
Chapter 8
Simulation from the Tail of the Univariate
and Multivariate Normal Distribution

Zdravko Botev and Pierre L’Ecuyer

8.1 Introduction

We consider the problem of simulating a standard normal random variable X,
conditional on a ≤ X ≤ b, where a < b are real numbers, and at least one
of them is finite. We are particularly interested in the situation where the interval
(a, b) is far in one of the tails, that is, we assume that a � 0 (the case where b � 0
is covered by symmetry). We do not consider the case where a ≤ 0 ≤ b, as it
can be handled easily via standard methods, which do not always work well in the
tail case a � 0. Moreover, if we insist on using inversion, the standard inversion
methods break down when we are far in the tail. Inversion is preferable to a rejection
method (in general) in various simulation applications, for example to maintain
synchronization and monotonicity when comparing systems with common random
numbers, for derivative estimation and optimization, when using quasi-Monte Carlo
methods, etc. [6, 12–15]. For this reason, a good inversion method is needed, even
if rejection is faster. We examine both rejection and inversion methods in this paper.

These problems occur in particular for the estimation of certain Bayesian
regression models and for exact simulation from these models; see [4, 7] and the
references given there. The simulation from the Bayesian posterior requires repeated
draws from a standard normal distribution truncated to different intervals, often far
in the tail. Note that to generate X from a more general normal distribution with

Z. Botev (�)
UNSW Sydney, Sydney, NSW, Australia
e-mail: botev@unsw.edu.au

P. L’Ecuyer
Université de Montréal, Montréal, QC, Canada
Inria - Rennes, Rennes, France
e-mail: lecuyer@iro.umontreal.ca

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_8

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_8&domain=pdf
mailto:botev@unsw.edu.au
mailto:lecuyer@iro.umontreal.ca
https://doi.org/10.1007/978-3-319-92378-9_8

116 Z. Botev and P. L’Ecuyer

mean μ and variance σ 2 truncated to an interval (a′, b′), it suffices to apply a simple
linear transformation to recover the standard normal problem studied here.

This paper has three main contributions.

1. Comparison amongst univariate methods. The first contribution is to review and
compare the speed and efficiency of some of the most popular methods [7, 8,
11, 18, 22, 24] for the tail of the univariate normal distribution. These methods
are designed to be efficient when a � 0 and b = ∞ (or a = −∞ and b � 0
by symmetry), and are not necessarily efficient when the interval [a, b] contains
0. We find that these methods may be adapted in principle to a finite interval
[a, b], but they may become inefficient when the interval [a, b] is narrow. We also
find that the largely ignored (or forgotten) method of Marsaglia [19] is typically
more efficient than the widely used accept–reject methods of Geweke [9] and
Robert [22].

2. Accurate inversion for univariate truncated normal. All of the methods cited
above are rejection methods and we found no reliable inversion method for an
interval far in the tail (say, for a > 38; see Sect. 8.2). Our second contribution is
to propose a new accurate inversion method for arbitrarily large a. Our inversion
algorithm is based on a numerically stable implementation of the solution of a
nonlinear equation via Newton’s method.

3. Rejection method for multivariate truncated normal. Our third contribution is to
propose a simple rejection method in the multivariate setting, where we wish
to simulate a vector X with mean zero and covariance matrix � ∈ R

d×d ,
conditional on X ≥ a (the inequality is componentwise). We find that, under
some conditions, the proposed method can yield an acceptance probability that
approaches unity as we move deeper into the tail region.

Simulation methods for exact simulation from multivariate normal distributions
conditional on a general rectangular region, a ≤ X ≤ b, were developed recently
in [3, 4, 6]. But for sampling in the tail, the proposed sampler in this paper has
two advantages compared to the samplers in these previous works. First, it is much
simpler to implement and faster, because it is specifically designed for the tail of
the multivariate normal. Second, the theoretical results in [3] do not apply when
the target pdf is the most general tail density (see (8.9) in Sect. 8.3), but they do
apply for our proposal in this paper. On the downside, the price one pays for these
two advantages is that the proposed sampler works only in the extreme tail setting
([a,∞] with a � 0), whereas the methods in [3, 4, 6] work in more general non-tail
settings ([a, b] which may contain 0).

This chapter is an expanded version of the conference paper [5]. The results of
Sect. 8.3 are new while those of Sect. 8.2 were contained in [5].

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 117

8.2 Simulation from the Tail of the Univariate Normal

In this section, we use φ to denote the density of the standard normal distribution
(with mean 0 and variance 1), Φ for its cumulative distribution function (cdf), Φ for
the complementary cdf, and Φ−1 for the inverse cdf defined as Φ−1(u) = min{x ∈
R | Φ(x) ≥ u}. Thus, if X ∼ N(0, 1), Φ(x) = P[X ≤ x] = ∫ x

−∞ φ(y)dy =
1 − Φ(x). Conditional on a ≤ X ≤ b, X has density

φ(x)
Φ(b)−Φ(a)

for a < x < b (8.1)

We denote this truncated normal distribution by TNa,b(0, 1).
It is well known that if U ∼ U(0, 1), the uniform distribution over the interval

(0, 1), then

X = Φ−1(Φ(a) + (Φ(b) − Φ(a))U) (8.2)

has exactly the standard normal distribution conditional on a ≤ X ≤ b. But
even though very accurate approximations are available for Φ and Φ−1, (8.2)
is sometimes useless for simulating X. One reason for this is that whenever
computations are made under the IEEE-754 double precision standard (which is
typical), any number of the form 1 − ε for 0 ≤ ε < 2 × 10−16 (approximately)
is identified with 1.0, any positive number smaller than about 10−324 cannot be
represented at all (it is identified with 0), and numbers smaller than 10−308 are
represented with less than 52 bits of accuracy.

