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Abstract The Internet of Things (IoT) is already counting more than 15 billion
devices connected to the web and over the following years, a rapidly increasing num-
ber of businesses and individuals are expected to become a part of this industry. In
this context, enabling technologies and services are needed in order to accommodate
this unprecedented interest. One of the major bottlenecks during the development
of IoT products and/or services has been the vast diversity and incompatibility that
exists among sensors, communication, and computation/controllermodules. The var-
ious modules operating on numerous communication buses and protocols requires
development of platform-dependent hardware and software drivers as well as vigor-
ous testing from the developer side. This process is nontrivial and time-consuming
and redirects the focus of developers from “what” to “how” to develop. In addition,
users/developers are discouraged when they are obligated to perform tedious man-
ual configurations before they are ready to use their products. Furthermore, there
is a significant heterogeneity in IoT network architectures and existing automatic
service discovery and configuration protocols. The majority of these protocols have
been developed for conventional computer systems and as a result, it cannot be used
by resource-constrained IoT devices. For the above reasons, various models of the
well-known concept in mainstream systems of Plug-and-Play (PnP), are being intro-
duced to the embedded systems world as well, to tackle the above issues. In the
following chapter, an overview of what a Plug-and-Play architecture consists as well
as a survey of the state of the art is presented.
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1 Peripheral Plug-and-Play (PnP) Definition
and First Attempts

The Plug-and-Play (PnP) concept, in terms of peripheral device integration, can be
defined as the ability of the system to automatically detect and configure internal and
external peripherals as well as most adapters. In personal computers, the manufac-
turers quickly recognized the tedious task of having to manually configure hardware
jumpers and software settings, and started to shift towards architectures that would
allow simple and automatic integration of peripherals.

1.1 NuBus

One of the first attempts of PnP architecture was the MIT NuBus that was intro-
duced in 1984, and was first standardized in 1987 [1]. In comparison to the existing
architectures at that time, featuring 8-bit or 16-bit buses, the Nubus was equipped
with a 32-bit backplane to accommodate future systems. The NuBus did not feature
a distinct bus controller which meant that all NuBus devices participated as peers to
system control functions and arbitration. Furthermore, an identification scheme was
present which allowed for automatic detection and configuration of NuBus cards
from the host system. The bus offered a form of geographic addressing, meaning
that each available slot had a small dedicated address with which was associated.
Specifically, 32-bit physical addresses were multiplexed with the data lines and this
address space was shared among all the existing slots. Up to 15 slots were available,
and each of them featured a 4-bit ID field with which every communication process
was qualified.

On the other hand, NuBus’s implemented addressing scheme along and low clock
speed (10Mhz) compared to other architectures of the time, rendered the bus slow.
Especially, the bus was not suitable for newer and faster I/O devices that did not have
enough local buffering capabilities.

The NuBus is perceived as one of the pioneers of PnP hardware architectures.
Texas Instruments acquired the project and developed a number of LISP and UNIX
systems based on the NuBus. Later, after its standardization, the architecture was
used in someApple projects (Mac II,MacQuadras) but eventually becamepractically
extinct when Apple adopted the Peripheral Component Interconnect (PCI) bus [2]
in their products.

1.2 MSX Bus

Another PnP architecture that was introduced in the 1980s, was Microsoft’s MSX
[3]. MSX was developed with the aspire to become the single industry standard for
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home computing systems. The idea was to enable hardware peripherals, software
applications, and computer systems, which is developed by different manufactur-
ers/organization to be interoperable when they were MSX compatible.

The MSX system was based on the Zilog Z80-family of CPUs which is intended
for home computing systems. MSX offered a very well-developed hardware abstrac-
tion layer which was implemented in theMSX-BIOS. This abstraction offered exten-
sibility, peripheral independence, and instant PnPwith zero user intervention. Virtual
addressing was implemented using various slot/subslots which avoided any possible
conflicts. The required drivers were already installed in the cards ROMs and were
able to be automatically configured. TheMSXwasmostly popular in Japan and acted
as the platform for many important Japanese game studios.

1.3 Micro Channel Bus

Last, theMicro Channel Architecture [4, 5] that was introduced by IBM in 1987, was
the successor to IBM’s ISA bus and proved to be the precursor to PnP systems known
to current date such as the widely adopted PCI bus. The Micro Channel cards were
32-bit but also allowed 16-bit implementations for back compatibility and featured
a unique 16-bit identifier which was software read. The OS/BIOS after reading the
identifier successfully, proceeded with the search for appropriate device drivers. The
IDswere stored inReferenceDiskswhich IBMhad to update in a regular basis.When
a new cardwas inserted, and the systemwas unable to find corresponding drivers boot
failures occurred. In the reference disks, along with the drivers further information
was provided, such as the card’s memory addressing and interrupts, which is crucial
for the functionality of the system.

Using this information, the system could configure a new card without any inter-
vention from the user. However, every time a new card was installed, the system
changes (interrupts, etc.) had to be saved to a floppy disk which then became neces-
sary for every subsequent hardware change. This proved to be an important design
flaw, especially when the bus was used by large corporations. Therefore, although
the Micro Channel was considered successful, soon after the release of the PCI bus,
it became obsolete.

Current dayPnP interfaces are IEEE1394 (FireWire),Universal SerialBus (USB),
PC card (PCMCIA), and PCI including its variants such as Mini PCI, PCI Express,
etc.

2 PnP Architectures

2.1 PnP Requirements in IoT

As mentioned in the chapter’s introduction, the vast variety of non-standardized IoT
modules has resulted in an enormous heterogeneity that hinders communication and
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Fig. 1 Towards open standards

interoperability among objects and architectures. Currently, the mainstream practice
in IoT development is based on vertical and proprietary solutions, in the sense that a
hierarchical bottom to top design (hardware–software-communication) is carried out
to suit the needs of each application. This model has to be transformed (Fig. 1) to an
open and horizontal structure thatwill act as a vessel for universal, interoperable, low-
cost, and innovative solutions. IoT-enabling tools and services should be developed
in a layered and easy to interconnect manner. Following this new model, a multitude
of well defined and open IoT-enabling technologies will become available to anyone
interested in the IoT sector.

PnP architectures are being developed with the aim of automating or reducing the
complexity of the task to configure a new “thing”. Configuration, here refers to the
procedurewhich startswhen a “thing” is physically connected to a system, to the point
that it is able to connect and interact in a network consisting of more “things”. The
interaction within the network can be either human or machine initiated. A “thing”
can be a sensor, an actuator, a communication module, or in general an embedded
system with a unique identifier that can communicate in a network either standalone
or through some host gateway.

Due to a number of considerations such as cost, size, and available power, things
that are used in IoT projects differ significantly frommodern day computing systems
in terms of resources. Even though there is a multitude of controller units available
in the market and one can choose the unit that best fits the application, Table1 shows
key characteristics of four controller units that are predominantly used in different
types of applications. As it is expected, a higher amount of resources is available on
more expensive and power hungry systems. To achieve a good balance between cost
and the set of features that an IoT solution will offer, it is necessary to develop an
efficient and effective IoT architecture.

