the 
overwhelming focus of the study of probability in schools (Jones et al. 2007), to the 
exclusion of other elements of probability literacy. And, as Gal (2005) argues, “an 
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instructional focus only on one or two of the elements will not be sufficient to 
develop ‘probability literate’ behavior” (p. 50).

We highlight, in particular, the limited opportunities that students have to ask 
critical questions and to develop a critical stance when engaging with typical prob-
lem situations involving uncertainty. As Gal (2005) notes, most students will go on 
to become adults who are consumers, rather than producers, of probabilistic and 
statistical information, so in a world where stochastic information may be, and has 
been, used to distort or deceive, it is essential that students not only gain proficiency 
in computing probabilities, but also develop a “critical perspective on information 
one receives from presumably ‘official’ sources or from experts” (p.  49). This 
requires both the knowledge of and the disposition to ask a number of critical ques-
tions about the context, source, and process used to arrive at the claim being made.

Importantly, teachers cannot assume that students who have been exposed to a 
variety of computational exercises will consequently be able to ask such questions 
and, in general, think critically about diverse probabilistic situations (Gal 2005; 
Jones et  al. 2007). We are guided by the understanding that “if children are to 
develop beliefs such as ‘it is legitimate to be critical about probabilistic messages,’ 
these kinds of messages need to be built into the content of tasks and experiences 
that the students face” (Jones et al. 2007, p. 942). In this chapter, we propose one 
way in which the teaching of probability may provide students with opportunities to 
ask critical questions and to foster the development of a critical stance regarding 
probability claims. Our focus is on revealing and evaluating the consequences of 
various assumptions embedded in problem situations involving uncertainty. More 
precisely, the problems discussed in this chapter focus on assumptions surrounding 
the process by which information came to be known. As Nickerson (1996) argues, 
both scientists and laypersons need to understand that probabilistic claims are often 
based on unstated assumptions, and that an essential part of determining whether to 
accept the conclusion of a probabilistic claim is to make those assumptions explicit. 
Equally valuable is the important  insight into the nature of probability that such 
problems offer: If different sets of reasonable assumptions can lead to different 

Table 1 Probability literacy – building blocks (Gal 2005, p. 51)

Knowledge elements
 1. Big ideas: Variation, randomness, independence, predictability/uncertainty.
 2. Figuring probabilities: Ways to find or estimate the probability of events.
 3. Language: The terms and methods used to communicate about chance.
 4. Context: Understanding the role and implications of probabilistic issues and messages in 
various contexts and in personal and public discourse.
 5. Critical questions: Issues to reflect upon when dealing with probabilities.
Dispositional elements
 1. Critical stance.

 2. Beliefs and attitudes.

 3. Personal sentiments regarding uncertainty and risk (e.g., risk aversion).
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probabilities, then probability cannot be an inherent, empirical quality of an 
 outcome, but rather a measure of the information about the uncertain outcome that 
we have at our disposal.

 Hidden Assumptions in Middleman Problems

We now turn our attention to a family of problems that demonstrate how different 
assumptions and additional information can result in a revision of the probability 
assigned to an event. We explore the possibilities in several of these problems below. 
Despite differences in the cover story, the basic mathematical structure of such 
problems is the same: an uncertain target event is presented; additional information, 
involving another event in the sample space, is then provided; and finally, the reader 
is tasked with finding the revised probability of the target event (Falk 1992). These 
problems also include the presence of a key character whom we will call the middle-
man, an agent who relays information and can exercise some selectivity in what 
information they report.

The presence of a sentient, human agent who makes decisions and provides 
information to the solver plants a seed of further unpredictability, and can serve to 
demonstrate how seemingly small situational differences can prove consequential in 
determining probabilities. To this point in the literature, such non-routine probabil-
ity problems and the reasoning they sponsor have largely been studied from a psy-
chological perspective. We suggest, however, that they also have the potential to 
offer key educative opportunities to be critical of information, to discuss ambigui-
ties, and to explicate assumptions with regard to the information provided to the 
solver, all the while illustrating how probability is dependent on the assumptions 
made about the objects in question and the process by which information came to 
be known. In the next section, we demonstrate how a middleman can be introduced 
into a classic problem situation, the Three Cards problem, which allows us to 
explore how different assumptions about the middleman can lead to different prob-
abilities of the desired event.

 The Three Cards Problem

The Three Cards problem is a classic problem in probability involving one card that 
is red on both sides, one card that is blue on both sides, and one card that is blue on 
one side and red on the other.1 One of the cards is selected at random (say, out of a 

1 The original formulation of the Three Cards problem was proposed by Joseph Bertrand in his 
1889 work Calcul des probabilités. The problem involved three boxes: one box containing two 
gold coins, a second box containing two silver coins, and a third box containing one gold and one 
silver coin.
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hat), and only one side of the card is observed. The problem that readers are tasked 
with is the following: If you draw the card and observe one of the sides to be blue, 
what is the probability that the other side is blue?2 As stated, the problem is virtually 
unambiguous. A typical solution is as follows: Since the card cannot be the red-red 
card, it must either be the blue-blue or blue-red card. Among these possibilities, 
there are four sides, three of which are blue and only one of which is red. Given that 
one of the sides has been observed to be blue, the probability that the other side is 
blue is 2/3.

However, what happens if we introduce a middleman to relay information about 
one of the sides? Let us suppose now that a friend, Shania, pulls a card out of the hat 
without showing it to you, and states that at least one of the sides is blue. What is the 
probability that the other side of the card is blue? With the subtle change of the 
information now being provided by a third party, the problem becomes ambiguous 
from a computational point of view. To start, the problem as stated suggests that 
“the” unique probability of the other side being blue is somewhere out there to be 
found. However, we know that this cannot be so, because from the perspective of 
Shania, who is holding the card and can see both sides, the probability is either 0 or 
1—either the other side is also blue, or it is not—while the probability is most likely 
somewhere between these two values for the observer, since they have not seen both 
sides of the card. (This situation is analogous to Devlin’s dice experiment, described 
earlier.) Let us assume, then, that we are interested in the probability of the other 
side being blue from the perspective of the person who has not drawn the card. Let 
us also assume that this friend is honest, and will not, for example, state that one of 
the sides is blue if she is holding the red-red card. A third ambiguity, to be explored 
below, is how Shania decides to choose which colour to report.

Keeping in mind a variety of possible ways in which Shania may choose to report 
information, consider the following four cases.

 (i) Shania is colour-unbiased. In this situation, we will assume that Shania picks a 
card randomly, looks at both sides, and does not show it to you. We will also 
assume that if she is holding the red-red card, she will say “at least one of the 
sides is red”; if she is holding the blue-blue card, she will say “at least one of the 
sides is blue”; and if she is holding the blue-red card, she will secretly flip a coin 
and say “at least one of the sides is blue” if she gets heads (P = 1/2) and “at 
least one of the sides is red” if she gets tails (P = 1/2).

The possibilities and probabilities are enumerated in Table  2. Consider, for 
example, the case that Shania draws the blue-blue card and reports “at least one of 
the sides is blue.” Drawing randomly, she will draw the blue-blue card with proba-
bility 1/3, and upon drawing this card, will always say “at least one of the sides is 
blue”; knowing that she will always do so, we assign this event a probability of 1. 
Hence, the probability of this scenario occurring is (1/3)(1) = 1/3, which appears in 
the corresponding cell in Table 2. As another example, consider the case that Shania 

2 Our brief treatment of this problem is not meant to suggest that the above solution is intuitive (see, 
e.g., Bar-Hillel 1989; Bar-Hillel and Falk 1982; Rubel 2002).
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draws the blue-red card and reports “at least one of the sides is red.” Drawing 
 randomly, she will draw the blue-red card with probability 1/3, and upon drawing 
this card, she will secretly flip a coin and say “at least one of the sides is red” if she 
gets tails, which occurs with probability 1/2. Hence, the probability of this scenario 
occurring is (1/3)(1/2) = 1/6, which appears in the corresponding cell in Table 2.

Assuming you are privy to the information that Shania is colour-unbiased, the 
probability that she is holding the blue-blue card given that she reports “at least one 
of the sides is blue” is found by determining the probability that she draws the blue- 
blue card and reports that at least one of the sides is blue (P = 1/3) and dividing this 
by the probability that she reports “at least one of the sides is blue” no matter what 
card she is holding (P = 1/2). Hence, the probability is (1/3)/(1/2) = 2/3. Notably, 
this is the same probability given for the original problem, computed previously; 
however, it rests on a particular  set of assumptions, without which the modified 
problem would be ambiguous.

 (ii) Shania is blue-biased. In this situation, we will assume again that Shania picks 
a card randomly, looks at both sides, and does not show it to you. We will also 
assume that if she is holding the red-red card, she will say “at least one of the 
sides is red,” and if she is holding the blue-blue or the blue-red card, she will 
say “at least one of the sides is blue.” In other words, in this situation, Shania 
will always say “at least one of the sides is blue” when possible, but will never 
lie. The possibilities and probabilities are enumerated in Table 3.

In keeping with the same process of analysis, the probability that Shania is hold-
ing the blue-blue card, given that she is blue-biased and reports that “at least one of 
the sides is blue,” is (1/3)/(2/3) = 1/2. This is, of course, assuming you are privy to 
the information that Shania is blue-biased. Notably, this probability aligns with the 
intuitive probability often provided as a solution to the original problem (e.g., Bar- 

Table 2 Probabilities for the Three Cards problem given that the reporter is colour-unbiased

Shania reports
Card drawn Blue Red Total

Blue-Blue 1

3
1

1

3
× =

1

3
0 0× =

1

3

Red-Red 1

3
0 0× =

1

3
1

1

3
× =

1

3

Blue-Red 1

3

1

2

1

6
× =

1

3

1

2

1

6
× =

1

3

Total 1

2

1

2

1
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Hillel 1989; Bar-Hillel and Falk 1982; Rubel 2002), but depends crucially on the 
assumption of Shania being biased towards saying blue.

 (iii) Shania is red-biased. In this situation, we will assume again that Shania picks 
a card randomly, looks at both sides, and does not show it to you. We will 
assume that if she is holding the red-red or the blue-red card, she will say “at 
least one of the sides is red,” and if she is holding the blue-blue card, she will 
say “at least one of the sides is blue.” In other words, in this situation, Shania 
will always say “at least one of the sides is red” when possible, but will never 
lie. The possibilities and probabilities are enumerated in Table 4.

Assuming you are privy to the information that Shania is red-biased, then the 
probability that she is holding the blue-blue card given that she reports “at least one 
of the sides is blue” is (1/3)/(1/3) = 1. Thus, in this situation, you can be certain that 
Shania is holding the blue-blue card if she states that at least one of the sides is blue.

 (iv) Shania observes only one side. In this last situation, we will assume that Shania 
picks a card randomly and only looks at one side, reporting the colour that she 
sees to you. Shania is not given a decision to make and only gains access to one 
side of information. This, coupled with the fact that she always reports truth-
fully, creates a problem that is isomorphic to the original. The probability table 
is therefore identical to Table 2, even though the assumptions about Shania’s 
process of selecting a colour to report differ. In this situation, the probability 
that Shania is holding the blue-blue card given that she looks at one of the sides 
and reports that “at least one of the sides is blue” is (1/3)/(1/2) = 2/3.

Here, we should be clear in noting that our treatment of this problem is not new: 
The Three Cards problem and other analogous probability puzzles, including the 
Monty Hall problem, the Three Prisoners problem, and the Two-Child problem, 

Table 3 Probabilities for the Three Cards problem given that the reporter is blue-biased

Shania reports
Card drawn Blue Red Total

Blue-Blue 1

3
1

1

3
× =

1

3
0 0× =

1

3

Red-Red 1

3
0 0× =

1

3
1

1

3
× =

1

3

Blue-Red 1

3
1

1

3
× =

1

3
0 0× =

1

3

Total 2

3

1

3

1
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have been analyzed extensively both in the research literature (e.g., Bar-Hillel 1989; 
Bar-Hillel and Falk 1982; Falk 1992; Khovanova 2011; Nickerson 1996; Rubel 
2006) and in popular culture (e.g., Haddon 2003; Rees and Williams 2011). With 
the Three Card problem, the sets of assumptions for Shania’s reporting represent 
only a few of those that she may have followed before revealing information about 
one side of the card; others that result in more exotic probabilities may be envi-
sioned, and present a worthwhile extension task.

The crucial takeaway is that the assumptions that are made about a problem situ-
ation matter, and that the seemingly intuitive assumptions (e.g., Shania is colour- 
unbiased) are not the only ones that could be made (nor are they universally intuitive; 
see Nickerson 1996). As the first and last cases above demonstrate, different sets of 
assumptions do not always lead to different probability assignments (and yet, they 
can and do, as the second and third cases reveal). When the problem involves a 
middleman who provides a piece of information, we should be concerned not only 
about updating the relevant sample space after new information is provided, but also 
about the procedure by which the middleman chose what information to give (e.g., 
Bar-Hillel 1989; Khovanova 2011; Nickerson 1996). As Bar-Hillel and Falk (1982) 
write, and as we have seen, “information cannot, as a rule, be divorced from its 
sources” (p. 120), and “what matters for reaching a correct solution to many prob-
ability problems is often not only the given information, but also the manner by 
which it has been obtained” (Falk 1992, p. 217).

Introducing a middleman into the original problem context renders the situation 
ambiguous. In particular, without receiving more information or introducing 
assumptions about the middleman’s behavior, the solution is indeterminate. As a 
consequence, no solution to the problem can be said to be the correct solution, given 
that it is sensitive to the assumptions made. Whether any particular set of assump-
tions is more reasonable than another is a matter of judgment (Nickerson 1996), and 

Table 4 Probabilities for the Three Cards problem given that the reporter is red-biased

Shania reports
Card drawn Blue Red Total

Blue-Blue 1

3
1

1

3
× =

1

3
0 0× =

1

3

Red-Red 1

3
0 0× =

1

3
1

1

3
× =

1

3

Blue-Red 1

3
0 0× =

1

3
1

1

3
× =

1

3

Total 1

3

2

3

1
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our goal is not to champion one set of assumptions over another. On the contrary, we 
contend that the educative possibility of such problems lies not in choosing the best 
set of assumptions or even in computing the resulting probabilities, but in recogniz-
ing the ambiguity and the role assumptions play in their solution. Offering students 
the opportunity to consider the role of assumptions and to explore their conse-
quences may help to foster a critical stance towards probability statements that is 
too often neglected in the classroom context.

Unfortunately, in textbooks and curriculum documents, the phrasing “the prob-
ability of A given B” and the notation P(A|B) typically sidesteps the issue of how 
the event B came to be known, since the term ‘given’ supplies the conditioning 
event (Bar-Hillel and Falk 1982). As Bar-Hillel (1989) suggests, “the standard text-
book problem is of this sanitized type, and when it isn’t, this is seldom by design” 
(p.  352). This is also the case in the original version of Three Cards problem. 
Phrased as “What is the probability that you are holding the blue-blue card given 
that one of the sides is blue?”, it is difficult to argue that the probability is anything 
but 2/3, assuming that the cards were well-mixed and the drawing was fair. However, 
as Bar-Hillel and Falk (1982) argue, such situations are unrealistic at best, and dis-
honest at worst:

Outside the never-never land of textbooks […] real-life problems […] need to be modeled 
before they can be solved formally. And for the selection of an appropriate model (i.e., 
probability space), the way in which information is obtained (i.e., the statistical experiment) 
is crucial. (p. 121)

It is valuable, then, to consider how ambiguity might be recognized or reintro-
duced into typical curricular problem situations so as to allow students to experi-
ence how various pieces of information, and the process by which they were 
obtained, may affect the probability of outcomes.

 Unearthing Ambiguity

The examples presented below were drawn or adapted from Canadian resources, 
illustrating that opportunities to engage students in discussions about the nature of 
probability and in asking critical questions about probability computations can arise 
quite naturally during classroom action, provided that these opportunities are recog-
nized and harnessed.

 The Loonie Problem

Consider the following problem, a slight  variation on an exercise from the 
Foundations of Mathematics 12 textbook (Canavan-McGrath et al. 2012), a WNCP- 
aligned resource used in Grade 12 mathematics courses across Western Canada:

In No Uncertain Terms: Encouraging a Critical Stance Toward Probability in School
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Alanis has one hand in her pocket. In it, she has 10 coins, 3 of which are loonies. She 
reaches into her pocket and pulls out two coins at random. She observes that the first coin 
is a loonie, but does not look at the second coin. Determine the probability of both coins 
being loonies. (p. 310)

Posed as such, the problem is virtually unambiguous, a classic example of drawing 
without replacement. (For curious readers, loonie is a term commonly used for the 
Canadian one dollar coin, which bears the image of a common loon.) After observ-
ing that one of the coins is a loonie, nine coins remain, two of which are loonies. 
The probability of both coins being loonies in this case is therefore 2/9 ≈ 0.222. 
Consider, now, the following modification of the problem:

Alanis has one hand in her pocket. In it, she has 10 coins, and 3 of these coins are loonies. 
She reaches into her pocket and pulls out a coin at random, not showing it to you. She does 
the same with another coin. After observing both coins, Alanis then tells you, “At least one 
of the coins is a loonie.” Determine the probability of both coins being loonies.

By reassigning the role of middleman to Alanis, and the role of observer to the 
reader, ambiguity has been introduced into the problem. Therefore, the question of 
how Alanis decided to provide the given information emerges as salient. Here, we 
consider three possibilities:

 (i) Alanis is coin-unbiased. In this case, Alanis looks at both coins and reports that 
“at least one coin is a loonie” if both coins are loonies, and she reports that “at 
least one coin is not a loonie” if both coins are not loonies. She chooses to 
report the type of coin randomly (e.g., by secretly flipping one of the coins) if 
the coins are of different types. The possibilities and probabilities are enumer-
ated in Table 5.

Table 5 Probabilities for the loonie problem given that the reporter is unbiased

Alanis reports
Coins drawn “At least one coin is a loonie” “At least one coin is not a loonie” Total

LL 3

10

2

9
1

1

15
× × =

3

10

2

9
0 0× × =

1

15

LN 3

10

7

9

1

2

7

60
× × =

3

10

7

9

1

2

7

60
× × =

7

30

NL 7

10

3

9

1

2

7

60
× × =

7

10

3

9

1

2

7

60
× × =

7

30

NN 7

10

6

9
0 0× × =

7

10

6

9
1

7

15
× × =

7

15

Total 3

10

7

10

1

L loonie, N not-loonie
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In this situation, the probability that both coins are loonies, provided that 
Alanis has revealed that at least one is a loonie and that you are aware of 
Alanis’ process for choosing which coin to report, is (1/15)/(3/10) = 2/9 ≈ 0.222. 
This probability is identical to that of the original problem, although it was 
determined under different assumptions.