This implies that Φ(x) = Φ(−x) is identified as 0 whenever x ≥ 39 and is
identified as 1 whenever −x ≥ 8.3. Thus, (8.2) cannot work when a ≥ 8.3. In the
latter case, or whenever a > 0, it is much better to use the equivalent form:

X = −Φ−1(Φ(a) − (Φ(a) − Φ(b))U), (8.3)

which is accurate for a up to about 37, assuming that we use accurate approxima-
tions of Φ(x) for x > 0 and of Φ−1(u) for u < 1/2. Such accurate approximations
are available, for example, in [2] for Φ−1(u) and via the error function erf on most
computer systems for Φ(x). For larger values of a (and x), a different inversion
approach must be developed, as shown next.

8.2.1 Inversion Far in the Right Tail

When Φ(x) is too small to be represented as a floating-point double, we will

work instead with the Mills’ [21] ratio, defined as q(x)
def= Φ(x)/φ(x), which is the

inverse of the hazard rate (or failure rate) evaluated at x. When x is large, this ratio
can be approximated by the truncated series (see [1]):

118 Z. Botev and P. L’Ecuyer

q(x) ≈ 1

x
+

r∑

n=1

1 × 3 × 5 × · · · × (2n − 1)

(−1)nx2n+1
. (8.4)

In our experiments with x ≥ 10, we compared r = 5, 6, 7, 8, and we found no
significant difference (up to machine precision) in the approximation of X in (8.3)
by the method we now describe. In view of (8.3), we want to find x such that Φ(x) =
Φ(−x) = Φ(a) − (Φ(a) − Φ(b))u, for 0 ≤ u ≤ 1, when a is large. This equation
can be rewritten as h(x) = 0, where

h(x)
def= Φ(a) − Φ(x) + (Φ(b) − Φ(a))u (8.5)

To solve h(x) = 0, we start by finding an approximate solution and then refine
this approximation via Newton iterations. We detail how this is achieved. To find
an approximate solution, we replace the normal cdf Φ in (8.3) by the standard
Rayleigh distribution, whose complementary cdf and density are given by F(x) =
exp(−x2/2) and f (x) = x exp(−x2/2) for x > 0. Its inverse cdf can be written
explicitly as F−1(u) = (−2 ln(1 − u))1/2. This choice of approximation of Φ−1 in
the tail has been used before (see, for example, [2] and Sect. 8.4). It is motivated by
the facts that F−1(u) is easy to compute and that Φ̄(x)/F̄ (x) → 1 rapidly when
x → ∞. By plugging F and F−1 in place of Φ and Φ−1 in (8.3), and solving for
x, we find the approximate root

x ≈
√

a2 − 2 ln
(
1 − u + u exp

(
(a2 − b2)/2

))
, (8.6)

which is simply the u-th quantile of the standard Rayleigh distribution truncated
over (a, b), with density

f (x) = x exp(−(x2 − a2)/2)

1 − exp(−(b2 − a2)/2)
for a < x < b. (8.7)

The next step is to improve the approximation (8.6) by applying Newton’s method
to (8.5). For this, it is convenient to make the change of variable x = ξ(z), where

ξ(z)
def= √

a2 − 2 ln(z) and z = ξ−1(x) = exp((a2 − x2)/2), and apply Newton’s

method to g(z)
def= h(ξ(z)). Newton’s iteration for solving g(z) = 0 has the form

znew = z − g(z)/g′(z), where

g(z)

g′(z)
= h(ξ(z))

h′(ξ(z))
· 1

ξ ′(z)
, (by the chain rule)

= zξ(z)
Φ(ξ(z)) − Φ(a) + u(Φ(a) − Φ(b))

φ(ξ(z))

= x
(
zq(x) − q(a)(1 − u) − q(b)u exp

(
a2−b2

2

))
,

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 119

and the identity x = ξ(z) was used for the last equality. A key observation here
is that, thanks to the replacement of Φ by q, the computation of g(z)/g′(z) does
not involve extremely small quantities that can cause numerical underflow, even for
extremely large a.

The complete procedure is summarized in Algorithm 8.1, which we have
implemented in Java, MATLAB�, and R. According to our experiments, the larger
the a, the faster the convergence. For example, for a = 50 one requires at most 13
iterations to ensure δx ≤ δ∗ = 10−10, where δx represents the relative change in x

in the last Newton iteration.

Algorithm 8.1 : Computation of the u-quantile of TNa,b(0, 1)

Require: Input u ∈ (0, 1), δ∗
qa ← q(a)

qb ← q(b)

c ← qa(1 − u) + qbu exp(a2−b2

2)

δx ← ∞
z ← 1 − u + u exp(a2−b2

2)

x ← √
a2 − 2 ln(z)

repeat
z ← z − x(zq(x) − c)

xnew ← √
a2 − 2 ln(z)

δx ← |xnew − x|/x
x ← xnew

until δx ≤ δ∗
return Quantile x

We note that for an interval [a, b] = [a, a + w] of fixed length w, when a

increases the conditional density concentrates closer to a. In fact, there is practically
no difference between generating X conditional on a ≤ X ≤ a + 1 and conditional
on X ≥ a when a ≥ 30, but there can be a significant difference for small a.

