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Chapter 1 ®
Systems Modelling: Methodologies Qe
and Tools

Antonio Puliafito ¢ and Kishor S. Trivedi

Modern systems implement multiple and complex operations to manage the user
demand, thereby ensuring adequate quality levels. They are usually made of a
collection of interconnected (autonomous) subsystems, with a common goal to be
pursued, that are perceived as a whole, single, integrated facility.

Several heterogeneous technologies and processes are usually combined (com-
puting, networking, manufacturing, marketing, mechanical, economical, biological,
etc.) that involve complex interactions, interferences, and dependencies. Basic
functionalities have to be provided through adequate mechanisms, but also advanced
ones implementing specific quality-driven policies have to be delivered. For these
reasons, functional and non-functional properties are key issues to be addressed dur-
ing the whole system life cycle, both at design time and at run time, as well as during
maintenance stages, thus requiring adequate methods and techniques for their eval-
uation. Simply speaking, functional requirements describe what the system should
do, while non-functional requirements describe how the system works [1]. Typical
functional requirements include Administrative functions, Business Rules, Transac-
tion corrections, Authorization and Authentication levels, Reporting Requirements
and Historical Data, External Interfaces, Legal and Regulatory Requirements. Non-
functional requirements can be seen as quality attributes of a system, i.e., criteria that
judge the operation of a system, rather than specific behaviors [2]. Some typical non-
functional requirements are Performance (such as Response Time, Throughput, and
Utilization), Scalability, Availability, Reliability, Recoverability, Maintainability,
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and Security. Systems modelling specifically focuses on non-functional parameters,
as the intention is to quantitatively evaluate the behavior of a system.

Measurements are derived from a real system running under real operating
conditions. They report the actual system performance in the condition in which
the system is working. For this reason, measurements are very specific since they
heavily depend on the characteristics of the measured system, and on the particular
workload the system is experiencing during the measurement itself [3].

There are several situations in which relying upon measurements alone is not
sufficient. For instance, when the performances of two systems have to be compared,
it is difficult to ensure that the operating conditions under which measurements
are performed are equivalent, thus yielding a fair comparison. To overcome such
problem, benchmarks [4] feed the system with an artificial workload, so to perform
observations in equivalent working conditions, and meaningful comparisons can be
made.

Measurements and benchmarks need a system to be observed. When the perfor-
mance analysis regards a system that is not yet operational (i.e., it is not available),
its representative and detailed approximation (usually indicated as a prototype) has
to be developed, either in hardware or in software. Prototypes are used to make
observations, possibly using benchmarks as artificial workloads.

In measurements, benchmarks, and prototypes the performance of the system is
evaluated through observation of the system’s behavior, in working conditions, i.e.,
when it processes the actual user requests or the benchmark. However, evaluating the
performance of a system is an important task not only during and after the system
implementation, but also at the early design stage to compare possible alternative
choices. When the design and production of a new system is the consequence of
ever-increasing performance, like in the computer and telecommunications fields,
early performance analysis is absolutely mandatory.

During the design process, measurements on real systems are obviously not
possible, and also prototype implementations present difficulties due to the necessity
of specifying many details that are far from being decided. A more interesting
alternative to solve these problems is the use of models to define characteristics
of the systems under study, and to investigate their best configuration by modifying
the parameters of different components. System modelling is the art of developing an
abstract representation of the real system to derive and analyze its behavior in terms
of performance and dependability under different functioning conditions, without
resorting to measurements on the real system as a whole or its prototype [5-8].
We note here that measurements of system components (or subsystems) do provide
input parameter values for the overall system model [7].

System models can be analyzed/solved through three different approaches:

* simulation
 analytical (closed-form or numerical)
e hybrid (combining simulation and analytic methods).

In all the three cases, the study of the system is carried out using a description
that includes only some of its main characteristics. In simulative solutions, the
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description is embedded into a computer program that mimics the system dynamics,
whereas analytical methods consist in developing and solving sets of mathematical
equations governing system dynamics [5, 8, 9]. The most attractive advantage of
simulation is that the system under study can be represented in a very detailed
way, without imposing many restrictions on the model, whereas in analytical
models many simplifying assumptions are often introduced, so that the underlying
mathematical equations are tractable.

In simulative solutions the accuracy of details is limited only by the time
employed to obtain the final measures; more detailed the description of the model,
longer is the time required for its solution. It is very common that a very detailed
model requires days or even weeks to be evaluated. “Time” is the critical parameter
in simulation modelling. Techniques for parallel and distributed simulation do exist
to somewhat alleviate this problem [10].

Usually, analytical models have a higher level of abstraction, and they require
shorter time to solve. This advantage becomes crucial when, for instance, sensitivity
analysis [11] or optimization [12] is to be carried out. In fact, analytical models are
described by sets of equations, and by taking formal derivatives, new equations can
be derived that enable the computation of derivatives of the measures of interest
with respect to the parameters [11]. Whereas a new simulation run, possibly very
time consuming, has to be executed with a new set of parameter values with
respect to which the sensitivity analysis is to be performed [6]. We note here
significant research on perturbation theory that reduces some of these difficulties
with simulation [13]. Benefits of simulation and analytic models can be combined
via hybrid model solution techniques; however, this is not as common and we expect
it to develop further in the future [14].

Modern systems are inherently distributed and aim to implement and provide
services that are able to meet ever-increasing quality standards, while minimizing
costs. Systems being part of critical infrastructures have to meet tight dependability,
timeliness, and performance requirements and specifications. The inherently unpre-
dictable nature of such systems requires a quantitative evaluation of deterministic
and probabilistic timed models for their design and maintenance. Techniques for
checking and verifying if and how a distributed system satisfies the requirements
(validation) are specifically required; a proper evaluation of non-functional aspects
(evaluation) is often mandatory; the optimization of the overall behavior of the
system (optimization) is crucial to reduce costs and deliver high quality solutions.
Validation is part of quality management and imposes that a product, service, or
system is checked, inspected, and/or tested to verify that the requirements are
satisfactory [7, 15]. Evaluation analyzes the system’s non-functional properties such
as performance, reliability, and availability [1]. Optimization [12, 16] is instead
related to the identification and selection of the best configuration for the distributed
system according to some given (usually multiple) parameters in order to meet high-
level requirements such as overall costs and sustainability, i.e., the ability to continue
at a particular level for a period of time.

Validation, evaluation, and optimization techniques and methodologies are
sometimes overlapped, i.e., often validation techniques include evaluation
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and/or optimization and vice versa. In particular, evaluation and optimization
often overlap, although the former usually investigates a single non-functional
aspect of the system, while optimization problems usually evaluate the system
looking at multiple, complex, and/or composed properties such as dependability,
performability [17], and sustainability, often also including costs. In any case, all of
them often rely on models to provide their useful insights. All such considerations
and needs have given birth to an abundance of literature devoted to formal modelling
languages combined with analytical and simulative solution techniques.

The aim of this book is to provide an overview of techniques and methods dealing
with such specific issues in the context of systems modelling and to cover aspects
such as correctness, validity, performance, reliability, availability, energy efficiency,
and sustainability. This book collects some of the papers presented at the 10th
EAI International Conference on Performance Evaluation Methodologies and Tools
Conference (Valuetools 2016), held in Taormina (Italy) from the 25th to the 28th of
October 2016, which have been significantly extended an improved.

Following this path, the book has been organized into four parts dealing with
modelling theory (Part I), applications to communication systems and infrastruc-
tures (Part II), optimization and quantitative evaluation techniques applied to Cloud
computing and the Internet of Things (Part III), and tools development for the
analysis of specific areas of interests (Part IV).

The chapters have been selected to provide a good, although not exhaustive,
coverage of issues, models, and techniques related to validation, evaluation, and
optimization of complex systems, hoping that this will be useful in guiding students,
researchers, and practitioners when approaching the quantitative assessment of
distributed systems. Indeed, a key objective of this book is to help bridge the gap
between modelling theory and practice through specific examples.

Specifically, included in Part I are seven contributions that cover theoretical
aspects of systems modelling. Chapter 2 by Lei Zhang and Douglas G. Down
introduces a numerically Stable MVA (SMVA) algorithm for closed product-form
queueing networks that allows for load-dependent queues and offers a numerically
stable, efficient, and accurate approximate solution. Chapter 3 by Esa Hyytid,
Rhonda Righter, Olivier Bilenne, and Xiaohu Wu studies the M/D/1 queue and
its generalization, the M/iD/1 queue, when jobs have firm deadlines on waiting
(or sojourn) times. Explicit value functions are derived for these M/D/1-type of
queues that enable the development of efficient cost-aware dispatching policies
to parallel servers. Chapter 4 by Elvio Gilberto Amparore and Susanna Donatelli
defines X-PPN, an extension of the Phased Petri Net formalism that provides the
modeller more freedom in the structure and in the stochastic distribution of the
phases (from deterministic to general) and in the definition of the dependencies
among the system and the phase net. Chapter 5 by Steffen Bondorf and Fabien
Geyer tackles the problem of analyzing multicast flows with deterministic network
calculus without accommodating for it by pessimistic changes to the network
model and thus allowing for the derivation of more accurate performance bounds
than existing approaches. Chapter 6 by D. Cerotti, M. Gribaudo, R. Pinciroli,
and G. Serazzi focuses on Pool Depletion Systems (PDS), i.e., systems where a
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large number of tasks must be executed by one or more subsystems with a finite
capacity, to find the allocation policy of all the tasks in the pool that minimizes
the time required to execute all the tasks; Markov models, simulation, and fluid
approximation techniques are considered for this purpose. Chapter 7 by Raymond
Marie shows the importance of intermittent servers in order to reduce the response
times without increasing significantly the idle times of servers, producing a closed
form solution for the steady-state probability distribution and for different metrics
such as expected response times for customers or expectation of busy periods.
Chapter 8 by Zdravko Botev and Pierre L’Ecuyer studies and compares various
methods to generate a random variate or vector from the univariate or multivariate
normal distribution truncated to some finite or semi-infinite region, with special
attention to the situation where the regions are far in the tail.

Part II focuses on specific applications to the telecommunication field and is
composed of four chapters. Chapter 9 by Francesco Bianchi and Francesco Lo Presti
compares two approaches to the Virtual Network Embedding problem based on
Markov Reward Processes, to achieve a good trade-off between resource utilization
and QoS (e.g., latency). Chapter 10 by Aditi Gupta, Dharmaraja Selvamuthu, and
Subrat Kar proposes a load balancing Component Carrier selection scheme which
can be optimized for the Quality of Service (QoS) required by users. Feedback
fluid queue model is developed to analyze and optimize the performance of the
proposed scheme. Chapter 11 by Ramona Kiihn, Andreas Fischer, and Hermann
de Meer discusses security requirements of Virtual Networks (VNs) and shows
how they can be modelled to be mapped into the provided security mechanisms
in the physical network. Chapter 12 by Philippe Olivier, Florian Simatos, and Alain
Simonian analyzes the impact of inter-cell mobility on data traffic performance in
dense networks with small cells.

Part III deals with Cloud computing and Internet of Things, proposing different
techniques in five chapters. Chapter 13 by Nicola Bicocchi, Claudia Canali, and
Riccardo Lancellotti proposes a technique to infer VMs communication patterns
starting from input/output network traffic time series of each VM. They discuss both
the theoretical aspect of such technique and the design challenges for its implemen-
tation. Chapter 14 by Emiliano Casalicchio surveys the state-of-the-art solutions
and discusses research challenges in autonomic orchestration of containers. A
reference architecture of an autonomic container orchestrator is also proposed.
Chapter 15 by Dario Bruneo, Salvatore Distefano, Francesco Longo, Giovanni
Merlino, and Antonio Puliafito describes an approach to network virtualization
based on popular off-the-shelf tools and protocols in place of application-specific
logic, acting as a blueprint in the design of the Stack4Things architecture, an
OpenStack-derived framework to provide IaaS-like services from a pool of IoT
devices. They quantitatively evaluate the underlying mechanisms demonstrating
that the proposed approach exhibits mostly comparable performance with respect
to standard technologies for virtual private networks.

Part IV presents some tools for systems modelling. Chapter 16 by Gabor Horvéth
and Miklés Telek introduces BuTools, a collection of computational methods that
are useful for Markovian and non-Markovian matrix analytic performance analysis.
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Chapter 17 by Riccardo Di Pietro, Maurizio Giacobbe, Carlo Puliafito, and Marco
Scarpa presents J2CBROKER, a tool that simulates a Cloud Brokerage ecosystem,
i.e., an environment where a software broker acts as an intermediary between
service customers and providers in order to allow the former to discover and select
the services that best suit their needs. Chapter 18 by Sushma Nagaraj and Armin
Zimmermann compares several state-of-the-art transient removal algorithms and
proposes a software framework for a systematic comparison of such algorithms.
Finally, Chap. 19 by Abdalkarim Awad, Peter Bazan, and Reinhard German presents
a co-simulation framework that captures two important worlds of the smart grid,
namely the communication world and power world. Real data as well as simulation
models are used to simulate several home appliances.

The chapters have been written by leading experts in distributed systems,
modelling formalisms, and evaluation techniques, from both academia and industry.
We wish to thank all of them for their contributions and cooperation. Special thanks
go to the Springer staff for the support and valuable advice they have always
provided. We hope that practitioners will find this book useful when looking for
solutions to practical problems, and that researchers can consider it as a first-aid
reference when dealing with systems modelling from a qualitative and quantitative
perspective.
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Modelling Theory



Chapter 2 )
SMVA: A Stable Mean Value Analysis oo
Algorithm for Closed Systems
with Load-Dependent Queues

Lei Zhang and Douglas G. Down

2.1 Introduction

The Mean Value Analysis (MVA) algorithm [16] is an efficient solution for
steady-state analysis of queueing networks. However, it relies on product-form
assumptions, which can be violated by common features introduced in modern
computer systems, e.g., simultaneous resource possession, locking behaviours,
priority scheduling, high service demand variability, and process synchronization
(see Chapter 15 in [14]). An approximate solution is to reduce a non-product-form
network by using Flow-Equivalent Servers (FESs) [7]. An FES is load dependent,
whose service rate with n jobs present is equal to the observed throughput of the
original network with n jobs. The performance model can then be analysed using
the load-dependent MVA algorithm [15].

Unfortunately, the load-dependent MVA algorithm suffers from numerical insta-
bility issues [15, 16]. The underlying reason is that the computation of state
probabilities can yield negative results when the utilization is close to one. Con-
sequently, negative values of mean performance measures (i.e., response times and
throughputs) can be produced. Static and dynamic scaling techniques are potential
approaches to cope with precision limits, but they are complicated to implement.
In addition, Casale and Serazzi [4] show that they do not work in general, as the
mean queue length computations are not affected. To the best of our knowledge,
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the literature is lacking efficient solutions for the numerical instability of load-
dependent MVA.

In this paper, we propose a Stable MVA (SMVA) algorithm for closed networks
with load-dependent queues (the initial idea was presented in [21]). The main
contributions of this paper include: (1) the SMVA algorithm, which is an efficient
approximate solution for closed networks with load-dependent queues, and (2) an
extended multi-class model used to determine class-level performance metrics.

This paper is structured as follows. Section 2.2 introduces the required back-
ground. Section 2.3 provides a review of solutions proposed in the literature for
the numerical instability. We then present SMVA in Sect.2.4. In Sect.2.5, the
results from SMVA are compared with other MVA algorithms in two case studies.
Section 2.6 gives the multi-class SMVA algorithm. This paper ends with Sect. 2.7,
in which we give a summary of the pros and cons of SMVA.

2.2 Background

The exact MVA algorithm for closed networks with load-dependent queues has
numerical instability issues. It may exhibit numerical difficulties under heavy
load conditions which eventually result in unreasonable results, such as negative
throughputs, response times, and queue lengths. The numerical problem is that the
probability of a resource being idle is calculated in every iteration of the load-
dependent MVA algorithm. The calculation is as follows:

Pu(Oln) = 1= Pyu(iln), (2.1)

i=1

where P, (i|n) is the probability that i jobs are at the mth resource when a total of n
jobs are in the system. When the utilization is close to one, (2.1) can yield negative
values, and those errors propagate as the MVA algorithm iterates. Subsequently,
other calculations which have direct or indirect dependence on (2.1) may result in
negative values, such as mean response times and throughputs, which do not make
any physical sense.

2.3 Related Work

Chandy and Sauer [6] provide the initial reports of the numerical instability of the
MVA algorithm with load-dependent queues. Reiser [15] confirms this issue. To
replace (2.1) in a single-class model, he proposes a new calculation of P,,(0|n)
evaluated by P,,(0|n — 1) and the throughput X!(1) in an m-complement system,
which is defined as a queueing system without the mth queue and all other
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parameters remaining the same. However, the expense of the evaluation grows
exponentially as the number of load-dependent queues increases.

Tucci and Sauer [20], and Hoyme et al. [11] independently propose two similar
tree-structured MVA algorithms, which are invulnerable to numerical instability.
The main idea is to build a tree data structure, where queues are leaves. The internal
nodes are intermediate functions, resulting from convolving all queue functions
in the subtree with the internal node as the root. For dense queueing networks,
tree MVA algorithms can give even worse performance than the original MVA
algorithms whose complexities grow linearly, but they are efficient when customers
visit only a small number of queues.

Casale et al. [5] suggest an approximate MVA algorithm (QD-MVA) for queue-
dependent stations in a multi-class setting. Its computational cost is O (M C) for
a model with M queues and C classes. However, it may not converge in some
instances. Moreover, it relies on queue-dependent functions to analyse queue-
dependent service times, which introduces excessive computational requirements.
They show that the QD-MVA algorithm has very good accuracy for the estimation
of mean queue lengths, but the results from QD-MVA on other performance metrics,
such as mean response times and system throughput, are not provided.

In the literature, Seidmann’s approximation [18] is also widely used to address
MVA’s numerical issues [8, 9, 13]. The basic idea is to replace a multi-server
queue with k servers by two tandem servers. The first one is a single server
queue with service demand D/k, where D is one server’s service demand. The
second one is a pure delay server with service demand D - (k — 1)/k. In practice,
Seidmann’s approximation can yield noticeable errors under intermediate loads,
but it has the same time and space complexities as the original MVA algorithm.
However, Seidmann’s approximation assumes that the servers in the multi-server
queue are load independent. Such an approximation may not be realistic when the
FES technique is employed.

To address numerical issues, Casale [3] introduces the Conditional MVA
(CMVA) algorithm, which avoids the computations of the state probabilities, and
as a consequence, overcomes the limitation. Although the CMVA algorithm is an
exact solution, its time and space complexities grow much faster than the original
MVA algorithm. Given M is the number of queues, and N is the number of jobs,
the time and space complexities for the original MVA algorithm only grow as
O(MN), while those for the CMVA algorithm grow as O(M N L+1y"where L is
the number of load-dependent queues in the system . This may cause significant
time and memory issues for the computation when N or L is large, which is very
common in performance evaluation for stress tests.

2.4 Stable Mean Value Analysis

We study a closed queueing network with N jobs and M queues, and we focus on a
generic load-dependent queue with service demand D, (n,,), where m is the index
of the queue, and n,, is the number of jobs at the queue (with n = Zrﬁle n,, where
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m=1,...,Mandn = 1,..., N). Here, we assume that the service demand of
the load-dependent queue becomes a constant beyond some N, i.e., there exists
a finite N,, such that D,,(n,,) = Dm(]\7m) for all n,, > N,,. This assumption is
reasonable for many systems, in particular when D,, (n,,) becomes sufficiently close
t0 D, (Ny,).

The basic idea of the SMVA algorithm is inspired by Seidmann’s approximation,
replacing the load-dependent queue with two tandem servers. The first is a load-
independent (LI) queue with service demand Dy, = D, (N,»). The second is a load-
dependent (LD) delay centre with service demand

D — Dy (Ny), if N,
Di(nm) _ nrf m () _m( m) 1 nm < _m 2.2)
(Nj — D) Dy (Np), if n, > Ny.

To make sure the service demands in (2.2) are positive, we assume that n,, D(n,,) >
D(]\_/m), for n,;, < N,,. In multi-core computer systems, it is a common assumption
that D,,(n,,) decreases as n,, increases, so D,,(n,,) > Dy, (Nm) when n,, < Ny,
and n,, D,,(n,) > Dy, (1\_1,,,) holds. Although the delay centre is load dependent,
there is no need to calculate its state probabilities because it does not have a queue.
As a result, the SMVA algorithm is numerically stable.

Under light load, the two tandem servers behave as a server which has service
demand Dy, (n,,). If n,, jobs are being served and no jobs are waiting in the queue,
the time spent by a job in the approximating node is D, (Ny,) + ny Dy () —
Dm(l\_/m) = ny Dy (nyy,). If there are jobs waiting in the first queue, the time spent
by a job in the approximating node is dominated by the time spent at the first queue.
The node behaves as a server which has service demand D,, (Nm). As a result, this
approximation should perform well for both light and heavy loads. Note that SMVA
is identical to Seidmann’s approximation when n,, D, (n,,) = D,, (1), forn,, < N,,.

Once we finish the service demand parameterization, the mean response times
at the load-independent queue in the approximating network with n jobs can be
computed by the arrival theorem [12, 19]:

R, (n) = D[l + Qm(n — 1], (2.3)

where Q,,(n — 1) is the mean queue length at the mth queue with n — 1 jobs in the
network.