This resource-limited nature of embedded IoT projects, imposes a number of
constraints and challenges on the hardware and software schemes that are required
for achieving PnP capabilities. Therefore, every IoT-PnP architecture needs to be
“lightweight” in a series of aspects. The most important of these aspects are:
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Table 1 Key parameters of popular IoT controller units [6–9]

MCU ATmega328P CC3200 SAM9G25 Raspberry Pi 3

Resource

Computation

Architecture 8-bit AVR 32-bit
ARM-M4

32-bit ARM
A-5

64-bit ARM
A-53

Max. frequency (MHz) 20 80 400 1200

Floating-point unit – – – Yes

MIPS 1/MHz 1.25/MHz 1.57/MHz 2.3/MHz

Connectivity

Wired – – USB/Ethernet USB/Ethernet

Wireless – Wi-
Fi/Bluetooth

– Wi-
Fi/Bluetooth

Memory

FLASH/EEPROM 32 kB/1 kB 64kB + SD
card

64MB SD Card up to
64GB

RAM 2 kB 256 kB 32 kB on chip 1GB

Max. power consumption (W) 0.06 0.9 0.4 2

Price 2.1 $ 12.1 $ 7.8 $ 35 $

• Power consumption: Numerous IoT projects are destined for battery-powered
applications. To decrease battery requirements and operational time, the total
power consumption of a PnP architecture has to be minimized.

• Cost: Cheap IoT modules have been the backbone of the industry’s rapid growth.
The hardware and software implementation of the architectures should not impose
excessive additional cost.

• CPU overhead: CPUs that are selected in embedded environments usually have
limited computation capabilities. The PnP service should not inflict major CPU
overheads that will burden the CPUs typical operations.

• Memory footprint: Both program and data memories are constrained. PnP proto-
cols have to be simple and effective.

• Communication footprint: In many IoT projects, excessive amount of header or
information related to the PnP architecture will result in increased costs (e.g.,
GPRS data plans.

• Implementation complexity: The PnP architecture has to be easily implemented by
both, hardware and software engineers.
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Fig. 2 The PnP process

3 PnP General Architecture

PnP can be defined as a three-step process as shown in Fig. 2. First, the newly inserted
to the system thing, is uniquely identified. This preconditions that an identification
mechanism is present, and it is compatible among the thing and the system. After
identification, appropriate software drivers are required to interface the system with
the thing. These are low-level drivers that act upon the control registers of the hard-
ware interface towhich the thing is physically attached. Last, users of the IoT network
should be able to discover and use the services that are offered by the connected things
in order to develop high-level applications. This process corresponds to the process
called remote service discovery and usage. In the following sections, each of the
above steps will be described in detail.

3.1 Thing Identification

As mentioned before, the identification of new peripherals is the first step for their
integration into a system. In mainstream computing systems, such as contemporary
desktops and laptops, peripheral identification is realized through custom Integrated
Circuits (ICs) that are required for the operation of the interface. These ICs contains
data for device identification in special purpose registers. For example, identification
in thePCI bus is performedwith the use of afile calledExtendedSystemConfiguration
Data (ECSD). This file contains information about the installed PnP devices such
as identification data, configuration parameters, etc. This information is read by the
BIOS and through the Operating System (OS) system handlers, the identification
process gets completed.

However, this approach can only be applied to resource-rich systems and not for
embedded IoT devices as it is optimized for performance and neglects CPUoverhead,
memory footprint and/or power consumption.

Common hardware interconnects in embedded systems for interfacing things and
systems are:

• Analog (voltage and current). This interconnection is used for things with analog
output. In this case, an Analog-to-Digital Converter (ADC) is required to convert
the analog signal to a digitized form is easily processed by the controller.

• Serial Peripheral Interface (SPI) [10]. SPI is a synchronous bus (sampled at a
specific clock rate) consisting of four lines: Master In–Slave Out (MISO), Master
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Out–Slave In (MOSI), Clock (CLK), and Slave Select (SS). Usually, input and out-
put pulses are positive and negative edge sampled which means that in some cases,
MISO and MOSI can be connected to the same line. The typical implementation
of the SPI interface uses 8-bit messages.

• Universal Asynchronous Receiver Transmitter (UART) [10] which can be half or
full duplex. As the name reveals, this is an asynchronous communication scheme
between two entities. Due to the asynchronous operation, single or double buffers
are required. Furthermore, the communication bit rate (baudrate) and data frame
have to be configured manually to match between the transmitter and the receiver.
Usually, UART is the TTL/CMOS voltage level application of the RS232/RS485
protocols which are more common in industrial and/or long communication lines.
In case of half-duplex operation with no hardware flow control, UART uses only
two communication lines Tx , Rx .

• Inter-IntegratedCircuit (I2C) andSystemManagement (SM)Bus [11]. These buses
feature a 7-bit addressing scheme making it possible for a total of 128 devices to
operate on the same bus. A single master is allowed, which is usually a controller
unit and is capable of initiating transactions with the slaves by broadcasting their
address. Both, (I2C) and SM buses require two lines (Serial Clock—SCL and
SDA—Serial Data) but differ in the amount of commands that they support; the
SM bus command protocol is a subset of the commands available in the (I2C) bus.

• General Purpose Input/Output pins. A number of sensors interact with the con-
troller unit through simple protocols that do not require hardware acceleration and
can be implemented only in software (bit banging). Furthermore, GPIOs can be
used by sensors to generate main CPU interrupts and/or to control other devices.

Although the above hardware interfaces and corresponding protocols offer simple,
lightweight and in some cases fast communication, they lack device identifiers that
are essential to a PnP architecture.

As the vast majority of today’s sensors are manufactured using one of the above
interfaces, a type of middleware which will provide an identification procedure is
mandated. After the identification is complete, a set of multiplexers has to switch
the peripheral to the appropriate interface bus in order to communicate with the host
CPU(s).

3.2 Thing Drivers

After the identification of a thing, the corresponding drivers need to be installed and
automatically configured. From a general perspective, there are three ways in which
this can be achieved.

First, the thing drivers can be potentially stored in a nonvolatile memory on the
thing itself. This is an approach that has been dismissed already by PnP technologies
intended for peripheral integration in mainstream computing machines. The reasons
were the additional memory required to store the drivers resulting in increased cost
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and the complexity deriving from the fact that the machine has to communicate with
the device and download the drivers. Furthermore, this is an approach that does not
allow for changes to the drivers rendering them outdated for a large span in the
device’s lifetime. Taking into account, the more cost-sensitive and dynamic environ-
ment of IoT projects, such amodel cannot be applied during the peripheral integration
procedure. The dual approach, i.e., to store the thing drivers on the controller side,
is also discarded because of the enormous and continuously increasing variety of
available things and hence corresponding drivers.

The current practice during driver development for IoT, is to write driver soft-
ware after reviewing in detail the thing’s datasheet and list of specifications. The
developed drivers are written in low-level programming languages in which register
manipulation and interrupt handling are required rendering them platform specific.
This is a cumbersome task, since the development of a set of drivers that will be
both reliable and also efficiently use the thing’s functions as a repetitive process.
Furthermore, this process leads to nonreusable IoT application code as even trivial
hardware changes require updating the driver software.

In modern computing systems, the most common scheme that is followed in PnP
peripheral driver integration is the following. Once a new device is connected to and
detected by the system, an OS service will start searching local drives and/or remote
repositories for the appropriate software drivers. If drivers that match the device id
are found, the OS service continues with their installation. After this point, the OS
is ready to fully use the peripheral.