8.2.2 Rejection Methods

We now examine rejection (or acceptance-rejection) methods, which can be faster
than inversion. A large collection of rejection-based generation methods for the
normal distribution have been proposed over the years; see [7, 8, 11, 24] for
surveys, discussions, comparisons, and tests. Most of them (the fastest ones) use
a change of variable and/or precomputed tables to speed up the computations.
In its most elementary form, a rejection method to generate from some density
f uses a hat function h ≥ f and rescales h vertically to a probability density
g = h/

∫ ∞
−∞ h(y)dy, often called the proposal density. A random variate X is

generated from g, is accepted with probability f (X)/h(X), is rejected otherwise,

120 Z. Botev and P. L’Ecuyer

and the procedure is repeated until X is accepted as the retained realization. In
practice, more elaborate versions are used that incorporate transformations and
partitions of the area under h.

Any of these proposed rejection methods can be applied easily if Φ(b) − Φ(a)

is large enough, just by adding a rejection step to reject any value that falls outside
[a, b]. The acceptance probability for this step is Φ(b)−Φ(a). When this probability
is too small, this becomes too inefficient and something else must be done. One way
is to define a proposal g whose support is exactly [a, b], but this could be inefficient
(too much overhead) when a and b change very often. Chopin [7] developed
a rejection method specially designed for this situation. The method works by
juxtaposing a large number of rectangles of different heights (with equal surface)
over some finite interval [amin, amax], similar to the trapezoidal approximation in
numerical quadrature. However, even Chopin’s method achieves efficiency only
when it uses an exponential proposal with rate a = amax, when amax is large enough.
Generally, Chopin’s trapezoidal method is very fast, and possibly the best method,
when [amin, amax] contains or is close to zero, but it requires the storage of large
precomputed tables. This can be slow on hardware for which memory is limited,
like GPUs.

It uses an exponential proposal with rate a = amax (the RejectTail variant of
Algorithms 8.2 below) for the tail above amax or when a > a′

max. The fastest
implementation uses 4000 rectangles, amax ≈ 3.486, a′

max ≈ 2.605. This method is
fast, although it requires the storage of very large precomputed tables, which could
actually slow down computations on certain type of hardware for which memory is
limited, like GPUs.

Simple rejection methods for the standard normal truncated to [a,∞), for a ≥ 0,
have been proposed long ago. Marsaglia [19] proposed a method that uses for g the
standard Rayleigh distribution truncated over [a,∞). An efficient implementation
is given in [8, page 381]. Devroye [8, page 382] also gives an algorithm that uses
for g an exponential density of rate a shifted by a. These two methods have exactly
the same acceptance probability,

α(a) = a
√

2π exp(a2/2)Φ(a), (8.8)

which converges to 1 when a → ∞. Geweke [9] and Robert [22] optimized the
acceptance probability to

β(a) = λ
√

2π exp
(
aλ − λ2/2

)
Φ(a)

by taking the rate λ = (a + √
a2 + 4)/2 > a for the shifted exponential proposal.

However, the gain with respect to Devroye’s method is small and can be wiped out
easily by a larger computing time per step. For large a, both are very close to 1 and
there is not much difference between them.

We will compare two ways of adapting these methods to a truncation over a
finite interval [a, b]. The first one is to keep the same proposal g which is positive

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 121

over the interval [a,∞) and reject any value generated above b. The second one
truncates and rescales the proposal to [a, b] and applies rejection with the truncated
proposal. We label them by RejectTail and TruncTail, respectively. TruncTail has a
smaller rejection probability, by the factor 1−Φ(a)/Φ(b), but also entails additional
overhead to properly truncate the proposal. Typically, it is worthwhile only if this
additional overhead is small and/or the interval [a, b] is very narrow, so it improves
the rejection probability significantly. Our experiments will confirm this.

Algorithms 8.2, 8.3, 8.4 state the rejection methods for the TruncTail case with
the exponential proposal with rate a [8], with the rate λ proposed in [22], and
with the standard Rayleigh distribution, respectively, extended to the case of a
finite interval [a, b]. For the RejectTail variant, one would remove the computation
of q, replace ln(1 − qU) by ln U , and add X ≤ b to the acceptance condition.
Algorithm 8.5 gives this variant for the Rayleigh proposal.

Algorithm 8.2 : X ∼ TNa,b(0, 1) with exponential proposal with rate a, truncated

Ka ← 2a2

q ← 1 − exp(−(b − a)a)

repeat
Generate U,V ∼ U(0, 1), independent
X ← − ln(1 − qU)

E ← − ln(V)

until X2 ≤ KaV

return a + X/a

Algorithm 8.3 : X ∼ TNa,b(0, 1) with exponential proposal with rate λ, truncated

λ ← (a + √
a2 + 4)/2

q ← 1 − exp(−(b − a)λ)

repeat
Generate U,V ∼ U(0, 1), independent
X ← a − ln(1 − qU)/λ

until V ≤ exp((X − λ)2/2)

return a + X/a

Algorithm 8.4 : X ∼ TNa,b(0, 1) with Rayleigh proposal, truncated

c ← a2/2
q ← 1 − exp(c − b2/2)

repeat
Simulate U,V ∼ U(0, 1), independently.
X ← c − ln(1 − qU)

until V 2X ≤ a

return X ← √
2X

122 Z. Botev and P. L’Ecuyer

Algorithm 8.5 : X ∼ TNa,∞(0, 1) with Rayleigh proposal and RejectTail

c ← a2/2
repeat

Simulate U,V ∼ U(0, 1), independently.
X ← c − ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b

return
√

2X

When the interval [a, b] is very narrow, it makes sense to just use the uniform
distribution over this interval for the proposal g. This is suggested in [22] and shown
in Algorithm 8.6. Generating from the proposal is then very fast. On the other hand,
the acceptance probability may become very small if the interval is far in the tail and
b−a is not extremely small. Indeed, the acceptance probability of Algorithm 8.6 is:

√
2π exp(a2/2)(Φ(a)−Φ(b))

b−a
= q(a)−q(b) exp((a2−b2)/2)

b−a
,

which decays at a rate of 1/a when a → ∞ while (b − a) = O(1) remains
asymptotically constant (f (x) = O(g(x)) stands for limx↑∞ |f (x)/g(x)| < ∞).
However, when the length of the interval (b − a) = O(1/a), then the acceptance
probability is easily shown to be asymptotically O(1), rendering Algorithm 8.6
very useful in the tail. In fact, later in Table 8.2 we report that over the interval
[a, b) = [100.0, 100.0001] Algorithm 8.6 is decidedly the fastest method.

Algorithm 8.6 : X ∼ TNa,b(0, 1) with uniform proposal, truncated
repeat

Simulate U,V ∼ U(0, 1), independently.
X ← a + (b − a)U

until 2 ln V ≤ a2 − X2

return X

Another choice that the user can have with those generators (and for any variate
generator that depends on some distribution parameters) is to either precompute
various constants that depend on the parameters and store them in some “distribu-
tion” object with fixed parameter values, or to recompute these parameter-dependent
constants each time a new variate is generated. This type of alternative is common in
modern variate generation software [16, 17]. The first approach is worthwhile if the
time to compute the relevant constants is significant and several random variates are
to be generated with exactly the same distribution parameters. For the applications
in Bayesian statistics mentioned earlier, it is typical that the parameters a and b

change each time a new variate is generated [7]. But there can be applications in
which a large number of variates are generated with the same a and b.

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 123

For one-sided intervals [a,∞), the algorithms can be simplified. One can use the
RejectTail framework and since b = ∞, there is no need to check if X ≤ b. When
reporting our test results, we label this the OneSide case.

Note that computing an exponential is typically more costly than computing a
log (by a factor of 2 or 3 for negative exponents and 10 for large exponents, in our
experiments) and the latter is more costly than computing a square root (also by a
factor of 10). This means significant speedups could be obtained by avoiding the
recomputing of the exponential each time at the beginning of Algorithms 8.2, 8.3,
and 8.4. This is possible if the same parameter b is used several times, or if b = ∞,
or if we use RejectTail instead of TruncTail.

8.2.3 Speed Comparisons

We report a representative subset of results of speed tests made with the different
methods, for some pairs (a, b). In each case, we generated 108 (100 million)
truncated normal variates, added them up, printed the CPU time required to do
that, and printed the sum for verification. The experiments were made in Java
using the SSJ library [16], under Eclipse and Windows 10, on a Lenovo X1
Carbon Thinkpad with an Intel Core(TM) i7-5600U (single) processor running at
2.60 GHz. All programs were executed in a single thread and the CPU times were
measured using the stopwatch facilities in class Chrono of SSJ, which relies on the
getThreadCpuTime method from the Java class ThreadMXBean to obtain the
CPU time consumed so far by a single thread, and subtracts to obtain the CPU time
consumed between any two instructions.

The measurements were repeated a few times to verify consistency and varied by
about 1–2% at most. The compile times are negligible relative to the reported times.
Of course, these timings depend on CPU and memory usage by other processes on
the computer, and they are likely to change if we move to a different platform, but
on standard processors the relative timings should remain roughly the same. They
provide a good idea of what is most efficient to do.

Tables 8.1 and 8.2 report the timings, in seconds. The two columns “recompute”
and “precompute” are for the cases where the constants that depend on a and b are
recomputed each time a random variate is generated or are precomputed once and
for all, respectively, as discussed earlier.

ExponD, ExponR, and Rayleigh refer to the TruncTail versions of Algo-
rithms 8.2, 8.3, and 8.4, respectively. We add “RejectTail” to the name for the
RejectTail versions. For ExponRRejectTailLog, we took the log on both sides of
the inequality to remove the exponential in the “until” condition. Uniform refers to
Algorithm 8.6.

InversionSSJ refers to the default inversion method implemented in SSJ, which
uses [2] and gives at least 15 decimal digits of relative precision, combined
with a generic (two-sided) “truncated distribution” class also offered in SSJ.
InverseQuickSSJ is a faster but much less accurate version based on a cruder

124 Z. Botev and P. L’Ecuyer

Table 8.1 Time to generate n = 108 variates for [a, b] = [3.0, 3.1] (left pane) and [a, b] =
[7.0, 8.0] (right pane)

Method CPU time (s) Method CPU time

recom. precom. recom. precom.