To compute the mean response time at the delay centre, we need to estimate the
mean number of jobs, because its service demand is load dependent. We employ the
Bard-Schweitzer approximation [1, 17] to estimate the mean number of jobs at the
delay centre. The Bard-Schweitzer approximation is based on the following idea:
The number of jobs at each queue increases proportionately as the total number of
jobs increases in the network. Mathematically:

Onin—1) n-1

On(m) — n (@4)
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There are two things that we need to clarify here: (1) We use the term “mean number
of jobs” rather than “mean queue length”, because it is a pure delay centre, and it
has no jobs waiting for service. (2) When we mention the mean number of jobs,
we refer to the actual mean number of jobs of the original network instead of those
of the approximating network. Let Q9 (n — 1) be the mean number of jobs at the
mth queue when there are n — 1 jobs in the network, and Qf, (n) be the estimated
mean number of jobs at the mth queue when there are n jobs in the network. We can
rewrite (2.4) as:

1, if n=1,

QO (m) = 00—, ifn>l.
n—1

Then, we can compute the mean response times at the delay centre as R,‘fl n) =
D,‘f,((an(n)l). The ceiling function ensures that the index of the load-dependent
service demands starts from one, rather than zero.

The system throughput is calculated using Little’s Law:

M
X(n) =n/ :z + Y[R m) + R,‘f,(n)]} , (2.5)

m=1

where Z is the mean think time. To compute the mean queue length at the mth queue
in the approximating network, we just continue applying Little’s Law: Q% (n) =
X (n) - R}, (n). The mean queue length at the mth queue in the original network is:

Q% (n) = X(n) - [RL(n) + RE (n)].

Algorithm 1 illustrates the single-class SMVA algorithm in detail. SMVA has
two features: (1) SMVA is numerically stable, because it avoids the calculation of
stationary probabilities at load-dependent queues; (2) SMVA is efficient, because its
time and space complexities are both O (M N).

There are two things that we would like to highlight in Algorithm 1. Firstly,
we assume that all queues are load dependent in Algorithm 1. If the mth queue is
load independent, we can simply set D, = D,, and fol = 0, and Algorithm 1
is still applicable. Secondly, we do not check whether Q¢ (n) and Q¢ (n) converge
to each other in SMVA, because we are iterating over n and we do not guess the
initial values of Qf,(n) (the Bard-Schweitzer approximation has both of them). In
the Appendix, we propose an alternative SMVA algorithm which has a comparison
between Q¢ (n) and Q9 (n).
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Algorithm 1 The single-class SMVA algorithm

Input:

Z,M,N, Dy(n), Ny,
Output:

Q9 (N), X(N), R(N)
Condition: B

nDy(n) > Dp(Ny), Y, m
Initialization:
040)=0,Ym=1,....M
Iteration:

form=1— Mdo
forn=1— N do
D% = Dm(Nm)
nDp(n) — Dy (Ny), if n < N,

D)y =1"_ N _

(N — D)Dpy(Npy), if n> Ny
end for

end for

forn=1— Ndo

form=1— M do

if n = 1 then

0, =1
else n

an(n) = mQ,”,,(n -1
end if

Rl,(n) = D&+ Q% (n — 1)]
R% (n) = D&(1Q%,(n)])
end for
X(n) = n/{Z + Y [R},(n) + RE(m)]}
form =1— M do
04, (n) = X (n) - Ry (n)
04,(n) = X (n) - [R () + R (n)]
end for
end for
R(N) = Yo [RA(N) + R (N)]

2.5 Experimental Results

In order to verify the accuracy and the efficiency of the SMVA algorithm, we
compare the results of the SMVA algorithm, the CM VA algorithm, and Seidmann’s
approximation in two different closed queueing networks. The first one is a
closed network with one generic load-dependent queue (FES), and the second one
is a closed network with two FESs. To generate the input parameters—service
demands—for these two queueing networks, we set up a testbed on an Intel 17-2600
quad-core computer with 8 GB memory, 1 TB hard drive, and Ubuntu 12.04.3 LTS.
We employ JBoss 3.2.7 as the application server, MySQL 5.1.70 as the database
server, and TPC-W [10] to generate the workload. TPC-W can simulate three
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workloads for an e-commerce environment—browsing, shopping, and ordering.
We choose the first two workloads in our tests, and plot their service demands in
Figs.2.1 and 2.2.
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2.5.1 One Load-Dependent Queue

For the first network, we aggregate and model the computer system by an FES. We
then run the browsing workloads to obtain the system throughputs, and calculate
the service demands of the FES to parameterize the MVA algorithms (as shown
in Fig.2.1). As can be seen in the figure, the service demand curve adopted by
Seidmann’s approximation can only address the ideal case of a load-dependent
server, where D(n) = D(1)/n for n < 8. By overestimating the service demands in
such a case, the outcomes of Seidmann’s approximation are conservative in terms
of performance metrics, but this may not be true in general.

To test the accuracy of SMVA under different loads, we vary the number of
users and the mean think time in the system. Both the mean response time and
the throughput are compared for the three candidate MVA algorithms. Three sets of
results are presented. The results of the first set are presented in Figs.2.3 and 2.4,
where N ranges from 1 to 30, and Z = 0. The results of the second set are presented
in Figs. 2.5 and 2.6, where N ranges from 1 to 300, and Z = 0.7 s. The results of
the third set are presented in Figs. 2.7 and 2.8, where N ranges from 1 to 1300, and
Z =35s.

Using CMVA as the benchmark (as it is an exact solution), SMVA works better
than Seidmann’s approximation in all three cases. However, we also observe some
errors for both of the approximate MVA algorithms from those figures, except
for Figs.2.6 and 2.8, where the largest errors are only —1.05% and —0.23%,
respectively (negative means underestimate). The reason is that for those figures,
the throughput is given by (2.5). As Z increases, the error in R has a smaller effect
on the accuracy of X.

Fig. 2.3 Response time with Single LD Queue (N=1~30, Z=0)
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Fig. 2.4 Throughput with Single LD Queue (N=1~30, Z=0)
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Fig. 2.5 Response time with Single LD Queue (N=1~300, Z=0.7 sec.)
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To verify the observations from Figs. 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, we calculate
the Root-Mean-Square Percentage Error (RMSPE) for both SMVA and Seidmann’s

approximation in the three test sets. Here, RMSPE = ,/ ZiT=1 Et2 /T, where E; is
the percentage error of the ith estimate, and T is the total number of estimates. The

results can be found in Table 2.1, and they verify the two observations that we have
in the figures:

¢ In terms of accuracy, SMVA works better than Seidmann’s approximation in all
cases.
¢ Errors in throughput are minor when Z is relatively larger than R.
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Fig. 2.6 Throughput with Single LD Queue (N=1~300, Z=0.7 sec.)
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Fig. 2.7 Response time with Single LD Queue (N=1~1300, Z=3.5 sec.)
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We also would like to quantify some large errors from SMVA and Seidmann’s
approximation. In Figs. 2.3 and 2.4, the largest error for the mean response time of
SMVA is 27.16%, and the largest error for the throughput of SMVA is —21.36%
when N = 8. In contrast, the errors for both the mean response time and the
throughput of Seidmann’s approximation are the largest when N = 4 (46.78% and
—31.87%, respectively). We have similar observations from Figs. 2.5, 2.6, 2.7 and
2.8. In Fig. 2.5, the largest error for the mean response time of SMVA is 33.17%
when N = 200. In Fig. 2.7, the largest error for the mean response time of SMVA
is 32.48% when N = 1000. Seidmann’s approximation has its worst case when
N = 1300, the error for the mean response time is 71.91%. As a conclusion,
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Fig. 2.8 Throughput with Single LD Queue (N=1~1300, Z=3.5 sec.)
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Table 2.1 RMSPESs in one Test case SMVA | Seidmann
LD queue
Z=0.0s |R |1293% |25.54%
X |10.63% | 18.72%
Z=0.7s |R |12.02% |20.47%
X | 038% | 1.29%
Z=35s |R |1524% |42.42%
X | 0.13% | 1.03%

the SMVA algorithm works well when the system is under light or heavy loads.
However, some errors are significant when the system is under intermediate loads.

2.5.2 Two Load-Dependent Queues

For the second queueing network, we add one more FES to the previous network.
We derive the service demands of the second FES from the shopping web interaction
workloads of TPC-W (as shown in Fig.2.2). We choose the shopping workloads,
because the service demand curve is close to (but not the same as) the one derived
from the browsing workloads in the first FES (in Fig.2.1), so that no single queue
can dominate the performance in the network.

As discussed in Sect.2.5.1, we vary the number of users and the mean think
time in the system, and compare the mean response time and the throughput among
the three candidate MVA algorithms. Since the results of throughputs are almost
identical when Z is larger than zero (similar to Figs. 2.6 and 2.8), those results are
not shown. The results of the first set are presented in Figs. 2.9 and 2.10, where N



22
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ranges from 1 to 40, and Z = 0. The results of the second set are presented in
Fig.2.11, where N ranges from 1 to 400, and Z = 0.7 s. The results of the third set
are presented in Fig.2.12, where N ranges from 1 to 1200, and Z = 3.5s. Unlike
the test set of Z = 3.5s in Sect.2.5.1, where we could have maximum 1300 jobs
in the system, we cannot have 1300 jobs in this test case, because the calculation
space requirement of the CMVA algorithm grows exponentially as the number of
load-dependent queues increases. In this case, it is O (M N 3), and it exceeds the
maximum capacity of the memory on our machine. For instance, the initialization
of the service demands for a single queue requires N3 x 8 bytes = 16.37 GB.
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Fig. 2.11 Response time Two LD Queues (N=1~400, Z=0.7 sec.)
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As can be seen from Figs. 2.9, 2.10, 2.11 and 2.12, the results are quite consistent

with those from Figs. 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, respectively. Similarly, we have
three observations as follows:

Compared to CMVA, SMVA works better than Seidmann’s approximation in all
three cases.

As the value of the mean think time grows, the errors in estimated throughputs
from SMVA decrease.

Compared to the results under light and heavy workloads, larger errors are
observed for SMVA under intermediate workloads.
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Table 2.2 RMSPEs in two Test case SMVA | Seidmann
LD queues
Z=00s R | 847% |22.15%
X | 7.40% |17.18%
Z=07s R |11.23%  1621%
X | 0.66% | 139%
R |1634% 2627%
X | 026% | 039%

Z =3.5s

Table 2.3 Largest error Test case Single LD queue | Two LD queues
comparison for SMVA Z—00s R 27 16% 18.60%
X | —21.36% —15.68%
Z=07s |R 33.17% 33.33%
X —1.05% —1.96%
Z=35s |R 32.48% 32.40%
X —0.23% —0.44%

In Table 2.2, we show the RMSPEs for both SMVA and Seidmann’s approxi-
mation in the three test sets. The results in Table 2.2 can be seen to verify the first
two observations above. Compared to the results in Table 2.1, the SMVA algorithm
performs better when Z = 0 in the network with two LD queues than in the network
with a single LD queue in terms of the RMSPE.

In Table 2.3, we compare the largest errors of the SMVA algorithm in these two
case studies. As can be seen, the SMVA algorithm performs better when Z is zero
in the second case study, but has very similar results when Z is larger than zero.
This observation is consistent with the observation from the RMSPEs in Tables 2.1
and 2.2. The underlying reason is not clear and is worth future study.

2.6 Multi-class Extension

For completeness, we extend the SMVA algorithm to the case of multi-class closed
networks. As in single-class networks, the scheduling discipline in multi-class
networks is also constrained to preserve the product-form nature of the steady-
state distribution, for example the scheduling disciplines considered in the BCMP
theorem [2] may be employed. We consider that there are C classes of transactions,
where the job population vector is given by n = (ny,...,#n,...,nc), Where
0 <n. < N.,and 1 < ¢ < C. The service demand of class ¢ at the mth load-
independent queue is given by D;’,,,C = Dm‘c(l\_lm,c). The service demand at the
delay centre becomes

ncDm,c(nc) - Dm,c(]\_]m,c)7 if n. < Nm,w

DY (ney=1"¢ . _ !
(Nm,c - I)Dm,c(Nm,c)v if no > Npc.
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Then, the multi-class SMVA iterates over all feasible n = (ny, ..., n¢) such that
Zle ne = nand 1 < n < N to compute the mean response times at load-
independent queues:

Rzz,c(n) = Dgn,c[l + Qm (n - lc)]
Here, n — 1, = (ny,...,n. — 1,...,nc) is the job population vector with one

less class ¢ job in the system. The mean response time at a pure delay centre is
RY .(m) = Dg, ([Q%,(n)7), where

1, if no =1,

n—le,”n(n— 1), if ne > 1.

Q;,(n) =
The system throughput of class c is calculated by

M
Xcm) = ne/ {ZC + Y[R () + R,‘;,cm)]} .

m=1

The mean queue length at the mth load-independent queue is

C
Q4 m) =" Xc(n)- R ().
c=1

Finally, the mean queue length at the original load-dependent queue is

C
Qo (m) =" X.(m) - [Rf, o(m) + Ry .(n)].
c=1

Both the time and space complexities of the multi-class SMVA algorithm are
O(MN€). Due to the complexities, we have not evaluated the accuracy of the multi-
class model in a case study.

2.7 Conclusions

In this paper, we present the SMVA algorithm in both a single-class model
and a multi-class model. Compared to the CMVA algorithm and Seidmann’s
approximation, the SMVA algorithm has two advantages:
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* The time and space complexities of SMVA are a significant improvement over
CMVA, especially when the number of jobs in the system is very large, or when
the number of load-dependent queues is larger than one.

e The SMVA algorithm is better able to handle cases when the service demands of
a load-dependent node do not have a linear relationship.

In terms of accuracy, we also have two additional observations about the SMVA
algorithm:

* The SMVA algorithm works as well as the CMVA algorithm when the system is
under light or heavy loads. However, the errors of the SMVA algorithm increase
when the system is under intermediate loads (but it still performs better than
Seidmann’s approximation).

* When the mean think time increases, the SMVA algorithm might produce less
accurate estimates of the mean response times under intermediate load. In
contrast, the estimated throughput becomes more accurate.

The accuracy of SMVA under intermediate loads is closely linked to the accuracy
of the underlying approximations. It is inspired by Seidmann’s approximation. Con-
sequently, it behaves as Seidmann’s approximation under intermediate workloads.
In addition, it employs the assumption in the Bard-Schweitzer approximation to
estimate the mean number of jobs at delay centres, which may also add errors to the
results.

Acknowledgements The work reported here was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

Appendix

In Algorithm 1, we estimate the mean number of jobs at a delay centre, Q¢ (n). In
the same iteration, new values are calculated as Q, (n). A natural thought would be
to add a comparison between these two values, similar to a technique in the Bard-
Schweitzer approximation. To accomplish this, we propose an alternative SMVA
algorithm (A-SMVA) for a single-class system. The details of A-SMVA can be seen
in Algorithm 2. Compared to SMVA, A-SMVA differs as follows:

e Iterations over n = 1 — N are removed. Instead, we focus only on the
performance metrics with N jobs in the system.

* Initialize Qf,(N) with estimated values, e.g., N/(M + 1).

 Employ (2.4) to replace Q% (N — 1) by Q}},(N) in (2.3), which is Q}}, (N) x (N —
1)/N.

* Choose an error criterion—e, e.g., 0.01.

* Compare the difference between Q¢ (N) and Q9 (N), and compare the differ-
ence between Q% (N) and @ (N). If the maximum difference is larger than €,
replace Oy, (N) by Q9 (N), and Q%L (N) by Q4 (N). Otherwise, stop the iteration.
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Algorithm 2 The single-class A-SMVA algorithm

Input:

Z,M,N,Dy(n), Ny, €

Output:

09 (N), X(N), R(N)

Condition:

N -Dy(N) > Dm(A_/m), Vm
Initialization:
Qi(N)=0,Ym=1,....M

00 (Ny=N/(M+1),Ym=1,..., M

Iteration:
form=1— Mdo
DZ’[ = Dm(Nm)
N - D,,(N) — Dy (N, if N <N,
D;il(N): ~ m( ) _m( m), 1 < _m
(N — 1) Dy (N, if N> Ny
end for

while max; {| Q¢ (N) — Q5 (N)|} > € or max;{| Q7 (N) — Q% (N)|} > € do
form=1— Mdo
0;,(N) = 0;,(N)
Om(N) = Q% (N)

—1
RN = DI+ 2L 04 (V)]

R%(N) = Dg (104 (N)1)
end for
X(N) = N/Z+ M [RL(N) + RE(N)))
form =1— M do
0% (N) = X(N) - R},(N)
0%/(N) = X(N) - [R},(N) + R4 (N)]
end for
end while
R(N) = XM [RE(N) + RE(N)]

m=1

We set € = 0.01, and compare the results of A-SMVA with the results of SMVA
with the same input parameters in Sect.2.5.1. The estimated mean response times
from A-SMVA are slightly larger than the results from SMVA, but they have very
similar trends.

When N is very large, A-SMVA can be efficient, because it avoids the iteration
overn = 1 — N. However, we have two concerns about A-SMVA:

* The initial values of Q¢ (N) may significantly affect the outputs. For example, if
they are too close to zero, the whole iteration will be skipped.

e The chosen value of € may have a significant effect on the outputs. If € is too
big, we have less iterations, but sacrifice accuracy. If € is too small, it may not
converge in some instances (although we have not observed this).

As a summary, we provide one more numerically stable approach to determine the
performance metrics for closed queueing networks with load-dependent queues.
One can adopt SMVA or A-SMVA depending on the requirements.
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Chapter 3 )
Dispatching Discrete-Size Jobs with Qe
Multiple Deadlines to Parallel

Heterogeneous Servers

Esa Hyytiii, Rhonda Righter, Olivier Bilenne, and Xiaohu Wu

3.1 Introduction

In the dispatching problem, each arriving job is routed to one of the available servers
immediately upon arrival. Even though a single fast server would often be preferred,
the parallel servers are needed to match increasing capacity demands. Moreover,
short latency, in the absence of preemptive scheduling, requires parallel servers.

In this chapter, we consider a cost structure based on (firm) deadlines. Each
job has a certain deadline for the maximum waiting time it can tolerate. If this
waiting time is exceeded, a deadline violation cost is incurred, but the job must
still be served. This cost structure stems from quality-of-experience metrics, where
customers observe a good service level whenever the waiting time is “short,” but
as soon as a given customer-specific threshold is exceeded, the observed service
quality drops, cf. video conferencing and other interactive systems. That is, the tail
of the response time distribution is one of the most crucial performance measures
[1]. For this reason, service level agreements (SLAs) are often defined in terms of
acceptable waiting times [2].

Our basic setting has been studied recently in [3] in the context of M/G/1 queues,
and in [4] for the standard M/D/1 queue. The results in [3] are either asymptotic
or in the form of differential equations. In contrast, [4] gives exact closed-form
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expressions (that satisfy the aforementioned differential equations and asymptotic
behavior) for the M/D/1 queue. In this chapter, we give exact results for the value
function and admission cost for the M/iD/1 queue subject to a general deadline-
based cost structure, where the service times are assumed to be random multiples
of a fixed size d, and the deadlines and their violation costs can vary according
to some probability distributions. Moreover, there can be multiple deadlines with
added cost for each deadline that is violated, and the job arrival process can include
batches. In summary, the model considered here is much more general than those
of [3] and [4].

The approach of first deriving a value function for a single server queue, and then
applying it to develop efficient dispatching rules for a system of parallel servers, is
general. Traditionally the objective is the minimization of the mean sojourn time
(see, e.g., [5-7]), possibly combined with minimizing energy consumption (see,
e.g., [8, 9]). The value function for M/G/1-FCFS then enjoys elementary closed-
form expressions. In contrast, other disciplines, such as processor sharing (PS),
make the situation more complex and exact results are available only for M/D/1-PS
and M/M/1-PS [5, 10]. Our approach also lends itself to minimization of blocked
jobs in loss systems [11].

3.2 M/G/1 FCFS Queue with Deadlines

The basic model for a single M/G/1-FCFS queue with deadlines is as follows [3].
We let A denote the arrival rate and X the service time of a job so that the offered
load is p = A E[X]. Jobs whose waiting time in queue, W, exceeds time t, referred
to as the deadline, incur a unit cost. We assume that p < 1 for stability. The deadline
must be non-negative, T > 0. Thus, in the special case when t = 0 all jobs that have
to wait incur the unit cost. The mean cost rate is

r=AP{W > t}. (3.1

In the general case, we have multiple classes of jobs, each with its own arrival rate
A;, target deadline 7; and i.i.d. deadline violation cost H;. The total arrival rate is
A =Y, A;, and the stability requirement is that Ad = p < 1. The mean cost rate in
this case is

r=_1E[H]P(W > 1;}.

1

Our first task is to derive the so-called value function with respect to the deadline
cost structure. Formally, the value function is defined as

v(u) & tlln;OE[V(u,t) —rt],
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where u is the current backlog (unfinished work) in the queue, and the random
variable V (u, t) denotes the deadline violation costs during time (0, #) when the
system is initially in state u. Given p < 1, the M/G/1 queue is stable, the system
is ergodic, and the above limit is well-defined. (In fact, the limit is finite and well-
defined also when p > 1 and the system is unstable).

We can use two complementary approaches to determine the value function.
First, the value function v(u) for the M/G/1 queue satisfies the integro-differential
equation

V) =A(c(u) —c+Elviu+X) —v@)), 3.2)

where X denotes the random i.i.d. service time, c(u) is the (mean) cost when a job
arrives at state u, and ¢ is the mean cost of a job. Additionally, we have the boundary
condition,

v'(0) = 0. (3.3)

In [3], it is shown that for the deadline cost structure, the value function is a linear
function of u for # > 7. The mean time before the system returns to state 7 is
t = (u—1)/(1—p), during which on average Az jobs arrive (PASTA), each incurring
the deadline violation cost, and r¢ is the mean costs incurred during the same time
interval in equilibrium. Thus,

A—r
v(u) —v(r) = (u — 1), u>r. (3.4
l—p
For 0 < u < 1, (3.2) reduces to
V) =—r+21u>1t)+rAEvu+X)—v@w], u>0, 3.5)

where 1(u > 1) is 1 if u > 7 and zero otherwise. Given (3.5) expresses v’ (u) as a
function of v(u + t) with ¢t > 0, and since v(u) is known for u > t, v(u) can be
solved numerically backwards starting from u = 7 as discussed in [3]. Moreover,
explicit results are given for M/G/1 when (1) T < X and the load p < 1, and when
(2) T > X and p — 1 (the heavy-traffic regime).