In desktop computers, PnP capabilities were first introduced by Microsoft’s oper-
ating system Windows 95. Microsoft’s scheme followed the idea described earlier.
The process is illustrated in Fig. 3.When a new device that supports PnP is connected
to the system, the service called Plug-and-Play Manager follows a number of steps
in order to install the device [12].

• After the detection of a new device, the Plug-and-Play Manager checks the hard-
ware resources required by the device and allocates them.

• The Plug-and-Playmanager checks the device’s hardware ID and then searches for
matching drivers the hard drive(s), floppy drive(s), CD-ROM drive(s) and finally,
the Windows Update website.

• Further identification features such as driver signatures or the closest compatible
hardware ID used in case multiple drivers are found.

• After security and quality checks, the Plug-and-Play Manager installs the selected
driver and the OS is then ready to use the device.

While the above scheme is comprehensive and reliable, the identification and
validation layers are not optimized for resource-constrained systems. Identification
data are stored in formats (e.g., XML) that are optimized for performance and relia-
bility rather than minimizing CPU overhead and memory footprint. Similarly, in the
transport layer, the communication with the remote repositories is performed using
rich protocols such as HTTP over TCP/IP. The implementation of the above in a
resource-constrained system would be either impossible or would impose nontriv-
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Fig. 3 Microsoft’s PnP explained

ial CPU and memory overheads resulting in significant limitations to the range and
quality of the developed application.

Thus, it becomes clear that in order to move towards realistic and efficient
PnP architectures in the embedded environment of IoT products, simpler and more
lightweight protocols that are cross-platform have to be developed while maintaining
similar PnP characteristics with resource-rich systems.

3.3 Thing Network Discovery and Operation

After the thing is identified and the software drivers are installed, it is capable of
data transactions with its host system. However, the end goal is to create a horizontal
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PnP IoT architecture where developers will be able to write applications without
a comprehensive knowledge of the underlying hardware but only of their services.
For this, a scheme where things publish their available services over a network
and developers are able to discover and use them is needed. In mainstream computer
systems, this is realized through service discovery protocols. These protocols provide
mechanisms that allow to:

• Dynamically discover devices and corresponding services.
• Network users to search and browse the available services.
• Advertise service information crucial to users.
• Utilize an available service.

3.3.1 Service Discovery and Usage in Mainstream Computer Systems

Jini [13]
Jini is a distributed system based on the idea of federating groups of users and

the resources required by those users. In a simpler interpretation, the Jini architec-
ture is constructed by a number of hardware and software components that are the
infrastructure of distributed system; the Jini registrar provides unicast or multicast
detection of this infrastructure (services) by the client returning a proxy object to the
clients. This object besides pointers to services can also store Java-based program
code that will make use of the service easier to a client. The main mechanism respon-
sible for the communication between services and clients is called lookup service.
Each Jini device is assumed to have a Java Virtual Machine (JVM) [14] running
on it. Jini’s main advantage is that it allows users to connect with services without
previous knowledge of their address through the lookup service. On the other hand,
the existence of the lookup service to manage the interactions between clients and
services renders the architecture not suitable for large networks.
Universal Plug-and-Play (UPnP) [15]

Universal Plug-and-Play (UPnP) is a media-independent networking scheme
leveraging TCP/IP and other established web protocols. It is developed by an indus-
try consortium called UPnP Forum, which has been founded and lead by Microsoft.
Taking into account, the previous discussion about software drivers, UPnP extends
Microsoft Windows Plug-and-Play to devices that can communicate in a network.
Every device can dynamically join a network, obtain an IP address, announce its
services, and also communicates with other devices and services in the network
using multicast communication. UPnP is applicable on networks that run Internet
Protocol (IP) and on top, it utilizes protocols such as HTTP, SOAP, and XML [16] to
accommodate the interactions between the devices. UPnPs main difference with Jini
is that it can operate in a decentralized way in the sense that discovery and service
advertisement are modeled as events, and are transmitted as HTTP messages over
multicast User Datagram Protocol (UDP) [17]. However, this makes the network
chatty consuming a significant amount of resources.
Service Location Protocol (SLP) [18]
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Another protocol allowing clients to find services over a networkwithout any prior
configuration is the Service Location Protocol (SLP). SLP, as UPnP, uses multicast
routing in a decentralized way, at least in smaller networks. Each Service Agent
(SA)—in our case a thing—multicasts advertisement messages periodically which
contain a URL that is used to describe and locate the service. In scaled-up networks,
Directory Agents (DAs) exists and cache the information announced by the SAs.
User Agents (UAs) can discover services by either multicast requests to the DAs or
can listen directly to the announced messages in the absence of DAs.

All of the above architectures have worked well for mainstream computer net-
works but it is a burden for the proliferation of IoT systems as they are not resource
optimized. Jini requires a full-fledged Java Virtual Machine, UPnP operates on ver-
bose XML data representations and SLP mandates further filters due to the lack of
device identifiers.

3.3.2 Service Discovery and Usage Protocols in IoT

The Open Connectivity Foundation—IoTivity
Due to the vast expansion of IoT, various company groups have started to develop

service discovery and connectivity protocols designed as IoT enablers. One of
the biggest, is the Open Connectivity Foundation (OCF) [19] counting more than
300 member companies where among them are Samsung Electronics, Intel, and
Microsoft. Its purpose is to “accomodate the communication of billions of connected
devices (phones, computers, and sensors) regardless of manufacturer, operating sys-
tem, chipset, or physical layer”. IoTivity [20] is an open multi-layer framework
for IoT networks hosted by the Linux Foundation and acts as the reference project
implementing OCFs specifications.
Constrained Application Protocol (CoAP) [21]

CoAP, as the name unveils, is an application layer protocol designed for devices
with constrained resources in low-power and lossy networks. Typical applications,
as defined by the protocol, are wireless nodes that run on 8-bit microcontrollers with
low RAM and ROM capacities and slow, high packet error rate networks such as
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) [22]. The
CoAP design is optimized for Machine-to-Machine Communications (M2M). A
very important aspect of CoAP is the easy mapping with HTTP which makes web
integration much simpler.

CoAP has been mainly developed and standardized by the Internet Engineer-
ing Task Force (IETF) Constrained RESTful enviromnmets (CoRE) Working Group
and as complete standard was proposed in 2014. The protocol is maintained and
updated by IETF working groups to the current day. CoAP provides resource/service
discovery and usage as the aforementioned protocols and is based on the REST
model: servers/devices make services available under a URL and clients access these
resources through commands such as GET, PUT, POST, and DELETE. These com-
mand messages are kept as small as possible to support the use of the UDP protocol
in the transport layer and to avoid message fragmentation.
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4 Plug-and-Play Models for IoT Applications

4.1 MicroPnP

MicroPnP or μPnP [23–26] developed by the research group of iMinds-Distrinet in
University of Leuven, Belgium is one the first complete PnP platforms specifically
designed for the IoT industry. μPnP presents a holistic Plug-and-Play architecture
including custom hardware for peripheral identification and integration, platform
agnostic language for device driver development, and a network architecture for
automatic thing discovery and usage.