 (ii) Alanis is loonie-biased. In this situation, Alanis looks at both coins and always 
reports that “at least one coin is a loonie” if she can, but she never lies. By 
modifying Table 5, we find that the probability that both coins are loonies, 
given that Alanis has revealed that at least one is a loonie and assuming that we 
are aware of her loonie-bias, is (1/15)/(8/15) = 1/8 = 0.125.

 (iii) Alanis is anti-loonie. In this situation, Alanis looks at both coins and does not 
report that one of the coins she is holding is a loonie if she can avoid it, but she 
never lies. By modifying Table 5, we find that the probability that both coins 
are loonies, given that Alanis has revealed that at least one is a loonie and 
assuming that we are aware of Alanis’ process of choosing which coin to 
report, is (1/15)/(1/15) = 1. In other words, in this situation we can be certain 
that Alanis is holding both loonies.

 (iv) Alanis always reports the type of the first coin. In this last situation, we assume 
that Alanis randomly chooses two coins, but always reports the type of the first 
coin. By slightly modifying Table 5, we find that the probability that both coins 
are loonies, given that Alanis has revealed that at least one is a loonie (which 
was the first coin), is again (1/15)/(3/10) = 2/9 ≈ 0.222. The fact that Alanis is 
not given a decision to make, coupled with the fact that she always reports 
truthfully, creates a problem that is isomorphic  to the original. Case (i) and 
Case (iv) further demonstrate that different information does not always lead to 
different probability assignments.

As with the Three Cards problem, modifying the Loonie problem to introduce a 
middleman offers students the opportunity to investigate the effect of assumptions 
in a way that the original problem does not, thus offering valuable insight into the 
nature of probability. We encourage readers to consider how this strategy may be 
applied to problems in their local resource. However, modifying problems in this 
way is not always necessary, as the following example will show.

 Cohen and Celine

The following problem also appears (in identical format, save for the students’ 
names) in the Foundations of Mathematics 12 textbook (Canavan-McGrath et al. 
2012):

Cohen asks Celine to choose a number between 1 and 40 and then say one fact about the 
number. Celine says that the number she chose is a multiple of 4. Determine the probability 
that the number is also a multiple of 6. (p. 346)

In No Uncertain Terms: Encouraging a Critical Stance Toward Probability in School



584

By now, the reader will undoubtedly recognize at least one of the ambiguities in 
the problem situation as described: namely, how does Celine, the middleman who is 
relaying information, choose what kind of information she discloses about the num-
ber she draws? This problem represents a rare non-sanitized textbook problem (to 
adopt Bar-Hillel’s terminology), although this was unlikely an intentional design. 
Only one solution is presented and no discussion about assumptions follows the 
problem statement, suggesting to readers that other solutions are not possible. As 
such, the educative possibilities of the problem may be easily overlooked.

Various assumptions about Celine’s process may be made, each of which may 
affect the sought-after probability. To give a few examples (the details of which are 
omitted for brevity):

 (v) Celine is four-biased. In this situation, Celine always says that the chosen 
number is a multiple of 4 if she can (i.e., when the number is 4, 8, 12, 16, 20, 
24, 28, 32, 36, or 40), but never lies. Assuming that Cohen is aware of Celine’s 
four-bias and that Celine has revealed that it is a multiple of 4, the probability 
that the number is also a multiple of 6 is 3/10 = 0.3, given that three of the 
multiples of 4 listed above are also multiples of 6 (12, 24, and 36). This is the 
answer offered in the text, suggesting that these were the implicit assumptions 
drawn on in determining the solution.

 (vi) Celine is factor-unbiased. In this situation, if Celine picks, for example, the 
number 16, she will randomly choose one of its factors using a suitable ran-
dom generator. In this case, assuming that Cohen is aware of Celine’s lack of 
bias and Celine reveals that the number is a multiple of 4, there is a 
145/652 ≈ 0.222 probability that the number is also a multiple of 6, which is 
smaller than the probability offered in the text.

 (vii) Celine is factor-unbiased, but will only say 1 if the number is 1. In this situa-
tion, if Celine picks, for example, the number 16, she will randomly choose 
(using a suitable random generator) one factor among 2, 4, 8, and 16. She will 
not say that the number is a multiple of 1 unless the number in question is 1, 
knowing that this information is not very useful. In this case, assuming that 
Cohen is aware of this process and Celine reveals that the number is a multiple 
of 4, there is a 393/1927 ≈ 0.204 probability that the number is also a multiple 
of 6, which is also smaller than the probability offered in the text.

Other cases may be envisioned, such as the case of Celine being biased towards 
revealing a particular factor (e.g., 8) or never revealing information that will allow 
Cohen to guess the number immediately (e.g., stating that the number is a multiple 
of 35). Students might be encouraged to conceive of others. As the above analysis 
reveals, different assumptions may lead to different probability assignments, none 
of which are unquestionably correct, given the incompleteness of the problem state-
ments. For instance, is it more reasonable to assume that Celine will always declare 
that the number is a multiple of 4 if this is true, or that she will reveal any of its 
factors with equal probability? Arguably, unless one is led to believe that Celine has 
a particular affinity for the number 4, the latter is a more natural assumption; and 
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yet, the former assumption appears to be the one to have been implicitly adopted by 
the textbook authors.

It is worth highlighting again that, while the calculations of the probabilities 
resulting from the various assumptions adopted are interesting and worthwhile, it is 
not the multiple opportunities for computation but rather the ambiguity of the prob-
lem that has the potential to offer students deeper insight into the nature of probabil-
ity and encourage a critical stance towards probability statements. In failing to 
recognize this potential, it may be tempting to try to “improve” the Cohen and 
Celine problem, or a similar middleman problem, by making assumptions explicit 
before the problem reaches students so as to avoid confusion. Imagine, for example, 
that the problem is revised as follows:

Cohen asks Celine to choose a number between 1 and 40 and then say one fact about the 
number. Celine will always say that the number is a multiple of 4 whenever this is true. 
Celine draws a number and says that the number she chose is a multiple of 4. Determine 
the probability that the number is also a multiple of 6.

Or, alternatively:

Cohen asks Celine to choose a number between 1 and 40 and then say one fact about the 
number. Celine says that the number she chose is a multiple of 4. Determine the prob-
ability that the number is also a multiple of 6 if:

 (a) Celine always says that the number is a multiple of 4 whenever this is true.
 (b) Celine chooses factors with equal probability.
 (c) Celine always says that the number is a multiple of 8 whenever this is true.

Although these revisions address the ambiguity surrounding the process by 
which Celine chooses to report information, they do so through a dilution of the 
experience. Making assumptions explicit in this way, before they can be recognized 
and questioned in context, removes the need for students to be critical in their analy-
sis of the information obtained about the events. In this sense, the problem loses the 
very feature that made it valuable for gaining insight into the nature of probability 
as a quantification of available information. The middleman, a provider of informa-
tion who has some choice in the information they provide, is replaced with a robotic 
alternative no different from a fair die or standard deck of cards. This serves to dis-
arm students from posing questions about the assumptions made, and, implicitly, 
advocates a passive approach to reasoning in the face of uncertainty.

We thus arrive at a point of synergy between the two goals of introducing mid-
dleman problems in secondary school: revealing the notion that probability is a 
quantification of information about a scenario, rather than an attribute of the process 
or event in question, and fostering among students a critical stance toward probabi-
listic situations. In fact, we believe that these two goals mutually sustain each other. 
Ultimately, the understanding that probability is a quantification of available infor-
mation gives students permission to question the assumptions made and the infor-
mation provided in a probabilistic scenario. This active, critical stance unlocks the 
understanding that probability is dependent on available information and the 
assumptions made about the event in question. In fact, the original Cohen and Celine 
problem, with its inherent ambiguity, offers more educative possibilities—provided 
that these possibilities are harnessed. The teacher is then tasked with designing an 
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ecology that can provide opportunities for students to ask critical questions in situ-
ations of uncertainty, and to determine the impact of differing sets of assumptions 
and information on the subsequent probability calculations.

 Conclusion

This chapter has advocated for the use of middlemen problems in the teaching of 
probability, where the underlying model for revealing information needs to be expli-
cated in order for the problem to be well-posed. We believe that the use of these 
problems in the classroom holds a twofold benefit. First, by revealing how various, 
correct solutions result from different, but equally reasonable assumptions, they 
illustrate a key aspect of the nature of probability: namely, that probability is not a 
characteristic of an event, but rather an enumeration of the information about the 
event in question. They accomplish this by introducing ambiguity through an agent 
who provides information—a middleman. Under these conditions, the probability 
of an event changes based on the process, or biases, that generated the reported 
information. In this case, allowing ambiguity to creep into the problem through the 
actions of the middleman provides a clearer illustration that probability is depen-
dent not only on what you know, but also on how you came to know it.

It is not our intent, however, to suggest that ambiguities in computing probabili-
ties only arise when a human information-passing agent is involved (Nickerson 
1996). Likewise, we do not aim to suggest that middleman problems are the only 
way to illustrate to students the notion that probability is a quantification of the 
information known about an event; other problem situations that illustrate this 
notion, such as the case of different people in the same situation receiving different 
information, may also offer students the opportunity to engage with this key aspect 
of the nature of probability. Most important, then, is that such problems indicate the 
need for assumptions in the quantification of probability, and illustrate how dis-
agreements about the probability of an event can arise when differences in the 
assumptions that are made do not come to light.

However, on their own, ambiguous problem situations will not guarantee that the 
role of assumptions in the quantification of uncertainty will be recognized. If stu-
dents are to develop the capacity to ask critical questions about probabilistic situa-
tions, they must be given the opportunity to question and investigate the consequences 
of various assumptions in classroom tasks. Herein lies the second benefit of middle-
men problems. This critical outlook on probability is the dispositional groundwork 
for probability literacy, where a critical stance and skills in calculation are mutually 
supportive. Operating within this understanding reorients the interrogation of infor-
mation about the probabilistic scenario out from the realm of the assumed or 
unstated into the realm of the critically necessary.
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Encouraging Able Students: An Example 
of Composition of Linear Polynomials

Edward J. Barbeau

Abstract In order for students of science, technology, engineering and mathemat-
ics to have a proper algebraic foundation, the secondary curriculum must go beyond 
memorizing results and technicalities. Algebra is a powerful tool that can be wielded 
only if its user has a sophisticated appreciation of its value as a language, its struc-
ture and its role in proving results. In this chapter, we look at an example that is 
accessible to material in the early high school syllabus in which students are encour-
aged to deepen their grasp of the subject.

Keywords Secondary mathematics · Algebra · STEM education

Algebra is the core of the secondary syllabus, both for every educated citizen and 
for those who need a solid preparation in mathematics for study or employment. 
Students, particularly those headed for a STEM program in university or college, 
need to appreciate the role of algebraic notation and process as a language for 
expressing relationships, as a tool for setting up and solving equations and as a 
powerful means of disposing of a broad range of problems.

STEM students require not only a broader and more technical syllabus, but tasks 
that shed varied light on the concepts and practices of algebra. There are many 
subtle distinctions that can only be understood by exposing them to a range of 
examples that bring out salient features. A helpful viewpoint is to regard an alge-
braic expression as a bearer of information, of which some mathematical facts can 
be easily read off and some are latent. Technical manipulation of an algebraic 
expression changes its form so that the particular information needed is readily 
visible.

In order for this side of algebra to be real for students, it should be presented in 
a context that means something to them. As argued in earlier chapters, this context 
might relate to their life and experience. But it can be purely mathematical, if it has 
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its own coherence and is attractive on its own terms. At the secondary level, it is not 
easy to find applications that are both accessible and deal with aspects of 
 mathematical usage and analysis that students should be exposed to. One might 
hope that courses like physics, chemistry and geography are sufficiently mathemati-
cal as to fulfil some of this necessity.

However, it is in mathematics courses themselves that one should develop skills 
of investigation, analysis and reasoning. STEM students in particular need to be 
attuned to the subtleties of notation, usage and reasoning that will make them con-
fident and competent users of the discipline. Accordingly, in following the syllabus, 
one should avoid the sense of just doing one topic after another, and build in ques-
tions to be answered and goals to be reached. The example in this paper is purely 
mathematical, and builds on one of the very first topics in the secondary syllabus, 
namely the study of linear functions and equations.

A linear function has the form f(x) = ax + b, where a and b are constants. Students 
can be asked to create and then evaluate their own linear functions at different val-
ues of x. It is helpful to think of a linear function as a transformation, x → ax + b, 
that takes the real number line to itself. It then becomes natural to ask whether any 
number x is taken to itself under this transformation. This involves finding the val-
ues of x to satisfy the linear equation

 ax b x+ = .  

Such a value is said to be a fixed point for f. This can be investigated using numeri-
cal values of a and b as well as by sketching the graph of the equation y = f(x) and 
seeing if and where it intersects the graph of the equation y = x.

The important intellectual step here is to now think of a and b, as parameters that 
stand in for the numerical coefficients, and to express the fixed point in terms of 
these parameters. It turns out that there are essentially three situations. If a = 1, 
b = 0, then every point is fixed. If a = 1, b ≠ 0, then there are no fixed points. This 
can be seen geometrically since the mapping x → x + b represents a translation of 
the line by a nonzero quantity. Finally, whenever a = 1, there is exactly one fixed 
point.

We now bring in a second strand that will be related to what we have just dis-
cussed. If we introduce a second linear function, g(x) = cx + d, then we can evaluate 
one of the two functions at a particular point and then evaluate the second at the 
result of the first evaluation. In mathematical terms, we consider f(g(x)) and g(f(x)), 
the compositions of the two functions.

A natural question is whether the order of composing the functions makes a dif-
ference to the final result. Students can once again investigate particular cases and 
perhaps be led to some tentative hypotheses. At the end, we can treat a, b, c, d as 
parameters and set up and solve the linear equation f(g(x)) = g(f(x)).

The idea of composition should not be completely new to the student, especially 
if we regard a linear polynomial as implementing a transformation of the real line. 
Some students will have studied geometrical transformations such as reflections, 
rotations, translations and dilatations in elementary school and already experienced 
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situations in which the transformation do not commute under composition. Indeed, 
we can describe x → ax + b as a dilatation with factor a followed by a translation by 
distance |b| to the right or left depending on sign.

Despite the attractiveness of this topic, it does not appear to have received much 
attention in the educational literature. The references include two articles in the 
National Council of Teachers journal, The Mathematics Teacher, and one a quarter 
century ago in an expository mathematics journal.

Before discussing pedagogical issues any further, I will devote a section just to 
the presentation of the mathematics. The reader is invited to work through the mate-
rial and consider how it might be framed for a secondary class. In any situation 
where an extra topic is introduced, there is a trade-off to be made. The first reaction 
might be that it is quite enough to get through the prescribed curriculum without 
introducing any side issues. On the other hand, one should always ask whether there 
is any value added by having students go through a mathematical experience that 
may improve their skills and insights to the extent that later topics can be handled 
more expeditiously.

 Commuting Linear Functions: The Mathematical Issues

Suppose that we have two linear polynomials, say f(x) = 3x − 2 and g(x) = 2x + 5. 
We can compose them in two ways to form two new functions: f ∘ g(x) = f(g(x)) = 3
(2x + 5) − 2 = 6x + 13 and g ∘ f(x) = g(f(x)) = 2(3x − 2) + 5 = 6x + 1. As you can see, 
the order of composing makes a difference to the result. Is it possible to find linear 
functions for which the result of the two options is the same? In other words, under 
what conditions do two linear polynomials commute under composition?

Investigation of this question leads us to distinguish two separate roles for letters 
in algebra, that of parameters that play the role of constants and represent for exam-
ple numerical coefficients, and that of variables which represent values in the 
domain of some function or expression and allow us to link numbers in the domain 
and range.

To deal with linear polynomials in general, we can denote them by f(x) = ax + b 
and g(x) = cx + d, with a, b, c, d being the parameters. Composing them in both 
orders leads to

 
f g x a cx d b acx ad b( )( ) = +( ) + = + + ;

 

 
g f x c ax b d acx bc d( )( ) = +( ) + = + + .

 

At this point, we should make clear what sort of equality is at stake. One perspective 
is to see f ∘ g and g ∘ f as new functions created by performing an operation on the 
pair f and g. Then we may ask under what conditions are the functions f ∘ g and 
g ∘ f the same? For this to occur, they must have the same domain and take the same 
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value at each point of the domain: f(g(x)) = g(f(x)) for every real number x. (This is 
usually expressed by saying that f(g(x)) = g(f(x)) is an identity in x.) Here we are 
looking for conditions on the parameters a, b, c, d.

A second perspective is to consider the functions f and g to be given (i.e., a, b, c, 
d represent a particular choice of numerical coefficients), and ask for which values 
of x we have f(g(x)) = g(f(x)). (In other words, f(g(x)) = g(f(x)) is a conditional equa-
tion for x.)

The equation f(g(x)) = g(f(x)) is equivalent to ad + b = bc + d. This is notable in 
that there is no dependence on x. What is the significance of this? It means that 
f(g(x)) = g(f(x)) for some value of x implies that f(g(x)) = g(f(x)) for all values of x. 
For a geometrical take on this, observe that the graphs of y = f(g(x)) and y = g(f(x)) 
have the same slope, so that they are either distinct and parallel, or they coincide. 
Thus they have either no point in common or every point in common. A conse-
quence is that if we want to check commutativity of two linear polynomials under 
composition, we just have to check it for one value in the domain.

The condition ad + b = bc + d that f and g commute is not very informative as it 
stands, so we transform it so that we can dig out other information more readily. For 
example, it can be rewritten as

 
a d c b−( ) = −( )1 1 .

 

This is helpful, because we are in a position to collect to one side of the equation 
terms that pertain only to a and b (i.e. to the function f) and to the other side the 
terms that pertain only to c and d. However, we can do this only if we are sure we 
are not dividing by 0, so we must take care of that possibility first.

If a = c = 1, then the condition is satisfied and we can check that the functions 
f(x) = x + b and g(x) = x + d  commute and that the composite in either order is 
x + b + d. Geometrically, each function represents a translation of the real line. Their 
composition represents a translation through the sum of the distances of its 
components.