Generation in [a, b) Generation in [a, b)

ExponD 6.46 6.22 ExponD 11.70 6.16

ExponDRejectTail 23.04 23.20 ExponDRejectTail 6.04 6.08

ExponR 16.63 9.92 ExponR 15.96 8.98

ExponRRejectTail 32.40 32.40 ExponRRejectTail 9.20 9.09

ExponRRejectTailLog 25.10 25.30 ExponRRejectTailLog 7.03 7.02

Rayleigh 10.29 4.60 Rayleigh 9.86 4.27

RayleighRejectTail 15.23 15.33 RayleighRejectTail 3.91 3.99

Uniform 4.26 4.34 Uniform 25.40 25.68

InverseSSJ 15.14 8.14 InverseSSJ 30.67 8.14

InverseQuickSSJ 18.80 3.31 InverseQuickSSJ n/a n/a

InverseRightTail 31.12 7.66 InverseRightTail 31.12 7.70

Generation in [a,∞) Generation in [a,∞)

ExponDOneSide 6.43 6.46 ExponDOneSide 5.90 5.96

ExponROneSideLog 7.05 6.99 ExponROneSideLog 6.80 6.71

RayleighOneSide 4.07 4.41 RayleighOneSide 3.74 4.05

InverseSSJOneSide 18.81 8.20 InverseSSJOneSide 19.00 8.19

InverseRightTailOneSide 18.72 7.64 InverseRightTailOneSide 18.76 7.59

Table 8.2 Time to generate n = 108 variates for [a, b] = [100.0, 102.0] (left pane) and [a, b] =
[100.0, 100.0001] (right pane)

Method CPU time (s) Method CPU time

recom. precom. recom. precom.

Generation in [a, b) Generation in [a, b)

ExponD 11.68 6.01 ExponD 12.31 6.83

ExponDRejectTail 5.88 5.91 ExponDRejectTail 543.80 546.58

ExponR 15.79 8.86 ExponR 16.47 10.65

ExponRRejectTail 9.13 9.02 ExponRRejectTail 865.24 865.34

ExponRRejectTailLog 6.93 6.96 ExponRRejectTailLog 651.19 648.99

Rayleigh 9.97 4.16 Rayleigh 10.59 5.07

RayleighRejectTail 3.84 3.90 RayleighRejectTail 323.08 322.41

Uniform 650.62 656.42 Uniform 3.59 3.62

InverseMillsRatio 22.31 15.97 InverseMillsRatio 18.03 12.12

Generation in [a,∞) Generation in [a,∞)

ExponDOneSide 5.77 5.82 ExponDOneSide 5.79 5.83

ExponROneSideLog 6.72 6.63 ExponROneSideLog 6.74 6.63

RayleighOneSide 3.67 3.96 RayleighOneSide 3.66 3.99

InverseMillsRatioOneSide 15.62 15.84 InverseMillsRatioOneSide 15.67 15.84

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 125

approximation of Φ from [20] based on table lookups, which returns about six
decimal digits of precision. We do not recommend it, due to its low accuracy.
Moreover, the implementation we used does not handle well values larger than
about 5 in the right tail, so we report results only for small a. InverseRightTail uses
the accurate approximation of Φ together with (8.3). InverseMillsRatio is our new
inversion method based on Mills ratio, with δ∗ = 10−10. This method is designed
for the case where a is large, and our implementation is designed to be accurate for
a ≥ 10, so we do not report results for it in Table 8.1. For all the methods, we add
“OneSide” for the simplified OneSide versions, for which b = ∞.

For the OneSide case, that is, b = ∞, the Rayleigh proposal gives the fastest
method in all cases, and there is no significant gain in precomputing and storing the
constant c = a2/2.

For finite intervals [a, b], when b − a is very small so Φ(b)/Φ(a) is close to
1, the uniform proposal wins and the RejectTail variants are very slow. See right
pane of Table 8.2. Precomputing the constants is also not useful for the uniform
proposal. For larger intervals in the tail, Φ(x) decreases quickly at the beginning of
the interval and this leads to very low acceptance ratios; see right pane of Table 8.1
and left pane of Table 8.2. A Rayleigh proposal with the RejectTail option is usually
the fastest method in this case. Precomputing and storing the constants is also not
very useful for this option. For intervals closer to the center, as in the left pane of
Table 8.1, the uniform proposal performs well for larger (but not too large) intervals,
and the RejectTail option becomes slower unless [a, b] is very wide. The reason is
that for a fixed w > 0, Φ(a + w)/Φ(a) is larger (closer to 1) when a > 0 is closer
to 0.

8.3 Simulation from the Tail of the Multivariate Normal

Let φ�(y) and

Φ�(a) = P[Y ≥ a], Y ∼ N(0, �),

denote the density and tail distribution, respectively, of the multivariate N(0, �)

distribution with (positive-definite) covariance matrix � ∈ R
d×d . In the multivariate

extension to (8.1), we wish to simulate from the pdf (I{·} is the indicator function):

φ�(y)I{y ≥ a(γ)}
Φ�(a(γ))

, (8.9)

where maxi ai > 0, and γ is a tail parameter such that at least one component of
a(γ) diverges to ∞ when γ → ∞ (that is, limγ↑∞ ‖a(γ)‖ = ∞, see [10]). To
simulate from this conditional density, we describe a rejection algorithm that uses
an optimally designed multivariate exponential proposal. Interestingly, unlike the
truncated exponential proposal in the one-dimensional setting (see Algorithms 8.2

126 Z. Botev and P. L’Ecuyer

and 8.3), our multivariate exponential proposal is not truncated. Before giving the
details of the rejection algorithm, we need to introduce some preliminary theory and
notation.