4.1.1 µPnP Thing Identification

The architecture uses a simple hardware solution to map a large space of addresses to
various peripherals. The custom-designed PCB ofμPnP contains a set of monostable
multivibrators that are capable of generating timed pulses whose length depends on a
resistor and a capacitor. On the other side, every μPnP compliant peripheral embeds
a unique set of resistors which in conjunction with the fixed value capacitors on
the μPnP PCB creates a unique train of pulses. Specifically, four short pulses are
generated and each of them is mapped to a single byte value and finally, results in
a 32-bit address space. This allows for more than 4 million unique device identi-
fiers. All μPnP peripheral identifiers are mapped to an open online global address
space. Identifiers become permanent only after software drivers are integrated in the
repository. After the inserted peripheral is identified, it is directed to the appropriate
communication bus through a multiplexer and is ready to be utilized by downloading
the software drivers.

In [27], the authors presented another model for thing identification. In this case,
instead of digitizing the length of pulses generated bymultivibrators, a voltage divider
technique is applied (Fig. 4). Specifically, the identification resistors (Rid ) of the thing

Fig. 4 Identification
technique of μPnP v2.0
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Fig. 5 μPnP peripheral identification hardware v2.0

are connected through a reference resistor (Rref ) to the supply rail. An ADC converts
the divided voltage (Rref ) to a number of bits. With the use of a��-type ADC, high
resolution can be achieved. The authors specify that for 24-bit ADC, the 16 most
important bits can be used as a unique tag for things. This creates a 4× 16 64-bit
address space for thing identification.

Furthermore, both identification schemes require significantly lower energy than
a typical USB during the identification process. The implementation of the μPnP
v2.0 controller board is shown in Fig. 5.

4.1.2 µPnP Thing Drivers

To achieve multi-platform driver development, μPnP has developed a high-level
domain-specific language (DSL). The run-time environment links the DSL with
native hardware libraries to the underlying physical interconnects such as ADC, SPI,
I2C, etc. The language is event based in order to accommodate the interrupt-driven
nature of IoT software.

Platform independence is achieved by compiling the DSL into bytecode instruc-
tions that can be interpreted by the μPnP execution environment. This technique
is inspired by and similar to Java virtual machines. The various abstraction layers
of μPnP’s run-time environment are shown in Fig. 6. Five separate elements can be
distinguished. The peripheral controller interfaces with theμPnP identification PCB
and identifies the inserted peripheral. The driver manager communicates with the
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Fig. 6 μPnP execution environment

peripheral controller and gets informed about the connected things and the drivers
that are installed. Furthermore, it is responsible for searching and installing available
drivers for the newly identified things. A stack-based virtual machine executes the
bytecode instructions derived from the interpretation of the DSL. Hardware-specific
native libraries implements the low-level communication with the things. Finally,
the event router routes the events coming from the DSL, the native libraries, and
the software stack. The events are handled asynchronously and do not collide. This
is achieved with the application of a FIFO queue for regular events, and a priority
queue for error messages.

The thing drivers are installed in the μPnP thing through an entity called Driver
Manager. Once the thing is identified, the driver installation process starts with a
driver installation request towards the anycast address of μPnP server. If a software
driver that matches the thing ID is found, the drivers gets downloaded to the μPnP
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system. Furthermore, as described in the previous paragraph, the Driver Manager
is allowed to query the connected μPnP things about the installed drivers. This is
realized by a driver discoverymessage from the host to the thingwhich awaits a driver
advertisement message from the thing to the host. The manager is also allowed to
remove software driver from a thing using a driver removal message. The removal
is complete when the thing responds with driver removal acknowledgment message.

4.1.3 µPnP Service Discovery and Network Architecture

μPnPs networking scheme features automatic and remote thing discovery and usage
like protocols is described earlier and are used in mainstream computer systems. The
architecture consists of mainly three software entities. The first entity is the μPnP
Thing software which runs on the resource-constrained local machine and allows for
automatic peripheral identification. Second, is the μPnP client software which can
run on an embedded device or a standard platform and realizes the remote discovery
and usage of peripherals that may exist on any node of the network. Last, is the
μPnPManager which runs on server-class machine and is responsible for the remote
dispatch and deployment of the thing drivers.

To leverage existing network technologies such as Ethernet andWi-Fi, the entities
are interacting on the network layer through IPv6 over UDP. The thing discovery
and usage is realized with three types of communication.

• Unsolicited peripheral advertisements. This source of this announcement is the
thing’s unicast IPv6 address and contains a set of fields describing it. The unso-
licited peripheral advertisements are multicasted to the set of μPnP clients every
time a new thing becomes available.

• Peripheral discoverymessages.Thesemessages are issuedby the clients containing
the type of peripheral that is searched. The destination of the messages is the
multicast address of all the μPnP things with the specific type of peripheral.

• Solicited peripheral advertisements. Thesemessages are sent in response to periph-
eral discovery messages. They contain the same information as the unsolicited
advertisements but are destined to the unicast address of inquiring μPnP client.

μPnP clients allowed two types of interactions with the things for data production:
(a) single value reading and (b) data streaming from the service provider to the client.
Writing data to a thing is also supported in case the thing has actuator capabilities.

The above transactions are realized with the following messages:

• Read allows a μPnP client to read single value from a peripheral. The μPnP thing
that the peripheral is connected to responds with a data message which contains
the result.

• Stream messages are send from clients to things when a client wants to subscribe
to a continuous stream of data. In this case, the thing responds with an established
message which contains the multicast address that the client should join. data
messages are send continuously from the stream address and a closed message is
broadcasted if the stream stops to inform all the μPnP clients.
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• The control of peripheral is achieved with a write message. This message is sent
from a client to a thing. If the write process is completed successfully, an acknowl-
edgment message is given as response to the client.

4.2 IEEE 1451 Standard [28]

The IEEE1451 is a family of “smart transducer” interface standards developed by
the Institute of Electrical and Electronics Engineers (IEEE) and was first released
on 1997. A smart transducer is defined as the integration of an analog/digital sensor
or actuator, a processing unit, and a communication interface. According to this
definition in Fig. 7a, we can see the structure of a smart transducer. It consists of
(1) sensors/actuators, (2) signal conditioning and/or data conversion circuits, (3)
host processor, and (4) network communication. The communication paths in this
structure are two-way as data can flow from the transducer to the network in the case
of a sensor or from the network to the transducer in the case of an actuator.

An IEEE1451 smart transducer should have features like self-identification, self-
description, self-diagnosis, self-calibration, location-awareness, time-awareness,
data processing, standard-based data formats, and communication protocols. The
IEEE1451 aims to achieve the above with the design and integration of Transducer
electronic data sheets or TEDS. The architecture is shown in Fig. 7b. The modules
that constitute the architecture are: (1) a Network Capable Application Processor

Fig. 7 a A smart transducer model; b This architecture adds TEDS and the system partition into
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(NCAP), (2) Transducer Interface Module (TIM), and a (3) Transducer-Independent
Interface (TII) for communication between (1) and (2). The TII is defined by a com-
munication medium and a data transfer protocol with messages like read, write, read,
and write, etc. The smart transducer can be connected to the network through any
common Network Interface (NI).