If a = 1 and b = 0, then f(x) = x, and this commutes with any function. In fact 
f ∘ g = g ∘ f = g so that f is an identity function. The case c = 1 and d = 0 is similarly 
handled.

Finally, if b = d = 0, then f(x) = ax and g(x) = cx. Geometrically, each function 
represents a dilatation of the real line, and the factor of the composite dilatation is 
the product of the factors of the component dilatations.

Excluding these cases, we can now carry out the division and get the condition 
for commuting in the form

 

b

a

d

c1 1−
=

−  
(1)

For example, if f(x) = 5x + 2, then g(x) must have the form (2d + 1)x + d for some 
real number d. It is straightforward to check that this works.
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However, this is not the end of the matter, because the condition turns out to 
signify a striking relationship between the two functions. Solving the equation 
x = f(x) for the fixed point of f leads to

 
x

b

a
=

−1  

Similarly, we find that the fixed point of g is given by

 
x

d

c
=

−1  

Thus Eq. (1) tells us that the two functions in question commute if and only if they 
have a common fixed point.

With some reflection, we realize that this is not surprising. If f and g have a com-
mon fixed point p, then f(g(p)) = f(p) = p = g(p) = g(f(p)), so that f ∘ g and g ∘ f take 
the same value at p. But we already noted that this implies they take the same value 
everywhere, and so are equal as functions.

On the other hand, suppose that f(p) = p and g(q) = q. Excluding the possibility 
that either is the identity function x, we note that we obtain the fixed point by solv-
ing a linear equation which has exactly one solution. Thus, p and q are unique. What 
happens if we take on board the hypothesis that f ∘ g = g ∘ f? Then

 
g f q f g q f q( )( ) = ( )( ) = ( )

 

so that f(q) is a fixed point of g. Therefore f(q) = q by the uniqueness of the fixed 
point of g. But the fixed point of f is also unique, so that p = q.

 Commuting Linear Polynomials: Pedagogical Issues

As students advance in mathematics, they absorb greater levels of abstraction, 
beginning with the notion of number itself. The symbols of algebra which first play 
the role of placeholders of numbers become entities in their own right, as do func-
tions and polynomials in particular with their own structure. This process will con-
tinue as students take on board in their later education such things as vector spaces 
and groups. A similar evolution takes place in other areas, such as geometry and 
combinatorics, and the syllabus should be taught keeping the need for such matura-
tion in mind.

The basic technical requirements for this example, involving as it does linear 
equations, is within the range of a grade 9 course. But the level of sophistication is 
high, and teachers who take it on must first take ownership of it by working through 
the details on their own terms. Then follows a number of strategic decisions as to the 
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goals to be achieved and how to get there. A careful and sensitive approach is needed 
that works out from what is familiar to the student and allows a steady intellectual 
progression towards a textured approach that will help them enjoy future success in 
mathematics. For the teacher has the task of not just securing technical proficiency, 
but also of fostering judgment as well as precision and critical thinking.

The teacher can be likened to a conductor of an orchestra. The syllabus and the 
topics in it are the score. It is the conductor who has to bring it to life, a task that 
requires scholarship, judgment, technical skill and empathy. The conductor has to 
know the context and bring a unifying vision to the whole, make sure that the level 
of skill of the orchestra is adequate and communicate his vision to the players and 
the audience. While the music performed should be true to its composer and its 
authenticity respected, each conductor has his own particular take that distinguishes 
the performance.

So it is with the teacher. The mathematics she teaches should be reliably and 
honestly presented, but she brings into the task her own experiences and analysis, a 
sense of context and a treatment appropriate to the students in front of her. Before 
the conductor meets with the orchestra, it is necessary to make a deep study of the 
score and decide what its essence is. The teacher is in a similar position. She has to 
live with the mathematics herself so that she gets her own feeling for what is signifi-
cant and pleasing. Good teaching is done from a foundation of experience—the 
teacher is a witness to her subject.

From the get-go this example presents a challenge for a typical class. In my 
experience, the flow of discussion can vary considerably from one group of students 
to another. The following discussion is not intended to be prescriptive but only to 
indicate issues that might arise or directions that teachers may find productive. The 
composition of functions will likely be a new idea, as indeed is the idea of a function 
itself. Is there something in the student’s previous experience that can be formulated 
in terms of functionality? It is hard to convey composition using words alone, and 
efficiency of communication demands that some notation be invented. But this is 
part of what algebra is all about. Even at its most basic level, we need to introduce 
variables to describe relationships, such as A = πr2, and solve algorithmically word 
problems that would be difficult if left in the realm of arithmetic.

Thus, the first task is to introduce the notation f(x) and provide examples. Then 
one can discuss f(g(x)) and g(f(x)) for particular pairs, such as (f(x), g(x)) = (3x − 4, 
7x + 6). One should be sure to deal with the special case f(x) = x and make the point 
that it is an identity, playing the role that 0 plays for addition of numbers and 1 for 
multiplication. While working out examples of composition can be a way of having 
the students do manipulative practice, the lesson can be given a bit of direction by 
noting that f ∘ g and g ∘ f seem to be generally different and asking students to seek 
examples for which they are the same. (The idea of a noncommutative operation 
will not be completely new, as students at this stage should have been exposed to 
exponentiation and be aware that, for example, 23 and 32 are different; however, the 
two directions of exponentiation can agree in special cases, as 24 = 42.)

Having students search for examples is a wonderful teaching tool, as it forces 
then to pay attention to the details of the artefacts they are working with. If would 
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be interesting, at this stage, to see whether pairs of the form (f(x), g(x)) = (ax, cx) 
and (f(x), g(x)) = (x + b, x + d) emerge. If so, this provides the opportunity to look at 
the geometric significance of the commutativity.

In general, it will probably be difficult for students to conjure up pairs, so a strat-
egy will be needed to generate them. Why not take a particular example, such as 
f(x) = 3x − 4, and ask what it takes for c and d for g for commute with f? First, this 
is where the parameter-variable distinction weighs in, and it needs to be understood 
that we are looking for particular values of c and d to make the commutativity work.

Let us look at this particular example in more detail. The condition f(g(x)) = g(f(x)) 
leads to 3(cx + d) − 4 = c(3x − 4) + d. This equation bears information, but it is not 
clear what we are supposed to do with it. To begin with, we can remove brackets just 
to see what happens. A small miracle occurs; the terms in x are the same on both 
sides of the equation, and we are left with 3d − 4 =  − 4c + d, which in turn simpli-
fies to d + 2c = 2, or d = 2(1 − c). This is the only condition that has to be satisfied, 
so that there are infinitely many possibilities.

This illustrates a concept that is useful in physics, that of degrees of freedom. The 
two variables c and d represent potentially two degrees of freedom in that, without 
restriction, we can make independent choices of values for them. However, the 
equation d = 2(1 − c) is a restriction that ties one to the other. So there is a net of one 
degree of freedom, and we can choose only one arbitrarily.

It is not a bad idea to check the answer. In particular, will any student realize that 
any function has to commute with itself, so that taking (c, d) = (3, −4) should work? 
We know that the identity function x commutes with everything, so that (c, d) = (1, 
0) should also satisfy the restriction. Students should be encouraged to find other 
numerical values for c and d and verify that they work, and then check 
g(x) = cx + 2(1 − c) generally. This is a cheap way of getting them to practice their 
manipulative skills.

The equation d = 2(1 − c) is linear in c and d, so students should be encouraged 
to plot this line in the c-d plane and identify various points on it.

We are not done with this example. Consider f(x) = 3x − 4 and a function that 
commutes with it, say g(x) =  − x + 4, where the common composition is −3x + 8. 
(Each student can select his very own example other than −x + 4, 3x − 4 and x, 
perform the following and then display the result before the whole class.) In the 
standard x-y plane, plot the graphs of the two equations y = 3x − 4 and y =  − x + 4, 
or whatever the student picks. If will be noted that the two lines always intersect; 
ask them to name the point of intersection. In every case, the lines will pass through 
the point (2, 2). What is the meaning of this? Since the coordinates are the same, the 
point lies on the line y = x. In fact f(2) = 2 and g(2) = 2, so this provides the incentive 
to introduce the notion of a fixed point. It is not hard to check that 2 is a common 
fixed point of f(x) = 3x − 4 and g(x) = cx + 2(1 − c).

Further examples can be studied that lead towards the formulation of the conjec-
ture that commuting of the functions f(x) = ax + b and g(x) = cx + d (when a and 
b are distinct from 1) is equivalent to their having a common fixed point. Now we 
are in a position to tackle the general situation: under what conditions do f(x) = ax + b 
and g(x) = cx + d commute? Follow the analysis in the previous section to analyze 
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the equation ad + b = bc + d. This is a place where one has to proceed cautiously to 
make sure that students maintain control over the connotations of the variables. We 
might think of f(x) as a given example and see the problem as finding a correspond-
ing restriction of c and d that ensure that f and g commute. Or we can see the matter 
more symmetrically as a mutual relationship between the functions f and g. It is 
vitally important first that the teacher think through the situation first on her own in 
order to, first, decide on her own mathematical perspective, and, secondly, to deter-
mine what preparation is needed for the members of her class to handle the situa-
tion. She also needs to be prepared for whatever ideas might come from the students 
themselves, whether they arise from misconceptions or from a competing 
viewpoint.

A benefit of this situation is that, because it involves a theorem, it takes us into 
the realm of proof (an area that is often seen only in the context of Euclidean geom-
etry). Ideally, it would be nice if the students were led towards a conjecture about 
the common fixed point characterizing commuting functions, perhaps through 
checking out many examples of commuting and noncommuting pairs and making 
observations. Important things to emphasize include the need for a restrictive 
hypothesis (that a and c are not to be equal to 1) and the fact that the result is the 
equivalence of two properties.

Basically, we would begin by solving for the fixed point of each function. Then 
the structure of the reasoning would be as follows: f and g commute if and only if 
(1) is true and if and only the expressions for the fixed points of f and g are equal.

There is an alternative way of proceeding after one has discussed a particular 
case such as f(x) = 3x − 4 above. After looking at the intersections of the pairs of 
lines, one can move to the general case and look at where the graphs of two com-
muting functions intersect. As an exercise, students might be required to deal with 
the general situation: Suppose that f(x) = ax + b and g(x) = cx + d commute under 
composition. Determine the intersection of the graphs of y = f(x) and y = g(x), and 
show that this point lies on the line with equation y = x. This is not an easy question. 
The abscissa (first coordinate) of the intersection point is found by solving the equa-
tion ax + b = cx + d to get

 
x

d b

a c
=

−
−  

Plugging this into y = ax + b to get the ordinate (second coordinate) of the intersec-
tion point leads to

 
y

ad bc

a c
=

−
−  

which does not look at all like the abscissa. But we have not yet fed in the hypoth-
esis that the functions commute. The condition for this is that ad + b = bc + d, so 
ad − bc = d − b and we find that the two coordinates are indeed equal. (As a check, 
the student might deal with g(x) rather than f(x).)
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Again, this gets into the construction of a proof and the invoking of a hypothesis 
to lead to a desired conclusion.

 Conclusion

Since the foregoing represents a considerable investment of time, there are a num-
ber of questions that the teacher needs to settle. What group of students are likely to 
be receptive to it? For whom will it have value? The topic might not be presented to 
the whole class, but could be pursued by a group of students as a project or provided 
as enrichment in a mathematics club.

It will be argued that this topic is not on the list of expectations. But this depends 
on what sort of expectations we are considering. There are expectations of topic and 
expectations of practice and affect. The Ontario curriculum, for example, mentions 
several desiderata that are relevant: Problem Solving, Reflecting, Connecting, 
Critical Thinking, Reasoning and Proving. Such expectations cannot be inculcated 
in isolation, but are meant to inform the different mathematical topics to be covered 
and are best realized in a situation where there is particular program of investiga-
tion, discovery and proving. The task in this article allows students to “reason, con-
nect ideas, make connections, apply knowledge and skills.” It should provide the 
teacher with the opportunity to assess student understanding of concepts, and pos-
sibly provide the students with some enjoyment.

Even if it is not on the syllabus, in prosecuting the example, will it support the 
syllabus by requiring techniques and concepts that are part of the curriculum? What 
is the cost-benefit analysis? The cost is not only one of the time of setting up, but of 
taking students into fairly deep waters that they may not reap the value of until later 
in their algebraic life. The benefit might be a better connection with the mathematics 
that makes later learning easier. I argue that, with very simple materials, one raises 
matters of algebraic thinking and practice that will foster competence and fluency to 
a degree not normally seen among high school students. Here we touch on the idea 
of function and their combinations, the role of variables as unknowns, parameters 
and domain descriptors for functions, investigation and conjecturing, and at the end 
the proof of a rather interesting result. Above all, it teaches the important lesson that 
students must pay attention to details and meaning, and not approach algebra as an 
automaton.

A rich situation like this prefigures aspects of algebra that might not be important 
at the moment but will emerge as students mature in the subject. In the appendix, I 
look at how quadratic functions, a later topic in the syllabus, might impinge.

Modern education is often criticized because many students do not know the 
“basics” and are maladept at any sort of technical task. To be sure, there is truth to 
this, but it is not the whole story. A more fundamental reason for student difficulty 
is their misconception of what mathematics is. They seem to feel that it is a body of 
fixed automatic processes that will lead inevitably to an answer, and so is something 
that can be learned solely by rote. Rather it is a way of thinking that requires one to 
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pay attention to structure, be careful about details and check for accuracy, reason-
ableness and consistency. There is strength in this consistency; while one may look 
at a mathematical situation in many different ways, each of them supports and 
enriches the others. Anything that fosters flexible critical thinking in the classroom 
will strengthen the student; anything that encourages a mindless formulaic approach 
will work against the student.

 Appendix

Students should not be deceived into thinking that, for functions f and g in general, 
the truth of f(g(x)) = g(f(x)) for one value of x implies its truth for all x. A simple 
counterexample that might be possible for Grade 9 students and certainly possible 
when students learn about quadratic functions is to see what commutes with the 
square function. If we let f(x) = ax + b and h(x) = x2, and ask for the circumstance 
under which f(h(x)) = h(f(x)), we are led to the condition

 
a a x abx b b2 2 22 0−( ) + + −( ) = .

 
(2)

In this case, the condition that f ∘ h = h ∘ f requires that the quadratic Eq. (2) in x is 
satisfied for all x.

This highlights an important point about polynomials that does not arise in the 
normal course of events when quadratic equations are taught, and that is what sort 
of polynomial equation will be satisfied for all values of x. Write the quadratic equa-
tion in the form

 px qx r2 0+ + = .  

There are different ways of looking at the situation. If this quadratic is to vanish for 
all x, then it must vanish for each particular x. If we make three substitutions for x, 
then we obtain three homogeneous linear equations for the three variables p, q and 
r. It turns out that the only solution for this system is (p, q, r) = (0, 0, 0). For exam-
ple, if x = 0, x = 1 and x =  − 1, we get

 r = 0;  

 p q r+ + = 0;  

and

 p q r− + = 0.  

It is easily found that the three equations are satisfied simultaneously only by (p, q, 
r) = (0, 0, 0).
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Another way of looking at the situation is to note that if not all the coefficients p, 
q, r vanish, then we have a nontrivial polynomial equation of degree not exceeding 
2. We can always solve such an equation and find that there are at most two 
solutions.

Returning to the requirement that the Eq. (2) should be satisfied for all x leads to

 
0 1 2 1= −( ) = = −( )a a ab b b ,

 

which is satisfied only by (a, b) = (1, 0) and (a, b) = (0, 1). The first possibility leads 
to f(x) = x, the identity function which commutes with every function. The second 
possibility leads to f(x) = 1, a constant function that takes the value 1 everywhere. 
Indeed, f(h(x)) = 1 = h(f(x)) = 12.

It is however possible that, for particular values of a and b that (2) has two solu-
tions. For example, let f(x)  =  2x  +  1  and h(x)  =  x2. Then  f(h(x))  =  2x2  +  1  and 
h(f(x))  =  (2x  +  1)2, two different functions. However, f(h(0))  =  1  =  h(f(0))  and 
f(h(−2)) = 9 = h(f(−2)).
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Formal education, from elementary school to university, is by no means a straight-
forward, smooth and continuous process. Perhaps the easiest way to define a transi-
tion is to qualify it as referring to a large-magnitude, singular discontinuity, such as 
changing from having one teacher for all subjects in elementary school to teacher-
specialists in high school, or finishing high school and starting university. The latter 
discontinuity, usually called the secondary-tertiary transition, is the subject of this 
chapter.

There is no doubt that a key ingredient in helping students transition successfully 
lies in the two-way communication between high school teachers and university 
instructors. As triggers for topics of such dialogues, we discuss four case studies—
mathematical symbols, “number bias,” language and culture of mathematics, and 
logical reasoning—which cover areas where we identified significant gaps 
(discontinuities) between high school and university treatments.

University mathematics courses require proficiency in navigating through a large 
number of mathematical symbols, as well as their changing, content-dependent 
meanings, especially when discussing applications. We use the term “number bias” 
to discuss students’ expectations that numbers involved in calculations, as well as in 
answers to mathematics questions, are certain special types of numbers, such as 
integers or simple fractions. In the section on language and culture of mathematics 
we identify situations which, while routinely (and correctly) understood by 
mathematicians and mathematically mature students, are often a source of confusion 
and misconceptions for novices. Proper use of mathematics language and logical 
reasoning (i.e., principles of mathematical logic) are usually not covered in high 
school.1 However, university mathematics instructors assume that their students are 
familiar with them and have experience in working with definitions, quantifiers 
(“for every,” “there exists”), in constructing simple implications, providing 
counterexamples, and so on. Surprisingly, standard university textbooks (calculus 
and linear algebra, for instance) that review high school material do not even have 
hints or guidelines on understanding mathematics language, nor provide examples 
illustrating rules of logical deduction.

Besides outlining these themes and illustrating with specific examples, we sug-
gest ways in which they could inform teaching practice, both in high school and in 
university.

 Mathematical Symbols

Even something as “straightforward” and “simple” as familiarity with mathematics 
symbols demands time and adjustment in transition. Using our own province as an 
example, the Ontario grades 9–10 and grades 11–12 curriculum documents (Ontario 

1 The word “definition” does not appear even once in Ontario grades 9–10 and 11–12 curriculum 
documents; the word “define” appears several times, but not as a suggestion to actually write down 
a formal, precise mathematical statement. For instance, there is no suggestion to define the term 
“asymptote.”
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Ministry of Education, 2005, 2007) use  x exclusively to denote an independent 
variable, and y or f(x), or sometimes g(x) or h(x), to denote a dependent variable. 
Although students might be exposed to a larger variety of notation for variables in 
their high school classes, the deep bias toward using “standard” x and f(x) notation 
can cause problems and difficulties in university.