8.3.1 Preliminaries and Notation

Define P as a permutation matrix, which maps (1, . . . , d)� into the permutation
vector p = (p1, . . . , pd)�, that is, P(1, . . . , d)� = p. Then, Φ�(a(γ)) = P(PY ≥
Pa(γ)) and PY ∼ N(0, P�P�) for any p. We will specify p shortly.

First, define the constrained (convex) quadratic optimization:

min
y

1

2
y� (

P�P�)−1
y

subject to: y ≥ Pa(γ).

(8.10)

Suppose λ ∈ R
d is the Lagrange multiplier vector, associated with (8.10). Partition

the vector as λ = (λ�
1 ,λ�

2)� with dim(λ1) = d1 and dim(λ2) = d2, where d1+d2 =
d. In the same way, partition vectors y, a, and matrix

� =
(

�11 �12

�21 �22

)

. (8.11)

We now observe that we can select the permutation vector p and the corresponding
matrix P so that all the d1 active constraints in (8.10) correspond to λ1 > 0 and
all the d2 inactive constraints correspond to λ2 = 0. Without loss of generality, we
can thus assume that a and � are reordered via the permutation matrix P as a pre-
processing step. After this preprocessing step, the solution y∗ of (8.10) with P = I
will satisfy y∗

1 = a1 (active constraints: λ1 > 0) and y∗
2 > a2 (inactive constraints:

λ2 = 0).
We also assume that for large enough γ , the active constraint set of (8.10)

becomes independent of γ , see [10]. An example is given in Corollary 8.1 below.

8.3.2 The Rejection Algorithm

First, we note that simulating Y from (8.9) is equivalent to simulating X ∼
N(−a(γ),�), conditional on X ≥ 0, and then delivering Y = X + a. Thus, our
initial goal is to simulate from the target:

π(x) = φ�(x + a(γ))I{x ≥ 0}
Φ�(a(γ))

.

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 127

Second, the partitioning into active and inactive constraints of (8.10) suggests the
following proposal density: g(x; η) = g1(x1; η)g2(x2|x1), η > 0, where

g1(x1; η) = exp(−η�x1)

d1∏

k=1

ηk, x1 ≥ 0

is a multivariate exponential proposal, and

g2(x2|x1) = φ�(x + a)

φ�11(x1 + a1)

is the multivariate normal pdf of x2, conditional on x1 (see [12, Page 146]):

X2|(X1 = x1) ∼ N(−a2 + ��
12�

−1
11 (x1 + a1), �22 − ��

12�
−1
11 �12).

With this proposal, the likelihood ratio for acceptance–rejection is

π(x)Φ�(a(γ))

g(x; η)
= I{x ≥ 0}φ�11(x1 + a1)

g1(x1; η)
= I{x ≥ 0} exp (ψ(x1; η)) ,

where ψ is defined as

ψ(x1; η) := − (x1 + a1)
��−1

11 (x1 + a1)

2
+ η�x1 −

d1∑

k=1

ln(ηk)

− ln |�11|
2

− d1 ln(2π)

2
.

Next, our goal is to select the value for η that will maximize the acceptance rate of
the resulting rejection algorithm (see Algorithm 8.7 below).

It is straightforward to show that, with the given proposal density, the acceptance
rate for a fixed η > 0 is given by

Φ�(a(γ)) exp(− maxx1≥0 ψ(x1; η)).

Hence, to maximize the acceptance rate, we minimize maxx1≥0 ψ(x1; η) with
respect to η. In order to compute the minimizing η, we exploit a few of the properties
of ψ .

The most important property is that ψ is concave in x1 for every η, and that ψ

is convex in η for every x1. Moreover, ψ is continuously differentiable in η, and we
have the saddle-point property (see [3]):

min
η>0

max
x1≥0

ψ(x1; η) = max
x1≥0

min
η>0

ψ(x1; η). (8.12)

128 Z. Botev and P. L’Ecuyer

Let ψ∗ = ψ(x∗
1; η∗) denote the optimum of the minimax optimization (8.12) at the

solution x∗
1 and η∗. The right-hand-side of (8.12) suggests a method for computing

η∗, namely, we can first minimize with respect to η (this gives η = 1/x1, where the
vector division is componentwise), and then maximize over x1 ≥ 0. This yields the
concave (unconstrained) optimization program for x∗

1:

x∗
1 = argmax

{

− (x1 + a1)
��−1

11 (x1 + a1)

2
+

d1∑

k=1

ln xk

}

. (8.13)

It then follows that η∗ = 1/x∗
1. In summary, we have the following algorithm for

simulation from (8.9).

Algorithm 8.7 : X ∼ N(0, �) conditional on X ≥ a(γ), for large γ

Solve (8.10) with P = I and compute the associated Lagrange multiplier λ. Using λ, construct
the reordering (permutation) matrix P, if needed.
a ← Pa

� ← P�P�
Let L be the lower triangular Cholesky factor of �22 − ��

12�
−1
11 �12, see (8.11)

Solve the concave optimization problem (8.13) to obtain x∗
1

η∗
1 ← 1/x∗

1
ψ∗ ← ψ(x∗

1; η∗)
repeat

repeat
Simulate U0, U1, . . . , Ud1 ∼ U(0, 1), independently
Ek ← − ln(Uk)/η

∗
k for k = 1, . . . , d1

X1 ← (E1, . . . , Ed1)
� {simulate X1 ∼ g1(x1; η∗)}

E ← − ln(U0)

until E > ψ∗ − ψ(X1; η∗)
Z2 ← (Z1, . . . , Zd2)

