
Systems Modeling:
Methodologies
and Tools

Antonio Pulia� to
Kishor S. Trivedi Editors

EAI/Springer Innovations in Communication and Computing

EAI/Springer Innovations in Communication
and Computing

Series editor
Imrich Chlamtac, CreateNet, Trento, Italy

Editor’s Note

The impact of information technologies is creating a new world yet not fully
understood. The extent and speed of economic, life style and social changes
already perceived in everyday life is hard to estimate without understanding the
technological driving forces behind it. This series presents contributed volumes
featuring the latest research and development in the various information engineering
technologies that play a key role in this process.

The range of topics, focusing primarily on communications and computing engi-
neering include, but hardly limited to, wireless networks; mobile communication;
design and learning; gaming; interaction; e-health and pervasive healthcare; energy
management; smart grids; internet of things; cognitive radio networks; computation;
cloud computing; ubiquitous connectivity, and in mode general smart living, smart
cities, Internet of Things and more. The series publishes a combination of expanded
papers selected from hosted and sponsored European Alliance for Innovation (EAI)
conferences that present cutting edge, global research as well as provide new
perspectives on traditional related engineering fields. This content, complemented
with open calls for contribution of book titles and individual chapters, together
maintain Springer’s and EAI’s high standards of academic excellence. The audi-
ence for the books consists of researchers, industry professionals, advanced level
students as well as practitioners in related fields of activity include information and
communication specialists, security experts, economists, urban planners, doctors,
and in general representatives in all those walks of life affected ad contributing to
the information revolution.

About EAI

EAI is a grassroots member organization initiated through cooperation between
businesses, public, private and government organizations to address the global
challenges of Europe’s future competitiveness and link the European Research
community with its counterparts around the globe. EAI tens of thousands of
members on all continents together with its institutional members base consisting of
some of the largest companies in the world, government organizations, educational
institutions, strive to provide a research and innovation platform which recognizes
excellence and links top ideas with markets through its innovation programs.

Throughs its open free membership model EAI promotes a new research and
innovation culture based on collaboration, connectivity and excellent recognition
by community.

More information about this series at http://www.springer.com/series/15427

http://www.springer.com/series/15427

Antonio Puliafito • Kishor S. Trivedi
Editors

Systems Modeling:
Methodologies and Tools

123

Editors
Antonio Puliafito
Department of Engineering
University of Messina
Messina, Italy

Kishor S. Trivedi
ECE Department School of Engineering
Duke University
Durham, NC, USA

ISSN 2522-8595 ISSN 2522-8609 (electronic)
EAI/Springer Innovations in Communication and Computing
ISBN 978-3-319-92377-2 ISBN 978-3-319-92378-9 (eBook)
https://doi.org/10.1007/978-3-319-92378-9

Library of Congress Control Number: 2018951771

© Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-0385-2711
https://doi.org/10.1007/978-3-319-92378-9

Contents

1 Systems Modelling: Methodologies and Tools . 1
Antonio Puliafito and Kishor S. Trivedi

Part I Modelling Theory

2 SMVA: A Stable Mean Value Analysis Algorithm for Closed
Systems with Load-Dependent Queues . 11
Lei Zhang and Douglas G. Down

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to
Parallel Heterogeneous Servers . 29
Esa Hyytiä, Rhonda Righter, Olivier Bilenne, and Xiaohu Wu

4 Modelling and Efficient Solution of Multiple-Phased Systems 47
Elvio Gilberto Amparore and Susanna Donatelli

5 Deterministic Network Calculus Analysis of Multicast Flows 63
Steffen Bondorf and Fabien Geyer

6 Modeling Techniques for Pool Depletion Systems . 79
Davide Cerotti, Marco Gribaudo, Riccardo Pinciroli,
and Giuseppe Serazzi

7 Performance of a Single Server Queue Supported by an
Intermittent Server . 95
Raymond A. Marie

8 Simulation from the Tail of the Univariate and Multivariate
Normal Distribution . 115
Zdravko Botev and Pierre L’Ecuyer

v

vi Contents

Part II Applications to Communication Systems
and Infrastructures

9 A Comparison of Markov Reward Based Resource-Latency
Aware Heuristics for the Virtual Network Embedding Problem 135
Francesco Bianchi and Francesco Lo Presti

10 Delay Efficient Load Balancing Scheme for Component
Carrier Selection in Carrier Aggregation in LTE-A . 151
Aditi Gupta, Dharmaraja Selvamuthu, and Subrat Kar

11 Modeling Security Requirements for VNE Algorithms:
A Practical Approach . 165
Ramona Kühn, Andreas Fischer, and Hermann de Meer

12 Performance Analysis of Data Traffic in Small Cells Networks
with User Mobility . 181
Philippe Olivier, Florian Simatos and Alain Simonian

Part III Optimization and Quantitative Evaluation Techniques
Applied to Cloud Computing and the Internet of Things

13 A Technique to Identify Data Exchange Between Cloud Virtual
Machines . 201
Nicola Bicocchi, Claudia Canali, and Riccardo Lancellotti

14 Container Orchestration: A Survey . 221
Emiliano Casalicchio

15 A Cloud-Based Overlay Networking for the Internet of Things:
Quantitative Evaluation. 237
Dario Bruneo, Salvatore Distefano, Francesco Longo,
Giovanni Merlino, and Antonio Puliafito

Part IV Tools Development for the Analysis
of Specific Areas of Interests

16 Markovian Performance Evaluation with BuTools . 253
Gábor Horváth and Miklós Telek

17 J2CBROKER as a Service: A Service Broker Simulation Tool
Integrated in OpenStack Environment. 269
Riccardo Di Pietro, Maurizio Giacobbe, Carlo Puliafito,
and Marco Scarpa

18 A Software Tool for the Evaluation of Transient Removal
Methods in Discrete Event Stochastic Simulations . 287
Sushma Nagaraj and Armin Zimmermann

Contents vii

19 A House Appliances-Level Co-simulation Framework for
Smart Grid Applications . 303
Abdalkarim Awad, Peter Bazan, and Reinhard German

Index . 319

Chapter 1
Systems Modelling: Methodologies
and Tools

Antonio Puliafito and Kishor S. Trivedi

Modern systems implement multiple and complex operations to manage the user
demand, thereby ensuring adequate quality levels. They are usually made of a
collection of interconnected (autonomous) subsystems, with a common goal to be
pursued, that are perceived as a whole, single, integrated facility.

Several heterogeneous technologies and processes are usually combined (com-
puting, networking, manufacturing, marketing, mechanical, economical, biological,
etc.) that involve complex interactions, interferences, and dependencies. Basic
functionalities have to be provided through adequate mechanisms, but also advanced
ones implementing specific quality-driven policies have to be delivered. For these
reasons, functional and non-functional properties are key issues to be addressed dur-
ing the whole system life cycle, both at design time and at run time, as well as during
maintenance stages, thus requiring adequate methods and techniques for their eval-
uation. Simply speaking, functional requirements describe what the system should
do, while non-functional requirements describe how the system works [1]. Typical
functional requirements include Administrative functions, Business Rules, Transac-
tion corrections, Authorization and Authentication levels, Reporting Requirements
and Historical Data, External Interfaces, Legal and Regulatory Requirements. Non-
functional requirements can be seen as quality attributes of a system, i.e., criteria that
judge the operation of a system, rather than specific behaviors [2]. Some typical non-
functional requirements are Performance (such as Response Time, Throughput, and
Utilization), Scalability, Availability, Reliability, Recoverability, Maintainability,

A. Puliafito (�)
Department of Engineering, University of Messina, Messina, Italy
e-mail: apuliafito@unime.it

K. S. Trivedi
ECE Department School of Engineering, Duke University, Durham, NC, USA
e-mail: ktrivedi@duke.edu

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_1&domain=pdf
http://orcid.org/0000-0003-0385-2711
mailto:apuliafito@unime.it
mailto:ktrivedi@duke.edu
https://doi.org/10.1007/978-3-319-92378-9_1

2 A. Puliafito and K. S. Trivedi

and Security. Systems modelling specifically focuses on non-functional parameters,
as the intention is to quantitatively evaluate the behavior of a system.

Measurements are derived from a real system running under real operating
conditions. They report the actual system performance in the condition in which
the system is working. For this reason, measurements are very specific since they
heavily depend on the characteristics of the measured system, and on the particular
workload the system is experiencing during the measurement itself [3].

There are several situations in which relying upon measurements alone is not
sufficient. For instance, when the performances of two systems have to be compared,
it is difficult to ensure that the operating conditions under which measurements
are performed are equivalent, thus yielding a fair comparison. To overcome such
problem, benchmarks [4] feed the system with an artificial workload, so to perform
observations in equivalent working conditions, and meaningful comparisons can be
made.

Measurements and benchmarks need a system to be observed. When the perfor-
mance analysis regards a system that is not yet operational (i.e., it is not available),
its representative and detailed approximation (usually indicated as a prototype) has
to be developed, either in hardware or in software. Prototypes are used to make
observations, possibly using benchmarks as artificial workloads.

In measurements, benchmarks, and prototypes the performance of the system is
evaluated through observation of the system’s behavior, in working conditions, i.e.,
when it processes the actual user requests or the benchmark. However, evaluating the
performance of a system is an important task not only during and after the system
implementation, but also at the early design stage to compare possible alternative
choices. When the design and production of a new system is the consequence of
ever-increasing performance, like in the computer and telecommunications fields,
early performance analysis is absolutely mandatory.

During the design process, measurements on real systems are obviously not
possible, and also prototype implementations present difficulties due to the necessity
of specifying many details that are far from being decided. A more interesting
alternative to solve these problems is the use of models to define characteristics
of the systems under study, and to investigate their best configuration by modifying
the parameters of different components. System modelling is the art of developing an
abstract representation of the real system to derive and analyze its behavior in terms
of performance and dependability under different functioning conditions, without
resorting to measurements on the real system as a whole or its prototype [5–8].
We note here that measurements of system components (or subsystems) do provide
input parameter values for the overall system model [7].

System models can be analyzed/solved through three different approaches:

• simulation
• analytical (closed-form or numerical)
• hybrid (combining simulation and analytic methods).

In all the three cases, the study of the system is carried out using a description
that includes only some of its main characteristics. In simulative solutions, the

1 Systems Modelling: Methodologies and Tools 3

description is embedded into a computer program that mimics the system dynamics,
whereas analytical methods consist in developing and solving sets of mathematical
equations governing system dynamics [5, 8, 9]. The most attractive advantage of
simulation is that the system under study can be represented in a very detailed
way, without imposing many restrictions on the model, whereas in analytical
models many simplifying assumptions are often introduced, so that the underlying
mathematical equations are tractable.

In simulative solutions the accuracy of details is limited only by the time
employed to obtain the final measures; more detailed the description of the model,
longer is the time required for its solution. It is very common that a very detailed
model requires days or even weeks to be evaluated. “Time” is the critical parameter
in simulation modelling. Techniques for parallel and distributed simulation do exist
to somewhat alleviate this problem [10].

Usually, analytical models have a higher level of abstraction, and they require
shorter time to solve. This advantage becomes crucial when, for instance, sensitivity
analysis [11] or optimization [12] is to be carried out. In fact, analytical models are
described by sets of equations, and by taking formal derivatives, new equations can
be derived that enable the computation of derivatives of the measures of interest
with respect to the parameters [11]. Whereas a new simulation run, possibly very
time consuming, has to be executed with a new set of parameter values with
respect to which the sensitivity analysis is to be performed [6]. We note here
significant research on perturbation theory that reduces some of these difficulties
with simulation [13]. Benefits of simulation and analytic models can be combined
via hybrid model solution techniques; however, this is not as common and we expect
it to develop further in the future [14].

Modern systems are inherently distributed and aim to implement and provide
services that are able to meet ever-increasing quality standards, while minimizing
costs. Systems being part of critical infrastructures have to meet tight dependability,
timeliness, and performance requirements and specifications. The inherently unpre-
dictable nature of such systems requires a quantitative evaluation of deterministic
and probabilistic timed models for their design and maintenance. Techniques for
checking and verifying if and how a distributed system satisfies the requirements
(validation) are specifically required; a proper evaluation of non-functional aspects
(evaluation) is often mandatory; the optimization of the overall behavior of the
system (optimization) is crucial to reduce costs and deliver high quality solutions.
Validation is part of quality management and imposes that a product, service, or
system is checked, inspected, and/or tested to verify that the requirements are
satisfactory [7, 15]. Evaluation analyzes the system’s non-functional properties such
as performance, reliability, and availability [1]. Optimization [12, 16] is instead
related to the identification and selection of the best configuration for the distributed
system according to some given (usually multiple) parameters in order to meet high-
level requirements such as overall costs and sustainability, i.e., the ability to continue
at a particular level for a period of time.

Validation, evaluation, and optimization techniques and methodologies are
sometimes overlapped, i.e., often validation techniques include evaluation

4 A. Puliafito and K. S. Trivedi

and/or optimization and vice versa. In particular, evaluation and optimization
often overlap, although the former usually investigates a single non-functional
aspect of the system, while optimization problems usually evaluate the system
looking at multiple, complex, and/or composed properties such as dependability,
performability [17], and sustainability, often also including costs. In any case, all of
them often rely on models to provide their useful insights. All such considerations
and needs have given birth to an abundance of literature devoted to formal modelling
languages combined with analytical and simulative solution techniques.

The aim of this book is to provide an overview of techniques and methods dealing
with such specific issues in the context of systems modelling and to cover aspects
such as correctness, validity, performance, reliability, availability, energy efficiency,
and sustainability. This book collects some of the papers presented at the 10th
EAI International Conference on Performance Evaluation Methodologies and Tools
Conference (Valuetools 2016), held in Taormina (Italy) from the 25th to the 28th of
October 2016, which have been significantly extended an improved.

Following this path, the book has been organized into four parts dealing with
modelling theory (Part I), applications to communication systems and infrastruc-
tures (Part II), optimization and quantitative evaluation techniques applied to Cloud
computing and the Internet of Things (Part III), and tools development for the
analysis of specific areas of interests (Part IV).

The chapters have been selected to provide a good, although not exhaustive,
coverage of issues, models, and techniques related to validation, evaluation, and
optimization of complex systems, hoping that this will be useful in guiding students,
researchers, and practitioners when approaching the quantitative assessment of
distributed systems. Indeed, a key objective of this book is to help bridge the gap
between modelling theory and practice through specific examples.

Specifically, included in Part I are seven contributions that cover theoretical
aspects of systems modelling. Chapter 2 by Lei Zhang and Douglas G. Down
introduces a numerically Stable MVA (SMVA) algorithm for closed product-form
queueing networks that allows for load-dependent queues and offers a numerically
stable, efficient, and accurate approximate solution. Chapter 3 by Esa Hyytiä,
Rhonda Righter, Olivier Bilenne, and Xiaohu Wu studies the M/D/1 queue and
its generalization, the M/iD/1 queue, when jobs have firm deadlines on waiting
(or sojourn) times. Explicit value functions are derived for these M/D/1-type of
queues that enable the development of efficient cost-aware dispatching policies
to parallel servers. Chapter 4 by Elvio Gilberto Amparore and Susanna Donatelli
defines X-PPN, an extension of the Phased Petri Net formalism that provides the
modeller more freedom in the structure and in the stochastic distribution of the
phases (from deterministic to general) and in the definition of the dependencies
among the system and the phase net. Chapter 5 by Steffen Bondorf and Fabien
Geyer tackles the problem of analyzing multicast flows with deterministic network
calculus without accommodating for it by pessimistic changes to the network
model and thus allowing for the derivation of more accurate performance bounds
than existing approaches. Chapter 6 by D. Cerotti, M. Gribaudo, R. Pinciroli,
and G. Serazzi focuses on Pool Depletion Systems (PDS), i.e., systems where a

http://dx.doi.org/10.1007/978-3-319-92378-9_2
http://dx.doi.org/10.1007/978-3-319-92378-9_3
http://dx.doi.org/10.1007/978-3-319-92378-9_4
http://dx.doi.org/10.1007/978-3-319-92378-9_5
http://dx.doi.org/10.1007/978-3-319-92378-9_6

1 Systems Modelling: Methodologies and Tools 5

large number of tasks must be executed by one or more subsystems with a finite
capacity, to find the allocation policy of all the tasks in the pool that minimizes
the time required to execute all the tasks; Markov models, simulation, and fluid
approximation techniques are considered for this purpose. Chapter 7 by Raymond
Marie shows the importance of intermittent servers in order to reduce the response
times without increasing significantly the idle times of servers, producing a closed
form solution for the steady-state probability distribution and for different metrics
such as expected response times for customers or expectation of busy periods.
Chapter 8 by Zdravko Botev and Pierre L’Ecuyer studies and compares various
methods to generate a random variate or vector from the univariate or multivariate
normal distribution truncated to some finite or semi-infinite region, with special
attention to the situation where the regions are far in the tail.

Part II focuses on specific applications to the telecommunication field and is
composed of four chapters. Chapter 9 by Francesco Bianchi and Francesco Lo Presti
compares two approaches to the Virtual Network Embedding problem based on
Markov Reward Processes, to achieve a good trade-off between resource utilization
and QoS (e.g., latency). Chapter 10 by Aditi Gupta, Dharmaraja Selvamuthu, and
Subrat Kar proposes a load balancing Component Carrier selection scheme which
can be optimized for the Quality of Service (QoS) required by users. Feedback
fluid queue model is developed to analyze and optimize the performance of the
proposed scheme. Chapter 11 by Ramona Kühn, Andreas Fischer, and Hermann
de Meer discusses security requirements of Virtual Networks (VNs) and shows
how they can be modelled to be mapped into the provided security mechanisms
in the physical network. Chapter 12 by Philippe Olivier, Florian Simatos, and Alain
Simonian analyzes the impact of inter-cell mobility on data traffic performance in
dense networks with small cells.

Part III deals with Cloud computing and Internet of Things, proposing different
techniques in five chapters. Chapter 13 by Nicola Bicocchi, Claudia Canali, and
Riccardo Lancellotti proposes a technique to infer VMs communication patterns
starting from input/output network traffic time series of each VM. They discuss both
the theoretical aspect of such technique and the design challenges for its implemen-
tation. Chapter 14 by Emiliano Casalicchio surveys the state-of-the-art solutions
and discusses research challenges in autonomic orchestration of containers. A
reference architecture of an autonomic container orchestrator is also proposed.
Chapter 15 by Dario Bruneo, Salvatore Distefano, Francesco Longo, Giovanni
Merlino, and Antonio Puliafito describes an approach to network virtualization
based on popular off-the-shelf tools and protocols in place of application-specific
logic, acting as a blueprint in the design of the Stack4Things architecture, an
OpenStack-derived framework to provide IaaS-like services from a pool of IoT
devices. They quantitatively evaluate the underlying mechanisms demonstrating
that the proposed approach exhibits mostly comparable performance with respect
to standard technologies for virtual private networks.

Part IV presents some tools for systems modelling. Chapter 16 by Gábor Horváth
and Miklós Telek introduces BuTools, a collection of computational methods that
are useful for Markovian and non-Markovian matrix analytic performance analysis.

http://dx.doi.org/10.1007/978-3-319-92378-9_7
http://dx.doi.org/10.1007/978-3-319-92378-9_8
http://dx.doi.org/10.1007/978-3-319-92378-9_9
http://dx.doi.org/10.1007/978-3-319-92378-9_10
http://dx.doi.org/10.1007/978-3-319-92378-9_11
http://dx.doi.org/10.1007/978-3-319-92378-9_12
http://dx.doi.org/10.1007/978-3-319-92378-9_13
http://dx.doi.org/10.1007/978-3-319-92378-9_14
http://dx.doi.org/10.1007/978-3-319-92378-9_15
http://dx.doi.org/10.1007/978-3-319-92378-9_16

6 A. Puliafito and K. S. Trivedi

Chapter 17 by Riccardo Di Pietro, Maurizio Giacobbe, Carlo Puliafito, and Marco
Scarpa presents J2CBROKER, a tool that simulates a Cloud Brokerage ecosystem,
i.e., an environment where a software broker acts as an intermediary between
service customers and providers in order to allow the former to discover and select
the services that best suit their needs. Chapter 18 by Sushma Nagaraj and Armin
Zimmermann compares several state-of-the-art transient removal algorithms and
proposes a software framework for a systematic comparison of such algorithms.
Finally, Chap. 19 by Abdalkarim Awad, Peter Bazan, and Reinhard German presents
a co-simulation framework that captures two important worlds of the smart grid,
namely the communication world and power world. Real data as well as simulation
models are used to simulate several home appliances.

The chapters have been written by leading experts in distributed systems,
modelling formalisms, and evaluation techniques, from both academia and industry.
We wish to thank all of them for their contributions and cooperation. Special thanks
go to the Springer staff for the support and valuable advice they have always
provided. We hope that practitioners will find this book useful when looking for
solutions to practical problems, and that researchers can consider it as a first-aid
reference when dealing with systems modelling from a qualitative and quantitative
perspective.

References

1. S. Lauesen, Software Requirements: Styles and Techniques (Addison-Wesley, Harlow, 2002)
2. H. Kaur, A. Sharma, Non-functional requirements research: survey. Int. J. Sci. Eng. Appl. 3(6)

(2014). ISSN-2319-7560
3. A. Neely, The evolution of performance measurement research: developments in the last decade

and a research agenda for the next. Int. J. Oper. Prod. Manag. 25(12), 1264–1277 (2005)
4. R. Dattakumar, R. Jagadeesh, A review of literature on benchmarking. Benchmarking: Int. J.

10(3), 176–209 (2003)
5. K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science

Applications, 2nd edn. (Wiley, Hoboken, 2001); revised paperback, 2016
6. R.A. Sahner, K.S. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Sys-

tems: An Example-Based Approach Using the SHARPE Software Package (Kluwer Academic
Publishers, Dordrecht, 1996)

7. K.S. Trivedi, A. Bobbio, Reliability and Availability Engineering: Modeling, Analysis, and
Applications (Cambridge University Press, Cambridge, 2017)

8. G. Bolch, S. Greiner, H. de Meer, K. Trivedi, Queueing Networks and Markov Chains, 2nd
edn. (Wiley, Hoboken, 2006)

9. J. Banks (ed.), Handbook of Simulation: Principles, Methodology, Advances, Applications, and
Practice (Wiley, Hoboken, 1998)

10. R.M. Fujimoto, Parallel and Distributed Simulation Systems (Wiley, Hoboken, 2000)
11. J.T. Blake, A.L. Reibman, K.S. Trivedi, Sensitivity analysis of reliability and performability

measures for multiprocessor systems, in Proceedings of the 1988 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems, (ACM, New York, 1988), pp.
177–186

12. R. Ghosh, F. Longo, R. Xia, V. Naik, K. Trivedi, Stochastic model driven capacity planning for
an infrastructure-as-a-service cloud. IEEE Trans. Serv. Comput. 7, 667–680 (2014)

http://dx.doi.org/10.1007/978-3-319-92378-9_17
http://dx.doi.org/10.1007/978-3-319-92378-9_18
http://dx.doi.org/10.1007/978-3-319-92378-9_19

1 Systems Modelling: Methodologies and Tools 7

13. R. Suri, M. Zazanis, Perturbation analysis gives strongly consistent sensitivity estimates for the
M/G/1 queue. Manag. Sci. 34, 39–64 (1988)

14. S.-J. Hsieh, Hybrid analytic and simulation models for assembly line design and production
planning. Simul. Model. Pract. Theory 10, 87–108 (2002)

15. J.P.C. Kleijnen, Validation of models: statistical techniques and data availability, in Proceed-
ings of the IEEE 1999 Winter Simulation Conference, Phoenix, AZ, USA, 5–8 Dec 1999

16. C.B. Gupta, Optimization Techniques in Operation Research (I K International Publishing
House, New Delhi, 2008)

17. J.F. Meyer, Closed-form solutions of performability. IEEE Trans. Comput. 31, 648–657 (1982)

Part I
Modelling Theory

Chapter 2
SMVA: A Stable Mean Value Analysis
Algorithm for Closed Systems
with Load-Dependent Queues

Lei Zhang and Douglas G. Down

2.1 Introduction

The Mean Value Analysis (MVA) algorithm [16] is an efficient solution for
steady-state analysis of queueing networks. However, it relies on product-form
assumptions, which can be violated by common features introduced in modern
computer systems, e.g., simultaneous resource possession, locking behaviours,
priority scheduling, high service demand variability, and process synchronization
(see Chapter 15 in [14]). An approximate solution is to reduce a non-product-form
network by using Flow-Equivalent Servers (FESs) [7]. An FES is load dependent,
whose service rate with n jobs present is equal to the observed throughput of the
original network with n jobs. The performance model can then be analysed using
the load-dependent MVA algorithm [15].

Unfortunately, the load-dependent MVA algorithm suffers from numerical insta-
bility issues [15, 16]. The underlying reason is that the computation of state
probabilities can yield negative results when the utilization is close to one. Con-
sequently, negative values of mean performance measures (i.e., response times and
throughputs) can be produced. Static and dynamic scaling techniques are potential
approaches to cope with precision limits, but they are complicated to implement.
In addition, Casale and Serazzi [4] show that they do not work in general, as the
mean queue length computations are not affected. To the best of our knowledge,

L. Zhang
Department of Computer Science, Ryerson University, Toronto, ON, Canada
e-mail: leizhang@ryerson.ca

D. G. Down (�)
Department of Computing and Software, McMaster University, Hamilton, ON, Canada
e-mail: downd@mcmaster.ca

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_2&domain=pdf
mailto:leizhang@ryerson.ca
mailto:downd@mcmaster.ca
https://doi.org/10.1007/978-3-319-92378-9_2

12 L. Zhang and D. G. Down

the literature is lacking efficient solutions for the numerical instability of load-
dependent MVA.

In this paper, we propose a Stable MVA (SMVA) algorithm for closed networks
with load-dependent queues (the initial idea was presented in [21]). The main
contributions of this paper include: (1) the SMVA algorithm, which is an efficient
approximate solution for closed networks with load-dependent queues, and (2) an
extended multi-class model used to determine class-level performance metrics.

This paper is structured as follows. Section 2.2 introduces the required back-
ground. Section 2.3 provides a review of solutions proposed in the literature for
the numerical instability. We then present SMVA in Sect. 2.4. In Sect. 2.5, the
results from SMVA are compared with other MVA algorithms in two case studies.
Section 2.6 gives the multi-class SMVA algorithm. This paper ends with Sect. 2.7,
in which we give a summary of the pros and cons of SMVA.

2.2 Background

The exact MVA algorithm for closed networks with load-dependent queues has
numerical instability issues. It may exhibit numerical difficulties under heavy
load conditions which eventually result in unreasonable results, such as negative
throughputs, response times, and queue lengths. The numerical problem is that the
probability of a resource being idle is calculated in every iteration of the load-
dependent MVA algorithm. The calculation is as follows:

Pm(0|n) = 1−
n∑

i=1

Pm(i|n), (2.1)

where Pm(i|n) is the probability that i jobs are at the mth resource when a total of n

jobs are in the system. When the utilization is close to one, (2.1) can yield negative
values, and those errors propagate as the MVA algorithm iterates. Subsequently,
other calculations which have direct or indirect dependence on (2.1) may result in
negative values, such as mean response times and throughputs, which do not make
any physical sense.

2.3 Related Work

Chandy and Sauer [6] provide the initial reports of the numerical instability of the
MVA algorithm with load-dependent queues. Reiser [15] confirms this issue. To
replace (2.1) in a single-class model, he proposes a new calculation of Pm(0|n)

evaluated by Pm(0|n− 1) and the throughput X[m](n) in an m-complement system,
which is defined as a queueing system without the mth queue and all other

2 SMVA 13

parameters remaining the same. However, the expense of the evaluation grows
exponentially as the number of load-dependent queues increases.

Tucci and Sauer [20], and Hoyme et al. [11] independently propose two similar
tree-structured MVA algorithms, which are invulnerable to numerical instability.
The main idea is to build a tree data structure, where queues are leaves. The internal
nodes are intermediate functions, resulting from convolving all queue functions
in the subtree with the internal node as the root. For dense queueing networks,
tree MVA algorithms can give even worse performance than the original MVA
algorithms whose complexities grow linearly, but they are efficient when customers
visit only a small number of queues.

Casale et al. [5] suggest an approximate MVA algorithm (QD-MVA) for queue-
dependent stations in a multi-class setting. Its computational cost is O(MC) for
a model with M queues and C classes. However, it may not converge in some
instances. Moreover, it relies on queue-dependent functions to analyse queue-
dependent service times, which introduces excessive computational requirements.
They show that the QD-MVA algorithm has very good accuracy for the estimation
of mean queue lengths, but the results from QD-MVA on other performance metrics,
such as mean response times and system throughput, are not provided.

In the literature, Seidmann’s approximation [18] is also widely used to address
MVA’s numerical issues [8, 9, 13]. The basic idea is to replace a multi-server
queue with k servers by two tandem servers. The first one is a single server
queue with service demand D/k, where D is one server’s service demand. The
second one is a pure delay server with service demand D · (k − 1)/k. In practice,
Seidmann’s approximation can yield noticeable errors under intermediate loads,
but it has the same time and space complexities as the original MVA algorithm.
However, Seidmann’s approximation assumes that the servers in the multi-server
queue are load independent. Such an approximation may not be realistic when the
FES technique is employed.

To address numerical issues, Casale [3] introduces the Conditional MVA
(CMVA) algorithm, which avoids the computations of the state probabilities, and
as a consequence, overcomes the limitation. Although the CMVA algorithm is an
exact solution, its time and space complexities grow much faster than the original
MVA algorithm. Given M is the number of queues, and N is the number of jobs,
the time and space complexities for the original MVA algorithm only grow as
O(MN), while those for the CMVA algorithm grow as O(MNL+1), where L is
the number of load-dependent queues in the system . This may cause significant
time and memory issues for the computation when N or L is large, which is very
common in performance evaluation for stress tests.

2.4 Stable Mean Value Analysis

We study a closed queueing network with N jobs and M queues, and we focus on a
generic load-dependent queue with service demand Dm(nm), where m is the index
of the queue, and nm is the number of jobs at the queue (with n =∑M

m=1 nm where

14 L. Zhang and D. G. Down

m = 1, . . . ,M and n = 1, . . . , N). Here, we assume that the service demand of
the load-dependent queue becomes a constant beyond some N̄m, i.e., there exists
a finite N̄m such that Dm(nm) = Dm(N̄m) for all nm ≥ N̄m. This assumption is
reasonable for many systems, in particular when Dm(nm) becomes sufficiently close
to Dm(N̄m).

The basic idea of the SMVA algorithm is inspired by Seidmann’s approximation,
replacing the load-dependent queue with two tandem servers. The first is a load-
independent (LI) queue with service demand D

q
m = Dm(N̄m). The second is a load-

dependent (LD) delay centre with service demand

Dd
m(nm) =

{
nmDm(nm)−Dm(N̄m), if nm < N̄m

(N̄m − 1)Dm(N̄m), if nm ≥ N̄m.
(2.2)

To make sure the service demands in (2.2) are positive, we assume that nmD(nm) ≥
D(N̄m), for nm < N̄m. In multi-core computer systems, it is a common assumption
that Dm(nm) decreases as nm increases, so Dm(nm) > Dm(N̄m) when nm < N̄m

and nmDm(nm) ≥ Dm(N̄m) holds. Although the delay centre is load dependent,
there is no need to calculate its state probabilities because it does not have a queue.
As a result, the SMVA algorithm is numerically stable.

Under light load, the two tandem servers behave as a server which has service
demand Dm(nm). If nm jobs are being served and no jobs are waiting in the queue,
the time spent by a job in the approximating node is Dm(N̄m) + nmDm(nm) −
Dm(N̄m) = nmDm(nm). If there are jobs waiting in the first queue, the time spent
by a job in the approximating node is dominated by the time spent at the first queue.
The node behaves as a server which has service demand Dm(N̄m). As a result, this
approximation should perform well for both light and heavy loads. Note that SMVA
is identical to Seidmann’s approximation when nmDm(nm) = Dm(1), for nm ≤ N̄m.

Once we finish the service demand parameterization, the mean response times
at the load-independent queue in the approximating network with n jobs can be
computed by the arrival theorem [12, 19]:

R
q
m(n) = D

q
m[1+Qm(n− 1)], (2.3)

where Qm(n− 1) is the mean queue length at the mth queue with n− 1 jobs in the
network.

To compute the mean response time at the delay centre, we need to estimate the
mean number of jobs, because its service demand is load dependent. We employ the
Bard-Schweitzer approximation [1, 17] to estimate the mean number of jobs at the
delay centre. The Bard-Schweitzer approximation is based on the following idea:
The number of jobs at each queue increases proportionately as the total number of
jobs increases in the network. Mathematically:

Qm(n− 1)

Qm(n)
= n− 1

n
. (2.4)

2 SMVA 15

There are two things that we need to clarify here: (1) We use the term “mean number
of jobs” rather than “mean queue length”, because it is a pure delay centre, and it
has no jobs waiting for service. (2) When we mention the mean number of jobs,
we refer to the actual mean number of jobs of the original network instead of those
of the approximating network. Let Qo

m(n − 1) be the mean number of jobs at the
mth queue when there are n − 1 jobs in the network, and Qe

m(n) be the estimated
mean number of jobs at the mth queue when there are n jobs in the network. We can
rewrite (2.4) as:

Qe
m(n) =

⎧
⎨

⎩
1, if n = 1,

n

n− 1
Qo

m(n− 1), if n > 1.

Then, we can compute the mean response times at the delay centre as Rd
m(n) =

Dd
m(�Qe

m(n)�). The ceiling function ensures that the index of the load-dependent
service demands starts from one, rather than zero.

The system throughput is calculated using Little’s Law:

X(n) = n/

{
Z +

M∑

m=1

[Rq
m(n)+ Rd

m(n)]
}

, (2.5)

where Z is the mean think time. To compute the mean queue length at the mth queue
in the approximating network, we just continue applying Little’s Law: Qa

m(n) =
X(n) · Rq

m(n). The mean queue length at the mth queue in the original network is:

Qo
m(n) = X(n) · [Rq

m(n)+ Rd
m(n)].

Algorithm 1 illustrates the single-class SMVA algorithm in detail. SMVA has
two features: (1) SMVA is numerically stable, because it avoids the calculation of
stationary probabilities at load-dependent queues; (2) SMVA is efficient, because its
time and space complexities are both O(MN).

There are two things that we would like to highlight in Algorithm 1. Firstly,
we assume that all queues are load dependent in Algorithm 1. If the mth queue is
load independent, we can simply set D

q
m = Dm and Dd

m = 0, and Algorithm 1
is still applicable. Secondly, we do not check whether Qe

m(n) and Qo
m(n) converge

to each other in SMVA, because we are iterating over n and we do not guess the
initial values of Qe

m(n) (the Bard-Schweitzer approximation has both of them). In
the Appendix, we propose an alternative SMVA algorithm which has a comparison
between Qe

m(n) and Qo
m(n).

16 L. Zhang and D. G. Down

Algorithm 1 The single-class SMVA algorithm
Input:
Z,M,N,Dm(n), N̄m

Output:
Qo

m(N),X(N),R(N)

Condition:
nDm(n) ≥ Dm(N̄m),∀n,m

Initialization:
Qa

m(0) = 0,∀m = 1, . . . , M

Iteration:
for m = 1→ M do

for n = 1→ N do
D

q
m = Dm(N̄m)

Dd
m(n) =

{
nDm(n)−Dm(N̄m), if n < N̄m

(N̄m − 1)Dm(N̄m), if n ≥ N̄m

end for
end for
for n = 1→ N do

for m = 1→ M do
if n = 1 then

Qe
m(n) = 1

else
Qe

m(n) = n

n− 1
Qo

m(n− 1)

end if
R

q
m(n) = D

q
m[1+Qa

m(n− 1)]
Rd

m(n) = Dd
m(�Qe

m(n)�)
end for
X(n) = n/{Z +∑M

m=1[Rq
m(n)+ Rd

m(n)]}
for m = 1→ M do

Qa
m(n) = X(n) · Rq

m(n)

Qo
m(n) = X(n) · [Rq

m(n)+ Rd
m(n)]

end for
end for
R(N) =∑M

m=1[Rq
m(N)+ Rd

m(N)]

2.5 Experimental Results

In order to verify the accuracy and the efficiency of the SMVA algorithm, we
compare the results of the SMVA algorithm, the CMVA algorithm, and Seidmann’s
approximation in two different closed queueing networks. The first one is a
closed network with one generic load-dependent queue (FES), and the second one
is a closed network with two FESs. To generate the input parameters—service
demands—for these two queueing networks, we set up a testbed on an Intel i7-2600
quad-core computer with 8 GB memory, 1 TB hard drive, and Ubuntu 12.04.3 LTS.
We employ JBoss 3.2.7 as the application server, MySQL 5.1.70 as the database
server, and TPC-W [10] to generate the workload. TPC-W can simulate three

2 SMVA 17

Fig. 2.1 Service demands for
browsing

Number of Users

0

5

10

15

20

25

S
e

rv
ic

e
 D

e
m

a
n

d
 in

 m
s.

Service Demand Comparison

CMVA/SMVA
Seidmann‘s Approx.

2 4 6 8 10 12 14 16

Fig. 2.2 Service demands for
shopping

Number of Users

0

5

10

15

20

25

S
e

rv
ic

e
 D

e
m

a
n

d
 in

 m
s.

Service Demand Comparison

CMVA/SMVA
Seidmann‘s Approx.

2 4 6 8 10 12 14 16

workloads for an e-commerce environment—browsing, shopping, and ordering.
We choose the first two workloads in our tests, and plot their service demands in
Figs. 2.1 and 2.2.

18 L. Zhang and D. G. Down

2.5.1 One Load-Dependent Queue

For the first network, we aggregate and model the computer system by an FES. We
then run the browsing workloads to obtain the system throughputs, and calculate
the service demands of the FES to parameterize the MVA algorithms (as shown
in Fig. 2.1). As can be seen in the figure, the service demand curve adopted by
Seidmann’s approximation can only address the ideal case of a load-dependent
server, where D(n) = D(1)/n for n ≤ 8. By overestimating the service demands in
such a case, the outcomes of Seidmann’s approximation are conservative in terms
of performance metrics, but this may not be true in general.

To test the accuracy of SMVA under different loads, we vary the number of
users and the mean think time in the system. Both the mean response time and
the throughput are compared for the three candidate MVA algorithms. Three sets of
results are presented. The results of the first set are presented in Figs. 2.3 and 2.4,
where N ranges from 1 to 30, and Z = 0. The results of the second set are presented
in Figs. 2.5 and 2.6, where N ranges from 1 to 300, and Z = 0.7 s. The results of
the third set are presented in Figs. 2.7 and 2.8, where N ranges from 1 to 1300, and
Z = 3.5 s.

Using CMVA as the benchmark (as it is an exact solution), SMVA works better
than Seidmann’s approximation in all three cases. However, we also observe some
errors for both of the approximate MVA algorithms from those figures, except
for Figs. 2.6 and 2.8, where the largest errors are only −1.05% and −0.23%,
respectively (negative means underestimate). The reason is that for those figures,
the throughput is given by (2.5). As Z increases, the error in R has a smaller effect
on the accuracy of X.

Fig. 2.3 Response time with
Z = 0

Number of Users

10

20

30

40

50

60

70

80

90

R
e

sp
o

n
se

 T
im

e
 in

 m
s.

Single LD Queue (N=1~30, Z=0)

CMVA
Seidmann‘s Approx.
SMVA

5 10 15 20 25 30

2 SMVA 19

Fig. 2.4 Throughput with
Z = 0

CMVA
Seidmann‘s Approx.
SMVA

5 10 15 20 25 30
Number of Users

0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

t
in

 p
e

r
se

c.

Single LD Queue (N=1~30, Z=0)

Fig. 2.5 Response time with
Z = 0.7 s

Number of Users

0

20

40

60

80

100

120

140

160

180

R
e

sp
o

n
se

 T
im

e
 in

 m
s.

Single LD Queue (N=1~300, Z=0.7 sec.)

CMVA
Seidmann‘s Approx.
SMVA

0 50 100 150 200 250 300

To verify the observations from Figs. 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, we calculate
the Root-Mean-Square Percentage Error (RMSPE) for both SMVA and Seidmann’s

approximation in the three test sets. Here, RMSPE =
√∑T

i=1 E2
i /T , where Ei is

the percentage error of the ith estimate, and T is the total number of estimates. The
results can be found in Table 2.1, and they verify the two observations that we have
in the figures:

• In terms of accuracy, SMVA works better than Seidmann’s approximation in all
cases.

• Errors in throughput are minor when Z is relatively larger than R.

20 L. Zhang and D. G. Down

Fig. 2.6 Throughput with
Z = 0.7 s

Number of Users

0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

t
in

 p
e

r
se

c.

Single LD Queue (N=1~300, Z=0.7 sec.)

CMVA
Seidmann‘s Approx.
SMVA

0 50 100 150 200 250 300

Fig. 2.7 Response time with
Z = 3.5 s

Number of Users

0

50

100

150

200

250

300

R
e

sp
o

n
se

 T
im

e
 in

 m
s.

Single LD Queue (N=1~1300, Z=3.5 sec.)

CMVA
Seidmann‘s Approx.
SMVA

0 200 400 600 800 1000 1200

We also would like to quantify some large errors from SMVA and Seidmann’s
approximation. In Figs. 2.3 and 2.4, the largest error for the mean response time of
SMVA is 27.16%, and the largest error for the throughput of SMVA is −21.36%
when N = 8. In contrast, the errors for both the mean response time and the
throughput of Seidmann’s approximation are the largest when N = 4 (46.78% and
−31.87%, respectively). We have similar observations from Figs. 2.5, 2.6, 2.7 and
2.8. In Fig. 2.5, the largest error for the mean response time of SMVA is 33.17%
when N = 200. In Fig. 2.7, the largest error for the mean response time of SMVA
is 32.48% when N = 1000. Seidmann’s approximation has its worst case when
N = 1300, the error for the mean response time is 71.91%. As a conclusion,

2 SMVA 21

Fig. 2.8 Throughput with
Z = 3.5 s

0 200 400 600 800 1000 1200
Number of Users

0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

t
in

 p
e

r
se

c.

Single LD Queue (N=1~1300, Z=3.5 sec.)

CMVA
Seidmann‘s Approx.
SMVA

Table 2.1 RMSPEs in one
LD queue

Test case SMVA Seidmann

Z = 0.0 s R 12.93% 25.54%

X 10.63% 18.72%

Z = 0.7 s R 12.02% 20.47%

X 0.38% 1.29%

Z = 3.5 s R 15.24% 42.42%

X 0.13% 1.03%

the SMVA algorithm works well when the system is under light or heavy loads.
However, some errors are significant when the system is under intermediate loads.

2.5.2 Two Load-Dependent Queues

For the second queueing network, we add one more FES to the previous network.
We derive the service demands of the second FES from the shopping web interaction
workloads of TPC-W (as shown in Fig. 2.2). We choose the shopping workloads,
because the service demand curve is close to (but not the same as) the one derived
from the browsing workloads in the first FES (in Fig. 2.1), so that no single queue
can dominate the performance in the network.

As discussed in Sect. 2.5.1, we vary the number of users and the mean think
time in the system, and compare the mean response time and the throughput among
the three candidate MVA algorithms. Since the results of throughputs are almost
identical when Z is larger than zero (similar to Figs. 2.6 and 2.8), those results are
not shown. The results of the first set are presented in Figs. 2.9 and 2.10, where N

22 L. Zhang and D. G. Down

Fig. 2.9 Response time with
Z = 0

Number of Users

30

40

50

60

70

80

90

100

110

120

R
e

sp
o

n
se

 T
im

e
 in

 m
s.

Two LD Queues (N=1~40, Z=0)

CMVA
Seidmann
SMVA

5 10 15 20 25 30 35 40

Fig. 2.10 Throughput with
Z = 0

CMVA
Seidmann
SMVA

Number of Users

0

50

100

150

200

250

300

350

T
h
ro

u
g
h
p
u
t
in

 p
e
r

se
c.

Two LD Queues (N=1~30, Z=0)

5 10 15 20 25 30 35 40

ranges from 1 to 40, and Z = 0. The results of the second set are presented in
Fig. 2.11, where N ranges from 1 to 400, and Z = 0.7 s. The results of the third set
are presented in Fig. 2.12, where N ranges from 1 to 1200, and Z = 3.5 s. Unlike
the test set of Z = 3.5 s in Sect. 2.5.1, where we could have maximum 1300 jobs
in the system, we cannot have 1300 jobs in this test case, because the calculation
space requirement of the CMVA algorithm grows exponentially as the number of
load-dependent queues increases. In this case, it is O(MN3), and it exceeds the
maximum capacity of the memory on our machine. For instance, the initialization
of the service demands for a single queue requires N3 × 8 bytes = 16.37 GB.

2 SMVA 23

Fig. 2.11 Response time
with Z = 0.7 s

CMVA
Seidmann
SMVA

Number of Users

0

50

100

150

200

250

300

350

400

450

500

R
e
sp

o
n
se

 T
im

e
 in

 m
s.

Two LD Queues (N=1~400, Z=0.7 sec.)

0 50 100 150 200 250 300 350 400

Fig. 2.12 Response time
with Z = 3.5 s

0 200 400 600 800 1000 1200
Number of Users

30

40

50

60

70

80

90

100

110

120

130

R
e
sp

o
n
se

 T
im

e
 in

 m
s.

Two LD Queues(N=1~1200, Z=3.5 sec.)

CMVA
Seidmann‘s Approx.
SMVA

As can be seen from Figs. 2.9, 2.10, 2.11 and 2.12, the results are quite consistent
with those from Figs. 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, respectively. Similarly, we have
three observations as follows:

• Compared to CMVA, SMVA works better than Seidmann’s approximation in all
three cases.

• As the value of the mean think time grows, the errors in estimated throughputs
from SMVA decrease.

• Compared to the results under light and heavy workloads, larger errors are
observed for SMVA under intermediate workloads.

24 L. Zhang and D. G. Down

Table 2.2 RMSPEs in two
LD queues

Test case SMVA Seidmann

Z = 0.0 s R 8.47% 22.15%

X 7.40% 17.18%

Z = 0.7 s R 11.23% 16.21%

X 0.66% 1.39%

Z = 3.5 s R 16.34% 26.27%

X 0.26% 0.39%

Table 2.3 Largest error
comparison for SMVA

Test case Single LD queue Two LD queues
Z = 0.0 s R 27.16% 18.60%

X −21.36% −15.68%
Z = 0.7 s R 33.17% 33.33%

X −1.05% −1.96%
Z = 3.5 s R 32.48% 32.40%

X −0.23% −0.44%

In Table 2.2, we show the RMSPEs for both SMVA and Seidmann’s approxi-
mation in the three test sets. The results in Table 2.2 can be seen to verify the first
two observations above. Compared to the results in Table 2.1, the SMVA algorithm
performs better when Z = 0 in the network with two LD queues than in the network
with a single LD queue in terms of the RMSPE.

In Table 2.3, we compare the largest errors of the SMVA algorithm in these two
case studies. As can be seen, the SMVA algorithm performs better when Z is zero
in the second case study, but has very similar results when Z is larger than zero.
This observation is consistent with the observation from the RMSPEs in Tables 2.1
and 2.2. The underlying reason is not clear and is worth future study.

2.6 Multi-class Extension

For completeness, we extend the SMVA algorithm to the case of multi-class closed
networks. As in single-class networks, the scheduling discipline in multi-class
networks is also constrained to preserve the product-form nature of the steady-
state distribution, for example the scheduling disciplines considered in the BCMP
theorem [2] may be employed. We consider that there are C classes of transactions,
where the job population vector is given by n = (n1, . . . , nc, . . . , nC), where
0 ≤ nc ≤ Nc and 1 ≤ c ≤ C. The service demand of class c at the mth load-
independent queue is given by D

q
m,c = Dm,c(N̄m,c). The service demand at the

delay centre becomes

Dd
m,c(nc) =

{
ncDm,c(nc)−Dm,c(N̄m,c), if nc < N̄m,c,

(N̄m,c − 1)Dm,c(N̄m,c), if nc ≥ N̄m,c.

2 SMVA 25

Then, the multi-class SMVA iterates over all feasible n = (n1, . . . , nC) such that∑C
c=1 nc = n and 1 ≤ n ≤ N to compute the mean response times at load-

independent queues:

R
q
m,c(n) = D

q
m,c[1+Qm(n− 1c)].

Here, n − 1c = (n1, . . . , nc − 1, . . . , nC) is the job population vector with one
less class c job in the system. The mean response time at a pure delay centre is
Rd

m,c(n) = Dd
m,c(�Qe

m(n)�), where

Qe
m(n) =

⎧
⎨

⎩
1, if nc = 1,

nc

nc − 1
Qo

m(n− 1c), if nc > 1.

The system throughput of class c is calculated by

Xc(n) = nc/

{
Zc +

M∑

m=1

[Rq
m,c(n)+ Rd

m,c(n)]
}

.

The mean queue length at the mth load-independent queue is

Qa
m(n) =

C∑

c=1

Xc(n) · Rq
m,c(n).

Finally, the mean queue length at the original load-dependent queue is

Qo
m(n) =

C∑

c=1

Xc(n) · [Rq
m,c(n)+ Rd

m,c(n)].

Both the time and space complexities of the multi-class SMVA algorithm are
O(MNC). Due to the complexities, we have not evaluated the accuracy of the multi-
class model in a case study.

2.7 Conclusions

In this paper, we present the SMVA algorithm in both a single-class model
and a multi-class model. Compared to the CMVA algorithm and Seidmann’s
approximation, the SMVA algorithm has two advantages:

26 L. Zhang and D. G. Down

• The time and space complexities of SMVA are a significant improvement over
CMVA, especially when the number of jobs in the system is very large, or when
the number of load-dependent queues is larger than one.

• The SMVA algorithm is better able to handle cases when the service demands of
a load-dependent node do not have a linear relationship.

In terms of accuracy, we also have two additional observations about the SMVA
algorithm:

• The SMVA algorithm works as well as the CMVA algorithm when the system is
under light or heavy loads. However, the errors of the SMVA algorithm increase
when the system is under intermediate loads (but it still performs better than
Seidmann’s approximation).

• When the mean think time increases, the SMVA algorithm might produce less
accurate estimates of the mean response times under intermediate load. In
contrast, the estimated throughput becomes more accurate.

The accuracy of SMVA under intermediate loads is closely linked to the accuracy
of the underlying approximations. It is inspired by Seidmann’s approximation. Con-
sequently, it behaves as Seidmann’s approximation under intermediate workloads.
In addition, it employs the assumption in the Bard-Schweitzer approximation to
estimate the mean number of jobs at delay centres, which may also add errors to the
results.

Acknowledgements The work reported here was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

Appendix

In Algorithm 1, we estimate the mean number of jobs at a delay centre, Qe
m(n). In

the same iteration, new values are calculated as Qo
m(n). A natural thought would be

to add a comparison between these two values, similar to a technique in the Bard-
Schweitzer approximation. To accomplish this, we propose an alternative SMVA
algorithm (A-SMVA) for a single-class system. The details of A-SMVA can be seen
in Algorithm 2. Compared to SMVA, A-SMVA differs as follows:

• Iterations over n = 1 → N are removed. Instead, we focus only on the
performance metrics with N jobs in the system.

• Initialize Qe
m(N) with estimated values, e.g., N/(M + 1).

• Employ (2.4) to replace Qa
m(N−1) by Q

q
m(N) in (2.3), which is Q

q
m(N)× (N−

1)/N .
• Choose an error criterion—ε, e.g., 0.01.
• Compare the difference between Qe

m(N) and Qo
m(N), and compare the differ-

ence between Q
q
m(N) and Qa

m(N). If the maximum difference is larger than ε,
replace Qe

m(N) by Qo
m(N), and Q

q
m(N) by Qa

m(N). Otherwise, stop the iteration.

2 SMVA 27

Algorithm 2 The single-class A-SMVA algorithm
Input:
Z,M,N,Dm(n), N̄m, ε

Output:
Qo

m(N),X(N),R(N)

Condition:
N ·Dm(N) ≥ Dm(N̄m),∀m
Initialization:
Qa

m(N) = 0,∀m = 1, . . . , M

Qo
m(N) = N/(M + 1),∀m = 1, . . . , M

Iteration:
for m = 1→ M do

D
q
m = Dm(N̄m)

Dd
m(N) =

{
N ·Dm(N)−Dm(N̄m), if N < N̄m

(N̄m − 1)Dm(N̄m), if N ≥ N̄m

end for
while maxi{|Qe

m(N)−Qo
m(N)|} > ε or maxi{|Qq

m(N)−Qa
m(N)|} > ε do

for m = 1→ M do
Qe

m(N) = Qo
m(N)

Q
q
m(N) = Qa

m(N)

R
q
m(N) = D

q
m[1+ N − 1

N
Q

q
m(N)]

Rd
m(N) = Dd

m(�Qe
m(N)�)

end for
X(N) = N/{Z +∑M

m=1[Rq
m(N)+ Rd

m(N)]}
for m = 1→ M do

Qa
m(N) = X(N) · Rq

m(N)

Qo
m(N) = X(N) · [Rq

m(N)+ Rd
m(N)]

end for
end while
R(N) =∑M

m=1[Rq
m(N)+ Rd

m(N)]

We set ε = 0.01, and compare the results of A-SMVA with the results of SMVA
with the same input parameters in Sect. 2.5.1. The estimated mean response times
from A-SMVA are slightly larger than the results from SMVA, but they have very
similar trends.

When N is very large, A-SMVA can be efficient, because it avoids the iteration
over n = 1→ N . However, we have two concerns about A-SMVA:

• The initial values of Qe
m(N) may significantly affect the outputs. For example, if

they are too close to zero, the whole iteration will be skipped.
• The chosen value of ε may have a significant effect on the outputs. If ε is too

big, we have less iterations, but sacrifice accuracy. If ε is too small, it may not
converge in some instances (although we have not observed this).

As a summary, we provide one more numerically stable approach to determine the
performance metrics for closed queueing networks with load-dependent queues.
One can adopt SMVA or A-SMVA depending on the requirements.

28 L. Zhang and D. G. Down

References

1. Y. Bard, Some extensions to multiclass queueing network analysis, in Proceedings of the
3rd International Symposium on Modelling and Performance Evaluation of Computer Sys-
tems: Performance of Computer Systems (North-Holland Publishing Co., New York, 1979),
pp. 51–62

2. F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios, Open, closed, and mixed networks of
queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

3. G. Casale, A note on stable flow-equivalent aggregation in closed networks. Queueing Syst.
60(3–4), 193–202 (2008)

4. G. Casale, G. Serazzi, Stabilization techniques for load-dependent queueing networks algo-
rithms, in Communication Networks and Computer Systems: A Tribute to Professor Erol
Gelenbe, Chap 8, ed. by J.A. Barria (Imperial College Press, London, 2006), pp. 127–141

5. G. Casale , J.F. Pérez, W. Wang, QD-AMVA: evaluating systems with queue-dependent service
requirements. Perform. Eval. 91, 80–98 (2015)

6. K.M. Chandy, C.H. Sauer, Computational algorithms for product form queueing networks.
Commun. ACM 23(10), 573–583 (1980)

7. K.M. Chandy, U. Herzog, L. Woo, Parametric analysis of queuing networks. IBM J. Res. Dev.
19(1), 36–42 (1975)

8. Y. Chen, S. Iyer, X. Liu, D. Milojicic, A. Sahai, SLA decomposition: translating service level
objectives to system level thresholds, in Proceedings of the 4th International Conference on
Autonomic Computing (IEEE, 2007), pp. 3–13

9. Y. Chen , S. Iyer , X. Liu , D. Milojicic , A. Sahai, Translating service level objectives to lower
level policies for multi-tier services. Clust. Comput. 11(3), 299–311 (2008)

10. T. Horvath, TPC-W J2EE implementation (2008). http://www.cs.virginia.edu/~th8k. Last
accessed 27 Sept 2017

11. K. Hoyme, S.C. Bruell, P. Afshari, R.Y. Kain, A tree-structured mean value analysis algorithm.
ACM Trans. Comput. Syst. 4(2), 178–185 (1986)

12. S.S. Lavenberg, M. Reiser, Stationary state probabilities at arrival instants for closed queueing
networks with multiple types of customers. J. Appl. Probab. 17(4), 1048–1061 (1980)

13. X. Liu, J. Heo, L. Sha, Modeling 3-tiered web applications, in Proceedings of the 13th
IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005 (IEEE, 2005), pp. 307–310

14. D.A. Menascé, V.A. Almeida, L.W. Dowdy, L. Dowdy, Performance by Design: Computer
Capacity Planning by Example (Prentice Hall PTR, Upper Saddle River, 2004)

15. M. Reiser, Mean-value analysis and convolution method for queue-dependent servers in closed
queueing networks. Perform. Eval. 1(1), 7–18 (1981)

16. M. Reiser, S.S. Lavenberg, Mean-value analysis of closed multichain queuing networks. J.
ACM 27(2), 313–322 (1980)

17. P. Schweitzer, Approximate analysis of multiclass closed networks of queues, in Proceedings
of International Conference on Stochastic Control and Optimization (Free University, Amster-
dam, 1979), pp. 25–29

18. A. Seidmann, J. Paul, S. Shalev-Oren, Computerized closed queueing network models of
flexible manufacturing systems: a comparative evaluation. Large Scale Syst. 12, 91–107 (1987)

19. K.C. Sevcik, I. Mitrani, The distribution of queuing network states at input and output instants.
J. ACM 28(2), 358–371 (1981)

20. S. Tucci, C.H. Sauer, The tree MVA algorithm. Perform. Eval. 5(3), 187–196 (1985)
21. L. Zhang, D.G. Down, A stable mean value analysis algorithm for closed systems with load-

dependent queues, in Proceedings of the 10th EAI International Conference on Performance
Evaluation Methodologies and Tools (ACM, New York, 2016), pp. 178–181

http://www.cs.virginia.edu/~th8k

Chapter 3
Dispatching Discrete-Size Jobs with
Multiple Deadlines to Parallel
Heterogeneous Servers

Esa Hyytiä, Rhonda Righter, Olivier Bilenne, and Xiaohu Wu

3.1 Introduction

In the dispatching problem, each arriving job is routed to one of the available servers
immediately upon arrival. Even though a single fast server would often be preferred,
the parallel servers are needed to match increasing capacity demands. Moreover,
short latency, in the absence of preemptive scheduling, requires parallel servers.

In this chapter, we consider a cost structure based on (firm) deadlines. Each
job has a certain deadline for the maximum waiting time it can tolerate. If this
waiting time is exceeded, a deadline violation cost is incurred, but the job must
still be served. This cost structure stems from quality-of-experience metrics, where
customers observe a good service level whenever the waiting time is “short,” but
as soon as a given customer-specific threshold is exceeded, the observed service
quality drops, cf. video conferencing and other interactive systems. That is, the tail
of the response time distribution is one of the most crucial performance measures
[1]. For this reason, service level agreements (SLAs) are often defined in terms of
acceptable waiting times [2].

Our basic setting has been studied recently in [3] in the context of M/G/1 queues,
and in [4] for the standard M/D/1 queue. The results in [3] are either asymptotic
or in the form of differential equations. In contrast, [4] gives exact closed-form

E. Hyytiä (�)
Department of Computer Science, University of Iceland, Reykjavík, Iceland
e-mail: esa@hi.is

R. Righter
Department of Industrial Engineering and Operations Research, UC Berkeley, Berkeley, CA,
USA

O. Bilenne · X. Wu
Department of Communications and Networking, Aalto University, Espoo, Finland

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_3&domain=pdf
mailto:esa@hi.is
https://doi.org/10.1007/978-3-319-92378-9_3

30 E. Hyytiä et al.

expressions (that satisfy the aforementioned differential equations and asymptotic
behavior) for the M/D/1 queue. In this chapter, we give exact results for the value
function and admission cost for the M/iD/1 queue subject to a general deadline-
based cost structure, where the service times are assumed to be random multiples
of a fixed size d, and the deadlines and their violation costs can vary according
to some probability distributions. Moreover, there can be multiple deadlines with
added cost for each deadline that is violated, and the job arrival process can include
batches. In summary, the model considered here is much more general than those
of [3] and [4].

The approach of first deriving a value function for a single server queue, and then
applying it to develop efficient dispatching rules for a system of parallel servers, is
general. Traditionally the objective is the minimization of the mean sojourn time
(see, e.g., [5–7]), possibly combined with minimizing energy consumption (see,
e.g., [8, 9]). The value function for M/G/1-FCFS then enjoys elementary closed-
form expressions. In contrast, other disciplines, such as processor sharing (PS),
make the situation more complex and exact results are available only for M/D/1-PS
and M/M/1-PS [5, 10]. Our approach also lends itself to minimization of blocked
jobs in loss systems [11].

3.2 M/G/1 FCFS Queue with Deadlines

The basic model for a single M/G/1-FCFS queue with deadlines is as follows [3].
We let λ denote the arrival rate and X the service time of a job so that the offered
load is ρ = λ E[X]. Jobs whose waiting time in queue, W , exceeds time τ , referred
to as the deadline, incur a unit cost. We assume that ρ < 1 for stability. The deadline
must be non-negative, τ ≥ 0. Thus, in the special case when τ = 0 all jobs that have
to wait incur the unit cost. The mean cost rate is

r = λ P{W > τ }. (3.1)

In the general case, we have multiple classes of jobs, each with its own arrival rate
λi , target deadline τi and i.i.d. deadline violation cost Hi . The total arrival rate is
λ =∑

i λi , and the stability requirement is that λd = ρ < 1. The mean cost rate in
this case is

r =
∑

i

λi E[Hi]P{W > τi}.

Our first task is to derive the so-called value function with respect to the deadline
cost structure. Formally, the value function is defined as

v(u) � lim
t→∞E[V (u, t)− rt],

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 31

where u is the current backlog (unfinished work) in the queue, and the random
variable V (u, t) denotes the deadline violation costs during time (0, t) when the
system is initially in state u. Given ρ < 1, the M/G/1 queue is stable, the system
is ergodic, and the above limit is well-defined. (In fact, the limit is finite and well-
defined also when ρ ≥ 1 and the system is unstable).

We can use two complementary approaches to determine the value function.
First, the value function v(u) for the M/G/1 queue satisfies the integro-differential
equation

v′(u) = λ (c(u)− c̄ + E[v(u+X)− v(u)]) , (3.2)

where X denotes the random i.i.d. service time, c(u) is the (mean) cost when a job
arrives at state u, and c̄ is the mean cost of a job. Additionally, we have the boundary
condition,

v′(0) = 0. (3.3)

In [3], it is shown that for the deadline cost structure, the value function is a linear
function of u for u > τ . The mean time before the system returns to state τ is
t = (u−τ)/(1−ρ), during which on average λt jobs arrive (PASTA), each incurring
the deadline violation cost, and rt is the mean costs incurred during the same time
interval in equilibrium. Thus,

v(u)− v(τ) = λ− r

1− ρ
(u− τ), u > τ. (3.4)

For 0 ≤ u ≤ τ , (3.2) reduces to

v′(u) = −r + λ 1(u > τ)+ λ E[v(u+X)− v(u)], u ≥ 0, (3.5)

where 1(u > τ) is 1 if u > τ and zero otherwise. Given (3.5) expresses v′(u) as a
function of v(u + t) with t ≥ 0, and since v(u) is known for u ≥ τ , v(u) can be
solved numerically backwards starting from u = τ as discussed in [3]. Moreover,
explicit results are given for M/G/1 when (1) τ < X and the load ρ < 1, and when
(2) τ
 X and ρ → 1 (the heavy-traffic regime).

The second approach is more general and gives the value function for the MX/G/1
queue with an arbitrary cost function c(w). In particular, the value function satisfies
[12, Proposition 1]

v(u)− v(0) = λu

1− ρ
E[c(W + Y)− c(W)]. (3.6)

where λ is the job arrival rate, c(w) is the admission cost of a job with waiting time
w, W is the waiting time in steady state, and Y ∼ U(0, u).

32 E. Hyytiä et al.

Example 1 Suppose that τ = 0, i.e., jobs that have to wait incur a unit cost. Then
r = λρ, and as the linear regime starts immediately, (3.4) gives the value function
for all u > 0, v(u)− v(0) = λ(u− τ), and a(u) = 1(u > 0)+ ρ.

Unfortunately, the value function for the M/G/1 queue with respect to deadline
τ > 0 cannot be expressed in closed-form using elementary functions. Therefore,
next we analyze the M/D/1 queue, where the service time is d, and the M/iD/1 queue
where the service time is some random multiple of d. For both cases, we obtain
explicit closed-form expressions for the corresponding value functions. Moreover,
we give the value function for a general multi-class system, and discuss how the
results can be applied to also analyze batch arrivals.

3.3 M/D/1 FCFS Queue with Deadlines

In this section, we consider the M/D/1 FCFS queue. First, in Sect. 3.3.1, we assume
a single deadline τ that applies to all jobs and a unit deadline violation cost, h =
1. The obtained results are generalized in Sect. 3.3.2 to multiple job classes with
distinct deadlines and deadline violation costs.

3.3.1 M/D/1 FCFS with a Single Deadline

Let us start with the M/D/1 FCFS queue with a single deadline τ for the waiting
time. Note that this is equivalent to having a deadline τ + d for the sojourn time.

In general, the distribution of the waiting time cannot be expressed in simple
terms, but instead is given in the form of the Laplace-Stieltjes Transform (LST) [13]
or an infinite sum involving convolutions [14]. However, for the M/D/1 queue the
waiting time distribution is available1 [15]

P{W ≤ τ } = (1− ρ)

�τ/d∑

i=0

(λ(id − τ))i

i! e−λ(id−τ). (3.7)

Similarly, for the M/D/1 queue, the integro-differential equation (3.5) simplifies [4]:

v′(u)+ λ v(u) = −r + λ 1(u > τ)+ λ v(u+ d), u > 0. (3.8)

In general, the mean cost rate r follows from the boundary condition (3.3). However,
in our case r = λ (1 − P{W ≤ τ }), and P{W ≤ τ } is given by (3.7). Substituting r

into (3.4) thus yields the value function v(u) for the tail u ≥ τ . For u ≤ τ , v(u) can

1We use the convention that 00 = 1 so that (3.7) holds also when τ = 0.

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 33

be determined by solving (3.8). The following theorem, which is a special case of
Theorem 2, was shown in [4].

Theorem 1 The value function for an M/D/1 FCFS queue with respect to deadline
at time τ with a unit violation cost is

v(u)− v(τ) = λ

⎛

⎝
� τ

d ∑

i=0

(λ(id − τ))i

i! e−λ(id−τ)

⎞

⎠ (u− τ)

+
� τ−u

d ∑

i=0

⎛

⎝e−λ(id+u−τ)
i∑

j=0

(λ(id + u− τ))j

j ! − 1

⎞

⎠ . (3.9)

Note that, in accordance with (3.4), v(u) in (3.9) reduces to a linear function
when u ≥ τ . Given the value function, we can write down the (marginal) admission
cost, a(u) = v(u+ d)− v(u)+ 1(u > τ).

Corollary 1 The admission cost of a job with deadline τ to the M/D/1 queue with
backlog u is

a(u) = ρ

� τ
d ∑

i=0

(λ(id − τ))i

i! e−λ(id−τ) + 1−
� τ−u

d ∑

i=0

(λ(id + u− τ))i

i! e−λ(id+u−τ).

(3.10)

Note that the first summation in (3.10) is a constant (cf. the linear term). Recall
that v(u2)− v(u1) corresponds to the expected difference in the number of deadline
violations between a system that has an initial backlog of u2 and a system that is
initially in state u1. Similarly, the admission cost a(u) tells us the expected increase
in the number of deadline violations if a job is admitted to the system currently in
state u, including the cost for the job itself.

In the general case, for the M/G/1 queue with several reasonable cost structures,
including deadline violations and latency, it holds that

v(0) = − r

λ
+ E[v(X)],

where r denotes the corresponding mean cost rate (e.g., λ E[W > τ] or λ E[T]).
The above yields a simple identity for the mean admission cost to an empty system,

E[a(0, X)] = r

λ
,

We can verify that this holds also for the M/D/1 queue with the deadline cost
structure, i.e., (3.10) at u = 0 reduces to

a(0) = P{W > τ }, ∀ τ ≥ 0.

34 E. Hyytiä et al.

λ=0.2

λ=0.6

λ=0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

–2

–1

0

1

Backlog u

v(
u)

–v
(t

)

Value function for M/D/1: d=1 and t=2.5

λ=0.2

λ=0.6

λ=0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

Backlog u

a(
u)

Admission cost for M/D/1: d=1 and t=2.5(a) (b)

Fig. 3.1 Value function and the corresponding admission costs for an M/D/1 queue. (a) Value
function. (b) Admission cost

As v(u) for the M/D/1 queue, given in (3.9), is strictly increasing and convex, a(u)

is an increasing function of u. Moreover, for u ≤ τ , a(u) = v(u + d) − v(u), and
hence

a(u) ≤ v(τ + d)− v(τ) = ρ

1− ρ
P{W ≤ τ }.

Therefore, the following bounds hold for a(u),

P{W > τ } ≤ a(u) ≤ ρ

1− ρ
P{W ≤ τ }, u ≤ τ,

which for τ = 0 reduces to ρ ≤ a(0) ≤ ρ, in accordance with Example 1.

Example 2 Let d = 1 and τ = 2.5. The corresponding value function and
admission cost are illustrated in Fig. 3.1 for λ ∈ {0.2, 0.6, 0.8}. The value function
is smooth (except at u = τ), whereas the admission cost behaves quite differently.
For example, the unit cost due to the immediate cost of a deadline violation when
u > τ shows clearly.

3.3.2 M/D/1 FCFS with Multiple Job Classes

In this section, we extend the system model and consider the multi-class scenario,
where all jobs have the same fixed service time d, but their deadlines and deadline
violation costs can vary. More specifically, we assume k job classes such that class
i jobs have deadline τi (from the arrival time) and each violation for class i jobs
costs Hi . The corresponding (Poisson) arrival rates are λ1, . . . , λk , and are such that
λd = ρ < 1, where λ = ∑

i λi (i.e., a stable system). For convenience, we further
define pi = λi/λ.

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 35

Let vi(u) denote the value function of a system with arrival rate λ and deadline
τi . As vi(u)− vi(0) corresponds to the number of extra jobs on average that exceed
the deadline τi if the initial backlog is u instead of zero, then on average pi(vi(u)−
vi(0)) of them belong to class i (superposition of Poisson arrival processes), and, as
class i violations cost Hi , we have

v(u)− v(0) =
∑

i

pi E[Hi](vi(u)− vi(0)), (3.11)

where each vi(u)−vi(0) is given by (3.9) with (λ, τi). Note that this is valid because
all job classes have the same service time d and are treated the same way under
FCFS, and we can also assume that costs are paid upon arrival.

Similarly, the admission cost to the system can be determined, where the
immediate cost is included only for the class of the arriving job. That is, if (3.10) is
used, the admission cost of a class j job with violation cost h to an M/D/1 queue in
state u is

a(u, j) = h · 1(u > τj)+
∑

i

piE[Hi] (ai(u)− 1(u > τi)) .

Note that h can be replaced with E[Hj] if the violation cost of the given job is
unknown.

We note that without any technical difficulties, we can extend the model so that
each job class can also have several deadlines with arbitrary violation costs. That
is, a penalty is paid for each deadline that is violated for the same job. Then we
can approximate any cost structure based on the waiting and/or sojourn times. For
example, a cost structure for a single class with unit violation costs hi = h and
deadlines τi = ih, where i = 0, 1, . . ., converges to the cost structure where each
job incurs a cost equal to its waiting time as h→ 0. This is equivalent to the (mean)
waiting time. However, for clarity of presentation we omit such examples.

3.4 M/iD/1 FCFS Queue with Deadlines

In this section, we first consider a more general queueing model, the M/iD/1 queue,
where the service time of a job is a random multiple of d, and derive its value
function. Then we also demonstrate how it can be applied to deduce value functions
for systems with batch arrivals.

36 E. Hyytiä et al.

3.4.1 Value Function for the M/iD/1 FCFS Queue

Consider the M/iD/1 queue, where job sizes are some multiple of d. More
specifically, the service time of a job is id with probability pi , and the size-specific
arrival rates are λi = piλ.

We apply two results from previous work when deriving the corresponding value
function. First, the waiting time distribution is available also for the M/iD/1 queue
[16, Theorem 1]:

P{W ≤ τ } = (1− ρ)

�τ/d∑

i=0

e−λ(id−τ)
∑

L∈P(i)

(id − τ)|L|

H(L)

∏

j∈L
λj , (3.12)

where

∑

L∈P(0)

(id − τ)|L|

H(L)

∏

j∈L
λj ≡ 1.

Set P(i) is the set of partitions of i, i.e., the set of positive integers that sum to i,
and H(L) is

H(L) ≡ n1!n2! · · · nk!,

where the nj denote the multiplicity of number j in partition L, i.e., |L| = n1 +
· · · + nk . For example, with size d and 2d jobs, when λi = 0 for i ≥ 3, P(3) =
{(1, 1, 1), (1, 2)}, which corresponds to (n1, n2) ∈ {(3, 0), (1, 1)}. Second, given
the waiting time distribution is available, we apply (3.6) from [12].

The value function for the standard M/D/1 queue with respect to a deadline at
time τ , given in (3.9), resembles the corresponding expression for the waiting time
distribution. Similarly, it turns out that value function for the M/iD/1 queue with
respect to deadline resembles the corresponding expression (3.12) for the waiting
time.

Theorem 2 The value function for an M/iD/1 queue with respect to deadline at
time τ with a unit violation cost is

v(u)−v(τ) = λP{W ≤ τ }
1−ρ

(u− τ)

+
⎛

⎝
�(τ−u)/d∑

i=0

∑

L∈P(i)

|L|!∏j∈L pj

H(L)

⎡

⎣e−λ(id+u−τ)

|L|∑

j=0

(λ(id + u− τ))j

j ! − 1

⎤

⎦

⎞

⎠ ,

(3.13)

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 37

where

∑

L∈P(0)

|L|!∏j∈L pj

H(L)

⎡

⎣e−λ(u−τ)

|L|∑

j=0

(λ(u− τ))j

j ! − 1

⎤

⎦ ≡ e−λ(u−τ)−1. (3.14)

Proof Suppose first that u > τ . Then, as with the M/D/1 queue, all arriving jobs are
late until the backlog returns to τ . Hence,

v(u)− v(τ) = u− τ

1− ρ
(λ− λ P{W > τ }) = λ P{W ≤ τ }

1− ρ
(u− τ). (3.15)

Next we assume that 0 ≤ u ≤ τ . With the deadline cost structure, c(w) = 1(w >

τ), the general result (3.6) yields

v(u)− v(0) = λu

1− ρ

(
1

u

∫ u

0
P{W + x > τ } dx − P{W > τ }

)

= λ

1− ρ

∫ u

0
1− P{W ≤ τ − x} dx − λu

1− ρ
(1− P{W ≤ τ })

= λu

1− ρ
P{W ≤ τ } − λ

1− ρ

∫ τ

τ−u

P{W ≤ x} dx,

and thus,

v(u)− v(τ) = λ(u− τ)

1− ρ
P{W ≤ τ }

− λ

1− ρ

(∫ τ

τ−u

P{W ≤ x} dx −
∫ τ

0
P{W ≤ x} dx

)
,

= −λP{W ≤ τ }
1− ρ

(τ − u)+ λ

1− ρ

∫ τ−u

0
P{W ≤ x} dx. (3.16)

The first term is the same linear function of u that holds also for the tail u > τ ,
as given in (3.15). The second term is essentially an integral of the waiting time
distribution, which is given by (3.12). When integrating (3.12) from 0 to τ − u,
where τ − u < τ , more terms appear in the sum, one for every interval of length d.
In particular, for every i, the corresponding term appears when x = id, and thus the
corresponding term can be evaluated by integrating from id to τ − u. For i = 0, we
have

∫ τ−u

0
e−λ(0−x) dx = e−λ(u−τ) − 1

λ
, (3.17)

38 E. Hyytiä et al.

and for i > 0,

∫ τ−u

id

e−λ(id−x)(id − x)k dx = k!
λk+1

⎡

⎣e−λ(id+u−τ)
k∑

j=0

(λ(id + u− τ))j

j ! − 1

⎤

⎦ .

where k = |L| as in (3.12). Therefore, the integral of (3.12) gives

∫ τ−u

0
P{W ≤ x} dx

= 1− ρ

λ

⎛

⎝
�(τ−u)/d∑

i=0

∑

L∈P(i)

|L|!∏j∈L pj

H(L)

⎡

⎣e−λ(id+u−τ)

|L|∑

j=0

(λ(id + u− τ))j

j ! − 1

⎤

⎦

⎞

⎠ ,

where pj = λj/λ and, similarly as with (3.12), (3.14) ensures that the first term,
with i = 0, is according to (3.17). Substituting the above into (3.16) then gives
(3.13). ��

Note that the factor,

|L|!∏j∈L pj

H(L)
= (n1 + · · · + nk)!

n1!n2! · · · nk! p
n1
1 p

n2
2 · · ·pnk

k ,

in (3.13) is the pmf of the multinomial distribution.

Example 3 For the M/D/1 queue, L = {1, 1, . . . , 1} and |L| = i, and the above
reduce to the results discussed earlier: P{W ≤ τ } given in (3.7) and v(u) given in
(3.9).

3.4.2 Special Case: Systems J2 and B2 with Two Sizes

For simplicity, next we limit ourselves to the case where the service time is d or 2d,
with probabilities 1−q and q, respectively. Hence, the offered load is ρ = λ(1+q)d.
We refer to this model as J2 (J for the job size). By varying q we can introduce a
moderate variability in the job sizes.

In the second model, we consider batch arrivals. More specifically, batches arrive
with rate λ and with probability of q the arriving batch has size B = 2, with the total
service time of 2d, and otherwise the batch consists of a single job, B = 1, and the
service time is d. Again, the offered load is ρ = λ(1+ q)d. We call this model B2,
and it allows us to increase variability in the job interarrival times moderately.

With batch arrivals, some jobs experience also waiting time due to the jobs
arriving in the same batch. Hence, instead of W , we use U to denote the unfinished
work in the queue. We observe that the unfinished work, U , will be the same for

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 39

both models B2 and J2. Moreover, as the size of a job or a batch is either d or 2d,
the partitions P(i) are explicitly of the form,

{
=n1︷ ︸︸ ︷

1, 1, . . . , 1,

=n2︷ ︸︸ ︷
2, 2, . . . , 2}.

i.e., for i = 1, 2, . . ., we can write

n2 = 0, . . . , �i/2,
n1 = i − 2n2,

|L| = n1 + n2 = i − n2.

Finally, the size-specific arrival rates are λ1 = (1 − q)λ and λ2 = qλ. Letting
n = n2, (3.12) reduces to

P{U ≤ x} = (1− ρ)

�x/d∑

i=0

e−λ(id−x)

{
1, i = 0,
∑�i/2

n=0
(λ(id−x))i−n

(i−2n)!n! (1− q)i−2nqn, i > 0.

(3.18)

3.4.3 Steady State Performance with J2 and B2

The mean cost rate with J2 follows immediately from (3.18),

rJ2 = λ P{U > τ }.

The mean cost rate with batch arrivals, i.e., with B2, follows similarly. If a batch of
two jobs arrives when the backlog U is in (τ − d, τ], the second job of the batch
incurs a unit cost, while the first job receives service in time. Once the backlog
increases beyond U = τ , all arriving jobs incur a unit cost. This is illustrated in
Fig. 3.2. Thus, the cost rate for τ − d < u ≤ τ is λq, and for u > τ it is (1 + q)λ.
Therefore, the mean cost rate with the B2 system is

rB2 = λq P{U > τ − d} + λ P{U > τ }.

Note that with B2 each arriving batch incurs a cost of 0, 1, or 2, depending on how
many jobs receive service late. These results generalize to arbitrary general job- and
batch-size distributions by appropriate conditioning.

40 E. Hyytiä et al.

Fig. 3.2 Batch arrivals
experience deadline
violations also below τ

t−d t Backlog U

ok late

lq

l

3.4.4 Value Functions for J2 and B2

Let us first consider the system J2, where the job sizes vary. From (3.13), one
immediately obtains the value function for system J2:

Corollary 2 (J2) The value function for an M/2D/1 queue with respect to deadline
at time τ with a unit violation cost is

v(u)− v(τ)

= λ

⎛

⎜⎜⎝eλτ +
� τ

d ∑

i=1

e−λ(id−τ)

⌊
i
2

⌋

∑

n=0

qn(1− q)i−2n(λ(id − τ))i−n

n!(i − 2n)!

⎞

⎟⎟⎠ (u− τ)

− 1(u < τ)
(

1− e−λ(u−τ)
)

(3.19)

−
� τ−u

d ∑

i=1

⌊
i
2

⌋

∑

n=0

(i−n)!qn(1−q)i−2n

n!(i − 2n)!

⎛

⎝1− e−λ(id−τ+u)
i−n∑

j=0

(λ(id − τ + u))j

j !

⎞

⎠ ,

where the first part corresponds to the linear component, and the second part (the
last two rows) adjusts the value function for 0 ≤ u ≤ τ .

It is easy to see that as q → 0, (3.19) reduces to (3.9). It is also worth noting
that alternatively, as we did with the standard M/D/1 queue, it is possible to derive
the value function directly by solving a set of the differential equations. That is,
(3.4) holds for the tail u ≥ τ , and for u ≥ 0 the value function v(u) satisfies the
integro-differential equation (3.5). Thus, as with the M/D/1 queue, we can solve the
differential equation backwards one interval at a time starting from (τ − d, τ] until
u = 0 is included. The constants are solved by requiring continuity at points u = kd,
k = 1, 2, . . . , �τ/d, and the boundary condition v′(0) = 0. This straightforward
procedure gives both the value function and the mean cost c̄ = P{W > τ }, and thus
does not require the use of (3.9).