The key feature of IEEE1451 is the TEDS. The TEDS can be stored in a non-
volatile memory space attached to the Smart Transducer Interface Module (STIM)
containing necessary information for the host system to interface with the transducer,
such as identification, calibration, and correction data. Also, a virtual TEDS can be
implemented, allowing legacy sensors and transducers without any storage space to
be included in the standard. Four kinds of TEDS are mandatory for the application
of the standard, and are as follows:

• Meta TEDS.
• TransducerChannel TEDS.
• PHY TEDS.
• UserTransducerName TEDS.

Optional TEDS includes Calibration TEDS, TransferFunction TEDS, Location
and title TEDS, and Frequency Response TEDS.

Since 1997, the standard has developed and improved in order to accommodate
modern miniature sensors and actuators as well as different communication/network
protocols. The full list of released protocols is:

• 1451.0-2007 Common Functions, Communication Protocols, and Transducer
Electronic Data Sheet (TEDS) Formats

• 1451.1-1999—Network Capable Application Processor Information Model [29]
• 1451.2-1997—Transducer to Microprocessor Communication Protocols and
TEDS Formats [30]

• 1451.3-2003—Digital Communication and TEDS Formats for Distributed Mul-
tidrop Systems [31]

• 1451.4-2004—Mixed-Mode Communication Protocols and TEDS Formats [32]
• 1451.5-2007—Wireless Communication Protocols and Transducer Electronic
Data Sheet (TEDS) Formats [33]

• 1451.7-2010—Transducers to Radio-Frequency Identification (RFID) Systems
Communication Protocols and Transducer Electronic Data Sheet Formats [34].

4.3 The TEDS Structure

The TEDS are encoded using specific templates to maintain a balance between the
provided transducer information and the amount of memory that needs to be occu-
pied. In the IEEE1451.4 standard, the TEDS is defined as multisection template.
These sections are chained together to form a complete TEDS (Fig. 8). The first
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Fig. 8 TED examples

section is the basic TEDS and contains essential identification information. Depend-
ing on the application and the complexity of the transducer, further sections can be
followed. The type of the following section is indicated by 2-bit selectors. The last
section, is an open user area where further information of instructions that are not
defined in the template can be given.
Basic TEDS

The basic TEDS has a length of 64 bits. The first 14 bits are reserved for the
Manufacturer ID, 15 bits for the Model Number, 5-bit character code for the Version
Letter, 6 bits for the version number, and 24 bits for the serial number of the device.
The assignment of Manufacturer IDs and other binary data are provided in ASCII
files either from IEEE or from the manufacturers.

Several researchers have proposed modular PnP-like models based on the
IEEE1451 standard for various applications [35–37]. In [38], the authors have lever-
aged the the standard in order to create a thermal comfort sensing system for build-
ings. In [39], a configurable Wireless Sensor Network (WSN) is developed based
on the IEEE1451 and a Complex Programmable Logic Device (CPLD). The authors
have used the CPLDs high parallel throughput and the interoperability offered by the
IEEE1451 standards to build a flexible and reconfigurable water quality monitoring
WSN.

In [40], a detailed example of how the IEEE1451 standard was practiced for
the needs of an application is presented. The transducer was an electrogoniometer,
which is a transducer crucial to physiotherapy applications, is designed based on the
IEEE1451 standard. Specifically, IEEE1451.2 and IEEE1451.0 were implemented.
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Fig. 9 Block diagram of
IEEE1451 compliant
electrogoniometer

The block diagram illustrating the implementation of the sensor is shown in Fig. 9.
The STIMconsists of two dual-axis accelerometers as sensing elements and anAtmel
AT90USB162 microcontroller. The embedded Microcontroller Unit (MCU) is pro-
grammed as a STIM using C and the TEDS is stored into its nonvolatile memory
(FLASH). Furthermore, it features integrated full-speed USB peripheral for commu-
nication between the STIM and the NCAP. IEEE1451.2 is implemented on top of
the USB interface to render the sensor IEEE1451 standard compliant.

Specifically, the interfacing sequence can be described as the following. Once
the STIM is connected to the NCAP, the STIM sends a Tim Initiated Message to
annouce its existence. Next, the PHY-TEDS information is announced to the NCAP
using the Publish–Subsribemethod. Several values such as, TIM identification, Com-
munication Module ID-Type-Name-Object, STIM Channel numbers-ID-name, etc.
Furthermore, theNCAPhanded the TEDS information includingMeta TEDS, Trans-
ducerChannel TEDS, User’s Transducer Name TEDS, Manufacturer ID, Version of
TEDS, Number of Channel, and Serial Number. Finally, the NCAP send the comm-
nad to acquire the sensor data.

TheNCAP in this case is developedwith the JavaDevelopmentKit and theEclipse
IDE, and it operates on a standard commercial laptop computer.
Reconfigurable Wireless Sensor Networks (WSNs)

In [41], the authors present a reconfigurable WSN with PnP capabilities regard-
ing the network architecture of the testbed. The proposed architecture allows auto-
matic configuration (Plug) of the network by utilizing a Zeroconf protocol that sets
up a multi-hop network. Furthermore, reconfiguration and experimentation (Play) is
achieved on the basis of RESTful interactions with each node. The node is composed
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of configurable transceiver(s), configurable/modular protocol stack, and a monitor-
ing/control module.

The configurable transceiver has to be low cost/power and support parameter
reconfiguration. In the author’s implementation, two transceivers were used for dual-
band communication. Thefirst onewas the reconfigurableTICC1101operating at the
868MHz RF band and the AT86RF231 operating at 2.4GHz. The latter, is 802.15.5
compliant which means it is suitable for low-power 6LoWPAN communication.

A configurable/modular protocol stack is selected for efficient development and
experimentation on existing protocols. Furthermore, the configurable/modular stack
has to reconfigure the management network making each device a uniquely address-
able and accessible network thing. The configurable/modular platfrom used was the
CRime stack [42] and Contiki [43] 6LowPan/IPV6 stack was used for the manage-
ment network. This management network stack is based on the Routing Protocol for
Low-power and Lossy networks (RPL) [44]. RPL is a protocol for automatic net-
work discovery and configuration. A dual-stack Contiki implementation is leveraged
to run both protocols in parallel.

The monitoring and control module operates using CoAP which is an HTTP-like
protocol redesigned for devices with constrained resources, as described in previous
sections. A set of CoAP handlers enables system users to remotely configure and
operate the testbed (Play). Specifically, the CoAP over UDP handlers (messages)
that were developed allows the user to perform the following interactions:

• Remote monitoring and diagnosis of the system.
• Remote parameter tuning.
• Over the air software updates and upgrades.

Reconfigurable Wireless Sensor Nodes
Mikhaylov and Huttunen [45], Mikhaylov and Paatelma [46] introduces a type

of PnP nodes for a Wireless Sensor and Actuator Network (WSAN). The concept
that the authors want to achieve in this work is the fully modular development of a
WSAN using modules which can virtually be anything; ranging from power sources,
wireless/wired communication hardware, and controller units to sensors, actuators,
encryption devices, localization hardware and/or additional memory. After physical
connection of the available modules, the Main Processing Unit (MPU) should be
able to identify all attached modules and download the necessary drivers using local
or network connection.