The second approach is more general and gives the value function for the MX/G/1
queue with an arbitrary cost function c(w). In particular, the value function satisfies
[12, Proposition 1]

v(u) — v(0) = %E[C(W 1Y) —c(W)]. (3.6)

where A is the job arrival rate, c(w) is the admission cost of a job with waiting time
w, W is the waiting time in steady state, and ¥ ~ U(0, u).
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Example 1 Suppose that T = 0, i.e., jobs that have to wait incur a unit cost. Then
r = Ap, and as the linear regime starts immediately, (3.4) gives the value function
forallu > 0, v(u) — v(0) = A(u — 7),and a(u) = 1(u > 0) + p.

Unfortunately, the value function for the M/G/1 queue with respect to deadline
T > 0 cannot be expressed in closed-form using elementary functions. Therefore,
next we analyze the M/D/1 queue, where the service time is d, and the M/iD/1 queue
where the service time is some random multiple of d. For both cases, we obtain
explicit closed-form expressions for the corresponding value functions. Moreover,
we give the value function for a general multi-class system, and discuss how the
results can be applied to also analyze batch arrivals.

3.3 M/D/1 FCFS Queue with Deadlines

In this section, we consider the M/D/1 FCFS queue. First, in Sect. 3.3.1, we assume
a single deadline 7 that applies to all jobs and a unit deadline violation cost, h =
1. The obtained results are generalized in Sect.3.3.2 to multiple job classes with
distinct deadlines and deadline violation costs.

3.3.1 M/D/1 FCFS with a Single Deadline

Let us start with the M/D/1 FCFS queue with a single deadline 7 for the waiting
time. Note that this is equivalent to having a deadline T + d for the sojourn time.

In general, the distribution of the waiting time cannot be expressed in simple
terms, but instead is given in the form of the Laplace-Stieltjes Transform (LST) [13]
or an infinite sum involving convolutions [14]. However, for the M/D/1 queue the
waiting time distribution is available! [15]

Lz/d]
PIW<t)=(~-p) )

i=0

M o Mid—T). (3.7
L

Similarly, for the M/D/1 queue, the integro-differential equation (3.5) simplifies [4]:
V) +Arvw) = —r+Alu>1t)+rvw+d), u>0. 3.8)
In general, the mean cost rate r follows from the boundary condition (3.3). However,

inour case r = A (1 — P{W < t}), and P{W < t} is given by (3.7). Substituting r
into (3.4) thus yields the value function v(u) for the tail u > t. For u < t, v(u) can

'We use the convention that 0° = 1 so that (3.7) holds also when 7 = 0.
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be determined by solving (3.8). The following theorem, which is a special case of
Theorem 2, was shown in [4].

Theorem 1 The value function for an M/D/1 FCFS queue with respect to deadline
at time T with a unit violation cost is

Lzl . . ;
v(u) — v(T) = A Z ()‘(ldi—'_r))e—k(id—r) (U — 1)
i=0 ’
L ((id +u= )
+ Z 7A(1d+u 7) Z —-11. (3.9)
i=0

Note that, in accordance with (3.4), v(u) in (3.9) reduces to a linear function
when u > 1. Given the value function, we can write down the (marginal) admission
cost,a(u) =vu+d) —vu) + 1u > 7).

Corollary 1 The admission cost of a job with deadline t to the M/D/I queue with
backlog u is

Lzl . . ; = .
A(id — 1)) ; AGid — 7)) .
a(u) =p Me*)h(ldff) +1— § (@ +.l"t 7)) e*)»(ld‘l'uf‘[).
=0 L i=0 l!

(3.10)

Note that the first summation in (3.10) is a constant (cf. the linear term). Recall
that v(u2) — v(u1) corresponds to the expected difference in the number of deadline
violations between a system that has an initial backlog of u, and a system that is
initially in state u. Similarly, the admission cost a(u) tells us the expected increase
in the number of deadline violations if a job is admitted to the system currently in
state u, including the cost for the job itself.

In the general case, for the M/G/1 queue with several reasonable cost structures,
including deadline violations and latency, it holds that

wm=—§+mme

where r denotes the corresponding mean cost rate (e.g., AE[W > t] or AE[T]).
The above yields a simple identity for the mean admission cost to an empty system,

Huaxn=§,

We can verify that this holds also for the M/D/1 queue with the deadline cost
structure, i.e., (3.10) at u = 0 reduces to

a(0) = P{W > t}, Vt=>0.
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(a) Value function for M/D/1: d=1 and 7=2.5 (b) Admission cost for M/D/1: d=1 and 7=2.5
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Fig. 3.1 Value function and the corresponding admission costs for an M/D/1 queue. (a) Value
function. (b) Admission cost

As v(u) for the M/D/1 queue, given in (3.9), is strictly increasing and convex, a(u)
is an increasing function of u. Moreover, for u < 7, a(u) = v(u + d) — v(u), and
hence

aw) = (@ +d) = (D) = L PW <),
-p
Therefore, the following bounds hold for a(u),
PIW >t <aw) < L—PW =1l u=r,
- p

which for T = 0 reduces to p < a(0) < p, in accordance with Example 1.

Example2 Let d = 1 and © = 2.5. The corresponding value function and
admission cost are illustrated in Fig. 3.1 for A € {0.2, 0.6, 0.8}. The value function
is smooth (except at u = 1), whereas the admission cost behaves quite differently.
For example, the unit cost due to the immediate cost of a deadline violation when
u > t shows clearly.

3.3.2 M/D/1 FCFS with Multiple Job Classes

In this section, we extend the system model and consider the multi-class scenario,
where all jobs have the same fixed service time d, but their deadlines and deadline
violation costs can vary. More specifically, we assume k job classes such that class
i jobs have deadline 7; (from the arrival time) and each violation for class i jobs
costs H;. The corresponding (Poisson) arrival rates are Aq, ..., Ag, and are such that
Ad =p < 1, where A = Zi A; (i.e., a stable system). For convenience, we further
define p; = A;/A.
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Let v; (u) denote the value function of a system with arrival rate A and deadline
7;. As v; (1) — v; (0) corresponds to the number of extra jobs on average that exceed
the deadline 7; if the initial backlog is u instead of zero, then on average p; (v; (u) —
v; (0)) of them belong to class i (superposition of Poisson arrival processes), and, as
class i violations cost H;, we have

v(u) —v(0) = ZP[ E[H;](vi(u) — v;(0)), (G.11)

where each v; (1) —v; (0) is given by (3.9) with (A, 7;). Note that this is valid because
all job classes have the same service time d and are treated the same way under
FCFS, and we can also assume that costs are paid upon arrival.

Similarly, the admission cost to the system can be determined, where the
immediate cost is included only for the class of the arriving job. That is, if (3.10) is
used, the admission cost of a class j job with violation cost / to an M/D/1 queue in
state u is

a, j)=h-1u > 7))+ Y pElH;] (@) — 1u > 1)).

1

Note that & can be replaced with E[H;] if the violation cost of the given job is
unknown.

We note that without any technical difficulties, we can extend the model so that
each job class can also have several deadlines with arbitrary violation costs. That
is, a penalty is paid for each deadline that is violated for the same job. Then we
can approximate any cost structure based on the waiting and/or sojourn times. For
example, a cost structure for a single class with unit violation costs #; = h and
deadlines 7; = ih, where i = 0, 1, ..., converges to the cost structure where each
job incurs a cost equal to its waiting time as # — 0. This is equivalent to the (mean)
waiting time. However, for clarity of presentation we omit such examples.

3.4 M/iD/1 FCFS Queue with Deadlines

In this section, we first consider a more general queueing model, the M/iD/1 queue,
where the service time of a job is a random multiple of d, and derive its value
function. Then we also demonstrate how it can be applied to deduce value functions
for systems with batch arrivals.
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3.4.1 Value Function for the M/iD/1 FCFS Queue

Consider the M/iD/1 queue, where job sizes are some multiple of d. More
specifically, the service time of a job is id with probability p;, and the size-specific
arrival rates are A; = p;A.

We apply two results from previous work when deriving the corresponding value
function. First, the waiting time distribution is available also for the M/iD/1 queue
[16, Theorem 1]:

Lz/d] ' (zd _ t)m
PW<t)=(1=-p) Y D 3" [T (3.12)

i=0 Le2(i) jeL

where

(d—t)'“
> = [1%=
JEL

LeZ(0)

Set (i) is the set of partitions of i, i.e., the set of positive integers that sum to i,
and H(L) is

H(L) =ni'ny!---ny!,

where the n; denote the multiplicity of number j in partition L, i.e., [L| = ny +

-+ 4 ny. For example, with size d and 2d jobs, when A; = 0 fori > 3, #(3) =
{(1, 1, 1), (1, 2)}, which corresponds to (n1,n2) € {(3,0), (1, 1)}. Second, given
the waiting time distribution is available, we apply (3.6) from [12].

The value function for the standard M/D/1 queue with respect to a deadline at
time 7, given in (3.9), resembles the corresponding expression for the waiting time
distribution. Similarly, it turns out that value function for the M/iD/1 queue with
respect to deadline resembles the corresponding expression (3.12) for the waiting
time.

Theorem 2 The value function for an M/iD/I1 queue with respect to deadline at
time T with a unit violation cost is

AP{W <
U(M)_U(T) — u(u — ‘L’)
I—p
d L
Ay B Ler | e i Gudsuzo)
‘ —~ H(L) ’
i=0 LeZ(i)

(3.13)
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where

. |L|
)3 LM e Pi | - r)Z(M”"W | zereo 1 aaa

LeZ(0) H(L)

Proof Suppose first that u > 7. Then, as with the M/D/1 queue, all arriving jobs are
late until the backlog returns to t. Hence,

V@) — v(t) = ﬁ (A—AP(W > 1}) = %ﬁf}m — 7). (3.15)

Next we assume that 0 < u < 7. With the deadline cost structure, c(w) = 1(w >
7), the general result (3.6) yields

v(u) —v(0) = 1)»_1410 <%/OMP{W+x > 1}dx — P{W > r})

A u Au
=— | 1-P(W<t—x}dx——(1—-P(W <1}
1—pJo l—p
AU A T
= ——f P{W < x}dx,
1 - L—p Jeu
and thus,
)L —
() — v(t) = MP{W<r}
—p
)\’ T T
——(/ P{fo}dx—/ P{fo}dx),
l—p T—u 0
AP{W < A Tou
—u(r—u)ju—/ P(W <x}dx.  (3.16)
I—p l—pJo

The first term is the same linear function of u that holds also for the tail u > T,
as given in (3.15). The second term is essentially an integral of the waiting time
distribution, which is given by (3.12). When integrating (3.12) from 0 to 7 — u,
where T — u < t, more terms appear in the sum, one for every interval of length d.
In particular, for every i, the corresponding term appears when x = id, and thus the
corresponding term can be evaluated by integrating from id to T — u. For i = 0, we
have

T—u e—A(u—r) -1
/ A P (3.17)
0 A
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and fori > O,

o Hid-+u r>zw 1

T—U
—A(d—x) k _
e id—x)'dx = —
/m ( ) Akt

where k = |L]| as in (3.12). Therefore, the integral of (3.12) gives

T—u
/ P{W < x}dx
0
[(t—u)/d] L
1-p (& LI Tjer P o Mid+u—1) i (A(Gd +M — 1))/ 1

A i=0 LeZ(i) H(L)

)

where p; = A;/A and, similarly as with (3.12), (3.14) ensures that the first term,
with i = 0, is according to (3.17). Substituting the above into (3.16) then gives
(3.13). O

Note that the factor,

LT jerPi _ i+ 40! 0y
H(L) nilng!-- ! U1

ng
..pk .

in (3.13) is the pmf of the multinomial distribution.

Example 3 For the M/D/1 queue, L = {1,1,...,1} and |L| = i, and the above
reduce to the results discussed earlier: P{W < t} given in (3.7) and v(u) given in
(3.9).

3.4.2 Special Case: Systems J2 and B2 with Two Sizes

For simplicity, next we limit ourselves to the case where the service time is d or 2d,
with probabilities 1—¢ and ¢, respectively. Hence, the offered load is p = A(14+¢)d.
We refer to this model as J2 (J for the job size). By varying ¢ we can introduce a
moderate variability in the job sizes.

In the second model, we consider batch arrivals. More specifically, batches arrive
with rate A and with probability of ¢ the arriving batch has size B = 2, with the total
service time of 2d, and otherwise the batch consists of a single job, B = 1, and the
service time is d. Again, the offered load is p = A(1 4+ ¢g)d. We call this model B2,
and it allows us to increase variability in the job interarrival times moderately.

With batch arrivals, some jobs experience also waiting time due to the jobs
arriving in the same batch. Hence, instead of W, we use U to denote the unfinished
work in the queue. We observe that the unfinished work, U, will be the same for
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both models B2 and J2. Moreover, as the size of a job or a batch is either d or 24,
the partitions & (i) are explicitly of the form,

=n =ny
(,1,...,1,2,2,...,2).

ie., fori =1,2,..., wecan write

ny=0,...,1i/2),
ny=i—2no,
|IL| =ny+ny=1i—ns.

Finally, the size-specific arrival rates are Ay = (1 — g)A and A, = gA. Letting
n = nyp, (3.12) reduces to

& i L, i=0

P{U <x}=(1-p) e Mid=x) ) ) 5 =0,
; ZW J %(1 —q)7g",  i>0.
(3.18)

3.4.3 Steady State Performance with J2 and B2

The mean cost rate with J2 follows immediately from (3.18),
rjo = AP{U > 1}.

The mean cost rate with batch arrivals, i.e., with B2, follows similarly. If a batch of
two jobs arrives when the backlog U is in (r — d, 7], the second job of the batch
incurs a unit cost, while the first job receives service in time. Once the backlog
increases beyond U = t, all arriving jobs incur a unit cost. This is illustrated in
Fig.3.2. Thus, the cost rate for t —d < u < tis Ag, and for u > v itis (1 + g)A.
Therefore, the mean cost rate with the B2 system is

rpp =AqP{U > 17 —d} + AP{U > 1}.
Note that with B2 each arriving batch incurs a cost of 0, 1, or 2, depending on how

many jobs receive service late. These results generalize to arbitrary general job- and
batch-size distributions by appropriate conditioning.
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3.4.4 Value Functions for J2 and B2

Let us first consider the system J2, where the job sizes vary. From (3.13), one
immediately obtains the value function for system J2:

Corollary 2 (J2) The value function for an M/2D/1 queue with respect to deadline
at time T with a unit violation cost is

v(u) — v(t)

d Lj i—2 . j—
P ) g"(1L—¢)' ™" ((d —)'™" —7)

n'(i —2n)!
1 < 1) (1 - e—MH)) (3.19)
- LXd: % (l_n)'qn(l_CI)l_2n 1— —A(ld T+u) Z ()‘(ld -7 + u))j
pr i nl(i — 2n)! ’

where the first part corresponds to the linear component, and the second part (the
last two rows) adjusts the value function for 0 < u < t.

It is easy to see that as ¢ — 0, (3.19) reduces to (3.9). It is also worth noting
that alternatively, as we did with the standard M/D/1 queue, it is possible to derive
the value function directly by solving a set of the differential equations. That is,
(3.4) holds for the tail u > t, and for u > 0 the value function v(u) satisfies the
integro-differential equation (3.5). Thus, as with the M/D/1 queue, we can solve the
differential equation backwards one interval at a time starting from (r — d, 7] until
u = Ois included. The constants are solved by requiring continuity at points u = kd,
k=1,2,...,|t/d], and the boundary condition v’(0) = 0. This straightforward
procedure gives both the value function and the mean cost ¢ = P{W > t}, and thus
does not require the use of (3.9).

Let us next consider batch arrivals. In particular, now we assume that each job
has a unit service time d, but jobs arrive in batches of k jobs with probability of
Pk, k = 1,2, ..., and the batch arrival process is Poisson with rate . = A;. As



3 Dispatching Discrete-Size Jobs with Multiple Deadlines to Parallel. . . 41

with varying job sizes, for simplicity, we limit ourselves to the case where a batch
consists of one or two jobs; py =1 —¢g and py = gq.

As with the mean performance, the value function can be deduced from the
corresponding value function of the job size case J2.

Corollary 3 (Batch Arrivals) The value function for an M/2D/1 queue B2 with
respect to deadline at time T with a unit violation cost and batch arrivals is

v(u) —v(r) =0 t) —0(t; ) +q O T —d) —o(T; T — d)),

where U(u; T) denotes the corresponding value function of system J2 with deadline
at time T and the job arrival rate Ap.

Proof The first job of each batch experiences a deadline violation similar to that of
the jobs in model J2. Let v; (1) denote their contribution to the total value function,
for which we immediately have

vi(u) —vi(r) =0(u; ) — 0(t; 1),

where v(u; 7) denotes the corresponding value function of system J2 with deadline
at time 7 and the job arrival rate X;.

For the second job of a batch, which exists only in batches with two jobs (or more
in the general case), we have

W) —v(r) =q Ow; T —d) —o(r; T —d)),

as a fraction ¢ of the batches have two jobs, and in those cases the second job is late
whenever u < 7 —d. O

Even though here we have assumed a Bernoulli distribution for batch sizes,
the same steps can be taken when batch sizes are i.i.d. random variables with an
arbitrary distribution. In fact, it is possible to analyze a general class of models
where the total service time of a batch is a random multiple of d with different kinds
of internal structures of a batch. For example, each batch could start with a fixed
size job, followed by jobs of varying size. Similarly as discussed in Sect.3.3.2,
different batches and jobs can have their own individual deadlines and deadline
violation costs. In all these cases, the total value function follows by straightforward
integration and superposition, as illustrated above.

Example 4 Let us consider three systems withd = 1, 7 =2 and p = 0.75:

1. The basic M/D/1 queue, where A = 0.75,
2. The J2 system withg = 0.5and A = 0.5,
3. The B2 system withg = 0.5 and A = 0.5.
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Figure 3.3 depicts the corresponding value functions. We can see that, as
expected, they have a similar shape, but both the slope for # > t and the convex
portion for 0 < u < t are at different levels. In all cases, an appropriate quadratic
function for 0 < u < t can be assumed to be an adequate approximation for the
value function.

3.5 Parallel Servers

In this section, we consider a dispatching system with parallel heterogeneous
servers, as illustrated in Fig. 3.4. In particular, we show how efficient dispatching
policies can be derived based on the new results given earlier. We consider the
following model for a multi-server system:

. Jobs arrive according to Poisson process with rate A.

. Job sizes are i.i.d. and obey a discrete uniform distribution, X is 1, 2, 3 or 4.

. All jobs have the same deadline t for the waiting time.

. Jobs are processed by m parallel servers with nominal service times d;, i =
1, ..., m, where d; denotes the time to serve one unit of a job’s size.

O R N

The offered load to the system is por = Y ; Ai/c, where ¢ = ) ; 1/d;, and, for
stability, pior < 1. We consider the following heuristic dispatching policies:

Definition 1 (RND) Random split routes a job to Server i with probability p; o
1/d;, so that the offered load pi is balanced among the m servers.

Definition 2 (JSQ) Join-the-shortest-queue routes a job to the server with fewest
jobs. Ties are resolved in favor of the server with a higher index.

Definition 3 (LWL) Least-work-left routes a job to the server with the shortest
backlog. Ties are again resolved in favor of the server with a higher index.

Note that RND is a static policy, i.e., its actions are independent of the system’s
state. Similarly, all policies based on job- or class-specific information are also
static. For example, SITA chooses the server according to job’s size [17, 18], and
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Fig. 3.4 Dispatching system Servers
with m = 4 parallel servers
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CIQ according to job’s class [4]. Next we develop a new policy based on the
value function by carrying out one policy improvement step. More specifically, the
standard procedure (see, e.g., [3, 6, 11, 19] and [20, Section 11.5]) is as follows:

Definition 4 (FPI) The First Policy Iteration step yields an improved policy:
1. Choose a static policy g, e.g., RND.
— With «g, the system decomposes into m independent M/G/1 queues.

2. Compute the value functions and admission costs a; (u, x) for each queue.
3. The policy improvement step yields a new (dynamic) policy,

appi(U1, ..., Uy, x) € argmin a; (Ui, x).
i

where u; is the current backlog in queue i, and x is the size of the new job.

In general, it is difficult to go beyond the first iteration as a value function for a
dynamic policy would be needed for the second iteration. One option is to carry out
a lookahead analysis [21] that considers two consecutive decisions instead of one.

Example 5 (Two Identical Servers) Suppose we have two identical servers, d| =
d> = 1. The mean service time is then E[X] = 2.5, the offered load (to the system)
pot = AE[X]/c = (5/4)A, and the system is stable (with an appropriate routing)
when A < 4/5. The deadline for the waiting time is set at T = 4.