For instance, some students prefer to use x and f(x) instead of a more suitable 
notation, such as t and P(t), when studying population change. Faced with a body 

mass index formula (covered in a life sciences mathematics course) BMI
m

h
=

2
 

(mass divided by height squared, in SI units) students do not find it obvious that the 
graph of BMI as a function of m is a line through the origin with a slope of 1/h2. 
They have even more difficulty graphing BMI as a function of h. Likewise, many 
have problems recognizing that the function in the exponent in a cell-survival for-

mula S D e D D( ) = − −α β 2

 is a parabola with D = 0 as one intercept.

As yet another example, while students do not have a problem to integrate 
5x3 + 12, they typically find the integral ∫(Atm + B) dt which involves parameters and 
a “non-standard” symbol t for the independent variable, much more challenging. 
Further confusion is caused when implicit functions are studied, i.e., when a cogni-
tive model of a function developed in high school needs to accommodate for the fact 
that the equation 5x3 + y2 = 10 can be interpreted as a “usual” function y = f(x), but 
also as a function x = g(y), i.e., as a function of the independent variable y. Even 
further accommodation is needed in a study of functions of several variables, such 
as f(x, y), where both x and y represent independent variables.

We have noticed that providing extensive opportunities to use a wide variety of 
symbols and notations facilitates students’ learning and increases their comfort 
levels in our calculus classes. Based on our practice and experience, we suggest that 
high school teachers:

• Use the “standard” x and f(x) notation in defining new terms and developing 
theory (thus enabling students to focus on the concepts), but then suggest a wide 
variety of symbols for variables and parameters in exercises, routine algebraic 
manipulations, as well as in problem solving activities;

• Discuss families of curves, i.e., functions whose formulas involve parameter(s), 
such as y = mx (what happens as m changes?), y = ax2 + b (what feature of the 
graph is controlled by a, and what happens when we change b from positive to 
negative values?), or y =  sin (ax) (how does the period depend on a?);

• Ask students to graph functions such as s(D) =  − αD − βD2, label coordinate 
axes appropriately, and use terms such as “D-axis” and “D-intercept.” When 
working on exercises related to applications, ask students to select appropriate 
symbols for variables and parameters (and remind them that this is common 
practice—for instance, illustrate with formulas from physics!).

As mentioned earlier, insisting that x represents an independent variable whereas 
y is used exclusively for a dependent variable could be a cause of misunderstandings 
and conceptual problems. When computing an inverse function, students recall that 
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they have to “switch x and y and then solve for y.” For instance, to find the inverse 

of f x
x

x
( ) = −

−
2 3

7
this routine suggests that they write

 
y

x

x
=

−
−

2 3

7  

then switch x and y

 
x

y

y
=

−
−

2 3

7  

and then solve for y. Although it yields a correct answer in the end (assuming no 
algebraic errors are made), this method is conceptually unsound as it may not be 
clear to students why this works. As well, what is lost on most students is that y in 

y
x

x
=

−
−

2 3

7
 represents the function f(x), whereas the same symbol y in the next line, 

x
y

y
=

−
−

2 3

7
, represents the inverse function f−1(x).

This routine becomes problematic when variables no longer represent abstract 
quantities; having to invert the degrees Fahrenheit to the degrees Celsius conversion 
formula

 
C F= −( )5

9
32

 

using the process of switching the variables produces

 
F C= −( )5

9
32

 

which is an incorrect formula (of course, one can proceed to compute C from it, and 
then at the end switch C and F again to obtain a correct formula; needless to say, 
conceptual understanding of the inverse is completely lost).

To avoid these problems, finding the inverse function routine should be rephrased 
as “solve for the independent variable,” and followed by several worked examples2 
which use both standard and non-standard notations for the variables.

2 Cognitive models are highly robust; even after we discuss these issues and illustrate with 
 examples, our students will inevitably ask if they can still use what they learned in high  
school—i.e., “switch x and y”.
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 “Number Bias”

We use the term number bias to refer to students’ expectations that all numbers 
involved in calculations, as well as in the results (answers) are “nice”.3 A brief look 
at Ontario grades 9–10 and 11–12 curriculum documents (Ontario Ministry of 
Education 2005, 2007) reveals that there are very few places where it is suggested 
explicitly that students work with “non-nice” numbers, even in application problems. 
In the sample problem,4 we read “The distance, d metres, travelled by a falling 
object in t seconds is represented by d = 5t2” (instead of d = 4.9t2; moreover, there 
is no indication that, for the given formula to hold, the vertical axis needs to point 
downward).

Similarly,5 students are invited to investigate the graph of

 
f x

x n
( ) =

+
1

 

where n is an integer. Instead, n should have been a real number, with values such 
as −0.16 and 11.29 (it is somewhat unusual to insist on integers in the context of a 
calculus course, which is about real numbers and real-valued functions). Almost all 
examples of polynomials and rational functions (ibid.) involve integer coefficients. 
This is a root of the problem we witness when students in our university calculus 
classes have difficulties factoring expressions such as x2 − 0.01, or completing the 
square in a2 − 0.52a.

Applications are a good opportunity to work with “non-nice” numbers, and to 
demonstrate to our students that real-life problems demand that we use such 
 numbers. For instance, when working with exponential functions, instead of 
 discussing the function y = 3x5, one can discuss the formula Sk = 0.49Sp0.84that 
relates the skull length to the spine length of a larger dinosaur. Or, in modeling the 
population of Canada, we could abandon using rounded numbers (31.6 and  
33.5 million), and use thousands as units, thus working with 31,613 and 33,477 
instead. As well, it is beneficial to study (and graph!) human daily temperature 
oscillation.

T t
t

( ) = +
−( )







36 8 0 34

2 14

24
. . cos

π
 after studying an abstract function such as 

f(x)  =  2  +  3  cos  (4t − π). In our experience, working with (many!) models and 

3 Numbers 12, 3/4 and 0.5 are viewed (declared) as “nice,” however, 23/18 and 0.00102 are not 
considered “nice.” Students sometimes refer to the latter as “unexpected.”
4 Ontario grades 11–12 Curriculum (Advanced Functions MHF4U, Understanding Rates of 
Change, item 1.6), page 96.
5 Ontario grades 11–12 Curriculum (Advanced Functions MHF4U, Understanding Rates of 
Change, item 2.1), page 92.
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 applications significantly lowers the number bias levels, and modifies students’ 
expectations of kinds of numbers their answers are supposed to contain.6 As well, 
such applications give meaning and purpose to the underlying algebra.

 Language and Culture of Mathematics

It is important to emphasize7 to our students that mathematics consists of, and deals 
with concepts, objects, and algorithms which are precise, unambiguous, and well- 
defined. When we encounter something that we are not clear about, it is always a 
good idea to ask—what exactly is this about? What is the meaning of this word/
phrase?

In other words, we need to know definitions and employ theorems, algorithms 
and other procedures appropriately, and with great care. We illustrate this claim in a 
few examples.

Consider the infinite sum

 S = − + − + − + − +…1 1 1 1 1 1 1 1  

Using our “finite sum” cognitive model, we “cancel” (here, subtract out) terms 
starting from the first term, and obtain

 
S = −( ) + −( ) + −( ) + −( ) +…=1 1 1 1 1 1 1 1 0

 

However, if we keep the first term, and cancel the remaining terms, we obtain

 
S = + − +( ) + − +( ) + − +( ) + − +( ) +…=1 1 1 1 1 1 1 1 1 1

 

Clearly, we have a problem—what is the correct answer? It cannot be 0 and 1 at the 
same time. Our finite experiences and notions (adding numbers, “cancelling” 
numbers) do not generalize to infinite sums, and we need to know (i.e., we have to 
define) what is meant by the sum of infinitely many numbers. Once this is done, we 
get a clear answer—the above sum is divergent, i.e., it does not have a numeric 
value.

When working with prime numbers, we recall the definition:

A prime number is a natural number that has exactly two distinct divisors: number 1 and 
itself.

To make sense of this definition, we need to know what natural numbers are, and 
what a divisor is. But on top of that, we must pay attention to the part “two distinct 

6 In our experience, providing ample opportunities for (carefully designed, and motivated) practice 
goes a long way.
7 And keep repeating!
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divisors,” since it rules out the number 1 as being prime.8 Thus, to start our list of 
prime numbers, we write 2, 3, 5, 7, and so on.

In our view, it does not make sense to discuss whether or not 1 is a prime number. 
It is not, and the definition is clear about it. What we can say to our students is that 
definitions are made for a reason—in this case (horizon knowledge!) the reason is 
to make the unique factorization theorem9 work.

The fact that 0.99999… = 1 becomes clear once the infinite decimal representa-
tion of a number is given its precise10 meaning as an infinite sum of numbers

 
0 99999

9

10

9

100

9

1000

9

10 000

9

100 000
.

, ,
…= + + + + +…

 

and when the definition of the sum of a series11 is employed. In our view, discus-
sions about the “last digit” (or the absence of one) in the expression 0.99999… are 
not worth much.

With time and through exposure, we learn that, although mathematics language 
is mostly clear and unambiguous, there are exceptions.

The most common exception is related to the use of the indefinite article “a.” In 
some cases, such as in the statement “a differentiable function is continuous,” the 
article “a” means “any,” or “all,” and thus represents a universal quantifier. Likewise, 
in the statement “for a real number x, the graph of the function y = ex lies above the 
x-axis,” the article “a” means “for all.”

In some cases, however, “a” refers to an existential quantifier. For instance, in the 
sentence “find a prime number between 10 and 1000,” we interpret the article “a” as 
meaning that we need to find one (i.e., any) prime number between 10 and 1000, but 
not all of them. That this is a real issue, can be seen from students’ replies to the 
true/false question.12

If a function has a critical point at c, then it has an extreme value at c.

A student, interpreting “a” as “some” (existential quantifier), will say that the 
statement is true (and indeed, for some functions, it is true). However, an instructor, 
interpreting “a” as a universal quantifier (as is common practice) will mark student’s 
answer as incorrect. The roots of students’ beliefs that an example can constitute a 
proof could easily be traced back to this misinterpretation.

Together with learning mathematics and its language, we also need to become 
familiar with its culture. The indefinite article case illustrates one aspect of it. There 
are many others, and as illustrations, we mention a few.

8 Of course, there are different ways to phrase the definition, but the meaning is always the same.
9 Every natural number greater than one is a prime number, or can be written in a unique way as a 
product of prime factors. If 1 were a prime number, then uniqueness would be lost; for instance, 
24 = 23 ⋅ 3, but also 24 = 1 ⋅ 23 ⋅ 3. 24 = 15 ⋅ 23 ⋅ 3, and so on.
10 And only possible.
11 In this case, the sum of a geometric series.
12 Identify the statement as true or false.
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Although the domain is part of the definition of a function, we do not write it 
explicitly in all situations. For instance, a common question

Find the derivative of the function y x x= − +2 3 2 .

usually comes without “for all x for which it is defined.” Likewise, we ask students 
to find vertical asymptotes of the function

 
f x

x

x
( ) = +

−
2 4

42
 

without adding “defined for all x ≠  − 2, 2.” We need to clearly communicate to our 
students that the assumptions are always there, even when we do not write them out 
explicitly. A root cause of students’ erroneous work with theorems (using a 
conclusion of a theorem without checking assumptions) might be related to this 
issue.

Ignoring assumptions leads to all kinds of errors. For instance, when solving the 
equation x2 = 7x students routinely divide both sides by x, and, forgetting that at that 
step the assumption x ≠ 0 has been made, obtain a single solution x = 7. Or, asked 
to compute the composition f  ∘  g where f(x)  =    ln  x and g(x)  =    ln  (cosx), they 
routinely calculate (f ∘ g)(x) = f(g(x)) = f(ln(cosx)) =  ln (ln(cosx)) without realizing 
that the composition makes no sense: the range of g(x) =  ln (cosx) consists of zero 
and negative numbers; the assumption for the composition13 f ∘ g to be defined does 
not hold, and thus the composition does not exist!14

An example of an imprecise mathematics statement is a common question such 
as

Where (for which x values) is the function f(x) = x2 + 3 increasing?

Of course, we mark the answer (0, 1) as incorrect and (0, ∞) as correct, because 
we15 expect the question to be understood as:

Identify the largest interval of real numbers on which the function f(x)  =  x2  +  3 is 
increasing.

A common calculus question

Find all x where the function f(x) = x−1/3 is not continuous

is a cause of confusion: what numbers x do we consider—those which are in the 
domain of f(x), or all real numbers? By checking the answer (x = 0) we realize that 
it is the latter.16 Often, we ask students to “find the limit …” even when the answer 
to the question is that the limit does not exist.

13 The range of g is contained in the domain of f.
14 Not all is lost—if we look at the formula for the composition and ask what the domain is, we’ll 
figure it out.
15 Teachers, instructors, and all others familiar with mathematics culture (i.e., “math nature”).
16 This particular situation is left vague in many calculus textbooks.
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Although these (and many other) situations present no problems for teachers, 
instructors, or experts, who may be aware of the inherent embedded assumptions, 
they could be (and are!) quite confusing to novices. In some cases, it is easy to avoid 
confusion (for instance, by rephrasing the limit question as “find the limit or else say 
that it does not exist”); however, in general, as they are encountered, such situations 
have to be clearly identified and their precise meaning revealed.

 Logical Reasoning

Since the word “theorem” does not appear in the grades 9–10 and 11–12 Ontario 
curriculum documents, it is safe to assume that the logical structure of a theorem 
(namely, the implication17) is not at all discussed in high school, at least in 
Ontario.18 A theorem consists of one or more statements which constitute 
assumption(s), and of one or more statements which form its conclusion(s); its 
logical structure is expressed in the English language as “if assumption(s) then 
conclusion(s).”

Once we verify that all assumptions are true for a given problem, we draw the 
conclusions. The most common belief that students hold is that if an assumption in 
a theorem is not true, then the conclusion is not true either. It is easy to show that 
this is not so: consider the theorem

If the last digit of a number N is 4, then N is even.

Clearly, if the last digit of N is not 4 (assumption not satisfied), N could still be 
even (say, N = 18), i.e., the conclusion of the theorem still holds.19

It is clear that the reverse of the above theorem, i.e., the statement

If N is even, then the last digit of N is 4.

is not true. However, when this same construction is cloaked in abstract context, 
things are no longer as obvious. The best evidence is the theorem

If the series 
i

ia
=

∞

∑
1

 is convergent, then lim
i ia→∞

= 0 .

which is often reversed to, and used in the incorrect form

If lim
i ia→∞

= 0 , then the series 
i

ia
=

∞

∑
1

 is convergent.

We have noticed that students understand logic better if we discuss an “obvious” 
logical structure first (“obvious” meaning in an easy-to-understand, familiar 
context), and then apply it in the abstract situation, as we have done with the if-then 
statement above.

17 Or equivalence (“if an only if”).
18 However, university mathematics instructors routinely assume that students are familiar with it.
19 But the theorem does not apply.
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Consider another example. Students are asked to determine whether the follow-
ing statement is true or false, and to justify their answer:

For every natural number n, the number n2 + n + 41 is prime

A common difficulty is the strategy, as students are not sure how to prove that their 
answer (true or false) is correct. It helps to consider a simple statement, such as 
“Every dog in Ontario is black” and ask students to articulate what would it take to 
prove that this statement is true (we have to check that every single dog in Ontario 
is black) or false (we need to find one dog in Ontario which is not black). Armed 
with this understanding, students are now more confident that by saying that when 
n = 41 the number n2 + n + 41 has a factor of 41 and thus they have proved that the 
given statement is false.

An appropriate suggestion to help students overcome the difficulties illustrated 
here and to improve their mathematical reasoning skills is to use writing assignments, 
in particular expository20 and excogitative21 types of writing. DeDieu and Lovric 
(2018) are exploring ways in which students benefit from having to write in the 
context of a differential equations course. Burazin and Lovric (2015) suggest that 
working on, and keeping an archive of one’s mathematical work (including 
narratives, of course) in the form of a learning portfolio can further enhance student 
learning.

 Conclusion

We presented a few cases of the culture shock situations that students experience in 
transition to university mathematics. With time and through teachers’ and students’ 
active involvement, these transitional issues can be minimized.

Case studies presented here could be included into high school teachers’ horizon 
knowledge. An ability to see and understand how mathematical ideas and reasoning 
develop over a longer time scale can inform teaching (and lesson planning), and 
thus better prepare students for the transition to tertiary mathematics. For exactly 
the same reasons, such case studies should find their way into university teaching.

References

Burazin, A., & Lovric, M. (2015). Learning portfolio in mathematics at McMaster University. 
Hamilton, ON: McMaster Institute for Innovation and Excellence in Teaching and Learning 
(62 pages).

DeDieu, L., & Lovric, M. (2018). Student perceptions of the use of writing in a differential equa-
tions course. Primus, 28(2), 166–185.

20 Use narratives to describe and explain a mathematical idea, theorem, or definition.
21 Carefully, and in detail, explain the reasoning in a mathematical argument or in an algorithm.

A. Burazin and M. Lovric



611

Ontario Ministry of Education. (2005). The Ontario curriculum grades 9 and 10: Mathematics 
(Rev ed.). Toronto: Queen’s Printer for Ontario. Retrieved from http://www.edu.gov.on.ca/eng/
curriculum/secondary/math910curr.pdf

Ontario Ministry of Education. (2007). The Ontario curriculum grades 11 and 12: Mathematics 
(Rev ed.). Toronto: Queen’s Printer for Ontario. Retrieved from http://www.edu.gov.on.ca

Suggestions for Further Reading

Clark, M., & Lovric, M. (2008). Suggestion for a theoretical model for the secondary-tertiary tran-
sition in mathematics. Mathematics Education Research Journal, 20(2), 25–37.

Clark, M., & Lovric, M. (2009). Understanding secondary-tertiary transition in mathematics. 
International Journal of Mathematical Education in Science and Technology, 40(6), 755–776.

De Guzman, M., Hodgson B., Robert, A., & Villani, V. (1998). Difficulties in passage from sec-
ondary to tertiary education. In Proceedings of the International Congress of Mathematicians, 
Berlin 1998 (Vol. III: Invited Lectures, pp. 747–762).