The proposed hardware architecture for achieving automatic peripheral identi-
fication and integration is presented in Fig. 10. A new interface called Intelligent
Modular Periphery (IMP) Interface (IMPI) is defined and is responsible for interfac-
ing the peripherals to the MPU. The IMPI can be disseminated in functional terms
in (a) the power supply lines which consist of the input voltage, output voltage and
ground (Vin, Vout, GND), (b) the IMP bus lines that are reserved for device iden-
tification and control, and (c) underlying interface buses that the peripherals may
require.

A Module Control and Identification Unit (MCIU) stores all the required infor-
mation about the module as well as about the peripherals hosted by the module. The
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Fig. 10 Hardware
architecture

MCIU is accessed through the IMP bus and can also provide rudimentary control
over the peripherals such as power management. Physically, the MCIU can be a
microcontroller, a PLD, or any other logic device with similar functionality.

The IMP bus is implemented by daisy chaining the well known and ubiquitous
SPI bus. Through the IMP bus, the MPU first discovers the total number of con-
nected peripherals. Then, it downloads the peripheral description data (PDD), which
consists of the Peripheral Connection Descriptor (PCD) and the Peripheral Service
Data (PSD). The PCD contains the required data for the MPU to map the particu-
lar communication interfaces to specific modules and peripherals. The PSD on the
other hand, contains information such as name, identifier, SW drivers, calibration
coefficients, etc. Using these information, the MPU can automatically discover and
use the attached peripherals.

On the software side, the dynamic underlying hardware requires a complex archi-
tecture in order to become fully functional and efficient. The proposed architecture is
presented in Fig. 11. Themain component of thismiddleware is calledResourceMan-
ager and has three major building blocks. The first one, is theModule manager, being
responsible for low-level operations such as identification of peripherals andmodules
and interrupt prioritization. The second building block is the Communications man-
ager and its task is to handle the communication of the node with the network. This
manager asserts the existing communication transceivers and decides which must be
used and under which parameters. Among the responsibilities of the Communica-
tions managers are also discovery of devices and networks, mapping/translating of
network addresses, etc. Last, the Applications manager supervises and controls the
launch/stop of every available application or service. The Applications manager also
acts as a broadcaster of the node services in a network scheme.
The PnP Web Tag

As it was mentioned in previous sections, the current required knowledge for
someone to develop a full-stack IoT application is low-level embedded programming,
networking mainly using low-power protocols and transceivers and web integration.
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Fig. 11 Software architecture

These multidisciplinary skills hinder a lot of individuals and companies with low
resources from entering the industry. In [47], the authors aim to address this problem
by developing a PnP programming model for connecting IoT devices to the web.

The tool that is developed has many cores:

• A parser, that identifies IoT services in HTML pages. The parser is implemented
as a pure client-side JavaScript. The parser enables to support the new PnP web
tag.

• An HTML instrumenter, that refreshes in a dynamic way the HTML page as new
data arrives. The instrumenter is configured by the parser and is also realized in
pure-client JavaScript. Furthermore, it sends commands to the IoT devices from
the JavaScript applications.

• A proxy server that acts as the interconnection between the instrumenter and the
CoAP IoT services. It is implemnted in the IoT network gateway, and it bridges
the CoAP protocol and the WebSockets protocol that is used by the HTML and
JavaScript elements.

• JavaScript allows the web developers to ignore the low-level embedded program-
ming and build complex sensing and control software.

PnP transducers in Cyber-Physical Systems
However, in modern IoT networks which may contain thousands of things, the

added cost and the increased hardware complexity that is imposed by the standard,
poses a major burden to its proliferation and widespread establishment.

Specifically, the standard defines 16 TEDS templates. The number of transducers
available is increasing exponentially over the last years. A new template, requiring
by the user full knowledge of the complex standard has to submitted for a new
transducer to be included in the protocol. Furthermore, although IEEE1451 is an
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Fig. 12 Logical interfaces in the Plug-and-Play architecture

Fig. 13 a Data frame structure, b Control frame structure

open standard, a large number of these transducers contain proprietary information
leading to proprietary TEDS. Second, the standard includes byte-oriented messages,
thus requiring significant amount of memory for resource-constrained devices and
causing nontrivial CPU overheard.

Taking into account the above, the authors in [48], proposed a new trans-
ducer/interface independent and lightweightmethod for PnP transducers based on the
SPI bus. Over the physical SPI interface, two virtual interfaces are defined: a control
and a data one Fig. 12. The physical lines are distinguished with the use of headers
in the byte frames during communication. As shown in Fig. 13, the control frame
communication structure includes a 2-byte message type to distinguish it from the
data frame structure.With this 2-byte representation 65536 different messages can be
generated, a number that can support a vast majority of applications.Please provide
better clarity in the sentence “With this ... applications” and amend if ncecessary.

The identification of themodules from themain processor is implemented in three
steps. First, the controller sends a Description Request message to each available
slave bus. After sending the message, the controller expects a Description response
message. If this message is received, the master controller records the specific slave
SPI port as occupied and transmits a Description ACK message.
Plug-and-Play Software Components in Industrial Cyber-Physical Systems

In [49], the authors are using a service-oriented software architecture in order to
achieve PnP in industrial systems. Specifically, a paradigm transformation is targeted,
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Fig. 14 Device profile for
web services for
Plug-and-Play software
services in iCPS

from the current practice where software engineers have to develop the required
software for each device and then integrate it to the system, to a model that software
engineers can use directly services that are published from the devices to create
high-level applications ready for system integration.

To implement such an architecture, the first step is to define the protocols and
operating blocks for system level modeling. The authors propose IEC 61499 function
blocks [50] for the system level modeling and Web Service Description Language
(WSDL) [51] for the interface protocols.

WDSL is a language for accessing web services and is based on the Extensible
Markup Language (XML). A WDSL document can define a number of elements
required for service providers and users to communicate. Such elements are data
types, messages, portType, binding, and services.

The above are used to render the available functions of the installed devices as
callable services. For automatic service discovery, the authors select aWS-discovery
type protocol which is called Device Profile for Web Services (DPWS) [52]. In WS-
discovery type discovery protocols, the system services are stored dynamically in
distributed registries. The complete DPWS protocol stack is shown in Fig. 14. It
utilizes WS protocols based on SOAP, WSDL, and XML architectures. UDP or
HTTP/TCP over IP is used in the transport layer. To enable PnP, IEC61499 man-
agement commands are used in the application layer. The typical messages used for
service discovery are Hello, Probe, Bye, Resolve, Put, Get, Create, and Delete.
Generic Sensing Platform

Finding the right off-the-shelf platforms/devices for an IoT system can be a chal-
lenging and time consuming task. However, the design cost would be minimized if
reconfigurable and efficient (in terms of power, size, and communication protocol
compatibility) generic sensor node/platforms were available for IoT design.

In [53], the authors recognize the need of modularity and interoperability between
IoT devices and sensors, and proposed a reconfigurable RFID (Radio-Frequency
Identification) sensing tag as a Generic Sensing Platform (GSP) featuring PnP capa-
bilities. RFID is a technology that suits IoT applications well as it offers low-power
consumption and small size. On the other hand, RFID tags are significantly con-
strained in terms of sensing, computing, and data logging capabilities. Moreover,
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RFID sensing tags have to be accompanied by an RFID reader to be able to operate
and sense.