Let us next consider batch arrivals. In particular, now we assume that each job
has a unit service time d, but jobs arrive in batches of k jobs with probability of
pk , k = 1, 2, . . ., and the batch arrival process is Poisson with rate λ = λb. As

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 41

with varying job sizes, for simplicity, we limit ourselves to the case where a batch
consists of one or two jobs; p1 = 1− q and p2 = q.

As with the mean performance, the value function can be deduced from the
corresponding value function of the job size case J2.

Corollary 3 (Batch Arrivals) The value function for an M/2D/1 queue B2 with
respect to deadline at time τ with a unit violation cost and batch arrivals is

v(u)− v(τ) = ṽ(u; τ)− ṽ(τ ; τ)+ q (ṽ(u; τ − d)− ṽ(τ ; τ − d)) ,

where ṽ(u; τ) denotes the corresponding value function of system J2 with deadline
at time τ and the job arrival rate λb.

Proof The first job of each batch experiences a deadline violation similar to that of
the jobs in model J2. Let v1(u) denote their contribution to the total value function,
for which we immediately have

v1(u)− v1(τ) = ṽ(u; τ)− ṽ(τ ; τ),

where ṽ(u; τ) denotes the corresponding value function of system J2 with deadline
at time τ and the job arrival rate λb.

For the second job of a batch, which exists only in batches with two jobs (or more
in the general case), we have

v2(u)− v2(τ) = q (ṽ(u; τ − d)− ṽ(τ ; τ − d)) ,

as a fraction q of the batches have two jobs, and in those cases the second job is late
whenever u < τ − d. ��

Even though here we have assumed a Bernoulli distribution for batch sizes,
the same steps can be taken when batch sizes are i.i.d. random variables with an
arbitrary distribution. In fact, it is possible to analyze a general class of models
where the total service time of a batch is a random multiple of d with different kinds
of internal structures of a batch. For example, each batch could start with a fixed
size job, followed by jobs of varying size. Similarly as discussed in Sect. 3.3.2,
different batches and jobs can have their own individual deadlines and deadline
violation costs. In all these cases, the total value function follows by straightforward
integration and superposition, as illustrated above.

Example 4 Let us consider three systems with d = 1, τ = 2 and ρ = 0.75:

1. The basic M/D/1 queue, where λ = 0.75,
2. The J2 system with q = 0.5 and λ = 0.5,
3. The B2 system with q = 0.5 and λ = 0.5.

42 E. Hyytiä et al.

Fig. 3.3 Value functions
when ρ = 0.75 with three
different types of job- and
batch-size distributions

J2

B2
M/D/1

t=
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1.0

−0.5

0.0

0.5

1.0

Backlog u

v(
u)

−v
(t

)
Figure 3.3 depicts the corresponding value functions. We can see that, as

expected, they have a similar shape, but both the slope for u > τ and the convex
portion for 0 ≤ u ≤ τ are at different levels. In all cases, an appropriate quadratic
function for 0 ≤ u ≤ τ can be assumed to be an adequate approximation for the
value function.

3.5 Parallel Servers

In this section, we consider a dispatching system with parallel heterogeneous
servers, as illustrated in Fig. 3.4. In particular, we show how efficient dispatching
policies can be derived based on the new results given earlier. We consider the
following model for a multi-server system:

1. Jobs arrive according to Poisson process with rate λ.
2. Job sizes are i.i.d. and obey a discrete uniform distribution, X is 1, 2, 3 or 4.
3. All jobs have the same deadline τ for the waiting time.
4. Jobs are processed by m parallel servers with nominal service times di , i =

1, . . . , m, where di denotes the time to serve one unit of a job’s size.

The offered load to the system is ρtot = ∑
i λi/c, where c = ∑

i 1/di , and, for
stability, ρtot < 1. We consider the following heuristic dispatching policies:

Definition 1 (RND) Random split routes a job to Server i with probability pi ∝
1/di , so that the offered load ρtot is balanced among the m servers.

Definition 2 (JSQ) Join-the-shortest-queue routes a job to the server with fewest
jobs. Ties are resolved in favor of the server with a higher index.

Definition 3 (LWL) Least-work-left routes a job to the server with the shortest
backlog. Ties are again resolved in favor of the server with a higher index.

Note that RND is a static policy, i.e., its actions are independent of the system’s
state. Similarly, all policies based on job- or class-specific information are also
static. For example, SITA chooses the server according to job’s size [17, 18], and

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 43

Fig. 3.4 Dispatching system
with m = 4 parallel servers

Arriving
jobs

Servers

Dispatcher

CIQ according to job’s class [4]. Next we develop a new policy based on the
value function by carrying out one policy improvement step. More specifically, the
standard procedure (see, e.g., [3, 6, 11, 19] and [20, Section 11.5]) is as follows:

Definition 4 (FPI) The First Policy Iteration step yields an improved policy:

1. Choose a static policy α0, e.g., RND.

– With α0, the system decomposes into m independent M/G/1 queues.

2. Compute the value functions and admission costs ai(u, x) for each queue.
3. The policy improvement step yields a new (dynamic) policy,

αFPI(u1, . . . , um, x) ∈ arg min
i

ai(ui, x).

where ui is the current backlog in queue i, and x is the size of the new job.

In general, it is difficult to go beyond the first iteration as a value function for a
dynamic policy would be needed for the second iteration. One option is to carry out
a lookahead analysis [21] that considers two consecutive decisions instead of one.

Example 5 (Two Identical Servers) Suppose we have two identical servers, d1 =
d2 = 1. The mean service time is then E[X] = 2.5, the offered load (to the system)
ρtot = λ E[X]/c = (5/4)λ, and the system is stable (with an appropriate routing)
when λ < 4/5. The deadline for the waiting time is set at τ = 4.

The simulation results are depicted in Fig. 3.5 (left). On the x-axis is the
offered load ρtot, and on the y-axis the relative performance defined as the ratio
of deadline violation rates between the given dispatching policy α and JSQ, α ∈
{RND, LWL, FPI}. We can observe that RND has very poor performance except in
the heavy traffic regime where ρ ≈ 1. The performance of LWL is significantly
better than with JSQ when ρ is small, but under a high load also they become
equal. In contrast, FPI, based on the value function (3.13) and RND, yields a clear
improvement over other heuristic dispatching policies at all loads. The FPI policy, in
contrast to LWL, may route a jobs to a longer queue if the backlogs are such that it
will miss its deadline regardless of which queue it goes to. (For u > τ , the admission
cost is constant as illustrated in Fig. 3.1 (right)). The “notch” that appears under a
very high load is due to the stability issues the FPI policy introduces. Indeed, it may

44 E. Hyytiä et al.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
N

D

JSQ

LWL
FPI

R
el

at
iv

e
pe

rf
or

m
an

ce
 r

α
/ r

JS
Q

Offered load ρ

 0

 0.5

 1

 1.5

 2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
N

D

JSQ

LW
L

FPI

R
el

at
iv

e
pe

rf
or

m
an

ce
 r

α
/ r

JS
Q

Offered load ρ

(a) (b)

Fig. 3.5 Simulation results with two dispatching systems, when the job sizes obey a discrete
uniform distribution on {1, 2, 3, 4}. The simulation run for each (policy,ρ)-pair included about
2× 108 jobs. (a) Two identical servers. (b) Four heterogeneous servers

be beneficial to overload one server in order to minimize the deadline violation rate!
This phenomenon, observed also in [3], gets more pronounced in the next example.

Example 6 (Four Heterogeneous Servers) Next we consider a heterogeneous four
server system with service rates 1, 2, 3, 4, i.e., di = 1/i, i = 1, . . . , 4. JSQ and
LWL now choose a faster server in case of ties. Due to the system having faster
servers, the target deadline is reduced to τ = 2.

The simulation results are depicted in Fig. 3.5 (right). We can observe that RND
has a very poor performance, as expected. The deadline violation rate with LWL
is significantly smaller than with JSQ when ρ is small, but under a very high
load LWL is actually worse than JSQ. LWL, balancing the backlogs, ensures that
backlog in every queue is longer than τ , whereas JSQ, observing only the number
of jobs, sometimes imbalances the backlogs a bit and avoids a deadline violation.
The performance with FPI is now significantly better than with the other three
dispatching policies. Moreover, under a sufficiently high load, FPI overloads the
slow server. This is an artifact of the simple cost structure that does not penalize for
the excessive (infinite) waiting times. The obvious fix would be to include, e.g., the
mean waiting or response time to the objective function, as discussed in [3].

3.6 Summary

Past work has given explicit forms for the value function with respect to the deadline
cost structure only for specific cases: (1) in the heavy-traffic regime as ρ ↑ 1, (2)
when all service times are larger than the (single) deadline, and (3) when the service
times are constant. In the heavy-traffic regime, the value function for M/G/1 (with
large deadline) is quadratic. When the deadline is smaller than the service time, the
value function includes an exponential term.

3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 45

In this chapter, we gave exact expressions for the value function with respect to
(possibly multiple) deadlines for a single server queue under arbitrary load when
service times are random multiples of a fixed size d. The model enables us to
consider both varying job sizes and batch arrival processes, or some combination
of them. The standard M/D/1 queue follows as a special case.

The basic results take the form of a double or triple sums with a finite number of
terms. These results can be generalized for queues with multiple job classes having
different target deadlines and violation costs. The availability of the value function
enables policy iteration for developing cost-aware dispatching strategies for parallel
servers, making these results immediately useful.

Acknowledgements This work was supported by the Academy of Finland in the FQ4BD project
(grant nos. 296206).

References

1. J. Dean, L.A. Barroso, The tail at scale. Commun. ACM 56(2), 74–80 (2013)
2. Z. Liu, M.S. Squillante, J.L. Wolf, On maximizing service-level-agreement profits, in Pro-

ceedings of the 3rd ACM Conference on Electronic Commerce, ser. EC ’01 (ACM, New York,
2001), pp. 213–223

3. E. Hyytiä, R. Righter, Routing jobs with deadlines to heterogeneous parallel servers. Oper. Res.
Lett. 44(4), 507–513 (2016)

4. E. Hyytiä, R. Righter, O. Bilenne, X. Wu, Dispatching fixed-sized jobs with multiple deadlines
to parallel heterogeneous servers. Perform. Eval. 114, 32–44 (2017)

5. E. Hyytiä, A. Penttinen, S. Aalto, J. Virtamo, Dispatching problem with fixed size jobs and
processor sharing discipline, in 23rd International Teletraffic Congress (ITC’23), San Fransisco
(2011), pp. 190–197

6. E. Hyytiä, A. Penttinen, S. Aalto, Size- and state-aware dispatching problem with queue-
specific job sizes. Eur. J. Oper. Res. 217(2), 357–370 (2012)

7. K.R. Krishnan, Joining the right queue: a state-dependent decision rule. IEEE Trans. Autom.
Control 35(1), 104–108 (1990)

8. E. Hyytiä, R. Righter, S. Aalto, Task assignment in a heterogeneous server farm with switching
delays and general energy-aware cost structure. Perform. Eval. 75–76(0), 17–35 (2014)

9. A. Penttinen, E. Hyytiä, S. Aalto, Energy-aware dispatching in parallel queues with on-off
energy consumption, in 30th IEEE International Performance Computing and Communica-
tions Conference (IPCCC), Orlando, 2011

10. E. Hyytiä, J. Virtamo, S. Aalto, A. Penttinen, M/M/1-PS queue and size-aware task assignment.
Perform. Eval. 68(11), 1136–1148 (2011)

11. K.R. Krishnan, T.J. Ott, State-dependent routing for telephone traffic: theory and results, in
IEEE Conference on Decision and Control, vol. 25 (1986), pp. 2124–2128

12. E. Hyytiä, R. Righter, J. Virtamo, L. Viitasaari, Value (generating) functions for the MX/G/1
queue, in 29th International Teletraffic Congress (ITC’29), Genoa, 2017

13. L. Takács, A single-server queue with Poisson input. Oper. Res. 10(3), 388–394 (1962)
14. L. Kleinrock, Queueing Systems, Volume I: Theory (Wiley Interscience, New York, 1975)
15. A. Erlang, Sandsynlighedsberegning og telefonsamtaler. Nyt tidsskrift for Matematik B 20,

33–39 (1909)
16. J.F. Shortle, P.H. Brill, Analytical distribution of waiting time in the M/{iD}/1 queue. Queueing

Syst. 50(2), 185–197 (2005)

46 E. Hyytiä et al.

17. M. Harchol-Balter, M.E. Crovella, C.D. Murta, On choosing a task assignment policy for a
distributed server system. J. Parallel Distrib. Comput. 59, 204–228 (1999)

18. M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing Theory
in Action (Cambridge University Press, Cambridge, 2013)

19. H. Wu, K. Wolter, Tradeoff analysis for mobile cloud offloading based on an additive energy-
performance metric, in Proceedings of Valuetools’14 (2014), pp. 90–97

20. P. Whittle, Optimal Control: Basics and Beyond (Wiley, New York, 1996)
21. E. Hyytiä, Lookahead actions in dispatching to parallel queues. Perform. Eval. 70(10), 859–

872 (2013)

Chapter 4
Modelling and Efficient Solution
of Multiple-Phased Systems

Elvio Gilberto Amparore and Susanna Donatelli

4.1 Introduction and Paper Contribution

Multiple-Phased Systems (MPS) [13] are systems whose behaviour can be split in a
set of successive periods, called phases. MPS are also called Phased Mission System
in other works [20], since they can easily describe systems in which the behaviour is
described as a mission structured into multiple phases. Each phase is described by a
different duration, system configuration, desired task, etc. MPS have been shown to
be useful in many contexts, like modelling systems with scheduled maintenance [12]
(Scheduled Maintenance Systems—SMS). In a MPS, the standard question is to
compute the reliability of the system, i.e. the probability that the system survives the
mission, but optimization also plays a role [22], especially for SMS to determine the
best maintenance policy, as well as sensitivity analysis [12, 16] to allow to reason
about the structure of the mission and their parameters.

There has been a significant amount of work on MPS, especially in the late
nineties and also more recently. Different techniques have been used for modelling
and solving these systems, from combinatorial methods like reliability blocks and
fault trees to state-based techniques. Combinatorial approaches based on reliability
blocks and fault trees have been reported, for example, in [24, 28]. State-based
approaches build Markovian systems either through an ad-hoc language as in
EHARP [24] or through a high level modelling formalism as the Stochastic Petri
Nets [21]. It is well known what are the relative advantages and disadvantages of
combinatorial methods over state-based ones, but when the objective of the MPS
analysis goes beyond the computation of the reliability of the system at the end of the

E. G. Amparore · S. Donatelli (�)
Dipartimento di Informatica, Università di Torino, Torino, Italy
e-mail: amparore@unito.it; donatelli@unito.it; susi@di.unito.it

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_4&domain=pdf
mailto:amparore@unito.it
mailto:donatelli@unito.it
mailto:susi@di.unito.it
https://doi.org/10.1007/978-3-319-92378-9_4

48 E. G. Amparore and S. Donatelli

mission, state-based approaches can provide a plus, like computing the probability
of the system states at time t , or associate a reward structure to the system states.

Popular formalisms for state based models in performance evaluation and
reliability analysis include various forms of Stochastic Petri nets: Generalized
Stochastic Petri Nets (GSPN) [2], that allows exponentially distributed transitions
and immediate ones (transitions that fire in zero time); Deterministic and Stochastic
Petri Net (DSPN) [1, 18], an extension of GSPN to include also transitions with
a deterministic duration, subject to the constraints that at most one deterministic
transition is enabled in any one state; Markov Regenerative Stochastic Petri Net
(MRSPN) [17], where transitions can have a generally distributed delay, again
subject to the single enabling constraints as DSPN. The steady state solution of
a GSPN requires the steady state solution of a continuous time Markov chain
(CTMC), while the stochastic process underlying a DSPN and a MRSPN is
a Markov Regenerative Process (MRgP) [23], which has attracted a significant
attention from the performance community, since an MRgP can describe more
complex behaviours than a CTMC, while still allowing an analytical solution.

The work in [21] examines various modelling approaches for MPS and concludes
that a high level formalism based on DSPN shows the best trade-off between
the modelling power (class of systems that can be specified) and the amount of
human intervention in the definition of the model. In particular the authors identify
a specific Petri net structure. The phases are described as a Petri net (the Phase
Net—PhN) with a directed acyclic graph (DAG) structure, which only includes
deterministic transitions and immediate ones, with exactly one deterministic tran-
sition enabled in each phase. The system behaviour is modeled using a GSPN (the
System Net—SN). Transition enabling and firing rates in the SN may depend on the
marking of the PhN and this permits a description of the system that is compact
(a single net) but that is able to describe a behaviour that may differ from phase to
phase. This results in a class of nets called Phased Petri Nets (PPN). The limitations
imposed on the Phase net limit the modelling power of PPN, but allowed Mura et
al. to show in [21] that the solution of the MPS can be decomposed in a sequence of
transient solutions of Markov chains. The DEEM tool [13] implements this method.

An important contribution to the analysis of MPS is the work in [20]. The
authors present a description of the MRgP underlying a PPN in which many of the
limitations of the work in [21] are lifted. The paper presents a complete theoretical
framework and practical indications on how to solve the resulting models for various
classes of PPN, including the case of general distributions in the PhN. But no
implementation is provided (apart from what is implemented in DEEM) and the
practical indications still assume that the marking graph of the PhN is a DAG and
that a SN event cannot interrupt a PhN event.

Contribution In this paper we define eXtended PPN (X-PPN), an extension of the
PPN of [21] and [20] to allow a more general definition of PhN (to include a mix of
general and exponential events and cyclic, ergodic behaviour) and a more flexible
definition of dependencies (in particular a SN event can interrupt a phase).

4 Modelling and Efficient Solution of Multiple-Phased Systems 49

When the resulting MRgP is ergodic the solution is computed through the so-
called matrix-free solution of MRgP, provided by [18] and enhanced in [5]; when the
MRgP is non-ergodic the solution is demanded to the Component Method algorithm
for MRgPs [6]. The proposed solutions are implemented inside the GreatSPN [11]
framework. The solvers of GreatSPN allows to solve X-PPN with more than a
million states. We shall show through a scheduled maintenance system example the
practical relevance of the extension introduced by X-PPN and of the associated tool.
We shall also show that, when a X-PPN reduces to a PPN, the Component Method
does exactly the same computations as the ad-hoc efficient solution of [21]. We shall
not compare the two tools performances since DEEM uses older technologies and it
is very inefficient in time. A comparison can be found in [7].

The paper develops as follows: Sect. 4.2 defines the X-PPN formalism, Sect. 4.3
the proposed solution techniques for X-PPN, Sect. 4.4 experiments the available
solution technique on some X-PPN examples. Section 4.5 compares the behaviour
of GreatSPN and DEEM on PPN models, while Sect. 4.6 concludes the paper and
outlines future possible extensions and integration activities.

4.2 Extended Phased Petri Nets

In this paper we use the definitions and notations of MPS given in [21]: a mission
is divided into m phases of deterministic duration δi , and the system behaviour in
each phase is described by a CTMC with state space Si and rate matrix Qi . Models
are expressed as GSPN or DSPN where we indicate with P the set of places, T the
set of transitions, I , O and H for the input, output and inhibitor arcs, respectively,
W(T) for the function that defines the timing aspects of the transitions. A function
W(t) can depend on the state (marking) of the net and m0 : P → N≥0 the initial
marking.

The MPS is defined using a restricted class of DSPNs called Phased Petri
nets (PPN) [20, 21] that model the system using two Petri nets [2]: a Phase Net
(PhN) that defines the phase structure, and a System Net (SN) that describes the
stochastic behaviour of the system components during each phase of the mission.
Marking dependent rates and guards can be used to make the SN behaviour
dependent from a specific phase, and the probability of immediate transitions in
the PhN can depend from the marking of the SN: this allows the choice of the next
phase to depend upon the state of the SN.

Definition 1 (Adapted from [13, 21]) A PPN is a DSPN resulting from the union
of two Petri nets with disjoint set of places and transitions, the phase net PhN (a
DSPN) and the system net SN (a GSPN), with the additional restrictions:

1. Transitions in PhN are either immediate or deterministic (no exponential);
2. The marking graph of PhN must be a directed acyclic graph (DAG);
3. At most a single deterministic transition is enabled in any state;
4. The firing of a transition in SN cannot disable a transition in PhN.

50 E. G. Amparore and S. Donatelli

The above limitations are imposed to provide a guideline to the modeller and to
allow for a decomposable solution [13, 20]. Places and transitions are disjoint but the
two nets are dependent, due to the presence of arcs encompassing the two nets and
to a definition of marking dependent rates of transitions of one net that can depend
upon the places of the other net, which gives to the modeller the ability to express
a system behaviour that differs from phase to phase. Note that requirement 1 and 3
imply that each phase is identified by a single marking of the PhN and condition 2
implies that the whole stochastic process is non-ergodic.

Definition 2 (From [17]) A GSPN extended to include deterministic and generally
distributed durations of event is a Markov Regenerative Stochastic Petri Nets
(MRSPN) if its marking process is an MRgP.

A Petri net with immediate, exponential and generally distributed transitions in
which at most one general transition is enabled in a marking is a MRSPN, as the
marking right after the firing of the single general transition enabled identifies a
regeneration point. Point 3 of Definition 1 ensures that each PPN is a MRSPN, as in
[20].

Definition 3 A X-PPN is a Petri net resulting from the union of two Petri nets with
disjoint set of places and transitions, the phase net PhN (a MRSPN) and the system
net SN (a GSPN), with the additional restriction:

1. At most a single general transition is enabled in any state;

Given the limitation of at most one general transition enabled in any marking, an
X-PPN is a MRSPN. Note that the limitation is required since, due to the presence
of marking dependencies, it is possible that a change of state in the SN enables a
new general transition in the PhN. X-PPN represents an extension of PPN in which
PhN may include general distributions, the marking graph of the PhN is not required
to be acyclic, and the firing of a transition in the SN may disable a transition in the
PhN, while marking dependencies allows the PhN behaviour to influence the SN
one, and vice versa. In a X-PPN the behaviour of a phase is not strictly identified
by a single marking, phases can have a duration which is exponential or generally
distributed, and a system event may interrupt a phase. Note that since the marking
graph of a PhN is not required to be acyclic, repetitive tasks can be modelled and it
is possible that the marking process of a X-PPN is ergodic.

X-PPN can be defined through the graphical user interface of GreatSPN,
with the rich definition of general distributions supported by the alphaFactory [9]
library, which includes, among the others, deterministic, uniform, Erlang, Pareto,
expolynomial, triangular distributions, as well as any linear combination of them.
The usefulness and flexibility of X-PPN for the modelling of MPS is discussed in
Sect. 4.4 through four examples of a scheduled maintenance system.

4 Modelling and Efficient Solution of Multiple-Phased Systems 51

4.3 X-PPN Solution

An MRgP is a stochastic process defined by a sequence of time instants called
renewal times in which the process loses its memory, i.e. the age of non-exponential
(general) events is 0. A regeneration point is a renewal time associated to the state
at that time. The process behaviour among regeneration points is a discrete-time
Markov chain, the embedded Markov chain (EMC), while the behaviour between
two regeneration points is described by a continuous-time process, the subordinated
process, that we require to be a time-homogeneous CTMC. MRgPs have been
studied extensively in the past [18, 25, 26], and many solid analysis techniques exist.

An MRgP can be represented as a discrete event system [14] with a finite state
space, where in each state a general event g is taken from a set G. As the time flows,
the age of g being enabled is kept, until either g fires (� event), or a Markovian
transition, concurrent with g, fires. Markovian events may disable g (preemptive
event, or Q̄ event), clearing its age, or keep g running with its accumulated age (non-
preemptive event, or Q event). Matrix Q accounts for the rates of the exponential
transitions whose firings do not disable any general (deterministic) transition;
Matrix Q̄ accounts for the rates of the exponential transitions whose firings disable
a general (or deterministic) one; Matrix � has, for each entry �i,j , the probability
of ending in state j when the general transition fires in state i. MRgP are normally
solved in steady state, since the solution at time t is significantly more complex.

The EMC matrix P is defined in terms of Q, Q̄, and � in a standard manner
(see [18] for example): the EMC is solved for steady state and the steady state
distribution of the MRgP states is derived from the steady state solution of the
EMC states. This method is what we term Explicit, and it can be used only for
small MRgP as indeed, even if Q, Q̄, and � are sparse, which is usually the case,
matrix P is typically dense and expensive to compute, due to the matrix exponential
terms. This problem has been solved in [18] with a technique based on the idea
that P can be substituted by a function of the Q, Q̄, and � matrices of the MRgP.
These functions are used in vector×matrix products with P so that they can be
computed without the need of constructing and storing P. This method is what we
term matrix-free technique (actually P-free). Both methods (explicit and matrix-
free) have been extended in [5] to deal with non-ergodic MRgP and to use a richer
set of numerical solvers (like GMRES and the alike).

If the EMC is non-ergodic, its states can be classified as transient or recurrent
states, and specialized solution methods can be devised to compute the probability
distribution of recurrent states. The work in [3, 6] introduces an efficient steady-
state solution for non-ergodic MRgPs, called Component Method, which computes
the outgoing probability flow from transient to recurrent subsets of states, called
components. The method is given in matrix-free terms. The basic idea of the
Component Method is readily explained assuming that matrix P is available (in
reality, since the method is matrix-free, the technique is more complicated). If the
MRgP is non-ergodic it is indeed possible to rearrange the order of its states so that
the EMC matrix P is in upper-triangular form (the reducible normal form, or RNF):

52 E. G. Amparore and S. Donatelli

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 F1
. . .

...

Tk Fk

Rk+1
. . .

Rm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

Matrix P has k ≥ 0 transient subsets and (m − k) recurrent subsets of states, with
m > k. Let Si ⊆ S be the set of states in subset i, hereafter called the component
i. The upper triangular form of P allows to interpret the Si subsets as a DAG of
components, and a way to build an RNF is to identify the set of strongly connected
components (SCC) of the graph built by considering P as an adjacency matrix. The
computation of an adequate set of components is the topic of [8]. Transient SCCs are
the Si for i ≤ k, and bottom SCC (BSCC) are the Si for the recurrent classes (k <

i ≤ m). When P is in RNF, the steady-state probability of the recurrent states can be
computed using the outgoing probability vectors μi . For each state s ∈ (S \Si),
μi (s) is the probability of reaching s in one jump when leaving Si . Vector μi is
given by:

μi =
(
αi +

∑

j<i

(Ii · μj)
)
· (I− Ti)

−1 · Fi , i ≤ k (4.2)

where αi is the vector of initial probabilities for the states in Si and Ii are
appropriate filter matrices (diagonal is 1 for states in Si , 0 otherwise). Since matrix
inversion is usually expensive, a product of a generic vector u with (I−Ti)

−1 can be
reformulated as a linear equations system x·(I−Ti) = u that is computed iteratively
using vector×matrix products with Ti . Each vector μi may depend on the previous
(i−1) outgoing probability vectors, implicitly defining a computational order. Given
the μi vectors, the steady state probability of the recurrent subsets Si is:

π i =
(
αi +

k∑

j=1

(Ii · μj)
)
· lim
n→∞(Ri)

n, k < i ≤ m (4.3)

The Component Method computes first Eq. (4.2) for all transient components, taken
in an order that respects the condition j < i of the formula, and then computes the
probability for the recurrent subsets based on Eq. (4.3). The work in [6] explain how
to compute (4.2) and (4.3) in matrix-free form. The computation of the products of
a generic vector u with the matrix-free form of Ti and Fi is given by:

uTi = Ii · (ai (u)+ bi (u)+ ci (u)) (4.4)

uFi = (I− Ii) · (ai (u)+ bi (u)+ ci (u)) (4.5)

4 Modelling and Efficient Solution of Multiple-Phased Systems 53

Actually the above computation are performed using an augmented set Ŝi of
component i, as we have to include in component i all the states that are reachable
before the next regeneration point. For simplicity we do not use the augmented
notation. The vector terms ai (u), bi (u) and ci (u) are:

ai (u) = u ·
(∑

g∈G
Ig
i ·

∫ ∞

0
eQi x · fg(x) dx

)
·�i

bi (u) = u ·
(∑

g∈G
Ig
i ·

∫ ∞

0
eQi x · F̄g(x) dx

)
· Q̄i

ci (u) = u ·
(

IE
i − diag−1(QE

i)QE
i

)

where QE
i is an appropriate projection of matrix Q and fg(x) and F̄g(x) are the

PDF and the complementary CDF of the firing distribution time of the general event
g enabled in Si , if any. These terms describe how the process evolves between
two regeneration points. Vector ai (u) and bi (u) are the probability distribution of
the next regeneration state reached with the firing of the general event (a), or with
the preemption of it (b). Vector ci (u) is the probability distribution of the next
regeneration state when there are no general events enabled in the starting state.

The advantage of working at the component level is not only the trivial one of
solving many small models instead of a single much bigger one, but that the cheapest
available solution for each component can be used, as will be indeed the case of
MRgP generated from X-PPN. Indeed the work in [6] identifies three component
classes, their characterization and the associated solution technique:

[Class CE :] No general enabled. The component is a CTMC, solved in steady
state.

[Class Cg :] A single general transition g is enabled with no internal preemption
(Q̄i,i = 0 ∧ �i,i = 0). The component is a CTMC, solved at time δg (duration
of g).

[Class CM :] At least one g enabled, or internal preemption (Q̄i,i �= 0∨�i,i �= 0).
The component is an MRgP, solved in steady state.

The three techniques for MRgP solution: Explicit, matrix-free and Component
Method, have been implemented as part of the GreatSPN [11] solver for MRSPN.
The first two can be applied to ergodic and non-ergodic systems, while the last one
can be applied only to non-ergodic systems.

GreatSPN Tool GreatSPN is a tool for Petri net definition and analysis developed
mainly at the University of Torino during the last 30 years. GreatSPN has been
recently renovated to include a new Java-based interface with colored and plain
token game simulation, model checking for branching and stochastic logics, a
new solver for MRSPN, and additional facilities for model composition and for

54 E. G. Amparore and S. Donatelli

performing multiple experiments. GreatSPN, including the solution techniques used
in this paper, is available upon request visiting its web page [27].

Note that the Component Method is a general technique for non-ergodic
MRSPN, so we could avoid the definition of X-PPN and ask the users to directly
model using MRSPN, but this is an approach that may not be very useful for a
designer that wants to use Petri nets to study a phased system, for which a more
structured approach in the description of the system can be useful.

4.4 An Example of MPS Modelling and Evaluation with
X-PPN

In this section we consider an example of a Scheduled Maintenance System
(SMS) model, inspired by [12], and represented using the X-PPN formalism.
Figure 4.1 shows the model of the SMS drawn with the GreatSPN GUI. It represents
an alternation between a factory work phase and a maintenance phase. The PhN and
the SN are drawn into separate boxes. The PhN models the alternation between work
and maintenance, for NP consecutive cycles. During the production, raw pieces are
loaded from a warehouse, are transformed following a sequence of steps with one of
the M available machines, and are then moved back in a storage as finished products.
Machines may break, and are therefore subject to a continuous maintenance that is
scheduled at fixed intervals during the maintenance phase. Each maintenance phase
is scheduled after 4 h of work, and requires an inspection cycle: every step of the
pipeline is checked, plus and additional work is needed for every machine that has
to be repaired. Repairing may require a variable time, estimated between 1 and 2 h,
and it is therefore modelled with a Uniform duration. Numerical solution of general
distributions is based on the methods of alpha-factors [9]. The subnet StartProd—
InProd—EndProd that models the production activity is expanded into a subnet,
shown on the right of Fig. 4.1, where the production is divided into two separate
stages followed by an assembly step. Note the presence of numerous bidirectional
arcs: in GreatSPN the dependence of a transition to a specific phase is modeled
using test arcs, for example a transition connected with a test arc to the WorkPhase
place will be enabled only during a work phase.

The SMS is tested in four different configurations. In configuration (A) the
system stops when a fixed number of phases is concluded, while varying the number
of raw pieces K . Configuration (B) is similar, but runs are performed for an
increasing number of both pieces and phases. Objective of the analysis of case (A)

and (B) is to monitor the number of products completed before the mission ends.
Configuration (C) allows for an unbounded number of phases: place NumPhases has
been removed and the net is modified so that the system stopswhen max products are
completed. This allows to investigate how many maintenance phases are required
before finishing max products. Finally, configuration (D) has both unbounded

4 Modelling and Efficient Solution of Multiple-Phased Systems 55

Fig. 4.1 Scheduled Maintenance System MRSPN model drawn in GreatSPN

phases and pieces, and the system stops when nreps machine repairs have been
performed. This allows to compute the duration of the repair free operating period
(MFOP) of the system [15, 19] (distribution of the time before the first repair takes
place).

Note that, if we assume that all general transitions are deterministic (so no vari-
ability in the phases), configurations (A) and (B) produce a PPN, but configurations
(C) and (D) require X-PPN, since they have an unbounded number of phases, as
the PhN is not a DAG. When solved with the Component Method the (C) and (D)

generate components of class CM , as can be observed from Table 4.1. As we shall
see in the next section, CM component never arise in PPN.

Table 4.1 shows the solver performance of the four configurations of the SMS
for varying parameters. Each table reports the test parameters, the number of MRgP
states and transitions, and the overall time needed to build the state space (RG time).
The table then reports the performance results of the matrix-free solution (matrix-
free method) on the MRgP. Data for the explicit case (explicit construction of the
EMC) are not reported since they can hardly solve the smallest cases. Finally, the last
group of columns evaluates the Component Method, by listing the global number
of components, the number of transient components split per class, and the time to
compute the steady state distribution of absorbing states. Note that the total number
of components contains both the transient and the recurrent components, i.e. it is
not just the sum of the CE , Cg , and CM transient components.

Case (A) is a non-ergodic MRgP that can be decomposed into a fixed number of
CE and Cg components (half of the phases have an exponential duration). Case
(B) is similar, but the number of components grows with the parameters, since
they depend on the number of phases NP . In these two cases the Component
Method behaves significantly better than the implicit matrix-free one. Note that
the aggregation of SCC into components has a significant impact: these systems
have hundreds of thousands of SCCs: treating them one at a time would result in

56 E. G. Amparore and S. Donatelli

Table 4.1 Matrix-free and Component Method on the SMS model

(A) Finite number of phases NP = 8, 3 machines

Matrix-free Component Method

K States Transitions RG time Iter. Time N. comp CE Cg CM Time

10 97,022 215,260 0.971 28 27.667 48 4 44 0 2.978

20 377,419 841,497 4.031 53 211.986 48 4 44 0 12.649

30 739,359 1,644,537 8.088 54 430.079 48 4 44 0 20.673

40 1,109,259 2,463,357 12.079 54 620.940 48 4 44 0 89.832

50 1,479,159 3,282,177 15.706 54 841.496 48 4 44 0 254.051

(B) 3 machines, increasing number of phases NP and pieces K

Matrix-free Component Method

K NP States Transitions RG time Iter. Time N. comp CE Cg CM Time

10 5 60,344 131,896 0.576 22 11.396 33 4 29 0 1.757

20 10 488,271 1,095,553 5.118 99 482.193 58 4 54 0 27.301

30 15 1,648,076 3,731,570 18.381 185 3031.499 83 4 79 0 252.395

40 20 3,903,594 8,879,596 45.217 186 7360.301 108 4 104 0 1332.887

50 25 7,618,921 17,379,853 94.823 – – 133 4 129 0 4414.574

(C) Unlimited number of phases, stops after max products, 3 machines

Matrix-free Component Method

max States Transitions RG time Iter. Time N. comp CE Cg CM Time

10 12,225 27,786 0.114 23 1.675 32 1 10 11 0.949

20 55,425 127,026 0.540 51 27.748 62 1 20 21 5.483

30 129,825 298,266 1.258 128 164.952 92 1 30 31 14.763

40 235,425 541,506 2.294 184 468.923 122 1 40 41 29.064

50 372,225 856,746 3.865 184 734.587 152 1 42 43 49.712

(D) Unlimited number of phases, stops after nreps machine repairs

Matrix-free Component Method

nreps States Transitions RG time Iter. Time N. comp CE Cg CM Time

10 14,783 40,822 0.205 38 4.560 31 1 10 10 1.389

20 37,223 103,462 0.550 383 151.630 61 1 20 20 3.620

30 59,663 166,102 0.875 381 287.686 91 1 30 30 5.806

40 82,103 228,742 1.229 488 537.222 121 1 40 40 8.120

50 104,543 291,382 1.551 479 638.227 151 1 50 50 10.218

prohibitive matrix management costs. Both (A) and (B) are totally irreversible nets
(no loop among states), which is particularly suitable for the Component Method.

Case (C) is an MRgP that has components of the three classes. The number of
CM components, therefore components that require an MRgP solution, is rather
high. Nevertheless, breaking the MRgP solution into smaller blocks eases its
solution, since iterations need to be done on smaller matrices. Case (D) has a
structure made again with CM components, whose number strictly follows that of
the monitored repairs. The method performances are similar to that of case (C).

4 Modelling and Efficient Solution of Multiple-Phased Systems 57

Overall, the table shows that the Component Method can be applied to PPN
and X-PPN models of medium size, in the number of millions of states, and still
being capable of computing the solution in an acceptable amount of time. All
computations have been performed on a 2.4 GHz Intel Core Duo processor, with
8Gb of memory.

4.5 GreatSPN vs DEEM on PPN

The work in [13] observes that in a PPN, the sequence of deterministic transition
firings in the PhN allows to define a decomposed solution approach. Entering into
a marking in the marking graph of the PhN identifies a regeneration point in the
MRgP process. Together with the fact that the marking graph is required to be a
DAG allows a decomposition of the solution, as explained in the following. This will
allow a comparison with the Component Method over PPN. The first step consists
in generating the state space of the PhN. By definition each phase i is characterized
by a single marking mi of the PhN marking graph and by a deterministic transition
of delay δi . Therefore it is possible to solve the whole system as follows (at the
beginning i = 0):

• Compute the state space Si of the SN when the PhN is in state mi and build the
associated rate matrix Qi .

• Compute the transient solution at time δi of the CTMC specified by Qi (which
gives the distribution of the markings of the SN at the time phase i ends).

• Compute the �i,j matrices, the branching probability matrix of size |Si | × |Sj |
of going to the states of phase j at the end of phase i. This requires to build the
state spaces of the SN for two successive phases.

• The solution at time δi of Si is mapped, through �ij to the initial probability of
the successive phases.

The above sequence is repeated for successive phases until the target time t of the
analysis has been reached. If t is greater than the sum of the duration of all the
phases (complete duration of the mission), this corresponds to the distribution of
the absorbing states of the system at the end of the mission. If t is smaller, let’s say
between the end of phase i − 1 and i then Qi is solved at time t − t ′, where t ′ is the
sum of all the duration of the previous phases. The above sequence is also reported
in [20] as a special case of the very large class of MPS for which the equations of
the associated stochastic process are provided.

The theory summarized above has been implemented inside the prototype tool
DEEM [13]. Although not recent, DEEM can still be considered the state-of-the-art
tool for MPS definition and solution for PPN. DEEM is not only a solver but also
has a GUI for the definition of the PhN and of the SN, including facilities for the
definition of marking dependent rates, transitions’ guards and reward structures.

For what concerns the time complexity, if there are N phases DEEM generates and
computes the transient solution of N CTMCs. The space complexity is determined

58 E. G. Amparore and S. Donatelli

by the need of building N state spaces for the SN (one per phase) and the
corresponding N CTMCs, and N − 1 state spaces for pairs of successive phases
(of size |Si | + |Sj |) to build the �i,j matrices, assuming the phases being in
a sequence. If the marking graph is a DAG obviously more than one successive
phase should be considered. Since PPNs are a subclass of X-PPNs, we can compare
the Component Method of GreatSPN with the solution approach of DEEM outlined
above how the Component Method works, when applied to a PPN. If we consider
the embedded Markov chain transition matrix P of a PPN in RNF form, what are
the block matrices involved? Since the state space of the PhN forms a DAG, we can
certainly find a RNF form for P, in which the states of phase i corresponds to the
subset i in the matrix of Eq. (4.1), as it was shown in [20] that the end of a phase
corresponds to a regeneration point. For ease of notation each off-diagonal matrix
Fi is split into multiple Fi,j submatrices, with i < j ≤ m. We can then observe that:

Ti = 0, Fi,j = eQi δi ·�i,j , Ri = Ii − diag−1(Qi) ·Qi (4.6)

each Ti will be zero, since Ti is the submatrix of the probability of remaining in
Si at the next regeneration point (which is the end of the phase for a PPN), but this
is not allowed since the PhN is acyclic. The Fi,j matrices describe the probability
of moving from the start of phase i to the start of phase j , and this involves the
solution at time δi (term eQi δi) and the jump probability between the two phases
(term �i,j). The Ri terms corresponds to the recurrent terminal phases (phases with
no successors).

The comparison is organized as a set of questions. Given a PPN:

(Q1) do the two tools consider the same components?
(Q2) do they solve the components with techniques of comparable complexity?
(Q3) do they use comparable amounts of memory?
(Q4) do they compute the same performance indices?

To answer question Q1 we should consider that DEEM generates one component
per marking of the phase net, and that each marking enables exactly one determin-
istic transition g. In the Component Method the criteria behind the definition of an
optimal partition of the MRP [6, 8] is that, starting from the initial definition of
components as SCCs, two components are aggregated together only if they belong
to the same complexity class and if the resulting complexity class is the same,
given that no cycles among components are introduced by the aggregation. The
component construction will indeed put together all states that enable g, whether
they correspond to one or more SCCs. This happens because those SCCs are of
class Cg and their union is still of class Cg , since no preemption of the deterministic
transitions can take place in a PPN and the firing of the deterministic takes the
system outside of all the states that enable g (g is not enabled any longer). Therefore,
both DEEM and GreatSPN construct the same components.

The answer to question Q2 (time complexity) is straightforward given that there
is a component per phase, and the component is of class Cg . The μg vector of
Eq. (4.2) is therefore computed with a transient solution at time δg , that is to say at

4 Modelling and Efficient Solution of Multiple-Phased Systems 59

the time the phase ends, as does the solver of DEEM. Therefore, the two tools do the
same numerical computations on the same sub-matrices.

The answer to question Q3 (memory) shows a difference in the maximum amount
of storage used. Both techniques compute the same Qi and �ij matrices, but
the Component Method builds all of them beforehand, to be able to compute the
components. DEEM instead builds, for each phase i, the CTMC of the SN at phase i

and, for each phase j that is a direct successor of i, it builds its state space to derive
the �ij matrix. So the amount of memory for the Component Method is the size of
the whole system, while for DEEM it is the maximum size of the SN for a phase and
for its adjacent phases. Difference is at most linear in the number of phases.

The answer to question Q3 is that both methods can compute steady-state prob-
abilities while only DEEM can solve for transient. Indeed the transient probability at
time t can be easily computed only if the phase net is composed only of deterministic
transitions.

In summary we can say that the Component Method “scales well” in time
complexity: when the net is a PPN it reaches the same time complexity as
the specialized solver of DEEM. Nevertheless the Component Method uses more
memory than DEEM, up to at most a factor N , the number of phases, depending
on the structure of the marking graph of the PhN. An empirical comparison of
DEEM with GreatSPN is provided in [10], an earlier paper that presents an extension
of PPN that does not include general distributions. The numerical results confirm
better performances of DEEM for what concerns memory, but the DEEM solution is
very slow (possibly because of some non-optimal implementation choice) so that,
in practice, GreatSPN can solve much bigger PPN than DEEM.

4.6 Conclusions and Future Work

This paper presents X-PPN, a class of MRSPN that are designed to model and solve
multiple-phased systems. The definition and solution of X-PPN is supported by
the GreatSPN GUI and by three different solvers that use an explicit, matrix-free,
and component-based approach. The efficacy of X-PPN as a modelling language
for multiple-phased system has been shown on four variations of a scheduled
maintenance system. Performances in time and space of the matrix-free and of the
Component Method on the four models have been reported and discussed. Results
for the explicit method have not been shown since this method, by building explicitly
the EMC, suffers from a severe memory bottleneck.

X-PPN are an extension of PPN, the formalism supported by the tool DEEM. A X-
PPN allows for an unbounded number of phases, for the presence also of exponential
delays in the PhN, for the use of general distributions and for the possibility that an
event in the SN to disable a phase. We have discussed, and shown in the example,
that these are relevant modelling features. We should remark that certain features
of DEEM not available in GreatSPN also have a practical relevance, in particular
the rich language for transition guards (to avoid too many crossing arcs for testing

60 E. G. Amparore and S. Donatelli

and inhibition), the reward structure and the computation of the probability at time
t . This last feature is strictly related to the choice of including only deterministic
timings in the PhN, as the general case is significantly more complicated. The ideal
X-PPN tool should include features of both tools, and in particular it would be very
useful to have a tool in which the user can choose his/her own trade-off among
modelling power and computable performance indices. It is nevertheless already
remarkable that the Component Method is able to scale in complexity to that of
the DEEM solvers when the analysed system is expressed by a PPN, and that this
simplification is automatic, not requiring any user intervention or net analysis.

While PPN and X-PPN are interesting formalisms for MPS, they both suffer
from the limitation that at most one non-exponential transition can be enabled in a
state. This restriction is not present in [20] that presents the theoretical framework
to partially lift this limitation. This is an interesting and challenging way to pursue:
to turn the equations in [20] into a real and scalable solver.

Finally, we have seen that DEEM saves memory by building the state space a
few phases at a time: current (unpublished) work on on-the fly generation of MRgP
components in the context of the MC4CSLTA model-checker [4], which is also part
of GreatSPN, can be a line to follow for the on-the-fly generation of the X-PPN
components.

References

1. M. Ajmone Marsan, G. Chiola, On Petri nets with deterministic and exponentially distributed
firing times, in Advances in Petri Nets. Lecture Notes in Computer Science, vol. 266 (Springer,
Berlin, 1987), pp. 32–145

2. M. Ajmone Marsan, G. Conte, G. Balbo, A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2, 93–122
(1984)

3. E.G. Amparore, S. Donatelli, A component-based solution method for non-ergodic Markov
Regenerative Processes, in Computer Performance Engineering. Lecture Notes in Computer
Science, vol. 6342 (Springer, Berlin, 2010), pp. 236–251

4. E.G. Amparore, S. Donatelli, MC4CSLTA: an efficient model checking tool for CSLTA, in
International Conference on Quantitative Evaluation of Systems (IEEE Computer Society, Los
Alamitos, 2010), pp. 153–154

5. E.G. Amparore, S. Donatelli, Revisiting the matrix-free solution of Markov regenerative
processes, in Numerical Linear Algebra with Applications. Special Issue on Numerical
Solutions of Markov Chains, vol. 18 (Wiley, New York, 2011), pp. 1067–1083

6. E.G. Amparore, S. Donatelli, A component-based solution for reducible Markov regenerative
processes. Perform. Eval. 70(6), 400–422 (2013)

7. E.G. Amparore, S. Donatelli, Efficient solution of extended Multiple-Phased Systems, in 10th
Valuetools Conference (EAI, 2016), pp. 125–132

8. E.G. Amparore, S. Donatelli, Optimal aggregation of components for the solution of Markov
regenerative processes, in Quantitative Evaluation of Systems: 13th International Conference,
QEST 2016, Quebec City, August 23–25, Proceedings (Springer International Publishing,
Cham, 2016), pp. 19–34

9. E.G. Amparore, S. Donatelli, alphaFactory: a tool for generating the alpha factors of general
distributions, in Proceedings of Quantitative Evaluation of Systems (QEST) 2017 (Springer,
Berlin, 2017), pp. 36–51

4 Modelling and Efficient Solution of Multiple-Phased Systems 61

10. E. Amparore, S. Donatelli, Efficient solution of extended multiple-phased systems, in Proceed-
ings of 10th VALUETOOLS Conference (ICST, Brussels, 2017), pp. 125–132

11. E.G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, G. Franceschinis, 30 Years of GreatSPN,
in Principles of Performance and Reliability Modeling and Evaluation: Essays in Honor of
Kishor Trivedi (Springer, Cham, 2016), pp. 227–254

12. A. Bondavalli, I. Mura, K.S. Trivedi, Dependability Modelling and Sensitivity Analysis of
Scheduled Maintenance Systems (Springer, Berlin, 1999), pp. 7–23

13. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, I. Mura, Dependability modeling and
evaluation of multiple-phased systems using DEEM. IEEE Trans. Reliab. 53(4), 509–522
(2004)

14. C.G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems (Springer, New York,
2006)

15. S. Chew, S. Dunnett, J. Andrews, Phased mission modelling of systems with maintenance-free
operating periods using simulated Petri nets. Reliab. Eng. Syst. Saf. 93(7), 980–994 (2008)

16. H. Choi, V. Mainkar, K.S. Trivedi, Sensitivity analysis of deterministic and stochastic petri
nets, in International Workshop on Modeling, Analysis, and Simulation on Computer and
Telecommunication Systems (MASCOTS), San Diego (1993), pp. 271–276

17. H. Choi, V.G. Kulkarni, K.S. Trivedi, Markov regenerative stochastic Petri nets. Perform. Eval.
20(1–3), 337–357 (1994)

18. R. German, Performance Analysis of Communication Systems with Non-Markovian Stochastic
Petri Nets (Wiley, New York, 2000)

19. C. Hockley, Design for success. J. Aerosp. Eng. 212(6), 371–378 (1998)
20. I. Mura, A. Bondavalli, Markov regenerative stochastic petri nets to model and evaluate the

dependability of Phased Mission Systems dependability. IEEE Trans. Comput. 50(12), 1337–
1351 (2001)

21. I. Mura, A. Bondavalli, X. Zang, K.S. Trivedi, Dependability modeling and evaluation of
Phased Mission Systems: a DSPN approach, in International Conference on Dependable
Computing for Critical Applications (IEEE Press, New York, 1999), pp. 299–318

22. Z. Peng, Y. Lu, A. Miller, Uncertainty analysis of phased mission systems with probabilistic
timed automata, in 7th IEEE International Conference on Prognostics and Health Management
(PHM’16) (2016)

23. R. Pyke, Markov Renewal Processes with Finitely Many States (Columbia University, New
York, 1959)

24. A.K. Somani, J.A. Ritcey, S.H. Au, Computationally-efficient phased-mission reliability
analysis for systems with variable configurations. IEEE Trans. Reliab. 41(4), 504–511 (1992)

25. W.J. Stewart, Probability, Markov Chains, Queues, and Simulation : The Mathematical Basis
of Performance Modeling (Princeton University Press, Princeton, 2009)

26. K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science
Applications (Wiley, New York, 2002)

27. University of Torino, The GreatSPN tool homepage. http://www.di.unito.it/~greatspn/index.
html

28. L. Xing, S. Amari, Reliability of phased-mission systems, in Handbook of Performability
Engineering, ed. by K. Misra (Springer, London, 2008), pp. 349–368

http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html

Chapter 5
Deterministic Network Calculus Analysis
of Multicast Flows

Steffen Bondorf and Fabien Geyer

5.1 Introduction

Distributed embedded electronic applications communicating via packet networks
have become the norm in various industries such as automotive, avionic, or automa-
tion. In such industrial applications, real-time constraints on packet delay and jitter
are usually required in order to ensure the specified processes behavior. Due to
certification of systems as well as reliability demands, formal methods are applied
to validate these timing constraints. They allow for hard guarantees via upper
bounds. While different analytical methods have been proposed in the literature,
Deterministic Network Calculus (DNC) established itself as common method to
analyze asynchronous communications in packet networks. A concrete example of
this is Avionic Full-Duplex Ethernet (AFDX), a communication technology based
on Ethernet and already deployed in avionic systems. Network calculus has proven

This chapter is an extended version of [4]: Generalizing Network Calculus Analysis to Derive
Performance Guarantees for Multicast Flows, in Proc. of EAI ValueTools (2016).

Part of this work has been conducted at the Distributed Computer Systems Lab, TU Kaiserslautern
(TUK), D-67663 Kaiserslautern, Germany, with support of the Carl Zeiss Foundation.

Part of this work has been conducted at Airbus Group Innovations.

S. Bondorf (�)
National University of Singapore (NUS), Singapore, Singapore
e-mail: bondorf@comp.nus.edu.sg; bondorf@cs.uni-kl.de

F. Geyer
Technical University of Munich (TUM), München, Germany
e-mail: fgeyer@net.in.tum.de

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_5

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_5&domain=pdf
mailto:bondorf@comp.nus.edu.sg
mailto:bondorf@cs.uni-kl.de
mailto:fgeyer@net.in.tum.de
https://doi.org/10.1007/978-3-319-92378-9_5

64 S. Bondorf and F. Geyer

to be a key method for the certification of deterministic properties of networks used
for fly-by-wire [14].

An important property of those industrial networks is that communications are
usually based on the multicast paradigm, where packets being sent by one sender
are duplicated by switching elements in the network and received by multiple
receivers. Using DNC on such multicast protocols requires some adaptations, since
this method is restricted to the analysis of unicast communications. As detailed later,
in Sect. 5.3, previous attempts for using DNC to analyze multicast communications
only circumvented its current restriction. They do not provide a solution to overcome
this limitation and cannot benefit from all DNC capabilities to provide accurate end-
to-end guarantees.

We address the open issue of multicast flow analysis with DNC. We contribute
an approach generalizing the known unicast feed-forward analysis (unicastFFA)—
the DNC multicast feed-forward analysis (mcastFFA). Compared to existing
approaches, more accurate bounds are obtained since advanced DNC principles
can be applied in order to reduce, for instance, overly pessimistic assumptions on
flow multiplexing. We numerically evaluate our proposed methods on two AFDX
networks and show that our DNC results are on par with other analytical methods
or outperform them.

This chapter is organized as follows: Sect. 5.2 presents background on DNC
modeling and unicast analysis. In Sect. 5.3, we present related work on multi-
cast flow performance analysis. Section 5.4 contributes a generalization of DNC
unicastFFA for the study of multicast flow guarantees. We evaluate our approach in
Sect. 5.5. Section 5.6 concludes the chapter and provides an outlook.

5.2 Deterministic Network Calculus Background

Deterministic Network Calculus models resources as bounding functions and
provides (min,+)-algebraic operations to derive performance bounds from these. We
provide the basic theory applied in this chapter. For a comprehensive description, we
refer the reader to [13] and [19]. Bounding functions cumulatively model arrivals or
service in interval time. These belong to the set F0 of non-negative, wide-sense
increasing functions:

F0 = {f : R→ R
+ | f (0) = 0,∀0 ≤ s < t : f (s) < f (t)}

DNC makes use of the concept of arrival curves, which is a function bounding
the maximal arrivals of a flow:

Definition 1 (Arrival Curve) Given a flow with input A, a function α ∈ F0 is an
arrival curve for A iff

A(t)− A(s) ≤ α(t − s),∀t, s, 0 ≤ s ≤ t

5 Deterministic Network Calculus Analysis of Multicast Flows 65

Minimum service is bounded in a similar way. It is based on the relation between
data input and output.

Definition 2 (Service Curve) If the service provided by a server s for a given input
A results in an output A′, then s offers a service curve β ∈ F0 iff

A′(t) ≥ inf
0≤s≤t

{A(t − s)+ β(s)},∀t

The DNC analysis relies on two basic (min,+)-algebraic operations:

Definition 3 ((min,+) Operations) The (min,+) convolution and deconvolution
of two functions f, g ∈ F0 are defined as:

Convolution: (f ⊗ g)(t) = inf
0≤s≤t

{f (t − s)+ g(s)}

Deconvolution: (f � g)(t) = sup
s≥0
{f (t + s)− g(s)}

Using these operations, the above definitions translate to A ⊗ α ≥ A and A′ ≥
A⊗ β. Moreover, these operations are used to derive performance bounds.

Theorem 1 (Performance Bounds [19]) Consider a flow f with arrival curve α

traversing a server s with a service curve β. The following bounds can be derived:

Backlog: Q(t) ≤ sup
u≥0
{α(u)− β(u)} = (α � β)(0)

Delay: D(t) ≤ inf{d ≥ 0 | (α � β)(−d) ≤ 0}
Output: α′(d) = (α � β)(d)

with α′being an output arrival curve for A′.

In advanced network analysis, two further operations are relevant:

Theorem 2 (Concatenation of Servers) Consider a single flow f crossing a
tandem of servers s1, . . . , sn where each server si offers a service curve βi . The
overall service curve for f is their concatenation by convolution:

βi ⊗ · · · ⊗ βn =
n⊗

i=1

βi

Given a strict service curve that guarantees a minimum output of β if data is
present at a server, we lower bound the service left-over for a specific flow:

66 S. Bondorf and F. Geyer

Theorem 3 (Left-Over Service Curve) Consider a server s that offers a strict
service curve β. Let s be crossed by flows f0 and f1, with arrival curves α0,
respectively α1. Then the worst-case residual resource share under arbitrary
multiplexing of f1 at s is:

β l.o.f1 = β � α0

with (β�α)(d) = sup{(β−α)(u) | 0 ≤ u ≤ d} denoting the non-decreasing upper
closure of (β − α)(d).

5.2.1 Network Analysis

Using the definitions and theorems presented above, the end-to-end performances
of flows interacting on a network of servers can be computed. We call the analyzed
flow flow of interest, abbreviated foi.

5.2.1.1 Tandems of Servers

The foi’s path defines the sequence (tandem) of servers that defines its end-to-end
delay. The literature proposes different methods to bound this delay.

Total Flow Analysis (TFA) [19]
The TFA first computes per-server delay bounds. Each one holds for the sum of
all the traffic arriving to a server, i.e., these bounds are independent of the foi.
The flow’s end-to-end delay bound is derived by summing up the individual server
delay bounds on its path. The TFA’s server-isolating approach constitutes a direct
application of Theorem 1; it is known to be inferior to the following analyses
[19, 23].

Separated Flow Analysis (SFA) [19]
The SFA is a direct application of other theorems: first compute the left-over service
of each server on the foi’s path using Theorem 3, then concatenate them using
Theorem 2 and finally derive the end-to-end delay bound using Theorem 1. Deriving
the end-to-end delay bound using only one service curve will consider the burst term
of the foi only once, a property called Pay Burst Only Once (PBOO).

Pay Multiplexing Only Once (PMOO) [23]
The PMOO analysis first convolves the tandem of servers before subtracting the
cross-traffic. Using this order, the bursts of the cross-traffic appear only a single
time compared to the SFA analysis where the bursts are included at each server.
Therefore, multiplexing with cross-traffic is only paid for once. However, [22]
showed that the PMOO method does not necessarily outperform the SFA.

5 Deterministic Network Calculus Analysis of Multicast Flows 67

5.2.1.2 Feed-Forward Networks

For more complex feed-forward networks, a procedure to combine tandem analyses
to a network analysis exists, the unicastFFA. In order to integrate the analysis
of multicast flows into DNC, we outline here the structured steps taken by any
DNC feed-forward analysis. This structure also serves us to judge and compare
different approaches that aim for accurate performance bounds on multicast flows.
In previous work, two basic steps of the analysis have already been identified [6]:

unicastFFA Step 1: Cross-Traffic Arrival Bounding
The first unicastFFA step abstracts from the feed-forward network to the foi’s path—
a tandem of servers that can be analyzed with one of the existing procedures. In
detail, this step proceeds as follows:

(i) Starting at the locations of interference with the foi, cross-flows are back-
tracked to their sources. This procedure derives the dependencies between
the foi, its cross-flows, their cross-flows, etc., in a recursive fashion. A new
instance of this sub-step is started for any cross-flow of the current cross-flow
under consideration. Due to the network’s feed-forward property, the recursion
is guaranteed to terminate.

(ii) Next, the dependencies are converted into equations, i.e., a sequence of
algebraic operations for each location of interference with the foi. They capture
the worst-case transformation of flow arrivals towards foi.

(iii) Finally, the equations are solved to obtain the bounds on cross-traffic arrivals.

After these substeps, all cross-flows’ arrivals are bounded with arrival curves
(arrival bounds).

unicastFFA Step 2: foi Performance Bounding
Given the cross-traffic arrival bounds from step 1, step 2 does not need to consider
the part of the network traversed by these flows nor the potentially complex
interference patterns they are subject to. The foi’s end-to-end delay bound in the
feed-forward network is derived with a tandem analysis.

Note that this step provides information required in the previous one. It defines
the flow of interest and thus its cross-flows as well as their locations of interference
used in step 1(i). This step is strongly based on the tandem analysis that, in turn, is
derived with the goal to analyze a unicast flow from end to end. It is not directly
applicable to the analysis of multicast flows and thus needs generalization.

5.2.2 Multicast Flows

As mentioned above, flow and network analysis in network calculus have been
mostly focused on the modeling of unidirectional and unicast communications.
Such a model is not directly applicable to multicast network protocols, where
packets are duplicated at certain points of the network in order to provide one-to-

68 S. Bondorf and F. Geyer

Fig. 5.1 Running example

s1 s2

s3 s4

s5 s6

f3

f1
f2

many communications as illustrated in Fig. 5.1. We define the following terms for
describing parts of a multicast flow:

Definition 4 (Trajectory and Fork) A trajectory of a given source-sink pair
corresponds to the equivalent unicast flow going from the source to the sink. A
fork corresponds to a server where packets are duplicated.

In the following, we will analyze the network of Fig. 5.1 with the given approach.
We focus here on the analysis of f2, which covers all effects relevant to DNC and
multicast flows: There is one multicast flow in each step of the unicastFFA, cross-
traffic arrival bounding (f1) as well as flow of interest analysis (f2). Moreover, a
unicast flow is present and this network allows us to observe direct application of
the different DNC methods described in Sect. 5.2.1.1, namely TFA, SFA (PBOO
effect), and PMOO.

5.3 Related Work

We present three DNC approaches to analyze multicast flows. We focus on how
these approaches enable the unicastFFA of the previous section to analyze networks
with multicast flows. This work reveals that neither of these approaches constitutes
a multicast feed-forward analysis.

5.3.1 unicastFFA Transformation: A Set of Unicast Flows

A first approach to circumvent the issues arises from multicast flows. Each trajectory
will become one independent unicast flow, as illustrated in our sample network
(Fig. 5.2a) and mentioned in [7].

From a procedural point of view, the unicast transformation does not integrate
into the unicastFFA. It only enables for using it by a preceding step that transforms
the network. This step is static, i.e., it does not consider the unicastFFA’s information
like the flow(s) that are under analysis.

The foremost problem of this approach is its overly pessimistic assumption
about resource demand of multicast flows. On common sub-paths of a multicast

5 Deterministic Network Calculus Analysis of Multicast Flows 69

s1 s2

s3 s4

s5 s6

f3

fA
1

fA
2

fB
1

fB
2

(a)

s1 s2

s3 s4

s5 s6

f3

f0
1

fA
2

fB
2

fB
1

fA
1

f0
2

(b)

Fig. 5.2 Existing DNC approaches to the multicast analysis applied to the network presented in
Fig. 5.1. (a) unicastFFA transformation. (b) Multicast TFA

flows’ trajectories, i.e., the servers before a fork, multiple unicast flows compete
for resources. The unicastFFA thus models the worst case with mutual interference
between these flows that are not present in the original network model. On the
other hand, this approach allows for the PBOO and the PMOO principle in the
unicastFFA.

5.3.2 Multicast TFA

Grieu [15] proposes a procedure to apply the TFA presented in Sect. 5.2.1.1 in the
analysis of multicast flows. It is tailored to the TFA and shares its inherent isolation
of servers. Thus, it does not integrate into the unicastFFA for deriving delay bounds.
Figure 5.2b depicts this procedure on the running example network. Flows are cut
between all servers, the arrivals are aggregated and a server-local delay bound is
computed. In a second step, the server delay bounds on the trajectory of interest
are summed up. As this last step is similar to the unicastFFA step 1, it inherits
its decisive TFA shortcomings. I.e., neither the PMOO nor the PBOO principle is
implemented and the delay bounds are known to be inaccurate.

5.3.3 Explicit Intermediate Bounds (EIB)

An extension of multicast TFA is presented in [4]. The authors propose a different
step preceding the unicastFFA analysis. Instead of a per-server delay analysis, it
analyzes the tandems of servers between a multicast flow’s forks. I.e., a multicast
flow is transformed into a set of sub-trajectories. These can then be analyzed
individually by computing the left-over service curve on this tandem of servers.
Thus, the PBOO as well as the PMOO principle can be applied. In a second step,
the analyzed flow’s output bounds from all sub-trajectories are derived using their
left-over service curves. They are explicitly used as arrival curves after the fork
locations at the end of sub-trajectories. Therefore, the approach called Explicit

70 S. Bondorf and F. Geyer

Fig. 5.3 Application of EIB:
multicast flows are cut into
unicast sub-trajectories

s1 s2

s3 s4

s5 s6

f3

f0
1

fA
2

fB
2

fB
1

fA
1

f0
2

Intermediate Bounds (EIB). Figure 5.3 illustrates the EIB’s sub-trajectory approach.
Note that the approach cannot implement the PBOO or the PMOO principle on an
entire trajectory, even though the foi’s left-over service curves will be convolved
to attain a valid end-to-end left-over service curve for a trajectory. Moreover note
that deriving the left-over service curves required for EIB will itself result in an
EIB analysis.

5.3.4 Non-network Calculus Approaches

Current DNC approaches have significant drawbacks such that competing multicast
analyses that build on the same modeling as DNC have been proposed.

The Trajectory Approach (TA) is an adaptation to the study of network delays
of the holistic approach [24]. It was originally developed to give bounds on the
scheduling of tasks on a processor. The approach was initially proposed in [21] and
later extended to FIFO systems in [20]. Bauer et al. [2] applied TA to the study of
avionic networks with multicast flows and showed, via numerical evaluations, that
it outperforms the multicast TFA.

The Forward End-To-End Delay Approach (FA) has been proposed more recently
in [17]. It addresses the shortcomings of the TA. Similarly to the TA, FA is also an
adaptation of the holistic approach to the case of FIFO networks. Kemayo et al. [17]
applied the FA to the performance evaluation of avionic networks with multicast
flows and showed that this approach outperforms the multicast TFA as well.

Although FA sets its focus on the end-to-end analysis—similar to the DNC
tandem analyses—neither FA nor TA has been benchmarked against a modern DNC
that implements PBOO or PMOO. This can be attributed to the lack of such an
analysis for multicast flows. We will provide such benchmarking results in Sect. 5.5.

5.4 A Multicast Feed-Forward Analysis Procedure

In this section, we generalize the unicastFFA presented in Sect. 5.2.1.2 to networks
with multicast flows. We call this generalized method multicast Feed-Forward
Analysis, or mcastFFA. This allows us to make use of the knowledge only available

5 Deterministic Network Calculus Analysis of Multicast Flows 71

s1 s2

s3 s4

s5 s6

f3

f1

fA
2

(a)

s1 s2

s3 s4

s5 s6

f3

fB
1

fB
2

(b)

Fig. 5.4 Application of mcastFFA. The dashed lines depict parts of flows that are not con-
sidered in the current analysis. (a) Running example, trajectory f A

2 . (b) Running example,
trajectory f B

2

in the unicastFFA itself. In contrast to the existing DNC approaches and the EIB
analysis, no network transformation is amended to the analysis. We do not create
a network-wide worst-cast setting for all flows before executing the feed-forward
analysis. Instead, our generalization solely constructs a single flow of interest’s
worst case during analysis—a less pessimistic setting than the static approaches
constructing network-wide one for all flows simultaneously. With our approach, the
mcastFFA analysis obtains best results by exploiting the PMOO principle end-to-
end.

Figure 5.4b illustrates the basic idea behind our solution: If we analyze this
multicast flow’s trajectory crossing s5, the other trajectory crossing s3 becomes
irrelevant for the delay bound computation. We neither need to add an entire cross-
flow for it nor do we require the output bound from s1 and s2. Thus, mcastFFA can
treat the multicast trajectories (or unicast flows) of interest in an end-to-end fashion.

The main challenge of this approach is to reduce the network to relevant servers
as well as (partial) flows and multicast flow trajectories. This may constitute con-
siderable effort in large networks. Therefore, we present a solution that generalizes
the unicastFFA analysis in order to gain from its efficiency [9]. I.e., deriving the
sub-network relevant to a specific foi is integral part of the analysis proceedings.

Our mcastFFA solution is mainly based on unicastFFA sub-step 1(i): backtrack-
ing of dependencies. Dependencies of flows on others are identified by traversing
the network in the opposite direction of links [6]. The entire unicastFFA starts this
procedure with the flow of interest. Our mcastFFA will iterate over all n trajectory
of interest and execute separate analyses. In case of a unicast flow, we get n = 1;
for multicast flows n equals the amount of trajectories. Multicast cross-flows are
traversed backwards, too, such that their fork locations do not enforce to cut the
tandem to analyze; the relevant trajectory of the cross-flow is known and can be
treated similar to a unicast cross-flow. The mcastFFA is a generalization of the
known unicastFFA. It implicitly restricts the analysis to the trajectory relevant for
the analysis. After the backtracking, we know the entire sub-network whose servers
and (partial) flows appear in the analysis equation of unicastFFA step 1(ii).

72 S. Bondorf and F. Geyer

5.4.1 Analysis of the Running Example

We will derive the left-over service curves for f2’s trajectories in order to compare
them against the EIB unicastFFA. For brevity, we restrict the depiction to f A

2 ’s
cross-traffic arrival bounding (mcastFFA step 1, Fig. 5.4a) and f B

2 ’s delay bounding
(mcastFFA step 2, Fig. 5.4b). These derivations depict the crucial improvement of
mcastFFA’s proceedings in both of the analysis steps. They point out the reduction
of the network and the increased tandem lengths.

5.4.1.1 mcastFFA Step 1

We consider f A
2 ’s cross-traffic arrival bounding. Backtracking will be “local” to

a single trajectory of a multicast cross-flow. In our example, we finally have
established the possibility to apply the PMOO-principle when computing f A

1 ’s

aggregate arrival bound aggrAB at server s4 [7]. See α
f A

1
4 in the following left-over

service curve derivation we require to bound cross-traffic arrivals:

β l.o.f A
2 = β

l.o.f A
2〈5,4〉 (only single-hop interference so cutting is fine)

= β
l.o.f A

2
5 ⊗ β

l.o.f A
2

4 =
(

β5 � α
f B

1
5

)
⊗
(

β4 � α
f A

1
4

)

=
(
β5 �

(
αf1 � β

l.o.f1
〈1,2〉

))
⊗
(

β4 �
(

αf1 � β
l.o.f A

1〈1,2,3〉
))

A cut of β
l.o.f A

1〈1,2,3〉 into β
l.o.f1
〈1,2〉 ⊗ β

l.o.f A
1

3 was needed in the EIB analysis, meaning that
PMOO could not be implemented.

This advantage is also depicted in Fig. 5.4a where f1 retains its multicast shape
in the mcastFFA’s point of view.

5.4.1.2 mcastFFA Step 2

For the second trajectory of f2, f B
2 , our mcastFFA derives β l.o.f B

2 = β
l.o.f B

2〈5,6〉 . Again,
we are not enforced to cut this trajectory’s path (see Fig. 5.4b) and in contrast to EIB
we can apply alternative tandem analyses:

PBOO: β l.o.f B
2 = β

l.o.f B
2〈5,6〉 (cut enforced by SFA, no single-tandem analysis)

= β
l.o.f B

2
5 ⊗ β

l.o.f B
2

6 =
(

β5 � α
f B

1
5

)
⊗
(

β6 � α
f B

1
6

)

=
(
β5 �

(
αf1 � β

l.o.f1
〈1,2〉

))
⊗
(

β6 �
(

αf1 � β
l.o.f B

1〈1,2,5〉
))

5 Deterministic Network Calculus Analysis of Multicast Flows 73

Note that the actual trajectory of the cross-flow, f1 or f B
1 , was automatically chosen

correctly by the backtracking. Moreover, note the contrast to EIB: We can derive
f B

1 ’s arrivals at s6 with an end-to-end left-over service curve that, in turn, can make
use of aggrAB.

PMOO: β l.o.f B
2 = β

l.o.f B
2〈5,6〉 (there is no enforced cut)

= (β5 ⊗ β6)� α
f1
5 = (β5 ⊗ β6)�

(
αf1 � β

l.o.f1
〈1,2〉

)

where β
l.o.f1
〈1,2〉 can be computed either by applying the left-over service curve

derivation of SFA/PBOO or PMOO. This derivation is illustrated in Fig. 5.4b.

5.4.2 Theoretical Evaluation

We conclude this section by a theoretical evaluation of mcastFFA against the related
DNC approaches:

• Relation to unicastFFA (Sect. 5.2.1.2): The mcastFFA is a generalization of
the unicastFFA. Analysis of unicast flows in either of the two steps remains
unaffected (see f3 in the running example).

• Relation to unicastFFA transformation (Sect. 5.3): Like the unicastFFA transfor-
mation, the mcastFFA is able to derive a PMOO end-to-end left-over service
curve. However, it does so without the additional cross-traffic assumptions
introduced by the unicastFFA transformation. I.e., there are less cross-flows to
consider in the analysis, left-over service curves will be larger and delay bounds
will be smaller. Thus, mcastFFA outperforms unicastFFA transformation.

• Relation to EIB unicastFFA: In comparison to EIB, we gained the ability to
operate on end-to-end tandems. This constitutes increased flexibility to cut this
tandem during the analysis: Our mcastFFA is compatible with SFA/PBOO,
PMOO, aggrAB, or [9] for best attainable left-over service curves. This best
solution to cut a tandem and combine sub-tandem results might coincide with
EIB’s enforced alternative, i.e., mcastFFA is indeed a generalization of EIB
unicastFFA.

Before evaluating our contributions, let us briefly clarify their impact on the
server backlog bound Q presented in Theorem 1. Deriving these bounds requires
the arrival bounds of all flows at a server. I.e., in the DNC analysis procedures,
(EIB) unicastFFA and mcastFFA, step 1 is crucial for the result accuracy; step 2
is not required. As shown with the running example, we improved the cross-traffic
arrival bounding in case there are multicast flows present. Thus, backlog bounds are
also improved by our contribution.

74 S. Bondorf and F. Geyer

5.5 Numerical Evaluation

In our numerical evaluation, we investigate achieved gains in terms of accuracy of
end-to-end delay bounds. To that end, we provide two different comparisons. First,
we benchmark our multicast feed-forward analysis (mcastFFA) against the related
approaches presented in Sect. 5.3. For our second set of results, a larger network
evaluation, we implemented EIB and mcastFFA in the DiscoDNC tool [5].

5.5.1 Comparison to (Non-)Network Calculus Approaches

We study the AFDX network presented in [17]. This allows us to benchmark our
proposed approach against the TA and FA since their numerical results are given in
the literature. We note that we benchmark against the numerical results of TA and
FA without the grouping properties extension since established DNC analyses do not
yet take this property into account by default. The grouping property accounts for
serialization of packetized flows when crossing links. We leave its implementation
in the generalized DNC solutions, potentially based on [11, 15], to future work and
restrict our comparison to the non-serialized results. Also, we use a fluid model
for our evaluations. To achieve the best comparison possible with the related work
on TA and FA, we also model store-and-forward behavior. This is achieved by an
additional latency at every server that delays packet forwarding by the time required
for full reception of a package of maximum size, max(pkg_size)/R. Using their
parameters defining service and arrivals, this enables us to confirm the DNC delay
bounds (see footnote “b” in Fig. 5.5b) given in [17].

ES 2

ES 1

ES 4

ES 5

S11

S12

S3

S41

S42

S2

v3

v5

v7

v8 9

v1

v2 3

v1 2

v7 9

v2 6

v4
v8 9

ES 6

ES 3
v4 8

v7 9

v2v1
v2 6

v5 6

v9

(a)

[18] u. trans. EIB mcastFFA
Flow TA FA PMOOa TFAb SFA PMOO SFA PMOO

v1 142 192 142 182 182 142 182 122
v2(S2) 122 122 142 122 122 122 122 122
v2(S41) 142 192 142 182 182 162 182 142
v3 66 56 56 56 56 56 56 56
v4 56 66 56 56 56 56 56 56
v5 106 106 96 96 96 96 96 96
v6 142 192 142 182 182 142 182 122
v7 - 152 142 142 142 142 142 132
v8 92 122 102 112 112 102 112 92
v9(S41) - 162 142 152 152 142 152 132
v9(S42) 92 122 102 112 112 102 112 92

(b)

Fig. 5.5 AFDX network evaluation of [17], extended with DNC’s EIB and mcastFFA. (a) AFDX
Network. (b) Delay bounds (values given in μs, best in bold). aUnicastFFA transformation
approach with the stated PMOO end-to-end left-over service curve derivation. bRemember, that
EIB with TFA corresponds to the multicast TFA analysis presented as related work in Sect. 5.3

5 Deterministic Network Calculus Analysis of Multicast Flows 75

Our comparison focuses on mcastFFA with PMOO, TA, and FA delay bounds.
We observe (see Fig. 5.5) that mcastFFA at least matches the bounds of the other
methods compared here. A maximum gain of 5.86% compared to TA and 18.58%
compared to FA is achieved in this small AFDX scenario.

Key observations w.r.t. the performance of DNC analyses confirm our theory:

• mcastFFA with PMOO shows expected gains compared to the multicast TFA (see
footnote “b” in Fig. 5.5b).

• EIB with PMOO does not make full use of the PMOO principle end-to-end on
trajectories and thus is outperformed by mcastFFA with PMOO in most cases.

• For some trajectories of multicast flows, even TFA results are equal. Then, flow
interference is non-existent. These cases do not occur in realistic networks.

5.5.2 An Industry-Scale AFDX Data Network

In order to evaluate our method on a realistic use-case found in industrial applica-
tions, we evaluate an AFDX data network. We aim to confirm our hypothesis that
the mcastFFA will have a more pronounced advantage over other approaches2 in
larger networks. To that end, we implemented EIB and mcastFFA in the DiscoDNC
tool. We also extended the DiscoDNC by an AFDX topology generator following
recommendation from [12] and with network parameters according to an Airbus
A350 presented in [16]. This also allows us to provide the entire range of DNC
analysis configurations pairing EIB or mcastFFA with TFA as well as SFA/PBOO
or PMOO β l.o. computations. For brevity of presentation, we focus on the most
relevant of these combinations, EIB with SFA, EIB with PMOO and mcastFFA with
PMOO. All results were computed using aggrAB arrival bounding [7]. Note that
this is not a restriction. Using segregated arrival bounding [10] or tandem matching
arrival bounding [9] or any combination thereof is possible as well.

The network we generated according to these size parameters resulted in 650
multicast flows with 1112 trajectories in total. In order to compare the gains of
mcastFFA PMOO against the other EIB methods, we used the relative difference,
namely: (dEIB − dmcastFFA

PMOO)/dEIB. The empirical cumulative distribution (ECDF)
over the studied A350-like network is illustrated in Fig. 5.6. Key observations are
unaffected: the mcastFFA procedure derives more accurate bounds than EIB. On
average, mcastFFA PMOO produces a reduction of 8% of the bound compared to
EIB SFA and 6% compared to EIB PMOO. We also observed reduction of up to
25% for some flows. These observations confirm our hypothesis that mcastFFA’s
potential advantage over other DNC approaches increases with the network size.

We also observe EIB SFA delay bounds that undercut the mcastFFA PMOO (see
positive ECDF values for the negative x-axis in Fig. 5.6). The situation stems from

2Due to a lack of software tools, TA and FA are not included.

76 S. Bondorf and F. Geyer

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2
Relative difference

E
C
D
F

Relative difference:
mcastFFA PMOO vs.

EIB SFA

EIB PMOO

Fig. 5.6 ECDF of the relative difference between mcastFFA and the EIB methods

a well-known phenomenon that allows SFA to theoretically outperform PMOO
by an arbitrarily large margin [22]. However, the mcastFFA can be paired with
any tandem analysis able to compute output bounds. Doing so with the Tandem
Matching Analysis (TMA) proposed in [9] creates a single-best algebraic analysis
for arbitrary multiplexing.

5.6 Conclusion and Outlook

In this chapter, we tackled the problem of analyzing multicast flows with deter-
ministic network calculus. DNC was previously tailored to the analysis of unicast
flows—a property which was assumed to invariantly hold. Therefore, previous
approaches for the DNC analysis of multicast flows tried to adjust to this restriction
by, e.g., pessimistic re-modeling of the network. This leads to inaccurate perfor-
mance bounds and the development of alternative, non-DNC analyses to derive
multicast flow guarantees. In contrast, we generalized DNC unicast feed-forward
analysis to a multicast one.

In theoretical and numerical evaluations we showed that our contribution results
in a single best DNC analysis for multicast flows, the mcastFFA with PMOO. Not
only does it outperform any other DNC approach, the evaluation of an AFDX
scenario from the literature also shows that DNC achieves at least the results of
competitors (Trajectory Approach and Forward Analysis), even outperforming them
in a considerable amount of cases.

Existing AFDX networks as deployed in existing Airbus aircraft such as the
A380 are larger and more complex than the ones presented in this evaluation [25].
They consist of ∼1000 multicast flows (virtual links, VLs) that have an average of
∼6.5 trajectories per VL [1]. Therefore, the improvements we achieve with DNC’s
PMOO in conjunction with mcastFFA is expected to be even larger in practice.

5 Deterministic Network Calculus Analysis of Multicast Flows 77

Moreover, the presented mcastFFA has the flexibility to be combined with
any DNC tandem analysis and improvement thereof. For instance, [8], [9], FIFO
multiplexing service analysis [3] or packetization [11] can tighten guarantees and
restriction to finite domains can accelerate the analysis [18].

Acknowledgements The authors would like to thank Bruno Oliveira Cattelan for his work on
implementing the explicit intermediate bounds analysis and the multicast feed-forward analysis in
the Disco Deterministic Network Calculator.