The simulation results are depicted in Fig.3.5 (left). On the x-axis is the
offered load pyot, and on the y-axis the relative performance defined as the ratio
of deadline violation rates between the given dispatching policy « and JSQ, o €
{RND, LWL, FPI}. We can observe that RND has very poor performance except in
the heavy traffic regime where p ~ 1. The performance of LWL is significantly
better than with JSQ when p is small, but under a high load also they become
equal. In contrast, FPI, based on the value function (3.13) and RND, yields a clear
improvement over other heuristic dispatching policies at all loads. The FPI policy, in
contrast to LWL, may route a jobs to a longer queue if the backlogs are such that it
will miss its deadline regardless of which queue it goes to. (For # > 7, the admission
cost is constant as illustrated in Fig. 3.1 (right)). The “notch” that appears under a
very high load is due to the stability issues the FPI policy introduces. Indeed, it may
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Fig. 3.5 Simulation results with two dispatching systems, when the job sizes obey a discrete
uniform distribution on {1, 2, 3, 4}. The simulation run for each (policy,p)-pair included about
2% 108 jobs. (a) Two identical servers. (b) Four heterogeneous servers

be beneficial to overload one server in order to minimize the deadline violation rate!
This phenomenon, observed also in [3], gets more pronounced in the next example.

Example 6 (Four Heterogeneous Servers) Next we consider a heterogeneous four
server system with service rates 1,2,3,4,1ie.,d; = 1/i,i = 1,...,4.JSQ and
LWL now choose a faster server in case of ties. Due to the system having faster
servers, the target deadline is reduced to 7 = 2.

The simulation results are depicted in Fig. 3.5 (right). We can observe that RND
has a very poor performance, as expected. The deadline violation rate with LWL
is significantly smaller than with JSQ when p is small, but under a very high
load LWL is actually worse than JSQ. LWL, balancing the backlogs, ensures that
backlog in every queue is longer than t, whereas JSQ, observing only the number
of jobs, sometimes imbalances the backlogs a bit and avoids a deadline violation.
The performance with FPI is now significantly better than with the other three
dispatching policies. Moreover, under a sufficiently high load, FPI overloads the
slow server. This is an artifact of the simple cost structure that does not penalize for
the excessive (infinite) waiting times. The obvious fix would be to include, e.g., the
mean waiting or response time to the objective function, as discussed in [3].

3.6 Summary

Past work has given explicit forms for the value function with respect to the deadline
cost structure only for specific cases: (1) in the heavy-traffic regime as p 1 1, (2)
when all service times are larger than the (single) deadline, and (3) when the service
times are constant. In the heavy-traffic regime, the value function for M/G/1 (with
large deadline) is quadratic. When the deadline is smaller than the service time, the
value function includes an exponential term.
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In this chapter, we gave exact expressions for the value function with respect to
(possibly multiple) deadlines for a single server queue under arbitrary load when
service times are random multiples of a fixed size d. The model enables us to
consider both varying job sizes and batch arrival processes, or some combination
of them. The standard M/D/1 queue follows as a special case.

The basic results take the form of a double or triple sums with a finite number of
terms. These results can be generalized for queues with multiple job classes having
different target deadlines and violation costs. The availability of the value function
enables policy iteration for developing cost-aware dispatching strategies for parallel
servers, making these results immediately useful.
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Chapter 4 )
Modelling and Efficient Solution oo
of Multiple-Phased Systems

Elvio Gilberto Amparore and Susanna Donatelli

4.1 Introduction and Paper Contribution

Multiple-Phased Systems (MPS) [13] are systems whose behaviour can be split in a
set of successive periods, called phases. MPS are also called Phased Mission System
in other works [20], since they can easily describe systems in which the behaviour is
described as a mission structured into multiple phases. Each phase is described by a
different duration, system configuration, desired task, etc. MPS have been shown to
be useful in many contexts, like modelling systems with scheduled maintenance [12]
(Scheduled Maintenance Systems—SMS). In a MPS, the standard question is to
compute the reliability of the system, i.e. the probability that the system survives the
mission, but optimization also plays a role [22], especially for SMS to determine the
best maintenance policy, as well as sensitivity analysis [12, 16] to allow to reason
about the structure of the mission and their parameters.

There has been a significant amount of work on MPS, especially in the late
nineties and also more recently. Different techniques have been used for modelling
and solving these systems, from combinatorial methods like reliability blocks and
fault trees to state-based techniques. Combinatorial approaches based on reliability
blocks and fault trees have been reported, for example, in [24, 28]. State-based
approaches build Markovian systems either through an ad-hoc language as in
EHARP [24] or through a high level modelling formalism as the Stochastic Petri
Nets [21]. It is well known what are the relative advantages and disadvantages of
combinatorial methods over state-based ones, but when the objective of the MPS
analysis goes beyond the computation of the reliability of the system at the end of the
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mission, state-based approaches can provide a plus, like computing the probability
of the system states at time ¢, or associate a reward structure to the system states.

Popular formalisms for state based models in performance evaluation and
reliability analysis include various forms of Stochastic Petri nets: Generalized
Stochastic Petri Nets (GSPN) [2], that allows exponentially distributed transitions
and immediate ones (transitions that fire in zero time); Deterministic and Stochastic
Petri Net (DSPN) [1, 18], an extension of GSPN to include also transitions with
a deterministic duration, subject to the constraints that at most one deterministic
transition is enabled in any one state; Markov Regenerative Stochastic Petri Net
(MRSPN) [17], where transitions can have a generally distributed delay, again
subject to the single enabling constraints as DSPN. The steady state solution of
a GSPN requires the steady state solution of a continuous time Markov chain
(CTMC), while the stochastic process underlying a DSPN and a MRSPN is
a Markov Regenerative Process (MRgP) [23], which has attracted a significant
attention from the performance community, since an MRgP can describe more
complex behaviours than a CTMC, while still allowing an analytical solution.

The work in [21] examines various modelling approaches for MPS and concludes
that a high level formalism based on DSPN shows the best trade-off between
the modelling power (class of systems that can be specified) and the amount of
human intervention in the definition of the model. In particular the authors identify
a specific Petri net structure. The phases are described as a Petri net (the Phase
Net—PhN) with a directed acyclic graph (DAG) structure, which only includes
deterministic transitions and immediate ones, with exactly one deterministic tran-
sition enabled in each phase. The system behaviour is modeled using a GSPN (the
System Net—SN). Transition enabling and firing rates in the SN may depend on the
marking of the PhN and this permits a description of the system that is compact
(a single net) but that is able to describe a behaviour that may differ from phase to
phase. This results in a class of nets called Phased Petri Nets (PPN). The limitations
imposed on the Phase net limit the modelling power of PPN, but allowed Mura et
al. to show in [21] that the solution of the MPS can be decomposed in a sequence of
transient solutions of Markov chains. The DEEM tool [13] implements this method.

An important contribution to the analysis of MPS is the work in [20]. The
authors present a description of the MRgP underlying a PPN in which many of the
limitations of the work in [21] are lifted. The paper presents a complete theoretical
framework and practical indications on how to solve the resulting models for various
classes of PPN, including the case of general distributions in the PhN. But no
implementation is provided (apart from what is implemented in DEEM) and the
practical indications still assume that the marking graph of the PhN is a DAG and
that a SN event cannot interrupt a PhN event.

Contribution In this paper we define eXtended PPN (X-PPN), an extension of the
PPN of [21] and [20] to allow a more general definition of PhN (to include a mix of
general and exponential events and cyclic, ergodic behaviour) and a more flexible
definition of dependencies (in particular a SN event can interrupt a phase).
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When the resulting MRgP is ergodic the solution is computed through the so-
called matrix-free solution of MRgP, provided by [18] and enhanced in [5]; when the
MRgP is non-ergodic the solution is demanded to the Component Method algorithm
for MRgPs [6]. The proposed solutions are implemented inside the GreatSPN [11]
framework. The solvers of GreatSPN allows to solve X-PPN with more than a
million states. We shall show through a scheduled maintenance system example the
practical relevance of the extension introduced by X-PPN and of the associated tool.
We shall also show that, when a X-PPN reduces to a PPN, the Component Method
does exactly the same computations as the ad-hoc efficient solution of [21]. We shall
not compare the two tools performances since DEEM uses older technologies and it
is very inefficient in time. A comparison can be found in [7].

The paper develops as follows: Sect. 4.2 defines the X-PPN formalism, Sect. 4.3
the proposed solution techniques for X-PPN, Sect.4.4 experiments the available
solution technique on some X-PPN examples. Section 4.5 compares the behaviour
of GreatSPN and DEEM on PPN models, while Sect.4.6 concludes the paper and
outlines future possible extensions and integration activities.

4.2 Extended Phased Petri Nets

In this paper we use the definitions and notations of MPS given in [21]: a mission
is divided into m phases of deterministic duration §;, and the system behaviour in
each phase is described by a CTMC with state space .¥; and rate matrix Q;. Models
are expressed as GSPN or DSPN where we indicate with P the set of places, T the
set of transitions, /, O and H for the input, output and inhibitor arcs, respectively,
W (T) for the function that defines the timing aspects of the transitions. A function
W () can depend on the state (marking) of the net and mg : P — N>¢ the initial
marking.

The MPS is defined using a restricted class of DSPNs called Phased Petri
nets (PPN) [20, 21] that model the system using two Petri nets [2]: a Phase Net
(PhN) that defines the phase structure, and a System Net (SN) that describes the
stochastic behaviour of the system components during each phase of the mission.
Marking dependent rates and guards can be used to make the SN behaviour
dependent from a specific phase, and the probability of immediate transitions in
the PhN can depend from the marking of the SN: this allows the choice of the next
phase to depend upon the state of the SN.

Definition 1 (Adapted from [13, 21]) A PPN is a DSPN resulting from the union
of two Petri nets with disjoint set of places and transitions, the phase net PhN (a
DSPN) and the system net SN (a GSPN), with the additional restrictions:

1. Transitions in PhN are either immediate or deterministic (no exponential);
2. The marking graph of PhN must be a directed acyclic graph (DAG);

3. At most a single deterministic transition is enabled in any state;

4. The firing of a transition in SN cannot disable a transition in PhN.
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The above limitations are imposed to provide a guideline to the modeller and to
allow for a decomposable solution [13, 20]. Places and transitions are disjoint but the
two nets are dependent, due to the presence of arcs encompassing the two nets and
to a definition of marking dependent rates of transitions of one net that can depend
upon the places of the other net, which gives to the modeller the ability to express
a system behaviour that differs from phase to phase. Note that requirement 1 and 3
imply that each phase is identified by a single marking of the PhN and condition 2
implies that the whole stochastic process is non-ergodic.

Definition 2 (From [17]) A GSPN extended to include deterministic and generally
distributed durations of event is a Markov Regenerative Stochastic Petri Nets
(MRSPN) if its marking process is an MRgP.

A Petri net with immediate, exponential and generally distributed transitions in
which at most one general transition is enabled in a marking is a MRSPN, as the
marking right after the firing of the single general transition enabled identifies a
regeneration point. Point 3 of Definition 1 ensures that each PPN is a MRSPN, as in
[20].

Definition 3 A X-PPN is a Petri net resulting from the union of two Petri nets with
disjoint set of places and transitions, the phase net PhN (a MRSPN) and the system
net SN (a GSPN), with the additional restriction:

1. At most a single general transition is enabled in any state;

Given the limitation of at most one general transition enabled in any marking, an
X-PPN is a MRSPN. Note that the limitation is required since, due to the presence
of marking dependencies, it is possible that a change of state in the SN enables a
new general transition in the PhN. X-PPN represents an extension of PPN in which
PhN may include general distributions, the marking graph of the PhN is not required
to be acyclic, and the firing of a transition in the SN may disable a transition in the
PhN, while marking dependencies allows the PhN behaviour to influence the SN
one, and vice versa. In a X-PPN the behaviour of a phase is not strictly identified
by a single marking, phases can have a duration which is exponential or generally
distributed, and a system event may interrupt a phase. Note that since the marking
graph of a PhN is not required to be acyclic, repetitive tasks can be modelled and it
is possible that the marking process of a X-PPN is ergodic.

X-PPN can be defined through the graphical user interface of GreatSPN,
with the rich definition of general distributions supported by the alphaFactory [9]
library, which includes, among the others, deterministic, uniform, Erlang, Pareto,
expolynomial, triangular distributions, as well as any linear combination of them.
The usefulness and flexibility of X-PPN for the modelling of MPS is discussed in
Sect. 4.4 through four examples of a scheduled maintenance system.
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4.3 X-PPN Solution

An MRgP is a stochastic process defined by a sequence of time instants called
renewal times in which the process loses its memory, i.e. the age of non-exponential
(general) events is 0. A regeneration point is a renewal time associated to the state
at that time. The process behaviour among regeneration points is a discrete-time
Markov chain, the embedded Markov chain (EMC), while the behaviour between
two regeneration points is described by a continuous-time process, the subordinated
process, that we require to be a time-homogeneous CTMC. MRgPs have been
studied extensively in the past [18, 25, 26], and many solid analysis techniques exist.

An MRgP can be represented as a discrete event system [14] with a finite state
space, where in each state a general event g is taken from a set G. As the time flows,
the age of g being enabled is kept, until either g fires (A event), or a Markovian
transition, concurrent with g, fires. Markovian events may disable g (preemptive
event, or Q event), clearing its age, or keep g running with its accumulated age (non-
preemptive event, or Q event). Matrix Q accounts for the rates of the exponential
transitions whose firings do not disable any general (deterministic) transition;
Matrix Q accounts for the rates of the exponential transitions whose firings disable
a general (or deterministic) one; Matrix A has, for each entry A; ;, the probability
of ending in state j when the general transition fires in state ;. MRgP are normally
solved in steady state, since the solution at time ¢ is significantly more complex.

The EMC matrix P is defined in terms of Q, Q, and A in a standard manner
(see [18] for example): the EMC is solved for steady state and the steady state
distribution of the MRgP states is derived from the steady state solution of the
EMC states. This method is what we term Explicit, and it can be used only for
small MRgP as indeed, even if Q, Q, and A are sparse, which is usually the case,
matrix P is typically dense and expensive to compute, due to the matrix exponential
terms. This problem has been solved in [18] with a technique based on the idea
that P can be substituted by a function of the Q, Q, and A matrices of the MRgP.
These functions are used in vector xmatrix products with P so that they can be
computed without the need of constructing and storing P. This method is what we
term matrix-free technique (actually P-free). Both methods (explicit and matrix-
free) have been extended in [5] to deal with non-ergodic MRgP and to use a richer
set of numerical solvers (like GMRES and the alike).

If the EMC is non-ergodic, its states can be classified as transient or recurrent
states, and specialized solution methods can be devised to compute the probability
distribution of recurrent states. The work in [3, 6] introduces an efficient steady-
state solution for non-ergodic MRgPs, called Component Method, which computes
the outgoing probability flow from transient to recurrent subsets of states, called
components. The method is given in matrix-free terms. The basic idea of the
Component Method is readily explained assuming that matrix P is available (in
reality, since the method is matrix-free, the technique is more complicated). If the
MRgP is non-ergodic it is indeed possible to rearrange the order of its states so that
the EMC matrix P is in upper-triangular form (the reducible normal form, or RNF):
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Matrix P has k£ > 0 transient subsets and (m — k) recurrent subsets of states, with
m > k. Let .%; C . be the set of states in subset i, hereafter called the component
i. The upper triangular form of P allows to interpret the .#; subsets as a DAG of
components, and a way to build an RNF is to identify the set of strongly connected
components (SCC) of the graph built by considering P as an adjacency matrix. The
computation of an adequate set of components is the topic of [8]. Transient SCCs are
the .%; for i < k, and bottom SCC (BSCC) are the .¥; for the recurrent classes (k <
i < m). When P is in RNF, the steady-state probability of the recurrent states can be
computed using the outgoing probability vectors u;. For each state s € (. \ %),
1; (s) is the probability of reaching s in one jump when leaving .%;. Vector u; is
given by:

= (i DM mp) =T Fi i<k 42)

j<i

where «; is the vector of initial probabilities for the states in .%; and I; are
appropriate filter matrices (diagonal is 1 for states in .#, 0 otherwise). Since matrix
inversion is usually expensive, a product of a generic vector u with (I—T;)~! can be
reformulated as a linear equations system x- (I—T;) = u that is computed iteratively
using vector x matrix products with T;. Each vector u; may depend on the previous
(i—1) outgoing probability vectors, implicitly defining a computational order. Given
the u; vectors, the steady state probability of the recurrent subsets .%; is:

k
S (ui n 2(1,. .ﬂj)) - lim (R)", k<i<m 4.3)
j=

The Component Method computes first Eq. (4.2) for all transient components, taken
in an order that respects the condition j < i of the formula, and then computes the
probability for the recurrent subsets based on Eq. (4.3). The work in [6] explain how
to compute (4.2) and (4.3) in matrix-free form. The computation of the products of
a generic vector u with the matrix-free form of T; and F; is given by:

uT; = I; - (a;(w) +b;(u) + ¢; (w)) (4.4)

uF; = -1 (a;(w) + b; (W) + ¢;(w)) (4.5)
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Actually the above computation are performed using an augmented set 177 of
component i, as we have to include in component i all the states that are reachable
before the next regeneration point. For simplicity we do not use the augmented
notation. The vector terms a; (u), b; (u) and ¢; (u) are:

a(u) = u- (Zlf.foerfX-fg(x)dx).Ai

geG 0
bi(u) = u- (Zlf./ lex.Fg(x)dx>-Q,-
geG 0

c(u) = u- (IlE — diagfl(QlE)QiE)

where QlE is an appropriate projection of matrix Q and f,(x) and Fg (x) are the
PDF and the complementary CDF of the firing distribution time of the general event
g enabled in .}, if any. These terms describe how the process evolves between
two regeneration points. Vector a; (u) and b, (u) are the probability distribution of
the next regeneration state reached with the firing of the general event (a), or with
the preemption of it (b). Vector ¢;(u) is the probability distribution of the next
regeneration state when there are no general events enabled in the starting state.

The advantage of working at the component level is not only the trivial one of
solving many small models instead of a single much bigger one, but that the cheapest
available solution for each component can be used, as will be indeed the case of
MRgP generated from X-PPN. Indeed the work in [6] identifies three component
classes, their characterization and the associated solution technique:

[Class Cg  :] No general enabled. The component is a CTMC, solved in steady
state.

[Class C, :] A single general transition g is enabled with no internal preemption
(Q,-,; = 0 A A;; = 0). The component is a CTMC, solved at time §¢ (duration
of g).

[Class Cj; :] Atleast one g enabled, or internal preemption (Qi, i #0VA;; #0).
The component is an MRgP, solved in steady state.

The three techniques for MRgP solution: Explicit, matrix-free and Component
Method, have been implemented as part of the GreatSPN [11] solver for MRSPN.
The first two can be applied to ergodic and non-ergodic systems, while the last one
can be applied only to non-ergodic systems.

GreatSPN Tool GreatSPN is a tool for Petri net definition and analysis developed
mainly at the University of Torino during the last 30 years. GreatSPN has been
recently renovated to include a new Java-based interface with colored and plain
token game simulation, model checking for branching and stochastic logics, a
new solver for MRSPN, and additional facilities for model composition and for
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performing multiple experiments. GreatSPN, including the solution techniques used
in this paper, is available upon request visiting its web page [27].

Note that the Component Method is a general technique for non-ergodic
MRSPN, so we could avoid the definition of X-PPN and ask the users to directly
model using MRSPN, but this is an approach that may not be very useful for a
designer that wants to use Petri nets to study a phased system, for which a more
structured approach in the description of the system can be useful.

4.4 An Example of MPS Modelling and Evaluation with
X-PPN

In this section we consider an example of a Scheduled Maintenance System
(SMS) model, inspired by [12], and represented using the X-PPN formalism.
Figure 4.1 shows the model of the SMS drawn with the GreatSPN GUI. It represents
an alternation between a factory work phase and a maintenance phase. The PhN and
the SN are drawn into separate boxes. The PhN models the alternation between work
and maintenance, for NP consecutive cycles. During the production, raw pieces are
loaded from a warehouse, are transformed following a sequence of steps with one of
the M available machines, and are then moved back in a storage as finished products.
Machines may break, and are therefore subject to a continuous maintenance that is
scheduled at fixed intervals during the maintenance phase. Each maintenance phase
is scheduled after 4 h of work, and requires an inspection cycle: every step of the
pipeline is checked, plus and additional work is needed for every machine that has
to be repaired. Repairing may require a variable time, estimated between 1 and 2 h,
and it is therefore modelled with a Uniform duration. Numerical solution of general
distributions is based on the methods of alpha-factors [9]. The subnet StartProd—
InProd—EndProd that models the production activity is expanded into a subnet,
shown on the right of Fig.4.1, where the production is divided into two separate
stages followed by an assembly step. Note the presence of numerous bidirectional
arcs: in GreatSPN the dependence of a transition to a specific phase is modeled
using test arcs, for example a transition connected with a test arc to the WorkPhase
place will be enabled only during a work phase.

The SMS is tested in four different configurations. In configuration (A) the
system stops when a fixed number of phases is concluded, while varying the number
of raw pieces K. Configuration (B) is similar, but runs are performed for an
increasing number of both pieces and phases. Objective of the analysis of case (A)
and (B) is to monitor the number of products completed before the mission ends.
Configuration (C) allows for an unbounded number of phases: place NumPhases has
been removed and the net is modified so that the system stopswhen max products are
completed. This allows to investigate how many maintenance phases are required
before finishing max products. Finally, configuration (D) has both unbounded
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Fig. 4.1 Scheduled Maintenance System MRSPN model drawn in GreatSPN

phases and pieces, and the system stops when nreps machine repairs have been
performed. This allows to compute the duration of the repair free operating period
(MFOP) of the system [15, 19] (distribution of the time before the first repair takes
place).