The authors present an approach for the design of a Gen-2 [54] compatible and
semipassive RFID GSP-tag. The GSP-tag is designed to accommodate a variety of
sensors, multiple sensing channels, and PnP. Furthermore, the tag can operate in two
modes (1) continuous data transmission mode (online) and (2) data logging mode
(offline). The first three memory blocks of the user memory have been reserved and
act as configuration bytes.

Specifically, the GSP-tag consists of two fundamental building blocks. An ana-
log front-end and a digital core as shown in Fig. 15. The analog front-end con-
tains the 915Mhz meandering antenna as well as the L-C matching network and
the modulation–demodulation circuitry. The analog front-end is power passive, so
the operation of the modulation–demodulation depends on the reader’s transmitted
power. The digital part is implemented using an ARM Cortex-M3 microcontroller
and it is battery powered. TheMCU is responsible for acquiring the sensed data from
the peripheral devices and performing the digital baseband communication through
Gen-2 protocols with the RFID reader.

The Serial Shipping Container Code (SSCC-96) [55] EPC standard was used to
perform data transmission from different channels and also act as GSPs identification
mechanism. The authors as there is no global standard for RFID sensing applications,
modified the EPC tag standard to provide identification for the GSP. Fields such
Header, Filter, Partition, Company prefix, and Serial No. comprises a typical EPC ID.
Among these, the Serial No. represents a secondary identity of the tag. Therefore, this
field was modified in order to carry the variable sensor data. With this modification,
automatic identification and sensor data transmission as well were achieved.
A Scalable and Self-Configuring Architecture for Service Discovery in the Internet
of Things

In [56], the authors recognize the need for an architecture capable of accommodat-
ing billions of IoT nodes with minimum human intervention and proposed a Scalable
and Self-Configuring Architecture for service discovery. In the paper, it is stressed
that a service discovery protocol should enable communication between (1) things
that are concentrated and for example, belong at the same subnetwork and (2) things
that can operate within a broader scale and multiple subnetworks. Furthermore, such
a protocol needs to be scalable taking into account the rapidly increasing number of
devices.

The enabler which the authors propose to render the above possible is a Peer-
to-Peer (P2P) network with zero-configuration (Zeroconf) mechanisms at the local
scale. A dedicated boundary node, called a “IoTGateway”, acts to gather information
about the resources of the locally attached nodes and create a Resource Directory
(RD). This information is stored and can be accessed by other clients among the P2P
network allowing for automatic Service Discovery (SD). Such a server-free approach
is scalable and makes the performance of the service discovery to depend only on
the size of the IoT network. To avoid application specific constraints, the archi-
tecture is designed to consist of format-of-service and resource-descriptor agnostic
components.
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Fig. 15 Implemented GSP-tag on a PCB with off-the-shelf components

The IoT gateway is responsible for providing to the nodes service discovery,
caching, proxying, and access control functions. The Proxy Function of the gateway
is performed on the application layer using CoAP. According to CoAP specifications,
the gateway may act as a CoAP origin server and/or proxy. A CoAP endpoint is
defined as an origin server when the resource has been created locally at the endpoint.
A proxy endpoint, implements both the server and client side of the CoAP, and
forwards requests to an origin server and relays back the response to the inquiring
node. A proxy may also be capable to perform caching and protocol translation.

An IoT gateway architecture can be distinguished in three elements as shown in
Fig. 16. Specifically, the architecture consists of the following:
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Fig. 16 Implemented GSP-tag on a PCB with off-the-shelf components

• An IP gateway capable of managing IPv4, IPv6 connectivity among things in
various networks.

• A CoAP origin server that can be leveraged by the CoAP clients to post resources
which are going to be maintained by the server.

• An HTTP-to-CoAP translation service for accessing services and resources are
available in an internal constrained network.

In the local environment, Zeroconf is used to automatically detect and configure
the new nodes that join the network. The implemented SD protocol supports in
general two cases for its application:

• A new thing that joins the network publishes new services.
• A client thing, already existing in the network, discovers available services offered
by other connected things.

On the first case, the process followed is different depending on whether the thing
is a CoAP origin server or a server client. When the thing is CoAP server it can be
queried directly about its services. On the other hand, when it is a CoAP client, it
pushes the information about the available services to the IoT gateway, which acts
as a RD.
Integrating Transducer Capability to GS1 EPCglobal Identify Layer for IoT Appli-
cations

The issues of resolving vast heterogeneity among IoT things is also addressed
in [57]. The authors propose the application of the Electronic Product Code (EPC)
global Identify Layer and IEEE1451 for building a uniform IoT architecture. The
uniformity relies on the representation of the raw data collected from the sensing
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elements in standardized format and the PnP capabilities offered by the IEEE1451
standard.

EPCglobal is a set of standards for sharing data within and across organiza-
tions while IEEE1451, as discussed previously, is a set of standards for communi-
cation betwwen smart transducers and networks. The authors propose the adoption
of IEEE1451 Smart Transducer Standard and its integration with an extension of the
GS1 EPCglobal architecture.

GS1 EPCglobal architecture is utilized by numerous supply chain management
systems to create track and trace applications throughRFID tags. TheGS1EPCglobal
is a three-layer architecture and consists of the: (1) identify, (2) capture, and (3) share
layer. The identify layer gathers identification and self-awareness data. According
to the architecture, the tag data coding protocols are defined at Tag Data Standards
(TDS) and Tag Data Translation (TDT) which are extendable. The modification
is made to the Serialized Global Transducer Item Number (SGXIN) [55] where
the TDT file is appended in order to transform it to a Thing Data Translation. In
this way, the new TDT can accommodate transducer and tag data concurrently. In
the capture layer, the raw data acquired from the identify layer are filtered by the
Application Level Events (ALE)middleware. The ALEmiddleware is an application
of the corresponding standard and specifies the interface through which end users
are able to obtain consolidated data and information about physical processes from
a multitude of sources. The extended version of the ALE middleware is capable of
handling raw data not only from the RFID tags but also from the smart transducers.

Finally, in the capture layer, the filtered and grouped raw data can act as input to
capture service and generate specific events. The events are inserted into an extended
EPC Information System (IS) which will be able to accept transducer functionalities.
Then, the extended EPCIS stores the events and renders them available for query.

The integration of the IEEE1451 compatible transducers to the EPCglobal archi-
tecture is the main focus of the paper. Metadata are gathered from IEEE1451 TEDS
structure and are appended to the identify layer of the EPCglobal standard (Fig. 17).
The authors have distinguished as minimum meta-TEDS the transducer ID, sens-
ing/triggering data, and other data required for handling all the relevant data as
a block. These include the Universal Unique Identifier (UUID) which consists of
metadata such as location (42 bits), manufacturer (4 bits) year (12 bits), and time (22
bits), summing up to a total of 80 bits.

The PnP nature of IEEE1451 is coupledwith thewell defined inRFID applications
EPCglobal series of protocols to create a flexible framework for developing IoT
produces/services.
SensorDiscovery andConfiguration Framework for The Internet of Things Paradigm

Perera et al. [58] proposes another platform for automatic sensor discovery and
configuration called SmartLink. The SmartLink architecture is based on a software
entity that the authors have named as Context-Aware Dynamic Discovery of Things
(CADDOT). The model consists of a total of eight phases that are performed either
by the SmartLink or a cloud-based IoT middleware.
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Fig. 17 EPCglobal extension with IEEE 1451 capability

The eight steps are:

• Detect: Here, the assumption is that the sensors are configured to seek for networks
(Wi-Fi/Bluetooth) to connect to without the need of authorization. SmartLink is
configured to act as an open wireless hotspot so that sensors connect to it in an
ad-hoc fashion.