References

1. H. Bauer, Analyse pire cas de flux hétérogènes dans un réseau embarqué avion. Ph.D. thesis,
Université de Toulouse, 2011

2. H. Bauer, J. Scharbarg, C. Fraboul, Applying and optimizing trajectory approach for perfor-
mance evaluation of AFDX avionics network, in Proceedings of IEEE ETFA (2009)

3. L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, Numerical analysis of worst-case end-to-end delay
bounds in fifo tandem networks. Springer Real-Time Syst. J. 48, 527–569 (2012)

4. S. Bondorf, F. Geyer, Generalizing network calculus analysis to derive performance guarantees
for multicast flows, in Proceedings of EAI ValueTools (2016)

5. S. Bondorf, J.B. Schmitt, The DiscoDNC v2 – a comprehensive tool for deterministic network
calculus, in Proceedings of EAI ValueTools (2014)

6. S. Bondorf, J.B. Schmitt, Boosting sensor network calculus by thoroughly bounding cross-
traffic, in Proceedings IEEE INFOCOM (2015)

7. S. Bondorf, J.B. Schmitt, Calculating accurate end-to-end delay bounds – you better know your
cross-traffic, in Proceedings of EAI ValueTools (2015)

8. S. Bondorf, J.B. Schmitt, Improving cross-traffic bounds in feed-forward networks – there is a
job for everyone, in Proceedings of GI/ITG MMB & DFT (2016)

9. S. Bondorf, P. Nikolaus, J.B. Schmitt, Quality and cost of deterministic network calculus –
design and evaluation of an accurate and fast analysis, in Proceedings of ACM SIGMETRICS
(2017)

10. A. Bouillard, Algorithms and Efficiency of Network Calculus. Habilitation thesis, ENS, 2014
11. M. Boyer, P. Roux, A common framework embedding network calculus and event stream

theory, in Proceedings of IEEE ETFA (2016)
12. M. Boyer, N. Navet, M. Fumey, Experimental assessment of timing verification techniques for

AFDX, in Proceedings of ERTS (2012)
13. C.S. Chang, Performance Guarantees in Communication Networks (Springer, Berlin, 2000)
14. F. Geyer, G. Carle, Network engineering for real-time networks: comparison of automotive and

aeronautic industries approaches. IEEE Commun. Mag. 54, 106–112 (2016)
15. J. Grieu, Analyse et évaluation de techniques de commutation Ethernet pour l’interconnexion

des systèmes avioniques. Ph.D. thesis, Institut National Polytechnique de Toulouse, 2004
16. O. Hotescu, K. Jaffres-Runser, J.L. Scharbarg, C. Fraboul, Towards quality of service provision

with avionics full duplex switching, in Euromicro ECRTS, Work-in-Progress Session (2017)
17. G. Kemayo, N. Benammar, F. Ridouard, H. Bauer, P. Richard, Improving AFDX End-to-End

delays analysis, in Proceedings of IEEE ETFA (2015)
18. K. Lampka, S. Bondorf, J.B. Schmitt, N. Guan, W. Yi, Generalized finitary real-time calculus,

in Proceedings IEEE INFOCOM (2017)
19. J.-Y. Le Boudec, P. Thiran, Network Calculus: A Theory of Deterministic Queuing Systems for

the Internet (Springer, Berlin, 2001)
20. S. Martin, P. Minet, Schedulability analysis of flows scheduled with FIFO: application to the

expedited forwarding class, in Proceedings of IPDPS (2006)

78 S. Bondorf and F. Geyer

21. J. Migge, L’ordonnancement sous contraintes temps-réel un modèle à base de trajectoires.
Ph.D. thesis, INRIA Sophia Antipolis, 1999

22. J.B. Schmitt, F.A. Zdarsky, M. Fidler, Delay bounds under arbitrary multiplexing: when
network calculus leaves you in the lurch. . . , in Proceedings of IEEE INFOCOM (2008)

23. J.B. Schmitt, F.A. Zdarsky, I. Martinovic, Improving performance bounds in feed-forward
networks by paying multiplexing only once, in Proceedings of GI/ITG MMB (2008)

24. K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard real-time systems.
Microprocess. Microprogramm. 40, 117–134 (1994)

25. N. Tobeck, Enforcing domain segregation in unified cabin data networks, in Proceedings of
IEEE/AIAA DASC (2017)

Chapter 6
Modeling Techniques for Pool Depletion
Systems

Davide Cerotti, Marco Gribaudo, Riccardo Pinciroli, and Giuseppe Serazzi

6.1 Introduction

In the last years, the development of new programming paradigms was increasingly
affected by the evolution of Big Data technologies. Indeed, the enormous amount
of data generated by IoT and any other type of input devices requires specific
techniques for storage, access, and process. To satisfy the increasing demand of
computational capabilities required to process such huge volume of data in a
reasonable amount of time, the concepts of parallelism and distributed computation
have been extensively adopted. Big Data applications split the data to be analyzed
into blocks and generate multiple tasks dedicated to their processing. The tasks are
executed in parallel by the resources of a distributed computing environment. At the
end of all the executions, newly created tasks concurrently process the intermediate
results to produce the final output of the application. This operational structure,
proposed originally by Google with Hadoop MapReduce [5, 8], is adopted by many
current Big Data applications.

A complete execution of a Big Data application consists of a sequence of
parallel computations and their following synchronization. Typically, the computing
framework orchestrates the parallel executions of the tasks taking into consideration
the configuration of the available architecture. The allocation strategy of the tasks
to the distributed systems has a deep influence on the execution time of the
applications. Indeed, the load of the systems must be controlled in order to avoid the

D. Cerotti
DiSIT, Università Piemonte Orientale, Alessandria, Italy
e-mail: davide.cerotti@uniupo.it

M. Gribaudo (�) · R. Pinciroli · G. Serazzi
DEIB, Politecnico di Milano, Milano, Italy
e-mail: marco.gribaudo@polimi.it; riccardo.pinciroli@polimi.it; giuseppe.serazzi@polimi.it

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_6

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_6&domain=pdf
mailto:davide.cerotti@uniupo.it
mailto:marco.gribaudo@polimi.it
mailto:riccardo.pinciroli@polimi.it
mailto:giuseppe.serazzi@polimi.it
https://doi.org/10.1007/978-3-319-92378-9_6

80 D. Cerotti et al.

creation of bottlenecks that severely limit the performance. On the other hand, also
the under-load of the resources must be avoided trying to balance their utilization.
A policy to allocate the tasks to the distributed systems to minimize the execution
time of the entire application was presented in [3].
To this end, we studied Pool Depletion Systems (PDS) and in this chapter we
describe the techniques to be used for their modeling.

PDS is a framework adopted in [2, 3, 11] to analyze all the systems where a huge
amount of tasks, composing a job, must be executed by one or more subsystems with
a finite capacity. PDS are studied assuming the tasks may belong to two different
classes that are served by subsystem’s resources with different service demands.
Each PDS is characterized by a transient behavior that may be summarized as
follows: (1) initially, all the tasks of a job are in the pool and they are admitted
gradually into a finite capacity subsystem to be executed; (2) whenever a task is
completed, it leaves the subsystem and another task can start being processed; (3)
when all the tasks have been executed, the job is completed and a new request can be
served. The metric we are interested in is the depletion time, i.e., the time required
to execute all the tasks. The main goal is to find the allocation policy of all the tasks
in the pool that minimizes the depletion time.

Two techniques have been used to model PDS: (1) Markov analysis [2], that
provides exact analytic solutions, and (2) discrete events simulation [3, 11]. The
former may be affected by the state space explosion when the number of tasks to be
considered is large. The latter could take a very long time to complete a simulation
run with complex models. In this chapter, we propose a further approach, i.e., the
fluid approximation technique, to analyze PDS. It allows the analysis of models
with large dimensions (e.g., even million of tasks) in a very short amount of time.
Comparisons of time required by the three techniques to solve models of various
sizes and the accuracy of their results are provided and analyzed.

This chapter is organized as follows. Sections 6.2 and 6.3 provide a review of
the background results and a description of the system architecture, software and
hardware, considered. Section 6.4 describes and compares different models to study
PDS. Section 6.5 draws conclusions.

6.2 Related Work

In this section we emphasize some results on product-form closed queuing networks
[1] with two-class workload and fixed rate single server stations that will be
exploited in the analysis of depletion systems developed in the following sections.
Two-class workloads are simple enough to analytically deal with, while being
representative of several realistic systems’ workload. In this case, the workload
of models with M stations can be characterized by a matrix of service demands
D = [Drc] where Drc is the time required by station r ∈ {1, . . . ,M} to completely

6 Modeling Techniques for Pool Depletion Systems 81

process a class c ∈ {A,B} request. Hereinafter, we will consider a system with two
resources and the following service demands:

D =
[

0.8 0.496
0.2 1.25

]
(6.1)

According to matrix (6.1), class A service demands on stations 1 and 2 are 0.8
and 0.2 time units, respectively, whereas class B demands on the two stations are
0.496 and 1.25 time units, respectively. Note that, since the system considered in this
chapter is a separable queuing network, its solution depends only on the product of
visits vr and service time Sr at each resource r (i.e., on the service demand Dr =
vr · Sr) and not on the individual factors [9]. For this reason, the topology of the
network is arbitrary, thus we assume the two resources to be in series (as shown in
Fig. 6.1).

The performance of systems with multi-class workloads depends on the fraction
of requests in execution for each class, referred to as population mix. Let β =
(βA, βB) represent the population mix. In the example of matrix D, when βA = 0
we have only class B requests and the bottleneck (i.e., the saturated resource) is
station 2, whereas with βA = 1 (only class A requests) the bottleneck is station
1. Thus, varying the value of β a bottleneck switch occurs. In these conditions,
there exists a value β∗ such that both stations are equally utilized for any number
of requests inside the system; such value is called the equi-utilization point. In
addition, providing that the service demand matrix values allow the occurrence of
a bottleneck switch1 and when the number of requests is sufficiently large, it is
possible to identify an interval of values of the population mix that concurrently
saturate the stations. Indeed, for values of β belonging to such common saturation
sector (CSS) the system throughput is maximum and the system response time is
minimum.

In [12] it is shown that the equi-utilization point is computed as:

β∗ =

⎛

⎜⎜⎝β∗A =
log

D22

D12

log D11D22
D12D21

, β∗B = 1− β∗A

⎞

⎟⎟⎠ (6.2)

and it is proved to always belong to the CSS of edges:

⎧
⎪⎪⎨

⎪⎪⎩

βL
A = D2A

D2B −D1B

D1AD2B −D2AD1B

βU
A = D1A

D2B −D1B

D1AD2B −D2AD1B

(6.3)

1It can be verified by checking if D1A > D2A and D1B < D2B .

82 D. Cerotti et al.

where βL
A and βU

A denote the lower and upper edges, respectively. Moreover, in the
same paper the behavior of the per-class throughputs is analytically computed. In
particular, we have that for values of βA inside the CSS the per-class throughputs
are:

XCSS
A = XA(K) = D2B −D1B

D1AD2B −D2AD1B

XCSS
B = XB(K) = D2A −D1A

D1BD2A −D1AD2B

(6.4)

where K = (KA,KB) denotes the number of requests of each class. For values of
βA at the right of the saturation sector (i.e., with βA > βU

A) we have:

XA(K) = βA

D1A

XB(K) = 1− βA

D1B

(6.5)

Similar equations can be derived for values of βA at the left of the saturation sector,
thus obtaining the overall trend of the per-class throughputs as function of the
population mix.

In [12], Rosti et al. also introduced the equi-load point, referred to as α∗, that is
derived as:

α∗ =
(

α∗A =
D2BD1B

D1A +D2B −D1B −D2A

, α∗B = 1− α∗A
)

(6.6)

Although two equally loaded stations may be expected to be also equally utilized, it
is not the case since α∗ �= β∗.

6.3 Scenario

We consider a system where each job consists of several independent tasks.
Examples of such type of workloads are video transcoding/analysis, applications
of business analytics, NoSQL queries and so on [4, 6]. In particular, we focus on
jobs composed by two types of tasks, defined as class A and class B. For example,
in multimedia stream applications each chunk is processed by a single task and the
two classes may represent the computation of audio and video chunks, respectively.

We assume that the tasks of a job are executed sequentially by two resources,
denoted as Res1 and Res2, e.g., the CPU and the storage of a server. The global
time required by resource r for a complete execution of a class c task is referred
to as service demand Drc. The service demands characterize the workload in terms
of total processing requirements to the resources, and their values are considered
exponentially distributed. Each resource executes the concurrent tasks according to

6 Modeling Techniques for Pool Depletion Systems 83

NA

NB

Res1 Res2

D1A D1B D2A D2B

K = KA + KBN = NA + NB

pool

Fig. 6.1 The considered scenario

a processor sharing queuing discipline: all tasks are processed by the resources with
a service rate proportional to the current number of tasks in service.

We call NA the number of class A tasks, NB the number of class B and N =
NA + NB the total number of tasks of a job. The system can execute at most K

tasks concurrently. This limitation may be used to model, for instance, constraints
on memory occupancy that prevents all the N tasks to be executed in parallel. In
particular, the system is allowed to concurrently execute KA tasks of class A and
KB of class B, with K = KA+KB . As soon as one task is completed, another task
of the same class is admitted in execution, if available. When all the tasks of one
class are completed, the system allows the processing of the remaining tasks of the
other class.

Figure 6.1 gives a visual representation of the considered scenario. We are
interested in studying the total time T required to complete the execution of all
the N tasks of a job that are initially into the pool. With the type of applications
considered in this study we have NA ≥ KA and NB ≥ KB .

Figure 6.2 shows the temporal evolution of the number of tasks in the system. K

out of N tasks immediately starts being serviced by the first resource of the system.
As long as there are tasks of both classes in the pool waiting to be executed, the
number of tasks in the system is constantly kept to K = KA + KB . We address
this phase as 	I: after a short initial transient period, Tτ0, required to load K tasks
into the first resource, the system behaves as a closed queuing model with KA and
KB customers, since as soon as one of the task of a class leaves the system, it is
replaced by another one of the same class. At time T	1 the tasks in the pool of one
class are finished and no new tasks of that class may enter the system (in Fig. 6.2
this happens for class A tasks). At this time the system starts replacing the tasks
of the exhausted class with the ones of the other class: phase 	II begins. After an
initial transient (that lasts until time Tτ12) in which all the remaining tasks of the
exhausted class are executed, the system behaves as a closed queuing model with
K customers (in Fig. 6.2 these customers are of class B). After some time, the tasks
in the pool that still need to be executed are exhausted, and the system begins to
execute a decreasing number of tasks. We denote this instant of time by T	2, and
the period of time in which the server is working with less than K tasks as phase

84 D. Cerotti et al.

Tasks in service

Time [sec.]

K

KA

KB

Tτ0 TΦ1 Tτ12 TΦ2 T

ΦΙ ΦΙΙ ΦΙΙΙ

T1 T2

Fig. 6.2 Behavior of the number of tasks in execution with phases characterization

	III. The job completes its execution when all its tasks are terminated at time T ,
referred to as depletion time.

6.4 Models Analysis

PDS cannot be analyzed through closed-form formulas when the asymptotic
assumptions presented in [3] (i.e., N
 K and K is large enough to saturate the
system) are not satisfied. In this section, PDS are analyzed using analytic, discrete
event simulation and fluid models. In particular, the three models are described
and compared to each other in order to determine those that may provide the more
accurate results in the shorter time.

6.4.1 Markov Analysis

A continuous-time Markov chain (CTMC) model was proposed in [2] to analytically
study a PDS. Such model provides the exact results since it analytically describes
each phase of a PDS. In the CTMC the state of the system is described by a tuple
counting, for each class, the current number of tasks in the pool, in station Res1 and
in station Res2. The completions of tasks change the system state and are represented
in the CTMC as transitions from a value of the tuple to another. Assuming that all
such events follow an exponential distribution, the whole state space of the system is
built and the resulting CTMC can be analyzed by standard numerical techniques. In
particular, the depletion time and the duration of each phase, including the transient
ones, are analytically computed through absorption time analysis. Further details
can be found in [2] and [10].

6 Modeling Techniques for Pool Depletion Systems 85

Unfortunately, analytic analysis of CTMCs suffers from the well-known state
space explosion problem: large values of K and N make the resulting state space
grow exponentially, thus making the solution computationally unfeasible. For this
reason, also simulation and fluid models are considered for PDS analysis.

6.4.2 Discrete Event Simulation

The single-subsystem PDS may be analyzed recurring to the multi-formalism model
in Fig. 6.3.

Such a model consists of a Colored Petri Net (CPN) and a multi-class fork-
and-join queuing network. In fact, the adoption of several formalisms allows to use
the most appropriate primitives while modeling a system [7]. The workload of the
model is composed by tokens and jobs: the former are used by CPN to model the
subsystem finite capacity, the latter by queuing network to represent the tasks of a
job and their execution. Note that, since a two-class PDS is considered, there are
two classes both for tokens and for jobs.

Initially, a single job is in the system starting in the delay station Jobs with
zero service time: the purpose of this node is to provide the reference station2

for computing throughput and response time, and to restart the system after one
execution run. The job is immediately split into NA class A tasks and NB class
B tasks (i.e., N = NA + NB) by the fork node named Fork. Thus, a task that
is waiting to be executed is represented as a token in place Wait: a color class
< C > is assigned to each token to identify the class of that task. The capacity
K = KA + KB of the subsystem is represented by the number of color < C′ >

tokens in place MaxTasks that are initialized to KA and KB for the corresponding
task classes. The notation used in Fig. 6.3 is summarized in Table 6.1.

The subsystem starts executing a task when transition Enter fires; in fact, this
can occur in one of the four different modes shown in Table 6.2. When a color
class A (B) task is waiting in place Wait and at least a token of the same color is

...

MaxTasks

Res2Res1Enter LeaveRel

Wait

Fork

Jobs

Join

<C> <C,C’> <C,C’>

<C,C’>

<C’>

<C>

Fig. 6.3 The multi-formalism model of the considered scenario

2In closed queuing networks throughput and response time can be computed only with respect to
a given/specific resource, the so-called reference station [9].

86 D. Cerotti et al.

Table 6.1 Color-sets of the
discrete event
multi-formalism model

Color-set Description

< C > Task class C = {A,B}
< C′ > Token color C′ = {A,B}
< C,C′ > Task class C, token color C′

Table 6.2 Firing modes for transitions Enter and Leave

Transition Mode In1 In2 Out1 Out2 Description

Enter Wait MaxTasks Res1

1 A A (A,A) Class A task

2 B B (B,B) Class B task

3 A B with Wait.B = 0 (A,B) Class A task, depletion

4 B A with Wait.A = 0 (B,A) Class B task, depletion

Leave Rel MaxTasks Join

1 (A,A) A A Class A task

2 (B, B) B B Class B task

3 (A,B) B A Class A task, depletion

4 (B,A) A B Class B task, depletion

available in place MaxTasks, the system is in phase 	I and transition Enter fires
in mode 1 (2). Instead, if system is operating in phase 	II or 	III, one of the two
classes of tasks is exhausted and its tokens are used to allow the remaining tasks to
be executed. In this case, transition Enter fires in mode 3 or 4, according to the
color class < C > of tasks still waiting to be executed.

As shown in Table 6.1, the color class of a task is referred to as < C >, whereas
< C′ > is used to represent the color of a token. Instead, notation < C,C′ > is used
to represent the tasks admitted into the subsystem; indeed, a token of color < C′ >
is always associated to each of these tasks.

The subsystem is composed by two queuing network primitives, Res1 and
Res2. They represent the resources of the subsystem and process the tasks currently
into it. The service requirements of each task are determined by its color class
< C >, while the color < C′ > of the token associated to that task is used only to
correctly return the token in place MaxTasks. When a task has been executed by
both the resources, it enters place Rel and enables transition Leave.

The absence of tokens in place MaxTasksmeans that the subsystem has reached
its maximum capacity. In such condition further tasks are not admitted until the
completion of at least a task currently in execution. When a task is completed,
transition Leave fires: a token return to place MaxTasks and the task is sent to the
join node Join. Also transition Leave can fire in four different modes depending
on the color class of the task that has been completed and the color of its associated
token. The four modes are shown in Table 6.2. When all the N tasks generated by
Fork have been collected by Join, the initially job return to the delay station and
a new one can start its computation.

6 Modeling Techniques for Pool Depletion Systems 87

Note that the approximations introduced by the multi-formalism model are
related to the technique adopted for its simulation.

6.4.3 Fluid Approximation

The fluid approximation is based on the following assumption: except from the
transient behavior that occurs whenever the system switches phases, if we focus
only on the service components (namely Res1 and Res2), they operate as in a two
class closed model with KA and KB jobs. This occurs because as soon as a job
leaves the server components, a new one of the same class is re-introduced. Let us
call X

KA,KB

A and X
KA,KB

B the throughput that the two classes would have in a closed
model composed by Res1 and Res2, with KA and KB jobs. The time T	1 at which
the first phase (I) ends can thus be approximated as:

T	1 = min

(
NA −KA

X
KA,KB

A

,
NB −KB

X
KA,KB

B

)
(6.7)

Without loss of generality, let us suppose that class A ends first: NA−KA

X
KA,KB
A

< NB−KB

X
KA,KB
B

.

The number NB	1 of class B jobs that still can enter the system at the end of phase
	I , can then be determined as:

NB	1 = NB −KB −X
KA,KB

B · T	1 (6.8)

For the sake of simplicity, let us suppose that NB	1 is large enough to allow the
system to complete the transient part up to time Tτ12 (Fig. 6.2). We approximate the
TτKA−1,KB+1 time at which the first of the KA jobs still in the system ends as:

TτKA−1,KB+1 = T	1 + 1

X
KA,KB

A

(6.9)

and compute the number NBτKA−1,KB+1 of class B jobs that are still in the pool and
need to enter the servers as:

NBτKA−1,KB+1 = NB	1 − X
KA,KB

B

X
KA,KB

A

(6.10)

At this point the population in the system changes to K ′A = KA − 1 and K ′B =
KB + 1 since the class A job is replaced by a class B one. We thus compute
X

KA−1,KB+1
A and X

KA−1,KB+1
B by solving the corresponding closed model with the

new population mix, and compute the time TτKA−2,KB+2 at which the next class A

job finishes and the corresponding class B population NBτKA−2,KB+2 that still have

88 D. Cerotti et al.

to enter the system:

TτKA−2,KB+2 = TτKA−2 + 1

X
KA−1,KB+1
A

NBτKA−2,KB+2 = NBτKA−1,KB+1 − X
KA−1,KB+1
B

X
KA−1,KB+1
A

(6.11)

The process is repeated K−KA times until time Tτ12 is reached (i.e., all the class A

jobs inside the system and in the pool are completed). At that point, the system has
only class B jobs. We thus solve the closed model as a single class one (considering
only class B) with K jobs, and determine its throughput X

0,K
B . Let us call NBτ12 the

number of class B jobs still waiting to be executed in the pool (computed with the
previous procedure repeating until NBτ12 = NBτ0,K). We then approximate the end
of the second phase T	2 as:

T	2 = Tτ12 + NBτ12

X
0,K
B

(6.12)

Now depletion starts and the number of class B jobs inside the system decreases
from K down to zero. Let us call X

0,k
B the throughput of the closed model when its

population is composed by k class B jobs. The process completion time T is thus
approximated as:

T = T	2 +
K∑

k=1

1

X
0,k
B

(6.13)

The fluid approximation might become slightly more complex when the number of
class B jobs waiting in the pool becomes zero while there are still class A jobs in
service. In this case we will have again to consider the minimum time between class
A jobs and class B jobs, and compute the throughput accordingly.

In practice, depending on the system configuration, all the throughput of a closed
model with kA+ kB ≤ K jobs might be required. However, thanks to the properties
of the Mean Value Analysis algorithm, all these values can be easily computed with
complexity o(K2), and a minor overhead with respect to the computation of the
solution for KA and KB alone. Algorithm 1 summarizes the proposed procedure:
variables nA and nB contain the fluid count of the total population (inside the servers
and in the pool) for the two classes, while kA and kB the current population inside
the server. Lines 3 to 10 consider phases 	I and 	II (see Fig. 6.2), while lines 11
to 19 deal with phase 	III , since after line 10 either kA = 0 or kB = 0.

6 Modeling Techniques for Pool Depletion Systems 89

Algorithm 1 Fluid approximation of T

1: Compute X
kA,kB

A and X
kA,kB

B , ∀kA, kB > 0 : kA + kB ≤ K using MVA
2: kA = KA, kB = KB , nA = NA, nB = NB , T = 0
3: while (kA > 0 and kB > 0) do
4:
TA = (nA − kA + 1)/X

kA,kB

A ,
TB = (nB − kB + 1)/X
kA,kB

B

5: if
TA <
TB then
6: nA−=
TA ·XkA,kB

A , nB−=
TA ·XkA,kB

B , kA−−, kB++, T+=
TA

7: else
8: nA−=
TB ·XkA,kB

A , nB−=
TB ·XkA,kB

B , kA++, kB−−, T+=
TB

9: end if
10: end while
11: if kA > 0 then
12: while (kA > 0) do
13:
TA = (nA − kA + 1)/X

kA,0
A , nA−=
TA ·XkA,kB

A , kA−−, T+=
TA

14: end while
15: else
16: while (kB > 0) do
17:
TB = (nB − kB + 1)/X

0,kB

B , nB−=
TB ·XkA,kB

B , kB−−, T+=
TB

18: end while
19: end if

6.4.4 Techniques Comparison

The three techniques previously presented are now compared while analyzing a PDS
with a single subsystem characterized by the service demand matrix in Eq. (6.1).
In particular, the accuracy of each model in evaluating the PDS performance
is analyzed taking into account the time required to compute the results. For
this purpose, the number of tasks that must be executed and the capacity of the
subsystem increase, while their ratio is constant and set to K/N = 0.1.

The shortest depletion time is expected to be observed when the number of
tasks into the pool (NA and NB) and subsystem (KA and KB) are initialized to
their optimal population mix, independently of the values of N and K . The pool
and subsystem optimal population mixes (i.e., α∗ and β∗, respectively) have been
shown to coincide with equi-load and equi-utilization points [3] and may be derived
through Eqs. (6.6) and (6.2). They only depend on the service demand matrix of the
PDS and, considering the one given in Eq. (6.1), are α∗ = (0.556868, 0.443131)

and β∗ = (0.4, 0.6).
Results depicted in Fig. 6.4 are obtained studying the PDS with the service

demand matrix given in Eq. (6.1) and for pool population mix α = α∗. The PDS
is studied for N = 100 and K = 10, while values of KA and KB vary. Figure 6.4
depicts the depletion time T of the configuration considered as a function of the
subsystem population mix β; as expected, the minimum depletion time is measured
by all the models for β = β∗. Moreover, the largest error in estimating the depletion
time made by simulation and fluid models with respect to the analytic one are 1‰
and 4%, respectively.

90 D. Cerotti et al.

Fig. 6.4 Depletion time of a PDS as a function of the subsystem population mix obtained using
three different models

(N,K)=(102,10)

(N,K)=(103,102)

(N,K)=(104,103)

(N,K)=(105,104)

0.2 0.4 0.6 0.8 1.0
bA

0.70

0.75

0.80

0.85

0.90

0.95

T/N [sec.]

Fig. 6.5 Ratio of depletion time to the number of tasks initially into the pool, for N and K such
that K/N = 0.1

Figure 6.5 represents the ratio of depletion time to the number of tasks initially
into the pool T/N—or normalized depletion time—obtained with fluid model for
configurations (N,K) = { (100,10), (1000,100), (10000,1000), (100000,10000) }.
When the pool size and the subsystem capacity are large enough, we can observe
the presence of an interval of value of βa where the normalized depletion time is
minimized and constant.

Figure 6.6 shows the normalized depletion time T/N as a function of subsystem
population mix, when the number of tasks initially into the pool changes, but the

6 Modeling Techniques for Pool Depletion Systems 91

N=103

N=109

0.2 0.4 0.6 0.8 1.0
bA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T/N [sec.]

N=102

Fig. 6.6 Ratio of depletion time to the number of tasks initially into the pool, for K = 10 and
different values of tasks initially into the pool

subsystem capacity is always the same (i.e., K = 10). In this case, the normalized
depletion time behaves at the same way for all the configurations with N > 1000.
As shown, the depletion time may be shortened by 30% if N > 1000 and PDS
works with its optimal pool and subsystem population mixes (i.e., α∗ and β∗).

In the PDS analysis, the fluid model provides results in the shortest time
and is capable to handle very large values of N and K . Furthermore, although
analytic model is faster than the simulation one, it cannot manage large values
of pool size and subsystem capacity (i.e., N > 100 and K > 10) due to state
space explosion. For these reasons, we used all the models to study configuration
(N,K) = (100, 10), simulation and fluid models for considering complex system
and only the fluid one while analyzing very large values of N and K . For further
details about performance of the three models, the reader is referred to Table 6.3
where the total time and the maximum Mean Absolute Percentage Error (MAPE)
in computing the depletion time of each configuration are reported for all the
techniques. In particular, the MAPE made by the simulation model with respect
to the analytic one (that provides exact solutions) while computing the depletion
time of the PDS is derived as:

MAPEsim = |Tsim − Tanal |
Tanal

(6.14)

where Tsim and Tanal are the depletion times observed with simulation and analytic
models, respectively. Similarly, the MAPE made by the fluid model with respect to
the simulation one is:

92 D. Cerotti et al.

Table 6.3 Models execution time and accuracy

N K Execution time Errors

Markov chain Simulation Fluid approx. MAPEsim MAPEf luid

102 10 5 min 55 min 38 ms 1‰ 4%

103 10 9 h 34 ms 2.6%

103 102 9 h 38 ms 5.5%

104 10 3 days 22 ms 5‰
104 103 7 days 590 ms 6%

105 10 67 ms

105 104 53 s

106 10 231 ms

107 10 2 s

108 10 17 s

109 10 3 min

109 105 4 min

A cell is gray if it has not been possible to derive these measures due to long execution time

MAPEf luid = |Tf luid − Tsim|
Tsim

(6.15)

where Tf luid is the depletion time estimated by the fluid model.
In Table 6.3, columns 1 and 2 report, respectively, the values of N and K for

which the PDS is studied; the time required by each model to provide the depletion
time of the system for different population mixes of the subsystem (i.e., βA = i/10,
with i = (0, . . . , 10)), is shown in columns 3, 4, and 5; finally, the maximum
MAPE made by each simulation and fluid models with respect to the analytic and
the simulation ones, respectively, are shown in columns 6 and 7. Since the results
obtained using discrete event simulation are very similar to those derived through
Markov analysis and, differently from analytic model, the simulation one may be
used to study configurations with large values of N and K , the fluid model results
are compared to those of the simulation model. Gray cells in Table 6.3 mean that
results are not available due to the long time required for their computation.

While analytic and simulation models performance is affected by values of N and
K , the time required by fluid model to provide results mainly depends on values of
K . For this reason, adopting fluid model to analyze PDS allows the users to largely
increase pool size N . Moreover, even if K affects the performance of fluid model
more than N , it is still possible to consider also large values of K and get results in
a short time. Finally note that, although maximum MAPEf luid is between 4% and
6% when K/N = 0.1, it decreases (i.e., the fluid model’s accuracy improves) when
K/N is small enough, such as for N = 104 and K = 10.

6 Modeling Techniques for Pool Depletion Systems 93

6.5 Conclusions

In this chapter the performance of three different techniques used to study PDS was
analyzed and compared. The CTMC model provides analytic results, but it cannot
deal with large and complex systems due to the well-known state space explosion.
Thus, a discrete event multi-formalism model has been adopted to study more
complex systems. In fact, it can analyze PDS with large pool size and subsystem
capacity, while deriving results with high accuracy. Unfortunately, it may require a
long computation time to provide results. Finally, a fluid model has been proposed in
order to analyze complex systems in a short time. Although its MAPE with respect
to simulation model has been observed between 4% and 6% for larger values of
K/N , the results are provided in few minutes also for very large values of N and
K , and its accuracy increases when K/N is small.

Although all the models presented in this chapter provide very similar results in
different amounts of time, they must still be validated against a real scenario. In fact,
the next step of our research will be the validation of the analytic, simulation and
fluid models against a PDS deployed on a real cloud environment.

Acknowledgements This research was supported in part by the European Commission under the
grant ANTAREX H2020 FET-HPC-671623.

References

1. F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios, Open, closed, and mixed networks of
queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

2. D. Cerotti, M. Gribaudo, R. Pinciroli, G. Serazzi, Stochastic analysis of energy consumption in
pool depletion systems, in Measurement, Modelling and Evaluation of Dependable Computer
and Communication Systems - 18th International GI/ITG Conference, MMB& DFT 2016,
Münster, April 4–6, 2016, Proceedings (2016), pp. 25–39

3. D. Cerotti, M. Gribaudo, R. Pinciroli, G. Serazzi, Optimal population mix in pool depletion
systems with two-class workload, in Proceedings of the 10th EAI International Conference on
Performance Evaluation Methodologies and Tools on 10th EAI International Conference on
Performance Evaluation Methodologies and Tools (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, Brussels, 2017), pp. 11–18

4. V.T. Chakaravarthy, A.R. Choudhury, S. Roy, Y. Sabharwal, Scheduling jobs with multiple
non-uniform tasks, in European Conference on Parallel Processing (Springer, Berlin, 2013),
pp. 90–101

5. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

6. D. Díaz-Sánchez, A. Marín-López, F. Almenarez, R. Sánchez-Guerrero, P. Arias, A distributed
transcoding system for mobile video delivery, in Wireless and Mobile Networking Conference
(WMNC), 2012 5th Joint IFIP (IEEE, New York, 2012), pp. 10–16

7. M. Gribaudo, M. Iacono, Theory and Application of Multi-Formalism Modeling (IGI Global,
Hershey, 2013)

8. L. Huang, X.-w. Wang, Y.-d. Zhai, B. Yang, Extraction of user profile based on the hadoop
framework, in 5th International Conference on Wireless Communications, Networking and
Mobile Computing, 2009. WiCom’09 (IEEE, New York, 2009), pp. 1–6

94 D. Cerotti et al.

9. E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik, Quantitative System Performance:
Computer System Analysis Using Queueing Network Models (Prentice-Hall, Upper Saddle
River, 1984)

10. J. Muppala, M. Malhotra, K. Trivedi, Markov dependability models of complex systems:
analysis techniques, in Reliability and Maintenance of Complex Systems, vol. 154, ed. by
S. Ozekici (Springer, Berlin, 1996), pp. 442–486

11. R. Pinciroli, M. Gribaudo, G. Serazzi, Modeling multiclass task-based applications on hetero-
geneous distributed environments, in International Conference on Analytical and Stochastic
Modeling Techniques and Applications (Springer, Berlin, 2017), pp. 166–180

12. E. Rosti, F. Schiavoni, G. Serazzi, Queueing network models with two classes of customers,
in Proceedings Fifth International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 1997. MASCOTS’97 (IEEE, New York, 1997),
pp. 229–234

Chapter 7
Performance of a Single Server Queue
Supported by an Intermittent Server

Raymond A. Marie

7.1 Introduction

Let us consider a single server queue where the server can be supported by a second
one who (1) leaves his current work to join the first server when the number of
customers reaches a threshold K , (2) leaves the queuing system when he has no
more customers to serve. A typical example of such a situation comes from the
banking sector where the unique server from the front office is supported by a second
server regularly assigned to the back office who joins the front office as soon as the
number of customers reaches a given threshold (denoted here by the integer K).
But such a situation could come from a more industrial area. The introduction of an
intermittent server allows to decrease the expected waiting times of customers at a
lower cost than affecting an extra permanent server. And the aim of this study is to
determine the efficiency of such a policy.

A closed situation is one of the supermarket check-out counters where a counter
can be activated/deactivated based on the states of the different queues. This larger
model is a good example to be used in a course on discrete event simulation
as a practical exercise because the queuing model is easy to elaborate and has
no (known) analytical solution in its general configuration. This helps students
to realize all the advantages of a simulation approach. In addition, such a model
is easily adaptable to other fields such as those of telecommunication or of data
centers. Nevertheless, when possible, an analytical solution must be looked for since
its cost is generally lower than the one of the simulation approaches.

Although most of the research work in the domain of the M/M/r queue with
intermittent servers has been done through the use of simulation, we noted some

R. A. Marie (�)
University Rennes 1, IRISA-INRIA, Rennes Cedex, France
e-mail: raymond.marie@irisa.fr

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_7

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_7&domain=pdf
mailto:raymond.marie@irisa.fr
https://doi.org/10.1007/978-3-319-92378-9_7

96 R. A. Marie

developments connected to the subject. In 1971, J. Blackburn published a report [1]
relative to an M/G/1 queue in which the server is an intermittent one who starts
working when the number of customers crosses some threshold. This threshold is
the value realizing the optimum of an objective function. A more recent analytical
study investigated the case of an airline check-in counters set in an airport [5]. In this
study, Parlar et. al elaborated a Markovian model and its transient solution. A major
difference with the supermarket check-out system is that the number of customers
to be served is known in advance (number of customers who have a reserved seat
for a given flight). The problem is to control the number of open check-in counters
such that all the customers that will show up before a deadline T will be served on
time (such that the plane can take off on time). But most of the literature involving
intermittent servers concerns studies where the activations of the servers depend on
reliability/availability of the set of servers rather than on the states of the systems.

Another related class of models is the “coupled processor model” where each
processor can help the other when it is idle. The two queues have their own arrival
processes and service time distributions. Such a class has been the object of intensive
analytical works in the past. Close to that is the case where the behaviors of the
servers are no more symmetrical and only one processor can, when it becomes idle,
give time to the other processor until its own queue reaches a given threshold (see the
intensive study of Osogami et al. [4]). Note also the different model known as “the
slow server problem” (see [6]) where, depending on the values of the parameters,
the use of the slow server may increase the response time.

The present study is different in the sense that the server who gives some part of
his time is not idle but works on tasks which are not directly impacting customers
(the notion of response time is in some sense meaningless). This study is less general
than the one cited above [4] but produces a closed form solution for the steady state
probability distribution and for different metrics such as expected waiting times for
customers or expectation of busy periods for the intermittent server. Our objective is
to promote a better understanding of the benefits of such a strategy. In particular, we
have to consider the trade-off between the help to the customer and the perturbation
of the work in the back office. This is achieved thanks to a cost function providing
an optimal value of the threshold K as a tool to help a manager in charge of the
economical decision.

The chapter is organized as follows: in Sect. 7.2 we present a Markovian model
of the investigated system while in the following section we exhibit the steady state
probability distribution of the stochastic process and the expression of the mean
number of customers (or mean response time) in terms of the different parameters.
In Sect. 7.4, we conduct the determination of the expectation of the time spent by
the second server in one passage in the back office and those of the expectation of
one sojourn time at the front office. In the following section we introduce a cost
function allowing us to provide an optimal threshold K∗. Finally, we conclude by
summarizing the advantages of using an intermittent server (Sect. 7.6).

7 Performance of a Single Server Queue Supported by an Intermittent Server 97

7.2 Hypotheses and Model

We consider that the two servers are equivalent and that the service times are
independent and identically distributed random variables following an exponential
distribution with rate μ. The first server assigned to the front office stays available
for serving the arriving customers.

When there are (K − 1) customers, if the server affected to the back office is
not already serving in the front office, then this server leaves the back office at the
instant of arrival of a new customer and starts serving him in the front office. Once
he is in the front office, the second server stays there until he has no more customers
to serve and re-integrates the back office.

We assume the customer arrival process is Poisson with rate λ.
Under these hypotheses, the stochastic process modeling the number of cus-

tomers in the office is a continuous time Markov chain (CTMC) {X(t), t ≥ 0}
[2, 3, 7]. Its transition graph is given in Fig. 7.1.

A couple (i, 0) (respectively (i, 1)) denotes a state where i customers are present
and where the second server is in the back office (respectively present). State (0)

refers to the empty system and, for i ≥ K , state i denotes the system when i

customers and the second server are present. Note that the first server is idle in
state (1, 1). In addition, E0 (respectively E1) will denote the subset of states where
the second server is in the back office (respectively present):

E0 = {(0), (1, 0), . . . (K−1, 0)}, E1 = {(1, 1), . . . (K−1, 1), (K), (K+1), . . .} .

The steady state probability distribution of this CTMC is determined in the
following section.

The case K = 2 corresponds to an M/M/2 queue with a little specificity: once
the queue is empty, the first server deals with the new arrival, the second server
arriving only when a new arrival finds the first server busy, and going back as soon
as there is no more customer to serve in the front office. But from the customer point
of view, this specificity does not affect the performance of the queue.

0 1,0 2,0 K-1,0

1,1 2,1 K-1,1 K K+1

• • •

• • • • • •

μ

λ

μ
μ

λ

μ

μ

λ

μ

λ

μ

λ
λ

μ

λ

μ

λ

μ

λ

μ

λ

μ

λ

Fig. 7.1 Transition graph of the CTMC

98 R. A. Marie

7.3 Steady State Probability Distribution, Mean Number of
Customers

7.3.1 Steady State Probability Distribution

For any state e, πe will denote the steady state probability of state e. Defining ρ =
λ/2 μ, we note that the steady state probability will exist only if ρ < 1. Using the
Chapmann-Kolmogorov (C-K) equations of states (i, 0), i = 2, . . . , K − 1, it is not
difficult to prove by induction the relation:

πK−i,0 =
⎛

⎝
i−1∑

j=0

φj

⎞

⎠πK−1,0, i = 2, . . . , K − 1 , (7.1)

where φ = μ/λ. Use of the cut theorem on the partition {E0, E1} and of the steady
state C-K equation of state (1, 1) gives us

π1,1 = 1

(1+ 2φ)
πK−1,0 . (7.2)

Then, using Eqs. (7.2) and (7.1) and the C-K equation for state (0), we can express
probability πK−1,0 in terms of π0 as:

πK−1,0 = π0

⎡

⎣ φ

(1+ 2φ)
+ φ

⎛

⎝
K−2∑

j=0

φj

⎞

⎠

⎤

⎦
−1

, (7.3)

or, for the case φ �= 1, as:

πK−1,0 = π0
(1+ 2φ)(1− φ)

D0
, (7.4)

where D0 = φ[(1−φ)+ (1+ 2φ)(1−φK−1)]. Considering now the C-K equations
of states (i, 1), i = 2, . . . , K − 1, we can prove by induction that:

πi,1 = π1,1
(1+ ρ)− 2ρi

(1− ρ)
i = 2, . . . , K , (7.5)

Since ρ = 1 is a root of the numerator, let us note that this probability can also be
expressed as:

πi,1 = π1,1

⎛

⎝1+ 2
i−1∑

j=1

ρj

⎞

⎠ i = 2, . . . , K , (7.6)

7 Performance of a Single Server Queue Supported by an Intermittent Server 99

When i = K , we get in particular the probability πK,1 that we can rename πK

without any ambiguity:

πK = π1,1
(1+ ρ)− 2ρK

(1− ρ)
= π1,1

⎛

⎝1+ 2
K−1∑

j=1

ρj

⎞

⎠ . (7.7)

Then, using Eqs. (7.2) and (7.4), we express the probability πK as a function of
probability π0 (again for the case φ �= 1):

πK = π0
(1+ ρ)− 2ρK

(1− ρ)

(1− φ)

D0
. (7.8)

Considering the probabilities πi , i > K , their expressions are easily obtained thanks
to the use of the cut theorem:

πi = ρi−KπK, i > K . (7.9)

Let us now consider the normalizing equation that we can write as:

S0 + S1 = 1 , (7.10)

where S0 = π0 +∑K−1
i=1 πi,0 and S1 =∑K−1

i=1 πi,1 +∑∞
i=K πi .

Sum S0 is the steady state probability that the intermittent server is working in
the back office and that S1 is the steady state probability that the intermittent server
is working in the front office. This last sum S1 will be also used later when looking
for the optimal threshold.

Using Eqs. (7.1), (7.2), (7.4), (7.5), (7.8), and (7.9), we show in Appendix 1 that
the probability π0 can be written as:

π0 = (1− ρ)(1− φ)D0

D1
, (7.11)

where

D1 = (1− ρ){φ(1− φ)2 + (1+ 2φ)[(K − 1)(1− φ)− φ2(1− φK−1)]}

(1− φ)2[K + ρ(K − 1)] . (7.12)

For the special case where φ = 1, Eqs. (7.1), (7.2), (7.4), and (7.5) reduce to:

πK−1,0 = 3

3K − 2
π0 , and πK−i,0 = iπK−1,0 , i = 2, . . . , K − 1 ,

(7.13)

100 R. A. Marie

π1,1 = 1

3
πK−1,0 , and πi,1 = (3−2−(i−2))π1,1 , i = 2, . . . , K , (7.14)

while it is shown in Appendix 1 that probability π0 satisfies:

π0 = 2(3K − 2)

3(K(K + 3)− 2)
. (7.15)

For the case where K = 2 some of the equations given for the general case
become simpler (in particular because the expression D0 equals 2φ(1 − φ2) when
K = 2) and it is not difficult to find again the well-known result of the M/M/2
queue:

π0 = (1− ρ)

(1+ ρ)
. (7.16)

Let us remark that for ρ = 1/2, we obtain π0 = 1/3. In that case φ = 1, and this
result agrees with the one obtained thanks to relation (7.15) when K = 2.

7.3.2 Mean Number of Customers, Mean Waiting Time

The determination of the mean number of customers E[N] is purely technique.
For φ �= 1, it is shown in Appendix 2 that this expectation satisfies the following
relation:

E[N] = (1− φ)

D1

{
(1− ρ)(1+ 2φ)

(
K(K + 1)

2
− K

(1− φ)
+ φ(1− φK)

(1− φ)2

)

+(1− φ)

(
(1+ ρ)

K(K − 1)

2
+ K + ρ(K − 1)

(1− ρ)

)}

When K = 2, it is not difficult to find again the well-known result of the M/M/2
queue:

E[N] = 2ρ/(1− ρ2) . (7.17)

For the special case where φ = 1, it is also shown in Appendix 2 that

E[N] = K(K(K + 3)+ 8)− 4

3(K(K + 3)− 2)
. (7.18)

For K = 2, E[N] = 4/3. This result agrees with the one obtained thanks to
relation (7.17) when ρ = 1/2, i.e., (φ = 1).

7 Performance of a Single Server Queue Supported by an Intermittent Server 101

Because the aim of using an intermittent server is to decrease the waiting time of
the customer in the front office, it is also interesting to consider the expected waiting
time E[W]. For that we first obtain the expected response time by use of the Little’s
formula and then subtract the mean service time:

E[W] = 1

λ
E[N] − 1

μ
. (7.19)

We may prefer to consider what we will call a “normalized” expected waiting time
E[WN] by taking the mean service time (i.e., 1/μ) as the time unit. This gives us:

E[WN] = μE[W] = μ

λ
E[N] − 1 = φE[N] − 1 .

Let us remark that the “normalized” expected waiting time has no dimension and
is therefore independent of the initial time unit.

For a given value of ρ we expect that the expected number of customers is greater
than the value given by the M/M/2 queue. While, as long as ρ is lower than 1/2, the

expected number of customers is lower than the ratio
2ρ

1− 2ρ
, which corresponds to

the value given by the M/M/1 queue with 2ρ as the utilization factor.
In Fig. 7.2, we have plotted the expectation of the number of customers as a

function of ρ, for different values of the integer K . As we would expect, this

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

1

2

3

4

5

6

7

ρ

Ex
pe

ct
at

io
n

Fig. 7.2 Mean number of customers as a function of ρ. For (bottom-up) K = 2, 3, 4, 5, and 6.
Curve with stars corresponds to infinite K , the second server being never called

102 R. A. Marie

expectation is increasing with ρ and with K . Note that without the second server,
the mean number of customers would tend to infinity when ρ tends to 1/2.

7.4 Pseudo-Idle and Busy Periods of the Intermittent Server

The pseudo-idle period of the second server is defined as the period of time during
which this server is working in the back-office. We are interested by the expectation
of such a period because we understand that a too short period would have a negative
effect on the productivity of the server. Such a period corresponds to a sojourn time
of the CTMC in the subset E0 and therefore we need to obtain the expectation of this
sojourn time.

7.4.1 Mean Time of a Passage in the Back Office

First let us determine the probability that a pseudo-idle period starts in state (0)

(respectively in state (1, 0)). Given that the CTMC is in state (2, 1), if a service
completes before a new arrival, the CTMC joins either state (1, 0) if the second
server finishes his service first or state (1, 1) in the other case. These two events
have equal probabilities (0.5 each). If the CTMC joins state (1, 1) from state (2, 1),
this means that the permanent server becomes idle. Then either the second server
becomes idle (with probability μ

λ+μ
) or the regular server becomes busy again, the

CTMC revisiting state (2, 1) (with probability λ
λ+μ

).
So, given a service completes when the CTMC is in state (2, 1), the CTMC goes

to state (1, 0) with probability 0.5, goes to state (0) without coming back to state

(2, 1) with probability 0.5 × μ

λ+ μ
or comes back to state (2, 1) with probability

0.5 × λ

λ+ μ
. Considering these three eventualities, we see that when the CTMC

enters subset E0, it enters it through state (0) with probability
0.5(μ/(λ+ μ))

0.5(1+ μ/(λ+ μ))

or enters it through state (1, 0) with probability
0.5

0.5(1+ μ/(λ+ μ))
. These two

expressions reducing respectively to
φ

1+ 2φ
and

1+ φ

1+ 2φ
.

Let us assume that X(0) = 0. Let TA be the sojourn time in the subset E0: TA =
inf {t |X(t) = K} . In order to express the expectation of TA, we first consider the
random variable Ti defined as the time it takes to the CTMC to reach state (i + 1, 0)

given X(0) = (i, 0). We also denote the expectation of Ti by αi . Introducing the
discrete random variable Ii such that, for i ≥ 0 :

7 Performance of a Single Server Queue Supported by an Intermittent Server 103

Ii =

⎧
⎪⎪⎨

⎪⎪⎩

1 if the first transition of the CTMC from state (i,0)
is a jump to state (i+1,0);

0 if the first transition of the CTMC from state(i, 0)

is a jump to state (i-1,0);

we get when conditioning w.r.t. Ii : E[Ti |Ii = 1] = 1
λ+μ

, and E[Ti |Ii = 0] =
1

λ+μ
+ αi−1 + αi .

For i = 0, we have immediately E[T0] = 1

λ
. Since the departure rate from state

(i, 0) equals (λ+μ) while the transition rate from state (i, 0) to state (i+1, 0) equals
λ, the probability that the first transition of the CTMC from state (i, 0) is a jump to

state (i + 1, 0) is P(Ii = 1) = λ

λ+ μ
. Therefore, deconditioning the expectation

αi = E[Ti] gives us, for i > 0,

αi = 1

λ+ μ

λ

λ+ μ
+
(

1

λ+ μ
+ αi−1 + αi

)
μ

λ+ μ
,

that reduces to αi = 1
λ
(1+ μ αi−1) .

Since α0 = E[T0] = 1

λ
, we can compute successfully α0, α1 ,α2, It is not

difficult to prove that αi = 1
λ

∑i
j=0 φj .

In addition, E[TA] depends on the way the CTMC enters the subset E0 since
E[TA|X(0) = 0] =∑K−1

j=0 αj , while E[TA|X(0) = (1, 0)] =∑K−1
j=1 αj .

Therefore, after deconditioning we obtain:

E[TA] = 1

λ

1

2(1+ ρ)
+ 1

λ

(
(K − 1)+

K−1∑

i=1

(K − i)φi

)
. (7.20)

We can scale this result by expressing this time expectation in terms of a number
of mean service times:

μE[TA] = φ

2(1+ ρ)
+ φ

(
(K − 1)+

K−1∑

i=1

(K − i)φi

)
, (7.21)

In Fig. 7.3, we have plotted the scaled expectation of the pseudo-idle period of
the second server as a function of ρ, for different values of the integer K . We can
say that the expectation of the pseudo-idle period of the second server is important
when ρ is between 0 and around 0.4. Remember that when ρ = 0.4, the utilization
factor of the single server of the M/M/1 queue equals 0.8. As we would expect,
this expectation is decreasing with ρ and increasing with K .

104 R. A. Marie

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

50

100

150

200

250

ρ

Sc
al

ed
ps

eu
do

-id
le

pe
rio

d

Fig. 7.3 Scaled expectation of the pseudo-idle period of the second server as a function of ρ. For
(bottom-up) K = 2, 3, 4, 5, and 6

If the manager decides to change the rule by switching from K to (K + 1), then
the scaled expectation will be increased of the quantity:

K(μE[TA]) = μE[TA(K + 1)] − μE[TA(K)] = φ

(
K∑

i=0

φi

)
.

Even in the case where φ = 1 (i.e., ρ = 0.5), this increase can be shown to
correspond to (K + 1) mean service times!

7.4.2 Mean Time of a Passage in the Front Office

Now let E[TP] be the expectation of a period spent in the front office by the
intermittent server. This server starts such a period with the frequency λπK−1,0.
Using the fact that this frequency must be equal to (IE[TA] + E[TP])−1, we obtain
a first expression for λE[TP]:

λE[TP] = [πK−1,0]−1 − λE[TA] .

7 Performance of a Single Server Queue Supported by an Intermittent Server 105

Then, starting from Eqs. (7.4) and (7.11) we express the inverse of probability
πK−1,0 as:

[πK−1,0]−1 = D1

(1− ρ)(1+ 2φ)(1− φ)2 ,

= φ

(1+ 2φ)
+ (K − 1)(1− φ)− φ2(1− φK−1)

(1− φ)2 + [1+ (K − 1)(1+ ρ)]
(1− ρ)(1+ 2φ)

.

Using Eq. (7.20) we develop the expression of λE[TA] as:

λE[TA] = 1

2(1+ ρ)
+
⎛

⎝(K − 1)+
K−1∑

i=1

(K − i)φi

⎞

⎠

= φ

(1+ 2φ)
+
⎛

⎝(K − 1)+K

K−1∑

i=1

φi −
K−1∑

i=1

iφi

⎞

⎠

= φ

(1+ 2φ)
+
(

(K − 1)+K

(
1− φK

(1− φ)
− 1

)
− (K − 1)φK+1 −KφK + φ

(1− φ)2

)

= φ

(1+ 2φ)
+
(

(K − 1)+ Kφ(1− φK−1)

(1− φ)
− (K − 1)φK+1 −KφK + φ

(1− φ)2

)

= φ

(1+ 2φ)
+ (K − 1)(1− φ)2 +Kφ(1− φK−1)(1− φ)

(1− φ)2
− (K − 1)φK+1 −KφK + φ

(1− φ)2

= φ

(1+ 2φ)
+ (K − 1)− (K − 1)φ − φ2 + φK+1

(1− φ)2

= φ

(1+ 2φ)
+ (K − 1)(1− φ)− φ2(1− φK−1)

(1− φ)2
. (7.22)

Subtracting this last expression to the one obtained for [πK−1,0]−1 we get the
expression of λE[TP]:

λE[TP] = [1+ (K − 1)(1+ ρ)]
(1− ρ)(1+ 2φ)

= ρ

(1− ρ)

(
(K − 1)+ 1

(1+ ρ)

)
, (7.23)

and then the expression of the expectation scaled in terms of a number of mean
service time:

μE[TP] = 1

2(1− ρ)

(
(K − 1)+ 1

(1+ ρ)

)
. (7.24)

Note that μE[TP] represents also the expected number of customers served by
the intermittent server during a passage in the front office.

In Fig. 7.4, we have plotted the scaled expectation of the pseudo-busy period of
the second server as a function of ρ, for different values of the integer K . As we

106 R. A. Marie

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

2

4

6

8

10

12

ρ

Sc
al

ed
ps

eu
do

-b
us

y
pe

rio
d

Fig. 7.4 Scaled expectation of the pseudo-busy period of the second server as a function of ρ. For
(bottom-up) K = 2, 3, 4, 5, and 6

would expect, this expectation is increasing with ρ and with K . Moreover, we can
say that the expectation of the pseudo-busy period of the second server is relatively
small when ρ is between 0 and around 0.4, when we compare it with the one of the
pseudo-idle period (cf. Fig. 7.3). This shows the benefit of the intermittent server
since the use of a low percentage of his time significantly decreases the mean waiting
time.

7.5 Cost Function

We have to consider two somewhat different situations. The first one is when the
second server is not necessary for the system to be stable (i.e., when ρ < 0.5). The
second situation is when the second server is necessary to the system (ρ ≥ 0.5).

In the first situation, the second server just helps to decrease the mean waiting
time E[W] seen by the customers. We have to compare this help to the customers
with respect to the perturbation of the work done in the back office.

We assume here that there is a fixed penalty c0 to pay each time the second
server has to leave the back office and that the cost per unit of time of this second
server is c1. We also assume that c2 is the cost per unit of waiting time. During
a unit time, the expectation of the cumulative value of the waiting times equals
λE[W]; this expectation being nothing else than the expectation of the number of

7 Performance of a Single Server Queue Supported by an Intermittent Server 107

waiting customers in the queue. Let E[Nw] denote this expectation. The expression
of IE[Nw] is deduced from Eq. (7.19):

E[Nw] = E[N] − 2ρ . (7.25)

Then, depending on the value K , the function to minimize corresponds to the
expected total variable cost per time unit, and is given by:

C(K) = c0[E[TA] +E[TP]]−1 + c1S1 + c2E[Nw] , (7.26)

where here also, S1 denotes the sum
∑K−1

i=1 πi,1 +∑∞
i=K πi . Note that this sum of

probabilities S1 is nothing but the mean time per time unit spent by the second server
in the front office.

When the variable K is increased, the first two terms are decreasing while the
term c2E[Nw] is increasing. More precisely, considering a cycle of the intermittent
server, we start from the relation:

S1 = E[TP]
(E[TA] +E[TP]) =

1

1+ E[TA]
IE[TP]

. (7.27)

Considering Eqs. (7.22) and (7.23) we deduce that, when K tends to infinity, the

two expectations tend to infinity. Considering now the ratio
E[TA]
E[TP] when K tends

to infinity, since φ satisfies φ > 1, the limit of this ratio is the same as the limit of
the following ratio:

lim
K−→+∞

E[TA]
E[TP] = lim

K−→+∞
(2φ − 1)

(1− φ)2

φK

K
= +∞ . (7.28)

Therefore, the first two terms of the cost function tend asymptotically to zero
when K tends to infinity while the term c2IE[Nw] is increasing (from c22ρ3/(1−ρ2)

when K = 2 to the asymptotic value c24ρ2/(1− 2ρ) when K tends to infinity). In
this situation the optimal K may not be finite if the penalty coefficient c2 is not large
enough.

The second situation is different in the sense that K has to be finite in order
to have a stable solution. In this case, the intermittent server has to work in the
front office a percentage of time S1 greater than (λ/μ− 1) in order that the system
admits a steady state solution. The maximal feasible value Kmax of K is given by
Kmax = max{K|S1(K) > λ/μ−1}. Practically, if Kmax is large enough (i.e., when
(λ/μ− 1) is not close to unity), the cost c2IE[Nw] should be large when K = Kmax
and we may expect the cost function to be convex. However, the convexity of C(K)

has not been investigated theoretically. Also, from a practical point of view, the
parameter c2 has again to be not too small with respect to c0 and c1 in order to avoid

108 R. A. Marie

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
os

t (
K
)

K

Fig. 7.5 Variable cost function, with ρ = 0.35, c0 = 0.5, c1 = 1. Case 1 (stars): c2 = 0.15. Case
2 (sign +): c2 = 0.03

the limit behavior where the second server would come once a year to empty the
waiting room.

In Fig. 7.5, we have plotted two sets of values of C(K) when ρ = 0.35 (alone
the permanent server queue would have a utilization factor of 0.7), for c0 = 0.5,
c1 = 1. Case c2 = 0.15 (noted with stars) gives an optimal K∗ = 5. From Figs. 7.3
and 7.4, we can check that for this optimal solution the mean pseudo-idle period of
the second server is around 70 times the mean service time while the mean pseudo-
busy period is close to 5 times the mean service time. But case c2 = 0.03 (noted
with sign +) gives a decreasing cost for K ∈ [2, 30].

7.6 Conclusions

We have shown in this paper the importance of intermittent servers in order to reduce
the response times without increasing significantly the idle times of servers. For
such situations where a single server would satisfy the stability condition (λ < μ),
a nontrivial result is that the pseudo-idle period of the second server is significantly
longer than what would be generally expected by the management and also that the
pseudo-busy period stays small; and so the second server can keep his main activity
in the back office.

We can think of applications in architectures for quite large telecommunication
switches where we have “guard” processors to help the congested input queues on
demand. It may also help in the context of network function virtualization (NFV) in
which a service might be deployed on demand to face a transient congestion. Not

7 Performance of a Single Server Queue Supported by an Intermittent Server 109

only these results are interesting by themselves if such a situation occurs in a real
situation but also, this study can be used to check simulation models used for a more
complex situation.

Appendix 1: Determination of Eq. (7.11)

Starting from the normalizing equation: S0 + S1 = 1 , where S0 = π0 +
K−1∑

i=1

πi,0 ,

and S1 = π0 +
K−1∑

i=1

πi,1 +
∞∑

i=K

πi , we first consider the partial sum S0:

S0 = π0 +
K−1∑

i=1

πi,0 = π0 +
K−1∑

i=1

πK−i,0 ,

= π0 + πK−1,0

K−1∑

i=1

⎛

⎝
i−1∑

j=0

φj

⎞

⎠ = π0 + πK−1,0

K−1∑

i=1

(K − i)φi−1 ,

= π0 + πK−1,0

(
K

K−1∑

i=1

φi−1 −
K−1∑

i=1

iφi−1

)
,

or (if φ �= 1):

S0 = π0 + πK−1,0

(
K

(1− φK−1)

(1− φ)
− (1−KφK−1 + (K − 1)φK)

(1− φ)2

)
,

= π0 + πK−1,0

(1− φ)

K(1− φ)− (1− φK)

(1− φ)

= π0 + π0
(1+ 2φ)

D0

K(1− φ)− (1− φK)

(1− φ)

= π0

(
1+ (1+ 2φ)(K(1− φ)− (1− φK))

(1− φ)D0

)
,

= π0

(1− φ)D0

(
φ(1− φ)2 + (1+ 2φ)[(K − 1)(1− φ)− φ2(1− φK−1)]

)
.

Considering now the partial sum S1, i.e., the steady state probability that the
back-office server is helping the front-office server, we have:

110 R. A. Marie

S1 =
K−1∑

i=1

πi,1 +
∞∑

i=K

πi = π1,1

K−1∑

i=1

(1+ ρ)− 2ρi

(1− ρ)
+ πK

∞∑

i=K

ρi−K ,

= π1,1
(K − 1)(1+ ρ)

(1− ρ)
− 2π1,1

1

(1− ρ)

K−1∑

i=1

ρi + πK

1

(1− ρ)
,

= π1,1
(K − 1)(1+ ρ)

(1− ρ)
− π1,1

2

(1− ρ)

(1− ρK)

(1− ρ)
+ π1,1

(1+ ρ)− 2ρK

(1− ρ)

1

(1− ρ)

= π1,1
(K − 1)(1+ ρ)

(1− ρ)
− π1,1

1

(1− ρ)
= π1,1

1+ (K − 1)(1+ ρ)

(1− ρ)
,

= π0
(1− φ)[K + ρ(K − 1)]

(1− ρ)D0
.

Given that S0 + S1 = 1, we get the expression of probability π0 when φ �= 1:

π0 = (1− ρ)(1− φ)D0

D1
, (7.29)

where D1 was defined by relation (7.12).
For the special case where φ = 1, it is not difficult, starting from the specific

relations between probabilities given at the end of Sect. 7.3.1, to find the following
expressions:

S0 = 3K(K + 1)− 4

2(3K − 2)
π0 , S1 = (3K − 1)

(3K − 2)
π0 , π0 = 2(3K − 2)

3(K(K + 3)− 2)
.

(7.30)

Appendix 2: Determination of the Mean Number of Customers

In order to obtain the expression, let us start by computing two partial sums (B0 and
B1), under the condition φ �= 1:

B0 =
K−1∑

i=1

iπi,0 =
K−1∑

i=1

(K − i)πK−i,0 = πK−1,0

K−1∑

i=1

(K − i)

⎛

⎝
i−1∑

j=0

φj

⎞

⎠ ,

= πK−1,0

K−1∑

i=1

(K − i)
(1− φi)

(1− φ)

7 Performance of a Single Server Queue Supported by an Intermittent Server 111

= πK−1,0

(1− φ)

(
K−1∑

i=1

i −K

K−1∑

i=0

φi +K + φ

K−1∑

i=1

iφi−1

)
,

= πK−1,0

(1− φ)

(
K(K + 1)

2
−K

K−1∑

i=0

φi + φ

K−1∑

i=1

iφi−1

)

= πK−1,0

(1− φ)

(
K(K + 1)

2
− K

(1− φ)
+ φ(1− φK)

(1− φ)2

)
,

= (1− ρ)(1− φ)(1+ 2φ)

D1

(
K(K + 1)

2
− K

(1− φ)
+ φ(1− φK)

(1− φ)2

)
,

and secondly:

B1 =
K−1∑

i=1

iπi,1 +
∞∑

i=K

iπi =
K−1∑

i=1

iπi,1 + πK

∞∑

i=K

iρi−K ,

= π1,1

(
K−1∑

i=1

i
(1+ ρ)

(1− ρ)
−

K−1∑

i=1

2iρi

(1− ρ)

)
+ π1,1

(1+ ρ)− 2ρK

(1− ρ)

∞∑

i=K

iρi−K ,

= π1,1
(1+ ρ)

(1− ρ)

K−1∑

i=1

i − 2π1,1

(1− ρ)

∞∑

i=1

iρi + π1,1
(1+ ρ)

(1− ρ)

∞∑

i=0

(K + i)ρi ,

= π1,1

(1− ρ)

(
(1+ ρ)

K(K − 1)

2
− ρ

(1− ρ)
+K

(1+ ρ)

(1− ρ)

)
, (7.31)

= π0
(1− φ)

(1− ρ)D0

(
(1+ ρ)

K(K − 1)

2
+ K + ρ(K − 1)

(1− ρ)

)

= (1− φ)2

D1

(
(1+ ρ)

K(K − 1)

2
+ K + ρ(K − 1)

(1− ρ)

)
.

From that we get the expression of the expectation of the number of customers:

E[N] = B0 + B1 =
K−1∑

i=1

iπi,0 +
K−1∑

i=1

iπi,1 +
∞∑

i=K

iπi ,

= (1− ρ)(1− φ)(1+ 2φ)

D1

(
K(K + 1)

2
− (K)

(1− φ)
+ φ(1− φK)

(1− φ)2

)

112 R. A. Marie

+ (1− φ)2

D1

(
(1+ ρ)

K(K − 1)

2
+ K + ρ(K − 1)

(1− ρ)

)
,

= (1− φ)

D1

{
(1− ρ)(1+ 2φ)

(
K(K + 1)

2
− K

(1− φ)
+ φ(1− φK)

(1− φ)2

)

+(1− φ)

(
(1+ ρ)

K(K − 1)

2
+ K + ρ(K − 1)

(1− ρ)

)}
.

This last result corresponds to the expression presented in Sect. 7.3.2. In the special
situation where φ = 1, let us first consider the sum B0. Starting from the equality
B0=πK−1,0

∑K−1
i=1 (K−i)(

∑i−1
j=0 φj), obtained above, we get:

B0 = πK−1,0

K−1∑

i=1

(K − i)i ,

= πK−1,0

(
K

K−1∑

i=1

i −
K−1∑

i=1

i2

)

= πK−1,0

(
K

K(K + 1)

2
− (K − 1)K(2K − 1)

6

)
,

= πK−1,0

(
(K − 1)K(K + 1)

6

)

= π0
3

3K − 2

(K − 1)K(K + 1)

6
= π0

(K − 1)K(K + 1)

2(3K − 2)
.

Let us now consider the sum B1. We may start from the expression (7.31) of B1
obtained above. Since here ρ = 1/2, we get:

B1 = π1,1

2
(3K(K + 3)− 4) = π0

2(3K − 2)
(3K(K + 3)− 4) .

After summation of B0 and B1 and use of the expression of π0 given by rela-
tion (7.30), we are able to exhibit the following expression:

E[N] = K(K(K + 3)+ 8)− 4

(K(K + 3)− 2)
.

References

1. J.D. Blackburn, Optimal control of queueing systems with intermittent service. Technical report,
DTIC Document (1971)

2. E. Cinlar, Introduction to Stochastic Processes (Prentice Hall, Englewood Cliffs, 1975)

7 Performance of a Single Server Queue Supported by an Intermittent Server 113

3. P.G. Harrison, N.M. Patel, Performance Modelling of Communication Networks and Computer
Architecture (Addison-Wesley, Reading, 1993)

4. T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, Analysis of cycle stealing with switching
times and thresholds. Perform. Eval. 61(4), 347–369 (2005)

5. M. Parlar, M. Sharafali, Dynamic allocation of airline check-in counters: a queueing optimiza-
tion approach. Manag. Sci. 54(8), 1410–1424 (2008)

6. M. Rubinovitch, The slow server problem: a queue with stalling. J. Appl. Probab. 22(4), 879–
892 (1985)

7. R.A. Sahner, K.S. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Sys-
tems: An Example-Based Approach Using the SHARPE Software Package (Kluwer Academic
Publishers, Norwell, 1996)

Chapter 8
Simulation from the Tail of the Univariate
and Multivariate Normal Distribution

Zdravko Botev and Pierre L’Ecuyer

8.1 Introduction

We consider the problem of simulating a standard normal random variable X,
conditional on a ≤ X ≤ b, where a < b are real numbers, and at least one
of them is finite. We are particularly interested in the situation where the interval
(a, b) is far in one of the tails, that is, we assume that a
 0 (the case where b 0
is covered by symmetry). We do not consider the case where a ≤ 0 ≤ b, as it
can be handled easily via standard methods, which do not always work well in the
tail case a
 0. Moreover, if we insist on using inversion, the standard inversion
methods break down when we are far in the tail. Inversion is preferable to a rejection
method (in general) in various simulation applications, for example to maintain
synchronization and monotonicity when comparing systems with common random
numbers, for derivative estimation and optimization, when using quasi-Monte Carlo
methods, etc. [6, 12–15]. For this reason, a good inversion method is needed, even
if rejection is faster. We examine both rejection and inversion methods in this paper.

These problems occur in particular for the estimation of certain Bayesian
regression models and for exact simulation from these models; see [4, 7] and the
references given there. The simulation from the Bayesian posterior requires repeated
draws from a standard normal distribution truncated to different intervals, often far
in the tail. Note that to generate X from a more general normal distribution with

Z. Botev (�)
UNSW Sydney, Sydney, NSW, Australia
e-mail: botev@unsw.edu.au

P. L’Ecuyer
Université de Montréal, Montréal, QC, Canada
Inria - Rennes, Rennes, France
e-mail: lecuyer@iro.umontreal.ca

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_8

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_8&domain=pdf
mailto:botev@unsw.edu.au
mailto:lecuyer@iro.umontreal.ca
https://doi.org/10.1007/978-3-319-92378-9_8

116 Z. Botev and P. L’Ecuyer

mean μ and variance σ 2 truncated to an interval (a′, b′), it suffices to apply a simple
linear transformation to recover the standard normal problem studied here.

This paper has three main contributions.

1. Comparison amongst univariate methods. The first contribution is to review and
compare the speed and efficiency of some of the most popular methods [7, 8,
11, 18, 22, 24] for the tail of the univariate normal distribution. These methods
are designed to be efficient when a
 0 and b = ∞ (or a = −∞ and b 0
by symmetry), and are not necessarily efficient when the interval [a, b] contains
0. We find that these methods may be adapted in principle to a finite interval
[a, b], but they may become inefficient when the interval [a, b] is narrow. We also
find that the largely ignored (or forgotten) method of Marsaglia [19] is typically
more efficient than the widely used accept–reject methods of Geweke [9] and
Robert [22].

2. Accurate inversion for univariate truncated normal. All of the methods cited
above are rejection methods and we found no reliable inversion method for an
interval far in the tail (say, for a > 38; see Sect. 8.2). Our second contribution is
to propose a new accurate inversion method for arbitrarily large a. Our inversion
algorithm is based on a numerically stable implementation of the solution of a
nonlinear equation via Newton’s method.

3. Rejection method for multivariate truncated normal. Our third contribution is to
propose a simple rejection method in the multivariate setting, where we wish
to simulate a vector X with mean zero and covariance matrix � ∈ R

d×d ,
conditional on X ≥ a (the inequality is componentwise). We find that, under
some conditions, the proposed method can yield an acceptance probability that
approaches unity as we move deeper into the tail region.

Simulation methods for exact simulation from multivariate normal distributions
conditional on a general rectangular region, a ≤ X ≤ b, were developed recently
in [3, 4, 6]. But for sampling in the tail, the proposed sampler in this paper has
two advantages compared to the samplers in these previous works. First, it is much
simpler to implement and faster, because it is specifically designed for the tail of
the multivariate normal. Second, the theoretical results in [3] do not apply when
the target pdf is the most general tail density (see (8.9) in Sect. 8.3), but they do
apply for our proposal in this paper. On the downside, the price one pays for these
two advantages is that the proposed sampler works only in the extreme tail setting
([a,∞]with a
 0), whereas the methods in [3, 4, 6] work in more general non-tail
settings ([a, b] which may contain 0).

This chapter is an expanded version of the conference paper [5]. The results of
Sect. 8.3 are new while those of Sect. 8.2 were contained in [5].

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 117

8.2 Simulation from the Tail of the Univariate Normal

In this section, we use φ to denote the density of the standard normal distribution
(with mean 0 and variance 1), Φ for its cumulative distribution function (cdf), Φ for
the complementary cdf, and Φ−1 for the inverse cdf defined as Φ−1(u) = min{x ∈
R | Φ(x) ≥ u}. Thus, if X ∼ N(0, 1), Φ(x) = P[X ≤ x] = ∫ x

−∞ φ(y)dy =
1−Φ(x). Conditional on a ≤ X ≤ b, X has density

φ(x)
Φ(b)−Φ(a)

for a < x < b (8.1)

We denote this truncated normal distribution by TNa,b(0, 1).
It is well known that if U ∼ U(0, 1), the uniform distribution over the interval

(0, 1), then

X = Φ−1(Φ(a)+ (Φ(b)−Φ(a))U) (8.2)

has exactly the standard normal distribution conditional on a ≤ X ≤ b. But
even though very accurate approximations are available for Φ and Φ−1, (8.2)
is sometimes useless for simulating X. One reason for this is that whenever
computations are made under the IEEE-754 double precision standard (which is
typical), any number of the form 1 − ε for 0 ≤ ε < 2 × 10−16 (approximately)
is identified with 1.0, any positive number smaller than about 10−324 cannot be
represented at all (it is identified with 0), and numbers smaller than 10−308 are
represented with less than 52 bits of accuracy.

This implies that Φ(x) = Φ(−x) is identified as 0 whenever x ≥ 39 and is
identified as 1 whenever −x ≥ 8.3. Thus, (8.2) cannot work when a ≥ 8.3. In the
latter case, or whenever a > 0, it is much better to use the equivalent form:

X = −Φ−1(Φ(a)− (Φ(a)−Φ(b))U), (8.3)

which is accurate for a up to about 37, assuming that we use accurate approxima-
tions of Φ(x) for x > 0 and of Φ−1(u) for u < 1/2. Such accurate approximations
are available, for example, in [2] for Φ−1(u) and via the error function erf on most
computer systems for Φ(x). For larger values of a (and x), a different inversion
approach must be developed, as shown next.

8.2.1 Inversion Far in the Right Tail

When Φ(x) is too small to be represented as a floating-point double, we will

work instead with the Mills’ [21] ratio, defined as q(x)
def= Φ(x)/φ(x), which is the

inverse of the hazard rate (or failure rate) evaluated at x. When x is large, this ratio
can be approximated by the truncated series (see [1]):

118 Z. Botev and P. L’Ecuyer

q(x) ≈ 1

x
+

r∑

n=1

1× 3× 5× · · · × (2n− 1)

(−1)nx2n+1
. (8.4)

In our experiments with x ≥ 10, we compared r = 5, 6, 7, 8, and we found no
significant difference (up to machine precision) in the approximation of X in (8.3)
by the method we now describe. In view of (8.3), we want to find x such that Φ(x) =
Φ(−x) = Φ(a)− (Φ(a)−Φ(b))u, for 0 ≤ u ≤ 1, when a is large. This equation
can be rewritten as h(x) = 0, where

h(x)
def= Φ(a)−Φ(x)+ (Φ(b)−Φ(a))u (8.5)

To solve h(x) = 0, we start by finding an approximate solution and then refine
this approximation via Newton iterations. We detail how this is achieved. To find
an approximate solution, we replace the normal cdf Φ in (8.3) by the standard
Rayleigh distribution, whose complementary cdf and density are given by F(x) =
exp(−x2/2) and f (x) = x exp(−x2/2) for x > 0. Its inverse cdf can be written
explicitly as F−1(u) = (−2 ln(1− u))1/2. This choice of approximation of Φ−1 in
the tail has been used before (see, for example, [2] and Sect. 8.4). It is motivated by
the facts that F−1(u) is easy to compute and that Φ̄(x)/F̄ (x) → 1 rapidly when
x → ∞. By plugging F and F−1 in place of Φ and Φ−1 in (8.3), and solving for
x, we find the approximate root

x ≈
√

a2 − 2 ln
(
1− u+ u exp

(
(a2 − b2)/2

))
, (8.6)

which is simply the u-th quantile of the standard Rayleigh distribution truncated
over (a, b), with density

f (x) = x exp(−(x2 − a2)/2)

1− exp(−(b2 − a2)/2)
for a < x < b. (8.7)

The next step is to improve the approximation (8.6) by applying Newton’s method
to (8.5). For this, it is convenient to make the change of variable x = ξ(z), where

ξ(z)
def= √

a2 − 2 ln(z) and z = ξ−1(x) = exp((a2 − x2)/2), and apply Newton’s

method to g(z)
def= h(ξ(z)). Newton’s iteration for solving g(z) = 0 has the form

znew = z− g(z)/g′(z), where

g(z)

g′(z)
= h(ξ(z))

h′(ξ(z))
· 1

ξ ′(z)
, (by the chain rule)

= zξ(z)
Φ(ξ(z))−Φ(a)+ u(Φ(a)−Φ(b))

φ(ξ(z))

= x
(
zq(x)− q(a)(1− u)− q(b)u exp

(
a2−b2

2

))
,

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 119

and the identity x = ξ(z) was used for the last equality. A key observation here
is that, thanks to the replacement of Φ by q, the computation of g(z)/g′(z) does
not involve extremely small quantities that can cause numerical underflow, even for
extremely large a.

The complete procedure is summarized in Algorithm 8.1, which we have
implemented in Java, MATLAB�, and R. According to our experiments, the larger
the a, the faster the convergence. For example, for a = 50 one requires at most 13
iterations to ensure δx ≤ δ∗ = 10−10, where δx represents the relative change in x

in the last Newton iteration.

Algorithm 8.1 : Computation of the u-quantile of TNa,b(0, 1)

Require: Input u ∈ (0, 1), δ∗
qa ← q(a)

qb ← q(b)

c← qa(1− u)+ qbu exp(a2−b2

2)

δx ←∞
z← 1− u+ u exp(a2−b2

2)

x ← √
a2 − 2 ln(z)

repeat
z← z− x(zq(x)− c)

xnew ←
√

a2 − 2 ln(z)

δx ← |xnew − x|/x
x ← xnew

until δx ≤ δ∗
return Quantile x

We note that for an interval [a, b] = [a, a + w] of fixed length w, when a

increases the conditional density concentrates closer to a. In fact, there is practically
no difference between generating X conditional on a ≤ X ≤ a + 1 and conditional
on X ≥ a when a ≥ 30, but there can be a significant difference for small a.

8.2.2 Rejection Methods

We now examine rejection (or acceptance-rejection) methods, which can be faster
than inversion. A large collection of rejection-based generation methods for the
normal distribution have been proposed over the years; see [7, 8, 11, 24] for
surveys, discussions, comparisons, and tests. Most of them (the fastest ones) use
a change of variable and/or precomputed tables to speed up the computations.
In its most elementary form, a rejection method to generate from some density
f uses a hat function h ≥ f and rescales h vertically to a probability density
g = h/

∫∞
−∞ h(y)dy, often called the proposal density. A random variate X is

generated from g, is accepted with probability f (X)/h(X), is rejected otherwise,

120 Z. Botev and P. L’Ecuyer

and the procedure is repeated until X is accepted as the retained realization. In
practice, more elaborate versions are used that incorporate transformations and
partitions of the area under h.

Any of these proposed rejection methods can be applied easily if Φ(b) − Φ(a)

is large enough, just by adding a rejection step to reject any value that falls outside
[a, b]. The acceptance probability for this step is Φ(b)−Φ(a). When this probability
is too small, this becomes too inefficient and something else must be done. One way
is to define a proposal g whose support is exactly [a, b], but this could be inefficient
(too much overhead) when a and b change very often. Chopin [7] developed
a rejection method specially designed for this situation. The method works by
juxtaposing a large number of rectangles of different heights (with equal surface)
over some finite interval [amin, amax], similar to the trapezoidal approximation in
numerical quadrature. However, even Chopin’s method achieves efficiency only
when it uses an exponential proposal with rate a = amax, when amax is large enough.
Generally, Chopin’s trapezoidal method is very fast, and possibly the best method,
when [amin, amax] contains or is close to zero, but it requires the storage of large
precomputed tables. This can be slow on hardware for which memory is limited,
like GPUs.

It uses an exponential proposal with rate a = amax (the RejectTail variant of
Algorithms 8.2 below) for the tail above amax or when a > a′max. The fastest
implementation uses 4000 rectangles, amax ≈ 3.486, a′max ≈ 2.605. This method is
fast, although it requires the storage of very large precomputed tables, which could
actually slow down computations on certain type of hardware for which memory is
limited, like GPUs.

Simple rejection methods for the standard normal truncated to [a,∞), for a ≥ 0,
have been proposed long ago. Marsaglia [19] proposed a method that uses for g the
standard Rayleigh distribution truncated over [a,∞). An efficient implementation
is given in [8, page 381]. Devroye [8, page 382] also gives an algorithm that uses
for g an exponential density of rate a shifted by a. These two methods have exactly
the same acceptance probability,

α(a) = a
√

2π exp(a2/2)Φ(a), (8.8)

which converges to 1 when a → ∞. Geweke [9] and Robert [22] optimized the
acceptance probability to

β(a) = λ
√

2π exp
(
aλ− λ2/2

)
Φ(a)

by taking the rate λ = (a + √a2 + 4)/2 > a for the shifted exponential proposal.
However, the gain with respect to Devroye’s method is small and can be wiped out
easily by a larger computing time per step. For large a, both are very close to 1 and
there is not much difference between them.