Note that, if we assume that all general transitions are deterministic (so no vari-
ability in the phases), configurations (A) and (B) produce a PPN, but configurations
(C) and (D) require X-PPN, since they have an unbounded number of phases, as
the PhN is not a DAG. When solved with the Component Method the (C) and (D)
generate components of class Cyy, as can be observed from Table 4.1. As we shall
see in the next section, Cp; component never arise in PPN.

Table 4.1 shows the solver performance of the four configurations of the SMS
for varying parameters. Each table reports the test parameters, the number of MRgP
states and transitions, and the overall time needed to build the state space (RG time).
The table then reports the performance results of the matrix-free solution (matrix-
free method) on the MRgP. Data for the explicit case (explicit construction of the
EMC) are not reported since they can hardly solve the smallest cases. Finally, the last
group of columns evaluates the Component Method, by listing the global number
of components, the number of transient components split per class, and the time to
compute the steady state distribution of absorbing states. Note that the total number
of components contains both the transient and the recurrent components, i.e. it is
not just the sum of the Cg, C,, and Cy transient components.

Case (A) is a non-ergodic MRgP that can be decomposed into a fixed number of
Cg and C; components (half of the phases have an exponential duration). Case
(B) is similar, but the number of components grows with the parameters, since
they depend on the number of phases N P. In these two cases the Component
Method behaves significantly better than the implicit matrix-free one. Note that
the aggregation of SCC into components has a significant impact: these systems
have hundreds of thousands of SCCs: treating them one at a time would result in
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Table 4.1 Matrix-free and Component Method on the SMS model

(A) Finite number of phases N P = 8, 3 machines

E. G. Amparore and S. Donatelli

Matrix-free Component Method
K | States Transitions | RG time | Iter. | Time N.comp |Cg | C,
10 97,022 | 215,260 0971 |28 27.667 |48 4 |44
20 | 377,419 841,497 4.031 |53 |211.986 |48 4 |44
30 | 739,359 | 1,644,537 8.088 |54 |430.079 |48 4 |44
40 | 1,109,259 | 2,463,357 |12.079 |54 | 620.940 |48 4 |44
50 | 1,479,159 3,282,177 |15.706 |54 |841.496 |48 4 |44
(B) 3 machines, increasing number of phases N P and pieces K
Matrix-free Component Method
K | NP | States Transitions | RG time | Iter. | Time N.comp | Cg | C,
10| 5 60,344 131,896 0.576 | 22 11.396| 33 4 29
20|10 | 488,271 1,095,553 | 5.118 99 | 482.193| 58 4 54
3015 | 1,648,076 | 3,731,570 | 18.381 | 185|3031.499| 83 4 79
40|20 3,903,594 | 8,879,596 |45.217 | 186 |7360.301 | 108 4 |104
50125 7,618,921 17,379,853 94.823 |- |- 133 4 129
(C) Unlimited number of phases, stops after max products, 3 machines
Matrix-free Component Method
max | States | Transitions | RG time |Iter. | Time N.comp |Cg |Cq
10 12,225 | 27,786 0.114 23 1.675 | 32 1 10
20 55,425 | 127,026 0.540 51 | 27.748 | 62 1 20
30 | 129,825 | 298,266 1.258 128 |164.952 | 92 1 30
40 235425 | 541,506 2.294 184 |468.923 | 122 1 40
50 372,225 | 856,746 3.865 184 | 734.587 | 152 1 42
(D) Unlimited number of phases, stops after nreps machine repairs
Matrix-free Component Method
nreps | States | Transitions | RG time | Iter. | Time N.comp |Cg |Cq
10 14,783 | 40,822 0.205 38 4.560 | 31 1 10
20 37,223 | 103,462 0.550 383 | 151.630 | 61 1 20
30 59,663 | 166,102 0.875 381 |287.686 | 91 1 30
40 82,103 | 228,742 1.229 488 |537.222 | 121 1 40
50 104,543 | 291,382 1.551 479 |638.227 | 151 1 50

Cy | Time
0 2.978
0 12.649
0 20.673
0 89.832
0 254.051
Cyr | Time
0 1.757
0 27.301
0 252.395
0 | 1332.887
0 4414574
Cy | Time
11 0.949
21 5.483
31 |14.763
41 | 29.064
43 149.712
Cy | Time
10 1.389
20 3.620
30 5.806
40 8.120
50 |10.218

prohibitive matrix management costs. Both (A) and (B) are totally irreversible nets
(no loop among states), which is particularly suitable for the Component Method.

Case (C) is an MRgP that has components of the three classes. The number of
Cy components, therefore components that require an MRgP solution, is rather
high. Nevertheless, breaking the MRgP solution into smaller blocks eases its
solution, since iterations need to be done on smaller matrices. Case (D) has a
structure made again with Cy; components, whose number strictly follows that of
the monitored repairs. The method performances are similar to that of case (C).
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Overall, the table shows that the Component Method can be applied to PPN
and X-PPN models of medium size, in the number of millions of states, and still
being capable of computing the solution in an acceptable amount of time. All
computations have been performed on a 2.4 GHz Intel Core Duo processor, with
8Gb of memory.

4.5 GreatSPN vs DEEM on PPN

The work in [13] observes that in a PPN, the sequence of deterministic transition
firings in the PhN allows to define a decomposed solution approach. Entering into
a marking in the marking graph of the PhN identifies a regeneration point in the
MRgP process. Together with the fact that the marking graph is required to be a
DAG allows a decomposition of the solution, as explained in the following. This will
allow a comparison with the Component Method over PPN. The first step consists
in generating the state space of the PhN. By definition each phase i is characterized
by a single marking m; of the PhN marking graph and by a deterministic transition
of delay §;. Therefore it is possible to solve the whole system as follows (at the
beginning i = 0):

* Compute the state space .¥; of the SN when the PhN is in state m; and build the
associated rate matrix Q;.

e Compute the transient solution at time §; of the CTMC specified by Q; (which
gives the distribution of the markings of the SN at the time phase i ends).

» Compute the A; ; matrices, the branching probability matrix of size |.7;| x |.}|
of going to the states of phase j at the end of phase i. This requires to build the
state spaces of the SN for two successive phases.

* The solution at time §; of .%; is mapped, through A;; to the initial probability of
the successive phases.

The above sequence is repeated for successive phases until the target time ¢ of the
analysis has been reached. If ¢ is greater than the sum of the duration of all the
phases (complete duration of the mission), this corresponds to the distribution of
the absorbing states of the system at the end of the mission. If 7 is smaller, let’s say
between the end of phase i — 1 and i then Q; is solved at time r — ¢/, where ¢’ is the
sum of all the duration of the previous phases. The above sequence is also reported
in [20] as a special case of the very large class of MPS for which the equations of
the associated stochastic process are provided.

The theory summarized above has been implemented inside the prototype tool
DEEM [13]. Although not recent, DEEM can still be considered the state-of-the-art
tool for MPS definition and solution for PPN. DEEM is not only a solver but also
has a GUI for the definition of the PhN and of the SN, including facilities for the
definition of marking dependent rates, transitions’ guards and reward structures.

For what concerns the time complexity, if there are N phases DEEM generates and
computes the transient solution of N CTMCs. The space complexity is determined
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by the need of building N state spaces for the SN (one per phase) and the
corresponding N CTMCs, and N — 1 state spaces for pairs of successive phases
(of size |.7;| + |-7}]) to build the A; ; matrices, assuming the phases being in
a sequence. If the marking graph is a DAG obviously more than one successive
phase should be considered. Since PPN are a subclass of X-PPNs, we can compare
the Component Method of GreatSPN with the solution approach of DEEM outlined
above how the Component Method works, when applied to a PPN. If we consider
the embedded Markov chain transition matrix P of a PPN in RNF form, what are
the block matrices involved? Since the state space of the PhN forms a DAG, we can
certainly find a RNF form for P, in which the states of phase i corresponds to the
subset i in the matrix of Eq. (4.1), as it was shown in [20] that the end of a phase
corresponds to a regeneration point. For ease of notation each off-diagonal matrix
F; is split into multiple F; ; submatrices, withi < j < m. We can then observe that:

T, =0, F;=e¥.A;;, R =L —diag”'(Q)-Q (4.6)

each T; will be zero, since T; is the submatrix of the probability of remaining in
& at the next regeneration point (which is the end of the phase for a PPN), but this
is not allowed since the PhN is acyclic. The F; ; matrices describe the probability
of moving from the start of phase i to the start of phase j, and this involves the
solution at time &; (term Q%) and the jump probability between the two phases
(term A; ;). The R; terms corresponds to the recurrent terminal phases (phases with
NO SUCCESSOrs).
The comparison is organized as a set of questions. Given a PPN:

(Q1) do the two tools consider the same components?

(Q2) do they solve the components with techniques of comparable complexity?
(Q3) do they use comparable amounts of memory?

(Q4) do they compute the same performance indices?

To answer question Q7 we should consider that DEEM generates one component
per marking of the phase net, and that each marking enables exactly one determin-
istic transition g. In the Component Method the criteria behind the definition of an
optimal partition of the MRP [6, 8] is that, starting from the initial definition of
components as SCCs, two components are aggregated together only if they belong
to the same complexity class and if the resulting complexity class is the same,
given that no cycles among components are introduced by the aggregation. The
component construction will indeed put together all states that enable g, whether
they correspond to one or more SCCs. This happens because those SCCs are of
class C, and their union is still of class Cg, since no preemption of the deterministic
transitions can take place in a PPN and the firing of the deterministic takes the
system outside of all the states that enable g (g is not enabled any longer). Therefore,
both DEEM and GreatSPN construct the same components.

The answer to question Q2 (time complexity) is straightforward given that there
is a component per phase, and the component is of class Cq. The p, vector of
Eq. (4.2) is therefore computed with a transient solution at time J, that is to say at
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the time the phase ends, as does the solver of DEEM. Therefore, the two tools do the
same numerical computations on the same sub-matrices.

The answer to question Q3 (memory) shows a difference in the maximum amount
of storage used. Both techniques compute the same Q; and A;; matrices, but
the Component Method builds all of them beforehand, to be able to compute the
components. DEEM instead builds, for each phase i, the CTMC of the SN at phase i
and, for each phase j that is a direct successor of i, it builds its state space to derive
the A;; matrix. So the amount of memory for the Component Method is the size of
the whole system, while for DEEM it is the maximum size of the SN for a phase and
for its adjacent phases. Difference is at most linear in the number of phases.

The answer to question Q3 is that both methods can compute steady-state prob-
abilities while only DEEM can solve for transient. Indeed the transient probability at
time 7 can be easily computed only if the phase net is composed only of deterministic
transitions.

In summary we can say that the Component Method “scales well” in time
complexity: when the net is a PPN it reaches the same time complexity as
the specialized solver of DEEM. Nevertheless the Component Method uses more
memory than DEEM, up to at most a factor N, the number of phases, depending
on the structure of the marking graph of the PhN. An empirical comparison of
DEEM with GreatSPN is provided in [10], an earlier paper that presents an extension
of PPN that does not include general distributions. The numerical results confirm
better performances of DEEM for what concerns memory, but the DEEM solution is
very slow (possibly because of some non-optimal implementation choice) so that,
in practice, GreatSPN can solve much bigger PPN than DEEM.

4.6 Conclusions and Future Work

This paper presents X-PPN, a class of MRSPN that are designed to model and solve
multiple-phased systems. The definition and solution of X-PPN is supported by
the GreatSPN GUI and by three different solvers that use an explicit, matrix-free,
and component-based approach. The efficacy of X-PPN as a modelling language
for multiple-phased system has been shown on four variations of a scheduled
maintenance system. Performances in time and space of the matrix-free and of the
Component Method on the four models have been reported and discussed. Results
for the explicit method have not been shown since this method, by building explicitly
the EMC, suffers from a severe memory bottleneck.

X-PPN are an extension of PPN, the formalism supported by the tool DEEM. A X-
PPN allows for an unbounded number of phases, for the presence also of exponential
delays in the PhN, for the use of general distributions and for the possibility that an
event in the SN to disable a phase. We have discussed, and shown in the example,
that these are relevant modelling features. We should remark that certain features
of DEEM not available in GreatSPN also have a practical relevance, in particular
the rich language for transition guards (to avoid too many crossing arcs for testing
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and inhibition), the reward structure and the computation of the probability at time
t. This last feature is strictly related to the choice of including only deterministic
timings in the PhN, as the general case is significantly more complicated. The ideal
X-PPN tool should include features of both tools, and in particular it would be very
useful to have a tool in which the user can choose his/her own trade-off among
modelling power and computable performance indices. It is nevertheless already
remarkable that the Component Method is able to scale in complexity to that of
the DEEM solvers when the analysed system is expressed by a PPN, and that this
simplification is automatic, not requiring any user intervention or net analysis.

While PPN and X-PPN are interesting formalisms for MPS, they both suffer
from the limitation that at most one non-exponential transition can be enabled in a
state. This restriction is not present in [20] that presents the theoretical framework
to partially lift this limitation. This is an interesting and challenging way to pursue:
to turn the equations in [20] into a real and scalable solver.

Finally, we have seen that DEEM saves memory by building the state space a
few phases at a time: current (unpublished) work on on-the fly generation of MRgP
components in the context of the MC4CSLTA model-checker [4], which is also part
of GreatSPN, can be a line to follow for the on-the-fly generation of the X-PPN
components.
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Chapter 5
Deterministic Network Calculus Analysis e
of Multicast Flows

Steffen Bondorf and Fabien Geyer

5.1 Introduction

Distributed embedded electronic applications communicating via packet networks
have become the norm in various industries such as automotive, avionic, or automa-
tion. In such industrial applications, real-time constraints on packet delay and jitter
are usually required in order to ensure the specified processes behavior. Due to
certification of systems as well as reliability demands, formal methods are applied
to validate these timing constraints. They allow for hard guarantees via upper
bounds. While different analytical methods have been proposed in the literature,
Deterministic Network Calculus (DNC) established itself as common method to
analyze asynchronous communications in packet networks. A concrete example of
this is Avionic Full-Duplex Ethernet (AFDX), a communication technology based
on Ethernet and already deployed in avionic systems. Network calculus has proven
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to be a key method for the certification of deterministic properties of networks used
for fly-by-wire [14].

An important property of those industrial networks is that communications are
usually based on the multicast paradigm, where packets being sent by one sender
are duplicated by switching elements in the network and received by multiple
receivers. Using DNC on such multicast protocols requires some adaptations, since
this method is restricted to the analysis of unicast communications. As detailed later,
in Sect. 5.3, previous attempts for using DNC to analyze multicast communications
only circumvented its current restriction. They do not provide a solution to overcome
this limitation and cannot benefit from all DNC capabilities to provide accurate end-
to-end guarantees.

We address the open issue of multicast flow analysis with DNC. We contribute
an approach generalizing the known unicast feed-forward analysis (unicastFFA)—
the DNC multicast feed-forward analysis (mcastFFA). Compared to existing
approaches, more accurate bounds are obtained since advanced DNC principles
can be applied in order to reduce, for instance, overly pessimistic assumptions on
flow multiplexing. We numerically evaluate our proposed methods on two AFDX
networks and show that our DNC results are on par with other analytical methods
or outperform them.

This chapter is organized as follows: Sect.5.2 presents background on DNC
modeling and unicast analysis. In Sect.5.3, we present related work on multi-
cast flow performance analysis. Section 5.4 contributes a generalization of DNC
unicastFFA for the study of multicast flow guarantees. We evaluate our approach in
Sect. 5.5. Section 5.6 concludes the chapter and provides an outlook.

5.2 Deterministic Network Calculus Background

Deterministic Network Calculus models resources as bounding functions and
provides (min,+)-algebraic operations to derive performance bounds from these. We
provide the basic theory applied in this chapter. For a comprehensive description, we
refer the reader to [13] and [19]. Bounding functions cumulatively model arrivals or
service in interval time. These belong to the set % of non-negative, wide-sense
increasing functions:

Fo={f R>R"| f0)=0,YO<s <1t:f(s) < f()}

DNC makes use of the concept of arrival curves, which is a function bounding
the maximal arrivals of a flow:
Definition 1 (Arrival Curve) Given a flow with input A, a function « € % is an
arrival curve for A iff

A(lt) — A(s) <a(t—s),Vt,s5,0<s <t
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Minimum service is bounded in a similar way. It is based on the relation between
data input and output.

Definition 2 (Service Curve) If the service provided by a server s for a given input

A results in an output A’, then s offers a service curve B € %y iff

Alr) > onf {A(t —s)+ Bls)}. Vit

The DNC analysis relies on two basic (min,+)-algebraic operations:
Definition 3 ((min, +) Operations) The (min, +) convolution and deconvolution
of two functions f, g € % are defined as:

Convolution: (f ® g)(¢) = 0inf {f@—s)+g(s)}
<s=<t

Deconvolution: (f @ g)(t) = sup{f(t +s) — g(s)}

s>0
Using these operations, the above definitions translate to A ® @ > A and A’ >
A ® B. Moreover, these operations are used to derive performance bounds.
Theorem 1 (Performance Bounds [19]) Consider a flow f with arrival curve o

traversing a server s with a service curve B. The following bounds can be derived:

Backlog: Q(t) < sup{a(u) — )} = (@ @ B)(0)

u>0
Delay: D(t) <inf{d = 0| (¢ @ B)(—d) < 0}
Output: &' (d) = (¢ @ B)(d)

with o' being an output arrival curve for A’.

In advanced network analysis, two further operations are relevant:

Theorem 2 (Concatenation of Servers) Consider a single flow f crossing a
tandem of servers si, ..., s, where each server s; offers a service curve B;. The
overall service curve for f is their concatenation by convolution:

Bi® @ By =(X)Bi
i=1

Given a strict service curve that guarantees a minimum output of g if data is
present at a server, we lower bound the service left-over for a specific flow:
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Theorem 3 (Left-Over Service Curve) Consider a server s that offers a strict
service curve B. Let s be crossed by flows fo and fi, with arrival curves «y,
respectively o1. Then the worst-case residual resource share under arbitrary
multiplexing of f1 at s is:

Bt = poag

with (B S a)(d) = sup{(B —a)(u) | 0 < u < d} denoting the non-decreasing upper
closure of (B — a)(d).

5.2.1 Network Analysis

Using the definitions and theorems presented above, the end-to-end performances
of flows interacting on a network of servers can be computed. We call the analyzed
flow flow of interest, abbreviated foi.

5.2.1.1 Tandems of Servers

The foi’s path defines the sequence (tandem) of servers that defines its end-to-end
delay. The literature proposes different methods to bound this delay.

Total Flow Analysis (TFA) [19]

The TFA first computes per-server delay bounds. Each one holds for the sum of
all the traffic arriving to a server, i.e., these bounds are independent of the foi.
The flow’s end-to-end delay bound is derived by summing up the individual server
delay bounds on its path. The TFA’s server-isolating approach constitutes a direct
application of Theorem 1; it is known to be inferior to the following analyses
[19, 23].

Separated Flow Analysis (SFA) [19]

The SFA is a direct application of other theorems: first compute the left-over service
of each server on the foi’s path using Theorem 3, then concatenate them using
Theorem 2 and finally derive the end-to-end delay bound using Theorem 1. Deriving
the end-to-end delay bound using only one service curve will consider the burst term
of the foi only once, a property called Pay Burst Only Once (PBOO).

Pay Multiplexing Only Once (PMOO) [23]

The PMOO analysis first convolves the tandem of servers before subtracting the
cross-traffic. Using this order, the bursts of the cross-traffic appear only a single
time compared to the SFA analysis where the bursts are included at each server.
Therefore, multiplexing with cross-traffic is only paid for once. However, [22]
showed that the PMOO method does not necessarily outperform the SFA.
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5.2.1.2 Feed-Forward Networks

For more complex feed-forward networks, a procedure to combine tandem analyses
to a network analysis exists, the unicastFFA. In order to integrate the analysis
of multicast flows into DNC, we outline here the structured steps taken by any
DNC feed-forward analysis. This structure also serves us to judge and compare
different approaches that aim for accurate performance bounds on multicast flows.
In previous work, two basic steps of the analysis have already been identified [6]:

unicastFFA Step 1: Cross-Traffic Arrival Bounding

The first unicastFFA step abstracts from the feed-forward network to the foi’s path—
a tandem of servers that can be analyzed with one of the existing procedures. In
detail, this step proceeds as follows:

(i) Starting at the locations of interference with the foi, cross-flows are back-
tracked to their sources. This procedure derives the dependencies between
the foi, its cross-flows, their cross-flows, etc., in a recursive fashion. A new
instance of this sub-step is started for any cross-flow of the current cross-flow
under consideration. Due to the network’s feed-forward property, the recursion
is guaranteed to terminate.

(i) Next, the dependencies are converted into equations, i.e., a sequence of
algebraic operations for each location of interference with the foi. They capture
the worst-case transformation of flow arrivals towards foi.

(ii1) Finally, the equations are solved to obtain the bounds on cross-traffic arrivals.

After these substeps, all cross-flows’ arrivals are bounded with arrival curves
(arrival bounds).

unicastFFA Step 2: foi Performance Bounding

Given the cross-traffic arrival bounds from step 1, step 2 does not need to consider
the part of the network traversed by these flows nor the potentially complex
interference patterns they are subject to. The foi’s end-to-end delay bound in the
feed-forward network is derived with a tandem analysis.

Note that this step provides information required in the previous one. It defines
the flow of interest and thus its cross-flows as well as their locations of interference
used in step 1(i). This step is strongly based on the tandem analysis that, in turn, is
derived with the goal to analyze a unicast flow from end to end. It is not directly
applicable to the analysis of multicast flows and thus needs generalization.