�, where Z1, . . . , Zd2 ∼ N(0, 1), independently.
X2 ← LZ2 − a2 + ��

12�
−1
11 (X1 + a1) {simulate X2 ∼ g2(x2|X1)}

until X2 ≥ 0
X ← X + a {shift to obtain draw from pdf (8.9)}
X ← P�X {reverse reordering, if any}
return X

8.3.3 Asymptotic Efficiency

The acceptance rate of Algorithm 8.7 above is

Pg[E > ψ∗ − ψ(X1; η);X2 ≥ 0] = Φ�(a(γ)) exp(−ψ∗),

where Pg indicates that X was drawn from the proposal g(x; η∗). As in the one-
dimensional case, see (8.8), it is of interest to find out how this rate depends on

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 129

the tail parameter γ . In particular, if the acceptance rate decays to zero rapidly as
γ ↑ ∞, then Algorithm 8.7 will not be a viable algorithm for simulation from the
tail of the multivariate Gaussian. Fortunately, the following result asserts that the
acceptance rate does not decay to zero as we move further and further into the tail
of the Gaussian.

Theorem 8.1 (Asymptotically Bounded Acceptance Rate) Let y∗ be the solu-
tion to (8.10) after any necessary reordering via permutation matrix P. Define
a∞ := limγ↑∞(a2(γ) − y∗

2(γ)) with a∞ ≤ 0. Then, the acceptance rate of the
rejection Algorithm 8.7 is ultimately bounded from below:

lim inf
γ↑∞ ΦΣ(a(γ)) exp(−ψ∗(γ)) ≥ P[Y 2 ≥ a∞ | Y 1 = 0],

where the probability P[Y 2 ≥ a∞ | Y 1 = 0] is calculated under the original
measure (that is, Y ∼ N(0,Σ)) and, importantly, does not depend on γ .

Proof First, note that with the assumptions and notation of Sect. 8.3.1, Hashorva
and Hüsler [10] have shown the following:

Φ�(a(γ)) = P[Y 2≥a∞ | Y 1=0]
(2π)d1/2|�11|1/2

∏d1
k=1 e�

k �−1
11 a1

exp

(

− a�
1 �−1

11 a1
2

)

(1 + o(1)), γ ↑ ∞,

where ek is the unit vector with a 1 in the k-th position, and f (x) = o(g(x)) stands
for limx→a f (x)/g(x) = 0.

Second, the saddle-point property (8.12) implies the following sequence of
inequalities for any arbitrary η: ψ∗ ≤ ψ(x∗

1; η) ≤ maxx1 ψ(x1; η). In particular,
when η = �−1

11 a1, then maxx1 ψ(x1;�−1
11 a1) = ψ(0;�−1

11 a1), and we obtain:

exp(−ψ∗) ≥ exp(−ψ(0;�−1
11 a1)) =

∏d1
k=1 e�

k �−1
11 a1

φ�11 (a1)

Therefore, Φ�(a(γ)) exp(−ψ∗) ≥ P[Y 2 ≥ a∞ | Y 1 = 0](1 + o(1)) as γ ↑ ∞, and
the result of the theorem follows. �

As a special case, we consider the asymptotic result of Savage [23]:

Φ�(γ�c)

φ�(γ�c)
= 1

γ d
∏d

k=1 ck

(1 + o(1)), c > 0, γ ↑ ∞, (8.14)

which is the multivariate extension of the one-dimensional Mills’ ratio [21]: Φ(γ)
φ(γ)

=
1
γ
(1 + o(1)). Interestingly, the following corollary shows that when the tail is of the

Savage-Mills type, the acceptance probability not only remains bounded away from
zero, but approaches unity.

130 Z. Botev and P. L’Ecuyer

Table 8.3 Estimates of the acceptance probability, Φ�(a(γ)) exp(−ψ∗), as a function of γ

γ 10 15 20 25 30 50 100 103

Accept. rate 0.009 0.04 0.0815 0.15 0.19 0.34 0.44 0.50

Corollary 8.1 (Acceptance with Probability One) The acceptance rate of Algo-
rithm 8.7 for simulation from (8.9) with a = γΣc for some c > 0 satisfies:

lim
γ↑∞ ΦΣ(γΣc) exp(−ψ∗(γ)) = 1

Proof Straightforward computations show that the Lagrange multiplier of (8.10)
(with P = I, the identity matrix) is λ = �−1a = γ c > 0, so that the set of inactive
constraints is empty. Then, repeating the argument in Theorem 8.1:

exp(−ψ∗) ≥ exp(−ψ(0, γ c)) = γ d
∏d

k=1 ck

φ�(γ�c)

(8.14)= 1 + o(1)

Φ�(γ�c)
,

as desired. �
As a numerical example, we used Algorithm 8.7 to simulate 103 random vectors

from (8.9) for d = 10, a = γ 1, and � = 9
10 11� + 1

10 I (strong positive correlation)
for a range of large values of γ .

Table 8.3 above reports the acceptance rate, estimated by observing the propor-
tion of rejected proposals in line 17 of Algorithm 8.7, for a range of different γ .

The table confirms that as γ gets larger, the acceptance rate improves.

8.4 Conclusion

We have proposed and tested inversion and rejection methods to generate a standard
normal, truncated to an interval [a, b], when a � 0. We also proposed a rejection
method for the tail of the multivariate normal distribution.