We will compare two ways of adapting these methods to a truncation over a
finite interval [a, b]. The first one is to keep the same proposal g which is positive

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 121

over the interval [a,∞) and reject any value generated above b. The second one
truncates and rescales the proposal to [a, b] and applies rejection with the truncated
proposal. We label them by RejectTail and TruncTail, respectively. TruncTail has a
smaller rejection probability, by the factor 1−Φ(a)/Φ(b), but also entails additional
overhead to properly truncate the proposal. Typically, it is worthwhile only if this
additional overhead is small and/or the interval [a, b] is very narrow, so it improves
the rejection probability significantly. Our experiments will confirm this.

Algorithms 8.2, 8.3, 8.4 state the rejection methods for the TruncTail case with
the exponential proposal with rate a [8], with the rate λ proposed in [22], and
with the standard Rayleigh distribution, respectively, extended to the case of a
finite interval [a, b]. For the RejectTail variant, one would remove the computation
of q, replace ln(1 − qU) by ln U , and add X ≤ b to the acceptance condition.
Algorithm 8.5 gives this variant for the Rayleigh proposal.

Algorithm 8.2 : X ∼ TNa,b(0, 1) with exponential proposal with rate a, truncated

Ka ← 2a2

q ← 1− exp(−(b − a)a)

repeat
Generate U,V ∼ U(0, 1), independent
X←− ln(1− qU)

E←− ln(V)

until X2 ≤ KaV

return a +X/a

Algorithm 8.3 : X ∼ TNa,b(0, 1) with exponential proposal with rate λ, truncated

λ← (a +√a2 + 4)/2
q ← 1− exp(−(b − a)λ)

repeat
Generate U,V ∼ U(0, 1), independent
X← a − ln(1− qU)/λ

until V ≤ exp((X − λ)2/2)

return a +X/a

Algorithm 8.4 : X ∼ TNa,b(0, 1) with Rayleigh proposal, truncated

c← a2/2
q ← 1− exp(c − b2/2)

repeat
Simulate U,V ∼ U(0, 1), independently.
X← c − ln(1− qU)

until V 2X ≤ a

return X←√2X

122 Z. Botev and P. L’Ecuyer

Algorithm 8.5 : X ∼ TNa,∞(0, 1) with Rayleigh proposal and RejectTail

c← a2/2
repeat

Simulate U,V ∼ U(0, 1), independently.
X← c − ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b

return
√

2X

When the interval [a, b] is very narrow, it makes sense to just use the uniform
distribution over this interval for the proposal g. This is suggested in [22] and shown
in Algorithm 8.6. Generating from the proposal is then very fast. On the other hand,
the acceptance probability may become very small if the interval is far in the tail and
b−a is not extremely small. Indeed, the acceptance probability of Algorithm 8.6 is:

√
2π exp(a2/2)(Φ(a)−Φ(b))

b−a
= q(a)−q(b) exp((a2−b2)/2)

b−a
,

which decays at a rate of 1/a when a → ∞ while (b − a) = O(1) remains
asymptotically constant (f (x) = O(g(x)) stands for limx↑∞ |f (x)/g(x)| < ∞).
However, when the length of the interval (b − a) = O(1/a), then the acceptance
probability is easily shown to be asymptotically O(1), rendering Algorithm 8.6
very useful in the tail. In fact, later in Table 8.2 we report that over the interval
[a, b) = [100.0, 100.0001] Algorithm 8.6 is decidedly the fastest method.

Algorithm 8.6 : X ∼ TNa,b(0, 1) with uniform proposal, truncated
repeat

Simulate U,V ∼ U(0, 1), independently.
X← a + (b − a)U

until 2 ln V ≤ a2 −X2

return X

Another choice that the user can have with those generators (and for any variate
generator that depends on some distribution parameters) is to either precompute
various constants that depend on the parameters and store them in some “distribu-
tion” object with fixed parameter values, or to recompute these parameter-dependent
constants each time a new variate is generated. This type of alternative is common in
modern variate generation software [16, 17]. The first approach is worthwhile if the
time to compute the relevant constants is significant and several random variates are
to be generated with exactly the same distribution parameters. For the applications
in Bayesian statistics mentioned earlier, it is typical that the parameters a and b

change each time a new variate is generated [7]. But there can be applications in
which a large number of variates are generated with the same a and b.

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 123

For one-sided intervals [a,∞), the algorithms can be simplified. One can use the
RejectTail framework and since b = ∞, there is no need to check if X ≤ b. When
reporting our test results, we label this the OneSide case.

Note that computing an exponential is typically more costly than computing a
log (by a factor of 2 or 3 for negative exponents and 10 for large exponents, in our
experiments) and the latter is more costly than computing a square root (also by a
factor of 10). This means significant speedups could be obtained by avoiding the
recomputing of the exponential each time at the beginning of Algorithms 8.2, 8.3,
and 8.4. This is possible if the same parameter b is used several times, or if b = ∞,
or if we use RejectTail instead of TruncTail.

8.2.3 Speed Comparisons

We report a representative subset of results of speed tests made with the different
methods, for some pairs (a, b). In each case, we generated 108 (100 million)
truncated normal variates, added them up, printed the CPU time required to do
that, and printed the sum for verification. The experiments were made in Java
using the SSJ library [16], under Eclipse and Windows 10, on a Lenovo X1
Carbon Thinkpad with an Intel Core(TM) i7-5600U (single) processor running at
2.60 GHz. All programs were executed in a single thread and the CPU times were
measured using the stopwatch facilities in class Chrono of SSJ, which relies on the
getThreadCpuTime method from the Java class ThreadMXBean to obtain the
CPU time consumed so far by a single thread, and subtracts to obtain the CPU time
consumed between any two instructions.

The measurements were repeated a few times to verify consistency and varied by
about 1–2% at most. The compile times are negligible relative to the reported times.
Of course, these timings depend on CPU and memory usage by other processes on
the computer, and they are likely to change if we move to a different platform, but
on standard processors the relative timings should remain roughly the same. They
provide a good idea of what is most efficient to do.

Tables 8.1 and 8.2 report the timings, in seconds. The two columns “recompute”
and “precompute” are for the cases where the constants that depend on a and b are
recomputed each time a random variate is generated or are precomputed once and
for all, respectively, as discussed earlier.

ExponD, ExponR, and Rayleigh refer to the TruncTail versions of Algo-
rithms 8.2, 8.3, and 8.4, respectively. We add “RejectTail” to the name for the
RejectTail versions. For ExponRRejectTailLog, we took the log on both sides of
the inequality to remove the exponential in the “until” condition. Uniform refers to
Algorithm 8.6.

InversionSSJ refers to the default inversion method implemented in SSJ, which
uses [2] and gives at least 15 decimal digits of relative precision, combined
with a generic (two-sided) “truncated distribution” class also offered in SSJ.
InverseQuickSSJ is a faster but much less accurate version based on a cruder

124 Z. Botev and P. L’Ecuyer

Table 8.1 Time to generate n = 108 variates for [a, b] = [3.0, 3.1] (left pane) and [a, b] =
[7.0, 8.0] (right pane)

Method CPU time (s) Method CPU time

recom. precom. recom. precom.

Generation in [a, b) Generation in [a, b)

ExponD 6.46 6.22 ExponD 11.70 6.16

ExponDRejectTail 23.04 23.20 ExponDRejectTail 6.04 6.08

ExponR 16.63 9.92 ExponR 15.96 8.98

ExponRRejectTail 32.40 32.40 ExponRRejectTail 9.20 9.09

ExponRRejectTailLog 25.10 25.30 ExponRRejectTailLog 7.03 7.02

Rayleigh 10.29 4.60 Rayleigh 9.86 4.27

RayleighRejectTail 15.23 15.33 RayleighRejectTail 3.91 3.99

Uniform 4.26 4.34 Uniform 25.40 25.68

InverseSSJ 15.14 8.14 InverseSSJ 30.67 8.14

InverseQuickSSJ 18.80 3.31 InverseQuickSSJ n/a n/a

InverseRightTail 31.12 7.66 InverseRightTail 31.12 7.70

Generation in [a,∞) Generation in [a,∞)

ExponDOneSide 6.43 6.46 ExponDOneSide 5.90 5.96

ExponROneSideLog 7.05 6.99 ExponROneSideLog 6.80 6.71

RayleighOneSide 4.07 4.41 RayleighOneSide 3.74 4.05

InverseSSJOneSide 18.81 8.20 InverseSSJOneSide 19.00 8.19

InverseRightTailOneSide 18.72 7.64 InverseRightTailOneSide 18.76 7.59

Table 8.2 Time to generate n = 108 variates for [a, b] = [100.0, 102.0] (left pane) and [a, b] =
[100.0, 100.0001] (right pane)

Method CPU time (s) Method CPU time

recom. precom. recom. precom.

Generation in [a, b) Generation in [a, b)

ExponD 11.68 6.01 ExponD 12.31 6.83

ExponDRejectTail 5.88 5.91 ExponDRejectTail 543.80 546.58

ExponR 15.79 8.86 ExponR 16.47 10.65

ExponRRejectTail 9.13 9.02 ExponRRejectTail 865.24 865.34

ExponRRejectTailLog 6.93 6.96 ExponRRejectTailLog 651.19 648.99

Rayleigh 9.97 4.16 Rayleigh 10.59 5.07

RayleighRejectTail 3.84 3.90 RayleighRejectTail 323.08 322.41

Uniform 650.62 656.42 Uniform 3.59 3.62

InverseMillsRatio 22.31 15.97 InverseMillsRatio 18.03 12.12

Generation in [a,∞) Generation in [a,∞)

ExponDOneSide 5.77 5.82 ExponDOneSide 5.79 5.83

ExponROneSideLog 6.72 6.63 ExponROneSideLog 6.74 6.63

RayleighOneSide 3.67 3.96 RayleighOneSide 3.66 3.99

InverseMillsRatioOneSide 15.62 15.84 InverseMillsRatioOneSide 15.67 15.84

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 125

approximation of Φ from [20] based on table lookups, which returns about six
decimal digits of precision. We do not recommend it, due to its low accuracy.
Moreover, the implementation we used does not handle well values larger than
about 5 in the right tail, so we report results only for small a. InverseRightTail uses
the accurate approximation of Φ together with (8.3). InverseMillsRatio is our new
inversion method based on Mills ratio, with δ∗ = 10−10. This method is designed
for the case where a is large, and our implementation is designed to be accurate for
a ≥ 10, so we do not report results for it in Table 8.1. For all the methods, we add
“OneSide” for the simplified OneSide versions, for which b = ∞.

For the OneSide case, that is, b = ∞, the Rayleigh proposal gives the fastest
method in all cases, and there is no significant gain in precomputing and storing the
constant c = a2/2.

For finite intervals [a, b], when b − a is very small so Φ(b)/Φ(a) is close to
1, the uniform proposal wins and the RejectTail variants are very slow. See right
pane of Table 8.2. Precomputing the constants is also not useful for the uniform
proposal. For larger intervals in the tail, Φ(x) decreases quickly at the beginning of
the interval and this leads to very low acceptance ratios; see right pane of Table 8.1
and left pane of Table 8.2. A Rayleigh proposal with the RejectTail option is usually
the fastest method in this case. Precomputing and storing the constants is also not
very useful for this option. For intervals closer to the center, as in the left pane of
Table 8.1, the uniform proposal performs well for larger (but not too large) intervals,
and the RejectTail option becomes slower unless [a, b] is very wide. The reason is
that for a fixed w > 0, Φ(a + w)/Φ(a) is larger (closer to 1) when a > 0 is closer
to 0.

8.3 Simulation from the Tail of the Multivariate Normal

Let φ�(y) and

Φ�(a) = P[Y ≥ a], Y ∼ N(0, �),

denote the density and tail distribution, respectively, of the multivariate N(0, �)

distribution with (positive-definite) covariance matrix � ∈ R
d×d . In the multivariate

extension to (8.1), we wish to simulate from the pdf (I{·} is the indicator function):

φ�(y)I{y ≥ a(γ)}
Φ�(a(γ))

, (8.9)

where maxi ai > 0, and γ is a tail parameter such that at least one component of
a(γ) diverges to ∞ when γ → ∞ (that is, limγ↑∞ ‖a(γ)‖ = ∞, see [10]). To
simulate from this conditional density, we describe a rejection algorithm that uses
an optimally designed multivariate exponential proposal. Interestingly, unlike the
truncated exponential proposal in the one-dimensional setting (see Algorithms 8.2

126 Z. Botev and P. L’Ecuyer

and 8.3), our multivariate exponential proposal is not truncated. Before giving the
details of the rejection algorithm, we need to introduce some preliminary theory and
notation.

8.3.1 Preliminaries and Notation

Define P as a permutation matrix, which maps (1, . . . , d)% into the permutation
vector p = (p1, . . . , pd)%, that is, P(1, . . . , d)% = p. Then, Φ�(a(γ)) = P(PY ≥
Pa(γ)) and PY ∼ N(0, P�P%) for any p. We will specify p shortly.

First, define the constrained (convex) quadratic optimization:

min
y

1

2
y%

(
P�P%

)−1
y

subject to: y ≥ Pa(γ).

(8.10)

Suppose λ ∈ R
d is the Lagrange multiplier vector, associated with (8.10). Partition

the vector as λ = (λ%1 ,λ%2)% with dim(λ1) = d1 and dim(λ2) = d2, where d1+d2 =
d. In the same way, partition vectors y, a, and matrix

� =
(

�11 �12

�21 �22

)
. (8.11)

We now observe that we can select the permutation vector p and the corresponding
matrix P so that all the d1 active constraints in (8.10) correspond to λ1 > 0 and
all the d2 inactive constraints correspond to λ2 = 0. Without loss of generality, we
can thus assume that a and � are reordered via the permutation matrix P as a pre-
processing step. After this preprocessing step, the solution y∗ of (8.10) with P = I
will satisfy y∗1 = a1 (active constraints: λ1 > 0) and y∗2 > a2 (inactive constraints:
λ2 = 0).

We also assume that for large enough γ , the active constraint set of (8.10)
becomes independent of γ , see [10]. An example is given in Corollary 8.1 below.

8.3.2 The Rejection Algorithm

First, we note that simulating Y from (8.9) is equivalent to simulating X ∼
N(−a(γ),�), conditional on X ≥ 0, and then delivering Y = X + a. Thus, our
initial goal is to simulate from the target:

π(x) = φ�(x + a(γ))I{x ≥ 0}
Φ�(a(γ))

.

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 127

Second, the partitioning into active and inactive constraints of (8.10) suggests the
following proposal density: g(x; η) = g1(x1; η)g2(x2|x1), η > 0, where

g1(x1; η) = exp(−η%x1)

d1∏

k=1

ηk, x1 ≥ 0

is a multivariate exponential proposal, and

g2(x2|x1) = φ�(x + a)

φ�11(x1 + a1)

is the multivariate normal pdf of x2, conditional on x1 (see [12, Page 146]):

X2|(X1 = x1) ∼ N(−a2 +�%12�
−1
11 (x1 + a1), �22 −�%12�

−1
11 �12).

With this proposal, the likelihood ratio for acceptance–rejection is

π(x)Φ�(a(γ))

g(x; η)
= I{x ≥ 0}φ�11(x1 + a1)

g1(x1; η)
= I{x ≥ 0} exp (ψ(x1; η)) ,

where ψ is defined as

ψ(x1; η) := − (x1 + a1)
%�−1

11 (x1 + a1)

2
+ η%x1 −

d1∑

k=1

ln(ηk)

− ln |�11|
2

− d1 ln(2π)

2
.

Next, our goal is to select the value for η that will maximize the acceptance rate of
the resulting rejection algorithm (see Algorithm 8.7 below).

It is straightforward to show that, with the given proposal density, the acceptance
rate for a fixed η > 0 is given by

Φ�(a(γ)) exp(−maxx1≥0 ψ(x1; η)).

Hence, to maximize the acceptance rate, we minimize maxx1≥0 ψ(x1; η) with
respect to η. In order to compute the minimizing η, we exploit a few of the properties
of ψ .

The most important property is that ψ is concave in x1 for every η, and that ψ

is convex in η for every x1. Moreover, ψ is continuously differentiable in η, and we
have the saddle-point property (see [3]):

min
η>0

max
x1≥0

ψ(x1; η) = max
x1≥0

min
η>0

ψ(x1; η). (8.12)

128 Z. Botev and P. L’Ecuyer

Let ψ∗ = ψ(x∗1; η∗) denote the optimum of the minimax optimization (8.12) at the
solution x∗1 and η∗. The right-hand-side of (8.12) suggests a method for computing
η∗, namely, we can first minimize with respect to η (this gives η = 1/x1, where the
vector division is componentwise), and then maximize over x1 ≥ 0. This yields the
concave (unconstrained) optimization program for x∗1:

x∗1 = argmax

{
− (x1 + a1)

%�−1
11 (x1 + a1)

2
+

d1∑

k=1

ln xk

}
. (8.13)

It then follows that η∗ = 1/x∗1. In summary, we have the following algorithm for
simulation from (8.9).

Algorithm 8.7 : X ∼ N(0, �) conditional on X ≥ a(γ), for large γ

Solve (8.10) with P = I and compute the associated Lagrange multiplier λ. Using λ, construct
the reordering (permutation) matrix P, if needed.
a← Pa

�← P�P%
Let L be the lower triangular Cholesky factor of �22 −�%12�

−1
11 �12, see (8.11)

Solve the concave optimization problem (8.13) to obtain x∗1
η∗1 ← 1/x∗1
ψ∗ ← ψ(x∗1; η∗)
repeat

repeat
Simulate U0, U1, . . . , Ud1 ∼ U(0, 1), independently
Ek ←− ln(Uk)/η

∗
k for k = 1, . . . , d1

X1 ← (E1, . . . , Ed1)
% {simulate X1 ∼ g1(x1; η∗)}

E←− ln(U0)

until E > ψ∗ − ψ(X1; η∗)
Z2 ← (Z1, . . . , Zd2)

%, where Z1, . . . , Zd2 ∼ N(0, 1), independently.
X2 ← LZ2 − a2 +�%12�

−1
11 (X1 + a1) {simulate X2 ∼ g2(x2|X1)}

until X2 ≥ 0
X← X + a {shift to obtain draw from pdf (8.9)}
X← P%X {reverse reordering, if any}
return X

8.3.3 Asymptotic Efficiency

The acceptance rate of Algorithm 8.7 above is

Pg[E > ψ∗ − ψ(X1; η);X2 ≥ 0] = Φ�(a(γ)) exp(−ψ∗),

where Pg indicates that X was drawn from the proposal g(x; η∗). As in the one-
dimensional case, see (8.8), it is of interest to find out how this rate depends on

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 129

the tail parameter γ . In particular, if the acceptance rate decays to zero rapidly as
γ ↑ ∞, then Algorithm 8.7 will not be a viable algorithm for simulation from the
tail of the multivariate Gaussian. Fortunately, the following result asserts that the
acceptance rate does not decay to zero as we move further and further into the tail
of the Gaussian.

Theorem 8.1 (Asymptotically Bounded Acceptance Rate) Let y∗ be the solution
to (8.10) after any necessary reordering via permutation matrix P. Define a∞ :=
limγ↑∞(a2(γ) − y∗2(γ)) with a∞ ≤ 0. Then, the acceptance rate of the rejection
Algorithm 8.7 is ultimately bounded from below:

lim inf
γ↑∞ ΦΣ(a(γ)) exp(−ψ∗(γ)) ≥ P[Y 2 ≥ a∞ |Y 1 = 0],

where the probability P[Y 2 ≥ a∞ |Y 1 = 0] is calculated under the original
measure (that is, Y ∼ N(0,Σ)) and, importantly, does not depend on γ .

Proof First, note that with the assumptions and notation of Sect. 8.3.1, Hashorva
and Hüsler [10] have shown the following:

Φ�(a(γ)) = P[Y 2≥a∞ |Y 1=0]
(2π)d1/2|�11|1/2

∏d1
k=1 e%k �−1

11 a1
exp

(
− a%1 �−1

11 a1
2

)
(1+ o(1)), γ ↑ ∞,

where ek is the unit vector with a 1 in the k-th position, and f (x) = o(g(x)) stands
for limx→a f (x)/g(x) = 0.

Second, the saddle-point property (8.12) implies the following sequence of
inequalities for any arbitrary η: ψ∗ ≤ ψ(x∗1; η) ≤ maxx1 ψ(x1; η). In particular,
when η = �−1

11 a1, then maxx1 ψ(x1;�−1
11 a1) = ψ(0;�−1

11 a1), and we obtain:

exp(−ψ∗) ≥ exp(−ψ(0;�−1
11 a1)) =

∏d1
k=1 e%k �−1

11 a1
φ�11 (a1)

Therefore, Φ�(a(γ)) exp(−ψ∗) ≥ P[Y 2 ≥ a∞ |Y 1 = 0](1+ o(1)) as γ ↑ ∞, and
the result of the theorem follows. �

As a special case, we consider the asymptotic result of Savage [23]:

Φ�(γ�c)

φ�(γ�c)
= 1

γ d
∏d

k=1 ck

(1+ o(1)), c > 0, γ ↑ ∞, (8.14)

which is the multivariate extension of the one-dimensional Mills’ ratio [21]: Φ(γ)
φ(γ)

=
1
γ
(1+ o(1)). Interestingly, the following corollary shows that when the tail is of the

Savage-Mills type, the acceptance probability not only remains bounded away from
zero, but approaches unity.

130 Z. Botev and P. L’Ecuyer

Table 8.3 Estimates of the acceptance probability, Φ�(a(γ)) exp(−ψ∗), as a function of γ

γ 10 15 20 25 30 50 100 103

Accept. rate 0.009 0.04 0.0815 0.15 0.19 0.34 0.44 0.50

Corollary 8.1 (Acceptance with Probability One) The acceptance rate of Algo-
rithm 8.7 for simulation from (8.9) with a = γΣc for some c > 0 satisfies:

lim
γ↑∞ΦΣ(γΣc) exp(−ψ∗(γ)) = 1

Proof Straightforward computations show that the Lagrange multiplier of (8.10)
(with P = I, the identity matrix) is λ = �−1a = γ c > 0, so that the set of inactive
constraints is empty. Then, repeating the argument in Theorem 8.1:

exp(−ψ∗) ≥ exp(−ψ(0, γ c)) = γ d
∏d

k=1 ck

φ�(γ�c)

(8.14)= 1+ o(1)

Φ�(γ�c)
,

as desired. �
As a numerical example, we used Algorithm 8.7 to simulate 103 random vectors

from (8.9) for d = 10, a = γ 1, and � = 9
10 11% + 1

10 I (strong positive correlation)
for a range of large values of γ .

Table 8.3 above reports the acceptance rate, estimated by observing the propor-
tion of rejected proposals in line 17 of Algorithm 8.7, for a range of different γ .

The table confirms that as γ gets larger, the acceptance rate improves.

8.4 Conclusion

We have proposed and tested inversion and rejection methods to generate a standard
normal, truncated to an interval [a, b], when a
 0. We also proposed a rejection
method for the tail of the multivariate normal distribution.

In the univariate setting, inversion is slower than the fastest rejection method, as
expected. However, inversion is still desirable in many situations. Our new inversion
method excels in those situations when a is large (say, a ≥ 10). For a not too large
(say, a ≤ 30), the accurate approximation of [2] implemented in InversionSSJ works
well.

When inversion is not needed, the rejection method with the Rayleigh proposal
is usually the fastest when a is large enough. especially if a large number of
variates must be generated for the same interval [a, b], in which case the cost of
precomputing the constants used in the algorithm can be amortized over many calls.

It is interesting to see that in the univariate setting, using the Rayleigh proposal is
faster than using the truncated exponential proposal as in [7, 9, 22]. The RejectTail
variant is usually the fastest, unless Φ̄(b)/Φ̄(a) is far from 0, which happens when
the interval [a, b] is very narrow or a is not large (say a ≤ 5).

8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution 131

However, in the multivariate setting, we show that the truncated exponential
method of [7, 9, 22] can be extended to help simulate from the multivariate normal
tail, provided that we use an untruncated multivariate exponential proposal (that is,
X ≥ 0) combined with a shift of the Gaussian mean (that is, Y = X + a).

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)
2. J.M. Blair, C.A. Edwards, J.H. Johnson, Rational Chebyshev approximations for the inverse

of the error function. Math. Comput. 30, 827–830 (1976)
3. Z.I. Botev, The normal law under linear restrictions: simulation and estimation via minimax

tilting. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(1), 125–148 (2017)
4. Z.I. Botev, P. L’Ecuyer, Efficient estimation and simulation of the truncated multivariate

Student-t distribution, in Proceedings of the 2015 Winter Simulation Conference (IEEE Press,
Piscataway, 2015), pp. 380–391

5. Z.I. Botev, P. L’Ecuyer, Simulation from the normal distribution truncated to an interval in
the tail, in 10th EAI International Conference on Performance Evaluation Methodologies and
Tools, 25th–28th October 2016 Taormina (ACM, New York, 2017), pp. 23–29

6. Z.I. Botev, M. Mandjes, A. Ridder, Tail distribution of the maximum of correlated Gaussian
random variables, in Proceedings of the 2015 Winter Simulation Conference (IEEE Press,
Piscataway, 2015), pp. 633–642

7. N. Chopin, Fast simulation of truncated Gaussian distributions. Stat. Comput. 21(2), 275–288
(2011)

8. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, NY, 1986)
9. J. Geweke, Efficient simulation of the multivariate normal and Student-t distributions subject

to linear constraints and the evaluation of constraint probabilities, in Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interface, Fairfax, VA, 1991, pp. 571–578

10. E. Hashorva, J. Hüsler, On multivariate Gaussian tails. Ann. Inst. Stat. Math. 55(3), 507–522
(2003)

11. W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation
(Springer, Berlin, 2004)

12. D.P. Kroese, T. Taimre, Z.I. Botev, Handbook of Monte Carlo Methods (Wiley, New York,
2011)

13. P. L’Ecuyer, Variance reduction’s greatest hits, in Proceedings of the 2007 European
Simulation and Modeling Conference, Ghent (EUROSIS, Hasselt, 2007), pp. 5–12

14. P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance. Finance Stochast. 13(3),
307–349 (2009)

15. P. L’Ecuyer, Random number generation with multiple streams for sequential and parallel
computers, in Proceedings of the 2015 Winter Simulation Conference, pp. 31–44 (IEEE Press,
New York, 2015)

16. P. L’Ecuyer, SSJ: stochastic simulation in Java, software library (2016). http://simul.iro.
umontreal.ca/ssj/

17. J. Leydold, UNU.RAN—Universal Non-Uniform RANdom number generators (2009).
Available at http://statmath.wu.ac.at/unuran/

18. G. Marsaglia, Generating a variable from the tail of the normal distribution. Technometrics
6(1), 101–102 (1964)

19. G. Marsaglia, T.A. Bray, A convenient method for generating normal variables. SIAM Rev. 6,
260–264 (1964)

20. G. Marsaglia, A. Zaman, J.C.W. Marsaglia, Rapid evaluation of the inverse normal distribution
function. Stat. Probab. Lett. 19, 259–266 (1994)

http://simul.iro.umontreal.ca/ssj/
http://simul.iro.umontreal.ca/ssj/
http://statmath.wu.ac.at/unuran/

132 Z. Botev and P. L’Ecuyer

21. J.P. Mills, Table of the ratio: area to bounding ordinate, for any portion of normal curve.
Biometrika 18(3/4), 395–400 (1926)

22. C.P. Robert, Simulation of truncated normal variables. Stat. Comput. 5(2), 121–125 (1995)
23. R.I. Savage, Mills’ ratio for multivariate normal distributions. J. Res. Nat. Bur. Standards Sect.

B 66, 93–96 (1962)
24. D.B. Thomas, W. Luk, P.H. Leong, J.D. Villasenor, Gaussian random number generators. ACM

Comput. Surv. 39(4), Article 11 (2007)

Part II
Applications to Communication

Systems and Infrastructures

Chapter 9
A Comparison of Markov Reward Based
Resource-Latency Aware Heuristics for
the Virtual Network Embedding Problem

Francesco Bianchi and Francesco Lo Presti

9.1 Introduction

The future Internet will embrace the Infrastructure as a Service (IaaS) service
model [13]. In this novel scenario Infrastructure Providers (InP) lease network
resources to Service Providers (SP) which in turn offer services to end users, i.e.,
virtual networks (VNs) and/or application services [12, 13]. In this multi-layered
architecture, an InP has the challenging task to manage and efficiently allocate
network and computational resources of its substrate network to SPs in order to
maximize its revenue. To this end, for each SP request, which takes the general
form of a Virtual Network Request (VNR), each consisting of a set of virtual nodes
and links with a required amount of computational capacity, link bandwidth, and a
maximum link latency constraint, an InP has to determine, in an on-line fashion, the
subset of physical nodes and links to host the VNR request.

In the literature, this problem is known as the Virtual Network Embedding
(VNE). Since it is a well-known NP-complete problem (Andersen, Theoreti-
cal approaches to node assignment, unpublished manuscript, December (2002)),
[21], heuristics are necessary to support on-line operations, for realistic problem
instances. Many heuristics have been proposed in the literature (see, for instance,
[9, 10, 21–23]).

In this paper, we consider the VNE problem with QoS constraints. Our aim is
to select a set of nodes and links resources in a substrate network which guarantee
a delay bound on latency between pairs of nodes. This is motivated by a wealth of

F. Bianchi (�) · F. Lo Presti
Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor
Vergata”, Rome, Italy
e-mail: f.bianchi@ing.uniroma2.it; lopresti@info.uniroma2.it

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_9&domain=pdf
mailto:f.bianchi@ing.uniroma2.it
mailto:lopresti@info.uniroma2.it
https://doi.org/10.1007/978-3-319-92378-9_9

136 F. Bianchi and F. Lo Presti

time critical and/or delay-sensitive applications (according to Cisco, about 90% of
Internet traffic is generated by delay-sensitive applications [16]). The contributions
of this paper are as follows:

• Focusing on our previous works on QoS-aware VNE embedding [5, 7], we
present a comparison of two solutions for the VNE problem with QoS constraints
(e.g., latency). The approaches are inspired by [9, 15, 22] which developed a
new type of two-stage VNE algorithms referred to as coordinated algorithms: in
the first stage the VNR nodes are mapped to the physical (also called substrate)
nodes; then, in the next stage, the VNR links are mapped into substrate paths
between the virtual nodes mapped in the former stage.

• Following the two-stage approach idea, our first approach proposes a novel
latency-aware metric for a two-stage coordinated VNE algorithm: MCRR-LA
(Markov Chain with Rewards-Latency Aware) [5]. Differently from earlier meth-
ods, our ranking metric relies on the accumulated reward of a suitable Markov
Chain. It well captures the amount of resources available in a node area and
the overall QoS (in term of latency). This powerful metric successfully guides
the node mapping of the full VNE algorithm. Building on previous metric, our
second QoS-aware VNE approach MCRM (Markov Chain Reward Metrics) [7]
adds a proximity metric with regard to other nodes and a node similarity concept
which improve the mapping quality. In this paper we also propose two new
methodologies for computing the resource-latency aware metric called MCRR-
LA2 and MCRR-LA3 based on different ways to penalize resources according to
the delay. In addition, we devise a non-iterative version of the MCRM algorithm
acting on the node mapping stage (MCRM-B), and we propose a new link
mapping strategy (MCRM-I-KSP) to balance the link load using K-Shortest-
Paths algorithm [11].

• We have evaluated our algorithms through simulation. Our results show that our
solutions are able to greatly reduce the maximum and average path delay of
the embedded VNRs almost preserving good performances regarding blocking
probability, revenue and revenue to cost ratio.

The rest of the paper is organized as follows. In Sect. 9.3 we formalize the VNE
problem. Our first ranking algorithm solution (MCRR-LA) with new computing
methods MCRR-LA2 and MCRR-LA3, based on Markov Reward Processes, are
presented in Sect. 9.4. Our second mapping algorithm solution (MCRM) along with
its new implementations MCRM-B and MCRM-I-KSP are introduced in Sect. 9.5.
In Sect. 9.6 we evaluate and compare our algorithms by simulation. Section 9.7
concludes the paper.

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 137

9.2 Related Work

The VNE is a notorious problem addressed by many researchers considering various
assumptions. The VNE problem has been shown to be NP-complete (Andersen,
Theoretical approaches to node assignment, unpublished manuscript, December
(2002)), [21], thus most solutions are based on efficient heuristics (e.g., [9, 10, 21–
23]).

Many of these solutions consist of two sequential stages, i.e., node and link
mapping stages. Lately, a novel category of two-stage VNE algorithms, called
coordinated algorithms (e.g., CO-VNE [15]), has been devised. These algorithms
(e.g., [9, 15, 22]) take into account the links information needed for the second stage
(i.e., link mapping) also during the first one (i.e., node mapping). Specifically, these
algorithms consider the topology information, by computing for every node a metric
that accounts for the resources of the node itself and the resources of its neighbors.
The node mapping follows a greedy strategy: firstly VNR and physical nodes are
sorted based on the metric, then the VNR nodes with highest metric are mapped onto
the physical nodes with highest metric. It is interesting to note that most of these
algorithms were inspired by the PageRank algorithm [8]. In the PageRank algorithm
the importance of a web page is determined by the importance of the web pages that
have links towards it. This means that a web page is more important if it is pointed
by more important web pages. If we model the web surfing as a Random Walk,
we can define a Markov Chain generated by the web links in which the web pages
are the states and the links are the transitions between states. Then, it follows that
the stationary probability of this Markov Chain represents the importance of a web
page. Similarly, the CO-VNE algorithms, in order to determine the “importance” of
a node with respect to resources, compute a metric which considers the resources
of the node itself, the incoming links, and the neighbor nodes. The metric can be
calculated as the stationary probability of a suitable Markov Chain, as done by the
PageRank algorithm.

Although also our approach is based on Markov Chains, actually, we adopt
a completely different method for computing the node metric. We compute the
cumulated reward of a suitable Markov Chain, thus we do not use the stationary
probability.

Researchers have considered various QoS objectives in solving the VNE prob-
lem, e.g., energy efficiency [18], survivability and resiliency [19], etc. [13]. How-
ever, the delay-aware VNE has been addressed only in a few works. Chowdhury et
al. in [10] formulate a mixed integer programming model which deals indirectly
with delay. Specifically, each VNR node, which asks for a specific location
constraint, must be mapped within a pre-set maximum distance from the demanded
physical location.

Lately, Behrouznia et al. devised a two-stage algorithm [3] which, as done by
our approach, addresses the VNE problem under QoS constraints, e.g., latency.
Their solution aims to achieve cost minimization and QoS objectives. During
the first stage, the substrate nodes are ranked using a metric representing the

138 F. Bianchi and F. Lo Presti

available resources of each node (residual CPU resources multiplied by the residual
bandwidth resources over incoming links). Then, the virtual nodes are mapped
sequentially to the physical ones according to a greedy strategy. In the following
stage, the VNE algorithm maps each virtual link seeking the K shortest substrate
paths available between its previously mapped end nodes. Specifically, the VNE
algorithm, for each path which meets the network resource and QoS constraints,
determines a quality index of its links, following the approach proposed by Shamsi
and Brokmeier in [20]. Intuitively, each VNR link is embedded by the physical path
with highest quality index. Differently, we calculate instead a delay and topology
aware metric for both the request and substrate network. Our approaches are also
supplemented by different mechanisms to shorten the physical paths.

9.3 The VNE Problem

9.3.1 Substrate Network

We model the substrate network, i.e., the provider infrastructure, as an undirected
weighted graph Gs = (Ns, Es, Cs, Bs, Ls). Ns represents the set of infrastructure
nodes and Es is the set of communication links. Cs denotes the set of available
computational capacity associated with each node,1 while Bs and Ls denote the sets
of network bandwidth and network delay associated with each link, respectively.
Finally, P s denotes the set of substrate paths (without loops). Figure 9.1 shows an
example of substrate network and VNR.

9.3.2 Virtual Network Request

A VNR is also modeled as a weighted undirected graph, Gv = (Nv,Ev, Cv,

Bv, Lv). Here Nv and Ev are the sets of virtual nodes and links to be mapped,
respectively. The set Cv denotes the amount of CPU capacity required by the VNR
nodes while Bv and Lv denote the set of requested link bandwidth and link delay
constraints associated to the VNR links. Associated to each VNR, there is also an
arrival time ta and lifetime td . We will write VNR(ta, td) for short to denote the VNR
arrival time and lifetime. Figure 9.1 shows a VNR consisting of four nodes and four
links with the associated resources demands and maximum delay requirements.

1For the sake of simplicity, in this paper we only consider the computational capacity as node
resource metric. Our approach can be extended in case of multiple resources, e.g., I/O bandwidth,
memory.

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 139

35

20

20

10

30

5

10

31 2

456

b

cd

a

45

40 50

25
40

VNR

10 30

10

60 40 5050 70 60
2520 31 2

456

40

30 40

5
40

30 20 4040 80 50

Substrate
Network

40 40

50

50

25 25

25 25

30 3550 30 5035

25 25

25 25

Fig. 9.1 VNE example. A VNR (on the top) is mapped to the substrate network (on the bottom).
The resulting remaining substrate resources (on the right). Computational capacity/demand is
shown inside square boxes, link capacity/demand in gray. Network delays are shown inside the
green hexagons. The dotted and dashed lines show the node and link mapping, respectively

9.3.3 Virtual Network Embedding

The Virtual Network Embedding of a VNR Gv on the substrate network Gs consists
in the mapping of the set of virtual nodes Nv onto a subset of substrate nodes Ns

and of the set of virtual links Ev onto a subset of substrate links Es . This procedure
consists of two distinct phases: node mapping and link mapping.

In the first phase, virtual nodes are mapped to the substrate ones via the mapping
function Mnode : Nv → Ns , such that: ∀nv,mv ∈ Nv

Mnode(n
v) = ns ∈ Ns, (9.1)

subject to:

• Mnode(n
v) = Mnode(m

v) if and only if mv = nv;
• Cv(nv) ≤ Cs(Mnode(n

v)).

It is worth observing that in this mapping, different virtual nodes of the same
VNR must be mapped to different substrate nodes (but observe that different VNRs
nodes can be mapped on the same physical node). The mapping needs also to satisfy
the VNR nodes resource demand.

In the second phase, virtual links are mapped to substrate paths, that is, Mlink:
Ev → P s , such that: ∀ev = (mvnv) ∈ Ev

Mlink(m
vnv) = ps(Mnode(m

v),Mnode(n
v)) ∈ P s(Mnode(m

v),Mnode(n
v)),

140 F. Bianchi and F. Lo Presti

subject to:

• Bv(ev) ≤ min
es∈ps(Mlink(e

v))
Bs(es);

• Lv(ev) ≥ ∑
es∈ps(Mlink(e

v))

Ls(es).

Basically, each substrate link in the path should have enough spare capacity to
accommodate the virtual link capacity demand. Moreover, the path latency should
not exceed the virtual link latency constraint.

9.3.4 Objective

The InP objective is to maximize the long-term time-average revenue [9, 10, 21]. In
line with previous works [10, 15, 21–23], we define the InP revenue R(Gv, ta, td)

associated to a VNR with lifetime td , at time ta , as:

R(Gv, ta, td) =
{

R0(G
v, ta, td) · td , if accepted

0, otherwise
, (9.2)

where R0(G
v, ta, td) represents the revenue per time unit for VNR(ta, td) that can

be written as:

R0(G
v, ta, td) = αc

∑

nv∈Nv

Cv(nv)+ αb

∑

ev∈Ev

Bv(ev). (9.3)

In Eq. (9.3), αc is the unit price for the computational resources and αb is the unit
price for the bandwidth resources.

With the above definition, we have the following expression for the long-term
average revenue:

Rtot = lim
T→∞

∑NT

i=1 R(G
v,(i)

, t
(i)
a , t

(i)
d)

T
. (9.4)

Here NT is the number of requests arrived in the interval [0, T], and
R(Gv,(i), t

(i)
a , t

(i)
d) is the revenue associated to the i-th VNR (with arrival time

t
(i)
a and lifetime t

(i)
d).

Another important metric, which is relevant to both service provider and users,
is the blocking probability or called blocking ratio:

BR = lim
T→∞

∑NREJT

j=1 V NR
(j)
rej (t

(j)
a , t

(j)
d)

∑NT

i=1 V NR
(i)

(t
(i)
a , t

(i)
d)

, (9.5)

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 141

where NREJT is the total number of rejected VNRs within time T and
VNR(j)

rej (t
(j)
a , t

(j)
d) is the j -th rejected VNR.

We formulate the cost incurred by the InP for accepting a VNR with lifetime td ,
at time ta , as:

CO(Gv, ta, td) =
{

CO0(G
v, ta, td) · td , if accepted

0, otherwise
, (9.6)

where CO0(G
v, ta, td) represents the cost per time unit for VNR(ta, td) that can be

defined as:

CO0(G
v, ta, td) =

∑

nv∈Nv

Cv(nv)+
∑

ev∈Ev

|ps(Mlink(e
v))|Bv(ev), (9.7)

where |ps(Mlink(e
v))| is the physical path length in terms of links. In order to

synthesize the efficiency of resource utilization, we adopt the long-term revenue
to cost ratio index:

RC = lim
T→∞

∑NT

i=1 R
(
G

v,(i)
, t

(i)
a , t

(i)
d

)

∑NT

i=1 CO
(
G

v,(i)
, t

(i)
a , t

(i)
d

) , (9.8)

where CO(Gv,(i), t
(i)
a , t

(i)
d) is the cost incurred for mapping the i-th VNR with

arrival time t
(i)
a and lifetime t

(i)
d . If the long-term average revenues of VNE solutions

are equal, the lower BR and higher RC are preferred.
Furthermore, as suggested in [1], to capture the performance as perceived by the

users, we also consider the average path delay and maximum path delay of accepted
VNRs.

9.4 Markov Chain Rewards Based Latency Aware Node
Ranking Algorithm

Following previous works in the literature [9, 15, 22], our VNE algorithm consists
of two stages: the node mapping stage and the link mapping stage. Upon a VNR
arrival, the algorithm first maps virtual nodes on physical nodes with sufficient
computational capacity, following a greedy strategy which takes into account both
node available computational capacity and the bandwidth and the latency of the
attached links; then, in the link mapping stage, virtual links are mapped to substrate
network paths with sufficient available link capacity, using a simple shortest-path
strategy (using path latency as metric).

142 F. Bianchi and F. Lo Presti

In Sect. 9.4.1, we first present our approach to latency aware node ranking,
MCRR-LA, which is based on Markov Chains with rewards model [14]. Then in
Sect. 9.4.2 we describe two new variants for computing MCRR-LA. Due to space
limits we omit to report details of the full mapping algorithm which is possible to
find in [5].

9.4.1 MCRR-LA Node Ranking Metric

As noticed in [15], a proper node ranking metric for the VNE problem should take
into account the resources of a node neighborhood rather than those of a single
node considered in isolation. The intuition is that the higher the aggregate amount
of available computational and communication resources in the vicinity of a node,
the higher the probability that a VNR can be successfully embedded in that portion
of the substrate network. Moreover, since we are also interested in satisfying link
delay constraint, we will also account for the links’ latency in the definition of the
ranking metric.

First of all, we introduce the concept of latency-aware node resources. Without
lack of generality, we follow the approach presented in [22]2 and define for each
node n ∈ Ns the available resources CBL(n), as the the amount of available
normalized CPU resource multiplied by the sum of the available bandwidth of the
attached links, which are weighted by the normalized link latency, as follows:

CBL(n) = Cs(n) ·
∑

m∈N(n)

[
Bs((n,m)) ·

(
max_lat − Ls((n,m))

max_lat − min_lat

)]
. (9.9)

In Eq. (9.9), for each link (n,m), with m ∈ N(n), the set of neighbors of node
n, the available bandwidth Bs((n,m)) is multiplied by a normalized latency term
max_lat−Ls((n,m))

max_lat−min_lat ∈ [0, 1], where Ls((n,m)) is the link (n,m) latency and max_lat
(min_lat) corresponds to the largest (smallest) substrate link latency. The normalized
link latency takes value 1 in case of links with minimum latency and 0 in case of
links with maximum latency. These values are then normalized:

Res(n) = CBL(n)∑
m∈Ns CBL(m)

. (9.10)

Given the above definition, we define the latency aware ranking metric MCRR-
LA of node n, the quantity Vγ (n), recursively defined as the weighted sum of the
local and the neighboring resources as follows:

2The ranking metric can be similarly defined using alternative resource metrics, e.g., [15].

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 143

Vγ (n) = (1− γ)Res(n)+ γ
∑

m∈N(n)

Res(m)∑
h∈N(n) Res(h)

Vγ (m), (9.11)

where γ ∈ [0, 1) represents the relative weight of the neighbors resources contri-
bution with each neighbor contributing proportionally to its amount of resources
(represented by the factor Res(m)∑

h∈N(n) Res(h)
). To rewrite (9.11) in a compact form, let P

a |N | × |N | matrix defined as follows:

P(n,m) =
⎧
⎨

⎩

Res(m)∑
h∈N(n) Res(h)

if (n,m) ∈ Es

0 otherwise
. (9.12)

We can now rewrite (9.11) as:

Vγ (n) = (1− γ)Res(n)+ γ ·
∑

n′∈N
P (n, n′)Vγ (n′), (9.13)

or in matrix form

Vγ = (1− γ)Res+ γ PVγ , (9.14)

where Res = (Res(1), Res(2), . . . , Res(|N |))T , and Vγ = (Vγ (1), Vγ (2), . . . ,

Vγ (|N |))T .
It is important to observe that (9.14) are the Bellman equations [4] of the

discounted cumulative reward of the Markov Chain with state space N and transition
probability matrix P (it is easy to verify that P is a stochastic matrix) and discount
factor γ . The rewards vector is Rew = (Rew(1), Rew(2), . . . , Rew(|N |)), with
Rew(n) = (1−γ)Res(n), n ∈ N . This provides an interesting physical interpretation
to ranking metric Vγ (n), n ∈ N : by construction, Vγ (n) is the expected discounted
accumulated reward of a Markov Chain with transition probability P, with initial
state n, that is:

Vγ (n) = lim
k→∞EP

[
k∑

i=0

γ iRew(ni)

]
, (9.15)

where n0, n1, n2, . . . , denotes a sample path with initial state n0 = n.
The computation can be carried out by standard techniques. Indeed, since P is

stochastic, (I− γ P), 0 ≤ γ < 1, is invertible, thus we have

Vγ = (I− γ P)−1(1− γ)Res. (9.16)

Since the node reward is proportional to the amount of resources, it follows
that the higher the node ranking Vγ (n), the higher the amount of resources in
the neighborhood of node n. Moreover, if we consider nodes with same amount

144 F. Bianchi and F. Lo Presti

of resources, we will obtain lower values of Vγ (n) for the nodes which are
located in a high latency neighborhood, since higher latencies negatively impact
the (accumulated) reward. In this context, also γ has a physical interpretation as
it measures the size of the neighborhood taken into account to determine the node
metric Vγ (n): when γ = 0 only the local resources are considered by the metric; as
γ increases, larger and larger portions of the graph, in the node neighborhood, are
progressively accounted for by the metric.

In the above discussion, we have focused on the substrate network and its
resources. The key observation is that the metric V (n) can be applied to the virtual
nodes as well. In this case, though, the metric Vγ (n) can be regarded as the aggregate
amount of resources required by a virtual node and its neighbors. As later shown,
this equivalence between availability of substrate resources and demand of virtual
resources suggests that a simple approach to the embedding problem consists in a
greedy strategy whereby we just map virtual nodes with higher resources demand
(high values of ranking metric V (n), n ∈ Nv) to substrate nodes with higher
resources availability (high values of V (n), n ∈ Ns).

9.4.2 MCRR-LA2 and MCRR-LA3

We developed two new different methodologies for determining the resource latency
aware metric called MCRR-LA2 and MCRR-LA3 whose performance will be
showed in Sect. 9.6.

In MCRR-LA2 we change the way of computing the amount of available latency-
aware resources CBL introduced in Eq. (9.9), involving the discount factor γ in the
following way:

CBL(n) = C(n) ·
∑

m∈N(n)

[
Bs((n,m)) · γ

(
Ls ((n,m))
min_lat

)]
.

In MCRR-LA3 we compute CBL as in Eq. (9.9), but we introduce the penaliza-
tion in the transition probabilities computation as follows:

P(n,m) =

⎧
⎪⎪⎨

⎪⎪⎩

Res(m)γ

(
Ls ((n,m))
min_lat

)

∑
h∈N(n) Res(h)γ

(
Ls ((n,m))
min_lat

) if(n,m) ∈ Es

0 otherwise

,

Everything else remains unchanged. Since the discount factor γ < 1, the
exponential term penalizes links with large delays. In the former case, the larger the
link delays, the smaller the CBL (and differently from Eq. (9.9) where we decrease
the metric in a linear fashion, here we decrease the metric exponentially fast). In the

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 145

latter case, the larger the delay, the less likely the path to enter that node and thus
less likely to consider its resources in the computation of the metric.

9.5 Markov Chain Rewards Metrics (MCRM) Ranking
Algorithm

In a previous work [7] we have introduced an improved latency-aware VNE
algorithm, called Markov Chain Reward Metrics (MCRM), which considers also
the presence of pinned nodes (i.e., pre-assigned nodes due, for example, to data
source nodes physically located in specific areas). Our node mapping procedure
is based on a new concept of similarity between substrate and VNR nodes. The
procedure computes a set of metrics for each substrate and VNR node that accounts
for the aggregated available (requested) resources in the vicinity of a substrate
(VNR) node and their proximity level with respect to the other nodes. Thus, it
uses two types of metrics: a resource-latency aware resource metric (MCRR-LA)
previously described in Sect. 9.4, and a proximity metric (MCR-P) computed with
regards to each pinned node, representing an elegant measure of distance. Then,
after computed a similarity index between VNR and substrate nodes, the procedure
intuitively maps each VNR node to the most similar substrate node.

For reasons of space we omit to describe the proximity and similarity metric
as well as the full iterative mapping algorithm: for details, please refer to [7]. In
this work we refer to it as MCRM-I. In Sect. 9.5.1 we introduce a variant of the
iterative algorithm MCRM-I, called MCRM-I-KSP, in which we use K-Shortest-
Paths instead of Dijkstra algorithm during the link mapping stage. In Sect. 9.5.2
we introduce a baseline not iterative variant of MCRM-I called MCRM-B which
basically maps all the virtual nodes at the same time.

9.5.1 MCRM-I-KSP

In this version of MCRM-I we just modify the link mapping stage in order to use a
more advanced strategy. We adopt K-Shortest-Paths algorithm, in terms of latency
between each couple of mapped virtual nodes, instead of Dijkstra algorithm. If
K-Shortest-Paths is able to find at least a physical path and they meet the virtual
delay bound of the virtual link, then the algorithm selects the path that minimizes
the number of links and maximizes the minimum bandwidth over links, while
maximizing the delay. This method allows to achieve a higher and more uniform
use of network resources while meeting the QoS constraint, in order to also avoid
the presence of possible unused links as highlighted in [7].

146 F. Bianchi and F. Lo Presti

9.5.2 MCRM-B

We also developed a non-iterative version of MCRM-I in order to reduce the
algorithm runtime, while still achieving good performance and QoS indexes results.
As MCRM-I, after mapped the pinned nodes, MCRM-B firstly computes and
normalizes MCRR-LA and MCR-P metrics, secondly it calculates and sorts in
ascending order the similarity metrics (cf. matrix D [7]) between virtual and
substrate nodes. At this time, differently from MCRM-I, MCRM-B maps all the
not yet embedded virtual nodes in one shot. Thus, it sequentially maps each virtual
node onto the physical one with which the similarity metric is lower, provided that
the physical node has enough available resources and has not been already involved
in a mapping.

9.6 Experimental Evaluation

The algorithms have been assessed by the means of simulation. We developed a
VNE simulator to compare the presented MCRR-LA and MCRM based algorithms,
and the algorithm proposed in [2, 3], hereafter referred to as QoS-RS (QoS-Resource
Selection) for brevity. We report the results based on a 32 node substrate network
with 58 links (ANSNET [17], slightly modified as in [22]).

The arrival process of the VNRs is a Poisson process with rate of λ= 5. The
lifetime of VNRs follows an exponential distribution with an average lifetime
TVNR of 12 time units, representing a medium load scenario. A VNR is modelled
as a random graph whose node number is selected from 4 to 10 according to
a uniform distribution. The virtual link connectivity rate is ln(|Nv |)

|Nv |−1 to obtain
O(ln(|Nv|)) incident edges for each node. The requested computing resources for
each node and bandwidth resources for each link are randomly selected according
to uniform distribution in the range [4, 8] and [2, 5], respectively. The available
computing and bandwidth resources of the physical network are normalized and
set to nominal value 100. The delays of physical network links are proportional
to the geographical distance between nodes. The latency demanded by each
virtual link is randomly selected in the range [average substrate links latency× δ,
maximum substrate links latency× δ], where δ is a multiplicative factor.

We ran each experiment ten times for 5000 time units. For the sake of clarity,
since the intervals of confidence were in general not significant, we omit them.

In the experiments we compare MCRR-LA, MCRR-LA2, MCRR-LA3,
MCRM-I, MCRM-I-KSP, MCRM-B, and QoS-RS. We set the weight assigned
to the resource-latency aware metric (MCRR-LA), wVγ , to 0 and 2

5 in the similarity
index computation for algorithms MCRM-I, MCRM-I-KSP, and MCRM-B. For
these two values they achieve on average the worst and best performance results,
respectively. Please remember that we assume that all node proximity MCR-P

weights have the same value, that is wZm = 1−wVγ

|Rv | , where Rv is the set of reference

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 147

nodes towards which the proximity metric is computed. VNRs have no pinned
nodes for comparison purposes. Following [6], for MCRR-LA we adopt a value of
γ = 0.98 (the discount factor of the Markov Reward Model). In the implementation
of the QoS-RS algorithm, we do not consider the node location constraint and the
links packet loss constraint which have no counterpart in our proposed solution
(we plan to include such constraints in our future work). The K-Shortest-Paths
algorithm used by QoS-RS is set with K = 4. In order to compute the quality of the
physical paths, QoS-RS contemplates the use of weights (summing to 1), as in [20],
to balance the importance of the bandwidth (w1) and delay (w2) attributes. Since
our tests showed that the performance is not considerably affected by the different
combination of the weights and since MCRR-LA aims to reduce the latency when
it comes to compute the shortest paths, we plot the results of just two combinations:
w1 = 0.5, w2 = 0.5 and w1 = 0.0, w2 = 1.0.

In Fig. 9.2a–e we plot the VNR blocking probability, the average revenue, the
revenue to cost ratio, the average path delay, and the maximum average path delay of
the algorithms, assuming the VNR latency bounds with a multiplicative factor δ =
1.5 (that is, each VNR link latency requirement is randomly drawn in the interval
[1.5 · average_lat, 1.5 · max_lat], where average_lat and max_lat are the average
and maximum substrate network link latency, respectively). From the figures, we
can observe that MCRR-LA and MCRM based solutions considerably outperform
QoS-RS in terms of lower blocking probability, higher revenue and lower average
path delay. From the simulations, the lower blocking probability (also reflected in
terms of higher revenue) is due to a more uniform use of the substrate network
resources (both nodes and links).

Fig. 9.2 Comparison of algorithms: requested basic latency bounds · δ = 1.5. (a) Blocking
probability. (b) Revenue. (c) Revenue to cost ratio. (d) Average path delay. (e) Max average path
delay

148 F. Bianchi and F. Lo Presti

The better performance of our MCRR-LA and MCRM based solutions can
be ascribed to the use of the latency aware metric also in combination with
the proximity metric (in MCRM) in determining the node ranking which gives
preference, during the node mapping phase, not only to the node with more
resources (computational capacity and link bandwidth) but also with low latency.

Among our solutions, MCRM-I surpasses the other approaches in terms of
performance and latency indexes, due to resource-latency aware metric combined
with proximity metric and the iterative operation which guide the mapping through
the similarity index based on an ever increasing number of reference nodes. MCRM-
I-KSP achieves same good revenue and blocking ratio performance of MCRM-I and
its load balancing joint with the delay maximization strategy extends on average the
path delays and the number of path links, as expected. The last effect is reflected
on lower revenue to cost ratio and on slightly higher and more uniform use of
links resources, also solving the problem of possible unused substrate links as
remarked in [7]. The results of MCRR-LA, MCRR-LA2, and MCRR-LA3 are
almost comparable on all the performance and QoS indexes, underlining the same
good quality in capturing the resource-latency aware potential of nodes. However,
the first and the second solution achieve slightly better performance results. The
non-iterative algorithm MCRM-B reaches similar results in terms of delay indexes,
but lower revenue and higher blocking probability compared to MCRM-I, as
expected, since the similarity index is computed with just one proximity metric
value per node. However, its computational cost is lower due to zero iterations,
thus experiencing shorter execution time. The overall results of MCRM-B are
also slightly better than MCRR-LA based algorithms, underlining the key role of
coupling a proximity metric with a resource-latency aware metric.

Indeed, despite the fact that QoS-RS uses a method to determine the quality of the
paths during the link mapping, the node mapping phase is first carried out without
considering latency. These results stress the importance of including link related
QoS metrics in the node mapping phase of two-stage mapping algorithms.

9.7 Conclusions

In this paper, we have presented a comparison overview of our approaches to
the Virtual Network Embedding problem based on Markov Reward Processes, the
aim of which is to achieve a good trade-off between resource utilization and QoS
(e.g., latency). They all rely on a key resource-latency aware metric which is used
alone in a first approach (MCRR-LA) and combined with a proximity metric in a
second approach (MCRM), with the same objective of ranking and mapping nodes
effectively. Along with previously proposed latency-aware solutions MCRR-LA and
MCRM, we have introduced and compared new versions that extend them in order
to test new performing strategies. Experimental outcomes show that our algorithms
achieve good performance objectives and are able to reduce the maximum and
average path delay of the embedded VNRs compared to alternative approaches.

9 A Comparison of Markov Reward Based Resource-Latency Aware. . . 149

References

1. M.T. Beck, C. Linnhoff-Popien, On delay-aware embedding of virtual networks, in The Sixth
International Conference on Advances in future internet, AFIN (2014)

2. S. Behrouznia, A QoS-based resource selection approach for virtual networks. Master’s thesis,
Concordia University, April 2015

3. S. Behrouznia, R. Dssouli, M. El Barachi, A QoS-based resource selection approach for virtual
networks, in International Conference on Computer and Information Science and Technology,
2015. CIST’15, May 2015

4. R. Bellman, Dynamic Programming, 1st edn. (Princeton University Press, Princeton, NJ, 1957)
5. F. Bianchi, F. Lo Presti, A latency-aware reward model based greedy heuristic for the virtual

network embedding problem, in Proceedings of InfQ 2016 - New Frontiers in Quantitative
Methods in Informatics (in conjunction with VALUETOOLS 2016), October 2016

6. F. Bianchi, F. Lo Presti, A Markov reward model based greedy heuristic for the virtual network
embedding problem, in 2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS) (2016)

7. F. Bianchi, F. Lo Presti, A Markov reward based resource-latency aware heuristic for the virtual
network embedding problem. SIGMETRICS Perform. Eval. Rev. 44(4), 57–68 (2017)

8. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine. Comput. Netw.
ISDN Syst. 30(1–7), 107–117 (1998)

9. X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, J. Wang, Virtual network embedding
through topology-aware node ranking. SIGCOMM Comput. Commun. Rev. 41(2), 38–47
(2011)

10. N. Chowdhury, M. Rahman, R. Boutaba, Virtual network embedding with coordinated node
and link mapping, in IEEE INFOCOM 2009, April 2009, pp. 783–791

11. D. Eppstein, Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)
12. N. Feamster, L. Gao, J. Rexford, How to lease the internet in your spare time. SIGCOMM

Comput. Commun. Rev. 37(1), 61–64 (2007)
13. A. Fischer, J. Botero, M. Till Beck, H. de Meer, X. Hesselbach, Virtual network embedding: a

survey. IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013)
14. R.G. Gallager, Stochastic Processes: Theory for Applications (Cambridge University Press,

Cambridge, 2013)
15. L. Gong, Y. Wen, Z. Zhu, T. Lee, Toward profit-seeking virtual network embedding algorithm

via global resource capacity, in 2014 Proceedings IEEE INFOCOM, April 2014, pp. 1–9
16. K. Ivaturi, T. Wolf. Mapping of delay-sensitive virtual networks, in International Conference

on Computing, Networking and Communications (ICNC), 2014, February 2014, pp. 341–347
17. Z. Li, J.J. Garcia-Luna-Aceves, Finding multi-constrained feasible paths by using depth-first

search. Wirel. Netw. 13(3), 323–334 (2007)
18. L. Nonde, T.E.H. El-Gorashi, J.M.H. Elmirghani, Energy efficient virtual network embedding

for cloud networks. J. Lightwave Technol. 33(9), 1828–1849 (2015)
19. M.R. Rahman, R. Boutaba, SVNE: survivable virtual network embedding algorithms for

network virtualization. IEEE Trans. Netw. Serv. Manag. 10(2), 105–118 (2013)
20. J. Shamsi, M. Brockmeyer, QoSMap: QoS aware mapping of virtual networks for resiliency

and efficiency, in 2007 IEEE Globecom Workshops, November 2007, pp. 1–6
21. M. Yu, Y. Yi, J. Rexford, M. Chiang, Rethinking virtual network embedding: substrate support

for path splitting and migration. SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)
22. S. Zhang, Z. Qian, J. Wu, S. Lu, An opportunistic resource sharing and topology-aware

mapping framework for virtual networks, in 2012 Proceedings IEEE INFOCOM, March 2012,
pp. 2408–2416

23. Y. Zhu, M. Ammar, Algorithms for assigning substrate network resources to virtual network
components, in Proceedings INFOCOM 2006. 25th IEEE International Conference on
Computer Communications, April 2006, pp. 1–12

Chapter 10
Delay Efficient Load Balancing Scheme
for Component Carrier Selection
in Carrier Aggregation in LTE-A

Load Balancing Scheme in LTE-A

Aditi Gupta, Dharmaraja Selvamuthu, and Subrat Kar

10.1 Introduction

The objectives of Long Term Evolution (LTE) started by 3GPP since 2004 are
reduced latency, higher user data rate, improved system capacity and coverage,
and reduced cost for the operator [1]. Long Term Evolution-Advanced (LTE-A),
the evolution of LTE targets for 1 Gbps downlink speed for a user. It is required
to increase the bandwidth to achieve these targets as a single carrier of 20 MHz in
LTE is not sufficient. Carrier Aggregation(CA) is a feature in LTE-A to aggregate
more than one carriers together and provide higher bandwidth. Each channel is of
maximum 20 MHz bandwidth, with CA, LTE-A has set the limit to aggregate five
carriers providing 100 MHz bandwidth. In future, this limit can be exceeded.

LTE-A carriers can be aggregated in three different ways. The first way is the
Intra-band contiguous CA that uses the adjacent CCs. The second way is Intra-
band noncontiguous CA in which the CCs aggregated are in the same band but
nonadjacent. The third way is inter-band non-contiguous carrier aggregation that
uses carriers of different bands. While the first one is the easiest to implement,
the latter is the most complicated as it requires the use of multiple transceivers
for carriers in different bands. After aggregating, each carrier is known as a
Component Carrier (CC). The CC further can be categorized into two types,
Primary Component Carrier (PCC) and Secondary Component Carrier (SCC). PCC
is the main carrier responsible for exchanging the Radio Resource Control (RRC)
signaling messages with the User Equipment (UE). One PCC is always active in the
RRC CONNECTED mode while SCCs can be activated or deactivated depending
on the usage. After the CCs are assigned, Resource Blocks (RBs) are allocated to

A. Gupta · D. Selvamuthu (�) · S. Kar
Bharti School of Telecommunication Technology and Management, IIT Delhi, New Delhi, India
e-mail: dharmar@maths.iitd.ac.in; subrat@ee.iitd.ac.in

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_10

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_10&domain=pdf
mailto:dharmar@maths.iitd.ac.in
mailto:subrat@ee.iitd.ac.in
https://doi.org/10.1007/978-3-319-92378-9_10

152 A. Gupta et al.

the user. RB is the smallest unit of resources that can be allocated to a user. Each RB
consists of 12 sub-carriers, constituting an equivalent bandwidth of 180 kHz in the
frequency domain and Transmission Time Interval (TTI) of 1 ms in the time domain.

The goal of CA is to provide enhanced and consistent user experience by
maximizing the peak data rate, throughput, and better QoS. CA also allows operators
a cost-effective solution to increase their current network throughput and capacity.
For better resource utilization and spectrum efficiency the load should be balanced
across the carriers [2]. Being an IP based system, for LTE-A based system the
bursty and unpredictable nature of packets makes the balancing of load over carriers
difficult and thus there is a need for better resource allocation algorithm. While
the use of multiple CCs causes load balancing, it also leads to complexity in
terms of power requirements and signal processing at the user end. Since the users
belong to different classes of traffic, requirements of each user differ. A smart
load balancing algorithm for CC selection can thus be utilized to maintain spectral
efficiency and QoS requirements. In this research work, we propose an adaptive
load balancing algorithm for LTE-A CA based system. The proposed algorithm is
capable of balancing the load across different carriers while also considering the
service requirements of data.

The rest of this research work is organized as follows. In Sect. 10.2, the research
in CC selection methodologies in Radio Resource Management (RRM) framework
and the motivation behind this research work are discussed. In Sect. 10.3, the
performance model is proposed and the fluid queue analysis is presented. The
performance analysis of the proposed model is numerically illustrated in Sect. 10.4.
Finally, the conclusions and future work are presented in Sect. 10.5.

10.2 Related Work

CC selection plays an important role in optimizing the system performance with
CA. There have been different scheduling algorithms proposed in the literature for
CA-based systems. Since this work deals with load balancing and QoS parameters,
research in this area is discussed. In [3], it is proposed to assign maximum CCs to the
LTE-A user to achieve maximum efficiency. In [4], least load method is introduced
in which the data is assigned to the CC that has the least amount of load. For every
CC queue length is calculated and the one with the minimum queue length is given
the data packet. The users, however, arrive randomly with different sizes of the files
for transmission and it is difficult to totally avoid the idle CCs. To overcome this
issue CC coupling schemes have been modeled in [5, 6]. In CC coupling, if any of
the CC is in busy state, the user can be switched to the other CC. If the idle CC
becomes busy the coupling is cut. There are two challenges (1) Handling the CC
switch delay. (2) Development of the efficient coupling methods for multiple CC.

Scheduling delay is a more critical factor for real-time data. Thus QoS required
is an important factor while implementing the CC allocation algorithm. A scheduler
algorithm has been designed to meet the QoS level of real-time traffic in [7]. The

10 Delay Efficient Load Balancing Scheme for Component Carrier Selection. . . 153

data arriving will first be classified into Real-Time (RT) (e.g., live streaming) and
Non-Real-Time (NRT) (e.g., emails) traffic by a classifier and divided into RT and
NRT queue, respectively. The algorithm proposed aims at optimizing the system
overall throughput while maintaining the required QoS of the RT traffic by reserving
more RBs for it. A threshold is set for the RT traffic and once that is exceeded
the RT packets are dropped. However, to the best of our knowledge, an efficient
scheme for load balancing across different carriers has not been proposed. In real-
time networks the scenario is quite dynamic and one carrier may be overloaded, the
others idle. On switching the data there would be scheduling delay and overhead
incurred which would add to the delay and bandwidth consumed. Therefore, the
scheduling algorithm should be devised such that there is always an even balance
across the carriers to maximize the efficiency. Since LTE-A focuses on reducing
the packet delay, it is important to keep the scheduling delay minimum though
without complex algorithms. Keeping these requirements in mind, a load balancing
CC selection scheme that reduces the delay of the network is proposed in this work.

10.3 Proposed Scheme and Its Performance Model

10.3.1 Radio Resource Management Framework for Carrier
Aggregation

The muti-CC operation brings some changes in the RRM framework for LTE-
A from LTE [8]. The RRM framework for LTE-A is described in this section
(Fig. 10.1). For any user, first CC is selected. One CC, i.e., the PCC is assigned
to it and then depending on traffic load and QoS requirements, SCCs are given. It
can be noted that the same carrier can be PCC to one UE and SCC to the other.
The usage of SCC is configured by the evolved node-b (eNB). After the CCs are
allotted, RBs are scheduled to the user. RBs are multiplexed to the users on each
CC. The layer-1 transmission containing LA (Link Adaptation) and HARQ (Hybrid
ARQ) per CC is carried out independently to provide backward compatibility to co-
existing LTE users [9]. In the following subsections, we have described CC selection
and RB scheduling in detail.

10.3.1.1 CC Selection and Management

Assigning multiple CCs to the user is the additional feature in RRM framework for
LTE-A. There are many factors that can be considered while choosing the carriers
for the UE, such as QoS requirements, power capabilities, overall traffic level, load
per CC. Other than these, channel quality is also an important factor while allotting
the carriers to the user.

154 A. Gupta et al.

Admission Control

CC Selection

Packet Scheduling Packet Scheduling Packet Scheduling

Link Adaptation Link Adaptation Link Adaptation

HARQ HARQ HARQ

Fig. 10.1 RRM framework of LTE-A

QoS plays an important role in determining the number of CCs, RBs to the UE.
The data can be using an RT service or an NRT service and depending on that the
optimum number of CCs and their services should be provided to it. The next param-
eter discussed is the load on the carriers. One of the goals of CA is to balance the
load across the carriers to maximize the utilization of spectrum resources. Energy
efficiency also plays an important role in the uplink transmissions as the simultane-
ous transmissions lead to excessive power being spent on the UE terminal [10].

CCs can be dynamically changed, included or removed depending on the signal
quality, load or power conditions. Therefore, CC selection and management should
be performed to select the appropriate CC and manage them so that resource
utilization is maximum and the user is provided the best service.

10.3.1.2 Packet Scheduling

After the CC assignment is completed, the allocation of resource blocks (RB)
takes place. This process is similar to that in LTE except that now the user
can be connected with RBs belonging to different CCs. Each physical resource
block constitutes 12 sub-carriers providing a bandwidth of 180 kHz. Each RB also
corresponds to a sub-frame in the time domain, with Transmission Time Interval
(TTI) of 1 ms. There have been several algorithms proposed in the literature to
select the RB in a CC for the user, the most popular of these being the round robin,
and proportional fair (PF) [11]. In PF, the RB is given to that user that has good
channel quality. Similar to LTE, dynamic scheduling of a user on an RB is supported
in LTE-A. In this case, the user is scheduled on an RB by sending a scheduling
grant on PDCCH time multiplexed in each TTI before data channel. LTE-A also
introduces cross-carrier scheduling in which eNB can send a scheduling grant

10 Delay Efficient Load Balancing Scheme for Component Carrier Selection. . . 155

on one CC for scheduling the user on another CC [12]. Cross-carrier scheduling
makes the control and data channel performance flexible across multiple CCs.
Different schemes have been proposed in the literature to reduce scheduling delay
by proposing efficient RB allocation schemes. RB grouping method is proposed in
[13] where the deduced RBs are grouped into sets and this fixed set is assigned to the
user. In [14] scheduling delay is minimized using RB reservation and dispatching
frequency to them according to the QoS required.

10.3.2 Performance Model

Whenever CA is performed, data is first assigned to PCC and then given to other
SCCs. For the energy efficiency and lesser complexity, it is better to give the load
to as minimum of carriers necessary. It is better to balance the load using the least
number of carriers needed. Hence, there is a pertinent issue of when to switch the
data to other carriers. The first scheduler has the information of the CCs load and
decides on the basis of the buffer content, if the buffer content rises above a certain
level, the data should be switched to the other carriers.

There is a single threshold involved in these models which indicate for the
carrier whether it will receive the data from the scheduler or not. However, there
are drawbacks to any single threshold system. If the threshold is crossed often many
feedback signals have to be sent to the first scheduler to limit the flow of the data to
that carrier. These feedback signals will consume a significant part of the available
bandwidth. Also, a single threshold to indicate the heavy loading is not preferred.
In this research work, we propose a model with two thresholds for CC selection
(Fig. 10.2).

Classifier Scheduler 1

 Feedback Controller

RT queue
NRT queue
BE queue CC 1

CC 2

CC k

Scheduler 2
RBs
(1−n)

RT packets

NRT packets

BE packets

Fig. 10.2 Schematic of the proposed performance model

156 A. Gupta et al.

The two thresholds divide the buffer into three regimes, the relevant rate of the
data input to the carrier depending on the regime of the buffer. If the data is above the
first threshold denoted by T (1), the rate of the input data should be decreased and
routed to another carrier. If the input data rate increases further above the second
threshold, denoted by T (2), the input rate turns down to 0. In other words, the data
inflow to the carrier is stopped completely.

One of the main requirements in LTE-A is to provide optimum performance with
respect to the QoS required for the data. The QoS required for RT data, NRT data or
the best effort would be different so the scheduling should be in accordance to that.
To provide adaptable service according to the class of traffic, the parameters (input
rate in different regimes, the two thresholds value) of the background model should
be adjusted.

The proposed scheme is analyzed using the development of performance model
through the feedback fluid queue. In fluid queue model, instead of individual
customers, a continuous entity called fluid is considered. The fluid flows into the
fluid reservoir according to a background Markov process, and flows out dependent
on the output rate of the server [15]. Depending on the state of the background
process, the input rate to the buffer content changes. For example, if the background
process has three states, then fluid will flow into the buffer content in three different
rates.

Fluid queues are particularly useful in telecommunication systems because the
bursts of data is transmitted in smaller sized cells or data packets. In telecom
networks, the variations take place on the burst level rather than the cell level. The
fluid queue can thus give good approximations for the actual behavior of network
traffic. Also, LTE-A networks are IP based systems with high speed and can be
efficiently modelled by fluid queue.

Feedback fluid queue is the type of fluid queue where the input rate to the buffer
content depends on the background process and the behavior of the background
process also depends on the content present in the buffer [16]. The meaning of
feedback here is completely different from the traditional queueing systems. The
feedback in fluid queue refers to control signals being sent to originating process
depending on the buffer content unlike sending the data back in the conventional
systems. Since in proposed model the input rate to the CC depends on the content
of its buffer, feedback fluid queue is appropriate to model its behavior.

10.3.3 Feedback Fluid Queueing Model

A feedback fluid queue with an infinite buffer content and a constant output rate
c is considered to analyze the proposed performance model. As in the proposed
model there cannot be any overflows or losses, infinite buffer system can provide
good approximations for the finite buffer. Figure 10.3 shows each CCs buffer
corresponding to the users of a particular class of traffic. Let W(t) be the content
in the buffer for a class of traffic per CC at time t and the rate at which fluid

10 Delay Efficient Load Balancing Scheme for Component Carrier Selection. . . 157

To the controller

From Scheduler 1
 Scheduler 2

To RB’s

CC

R
(2)

Q
(2)

Regime 3

R
(3)

Q
(3)

Regime 1Regime 2

R
(1)

Q
(1)

Fig. 10.3 Buffer obtained for corresponding CCs

Table 10.1 The buffer
content in different regimes

Buffer content Regime

0 ≤ W(t) < T (1) 1

T (1) ≤ W(t) < T (2) 2

T (2) ≤ W(t) <∞ 3

enters the queue per unit time is dependent on the current state of a background
irreducible continuous-time Markov chain {X(t), t ≥ 0}, defined on a state space
D = {1, 2, . . . , d} where d is the total number of states of the background process.
In the proposed performance model the background process is the first scheduler that
assigns the data to a particular CC. The background process or the first scheduler
operates in two states, either it gives data to the CCs buffer (ON state) or it does not
(OFF state). The (i, j)th element (i �= j)) of the scheduler generator is given by

elements of matrix Q
(k)
ij (

˜
Q

(k)
ij at the threshold) such that the sum of row elements

is 0. Qij for j �= i is the transition rate at which the background process jumps
from states i to j . R(k) for a regime k is defined as the diagonal matrix with its ith
diagonal element be given by ri − c, where r is the input rate to the buffer(rh and
0 in regime 1, rl and 0 in regime 2) and c is the constant output rate of the fluid
outflow from the buffer(the output rate is constant because some RBs are usually
kept reserved for a class of traffic and continuous scheduling for those is carried
out). While the output rate is constant, the value of r depends on two parameters.
First, on the state of the system, whether it is ON or OFF. If it is ON, then the rate
depends on the second parameter, i.e., the regime the buffer. The two thresholds
model divides the buffer into three regimes. The input rate is high(in regime 1) as
long as the lower threshold T (1) has not crossed. If that happens, the input rate is
lowered (in regime 2). Next, if the higher threshold T (2) is reached, the input flow
is stopped completely (in regime 3) and the content is let to flow out until it hits the
higher threshold (in regime 2) wherein the input is given again.

On the basis of the amount of fluid content in the buffer at times t , the system is
divided into three different regimes for the proposed model (Table 10.1).

For all the regimes, the subsets of D consisting of ON state, OFF states,
respectively, is defined as:

158 A. Gupta et al.

D
(k)
+ = {i ∈ D|r(k)

i > 0}

D
(k)
− = {i ∈ D|r(k)

i < 0}

where k = 1, 2, 3 depending on the regime of the buffer content. It is assumed that
the input rate is not equal to the output rate for the sake of calculations. The stability
condition for the system is given by:-

D∑

i=1

π
(k)
i r

(k)
i < 0

where π
(k)
i is the stationary distribution of the Markov process with generator Q(k).

Now, we find the expression for distribution of the buffer content, to calculate the
performance measures like throughput, delay, etc. Let F (k)(x) be the equilibrium
distribution of the buffer where k = 1, 2, 3 depending on the regime of the buffer.
i.e.,

F (k)(x) = lim
t→∞Prob{W(t) ≤ x}, x ≥ 0, k = 1, 2, 3.

The differential equations satisfied by the distribution can be expressed in matrix
form as [17]:

dF(k)(x)

dx
R(k) = F(k)(x)Q(k) + F(k)(T (k−1))(Q̃(k−1) −Q(k))

+F(k)(T (k−1)−)(Q(k) − Q̃(k−1))+ . . .

+F(1)(T (1)−)(−Q(1) − Q̃(1))

+F(1)(0)(Q̃(0) −Q(1)), k = 1, 2, 3. (10.1)

The solution of the above differential equations is given by

F(1)
i (x) = a(1) exp

[
z
(1)
(1)x

]
v(1)
(1) + b(1)v(1)

(2) + c(1) for regime 1

F(2)
i (x) = a(2) exp

[
z
(2)
(1)x

]
v(2)
(1) + b(2)v(1)

(2) + c(2) for regime 2

F(3)
i (x) = a(3) exp

[
z
(3)
(1)x

]
v(3)
(1) + c(3) for regime 3

(z
(k)
i , v

(k)
i) are the eigen value vector pair of z

(k)
i v

(k)
i R(k) = v

(k)
i Q(k) and a(k), c(k)

are the unknown coefficients for k = 1, 2, 3, b(k) for k = 1, 2 and i = 1, 2
depending on the regime of the buffer and on-off state of the system. We obtain
in total 11 unknown coefficients in the solution above whose values can be found by
the following conditions:-

10 Delay Efficient Load Balancing Scheme for Component Carrier Selection. . . 159

1. F
(1)
1 = 0.

We get one equation from this condition.
2. Fi(T

(k)−) = Fi(T
(k+1)) for i = 1, 2 and k = 1, 2

This gives four equations from the continuity conditions at the thresholds T (1)

and T (2).
3. 0 = c(3)Q(K) + F(K)(T (K−1))(Q̃(K−1) −Q(K))+

F(K)(T (K−1)−)(Q(K) − Q̃(K−1))+
. . .+ F(1)(T (1)−)(−Q(1) − Q̃(1))+ F(1)(0)(Q̃(0) −Q(1))

will give another equation.
4.

∑3
j=1 c(j) = 1

is the normalization condition.
5. Substitution of the solution of the balance equations for k = 1, 2 in Eq. (10.1)

gives four more equations.

The unique solution for the stationary distribution of the buffer content is
obtained with which the performance measures have been calculated in the follow-
ing section.

10.4 Performance Analysis

In the previous section, the density distribution is calculated. In this section, the
following issues are considered:

1. Is the two threshold model better than the single threshold model, if so then how?
2. What should be the relation between the thresholds to achieve the optimal

performance of the model?
3. How should the threshold and rates be varied according to the QoS required by

the user?

To find the answers to above questions, we plot buffer content, throughput, mean
delay, and buffer content with respect to the lower threshold T (1) by keeping
different values of T (2). For illustration purpose to plot the graphs, the generator
matrices and rate vectors are given as follows:

Q(1) = Q(2) = Q(3) = Q̃(0) = Q̃(1) = Q̃(2) =
(−2 2

1 −1

)
,

R(1) =
(

15
0

)
, R(2) =

(
7
0

)

With these values and different values of thresholds, first, the corresponding density
distribution is to be found and then the performance measures are to be calculated.

160 A. Gupta et al.

10 20 30 40 50 60
4

6

8

10

12

14

16

18

Lower threshold(T(1))

B
uf

fe
r C

on
te

nt

T(2) =40

T(2) =50

T(2) =60

Fig. 10.4 Mean buffer content with respect to the thresholds

10.4.1 Average Buffer Content

Average Buffer content is given by
∫∞

0 (1 − F(x))dx. It is plotted in Fig. 10.4. For
increasing values of thresholds, the buffer content increases as the accumulations in
it increase.

10.4.2 Mean Throughput

Throughput is expressed by the number of data packets (fluid particles in our model)
transmitted per unit time. Mean throughput is given by c×(1−F(0)) where F(0) is
the cumulative distribution function when the buffer content is 0. It is observed from
Fig. 10.5 that for a given value of higher threshold T (2), the throughput increases as
the lower threshold T (1) increases. Also, when T (1) = T (2), which is the maximum
limit for T (1), the throughput becomes maximum, this is also the case of a single
threshold as both T (1) = T (2). Hence, it is concluded on comparing with a single
threshold model (in which the input is given at a single constant rate), proposed
model will give lower throughput.