5.2.2 Multicast Flows

As mentioned above, flow and network analysis in network calculus have been
mostly focused on the modeling of unidirectional and unicast communications.
Such a model is not directly applicable to multicast network protocols, where
packets are duplicated at certain points of the network in order to provide one-to-
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many communications as illustrated in Fig.5.1. We define the following terms for
describing parts of a multicast flow:

Definition 4 (Trajectory and Fork) A trajectory of a given source-sink pair
corresponds to the equivalent unicast flow going from the source to the sink. A
fork corresponds to a server where packets are duplicated.

In the following, we will analyze the network of Fig. 5.1 with the given approach.
We focus here on the analysis of f>, which covers all effects relevant to DNC and
multicast flows: There is one multicast flow in each step of the unicastFFA, cross-
traffic arrival bounding (f1) as well as flow of interest analysis (f2). Moreover, a
unicast flow is present and this network allows us to observe direct application of
the different DNC methods described in Sect.5.2.1.1, namely TFA, SFA (PBOO
effect), and PMOO.

5.3 Related Work

We present three DNC approaches to analyze multicast flows. We focus on how
these approaches enable the unicastFFA of the previous section to analyze networks
with multicast flows. This work reveals that neither of these approaches constitutes
a multicast feed-forward analysis.

5.3.1 unicastFFA Transformation: A Set of Unicast Flows

A first approach to circumvent the issues arises from multicast flows. Each trajectory
will become one independent unicast flow, as illustrated in our sample network
(Fig. 5.2a) and mentioned in [7].

From a procedural point of view, the unicast transformation does not integrate
into the unicastFFA. It only enables for using it by a preceding step that transforms
the network. This step is static, i.e., it does not consider the unicastFFA’s information
like the flow(s) that are under analysis.

The foremost problem of this approach is its overly pessimistic assumption
about resource demand of multicast flows. On common sub-paths of a multicast
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Fig. 5.2 Existing DNC approaches to the multicast analysis applied to the network presented in
Fig.5.1. (a) unicastFFA transformation. (b) Multicast TFA

flows’ trajectories, i.e., the servers before a fork, multiple unicast flows compete
for resources. The unicastFFA thus models the worst case with mutual interference
between these flows that are not present in the original network model. On the
other hand, this approach allows for the PBOO and the PMOOQO principle in the
unicastFFA.

5.3.2 Multicast TFA

Grieu [15] proposes a procedure to apply the TFA presented in Sect.5.2.1.1 in the
analysis of multicast flows. It is tailored to the TFA and shares its inherent isolation
of servers. Thus, it does not integrate into the unicastFFA for deriving delay bounds.
Figure 5.2b depicts this procedure on the running example network. Flows are cut
between all servers, the arrivals are aggregated and a server-local delay bound is
computed. In a second step, the server delay bounds on the trajectory of interest
are summed up. As this last step is similar to the unicastFFA step 1, it inherits
its decisive TFA shortcomings. I.e., neither the PMOO nor the PBOO principle is
implemented and the delay bounds are known to be inaccurate.

5.3.3 Explicit Intermediate Bounds (EIB)

An extension of multicast TFA is presented in [4]. The authors propose a different
step preceding the unicastFFA analysis. Instead of a per-server delay analysis, it
analyzes the tandems of servers between a multicast flow’s forks. L.e., a multicast
flow is transformed into a set of sub-trajectories. These can then be analyzed
individually by computing the left-over service curve on this tandem of servers.
Thus, the PBOO as well as the PMOO principle can be applied. In a second step,
the analyzed flow’s output bounds from all sub-trajectories are derived using their
left-over service curves. They are explicitly used as arrival curves after the fork
locations at the end of sub-trajectories. Therefore, the approach called Explicit
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Fig. 5.3 Application of EIB: S3 S4 fA
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Intermediate Bounds (EIB). Figure 5.3 illustrates the EIB’s sub-trajectory approach.
Note that the approach cannot implement the PBOO or the PMOQO principle on an
entire trajectory, even though the foi’s left-over service curves will be convolved
to attain a valid end-to-end left-over service curve for a trajectory. Moreover note
that deriving the left-over service curves required for EIB will itself result in an
EIB analysis.

5.3.4 Non-network Calculus Approaches

Current DNC approaches have significant drawbacks such that competing multicast
analyses that build on the same modeling as DNC have been proposed.

The Trajectory Approach (TA) is an adaptation to the study of network delays
of the holistic approach [24]. It was originally developed to give bounds on the
scheduling of tasks on a processor. The approach was initially proposed in [21] and
later extended to FIFO systems in [20]. Bauer et al. [2] applied TA to the study of
avionic networks with multicast flows and showed, via numerical evaluations, that
it outperforms the multicast TFA.

The Forward End-To-End Delay Approach (FA) has been proposed more recently
in [17]. It addresses the shortcomings of the TA. Similarly to the TA, FA is also an
adaptation of the holistic approach to the case of FIFO networks. Kemayo et al. [17]
applied the FA to the performance evaluation of avionic networks with multicast
flows and showed that this approach outperforms the multicast TFA as well.

Although FA sets its focus on the end-to-end analysis—similar to the DNC
tandem analyses—neither FA nor TA has been benchmarked against a modern DNC
that implements PBOO or PMOO. This can be attributed to the lack of such an
analysis for multicast flows. We will provide such benchmarking results in Sect. 5.5.

5.4 A Multicast Feed-Forward Analysis Procedure

In this section, we generalize the unicastFFA presented in Sect. 5.2.1.2 to networks
with multicast flows. We call this generalized method multicast Feed-Forward
Analysis, or mcastFFA. This allows us to make use of the knowledge only available
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Fig. 5.4 Application of mcastFFA. The dashed lines depict parts of flows that are not con-
sidered in the current analysis. (a) Running example, trajectory sz. (b) Running example,

trajectory fZB

in the unicastFFA itself. In contrast to the existing DNC approaches and the EIB
analysis, no network transformation is amended to the analysis. We do not create
a network-wide worst-cast setting for all flows before executing the feed-forward
analysis. Instead, our generalization solely constructs a single flow of interest’s
worst case during analysis—a less pessimistic setting than the static approaches
constructing network-wide one for all flows simultaneously. With our approach, the
mcastFFA analysis obtains best results by exploiting the PMOO principle end-to-
end.

Figure 5.4b illustrates the basic idea behind our solution: If we analyze this
multicast flow’s trajectory crossing ss, the other trajectory crossing s3 becomes
irrelevant for the delay bound computation. We neither need to add an entire cross-
flow for it nor do we require the output bound from s; and s,. Thus, mcastFFA can
treat the multicast trajectories (or unicast flows) of interest in an end-to-end fashion.

The main challenge of this approach is to reduce the network to relevant servers
as well as (partial) flows and multicast flow trajectories. This may constitute con-
siderable effort in large networks. Therefore, we present a solution that generalizes
the unicastFFA analysis in order to gain from its efficiency [9]. Le., deriving the
sub-network relevant to a specific foi is integral part of the analysis proceedings.

Our mcastFFA solution is mainly based on unicastFFA sub-step 1(i): backtrack-
ing of dependencies. Dependencies of flows on others are identified by traversing
the network in the opposite direction of links [6]. The entire unicastFFA starts this
procedure with the flow of interest. Our mcastFFA will iterate over all n trajectory
of interest and execute separate analyses. In case of a unicast flow, we get n = 1;
for multicast flows n equals the amount of trajectories. Multicast cross-flows are
traversed backwards, too, such that their fork locations do not enforce to cut the
tandem to analyze; the relevant trajectory of the cross-flow is known and can be
treated similar to a unicast cross-flow. The mcastFFA is a generalization of the
known unicastFFA. It implicitly restricts the analysis to the trajectory relevant for
the analysis. After the backtracking, we know the entire sub-network whose servers
and (partial) flows appear in the analysis equation of unicastFFA step 1(ii).
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5.4.1 Analysis of the Running Example

We will derive the left-over service curves for f>’s trajectories in order to compare
them against the EIB unicastFFA. For brevity, we restrict the depiction to sz’s
cross-traffic arrival bounding (mcastFFA step 1, Fig. 5.4a) and fZB ’s delay bounding
(mcastFFA step 2, Fig. 5.4b). These derivations depict the crucial improvement of
mcastFFA’s proceedings in both of the analysis steps. They point out the reduction
of the network and the increased tandem lengths.

54.1.1 mcastFFA Step 1

We consider f2A’s cross-traffic arrival bounding. Backtracking will be “local” to
a single trajectory of a multicast cross-flow. In our example, we finally have
established the possibility to apply the PMOO-principle when computing flA’s
A
aggregate arrival bound aggrAB at server s4 [7]. See oz;(' in the following left-over
service curve derivation we require to bound cross-traffic arrivals:

plro-fa = ,31 o (only single-hop interference so cutting is fine)

e~ oot
et ol o)

A cut of ﬁ (. 2 3 1nt0 /31 0.Ji ® ,33 it was needed in the EIB analysis, meaning that
PMOO could not be 1mplemented

This advantage is also depicted in Fig. 5.4a where f] retains its multicast shape
in the mcastFFA’s point of view.

5.4.1.2 mcastFFA Step 2

For the second trajectory of f, £, our mcastFFA derives g 7= ﬁ 5 Agam
we are not enforced to cut this trajectory’s path (see Fig. 5.4b) and in contrast to EIB
we can apply alternative tandem analyses:

lL.o. f2

PBOO: ,31 o ,3 (cut enforced by SFA, no single-tandem analysis)

L B B
Y . (ﬂsea§1)®<ﬁsea6fl)

= (ﬂs e( f @ﬂl‘)fl)) ® <,369< h @:BlloszS ))
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Note that the actual trajectory of the cross-flow, f or le , was automatically chosen
correctly by the backtracking. Moreover, note the contrast to EIB: We can derive
le ’s arrivals at sg with an end-to-end left-over service curve that, in turn, can make
use of aggrAB.

lo]‘"2

PMOO: ﬁl off = ﬁ (there is no enforced cut)

=<ﬁs®ﬁ6>ea§‘ = Bsepe(af @87

where /31 1 can be computed either by applying the left-over service curve
derlvatlon of SFA/PBOO or PMOO. This derivation is illustrated in Fig.5.4b.

5.4.2 Theoretical Evaluation

We conclude this section by a theoretical evaluation of mcastFFA against the related
DNC approaches:

* Relation to unicastFFA (Sect.5.2.1.2): The mcastFFA is a generalization of
the unicastFFA. Analysis of unicast flows in either of the two steps remains
unaffected (see f3 in the running example).

e Relation to unicastFFA transformation (Sect. 5.3): Like the unicastFFA transfor-
mation, the mcastFFA is able to derive a PMOO end-to-end left-over service
curve. However, it does so without the additional cross-traffic assumptions
introduced by the unicastFFA transformation. L.e., there are less cross-flows to
consider in the analysis, left-over service curves will be larger and delay bounds
will be smaller. Thus, mcastFFA outperforms unicastFFA transformation.

* Relation to EIB unicastFFA: In comparison to EIB, we gained the ability to
operate on end-to-end tandems. This constitutes increased flexibility to cut this
tandem during the analysis: Our mcastFFA is compatible with SFA/PBOO,
PMOO, aggrAB, or [9] for best attainable left-over service curves. This best
solution to cut a tandem and combine sub-tandem results might coincide with
EIB’s enforced alternative, i.e., mcastFFA is indeed a generalization of EIB
unicastFFA.

Before evaluating our contributions, let us briefly clarify their impact on the
server backlog bound Q presented in Theorem 1. Deriving these bounds requires
the arrival bounds of all flows at a server. Le., in the DNC analysis procedures,
(EIB) unicastFFA and mcastFFA, step 1 is crucial for the result accuracy; step 2
is not required. As shown with the running example, we improved the cross-traffic
arrival bounding in case there are multicast flows present. Thus, backlog bounds are
also improved by our contribution.
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5.5 Numerical Evaluation

In our numerical evaluation, we investigate achieved gains in terms of accuracy of
end-to-end delay bounds. To that end, we provide two different comparisons. First,
we benchmark our multicast feed-forward analysis (mcastFFA) against the related
approaches presented in Sect. 5.3. For our second set of results, a larger network
evaluation, we implemented EIB and mcastFFA in the DiscoDNC tool [5].

5.5.1 Comparison to (Non-)Network Calculus Approaches

We study the AFDX network presented in [17]. This allows us to benchmark our
proposed approach against the TA and FA since their numerical results are given in
the literature. We note that we benchmark against the numerical results of TA and
FA without the grouping properties extension since established DNC analyses do not
yet take this property into account by default. The grouping property accounts for
serialization of packetized flows when crossing links. We leave its implementation
in the generalized DNC solutions, potentially based on [11, 15], to future work and
restrict our comparison to the non-serialized results. Also, we use a fluid model
for our evaluations. To achieve the best comparison possible with the related work
on TA and FA, we also model store-and-forward behavior. This is achieved by an
additional latency at every server that delays packet forwarding by the time required
for full reception of a package of maximum size, max(pkg_size)/R. Using their
parameters defining service and arrivals, this enables us to confirm the DNC delay
bounds (see footnote “b” in Fig. 5.5b) given in [17].

(a) (b)

[18] [u. trans. EIB mcastFFA
Flow | TA FA|PMOO? TFAb SFA PMOO|SFA PMOO

v |142192] 142 | 182 182 142|182 122
vasy (122122 142 | 122122 122(122 122
Vs, (142 192| 142 | 182 182 162[182 142
vi |66 56| 56 | 56 56 56| 56 56
vy |56 66| 56 | 56 56 56| 56 56
vs  [106 106] 96 | 96 96 96| 96 96
ve (142192 142 | 182 182 142|182 122
V7 S152| 142 | 142 142 142142 132
vg | 92122) 102 | 112 112 102[112 92

@ —’@”41}”8 vos| - 162 142 | 152152 142152 132
? Vosan| 92 122| 102 | 112 112 102112 92

Fig. 5.5 AFDX network evaluation of [17], extended with DNC’s EIB and mcastFFA. (a) AFDX
Network. (b) Delay bounds (values given in s, best in bold). *UnicastFFA transformation
approach with the stated PMOO end-to-end left-over service curve derivation. "Remember, that
EIB with TFA corresponds to the multicast TFA analysis presented as related work in Sect. 5.3
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Our comparison focuses on mcastFFA with PMOO, TA, and FA delay bounds.
We observe (see Fig.5.5) that mcastFFA at least matches the bounds of the other
methods compared here. A maximum gain of 5.86% compared to TA and 18.58%
compared to FA is achieved in this small AFDX scenario.

Key observations w.r.t. the performance of DNC analyses confirm our theory:

* mcastFFA with PMOO shows expected gains compared to the multicast TFA (see
footnote “b” in Fig. 5.5b).

¢ EIB with PMOO does not make full use of the PMOO principle end-to-end on
trajectories and thus is outperformed by mcastFFA with PMOO in most cases.

* For some trajectories of multicast flows, even TFA results are equal. Then, flow
interference is non-existent. These cases do not occur in realistic networks.

5.5.2 An Industry-Scale AFDX Data Network

In order to evaluate our method on a realistic use-case found in industrial applica-
tions, we evaluate an AFDX data network. We aim to confirm our hypothesis that
the mcastFFA will have a more pronounced advantage over other approaches? in
larger networks. To that end, we implemented EIB and mcastFFA in the DiscoDNC
tool. We also extended the DiscoDNC by an AFDX topology generator following
recommendation from [12] and with network parameters according to an Airbus
A350 presented in [16]. This also allows us to provide the entire range of DNC
analysis configurations pairing EIB or mcastFFA with TFA as well as SFA/PBOO
or PMOO g% computations. For brevity of presentation, we focus on the most
relevant of these combinations, EIB with SFA, EIB with PMOO and mcastFFA with
PMOO. All results were computed using aggrAB arrival bounding [7]. Note that
this is not a restriction. Using segregated arrival bounding [10] or tandem matching
arrival bounding [9] or any combination thereof is possible as well.

The network we generated according to these size parameters resulted in 650
multicast flows with 1112 trajectories in total. In order to compare the gains of
mcastFFA PMOO against the other EIB methods, we used the relative difference,
namely: (d®B — dlg“ﬁgtgFA) /d®'B. The empirical cumulative distribution (ECDF)
over the studied A350-like network is illustrated in Fig.5.6. Key observations are
unaffected: the mcastFFA procedure derives more accurate bounds than EIB. On
average, mcastFFA PMOO produces a reduction of 8% of the bound compared to
EIB SFA and 6% compared to EIB PMOO. We also observed reduction of up to
25% for some flows. These observations confirm our hypothesis that mcastFFA’s
potential advantage over other DNC approaches increases with the network size.

We also observe EIB SFA delay bounds that undercut the mcastFFA PMOO (see
positive ECDF values for the negative x-axis in Fig. 5.6). The situation stems from

2Due to a lack of software tools, TA and FA are not included.
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Relative difference:

0.25 mcastFFA PMOO vs.
— EIB SFA
--- EIB PMOO
0.00 -
0.0 0.1 0.2

Relative difference

Fig. 5.6 ECDF of the relative difference between mcastFFA and the EIB methods

a well-known phenomenon that allows SFA to theoretically outperform PMOO
by an arbitrarily large margin [22]. However, the mcastFFA can be paired with
any tandem analysis able to compute output bounds. Doing so with the Tandem
Matching Analysis (TMA) proposed in [9] creates a single-best algebraic analysis
for arbitrary multiplexing.

5.6 Conclusion and Outlook

In this chapter, we tackled the problem of analyzing multicast flows with deter-
ministic network calculus. DNC was previously tailored to the analysis of unicast
flows—a property which was assumed to invariantly hold. Therefore, previous
approaches for the DNC analysis of multicast flows tried to adjust to this restriction
by, e.g., pessimistic re-modeling of the network. This leads to inaccurate perfor-
mance bounds and the development of alternative, non-DNC analyses to derive
multicast flow guarantees. In contrast, we generalized DNC unicast feed-forward
analysis to a multicast one.

In theoretical and numerical evaluations we showed that our contribution results
in a single best DNC analysis for multicast flows, the mcastFFA with PMOO. Not
only does it outperform any other DNC approach, the evaluation of an AFDX
scenario from the literature also shows that DNC achieves at least the results of
competitors (Trajectory Approach and Forward Analysis), even outperforming them
in a considerable amount of cases.

Existing AFDX networks as deployed in existing Airbus aircraft such as the
A380 are larger and more complex than the ones presented in this evaluation [25].
They consist of ~1000 multicast flows (virtual links, VLs) that have an average of
~6.5 trajectories per VL [1]. Therefore, the improvements we achieve with DNC’s
PMOO in conjunction with mcastFFA is expected to be even larger in practice.
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Moreover, the presented mcastFFA has the flexibility to be combined with

any DNC tandem analysis and improvement thereof. For instance, [8], [9], FIFO
multiplexing service analysis [3] or packetization [11] can tighten guarantees and
restriction to finite domains can accelerate the analysis [18].

Acknowledgements The authors would like to thank Bruno Oliveira Cattelan for his work on
implementing the explicit intermediate bounds analysis and the multicast feed-forward analysis in
the Disco Deterministic Network Calculator.
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Chapter 6 ®
Modeling Techniques for Pool Depletion Qe
Systems

Davide Cerotti, Marco Gribaudo, Riccardo Pinciroli, and Giuseppe Serazzi

6.1 Introduction

In the last years, the development of new programming paradigms was increasingly
affected by the evolution of Big Data technologies. Indeed, the enormous amount
of data generated by IoT and any other type of input devices requires specific
techniques for storage, access, and process. To satisfy the increasing demand of
computational capabilities required to process such huge volume of data in a
reasonable amount of time, the concepts of parallelism and distributed computation
have been extensively adopted. Big Data applications split the data to be analyzed
into blocks and generate multiple tasks dedicated to their processing. The tasks are
executed in parallel by the resources of a distributed computing environment. At the
end of all the executions, newly created tasks concurrently process the intermediate
results to produce the final output of the application. This operational structure,
proposed originally by Google with Hadoop MapReduce [5, 8], is adopted by many
current Big Data applications.

A complete execution of a Big Data application consists of a sequence of
parallel computations and their following synchronization. Typically, the computing
framework orchestrates the parallel executions of the tasks taking into consideration
the configuration of the available architecture. The allocation strategy of the tasks
to the distributed systems has a deep influence on the execution time of the
applications. Indeed, the load of the systems must be controlled in order to avoid the
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creation of bottlenecks that severely limit the performance. On the other hand, also
the under-load of the resources must be avoided trying to balance their utilization.
A policy to allocate the tasks to the distributed systems to minimize the execution
time of the entire application was presented in [3].

To this end, we studied Pool Depletion Systems (PDS) and in this chapter we
describe the techniques to be used for their modeling.

PDS is a framework adopted in [2, 3, 11] to analyze all the systems where a huge
amount of tasks, composing a job, must be executed by one or more subsystems with
a finite capacity. PDS are studied assuming the tasks may belong to two different
classes that are served by subsystem’s resources with different service demands.
Each PDS is characterized by a transient behavior that may be summarized as
follows: (1) initially, all the tasks of a job are in the pool and they are admitted
gradually into a finite capacity subsystem to be executed; (2) whenever a task is
completed, it leaves the subsystem and another task can start being processed; (3)
when all the tasks have been executed, the job is completed and a new request can be
served. The metric we are interested in is the depletion time, i.e., the time required
to execute all the tasks. The main goal is to find the allocation policy of all the tasks
in the pool that minimizes the depletion time.

Two techniques have been used to model PDS: (1) Markov analysis [2], that
provides exact analytic solutions, and (2) discrete events simulation [3, 11]. The
former may be affected by the state space explosion when the number of tasks to be
considered is large. The latter could take a very long time to complete a simulation
run with complex models. In this chapter, we propose a further approach, i.e., the
fluid approximation technique, to analyze PDS. It allows the analysis of models
with large dimensions (e.g., even million of tasks) in a very short amount of time.
Comparisons of time required by the three techniques to solve models of various
sizes and the accuracy of their results are provided and analyzed.