Kajander, A., & Lovric, M. (2005). Transition from secondary to tertiary mathematics: McMaster 
University experience. International Journal of Mathematics Education in Science and 
Technology, 36(2–3), 149–160.

Kajander, A., & Lovric, M. (2009). Mathematics textbooks and their potential role in supporting 
misconceptions. International Journal of Mathematics Education in Science and Technology, 
40(2), 173–181.

Tall, D. O. (1995). Mathematical growth in elementary and advanced mathematical thinking. In 
L. Meira & D. Carraher (Eds.), Proceedings of PME-19 (Vol. 1, pp. 61–75). Recife, Brazil.

Tall, D. (1997). From school to university: The effects of learning styles in the transition from 
elementary to advanced mathematical thinking. In M. O. J. Thomas (Ed.), Proceedings of the 
seventh annual Australasian Bridging Network mathematics conference (pp. 9–26). Auckland: 
University of Auckland.

Ward, C., Bochner, S., & Furnham, A. (2001). The psychology of culture shock. Hove: Routhledge.

Transition from Secondary to Tertiary Mathematics: Culture Shock – Mathematical…

http://www.edu.gov.on.ca/eng/curriculum/secondary/math910curr.pdf
http://www.edu.gov.on.ca/eng/curriculum/secondary/math910curr.pdf
http://www.edu.gov.on.ca


613© Springer International Publishing AG, part of Springer Nature 2018 
A. Kajander et al. (eds.), Teaching and Learning Secondary School 
Mathematics, Advances in Mathematics Education, 
https://doi.org/10.1007/978-3-319-92390-1_56

A Teacher’s View – Teaching a University 
Bound Statistics Course

Jeff Gardner

Abstract During university, most of the mathematics students I knew took the 
minimum number of required statistics credits. The collective complaint of statistics 
was that plugging numbers into formulas (find the mean, median and mode) and 
looking values up in tables (the way it was done in the early 1980s) was boring. In 
comparison, calculus was flashy and it demanded the user to think to find the solu-
tion. Through my teaching career, I have noted that it is a majority of mathematics 
teachers who shy away from teaching statistics. I have come to realise that it was not 
because of the mundane crunching of numbers. Instead, the teacher would be facing 
students who have problems with typical (high school) mathematical concepts such 
as factoring, completing the square, translations of functions and the order of opera-
tions of exponent rules and in a university statistics course those same students 
would need to be taught how to analyze data, which does not default to a set of 
algorithmic steps. What the statistical processes tell us about the data is the big deal. 
Statistics is about interpreting the data so that anyone interested in the same data 
will understand its story when they read the work. So how might a teacher get their 
students to ask those critical questions?

Keywords Analyse (analysis) · Checklist · Correlation · Rubric · Statistics

In preparing to teach a university bound statistics course there are two basic areas 
the students must achieve: the calculations and the analysis. The “Recalling statis-
tical methods” section has some websites I found worthwhile in reminding me of 
the formulas used as well as ideas for teaching them. High school students are 
always interested in knowing where they would use “this” in real life, so I have 
provided some sources of “Real world data” to get you started. Since “Analysing 
data” is a much more organic task I have included some tidbits that helped get my 
students pushed in the right direction. The skill level of your class is also a 
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determining factor of how you will teach this material, so I have provided an exam-
ple of “Simplifying complex calculations” as well as some of my philosophy 
behind “Scaffolding large projects.” In the end teachers are responsible for provid-
ing a mark and so I have included some ideas on “Evaluation.”

 Recalling Statistical Methods

Online courses, such as Coursera (https://www.coursera.org), offer plenty of free 
statistics courses (first year statistics, advanced statistics, statistics for business and 
courses in the R programming language used by many statisticians) if you feel your 
own knowledge needs a touch up. These courses usually start when university/col-
lege terms start (i.e., September and January). There are also MOOCs—Massive 
Open Online Courses for Educators—which have video lectures and online small 
group work laboratories with coaching for classroom practice. There is a MOOC 
newsletter (https://www.mooc-list.com) which includes notifications of course 
offerings.

The Statistics Canada site also contains well written mini-lessons, such as how 
to plan a survey (http://www.statcan.gc.ca/edu/power-pouvoir/toc-tdm/5214718-
eng.htm#tphp) and using the data (http://www.statcan.gc.ca/pub/11-533-
x/2007001/4072249-eng.htm). These are especially useful if you do not have access 
to textbooks.

 Real World Data

The Statistics Canada website (http://www.statcan.gc.ca) has a mass of Canadian 
data, including but not limited to population, health, housing, work, education, and 
Anishinaabe to create various one (mean, median, mode and standard deviation) 
and two variable (correlation and scatter plot) exercises with real world data for 
your students. Unfortunately, there is a gap in the data due to the 2006–2015 
Conservative government’s anti-scientific philosophy.

For more specific data such as health, the World Health Organization (http://
www.who.int/whosis/en) and the Centers for Disease Control and Prevention (http://
www.cdc.gov/nchs/fastats) have websites the link to good data for student assign-
ments and projects.

Organizations such as the Statistical Society of Canada (https://ssc.ca/en) have 
experts that can answer questions and direct you to other sources of data.
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 Analysing Data

Teaching how to analyse statistical data is harder than teaching computations 
because there are not a set of algorithmic steps you can simply lay out for your stu-
dents. In teaching analysis of bias, inference, variability and statistical accuracy 
students must have multiple scenarios to practice. Diversifying the scenarios can 
help deepen student understanding of the process of analysis and the increase 
chance of course success. As a gift, I received a daily desk calendar with an outra-
geous but statistically based statement on each page (e.g., “Eight percent of the 
world’s population regularly eats insects”). So for the first month of the semester, I 
started each class by discussing one day’s statement. I started the first week with 
statements specifically designed to elicit an emotional response (like the statement 
above) and progressed towards statements more statistical in nature (e.g., “Think 
about how stupid the average person is, and then realize that half of them are stu-
pider than that”—George Carlin). The purpose of this class opener is to teach stu-
dents how to analyse a statement by questioning the accuracy, author and context. 
At the end of the month most students were able to question a statement’s qualities 
competently. By the end of the term students were commenting on bias, the conclu-
sion’s accuracy, inference, variability, et cetera.

Sources for discussion topics are abundant. Trish Hennessy writes a piece called 
A number is never just a number, which is published monthly. Harper’s Magazine 
has something similar. You can get these from game shows such as Family Feud. 
The USA Today has an info-graphic pretty much every day. Analyzing graphs is also 
a learned skill you can help your students achieve. Billboards, especially in the 
United States, are also good sources for provocative discussion seeds, such as 
Sellner (2016).

My Twitter assignment sprouted from such a trip. I set up a Twitter identity that 
all my class followed, although now school and board networks can handle this 
concept (which would be a much better idea due to professionalism issues). Each 
week students were responsible for tweeting one statistic, which the entire class 
would receive. The intention was to have the students looking for statistics out in the 
real world. No statistics from other courses were accepted.

 Simplifying Complex Calculations

Keep in mind that these statistics students are rarely from your crop of the university 
mathematics or STEM pathway. Some students may have just passed their grade 11 
mathematics course. For example, consider a formula like the Pearson Correlation
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many of those students—what are those “E” things? To make the formula easier to 
calculate, the work can be laid out as a chart, as follows:

Find the Pearson Correlation of the data of Average Daily Temperature versus Ice 
Cream Sales recorded over 6 days at Burlington Beach:

(26.1, $535), (30.4, $568), (27.7, $544), (33.5, $737), (31.8, $645), (30.9, $967).
The given data was entered into an Excel® table as shown in Fig. 1.

Notice the headings. The chart headings relate to the formula. It helps students to 
understand how to use the formula, especially if the students have to include the 
headings in their work. There is an outlier in the data to allow for a wider variety of 
interpretations. Many statistics formulae can be simplified like this.

Sometimes, the chart does not provide enough simplicity. In that case the for-
mula can be broken into algorithmic steps for the students having problems, as 
follows:

 1. Write both variables’ data in a column (A & B resp)
 2. Find the mean of each column (A7 & B7 resp)
 3. Subtract each datum from its associated mean (C & D resp)
 4. Multiply the differences (E = C*D)
 5. Find the sum (E7)
 6. Square each of the differences columns (F & G resp)
 7. Find each column’s sum (F7, G7)
 8. Multiply the sums of the squared differences (F7*G7 = E9)
 9. Square root step 8 (sqrt(E9) = E13)
 10. Divide step 5 by step 8 (E7 ÷ E13 = E17)

Fig. 1 Calculating the Pearson product-moment correlation coefficient using a table method
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Although having a student understand what Pearson’s Linear Regression Correlation 
Coefficient formula is actually doing may not be possible, it is interesting to note 
with students the similar constructs in it and the Standard Deviation formula. By 
showing them the comparable algebraic elements it makes the Pearson’s formula 
less menacing.

 Scaffolding Large Projects

The Ontario Curriculum (Ontario Ministry of Education 2007), for example, 
requires a “Culminating data management investigation.” My predecessor’s activity 
was a probability game, for which students invented, calculated all the probabilities 
(or odds) and then played all the games in the final class in a casino format—Casino 
Day. I have seen another activity where students wrote a book examining one of the 
concepts of the course. I decided my students would do statistical research. Whatever 
the nature of this investigation, the students need a framework because of the sheer 
girth of this project and the high cost of failure if it is done badly or it is incomplete. 
My expectation is for my students to submit parts of this project during the semester 
as a safety net. These stages are worth partial marks towards this project (because 
some students need that motivation) but more importantly to provide deadlines 
which students must meet to help avoid a catastrophe at the end of the semester. The 
idea is to try to stop things from being rushed at the last minute and instead have the 
projects well planned and thought out so that elements are not forgotten. This frame-
work includes keeping logs of searches for source material and peer-reviews. Some 
handouts have been included (which evolved from other teachers’ work) to assist 
students in planning and conducting their investigation and then reporting it.

Some of those handouts are distributed on the first day of class (such as the fol-
lowing two page handout in Fig. 2). Other documents (e.g., Hypothesis Proposal in 
Fig. 3) are handed out at specific points in the semester, with submissions that are 
marked and count a certain percentage towards the overall mark of the project.

The marking criteria of the research project rubric (see Fig. 4) are also used for 
correcting exercises and grading assignments. One of the things students tell me 
that they like about mathematics courses in general is that they know what is 
expected from them (the questions on tests are like the exercises they practice in 
their homework) and how to get marks—though they cannot always “do” those 
things. I have tried to replicate familiarity for them by using similar looking mark-
ing criteria on assignments and the project. By using the same gauges students get 
plenty of practice writing up reports for assignments and receiving feedback before 
submitting their major research project. That means there should be fewer 
surprises.

Using peer-reviews, where one student reviews another student’s project before 
the actual submission, help both students clarify their understanding of expectations. 
These handouts can take the form of checklists that further delineate elements of the 
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course which should be in the final report. These check lists serve to assist the proj-
ect’s student author by indicating the necessary elements still in need of clarification 
or that are missing in their project. The checklists also assist the student reviewer as 
a concrete exercise of locating the elements. It means the student reviewer must 
understand the elements. There have been valuable discussions that have taken place 
(sometimes close to arguments) as to whether an element has been adequately ful-
filled—I try never to intervene and simply point the contenders towards their notes. 
The student reviewer can also benefit after the peer-review  exercise by reflecting 

Fig. 2 Data management culminating research project overview

DATA MANAGEMENT CULMINATING RESEARCH PROJECT
MDM4U ____________________

name:

OVERALL EXPECTATIONS 

1. design and carry out a culminating investigation* that requires the integration and application of the 
knowledge and skills related to the expectations of this course;
2. communicate the findings of a culminating investigation and provide constructive critiques of the 
investigations of others.

All topics MUST be approved by Mr. Gardner before you begin researching.

More detail regarding several of these stages will be provided at the appropriate times.

Stage Brief Description* Evaluation Due Date
Identification of 
the research 
topic

Identify an area of interest to be 
investigated. 
ref: pp 482 to 484

Initial data 
collection

Hand-in LOG Sheet (it will be copied 
and returned) with preliminary data 
search in the suggested bibliographical 
form.
Variables of your research defined.

Unit Test 
weight

Research 
Project Proposal

Oral discussion of Hypotheses Quiz weight

Develop a hypothesis statement. 
ref: pp 486 to 487 & p594

Unit Test 
weight

Complete data 
collection

Accumulate sufficient data specific to 
the research question with citations 
and LOG sheet.
Peer-observation of data collected

Appendix*

Data Analysis Apply concepts and techniques taught 
in class to analyse data. Appendix*

Written Report

Research Project Report with 
conclusions, based on your analysis, 
regarding your hypothesis.
ref: pp491 to 493

10% Final 
Evaluation

Oral 
Presentation

Research Project Presentation
ref: pp 493 to 495

Unit Test 
weight

J. Gardner
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back on her own work. The final peer review checklist for the research project is 
shown in Fig. 5.

Most of these reports involve secondary data. Each student in the class receives 
samples of statistical reports to model. For example, did you know Kansas is in fact 
flatter than a pancake (Fonstad et al. 2003)? Students are expected to find data on a 

ALL submissions (your assignments and the culminating project) must be typed and conform to the 
following:
1. Use 12 point Times Roman font;
2. Double spaced;
3. Cite all references (below and see http://owl.english.purdue.edu/owl/resource/949/01/)
4. Use grammar and spell checking, but also use proper statistical terminology.

Marks will be assigned for the written of your assignments (and the culminating project) using the 
Composition Rubric (below).

Level 1 Level 2 Level 3 Level 4

Composition
Degree of clarity 
in explanations

Explanations and 
justifications are 
partially 
understandable by 
MrG

Unfocused and 
vague expression of 
ideas
and/or
Only rudimentary 
responses
and/or
Grammar and 
spelling mistakes

Explanations and 
justifications are 
understandable by 
MrG, but would 
likely be unclear to 
others

Repetitive or 
wandering 
expression of ideas
and/or
Partial undertaking 
of responses
and/or
Some grammar and 
spelling mistakes

Explanations and 
justifications are 
clear for an MDM4U 
audience

Clear expression of 
ideas
and
Adequate
undertaking of 
responses
and
Few grammar and 
spelling mistakes

Explanations and 
justifications are 
clear for a wide range 
of audiences

Concise expression 
of ideas
or
Thorough 
undertaking of 
responses
and/or
No grammar and 
spelling issues

Assignments NOT handed in by the due date are late (and will be graded as a zero, until submitted) with
penalties applied as referenced on the mathematics information sheet.

Be sure to review bibliographical standards either in the text (Canton 597), <http://owl.english.
purdue.edu/owl/resource/949/01/> or below:

You must cite the source within your text any time you use any other authors’ work, facts, ideas, 
statistics, diagrams, charts, drawings, music, or words in your paper. We will use the following standard 
for any webpage(Columbia College of Missouri) which is defined on the log sheet (that you will 
receive later). A tweet is a little different: Using ”the text” of that tweet,” you can incorporate the facts” 
or details into your research (3. Tweet: URL).

And then (preferably) at the bottom of the page or on a separate bibliography page:
1. Canton, Mathematics for Data Management, McGraw Hill, 2002: 597 
2. Columbia College of Missouri. Date of access. <https://web.ccis.edu/en/Offices/
/AcademicResources/WritingCenter/EssayWritingAssistance/~/media/Files/Academic%20Resources/W
riting%20Center/mla_examples.pdf>
3. Last Name, First Name. (@User Name), Twitter Post. Date, Time.

Fig. 2 (continued)
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Fig. 3 Culminating research project hypothesis proposal

CULMINATING DATA MANAGEMENT RESEARCH PROJECT: Thesis Proposal
MDM4U This proposal is the equivalent of a unit test mark name ________________

OVERALL EXPECTATIONS 

1. design and carry out a culminating investigation* that requires the integration and application of the 
knowledge and skills related to the expectations of this course; 
2. communicate the findings of a culminating investigation and provide constructive critiques of the 
investigations of others.

See pp 486 to 487 for more direction. 

In concise and non-repetitive sentences explain/ describe the following using proper terminology 
at every opportunity:

Proposals not graded must be corrected and re-submitted until it is graded at a satisfactory level. All 
previously attempted proposals must be submitted (in reverse order). The late penalty is only applied to 
the first proposal.

Culminating tasks will not be accepted (and may be considered late) until completing a satisfactory 
proposal.

State your hypothesis
• make your hypothesis a statement (a sentence not a question)
• your hypothesis MUST take a position (If A happens then B will increase)
• be specific

State what variables will be used to support your hypothesis
• what variables are you comparing (you must be making a comparison of two or more variables)
• are the variables used in your thesis; if not how do the variables relate to your thesis
• there must be numbers to work with
• will the variables you have chosen directly support your thesis
• what do the data need to show to support your thesis
• how will you measure those variables to support your thesis
• indicate if you are using your own survey

Background
• Have you checked to see if your hypothesis has been studied already?
• Are there similar hypotheses?
• Do the preliminary data support your hypothesis?

Why this topic?
• “Because I thought it would be interesting” is not enough -- explain why you think “it is/ would be 

interesting”.
• how do your belief(s) relate to your hypothesis?  
• what do you believe you will find?

J. Gardner
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topic of their own choosing. Topics have ranged from a comparison of women’s 
versus men’s Olympic sprint times, gun violence in the US schools, the increase in 
concussions in the NHL, to the increase of female obesity in North America. 
Sometimes while gathering their data my students have questions about this second-
ary data (e.g., What were the outliers footnoted in the report?). I have encouraged 
those students to reach out, usually through email, to the authors who have created 
this data for answers. I have observed that most authors take time to answer ques-
tions for someone who has taken an interest in their work.

The students who decide to collect their own data are given extra readings on 
how to do a survey (e.g., https://www.mathsisfun.com/data/survey-questionnaire.
html) and tutored through the process of survey design. Two projects that stand out 
were testing the relationship between weather and headaches; and rating someone’s 
level of “extrovertedness” by the number and type of selfies on their Facebook page.