• Extract: In this phase to bypass the heterogeneous messages that are needed to
identify every sensor, the authors propose to add an extra layer of communication
informationwithwhich every sensor connected to the ad-hoc network ofSmartLink
will be able to respond to the message “WHO”. The response to this message is the
minimum amount of information for a sensor to be identified such as the unique
identification number,model number/name, andmanufacturer. After this response,
the SmartLink has the required information to proceed with further interactions
with the sensor through the sensor’s native communication protocol. This approach
of identification is similar to the TEDS algorithm mentioned earlier.

• Identify: During this phase, SmartLink sends response from the newly detected
sensor to a cloud-based IoT middleware. The middleware queries its databases
and retrieves every data available regarding the sensor. With this procedure, the
sensor’s profile in identified completely.
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• Find: After the sensor module is fully identified, the IoT middleware pushed the
necessary software drivers from the its database to the SmartLink where they are
installed.

• Retrieve: At this point, SmartLink is capable of full communicationwith the sensor.
Using this capability, the sensor is queried on any additional configuration details
might contain such as schedules, sampling rates, data structures, etc. Further,
SmartLink, if possible, it will communicate with other online sources to retrieve
additional useful information related to the sensor.

• Reason: In this step, a context-aware sensing software is deployed. The IoT mid-
dleware takes into account the inputs frommultiple sources to evaluate the capabil-
ities, limitations, and operation details of every sensor. Following an optimization
process a comprehensive sensing plan for each individual sensor is designed.

• Configure: In this last phase, sensors and cloud-based IoT software systems
are going through final configurations. Schedules, communication, sampling fre-
quency, and other details that were designed in the previous step are installed
on the sensors. Communication between the sensors and the IoT cloud software
is established through direct connection or through network capable gateways.
Finally, communication configuration such as IP address, port, and authorization
are provided by the SmartLink.

The authors point out possible application of this architecture to home automation
and/or to agriculture IoT. A home automation system based using a Raspberry Pi as
SmartLink was developed to demonstrate the effectiveness of the scheme.
Agile Manufacturing

Authors in [59] discuss about Agile Manufacturing [60] and how IoT in conjunc-
tion with PnP models can act as a strong enabler for industrial systems that will be
easily configured and installed. Also, the notion of IoT@Work [61, 62] is mentioned,
in which large number of intelligent devices are automatically configured in a similar
manner to contemporary USB devices.

The discussion is about PnP systems and modules used in industrial premises.
After thorough analysis of numerous manufacturing processes and systems, the
IoT@Work project has been identified and is aiming to fulfill eight general require-
ments (A-Gx) towards PnP agile industrial systems:

• A-G1. System modification should be allowed during runtime, if the remaining
systems in the production process are not affected.

• A-G2. When modifications require the production system to be in an offline state,
rapid re-initialization should be possible.

• A-G3. When the system is modified during run-time, controlled initialization
should be realized.

• A-G4. In case of communication faults, automatic network rerouting has to be
supported.

• A-G5. Provision of a flexible and independent system bootstrapping.
• A-G6. Device migration and rapid device reconfiguration has to be supported.
• A-G7. Minimization of manual effort for configuration and initialization of the
system.
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Fig. 18 IoT@Work layered
architecture

• A-G8. Intelligent system responses to various events such as faults.

Furthermore, the initiative has identified four additional requirements specific for
automotive manufacturing systems.

• A-A1. Provision of a Graphical User Interface (GUI) for network configuration
and initialization.

• A-A2. Provision of a GUI for the network maintenance system.
• A-A3. Provision of flexible and reliable semantic addressing scheme.
• A-A4. Capability of remote control and maintenance, in case of external mainte-
nance contractors.

To address the aforementioned requirements, IoT@Work proposed a layered sys-
tem architecture. Each layer corresponds to a different functional group and the
abstraction of the layers begin with the low-level embedded devices and its end point
is automation applications. In particular, three functional groups are identified Fig. 18
and can be defined as:

• The lowest abstract layer includes all the devices and network infrastructure along
with theirmanagement functions. These functions are identifier assignment, device
semantic and context collection, communication interfaces configuration, etc.

• The middle layer refers to all the services and functions that become available
through the existing infrastructure and installed hardware systems. The abstraction
level of these resources are higher since a lot of details from single devices are
hidden.

• The top layer of abstraction refers to all the control schemes and scenarios that
can be developed to service specific applications. At this layer, the interpretation
of the application logic is performed during configuration time and runtime.
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An Integrated Device and Service Discovery with UPnP and ONS to Facilitate the
Composition of Smart Home Applications

Mitsugi et al.[63] proposes a complete PnP solution oriented towards smart home
applications. Specifically, the authors present a protocol with device and service
discovery capabilities by integrating the Universal Plug-and-Play protocol (UPnP)
with the Object Naming Service (ONS) [64].

UPnP can keep a list of the available devices and services using its simple service
discovery protocol. Every time that a new device joins the local network, it sends a
message ssdp:alive to the gateways of the network in order to inform its existence.
However, the gateway corresponds with the device using XML over HTTP. Such
an implementation in many cases might not be possible because of the resource-
constrained nature (computation, memory, and networking) of many devices used in
a IoT smart home environment.

To bypass this issue, the Object Naming Service (ONS) is integrated to UPnP
protocol. The ONS refers to the global service directory based on the EPC-GS1
standard (4.3). A control point (gateway) collects the device identifiers and then
retrieves the service through ONS. An ONS client installed locally, can query the
Root ONS with an EPC as key and find all services associated with the EPC. By this,
services are available to the developer to create smart home applications.

The integration of the EPC protocol with UPnP is possible using CoAP. Dur-
ing an ssdp:alive message in a CoAP frame, the URI option is used to determine
the device’s EPC, which will be its unique identity. The operation of the developed
protocol is shown in Fig. 19. To update its list of available service in the network,
UPnP has a feature called m-search. The authors, again taking into account the
resource-constrained devices on which the protocol will be implemented, developed
a transparent m-searchwhich has been shown to perform better [65] in such circum-
stances.

Fig. 19 A devices list is automatically generated in the control point. For constrained devices, a
part of capability description may be obtained through ONS
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5 Conclusion

In this chapter, an overviewof the general PnP IoT architecture and a detailed descrip-
tion of the corresponding components was given. Furthermore, a wide survey was
carried out and presented the most important models in the literature that feature PnP
capabilities. It is evident that the field has demonstrated significant progress and has
already showcased robust and complete PnP solutions. The main industrial players
have focused their efforts to develop feature-rich ecosystems that present more and
more components with PnP capabilities. However, the ecosystems support vertical
architectures restricting the number of applications and IoT solutions that can be
developed. In the following years, IoT manufacturers and companies are expected
to perform a paradigm shift to interconnected horizontal systems that will benefit
significantly the sector. Moreover, future development of PnP architectures will have
to tackle challenges with increasing interest such as cybersecurity.
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