10 Delay Efficient Load Balancing Scheme for Component Carrier Selection. . . 161

10 20 30 40 50 60
6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

Lower threshold(T(1))

Th
ro

ug
hp

ut T(2) =40

T(2) =50

T(2) =60

Fig. 10.5 Throughput with respect to the thresholds

10.4.3 Mean Delay

Mean delay is given by Average Buffer content/throughput. In Fig. 10.6, mean delay
is plotted against the threshold. It is observed that as the two threshold approach
each other, delay increases, delay would be higher than proposed model of two
thresholds. Hence, it is concluded that model results in lower delay and lower
throughput as compared to model where the CC is assigned based on the single
threshold.

Apart from throughput and delay, number of feedback signals sent to the first
scheduler also plays role in adjusting the parameters for the incoming traffic. The
feedback signals being sent result in causing overheads so it is an important factor
while designing the system. It is observed from the above results that throughput
increases when the difference between T (1) and T (2) increases though leading to
more feedback signals being sent.

Keeping in mind the delay, throughput and amount of feedback involved the
model can be designed. The real-time data has the minimum delay requirement, thus
for those packets, a lesser value higher threshold should be chosen. In other words,
the switching of data to other users should be for lesser value of buffer content. The
lower threshold can then be adjusted to provide the delay and throughputrequired.

162 A. Gupta et al.

10 20 30 40 50 60

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Lower threshold(T(1))

M
ea

n
D

el
ay T(2) =40

T(2) =50

T(2) =60

Fig. 10.6 Delay with respect to thresholds

The lower it is, lesser would be the delay as that results in lesser accumulations in
the buffer. The bigger the difference between both the thresholds, the lesser will be
the feedback signals sent.

The data sent as the best effort on the network such emails, file sharing do not
require as least as delay possible, thus the other parameters such as throughput can
be maximized for this class of data. Since the data does not require a minimal delay,
so higher threshold can be kept more in this case. Thus, a single carrier is sufficient
for such data packets.

10.5 Conclusions and Future Work

A delay efficient load balancing scheme for CC selection in CA in LTE-A
is proposed. The proposed scheme involving double threshold can be adapted
according to different QoS requirement of the user. Performance analysis of the
proposed model is presented with fluid queue and the measures such as throughput
and mean delay are compared with single threshold system. It can be concluded
that the proposed scheme is capable of balancing load across carriers while keeping
the delay lesser than the single threshold model. The impact of the this model and
implementation on higher layers such as TCP can be studied as future work.

10 Delay Efficient Load Balancing Scheme for Component Carrier Selection. . . 163

Acknowledgements One of the authors (SD) would like to thank the National Board for Higher
Mathematics, India, for financial support given to them during the preparation of the paper.

References

1. A. Hashimoto, H. Yoshino, H. Atarashi, Roadmap of IMT-advanced development. IEEE
Microw. Mag. 9(4), 80–88 (2008)

2. L. Zhang, K. Zheng, W. Wang, L. Huang, Performance analysis on carrier scheduling schemes
in the long-term evolution-advanced system with carrier aggregation. IET Commun. 5(5),
612–619 (2011)

3. Y. Wang, K.I. Pedersen, P.E. Mogensen, T.B. Sorensen, Carrier load balancing methods with
bursty traffic for LTE-Advanced systems, in 20th International Symposium on Personal, Indoor
and Mobile Radio Communications (IEEE, New York, 2008), pp. 22–26

4. L. Chen, W. Chen, X. Zhang, D. Yang, Analysis and simulation for spectrum aggregation in
LTE-advanced system, in 70th Vehicular Technology Conference Fall (VTC 2009-Fall) (IEEE,
New York, 2009), pp. 1–6

5. L. Zhang, F. Liu, L. Huang, W. Wang, Traffic load balance methods in the LTE-Advanced
system with carrier aggregation, in International Conference on Communications, Circuits and
Systems (ICCCAS) (IEEE, New York, 2010), pp. 63–67

6. Y. Li, L. Zhange, X. Tan, B. Cao, An advanced spectrum allocation algorithm for the across-cell
D2D communication in LTE network with higher throughput. China Commun. 13(4), 30–37
(2016)

7. Y.L. Chung, L.J. Jang, Z. Tsai, An efficient downlink packet scheduling algorithm in LTE-
advanced systems with carrier aggregation. in Consumer Communications and Networking
Conference (CCNC) (IEEE, New York, 2011), pp. 632–636

8. K.I. Pedersen, F. Frederiksen, C. Rosa, H. Nguyen, L.G.U. Garcia, Y. Wang, Carrier aggrega-
tion for LTE-advanced: functionality and performance aspects. IEEE Commun. Mag. 49(6),
89–95 (2011)

9. 3rd Generation Partnership Project (3GPP), Further advancements of E-UTRA physical layer
aspects. TR 36.814 (2009)

10. F. Liu, K. Zheng, W. Xiang, H. Zhao, Design and performance analysis of an energy-efficient
uplink carrier aggregation scheme. IEEE J. Sel. Areas Commun. 32(2), 197–207 (2014)

11. Y. Wang, K.I. Pedersen, P.E. Mogensen, T.B. Sorensen, Resource allocation considerations
for multi-carrier LTE-Advanced systems operating in backward compatible mode. 20th
International Symposium on in Personal, Indoor and Mobile Radio Communications (IEEE,
New York, 2009), pp. 370–374

12. K.I. Pedersen, F.J. Frederiksen, C. Rosa, H. Nguyen, L.G.U. Garcia, Y. Wang, Carrier
aggregation for LTE-advanced: functionality and performance aspects. IEEE Commun. Mag.
49(6), 89–95 (2011)

13. G. Galaviz, D.H. Covarrubias, A.G. Andrade, On a spectrum resource organization strategy
for scheduling time reduction in carrier aggregated systems. IEEE Commun. Lett. 15(11),
1202–1204 (2011)

14. Y.L. Chung, L.J. Jang, Z. Tsai, An efficient downlink packet scheduling algorithm in
LTE-advanced systems with carrier aggregation, in IEEE Consumer Communications and
Networking Conference (CCNC) (IEEE, New York, 2011), pp. 632–636

15. D. Anick, D. Mitra, M.M. Sondhi, Stochastic theory of a data-handling system with multiple
sources. Bell Syst. Tech. J. 61(8), 1871–1894 (1982)

16. W.R.W. Scheinhardt, Markov-modulated and feedback fluid queues. Universiteit Twente
(1998)

17. M. Mandjes, D. Mitra, W. Scheinhardt, Models of network access using feedback fluid queues.
Queueing Syst. 44(4), 365–398 (2003)

Chapter 11
Modeling Security Requirements for
VNE Algorithms: A Practical Approach

Ramona Kühn, Andreas Fischer, and Hermann de Meer

11.1 Introduction

Network virtualization is the primary enabling technology to overcome ossification
effects in today’s networks. It allows network administrators to deploy multiple
Virtual Networks (VN) on a single Substrate Network (SN). The respective resource
assignment problem is called Virtual Network Embedding (VNE). It describes how
a Virtual Network (VN) can be embedded or mapped on the given SN. The networks
can be represented as a graph with nodes connected by links, where the virtual
nodes or links pose demands for certain resources. Then, they have to be mapped on
appropriate hardware components offering these resources.

So far, VNE approaches focus mostly on optimizing the performance of the
embedding. Approaches to make the embedding more secure remain mostly abstract
and do not easily lend themselves to practical application. Nevertheless, security
is a major request nowadays, either to meet legal requirements, to protect own
data, or for a network provider to satisfy the needs of the customers. In contrast
to other approaches, this work focuses on concrete security mechanisms like
firewalls, Network Intrusion Detection Systems (NIDS), and Trusted Hardware
(TH), and discusses how they can be included in the embedding process. It considers
VNE problems with unsplittable links and focuses on offline evaluation of VNE
algorithms.

R. Kühn · H. de Meer (�)
University of Passau, Passau, Germany
e-mail: ramona.kuehn@uni-passau.de; hermann.demeer@uni-passau.de

A. Fischer
Deggendorf Institute of Technology, Faculty of Electrical Engineering, Media Technology
and Computer Science, Deggendorf, Germany
e-mail: andreas.fischer@th-deg.de

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_11

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_11&domain=pdf
mailto:ramona.kuehn@uni-passau.de
mailto:hermann.demeer@uni-passau.de
mailto:andreas.fischer@th-deg.de
https://doi.org/10.1007/978-3-319-92378-9_11

166 R. Kühn et al.

In this chapter, it is demonstrated how new constraints of security mechanisms
can be incorporated into the common algorithm evaluation process with minimal
changes to the embedding algorithms themselves. This enables researchers to easily
extend their evaluations to include new problems including security requirements,
thereby speeding up research in this area. This chapter shows the implementation
and a proof-of-concept embedding that uses a common VNE simulator tool called
ALEVIN [4, 10]. Furthermore, the concepts of VNE and an overview of ALEVIN
are presented, then an extension to the tool to support security requirements of VN.
An overview of typical security requirements and a use case are discussed to show
the usability of the tool to support security in virtual environments. Furthermore, to
show that secure embedding is still practicable, a performance analysis is conducted
where different security mechanisms are compared with already existing resources.

The remainder of this chapter is structured as follows: Sect. 11.2 provides back-
ground information about the VNE problem. Section 11.3 describes the problem
of modeling security mechanisms for VNE with an exemplary use case. The
respective security requirement modeling approach is presented in Sect. 11.4. The
concrete implementation of the security mechanisms and constraints in a common
VNE simulation framework is described in Sect. 11.5. In addition, the necessary
changes to the simulation framework and the embedding process are presented.
This approach is evaluated in Sect. 11.6, regarding the performance impact on the
embedding process. A discussion of related work is presented in Sect. 11.7. Finally,
Sect. 11.8 presents a conclusion and a discussion of next steps.

11.2 The Virtual Network Embedding Problem

The VNE problem describes how nodes and links of a VN should be mapped to the
nodes and links of an SN. Both nodes and links are considered to provide resources
in the case of substrate elements, and pose respective demands in the case of virtual
elements.

VN come in the form of Virtual Network Requests (VNR): requests of users
for instantiation of a particular network. The VNE algorithm decides whether all
requests can be supported by the given SN, and if so, how the individual elements
should be mapped. The SN and VNR are both commonly modeled as labeled graphs.
Substrate labels indicate the available resources on nodes and links, whereas labels
in the VNR indicate the respective resource demand. The widely used interpretation
of numerical resources are bandwidth as link resource and CPU time as node
resource.

Figure 11.1 shows an example for this problem with two VNR to be mapped
onto an SN with four nodes. A feasible embedding is already depicted. Each virtual
element poses a demand on its respective substrate element, and the sum of the
demands of all virtual elements hosted on a substrate element may not exceed
the available resources. If not enough resources exist, only a partial solution can
be found. Solutions (partial or complete) are not necessarily unique. Multiple

11 Modeling Security Requirements for VNE Algorithms 167

31 4

43

VNR 2

7

9

4

83

5
8

9

4 Virtual nodes

Physical nodes

9 Node capacity

3 Link capacity

VNR
Virtual Network Request

1
5
4

7
3

VNR 1

2
33

Fig. 11.1 Example for a VNE scenario (adapted from Fischer et al. [11])

simulation frameworks are available for VNE evaluation. Yu et al. propose the
VNE Simulator [16]. Chowdhury et al. describe Vineyard [6, 7]. Papagianni et al.
propose CVI-Sim [15]. In this work, the ALEVIN simulator [4, 10] is used, due to
its flexibility and extensibility. Its flexible resource/demand model can be adapted
to model security requirements. ALEVIN also offers functions such as developing
new algorithms, flexible creation of embedding scenarios, and defining new metrics
for the comparison and evaluation of VNE algorithms. A wide set of algorithms and
metrics are already implemented. These features enable easy experimentation even
in a non-standard setting such as when taking security requirements into account.

11.3 Problem Description

The implementation of security mechanisms and constraints requires a proper
formulation of these requirements for VNE simulation. In this section, an overview
is provided, specifying the necessity to formulate concrete security features. A
motivational example helps to delineate the problem. The respective requirements
are extracted and classified.

11.3.1 Overview

Network security requirements are substantially different from conventional embed-
ding constraints such as bandwidth or CPU time. They typically do not refer to a
consumable resource, but rather to a specific set of features that need to be available.
For example, a customer might require one of his virtual nodes to be executed in
a particularly safe environment, requiring specific protection from the underlying
substrate node.

An abstract approach to this problem is to define security levels for substrate and
virtual nodes, requiring the embedding algorithm to match these levels appropriately

168 R. Kühn et al.

(cf. [9, 13, 14]). However, in practice the concept of strictly hierarchical levels
proves to be too abstract. In an environment with multiple involved parties (as it
is common in cloud computing), it is difficult to find a comprehensive definition of
levels that can satisfy each party.

Instead, it is more likely that customers specify a particular set of security
requirements, for example protection by intrusion detection software or by a
firewall. A cloud provider, on the other hand, can label its equipment such that the
customer’s requests can be mapped appropriately. A motivational example is given
next, to demonstrate the use case of such a scenario.

11.3.2 Motivational Example

The motivational example in Fig. 11.2 illustrates the application of security require-
ments in VNE. A cloud provider offers computing resources distributed over three
data centers. Two of those data centers are protected by a firewall; one of those offers
two separated subnets. In this cloud infrastructure, a client wants to implement a
web service which consists of a load balancer, two web servers, a database, and an
authentication service.

Each of the components has its specific demands which have to be adhered to
by the cloud provider. For example, the web servers have to be protected from the
internet by a firewall. Since a firewall cannot prevent all attacks, a NIDS should

Fig. 11.2 Cloud provider infrastructure and a VN for a web service

11 Modeling Security Requirements for VNE Algorithms 169

provide information about potential malicious actions. The authentication service
requires TH, as it is highly security critical. Both the authentication service and the
database should be protected from the web servers by a firewall.

VNE algorithms can help to identify how the virtual infrastructure can be mapped
while adhering to these requirements. However, a suitable model applicable for
VNE algorithms must be found. This chapter discusses how these requirements can
be modeled in a public VNE simulator for experimentation with VNE algorithms.

11.3.3 Classification of Requirements

VNE constraints discussed in the literature focus mostly on quantitative resources
and demands such as bandwidth for links and CPU capacity for nodes. Security
mechanisms, however, are often qualitative in nature: A particular feature or
mechanism is required from the SN. This feature or mechanism is not consumed
by a virtual entity, but provided for all potential entities.

Security mechanisms, such as demanded by the discussed web service, can be
roughly classified into three different types. Similar to conventional constraints,
there are requirements that are specific to a single node or link. However, in addition
there are also more complex requirements that refer to a part of the topology. In the
following, these three types are discussed in detail.

Node Requirements When a virtual node demands a security mechanism, the
physical node has to offer this mechanism to be a possible candidate for mapping.
Examples for this node-to-node mapping are TH, encrypted data storage, and Virtual
Machine Introspection (VMI). Here, TH is used in the motivational example. This
means, if a virtual node demands TH, it can only be mapped on a physical node
offering TH. If a virtual node does not demand the mechanism, a mapping on a
physical TH node is still possible. The virtual node does not have to use the property
of the physical node. It only has to be ensured that for all further virtual nodes
demanding TH there are still enough physical nodes offering it, so that a mapping
is possible.

Link Requirements There are also security mechanisms that affect the links
between two nodes. A virtual link might demand that it can only be mapped on
a physical link that offers a specific security mechanism, for example a link that
provides data encryption.

Topological Requirements A new kind of requirement are security mechanisms
that affect not only an individual network entity, but also a part of the topology.
Both nodes and links are affected and the topological structure has to be taken
into account. Firewalls and NIDS are examples for these security mechanisms. In
the motivational example, several components demand the protection by a firewall.
They have to be grouped into domains to identify the parts of the affected topology.
For example, it is not allowed that one node protected by the firewall is connected

170 R. Kühn et al.

to another node in a different domain of the network via a link that does not pass the
firewall. If this were the case, the protection of the firewall would be obsolete. This
has to be prevented during the embedding.

Therefore, the network has to be separated explicitly into different network
domains. On the one hand, there are domains which have to be protected by a
firewall or a NIDS. On the other hand, there may be domains where such a security
mechanism is not needed. The traffic between those domains has to be exclusively
routed through the firewall.

A security-aware VNE takes the requirements described above into account.
Therefore, it has to recognize the topology of the network to be able to divide it
such that the firewall offers full protection and is not circumvented. The way how
the presented requirements have to be translated for VNE simulation frameworks is
discussed in the next section.

11.4 Modeling Security Requirements with
Resource/Demand Pairs

In VNE, the consumable capabilities of the physical network entities are represented
as resources that are attached to physical nodes and links, such as CPU, memory, and
bandwidth. The basic model presented in Sect. 11.2 can be extended to also model
specific properties of the physical network elements such as security mechanisms
available in physical nodes. Likewise, the requirements of the VN can be modeled
as demands attached to virtual entities in the VNR.

In this chapter, a demand is formulated to request a certain capacity of a con-
sumable resource or request a certain property in the physical network entity. The
resource/demand model depicted in Fig. 11.3 is used to represent the relationship
between a virtual demand and a physical resource. The figure shows a substrate node
and a virtual node. The substrate node provides certain features (here: a NIDS and
a TH), whereas the virtual node requests these features. The mapping can succeed
only if all features requested by the virtual node are present on the substrate node.
A similar model is adopted for virtual and substrate links.

Fig. 11.3 Resource and
demand pairs

11 Modeling Security Requirements for VNE Algorithms 171

This concept already provides a base for modeling security capabilities and
their corresponding demands, allowing the experimenter to model various security
requirements of VN. The resource/demand concept previously used to model
capacity is adapted to represent the security requirements here. Mapping of these
security demands, therefore, does not occupy capacity. The mapping of security
requirements of virtual nodes rather depends on available properties in the corre-
sponding physical nodes. Likewise, the mapping of the security requirements of the
virtual links depends on the type of the requirements and has to check for certain
properties along the physical path that maps a particular virtual link.

Here, the concepts described in the motivational example are discussed and it is
shown how the resource/demand model can be adapted to implement them. The
concept of resources is re-interpreted to create “pseudo-resources” that are not
consumed by their corresponding demand. This allows to model TH, NIDS, and
firewalls:

A TH provides a trusted computing base to the hosted Virtual Machine (VM)
such as a virtualized Trusted Platform Module (TPM) [5], for example. This
is a simple node-based requirement that can be modeled by creating a special
resource/demand pair “trusted hardware” in which the demand does not consume
the resource.

A NIDS, as discussed above, represents a topological requirement. However,
when the requirement is reformulated from “A NIDS is present” to “The node is
protected by a NIDS,” the requirement can actually be reformulated as a node-based
requirement. It is then modeled similar to a TH node.

The firewall, however, is more complex to model. It is not defined explicitly
in the VNR. Instead, the VNR has to specify the respective network domains that
should be protected and separated from each other. Using this information, Cross-
domain Links (CDL) can be identified by the embedding algorithm. As such, the
demands in the VNR actually refer to domains.

The SN, on the other hand, provides firewall nodes. This can be simply modeled
with a “firewall” resource. Any CDL is required to cross such a firewall node to
ensure that nodes are properly separated. Intra-domain links, on the other hand, are
preferably mapped to the same subnet.

The resource/demand model can be used to model these requirements. While TH
and NIDS are straightforward to implement, the concept of firewalls requires more
work. The disparate resource/demand pair has to be combined properly. Appropriate
checks for CDL have to be performed. An implementation of these mechanisms in
a public VNE simulation framework is described in the following section.

11.5 Implementation of Security Requirements

The evaluation of VNE algorithms under security constraints requires the imple-
mentation of security requirements checks in the employed simulation framework.
Here, the implementation in the ALEVIN framework and the realization of the use
case from Sect. 11.3.2 are demonstrated.

172 R. Kühn et al.

11.5.1 Implementation of Resource/Demand Pairs

The resource/demand model is implemented in ALEVIN using the visitor pat-
tern to represent the occupying relationship between a virtual demand and a
physical resource. ALEVIN has a generic structure that facilitates adding new
resource/demand pairs, for example security requirements for nodes and links,
as discussed in Sect. 11.4. Topological requirements prove to be more involved,
though. Here, the simple resource/demand model has to be extended. The simulator
has to check the validity of a particular mapping between a virtual link and its
respective path in the SN. The mapping is considered valid only if the path can
satisfy the security requirements of the virtual link. Firewall demands are imple-
mented through the definition of different domains. These domains are represented
as identifiers that are attached to the nodes. Firewall resources are attached to the
respective substrate nodes.

However, in addition to this, a check for CDL is necessary. As an example, a
check for firewall constraints is presented in Algorithm 1. The check is performed
during the link mapping stage and forces all CDL to go through a firewall. First,
the algorithm filters the VNR to find CDL by comparing the domain identifiers of
the source and destination nodes of the link. Then, for each link, a set of possible
physical paths is selected according to the link mapping method. The possible paths
are then checked to assert if at least one of the nodes along the path provides a
firewall service.

Data: A SN and a VNR to embed
Result: True, if embedding is possible, False otherwise
foreach Virtual Link VL ∈ VNR do

CandidatePaths CP = findCandidatePaths(VL, SN);
if isCrossDomainLink(VL) then

foreach Path P ∈ CP do
if pathContainsFirewall(P) then

mapLinkToPath(VL, P);
return True;

end
end

else
mapLinkToPath(VL, P);
return True;

end
return False;

end
Algorithm 1: Embedding algorithm for CDL

The generic embedding algorithm enforces in particular the following embedding
constraints: The virtual domain is not split by a firewall and is mapped in one
physical domain. CDL are forced to go through a firewall. Virtual nodes that require

11 Modeling Security Requirements for VNE Algorithms 173

a TH are mapped only to substrate nodes that offer it. Virtual nodes that require a
NIDS are mapped only in domains in which at least one substrate node offers NIDS.
The implementation in the simulator itself allows to stay agnostic of the employed
VNE algorithm. It is, thus, possible to evaluate scenarios with security constraints
with any VNE algorithm.1

11.5.2 Realization of the Motivational Scenario

Figure 11.4 shows the results of the mapping when implementing the motivational
scenario for security-aware VNE from Fig. 11.2. The mapping results of the VN
on the SN are depicted in Fig. 11.4. To ensure readability, only mapped CDL are
represented.

The depicted scenario is realized in ALEVIN to test the functionality of the
new security-aware VNE structure and algorithm. For demonstration, the commonly
known vnmFlib algorithm by Lischka and Karl [12] is used to perform the actual
embedding. When the original topology does not contain firewall resources, the
mapping procedure will not succeed since CDL can only be mapped over nodes
containing a firewall. However, when a firewall is added to the node that connects
the first data center to the internet, the mapping is successful.

Fig. 11.4 Motivational
scenario for security-aware
VNE

1It should be noted, though, that algorithms that do not optimize for security constraints will likely
produce suboptimal results in many cases.

174 R. Kühn et al.

11.6 Evaluation

This section shows that the embedding does not only work with a specific case.
Therefore, the embedding of VN with security demands is compared with the
embedding of VN with conventional demands (here CPU), where network size and
demands vary.

A fixed SN consisting of ten nodes offering different resources and security
mechanisms was created. To test the algorithm, 10,000 VN with randomized
topologies containing 4–10 nodes were generated and mapped on the SN. Values for
CPU substrate resources were set to random uniform values between 10 and 100,
whereas the respective virtual demands were set to random uniform values between
1 and 10. TH was offered by five nodes and demanded by two nodes, independent
of the size of the VN. The SN contained two firewalls, corresponding to two distinct
domains in the VN that should be protected by a firewall. To guide the analysis, the
following hypothesis was developed:

H1: The increase of runtime of the embedding of additional security mechanisms
will not be higher than 50% of the time of a CPU embedding. The respective null
hypothesis H0 arises out of H1. However, this evaluation wants to demonstrate that
even if the runtime is higher for the embedding of security mechanism, the mapping
can still be efficient and practicable. The runtime is a dependent variable. The
independent variables are the distribution of the demands, the amount of available
resources, and the size of the networks as well as the underlying computing power.
All tests were conducted under the same conditions on the same machine, with 8 GB
RAM and an Intel(R) Core-i7-4702MQ 2.2 GHz processor.

11.6.1 CPU vs. TH

The average runtime of VN with only demands for CPU was compared with
networks demanding a TH, which can be modelled similar to a CPU requirement.
The runtime is shown in Fig. 11.5. All values are depicted with a 95% confidence
interval. The runtime is not higher than 50% of the CPU embedding, therefore H1 is
accepted. The average runtime of networks with a TH is higher, because in addition
to CPU demands, it is necessary to find a mapping adequate for both CPU and TH.
However, all networks with a CPU demand can be successfully mapped whereas
several networks with TH are rejected: But, with a size of 8 nodes, only 1.01% are
rejected, and with 10 nodes only 5.65% of the networks cannot be mapped. Even if
the difference between the runtimes is significant, they are in an acceptable range
and only few networks are rejected.

11 Modeling Security Requirements for VNE Algorithms 175

Fig. 11.5 Average runtime of mapping with CPU vs. mapping with TH

Fig. 11.6 Average runtime of mapping with CPU vs. mapping with Firewall

11.6.2 CPU vs. Firewall

In the second test, the average runtime of VNR demanding only CPU resources
was compared with VNR demanding also a firewall, which is a completely new
topological requirement. With the growth of the VNR, the runtime increases
significantly, which is shown in Fig. 11.6. This is the result of more CDL and the
algorithm that tries to find alternative mappings. If the algorithm is not able to find
a valid mapping, the VN is rejected. In the case of firewalls, the amount of rejected

176 R. Kühn et al.

VN consisting of four nodes is 70.64%, with eight nodes 76.06%, and with ten
nodes 85.78%. The difference in runtime between firewall and CPU exceeds 50%.
Accordingly, H1 is rejected.

11.6.3 Test Results

An overview of the test results is provided in Table 11.1: The first and second
columns indicate the size of the VN and the applied resource or mechanism. It
should be noted that CPU demands and resources were present in all three test
runs, additionally to the security mechanisms for a more realistic scenario. The
third and fourth column reports average and median runtime, and the last column
shows the percentage of rejected VN. This evaluation shows that the embedding of
security mechanisms causes an increase in runtime and more rejected VN but with
an acceptable price and without any additional extensive effort. When comparing
CPU, TH, and firewall demands directly, it is remarkable that the difference both
in runtime and rejected VN between CPU and TH is far less than the difference
between CPU and firewalls. Even if TH performs a little bit worse, it is necessary
to mention that the amount of available CPU resources was optimal, because every
node of the SN offered at least the amount that was demanded by the virtual nodes.
When adapting the CPU demand in a way such that the demand exceeds the offered
resources, more VN will be rejected, because this imposes a further constraint that
cannot be met then.

It is assumed that security mechanisms that are modelled like convenient
resources can be taken into account in the mapping process at an affordable price.
However, it is also remarkable that the performance of topological requirements lags
behind. Nevertheless, it was shown that the problem of the embedding of security
mechanisms is still feasible, even if the solution can be improved regarding runtime
and accepted networks.This means that there is still work to do. It is necessary to

Table 11.1 Runtime of the embedding of virtual networks with different sizes

Runtime

VNR size Requirement Avg. (s) Median (s) Rejected in %

4 Nodes CPU 0.3751 0.0 0

TH 0.5398 1.0 0

FW 3.0169 3.0 70.64

8 Nodes CPU 4.6633 5.0 0

TH 6.4362 6.0 1.01

FW 11.1376 12.0 76.06

10 Nodes CPU 9.6914 10.0 0

TH 10.3027 9.0 5.65

FW 17.3177 18.0 85.78

11 Modeling Security Requirements for VNE Algorithms 177

foster the development of appropriate algorithms that are able to consider distinctly
security mechanisms modelled as a topological requirement during the mapping
process.

11.7 Related Work

The VNE problem, first mentioned by Andersen2, is known to be NP-hard [1].
Efficient approaches, therefore, require the application of heuristics. Many VNE
algorithm have been proposed up to now in the literature [11]. Most VNE algorithm
are performance-oriented, optimizing for cost or for the number of VNR to be
mapped onto an SN. In contrast, security considerations for VNE have been an
aspect that has received only small interest, so far. This is despite the fact that
the virtualized environment poses specific challenges and threats that need to be
considered [3].

Based on a position paper by Fischer and De Meer [9], Liu et al. present an
embedding approach using abstract security requirements with different security
levels or classes [13, 14]. One application of this is data protection: It is shown that
the concept of such security classes can help to define a control flow for different
kinds of data (business or personal) and define a location-based resource allocation
to fulfill legal requirements [8]. This means that the virtual resources are mapped
on hardware resources that comply with an adequate level of protection. However,
the definition of such security classes remains abstract. Bays et al. provide a more
concrete embedding approach, considering end-to-end cryptography, point-to-point
cryptography, and avoidance of co-hosted networks as security requirements [2].
However, the paper does not discuss further concrete security requirements.

11.8 Conclusion and Future Work

Security requirements are highly relevant for VN deployed in public environments.
It is necessary to extend VNE to incorporate these requirements and the respective
security capabilities of the SN so that the embedding algorithms can satisfy them.
Preferably, this is done without having to change the embedding algorithms them-
selves. This chapter introduced some security requirements of VN and presented a
generic methodology for modeling them. Topological constraints were identified
as a new type of constraint that requires additional support by the simulation
framework. In this chapter, a proof-of-concept implementation of a security-aware
VNE model in the ALEVIN simulator was demonstrated, showing that, with some
modifications, the existing resource/demand model can be adapted to implement

2D.G. Andersen, Theoretical Approaches to Node Assignment (unpublished manuscript, 2002).

178 R. Kühn et al.

security requirements. A motivational scenario that represents a web service has
been discussed and implemented to demonstrate the applicability of the concept.
Furthermore, an evaluation was provided that showed how efficient the mapping
with additional security mechanisms can be, especially if they can be modelled
similar to convenient resources like CPU resources.

Future work will focus on generalizing the security constraint model to be
able to adapt to more types of security requirements. Moreover, now that a
generic implementation is available, multiple VNE algorithms can be evaluated in a
security-aware environment. Especially, the focus should lie on the implementation
of security-aware algorithms that can handle cross-domain links to make the
mapping of topological requirements more efficient.

References

1. E. Amaldi, S. Coniglio, A.M. Koster, M. Tieves, On the computational complexity of the virtual
network embedding problem. Electron Notes Discrete Math. 52, 213–220 (2016). {INOC}
2015 7th International Network Optimization Conference

2. L.R. Bays, R.R. Oliveira, L.S. Buriol, M.P. Barcellos, L.P. Gaspary, Security-aware optimal
resource allocation for virtual network embedding, in Proceedings of the 8th International
Conference on Network and Service Management, CNSM ’12 (International Federation for
Information Processing, Laxenburg, 2013), pp. 378–384

3. L.R. Bays, R.R. Oliveira, M.P. Barcellos, L.P. Gaspary, E.R. Mauro Madeira, Virtual network
security: threats, countermeasures, and challenges. J. Internet Serv. Appl. 6(1), 1 (2015)

4. M.T. Beck, A. Fischer, F. Kokot, C. Linnhoff-Popien, H. De Meer, A simulation framework
for virtual network embedding algorithms, in 6th International Telecommunications Network
Strategy and Planning Symposium (Networks 2014) (IEEE, New York, 2014), pp. 1–6

5. S. Berger, R. Cáceres, K.A. Goldman, R. Perez, R. Sailer, L. van Doorn, vtpm: kirtualizing
the trusted platform module, in Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, Berkeley, 2006

6. N. Chowdhury, M. Rahman, R. Boutaba, Virtual network embedding with coordinated node
and link mapping, in IEEE INFOCOM 2009 (2009), pp. 783–791

7. M. Chowdhury, M. Rahman, R. Boutaba, Vineyard: virtual network embedding algorithms
with coordinated node and link mapping. IEEE/ACM Trans. Networking 20(1), 206–219
(2012)

8. B. Doll, D. Emmerich, R. Herkenhöner, R. Kühn, H. de Meer, On Location-Determined
Cloud Management for Legally Compliant Outsourcing (Springer Fachmedien Wiesbaden,
Wiesbaden, 2015), pp. 61–73

9. A. Fischer, H. De Meer, Position paper: secure virtual network embedding. Praxis der
Informationsverarbeitung und Kommunikation 34(4), 190–193 (2011)

10. A. Fischer, J.F. Botero, M. Duelli, D. Schlosser, X. Hesselbach, H. De Meer, ALEVIN - a
framework to develop, compare, and analyze virtual network embedding algorithms. Electron.
Commun. EASST 37, 1–12 (2011)

11. A. Fischer, J.F. Botero, M.T. Beck, H. De Meer, X. Hesselbach, Virtual network embedding: a
survey. IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013)

12. J. Lischka, H. Karl, A virtual network mapping algorithm based on subgraph isomorphism
detection, in VISA ’09: Proceedings of the 1st ACM Workshop on Virtualized Infrastructure
Systems and Architectures (ACM, New York, 2009), pp. 81–88

13. S. Liu, Z. Cai, H. Xu, M. Xu, Security-aware virtual network embedding, in 2014 IEEE
International Conference on Communications (ICC) (2014), pp. 834–840

11 Modeling Security Requirements for VNE Algorithms 179

14. S. Liu, Z. Cai, H. Xu, M. Xu, Towards security-aware virtual network embedding. Comput.
Netw. 91, 151–163 (2015)

15. C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, A. Monje, On
the optimal allocation of virtual resources in cloud computing networks. IEEE Trans. Comput.
62(6), 1060–1071 (2013)

16. M. Yu, Y. Yi, J. Rexford, M. Chiang, Rethinking virtual network embedding: substrate support
for path splitting and migration. SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)

Chapter 12
Performance Analysis of Data Traffic in
Small Cells Networks with User Mobility

Philippe Olivier, Florian Simatos, and Alain Simonian

12.1 Introduction

To address the permanent increase of mobile traffic, the capacity of networks can be
upgraded by a massive deployment of small cells. This solution is notably envisaged
by network operators for the LTE-A heterogeneous networks [9] or Ultra Dense
Networks scenarios for future 5G networks [15]. In dense networks, however, the
amount of handover generated by users mobility will increase with a notable impact
on signaling overhead, and possibly on the throughput of data transfers. In this
context, the present paper aims at evaluating the impact of inter-cell mobility on
the performance of data traffic in dense networks. Specifically, considering small
cells enables us to neglect the possible spatial variations of cell capacities and
thus to focus on the impact of inter-cell mobility. Furthermore, we decouple the
performance evaluation problem from the modeling of user displacement, the latter
topic being out of scope of the present paper (see [13, 17] for current displacement
models).

Mobility is here supposed to be captured through the distribution of the users
residual sojourn time in a cell, that is, the time a mobile user is physically present
in the cell once its transmission has started. Given this distribution, we construct a
flow-level queuing model that allows us to derive the essential performance metrics
in each cell, namely the mean throughput and the handover probability. The generic
tool of our model is a multi-class Processor Sharing (PS) queue with “impatient”

P. Olivier (�) · A. Simonian
Orange Labs, Châtillon, France
e-mail: phil.olivier@orange.com; alain.simonian@orange.com

F. Simatos
ISAE Supaero, Toulouse, France
e-mail: florian.simatos@isae-supaero.fr

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_12

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_12&domain=pdf
mailto:phil.olivier@orange.com
mailto:alain.simonian@orange.com
mailto:florian.simatos@isae-supaero.fr
https://doi.org/10.1007/978-3-319-92378-9_12

182 P. Olivier et al.

customers; the impatience here accounts for the mobility of customers from cell to
cell. This generic model can then be applied to each individual cell to solve the set
of flow equations, which characterize the handover rates between cells, and compute
the performance indicators.

To our knowledge, the PS queue with impatience has been mainly addressed in
terms of asymptotic regimes for the reneging probability for one customer class [8]
or for several classes in overload [10]. The analysis of the stable multi-class PS
queue with distinct impatience rates, however, has not received so far a significant
contribution. For this multi-class queuing system, we here provide proofs for the
stability condition and for regularity properties of the empty-system probability.

Throughput gains induced by mobility in cellular networks have been generally
related so far to the spatial variations of capacity inside the cells, which permits
an opportunistic use of favorable transmission conditions by mobile users [1, 5–
7, 11]. These papers base their evaluation on flow-level traffic modeling and
address mobility through a spatial Markov process where users jump between
distinct capacity zones in the cells. Due to the complexity of the latter approach,
performance indicators can be derived through suitable bounds or approximations
only. In the present work, by decoupling the queuing and mobility models, we
alternatively formulate the problem in terms of an equilibrium regime for the
handover flows, the existence of which is assessed in the case of a homogeneous
network.

The paper is organized as follows. A generic one-cell Markovian model is
first constructed in Sect. 12.2 and the stability and regularity properties are stated
and proved; Sect. 12.3 presents our approach to model networks with mobility;
Sect. 12.4 presents numerical results, including simulation, and their discussion;
finally, Sect. 12.5 draws conclusions and summarizes our main achievements.

12.2 Generic Queueing Model

As a first step, we consider a single cell model which is used as the generic tool to
further analyze the impact of inter-cell mobility in a network.

12.2.1 A PS Queue with Impatience

The considered cell is supposed to be “small,” i.e., of limited range so that its
transmission capacity C can be assumed spatially constant; this capacity is viewed
as an input parameter accounting for radio and interference conditions in the
considered cellular network. We suppose that capacity C is equally shared among all
active users present in its service area, as implemented by means of a Round-Robin
scheduler. Following this fair sharing policy, the system occupancy at the flow level
can then be modeled by a Processor-Sharing (PS) queue [4].

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 183

We consider K classes of users which generate requests for transmission
according to Poisson processes with respective arrival rate λk , k = 1, . . . , K .
Class-k users have i.i.d. transmission requests of data volume �k with mean σk ,
hence a service rate μk = C/σk . Since customers may actually leave the cell
during their communications, we call Tk the remaining sojourn time of a mobile
user, i.e., the time duration he physically stays in the cell after the transmission
has started. We finally denote by θk = 1/E(Tk) the mean cell departure rate of
class-k users, called class-k mobility rate; any class k where θk = 0 will be called
static. The cell occupancy can then be described by the K-dimensional process
N(t) = (N1(t), . . . , NK(t)), t ≥ 0, where Nk(t) denotes the number of ongoing
class-k data transfers at time t . This process evolves as the occupancy of a PS queue
with impatience, the “impatient” customers here corresponding to mobile users that
may leave the system before their service completion within the given cell.

We assume that �k and Tk are exponentially distributed with parameters 1/σk

and θk , respectively. The process (N(t))t≥0 is then Markovian in the state space
N

K ; from state n = (n1, . . . , nK) and for ek = (0, . . . , 1, . . . 0) with 1 at the k-
th component, it can reach state n + ek with transition rate λk , or state n − ek with
transition rate nkμk/L(n)+nkθk , denoting by L(n) =∑

1≤j≤K nj the total number
of active users. Let ρk = λk/μk be the offered load of class k and S (resp. M) denote
the set of static (resp. mobile) classes.

In stationary regime, the equilibrium equations of process (N(t))t≥0 read

K∑

k=1

[
λk + nk

(
μk

L(n)
+ θk

)]
P(N = n) =

K∑

k=1

λk P(N = n− ek)

+
K∑

k=1

(nk + 1)

(
μk

L(n)+ 1
+ θk

)
·

P(N = n+ ek) (12.1)

with
∑

n∈NK P(N = n) = 1. Process (N(t))t≥0 is not reversible unless all classes
are static; its stationary distribution is thus not amenable to a simple closed form.
Nevertheless, a general conservation law between the average arrival and departure
rates can be stated as follows: for given k, multiplying each equation of (12.1) by nk

and then summing over all state vectors n ∈ N
K provides

λk = μk E

(
Nk 1Nk>0

L(N)

)
+ θk E(Nk), 1 ≤ k ≤ K. (12.2)

Proposition 2.1 The Markov process (N(t))t≥0 has a stationary regime if and only
if

ρS =
∑

k∈S
ρk < 1. (12.3)

184 P. Olivier et al.

Proof First assume that process (N(t))t≥0 has a stationary distribution; applying
conservation law (12.2) to each static class k with θk = 0, then summing over all k ∈
S, gives ρS = ∑

k∈S ρk = ∑
k∈S E(Nk 1Nk>0/L(N)) < 1, so that condition (12.3)

is necessary.
Conversely, assume that (12.3) holds. For any test function f : NK → R

+, the
infinitesimal generator Q of the Markov process (N(t))t≥0 is given by

Qf (n) =
∑

1≤k≤K

λk [f (n+ ek)− f (n)]

+
∑

1≤k≤K

(
μknk

L(n)
+ θknk

)
1nk>0 [f (n− ek)− f (n)] , n ∈ N

K.

Applying [16, Proposition 8.14], the process (N(t))t≥0 is ergodic if there exists a
so-called Lyapunov function Λ : NK → R

+ and positive constants η, δ such that

(a) the set {n ∈ N
K,Λ(n) ≤ η} is finite,

(b) random variables sup0≤t≤1 Λ(N(t)) and
∫
[0,1] |QΛ(N(t))|dt are integrable,

(c) QΛ(n) ≤ −δ as soon as Λ(n) > η.

Consider the function Λ : n ∈ N
K &→ Λ(n) defined by Λ(n) = s2 + m2 with

s = ∑
i∈S ni/μi, m = ∑

j∈M nj/μj . We successively verify conditions (a), (b),
and (c):

• (a) is clearly fulfilled by Λ and any finite η;
• if Ak(t) is the number of class-k user arrivals within interval [0, t], we readily

have Nk(t) ≤ Ak(t) ≤ Ak(1) for 0 ≤ t ≤ 1, where variable Ak(1) has finite first
and second moments. The latter inequalities thus ensure the validity of (b) for Λ;

• denoting by ρM =∑
j∈M ρj the mobile load, the above definition of Q yields

QΛ(n) =
∑

1≤k≤K

ρk

μk

+ 1

L(n)

∑

1≤k≤K

nk

μk

+ 2(ρS − 1)s

+ 2(s −m)

L(n)

∑

j∈M
nj + 2m

⎛

⎝ρM −
∑

j∈M
nj

θj

μj

⎞

⎠+
∑

j∈M
nj

θj

μ2
j

for n �= 0. Setting μ∗ = min1≤k≤K μk , μ∗∗ = max1≤k≤K μk and A =
minj∈M θj/μj , B = maxj∈M θj/μ

2
j , we then derive the upper bound

QΛ(n) ≤
∑

1≤k≤K

ρk

μk

+ 1

μ∗
+2(ρS−1)s+m

[
2ρM + 2

μ∗∗

μ∗
+ Bμ∗∗

]
−2Aμ∗m2.

(12.4)
As ρS < 1 by condition (12.3), we deduce from (12.4) that QΛ(n) is
asymptotically smaller than −2Aμ∗m2 when m tends to infinity. Thus, for any

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 185

given δ > 0, there exists a constant m0 > 0 such that QΛ(n) < −δ as soon as
m > m0. Now,

– if s ≤ m, it is sufficient that s +m > 2m0 to ensure that m > m0;
– if s > m and m ≤ m0, all terms depending on m in (12.4) are bounded and

QΛ(n) is then asymptotically smaller than 2(ρS − 1)s when s tends to infinity.

There exists thus a constant s0 > 0 such that QΛ(n) < −δ as soon as s > s0. Fixing
the constant η = (max(2s0, 2m0))

2 and using (s + m)2 ≥ s2 + m2, we conclude
that QΛ(n) < −δ when Λ(n) > η, thus fulfilling requirement (c).

Conditions (a), (b), and (c) being verified, Λ is therefore a Lyapunov function for
process (N(t))t≥0 and condition (12.3) is thus also sufficient. ��

Note that condition (12.3) does not depend on the traffic intensity of mobile users,
since the latter leave the cell after a finite time and thus cannot cause overload.
Now, given (12.3), we define two performance indicators per user-class, the average
throughput and the handover probability. Considering data (elastic) traffic, the user-
perceived QoS can be measured by the average throughput defined as the ratio of
the mean volume of transferred data to the mean transfer time [4]. We also define
the handover probability for class-k users as the proportion of users that exit the cell
before the completion of their transmission, i.e., the ratio of the mean handover rate
λOut

k to the mean flow arrival rate λk . The latter definitions read

Γk � E(Xk)

E(Δk)
, Hk �

λOut
k

λk

, 1 ≤ k ≤ K, (12.5)

where Xk denotes the part of the total data volume �k which is actually transferred
by a class-k user during its transmission time Δk (≤ Tk) in the cell. The following
proposition is easily derived, which proof has been given in [14].

Proposition 2.2 The throughput Γk and the handover probability Hk are given by

Γk = C

(
ρk

E(Nk)
− θk

μk

)
, Hk = E(Nk) θk

λk

, 1 ≤ k ≤ K (12.6)

which depend on the mean number of class-k users only. They satisfy the remarkable
identity

Hk = θk σk

Γk + θk σk

, 1 ≤ k ≤ K.

12.2.2 Regularity Properties of the Empty-System Probability

Monotonicity and continuity of the empty-system probability as a function of any
arrival rate λk will prove essential in Sect. 12.3 to solve the equilibrium equations

186 P. Olivier et al.

of handover flows in a network. We claim that such regularity properties require a
specific proof in the present queuing system with infinite state space and no closed
form solution for the stationary distribution.

Denote by AK(λK) the PS queuing system with impatience and define

Q(λK) = P(N = 0), λK ≥ 0, (12.7)

the empty-queue probability as a function of the rate λK of class-K users, all other
parameters kept constant (distinguishing here class K , be it a static class or not).

Proposition 2.3 Function Q(.) is strictly decreasing over its definition interval.

Proof The definition domain of function Q corresponds to those values of λK such
that ρS < 1, according to (12.3). To prove the proposition, we proceed in four
steps.

A) We compare the empty queue probabilities Q(λK) and Q(λ′K) of systems
AK(λK) and AK(λ′K) with λ′K = λK + ΔλK, ΔλK > 0. To do this, it
proves convenient to introduce a supplementary user class by defining a new
system A K+1 with K + 1 classes, where the first K classes are identical to
that in AK(λK) and where the (K + 1)th class has input rate λK+1 = ΔλK ,
service rate μK+1 = μK , and impatience rate θK+1 = θK . The occupancy
of system A K+1 is now defined by the (K + 1)-dimensional vector N(t) =
(N1(t), . . . , NK(t), NK+1(t)), t ≥ 0.

It proves that the K-dimensional Markov occupancy process, deduced from
system A K+1 by gathering populations of classes K and K + 1, has the
same transition rates, and thus the same stationary distribution, as the process
(N′(t))t≥0 of system AK(λ′K). This result holds essentially because of the
Poisson nature of all the arrival processes and of the “PS + Impatience” form of
the departure processes, for which the departure rates do not depend on the fact
that some classes are gathered or not.

System A K+1 (with occupancy N) can therefore be considered in place of
system AK(λ′K) for the evaluation of the stationary empty-system probability,
and we have

Q
(
λ′K

) = P
(
N = 0

)
. (12.8)

B) We now make use of a sample path argument to state that, at any time, each
population size Nk(t), 1 ≤ k ≤ K , is no greater than the corresponding
population size Nk(t), assuming that both systems AK(λK) and A K+1 are
empty at t = 0 (for convenience, we set NK+1(t) = 0 for all t ≥ 0).

This may be thoroughly proved by induction on the sequence of all con-
secutive events (arrivals or departures) occurring in either system AK(λK) or
A K+1. The result essentially holds because 1) there are supplementary arrivals
in system A K+1 and, 2) the (PS) per-customer service rate is lower between
consecutive events in system A K+1, compared to AK(λK).

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 187

C) From the above results, we deduce that event (N(t) = 0) implies event (N(t) =
0) for all t ≥ 0. In the stationary regime, we derive that (N = 0) ⊂ (N = 0)

and thus Q(λ′K) ≤ Q(λK). We conclude that λK &→ Q(λK) is a decreasing
function.

D) From the same inclusion argument, we deduce that

P(N = 0) = P(N = 0)+ P(N = 0, N �= 0). (12.9)

Noting that (NK+1 > 0; ∀ k ∈ {1, . . . , K}, Nk = 0) ⊂ (N �= 0; ∀ k ∈
{1, . . . , K}, Nk = 0) where the inclusion follows by the property derived in B),
we deduce that

P(N = 0, N �= 0) ≥ P(NK+1 > 0; ∀ k ∈ {1, . . . , K}, Nk = 0) > 0,

(12.10)

since the distribution of N gives positive weight to any subset of its range.
After (12.8), (12.9), and (12.10), we derive the strict decreasing behavior of
Q(.), as claimed. ��

Proposition 2.4 Function Q(.) is continuous over its definition interval.

Proof The derivation proceeds according to the following steps.
A) Keeping the same notation, the right-continuity of Q(.) at a given point λK

will follow if it is shown that P(N = 0, N �= 0) tends to 0 when ΔλK tends to 0.
Consider the joint Markov process (N(t), N(t))t≥0, starting with empty queues,

and a cycle of given duration τ starting at t = 0, without loss of generality. First
note, in view of property B) above, that a cycle of this joint process is identical
to a cycle of process (N(t))t≥0. Then the event (N(t) = 0, N(t) �= 0) for given
t ∈ [0, τ] implies that the date τ0 of the first arrival from class (K + 1) is no greater
than t , that is, 1(N(t)=0, N(t) �=0) ≤ 1t≥τ0 . We thus derive that

E

(∫ τ

0
1(N(t)=0, N(t) �=0) dt

)
≤ E

(∫ τ

0
1(t≥τ0) dt

)
≤ E

(
τ · 1(0≤τ0≤τ)

)
.

We now apply the cycle formula [3, Chap. IV, Theorem 8.4] to the ergodic
process (N(t), N(t))t≥0 and use the Cauchy-Schwarz inequality to get

P(N = 0, N �= 0) = 1

E(τ)
· E

(∫ τ

0
1(N(t)=0, N(t) �=0) dt

)

≤ E(τ 2)1/2

E(τ)
· P(0 ≤ τ0 ≤ τ)1/2.

B) Decomposing the cycle duration τ as the sum τ = τB + τ I of a busy period
duration τB and of the following idle period duration τ I , it is shown that the first and
second moments of τ are locally (i. e., around ΔλK = 0) lower- and upper-bounded,

188 P. Olivier et al.

respectively. First, τ I is exponentially distributed with parameter Λ+ΔλK (where
Λ = λ1 + . . . + λK), so that E(τ) ≥ E(τI) = 1/(Λ + ΔλK). Second, noting that
random variables τB and τ I are independent (due to the Poisson arrival processes),
we have E(τ 2) = E(τB

2)+ 2E(τB)E(τI)+ E(τI
2).

To ensure that E(τB) and E(τ 2
B) are finite and locally bounded functions of ΔλK ,

we state that they are upper-bounded by the corresponding moments of τ ∗B , the busy
period of the same system without impatience. Then, by gathering all K + 1 classes
into a single class, τ ∗B is also the busy period of a one-class M/G/1 PS queue
with a compound distribution for the data volume B. Since the system without
impatience is work-conserving, the distribution of τ ∗B is independent of the actual
service discipline; its first and second moments are continuous functions of the load
and moments of B, as shown by formulas given in [12, Vol. I, Chap. 5, Section 5.8,
Equ. (5.141) and Equ. (5.142)]. As a consequence, the moments of τB , and thus
E(τ 2), are locally upper-bounded.

C) It remains to show that P(0 ≤ τ0 ≤ τ) tends to 0. For any A > 0, write

P(τ0 ≤ τ) = P(τ0 ≤ τ , τ0 ≤ A)+ P(A ≤ τ0 ≤ τ) ≤ P(τ0 ≤ A)+ P(A ≤ τ).

(12.11)

By the Markov inequality, we first have P(A ≤ τ) ≤ E(τ 2)/A2 so that, since
E(τ 2) is locally bounded, we can select A such that P(A ≤ τ) is arbitrarily small,
say, lower than ε for any given ε > 0. For this value of A, let now ΔλK tend to
0. The marginal distribution of τ0, which is independent from the cycle duration, is
a compound of an atom at 0 and an exponential distribution, hence P(τ0 ≤ A) =
α + (1 − α) (1 − e−AΔλK) with α = ΔλK/(Λ + ΔλK). This probability can thus
be made lower than ε for small enough ΔλK , thus making P(τ0 ≤ τ) lower than 2ε

after (12.11). This finally justifies the right-continuity of function Q at point λK .
D) A similar reasoning shows that function Q is also left-continuous. ��

12.3 Network with Inter-Cell Mobility

We now address the description of a whole network of cells where users move from
one cell to neighboring ones due to possible handovers.

12.3.1 A Closed Network of Queues

Consider a cellular network of I cells with possibly distinct capacities. Users from
K traffic classes may appear and move during their communications. When leaving
a cell during transmission, users join one of the neighboring cells according to
some routing probabilities. They consequently generate supplementary flows of new
arrivals, hereafter called handover arrivals, which are to be added to fresh arrivals

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 189

in each cell. Assume that class-k users generate requests for transmission in cell
i according to a Poisson process with rate λ0

i,k , i = 1, . . . , I , k = 1, . . . , K; this
corresponds to the fresh traffic offered to cell i. To account for class-k users that
became active outside cell i and experienced some handovers, the total flow arrival
to cell i is

λi,k = λ0
i,k + λIn

i,k = λ0
i,k +

∑

j �=i

pk(j, i) · λOut
j,k , (12.12)

where λIn
i,k denotes the handover arrival rate from neighboring cells, λOut

j,k is the
handover departure rate from cell j , and pk(j, i) are the routing probabilities from
cells j �= i to cell i. For all i and k, we will assume that the handover arrival
process to cell i from class-k users can be approximated by a Poisson process so
that it can be superposed to the fresh arrivals to build up a total Poisson arrival
process with rate λi,k given in (12.12). All Poisson processes introduced above are
supposed to be mutually independent, an assumption which notably simplifies the
global description of the system by reducing it to a network of queues which is
closed regarding the handover flows. This is, in particular, in contrast to the overall
multi-class multi-cell process considered in other papers [5–7, 11].

The rate λOut
j,k can in turn be considered as an output of the generic queuing model

considered in Sect. 12.2 for cell j , and be calculated by means of some performance
function Fj,k(.), that is,

λOut
j,k = Fj,k

(
λIn

j,1, . . . , λ
In
j,K

)
= θj,kE(Nj,k) (12.13)

for j = 1, . . . , I and k = 1, . . . , K , where θj,k (resp. Nj,k) denotes the mobility rate
from cell j emanating from class-k ongoing transfers (resp. the number of class-k
ongoing transfers in cell j). In (12.13), only handover arrival rates are considered
as variables, all other intrinsic parameters (such as cell capacities, per-class offered
traffic and mobility rates) being kept constant. From (12.12) and (12.13), it follows
that a stationary network regime can be characterized by a system of I × K flow
equations with the handover arrival rates λIn

i,k as unknowns, namely

λIn
i,k =

∑

j �=i

pk(j, i) ·Fj,k

(
λIn

j,1, . . . , λ
In
j,K

)
. (12.14)

The problem of existence and uniqueness of a solution to the non-linear sys-
tem (12.14) is out of the scope of the present paper. As the performance functions
Fj,k may not be explicit in terms of input parameters, the practical determination
of a solution to (12.14) involves a numerical iterative procedure, e.g. a fixed-point
algorithm.

190 P. Olivier et al.

12.3.2 The Case of a Homogeneous Network

Now assume that the network is homogeneous in the following sense:

1. all intrinsic parameters (capacities, arrival rates, . . .) are the same for all cells, so
that performance functions do not depend on the cell, that is, Fj,k(.) = Fk(.);

2. the routing of handover flows is symmetric, i.e., for each class k, cell i receives
handover traffic from a set Jk(i) of neighboring cells with identical probability
pk(j, i) = 1/Jk , where Jk is the common cardinal of sets Jk(i).

Clearly, any set of rates λIn
i,k = λIn

k ,∀ i, k, verifying the simpler system

∀ k ∈ {1, . . . , K}, λIn
k = λOut

k = Fk

(
λIn

1 , . . . , λIn
K

)
, (12.15)

will provide a particular solution to (12.14), hence the solution if uniqueness
is ensured. For a homogeneous network, the problem thus reduces to the study
of a single representative cell, where the ingress and outgoing handover traffics
balance exactly.

In this context, we define the total and per-class loads by referring to the fresh
traffic, that is, ρ0

k = λ0
k σk/C, 1 ≤ k ≤ K, and ρ0 = ∑K

k=1 ρ0
k . We now claim that

the equilibrium of this system is characterized by ρ0 < 1, a condition which is well
understood since mobile users re-enter the system until their transfer is completed.

Proposition 3.1

A) In the homogeneous network with inter-cell mobility,

ρ0 < 1 (12.16)

is a necessary condition for the existence and uniqueness of a fixed-point
solution to equilibrium equations (12.15), that is, λIn

k = λOut
k , 1 ≤ k ≤ K .

B) In the specific case of a single mobile class, this condition is also sufficient.

Proof

A) Assume that there exists a solution to equilibrium equations (12.15). For the
system associated with that solution, we apply (12.2) to any class k; recalling
that λk = λ0

k + λIn
k by (12.12) and that λIn

k = λOut
k = θk E(Nk) by (12.13),

we then obtain ρ0
k = E

(
Nk 1Nk>0/L(N)

)
, 1 ≤ k ≤ K . The side-by-side

summation of these equalities yields the required condition ρ0 < 1, after
observing that

K∑

k=1

E

(
Nk 1Nk>0

L(N)

)
= E(1N�=(0)) = 1− P(N = 0). (12.17)

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 191

B) To address the sufficiency of (12.16), first note that ρS = ρ0
S < 1 obvi-

ously holds, ensuring that the queue is stable whatever the load of mobile
users. Besides, writing relation (12.2) for any class k yields λ0

k + λIn
k =

μk E
(
Nk 1Nk>0/L(N)

) + λOut
k which, after dividing each side by μk and

summing over all k ∈ {1, . . . , K}, gives

ρ0 =
K∑

k=1

λ0
k

μk

= 1− P(N = 0)+
K∑

k=1

λOut
k − λIn

k

μk

. (12.18)

At this stage, we assume that there is only one single class M of mobile users.
As λIn

k = λOut
k = 0 for all static classes k, it follows from (12.18) that the left

equilibrium equation in (12.15), λIn
M = λOut

M , is equivalent to

P(N = 0) = 1− ρ0. (12.19)

We use the notation of Sect. 12.2.2 to class M so that P(N = 0) = Q(λM) is
a function of the arrival rate λM = λ0

M + λIn
M of class-M users. Since ρ0 < 1

is assumed, the existence of a unique solution λM to (12.19) is ensured if it is
shown that

I. Q(λ0
M) ≥ 1− ρ0;

II. Q(.) is strictly decreasing over R+;
III. Q(.) is continuous over R+;
IV. Q(λ)→ 0 as λ→+∞.

Items I, II, III, and IV can be successively proved as follows.

I. For any impatience queuing system, summing the conservation rela-
tion (12.2) applied to each class and recalling (12.17), we get the following
expression for the average number of moving users:

E(NM) = μM

θM

(ρ + P(N = 0)− 1) . (12.20)

By identity (12.20) for the mean number E(NM), its non-negativity
entails that

∀ λM ≥ 0, Q(λM) = P(N = 0) ≥ 1− ρ. (12.21)

Lower bound (12.21) holds, in particular, for the value λM = λ0
M for

which ρ = ρ0, hence Q(λ0
M) ≥ 1− ρ0 as required.

II. This is ensured by Proposition 2.3.
III. This is ensured by Proposition 2.4.
IV. All parameters being kept constant, we denote by N∗M the number of

mobile users in the same queuing system but in the absence of any static

192 P. Olivier et al.

users. A straightforward sample path argument enables us to show that
NM ≥ N∗M almost surely, so that

Q(λM) = P(N = 0) ≤ P(NM = 0) ≤ P(N∗M = 0). (12.22)

Besides, the stationary distribution of N∗M is that of the occupancy
process of a PS queue with a single customer class M [8], with load
ρM = λM/μM and impatience rate θM ; the corresponding empty-queue
probability is, in particular, given by

P
(
N∗M = 0

) =
⎛

⎜⎝1+
∑

�≥1

ρ�
M

⎡

⎣
∏

1≤j≤�

(1+ jθM/μM)

⎤

⎦
−1
⎞

⎟⎠

−1

.

This probability is then upper-bounded by (1+ θM/μM) /ρM, which
ensures together with inequality (12.22), that Q(λM) tends to 0 as λM tends
to infinity. ��

12.4 Numerical Results

We report here some numerical experiments, focusing on the important case where
users are gathered into two classes, namely one static and one mobile class. In all
subsequent scenarios, we fix a cell capacity C = 50 Mbit/s, a proportion of 50%
mobile users and a mean flow volume σ = 12.5 MB (100 Mbit) for both classes.

12.4.1 Impatience Model

Regarding the generic Markovian model analyzed in Sect. 12.2, we examined in
[14] the sensitivity of the performance indicators to the distributions of sojourn
(impatience) time and flow volume. It was shown there that the throughput of
each class is only marginally impacted by both distributions, indicating that results
derived from the Markovian framework remain valid for more realistic distributions,
while the handover probability is noticeably more impacted (particularly at low
load), increases with the variance of TM and decreases with the variance of �M

and �S .
We now focus on the performance indicators provided by the (numerically

solved) Impatience Model. In Fig. 12.1 are plotted the average throughputs and
handover probability obtained with exponentially distributed TM , �M , and �S , and
considering a series of three normalized mobility rates: θM equals 0.2, 1, or 5 times
the service capacity μM = 0.5 s−1. Large throughput gains for static and mobile

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 193

0 0.5 1 1.5 2
0

10

20

30

40

50

(a)

Total offered load

M
ob

ile
 th

ro
ug

hp
ut

 (
M

bi
t/s

) theta/mu = 5
theta/mu = 1
theta/mu = 0.2
No mobility

0 0.5 1 1.5 2
0

10

20

30

40

50

(b)

Total offered load

S
ta

tic
 th

ro
ug

hp
ut

 (
M

bi
t/s

) theta/mu = 5
theta/mu = 1
theta/mu = 0.2
No mobility

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
(c)

Total offered load

H
an

do
ve

r
pr

ob
ab

ili
ty

theta/mu = 5
theta/mu = 1
theta/mu = 0.2

Fig. 12.1 Performance indicators: (a) mobile throughput, (b) static throughput, and (c) handover
probability obtained from the Impatience Model, for 50% mobile users and a normalized mobility
rate of 0.2, 1, or 5

users are observed, compared to a scenario where all users would be static; besides,
we note a significant gain of mobile users throughput over that of static users. We
have further observed that the throughput gain of mobile over static users appears to
be the greatest when the mobility rate is large (say, more than twice the service rate
for mobile users) and when the proportion of mobile users is small (say, 20%).

Such throughput gains are expected in this open-loop system, and were already
observed in [2]: they result from the impatient nature of mobile users who may leave
the system without re-entering it (hence the gain w.r.t. the all-static scenario) and
tend to do it especially when local congestion occurs (hence the gain mobile/static).
Very large handover rates (see Fig. 12.1c) may however counterbalance these gains.

Interpreting the above results helps us to assess the impact of cell size. Assuming
a constant speed v, the mean distance the mobile user travels in the cell is E(D) =
v/θM ; this mean distance is typically of the order of the radius R of a circular cell.
Thus if v = 90 km/h for example, the values of θM considered above, namely 5 μM ,
μM , and 0.2 μM (with μM = 0.5 s−1) respectively correspond to a radius of 10 m,
50 m, and 250 m, typical of a Femto, Pico, and Micro cell. As expected, users in
Femto cells experience the largest throughput since their mobility rate is the highest.

194 P. Olivier et al.

12.4.2 Mobility Model

We assess the Mobility Model proposed in Sect. 12.3, i.e., the Markovian model
where the handover arrival rate λIn

M exactly balances the outgoing handover rate
λOut

M . We consider the homogeneous four-cell ring network shown in Fig. 12.2,
where all cells have the same capacity and traffic parameters as in Sect. 12.4.1,
and three normalized mobility rates: θM is equal to 0.1, 1, or 10 times the service
capacity μM .

Event-driven simulations have been performed at the flow level. The accuracy of
results drawn from simulation has been tightly controlled. In every configuration,
ten independent simulation runs have been performed, generating around 1 million
discrete events each. The obtained confidence intervals are very small in most cases
and thus are not shown in the following plots for simplicity.

Figure 12.3 depicts the performance indicators for mobile users in each cell.
For each value of θM , the four curves (each corresponding to one cell) are almost
indistinguishable from each other, thus assessing the robustness of simulations.
We observe that the stability region is characterized by ρ0 < 1, as predicted by
Proposition 3.1 and, from Fig. 12.3a, that the throughput gains due to mobility
increase with the mobility rate. Other complementary results have shown that
the mobile/static throughput gain is all the more important that the proportion of
mobile users is weak. The latter simulation is compared in Fig. 12.4 to the Mobility
Model (applied to the representative cell) when θM = 10 μM . We note that the
representative cell model provides slightly optimistic throughputs compared to those
obtained from simulation.

The good match between model and simulation results validates our approach
for reducing a homogeneous network to a single representative cell: the assumption
quoted in Sect. 12.3.1, that the handover traffic flow re-enters the representative cell

Fig. 12.2 A homogeneous
ring network of four identical
cells with symmetric routing

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 195

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50
(a)

Total offered load

M
ob

ile
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

Theta/mu = 0.1
Theta/mu = 1
Theta/mu = 10
No mobility

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Total offered load

H
an

do
ve

r
pr

ob
ab

ili
ty

(b)

Theta/mu = 0.1
Theta/mu = 1
Theta/mu = 10

Fig. 12.3 Homogeneous ring network: performance indicators, (a) mobile user throughput and (b)
handover probability, obtained from simulation versus the total offered load in each cell (proportion
of 50% mobile users and θM/μM = 0.1, 1, 10)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Total offered load

(a)

M
ob

ile
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

Simul cell 1
Simul cell 2
Simul cell 3
Simul cell 4
Model one cell
No mobility

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Total offered load

(b)
S

ta
tic

 th
ro

ug
hp

ut
 (

M
bi

t/s
)

Simul cell 1
Simul cell 2
Simul cell 3
Simul cell 4
Model one cell
No mobility

Fig. 12.4 Homogeneous ring network: (a) mobile throughput and (b) static throughput obtained
from simulation and the Markovian Mobility Model (θM/μM = 10)

0 20 40 60 80 100
0

10

20

30

40

50
(a)

Mean speed (km/h)

M
ob

ile
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

Load = 0.2
Load = 0.5
Load = 0.8

0 20 40 60 80 100
0

10

20

30

40

50
(b)

Mean speed (km/h)

S
ta

tic
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

Load = 0.2
Load = 0.5
Load = 0.8

Fig. 12.5 Impact of the users speed on (a) mobile throughput and (b) static throughput for a
proportion of 50% mobile users, cell radius 50 m, and total offered load 0.2, 0.5 or 0.8

as a supplementary Poisson flow, appears reasonable. The robustness of the latter
assumption has also been checked in the case of a heterogeneous ring network [14].

Finally, we evaluate the impact of mobile speed for a given cell size (a cell radius
of 50 m corresponding to a Pico cell). Figure 12.5 depicts the static and mobile users
throughputs in terms of the speed v for different values of the total offered load (0.2,

196 P. Olivier et al.

0.5, and 0.8). Results are here derived from the Markovian Mobility Model only. As
expected, all performance indicators are increasing functions of the speed; but note
that the impact at very high speed is rather limited.

12.5 Conclusion

We have investigated the impact of inter-cell mobility on the performance of
dense networks with small cells. Our approach relies on two main ideas: a simple
performance model can be developed to capture mobility on the basis of the multi-
class Processor-Sharing queue with impatience; the performance of a network
of small cells can be handled by applying the generic model to each individual
cell. The present paper extends the former contribution [14], notably by providing
mathematical proofs for the stability of the impatience model and for the existence
and uniqueness of an equilibrium regime for the handover flows in a homogeneous
network. Further practical outcomes can be stated as follows: (1) as a step beyond
available studies, the handover probability has been evaluated to assess the trade-off
between throughput gain and signaling overhead due to mobility; (2) both classes
of users are shown to benefit from a throughput gain induced by inter-cell mobility;
this gain is created by the opportunistic displacement of mobile users within the
network according to local load variations in individual cells.

References

1. N. Abbas, T. Bonald, B. Sayrac, Opportunistic gains of mobility in cellular data networks, in
Proceedings of WiOpt 13th International Symposium (2015)

2. B. Baynat, R.-M. Indre, N. Nya, P. Olivier, A. Simonian, Impact of mobility in dense LTE-A
networks with small cells, in Proceedings of VTC2015- Spring Workshop, Glasgow (2015)

3. R. Bhattacharya, E. Waymire, Stochastic Processes with Applications. Classics in Applied
Mathematics, vol. 61 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
2009)

4. T. Bonald, A. Proutière, Wireless downlink data channels: user performance and cell dimen-
sioning, in Proceedings of MobiCom’03, San Diego (2003)

5. T. Bonald, S. Borst, N. Hegde, How mobility impacts the flow-level performance of wireless
data systems, in Proceedings of IEEE Infocom (2004)

6. T. Bonald, S. Borst, N. Hegde, M. Jonckheere, A. Proutière, Flow-level performance and
capacity of wireless networks with user mobility. Queueing Syst. 63, 131–164 (2009)

7. S. Borst, A. Proutière, N. Hegde, Capacity of wireless data networks with intra- and inter-cell
mobility, in Proceedings of IEEE Infocom (2006)

8. E.G. Coffman, A.A. Puhalskii, M.I. Reiman, P.E. Wright, Processor-shared buffers with
reneging. Perform. Eval. 19, 25–46 (1994)

9. E. Dahlman, S. Parkvall, J. Skold, 4G: LTE/ LTE-Advanced for Mobile Broadband, 2nd edn.
(Academic Press, London, 2013)

12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility 197

10. F. Guillemin, S. ElAyoubi, C. Fricker, P. Robert, B. Sericola, Controlling impatience in cellular
networks using QoE-aware radio resource allocation, in Proceedings of 27th International
Teletraffic Congress (2015)

11. M.K. Karray, User’s mobility effect on the performance of wireless cellular networks serving
elastic traffic. Wirel. Netw. 17, 247–262 (2011)

12. L. Kleinrock, Queueing Systems, Volume I: Theory (Wiley Interscience, New York, 1975)
13. X. Lin, R.K. Ganti, P.J. Fleming, J.G. Andrews, Towards understanding the fundamentals of

mobility in cellular networks. IEEE Trans. Wirel. Commun. 12(4), 1686–1698 (2013)
14. P. Olivier, A. Simonian, Performance of data traffic in small cells networks with inter-cell

mobility, in Proceedings of ValueTools 2016, Taormina (2016)
15. A. Osseiran et al., Scenarios for 5G mobile and wireless communications: the vision of the

METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)
16. P. Robert, Stochastic Networks and Queues (Springer, Berlin, 2003)
17. C. Schindelhauer, Mobility in wireless networks, in Proceedings of SOFSEM 2006: Theory

and Practice of Computer Science, Merin (2006)

Part III
Optimization and Quantitative Evaluation

Techniques Applied to Cloud Computing
and the Internet of Things

Chapter 13
A Technique to Identify Data Exchange
Between Cloud Virtual Machines

Nicola Bicocchi, Claudia Canali, and Riccardo Lancellotti

13.1 Introduction

Resource management in cloud data centers is a critical task to reduce energy
consumption in IT infrastructures. A large corpus of literature focuses just on
reducing the number of powered-on hosts [5, 7, 21]. However, a more advanced
approach to the problem aims at taking into account energy expenditures for data
exchanges, for example by placing highly interacting VMs on the same physical
host [9, 20].

This evolution towards a network-aware VMs allocation is even more evident
as certain trends, such as software-defined networks, become widespread. However,
network-aware allocation requires to map network interactions between each couple
of VMs in a data center. In the present study, we assume the point of view of
an Infrastructure as a Service (IaaS) cloud provider. In such vision, VMs are just
opaque objects that do not offer any insight on the software they are running.
Hence, it is unlikely to have a data traffic matrix between the VMs, relying just on
monitoring services in industry1 or proposed in scientific literature [3]. Indeed, most
monitoring systems just provide the input/output traffic rate of each VM, without a
per-source/per-destination breakdown. A specialized monitoring infrastructure able
to provide a complete traffic matrix among VMS may be developed and deployed
over the data center, as in [22, 25]; however, in this case overhead and scalability

1https://aws.amazon.com/cloudwatch/.

N. Bicocchi · C. Canali · R. Lancellotti (�)
Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena,
Italy
e-mail: nicola.bicocchi@unimore.it; claudia.canali@unimore.it; riccardo.lancellotti@unimore.it

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_13

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_13&domain=pdf
https://aws.amazon.com/cloudwatch/
mailto:nicola.bicocchi@unimore.it
mailto:claudia.canali@unimore.it
mailto:riccardo.lancellotti@unimore.it
https://doi.org/10.1007/978-3-319-92378-9_13

202 N. Bicocchi et al.

are likely to represent an issue. This approach, indeed, involves on one side the
overhead of dedicated resources of the infrastructure devoted to the monitoring of
every communication between couples of VMs, and on the other side the presence
of huge amount of data to be stored and processed, that would limit the scalability
of the system [22]. For this reason, in this book chapter we propose a solution that is
not relying on the presence of a data traffic matrix but is able to infer communication
patterns starting from the input/output network time series of each VM.

The contribution of this chapter is twofold. First, we outline a methodology that
accepts as the input the time series of the number of network packets inbound and
outbound for each VM, and provides information about which VMs intensively
communicate with each other. The proposed methodology, which was initially
proposed in [8, 17], is explicitly tailored to cope with the most challenging scenarios,
that is the case where multi-tier applications are deployed over a cloud infrastructure
relying on vertical replication. Second, we discuss how such methodology can
be implemented adopting solutions, such as gossip protocols and distributed
algorithms, that can provide high scalability even in large data centers. A qualifying
point of our proposal is exploiting correlation of data traffic time series to infer
the interaction between VMs. Our study compares multiple correlation metrics
to identify the best solution to cope with the scenario of replicated multi-tier
applications. Our experiments, carried out using a benchmark application over a
real cloud infrastructure, demonstrate the viability of our approach to discover
interacting VMs within a cloud data center.

The remainder of this paper is organized as follows. Section 13.2 describes the
reference scenario of this paper. Section 13.3 models the problem and outlines the
proposed methodology. Section 13.4 details an implementation of the methodology
making use of distributed agents and a gossiping protocol. Section 13.5 describes
the experimental results used to validate our proposal, while Sect. 13.6 discusses
the state of the art in scientific literature. Finally, Sect. 13.7 concludes the paper and
details final remarks.

13.2 Reference Scenario

We now outline the reference scenario for this chapter that is depicted in Fig. 13.1.
The upper part of Fig. 13.1, namely Virtual view, represents how the cloud

infrastructure is perceived by the cloud customer. We assume to have a collection
of VMs interacting among themselves to support a multi-tier application. The
application is deployed over s replicated vertical stacks. Each vertical stack contains
the r tiers of the application, hosted on separate VMs. The communication patterns
in this scenario involve just VMs within the same vertical stack. No communication
occurs between VMs belonging to two different vertical stacks. We assume that
incoming request load is balanced across the vertical stacks. Hence, VM belonging
to different vertical stacks but to the same tier are likely to show similar network
traffic patterns (referring to Fig. 13.1 this may occur, for example, for VM1,1 and

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 203

VM1,2

VM1,r

VM1,1

Vertical
stack 1

...

Host Host
Pod

Switch

Host Host
Pod

Switch

Data Center Network Core

VM

VM

VM
...

VMs

Host

H
yp

er
vi

so
r

VM2,2

VM2,r

VM2,1

Vertical
stack 2

...
VMs,2

VMs,r

VMs,1

Vertical
stack s

...
...

Tier 1

Tier 2

Tier r

Ne
t A

ge
nt

VMs
requests

Network
patterns

VM
mgr

Data Center Mgm

VM Allocation

In
fr

as
tr

uc
tu

re
 v

ie
w

Vi
rt

ua
l v

ie
w

...

...
... ...

Fig. 13.1 Reference scenario

VM2,1), the final effect is that we may have correlation in network utilization even
if no communication occurs between the two VMs. Dealing with this effect is one
of the main challenges of our research.

The lower part of the figure represents the physical infrastructure of the data
center (namely Infrastructure view). The data center is composed of manageable
subareas, called PODs [4]. The physical hosts are interconnected using a hierar-
chically structured network infrastructure (actual topologies in a data center may
be more complex such as the fat-tree topology [1]) and, as a consequence, we may
experience different communication costs when allocating VMs over the hosts. This
heterogeneous cost of communication motivates our proposal for a network-aware
VM placement [9].

Figure 13.1 provides also the detail of a physical host. Each host is equipped with
a Hypervisor, that supports also the collection of data about the VMs resource usage.
Typical resources, such as CPU, memory, I/O utilization, are made available for
the data center management, while network utilization is processed by the Network
Agent that is described in detail in Sect. 13.4. Finally, the dashed box on the right
side of the figure describes the Data Center Management: such component receives
the resource utilization of each VM and collects the information generated by the
network agent about VMs interaction. These data are then used to take decision
about the allocation of VMs over the physical infrastructure, creating a mapping
between the virtual and infrastructure views.

204 N. Bicocchi et al.

13.3 Methodology Description

The proposed methodology to support a network-aware VMs allocation in the
previously described scenario has a twofold goal. First, we aim to identify couples
of VMs exchanging data: the solution of the problem of allocating VMs can
be improved by adding in the objective function of the optimization problem a
component to capture VMs interactions [6, 9]. Second, we aim to gain an insight on
how the applications are deployed in the data center to support more sophisticated
management strategies. As an example, we can consider that the availability of the
services can be increased by replicating and spreading the interacting VMs over the
data center infrastructure.

We now propose a formalization of the previously introduced basic principles.
Let N be a set of VMs in a data center. P out

j and P in
j are the two time series of packet

rate in output from and in input to VM j ∈ N , respectively. For both time series let
τ be the sampling interval. Our goal is to use this description of network traffic in
the data center to infer which VMs exchange data among themselves. Specifically,
we rely on the correlation between input and output time series. In our analysis we
assume that there is no re-organization of the stacks composing the Web applications
(i.e., there is no re-organization of the communication patterns during the collection
of the time series). We introduce a methodology based on three steps:

1. Traces interpolation and synchronization;
2. Correlation matrix creation;
3. Interacting VMs identification.

13.3.1 Traces Interpolation and Synchronization

We will detail the mechanism to collect samples about the network data transfer in
Sect. 13.4. For the goal of this analysis it is important to point out that the data for
each VM will be a collection of records with the fields <timestamp, pkt_in,
pkt_out>, with pkt_in and pkt_out being the number of packets received
and transmitted in the last τ seconds, respectively. The last two values contain the
number of packets received and transmitted in the last τ seconds. However, the
gossip protocol used to distribute data and the absence of explicit synchronization
between monitor for each VM results in time series from different VMs that can be
not synchronized.

A set of preliminary experiments suggest that feeding not synchronized traces
in the correlation analysis may lead to poor results for identifying interacting VMs.
This motivates our choice to introduce a preliminary step in our methodology to
synchronize the input data. To reach this result we exploit data interpolation as
follows:

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 205

Original samples

Interpolation

Resamplingτ

t0

t0
*

Time series 1
Time series 2 Synchronized samples

Synchronization

t0
*

Fig. 13.2 Interpolation and synchronization

– we define a starting time t0 and we remove every sample before that time. As a
result, each time series will start in the time interval [t0, t0+ τ]. Furthermore, we
make sure that every time series contains T samples;

– we define a synchronization time t∗0 as the average value of the starting times
of each trace. We define a set of new sampling times as t∗0 , t∗0 + τ, . . . , t∗0 +
iτ, . . . , t∗0 + T τ ;

– for each time series P out
j1

, we define a synchronized time series P ∗out
j1

using cubic
interpolation. In our prototype the implementation of the cubic interpolation is
provided by the Python Pandas2 framework. A similar procedure is carried out
also for the time series of inbound packets P in

j2
.

Figure 13.2 provides an example of the above described process. We start with
two time series (left part of the figure). The samples in the series are shown as
squares and circles, with each sample occurring after τ seconds from the previous
one. The center of the figure illustrates the spline interpolation of the samples to
obtain a continuous function from the samples, that is used in a re-sampling process
synchronized to start at time t0. Finally, on the right, we have the output time series
of synchronized samples.

In order to maintain the readability of the paper, in the following we will adopt
a simplified notation using P ∗out

j1
(i) and P ∗inj2

(i) to indicate the i-th sample of a
synchronized time series on VMs j1 and j2.

13.3.2 Correlation Matrix Creation

The correlated time series are used to create a correlation matrix C taking into
account input and output packet rates of each pair of VMs. We explicitly focus
on the correlation between output packet of a VM and input packet of another

2http://pandas.pydata.org/.

http://pandas.pydata.org/

206 N. Bicocchi et al.

VM with the goal to identify the VMs exchanging data among themselves. Our
approach is consistent with existing proposals in literature, such as [25, 29], that
consider not just communication but also the direction of the data flow with the
goal to optimize the data center communication infrastructure. It is also worth
noting that this process is inherently parallel, so it is possible to leverage the gossip
protocol described in Sect. 13.4 to locally generate portions of the C matrix and then
propagate this information to make sure that the Data Center Management function
has the complete matrix available.

We define the generic element cj1,j2 of the matrix C as:

cj1,j2 = Cor
(
P ∗out

j1
, P ∗inj2

)
(13.1)

where j1 and j2 are two generic VMs and Cor(·) is the correlation function between
time series. The resulting matrix C may be not symmetric. An example to explain
this case is when we have a uni-directional data transfer, for example from j1 to
j2. In this case the correlation between P ∗out

j1
and P ∗inj2

is high, but the opposite

correlation between P ∗out
j2

and P ∗inj1
is mainly related to ACKs and is likely to be

low. Several alternatives to quantify correlation can be found in literature. Our study
compares the use of two metrics: Pearson and Spearman correlation functions [23].
The first is the most popular correlation metric, while the Spearman coefficient was
identified in preliminary tests as a promising alternative to operate on time series
sharing long-term trends, that is common in our reference problem.