CULMINATING DATA MANAGEMENT INVESTIGATION:Proposal Rubric

Level 1 Level 2 Level 3 Level 4

Communication • lacks proper use of 
terminology

•  some proper use of
terminology  

•  good and proper
use of terminology 

•  a lot and 
proficient use of 
terminology

Hypothesis
Hypothesis statement 
unclear or has no 
point of view

Hypothesis still needs 
modification

Hypothesis 
summarizes a point 
of view

Hypothesis is a 
specific, clear  
statement, 
summarizing a point 
of view

Variables

Unclear how the 
numbers support
hypothesis
or
variables unclear

Hypothesis uses 
1 Variable data study, 
which is below grade
level for MDM4U 

Hypothesis uses 
2 (or more) Variable 
data, but 
measurement of 
variables in question

2 (or more) 
Variable data 
supports hypothesis

Background
Unclear if 
background was 
explored

Some discussion of 
background

Adequate discussion 
of background

Thorough discussion 
of background

Why this topic?
Unclear of decision 
for choice of 
hypothesis

Ambiguous discussion 
for how choice of 
hypothesis was made

Choice of 
hypothesis clear

Thorough discussion 
of  choice of 
hypothesis

Fig. 3 (continued)
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Fig. 4 Marking criteria for culminating research project

CULMINATING DATA MANAGEMENT INVESTIGATION: Report
MDM4U name ________________
OVERALL EXPECTATIONS 

1. design and carry out a culminating investigation* that requires the integration and application of the 
knowledge and skills related to the expectations of this course; 
2. communicate the findings of a culminating investigation and provide constructive critiques of the 
investigations of others.

A one variable study (including a one variable longitudinal study) counts less 
than a two variable study
Studies involving primary data earn more than those using secondary data

*The le�er-number codes at the end of each criterion (i.e. C1.2, D3.2 above) reference the 2007 Ontario curriculum.

Criteria Level 1 Level 2 Level 3 Level 4

Communication

• lacks a statistical 
point of view
• scarce use of 
statistical terms

• partial statistical 
point of view
• some use of 
statistical terms

• written with a 
statistical point of 
view
• adequate use of 
statistical terms

• explanations are 
explicit and concise
with a solid statistical 
point of view
• fluent use of statistical 
terms

Bibliography and 
Citations
(w/ URLs)

Sources not included 
but previously 
submitted

Some sources cited
with errors

All sources cited
with
few minor errors

All sources cited 
correctly

Finalize … numerical 
summaries of one 
and two variable data
D1.1, 2.1

Data collected DOES NOT 
support Hypothesis
and/or
Few statistics correct
and/or
Needs assistance to use 
statistical tools

Data collected sort of
supports Hypothesis 
and/or
Some statistics correct

Many statistics
correct All statistics correct

Generate, using 
technology, the 
relevant graphical 
summaries … 
D1.3, 2.3

Selection of uncited 
graphical displays
or
Many errors or 
omissions in (user 
generated) graphs

Selection of cited 
graphical displays
or
Some errors or 
omissions in (user 
generated) graphs

Few errors or 
omissions in (user 
generated) graphs

No errors or omissions in 
(user generated) graphs

Make inferences &
justify conclusions 
from statistical 
summaries of one 
and two variable data
D1.5, 2.5

Minimal 
interpretation of 
trends, similarities 
and differences, 
correlation, outliers 
and lurking variables
in the data

Some interpretation of 
trends, similarities 
and differences,  
correlation, outliers 
and  lurking variables
in the data

Sufficient 
interpretation of 
trends, similarities 
and differences,  
correlation, outliers 
and  lurking 
variables in the data

Effective  interpretation 
of trends, similarities 
and differences,  
correlation, outliers and  
lurking variables in the 
data

Determine the 
validity of the 
data… are reliable, 
unbiased, and 
current 
C1.2, D3.2

Superficial discussion
any of: bias, stat error, 
variability, authority 
or ambiguity in 
data, or limitations of 
the study 

Discussion of some
of: bias, stat error, 
variability, authority 
or ambiguity in data, 
and limitations of the 
study

Discussion of most
of: bias, stat error, 
variability, 
authority and 
ambiguity in data, 
and limitations of 
the study

Discussion of all of:
bias, stat error, 
variability, authority 
and ambiguity in data, 
and limitations of the 
study
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 Evaluation

My students are assessed and evaluated in a number of different ways. I test most of 
the mathematical concepts such as capacity with the Pearson Correlation Coefficient 
in a hand written paper quiz format with the assistance of a calculator. The students 
then practice regression on a computer using Excel® and check their calculations 
using the built-in macro for correlation. Next the class is given an assignment where 
regression is a necessary part of the analysis of the data. Most students will include 
regression in their projects. Finally, the students write a traditional final exam, since 
this course is a university track course, which again will test the Pearson Correlation 
Coefficient but in a formalized setting.

As a final thought, since I am finishing this chapter during the examination period 
of the semester, the question may rise: cheat sheet or not? I have talked with many 
(and I mean MANY) university and college professors about allowing high school 
statistics students to use a cheat sheet. It got a resounding ‘why not?’ I was not 
overly surprised; after all, I was allowed one for my university statistics courses way 
back in early 1980s. Interestingly, only two thirds of my students of this current 
class took advantage to make one. For my class, one-sided cheat sheets may include 
any information the student wishes from formulae to theory to specific examples but 
must be hand written, not photocopied and they may not bring a microscope or 
magnifying glass for assistance. The cheat sheets are also submitted with the exami-
nation but are not marked.

A reminder:

Remember you must cite the source within your project any time you use any other author’s work, 
facts, ideas, statistics, diagrams, charts, drawings, music, or words in your paper. Citations are covered
in our text1. We will use the following standard for any webpage2 which is defined on the log sheet (that 
you will receive later). A tweet is a little different: Using ”the text” of that tweet,” you can incorporate 
the facts” or details into your research3. 

For citing sources please see the following:
1. Canton, Mathematics for Data Management, McGraw Hill, 2002: 597 
2. Columbia College of Missouri. Date of access. <https://web.ccis.edu/en/Offices/
/AcademicResources/WritingCenter/EssayWritingAssistance/~/media/Files/Academic%20Resources/Writing%2
0Center/mla_examples.pdf>
3. Last Name, First Name. (@User Name),Twitter Post. Date, Time.

Fig. 4 (continued)

A Teacher’s View – Teaching a University Bound Statistics Course
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CULMINATING DATA MANAGEMENT INVESTIGATION:

MDM4U Research Project Peer ChecklistE2.4 __________________
name

Communication of Analysis

How many statistical words did you find?
Uses 12 point Times Roman font
Double spaced
Clean from grammar and spelling errors
Written in third person
Fluent use of statistical terms (see word list from 1 variable statistics unit)

Hypothesis 
and 
Background Information 
(i.e. definitions) E1.1, 1.2

Population of project is identified 
Sample(s) from secondary data used for project are identified  
Sample(s) is representative of the population
The hypothesis clearly stated; data collected supports thesis
The variables and terms used in the research have been defined (explained)
Background is 1-2 sentences (enough to understand the author’s motivation)
Included all relevant data 
There are enough data (≥ 30) to support the hypothesis

Bibliography 
and 
Citations(w/ URLs) E1.3

Are URLs provided for every bibliographical entry?
Proper citations are used for charts, graphs, stats and other authors work
Original data sources been referenced
Original data sources been verified

Finalize … relevant 
numerical summaries of one 
and two variable data
D1.1, 2.1

Put calculations in an appendix, if your project does NOT use them.
Mean �    standard deviation
Median �    correlation
Mode �    equation of line of best fit
Calculations were checked for math errors

Generate, using technology, 
the relevant graphical 
summaries … D1.3, 2.3

Data interpreted correctly to support the hypothesis
Data presented in context to support the hypothesis
Data (i.e  discrete or continuous)is illustrated on appropriate graphs
Embedded charts and graphs simplify discussion
Every graph (borrowed or constructed) references the data it is analyzing
Every borrowed graph is cited
Every graph is properly labeled and titled with coincident axes

Make inferences and justify 
conclusions from statistical 
summaries of one and two 
variable data D1.5, 2.5

Does explanation of the numerical summaries actually explain what the 
data shows?

NO insinuation of the writer of the thesis being right/ wrong
or correct/ incorrect
Discussion is understandable to all readers
Discussion makes references to the data without regurgitating the numbers
Statistical tools have been used appropriately within the discussion 
Mathematics is included for every statistical tool used (see above)
Every statistical tool references the data it is analyzing
Outlier, causality and lurking variables do not take up the majority of the 
discussion

Determine the validity of the 
data… are reliable, 
unbiased, and current 
C1.2, D3.2

There is discussion of possible sources of statistical error or bias in the data
There is discussion of other inconsistencies in the data
There is discussion of the limitations of the study
There is discussion of why the data may vary within different surveys
There is discussion of the possible extensions of this thesis

Fig. 5 Peer-review checklist for culminating research project
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 Finally

We use Excel® because my statistics classroom is a computer lab. I try to have my 
class on the computers every day crunching and analysing data—but it is probably 
more like twice or three times a week. I assume the students have no knowledge of 
Excel® at the start of the semester and teach them how to do both calculations and 
graphing.

This course is fun to teach. I can teach it outside the (mathematics discipline) 
box. I can try things that non-mathematics teachers do with their classes (such as 
using rubrics and the mastery learning component of solidifying the hypothesis pro-
posal) but still keep the mathematical edge (students’ clear understanding of what is 
expected). I have had students come back (after graduation) and thank me for spe-
cifically making them rewrite (repeatedly) their proposal until it was specific and 
detailed and without filler. I saw strengths (such as their artistic talent, writing skills, 
geographical knowledge, computer programming ability and even personal suffer-
ance) in my students I would not normally have seen from them in a calculus bound 
mathematics course. And the students can see a direct link between what being 
taught and its significance to the real world.
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Part VI: Commentary – Broadening 
Mathematical Understanding Through 
Content

Plinio Cavalcanti Moreira

 Introductory Remarks

First of all, I should say that my reading of the texts in Part VI was both pleasant and 
interesting. I have found them thoughtful as a source for this Commentary Chapter, 
being challenging and appealing, both as mathematics teacher education and as 
school mathematics material. The chapters, taken as a whole, constitute a nice set of 
reports that address issues related to the processes of teaching and learning 
mathematics in the secondary grades. Furthermore, all of them are welcome to the 
specialized literature as they certainly contribute to broaden mathematics 
understanding, aligned with the title of this part of the book. As to the potential need 
for adapting the activities suggested in each chapter to real school classrooms, I 
think it will vary from country to country and, possibly, from school to school, 
within a country. I will be returning to this point later in this Commentary Chapter.

Let me now briefly describe the point of view from which I have read the chap-
ters and comment on them in this one. In the first place, from my perspective, it is 
relevant to distinguish between the professional practice of mathematicians 
(primarily valued as a practice of producing new mathematical results, at the 
boundary of contemporary mathematical knowledge) and the professional practice 
of mathematics schoolteachers, which is part of a long-lasting and complex social 
process that aims to educate young people. Viewing these two practices as distinctive, 
I shall understand they demand different kinds of knowledge. Thus, mathematical 
knowledge demanded by the practice of teaching at school may be reckoned as 
fundamentally different from academic mathematics (i.e., the kind of mathematical 
knowledge demanded by the professional practice of mathematicians).

It is also important, in this line of reasoning, to keep in mind the distinctive val-
ues entrenched by each one of these two professional practices. For example, a 
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schoolteacher may have to use different arguments to convince students of different 
grades that an assertion is correct (or incorrect), perhaps being some of these 
arguments unacceptable as a proof, within the range of academic mathematics 
values. The fact is that schoolteachers work with intellectually (as well as physically) 
developing young people and therefore face different pedagogical challenges along 
different stages of a basic education process—which, by the way, usually takes 
12 years to be completed. On the other hand, mathematicians are adults who have 
chosen, though under socially conditioning influences, to work professionally with 
mathematics, often having, backing her/his choice, a history of success in dealing 
with this discipline at school. In accomplishing the tasks of obtaining new results 
and convincing the peers’ community that these results are correct, mathematicians 
must, ultimately, value the rigorous axiomatic approach, formal proofs, the use of 
precise language, the search for generalization and abstraction taken as further as 
possible, and so on. As mentioned above, these values might not prevail in the 
schoolteachers’ professional practice.

It should be observed, nonetheless, that accepting these two kinds of knowledge 
as distinctive does not imply that they are totally antagonistic to each other. One can 
even deem them as having a part in common—that part named school mathematics, 
i.e., the mathematics dealt with in the school education process, according to the 
prevailing curriculum. This kind of mathematical knowledge is usually called 
elementary (in contrast to advanced) mathematics. However, naming it “elementary” 
already marks a distinction, since it is not usually suitable for a teacher (if at all 
possible) to isolate its so-called elementary part from the amalgamated non- 
elementary aspects, when the context is that of teaching and learning mathematics 
at different stages of school education. Thus, while mathematics schoolteachers’ 
professional knowledge may be regarded, from a particular point of view, as 
contained in academic mathematics, I argue that once situated in the school teaching 
context, a professional filter applies and “cleans” school mathematics from values 
that are not relevant to this context, aggregating other values that are inherent to 
school teaching practice. This process leads, as I see it, to an essentially different 
way of knowing mathematics, adjusted to this particular professional practice. 
Accordingly, it has been claimed in the literature that academic mathematics and 
mathematical knowledge demanded in school teaching practice bear important 
conflicting elements (Moreira and David 2008). Summing up all this, I may say that 
academic mathematics, as knowledge impregnated with deep-rooted values inherent 
to the mathematicians’ professional practice, though maybe potentially useful to 
teachers in some specific instances, is neither necessary nor sufficient in 
schoolteachers’ professional practice.

As a final word on this matter, I should remark that the perspective described 
above is not purely idiosyncratic. It has been built with support on research studies, 
and, to an extent, the ideas conforming this particular point of view align with some 
more general ones, developed in the field of mathematics education, especially since 
the 1980s decade, which suggest that professional practice of teaching mathematics 
at school demands a particular and specific kind of mathematical knowledge  
(not restricted to what is usually called “content knowledge”). Researchers  
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have been identifying the particulars and the specifics of this mathematical knowl-
edge along the last decades, though in directions not yet in a level of recognizable 
consensus (e.g., Ball et al. 2008; Bednarz and Proulx 2009; Davis and Renert 2014; 
Moreira 2004; Lins 2006; Moreira and David 2005).

As to the comments on the chapters of this Part VI, I will be making some notes 
on ideas expressed by the respective authors. If not properly situated on my 
perspective, described above, those notes may sound as if I were criticizing the 
authors’ ideas in an absolute manner. Quite to the contrary, I hope my comments 
will illustrate the fact that the chapters are rich enough to foster interesting 
reflections, even when analyzed from an external (possibly divergent) point of view. 
Therefore, in authoring this Commentary Chapter, my purpose is that of producing 
a hopefully consistent counterpoint, in the musical sense, to the ideas presented by 
the authors in their chapters.

 The Chapters

In her chapter, Zazkis presents an interesting discussion on the rules that establish 
the order for performing the operations in an arithmetic expression. In developing 
the chapter, issues related to difficulties in using the conventional order by students 
at different levels of instruction are discussed, and strategies for teaching these rules 
at school are suggested. As to the suggestions, I would like to comment briefly on 
one by Ameis, mentioned by Zazkis this way: “He further recommended, working 
with prospective teachers, to rewrite division as multiplication, turning for example, 
30 ÷ 2 × 15 to 30 × 1/2 × 15, in order to emphasize that division and multiplication 
have the same priority.” Some textbooks in Brazil also suggest this strategy, even 
though we do not have a confusing mnemonic (in fact, as far as I know, we do not 
have any general mnemonic for the rules on the order of operations). However, I 
observe that this rewriting of division as multiplication (by the inverse of 2, not of 
2 × 15) presupposes the understanding that these operations have the same priority 
and therefore should be performed in the order they appear from left to right, in 
which case the suggested emphasis seems no longer necessary.

In discussing the nature of the rules in terms of whether or not they are arbitrary, 
Zazkis’  chapter conveys the idea that multiplication must be performed prior to 
addition because this is “a necessary result of interpreting/rewriting multiplication 
as repeated addition.” To me, this discussion is important in teacher education 
because accepting arbitrariness in mathematics seems problematic for both teaching 
and learning at school, even though we have to deal with many conventions that 
could have been established otherwise (in some cases, actually were) and, in this 
sense, may be considered arbitrary (e.g., notation for fractions, for square root, for 
decimal representation of real numbers, positioning the dividend, divisor and 
quotient in the division algorithm, the signs for the usual operations of addition (+), 
subtraction (−), multiplication (× or .), division (÷) and so on). Nevertheless, even 
after reading the chapter, I kept asking myself what would be the problem with 
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establishing a convention/agreement which prioritizes addition over multiplication, 
so that one would have to write the sum 3 + 5 + 5 + 5 + 5 as 3 + (4 × 5). Would it 
happen to cause intrinsically “bad” consequences? It does not seem so to me. One 
may argue in favor of considering “economy,” since there would be no need for 
parenthesis to write the same expression under the “old” rules, that is, 3 + 4 × 5. But, 
on the other hand, if we wish to express 3 + 4 + 3 + 4 + 3 + 4 + 3 + 4 + 3 + 4 we 
could dispense with the parenthesis and write just 5 × 3 + 4 instead of 5 × (3 + 4), 
since, according to the (new) rules, addition would have priority over multiplication. 
Similarly, if multiplication had priority over exponents, we would have to write 
5 × (34) for 5 × 3 × 3 × 3 × 3,but 5 × 34 for 5 × 3 × 5 × 3 × 5 × 3 × 5 × 3. Economy 
would be lost in the case of stating the distributive law, since with the current rules 
we would use one less parenthesis: a × (b + c) = a × b + a × c, while with prioritizing 
addition over multiplication we would have: a × b + c = (a × b) + (a × c). Would this 
be enough to say that prioritizing multiplication over addition is necessary?

Of course, even in the case such changes prove to be “good” ones (that is, no 
“bad” consequences), the above examples, though suggesting that the current rules 
are not a necessary assumption in mathematics, should not lead us to the conclusion 
that these rules result from a completely arbitrary choice of the mathematicians. In 
fact, there is reference in the literature to relatively recent historical periods, during 
which a consensus had not yet been established internationally on this matter, and, 
then, different authors recommended different rules (see Cajori 1928, vol. I, p. 274). 
Why these rules we use today became generally accepted and prevalent is, as far as 
I am concerned, still waiting for a sound explanation.

Now, I turn to the last issue I would like to comment on in this chapter. The 
author, using Wasserman’s idea of local and non-local mathematical knowledge, 
attributes to the associative property of multiplication of numbers a non-local 
character, in the sense that it may not be part of an “active repertoire” of knowledge 
used by teachers in their professional practice. Zazkis, then, goes on to say:

To elaborate, operations discussed in school mathematics are either both commutative and 
associative, or neither commutative nor associative, which results in frequent confusions 
between the two [...]. Associativity appears as a property ‘on its own’ when considering 
groups and their structure. As such, while the notion itself does not require advanced 
background, knowledge of advanced mathematics reshapes how associativity is perceived.