In the univariate setting, inversion is slower than the fastest rejection method, as
expected. However, inversion is still desirable in many situations. Our new inversion
method excels in those situations when a is large (say, a ≥ 10). For a not too large
(say, a ≤ 30), the accurate approximation of [2] implemented in InversionSSJ works
well.

When inversion is not needed, the rejection method with the Rayleigh proposal
is usually the fastest when a is large enough. especially if a large number of
variates must be generated for the same interval [a, b], in which case the cost of
precomputing the constants used in the algorithm can be amortized over many calls.

It is interesting to see that in the univariate setting, using the Rayleigh proposal is
faster than using the truncated exponential proposal as in [7, 9, 22]. The RejectTail
variant is usually the fastest, unless Φ̄(b)/Φ̄(a) is far from 0, which happens when
the interval [a, b] is very narrow or a is not large (say a ≤ 5).

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 131

However, in the multivariate setting, we show that the truncated exponential
method of [7, 9, 22] can be extended to help simulate from the multivariate normal
tail, provided that we use an untruncated multivariate exponential proposal (that is,
X ≥ 0) combined with a shift of the Gaussian mean (that is, Y = X + a).

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)
2. J.M. Blair, C.A. Edwards, J.H. Johnson, Rational Chebyshev approximations for the inverse

of the error function. Math. Comput. 30, 827–830 (1976)
3. Z.I. Botev, The normal law under linear restrictions: simulation and estimation via minimax

tilting. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(1), 125–148 (2017)
4. Z.I. Botev, P. L’Ecuyer, Efficient estimation and simulation of the truncated multivariate

Student-t distribution, in Proceedings of the 2015 Winter Simulation Conference (IEEE Press,
Piscataway, 2015), pp. 380–391

5. Z.I. Botev, P. L’Ecuyer, Simulation from the normal distribution truncated to an interval in
the tail, in 10th EAI International Conference on Performance Evaluation Methodologies and
Tools, 25th–28th October 2016 Taormina (ACM, New York, 2017), pp. 23–29

6. Z.I. Botev, M. Mandjes, A. Ridder, Tail distribution of the maximum of correlated Gaussian
random variables, in Proceedings of the 2015 Winter Simulation Conference (IEEE Press,
Piscataway, 2015), pp. 633–642

7. N. Chopin, Fast simulation of truncated Gaussian distributions. Stat. Comput. 21(2), 275–288
(2011)

8. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, NY, 1986)
9. J. Geweke, Efficient simulation of the multivariate normal and Student-t distributions subject

to linear constraints and the evaluation of constraint probabilities, in Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interface, Fairfax, VA, 1991, pp. 571–578

10. E. Hashorva, J. Hüsler, On multivariate Gaussian tails. Ann. Inst. Stat. Math. 55(3), 507–522
(2003)

11. W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation
(Springer, Berlin, 2004)

12. D.P. Kroese, T. Taimre, Z.I. Botev, Handbook of Monte Carlo Methods (Wiley, New York,
2011)

13. P. L’Ecuyer, Variance reduction’s greatest hits, in Proceedings of the 2007 European
Simulation and Modeling Conference, Ghent (EUROSIS, Hasselt, 2007), pp. 5–12

14. P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance. Finance Stochast. 13(3),
307–349 (2009)

15. P. L’Ecuyer, Random number generation with multiple streams for sequential and parallel
computers, in Proceedings of the 2015 Winter Simulation Conference, pp. 31–44 (IEEE Press,
New York, 2015)

16. P. L’Ecuyer, SSJ: stochastic simulation in Java, software library (2016). http://simul.iro.
umontreal.ca/ssj/

17. J. Leydold, UNU.RAN—Universal Non-Uniform RANdom number generators (2009).
Available at http://statmath.wu.ac.at/unuran/

18. G. Marsaglia, Generating a variable from the tail of the normal distribution. Technometrics
6(1), 101–102 (1964)

19. G. Marsaglia, T.A. Bray, A convenient method for generating normal variables. SIAM Rev. 6,
260–264 (1964)

20. G. Marsaglia, A. Zaman, J.C.W. Marsaglia, Rapid evaluation of the inverse normal distribution
function. Stat. Probab. Lett. 19, 259–266 (1994)

http://simul.iro.umontreal.ca/ssj/
http://simul.iro.umontreal.ca/ssj/
http://statmath.wu.ac.at/unuran/

132 Z. Botev and P. L’Ecuyer

21. J.P. Mills, Table of the ratio: area to bounding ordinate, for any portion of normal curve.
Biometrika 18(3/4), 395–400 (1926)

22. C.P. Robert, Simulation of truncated normal variables. Stat. Comput. 5(2), 121–125 (1995)
23. R.I. Savage, Mills’ ratio for multivariate normal distributions. J. Res. Nat. Bur. Standards Sect.

B 66, 93–96 (1962)
24. D.B. Thomas, W. Luk, P.H. Leong, J.D. Villasenor, Gaussian random number generators. ACM

Comput. Surv. 39(4), Article 11 (2007)

	8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution
	8.1 Introduction
	8.2 Simulation from the Tail of the Univariate Normal
	8.2.1 Inversion Far in the Right Tail
	8.2.2 Rejection Methods
	8.2.3 Speed Comparisons

	8.3 Simulation from the Tail of the Multivariate Normal
	8.3.1 Preliminaries and Notation
	8.3.2 The Rejection Algorithm
	8.3.3 Asymptotic Efficiency

	8.4 Conclusion
	References