This chapter is organized as follows. Sections 6.2 and 6.3 provide a review of
the background results and a description of the system architecture, software and
hardware, considered. Section 6.4 describes and compares different models to study
PDS. Section 6.5 draws conclusions.

6.2 Related Work

In this section we emphasize some results on product-form closed queuing networks
[1] with two-class workload and fixed rate single server stations that will be
exploited in the analysis of depletion systems developed in the following sections.
Two-class workloads are simple enough to analytically deal with, while being
representative of several realistic systems’ workload. In this case, the workload
of models with M stations can be characterized by a matrix of service demands
D = [D,.] where D, is the time required by station r € {1, ..., M} to completely
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process a class ¢ € {A, B} request. Hereinafter, we will consider a system with two
resources and the following service demands:

0.8 0.496
D= [0.2 1.25 ] ©.1)

According to matrix (6.1), class A service demands on stations 1 and 2 are 0.8
and 0.2 time units, respectively, whereas class B demands on the two stations are
0.496 and 1.25 time units, respectively. Note that, since the system considered in this
chapter is a separable queuing network, its solution depends only on the product of
visits v, and service time S, at each resource r (i.e., on the service demand D, =
vy - S;) and not on the individual factors [9]. For this reason, the topology of the
network is arbitrary, thus we assume the two resources to be in series (as shown in
Fig.6.1).

The performance of systems with multi-class workloads depends on the fraction
of requests in execution for each class, referred to as population mix. Let B =
(Ba, Bp) represent the population mix. In the example of matrix D, when f4 = 0
we have only class B requests and the bottleneck (i.e., the saturated resource) is
station 2, whereas with 84 = 1 (only class A requests) the bottleneck is station
1. Thus, varying the value of B a bottleneck switch occurs. In these conditions,
there exists a value B* such that both stations are equally utilized for any number
of requests inside the system; such value is called the equi-utilization point. In
addition, providing that the service demand matrix values allow the occurrence of
a bottleneck switch! and when the number of requests is sufficiently large, it is
possible to identify an interval of values of the population mix that concurrently
saturate the stations. Indeed, for values of B belonging to such common saturation
sector (CSS) the system throughput is maximum and the system response time is
minimum.

In [12] it is shown that the equi-utilization point is computed as:

B = ﬁZvaﬂgzl—ﬂfx (6.2)
€ D1,Da

and it is proved to always belong to the CSS of edges:

Dyp — D1
Bk = Daa
DipaDyp — D24D1p
o (6.3)
28 — DB
BY = Dia

DiaDyp — DyaDip

1t can be verified by checking if D14 > Dy4 and Dip < Djp.
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where 8 1’; and B f{ denote the lower and upper edges, respectively. Moreover, in the
same paper the behavior of the per-class throughputs is analytically computed. In
particular, we have that for values of 84 inside the CSS the per-class throughputs
are:

Dyp — D1
XPP= xaK =
DiaDyp — DyaDqp 6.4)
Dyp — Dig ‘

X§¥ = XpK) =

DigDys — D1aD3p

where K = (K4, Kp) denotes the number of requests of each class. For values of
Ba at the right of the saturation sector (i.e., with 84 > ,BX) we have:

1_
XA(K) = If—/‘ Xp(K) = P4

1A Dip

(6.5)

Similar equations can be derived for values of 84 at the left of the saturation sector,
thus obtaining the overall trend of the per-class throughputs as function of the
population mix.

In [12], Rosti et al. also introduced the equi-load point, referred to as o™, that is
derived as:

DypD
af =(a} = 28718 ,ap=1—0a} (6.6)
Dia+ Dyp — Dip — Dog

Although two equally loaded stations may be expected to be also equally utilized, it
is not the case since a™ £ B*.

6.3 Scenario

We consider a system where each job consists of several independent tasks.
Examples of such type of workloads are video transcoding/analysis, applications
of business analytics, NoSQL queries and so on [4, 6]. In particular, we focus on
jobs composed by two types of tasks, defined as class A and class B. For example,
in multimedia stream applications each chunk is processed by a single task and the
two classes may represent the computation of audio and video chunks, respectively.

We assume that the tasks of a job are executed sequentially by two resources,
denoted as Res; and Res», e.g., the CPU and the storage of a server. The global
time required by resource r for a complete execution of a class ¢ task is referred
to as service demand D,.. The service demands characterize the workload in terms
of total processing requirements to the resources, and their values are considered
exponentially distributed. Each resource executes the concurrent tasks according to
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Np
Ny B}/ Res; /|y
DZA
vt |
N =N, + N, K =K, + K;

Fig. 6.1 The considered scenario

a processor sharing queuing discipline: all tasks are processed by the resources with
a service rate proportional to the current number of tasks in service.

We call N4 the number of class A tasks, Ng the number of class B and N =
N4 + Np the total number of tasks of a job. The system can execute at most K
tasks concurrently. This limitation may be used to model, for instance, constraints
on memory occupancy that prevents all the N tasks to be executed in parallel. In
particular, the system is allowed to concurrently execute K4 tasks of class A and
Kp of class B, with K = K4 + Kp. As soon as one task is completed, another task
of the same class is admitted in execution, if available. When all the tasks of one
class are completed, the system allows the processing of the remaining tasks of the
other class.

Figure 6.1 gives a visual representation of the considered scenario. We are
interested in studying the total time T required to complete the execution of all
the N tasks of a job that are initially into the pool. With the type of applications
considered in this study we have Ny > K4 and Np > Kp.

Figure 6.2 shows the temporal evolution of the number of tasks in the system. K
out of N tasks immediately starts being serviced by the first resource of the system.
As long as there are tasks of both classes in the pool waiting to be executed, the
number of tasks in the system is constantly kept to K = K4 + Kp. We address
this phase as ®y: after a short initial transient period, T7¢, required to load K tasks
into the first resource, the system behaves as a closed queuing model with K4 and
K p customers, since as soon as one of the task of a class leaves the system, it is
replaced by another one of the same class. At time T¢; the tasks in the pool of one
class are finished and no new tasks of that class may enter the system (in Fig. 6.2
this happens for class A tasks). At this time the system starts replacing the tasks
of the exhausted class with the ones of the other class: phase ®y1 begins. After an
initial transient (that lasts until time 7717) in which all the remaining tasks of the
exhausted class are executed, the system behaves as a closed queuing model with
K customers (in Fig. 6.2 these customers are of class B). After some time, the tasks
in the pool that still need to be executed are exhausted, and the system begins to
execute a decreasing number of tasks. We denote this instant of time by T¢>, and
the period of time in which the server is working with less than K tasks as phase
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Fig. 6.2 Behavior of the number of tasks in execution with phases characterization

®py1. The job completes its execution when all its tasks are terminated at time 7,
referred to as depletion time.

6.4 Models Analysis

PDS cannot be analyzed through closed-form formulas when the asymptotic
assumptions presented in [3] (i.e., N > K and K is large enough to saturate the
system) are not satisfied. In this section, PDS are analyzed using analytic, discrete
event simulation and fluid models. In particular, the three models are described
and compared to each other in order to determine those that may provide the more
accurate results in the shorter time.

6.4.1 Markov Analysis

A continuous-time Markov chain (CTMC) model was proposed in [2] to analytically
study a PDS. Such model provides the exact results since it analytically describes
each phase of a PDS. In the CTMC the state of the system is described by a tuple
counting, for each class, the current number of tasks in the pool, in station Res; and
in station Res,. The completions of tasks change the system state and are represented
in the CTMC as transitions from a value of the tuple to another. Assuming that all
such events follow an exponential distribution, the whole state space of the system is
built and the resulting CTMC can be analyzed by standard numerical techniques. In
particular, the depletion time and the duration of each phase, including the transient
ones, are analytically computed through absorption time analysis. Further details
can be found in [2] and [10].
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Unfortunately, analytic analysis of CTMCs suffers from the well-known state
space explosion problem: large values of K and N make the resulting state space
grow exponentially, thus making the solution computationally unfeasible. For this
reason, also simulation and fluid models are considered for PDS analysis.

6.4.2 Discrete Event Simulation

The single-subsystem PDS may be analyzed recurring to the multi-formalism model
in Fig. 6.3.

Such a model consists of a Colored Petri Net (CPN) and a multi-class fork-
and-join queuing network. In fact, the adoption of several formalisms allows to use
the most appropriate primitives while modeling a system [7]. The workload of the
model is composed by tokens and jobs: the former are used by CPN to model the
subsystem finite capacity, the latter by queuing network to represent the tasks of a
job and their execution. Note that, since a two-class PDS is considered, there are
two classes both for tokens and for jobs.

Initially, a single job is in the system starting in the delay station Jobs with
zero service time: the purpose of this node is to provide the reference station?
for computing throughput and response time, and to restart the system after one
execution run. The job is immediately split into N4 class A tasks and Np class
B tasks (i.e., N = N4 + Np) by the fork node named Fork. Thus, a task that
is waiting to be executed is represented as a token in place Wait: a color class
< C > is assigned to each token to identify the class of that task. The capacity
K = K4 + Kp of the subsystem is represented by the number of color < C' >
tokens in place MaxTasks that are initialized to K4 and Kp for the corresponding
task classes. The notation used in Fig. 6.3 is summarized in Table 6.1.

The subsystem starts executing a task when transition Enter fires; in fact, this
can occur in one of the four different modes shown in Table 6.2. When a color
class A (B) task is waiting in place Wait and at least a token of the same color is

® \<C>

MaxTasks
i s Join
®—O— MO—MMO—C-
C . g C
Fork - Enter Res1 <cc> Res2 > Rel Leave -

Jobs

Fig. 6.3 The multi-formalism model of the considered scenario

2In closed queuing networks throughput and response time can be computed only with respect to
a given/specific resource, the so-called reference station [9].
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Table 6.1 Color-sets of the
discrete event
multi-formalism model

Color-set | Description

<C > Task class C = {A, B}

<(C > Token color C’ = {A, B}

< C,C’ > | Task class C, token color C’

Table 6.2 Firing modes for transitions Enter and Leave

Transition | Mode | In; Iny Out; Outy | Description
Enter Wait |MaxTasks Resl
1 A A (A, A) Class A task
2 B B (B, B) Class B task
3 A B withWwait.B=0| (A, B) Class A task, depletion
4 B A withwWwait.A =0 (B, A) Class B task, depletion
Leave Rel MaxTasks | Join
1 (A, A) A A Class A task
2 (B, B) B B Class B task
3 (A, B) B A Class A task, depletion
4 (B, A) A B Class B task, depletion

available in place MaxTasks, the system is in phase ®r and transition Enter fires
in mode 1 (2). Instead, if system is operating in phase @y or @y, one of the two
classes of tasks is exhausted and its tokens are used to allow the remaining tasks to
be executed. In this case, transition Enter fires in mode 3 or 4, according to the
color class < C > of tasks still waiting to be executed.

As shown in Table 6.1, the color class of a task is referred to as < C >, whereas
< C' > is used to represent the color of a token. Instead, notation < C, C’ > is used
to represent the tasks admitted into the subsystem; indeed, a token of color < C’ >
is always associated to each of these tasks.

The subsystem is composed by two queuing network primitives, Res1 and
Res2. They represent the resources of the subsystem and process the tasks currently
into it. The service requirements of each task are determined by its color class
< C >, while the color < C’ > of the token associated to that task is used only to
correctly return the token in place MaxTasks. When a task has been executed by
both the resources, it enters place Rel and enables transition Leave.

The absence of tokens in place MaxTasks means that the subsystem has reached
its maximum capacity. In such condition further tasks are not admitted until the
completion of at least a task currently in execution. When a task is completed,
transition Leave fires: a token return to place MaxTasks and the task is sent to the
join node Join. Also transition Leave can fire in four different modes depending
on the color class of the task that has been completed and the color of its associated
token. The four modes are shown in Table 6.2. When all the N tasks generated by
Fork have been collected by Join, the initially job return to the delay station and
a new one can start its computation.
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Note that the approximations introduced by the multi-formalism model are
related to the technique adopted for its simulation.

6.4.3 Fluid Approximation

The fluid approximation is based on the following assumption: except from the
transient behavior that occurs whenever the system switches phases, if we focus
only on the service components (namely Res1 and Res?2), they operate as in a two
class closed model with K4 and Kp jobs. This occurs because as soon as a job
leaves the server components, a new one of the same class is re-introduced. Let us
call X fA’KB and X II;A’KB the throughput that the two classes would have in a closed
model composed by Res1 and Res2, with K4 and K p jobs. The time T at which
the first phase (®;) ends can thus be approximated as:

(6.7)

. (NA—KA NB—KB>
Ty = min

Ka,Kp '’ Ka,Kp
XA XB

Without loss of generality, let us suppose that class A ends first: g 2;152 < g g;’,ﬁg .

A B
The number Npg of class B jobs that still can enter the system at the end of phase
®/, can then be determined as:

Npo1 = Np — Kp — X§A’KB - Ty (6.8)

For the sake of simplicity, let us suppose that Npe; is large enough to allow the
system to complete the transient part up to time 7717 (Fig. 6.2). We approximate the
Tk ,—1,K3+1 time at which the first of the K 4 jobs still in the system ends as:

1
Tikp—1.kp+1 = To1 + —%— (6.9)
XAA7 B

and compute the number Nk ,—1,kz+1 0f class B jobs that are still in the pool and
need to enter the servers as:

XKA»KB
NBiks—1,k5+1 = Npo1 — % (6.10)
XAAv B

At this point the population in the system changes to K, = K4 — 1 and K =
Kp + 1 since the class A job is replaced by a class B one. We thus compute
X fA_l’KB *1and X gA_l’KB *1 by solving the corresponding closed model with the
new population mix, and compute the time T, —2, kz+2 at which the next class A

job finishes and the corresponding class B population N g, —2, k+2 that still have
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to enter the system:

1
TrKA—Z,K3+2 = TrKA—Z + W
A

XKA*],KB‘FI (6.11)
Nprka-2.K5+2 = NBrky—1.Kpt1 — ———
TKA—2,Kp+ TKA—1,Kp+ XKA—LKB-‘:-I

A

The process is repeated K — K 4 times until time 771> is reached (i.e., all the class A
jobs inside the system and in the pool are completed). At that point, the system has
only class B jobs. We thus solve the closed model as a single class one (considering
only class B) with K jobs, and determine its throughput X %’K. Let us call Np;12 the
number of class B jobs still waiting to be executed in the pool (computed with the
previous procedure repeating until Np;12 = Npro k). We then approximate the end
of the second phase T¢> as:

Npz12
Tor = Tri2 + XT’K 6.12)

B

Now depletion starts and the number of class B jobs inside the system decreases
from K down to zero. Let us call X %k the throughput of the closed model when its
population is composed by k class B jobs. The process completion time 7 is thus
approximated as:

K
1
T=Te+ ) —5t (6.13)
=1 Xg

The fluid approximation might become slightly more complex when the number of
class B jobs waiting in the pool becomes zero while there are still class A jobs in
service. In this case we will have again to consider the minimum time between class
A jobs and class B jobs, and compute the throughput accordingly.

In practice, depending on the system configuration, all the throughput of a closed
model with k4 4+ kp < K jobs might be required. However, thanks to the properties
of the Mean Value Analysis algorithm, all these values can be easily computed with
complexity o(K?), and a minor overhead with respect to the computation of the
solution for K4 and Kp alone. Algorithm 1 summarizes the proposed procedure:
variables n 4 and np contain the fluid count of the total population (inside the servers
and in the pool) for the two classes, while k4 and kp the current population inside
the server. Lines 3 to 10 consider phases ®; and ®;; (see Fig. 6.2), while lines 11
to 19 deal with phase ®;;7, since after line 10 either k4 = 0 or kp = 0.
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Algorithm 1 Fluid approximation of T

1: Compute X’X“kB and X];A’kB,VkA,kB > 0:kyg +kp < K using MVA

2: ka = Kap, kg = Kp,npa = Na,ng =N, T =0

3: while (k4 > Oand kg > 0) do

4 ATy =(na—ka+ D)/ X558 ATy = (ng — kp + D/ X5

5: if AT4 < ATp then

6: na—= ATy - X0 np—= ATy - X0K8 ey — kptt, TH= AT
7:

8:

else
na—= ATg - X% ng—= ATy - X% ky+, kp——, T+= ATp

9: end if

10: end while

11: if k4 > O then

12: while (k4 > 0) do

13: ATa = (na —ka + D/ X500 na—= ATx - X205 ko=, T4H= AT,
14: end while

15: else

16:  while (kz > 0) do

17: ATp = (np —kp + 1)/ X% np—= AT - X008 kp—— T+= ATy
18: end while

19: end if

6.4.4 Techniques Comparison

The three techniques previously presented are now compared while analyzing a PDS
with a single subsystem characterized by the service demand matrix in Eq. (6.1).
In particular, the accuracy of each model in evaluating the PDS performance
is analyzed taking into account the time required to compute the results. For
this purpose, the number of tasks that must be executed and the capacity of the
subsystem increase, while their ratio is constant and set to K /N = 0.1.

The shortest depletion time is expected to be observed when the number of
tasks into the pool (N4 and Np) and subsystem (K4 and Kp) are initialized to
their optimal population mix, independently of the values of N and K. The pool
and subsystem optimal population mixes (i.e., @™ and *, respectively) have been
shown to coincide with equi-load and equi-utilization points [3] and may be derived
through Eqgs. (6.6) and (6.2). They only depend on the service demand matrix of the
PDS and, considering the one given in Eq. (6.1), are & = (0.556868, 0.443131)
and g* = (0.4, 0.6).

Results depicted in Fig.6.4 are obtained studying the PDS with the service
demand matrix given in Eq. (6.1) and for pool population mix « = «*. The PDS
is studied for N = 100 and K = 10, while values of K4 and K p vary. Figure 6.4
depicts the depletion time T of the configuration considered as a function of the
subsystem population mix f; as expected, the minimum depletion time is measured
by all the models for 8 = B*. Moreover, the largest error in estimating the depletion
time made by simulation and fluid models with respect to the analytic one are 1%o
and 4%, respectively.
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Fig. 6.4 Depletion time of a PDS as a function of the subsystem population mix obtained using
three different models
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Fig. 6.5 Ratio of depletion time to the number of tasks initially into the pool, for N and K such
that K/N = 0.1

Figure 6.5 represents the ratio of depletion time to the number of tasks initially
into the pool 7/N—or normalized depletion time—obtained with fluid model for
configurations (N, K) = {(100,10), (1000,100), (10000,1000), (100000,10000) }.
When the pool size and the subsystem capacity are large enough, we can observe
the presence of an interval of value of B, where the normalized depletion time is
minimized and constant.

Figure 6.6 shows the normalized depletion time 7/N as a function of subsystem
population mix, when the number of tasks initially into the pool changes, but the
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Fig. 6.6 Ratio of depletion time to the number of tasks initially into the pool, for K = 10 and
different values of tasks initially into the pool

subsystem capacity is always the same (i.e., K = 10). In this case, the normalized
depletion time behaves at the same way for all the configurations with N > 1000.
As shown, the depletion time may be shortened by 30% if N > 1000 and PDS
works with its optimal pool and subsystem population mixes (i.e., «* and §*).

In the PDS analysis, the fluid model provides results in the shortest time
and is capable to handle very large values of N and K. Furthermore, although
analytic model is faster than the simulation one, it cannot manage large values
of pool size and subsystem capacity (i.e., N > 100 and K > 10) due to state
space explosion. For these reasons, we used all the models to study configuration
(N, K) = (100, 10), simulation and fluid models for considering complex system
and only the fluid one while analyzing very large values of N and K. For further
details about performance of the three models, the reader is referred to Table 6.3
where the total time and the maximum Mean Absolute Percentage Error (MAPE)
in computing the depletion time of each configuration are reported for all the
techniques. In particular, the MAPE made by the simulation model with respect
to the analytic one (that provides exact solutions) while computing the depletion
time of the PDS is derived as:

Teinmy — T,
MAPE,;, — | 1sim — Tanall (6.14)

Tanal

where Tsip, and Ty, are the depletion times observed with simulation and analytic
models, respectively. Similarly, the MAPE made by the fluid model with respect to
the simulation one is:
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Table 6.3 Models execution time and accuracy

N K | Execution time Errors

Markov chain | Simulation | Fluid approx. | MAPEy;,, | MAPE 1,4
102 |10 | 5min 55 min 38 ms 1%0 4%
103 | 10 9h 34 ms 2.6%
103 | 102 9h 38 ms 5.5%
10* |10 3 days 22 ms 5%o
10* 1103 7 days 590 ms 6%
10° | 10 67 ms
10° | 10* 53s
100 | 10 231 ms
107 | 10 2s
108 | 10 17s
10° |10 3min
10° | 10° 4 min

A cell is gray if it has not been possible to derive these measures due to long execution time

|Tfluid — Tsim|

MAPE f1yiq = o
sim

(6.15)

where T'y,iq is the depletion time estimated by the fluid model.

In Table 6.3, columns 1 and 2 report, respectively, the values of N and K for
which the PDS is studied; the time required by each model to provide the depletion
time of the system for different population mixes of the subsystem (i.e., 84 = i /10,
with i = (0, ..., 10)), is shown in columns 3, 4, and 5; finally, the maximum
MAPE made by each simulation and fluid models with respect to the analytic and
the simulation ones, respectively, are shown in columns 6 and 7. Since the results
obtained using discrete event simulation are very similar to those derived through
Markov analysis and, differently from analytic model, the simulation one may be
used to study configurations with large values of N and K, the fluid model results
are compared to those of the simulation model. Gray cells in Table 6.3 mean that
results are not available due to the long time required for their computation.