While in general agreement with most of what is said in the citation just above, I 
shall put forward a few remarks. Though for the most basic operations on numbers 
discussed in school mathematics it is true that they are either both associative and 
commutative or neither one of these, multiplication of n × n matrices and composition 
of functions from R to R, are examples of operations dealt with in secondary 
mathematics, which are associative, but non-commutative. What I find like gold 
dust in school mathematics are examples of non-associative operations. This fact 
may give rise to a way of looking at this property as naturally valid, so apparently 
dispensing with the necessity of discussing its meaning, use and role in school 
mathematics situations.
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As to bringing about a view of associativity “on its own” and eventually reshap-
ing how secondary teachers perceive this property, it seems also possible to work 
within the scope of the school mathematics curriculum, considering sets and struc-
tures that are actually objects of teaching at the school level. For example, teachers 
or prospective teachers may be asked to justify the validity of the associative and 
commutative properties of addition and multiplication of natural numbers, adding 
the requirement that the arguments used must be understandable to students in 
elementary as well as in secondary grades. In accomplishing this task, student 
teachers may perceive and explore distinctive attributes of each one of the properties 
under consideration. Such a task proposal may be followed by a debate (or another 
type of classroom activity) on whether or not these properties extend (and the 
respective justifications adapt) to division and subtraction of natural numbers. This 
could be done with both elementary and secondary student teachers. In the latter 
case however, one could also wonder about the validity of these two properties (and 
justify her/his conclusion), now applied to addition and multiplication of 
polynomials, addition and multiplication of n  ×  n matrices and composition of 
functions from R to R (the specification R to R here is just to guarantee the 
composition is always defined). This kind of approach to associative and commutative 
properties may challenge student teachers within a range of situations directly 
associated with school mathematics curriculum, while deepening the comprehension 
of a piece of knowledge easily perceived by them as aligned with the demands of 
their (future) professional practice at school.

In her chapter, France Caron argues for a more fruitful integration of modeling 
into school mathematics education, emphasizing the possibilities this process may 
open to the development of mathematical (and other types of) competencies, 
through construction of models for understanding, and possibly predicting, the 
behavior of variables in a real world phenomena. She makes a case for the idea that 
school curriculum should surpass curve fit tasks and go further to develop 
mathematical models for real world situations, as this process motivates learning, 
unfolds meanings for learned mathematical concepts, allows for deeper 
understanding and fosters the development of competencies in using mathematics. 
She then discusses the process of constructing and analyzing mathematical models 
put forward by students in prospective teachers’ courses. She further presents 
examples of issues that arise when constructing and validating a model, discusses 
difficulties (including some of non-mathematical nature) involved in the modeling 
process, possible limitations of the model and so on.

From the “technical” point of view on teaching and learning mathematics at 
school, her arguments seem sound to me. Problems may arise (not in her arguments 
though), when one considers certain elements that influence the conditions under 
which teaching practice is usually developed at school. These elements relate to 
factors such as teacher education program’s curriculum (including questions relative 
to time versus deepness versus volume of issues to be covered in teachers’ 
preparation for school practice), school students’ beliefs on the role of schooling as 
an instrument for socio-economic mobility, the prescribed school curriculum’s 
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scope, the objectives of school education, etc. I see no problem in that the author has 
not focused in detail on these external (so to speak) elements that may affect 
teachers’ decisions of “going beyond curve fit” in secondary grades, even when this 
“going beyond” is suggested by the prescribed curriculum. Firstly, I consider the 
possibility that these elements are not so relevant in Canada, as they seem to be in 
Brazil. Secondly, as I see it, each researcher approaches each problem from her/his 
own point of view, and when selects certain aspects to focus, naturally has to leave 
others behind. Thus, it is due to the research community, as a whole, to eventually 
produce a multiple-sided view of the phenomenon under consideration. Nevertheless, 
I would like to present here some ideas that came to my mind while reading and 
appreciating Caron’s arguments in favor of “going beyond curve fit.”

First, I shall note that she herself mentions important elements that may under-
mine going beyond what is usually done in school, in terms of modeling. She says, 
for example: “A lack of tradition and the fear of taking time away from the teaching 
of mathematics have often led to a reduced version of what modeling entails and of 
how it can be integrated in secondary school mathematics.” No doubt that these are 
two real obstacles to fully integrate modeling in secondary school education. 
However, I think they do not come into play isolated from other equally important 
aspects to be considered, though I am not sure about how relevant a role these other 
aspects play in the Canadian school teaching system. For example, mathematics 
education literature has pointed out that promoting students’ development of math-
ematical models for real phenomena demands teachers’ disposition to abandon the 
control they usually have over what happens in school classrooms, in terms of stu-
dents’ interactions and behavior, as well as over what kind of knowledge is going to 
be mobilized and dealt with along the process. Altering this control may bring about 
highly resistant attitudes from teachers and even, in some cases, from students.

Another point that deserves attention in this context of fully integrating modeling 
in secondary school is the question of a finite (usually short) curriculum time versus 
the amount of interesting topics suggested to be included. Every time I see a proposal 
of including something in the (school or teacher education) curriculum, it 
immediately comes to my mind the following question: supposing school curriculum 
time is already properly determined, what might be taken out in order to put in 
whatever is being suggested? As to this point, the author says, in a sensible way:

Yet, despite all the potential benefits, the time restrictions that may come with the curricu-
lum often act as obstacles to greater presence of modeling activities in the class of mathe-
matics. The iterative nature of the modeling process, the time required for a modeling 
activity to reap most of its anticipated benefits, the lack of guarantee that even a carefully 
chosen open-ended modeling problem will lead to some of the mathematical concepts and 
skills aimed for by the curriculum, may lead teachers to reduce the scope of modeling 
activities so as to realign them with the content to be covered.

Lastly, another question this chapter offered me the opportunity to raise, though 
not approached directly in the text, is the following: is there a (sufficient) target for 
the process of developing mathematical reasoning through curricular activities 
along K-12 grades? I bring this up because when we globally examine the school 
curriculum, we observe that mathematics is just one of various disciplines dealt with 
in this stage of education. Furthermore, differently from Canada and USA, for 
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example, in some countries (including Brazil), students are not offered the possibility 
of choosing between courses within K-12 grades. Besides that, in Brazil, for 
example, according to official documents, this time period of schooling (K-12) is 
not just a propaedeutic stage for college or further education; it is called Basic 
Education and has its own end and purposes (though one might say, reasonably, that 
this is just the official discourse). However, I have often seen people forgetting that 
school students are (usually) children and adolescents, being educated in basic 
terms (i.e., general, non-specialized, non-professional terms), in various different 
disciplines. In such a context, even considering that many school students (perhaps 
the majority of them, in some countries) might proceed to tertiary education, and a 
part of these eventually enter a mathematics based university course, the school 
curriculum must leave out some topics, as choices have inevitably to be made in 
composing any curriculum. One is then led to this kind of thinking: should secondary 
students, no matter their future education and/or work choices, undergo a 
development of refined mathematical thinking, under the justification that it helps to 
“better” (mathematically) understand real world phenomena (that is, it helps 
examining those phenomena through a relatively sophisticated lens)? Should this 
experience be part of basic education? Of course there are no simple answers to 
these questions but, in any case, I would say that whether or not the school courses 
that include a deeper approach to modeling (as proposed in the chapter) are 
mandatory should be considered.

In her chapter, Kajander suggests the models and reasoning approach to school 
mathematics, with an illustration that applies to early secondary grades. She believes 
this approach may “support the transition of teacher practice from a more traditional 
paradigm to a conceptual one” since it is known to be difficult to take this move all 
of a sudden. That is an important observation, since experience tells us that proposals 
of radical changes in school teaching might face resistance. The author briefly 
elaborates on this point, listing a few sources for this resistance as “nervousness 
about the right skills being learned, worries about curriculum coverage, beliefs 
about what students are and are not capable of, and perceived lack of classroom 
control.” By the way, this may turn us back to Caron’s chapter, where some of these 
sources of teachers’ resistance (to go beyond curve fit, in that case) may apply.

As Kajander puts it, the use of a models and reasoning approach may make vis-
ible some otherwise invisible (for the learner) mathematical processes. In the case 
of factoring a quadratic polynomial, as shown in the chapter, the area model for 
multiplication and the geometrical manipulation of squares and rectangles to com-
pose a single rectangle can effectively turn visible and acceptable what may be 
perceived, by a beginner in algebra, as mysterious or “magic,” when obtained by 
pure algebraic procedures. In general, this experience with the models may point to 
the schoolteacher a cognitively significant relation between two kinds of mathemati-
cal reasoning, exemplified by two different solutions for a problem: one based in 
analytical reasoning and the other in the so-called synthetic approach. While this 
distinction in the form of reasoning may sound irrelevant for the development of 
contemporary mathematics, it is interesting, from the school teaching point of view, 
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to note that even around the sixteenth century, a mathematician as respectable as 
François Viète used to add a confirming phase, based on geometric construction, to 
other essentially algebraic phases of his method for solving geometrical problems. 
That indicates the power of geometric construction in establishing the dependability 
of a solution, especially for those still not sufficiently familiar with algebraic meth-
ods, as is the case of school students at early secondary.

As a last comment on Kajander’s chapter, I shall briefly mention a point that may 
be relevant to schoolteachers. The author refers to leading students eventually to 
conjecture rules—possibly related to sum-product observation, deduced from the 
experiments with the manipulative pieces in the bags—to be applied, in order to 
decide whether or not the quadratic expression in a given ziplock bag is factorable. 
She also refers to a third (Sharing) phase of the sample lesson, where the students 
are supposed to share and discuss their strategies, convictions and conclusions. 
Though understanding (and agreeing) that “terminology and efficiency can be added 
later. Student conceptual understanding is the first goal,” I have missed a reference 
to a pedagogical strategy teachers might use (perhaps at the Sharing Phase) so as to 
prompt students to check if their conjectures were correct or, otherwise, needed 
some repair, so to speak. For example, if they arrive at the conclusion that a quadratic 
expression (in the ziplock bag) is factorable (in two first grade polynomials with 
real coefficients) if and only if it is “possible” to compose a rectangle using the 
given pieces, the teacher, as I see it, should be prepared to question, in appropriate 
ways for the moment, the correctness of this conclusion (and the meaning of the 
word possible, in this context), since otherwise the students might internalize a 
piece of knowledge that could function, in the near future, as an obstacle to learning, 
when terminology and efficiency are in time to be added. I think it is important to 
mention the need for this didactical strategy because the author (wisely) suggested 
that some of the ziplock bags should be filled with pieces that lead to non-factorable 
quadratic expressions. However, as the example x2 + 3x + 1 shows—and the pieces 
for this example could have been put in one of the bags—the process of actually 
constructing a rectangle using the pieces on the bags may not be possible (in the 
manipulative sense described in the sample lesson) in some R[x]-factorable cases.

In his chapter, E. Barbeau points to the discussion of a mathematical result (a 
necessary and sufficient condition for the commuting of the composition of two 
linear polynomials) as a way to involve secondary students in “pure mathematical 
skills of reasoning in algebraic problems.” In the last two sections, the author 
comments on pedagogical issues related to the eventual school classroom use of the 
material presented.

As to the activity proposed, I comment on a few ideas advanced by the author. I 
agree with his point in that to make mathematics meaningful for school students, 
though a common strategy is connecting it to student’s life and experience, it need 
not to be always this way. A purely mathematical context may as well appeal to 
students. I would just add that difficulties might arise in this “pure” context. For 
example, in case the course is obligatory to all secondary students, it may be diffi-
cult for a teacher to opt for this kind of activity without being convinced that its 
potential benefits (some of them referred to by the author in the “Pedagogical 
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issues” and the “Conclusion” sections) could not as well be achieved through usual 
curriculum activities, which may be attractive or interesting to a larger spectrum of 
secondary students.

I also observe, considering another aspect of working at school in a purely 
mathematical context, that it might induce the idea of arbitrariness, especially to 
beginners. Separated from any reference to a “real” context, purely abstract math-
ematics may seem (to many secondary students) to operate in a restriction-free 
atmosphere, that is, no conditions under which definitions, objectives, lines of rea-
soning, procedures, etc. are to be created, accepted, chosen, etc., except for the 
strong requirement of avoiding internal contradictions. Hence, the idea of school 
mathematics as an arbitrary system of non-contradictory rules may arise (I remem-
ber Morris Kline (1974) in Why Johnny can’t add, writing something like this: a 
child must understand that a + b equals b + a not because the commutative property 
of addition is valid, but quite to the contrary, addition has this property because a 
+ b always equals b + a). In this sense, schoolteachers who decide to work with the 
author’s suggested activity may be prepared to deal with potential questions like 
why is composition of function defined in a way that it happens to be non- 
commutative? In other words, what really “makes” an “interesting” definition of 
composition of functions non commutative? Yet another way to put it: could com-
position not have been defined so as to be commutative, and then in such a case this 
kind of activity (the search for a necessary and sufficient condition under which the 
composition of two linear polynomials commute) would not make sense? Or per-
haps issues like: accepting the established definition of composition of functions, 
what kind of conditions on higher degree polynomials would make the composi-
tion of two of them commute? What about conditions (for composition to com-
mute) in the case of other functions as logarithmic, exponential, trigonometric, and 
so on? If these cases are not to be dealt with, why study the case of first-degree 
polynomials? Is there an explanation on why this fixed-point condition only applies 
to linear polynomials?

Finally I would like to emphasize that I raise these questions not in disagreement 
with the author, but only as a tentative enlargement of his list of pedagogical issues 
presented in the chapter.

In their chapter, Burazin and Lovric discuss three aspects that usually impact the 
transition from secondary to university mathematics, namely mathematical symbols, 
language, and reasoning. The examples they list are amazingly coincident with 
those I have been encountering in my mathematics classes at the university, which 
indicates that the issues discussed in the chapter are rather of international concern 
than strictly Canadian-only issues. I would add that these issues should be of special 
concern to mathematics teacher education programs all over the world.

A distinguishing point in the chapter is the authors’ assertion that facilitating 
transition is a duty that should be taken care of by the school and the university. 
Going a little further, I think it should be kept in mind that school has to provide 
basic general education to every member of the society (as to whether or not this is 
really to be accomplished makes room for a particularly interesting debate, but not 
exactly appropriate to this Commentary Chapter), while university education 
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usually constitutes a more specific and individual choice. This choice, of course, is 
strongly influenced by social factors in general (e.g., social attractiveness of each 
profession), and, in particular, the greater or lesser attraction of the student towards 
the specialized knowledge required in the corresponding professional practice. 
Therefore, it seems reasonable to argue that university specific courses should take 
a greater share on the duty of facilitating transition from secondary to tertiary 
mathematics.

In what follows, I express a somewhat different view over some of the authors’ 
contention in the chapter. As to the first two cases discussed (i.e., mathematical 
symbols and number bias), I see the examples and suggestions presented as highly 
pertinent to mathematics schoolteachers’ practice. Furthermore, it seems to me that 
promoting, in school education, a flexible way of giving meaning to school 
mathematics symbols as well as stimulating the development of a “non-biased 
relationship with numbers” (as explained in the chapter), should be an important 
part of basic education, independent of considerations on difficulties that may arise 
in transition from secondary to university mathematics. The same arguments 
advanced by the authors in their text (e.g., eventual expansion of the competence for 
using school mathematics in different situations and contexts) will support the 
above assertion of mine. I would like to add a reference to the case of mathematical 
symbols: two articles that provide an interesting view on interpreting symbols in the 
learning of mathematics (Gray and Tall 1993, 1994).

The third case discussed—language and mathematical culture—starts with a 
controversial statement that may incite different reactions, according to the 
perspective each reader may hold, relative to what mathematics consists of. The 
authors say, “It is important to emphasize to our students that mathematics consists 
of, and deals with concepts, objects, and algorithms which are precise, unambiguous, 
and well-defined.” My comments on this statement come from my particular point 
of view on school mathematics education. First of all, the assertion leads me to 
wonder what kind of mathematics we are talking about when we affirm it consists 
of, and deals with precise, unambiguous, and well-defined concepts, objects, and 
algorithms. In school mathematics, one may not be able to define, in such a well- 
defined way, even the set of natural numbers. While in many cases it might be 
necessary to produce a school-validated definition for a mathematical object, it 
seems to me pedagogically questionable to emphasize to (school) students that 
mathematics consists of, and deals with well-defined concepts and objects, because, 
as far as my experience goes, it is not pedagogically viable (neither necessary) to 
deal with many fundamental concepts in school mathematics in such a precise, 
unambiguous and well-defined way (e.g., the set of real numbers, addition of natural 
numbers, addition and multiplication of real numbers, among others). In this sense, 
it may be regarded as educationally inadequate to land school students with a view 
of mathematics that does not fit to the reality actually experienced in the learning 
(and teaching) process of this discipline at school.

Going a little further in this issue, I would like to invite the reader (and the 
authors) to another front of reflection: looking back at some historical period, as 
Isaac Newton’s times for example, could we say that mathematics deals with 
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precise, unambiguous and well-defined objects? Newton himself could not tell what 
a real number or a function is, in a (today considered) precise, unambiguous and 
well-defined way. Nevertheless, this didn’t impair him of doing what he did in favor 
of the development of mathematical knowledge.

Still on the themes of mathematical culture related to precise, unambiguous, and 
well-defined objects mathematics deals with, I shall comment on the discontinuity 

of the function f(x) = 
1

3 x
 in x = 0. Can we say that it makes sense, nowadays, from 

a strictly mathematical point of view, to teach Calculus students that a function is 
discontinuous in a point for which it is not defined (that is, where it does not even 
exist)? Other questions the chapter may induce are: how does mathematical culture 
help students to accept this fact (a function being discontinuous in a point where it 
doesn’t exist), considering that it is just provisional, until a course in Real Analysis 
comes about with a more precise (for the present time) definition of continuity at a 
given point, according to which a function can only be continuous or discontinuous 
in a point of its domain? How does this quarrel between Calculus and Real Analysis 
textbook definitions of continuity of a function at a point suit the assertion that 
mathematics deals with precise, unambiguous, and well-defined objects?