The Person Correlation coefficient ρ is defined as:

ρ
(
P ∗out

j1
, P ∗inj2

)
=

E
[(

P ∗out
j1
− μ

(
P ∗out

j1

))(
P in

j2
− μ

(
P ∗inj2

))]

σ
(
P ∗out

j1

)
σ
(
P ∗inj2

) (13.2)

with μ(·) being the mean value and σ(·) the standard deviation. We use the notation
E[·] for the average function, that appears in Eq. (13.2) to estimate the covariance.

The Spearman coefficient ρs is the correlation between two time series contain-
ing the ranks of the original time series values:

ρs

(
P ∗out

j1
, P ∗inj2

)
= 1−

6
∑T

i=0 r
(
P ∗out

j1
(i)

)
− r

(
P ∗inj2

(i)
)

T (T 2 − 1)
(13.3)

where r(·) is the rank of a sample in the same time series and T is the number of
samples. Operating on ranks rather than on values improves the ability to identify
small fluctuations in values that may distinguish two time series sharing the same
long-term trends, which is common when we have a workload equally distributed
among replicated vertical stacks (as in our reference scenario).

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 207

13.3.3 Identification of Interacting VMs

The last part of the proposed methodology is the identification of couples/groups of
interacting VMs using the correlation matrix C.

This step is part of the operation of the Data Center Management function and
can focus on either identifying single couples of interacting VMs or on groups of
VMs belonging to the same vertical stack (as in Fig. 13.1).

With respect to the first task, that is identifying couples of VMs exchanging large
amount of data, a first solution is to apply a threshold on the correlation matrix to
identify correlated and uncorrelated time series of network resource utilization. In
a nutshell, every couple of time series with a correlation cj1,j2 higher or equal than
the threshold is correlated. On the other hand, if cj1,j2 is below the threshold, we
assume that the two time series are not uncorrelated.

However, if we have a broader scope and we aim at identifying the vertical stacks
(that are of VMs running different tiers of the same application), we must cluster
together VMs that show a similar behavior in terms of network traffic patterns. To
this aim we consider the correlation matrix as an affinity matrix between VMs and
a clustering algorithm is applied to group together the VMs. Multiple clustering
algorithms have been proposed in literature. However, we must focus on just a
subset of them that accepts an input in the form of an affinity/distance matrix
(instead of a feature vector). Specifically, in the remaining of this paper we consider
and compare: spectral clustering [19], affinity propagation, and agglomerative
clustering [11].

Spectral clustering uses the Laplacian operator applied to the input similarity
matrix. The eigenvalues and eigenvectors of the result are used to create a new
coordinate system. The original samples projected into this new space of coordinates
are then clustered using the k-means clustering algorithm [19]. Affinity propagation
bases its operation on simulated message exchange between samples. The algorithm
is quite fast as it identifies a representative for each cluster and assigns elements
to each cluster based on the affinity with their representatives [14]. Finally,
agglomerative clustering creates a dendogram starting with on cluster for each VM
and then merging at each iteration the two most similar clusters. Depending on
the cluster we want to obtain, we can then cut the dendogram at any point. In our
experiments, we use the implementation of the three algorithms provided by the
SciKit-Learn library.3

3http://scikit-learn.org/.

http://scikit-learn.org/

208 N. Bicocchi et al.

13.3.4 Scalability and Computational Complexity

We now discuss the scalability of the proposed technique with respect to the network
size. In particular, we consider the computational complexity of the three steps
composing the technique with respect to the number of hosts n.

The synchronization of each trace depends linearly on the network size, that is
has a complexity that is O(n) (assuming that at most a finite number of VMs can
run on each host). The creation of the correlation matrix has complexity O(n2), that
can be reduced to O(n) if we parallelize the task so that each host computes a slice
of the global matrix (as described in the following of the paper). Finally, the most
critical part of the technique is the clustering process that has a complexity ranging
from O(n2) to O(n3), depending on the chosen algorithm.

We can thus conclude that the overall computational cost of the technique is
polynomial. Hence, we can expect limited scalability problem with respect to the
problem size.

13.4 Implementation

In this section, we discuss an actual implementation of the proposed methodology.
The goal of identifying clusters of VMs communicating to each other requires, as
shown in Sect. 13.3, the knowledge of communication patterns of all VMs. This
knowledge can be considered as an aggregate property of the whole system. From
an engineering perspective, it is possible to calculate aggregate functions with either
reactive or proactive approaches [13, 15].

Reactive approaches are based on queries issued by specific nodes in the network.
The answers are returned directly to the issuer while the rest of the network may or
may not receive the answer. An example of this approach could be a dedicated node
periodically polling all VMs and making the needed computation in a centralized
fashion.

Proactive approaches, instead, provide the value of aggregate functions to all
nodes in the network in an adaptive fashion. By the term adaptive we mean that,
if changes due to network dynamism or to variations in the input values arise, the
output of the aggregation protocol should be capable of tracking these changes.
Proactive protocols are frequently used in completely decentralized solutions of
complex tasks.

Given the significant increase in size and complexity of modern data centers [12],
we focus on a solution that exploits a reactive protocol based on gossiping. The
nature and functioning of gossip-based aggregation is detailed in the following
section.

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 209

13.4.1 Gossip-Based Aggregation

Let us consider a generic network with a set of M nodes, where each node
corresponds to a physical host. Each node interacts with a small number of other
nodes (neighbors). The basic protocol is based on the push–pull scheme illustrated
in Algorithm 1. Time is divided into time slots of length τ , corresponding to the
monitoring intervals. Each node p ∈ M executes two different threads. At every
time slot, the active thread starts an information exchange with one random neighbor
q by sending it a message containing the local status sp and waiting for its remote
status sq . It is possible to extend the basic scheme to have interaction with multiple
neighbors for each time slot. The passive thread waits for messages sent by an
initiator and always replies with the local status. The term push–pull refers to
the fact that each information exchange is performed in a symmetric manner: both
nodes send and receive their status. It is worth noticing that the local status sp
could represent both properties of the node p itself or values measured by it. In the
considered application, the status information basically consists in the time series of
network utilization samples of both the local node and of the known neighbors. The
methods send() and receive() are used for this message exchange.

The method getNeighbors(ω) showed in Algorithm 1 can be considered as
a service underlying the aggregation protocol. It returns a uniform random sample
over the entire set of neighbors. Furthermore, the parameter ω ∈ [0, 1] can be used
for specifying how many neighbors have to be returned. In particular, with ω = 1
the method will return all the available neighbors while with ω = 1/neighbors

only one neighbor will be returned. The method update computes a new local
status based on the current local status and the remote status received during the
information exchange. The output of update as well as the semantic of the node
status completely depends on the aggregation function needed by the application.

This gossip scheme tends to impose a uniform load to the system [15]. Each
node executes the same amount of operations. Incidentally, reducing τ or increasing
ω reduces convergence times of the algorithm (at expense of more messages
exchanged). Therefore, applications can constantly manage the trade-off aggrega-
tion accuracy and communication costs.

13.4.2 Network Agent

Given the above definition of gossip-based aggregation, we now provide some
details on how to implement it for the considered scenario. As pointed out in
Sect. 13.2, each physical host is equipped with a Hypervisor, that manages the
locally hosted VMs, and with a Network Agent that is a gossiping node responsible
for the data exchange about the network resource utilization. We recall that the status
of each VM is represented as a time series of tuples in the form <timestamp,
pkt_in, pkt_out>. Given a sampling period τ = 30 s, a time series sj

210 N. Bicocchi et al.

Algorithm 1 Push–pull gossip protocol executed by node p

Ensure: Active thread
for once every τ at random time in time-slot do

q[] ← getNeighbors(ω)
for q ∈ q[] do
send(sp,q)
sq ← receive(q)
sp ← update(sp, sq)

end for
end for

Ensure: Passive thread
for ever do

sq ← receive(∗)
send(sp,sender(sq))
sp ← update(sp, sq)

end for

comprising 240 elements would describe the latest 2 h of network usage of V Mj .
The status of a node consists of the status of each VM managed by that host
hypervisor that is, for node i the status is si = {sj , j ∈ Ni}, where Ni is the
set of VMs hosted on physical host i.

The problem being addressed consists in making available at each host, in a
timely fashion, the status of all the physical hosts comprising the considered data
center, that is si,∀i ∈M. The gossip protocol is used to spread data concerning the
VMs running on one physical host to all others.

Let us consider two hosts p and q and their respective status sp and sq . At each
gossiping iteration, as detailed above, nodes p and q exchange their statuses (i.e.,
the status s of all the VMs they are running). It is worth noticing that the nodes, as
an example we consider node p, might already have received the status sq from a
former exchange with either q or another node. In this case, the aggregation function
selects the most recent version of sq and discards the other. As a consequence, each
physical host can keep track of an extended status comprising both sp and sq . If
executed on the hosts of a data center, this algorithm allows each host to receive the
status of all VMs running within the data center. To better clarify the details of the
data exchange, Fig. 13.3 provides a view of the message involved in the operations
of the gossip protocol. A gossip message contains both information about the local
host and propagates data about remote hosts. Each status for a host consists in the
status of the hosted VMs, that, in turn, contains the samples time series.

It is also worth noticing that despite gossip-based communication schemes have
proven several desirable properties over flooding, they are slower to converge [13].
Thus, for the sake of being able of successfully correlating time series, it is relevant
that the time needed to spread network data across all the hosts is smaller than the
network sampling period τ (i.e., in our case is 30 s). If this condition is not met,
gossiping can be suitably tuned by adjusting the ω parameters.

Finally, another benefit of the proposed approach comes from a reduction of
the computational complexity of the clustering process. In fact, in case of reactive

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 211

Fig. 13.3 Message format (UML notation)

approaches a dedicated node has to collect the whole set of VMs statuses and find
eventual correlations. In the proposed approach, instead, each node can compute
correlations concerning only the VMs it hosts. Basically, the network agent on each
host computes the correlation between each hosted VM and every other VM. This
creates a set of columns in the final correlation matrix C, that are then forwarded
to the Data Center Management system for the identification of interacting VMs
and/or clustering operations.

13.5 Experimental Results

13.5.1 Setup Description

The proposed approach is tested using an experimental setup exploiting the TPC-
W benchmark.4 The considered traces are referred to a TPC-W run with 12 VMs
organized in 4 vertical stacks and covering a 12 h period during which the samples
are collected every 30 s (however, we consider also a granularity of 1 and 2 min for
samples collection in our experiments).

To define the metrics to compare the different correlation functions, we need to
distinguish between two different goals: first, identifying the interacting couples of
VMs; second, clustering together VMs to identify vertical stacks.

For the first goal, that is identifying interacting VMs, we rely on a classic measure
for classification problems: the F-measure, which is the harmonic mean of Precision
and Recall. Precision is defined as P = T P

T P+FP
while recall is R = T P

T P+FN
, with

T P and T N true positives and negatives and FP and FN being false positives and
negatives, respectively. F-measure is: F = 2 P ·R

P+R
.

4www.tpc.org/tpcw/.

www.tpc.org/tpcw/

212 N. Bicocchi et al.

For the second goal, we take into account one of the most popular metrics for
clustering evaluation, that is clustering purity [2]. Purity is the fraction of correctly
identified VMs and is used to evaluate the performance of the clustering step. In
order to measure the purity, we consider the output of the clustering S and we
compare it with a vector S∗ that contains the correct classification of VMs (that,
for each VM, contains the correct vertical stack it belongs to). We can thus provide
a formal definition of purity as:

purity = |{s
j : sj = sj∗,∀j ∈ N }|

|N |

with sj being the vertical stack to which VM j is assigned in by the clustering
algorithm, sj∗ being correct vertical stack of VM j , and N is the set of considered
VMs.

13.5.2 Correlation Coefficients Analysis

The first experiment aims at comparing the use of Pearson and Spearman correlation
coefficients, that are used to compute the correlation matrices over every couple of
time series.

Heat maps are used to represent the two correlation matrices in Fig. 13.4: the two
time series of input and output packets are presented for each VM (numbered 1–12
in the figure). An outline of the vertical stacks (the four white square frames on the
main diagonal of the matrix) is also shown in each picture. The correlation should
ideally present this behavior: high values within the four squares delimiting each
vertical stack and low values outside the squares.

VM12

Vertical
stack 1

Vertical
stack 2

Vertical
stack 3

Vertical
stack 4

VM2

VM1

VM1VM2 VM12

a b
VM12

Vertical
stack 1

Vertical
stack 2

Vertical
stack 3

Vertical
stack 4

VM2

VM1

VM1VM2 VM12

0.98
0.9

0.8

0.7

0.6

0.5

0.4

0.96

0.94

0.92

0.90

0.88

0.86

0.84

Fig. 13.4 Heatmap of the correlation matrices. (a) Pearson correlation coefficient. (b) Spearman
correlation coefficient

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 213

The observation of Fig. 13.4a, b offers interesting insights. On one hand, the
Pearson correlation coefficient (Fig. 13.4a) is characterized by values very high
(close to 1, as shown by the predominance of orange-red hues). We also note
some reddish shades located far from the main diagonal outside from the vertical
stack frames: this is particularly critical because it suggests the presence of high
correlation between couples of VMs not belonging to the same vertical stack. If we
observe the results achieved by the Spearman correlation coefficient (Fig. 13.4b),
we note that the use of this coefficient allows to better distinguish between VMs of
different stacks and VMs belonging to the same vertical stack (as shown by the red
areas located near to the diagonal), thus revealing a better capacity to identify VMs
that are actually exchanging data.

13.5.3 Identification of Communicating VMs

In this experiment we evaluate the effectiveness of using the two correlation
coefficients to identify couples of communicating VMs on the basis of a threshold.
Specifically, we analyze the sensitivity of the VMs classification for different
threshold values.

The comparison of the F-measure for the two correlation coefficients is shown in
Fig. 13.5 for increasing values of the threshold. The observation of the graph reveals
that the use of the Spearman correlation coefficient may provide a double advantage:
(a) better performance with respect to the Pearson coefficient, characterized by
higher maximum F-measure values; (b) higher stability of the performance, with an
accuracy higher than 0.5 achieved by different threshold values (0.5–0.8), while the
Pearson function achieves the best values for a single peak close to 0.96 as threshold
value.

Fig. 13.5 F-measure
comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-m

ea
su

re

Threshold

Pearson
Spearman

214 N. Bicocchi et al.

13.5.4 VMs Clustering

In this set of experiments we compare the use of the correlation coefficients to create
the input affinity matrix for the three considered clustering algorithms (spectral
clustering, affinity propagation, and agglomerative clustering).

Figure 13.6 represents the clustering purity of the clustering algorithms for each
of the two considered correlation coefficients. From the figure, it is evident that
the use of the Spearman coefficient allows the clustering algorithms to achieve
significantly higher purity if compared to the alternative. Moreover, we note that
the best performing algorithm of the three considered alternatives is the spectral
clustering. The different performance of the algorithms may be explained by
considering the example in Fig. 13.7 that represents a spectral clustering output on
the top against the actual clustering (that is, the ground truth) shown on the bottom.
We may observe two kinds of errors in the clustering output: first, two VMs are
swapped (VMs 1 is assigned to the cluster to which VM 4 belongs, and vice versa);
second, VM 12 is misplaced. On the other hand, the poor performance of the affinity
propagation algorithm is worsened by an additional problem: the wrong estimation
of the clusters number. Then, we note that the agglomerative clustering causes a
high number of cluster swaps between VMs.

Fig. 13.6 Clustering purity
comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Spectral Affinity propagation
Clustering

Agglomerative

P
ur

ity

Spearman
Pearson

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Actual clustering

Expected clustering

Fig. 13.7 Clustering example

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 215

13.5.5 Comparison of Time Sampling Intervals

The last experiment evaluates the impact of data sampling granularity on the quality
of the classification (that identifying correlated and non-correlated time series) and
of the VMs clustering. Let us start the evaluation from the classification process.
Figure 13.8 compares the F-measure obtained by using the Spearman correlation
coefficient as the basis for VMs classification: the considered sampling period τ

of network utilization ranges from 30 s to 2 min. We note that the impact on the
classification F-measure is very significant, even with the small considered change
in the sampling granularity. A coarse-grained data collection has, indeed, two main
effects. First, the sensitivity to the threshold value of the Spearman correlation
is reduced for large sampling periods. The increased robustness is caused by the
smoothing of the time series. Indeed, the time series taken into account basically
only shows the most evident fluctuations: the stability to a wider range of threshold
values is motivated by the ease of identifying low-frequency and highly evident
fluctuations (which is basically the main way to distinguish two vertical stacks)
even over a wider range of threshold values. Second, the accuracy significantly
decreases for increasing sampling intervals if we observe the threshold range of
values corresponding to higher F-measure ([0.6–0.8]). The motivation of this effect
is quite intuitive: a smoother time series of the network resource utilization is the
result of an increased sampling period. In this way, we still are able to appreciate the
main effects of the correlation; however, we miss the high frequency fluctuations,
thus experiencing a reduction in the classification performance.

The final analysis evaluates the effect on the purity of the clustering solution of
the sampling frequency. Figure 13.9 shows the comparison among the clustering
purity of the three clustering algorithms making use of the Spearman coefficient of
correlation. The graph offers two validations of previous observations. First, better
performance of the spectral clustering with respect to other algorithms is confirmed,
with the results showing a gain in the purity values ranging from 97% to 31%

Fig. 13.8 Sensitivity to
sampling period τ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-m

ea
su

re

Threshold

τ=30 sec
τ=1 min
τ=2 min

216 N. Bicocchi et al.

Fig. 13.9 Clustering purity
comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

τ=30s τ=1m τ=2m

P
ur

ity

Sampling interval

Spectral clustering
Affiniy propagation

Agglomertive clustering

over the alternatives. Second, the increase of the sampling period τ significantly
decreases the performance even for the spectral clustering algorithm, causing a
reduction in the purity of 33% as τ increases from 30 s to 1 min. This effect can
be explained by the same motivations that cause a decrease in the F-measure values
for the detection of communicating VMs: the distinction of different vertical stacks
is more challenging in case of smoother time series.

13.6 Related Work

The problem of describing network utilization patterns and using this information to
improve the performance and efficiency of data transfer has been widely investigated
in literature.

In particular, the problem of monitoring network traffic patterns to identify data
flows has been tackled over the years, with special focus on the links over geo-
graphically distributed networks, that may become bottlenecks in the data delivery.
A large corpus of literature defines this problem as network tomography [10].
Among these studies, [10] exploits metrics based on single links to produce a
topological description of the network flows in a wide-area network. The same goal
is considered in [26], where a bayesian approach is used to describe and match the
characteristics of data flows to reconstruct routing between origins and destinations.
Papagiannki et al. focus on extracting the routing topology of a geographically
distributed network, with special attention on increasing scalability of the process
thanks to a distributed approach, where computation is carried out at the point
of presence and at the peering points of the network [24]. A more conservative
approach is presented in [16], where Kowalski and Warfield derive from the theory
on telephonic networks a probabilistic model to correlate the distance between two
nodes and the traffic between the two. All these studies are related to our proposal,

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 217

but the considered scenario, and the solution to address the problem, are more
oriented towards wide-area networks, with complex and irregular graphs topology
rather than on data center. Furthermore, these studies do not take into account
the cloud scenario, where VMs may migrate over the infrastructure. Our focus
on a modern data center with virtualization functions of computing and, possibly,
of networking functions places our paper clearly aside from the above-mentioned
studies.

Another branch on literature proposes the application of the Software-Defined
Network paradigm to the problem of network monitoring. For example, [27]
proposes NetFPGA, a system that exploits programmable hardware to monitor
networks extracting useful statistics from the network links. A similar proposal is
made in [28], that introduces a way to leverage the characteristics of SDN appliances
to monitor large networks on a geographic scale, and in [18] that aims at improving
the scalability of the process by selecting the most relevant flows in a network.
Even if our approach could integrate and use information collected from an SDN
infrastructure, we recall that our focus is more oriented to a cloud-based scenario,
where the deployment of SDN appliances is still at its infancy, so we can’t fully rely
on it.

Other studies are complementary to our work, as they can take advantage from
our effort. For example, [22] focuses on exploiting the knowledge of data exchange
between VMs in a cloud environment to improve the performance of the cloud-
hosted applications, while in [25] the final goal is to increase the efficiency of
network resource usage.

Finally, we recall that preliminary versions of this research were published in [8,
17]. However, in this paper we provide a more detailed discussion on the issue of
scalability and we propose a new software architecture to implement the considered
theoretical model.

13.7 Conclusions

This paper focused on the problem of identifying groups of VMs exchanging data
traffic in a cloud data center when we do not have access to detailed information
among the data exchange between each specific couple of VMs. Our reference
scenario is a multi-tiered application deployed over vertical stacks that are replicated
horizontally. This case is a very common and challenging scenario in modern cloud
systems where replication is used to achieve scalability. To discover communicating
VMs we described a methodology that relies on the correlation between the time
series of VMs network packet flows and exploits clustering to identify the vertical
stacks of VMs. We evaluate and compare different correlation coefficients to
find the best performing solution. From our experiments it is clear that solutions
based on tanking techniques (such as the Spearman correlation coefficient) provide
better performance than the alternatives. Furthermore, we compare three clustering
algorithms for detecting the vertical stack: our experiments show that spectral

218 N. Bicocchi et al.

clustering clearly outperforms the other alternatives. As a last analysis, we perform
a sensitivity evaluation about the sampling period of network data: the results
demonstrate that a fine-grained collection is more suited to find communicating
VMs than a coarse-grained approach.

Acknowledgements The authors acknowledge the support of the project S2C: Secure Software-
defined Cloud funded by the University of Modena and Reggio Emilia.

References

1. M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture,
in Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM
’08, New York, NY (ACM, New York, 2008), pp. 63–74. http://doi.acm.org/10.1145/1402958.
1402967

2. E. Amigó, J. Gonzalo, J. Artiles, F. Verdejo, A comparison of extrinsic clustering evaluation
metrics based on formal constraints. J. Inf. Retr. 12(4), 461–486 (2009)

3. M. Andreolini, M. Colajanni, M. Pietri, A scalable architecture for real-time monitoring of
large information systems, in Proceedings of IEEE Symposium on Network Cloud Computing
and Applications, London (2012)

4. H. Ballani, P. Costa, T. Karagiannis, A. Rowstron, Towards predictable datacenter networks.
ACM SIGCOMM Comput. Commun. Rev. 41(4), 242–253 (2011)

5. A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Futur. Gener. Comput. Syst. 28(5), 755–768
(2012)

6. D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, A.Y. Zomaya, Energy-efficient data replication
in cloud computing datacenters. Clust. Comput. 18(1), 385–402 (2015)

7. C. Canali, R. Lancellotti, Exploiting classes of virtual machines for scalable IaaS cloud
management, in Proceedings of the 4th Symposium on Network Cloud Computing and
Applications (NCCA) (2015)

8. C. Canali, R. Lancellotti, Identifying communication patterns between virtual machines in
software-defined data centers. SIGMETRICS Perform. Eval. Rev. 44(4), 49–56 (2017)

9. C. Canali, R. Lancellotti, M. Shojafar, A computation- and network-aware energy optimization
model for virtual machines allocation, in Proceedings of International Conference on Cloud
Computing and Services Science (CLOSER 2017), Porto (2017)

10. R. Castro, M. Coates, G. Liang, R. Nowak, B. Yu, Network tomography: recent developments.
Stat. Sci. 19, 499–517 (2004)

11. W.H. Day, H. Edelsbrunner, Efficient algorithms for agglomerative hierarchical clustering
methods. J. Classif. 1(1), 7–24 (1984)

12. M. Dayarathna, Y. Wen, R. Fan, Data center energy consumption modeling: a survey. IEEE
Commun. Surv. Tutorials 18(1), 732–794 (2016)

13. P.T. Eugster, R. Guerraoui, A.M. Kermarrec, L. Massoulieacute, Epidemic information dissem-
ination in distributed systems. Computer 37(5), 60–67 (2004). http://doi.ieeecomputersociety.
org/10.1109/MC.2004.1297243

14. B.J. Frey, D. Dueck, Clustering by passing messages between data points. Science 315(5814),
972–976 (2007)

15. M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

16. J.P. Kowalski, B. Warfield, Modelling traffic demand between nodes in a telecommunications
network, in Proceedings of ATNAC’95 (1995)

http://doi.acm.org/10.1145/1402958.1402967
http://doi.acm.org/10.1145/1402958.1402967
http://doi.ieeecomputersociety.org/10.1109/MC.2004.1297243
http://doi.ieeecomputersociety.org/10.1109/MC.2004.1297243

13 A Technique to Identify Data Exchange Between Cloud Virtual Machines 219

17. R. Lancellotti, C. Canali, A correlation-based methodology to infer communication patterns
between cloud virtual machines, in Proceedings of the 10th EAI International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS), Taormina (2017),
pp. 251–254

18. D. Li, N. Dai, F. Li, C. Xing, F. Dai, Estimating SDN traffic matrix based on online
informative flow measurement method, in Proceedings of 2017 Fifth International Conference
on Advanced Cloud and Big Data (CBD) (2017), pp. 75–80

19. U. Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
20. A. Marotta, S. Avallone, A simulated annealing based approach for power efficient virtual

machines consolidation, in Proceedings of 8th International Conference on Cloud Computing
(CLOUD), IEEE (2015)

21. C. Mastroianni, M. Meo, G. Papuzzo, Probabilistic consolidation of virtual machines in self-
organizing cloud data centers. IEEE Trans. Cloud Comput. 1(2), 215–228 (2013). https://doi.
org/10.1109/TCC.2013.17

22. X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center networks with traffic-
aware virtual machine placement, in Proceedings of the 29th Conference on Information
Communications (INFOCOM), San Diego, CA (2010)

23. L. Myers, M.J. Sirois, Spearman Correlation Coefficients, Differences Between (Wiley,
Hoboken, 2014). http://dx.doi.org/10.1002/9781118445112.stat02802

24. K. Papagiannaki, N. Taft, A. Lakhina, A distributed approach to measure ip traffic matrices,
in Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement (ACM, New
York, 2004), pp. 161–174

25. J. Sonnek, J. Greensky, R. Reutiman, A. Chandra, Starling: minimizing communication
overhead in virtualized computing platforms using decentralized affinity-aware migration, in
Proceedings of 39th International Conference on Parallel Processing (ICPP), San Diego, CA
(2010)

26. C. Tebaldi, M. West, Bayesian inference on network traffic using link count data. J. Am. Stat.
Assoc. 93(442), 557–573 (1998)

27. M. Yu, L. Jose, R. Miao, Software defined traffic measurement with opensketch, in Presented
as part of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), USENIX, Lombard, IL (2013), pp. 29–42

28. L. Yuan, C.N. Chuah, P. Mohapatra, Progme: towards programmable network measurement.
IEEE/ACM Trans. Netw. 19(1), 115–128 (2011)

29. Y. Zhang, N. Ansari, Hero: hierarchical energy optimization for data center networks. IEEE
Syst. J. 9(2), 406–415 (2013)

https://doi.org/10.1109/TCC.2013.17
https://doi.org/10.1109/TCC.2013.17
http://dx.doi.org/10.1002/9781118445112.stat02802

Chapter 14
Container Orchestration: A Survey

Emiliano Casalicchio

14.1 Introduction

Nowadays, cloud architectures are moving from virtual machine (VM) centric to
container centric.

Containers technologies are strongly supported by PaaS providers [5, 10], IaaS
providers [40], and Internet service providers [31]. Moreover, container technolo-
gies are used to deploy large-scale applications for big data processing (e.g.,
[30, 32]), scientific computing (e.g., [14]), IoT (e.g., [4, 9]), and edge computing
(e.g., [18]).

Containers became so popular because they potentially may solve many cloud
application issues, for example: the dependency hell problem, typical of complex
distributed applications. Containers give the possibility to separate components,
wrapping up the application with all its dependencies in a self-contained piece
of software that can be executed on any platform that supports the container
technology. The application portability problem; a container can be executed on
any platform supporting the container image format. The Open Container Initiative
(opencontainers.org) has been created to define a standard image format and a
standard runtime environment for containers. Docker, Kubernetes, and Cloudify
(cf., Table 14.1) are container technologies compliant with the cloud portability
frameworks TOSCA [23, 33]. The performance overhead problem; containers are

E. Casalicchio (�)
Department of Computer Science and Engineering, Blekinge Institute of Technology, Sweden

Department of Computer Science, Sapienza University of Rome, Italy
e-mail: emiliano.casalicchio@bth.se

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_14

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_14&domain=pdf
www.opencontainers.org
mailto:emiliano.casalicchio@bth.se
https://doi.org/10.1007/978-3-319-92378-9_14

222 E. Casalicchio

Table 14.1 Container technologies considered in this work

Technology Type URL

Linux Container (LXC) SC, AC https://linuxcontainers.org/

OpenVZ SC, CM https://openvz.org/

Windows Hyper-V Container (WHC) SC https://docs.microsoft.com/en-us/
virtualization/windowscontainers/about/

Docker AC, CM https://www.docker.com/

Windows Server Container (WSC) AC https://docs.microsoft.com/en-us/
virtualization/windowscontainers/about/

rkt CM https://coreos.com/rkt

LXD CM https://linuxcontainers.org/

Amazon EC2 Container Service (ECS) CM, OF https://aws.amazon.com/ecs/

Google Container Engine (GCE) CM, OF https://cloud.google.com/container-
engine/

Microsoft Azure Container Service (ACS) CM, OF https://azure.microsoft.com/en-us/
services/container-service/

Kubernetes OF https://kubernetes.io/

Swarm OF https://www.docker.com/

Marathon OF https://mesosphere.github.io/marathon/

Cloudify OF http://cloudify.co/

Type meaning: AC application container, SC system container, CM container manager, OF
orchestration framework

lightweight and have a small performance footprint than VMs [8, 13, 21, 28], more-
over, launching, re-launching, and stopping a container is an order of magnitude
faster than VMs.

The container technology landscape is developing and expanding at the speed
of light, however, we are far away from the maturity stage and there are still
many challenges to be solved, for example: the reduction of networking overheads
compared to hypervisors; the secure resource sharing and isolation to enable multi-
tenancy; the improvement of container monitoring methodologies and tools; the
enhancement of runtime scale-up and migration capabilities; the enhancement of
autonomic capabilities in orchestration frameworks by means of self-healing and
self-optimization mechanisms.

This work is a survey of the state of the art in container orchestration technolo-
gies. To the best of our knowledge there is no similar contribution to the literature.
The contribution and organization of this paper is as follows. First, Sect. 14.2
reports and classifies the state-of-the-art container technologies (system container,
application container, container manager, and orchestrator). Then, Sect. 14.3 focuses
on container orchestrator proposing a taxonomy based on the orchestration feature.
Section 14.4 describes the reference architecture of an autonomic container orches-
trator. The state-of-the-art research results in autonomic orchestration are analyzed

https://linuxcontainers.org/
https://openvz.org/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://www.docker.com/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://coreos.com/rkt
https://linuxcontainers.org/
https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://kubernetes.io/
https://www.docker.com/
https://mesosphere.github.io/marathon/
http://cloudify.co/

14 Container Orchestration: A Survey 223

in Sect. 14.5. Specifically the focus is on monitoring, workload characterization
and performance evaluation of container technologies, self-optimization and self-
healing solutions.

What emerges from our study is that: container technologies are used not only in
enterprise applications but also in big data analytics, IoT, fog, and edge computing;
the research community has devoted a significant effort in performance evaluation
studies, and in proposing new solutions aiming at improving the self-optimization
and self-healing capabilities of container orchestrators; the cloud industry offer in
terms of autonomic orchestration is still at the infancy.

14.2 System Container, Application Container, and
Container Manager

Container technologies can be classified into system container, application container
managers, and orchestrators (cf., Fig. 14.1). In this section we will focus on the first
three categories, while orchestration is discussed in the next section.

Application container is designed to run application or application components
into containers. An application container built up from a series of image layers.
Usually a developer can start from a base image (e.g., the operating system kernel
and default libraries) then the application can be copied in a new layer (eventually
in two—a bottom layer with the source code and libraries and a top layer with the
executable). Application data and commands to be executed by the container will be
added in upper layers. After the multilayer image is built, all the layers are read-only
except the last one: read and write but not persistent. This means that the content is
lost when the container is deleted.

The widely used application container technology is Docker, a multiplatform
solution designed for Linux, OSX, and Windows. Docker extends LXC with a kernel
and application-level API to facilitate container management and the management
of containerized applications. LXC also can be used as application container. rkt
is specifically designed to run application container in a cloud native environment,
i.e., CoreOS (Container Linux). Windows Server Container (WSC) is the Microsoft
version of application container.

Fig. 14.1 A taxonomy that classifies container technologies as application container, system
container, and container manager

224 E. Casalicchio

Fig. 14.2 The container life cycle [26]. Acquire is related to select and download a base image to
build the containerized application. Deliver concerns to bring the application in production. Deploy
is about deploying the application and maintaining its update. The run step set the management
system and runtime environment (e.g., scaling policy, health check, recovery policies). The final
step, Maintain, determines how you will get visibility into your application for maintenance

System containers allow to run a full OS in a container; hence, the container
is like a lightweight virtual machine. The layering concept applies also to system
container. Starting from a base operating system image, it could be customized
adding libraries, tools, and data in new layers. Linux Container (LXC) and
OpenVZ allow to share a Linux kernel among containers built from the same
base image. LXC uses standard kernel while OpenVZ uses a specialized kernel.
Windows Hyper-V Container (WHC) is the Microsoft version of system container;
to guarantee a strong environment isolation WHCs do not share the kernel among
containers.

A container manager is a framework providing a set of API to easily manage all
the life cycle of the container (cf., Fig. 14.2). Container manager can be classified
as on-premise solutions (to be installed, configured, and managed on private
datacenters or in cloud) or managed solutions (offered by cloud providers as a
service). Docker has been designed as a container management system; moreover,
the ecosystem of management container is in continuous evolution. For example,
Windows Server container and Hyper-V container both can be managed with
Docker. Also rkt offers APIs for easy application container management. Google
Container Engine, Microsoft Azzure Container Service, and Amazon ECS are three
examples of managed container manager offered as cloud platform (usually they
support Docker and LXC). Concerning system container, LXD is the manager for
LXC. OpenVz also provides container management APIs.

14 Container Orchestration: A Survey 225

14.3 Container Orchestration

Container orchestration allows cloud and application providers to define how to
select, to deploy, to monitor, and to dynamically control the configuration of multi-
container packaged applications in the cloud.

Container orchestration is concerned with the management at runtime to support
the deploy, run, and maintain phases (cf., Fig. 14.2). Container orchestrator usually
offers the following main features (cf., Fig. 14.3): resource limit control, scheduling,
load balancing, health check, fault tolerance, and autoscaling.

Resource limit control allows to reserve a specific amount of CPU and memory
for a container; that constraints can be used to make scheduling decisions and to
limit the interference among containers. Resource limit control features leverage the
equivalent mechanisms offered by the container manager. Indeed, while a container
can use all the resource available in the underlining system, container managers
provide APIs to limit the amount of memory and CPU used and the specific CPU
used.

Scheduling defines the policy used to place the desired amount of container
on desired nodes at a given time instant. Scheduling can be done on the basis
of resource constraints or node affinity or both. More sophisticated scheduler can
usually be integrated as external components (the custom feature in Fig. 14.3).

The load balancer does the work of distributing the load among multiple
container instances. Round-robin is the default implemented policy. More complex
policy can be provided by external load balancer (the custom feature in Fig. 14.3).

Health check is achieved controlling that a container is capable to answer
requests. Implementations foreseen TCP/UDP/SSH ports connection open checking
and HTTP request receive and answer checking.

Fault tolerance can be implemented as replica control and/or high availability
controller. Replica control allows to specify and maintain a desired number of
containers. Health check is used to determine when a faulty container should be
destroyed and a new one lunched to maintain the target number of replicas. High

Fig. 14.3 A taxonomy that classifies container orchestration technologies. In the up part of the
diagram are the features, and in the bottom part the specific technologies implementing the specific
features

226 E. Casalicchio

availability controllers allow to configure multiple orchestration manager to have
always control on the application in case an orchestrator node fails or is overloaded.
The same technique used to create high availability controllers can be used also to
implement scalable controllers.

Autoscaling allows to automatically add and remove containers. The imple-
mented policies are threshold based (on CPU and memory utilization) but in some
cases it is possible to plug-in more sophisticated autoscaler or to define custom
autoscaling policies (the custom feature in Fig. 14.3).

In the landscape of container orchestration frameworks the choice is between on-
premise solutions or managed solutions (as for the container managers). The main
on-premise solutions are: Docker Swarm, the native Docker orchestrator offering
clustering functionality for Docker containers, which lets system administrator to
turn a group of Docker engines into a single, virtual Docker engine. Kubernetes,
an orchestration system for Docker containers capable to handle scheduling and
to manage workloads based on user-defined parameters. Mesosphere Marathon, a
container orchestration framework for Apache Mesos. It offers key features for
running applications in a clustered environment. Cloudify, a cloud orchestration
framework that enables modeling of applications and services and automating their
entire life cycle. Cloudify is TOSCA compliant and could be used to deploy Docker
container, Docker Swarm cluster, or Kubernetes clusters.

The main examples of container orchestration as a service are Google Container
Engine, Amazon Elastic Container Service, and Microsoft Azure Container Service.

14.4 Reference Architecture

As described in the previous section, container orchestration can be automatized
using mechanisms such as scheduling, autoscaling, health check, load balancing,
and fault tolerance. However, the adaptation policies available are very simple, e.g.,
round-robin scheduling/load balancing and threshold-based autoscaling.

Because of the highly dynamic and complex environment in which containers are
operated, the variety of service level objective stated in service level agreement, the
willingness of customers to minimize costs, and the many goal a service provider
could have (e.g., maximize resource usage, reduce energy consumption, and satisfy
SLA in multitenant environment), there is an urgent need of complex adaptation
policies to make orchestration a real autonomic process with at least the following
capabilities: self-healing, to improve the application availability and resiliency;
self-optimization, to trade-off costs and performance while fulfilling Service Level
Agreement; and self-protection, to increase system/application security.

In the remaining the focus is mainly on self-healing and self-optimization of
application container management over distributed datacenters and in multitenant
environments. The attention is concentrated on why, when, where, and how to
deploy, to launch, to run, to migrate, and to terminate containers. All those actions
are defined in what is called an orchestration or adaptation policy.

14 Container Orchestration: A Survey 227

Fig. 14.4 The architecture for autonomic orchestration of containers

Figure 14.4 shows the architecture of an autonomic container orchestration
system based on the classical MAPE-K cycle [20].

As shown in Fig. 14.4, the orchestration should be multilayer. This consideration
has an impact on the whole orchestration problem. Adaptation at container platform
layer and at infrastructure layer should be coordinated by the adaptation policy.
Separating the infrastructure and the container platform adaptation could result in
interfering decisions leading to suboptimal configurations.

Why orchestration actions should occur is determined by specific objectives
of the customers or of the service providers. When the orchestration should take
place depends on events such as an increase in the workload intensity or volume,
change of SLA, node failures or critical states, and critical node load/health state.
Such events are monitored at different layers of the platform and the infrastructure.
The Planner component executes the orchestration policy to find the appropriate
system configuration (How and Where). Typically, the adaptation policy finds the
optimal or suboptimal system configuration that maximizes the provider utility and
that satisfies non-functional and functional constraints. The challenge is to define
sophisticated adaptation polices that account for the complexity of the system and of
the objectives. How is concerned with the method used to formulate the adaptation
problem, e.g., as linear or non-linear optimization problem, as ant colony problem,
as a genetic algorithm, and so on. The decision taken by the orchestrator is based on
the system and environment state information collected by the Monitor component
and analyzed by the Analyzer component. As shown in Fig. 14.4 the data should be
collected not only at container level but also at infrastructure level to coordinate the
adaptation of the two layers.

Where the adaptation will take place could be: at container or cluster of container,
at infrastructure level, at datacenter level, and at federation level. Compute nodes
(VMs) are grouped in clusters that can be part of the same datacenter or can
be geographically distributed (federation of datacenters). Each compute node in a

228 E. Casalicchio

cluster can run one or more containers, and the execution of containers is managed
by the container engine (CE) on the node (cf., Fig. 14.4). Some orchestrators
introduce an abstraction of the compute node that group logically related containers
(e.g., that does the same work or that communicate intensively) in a cluster usually
called pod. Such node abstraction can be considered a single entity of adaptation.

The Executor component implements the adaptation plan using the Container
Orchestrator API and the infrastructure management API.

For scalability and availability purposes, more than one orchestrator can be cre-
ated and configured. The orchestrators can simply be replicated for high availability
or can be federated (each orchestrator controls a different cluster of container). In
the latest case orchestrators will act independently and no solution provides methods
and tools for coordinating the action of federated orchestration systems.

14.5 State of the Art

Container orchestration raises many research issues in the following research
areas:

• Monitoring and analysis: workload characterization of containerized applica-
tions; coordinated monitoring and analysis of performance state at all the layer
of the cloud stack; correlation among container performance counters, VMs
performance counters, and PMs performance counters.

• Planning: definition of appropriate performance, scalability, and fault tolerance
models of container-based systems; definition of adaptation algorithms that
account for the multilayer nature of container-based systems, for the possible
distributed orchestrator (choreography) and for the variety of objectives and
constraints imposed by the functional and non-functional requirements.

In what follows, the state-of-the-art research is classified along the two main
research area mentioned above.

14.5.1 Monitoring and Analysis

Performance monitoring and characterization is a topic of increasing interest for
the containers’ research community. Also if has been recognized that the container
workload is different from the traditional cloud application workload, to the best
of our knowledge, there are no studies on workload characterization. The majority
of the literature reviewed is about performance evaluation studies except for [8]
where the authors assess the different measurement methodology used to collect
performance counters for CPU and disk I/O intensive Docker workload, and in

14 Container Orchestration: A Survey 229

[7] where the authors conducted a preliminary study that correlates container
performance counters (counters from /cgroup file system) with system performance
counters (from /proc file system).

The first seminal work on container performance evaluation [13] provides an
extensive comparison among a native Linux environment, Docker, and KVM. In
this work are compared the three environments in the presence of CPU intensive, I/O
intensive, network intensive, and NoSQL/SQL workloads. The main intention of the
work is to assess the performance improvement of running workloads in containers
rather than in VMs. The comparison is based on the performance metrics collected
by the benchmarking tools rather than on the workload footprint. A similar study,
aimed at comparing the performance of containers with hypervisors is [28]. While
standard benchmarks were used in the previous studies, the scientific workload is
considered in [2]. The authors shown that Docker memory configuration can be
tuned to make container performance be slightly better than VMs.

In [21] the authors studied the performance of container platforms running on top
of a cloud infrastructure, the NeCTAR cloud. Specifically the authors compared the
performance of Docker, Flockport (LXC), and the VM using the same benchmarks
as in [13]. The comparison was intended to explore the performance of CPU,
memory, network, and disk.

In [24] the authors proposed a study on the interference among multiple
applications sharing the same resources and running in Docker containers. The study
focuses on I/O, and it proposes also a modification of the Docker’s kernel to collect
the maximum I/O bandwidth of the machine it is running on.

The performance of containers running on Internet-of-Things devices are inves-
tigated in [27]. Docker runs on a Single Board Computer device such as Raspberry
Pi 21. As benchmark are used: system benchmarks to independently stress CPU,
memory, network I/O, and disk I/O; and application benchmarks reproducing
MySQL and Apache workload. The reference for comparison is the performance
of the system without any virtualization.

A qualitative evaluation of Docker as a platform for Edge Computing is in [18].
The evaluation criteria were: deployment and termination, resource and service
management, fault tolerance and caching. Results demonstrate that Docker provides
fast deployment, small footprint, and good performance.

In [41] the authors investigates the impacts of Docker configuration and resource
interference on the performance and scalability of big data workloads (four typical
Spark applications). The authors propose also a performance prediction model
based on the Support Vector Regression to predict the application performance with
different configurations and resource competition settings.

In [39] the authors present an extensive study that unravel the multi-faceted
nature of Docker storage, for wide range of file systems, and demonstrate its impact
on system and workload performance. In [11] is compared the performance of
Docker when the Union file system and the CoW file system are used to build image
layers.

230 E. Casalicchio

14.5.2 Self-optimization

Autonomic orchestration of containers could leverage more than 10 years of
research results in the field of autonomic computing [12, 17, 22, 36].

The adoption of container technologies call for new autonomic management
solutions [6, 34]. That is confirmed by the significant amount of research works,
published in the last 2 years, and addressing the problem of autoscaling and self-
healing in container-based systems.

An early study on container management [16] shows that Elastic Applica-
tion Container-based resource management outperforms the VM-based approach
in terms of feasibility and resource-efficiency. C-Port [1] is the first example
of orchestrator that makes it possible to deploy and manage container across
multiple clouds. The authors plan to address the issues of resource discovery
and coordination, container scheduling and placement, and dynamic adaptation.
However, the research is at an early stage. In terms of orchestration policy, they
developed a constraint-programming model that can be used for dynamic resource
discovery and selection. The constraints that they considered are availability, cost,
performance, security, or power consumption. In [30] the authors provide a general
formulation of the elastic provisioning of virtual machines for container deployment
as an integer linear programming problem, which takes explicitly into account
the heterogeneity of container requirements and virtual machine resources. Only
QoS and cost are considered in the problem formulation. In [37] the authors
propose an adaptive multi-instance container-based architecture targeting time-
critical applications. The solution is implemented using Docker and Kubernetes.
In [7] the authors analyze the behavior of the Kubernetes Horizontal Pods Auto-
scaling algorithm and propose a new solution to make a more appropriate allocation
of resources to fulfil application response time constraints. In [3] the authors
propose ELASTICDOCKER, an autonomic controller powering vertical elasticity
of Docker containers autonomously. ELASTICDOCKER scales up and down both
CPU and memory assigned to each container according to the application workload,
and live-migrates containers when there is no enough resources on the hosting
machine. The experiments show that ELASTICDOCKER helps to reduce expenses
for container customers, make better resource utilization for container providers,
and improve Quality of Experience for application end-users. As compared to
horizontal elasticity, ELASTICDOCKER outperforms Kubernetes Horizontal elas-
ticity by 37.63%. In [19] the authors propose an Ant Colony Optimization (ACO)
algorithm to schedule docker containers with the ultimate goal to use resources
more efficiently. The ACO algorithm has been implemented in Docker SwarmKit
and performance compared with the existing greedy scheduling algorithm: ACO
throughput is 15% higher than the greedy algorithm. In [15] the authors design
a novel application oriented Docker container (AODC)-based resource allocation
framework to minimize the application deployment cost in datacenters and to
support automatic scaling while the workload of cloud applications varies.

14 Container Orchestration: A Survey 231

In [4] is addressed the problem of properly assigning resources to containers in
a IoT scenario to reduce energy consumption. The authors propose DockerCap, a
software-level power capping orchestrator for Docker containers that follows an
Observe-Decide-Act loop structure: this allows to quickly react to changes that
impact on the power consumption by managing resources of each container at
runtime, to ensure the desired power cap. The paper shows that it is possible to
obtain results comparable with the state-of-the-art power capping solution provided
by Intel RAPL, still being able to tune the performances of the containers and even
guarantee SLA constraints.

14.5.3 Self-healing

The self-healing problem is addressed in [38] and [29].
In [38] the authors propose Serfnode a lightweight, platform agnostic, and

easy to integrate with an existing system of Docker containers. The proposed
solution contains a monitoring and self-healing mechanism based on Supervisor
(supervisord.org) for added resiliency.

In [29] is proposed an intuitive approach based on Computational Intelligence
(CI) for enhancing the dependability of container Docker Swarm. The proposed
CI-based approach predicts the possible failure of the host of a manager node by
observing its abnormal behavior. Thus, this indication can automatically trigger the
process of creating a new manager node or promoting an existing node as a manager
for enhancing the orchestrator’s dependability.

14.6 Final Remarks

As pointed out in the previous sections, the state-of-the-art mechanisms for
container orchestration should be enhanced introducing models and algorithms for
runtime self-adaptation. Among the many research challenges, an urgent answer is
required for the followings.

Monitoring and Workload Characterization Monitoring techniques and tools used
for the operating system and application levels do not allow to catch the performance
behavior of containers. Moreover, there is no a commonly agreed definition of QoS
metrics for container-based systems. Docker offers the docker stat command that
returns CPU and memory utilization for each running container. More detailed CPU,
memory, and network statistics can be accessed through the /containers/(id)/stats
API. In a recent work [25], the authors modify Docker and Docker Swarm in
order to monitor the I/O capacity and utilization of the containers with the goal
of controlling the QoS level of a Docker cluster. Characterization of container

www.supervisord.org

232 E. Casalicchio

workload is fundamental for the definition of performance models and autonomic
orchestration policies. To the best of our knowledge the literature lack of such
studies.

Performance Models Validated performance models and energy consumption mod-
els of container-based systems are inexistent. Performance models are widely
used in autonomic computing to determine the reconfiguration actions needed to
maintain the desired level of service. An alternative approach is the use of machine
learning techniques to determine the more appropriate reconfiguration action (e.g.,
reinforcement learning [35]).

Adaptation Models for Container Orchestration As already pointed out, the con-
tainer orchestration policies used until now are very simple. What the industry need
is the definition of a framework for QoS-aware, energy-aware, and legislation-aware
optimal adaptation for container orchestration. This framework should allow to
define system models, QoS, energy, and legal constraints, to find optimal adaptation
policies for container orchestration at runtime.

To conclude, the way toward the next generation of cloud computing platforms
is based on application virtualization rather than on hardware virtualization and that
requires a strong contribution from the research community focused not only on the
above research challenges but also on different area, for example, networking and
security.

Acknowledgements This work is funded by the research project Scalable resource-efficient
systems for big data analytics and financed by the Knowledge Foundation (grant: 20140032) in
Sweden.

References

1. M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, M. Steinder, Docker containers across
multiple clouds and data centers, in 2015 IEEE/ACM 8th International Conference on Utility
and Cloud Computing (UCC) (2015), pp. 368–371. https://doi.org/10.1109/UCC.2015.58

2. T. Adufu, J. Choi, Y. Kim, Is container-based technology a winner for high performance
scientific applications? in 17th Asia-Pacific Network Operations and Management Symposium,
APNOMS 2015, Busan, August 19–21 (IEEE, New York, 2015), pp. 507–510. https://doi.org/
10.1109/APNOMS.2015.7275379

3. Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, P. Merle, Autonomic vertical elasticity of docker con-
tainers with elasticdocker, in 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD) (2017), pp. 472–479. https://doi.org/10.1109/CLOUD.2017.67

4. A. Asnaghi, M. Ferroni, M.D. Santambrogio, Dockercap: a software-level power capping
orchestrator for docker containers, in 2016 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiqui-
tous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications
for Business Engineering (DCABES) (2016), pp. 90–97. https://doi.org/10.1109/CSE-EUC-
DCABES.2016.166

https://doi.org/10.1109/UCC.2015.58
https://doi.org/10.1109/APNOMS.2015.7275379
https://doi.org/10.1109/APNOMS.2015.7275379
https://doi.org/10.1109/CLOUD.2017.67
https://doi.org/10.1109/CSE-EUC-DCABES.2016.166
https://doi.org/10.1109/CSE-EUC-DCABES.2016.166

14 Container Orchestration: A Survey 233

5. B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, omega, and kubernetes. ACM
Queue 14, 70–93 (2016). http://queue.acm.org/detail.cfm?id=2898444

6. E. Casalicchio, Autonomic orchestration of containers: problem definition and research
challenges, in 10th EAI International Conference on Performance Evaluation Methodologies
and Tools, EAI (2016)

7. E. Casalicchio, V. Perciballi, Auto-scaling of containers: The impact of relative and absolute
metrics, in 2017 IEEE 2nd International Workshops on Foundations and Applications of Self*
Systems (FAS*W) (2017), pp. 207–214. https://doi.org/10.1109/FAS-W.2017.149

8. E. Casalicchio, V. Perciballi, Measuring docker performance: what a mess!!! in Proceedings
of the 8th ACM/SPEC on International Conference on Performance Engineering Companion,
ICPE ’17 Companion (ACM, New York, 2017), pp. 11–16. https://doi.org/10.1145/3053600.
3053605.

9. A. Celesti, M. Fazio, M. Giacobbe, A. Puliafito, M. Villari, Characterizing cloud federation
in IoT, in 2016 30th International Conference on Advanced Information Networking and
Applications Workshops (WAINA) (2016), pp. 93–98. https://doi.org/10.1109/WAINA.2016.
152

10. R. Dua, A.R. Raja, D. Kakadia, Virtualization vs containerization to support PaaS, in
Proceedings of 2014 IEEE International Conference on Cloud Engineering, IC2E ’14 (2014),
pp. 610–614

11. R. Dua, V. Kohli, S. Patil, S. Patil, Performance analysis of union and cow file systems with
docker, in 2016 International Conference on Computing, Analytics and Security Trends (CAST)
(2016), pp. 550–555. https://doi.org/10.1109/CAST.2016.7915029

12. F. Faniyi, R. Bahsoon, A systematic review of service level management in the cloud. ACM
Comput. Surv. 48(3), 43:1–43:27 (2015). https://doi.org/10.1145/2843890

13. W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance comparison of virtual
machines and Linux containers. Technical Report, RC25482(AUS1407–001), IBM, IBM
Research Division, Austin Research Laboratory (2014)

14. W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof, M. D’Souza, S. Devoid, D.
Murphy-Olson, N. Desai, F. Meyer, Skyport: container-based execution environment manage-
ment for multi-cloud scientific workflows, in Proceedings of the 5th International Workshop on
Data-Intensive Computing in the Clouds, DataCloud ’14 (IEEE Press, Piscataway, NJ, 2014),
pp. 25–32. http://dx.doi.org/10.1109/DataCloud.2014.6

15. X. Guan, X. Wan, B.Y. Choi, S. Song, J. Zhu, Application oriented dynamic resource allocation
for data centers using docker containers. IEEE Commun. Lett. 21(3), 504–507 (2017). https://
doi.org/10.1109/LCOMM.2016.2644658

16. S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, R. Han, Elastic application container: A lightweight
approach for cloud resource provisioning, in 2012 IEEE 26th International Conference on
Advanced Information Networking and Applications (2012). pp. 15–22. https://doi.org/10.
1109/AINA.2012.74

17. M.C. Huebscher, J.A. McCann, A survey of autonomic computing — degrees, models,
and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008). http://doi.acm.org/10.1145/
1380584.1380585

18. B.I. Ismail, E.M. Goortani, M.B.A. Karim, W.M. Tat, S. Setapa, J.Y. Luke, O.H. Hoe,
Evaluation of docker as edge computing platform, in 2015 IEEE Conference on Open Systems
(ICOS) (2015), pp. 130–135. https://doi.org/10.1109/ICOS.2015.7377291

19. C. Kaewkasi, K. Chuenmuneewong, Improvement of container scheduling for docker using
ant colony optimization, in 2017 9th International Conference on Knowledge and Smart
Technology (KST) (2017), pp. 254–259. https://doi.org/10.1109/KST.2017.7886112

20. J.O. Kephart, D.M. Chess, The vision of autonomic computing. Computer 36(1), 41–50 (2003).
https://doi.org/10.1109/MC.2003.1160055

http://queue.acm.org/detail.cfm?id=2898444
https://doi.org/10.1109/FAS-W.2017.149
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1109/WAINA.2016.152
https://doi.org/10.1109/WAINA.2016.152
https://doi.org/10.1109/CAST.2016.7915029
https://doi.org/10.1145/2843890
http://dx.doi.org/10.1109/DataCloud.2014.6
https://doi.org/10.1109/LCOMM.2016.2644658
https://doi.org/10.1109/LCOMM.2016.2644658
https://doi.org/10.1109/AINA.2012.74
https://doi.org/10.1109/AINA.2012.74
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
https://doi.org/10.1109/ICOS.2015.7377291
https://doi.org/10.1109/KST.2017.7886112
https://doi.org/10.1109/MC.2003.1160055

234 E. Casalicchio

21. Z. Kozhirbayev, R.O. Sinnott, A performance comparison of container-based technologies for
the cloud. Futur. Gener. Comput. Syst. 68, 175–182 (2017). http://dx.doi.org/10.1016/j.future.
2016.08.025. http://www.sciencedirect.com/science/article/pii/S0167739X16303041

22. A.L. Lemos, F. Daniel, B. Benatallah Web service composition: a survey of techniques and
tools. ACM Comput. Surv. 48(3), 33:1–33:41 (2015). http://doi.acm.org/10.1145/2831270

23. B.D. Martino, G. Cretella, A. Esposito, Advances in applications portability and services
interoperability among multiple clouds. IEEE Cloud Comput. 2(2), 22–28 (2015)

24. S. McDaniel, S. Herbein, M. Taufer, A two-tiered approach to I/O quality of service in docker
containers, in 2015 IEEE International Conference on Cluster Computing (2015), pp. 490–491.
https://doi.org/10.1109/CLUSTER.2015.77

25. S. McDaniel, S. Herbein, M. Taufer, A two-tiered approach to I/O quality of service in Docker
containers, in Proceedings of 2015 IEEE International Conference on Cluster Computing,
CLUSTER ’15 (2015), pp. 490–491

26. J. McGee, The 6 steps of the container lifecycle (2016). https://www.ibm.com/blogs/cloud-
computing/2016/02/the-6-steps-of-the-container-lifecycle/

27. R. Morabito, A performance evaluation of container technologies on internet of things devices,
in 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
(2016), pp. 999–1000. https://doi.org/10.1109/INFCOMW.2016.7562228

28. R. Morabito, J. Kjällman, M. Komu, Hypervisors vs. lightweight virtualization: a performance
comparison, in 2015 IEEE International Conference on Cloud Engineering (2015), pp. 386–
393. https://doi.org/10.1109/IC2E.2015.74

29. N. Naik, Applying computational intelligence for enhancing the dependability of multi-cloud
systems using docker swarm, in 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), (2016), pp. 1–7. https://doi.org/10.1109/SSCI.2016.7850194

30. M. Nardelli, C. Hochreiner, S. Schulte Elastic provisioning of virtual machines for container
deployment, in Proceedings of the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering Companion, ICPE ’17 Companion (ACM, New York, 2017), pp. 5–10.
http://doi.acm.org/10.1145/3053600.3053602

31. S. Natarajan, A. Ghanwani, D. Krishnaswamy, R. Krishnan, P. Willis, A. Chaudhary, An
analysis of container-based platforms for NFV. Technical Report, IETF (2016)

32. D.T. Nguyen, C.H. Yong, X.Q. Pham, H.Q. Nguyen, T.T.K. Loan, E.N. Huh, An index
scheme for similarity search on cloud computing using mapreduce over docker container, in
Proceedings of the 10th International Conference on Ubiquitous Information Management and
Communication, IMCOM ’16 (ACM, New York, 2016), pp. 60:1–60:6. http://doi.acm.org/10.
1145/2857546.2857607

33. OASIS, Topology and orchestration specification for cloud applications. Technical Report
Version 1.0, OASIS Standard (2013)

34. C. Pahl, Containerization and the PaaS cloud. IEEE Cloud Comput. 2(3), 24–31 (2015). https://
doi.org/10.1109/MCC.2015.51

35. A. Pelaez, A. Quiroz, M. Parashar, Dynamic adaptation of policies using machine learning,
in 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid) (2016), pp. 501–510, https://doi.org/10.1109/CCGrid.2016.64

36. S. Singh, I. Chana, Qos-aware autonomic resource management in cloud computing: a
systematic review. ACM Comput. Surv. 48(3), 42:1–42:46 (2015). http://doi.acm.org/10.1145/
2843889

37. V. Stankovski, J. Trnkoczy, S. Taherizadeh, M. Cigale, Implementing time-critical functionali-
ties with a distributed adaptive container architecture, in Proceedings of the 18th International
Conference on Information Integration and Web-based Applications and Services, IIWAS ’16
(ACM, New York, 2016), pp. 453–457. http://doi.acm.org/10.1145/3011141.3011202

38. J. Stubbs, W. Moreira, R. Dooley Distributed systems of microservices using docker and
serfnode, in 2015 7th International Workshop on Science Gateways (2015). pp. 34–39. https://
doi.org/10.1109/IWSG.2015.16

http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1016/j.future.2016.08.025
http://www.sciencedirect.com/science/article/pii/S0167739X16303041
http://doi.acm.org/10.1145/2831270
https://doi.org/10.1109/CLUSTER.2015.77
https://www.ibm.com/blogs/cloud-computing/2016/02/the-6-steps-of-the-container-lifecycle/
https://www.ibm.com/blogs/cloud-computing/2016/02/the-6-steps-of-the-container-lifecycle/
https://doi.org/10.1109/INFCOMW.2016.7562228
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/SSCI.2016.7850194
http://doi.acm.org/10.1145/3053600.3053602
http://doi.acm.org/10.1145/2857546.2857607
http://doi.acm.org/10.1145/2857546.2857607
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/CCGrid.2016.64
http://doi.acm.org/10.1145/2843889
http://doi.acm.org/10.1145/2843889
http://doi.acm.org/10.1145/3011141.3011202
https://doi.org/10.1109/IWSG.2015.16
https://doi.org/10.1109/IWSG.2015.16

14 Container Orchestration: A Survey 235

39. V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke, D. Hildebrand, M. Mohamed, N. Mandagere,
W. Li, R. Rangaswami, M. Zhao, In search of the ideal storage configuration for docker
containers, in 2017 IEEE 2nd International Workshops on Foundations and Applications of
Self* Systems (FAS*W) (2017), pp. 199–206. https://doi.org/10.1109/FAS-W.2017.148

40. W. Vogels, Under the hood of Amazon EC2 container service (2015). http://www.
allthingsdistributed.com/2015/07/under-the-hood-of-the-amazon-ec2-container-service.html

41. K. Ye, Y. Ji, Performance tuning and modeling for big data applications in docker containers,
in 2017 International Conference on Networking, Architecture, and Storage (NAS) (2017), pp.
1–6. https://doi.org/10.1109/NAS.2017.8026871

https://doi.org/10.1109/FAS-W.2017.148
http://www.allthingsdistributed.com/2015/07/under-the-hood-of-the-amazon-ec2-container-service.html
http://www.allthingsdistributed.com/2015/07/under-the-hood-of-the-amazon-ec2-container-service.html
https://doi.org/10.1109/NAS.2017.8026871

Chapter 15
A Cloud-Based Overlay Networking
for the Internet of Things: Quantitative
Evaluation

Dario Bruneo, Salvatore Distefano, Francesco Longo, Giovanni Merlino,
and Antonio Puliafito

15.1 Introduction

In a typical Infrastructure-as-a-Service (IaaS) Cloud, users are able to create and
bring up virtual machines (VMs), access the instances through ssh, VNC, or Web-
based virtual console as well as to instantiate even topologically complex virtual
networks among a set of VMs. Any solution meant to take advantage of IoT
resources available outside the datacenter, if those are to be provided according to
IaaS principles, would need to implement at least similar facilities.

In a heavily distributed ecosystem, such as IoT-related scenarios, many require-
ments diverge significantly in comparison to typical IaaS Cloud environments, such
as the presence of nodes installed behind firewalls and/or NATs (especially when
IPv6 deployments are not an option) or, more in general, the necessity to deal
with any restricted environment with denied-by-default (institutional or corporate)
security policies. Such constraints call for more powerful mechanisms to enable core
functionalities for virtual infrastructure management, i.e., remote access to board-
hosted resources and instantiation of virtual networks.

Any network virtualization [1, 2] mechanism for IoT infrastructure thus requires
at least some form of reconfiguration capabilities for board-side networking facil-
ities as well. Yet, in contrast to typically datacenter-oriented IaaS, the physical
environment (cabling and media access setup, logical topologies and hierarchies,

D. Bruneo · F. Longo (�) · G. Merlino · A. Puliafito
Università di Messina, Messina, Italy
e-mail: dbruneo@unime.it; flongo@unime.it; gmerlino@unime.it; apuliafito@unime.it

S. Distefano
Università di Messina, Messina, Italy
Kazan Federal University, Kazan, Russia
e-mail: sdistefano@unime.it; s_distefano@it.kfu.ru

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_15

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_15&domain=pdf
http://orcid.org/0000-0003-0385-2711
mailto:dbruneo@unime.it
mailto:flongo@unime.it
mailto:gmerlino@unime.it
mailto:apuliafito@unime.it
mailto:sdistefano@unime.it
mailto:s_distefano@it.kfu.ru
https://doi.org/10.1007/978-3-319-92378-9_15

238 D. Bruneo et al.

role allocation for equipment) in IoT scenarios is not always under control of the
designer of the infrastructure, which may as well be opportunistically assembled,
e.g., volunteer-contributed.

In this work we describe a rationale and some mechanisms to enable such
functionalities when dealing with the unique requirements and challenges dictated
by IoT environments, e.g., embedded boards and other constrained devices. In
particular, overlay networking is addressed here to provide suitable facilities on
top of Cloud-managed IoT resources in a technology agnostic fashion, still taking
into account the limitations of smart devices, while at the same time suitable
to be mapped onto an IaaS-focused solution, as earlier [3] investigated in terms
of a device-centric approach for sensor-hosting nodes. A preliminary quantitative
evaluation is also proposed, to assess and validate the feasibility of the approach.

15.2 IoT Infrastructure as a Service

In our approach [4] to Cloud/IoT integration at the infrastructure level, we envi-
sioned a virtualization layer for boards, able to provide access to I/O pins, such
as GPIO, as a Service through RESTful interfaces, and to send (predefined or
custom) commands to the environment running on the board. Here, we propose our
implementation of such an approach, namely the Stack4Things framework, from
now on referred to as S4T, designed by extending certain OpenStack subsystems
to smoothly integrate and leverage as much existing functionalities as possible.
OpenStack is a widely known, Open Source Cloud middleware exploited in both
academic and commercial contexts.

In terms of hardware options with regard to boards, we confine the discussion
on purpose to relatively smart embedded devices, such as modern Arduino-based
hybrid systems, hosting either kind of (low power) micro-processor (MPU) and
micro-controller (MCU) units. Such a MCU-equipped board is suited to host a
minimal Linux distro, e.g., OpenWRT, able then to host a number of tools and
runtime environments, such as Node.js or Python, where the S4T lightning-rod,
the node-side component of the S4T architecture, executes on the MPU side
and interacts with the OS tools and services of the board, and with sensing
and actuation resources through I/O pins. It acts as the point of contact with
Cloud infrastructure. This is ensured by a Web Application Messaging Protocol
(WAMP) [5] and WebSocket-based communication between the lightning-rod and
the Cloud, in particular the S4T IoTronic service, which is characterized by the
standard architecture of an OpenStack service, as depicted in Fig. 15.1.

The S4T IoTronic conductor represents the core of the service, managing the S4T
IoTronic database that stores all the necessary information. The S4T IoTronic APIs
exposes a REST interface for the end users that may interact with the service both
via a custom client (S4T IoTronic command line client) and via a Web browser. In
fact, the OpenStack Horizon dashboard has been enhanced with a S4T dashboard
exposing all the functionalities provided by the S4T IoTronic service and other

15 A Cloud-Based Overlay Networking for the Internet of Things 239

Fig. 15.1 S4T cloud-side architecture

software components. In particular, the dashboard also deals with the access to
board-internal services, redirecting the user to the S4T IoTronic WS tunnel agent.
This piece of software is a wrapper and a controller for the WS server to which the
boards connect through the use of S4T wstunnel libraries.

Similarly, the S4T IoTronic WAMP agent controls the WAMP router and acts as
a bridge between other subsystems and the boards assigned to the corresponding
instance of the agent. The agent translates AMQP messages into WAMP messages
and vice versa.

To implement this IaaS-like IoT-Cloud paradigm, specific facilities and mech-
anisms, such as those required to access remote (I/O) resources as well as the
ones allowing to manage network topologies for things, are required. The former
are addressed by a specific module running on IoT nodes, Stack4Things lightning-
rod, adopting either pub/sub or RPC-style I/O patterns to let the users interact with
board-local resources through the Cloud, while access to I/O pins is exploited for
interaction with sensing and actuation resources. Figure 15.2 shows the lightning-
rod architecture. It allows users to interact with boards even in the presence of NATs
or firewalls by exploiting WebSocket and WAMP-based communication between
a board and the Cloud. WebSocket is a network-agnostic protocol providing a
full-duplex TCP communication channel over a single HTTP connection, used
to overcome the restrictions imposed by middle boxes and the enforced policies
therein by leveraging ubiquitous (outbound) HTTP support. The Web Application
Messaging Protocol (WAMP) [5] is a sub-protocol of WebSocket for messaging
according to both publish/subscribe and routed remote procedure call (RPC)
paradigms.

This way, the S4T I/O hardware abstraction layer (HAL) is tasked at providing
a software interface for the I/O pins by exposing them as i-nodes of a virtual
filesystem. Then, the lightning-rod engine is at the heart of the thing-side S4T
architecture, managing all the interactions with the Cloud counterpart through a

240 D. Bruneo et al.

low-level I/O
primitives

smart IoT
board

s4t I/O HAL

s4
t W

A
M

P
 li

b

s4t
lightning-rod

engine

s4t wstunnel lib

HTTP
daemon

SSH
daemon

da
ta

 a
nd

co

m
m

an
ds

 to
/fr

om

cl
ou

d
communication
to/from internal
services

s4t lightning-rod ...

sensors &
actuators

...

board
pins

WS
communication

socket
communication

serial
communication

boa
pins

...

sa
m

pl
es

to

 C
lo

ud

other
communication

Fig. 15.2 Stack4Things thing-side stack: logical architecture

WAMP router on a WebSocket full-duplex channel. By these, specific commands to
the device sensing and actuation resources via their digital/analog I/O pins can be
remotely delivered, from either the Cloud or other devices, exploiting the WAMP
functionalities provided by the S4T WAMP libraries. Indeed, corresponding REST
resources get automatically generated, exposing user-defined commands Cloud-
side. Invoking these resources triggers the execution of the corresponding code on
top of the smart board. Furthermore, the S4T wstunnel libraries allows to establish
reverse WebSocket tunnels to a WebSocket server on the Cloud. This way, thing-
side (i.e., local) services can be directly accessed from end users by relaying traffic
coming in over WebSocket tunnels to the corresponding service, while outgoing
traffic is tunneled back up to the Cloud WebSocket server, where users connect for
this service remoting functionality.

15.3 Overlay Networking for IoT

Our approach to overlay networking is based on enabling mechanisms in terms
of custom layering and board-side tunneling facilities, to be coupled with the
corresponding Cloud-side adaptations. To this end such preliminary investigation
mostly focuses on virtualization architecture and patterns.

15 A Cloud-Based Overlay Networking for the Internet of Things 241

15.3.1 Tunneling

As remote infrastructure, boards are possibly going to be available over very
restrictive, IPv4-only deployments. The only assumption that can (for all purposes,
always) be considered true is outgoing Web traffic being permitted, i.e., board-
initiated communication over standard HTTP/HTTPS ports. This actually rules
out most messaging protocols, including very popular ones in IoT (e.g., MQTT),
which are plainly TCP-based and by default cannot be recognized as Web traffic.
We thus resorted to an HTTP-borne mechanism for bidirectional connectivity and
reachability of internal services, namely WS.

WebSockets [6] as channels between a browser and a server are considered
standard facilities for bidirectional communication and in particular server-pushed
messaging. One of the main advantages of WS is that it is network agnostic, by just
piggybacking communication onto standard HTTP interactions. This is of benefit
for those environments which block Web-unrelated traffic using firewalls. Less
explored is the creation of generic TCP tunnels over WS, a way to get client-initiated
connectivity to any server-side local (or remote) service.

In early work [7] we devised a design and implementation of a novel reverse
tunneling technique, as a way to provide server-initiated, e.g., Cloud-triggered, con-
nectivity to any board-hosted service, or any other node on a contributed resource
network, e.g., a WSN. In particular the latter may enable typical IoT scenarios, e.g.,
Machine-to-Machine (M2M) interactions, by supporting these patterns in a device-
centric [3] fashion. This way, we provide a gateway to edge nodes and services,
acting at a very basic level as a proxy for access to data gathered from mostly
passive resources. Yet, such gateway may also act as a relay to activate remoting
toward nodes in a masqueraded network, thus allowing designers to explore options
beyond protocols such as Traversal Using Relays around NAT (TURN) [8].

Figure 15.3 depicts systems, flows, and interactions of such a WS reverse tunnel
(abbreviated as rtunnel), in the case of board-provided access to a service hosted
on the board itself. By leveraging the diagram, in the following we outline the
sequence of operations for the setup of an rtunnel. The rtunnel client (e.g., a board)
first sends a WS connection request to the rtunnel server, specifying a TCP port.
When the rtunnel server receives the WS connection request, a new TCP server is
brought up listening on the specified port, the WS request is then accepted, and a
WS connection (depicted in the figure as “control WS”) is started. When an external

Fig. 15.3 Low-level functional diagram of WS-based reverse tunnel

242 D. Bruneo et al.

TCP client tries to connect to the TCP server on the rtunnel server side, the new
TCP connection is paused and, through the control WS, a WS message is sent in
order to signal the request for a new TCP connection, and specify a unique ID for
that connection. When the rtunnel client receives the message signaling the request
for a new TCP connection, it sends a new WS connection request to the rtunnel
server, specifying the ID of the connection. When the rtunnel server receives the
WS connection request, it checks if the received ID does not match any of the
existing TCP connections and, if so, it accepts the request and opens a new WS
connection (depicted in figure as “WS tunnel”). The new TCP connection thus gets
piped to the new WS connection (that acts as a WS-encapsulated tunnel for TCP
segments) and then resumed. On the WS rtunnel client side, as soon as the new
WS tunnel is established, a new TCP client is brought up connecting to the local
service of interest, and such a new TCP connection gets piped to the new WS tunnel.
TCP segments coming from the external TCP client are now able to reach the local
service, and traffic thus gets to flow back and forth until the rtunnel is torn down.

15.3.2 Layering

As long as WS-based tunnels may be instantiated by the Cloud, a robust mechanism
is already in place for accessing board-hosted services. What is still missing are
solutions to overlay network- and datalink-level addressing and traffic forwarding
on top of this facility. Some approaches for creating VPNs over WS are already
available [9], but these solutions do not expose a decoupled control machinery nor
the advantages of an on-demand approach.

In the following, we describe the proposed layering for WS tunnel-based layer-2
virtual networks. In Fig. 15.4 a diagram is modeled after the low-level reverse tunnel
one, but focused on the instantiation of, e.g., a virtual bridge between two boards.

To better understand the description of the aforementioned diagram in the
following, first it is useful to introduce a tool which is part of the solution. Socat
is a networking “swiss army knife” available as command-line tool for Unix
systems that, as its counterpart Netcat (nc), provides to network experimenters a
set of facilities and shortcuts (e.g., socket piping, socket tuning, virtual TUN/TAP

Fig. 15.4 Low-level functional diagram of bridged tunneling over WS

15 A Cloud-Based Overlay Networking for the Internet of Things 243

devices, process control). Its minimal build-time dependencies (i.e., the C library
only) translate into a remarkably flexible tooling also when it comes to IoT-class,
constrained devices, as long as a (possibly stripped-down) version of a POSIX-
compatible system and the relevant networking stack are available.

Still sticking to the setup of a control WS, as a preliminary step in this workflow,
in this case a rtunnel gets activated for each board to be virtually bridged. As a
simplified scenario, the diagram depicts just two such boards, but no limitation is in
place on the number of remote boards to be virtualized in terms of networking. As
any board here, from now on referred as client, needs to go through the same set of
operations, we will describe just a single instance for the sake of brevity.

Taking into consideration the uppermost board in the diagram, a first step consists
in the setup of a TCP connection based on a WS-based rtunnel, obtained by
exposing, on the server side, a listening socket on a local port, as soon as the
rtunnel server accepts a request for a new data rtunnel. The TCP connection, once
established, needs then to be piped to the rtunnel that encapsulates TCP segments in
a WS-based stream.

On the client side of the WS rtunnel, once the rtunnel is established, a new TCP
client is brought up connecting to a local (Socat-provided) listening port, piping this
TCP connection back to the rtunnel.

A level-3 tunnel gets then established over such TCP-based tunnel by leveraging
a Socat instance operating, on both sides of the chain, in listening mode. Upon
connection, this tunnel starts exposing a virtual TUN device on each side, set up
with IP addresses of user choice, as long as these belong to the same subnet.

Even if the above reported steps are to be considered logically operations to be
performed early on, all steps are to be considered timing insensitive, by employing
retries and listening sockets where needed.

When a level-2 encapsulation over an IP-based communication is needed, the
system firstly creates a GRE tunnel to expose an Ethernet-compatible interface.
Accordingly, the tunnel-hosting virtual device is set to TAP whereas endpoints are
the previously configured TUN IPs. Then, in order to complete the workflow, this
interface is added to a dedicated virtual bridge on the server.

In order to create IP-based tunnels, we used the Generic Routing Encapsulation
(GRE) that is an IETF standard for a no-frills IP-in-IP tunneling protocol [10].
Besides level-3 encapsulation support, tunneling of level-2 frames (over to the
corresponding virtual TAP device) is also possible.

Through the reversed layering devised here, we are able to provide a basic but
flexible mechanism for instantiation of a virtual network, either placing boards in
the same broadcast domain, making them just routable or, alternatively, reachable
higher up in the networking stack, i.e., directly at the transport level. Ultimately
this means being able to set up, according to user needs, either a virtual bridge, i.e.,
same level-2 broadcast domain, by means of GRE TAP-based tunnels, virtual NICs,
socat piping, and reverse tunneling over WS, or a virtual private network, i.e., level-
3 reachability, by leveraging just a subset of the aforementioned mechanisms, plus
static routes configured on the server for board-to-board forwarding.

244 D. Bruneo et al.

15.3.3 Server-Less Mesh Implementation

The above described scenario can also be reproduced in a fully peer-to-peer
configuration, thanks to persistent WAMP control channel availability. To do that,
the Cloud selects one board, from the pool of boards that have to be connected over
the virtual network, that will act as a central node in a star topology. Such a selection
is performed according to a ranking for suitability in taking that role, on the basis
of current load and availability of on-board resources. An ad-hoc variation of the
TCP hole punching [11] technique, in which the Cloud would preliminarily act as
the required third party in the phase of connection establishment, is exploited to
allow all the other devices belonging to the virtual network to connect to the chosen
central node by establishing WebSocket-based reverse tunnels. While hole punching
helps to overcome the natural limitations imposed by NAT traversal, especially in
the case of symmetric (e.g., double-sided NAT) configurations, reverse tunneling
helps actually punch holes across firewalls with (Cloud-initiated) WebSockets. On
top of such a peer-based WebSocket-based infrastructure, the virtual network is
built, in a star topology. At this point, network communication is fully peer-to-peer
and no further actions are required from the Cloud, until virtual network teardown.
Moreover, other topologies may be enabled as well, such as a full-mesh at layer
2 among all the boards selected to be interconnected over a Cloud-initiated virtual
network.

In Fig. 15.5 a simple 3-node network (plus the Cloud) is depicted, where the
thick double-sided blue arrows correspond to the star topology, when the node in
the middle of the figure is chosen as the center of the star, while a similar arrow in
red stands for the missing link among peers to establish a full mesh. The thin single-
sided black arrow represents both (transient) WS-based connection establishment
and just steady command streams afterwards, having the Cloud at that point already
hole-punched the nodes and subsequently torn down its tunnels to those.

In that case the topology would be a tree over the set of bridges exposed by
the boards, dynamically instantiated by means of, e.g., a protocol for automatic
configuration of bridges belonging to the Spanning Tree family. In this case the
virtual network would not feature any single point of failure, nor have a node be
the bottleneck for all the generated traffic inside the network itself. On the other
hand, this configuration requires a longer setup phase, due to the establishment of
an higher number of tunnels, n(n − 1)/2, in proportion to the number of nodes
n, compared to the star topology, n − 1, and more importantly a slightly higher
baseline in terms of requirements, as each node would host a virtual bridge, not just
the central node.

15 A Cloud-Based Overlay Networking for the Internet of Things 245

Fig. 15.5 Cloud-enabled server-less star and mesh topologies

15.4 Quantitative Evaluation

In order to test and validate the proposed solution, we developed experiments on
a smart city environment. #SmartME [12] is a crowdfunding project that aims at
collecting a number of field-deployed networks of sensors and actuators in Messina
into a federated Smart City infrastructure, provided as-a-service [13], actually an
instance of a so-called Software-Defined City [14]. Leveraging such infrastructure,
it is possible to collect data and extract information to build services for citizens,
possibly taking part in this city-scale network through the involvement of, e.g.,
smartphones, by which it is possible to interact with objects, and may even turn
themselves into data producers.

15.4.1 Scenario

For our network virtualization approach, #SmartME represents an interesting
testbed and case study, thanks to a development, deployment, and testing platform
which is integrated with smart boxes, hosting sensors, and/or actuators, possibly
already deployed in the district albeit employed for specific application domains
only to this day, as such useful for a limited number of purposes.

246 D. Bruneo et al.

The virtual networking subsystem has been put to test in this context by
exploiting the #SmartME testbed, considering two main scenarios, one based on
clients (e.g., boards) behind residential xDSL gateways, e.g., at home, and another
one based on clients belonging to the (Fast) Ethernet-switched network of the
university campus, respectively.

The first one is thus about connectivity scenarios over a Wide-Area Network,
whereas the second one over a LAN, respectively.

15.4.2 Experimental Results

Our quantitative evaluation begins with some theoretical considerations, such as
packet size and overhead estimates, that can be considered a preliminary analysis.
Later we provide an evaluation focusing on specific key performance indices,
namely latency and throughput.