To finish my commentary on Burazin and Lovric’s chapter, I would like to say a 
word on how one might react to the assertion “In our view, it does not make sense to 
discuss whether or not 1 is a prime number. It is not, and the definition is clear 
about it.” As a teacher educator, I would say that, in my view, it does make sense to 
discuss whether or not 1 is a prime number whenever a student or a schoolteacher 
happens to have any doubt about this matter, independent of the clearness of the 
formal definition. In my experience, I see this issue as one both prospective and in 
practice teachers often bring up to discussion in teacher education courses. I would 
even suggest, if I may, two references on this matter. From the point of view of 
uncovering a network of teacher’s professional knowledge, potentially associated 
with a discussion around the question of whether or not 1 is a prime, it may be 
interesting to see chapter 3 of Davis and Renert (2014). From a more general point 
of view, but still relevant towards a better understanding of the role of definitions in 
the learning and teaching of mathematics, I would suggest the article by Vinner 
(1991).

In the last chapter of this Part VI, Gardner describes a university bound course on 
Statistics he has been teaching at secondary school. I must say, at this point, that I 
do not have any experience in teaching statistics, neither at school nor at university. 
Therefore, my comments on this chapter may be viewed as coming from an outsider, 
so to speak.

I start by saying that, in Brazil, we do not have this kind of course (university 
bound) at school, not even as a possibility for a student’s choice. All students in each 
grade, in a given school, have the same (annual) courses, though this is in a process 
of changing, possibly from 2019 on. Statistical basic concepts like measures of 
central tendency and measures of dispersion are dealt with as a topic in standard 
school mathematics courses. Thus the course Gardner describes seems a long way 
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ahead of what we usually do in the teaching of statistics within Brazilian Basic 
Education (1–12 grades). It may be, as far as I am concerned, somewhat equivalent 
to the (only) one semester course in statistics that prospective mathematics teachers 
usually have to take in their undergraduate program in Brazil.

I should also say that I appreciate the way the course is organized, confirming 
what is said at the beginning of the chapter, related to the matter of students knowing 
as precisely as possible what is to be done in the course and the criteria for 
assessment. The activities along the course look rich and productive, as, for example, 
the peer review of the project students must develop. In general, I see the course as 
a demanding one (though not excessively), but at the same time offering a 
corresponding level of support to the students. As to the results, the text indicates 
that they are good enough to allow the author report students coming back to the 
teacher, thanking him for the way he handles the course. Therefore, I could say 
nothing else but congratulate the author for the planning and execution of the course 
he describes in the chapter.

 A Concluding Note

Mathematics school teaching demands, at least theoretically, an ingenious profes-
sional, capable of creating and mobilizing a blend of pedagogical, curricular, psy-
chological, didactical, and mathematical knowledge, both when planning and when 
actually teaching in the classrooms. Furthermore, as participating in a mandatory 
social process of general education, the mathematics teacher has also to act wisely 
in balancing his professional duty of teaching what is to be taught, with the per-
sonal, though highly socially conditioned, interests of each student in learning what 
it is to be learnt. A third factor that gets into this balancing challenge may be referred 
to as the “operation mode” of the school, viewed as the running of an ultimately 
social institution. These considerations, in conjunction with the context of the com-
ments I have just presented, lead me to a reflection that can be synthetized this way: 
whilst all chapters in this Part VI are, together with many other studies that can be 
found in the Mathematics Education research literature, potentially contributive to 
international school mathematics teaching practice (of course with the eventually 
necessary adaptations), one might anticipate a historical (and likely intensity-vary-
ing across countries) difficulty to convert the potentiality of these contributions into 
day-to-day reality of school teaching practice. Though some plausible hypothesis 
have been raised in the literature, I still hunger for studies that could help to clarify 
why that happens.
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 Final Commentary: The Challenge Continues

This edited volume started off as a practical project of the first editor to fill a self- 
identified void of not having a singular Canadian text that could be used as a source 
of relevant literature in teaching future secondary school mathematics teachers. 
Enter the Canadian Mathematics Education Study Group (CMESG), specifically 
and perhaps appropriately, a conversation during a meal at the 40th anniversary 
meeting of CMESG, in Kingston, Ontario, and a much bigger vision was born. By 
the end of a scenic boat ride, we began collaborating as editors, and the project was 
greatly expanded, eventually bringing together a collection of Canadian authors 
who work and research within Canadian secondary classrooms in some capacity. 
Broader vision and context would be provided by having a contributor who was 
foundational within the Canadian mathematics education community, begin each 
section with a preface. The ‘landscape’ reference was purposeful; we wanted to 
represent our varying culture, geography, and context as broadly as possible. As 
well as including Indigenous and Francophone perspectives, each section of chapters 
also included the voice of a current classroom teacher (“A teacher’s view”), in order 
to provide a practical, grassroots examination of some aspect of the section theme 
from a practicing teacher’s perspective. In the end, the addition of the international 
authors who graciously offered to read the pieces and use their own contexts to 
comment on the works greatly added to the depth of what could be accomplished 
within this single volume and allowed for us to see the possibilities for connecting 
our Canadian contexts to those beyond our own borders. Below we detail some final 
thoughts on how we put the sections together and take a look at how the commentaries 
in each of the six parts have challenged or supported the writings within each 
section.

The collected volume began with a highly meaningful preface by Edward 
Doolittle that encompassed a fundamental vision for putting together this collection 
in the Canadian context. As he noted, “Indigenous culture and issues are founda-
tional to Canada; and …continue to be a necessary part of anything Canadian” 
(Preface, this volume). We were deeply honored by the connections made between 
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the work of the Canadian authors that we had compiled for this volume to this fun-
damental part of being Canadian and working in a Canadian school context. 
Doolittle’s moving preface highlighted how all of the authors did in fact support this 
context to some degree. In this vein, he also brought the volume to an international 
audience in his final comments on how these are issues that all peoples face and 
added, “the question is what we [as Indigenous peoples] have to offer to Canada, 
and the world” (Doolittle, this volume). It is with this initial overview of connec-
tions to Indigeneity that situates all of the sections and chapters under one broader 
theme and extends the link to secondary school mathematics.

We chose to begin the collection of authors’ work with a look at “The changing 
landscape of teaching and learning mathematics” because we have all been partici-
pants and observers in how teaching in secondary schools has changed and contin-
ues to change. We were honoured that two Canada Research Chairs (Rina Zazkis 
and Nathalie Sinclair), as well as mathematician and long-standing mathematics 
education advocate Walter Whiteley, contributed prefaces to this section. In this first 
section, we chose to situate the volume in the historical as well as cultural landscape 
of our context. Beginning the contained chapters with Peter Taylor was an obvious 
choice because he has been pivotal in how Canadian mathematics education has 
been shaped over the last four decades, which he describes in his chapter. As a 
‘founding father’ of CMESG, an organisation with which all of the various section 
preface authors have been involved, Peter has forever left a mark on teaching and 
learning mathematics in Canada. We also wanted to include a strong focus on the 
Indigenous knowledges that both inform and shape our Canadian classrooms. As a 
more recent aspect of our context, Canadian schools are beginning to focus on emo-
tional well-being and mental health so this was also deemed a necessary aspect of 
this first section. Kaino’s commentary on this section looked at how the chapters 
were illustrative of the changing portions of school from his own context and per-
spective. As he noted, this section provides a chance to “re-think innovative and 
better ways of teaching and learning mathematics” (Kaino, Part I commentary, this 
volume). This need for innovative changes answers the call of many mainstream 
media headlines that question the effectiveness and status of mathematics education 
in Canada and many other areas of the world. In the end, Kaino supports the driving 
vision of today’s classrooms (and this volume): to “provide ways for long-term 
retention of mathematical knowledge” (Part I commentary, this volume). Part I pro-
vided the broad strokes of the challenges facing today’s secondary classrooms in 
preparing the learners to be mathematics users (and not just learners), and the 
remaining sections each tackle specific areas relating to classroom teaching.

“Shifting to a culture of inclusion,” as introduced by David Pimm, a well-known 
mathematics educator in Canada, focussed attention on helping all learners to 
succeed in mathematics classrooms, not just those who would go on to become 
mathematics educators and mathematicians later in life. Our choices for the chapters 
examined those who are most at-risk in our classrooms including students who are 
coming from other parts of the world. Although most of the chapters around at-risk 
classrooms were Ontario based, we felt the stories were not unique to this part of the 
country or even the world, and the stories could highlight learners who need the 
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most support in our classrooms. Through these chapters, we reiterate the fundamental 
idea that the information included is supportive of the quote by the Expert Panel on 
Student Success in Ontario (2004) as well as other learning initiatives (e.g., Ontario 
Ministry of Education 2013): “good for all, necessary for some” (p. 42). Beswick, 
in her commentary, responds to the chapters by beginning with an overview of some 
of the difficulties in enacting the ideas in the chapters in this section. The first 
challenge she brings forward is the complex issue of how a teacher’s beliefs interact 
(or interfere) with how pedagogy is taken up and implemented in the classroom. 
This idea is a theme throughout the rest of the book as many of the chapters challenge 
traditional ideas of what teaching mathematics at the secondary school level is and 
should be.

Part III in the volume, introduced by Elaine Simmt, another well-known Canadian 
mathematics education researcher, discusses how relationships can be fostered in 
classroom environments. As stated by Boland and Tranter in Part I, the basis of all 
teaching experiences is the relationship that is formed with students and the school 
community. The chapters in this section critically look at different ways relationships 
can help foster greater student success in academics by focussing on behaviours and 
other characteristics. Mosvold notes, “The fostering of relationships, then, goes 
beyond attending to students’ mathematical thinking, and it involves getting to 
know their histories, the experiences they have made in and outside of school, their 
cultural background, and everything else that constitutes their identity” (Part III 
commentary, this volume). His commentary on the section notes that the connections 
among chapters attend to the different aspects that constitute the identities of 
secondary students in the classroom. As he notes, two of the chapters specifically 
focus on relationships within the classroom and student thinking; whereas, the other 
three focus on the development of the whole person through the relationships. 
Mosvold ends his commentary with a concern of the tendency to take theories of 
learning from other fields and then use them to apply to teaching by assuming them 
as theories of teaching. He turns his focus to how the chapter with the strongest link 
to teaching is also the one without an explicit theoretical foundation (Newell). The 
noted chapter is an interesting treatise into looking at teaching as all that a teacher 
does in an effort to support the learning of students. Mosvold concludes that “more 
conceptual work needs to be done in studies of mathematics teaching, and 
conceptualizations of mathematics teaching should strive towards capturing the 
dynamic interactions between mathematical and pedagogical aspects of the work of 
teaching” (Part III commentary, this volume). The commentary ends with a 
discussion about the complex nature of teaching and how this section has shown the 
need to conceptualize teaching as more than just certifications. Following the more 
theoretical nature of this section, the edited volume moves into specific pedagogy 
for teaching mathematics.

The part entitled “Enhancing problem-based learning” was meant to serve as a 
collection of chapters that focus on specific examples of using this type of learning 
environment in the classroom. All of the work in the section was meant to answer 
the call of mandates by the Canadian Manifesto (Whiteley and Davis 2003/2016), 
the National Council of Teachers of Mathematics (2000), and others, to include 
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more tasks and explorations in the classroom. The focus in the section is on using 
problems in a way that allows students to explore the mathematics, and not just use 
routine problems to practice previously known formulas. Tom Kieren, long standing, 
influential mathematics education scholar, provided the preface. The chapters in this 
section are illustrative of how the mathematics comes from the “doing,” rather than 
for students to repetitively use something that a teacher has shown them to do. 
Leikin and Mason provide two very different commentaries on the chapters from 
different international perspectives. Leikin takes the viewpoint of looking at the 
chapters as unified through the concepts presented in a model of characteristics that 
determine mathematical challenge (Part IV commentary, this volume). Her presented 
model focusses on the conceptual characteristics of the problem, socio-mathematical 
norms, instructional setting, and individual characteristics of participants as the four 
foci, and uses the model as a framework to assess the mathematical challenge of 
tasks. For her, the chapters in this section present ideas that can be summarized 
through this model and notes that each of the chapters shows the authors sharing 
their “authentic experiences” in using problem solving methods in the classroom 
(Leikin, Part IV commentary, this volume). Mason frames the chapters in this 
section through the lens of “doing” mathematics in a way that is more than just an 
execution of mathematical procedures. As he notes, the unifying theme in the 
section is that the authors “are trying to make a difference, trying to get students 
engaged with mathematics and involved in mathematical thinking” (Mason, Part IV 
commentary, this volume). Through his discussion of the history of mathematical 
problem solving, Mason notes that these chapters differ from the idea that teaching 
mathematics “is assumed to be about training student behaviour so that learners can 
carry out operations on numbers” (Part IV commentary, this volume). Both Mason 
and Leikin key into the role of context within many of the chapters in this section of 
the volume, albeit from different lenses. Leikin focusses on the social justice and 
citizenship aspects in the chapters, and Mason approaches the ideas from a context 
standpoint with a goal of reaching for social justice. Mason explicitly links this idea 
to the concerns raised by Russell (Part IV, this volume) in making sure that the 
social justice themes do not eclipse the mathematics. Mason concludes by reiterating 
that the chapters in this section are not meant to “prove” their approaches but rather 
to serve as a description of how the authors in the chapters have used the techniques 
in their own experiences.

Part V, prefaced by Carolyn Kieran, another very prominent mathematics educa-
tion researcher, particularly well known for her work in algebra, provided concrete 
examples of planning and assessment to bring directly into secondary classrooms. 
These chapters were intentionally chosen to challenge the ideas that teaching is all 
about direct transmission of knowledge from teacher to student and that assessment 
is all about exams and quizzes that “test” how well students have retained what has 
been shown to them. Reddy and Sriraman both provide commentaries on the chap-
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ters in this section through their differing experiences and contexts. Reddy (this 
volume) provides an interesting commentary on both the commonalities within the 
six chapters in this section, but also how the ideas relate to the struggles of second-
ary teaching in South Africa. He begins with a look at the vast differences between 
Canada and South Africa in terms of the economic and political struggles of his 
home country; however, strengthens his position on the importance of education to 
move the country forward in an effort to alter the glaringly negative headlines that 
Reddy mentions in his commentary, as well as to improve the future conditions of 
the students. He points to the difficulties with the Curriculum 2005 (Reddy, Part V 
commentary, this volume) that highlighted a challenge with the skill set of the 
teachers who would be implementing the curriculum, a difficulty that is taken for 
granted as not an issue within the chapters in this section of the book. This com-
mentary reminds us of the relative position Canada maintains in providing second-
ary teachers with rigorous schooling to prepare them to enact the content in this 
section on planning and assessment. The “learning outcome” discussion of Reddy 
in relation to the South African curriculum notes the curriculum revision included 
“skills and the processes of learning, without sufficient specification of content and 
knowledge” (Reddy, Part V commentary, this volume) serving as an interesting par-
allel with Canadian curriculum as a blend of the two: based on what students should 
be able to do and know by the end of the school year. Reddy concludes with a dis-
cussion of the social inequities facing the South African school system and mounts 
a challenge: “As Canada becomes more diverse, I would imagine it would be chal-
lenged to take into consideration, more significantly, outside classroom contexts to 
improve the learning for students” (Part V commentary, this volume). This state-
ment echoes the underpinning themes within Part II of this volume, so although not 
specifically addressed in this section, shows a need for Canadian teachers to focus 
on more than just content when working with students. Sriraman approaches the 
chapters in this section from a different vantage point: an overarching question of 
what is actually being measured and notes that the chapters in the section leave 
concerns over how these ideas can be implemented on a larger scale beyond the 
single classroom that they seem to address (and in some cases beyond the single 
cases discussed in the chapter to an entire classroom). His initial commentary 
pushes back on the chapters as not being supportive of the use of multiple choice 
questions in testing student understanding. He attests that the chapters imply there 
is a link between open tasks and conceptual understanding, and multiple-choice 
questions and procedural understanding. He ends with a commentary on what 
assessment really is and asks for the reader to question the possible win- loss sce-
narios inherent in testing. He calls for assessment to be aligned to learning as well 
as deep memory in order to create a “win-win” situation for both the student and the 
teacher. He further extends this to state that memory in mathematics is not simply 
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rote memorization or recitation but something deeper, flexible, and stronger for stu-
dents to retrieve, adapt, and use the information in situational experiences. His final 
comments seem to suggest agreement with the chapters’ push to consider assess-
ment (and planning) as not just to prepare for or use multiple choice tests.

The final part of this book, “Broadening mathematical understanding through 
content,” focusses on specific instances of content within the secondary curriculum. 
The goal in placing these chapters together was to look at example spaces within the 
secondary classroom that are closely tied to the content students are expected to 
learn. Gila Hanna, known internationally for her work in many areas particularly 
around notions of proof in mathematics education research, provides the preface, 
while Moreira provides the international context to the section through his view on 
the chapters and their ability to “broaden” mathematical understanding as the 
section claims. He begins with a separation between the “professional practice of 
mathematicians” and the “professional practice of mathematics schoolteachers” in 
order to frame the chapters (Moreira, Part VI commentary, this volume). He does 
caution that although these are distinct practices and sets of knowledge, they are not 
opposing, though the knowledge of the mathematicians is not “necessary nor 
sufficient” for the knowledge needed by schoolteachers (Moreira, Part VI 
commentary, this volume). He provides an additional challenge to each of the 
chapters in his description meant to push these understandings of mathematics 
towards the knowledge of mathematicians and where this adds to or separates from 
the knowledge of mathematics schoolteachers. He notes that the issues raised by 
Burazin and Lovric, although based in a Canadian context, parallel international 
issues connected to his own work. In the end, Moreira comments on the complexities 
of what teachers must know and do to teach mathematics effectively, which provides 
an overall statement that reinforces the entirety of the collection of authors in this 
volume.

While not all invitees were able (or willing) to contribute, the breadth and range 
of contributing voices (totalling 85 individual contributors in all), including many of 
the founders of CMESG, editors of various mathematics education journals in 
Canada and from around the world, authors of current curriculum documents, new 
and experienced classroom teachers, and a breadth of international scholars from 
five continents, left us deeply humbled.

This volume was not meant to serve as an exhaustive collection of all the current 
issues and challenges facing Canadian secondary school teaching and learning. 
Rather, it was meant to showcase the variety and range of research and resources to 
both expand and deepen the conversations around the issues and challenges facing 
both the research community as well as today’s secondary school teachers of 
mathematics. The speed with which technology is changing makes it impossible to 
know precisely how to prepare students for the future, hence developing the ability 
to think and reason mathematically may be the best possible preparation for students 
to be ready to face the currently unknown mathematical challenges that are awaiting 
us all in the coming years.

Final Commentary: The Challenge Continues
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