Analyzing the overhead of the framework in terms of protocol headers and
encapsulation format, the overhead introduced by WS is equal to 6 bytes (2 for
the header and 4 for the mask value) while the one introduced by TCP tunneling
is equal to 20 bytes. With respect to Ethernet framing, the overhead is equal to
18 when a TAP interface is needed instead of a TUN, thus reaching a total value
of 44 bytes. Moreover, when security mechanisms are adopted, by using TLS, we
have to add other 41 bytes, thus reaching a value of overhead equal to 85 bytes per
packet. From this analysis, we can observe that the packet size is still comparable
with the overhead experienced using a typical VPN (e.g., OpenVPN) that roughly is
equal to 69 bytes per packet (41 bytes of overhead for security and 28 for tunneling,
respectively), i.e., only slightly smaller than in our solution.

Tables 15.1 and 15.2 report on the set of experiments that have been conducted.
The experiments are based on the iperf3 [15] tool for measuring throughput and the
ubiquitous ping tool to gauge latency, the latter by means of ICMP echo requests to
obtain Round-Trip Time values as estimation of delay. In both cases, the test setup
consists in having a server ready and generating traffic over TCP (iperf) or ICMP
requests (ping) from the client, which collects partial and final statistics. Values in
the table are averages computed over a number of 1000 samples, where each chunk
of ten samples represent a single run for the tool. We did not include variance values
because they are negligible.

Table 15.1 Throughput and latency measurements: xDSL

Topology/technology iperf: throughput [Mbps] ping: latency (RTT) [ms]

direct 0.993 85.2

vpn-p2p 0.964 88.95

vpn-srv 0.811 136.8

s4t-p2p 0.405 83.38

s4t-srv 0.335 123.6

15 A Cloud-Based Overlay Networking for the Internet of Things 247

Table 15.2 Throughput and latency measurements: campus network

Topology/technology iperf: throughput [Mbps] ping: latency (RTT) [ms]

direct 92.5 0.23

vpn-p2p 88.02 0.725

vpn-srv 81.75 1.501

s4t-p2p 10.65 1.813

s4t-srv 4.017 3.579

The first column indicates the kind of technology employed and under which
topology: in particular, direct refers to tests between two hosts directly connected,
over WAN or LAN, respectively. The vpn-p2p abbreviation refers to an OpenVPN
server to which an OpenVPN client is connected, under the same roles as the
two aforementioned hosts. Same happens for s4t-p2p, in this case with two hosts
controlled by the S4T Cloud which, by first hole-punching through in the setup
phase, connects one to the other directly over a WebSocket tunnel in combination
with SOCAT. In the vpn-srv and s4t-srv cases, the OpenVPN server and the S4T
Cloud, respectively, enable two clients to act as the two hosts, connected over a
bridge which resides on the server (or the Cloud).

For the sake of comparing under the most relevant conditions, OpenVPN has
been tested in TCP mode, and various parameters (e.g., MTU of the TUN interfaces,
MSS for both iperf and the TCP tunnels) had already been tuned for S4T in the
implementation phases, as also discussed below. As latencies are absolutely aligned
in the various scenarios, or at least very predictable (e.g., natural increase for multi-
hop setups, such as server-based OpenVPN or S4T Cloud-based virtual network
for two clients), we will focus the discussion on the more interesting and insightful
values obtained for the throughput metric, albeit it is actually latency that may be
considered the most relevant metric for the use case under consideration, as it is
key for near real-time (e.g., multimedia) applications, and the most reliable metric
in general for embedded systems, considering that throughput is naturally more
susceptible to other factors, e.g., high CPU load or RAM usage, differences in the
media interface, etc.

iPerf3 works by repeatedly sending an array of len bytes for t ime seconds, where
len by default is 128 kB for TCP, and the default for t ime is 10 s. Even if not reported
in the table, retransmissions, equal to about 500 in case of SOCAT-based TUN-
over-TCP, i.e., where the s4t-p2p scenario is stripped of the WS tunnel, in a 10-s
period, ramp up to almost 5000 for the same time interval when also piping over WS,
i.e., the full end-to-end s4t-p2p, thus roughly increasing retransmissions tenfold.
Throughput thus decreases correspondingly to about a tenth, from almost 90 Mbps
to about 10 Mbps to be precise.

This degradation in the performance with regard to throughput derives from a
limited CWND (Congestion Window) on average, less than 10 kB, compared to 2–
3 M under ideal conditions, i.e., corresponding to about 90 Mbps throughput as seen
in the table. The problem then lies in a relatively high number of retransmissions,

248 D. Bruneo et al.

leading to a comparatively small congestion window. Some workarounds exist,
either to lower retransmissions in this scenario, such as disabling Nagle’s algorithm,
or to make TCP more aggressively reactive to retransmissions, ramping up speed
more quickly, such as switching to a different congestion control policy, in particular
Scalable [16], both of which have been applied during testing. Indeed, without the
workarounds figures would be even lower.

Otherwise, it is intrinsic to how TCP works (i.e., the streaming model) the inabil-
ity to fully control how TUN-inbound datagrams are encapsulated and delivered as
payload in the data stream. This means that there are bound to be packet losses
(and thus retransmissions) due, for instance, to the splicing of two (IP) datagrams
as payload of a single (TCP) segment. When that happens, the payload cannot be
passed without errors to the (outbound) TUN on the other side of the tunnel, which
expects the delivery of single (whole) datagrams, and either rejects or truncates what
it gets due to mismatches between the MTU and the size of such segments

In this sense, the presence of a tunnel based on WebSockets exacerbates the
behavior by introducing a further chance to introduce randomness in the delivery
by virtue of TCP-level decapsulation and subsequent re-encapsulation, the latter
as a result of the TCP channel established over WebSockets. This as a result of
trading off raw performance, at the price of high application-level complexity and
an (internal) ad-hoc architecture, as is the case for OpenVPN, with the simplicity
and flexibility of off-the-shelf tools acting as separate subsystems and taking care
of different facets of the communication model, in line with the UNIX philosophy
of using one (good) tool for each job.

Fortunately results are still absolutely in the same league as, e.g., OpenVPN, and
mostly decent in typical (non-real-time) edge scenarios, and ensure the viability of
such a solution for, e.g., embedded systems, where the throughput of any modular
solution, when fully in userspace, is typically lower anyway, since it may be capped
by the CPU maxing out, as is the case for the Node.js-based reverse tunneling,
possibly due to the current limitations of the V8 engine under MIPS.

When considering the case of WAN-level connectivity, e.g., featuring signifi-
cantly lower bandwidth and naturally higher delay, it may be noticed that throughput
for the S4T-based setups degrades less sharply, only down to about 50%, as can
be seen in Table 15.1. Moreover, there is room for improvement considering that,
compared to plain TCP sockets, WebSockets support delimiting payloads according
to a specific message-oriented semantics for delivery, a facility which may indeed
be exploited in this very sense.

15.5 Conclusions

Our opinion is that a novel approach is required for IoT and Cloud integration, and
models and mechanisms which are agnostic to field deployments and topologies are
essential to IoT infrastructure management and service provisioning.

15 A Cloud-Based Overlay Networking for the Internet of Things 249

Our approach to Cloud-enabled virtual networking for IoT tries to provide
a blueprint for a combined solution, where VPN-like behavior, albeit the most
easily advertised functionality and the one most easily picked up for a comparison,
is actually just one out of many features. Other useful ones include always-on
centralized control by means of WS-based command streams, bypassing restrictive
firewall policies by piggybacking onto HTTP, relaying traffic through the Cloud for
NAT traversal, Cloud-initiated hole punching to support server-less star and tree
topologies for peer-to-peer networks, or even exposing internal services through
reverse tunneling.

Moreover, functional requirements aside, performance has been shown to be
mostly comparable and in all cases absolutely acceptable considering inherent
limitations of the hardware platforms under consideration.

In terms of performance, the aforementioned considerations about the results will
be the starting point for further improvements to the design, in particular resorting
to facilities such as the WebSockets message-based semantics to partly overcome
limitations intrinsic to the communication model, or even modifying some of the
system-level tools, e.g., SOCAT, by employing low-overhead simple bytestream-
oriented protocols on top of TCP, such as SLIP [17], to mark packet boundaries
within the (TCP) payload.

References

1. N.M.K. Chowdhury, R. Boutaba, A survey of network virtualization. Comput. Netw. 54(5),
862–876 (2010)

2. A. Fischer, J. Botero, M. Till Beck, H. de Meer, X. Hesselbach, Virtual network embedding: a
survey. IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (Fourth 2013)

3. S. Distefano, G. Merlino, A. Puliafito, Device-centric sensing: an alternative to data-centric
approaches. IEEE Syst. J. 11, 231–241 (2015)

4. S. Distefano, G. Merlino, A. Puliafito, Sensing and actuation as a service: a new development
for clouds, in 2012 11th IEEE International Symposium on Network Computing and
Applications (NCA), August 2012, pp. 272–275

5. T. Oberstein, A. Goedde, The web application messaging protocol. Internet-Draft draft-
oberstet-hybi-tavendo-wamp-02, IETF Secretariat October 2015

6. I. Fette, A. Melnikov, The websocket protocol. RFC 6455, last visited on 2/7/2018
7. G. Merlino, D. Bruneo, S. Distefano, F. Longo, A. Puliafito, Enabling mechanisms for cloud-

based network virtualization in IoT (2015), pp. 268–273. https://doi.org/10.1109/WF-IoT.
2015.7389064

8. R. Mahy, P. Matthews, J. Rosenberg, Traversal using relays around Nat (TURN): relay
extensions to session traversal utilities for Nat (STUN). RFC 5766, last visited on 2/7/2018

9. VPN-WS. https://github.com/unbit/vpn-ws
10. S. Hanks, T. Li, D. Farinacci, P. Traina, Generic routing encapsulation over IPv4 networks.

RFC 1702, RFC Editor October 1994
11. P. Srisuresh, B. Ford, D. Kegel, State of peer-to-peer (P2P) communication across network

address translators (NATs). RFC 5128, last visited on 2/7/2018
12. D. Bruneo, S. Distefano, F. Longo, G. Merlino, An IoT testbed for the software defined city

vision: the #SmartMe project, in 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), May 2016, pp. 1–6

https://doi.org/10.1109/WF-IoT.2015.7389064
https://doi.org/10.1109/WF-IoT.2015.7389064
https://github.com/unbit/vpn-ws

250 D. Bruneo et al.

13. G. Merlino, D. Bruneo, S. Distefano, F. Longo, A. Puliafito, Stack4Things: integrating IoT
with openstack in a smart city context (2015)

14. G. Merlino, D. Bruneo, F. Longo, A. Puliafito, S. Distefano, Software defined cities: a novel
paradigm for smart cities through IoT clouds (2015), pp. 909–916

15. A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, iPerf: the TCP/UDP bandwidth
measurement tool (2005). http://software.es.net/iperf/

16. T. Kelly, Scalable TCP: improving performance in highspeed wide area networks. SIGCOMM
Comput. Commun. Rev. 33(2), 83–91 (2003)

17. J. Romkey, Nonstandard for transmission of IP datagrams over serial lines: SLIP. STD 47,
RFC Editor, last visited on 2/7/2018

http://software.es.net/iperf/

Part IV
Tools Development for the Analysis

of Specific Areas of Interests

Chapter 16
Markovian Performance Evaluation
with BuTools

Gábor Horváth and Miklós Telek

16.1 Introduction

Most researchers have their own set of tools that they use for the everyday research
activity. Collaboration between researchers can sometimes be difficult because
everybody uses his/her own set of tools and everybody has his/her own preference
of mathematical framework or programming language.

The authors of this paper had faced the same problem several years ago. They
were working on very similar area, but the collaboration was difficult because
everybody was sticking to his own set of tools. To address this issue, the first
version of BuTools has been released in 2012 with the contribution of many colleges
and students.1 BuTools turned out to be very useful, but had some drawbacks: the
source code quality was not homogeneous, and the feature parity between the three
supported mathematical environments was only partial.

The aim of the second version was to address these issues. Almost every function
has been rewritten from the ground up with efficiency and usability being the first

1This version of BuTools was available on the internet and announced through some professional
mailing lists, but never got published as a tool paper. A non-exhaustive list of contributors include:
Levente Bodrog, Peter Buchholz, Armin Heindl, András Horváth, István Kolossváry, András
Mészáros, Zoltán Németh, János Papp Philipp Reinecke, Miklós Vécsei.

G. Horváth (�)
Budapest University of Technology and Economics, Department of Networked Systems and
Services, Budapest, Hungary
e-mail: ghorvath@hit.bme.hu

M. Telek
MTA-BME Information Systems Research Group, Budapest, Hungary
e-mail: telek@hit.bme.hu

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_16

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_16&domain=pdf
mailto:ghorvath@hit.bme.hu
mailto:telek@hit.bme.hu
https://doi.org/10.1007/978-3-319-92378-9_16

254 G. Horváth and M. Telek

priorities and has been supplemented by unit tests. A special framework has been
developed to generate the documentation, the examples, and the test scripts for the
three supported environments automatically from a common source.

The second version2,3 has been finalized in September, 2015, and only very small
changes were made since then. BuTools V2 is being used by our research group
in the everyday work with satisfaction. The goal of this paper is to introduce this
toolbox and demonstrate its capabilities in the hope that others find it useful as well
and make the results presented in the related literature easily accessible for practical
computations.

16.2 Related Work

Many tools exist to support specific areas of Markovian performance modeling.
There are tools available for MAP fitting (KPC toolbox for MATLAB [9], mapfit
package for R [23], PhFit [5], and EMPHT [3] written in C), for the solution of
Markov chains with special structures (SMCSolver [4], MAMSolver [28]) and for
the matrix-analytic solution of single-type and multi-type queues (Q-MAM [26]),
just to mention a few.

These software tools are all valuable contributions to the research community.
However, they all focus on specific areas and support only specific mathematical
frameworks. BuTools, on the other hand, aims to provide a more complete solution.
It covers many areas related to Markovian performance modeling, and in addition
to implementing several complex and unique algorithms, it also contains the basic
functionality.

16.3 Installation, Basic Concepts

BuTools is portable, no installation is needed. The packages of BuTools can be
loaded individually, but there are convenience functions available to load every
package in a single step as well. If BuTools is located in directory <BTDir>, all
BuTools packages can be loaded by

– run(’<BTDir>/Matlab/BuToolsInit.m’) in Matlab,
– %run "<BTDir>/Python/BuToolsInit" in an IPython console,
– AppendTo[$Path,"<BTDir>/Mathematica"]; <<BuTools‘ in

Mathematica.

There are three global variables used by BuTools, summarized in Table 16.1.

2The homepage of BuTools is http://webspn.hit.bme.hu/~butools.
3The source code repository is located at https://github.com/ghorvath78/butools.

http://webspn.hit.bme.hu/~butools
https://github.com/ghorvath78/butools

16 Markovian Performance Evaluation with BuTools 255

Table 16.1 Global variables in BuTools

Name in MATLAB Name in mathematica Name in python Default value

BuTools
Verbose

BuTools
‘Verbose

butools.
verbose

False

BuTools
CheckInput

BuTools
‘CheckInput

butools.
checkInput

True

BuTools
CheckPrecision

BuTools
‘CheckPrecision

butools.
checkPrecision

10−12

Setting verbose to True allows the functions to print as many useful messages
to the output console as possible. Turning it off avoids bloating the console. The
default value is False, but for the examples of the reference documentation we have
set it to True.

If checkInput is set to True, the functions of BuTools perform as many
checks on the input parameters as possible. This can be very useful to recognize
typos as soon as possible, but can be a waste of computational effort in case of a
computationally demanding application.

The checkPrecision serves as the tolerance when the validity of the input
parameters are checked.

16.4 Working with PH Distributions

Continuous time phase-type (PH) distributions [18] are characterized by two
parameters, the initial probability vector α and the transient generator matrix of
a continuous time (transient) Markov chain, denoted by A. The PH distribution
represents the absorption time of this transient Markov chain starting from α. The
cumulative distribution function (cdf) is FPH (t) = 1 − αeAt1, where 1 is the
column vector of ones.

Matrix exponential (ME) distributions [2] are the generalizations of PH dis-
tributions. Formally, the cdf is FME(t) = 1 − beBt e and all further formulas
for the statistical quantities are very similar to the ones of PH distributions,
however, b, B, and e can hold general numbers, the entries do not have to be
valid probabilities, or transition rates. ME distributions therefore lack the simple
stochastic interpretation that PH distributions have. Vector b is called “starting
operator,” matrix B is the “process rate operator” and vector e is the “summing
operator.” BuTools uses a special form of ME distributions, where the summing
operator is a vector of ones, thus e = 1. This is not a restriction, as all ME
distributions defined with general summing operator can be easily transformed to
this representation [19]. Assume we have an ME distribution in the general form
with parameters b, B, e. The necessary similarity transform is obtained by calling
the T = SimilarityMatrixForVectors(e,1) procedure of the BuTools

256 G. Horváth and M. Telek

reptrans package. The parameters of the ME distribution used by all related
BuTools tools can be calculated by b′ = b · T−1 and B′ = TBT−1.

BuTools provides several tools for both distribution classes in the ph package.
Of course, functions for obtaining the cdf, the probability density function (pdf),
and the moments are available as well as functions to check the validity of the
representations.

With the inverse characterization tools BuTools can create APH distributions
from any two moments and from any three moments by the APHFrom2Moments
and APHFrom3Moments functions, the size of the necessary representation
is determined automatically [6]. Furthermore, by the PH2From3Moments and
PH3From5Moments functions order 2 and order 3 PH distributions can be
obtained from 3 and 5 moments, respectively, if the given moments are fea-
sible with PH(2) and PH(3) distributions [15, 29]. An interesting procedure is
MEFromMoments [32] that returns an order N ME distribution from any 2N − 1
moments, however, there is no guarantee that the result is a valid ME distribution.
To check that the density is non-negative for all points it is possible to call
the CheckMEPositiveDensity function afterwards (this is a very non-trivial
procedure, which relies on the transformation to monocyclic representation) [27].

An other category of functions allow transformations between various
PH and ME representations. CanonicalFromPH2 creates an order 2,
CanonicalFromPH3 an order 3 canonical representation from any PH(2) and
PH(3) distributions (potentially given by non-Markovian representation). The
PHFromME function tries to find a PH(N) representation for the given ME(N)
one by applying elementary similarity transformations iteratively (note, however,
that this function is not able to increase the order in the hope for a Markovian
representation).

One of the most valuable tools in the ph package is the MonocyclicPHFromME
function, which transforms any ME distributions (that fulfil the eigenvalue
constraint—that is, eigenvalues with maximal real part are real—and do not touch
the x axis apart from the origin) to a PH distribution [22, 27]. The required size
of the representation is determined automatically. The resulting PH distribution is
returned in a monocyclic representation.

With a useful set of functions it is possible to analyze the redundancy of PH
distributions and to obtain the minimal representation. MEOrder can return the
order of the PH/ME based on the analysis of the parameters of the distribution,
while MEOrderFromMoments returns the ME order necessary to realize the
moments given. Several properties of various systems can be characterized through
Laplace transform expressions, from which the moments are easy to obtain. From
these moments, MEOrderFromMoments can tell if there is a matrix-exponential-
like (ME-like) behavior in the background, and if the answer is yes, what is the
order of that ME distribution. Function MinimalRepFromME gives the minimal
representation of the given ME distribution; thus, the ME distribution returned is the
same as the input, but can be smaller.

The dph package provides similar tools for the discrete counterparts of PH and
ME distributions, the discrete PH (DPH) distributions, and matrix-geometric (MG)

16 Markovian Performance Evaluation with BuTools 257

distributions. The basic set of functions to obtain the moments, the probability mass
function, and the cdf are available, of course, however, the set of inverse character-
ization and representation transformation tools are less comprehensive than in the
continuous case due to the lack of related research results. BuTools can create order-
2 and order-3 DPH distributions from 3 and 5 moments (DPH2From3Moments
and DPH3From5Moments based on [25] and [17]), and the moment matching
method of [32] has also been adapted to the discrete case (MGFromMoments).
Unfortunately, flexible order procedures like APHFrom3Moments for DPH are
not available in the literature yet.

Transforming DPHs to canonical forms for the order-2 and order-3 cases are
possible (CanonicalFromDPH2 and CanonicalFromDPH3), and the iterative
transformation-based DPHFromMG is also included, but the discrete equivalent to
monocyclic representation is unfortunately unknown; hence, we cannot transform
any MG distribution to DPH yet.

Finally, both the ph and dph packages contain functions to generate random
PH and DPH distributions (RandomPH and RandomDPH), and functions to
generate random samples from PH and DPH distributions (SamplesFromPH and
SamplesFromDPH) for simulation purposes.

The moment matching and representation transformation capabilities of the ph
package are demonstrated through two examples depicted in Figs. 16.1 and 16.2.
The example in Fig. 16.1 (in MATLAB) starts by creating an ME distribution
based on five moments. The MEFromMoments method always returns a vector—
matrix pair (ν, H) yielding the target moments, but the result is not always a
valid distribution (the density function can be negative if the target moments
cannot be realized by an ME distribution of the given order). The PHFromME
procedure managed to transform the ME representation to a valid PH representation
characterized by (β, B). The transformation matrix relating (ν, H) and (β, B) is
calculated by SimilarityMatrix, and the last two lines show that the two rep-

Fig. 16.1 Example for the
PH package, part 1

>> [v, H] = MEFromMoments([0.9, 2.5, 20, 500, 22000]);
>> disp(v);

0.33333 0.33333 0.33333
>> disp(H);

-3.4978 0.003242 -0.91912
3.2628 -0.88868 0.3514

-4.0036 0.14794 -1.0921
>> [beta, B] = PHFromME(v, H);
>> disp(beta);

0.99798 0.0010399 0.00097586
>> disp(B);

-4.0688 1.8513 0.0014997
0.92775 -1.3039 0.00081193

0.0056188 0.097275 -0.10593
>> T = SimilarityMatrix(H, B);
>> norm(T*B - H*T)

1.8229e-14
>> norm(beta - v*T)

1.0303e-15

258 G. Horváth and M. Telek

>> v = [0.2 0.3 0.5];
>> H = [-1 0 0; 0 -3 1; 0 -1 -3];
>> [beta, B] = PHFromME(v, H);
>> disp(beta);

-0.10542 -0.043052 1.1485
>> disp(B);

-2.668 2.7577 -0.096015
0.044046 -1.5887 1.5886
0.41081 -0.10448 -2.7433

>> [beta, B] = MonocyclicPHFromME(v, H);
>> disp(beta);
0.0055089 0.0090301 0.016938 0.015216 0.0053543 0.0087356 0.052486 0.22657 0.66016
>> disp(B);
-1 1 0 0 0 0 0 0 0
0 -2.4226 2.4226 0 0 0 0 0 0
0 0 -2.4226 2.4226 0 0 0 0 0
0 0.26232 0 -2.4226 2.1603 0 0 0 0
0 0 0 0 -4.2414 4.2414 0 0 0
0 0 0 0 0 -4.2414 4.2414 0 0
0 0 0 0 0 0 -4.2414 4.2414 0
0 0 0 0 0 0 0 -4.2414 4.2414
0 0 0 0 0 0 0 0 -4.2414

>> T = SimilarityMatrix(H, B);
>> norm(T*B - H*T)

1.0315e-15
>> norm(v*T - beta)

4.8962e-16

Fig. 16.2 Example for the PH package, part 2

resentations are identical indeed. From the example in Fig. 16.2 the transformation
of an ME representation to a PH one failed, PHFromME returned an invalid initial
probability vector and an invalid generator matrix. MonocyclicPHFromME,
however, managed to return a valid PH representation, although the order has been
increased from 3 to 9. The three feedback Erlang blocks can be clearly identified in
the resulting generator matrix.

16.5 Tools for MAPs

Continuous time Markovian arrival processes (MAPs, [18]) are commonly char-
acterized by two matrices, D0 and D1. Arrivals by a MAP are modulated by a
background continuous time Markov chain with generator D = D0 + D1. Markov
chain transitions in D0 (D1) do not generate (generate) arrival events. As a result
MAPs are capable of generating correlated arrivals.

Rational arrival processes (RAPs, also known as matrix-exponential processes,
MEPs) are generalizations of MAPs [1]. Formally, all formulas for the statistical
quantities are the same to the ones of MAPs. However, both D0 and D1 can hold
negative real numbers, the entries do not have to be valid transition rates. RAPs
therefore lack the simple stochastic interpretation that MAPs have.

Both MAPs and RAPs can be generalized to multi-type arrival processes. If there
are K different arrival types, marked MAPs (MMAPs) and marked RAPs (MRAPs)
defined by matrices D0, . . . , DK are able to describe the multi-type arrival process.

16 Markovian Performance Evaluation with BuTools 259

BuTools provides several tools for MAPs, RAPs, and their marked variants in the
map package.

With the appropriate functions BuTools can return basic properties like the
marginal distribution (the parameters of the corresponding PH distribution), the
marginal moments, the lag auto-correlations, and the lag-k joint moments [30] of
MAPs and MMAPs.

With the set of inverse characterization tools it is possible to obtain order
N RAPs or MAPs from 2N − 1 marginal moments and (N − 1)2 lag-1 joint
moments (RAPFromMoments and MRAPFromMoments, using the method
of [30]); or from 2N − 1 marginal moments and 2N − 3 auto-correlations
(RAPFromMomentsAndCorrelations, based on [21]). The method for
creating an order-2 MAP from 3 moments and 1 correlation parameter published
in [7] is implemented by the MAP2FromMoments function. The only flexible
matching procedure (that can adjust the order of the result automatically, based
on the input parameters) is MAPFromFewMomentsAndCorrelations,
implementing [12].

As for representation transformation, BuTools is able to transform a RAP(2) to a
canonical form (CanonicalFromMAP2), transform a MRAP(N) to MMAP(N)
(MAPFromRAP and MMAPFromMRAP, by successive similarity transformations,
achieving a MAP is not guaranteed), and can minimize a RAP representation with
functions MinimalRepFromRAP and MinimalRepFromMRAP [8].

The dmap package intends to provide the same functionality for discrete time
arrival processes (DMAPs and DRAPs) and their marked variants (DMMAPs and
DMRAPs), however, several results present for MAPs and RAPs are not available
for DMAPs and DRAPs in the literature yet.

From the inverse characterization tools only DRAPFromMoments,
DMRAPFromMoments, and DMAP2FromMoments are available (see [20] for
the latter one).

Both the map and dmap packages contain functions to generate random MAPs,
MMAPs, DMAPs, DMMAPs and to generate random samples from these processes.

16.6 Fitting Tools

16.6.1 The trace Package

The ph, dph, map, and dmap packages provide several functions to obtain PH
distributions and MAPs from statistical quantities, like moments, auto-correlations,
and joint moments. The trace package has tools to obtain these kinds of quantities
from empirical data traces.

The traces are vectors consisting of measurements. After loading them
from a file, cdf, pdf, moments, joint moments, and lag-k auto-correlations
can be computed by invoking the CdfFromTrace, PdfFromTrace,
MarginalMomentsFromTrace, LagkJointMomentsFromTrace, and
LagCorrelationsFromTrace functions.

260 G. Horváth and M. Telek

Most of these functions can cope with weighted traces as well, where each
measurement data is supplemented by a weight.

16.6.2 Likelihood Based Fitting

BuTools has a fitting package that contains two kinds of functions: procedures
for likelihood (EM) based fitting and tools to evaluate the result of the fitting
(distance functions).

The PHFromTrace is the implementation of the G-FIT procedure [31] to create
a hyper-Erlang distribution by EM-algorithm. G-FIT is one of the best performing
PH fitting methods at the moment. While MATLAB, Mathematica, and Python
are known for not being efficient for such computationally demanding algorithms,
BuTools has a reasonably fast, vectorized implementation capable of processing
traces with millions of data.

The MAPFromTrace function implements [14], which is similar to G-FIT.
The MAP it creates has Erlang components, and a switching probability matrix
determining the order of these Erlang components providing the subsequent inter-
arrival times. Note, however, that this fitting procedure is much slower than the one
for PH fitting.

The likelihood of a PH distribution or a MAP regarding a trace can be evaluated
by LikelihoodFromTrace.

The functions SquaredDifference and RelativeEntropy measure
the difference between two vectors (e.g., probability mass functions, lag-
k auto-correlations, etc.), while EmpiricalSquaredDifference and
EmpiricalRelativeEntropy are the equivalents to be used for continuous
quantities (e.g., for pdf or cdf of continuous time PH variables, where they are given
by a number of points only).

16.6.3 Application Example

The usage of BuTools for trace fitting is demonstrated in Fig. 16.3. The first line
loads a trace file consisting of 1.78 million inter-arrival time samples. The next line
calculates the marginal moments of the trace. Then, a PH(3) distribution is created
by matching five moments, finally a PH(5) is obtained by fitting (G-FIT). The fitting
step took 113 s on a PC with a 3.4 GHz CPU and 4 GB of RAM. After obtaining the
PH distributions, the approximations are evaluated. First the moments are compared,
then the likelihood.

After the comparison, the density functions are obtained and plotted. (In case of
the PH distributions, the IntervalPdfFromPH function is used, which, instead
of evaluating the pdf at the given points, returns the probability of falling into
intervals divided by the interval lengths. This is the correct way to compare it with
the empirical pdf of the trace.) The result is depicted in Fig. 16.4.

16 Markovian Performance Evaluation with BuTools 261

>> trace = dlmread(’lbltcp3 iat.txt’);
>> trmoms = MarginalMomentsFromTrace(trace,5);
>> [alpha3,A3] = PH3From5Moments(trmoms(1:5));
>> [alpha5,A5] = PHFromTrace(trace, 5);
>> disp(trmoms);

1 2.942 16.84 150.73 1876.8
>> disp(MomentsFromPH(alpha3,A3));

1 2.942 16.84 150.73 1876.8
>> disp(MomentsFromPH(alpha5,A5,5));

1 2.8827 15.074 112.2 1062.3
>> disp(LikelihoodFromTrace(trace,alpha3,A3));

-0.94802
>> disp(LikelihoodFromTrace(trace,alpha5,A5));

-0.9343
>> [xt,yt] = PdfFromTrace (trace, (1:0.1:3));
>> [xp3,yp3] = IntervalPdfFromPH(alpha3, A3, (1:0.1:3));
>> [xp5,yp5] = IntervalPdfFromPH(alpha5, A5, (1:0.1:3));
>> plot (xt,yt,xp3,yp3,xp5,yp5);

Fig. 16.3 Application example for fitting

Fig. 16.4 The output of the
example of Fig. 16.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.5 1 1.5 2 2.5 3

D
en

si
ty

 fu
nc

tio
n

Inter arrival time

trace
PH(3)
PH(5)

16.7 Analysis of Queues

The queues package heavily relies on the matrix-analytic methods.

16.7.1 Support for Matrix-Analytic Methods

The mam package of BuTools provides solution methods for problems based on
non-linear matrix equations.

Functions solving the three-diagonal block-structured Markov chains, namely the
quasi birth-death processes (QBDs), Markov chains skip-free to the left, M/G/1 type
Markov chains, and Markov chains skip-free to the right, G/M/1 type Markov chains

262 G. Horváth and M. Telek

[18] are included. The underlying algorithms are from the SMCSolver toolbox
[4]. The MATLAB version of BuTools requires the presence of SMCSolver, while
the Mathematica and the NumPy/IPython versions include the necessary parts of
SMCSolver ported to these environments.

The fundamental matrices for QBDs are returned by the
QBDFundamentalMatrices function (matrices R, G, and U [18]). Matrix
G, the fundamental matrix of M/G/1 type Markov chains is provided by
MG1FundamentalMatrix, and the R matrix of G/M/1 type systems is
given by GM1FundamentalMatrix. Based on the fundamental matrices
the stationary solutions are provided by functions QBDStationaryDistr,
MG1StationaryDistr, and GM1StationaryDistr, respectively, that
return the stationary probabilities themselves. For QBDs the ingredients of the
stationary matrix-geometric solution (the initial vector and the coefficient matrix)
are returned by QBDSolve.

BuTools also supports the solution of continuous queueing systems, Markovian
fluid flows [10]. A large part of the related literature considers canonical Markovian
fluid flows, where the rate at which the fluid level increases or decreases is always
1. For these systems FluidFundamentalMatrices returns the most important
matrices, �, K, and U [10]. The stationary solution for the fluid level at the
requested points is given by FluidStationaryDistr, and the components of
the matrix-exponential solution (initial vector, matrix exponent) can be obtained
by FluidSolve. For non-canonical fluid systems having non-unit fluid rates,
however, it is better to use GeneralFluidSolve, which, based on the generator
of the background Markov chain and the diagonal matrix of fluid rates returns the
probability mass at level 0, and for positive levels the initial vector, matrix exponent
and closing matrix of the matrix-exponential solution.

16.7.2 Queueing Models

Building upon the mam package, the queues package provides functions to obtain
many performance measures of several queueing systems. The following queues are
supported:

– The MAP/MAP/1 queue (MAPMAP1). Special cases of this queue are the
PH/MAP/1, the MAP/PH/1, the PH/PH/1, etc. (see [18] and [11]).

– The QBD queue (QBDQueue). In this queue the arrival and the service process
are not independent of each other, they share the same background process.
Marked transitions of this background process are accompanied by a level
increase, other marked transitions by a level decrease event. The MAP/MAP/1
queue is the special case of the QBD queue, however, several performance mea-
sures are more demanding to compute for the QBD queue. The implementation
is based on [18] and [24].

16 Markovian Performance Evaluation with BuTools 263

– The MMAP[K]/PH[K]/1- FCFS queue (MMAPPH1FCFS). This is a first-come-
first-served (FCFS) multi-type queue with K types of customers. Each customer
type can have a different (PH) service time distribution. The solution is based on
[11].

– The MMAP[K]/PH[K]/1 queue with non-preemptive and preemptive resume
priority service (MMAPPH1NPPR and MMAPPH1PRPR). This is a multi-type
queue with preemptive service, the efficient solution is based on a recent result
[13].

– The fluid queue (FluidQueue). In this queue there is a common background
Markov chain, a diagonal matrix of fluid arrival rates, and a diagonal matrix of
fluid service rates in each state of the background process. The queue length
and the sojourn time of the fluid drops are the two most interesting performance
measures (based on [10] and [16]). This is the continuous counterpart of the QBD
queues.

– The Flu/Flu queue (FluFluQueue), which is similar to the ordinary fluid
queue, but the fluid input and output processes are independent, they are
modulated by two separate background Markov chains. This independence is
exploited in the solution, thus Flu/Flu queues are easier and faster to solve than
the general fluid queues. This is the continuous counterpart of the MAP/MAP/1
queues.

The performance measures that can be obtained from these queues are summa-
rized in Table 16.2. The abbreviation of the performance measures are

– ncMoms/flMoms: Stationary moments of the number of customers (in case of
discrete queues)/fluid level (in case of fluid queues).

– ncDistr/flDistr: Stationary distribution of the number of customers/the
fluid level.

– ncDistrMG/flDistrME: The parameters of the MG/ME distribution of the
number of customers/fluid level.

– ncDistrDPH/flDistrPH: The parameters of the DPH/PH distribution of the
number of customers/fluid level. The DPH/PH representation is obtained from
the MG/ME one, which is always possible. However, in some rare cases (when
a phase has a very low probability) this transformation can introduce numerical
errors, hence ncDistrMG/flDistrME are safer to use.

Table 16.2 Performance measures that can be computed

Perf. meas. QBDQueue MAPMAP1 MMAPPH1FCFS MMAPPH1-Prio FluidQueue FluFluQueue

ncMoms � � � � � �
ncDistr � � � � � �
ncDistrMG � � – – � �
ncDistrDPH � � – – � �
stMoms � � � � � �
stDistr � � � � � �
stDistrME � � � – � �
stDistrPH � � � – � �

264 G. Horváth and M. Telek

– stMoms, stDistr, stDistrME, stDistrPH: the same as above for the
sojourn time of the customers/fluid drops. Again, stDistrME behaves better
numerically than stDistrPH.

When calling these functions, the performance measures to compute are listed
in the function arguments. Several performance measures can be computed at the
same function call, and BuTools will save as much computational effort as possible
by avoiding repeated re-computation of some demanding steps.

16.7.3 Application Examples

The examples in Figs. 16.5 and 16.7 demonstrate how well the different packages of
BuTools play nicely together. In Fig. 16.5 a two-class non-preemptive priority queue
is studied. The arrival process of the low priority class is created based on three
moments and the lag-1 auto-correlation of a measurement trace, while high priority
customers arrive according to a Poisson process with rate 0.6. The service time
distributions are obtained by matching two moments. All the performance measures
are obtained by the single call of the MMAPPH1NPPR function. According to the
function arguments, three moments for the number of customers, the distribution of
the number of customers up to 20, and the sojourn time distribution are requested
at certain points. This function returns the performance measures in the same order
for both customer classes. After that, the solution is displayed either on the screen
or in a plot (Fig. 16.6).

In Fig. 16.7 a fluid queue is considered. In this example both the fluid arrival
and the fluid service processes are Markov modulated. After calculating the
product space of the arrival and service processes by Kronecker operations, the
FluidQueue function is called to compute the ME representation of the fluid

>> trace = dlmread(’lbltcp3 iat.txt’);
>> trmoms = MarginalMomentsFromTrace(trace,3);
>> tracf1 = LagCorrelationsFromTrace(trace,1);
>> [D0,D1] = MAP2FromMoments(trmoms,tracf1);
>> D2 = 0.6*eye(size(D0));
>> D0 = D0 - D2;
>> [alpha1,A1] = APHFrom2Moments([0.6,6.5]);
>> [alpha2,A2] = APHFrom2Moments([0.5,0.7]);
>> [ncm1, ncd1, std1, ncm2, ncd2, std2] = MMAPPH1NPPR({D0, D1, D2},
{alpha1, alpha2}, {A1, A2}, ’ncMoms’, 3, ’ncDistr’, 20, ’stDistr’, 0.1:100);
>> disp(ncm1);

57.073 8205.2 1.7778e+06
>> disp(ncm2);

3.2657 39.861 780.53
>> plot([ncd1’,ncd2’]);
>> plot([std1’,std2’]);

Fig. 16.5 Example for the priority queue

16 Markovian Performance Evaluation with BuTools 265

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili

ty

Number of customers in the system

Low priority
High priority

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Cd
f

Sojourn time of customers

Low priority
High priority

Fig. 16.6 The output of the example of Fig. 16.5

>> Qin = [-2 1 1; 2 -5 3; 4 0 -4];
>> Rin = diag([3 7 0]);
>> Qout = [-4 1 3; 6 -8 2; 3 7 -10];
>> Rout = diag([1 7 15]);
>> I = eye(3);
>> [alphap, Ap, betap, Bp] = FluidQueue(kron(Qin,I)+kron(I,Qout),
kron(Rin,I), kron(I,Rout), ’flDistrME’, ’stDistrME’);
>> disp(size(Ap));

2 2
>> disp(size(Bp));

18 18
>> [alphai, Ai, betai, Bi] = FluFluQueue(Qin, Rin, Qout, Rout,
false, ’flDistrME’, ’stDistrME’)
>> disp(size(Ai));

2 2
>> disp(size(Bi));

2 2
>> disp(norm(MomentsFromME(alphap,Ap,5) - MomentsFromME(alphai,Ai,5)));

1.4325e-14
>> disp(norm(MomentsFromME(betap,Bp,5) - MomentsFromME(betai,Bi,5)));

1.6779e-15
>> plot(PdfFromME(alphai,Ai, 0:0.01:8));
>> plot(PdfFromME(betai,Bi, 0:0.01:2));

Fig. 16.7 Example for the fluid queue

level and sojourn time distributions. With the parameters of the example, the order
of the fluid level distribution is 2, but the one of the sojourn time distribution
is 18. Working with such large representations can be slow and more sensitive
numerically. However, if the arrival and services are independent (as they are in
this example and in many practical cases), it is possible to use the FluFluQueue
instead of FluidQueue, since it exploits the independence and returns a much
more compact representation for the sojourn time (order 2 in this case). Note that—
despite the different order—the representations returned by FluidQueue and
FluFluQueue belong to the same distribution, as demonstrated by printing the
difference of the moments in the figure. The plots of the density functions of the
fluid level and the sojourn time are shown in Fig. 16.8.

266 G. Horváth and M. Telek

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 1 2 3 4 5 6 7 8

D
en

si
ty

Fluid level

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2

D
en

si
ty

Sojourn time of fluid drops

Fig. 16.8 The output of the example of Fig. 16.7

16.8 Some Further, Small Packages

16.8.1 The moments Package

Several moment expressions are being used in various publications related to PH
distributions. Most works rely on the ordinary (raw) moments, while others are able
to arrive to simpler formulas by introducing some alternative moment expressions,
like reduced moments, normalized moments, and Hankel moments. Furthermore, in
case of discrete systems, transform domain techniques make it easy to obtain the
factorial moments. The moments package provides conversion routines between
these moment expressions. Additionally, it provides the CheckMoments function
to determine if a sequence of real numbers is a valid moment sequence (there exists
a distribution with the given moments), or not.

16.8.2 The mc Package

A couple of basic functions to obtain the stationary distribution of Markov chains is
mandatory in a tool devoted to Markovian performance analysis. The CTMCSolve
and DTMCSolve functions return the stationary distribution of continuous and
discrete time Markov chains, respectively, based on the direct (non-iterative)
solution of the corresponding set of linear equations.

Two further functions, CRPSolve and DRPSolve provide the same functional-
ity on rational processes, which are similar to Markov chains without the restrictions
on the sign of the elements of the generator matrices. These functions are mostly
used internally by the procedures operating on ME distributions and RAPs.

16 Markovian Performance Evaluation with BuTools 267

16.9 Conclusion

BuTools collects the implementations of many research results related to stochastic
models with Markov background process. This way it makes several complex
research results of the field easily accessible for practical application. BuTools
is heavily used by our research group and found to be efficient for practical
computations. The reader is encouraged to check and use BuTools, which is
facilitated with online documentation and application demo.

The authors would be glad to receive any related ideas, comments, feature
requests, or bug fixes.

Acknowledgements This research is supported by the ÚNKP-17-4-III New National Excellence
Program of the Ministry of Human Capacities, Hungary, and by the OTKA-123914 project.

References

1. S. Asmussen, M. Bladt, Point processes with finite-dimensional probabilities. Stoch. Processes
Appl. 82(1), 127–142 (1999)

2. S. Asmussen, C. O’Cinneide, Matrix-Exponential Distributions (Wiley, New York, 2004)
3. S. Asmussen, O. Haggström, O. Nerman, EMPHT - a program for fitting phase-type

distributions, in Studies in Statistical Quality Control and Reliability, Mathematical Statistics)
(Chalmers University and University of Göteborg, Göteborg, 1992)

4. D. Bini, B. Meini, S. Steffé, B. Van Houdt, Structured Markov chains solver: software tools,
in Proceeding from the 2006 Workshop on Tools for Solving Structured Markov Chains (ACM,
New York, 2006), p. 14

5. A. Bobbio, A. Horváth, M. Telek, PhFit: a general phase-type fitting tool, in International
Conference on Dependable Systems and Networks, 2002. DSN 2002. Proceedings (IEEE, New
York, 2002), p. 543

6. A. Bobbio, A. Horváth, M. Telek, Matching three moments with minimal acyclic phase type
distributions. Stoch. Model. 21(2–3), 303–326 (2005)

7. L. Bodrog, A. Heindl, G. Horváth, M. Telek, A Markovian canonical form of second-order
matrix-exponential processes. Eur. J. Oper. Res. 190(2), 459–477 (2008)

8. P. Buchholz, M. Telek, On minimal representations of rational arrival processes. Ann. Oper.
Res. 202(1), 35–58 (2013)

9. G. Casale, E.Z. Zhang, E. Smirni, KPC-toolbox: simple yet effective trace fitting using
Markovian arrival processes, in Fifth International Conference on Quantitative Evaluation
of Systems, 2008. QEST’08 (IEEE, New York, 2008), pp. 83–92

10. A. da Silva Soares, Fluid queues: building Upon the Analogy with QBD Processes. PhD thesis,
Université Libre de Bruxelles (2005)

11. Q.-M. He, Age process, workload process, sojourn times, and waiting times in a discrete time
SM[K]/PH[K]/1/FCFS queue. Queueing Syst. 49(3–4), 363–403 (2005)

12. G. Horváth, Matching marginal moments and lag autocorrelations with MAPs, in Proceedings
of the 7th International Conference on Performance Evaluation Methodologies and Tools
(2013), pp. 59–68

13. G. Horváth, Efficient analysis of the MMAP[K]/PH[K]/1 priority queue. Eur. J. Oper. Res.
246(1), 128–139 (2015)

14. G. Horváth, H. Okamura, A fast EM algorithm for fitting marked Markovian arrival processes
with a new special structure, in European Workshop on Performance Engineering (Springer,
Berlin, 2013), pp. 119–133

268 G. Horváth and M. Telek

15. G. Horváth, M. Telek, On the canonical representation of phase type distributions. Perform.
Eval. 66(8), 396–409 (2009)

16. G. Horváth, M. Telek, Sojourn times in fluid queues with independent and dependent input
and output processes. Perform. Eval. 79, 160–181 (2014)

17. I. Horváth, J. Papp, M. Telek, On the canonical representation of order 3 discrete phase type
distributions. Electron. Notes Theor. Comput. Sci. 318, 143–158 (2015)

18. G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,
vol. 5 (Siam, Philadelphia, 1999)

19. L. Lipsky, Queueing Theory: A Linear Algebraic Approach (Springer Science & Business
Media, Berlin, 2008)

20. A. Mészáros, M. Telek, Canonical representation of discrete order 2 MAP and RAP, in
European Workshop on Performance Engineering (Springer, Berlin, 2013), pp. 89–103

21. K. Mitchell, A. van de Liefvoort, Approximation models of feed-forward G/G/1/N queueing
networks with correlated arrivals. Perform. Eval. 51(2), 137–152 (2003)

22. Ş. Mocanu, C. Commault, Sparse representations of phase-type distributions. Stoch. Model.
15(4), 759–778 (1999)

23. H. Okamura, T. Dohi, mapfit: an R-based tool for PH/MAP parameter estimation, in
International Conference on Quantitative Evaluation of Systems (Springer, Berlin, 2015), pp.
105–112

24. T. Ozawa, Sojourn time distributions in the queue defined by a general QBD process. Queueing
Syst. 53(4), 203–211 (2006)

25. J. Papp, M. Telek, Canonical representation of discrete phase type distributions of order 2 and
3, in Proceedings of UK Performance Evaluation Workshop, UKPEW, vol. 2013 (2013)

26. J.F. Pérez, J. Van Velthoven, B. Van Houdt, Q-MAM: a tool for solving infinite queues using
matrix-analytic methods, in Proceedings of the 3rd International Conference on Performance
Evaluation Methodologies and Tools (2008), p. 16

27. P. Reinecke, M. Telek, Does a given vector-matrix pair correspond to a PH distribution?
Perform. Eval. 81, 40–51 (2014)

28. A. Riska, E. Smirni, MAMSolver: a matrix analytic methods tool, in TOOLS ’02:
Proceedings of the 12th International Conference on Computer Performance Evaluation,
Modelling Techniques and Tools (Springer, London, 2002), pp. 205–211

29. M. Telek, A. Heindl, Moment bounds for acyclic discrete and continuous phase type
distributions of second order, in Proceedings of UK Performance Evaluation Workshop (2002)

30. M. Telek, G. Horváth, A minimal representation of Markov arrival processes and a moments
matching method. Perform. Eval. 64(9), 1153–1168 (2007)

31. A. Thummler, P. Buchholz, M. Telek, A novel approach for fitting probability distributions
to real trace data with the EM algorithm, in 2005 International Conference on Dependable
Systems and Networks (DSN’05) (IEEE, New York, 2005), pp. 712–721

32. A. Van de Liefvoort, The moment problem for continuous distributions. Unpublished technical
report, University of Missouri, WP-CM-1990-02 (1990)

Chapter 17
J2CBROKER as a Service: A Service
Broker Simulation Tool Integrated
in OpenStack Environment

Riccardo Di Pietro, Maurizio Giacobbe, Carlo Puliafito, and Marco Scarpa

17.1 Introduction

Cloud computing is radically enhancing enterprises productivity, thanks to its
elasticity, flexibility, efficiency, and on-demand and pay-as-you-go nature. Today,
it is possible to benefit from the Cloud by deploying it in different service models,
such as Infrastructure (IaaS), Platform (PaaS), and Software (SaaS), but many others
are coming out from the market (e.g., hybrid solutions, microservices). Moreover,
services may be offered by Cloud Service Providers (CSPs) in private Data Centers
(DCs), i.e., private Clouds, or they can be commercially offered to customers, which
is known as public Clouds. Yet, it is possible that public and private Clouds are
combined to form hybrid Clouds. Despite its disruptive nature, there is the need
for timely, repeatable, and controllable methodologies that evaluate the conceived
Cloud algorithms and policies prior to their actual development and deployment.
Simulation-based environments play a fundamental role in this direction. First of
all, they allow to easily set environment variables and parameters, define models,
reproduce tests, and analyze the obtained results (textual and/or graphical). More

R. Di Pietro
Università di Catania, Catania, Italy
Università di Messina, Messina, Italy
e-mail: rdipietro@unict.it,rdipietro@unime.it

M. Giacobbe (�) · M. Scarpa
Università di Messina, Messina, Italy
e-mail: mgiacobbe@unime.it; mscarpa@unime.it

C. Puliafito
Università di Firenze, Firenze, Italy
Università di Pisa, Pisa, Italy
e-mail: carlo.puliafito@unifi.it;carlo.puliafito@ing.unipi.it

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_17

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_17&domain=pdf
mailto:rdipietro@unict.it,rdipietro@unime.it
mailto:mgiacobbe@unime.it
mailto:mscarpa@unime.it
mailto:carlo.puliafito@unifi.it;carlo.puliafito@ing.unipi.it
https://doi.org/10.1007/978-3-319-92378-9_17

270 R. Di Pietro et al.

importantly, the use of simulation-based approaches in Cloud environments is often
a necessity, since the access to the actual infrastructure would incur payments in real
currency (pay-as-you-go service model). Thus, simulation tools can significantly
benefit Cloud customers by allowing them to test their services in a repeatable
and controllable environment, without paying for the access to the Cloud. On
the other hand, simulators can allow CSPs to evaluate, e.g., where to allocate
computational resources according to varying performance, workload conditions,
and monetary cost distributions. As a result, in the absence of such simulation-based
environments, both Cloud customers and providers risk to make serious mistakes
of assessment or to refer to non-objective evaluations, thus resulting in inefficient
service performance and economic losses.

17.2 Motivations

Recent years have seen the success of the Cloud computing paradigm and the
continuously increasing number of service providers and available services.

Within the Digital Single Market strategy [20] (i.e., European Commission
priority in order to achieve better online access to digital goods and services) the
Cloud computing plays a key role through the data-driven innovation initiatives,
data ownership, access and usability ownership, portability of data, and switching
of service providers. In this complex context, customers’ discovery of the services
and selection of the one which best suits their needs is not a trivial issue and might
be very time-consuming and/or ineffective:Cloud service brokerage might help to
overcome this problem. According to MarketsandMarkets [12], a market research
firm, the Cloud service brokerage and Enablement market size is estimated to grow
from USD 7.44 billion in 2016 to USD 26.71 billion by 2021.

Cloud Service Broker (CSB) is an additional computing layer which acts as
an intermediary between service customers on one side and service providers on
the other. Gartner, the world leading information technology research and advisory
company, identifies three areas (i.e., aggregation, integration, and customization)
in which Cloud brokerage might play an important role toward service customer,
but also service providers. Aggregation gives the possibility to manage multiple
services, possibly from different providers and present them as a unified service.
This is not always easy because of the complex relationships and agreements among
providers. The integration purpose is to make applications, which are independent
at first, work nicely together and cooperate in order to fulfill the customer’s needs.
Customization consists in the tweaking of services in order to best suit users’ needs.

Other applications of CSB, which still come under the concept of service selec-
tion, are the ranking of services according to parameters provided by users (e.g.,
services ordered by cost) and the selection of the best data center (or site), among
the N available, to execute a certain job. For example, CSB plays an important role
in legislation compliance and QoS management of Cloud services [4]. Some of the

17 J2CBROKER as a Service 271

most important CSB companies are, in alphabetical order: Appirio, ComputeNext,
and Dell Boomi.

17.3 Related Work

Due to the great interest and importance played by Cloud Service Brokerage, several
works have been carried out in this field, surveying the possible approaches and
algorithms for the service selection [1, 15, 17, 18] but also the Cloud simulators that
can be used to evaluate CSBs performance [9, 16].

Probably, CloudSim [3] is the most popular and complete framework for
modeling and simulating Cloud environments. It was developed at the CLOUd
computing and Distributed Systems (CLOUDS) Laboratory, in the University of
Melbourne, Australia. It is open source, entirely written in Java and provides basic
classes for modeling data centers, users, brokers, computational resources, policies,
and virtual machines.

CloudSim is built on top of another open source framework, namely GridSim
[2], which was also developed at the CLOUDS Laboratory. GridSim is written in
Java and essentially presents the same functionalities as CloudSim but with the
difference that it is used for large-scale Grid systems and P2P networks.

Thanks to its success, CloudSim has been extended by researchers, and thus other
products using it as their core have been developed. The most important example
of these is CloudAnalyst [24], which is a Java-based simulation tool. The main
feature of CloudAnalyst is the presence of an intuitive Graphical User Interface
(GUI), which makes it easy to set up and run the simulation. The results of the
simulation are then returned in the form of charts and tables, which is very important
considering their complexity and variety.

GreenCloud [11] is an open source simulation environment built as an extension
of the Ns2 network simulator. What distinguishes this environment from all the
others is the focus on the energy consumed by all the components of a DC in
a simulated Cloud environment. Indeed, DCs require a great amount of energy,
which greatly impacts the overall operational costs. GreenCloud is a packet-level
simulator, meaning that protocol processing is performed whenever a packet is to
be transmitted. On the other hand, CloudSim and CloudAnalyst are event-based
simulators; hence, they do not individually process packets but capture the overall
effect of interactions instead. The result is that GreenCloud is slower in simulating,
but it is more accurate as well.

iCanCloud [14] is an open source simulation platform entirely written in C++
and developed as an extension of the OMNET network simulator. The main purpose
of iCanCloud is to estimate the trade-off between costs and performance, thus to
help users make their decisions in order to optimize it. Besides, also iCanCloud
provides a very complete and user-friendly GUI. Finally, iCanCloud has a feature
that the aforementioned environments do not have: if there is a cluster of nodes

272 R. Di Pietro et al.

available to carry out an experiment, it is possible to perform a parallel simulation
among them. The only requirement is for the nodes to have MPI installed.

However, even if many simulator tools that can be used for studying Cloud
systems, we cannot establish what is the best simulator to use because the evaluation
depends upon actual requirement.

17.4 The J2CBROKER Simulation Tool

Based on the above considerations, we created a tool capable of simulating different
cooperative Cloud Brokerage scenarios across different metrics and evaluation
criteria included in models by using “multi-criteria” strategies. As the name
implies,“Java Json Cloud BROKER” [6] is totally written by using JAVA language
and JSON documents. More specifically, the main goal is to provide a simulation-
based tool that: (1) dynamically manages JSON documents as inputs simulating
both requests and offers by CSPs; (2) calculates the best choices (i.e., offers) on
the basis of specific parameters through different multi-criteria engines (i.e., multi-
criteria algorithms implemented in JAVA language); (3) provides the resulting best
offers of its calculation as outputs, both in the form of JSON documents and on-
screen (results can be also provided in many other forms, such as CSV files and
diagrams). J2CBROKER service is based on a JAVA client–server architecture inte-
grated in an OpenStack Cloud infrastructure. This integration allows J2CBROKER
to be owned and hosted by a service provider and to be offered to consumers on-
demand. More details about the integration between J2CBROKER and OpenStack
services are introduced later. J2CBROKER uses a stateless RESTful approach for
its communication. Moreover, as proposed in [5], the communication protocol used
between client and server uses a data protection mechanism which combines both
symmetric (AES256) and asymmetric encryption (RSA) in a smart way. Figure 17.1
shows the general architecture of the proposed J2CBROKER Simulation Tool.

In J2CBROKER, we introduced the concept of Model. A Model is essentially a
JSON file which contains all the input metrics describing the basic characteristics
of a given scenario.

More specifically, a Model identifies what needs to be simulated and how.
Figure 17.2 shows several metrics and Service Measurement Index (SMI)—Key
Performance Indicators (KPIs) that are possible to be considered in order to have
different multi-criteria Models. For each Model, the architecture provides two
specific components: the related Model Simulator at the client side, and the related
Model Engine at the server side. The architecture has been developed in order
to simulate several possible scenarios, each one defined by a Model. To this end,
referring to Fig. 17.1, we mainly distinguish two blocks: the Data Set Simulator at
the client side and the Brokerage Engine at the server side, both containing several
Models (respectively Simulators and Engines). These blocks will be discussed in
the following.

17 J2CBROKER as a Service 273

Fig. 17.1 A general architecture of the J2CBROKER simulation tool

Fig. 17.2 Metrics and SMI-KPIs to realize different multi-criteria models

274 R. Di Pietro et al.

17.4.1 SaaS Deployment Model

In opposition to the traditional model of software deployment, the term “SaaS
deployment model” refers to the installation and delivery of Software as a Service.
Software as a Service (SaaS) is a software distribution model where the application
and services are run in a centralized environment in which users access on it through
the network, almost always via the Internet by using a client (e.g., web browser or
GUI) as an interface. SaaS model is characterized by a multi-tenant architecture,
that is, there is only one application that serves multiple users while keeping separate
data and operating environments. SaaS deployment is similar to the establishment
phase of a utility service, which is followed by metering and billing at regular
intervals, for the services that have been delivered.

SaaS model is considered to be the winning one by all major vendor software.
For this reason, the most important software vendors in the world are delivering
“as a service” versions of their software applications, and they are delivering them
through an ad hoc proprietary Cloud infrastructure or relying on other Cloud service
providers.

17.4.2 SaaS Benefits

There are several practical and economic benefits pushing the SaaS Cloud model.
From the user point of view, the big benefit is that he does not have to face a large
cash outlay for software purchase, implementation, and maintenance. SaaS is used
in subscription and requires lower costs at defined time intervals, and maintenance
is performed directly by the software vendor. Another key benefit is that SaaS
environments are based on infrastructures that can increase the amount of computing
and storage offered to customers according to their needs, even momentarily and not
on a regular basis.

For the above reasons, we decided to implement J2CBROKER as a Service, thus
to test and to deploy it in a real scenario.

In the next subsection we explain why we decided to integrate J2CBROKER in
the OpenStack environment.

17.4.3 OpenStack Integration

OpenStack is a set of software tools for building and managing open Cloud
computing platforms for public and private Clouds. Maintained and supported
by the biggest vendors in software development, and hosting and counting on
the support of thousands of individual community members, today OpenStack
represents the present and the future of open Cloud computing. OpenStack is

17 J2CBROKER as a Service 275

managed by the “OpenStack Foundation” [23], a non-profit organization who
deals with following, supporting and influencing both the development and the
ecosystem-building around the project. At the moment, the OpenStack project
consists of nine main components which represents the “core” of the project itself.
The J2CBROKER service integrates the main components related to “Identity” and
“Object Storage” functionalities, which are implemented by the projects Keystone
and Swift, respectively. Keystone is an OpenStack service that provides API
client authentication and authorization by implementing OpenStack’s Identity API
[10]. Swif t is an OpenStack service that provides highly available and distributed
object/blob storage by implementing OpenStack’s Object Storage API [19].

17.4.4 J2CBROKER Description

17.4.4.1 The Client

In order to work, the client needs the presence of a mandatory JSON configuration
file called json-conf-file. For smooth functioning of J2CBROKER service, the json-
conf-file file must be filled in the proper way. As the name implies, the json-conf-file
file contains the information about the configuration of the client, in particular
its internal settings (including the symmetric encryption key used); the metrics
of the Model used for that particular simulation; the configuration and setting of
the communication with the server (including the public key of the server); the
configuration and setting of the communication with the Identity Service of the
Cloud infrastracture. As shown in Fig. 17.3, J2CBROKER can work in two different
modes: the Random Simulation Mode and the Guided Simulation Mode. Both the
above simulation modes are part of the setting at client side.

Fig. 17.3 The J2CBROKER
simulation modes

276 R. Di Pietro et al.

17.4.4.2 The Data Set Simulator

The Data Set Simulator represents the “core” of the client application. It consists
of a modular structure that contains different Model Simulators. This is important
because it makes this service a general purpose tool, which allows anyone to create
and connect his own Model Simulator. However, each Model Simulator implements
different specific behaviors. Those latter depend on both the directives received from
the json-conf-file file and the characteristic dedicated for the simulation scenario. If
the user uses the service according to the directives of the “Random Simulation
Mode,” the Data Set Simulator creates specific Data Sets according to a dedicated
Model [6]. Otherwise, if the user uses the service according to the directives of the
Guided Simulation Mode, the Data Set Simulator gathers and parses the information
from the JSON absolute paths listed inside the json-input-list-file file [6].

In any case, the expected behavior at the server side will be the same. It will store
all the Data Sets and, when it will receive the active request, it will elaborate
the Data Sets according to the Model Engine predetermined in the simulation.
Finally, the server will send a JSON file to the client with the result of the calculation
at the Brokerage Engine. In such a context, each Data Set represents a simulated
offer by a CSP at a specific Cloud site.

17.4.4.3 The Client/Server Communication

The communication phase between the client and the server is done in six different
steps (see Fig. 17.1):

1. First of all, in order to be authenticated by the Cloud, the client sends an
authentication request to the Identity Service of the Cloud Infras-
tructure. If the Identity Service returns the token (1.B), which means that it is
successfully authenticated, the client can move to the next step (2.A).

2. In order to verify if the server is alive, the client sends to it a test request
(2.A). Therefore, the server needs to verify if the referenced Cloud services are
active:

(a) Firstly, the server sends an authentication request to the Identity
Service of the Cloud Infrastructure (3.A). If the Identity Service returns the
token (3.B), then the server can move to the next step (4.A).

(b) Then, the server sends a test request to the Object Storage Service of
the Cloud Infrastructure (4.A). If the test request is successfully done
(4.B), then the server can move to the next step (2.B).

When the test is successfully done (2.B), then the client can move to the next
step (5.A).

3. In order to set several environment parameters at server side, the client sends
a set-environment request with some encrypted parameters inside its

17 J2CBROKER as a Service 277

Headers (5.A). If set-environment request is successfully done, then
the client can move to the next step (6.A).

4. In order to transfer all the Data Sets to the server, the client uses one dataset
request for each Data Set. Each request will contain all the information
about a particular Data Set that the client wants to transfer at that moment.
All this information represents encrypted parameters stored as Headers inside
the dataset request. If the dataset request was successfully done
(6.B), then the client will send another dataset request, and so on, until
the end. Then the client can move to the next step (7.A).

5. To start the server side processing phase, the client sends to the server an
active request (7.A). When the server will complete the processing with
success, it will return a response with the JSON file containing the output of the
processing phase (7.B).

6. At the end of the processing phase, the server permanently store all the data
created during the processing phase:

(a) Firstly, the server sends an authentication request to the Identity
Service (8.A). If the Identity Service returns the token (8.B), then the server
can move to the next step (9.A).

(b) Then, the server sends a container-creation request to the Object
Storage Service (9.A). If the container creation is successfully done (9.B),
then the server can move to the next step (10.A).

(c) In order to put on the Cloud all the CSV files created during the pro-
cessing phase, the server sends to the Object Storage a create-object
request for each file (10.A). If the create-object request is suc-
cessfully done (10.B), then the server will send another create-object
request, and so on, until the end.

17.4.4.4 The Server

In order to work, the server needs the presence of a mandatory JSON configuration
file called json-conf-file. For smooth functioning of J2CBROKER service, the
json-conf-file file must be filled in the proper way. As the name implies, the json-
conf-file file contains the information about the configuration of the server, in
particular its internal settings; the configuration and setting of the communication
with the client; the configuration and setting of the communication with the
Identity service and the Object Storage of the Cloud infrastracture. When the server
starts a communication with a client, it receives set-environment request.
From this latter, the server acquires guidelines about the Model Simulator that
characterizes the Simulation Scenario, and the successive actions to do. After the
server receives the Data Sets from the client and stores them, it keeps listening
for an active request in order to begin the processing phase through the
related Brokerage Engine. This processing phase will be different depending on
which Model Engine will be used during the simulation scenario. Regardless of the

278 R. Di Pietro et al.

type of the Model Engine used, the processing result of any simulation scenario is
formalized in the form of an output JSON file which is forwarded back to the client.

17.4.4.5 The Brokerage Engine

The “Brokerage Engine” represents the “core” of the server application. It consists
of a modular structure that contains different Model Engines. This is important
because it makes this service a general purpose tool, which allows anyone to create
and connect his own Model Engine. However, each Model Engine implements
different specific behaviors. Those latter depend on both the directives received from
the client through the set-environment request and the characteristic of
the dedicated brokerage scenario.

17.5 Case Study: Sustainability-Cost Model

In this section, we present a case study to prove the goodness of the proposed
methodology. By referring to Fig. 17.4, we introduce a Sustainability-Cost Model
to make the best choice in resource allocation. We express sustainability through
several sub-metrics which are generally used to define “how green is a datacenter”:

Fig. 17.4 The
sustainability-cost model
simulator data set [6]

17 J2CBROKER as a Service 279

• the Information Technology Equipment Utilization (ITEU);
• the Information Technology Equipment Efficiency (ITEE);
• the Power Usage Effectiveness metric (PUE);
• the Green Energy Coefficient (GEC);
• the Data center Performance Per Energy (DPPE).

Apart from the sustainability metric, we include availability and monetary cost
criteria in a multi-criteria approach. We remark that the goal is to prove the
goodness of the methodology used in the sustainability model and not of the only
multi-criteria approach that is well known in literature. Availability is the degree to
which a system, product or component, is operational and accessible when required
for use. It is usually expressed as percentage quota. The product quality model
defined in ISO/IEC 25010 [21] comprises availability as a quality characteristic.
As already reported in Fig. 17.2, it is also an important Key Performance Indicator
(KPI). It is generally computed as a function of the total service time, the Mean
Time Between Failure (MTBF), and the Mean Time to Repair (MTTR) as follows:

av = (MTBF/(MTBF+MTTR)) ∗ 100 (17.1)

Physical interpretation of availability is the percentage of time during which a
system correctly operates. Monetary Cost is a quantifiable criterion that addresses
customers and organizations in their business. By specifically referring to the IT
services, it is generally expressed in $/h (i.e., dollars-per-hour) or $/GB (i.e.,
dollars-per-GigaByte). Usually, providers offer instance placement services with a
fixed price in the service maintenance time at a site. Therefore, we can express cost
for an instance i at a site node s, as follows:

costs,i = service_prices,i ∗
t (17.2)

where
t is the running time of the i-th instance at the s-th site node.
We deployed the J2CBROKER Service in an OpenStack infrastructure hosted

on a IBM BladeCenter LS21 at the Cloud Laboratory Data Center—University of
Messina [13]. We tested the service by running several application clients, hosted in
several machines at the High Performance Computing and Application—University
of Messina [8].

17.5.1 Scenario

J2CBROKER simulates a scenario where the main goal is to reduce carbon
dioxide emissions (i.e., the CO2) through a Cloud brokerage ecosystem, where
Cloud Service Providers (CSPs) cooperate in a centralized brokerage environment
to run instance workloads at the most convenient Cloud sites. An instance is a
temporary virtual server that needs to be allocated in order to run services. More

280 R. Di Pietro et al.

specifically, we developed a Sustainability-Cost Model Data Set at client side and a
Sustainability-Cost Model Engine at server side.

17.5.1.1 The Sustainability-Cost Model Simulator

The proposed simulation environment presents a modeling of both service and
Cloud site, i.e., the Model Data Set, thus to provide input data for the related
Model Engine. Each offer is modeled by a JSON document, i.e., the Model Data
Set, which includes two main collections: the first one defines a service data set
describing the service parameters and among these availability and cost; the second
one defines the sustainability metrics and factors at each Cloud site. The service
data set, in particular, is obtained from a survey on several “top” providers of IT
technologies (e.g., Dell blade servers), Cloud services and solutions (e.g., Amazon
Web Services (AWS)). The second one, instead, is based on the measurement results
of a real scenario, from the METI Japan project [22] on enhancing the energy
efficiency and the use of green energy in data centers. Figure 17.4 shows the Model
Data Set: the simulator selects a random value between the range set for each metric
in order to characterize each offer by its sustainability, availability, and monetary
cost values. The detailed description of the tabulated parameters and the multi-
criteria algorithm implemented at the related Model Engine is part of our previous
work [7].

Figure 17.5 shows an example of Data Set created by the Data Set Simulator used
for the proposed case study.

In particular, it identifies an offer in terms of:

1. “simulationName”: the parameterized name of the simulation itself;
2. “providerName”: the name of the simulated provider;
3. “providerNumber”: the id of the simulated provider;
4. “datasetName”: the name of the simulated Data Set which represents the offer

(according to the Sustainability-Cost Model);
5. “datasetNumber”: the id of the simulated Data Set (each provider can present

different offers);
6. “Site”: the information about the metrics that describe the site of the offer [7];
7. “Service”: the information about the metrics that describe the service of the offer

[7].

17.5.1.2 The Sustainability-Cost Model Engine

The Brokerage Engine consists of a modular structure that contains different
Model Engines and among these the Sustainability-Cost Model Engine. This one
is mainly based on a decision-making algorithm in the perspective of an energy-

17 J2CBROKER as a Service 281

Fig. 17.5 An example of
data set created by the data
set simulator

and cost-aware instance allocation in a centralized brokerage Cloud environment. It
results in the opt value, which is an “optimum” index computed by the algorithm to
weigh each offer in terms of carbon dioxide emission (sustainability in gCO2), cost
($-per-hour), and availability (%) as follows:

optnProvider,nDataset

= A ∗ (gCO2nProvider,nDataset/gCO2worst

+B ∗ (costnProvider,nDataset/costworst); (17.3)

where A + B = 1. More specifically, A and B represent the weights respectively
assigned to “sustainability” and “monetary cost saving” in the simulation. In that
formula, nProvider is a unique number which identifies the CSP site; Dataset is a
unique number identifying the offer of that CSP; gCO2 quantifies the related CO2
emission to run an instance workload; cost is the service price in $-per-hour. Both
CO2 emission and cost are normalized to the respective worst case calculated at
each iteration on all the offers by all the CSPs (Fig. 17.6).

282 R. Di Pietro et al.

Fig. 17.6 Confidence interval of the opt index for the allocation of ten instances

Fig. 17.7 Experimental
results h 10 24 360 750

MIN 40,483 50,777 54,660 38,549
125,38 122,195 124,219 177,089
77,53 78,275 82,064 90,456
22,686 16,943 14,009 35,095
66,194 69,803 75,060 72,909

88,880 86,747 89,0697 108,004

opt range (a=0.5)

MAX
AVG

AVG-
(CONF/2)
AVG+
(CONF/2)

CONF

17.5.2 Experimental Results

Figure 17.7 shows several opt values calculated on the basis of Formula 17.3.
More specifically, the experimental results are distinguished by running time

“h” (10, 24, 360, 750 h), as reported in the Data Set at Fig. 17.4, and we consider a
number of 1000 samples (iterations) for each h with a 95% confidence. This latter
is an observed interval, in principle different from sample to sample, that frequently
includes the value of an unobservable parameter of interest if the experiment is
repeated. The desired level of confidence is set (i.e., not determined by data). If a
corresponding hypothesis test is performed, the confidence level is the complement
of the respective level of significance, i.e., a 95% confidence interval reflects a
significance level of 0.05. For each running time we calculate the minimum (MIN),
the maximum (MAX), the average (AVG), the confidence (CONF), and the last
two confidence interval limits. Figure 17.6 provides the reader with a quick visual
feedback about the confidence interval of the above-mentioned opt index to allocate
a number N of ten instances, with A = 0.5, B = 0.5, a number of 1000 samples,

17 J2CBROKER as a Service 283

10000

1000

100

10

1
10 24 360 750 h

kgCO2/DPPE confidence interval (a=0.5, samples=1000, conf=95%, N=10)

0,1

Fig. 17.8 Confidence interval of the sustainability (kgCO2/DPPE) for the allocation of ten
instances

1000

100

10

1
10 24 360 750 h

cost ($) confidence interval (a=0.5, samples=1000, conf=95%, N=10)

0,1

Fig. 17.9 Confidence interval of the cost saving for the allocation of ten instances

and a 95% confidence. The values reported in Fig. 17.6 are the result of a post-
processing phase, by getting as input all the best opt values calculated at each run
step. If we consider that for each run in our simulation the worst case results in
an opt index close to 1000, the energy-aware algorithm at Broker is able to select
offers with an opt index very low when compared to the worst case. The result is a
good compromise between sustainability and cost since it is as better as it is closer
to zero.

Figures 17.8 and 17.9 show a graphical representation of the results that are
obtained in Sect. 17.5.1.2, respectively, in terms of sustainability and cost saving
metrics. This latter are indicative of the goodness of the CSP offers.

284 R. Di Pietro et al.

17.6 Conclusions and Future Work

Performance evaluation in a real Cloud environment is too cost- and time-
consuming. This is why simulation tools can help researchers, Cloud Service
Providers, and customers to evaluate their proposals.

In this paper, we presented and discussed J2CBROKER, a Brokering Simulation
Tool deployable as a Service and integrated in the OpenStack environment. From a
technological point of view, we decided to integrate J2CBROKER in the OpenStack
environment because OpenStack represents the present and the future of open Cloud
computing. This integration in the Cloud allows J2CBROKER to be owned and
hosted by service providers and to be offered to consumers on-demand by following
the “utility model.”

From a simulation point of view, by modeling different Cloud sites and the
related economic offers on several criteria, we demonstrated how the proposed
approach can accommodate different scenarios characterized by a different number
of instances to allocate and based on both performance and business parameters.
These last may also come from real Data Sets, and thanks to an “optimum”
balance between them, it is possible to analyze scenarios where a cooperative Cloud
ecosystem can reduce the gap in competition with larger providers.

Currently, the J2CBROKER service is managed via command line. The results
provided by the Brokerage Engine are available through a JSON file, CSV file, and
displayed via command line on the screen at the user side.

In future, we plan to develop a Web GUI in order to graphically show the
simulation results, thus providing both service customers and providers with a better
user experience.

References

1. E. Badidi, A framework for software-as-a-service selection and provisioning. Int. J. Comput.
Netw. Commun. 5, 189–200 (2013)

2. R. Buyya, M. Manzur, GridSim: a toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. Concurrency Comput. Pract. Exp.
14, 1175–1220 (2002)

3. R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper. 41, 23–50 (2011)

4. E. Casalicchio, V. Cardellini, G. Interino, M. Palmirani, Research challenges in legal-rule and
QoS-aware cloud service brokerage, in Future Generations Computer Systems, vol. 78(Part 1),
(Elsevier, Amsterdam, 2018), pp. 211–223. ISSN 0167-739X. EISSN 1872-7115

5. R. Di Pietro, M. Scarpa, M. Giacobbe, A. Puliafito, Secure storage as a service in multi-
cloud environment, in Ad-hoc, Mobile, and Wireless Networks: 16th International Conference
on Ad Hoc Networks and Wireless, ADHOC-NOW 2017, Messina, September 20–22, 2017,
Proceedings (Springer, Berlin, 2017), pp. 328–341

6. M. Giacobbe, R. Di Pietro, C. Puliafito, M. Scarpa, J2CBROKER: a service broker simulation
tool for cooperative clouds, in 10th EAI International Conference on Performance Evaluation
Methodologies and Tools (Valuetools 2016) (2016), pp. 107–123

17 J2CBROKER as a Service 285

7. M. Giacobbe, M. Scarpa, R. Di Pietro, A. Puliafito, An energy-aware brokering algorithm to
improve sustainability in community cloud, in Proceedings of the 6th International Conference
on Smart Cities and Green ICT Systems (2017), pp. 166–173

8. HPCALab, High performance computing and application laboratory at University of Messina.
http://hpca.unime.it/

9. F. Jrad, A service broker for Intercloud computing. Karlsruhe, Karlsruher Institut für Technolo-
gie (KIT), Dissertation (2014)

10. Keystone, the OpenStack Identity Service. Updated: 2017-10-05 00:49. https://docs.openstack.
org/keystone/latest/

11. D. Kliazovich, P. Bouvry, S. Khan, Ullah: GreenCloud: a packet-level simulator of energy-
aware cloud computing data centers. J. Supercomput. 62, 1263–1283 (2012)

12. MarketsandMarkets. http://www.marketsandmarkets.com/
13. MDSLab, Mobile and distributed systems laboratory at University of Messina. http://mdslab.

unime.it/
14. A. Núñez, J.L. Vázquez-Poletti, A.C. Caminero, G.G. Castañé, J. Carretero, I.M. Llorente,

iCanCloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10, 185–
209 (2012)

15. I. Patiniotakis, Y. Verginadis, G. Mentzas, PuLSaR: preference-based cloud service selection
for cloud service brokers. J. Internet Serv. Appl. 6, 1–14 (2015)

16. M. Radi, Efficient service broker policy for large-scale cloud environments. Int. J. Comput.
Sci. Issues. 12(1), 85–90 (2015)

17. L. Sun, H. Dong, F.K. Hussain, O.K. Hussain, E. Chang, Cloud service selection: State-of-the-
art and future research directions. J. Netw. Comput. Appl. 45, 134–150 (2014)

18. S. Sundareswaran, A. Squicciarini, D. Lin, A brokerage-based approach for cloud service
selection, in 2012 IEEE 5th International Conference on Cloud Computing (CLOUD) (2012),
pp. 558–565

19. Swift, the OpenStack object storage service. Updated: 2017-10-05 13:27. https://docs.
openstack.org/swift/latest/

20. The digital single market. https://ec.europa.eu/digital-single-market/en/digital-single-market
21. The ISO/IEC 25010. http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
22. The ministry of economy trade and industry (METI) Japan project - enhancing the energy

efficiency and use of green energy in data centers. http://home.jeita.or.jp/greenit-pc/sd/pdf/
ds2.pdf

23. The OpenStack foundation. https://www.openstack.org/foundation/
24. B. Wickremasinghe, R. Buyya, Cloudanalyst: a cloudsim-based tool for modelling and analysis

of large scale cloud computing environments (2009)

http://hpca.unime.it/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystone/latest/
http://www.marketsandmarkets.com/
http://mdslab.unime.it/
http://mdslab.unime.it/
https://docs.openstack.org/swift/latest/
https://docs.openstack.org/swift/latest/
https://ec.europa.eu/digital-single-market/en/digital-single-market
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://home.jeita.or.jp/greenit-pc/sd/pdf/ds2.pdf
http://home.jeita.or.jp/greenit-pc/sd/pdf/ds2.pdf
https://www.openstack.org/foundation/

Chapter 18
A Software Tool for the Evaluation
of Transient Removal Methods in
Discrete Event Stochastic Simulations

Sushma Nagaraj and Armin Zimmermann

18.1 Introduction

Performance evaluation of complex system models helps system designers to base
architectural design decisions on relevant information and better understanding, and
thus reduces risk significantly. Such evaluations have to be done at model level, as
there is no prototype or finished system available yet. Numerical analysis methods
are often impossible for the computations when the state space becomes too large
or the underlying stochastic process is too complex (non-Markovian, etc.). In such
cases simulation is the only choice, and there is a vast amount of algorithms and
tools available for specific application areas and model classes [1, 12, 19]. This
paper concentrates on discrete event models [3, 25], where states of the system
can be enumerated and there are atomic state transitions when certain events occur
randomly.

The simulation in question, on which performance evaluation is to be performed,
may either be in a warm-up phase, related to the system start-up, or may have steady-
state properties which apply to the stationary phase. The latter include average
performance under normal use and are arguably more important for systems design,
as they ensure that the long-term behavior of the system will be optimal or as
expected. They help in designing system parameters or decide about architectural
choices.

It is well known that simulating system behavior, based on a model with well-
defined semantics, is usually a technical issue. However, estimating the values
of performance measures defined by the underlying stochastic discrete event
model and deciding when to stop the simulation (usually similar to estimating

S. Nagaraj · A. Zimmermann (�)
Systems and Software Engineering, Technische Universität, Ilmenau, Germany
e-mail: sushma.nagaraj@tu-ilmenau.de; armin.zimmermann@tu-ilmenau.de

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_18

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_18&domain=pdf
mailto:sushma.nagaraj@tu-ilmenau.de
mailto:armin.zimmermann@tu-ilmenau.de
https://doi.org/10.1007/978-3-319-92378-9_18

288 S. Nagaraj and A. Zimmermann

the achieved accuracy) leads to several issues [1, 12]. One is the fact that the
probability distribution over the set of states and thus initial state variable values
for the corresponding simulation are not known in advance, because of which the
simulation models are often started empty or with default state assumptions. This
leads to an initial bias of the performance measures before the simulated process
has reached a (more) stationary state. Although a larger sample set leads to a better
estimation quality, this is not the case here as the initial samples are biased and thus
decrease result quality.

R.W. Conway through his work in [4] emphasized on the empty state of the
system during the simulation start and its gradual approach towards steady-state.
There are various solutions that have already been proposed for addressing this
issue of the warm-up bias [10], and more research is still active in the area,
owing to the unavailability of a universal solution. A commonly known method
to avoid this effect is to detect this initial transient phase and ignore it in the result
estimation [8, 9, 14, 15, 18]. This is obviously much easier if the full set of samples
is available from a simulation log (i.e., offline); however, for practical simulation
algorithm implementations, online and automatic methods for the transient phase
estimation are necessary to decide on-the-fly (or online) from when samples should
be taken into account.

Estimation and removal of the initial transient phase has been the most popular
and successful solution for the problem at hand. There is then a trade-off about
where to cut off the initial phase: the more samples are discarded, the lower is
the influence of the initial bias. However, fewer usable samples will result in a
higher variance of the estimated result. Taking into account simulation costs and
uncertainty of truncation quality in addition to this, the necessity of the truncation
may even be questioned in general [15]. Also, when the transient is detected using
confidence or spectral intervals, the effectiveness of such a detection depends largely
on the stationarity of the sample distribution. Hence, when a group of samples has
to be considered for discarding, the accuracy of the determined truncation point is
important.

There are various methods that have been suggested in diverse scenarios and
applications. Methods such as the MSER-5 [24], in combination with Schruben’s
test [20] and Fishman’s rule [5], are known to be successful and are currently being
used in various simulation software tools. Apart from the tried and tested methods,
there are newer algorithms such as the sequential steady-state detection (online) [7]
and the MSER-5Y (offline) [24] that have been suggested to perform better than the
existing methods. There also are methods like [15] that question the necessity of the
transient removal itself, especially for long-running simulations.

The suitability or performance of the transient removal methods cannot be fairly
judged, unless all the methods under consideration are subjected to similar testing
conditions. Schruben [20] saw the advantages of combining more than one bias-
removal method, and with this as an inspiration, we present a software Framework
for the Detection and Removal of Initial Transients (fDRIT [17]) providing a
possibility for a systematic and fair comparison between the different algorithms.
fDRIT is a platform for a comparative analysis between various transient detection

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 289

and removal methods subjected to a set of benchmark test cases. This not only
helps in the qualitative and quantitative evaluation of multiple algorithms, but also
eliminates the need for separate implementations.

A similar framework, AutoSimOA [11], has been designed to evaluate the
simulation output of a discrete event simulation. However, in AutoSimOA, the
overall quality of the discrete event simulation itself is measured, after running
the output through a standard transient removal algorithm. The simulation tool
Akaroa 2 [16] offers an environment for controlling simulations and implements
output analysis that also contains transient removal methods, but without evaluating
them explicitly.

The main intention of fDRIT is to provide an accessible platform for the
understanding and comparison of the performance of any discrete event simulation
algorithm in a modern computing environment, with a standard, predefined test
suite, and configurable and comparable transient removal techniques. fDRIT also
provides a possibility for implementation of newer algorithms and to be incorpo-
rated into or interfaced with performance evaluation tools such as TimeNET [26].

The remainder of this paper is divided as follows: Section 18.2 briefly explains
the background of steady-state simulation and its transient removal problem, illus-
trating an overview of some of the transient removal methods from the literature.
Section 18.3 explains the design and software architecture of the framework. It
provides a detailed explanation of how the performance metrics are currently cal-
culated. Section 18.4 provides an example case and the corresponding results, with
a comparison between the various implemented algorithms and their corresponding
quality ratings.

18.2 Methods for Transient Removal

This section briefly covers different types of transient removal methods; more details
can be found in [17].

Forward and Backward Data-Interval Rule (DIC and DIG) Conway proposed
truncation as an efficient method to overcome the effect of the initial transient [4].
The idea was to truncate the series of measurements up to a point where the value
was neither the maximum nor the minimum of the remaining data set. This test was
suggested to be made on a data set that was not collected during the initial run, but
instead on a set that was collected after a few pilot runs, such that the uncertainty
of the initial run could be eliminated and the stabilization period decision would
be more accurate than the initial run. The recognized initial transient period could
then be deleted from the result of each run. Conway’s rule specifies selection of
an a-priori number of replications of the simulation run with a fixed number of
observations in the output per exploratory run. Following this, the output sequence
is scanned using a forward pass, starting at the beginning, moving on to determine
the earliest observation which is neither the maximum nor the minimum of all the

290 S. Nagaraj and A. Zimmermann

later observations, which is considered as the truncation point for the corresponding
simulation run. However, any system with high frequency variations and low-
amplitudes resulted in premature truncations, which could be corrected by using
suitable smoothing filters.

As an alternative to this rule, Gafarian et al. suggested a similar method but
with a backward pass called the Backward Data-Interval Rule [8]. The only change
in this method from Conway’s Forward Data-Interval rule is that DIG scans the
output sequence using a backward pass, starting at the last observation, to find
the earliest observation which is neither the maximum nor the minimum of the
observations examined earlier. This observation is considered the truncation point
of the corresponding simulation run.

When DIC and DIG methods were considered together, they had the effect of
defining a range of output values which contain the most appropriate truncation
point. In effect, the actual truncation point lies between the truncation points
specified by both of the methods. These methods can be used for specifying a range
in which the truncation value could be present in any application. However, they are
suitable only for systems that prefer an offline analysis.

Fishman’s Rule Fishman [5] proposed a first-order autoregulatory method for
investigation of the effects of the initial conditions in a simulation. The bias and
variance were used to measure the effects. The truncation heuristic proposed was
referred to as the Crossing-of-the-Truncation-Mean rule, which defined the cut-off
point as the observation at which the sample path crossed the cumulative mean a pre-
determined number of times. The cumulative mean of all the observations, starting
at the initial point, was computed at the arrival of each new observation in the output
sequence, maintaining a count of the number of times the output sequence crossed
the mean-sequence. Following this, after a pre-specified number of such crossings,
the output data was truncated.

A prominent problem in this method was pointed out by White [22]: the inability
of dynamic determination of the appropriate number of crossings across different
applications. Such a choice is sensitive to frequency and magnitude of oscillations
in the truncated sequence, independent of the character of the reserved sequence.
White suggested a revision of Fishman’s rule by proposing truncation after the first
crossing of the reserved sequence. Fishman, however, also discussed the possible
inflation of the variance of the truncated mean led by the truncation of data from
the output sequence, which was not desired. There must be a balance between
elimination of bias against the corresponding increase in the variance. This idea
was used as a basis by several researchers for developing various other methods,
working towards achieving the mentioned balance.

Schruben’s Tests Schruben [20] proposed the concept of confidence interval
estimation for the mean of any simulated time-series, by standardizing the entire
series, instead of using a single estimator or a scaling constant. Instead, the use
of a limiting stochastic process to model the limiting behavior of the standardized
time-series which is conditioned to start and end at zero is considered. There are
four assumptions made in this algorithm: The first is that the process is strictly

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 291

stationary. Second, the process has a zero mean and a finite variance that can be
closely approximated as a real-valued function. The third assumption is that the
unknown parameter to be estimated is assigned the existing value until further
change. Fourth, the mixing function for the process converges with the respective
process going down to the value zero at a suitable speed. In the test procedure, the
simulation output is converted to a standardized time-series using the time-series
analysis. Then, the converted standardized series is tested against any bias presence
using null hypothesis. Test results from diverse simulation models are provided in
the paper, claiming that the test is generic in its approach, suitable to a wide range
of applications.

This algorithm is to date one of the most used tests to check the stationarity of
a system model. Many tools use this method as one of the hybrid methods in the
implemented transient removal algorithms.

In later work, Schruben et al. [21] also suggested an alternative hypothesis testing
framework with a family of tests for detecting initialization bias in the mean of the
simulation output series. Here a general transient mean function is used, in place of
the null hypothesis with no change in the output mean. Knowledge of the type of
bias contained in the time-series is, however, a prerequisite for using this method. It
is also required to know if there is a positive or negative bias present in the system.

Euclidean Distance Method This algorithm was proposed by Young-Hae Lee et
al. [13], as an online algorithm for the determination of steady-state in simulation
outputs. The Euclidean distance method estimates the required results within a
single run and in combination with the batch means method, without the need for a
pilot run. Although the process of finding of the truncation point was more robust,
the algorithm tended to delete more data than the other methods. Also, the generality
parameter of this method was left unchecked by the authors. For achieving complete
automation in simulation analysis, it was suggested that the batch size and the
number of batches needed to be determined online.

MSER Rules The Marginal Standard Error Rules aim at finding an optimal
truncation point based on minimizing the confidence interval estimate. This wields
Fishman’s suggestion of formulating a balance between the bias reduction and
decreased precision or increased variance [6]. Such a balance is suggested to
be achieved by minimizing the mean square error (MSE) of the mean from the
truncated sample. White and Minnox [23] tested this method on four queueing
simulation models and deduced that the resultant match with the expected output
is based on the match of the obtained truncation point with the actual value. Later,
there were further improvements made to the MCR model by comparison with
the following four tests: no truncation, Fishman’s test, DIC, and DIG, and it was
concluded that the MCR heuristic significantly improved the value of the steady-
state mean value μ. However, MCR was not represented as a fail-proof method. It
was described as being “moderately superior” to the methods that were the state-of-
the-art of that day. The failure of the accurate truncation point detection in case of
rare-event occurrence was also mentioned and use of methods such as batch means
in such circumstances was suggested.

292 S. Nagaraj and A. Zimmermann

Spratt, who used the term Marginal Standard Error Rules (MSER) instead
of Marginal Confidence Rule (MCR), defined different methods from literature
and compared their effectiveness of reducing the bias effect [18]. He made two
significant modifications to the original MCR algorithm in order to avoid two
cases: analysis on insufficient data and oversensitivity of the algorithm. One of the
modifications was done on the basis of Schruben’s suggestion to aggregate the data
into non-overlapping fixed size batches. The recommended batch size from Spratt
is 5; hence, this modified MSER rule is also referred to as the MSER-5 algorithm.
However, a general form of batched MSER, proposed by White, is what is used
widely today. It was known as MSER-m, where m denotes the batch size.

In 2011, Saeideh Yousefi [24] elaborated further on the quality of the MSER-5
algorithms. One of the main problems pointed out in this work was the estimation
of the truncation point and its corresponding Confidence Interval estimator and esti-
mated steady-state mean value being incorrect in simulation cases which contained
pronounced initial transients. In case of such a failure, the algorithm provided no
alternative way for continuing with or restarting the simulation. Hence, Yousefi
proposed a modified version of the MSER-5 algorithm, called MSER-5Y, which
not only delivered a truncation point always, but also provided a “nearly-unbiased”
point estimator and an approximately valid CI estimator for the steady-state mean.
This algorithm was found to work well in many test scenarios, with the limitation
of working with only precollected data, like MSER-5.

Pawlikowski’s Heuristics In 1990, Krzysztof Pawlikowski [19] carried out exten-
sive research in estimating the main factors that can affect the accuracy of stochastic
simulations designed to give insight into the steady-state behavior of queueing
processes. The main aim of the research was to address the problems of estimating
the optimal start and stop points for simulation runs, in order to obtain the statistical
accuracy in the results. He suggested a two-step solution for the transient problem.
In the first step, the different heuristics R1–R10 presented in the literature could be
used to get a first approximation of the truncation point. For example, Fishman’s rule
or the Heuristic R5 was used in his simulation study of communication protocols.
After obtaining the approximate value of the truncation point, the second step was
to carry out the estimation a second time, on the sequence truncated using the
approximated truncation point value. This was done in order to test the sequence
for stationarity and to get a robust estimate of the onset of the steady-state phase
in the simulation. The key for using the R5 heuristic is the selection of the mean-
crossing value, in order to avoid the truncation point value being too high or too
low.

Several tools use Fishman’s rule or the R5 heuristic in Pawlikowski’s heuristics,
including TimeNET (Timed Net Evaluation Tool, [26]) and JMT (Java Modelling
Tools [2]).

TimeNET is a software tool for the modelling and performability evaluation
using various classes of stochastic Petri nets (SPNs). It supports the creation, testing,
simulation, and analysis of SPN(s), which are well suited for the model-based
performance and dependability evaluation. The simulation component of TimeNET

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 293

can perform the transient as well as the stationary evaluation of SPNs with statistical
accuracy control achieved by establishing confidence intervals and relative errors.

JMT is a suite of applications developed by Politecnico di Milano and Imperial
College London. The project aims at offering a comprehensive framework for
performance evaluation, system modeling with analytical and simulation tech-
niques, capacity planning and workload characterization studies. The JSIM module
within the JMT tool is a simulation module for Queueing Networks. JSIM has
an automated transient detection procedure which is based on spectral analysis.
This tool computes and plots the online estimated values which are within the
calculated confidence intervals. The tool also supports what-if analyses, where a
sequence of simulations can be run with custom control parameter values. The JMT
tool also credits the transient detection as a critical statistical decision where the
detection and removal, variance estimation and simulation length control need to be
completely automated and have claimed to have achieved the same. The simulation
is automatically stopped when the performance measures of the simulation model
are estimated with the desired accuracy.

Transient Removal in Akaora This is a recent online transient phase detection
algorithm for the Akaroa simulation tool [16] by Freeth [7]. This method is based
on the convergence of cumulative means of the system to its steady-state value and
uses forecasting techniques to determine this convergence. The truncation point is
estimated as the point where the cumulative means became sufficiently horizontal
and flat. The proposed method was tested against the MSER-5 statistic and the
former detected the onset of the steady-state more effectively and consistently
for almost all simulation models that were used for testing and hence proved to
be a good consideration in sequential truncation. However, the performance of
this method was tested in the Akaroa environment and its behavior in diverse
applications still remains untested.

18.3 fDRIT: A Framework to Detect and Remove Initial
Transients

The idea of implementing a framework through which multiple transient detection
algorithms can be implemented and tested against a set of standard tests was
inspired by the modified proposal by Schruben [20]. This work suggested the
use of a testing framework, comprising of a set of standard tests with which the
initialization bias and the mean of the simulation output series can be evaluated.
This was found to be a useful approach, especially for comparing two or more
methods under consideration. It was also observed that an efficient transient removal
can be often achieved with a combination of multiple algorithms that are already
known, and that different algorithms are suitable for different problems at hand.
However, the comparative suitability of the available methods is unknown due
to the lack of knowledge of the presence of the methods, or limited testing,

294 S. Nagaraj and A. Zimmermann

proving it difficult to analyze the applicability of the algorithms to the situation
at hand. The framework proposed here provides a platform for understanding and
comparing the performance of any deployed methods, and aims at obtaining the
performance evaluation of any discrete event simulation, with diverse transient
removal methods, online. The current (academic) version of the framework may
be found at https://github.com/tuiSSE/fDRIT.

The framework comprises three modular parts:

1. Algorithm implementation framework
2. Test framework
3. Evaluation tool

The algorithm implementation part consists of an extendable number of transient
removal algorithms, which are connected to the remaining software by a standard-
ized interface for easier implementation of future algorithms. At the time of writing,
we have implemented eight algorithms from the literature:

1. Euclidean Distance Method by Young-Hae Lee et al. [13].
2. Schruben’s stationarity Rule [20].
3. Method of cumulative means by Adam Freeth used in Akaora [7].
4. Fishman’s rule or R5 Heuristic by Pawlikowski [19].
5. MSER-5 by Spratt [18, 24].
6. MSER-5Y by Saeideh Yousefi [24].
7. Initial transient detection approach used in the TimeNET tool [26].
8. Initial transient detection approach used in the JMT simulator [2].

The test framework holds the definition of various dynamic test algorithms that
generate random data for the input data generation of the algorithms. Its modular
structure allows easy extension by additional examples. This part is planned to be
extended towards a set of benchmark data generators. The current implementation
uses three M/M/1 queuing systems as first examples, which are:

• M/M/1 queue-waiting-time process with empty-and-idle initial condition and
90% server utilization.

• M/M/1 queue-waiting-time process with 113 initial customers and 90% server
utilization.

• M/M/1/LIFO queue-waiting-time process with empty and idle initial condition
and 80% server utilization.

The evaluation tool defines a set of methods that calculate the quality of the
executed methods. There is also a part responsible for the user interaction. The user
is required to provide two inputs: an algorithm or a combination of algorithms that
are to be analyzed and compared, and a test method that needs to be executed, for
generating the necessary test data.

Software Architecture The software architecture of the framework has three
components: The part which contains the algorithm implementation, the test data
generation framework, and the part where the evaluation of the selected methods

https://github.com/tuiSSE/fDRIT

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 295

Fig. 18.1 fDRIT software architecture

are carried out based on the selected tests. A brief overview of the architecture is
shown in Fig. 18.1.

Algorithm Implementation The implementation of the transient detec-
tion/removal algorithm to be evaluated is done in this module. The
implementation of the algorithm is independent of any test data, isolating it from
the testing environment. The main intention of separating the test framework
from the algorithm implementation was to enable a generic evaluation of the
implemented methods. A call is made from the evaluation framework to the
implementation framework, to fetch the required methods under scrutiny. The
job of the implementation framework is then to run the implemented algorithm,
with the test data provided by the evaluation part, and to return the calculated
output values like the steady-state mean, output or error values, or any other
output calculated for the system. The only responsibility of the algorithm
framework is to execute the implemented method with the provided test inputs
and returning the result values. This part may be extended to accommodate
as many new algorithms as necessary, with complete abstraction. Section 18.4
contains comparative results obtained from the tool for an M/M/1 queue.

Test Data Generation The quality of algorithms implemented cannot be guar-
anteed with limited testing. This led to the creation of a separate module for
the purpose of testing and input data generation. The implemented algorithms
have to be subjected to different test scenarios/benchmarks, to observe their

296 S. Nagaraj and A. Zimmermann

performance and to draw a comparison between each other. This is an important
process, especially when the choice of a suitable algorithm needs to be made for
a certain individual setup. The testing framework is also instantiated and called
from the evaluation part of the tool. When the respective call is executed, the
job of the testing framework is to generate and supply the appropriate test data
dynamically. In the current implementation, three variations of a basic M/M/1
queue are implemented as first prototypes, for providing the test data to the
algorithms. This will be extended in the future to provide an extensive set of
tests.

Evaluation of the Algorithms This part of the tool executes the selected algo-
rithm by triggering a sample test-simulation (Test Data Generation). As an
output, the metric scores of the evaluation parameters (c.f. Sect. 18.3.1) are
calculated, when the truncation point in the algorithm is reached. These metrics
are then used in a Cost-Benefit analysis, with different scores for each of the
parameters, with a possibility to draw a comparison of the algorithms in question
(individually or in combination). The main job of the evaluation section is to
gather the input, i.e., the selection of the algorithms to be compared and the test
data to be used, collect test data (online) and acquire the corresponding output
parameters from the selected transient removal algorithm(s) by initiating their
execution with the collected test data. The evaluation engine basically acts as
an interface between the user and the framework. The different criteria used for
the calculation of the performance metrics are: Accuracy, Precision, Cost, and
Parameter estimation, as detailed in Sect. 18.3.1.

18.3.1 Evaluation Parameters for the Quality of the Algorithms

There is no single performance metric available which quantifies the performance
of the bias-removal algorithms, and guide us towards the best suitable algorithm. A
few data scientists have already attempted to compare the bias-removal algorithms
against one another in the past. In [14], a set of performance measures like the
Mean Square Error, variance and their corresponding percentage changes and cost
calculations are explained. Gafarian et al., in [8], specify five criteria to evaluate the
goodness of the algorithms under consideration.

Using these as a guide, we have incorporated a set of criteria, to be able to
quantify the performance of the bias-removal algorithm in question, and have
devised a method for scoring the respective metrics. We believe that with such a
score, the comparison of the algorithms becomes easier. The current method is only
an example of the benefits of using such a scoring method and uses parameters
which are believed to act as a deciding factor in the selection of a suitable algorithm.
The choice of these metrics can be tailored to use, and their weighting altered
according to the requirements. The chosen metrics in the current example benefit
analysis are elaborated below.

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 297

18.3.1.1 Accuracy

This parameter defines a score of the accuracy of the evaluated truncation point
with respect to the theoretically exact truncation point. The accuracy can be given
any score between 0 and 10. This score is assigned by calculating the accuracy
percentage using Eq. (18.1) given below and then dividing this percentage value by
10, to deduce a score between 1 and 10. The accuracy parameter has an overall
weighting of 25% in the goodness measure of the algorithm. The weighting along
with the score is used in the benefit analysis, which is used for the comparison of
the goodness of multiple algorithms.

a = Estimated Truncation Point

Theoretical Truncation Point
× 100 (18.1)

In the case of the truncation point estimate being greater than the theoretical
truncation point, i.e., if the estimated percentage is greater than 100, the score is
calculated by subtracting the difference from 100 and then dividing by 10, and is
also assigned a negative sign to signify the loss of useful data.

18.3.1.2 Precision

The considered algorithm can be said to be precise if the estimated truncation point
is not a significantly varying value, i.e., the estimated value should be similar across
runs. This value is obtained from the coefficient of variation which is the ratio of
the standard deviation to the mean of the truncation point obtained across a pre-
specified number of times, as given in Eq. (18.2) below. Typically, any method is
expected to be precise, which means that it should have a negligible variance. This
means that the closer the value p from Eq. (18.2) is to zero, the more precise is the
respective value.

p = Standard Deviation of the Estimated Truncation Point

Mean of the Estimated Truncation Point
× 100 (18.2)

Similar to the accuracy score, the precision is also scored between 0 and 10,
which is obtained by subtracting the tenth of p from Eq. (18.2) from 10. If the
precision value is negative, then the precision score is considered to be 0.

The precision parameter also weighs 25% of the overall goodness measure for
our sample evaluation. This weight, in combination with the precision score of the
respective algorithm, and along with the other parameters is used in the beneficial
analysis of the corresponding algorithms.

298 S. Nagaraj and A. Zimmermann

18.3.1.3 Computational Cost

The cost parameter is evaluated by calculating the amount of time required for the
following three operations:

1. Computation time for the algorithm itself, i.e., the computational efficiency.
2. Computation time for the collection of the output data before estimating the

truncation point and the subsequent discarding of the biased data.
3. The computation time associated with the determination of the truncation point.

The total computing time is calculated from the implementation code, but for the
beneficial analysis, we require a score between 1 and 10. This is done by assuming a
grade of 10 initially and reducing 1 point for every 30 s that the algorithm uses in our
sample case. The 30 s benchmark here is model- and simulation-setting dependent,
and has been chosen for the example benefit analysis based on the longest running
model taking 30 × 10 = 300 s. To avoid the case in which an algorithm stops too
early and is deemed beneficial w.r.t. cost, the weighting allocated to the cost is much
lower than for accuracy and precision, for instance.

18.3.1.4 Parameter Estimation

The parameter estimation score is based on the total number of unknown configura-
tion parameters to be set in the algorithm. This value is important because if more
parameters are necessary, the riskier the algorithm may be in the case of wrong
selections. This value is calculated by finding the number of parameters that are
estimated in the execution of the algorithm and assigning a tenth of that value as the
parameter estimation score.

The parameter estimation score can range between 1 and 10, and it has a
weighting of 15% in the benefit analysis of the algorithms.

18.3.1.5 Overall Benefit Analysis

The joint performance of the various implemented algorithms is evaluated using a
standard benefit analysis method. The different parameters explained in Sect. 18.3.1
have been used for the analysis. The benefit rating for the individual algorithms
is computed by first calculating the parameter scores for the respective heuristics.
These scores are then multiplied by the corresponding parameter weights and
finally summed up for each algorithm. The performance of the algorithm under
consideration is directly proportional to its benefit rating. fDRIT provides this
detailed analysis to the user and can thus support an informed decision between
algorithms dealing with the initial transient problem.

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 299

18.4 Example and Results

The framework was executed with the test data from a dynamic M/M/1 queue-
waiting-time process with empty and idle initial condition and 90% server utiliza-
tion. The results for some selected algorithms obtained are shown in Table 18.1.

In Table 18.1, the values for three of the implemented methods are depicted in
detail. The benefit rating values of the other methods are given in Table 18.2. It
should be noted that this criteria selection and weighting is just one possible setup
that should be chosen following the intentions of a future user. If, for instance, the
algorithm complexity is not significant as only the numerical results are considered
important, the corresponding value can be set to 0, possibly resulting in a different
algorithm to be chosen.

The framework acts as a base evaluation and testing platform for all implemented
methods. This work may be reused in any other project as a dynamic library,
without the need to re-evaluate and re-implement the initial transient problem for
every requirement from the scratch. The possibility of drawing a comparison and
conclusion to the algorithm decision is the main idea here. When the implemented
algorithms is taken into consideration, it can be seen from the benefit ratings that the
rating of the combination of the cumulative batch means method and the MSER-5Y
algorithms has the highest rating, showing that it is the best of the compared lot. In
a similar way, based on the requirement and the testing method, the best suitable
algorithm(s) for the particular situation can be decided upon.

Table 18.1 Benefit rating matrix for evaluation of three truncation methods

Truncation algorithms

ED method Fishman’s rule Cumulative batch means

Evaluation statistic Weight(w) Score(S) W ∗ S S W ∗ S S W ∗ S

Accuracy 35 3 75 5 125 7 175

Precision 35 5 125 5 1275 7 175

Cost 5 3 15 4 20 6 30

Parameter estimation 25 9 135 9 135 9 135

Benefit rating
∑ = 100 510 565 710

Table 18.2 Benefit ratings
for the experiments carried
out on the framework

Truncation algorithms Benefit rating

Batch means by Euclidean distance method 510.0

Fishman’s rule 565.0

Cumulative batch means 710.0

MSER-5 687.5

MSER-5Y 695.0

Schruben’s rule 565.0

TimeNET 687.5

JMT 730.0

Cumulative batch means + MSER-5Y 765.0

300 S. Nagaraj and A. Zimmermann

18.5 Conclusion

This paper presented the prototype software framework fDRIT for the evaluation
and comparison of algorithms that solve the problem of the initial transient for
stochastic discrete event simulations. Several available methods from the literature
have been collected, implemented, and compared with a benchmark test. Criteria for
the user-specific weighted benefit comparison are proposed and the set of algorithms
is evaluated as an example. The framework should act as a decision help and
standardized comparison environment to evaluate new and existing methods for
certain types of application models or input data. Its software architecture is modular
and extendable for future implementation of more benchmark models/data sources,
and transient detection algorithms. A secondary use may be the use of the framework
or parts of it inside other tools, which then do not have to re-implement a certain
transient removal algorithm for themselves.

In the future, we plan to use the tool to support the development of new online
algorithms for the initial transient detection of stochastic Petri net models.

References

1. S. Asmussen, P. Glynn, Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling
and Applied Probability, vol. 57 (Springer, Berlin, 2007)

2. G.S.M. Bertoli, G. Casale, An overview of the JMT queueing network simulator. Tr 2007.2,
Politecnico di Milano, DEI (2007)

3. C.G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems (Kluwer, Boston, 1999)
4. R.W. Conway, Some tactical problems in digital simulation. Manag. Sci. 10(1), 47–61 (1963)
5. G.S. Fishman, Bias considerations in simulation experiments. Oper. Res. 20(4), 785–790

(1972)
6. G.S. Fishman, Monte Carlo: Concepts, Algorithms and Applications. (Springer, New York,

1996)
7. A. Freeth, A sequential steady-state detection method for quantitative discrete-event simula-

tion. PhD thesis, University of Canterbury (2012)
8. A.V. Gafarian, C.J. Ancker, T. Morisaku, Evaluation of commonly used rules for detecting

“steady state” in computer simulation. Nav. Res. Logist. Q. 25(3), 511–529 (1978)
9. W.K. Grassmann, Factors affecting warm-up periods in discrete event simulation. Simulation

90(1), 11–23 (2014)
10. K. Hoad, S. Robinson, R. Davies, Automating warm-up length estimation. J. Oper. Res. Soc.

61, 1389–1403 (2009)
11. K. Hoad, S. Robinson, R. Davies, AutoSimOA: a framework for automated analysis of

simulation output. J. Simul. 5(1), 9–24 (2011)
12. A.M. Law, D.M. Kelton, Simulation Modeling and Analysis, 3rd edn. (McGraw-Hill Higher

Education, New York, 1999)
13. Y.H. Lee, K.H. Kyung, C.S. Jung, On-line determination of steady state in simulation outputs.

Comput. Ind. Eng. 33(3), 805–808 (1997)
14. P.S. Mahajan, R.G. Ingalls, Evaluation of methods used to detect warm-up period in steady

state simulation, in Proceedings of the 36th Conference on Winter Simulation, WSC ’04,
Winter Simulation Conference (2004), pp. 663–671

18 A Software Tool for the Evaluation of Transient Removal Methods in. . . 301

15. D. McNickle, G.C. Ewing, K. Pawlikowski, Some effects of transient deletion on sequential
steady-state simulation. Simul. Modell. Pract. Theory 18(2), 177–189 (2010)

16. D. Mcnickle, K. Pawlikowski, G. Ewing, AKAROA2: a controller of discrete-event simulation
which exploits the distributed computing resources of networks, in Proceedings of European
Conference on Modelling and Simulation (ECMS 2010) (2010)

17. S. Nagaraj, A. Zimmermann. fDRIT - an evaluation tool for transient removal methods in
discrete event stochastic simulations, in Proceedings of 10th International Conference on
Performance Evaluation Methodologies and Tools (VALUETOOLS 2016), Taormina, October
2016

18. R. Pasupathy, B. Schmeiser, The initial transient in steady-state point estimation: contexts, a
bibliography, the MSE criterion, and the MSER statistic, in Simulation Conference (WSC),
Proceedings of the 2010 Winter, December 2010, pp. 184–197

19. K. Pawlikowski, Steady-state simulation of queueing processes: survey of problems and
solutions. ACM Comput. Surv. 22(2), 123–170 (1990)

20. L. Schruben, Confidence interval estimation using standardized time series. Oper. Res. 31(6),
1090–1108 (1983)

21. L. Schruben, H. Singh, L. Tierney, Optimal tests for initialization bias in simulation output.
Oper. Res. 31(6), 1167–1178 (1983)

22. K.P. White, A simple rule for mitigating initialization bias in simulation output: comparative
results, in IEEE International Conference on Systems, Man and Cybernetics, 1995. Intelligent
Systems for the 21st Century, October 1995, vol. 1, pp. 206–211

23. K.P. White, M.A. Minnox, Minimizing initialization bias in simulation output using a simple
heuristic, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics,
October 1994, vol. 1, pp. 215–220

24. S. Yousefi, MSER-5Y: an improved version of MSER-5 with automatic confidence interval
estimation. Master’s thesis, North Carolina State University (2011)

25. A. Zimmermann, Stochastic Discrete Event Systems (Springer, Berlin, 2007)
26. A. Zimmermann, Modelling and performance evaluation with TimeNET 4.4, in Quantitative

Evaluation of Systems - 14th International Conference, QEST 2017, pp. 300–303, Berlin,
September 2017

Chapter 19
A House Appliances-Level Co-simulation
Framework for Smart Grid Applications

Abdalkarim Awad, Peter Bazan, and Reinhard German

19.1 Introduction

Renewable energy sources cover a large part of the worldwide energy supply. In
2014 the share was approximately 19.1% [23]. Because of the continued expansion
of renewable energy sources, the energy system is moving away from its traditional
centralized structure with large producers towards a structure with many distributed
generators. While the share of renewable energy in electricity production in 2005
excluding hydropower was 2.6% [24], it was already 4% at the end of 2014.

Due to the expansion of wind energy and photovoltaics (PV), fluctuating energy
sources must be integrated increasingly into the system. In 2004, the global installed
capacity of wind power was 48 GW, whereas with 370 GW it increased by almost
eight times in the year 2014. At the same time, the installed PV capacity increased
almost 48-fold from 3.7 GWp to 177 GWp [23]. Thus, the classic roles of producers
and consumers in the energy system are supplemented by consumers who generate
energy, the so-called prosumers. The integration of variable renewables increases
the need for centralized and decentralized energy storage. Prosumers equipped with
storage systems are also referred to as prostumers.

The increasing use of electric vehicles (EV) leads to a further increase in
consumers and storage systems in the grid. Such mobile storage systems can be
charged at home and also at charging stations, which intensifies the complexity of
the entire system. In 2015 there were 1.26 million EVs worldwide, compared to

A. Awad (�)
Birzeit University, Birzeit, West Bank, Palestine
e-mail: akarim@birzeit.edu; akarim@ieee.org

P. Bazan · R. German
University of Erlangen-Nuremberg, Erlangen, Germany
e-mail: peter.bazan@fau.de; reinhard.german@fau.de

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9_19

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92378-9_19&domain=pdf
mailto:akarim@birzeit.edu
mailto:akarim@ieee.org
mailto:peter.bazan@fau.de
mailto:reinhard.german@fau.de
https://doi.org/10.1007/978-3-319-92378-9_19

304 A. Awad et al.

Fig. 19.1 Power consumption of a refrigerator

several hundred EVs in the year 2005 [16]. Therefore, the integration of millions
of EVs will be an additional problem in the future. The increasing integration
of information and communication technology into the system of consumers,
prosumers, and prostumers enables the coordination of such systems and ensuring
of grid stability.

Smart grid enables new applications for households such as Demand Response
(DR) and Advanced Metering Infrastructure (AMI). Simulation models at appliance
level can help understanding the benefits and risks of employing smart grid
applications. Figure 19.1 shows the power consumption of a refrigerator. As can
be seen, in the morning as well as in the afternoon, there are small increases in the
power consumption (small spikes). It is the bulb in the fridge that is causing these
spikes which is being captured by these readings. Such readings can be exploited to
extract information about the behavior of the household. In [3, 4, 28] we used a co-
simulation approach to study CVR and Volt/VAR control. In [5] we presented a short
tutorial on using SGsim in electricity distributed networks. In [2] we have explored
different methods to preserve privacy. In this work, we present an appliance-level
co-simulation framework that enables exploring house-level smart grid applications.

The rest of the paper is organized as follows. At the beginning we present
some related works. Then in Sect. 19.3 we introduce SGsim-Home. In Sect. 19.4
we present a case study, and in Sect. 19.4.2, we evaluate the proposed approaches.
Finally, Sect. 19.5 concludes the paper.

19.2 Related Work

The use of simulation tools for the evaluation of new technologies and applications
is a widely adopted method, and therefore, there is a wide range of tools. Some
of these simulation tools have been combined into simulation environments which
allow the co-simulation of various domains of a complex system. An overview of the
requested requirements of such tools is given in [27]. There, the integration of of-
the-shelf simulators for communication systems and electrical power systems into a

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 305

co-simulation simulation framework is suggested, together with the ability to model
control strategies for smart grid applications.

An example of a co-simulation framework is the modular platform mosaik for the
evaluation of agent-based smart grid controls [26]. It combines different simulators
and simulations and controls the data-flow between them. For this purpose, it defines
its own modeling and specification language. It enables the simulation of large-scale
smart grid scenarios but lacks the integration of a communication simulator. This
problem is addressed with the presentation of a preliminary system architecture
of integrating OMNeT++ [10]. Unlike SGsim-Home, this integration is not yet
implemented.

Because communication is a key part of smart grid applications, several co-
simulation tools are using the discrete-event simulator OMNeT++ [31] for mod-
eling and simulation of communication systems. An example is the co-simulation
approach of power systems, communication, and controls presented in [29]. This
framework combines the commercial power system analysis software PowerFactory
[12] with OMNeT++, whereas SGsim combines the electric power distribution
system simulator OpenDSS [13] with OMNeT++, both of which can be used in
a non-commercial environment without license fees. Another example is the com-
munication network and power distribution network co-simulation tool for smart
grids presented in [18]. There the discrete-event-based simulation of communication
systems framework OMNeT++ is coupled with the continuous simulation of power
systems tool OpenDSS using a Hypertext Transfer Protocol (HTTP) connection.
SGsim-Home, on the other hand, couples the two simulation tools via a more
runtime efficient Component Object Model (COM) interface. In addition to the
two co-simulation examples, the controller component of SGsim-Home allows the
connection to powerful optimizers over the internet.

The agent-based simulation engine of the co-simulation tool GridLAB-D [9],
unlike SGsim-Home, has only simple network characteristics integrated like latency,
bandwidth, buffer size, or congestion. Instead of using OpenDSS, it is coupled with
the power system simulation and optimal power flow tool MatPOWER [33].

The approach of [20] combines three simulation tools for validating flexible-
demand EV charging management. GridLAB-D controls the simulation and the
charging management of the EV, the battery is modeled with OpenModelica [14],
and the distribution grid with PowerFactory [12]. Because of GridLAB-D, the
approach can only use simple network characteristics.

All these tools cover different aspects of the smart grid by using co-simulation.
SGsim-Home integrates these aspects in one framework combining simulation tools
of the power grid and the communication with a connection to an optimizer. It
provides models for PV, Battery, EV, and home appliances like refrigerator, Air
Condition (AC), and TV.

With SGsim-Home it is possible to analyze and minimize the privacy risk
introduced by smart meters. It is shown in [17] that the detection of steady state
changes from loads with an on/off switching behavior like refrigerators can identify
the appliance. Even from smart meter data with a resolution of 30 min measured

306 A. Awad et al.

over 1.5 years, information about the personal circumstances of the residents can be
extracted with a high probability [7].

SGsim-Home allows the analysis of integrated privacy protection and demand
response techniques. The work in [22] presents a pre-processing approach to
enhance user privacy. The authors have used quantization, down-sampling, and
averaging to prevent successful classification of household appliance. An empirical
and analytical model to study adding noise to mask smart meter readings has been
presented in [6]. Additionally, they used correlation to evaluate the approach. Both
methods are focused only on privacy.

Another approach introducing privacy, but this time considering several smart
meters, is the homomorphic encryption of aggregated smart grid information
presented in [19]. The data aggregation is performed at all smart meters involved
in routing the data from the source meter to the collection unit.

In [30] privacy in smart metering systems has been studied from an information
theoretical perspective in the presence of renewable energy systems and storage
units. The authors describe the system as a finite state model and analyze the impact
of a renewable energy system on the privacy. They also investigate the privacy
and energy efficiency trade-off, but do not consider power-tariff dependent demand
response and optimization.

19.3 SGsim-Home

The framework SGsim-Home is based on the co-simulation framework SGsim [1, 3–
5, 28] which is based on two main simulators: OpenDSS [13] and OMNeT++
[31]. The focus of [1, 3, 5] was on transmission and distribution networks. SGsim-
Home focuses on simulating home appliances. Two attractive characteristics of
OpenDSS make it a suitable candidate for co-simulation. In addition to a stand-
alone executable program, OpenDSS provides an in-process Component Object
Model (COM) server DLL designed to be driven from an external program. The
COM interface makes integrating OpenDSS into other simulators relatively easy.
The second reason is the fact that OpenDSS is an open source simulator, and hence,
providing this framework as open source for education and research community
is possible. OMNeT++ has been selected to implement SGsim. In addition to the
basic simulation tools, several frameworks have been developed for OMNeT++. For
instance, INET framework has been developed with well-tuned data communication
components such as TCP/IP, 802.11, and Ethernet. In order to enable the use
of the framework in the field of smart grid applications, we have integrated
new components for the electricity distribution network. Figure 19.2 shows the
different components of the simulator. Through the COM interface, it is possible to
control the execution of the circuit and to change/add/remove different components.
Different approaches have been used to simulate the different devices. We have used
real data to simulate some devices such as TV and washing machines. Figure 19.4
presents a 10 s resolution power consumption of a TV [15, 25]. At each time step,

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 307

Fig. 19.2 Structure of SGsim-Home with the connections between the different components

the Edit command is used to change the parameter of these devices. The database
provides data only for 1 h, therefore, the data will be repeated as long as the device
is on. A mathematical model has been used to model thermal devices such as AC
and refrigerator. The following set of equations represents this mathematical model
of a refrigerator, a freezer, or an AC:

T (t + 1) = εT (t)+ (1− ε)

(
To(t)− COP× Pref

A

)
(19.1)

ε = exp

(
δ

δc

)
, δc = mc

A
, A = k ×G

Th

where T (t+1) is the temperature inside the room at control period t+1, ε is the
factor of inertia, δ is the duration of the control period, δc is the time constant, mc

is the total thermal mass in Wh/C, A is the overall thermal conductivity in W/C,
To(t) is the ambient temperature in C at control period t , COP is the coefficient
of performance, and Pref is the electrical power demand of the AC in W at control
period t . k is the thermal conductivity coefficient, G denotes the area of the room,
and Th denotes the thickness of the wall. If the refrigerator door is open, the bulb in
the fridge will cause an additional power consumption Pbulb

P Total
Ref = Pref + Pbulb (19.2)

308 A. Awad et al.

OpenDSS provides several models to represent loads. We have used the ZIP-
based load model model 8 to simulate the different loads. This model is very useful
when studying smart grid applications such as Conservation Voltage Reduction
(CVR). The loads are modeled as ZIP loads with the parameters as in [8, 11].
The ZIP model represents the variation (with voltage) of a load as a composition
of the three types of constant loads Z, I, and P which stand for constant impedance,
constant current, and constant power loads, respectively. Equations (19.3) and (19.4)
give the current active and reactive loads as a function of current voltage (V). The
constants P0 and Q0 are the design active and reactive power, respectively. The
parameter v0 is the design voltage.

PLi = P0i

[
ZP

(
vi

v0

)2

+ IP

(
vi

v0

)
+ PP

]
(19.3)

QLi = Q0i

[
Zq

(
vi

v0

)2

+ Iq

(
vi

v0

)
+ Pq

]
(19.4)

All devices are equipped with communication capability so that it is possible to
control these devices. The INET framework provides the necessary components to
simulate several kinds of communication networks such as WiFi and Ethernet.

Figure 19.3 shows a screenshot of the simulator. The devices are connected
through a wireless LAN. The Smart Meter (SM) sends the energy usage at a specific
frequency (e.g., 1 reading/min). The Home Energy Management System (HEMS)

Fig. 19.3 Screenshot of the simulator

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 309

Fig. 19.4 TV active (a) and reactive power consumption (b)

coordinates the operation of the different devices. For instance, it can find the
optimal operation strategy of the devices in order to minimize the electricity costs.
The HEMS measures the energy usage at a higher frequency than the SM (e.g., at
1 Hz). The Oload1 represents the basic load and it is non-elastic. V is the voltage
value, P represents the power consumption, E is the energy usage, Ei denotes
to the last reading from the smart meter. The air condition is considered as an
elastic load and the temperature should be maintained within a specific range. The
clothes washing machine (CW) is considered also as an elastic load. It consists of
several phases which should be run sequentially without interruption. It is possible
to control the operation of the battery (charging and discharging periods) by the
HEMS (Fig. 19.4).

19.4 Case Study: Integrated Privacy Protection and Demand
Response

In this section, we present a case study on integrating privacy protection inside
demand response. The HEMS uses the day-ahead price, storage, and load elasticity
to minimize the costs. At the same time, it tries to hide load characteristics through
a coordinated operation of a battery and elastic loads.

310 A. Awad et al.

19.4.1 Smooth Consumption

In this approach, we exploit load elasticity and storage device (e.g., battery)
to maximize the profit and at the same time to hide household information.
The controller tries to maintain a constant power consumption level throughout
the whole day through coordination between the different household appliances.
Additionally, the controller tries to prevent power consumption spikes.

The main idea is to use the day-ahead price, the electricity demand, and the
battery to find the optimal strategy to be followed to minimize the electricity costs
and minimize privacy risks. The controller uses the day-ahead price and demand
forecast to solve an optimization problem to find the optimal amount of energy
to be sold, charged/discharged in/from the energy storage unit, and the amount of
electricity to be imported from the main grid. Additionally, it finds the optimal time
slots to run elastic loads such as washing machines. Furthermore, it controls the
thermal devices (e.g., AC) to hide load characteristics. The controller solves a linear
optimization problem for 1 day (i.e., T = 1440 min with a resolution of δ = 1 min).
Then, according to the results, it changes the current operating parameters of the
system. We have formulated the optimization problem using the general algebraic
modeling system (GAMS) and then solving the problem using the solver CPLEX.

The objective of the controller is to minimize the costs C(t) and the privacy risks
PR(t), therefore, the objective function can be written as below:

min

{
T∑

t=1

λ1C(t)+ λ2PR(t)

}
(19.5)

λ1 and λ2 are constants that emphasize the importance of costs or privacy,
respectively. The costs come from importing energy from the grid.

C(t) =EP(t)δPb(t) (19.6)

EP(t) is the electricity price, Pb(t) is the power imported from the grid.
The above maximization problem is subject to system constraints. We considered

the electrical balance constraints which can be written as:

Pd(t)+ Pb(t)− Pl(t)− Pe(t)− Pc(t) = 0 (19.7)

where Pd denotes power discharged from the battery, Pl represents the base load
(non-elastic), Pc is the power charged in the battery, and Pe(t) denotes the amount
of allocated power in this time slot from the elastic energy.

The energy balance in the battery can be modeled as:

E(t + 1) = (1− α)E(t)+ δηcPc(t)− δ
Pd(t)

ηd

(19.8)

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 311

Emax ≥ E(t) (19.9)

E is the state of charge of the battery, α represents the self-discharge rate from
the battery, and ηc and ηd are the charge and discharge efficiencies of the battery,
respectively. Emax is the capacity of the battery. We have also considered the
following limitations in the system:

P max
d ≥ Pd(t), P max

c ≥ Pc(t), P max
e ≥ Pe(t) (19.10)

P max
c , P max

d ,P max
e denote the maximum amount of power allowed to charge, to

discharge, and to allocate an extra load at each time step, respectively.
The next set of equations guarantees that the battery is either in charge or

discharge state.

P max
d x(t) ≥ Pd(t) (19.11)

P max
c (1− x(t)) ≥ Pc(t) (19.12)

P max
e ≥ Pe(t) (19.13)

x(t) ∈ {0, 1} (19.14)

The elastic load EL should be served in a specific period, which can be written
as:

T2∑

t=T1

δPe(t) = EL (19.15)

where [T1, T2] is the period where the elastic load should be run. If the load should
be carried out continuously and it consists of several phases (e.g., washing machine),
the following constraints should be added:

Pe(t) = w(t)Pphases(k) ∀k (19.16)

y(t)+ w(t) ≥ w(t − 1) (19.17)

y(t) ≥ y(t − 1) (19.18)

w(t) ∈ {0, 1} (19.19)

Equation (19.16) models whether an energy phase (k) is being processed during
time slot t . Equation (19.17) ensures that the process will not be interrupted after it
starts. Equation (19.18) ensures sequential processing of the phases.

We define the following function for privacy. The first term tries to maintain
a constant consumption throughout the whole day, while the second term tries to
minimize the changes of the power consumption.

312 A. Awad et al.

PR(t) = |Pb(t)− PAvg| + |Pb(t)− Pb(t − 1)| (19.20)

Additionally, the following constraint prevents sudden changes in the power
consumption.

|Pb(t)− Pb(t − 1)| ≤
P (19.21)

19.4.2 Evaluation

In order to explore the capability of the approach to preserve the privacy, we have
used the constant consumption approach to hide an EV charging signal. Hiding
such a signal is more challenging than hiding refrigerator cooling cycle or turning
on a bulb. We evaluated the proposed methods by examining the capability of the
algorithm proposed in [32] to disaggregate EV charging signals from aggregated
real power signals. The methods presented in [32] can effectively mitigate the
interference coming from an AC, enabling accurate EV charging detection and
energy estimation under the presence of AC power signals. It is a non-intrusive
energy disaggregation algorithm of EV charging signals. It has five steps. In the
first step, a threshold is applied to obtain a rough estimate of the EV charging
load signal. Then in the second step, it filters the AC spikes. Then it removes
the so-called residual noise. Then, in the fourth step, it classifies the type of each
filtered segment. In the last step, it performs the energy disaggregation based on the
effective width and the effective height of a segment. We have used the same data
set that has been used in [32], which came from the Pecan Street Database [21]. This
database collects raw power signals recorded from hundreds of residual houses in
Austin, Texas. Ten houses using EV were randomly chosen from the database. Each
aggregated power signal is generally a combination of about twenty power signals of
various appliances, such as EV, AC, furnace, dryer, oven, range, dishwasher, cloth-
washer, refrigerator, microwave, bedroom-lighting, and bathroom-lighting. The
ground-truth power signals of these appliances are also available in the database.
Thus, the database is very suitable to test algorithms’ performance in practice.
Table 19.1 summarizes the simulation parameters. Figure 19.5a shows the non-
elastic power consumption of the house and electricity price. The EV charging
process occurs in the afternoon. The house tries to minimize the power usage costs
through optimal allocation of an elastic load and storing energy in a battery when it
is cheap (e.g., at early morning) for future usage when the electricity is expensive
(at afternoon). We assumed that the house owns a 1 kWh battery and a 2 kW AC.
Figure 19.5b shows the power usage of the house when coordinating the usage to
maintain a constant electricity usage. The house gets the day-ahead price and calls
the optimizer. Using this price signal, the optimizer finds the optimal allocation of
the elastic loads and the battery charging and discharging period to minimize the
costs. At the same time, it tries to maintain a constant power consumption during

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 313

Table 19.1 Parameters Parameter Value

Battery 1, 5 kWh

P 50 W

λ1 = λ2 1

δ 1 min

T 1440 min

P max
d = P max

c = P max
e 3 kW

ηc = ηd 90%

ε 0.99

A 300 Wh/C

COP 3.5

the day. The controller can adapt the operation to react to new load signals. We
have repeated the same experiment for ten houses with EV charging signal. Only
in one case it was possible to detect the charging time. Increasing the battery size
makes it possible for the controller to further flattening of the power consumption
as can be seen in Fig. 19.5c, where we tested a 5 kWh battery. Using the available
components, it is possible to produce a misleading charging signal. As depicted in
Fig. 19.5d, the controller has produced a consumption profile that looks similar to
an EV charging signal at midday.

Based on the price signal, charging the EV in the afternoon is not the optimal
charging time. In fact, the EV charging process can be considered as an elastic load
which should be done in a specific period (e.g., before 8 AM). If we consider only
the electricity costs, i.e., λ2 = 0, the controller will select time slots in the early
morning as an optimal charging period as can be seen in Fig. 19.6.

19.5 Conclusion

In this work, we have presented a home-appliance co-simulation framework. The
simulator is able to capture the electricity as well as the ICT capabilities of
smart appliances. Different components have been implemented and simulated.
Additionally, the operation of the components can be adapted during the simulation
(e.g., the operating parameters can be changed). This way, it is possible to simulate
smart grid applications at home-appliances level. Through a case study, we have
presented the possibility to integrate privacy protection into an important smart
grid application, namely into the demand response. The results have shown the
ability to hide load information through coordination between different components.
Similarly as with SGsim, we are planning to provide this framework as open source
for the academic community.

314 A. Awad et al.

Fig. 19.5 Non-elastic load (a), load after smoothing with a 1 kWh battery (b), load after
smoothing with a 5 kWh battery (c), and load after smoothing and adding a misleading charging
signal (d)

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 315

Fig. 19.6 Optimal allocation of EV charging

Acknowledgements Peter Bazan is also a member of “Energie Campus Nürnberg,” Fürther Str.
250, 90429 Nürnberg. His research was performed as part of the “Energie Campus Nürnberg” and
supported by funding through the “Aufbruch Bayern (Bavaria on the move)” initiative of the state
of Bavaria.

References

1. A. Awad, P. Bazan, R. German, SGsim: a simulation framework for smart grid applications, in
Proceedings of the IEEE International Energy Conference (ENERGYCON 2014), Dubrovnik,
Croatia, May 2014, pp. 730–736

2. A. Awad, P. Bazan, R. German, Privacy aware demand response and smart metering,
in Proceedings of the IEEE 81st Vehicular Technology Conference: VTC2015-Spring, First
International Workshop on Integrating Communications, Control, Computing Technologies for
Smart Grid (ICT4SG), Glasgow, May 2015, pp. 1–15

3. A. Awad, P. Bazan, R. German, SGsim: co-simulation framework for ICT-enabled power
distribution grids, in 18th International GI/ITG Conference on Measurement, Modelling
and Evaluation of Computing Systems and Dependability and Fault-Tolerance (MMB & DFT
2016), Münster, April 2016

4. A. Awad, P. Bazan, R. Kassem, R. German, Co-simulation-based evaluation of volt-VAR
control. In 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-
Europe), October 2016, pp. 1–6

5. A. Awad, P. Bazan, R. German, A short tutorial on using SGsim framework for smart
grid applications, in Proceedings of the 10th EAI International Conference on Performance
Evaluation Methodologies and Tools on 10th EAI International Conference on Performance
Evaluation Methodologies and Tools, Valuetools16 (2017), pp. 143–148

6. P. Barbosa, A. Brito, H. Almeida, S. Clauß, Lightweight privacy for smart metering data by
adding noise, in Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
’14, New York, NY, 2014, pp. 531–538

7. C. Beckel, L. Sadamori, T. Staake, S. Santini, Revealing household characteristics from smart
meter data. Energy 78, 397–410 (2014)

8. A. Bokhari, A. Alkan, R. Dogan, M. Diaz-Aguilo, F. de Leon, D. Czarkowski, Z. Zabar,
L. Birenbaum, A. Noel, R. Uosef, Experimental determination of the ZIP coefficients for
modern residential, commercial, and industrial loads. IEEE Trans. Power Delivery 29(3),
1372–1381 (2014)

316 A. Awad et al.

9. D.P. Chassin, K. Schneider, C. Gerkensmeyer Gridlab-d: an open-source power systems
modeling and simulation environment, in 2008 IEEE/PES Transmission and Distribution
Conference and Exposition (2008), pp. 1–5

10. J. Dede, K. Kuladinithi, A. Förster, O. Nannen, S. Lehnhoff, Omnet++ and mosaik: Enabling
simulation of smart grid communications. arXiv preprint arXiv:1509.03067 (2015)

11. M. Diaz-Aguiló, J. Sandraz, R. Macwan, F. de León, D. Czarkowski, C. Comack, D. Wang,
Field-validated load model for the analysis of CVR in distribution secondary networks: energy
conservation. IEEE Trans. Power Delivery 28(4), 2428–2436 (2013)

12. DIgSILENT power factory, DIgSILENT GmbH, Gomaringen (2016). http://www.digsilent.
de/index.php/products-powerfactory.html

13. EPRI Electrical Power Research Institute, Home page, October 2015
14. P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop, L. Saldamli, D. Broman, The

openmodelica modeling, simulation, and development environment. in 46th Conference on
Simulation and Modelling of the Scandinavian Simulation Society (SIMS2005), Trondheim,
October 13–14, 2005

15. C. Gisler, A. Ridi, D. Zufferey, O.A. Khaled, J. Hennebert, Appliance consumption signature
database and recognition test protocols, in 2013 8th International Workshop on Systems, Signal
Processing and their Applications (WoSSPA), pp. 336–341, May 2013

16. International Energy Agency. Global EV Outlook 2016: Beyond one million electric cars.
OECD/IEA, Frankreich, 2016

17. C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, P. Armstrong, Power signature
analysis. IEEE Power Energ. Mag. 1(2), 56–63 (2003)

18. M. Lévesque, D.Q. Xu, G. Joós, M. Maier, Communications and power distribution network
co-simulation for multidisciplinary smart grid experimentations, in Proceedings of the 45th
Annual Simulation Symposium (Society for Computer Simulation International, San Diego,
2012), p. 2

19. F. Li, B. Luo, P. Liu, Secure information aggregation for smart grids using homomorphic
encryption, in 2010 First IEEE International Conference on Smart Grid Communications
(SmartGridComm), October 2010, pp. 327–332

20. P. Palensky, E. Widl, M. Stifter, A. Elsheikh, Modeling intelligent energy systems: co-
simulation platform for validating flexible-demand EV charging management. IEEE Trans.
Smart Grid 4(4), 1939–1947 (2013)

21. Pecan street database, Home page, October 2015
22. A. Reinhardt, F. Englert, D. Christin, Enhancing user privacy by preprocessing distributed

smart meter data. In Sustainable Internet and ICT for Sustainability (SustainIT), 2013, October
2013, pp. 1–7

23. REN21. 2015, Renewables 2015 Global Status Report. REN21 Secretariat Paris, 2015
24. REN21 renewable energy policy network, Renewables 2005 global status report. Worldwatch

Institute, Washington, DC (2005)
25. A. Ridi, C. Gisler, J. Hennebert, ACS-F2- a new database of appliance consumption signatures,

in 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR),
August 2014, pp. 145–150

26. S. Rohjans, S. Lehnhoff, S. Schutte, S. Scherfke, S. Hussain, mosaik-A modular platform
for the evaluation of agent-based smart grid control, in Innovative Smart Grid Technologies
Europe (ISGT EUROPE), 2013 4th IEEE/PES (IEEE, New York, 2013), pp. 1–5

27. S. Rohjans, S. Lehnhoff, S. Schu tte, F. Andrén, T. Strasser, Requirements for smart grid
simulation tools, in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE)
(IEEE, New York, 2014), pp. 1730–1736

28. SGsim, Home page (2016). https://sourceforge.net/projects/sgsim
29. M. Stifter, J.H. Kazmi, F. Andrén, T. Strasser, Co-simulation of power systems, communication

and controls, in 2014 Workshop on Modeling and Simulation of Cyber-Physical Energy
Systems (MSCPES) (IEEE, New York, 2014), pp. 1–6

30. O. Tan, D. Gunduz, H. Poor, Increasing smart meter privacy through energy harvesting and
storage devices. IEEE J. Sel. Areas Commun. 31(7), 1331–1341 (2013)

http://www.digsilent.de/index.php/products-powerfactory.html
http://www.digsilent.de/index.php/products-powerfactory.html
https://sourceforge.net/projects/sgsim

19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications 317

31. A. Varga, The OMNeT++ discrete event simulation system, in European Simulation
Multiconference (ESM 2001), Prague, June 2001

32. Z. Zhang, J.H. Son, Y. Li, M. Trayer, Z. Pi, D.Y. Hwang, J.K. Moon, Training-free non-
intrusive load monitoring of electric vehicle charging with low sampling rate, in The 40th
Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), Dallas, TX,
October 2014, pp. 1–6

33. R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, Matpower: steady-state operations,
planning, and analysis tools for power systems research and education. IEEE Trans. Power
Syst. 26(1), 12–19 (2011)

Index

A
Adaptive load balancing, 152
Affinity propagation, 207, 214
Agglomerative clustering, 207, 214
ALEVIN, 162, 163, 171–173, 177
Algorithm comparison, 6, 147, 288, 289, 296,

300
Algorithm simulation, 136, 288, 289
Analytical model, 2–4, 48, 82, 95, 96, 293, 306
Appliances, 6, 217, 303–315
Application container, 222–224, 226
Approximate solution, 4, 11, 12, 118
Arduino, 238
Arrival bounding, 67, 68, 72, 73, 75
Autonomic computing, 230, 232
Autoscaling, 225, 226, 230
Availability, 1, 3, 4, 45, 96, 144, 204, 225, 226,

228, 230, 244, 279–281
Average buffer content, 160, 161
Avionic full-duplex Ethernet (AFDX), 63, 64,

74–76
Avionics networks, 70

B
Back office, 95–97, 99, 102–104, 106, 108,

109
Bard-Schweitzer approximation, 14, 15, 26
Batch arrivals, 32, 35, 38–41, 45
Benchmarks, 2, 18, 70, 74, 202, 211, 229, 289,

294, 295, 298, 300
Broker, 6, 269–284

C
Canonical forms, 257, 259
Carrier aggregation, 151–163
Case study, 24, 25, 245, 278, 280, 304, 309,

313
Cellular networks, 182, 188
Closed queueing network, 13, 16, 27
Cloud brokerage, 6, 270, 272, 279
Cloud computing, 5, 158, 232, 269, 270, 274
Cloud service broker (CSB), 270, 271
Cloud service provider (CSPs), 269, 270, 272,

279, 281
Clustering algorithms, 207, 214–216
Component carrier, 5, 151–163
Component method, 49, 51, 52, 54–60
Conditional MVA (CMVA), 13, 16–23, 25, 26
Container, 5, 221–232, 277
Convex optimization, 126
Cooperative clouds, 272, 284
Coordinated algorithm, 136, 137
Co-simulation, 6, 303–315
Cost function, 31, 96, 106–108
Cross-domain link (CDL), 171–173, 175, 178
Customer impatience, 182–186

D
Data center management, 203, 206, 207, 211
Data traffic, 5, 181–196, 201, 202
Deadlines, 4, 29–45, 96
DEEM tool, 48

© Springer International Publishing AG, part of Springer Nature 2019
A. Puliafito, K. S. Trivedi (eds.), Systems Modeling: Methodologies and Tools,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-319-92378-9

319

https://doi.org/10.1007/978-3-319-92378-9

320 Index

Delay, 13–15, 24–26, 48, 57, 59, 63, 65–67,
69–75, 85, 86, 135–139, 141, 142,
144–148, 151–163, 246, 248

Delay bounds, 66, 67, 69, 71–75, 135, 145
Demand response, 304, 309, 313
Deterministic network calculus, 4, 63–77
Deterministic stochastic Petri nets (DSPN), 48,

49
Digital single market, 270
Dispatching problem, 29
Distribution fitting, 254, 259–267
Docker, 221–224, 226, 228–231

E
Electric vehicle (EV), 303, 305, 312, 313, 315
Energy-aware, 232, 283
Energy consumption, 30, 226, 231, 232
Energy storage, 303, 310
Equilibrium equations, 183, 185, 190, 191
Event-driven simulation, 194

F
Fault tolerance, 225, 226, 228, 229
Feedback fluid queue, 156
Feed-forward networks, 67
Firewall, 161, 164–172, 237, 239, 241, 244,

249
First policy iteration, 43
5G networks, 181
Flow-equivalent server (FESs), 11, 16
Flow-level modelling, 181
Fluid approximation, 5, 80, 87–89
Fluid content, 157
Fluid models, 74, 84, 85, 89–93
Forward analysis, 64, 67, 68, 70, 74, 76, 77
Front office, 95–97, 99, 101, 104, 105, 107,

109
Functional requirements, 1, 228, 249

G
Gaussian, 129, 131
Gossip-based data aggregation, 208, 209
Gossip protocols, 202
GreatSPN tool, 53
GRE tunnels, 243

H
Handover rate, 182, 185, 193, 194
Health checking, 224–226

Heuristic, 42, 43, 135–148, 173, 290–292, 294,
298

Hole punching, 244, 247, 249

I
ICT, 313
Identity service, 275–277
Infrastructure-as-a-service (IaaS), 5, 135, 201,

221, 237–239, 269
Initial transient, 83, 288, 289, 292, 294,

298–300
Inter-cell mobility, 5, 181, 182, 188, 190, 196
Intermittent server, 5, 95–112
Internet of things, 4, 5, 229, 237–249
Inversion method, 115, 116, 123, 125

J
JAVA, 53, 119, 123, 271, 272, 292
J2CBROKER, 6, 269–284
Json, 272, 275–278, 280, 284

K
Key performance indicator, 279
Kubernetes, 221, 222, 226, 230

L
Latency, 5, 29, 33, 74, 135–148, 151, 246, 247,

305
Latency-aware, 136, 142, 145, 148
Linear programming, 230
Linux container (LXC), 222–224, 229
Little’s law, 15
Load balancing, 5, 148, 151–163, 225, 226
Load-dependent queue, 4, 121–27
Long term evolution-advanced (LTE-A),

151–163, 181

M
Maintainability, 1
Map-reduce applications, 79
Markov chain, 48, 51, 58, 92, 136, 137,

141–145, 157, 254, 255, 258, 261–263,
266

Markovian arrival process, 258
Markovian model, 96, 182, 192, 194
Markovian queues, 156, 263
Markov processes, 156, 158, 182–184, 187
Markov regenerative process (MRgP), 48–51,

53, 55–57, 60

Index 321

Markov regenerative stochastic Petri net
(MRSPN), 48, 50, 53–55, 59

Markov reward process (MRP), 5, 58, 136, 148
Mathematica package, 254, 255, 260, 262
Matlab, 119, 254, 255, 257, 260, 262
MATLAB toolbox, 254, 262
Matrix-analytic methods, 261–262
Matrix-free MRgP solution, 49, 55, 59
Mean delay, 161–162
Mean throughput, 160–161, 181
Mean value analysis (MVA), 121–27, 88, 89
Measurements, 2, 123, 228, 246, 247, 259,

260, 264, 280, 289
M/iD/1 queue, 4, 30, 32, 35, 36
Mills ratio, 125, 129
Minimax, 128
Mixed integer, 137
Modelling, 3, 4, 47–60, 292
Moment matching, 257
Monitoring, 201, 202, 209, 216, 217, 222, 223,

228–229, 231
Multicast flows, 4, 63–77
Multi-class network, 24
Multi-class workload, 81
Multi-formalism modelling, 85–87, 93
Multiple-phased systems, 47–60
Multiple resources, 138
Multiple sub-systems, 1
Multivariate normal, 5, 115–131

N
NAT traversal, 244, 249
Network intrusion detection system (NIDS),

161, 164–171, 173
Network monitoring, 216, 217
Network security, 163, 232
Network virtualization, 5, 161, 237, 245
Newton’s method, 116, 118
Node ranking, 141–145, 148
Non-functional requirements, 1, 228
Non-Markovian systems, 287
Non-product-form queueing network, 121
Non real time (NRT) data, 153, 154, 156, 248
Numerical instability, 121–13
Numerical solution of MRgP, 54

O
OMNeT++, 305, 306
OpenDSS, 305, 306, 308
OpenStack, 238, 269–284
Optimal load, 312
Optimal population mix, 89

Optimal solution, 108
Optimal threshold, 96, 99
Optimization, 3, 4, 47, 115, 126, 128, 204, 306,

310
Orchestration, 5, 221–232
OS virtualization, 238
Overlay networking, 237–249

P
Parallel computation, 79
Parallel computing, 79
Pay bursts only once (PBOO), 66, 68–70, 72,

73, 75
Pay multiplexing only once (PMOO), 66,

68–76
Pearson correlation coefficient, 212, 213
Peer-to-peer networks, 249
Performability, 4
Performance, 1–5, 121–13, 18, 21, 26, 27, 29,

39–41, 43, 44, 48, 49, 55, 56, 58–60,
64–67, 75, 80, 81, 89–93, 95–112, 136,
141, 144, 146–148, 152–159, 161, 162,
172, 181, 182, 185, 189, 190, 192–196,
212–217, 221, 222, 226, 228–232,
246–249, 254, 262–264, 270, 271, 284,
287–289, 292–294, 296, 298, 307, 312

analysis, 2, 5, 64, 152, 159–162, 166,
181–196, 266

evaluation, 4, 13, 48, 70, 181, 223, 228,
229, 253–267, 284, 287, 289, 292–294

modeling, 254
Period expectation, 5, 96, 104
Phase-type distribution, 255
Photovoltaic (PV), 303, 305
Policy iteration, 43, 45
Pool depletion systems (PDS), 4, 79–93
Power grid, 305
Primary component carrier (PCC), 151, 153,

155
Priority queues, 264
Privacy, 304–306, 309–313
Processor sharing (PS), 30, 83, 181–186, 188,

192, 196
Product-form queueing network, 4, 80
Prototypes, 2, 57, 205, 287, 296, 300
Pseudo-busy period expectation, 105, 106, 108
Pseudo-idle, 102–106, 108

Q
Q function, 51, 186–188
Quality of experience, 29, 230

322 Index

Quality of service (QoS), 5, 135–138, 145,
146, 148, 152–156, 159, 162, 185,
230–232, 270

Quasi birth-death processes (QBDs), 261, 262
Queueing analysis, 152, 261–266
Queuing networks, 4, 11, 13, 16, 21, 27, 293

R
Radio resource management (RRM), 152–155
Random variable, 41, 97, 102, 115, 184, 188
Random walk, simulation, 137
Rare event, 291
Rayleigh distribution, 118, 120, 121
Real time (RT) data, 152–154, 156
Reduction, 72, 75, 210, 215, 216, 222, 291
Rejection sampling, 116
Reliability, 1, 3, 4, 47, 48, 63, 96
Renewable energy, 303, 306
Representation transformation, 256–259, 263
Resource assignment, 161
Resource block (RBs), 151–155
Resource-demand pairs, 166–173
Response time, 1, 5, 121–15, 18–23, 25–27,

29, 44, 81, 85, 96, 101, 108, 230
RESTFul, 238, 272
Reverse tunnelling, 241–244, 248, 249
Routing, 43, 188–190, 194, 216, 306
R software, 119, 174, 254

S
Scheduled maintenance system (SMS), 47, 49,

50, 54–56, 59
Scheduling, 11, 24, 29, 70, 152–157, 225, 226,

230
Scheduling delay, 152, 153, 155
Secondary component carrier (SCC), 151, 153,

155
Security domains, 166, 172
Security requirements, 5, 161–174
Seidmann’s approximation, 13, 14, 18–20, 23,

26
Self-healing, 222, 223, 226, 230, 231
Self-optimization, 222, 223, 226, 230–231
Separated flow analysis (SFA), 66, 68, 72–76
Service demand, 11, 13–18, 21, 22, 24, 26,

80–82, 89
Service level agreement (SLAs), 29, 226, 227,

231
Service rate, 11, 44, 83, 183, 186, 193, 263
Sever, 4, 5, 13, 14, 16, 18, 29–45, 65–69, 71,

72, 74, 80, 82, 83, 87, 88, 95–97, 99,

101–109, 156, 164, 165, 239, 241–243,
246, 247, 272, 275–280, 294, 299, 306

Simulation, 2, 3, 5, 6, 43, 44, 53, 80, 84, 85,
87, 89, 91–93, 95, 109, 115–131, 136,
146, 147, 182, 194, 195, 257, 271, 272,
275–278, 280, 281, 283, 284, 287–300,
304, 305, 312, 313

bias, 290, 291
framework, 162, 163, 166, 171, 173, 305
smart grid, 303–315
tool, 269–284, 289, 293, 304–306

Single-class network, 24
Single server, 13, 30, 45, 80, 95–112
Single threshold model, 159, 160, 162
Small cells, 5, 181–196

oothing, 215, 290, 314
Software as a service (SaaS), 269, 274
Software defined networks (SDN), 201, 217
Software tool, 75, 254, 274, 287–300
Spearman correlation coefficient, 206, 212,

213, 215, 217
Spectral clustering, 207, 214–216
Stable MVA (SMVA), 4, 121–27
Steady-state, 52, 59, 288, 289, 291–293, 295
Steady-state analysis, 121
Steady state probability distribution, 5, 96–102
Stochastic discrete-event system, 287
Stochastic modeling, 97
Stochastic Petri nets (SPN), 47, 48, 292, 293,

300
Substrate network (SN), 48–50, 54, 57–59,

135, 138, 139, 142, 144, 146, 147, 165,
167, 169, 171–174, 176, 177

Sustainability, 3, 4, 278–281, 283
Swarm, 222
System modeling, 2, 34, 232, 287, 291, 293

T
Tail distribution, 125
Threshold-based identification, 213
Throughput, 1, 121–13, 15, 18–23, 25, 26, 81,

82, 85, 87, 88, 152, 153, 158–162, 181,
182, 185, 192–196, 230, 246–248

Time series correlation, 205–207, 210, 215
Time series interpolation, 205
Topological constraints, 173
Topology-aware, 138
Total flow analysis (TFA), 66, 68–70, 74, 75
TPC-W benchmark, 211
Traffic analysis, 181–196
Trajectory approach (TA), 70, 74, 75, 102
Transient detection heuristics, 292

Index 323

Truncated, 5, 115–118, 120–123, 125, 126,
130, 131, 290–292

Two-stage algorithm, 137
Two threshold model, 159

U
Utilization, 1, 5, 11, 12, 80, 101, 103, 108, 141,

148, 152, 154, 203, 207, 209, 215, 216,
226, 230, 231, 294

V
Validation, 3, 4, 93, 215
Value function, 4, 30–38, 40–45
Virtual links (VLs), 76, 138–141, 145, 146,

165, 171, 172

Virtual machine introspection (VMI), 165
Virtual machines (VMs), 5, 171, 201–218, 221,

222, 224, 227–230, 237, 271
Virtual network (VNs), 5, 135, 161, 162, 164,

171, 173, 237, 242–244, 246, 247, 249
Virtual network embedding (VNE), 5,

135–148, 161–174
Virtual network request (VNR), 135–142,

145–147, 162, 166–172, 175–173
VPN, 242, 246

W
Web application messaging protocol, 238
Websocket, 239–241, 244, 247–249
Workload modelling, 232
Worst-case analysis, 71

	Contents
	1 Systems Modelling: Methodologies and Tools
	References

	Part I Modelling Theory
	2 SMVA: A Stable Mean Value Analysis Algorithm for Closed Systems with Load-Dependent Queues
	2.1 Introduction
	2.2 Background
	2.3 Related Work
	2.4 Stable Mean Value Analysis
	2.5 Experimental Results
	2.5.1 One Load-Dependent Queue
	2.5.2 Two Load-Dependent Queues

	2.6 Multi-class Extension
	2.7 Conclusions
	Appendix
	References

	3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel Heterogeneous Servers
	3.1 Introduction
	3.2 M/G/1 FCFS Queue with Deadlines
	3.3 M/D/1 FCFS Queue with Deadlines
	3.3.1 M/D/1 FCFS with a Single Deadline
	3.3.2 M/D/1 FCFS with Multiple Job Classes

	3.4 M/iD/1 FCFS Queue with Deadlines
	3.4.1 Value Function for the M/iD/1 FCFS Queue
	3.4.2 Special Case: Systems J2 and B2 with Two Sizes
	3.4.3 Steady State Performance with J2 and B2
	3.4.4 Value Functions for J2 and B2

	3.5 Parallel Servers
	3.6 Summary
	References

	4 Modelling and Efficient Solution of Multiple-Phased Systems
	4.1 Introduction and Paper Contribution
	4.2 Extended Phased Petri Nets
	4.3 X-PPN Solution
	4.4 An Example of MPS Modelling and Evaluation with X-PPN
	4.5 GreatSPN vs DEEM on PPN
	4.6 Conclusions and Future Work
	References

	5 Deterministic Network Calculus Analysis of Multicast Flows
	5.1 Introduction
	5.2 Deterministic Network Calculus Background
	5.2.1 Network Analysis
	5.2.1.1 Tandems of Servers
	5.2.1.2 Feed-Forward Networks

	5.2.2 Multicast Flows

	5.3 Related Work
	5.3.1 unicastFFA Transformation: A Set of Unicast Flows
	5.3.2 Multicast TFA
	5.3.3 Explicit Intermediate Bounds (EIB)
	5.3.4 Non-network Calculus Approaches

	5.4 A Multicast Feed-Forward Analysis Procedure
	5.4.1 Analysis of the Running Example
	5.4.1.1 mcastFFA Step 1
	5.4.1.2 mcastFFA Step 2

	5.4.2 Theoretical Evaluation

	5.5 Numerical Evaluation
	5.5.1 Comparison to (Non-)Network Calculus Approaches
	5.5.2 An Industry-Scale AFDX Data Network

	5.6 Conclusion and Outlook
	References

	6 Modeling Techniques for Pool Depletion Systems
	6.1 Introduction
	6.2 Related Work
	6.3 Scenario
	6.4 Models Analysis
	6.4.1 Markov Analysis
	6.4.2 Discrete Event Simulation
	6.4.3 Fluid Approximation
	6.4.4 Techniques Comparison

	6.5 Conclusions
	References

	7 Performance of a Single Server Queue Supported by an Intermittent Server
	7.1 Introduction
	7.2 Hypotheses and Model
	7.3 Steady State Probability Distribution, Mean Number of Customers
	7.3.1 Steady State Probability Distribution
	7.3.2 Mean Number of Customers, Mean Waiting Time

	7.4 Pseudo-Idle and Busy Periods of the Intermittent Server
	7.4.1 Mean Time of a Passage in the Back Office
	7.4.2 Mean Time of a Passage in the Front Office

	7.5 Cost Function
	7.6 Conclusions
	Appendix 1: Determination of Eq. (7.11)
	Appendix 2: Determination of the Mean Number of Customers
	References

	8 Simulation from the Tail of the Univariate and Multivariate Normal Distribution
	8.1 Introduction
	8.2 Simulation from the Tail of the Univariate Normal
	8.2.1 Inversion Far in the Right Tail
	8.2.2 Rejection Methods
	8.2.3 Speed Comparisons

	8.3 Simulation from the Tail of the Multivariate Normal
	8.3.1 Preliminaries and Notation
	8.3.2 The Rejection Algorithm
	8.3.3 Asymptotic Efficiency

	8.4 Conclusion
	References

	Part II Applications to Communication Systemsand Infrastructures
	9 A Comparison of Markov Reward Based Resource-Latency Aware Heuristics for the Virtual Network Embedding Problem
	9.1 Introduction
	9.2 Related Work
	9.3 The VNE Problem
	9.3.1 Substrate Network
	9.3.2 Virtual Network Request
	9.3.3 Virtual Network Embedding
	9.3.4 Objective

	9.4 Markov Chain Rewards Based Latency Aware Node Ranking Algorithm
	9.4.1 MCRR-LA Node Ranking Metric
	9.4.2 MCRR-LA2 and MCRR-LA3

	9.5 Markov Chain Rewards Metrics (MCRM) Ranking Algorithm
	9.5.1 MCRM-I-KSP
	9.5.2 MCRM-B

	9.6 Experimental Evaluation
	9.7 Conclusions
	References

	10 Delay Efficient Load Balancing Scheme for Component Carrier Selection in Carrier Aggregation in LTE-A
	10.1 Introduction
	10.2 Related Work
	10.3 Proposed Scheme and Its Performance Model
	10.3.1 Radio Resource Management Framework for Carrier Aggregation
	10.3.1.1 CC Selection and Management
	10.3.1.2 Packet Scheduling

	10.3.2 Performance Model
	10.3.3 Feedback Fluid Queueing Model

	10.4 Performance Analysis
	10.4.1 Average Buffer Content
	10.4.2 Mean Throughput
	10.4.3 Mean Delay

	10.5 Conclusions and Future Work
	References

	11 Modeling Security Requirements for VNE Algorithms:A Practical Approach
	11.1 Introduction
	11.2 The Virtual Network Embedding Problem
	11.3 Problem Description
	11.3.1 Overview
	11.3.2 Motivational Example
	11.3.3 Classification of Requirements

	11.4 Modeling Security Requirements with Resource/Demand Pairs
	11.5 Implementation of Security Requirements
	11.5.1 Implementation of Resource/Demand Pairs
	11.5.2 Realization of the Motivational Scenario

	11.6 Evaluation
	11.6.1 CPU vs. TH
	11.6.2 CPU vs. Firewall
	11.6.3 Test Results

	11.7 Related Work
	11.8 Conclusion and Future Work
	References

	12 Performance Analysis of Data Traffic in Small Cells Networks with User Mobility
	12.1 Introduction
	12.2 Generic Queueing Model
	12.2.1 A PS Queue with Impatience
	12.2.2 Regularity Properties of the Empty-System Probability

	12.3 Network with Inter-Cell Mobility
	12.3.1 A Closed Network of Queues
	12.3.2 The Case of a Homogeneous Network

	12.4 Numerical Results
	12.4.1 Impatience Model
	12.4.2 Mobility Model

	12.5 Conclusion
	References

	Part III Optimization and Quantitative Evaluation Techniques Applied to Cloud Computing and the Internet of Things
	13 A Technique to Identify Data Exchange Between Cloud Virtual Machines
	13.1 Introduction
	13.2 Reference Scenario
	13.3 Methodology Description
	13.3.1 Traces Interpolation and Synchronization
	13.3.2 Correlation Matrix Creation
	13.3.3 Identification of Interacting VMs
	13.3.4 Scalability and Computational Complexity

	13.4 Implementation
	13.4.1 Gossip-Based Aggregation
	13.4.2 Network Agent

	13.5 Experimental Results
	13.5.1 Setup Description
	13.5.2 Correlation Coefficients Analysis
	13.5.3 Identification of Communicating VMs
	13.5.4 VMs Clustering
	13.5.5 Comparison of Time Sampling Intervals

	13.6 Related Work
	13.7 Conclusions
	References

	14 Container Orchestration: A Survey
	14.1 Introduction
	14.2 System Container, Application Container, and Container Manager
	14.3 Container Orchestration
	14.4 Reference Architecture
	14.5 State of the Art
	14.5.1 Monitoring and Analysis
	14.5.2 Self-optimization
	14.5.3 Self-healing

	14.6 Final Remarks
	References

	15 A Cloud-Based Overlay Networking for the Internet of Things: Quantitative Evaluation
	15.1 Introduction
	15.2 IoT Infrastructure as a Service
	15.3 Overlay Networking for IoT
	15.3.1 Tunneling
	15.3.2 Layering
	15.3.3 Server-Less Mesh Implementation

	15.4 Quantitative Evaluation
	15.4.1 Scenario
	15.4.2 Experimental Results

	15.5 Conclusions
	References

	Part IV Tools Development for the Analysis of Specific Areas of Interests
	16 Markovian Performance Evaluation with BuTools
	16.1 Introduction
	16.2 Related Work
	16.3 Installation, Basic Concepts
	16.4 Working with PH Distributions
	16.5 Tools for MAPs
	16.6 Fitting Tools
	16.6.1 The trace Package
	16.6.2 Likelihood Based Fitting
	16.6.3 Application Example

	16.7 Analysis of Queues
	16.7.1 Support for Matrix-Analytic Methods
	16.7.2 Queueing Models
	16.7.3 Application Examples

	16.8 Some Further, Small Packages
	16.8.1 The moments Package
	16.8.2 The mc Package

	16.9 Conclusion
	References

	17 J2CBROKER as a Service: A Service Broker Simulation Tool Integrated in OpenStack Environment
	17.1 Introduction
	17.2 Motivations
	17.3 Related Work
	17.4 The J2CBROKER Simulation Tool
	17.4.1 SaaS Deployment Model
	17.4.2 SaaS Benefits
	17.4.3 OpenStack Integration
	17.4.4 J2CBROKER Description
	17.4.4.1 The Client
	17.4.4.2 The Data Set Simulator
	17.4.4.3 The Client/Server Communication
	17.4.4.4 The Server
	17.4.4.5 The Brokerage Engine

	17.5 Case Study: Sustainability-Cost Model
	17.5.1 Scenario
	17.5.1.1 The Sustainability-Cost Model Simulator
	17.5.1.2 The Sustainability-Cost Model Engine

	17.5.2 Experimental Results

	17.6 Conclusions and Future Work
	References

	18 A Software Tool for the Evaluation of Transient Removal Methods in Discrete Event Stochastic Simulations
	18.1 Introduction
	18.2 Methods for Transient Removal
	18.3 fDRIT: A Framework to Detect and Remove Initial Transients
	18.3.1 Evaluation Parameters for the Quality of the Algorithms
	18.3.1.1 Accuracy
	18.3.1.2 Precision
	18.3.1.3 Computational Cost
	18.3.1.4 Parameter Estimation
	18.3.1.5 Overall Benefit Analysis

	18.4 Example and Results
	18.5 Conclusion
	References

	19 A House Appliances-Level Co-simulation Framework for Smart Grid Applications
	19.1 Introduction
	19.2 Related Work
	19.3 SGsim-Home
	19.4 Case Study: Integrated Privacy Protection and Demand Response
	19.4.1 Smooth Consumption
	19.4.2 Evaluation

	19.5 Conclusion
	References

	Index