While analytic and simulation models performance is affected by values of N and
K, the time required by fluid model to provide results mainly depends on values of
K. For this reason, adopting fluid model to analyze PDS allows the users to largely
increase pool size N. Moreover, even if K affects the performance of fluid model
more than N, it is still possible to consider also large values of K and get results in
a short time. Finally note that, although maximum MAPE f;,;4 is between 4% and
6% when K /N = 0.1, it decreases (i.e., the fluid model’s accuracy improves) when
K /N is small enough, such as for N = 10* and K = 10.
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6.5 Conclusions

In this chapter the performance of three different techniques used to study PDS was
analyzed and compared. The CTMC model provides analytic results, but it cannot
deal with large and complex systems due to the well-known state space explosion.
Thus, a discrete event multi-formalism model has been adopted to study more
complex systems. In fact, it can analyze PDS with large pool size and subsystem
capacity, while deriving results with high accuracy. Unfortunately, it may require a
long computation time to provide results. Finally, a fluid model has been proposed in
order to analyze complex systems in a short time. Although its MAPE with respect
to simulation model has been observed between 4% and 6% for larger values of
K /N, the results are provided in few minutes also for very large values of N and
K, and its accuracy increases when K /N is small.

Although all the models presented in this chapter provide very similar results in
different amounts of time, they must still be validated against a real scenario. In fact,
the next step of our research will be the validation of the analytic, simulation and
fluid models against a PDS deployed on a real cloud environment.
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Chapter 7 ®
Performance of a Single Server Queue oo
Supported by an Intermittent Server

Raymond A. Marie

7.1 Introduction

Let us consider a single server queue where the server can be supported by a second
one who (1) leaves his current work to join the first server when the number of
customers reaches a threshold K, (2) leaves the queuing system when he has no
more customers to serve. A typical example of such a situation comes from the
banking sector where the unique server from the front office is supported by a second
server regularly assigned to the back office who joins the front office as soon as the
number of customers reaches a given threshold (denoted here by the integer K).
But such a situation could come from a more industrial area. The introduction of an
intermittent server allows to decrease the expected waiting times of customers at a
lower cost than affecting an extra permanent server. And the aim of this study is to
determine the efficiency of such a policy.

A closed situation is one of the supermarket check-out counters where a counter
can be activated/deactivated based on the states of the different queues. This larger
model is a good example to be used in a course on discrete event simulation
as a practical exercise because the queuing model is easy to elaborate and has
no (known) analytical solution in its general configuration. This helps students
to realize all the advantages of a simulation approach. In addition, such a model
is easily adaptable to other fields such as those of telecommunication or of data
centers. Nevertheless, when possible, an analytical solution must be looked for since
its cost is generally lower than the one of the simulation approaches.

Although most of the research work in the domain of the M/M/r queue with
intermittent servers has been done through the use of simulation, we noted some
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developments connected to the subject. In 1971, J. Blackburn published a report [1]
relative to an M/G/1 queue in which the server is an intermittent one who starts
working when the number of customers crosses some threshold. This threshold is
the value realizing the optimum of an objective function. A more recent analytical
study investigated the case of an airline check-in counters set in an airport [5]. In this
study, Parlar et. al elaborated a Markovian model and its transient solution. A major
difference with the supermarket check-out system is that the number of customers
to be served is known in advance (number of customers who have a reserved seat
for a given flight). The problem is to control the number of open check-in counters
such that all the customers that will show up before a deadline T will be served on
time (such that the plane can take off on time). But most of the literature involving
intermittent servers concerns studies where the activations of the servers depend on
reliability/availability of the set of servers rather than on the states of the systems.

Another related class of models is the “coupled processor model” where each
processor can help the other when it is idle. The two queues have their own arrival
processes and service time distributions. Such a class has been the object of intensive
analytical works in the past. Close to that is the case where the behaviors of the
servers are no more symmetrical and only one processor can, when it becomes idle,
give time to the other processor until its own queue reaches a given threshold (see the
intensive study of Osogami et al. [4]). Note also the different model known as “the
slow server problem” (see [6]) where, depending on the values of the parameters,
the use of the slow server may increase the response time.

The present study is different in the sense that the server who gives some part of
his time is not idle but works on tasks which are not directly impacting customers
(the notion of response time is in some sense meaningless). This study is less general
than the one cited above [4] but produces a closed form solution for the steady state
probability distribution and for different metrics such as expected waiting times for
customers or expectation of busy periods for the intermittent server. Our objective is
to promote a better understanding of the benefits of such a strategy. In particular, we
have to consider the trade-off between the help to the customer and the perturbation
of the work in the back office. This is achieved thanks to a cost function providing
an optimal value of the threshold K as a tool to help a manager in charge of the
economical decision.

The chapter is organized as follows: in Sect. 7.2 we present a Markovian model
of the investigated system while in the following section we exhibit the steady state
probability distribution of the stochastic process and the expression of the mean
number of customers (or mean response time) in terms of the different parameters.
In Sect. 7.4, we conduct the determination of the expectation of the time spent by
the second server in one passage in the back office and those of the expectation of
one sojourn time at the front office. In the following section we introduce a cost
function allowing us to provide an optimal threshold K*. Finally, we conclude by
summarizing the advantages of using an intermittent server (Sect. 7.6).
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7.2 Hypotheses and Model

We consider that the two servers are equivalent and that the service times are
independent and identically distributed random variables following an exponential
distribution with rate u. The first server assigned to the front office stays available
for serving the arriving customers.

When there are (K — 1) customers, if the server affected to the back office is
not already serving in the front office, then this server leaves the back office at the
instant of arrival of a new customer and starts serving him in the front office. Once
he is in the front office, the second server stays there until he has no more customers
to serve and re-integrates the back office.

We assume the customer arrival process is Poisson with rate A.

Under these hypotheses, the stochastic process modeling the number of cus-
tomers in the office is a continuous time Markov chain (CTMC) {X(¢),t > 0}
[2, 3, 7]. Its transition graph is given in Fig. 7.1.

A couple (i, 0) (respectively (i, 1)) denotes a state where i customers are present
and where the second server is in the back office (respectively present). State (0)
refers to the empty system and, for i > K, state i denotes the system when i
customers and the second server are present. Note that the first server is idle in
state (1, 1). In addition, Ey (respectively E) will denote the subset of states where
the second server is in the back office (respectively present):

Ey={0),1,0),...(K=1,0}, E1 ={1,1),...(K—=1,1D),(K),(K+1),...}.

The steady state probability distribution of this CTMC is determined in the
following section.

The case K = 2 corresponds to an M /M /2 queue with a little specificity: once
the queue is empty, the first server deals with the new arrival, the second server
arriving only when a new arrival finds the first server busy, and going back as soon
as there is no more customer to serve in the front office. But from the customer point
of view, this specificity does not affect the performance of the queue.

Fig. 7.1 Transition graph of the CTMC
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7.3 Steady State Probability Distribution, Mean Number of
Customers

7.3.1 Steady State Probability Distribution

For any state e, , will denote the steady state probability of state e. Defining p =
A/2 u, we note that the steady state probability will exist only if p < 1. Using the
Chapmann-Kolmogorov (C-K) equations of states (i,0),i =2, ..., K — 1, it is not
difficult to prove by induction the relation:

TK—i,0 = ZW TKk-1,0, i=2,....,K—-1, (7.1)

where ¢ = /M. Use of the cut theorem on the partition {Eg, E1} and of the steady
state C-K equation of state (1, 1) gives us

1

ST

TK—-1,0 - (7.2)

Then, using Egs. (7.2) and (7.1) and the C-K equation for state (0), we can express
probability mx 1,0 in terms of g as:
K-2 -

—T A (1.3)
j=0

TK—1,0 = 70 m

or, for the case ¢ # 1, as:

d+29)1-9¢)

Do (7.4)

TK—1,0 = 70

where Dy = ¢[(1 —¢) + (1 +2¢)(1 —pX~1)]. Considering now the C-K equations

of states (i, 1),i =2, ..., K — 1, we can prove by induction that:
1+ p) —2p
g = AP =2k, (1.5)
(I=p)

Since p = 1 is a root of the numerator, let us note that this probability can also be
expressed as:

i—1
ma=ma | 1+2) o/ i=2,...,K, (7.6)
j=1
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When i = K, we get in particular the probability 7 ; that we can rename 7y
without any ambiguity:

K—1
(14 p) —2p% ,
NK=”1,1W=7T1,1 1+2§ 2 (7.7)
=1

Then, using Eqgs. (7.2) and (7.4), we express the probability wx as a function of
probability g (again for the case ¢ # 1):

(1+p) =2p% (1-9)
(I=p) Dy

(7.8)

Considering the probabilities 7r;, i > K, their expressions are easily obtained thanks
to the use of the cut theorem:

mi=p Kag, i>K. (7.9)

Let us now consider the normalizing equation that we can write as:
So+S1 =1, (7.10)

where Sy = 7o + Zle_ll 7ioand S| = Zle_ll i+ Y ok Ti.

Sum Sy is the steady state probability that the intermittent server is working in
the back office and that S is the steady state probability that the intermittent server
is working in the front office. This last sum S; will be also used later when looking
for the optimal threshold.

Using Egs. (7.1), (7.2), (7.4), (7.5), (7.8), and (7.9), we show in Appendix 1 that
the probability g can be written as:

1—p)1—¢)D
o = ( /0)(D1 ) 0 (7.11)

where
Dy =1 -1l —¢)* + (1 +20)[(K — (1 —¢) — p>(1 — K]}
(1—¢)?[K +p(K — D]. (7.12)

For the special case where ¢ = 1, Egs. (7.1), (7.2), (7.4), and (7.5) reduce to:

3
3K —

TK-1,0 = 7770 - and mg_;0=img_10, i=2,...,K—-1,

(7.13)
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1 .
T, = 57[[(_1’0 s and i = (3—27(172))7[1,1 s i=2,....K, (7.14)

while it is shown in Appendix 1 that probability 7 satisfies:

203K —2)

= 3KKT13-D) 715

o

For the case where K = 2 some of the equations given for the general case
become simpler (in particular because the expression Dy equals 2¢(1 — ¢%) when
K = 2) and it is not difficult to find again the well-known result of the M /M /2
queue:

_d-pn
(1+p)

0 (7.16)

Let us remark that for p = 1/2, we obtain 7y = 1/3. In that case ¢ = 1, and this
result agrees with the one obtained thanks to relation (7.15) when K = 2.
7.3.2 Mean Number of Customers, Mean Waiting Time

The determination of the mean number of customers IE[N] is purely technique.
For ¢ # 1, it is shown in Appendix 2 that this expectation satisfies the following
relation:

l_
gy = =9 = 9) {(1 — o +z¢)(
1

KK+D K +¢><1—¢K>)
2 (I-¢)  (1-¢)7?

K(K-1) K+pK—1
L —¢) <(1+p) ( ) +o( ))}

2 d-p

When K = 2, it is not difficult to find again the well-known result of the M /M /2
queue:

E[N]=2p/(1 - p?). (7.17)
For the special case where ¢ = 1, it is also shown in Appendix 2 that

E[N] = K(K(K +3)+8) — 4 7.18)
T O3K(K+3)—-2) '

For K = 2, E[N] = 4/3. This result agrees with the one obtained thanks to
relation (7.17) when p = 1/2,1.e., (¢ = 1).
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Because the aim of using an intermittent server is to decrease the waiting time of
the customer in the front office, it is also interesting to consider the expected waiting
time IE[W]. For that we first obtain the expected response time by use of the Little’s
formula and then subtract the mean service time:

E[W] = %]E[N] - & . (7.19)

We may prefer to consider what we will call a “normalized” expected waiting time
E[Wx] by taking the mean service time (i.e., 1/u) as the time unit. This gives us:

E[Wxn] = nE[W] = %E[N] —1=¢E[N]—-1.

Let us remark that the “normalized” expected waiting time has no dimension and
is therefore independent of the initial time unit.

For a given value of p we expect that the expected number of customers is greater
than the value given by the M /M /2 queue. While, as long as p is lower than 1/2, the

expected number of customers is lower than the ratio , which corresponds to

the value given by the M /M /1 queue with 2p as the utilization factor.
In Fig.7.2, we have plotted the expectation of the number of customers as a
function of p, for different values of the integer K. As we would expect, this

Expectation

0 1 1 1 1 1 1 1 1

025 03 035 04 045 05 055 06 065 0.7
P

Fig. 7.2 Mean number of customers as a function of p. For (bottom-up) K = 2,3,4,5, and 6.
Curve with stars corresponds to infinite K, the second server being never called
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expectation is increasing with p and with K. Note that without the second server,
the mean number of customers would tend to infinity when p tends to 1/2.

7.4 Pseudo-Idle and Busy Periods of the Intermittent Server

The pseudo-idle period of the second server is defined as the period of time during
which this server is working in the back-office. We are interested by the expectation
of such a period because we understand that a too short period would have a negative
effect on the productivity of the server. Such a period corresponds to a sojourn time
of the CTMC in the subset E( and therefore we need to obtain the expectation of this
sojourn time.

7.4.1 Mean Time of a Passage in the Back Office

First let us determine the probability that a pseudo-idle period starts in state (0)
(respectively in state (1, 0)). Given that the CTMC is in state (2, 1), if a service
completes before a new arrival, the CTMC joins either state (1, 0) if the second
server finishes his service first or state (1, 1) in the other case. These two events
have equal probabilities (0.5 each). If the CTMC joins state (1, 1) from state (2, 1),
this means that the permanent server becomes idle. Then either the second server
becomes idle (with probability ﬁ) or the regular server becomes busy again, the
CTMC revisiting state (2, 1) (with probability ﬁ).

So, given a service completes when the CTMC is in state (2, 1), the CTMC goes
to state (1, 0) with probability 0.5, goes to state (0) without coming back to state

(2, 1) with probability 0.5 x R
At

or comes back to state (2, 1) with probability

. Considering these three eventualities, we see that when the CTMC

0.5(/(A + 1)
0.5(1 + p/(h + )

or enters it through state (1, 0) with probability - . These two
0.5(1 4 p/(h + )
¢ 1+¢

d .
1426 1529
Let us assume that X (0) = 0. Let T4 be the sojourn time in the subset Ey: T4 =

inf{t|X(t) = K} . In order to express the expectation of T4, we first consider the
random variable 7; defined as the time it takes to the CTMC to reach state (i 4+ 1, 0)
given X(0) = (i, 0). We also denote the expectation of 7; by «;. Introducing the
discrete random variable /; such that, fori > 0 :

A
0.5 x
A+

enters subset Ey, it enters it through state (0) with probability

expressions reducing respectively to
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1 if the first transition of the CTMC from state (i,0)
is a jump to state (i+1,0);

I =
' 0 if the first transition of the CTMC from state(i, 0)
is a jump to state (i-1,0);
we get when conditioning w.r.t. I;: E[T;|l; = 1] = L , and E[T;|I; = 0] =

pewr,
1 . .
A4+M+al_l +a1 .

1
For i = 0, we have immediately IE[Ty] = —. Since the departure rate from state

(i, 0) equals (A4 ) while the transition rate from state (i, 0) to state (i 41, 0) equals

A, the probability that the first transition of the CTMC from state (i, 0) is a jump to
A

state ( + 1,0) is P(l; = 1) = T Therefore, deconditioning the expectation

n
a; = E[T;] gives us, fori > 0,

L < L ow+ ) .
o = o1 o ,
i Pt m r+ m p M i—1 i + m
that reduces to «; = %(1 +umai—g) .
. 1 .
Since ag = E[Ty] = e we can compute successfully «g, o1 o2, .... It is not

difficult to prove that a; = % Zij:O ¢/ .
In addition, E[T4] depends ‘on the way the CTMC enters the subset Eq since
E[T4]X (0) = 0] = Zf;ol aj, while E[T4|X (0) = (1,0)] = Zf;ll aj .
Therefore, after deconditioning we obtain:

11 1 = L
E[T4s] = Xm-l-x ((K—1)+Z(K—l)¢> . (7.20)

i=1

We can scale this result by expressing this time expectation in terms of a number
of mean service times:

B ¢ ~ K—1 o
HIE[TA] = m +é ((K D+ ;(K )¢ ) ) (7.21)

In Fig. 7.3, we have plotted the scaled expectation of the pseudo-idle period of
the second server as a function of p, for different values of the integer K. We can
say that the expectation of the pseudo-idle period of the second server is important
when p is between 0 and around 0.4. Remember that when p = 0.4, the utilization
factor of the single server of the M /M /1 queue equals 0.8. As we would expect,
this expectation is decreasing with p and increasing with K.
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Fig. 7.3 Scaled expectation of the pseudo-idle period of the second server as a function of p. For
(bottom-up) K = 2,3,4,5, and 6

If the manager decides to change the rule by switching from K to (K + 1), then
the scaled expectation will be increased of the quantity:

K
Ak (LE[TAD) = uB[Ts(K + )] — uB[TA(K)] = ¢ (Z ¢”> :
s

Even in the case where ¢ = 1 (i.e., p = 0.5), this increase can be shown to
correspond to (K + 1) mean service times!

7.4.2 Mean Time of a Passage in the Front Office

Now let IE[Tp] be the expectation of a period spent in the front office by the
intermittent server. This server starts such a period with the frequency Amx_1 0.
Using the fact that this frequency must be equal to (IE[74] + ]E[Tp])’], we obtain
a first expression for AIE[Tp]:

AE[Tp] = [mk-1.0]"" — AE[TA] .
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Then, starting from Egs.(7.4) and (7.11) we express the inverse of probability
TTK—1,0 aS:

_ Dy
[mk_10l"" =

T (U-pA+20)1—¢)?

__ ¢ EK-DA-@-¢2a-¢"TH [+ (K -DA+)
(1+2¢) (1-¢)2 (1= p)(1 +2¢)

Using Eq. (7.20) we develop the expression of AIE[Ty4] as:

K—1
1 .
MEITAL = S+ ((K -+ Y (K —i)¢>’)

i=1

0 Kfl_ K—1 )
=32 " (K-=D+K Y ¢' = i¢

i=1 i=1

¢ 1- ¢k (K — DK+ — koK +¢
= T K —1 K —1) -
(1+2¢)+(( o <<1¢) ) (-2

¢ K¢p(l—oK 1 (K — DK+ — kK +¢
PR — K —1 —
(+29) (( g -2

¢ (K =11 =) +Kp(1 —¢K 1 —¢) (K -1)pKt! — k9K +¢

RSO (-9 (1-¢)72

_ ¢ (K —1) — (K — D¢ — ¢ +¢**!

T (+29) (1—¢)?

¢ (K =11 —¢)—¢?(1—¢K"1)

= a3 " G —ep . (7.22)

Subtracting this last expression to the one obtained for [T[K_L()]_l we get the
expression of AE[Tp]:

AE[Tp] =

-+

N+(K-Dd+p]  p <( (7.23)

1
(1-p(A+2¢) ~ (1—p) <1+p>>’

and then the expression of the expectation scaled in terms of a number of mean
service time:

WE[Tp] =

(<1<_1>+ ! ) (7.24)

2(1—p) 1+ p)

Note that wlE[Tp] represents also the expected number of customers served by
the intermittent server during a passage in the front office.

In Fig. 7.4, we have plotted the scaled expectation of the pseudo-busy period of
the second server as a function of p, for different values of the integer K. As we
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Fig. 7.4 Scaled expectation of the pseudo-busy period of the second server as a function of p. For
(bottom-up) K =2,3,4,5,and 6

would expect, this expectation is increasing with p and with K. Moreover, we can
say that the expectation of the pseudo-busy period of the second server is relatively
small when p is between 0 and around 0.4, when we compare it with the one of the
pseudo-idle period (cf. Fig.7.3). This shows the benefit of the intermittent server
since the use of a low percentage of his time significantly decreases the mean waiting
time.

7.5 Cost Function

We have to consider two somewhat different situations. The first one is when the
second server is not necessary for the system to be stable (i.e., when p < 0.5). The
second situation is when the second server is necessary to the system (p > 0.5).

In the first situation, the second server just helps to decrease the mean waiting
time IE[W] seen by the customers. We have to compare this help to the customers
with respect to the perturbation of the work done in the back office.

We assume here that there is a fixed penalty cp to pay each time the second
server has to leave the back office and that the cost per unit of time of this second
server is c1. We also assume that ¢ is the cost per unit of waiting time. During
a unit time, the expectation of the cumulative value of the waiting times equals
AE[WT; this expectation being nothing else than the expectation of the number of
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waiting customers in the queue. Let E[V,, ] denote this expectation. The expression
of IE[N, ] is deduced from Eq. (7.19):

E[Ny] = E[N]—2p. (7.25)

Then, depending on the value K, the function to minimize corresponds to the
expected total variable cost per time unit, and is given by:

C(K) = colE[Tal + E[Tp]]™" + 151 + B[N, ], (7.26)

where here also, S| denotes the sum Zle _11 w1+ Zfi x Ti. Note that this sum of
probabilities Sy is nothing but the mean time per time unit spent by the second server
in the front office.

When the variable K is increased, the first two terms are decreasing while the
term c2IE[Ny,] is increasing. More precisely, considering a cycle of the intermittent
server, we start from the relation:

E[Tp] 1

SU= BT+ BETp) .y Bl
A P U+ Ei7

(1.27)

Considering Eqgs. (7.22) and (7.23) we deduce that, when K tends to infinity, the

E[T
7] when K tends

two expectations tend to infinity. Considering now the ratio 7
P
to infinity, since ¢ satisfies ¢ > 1, the limit of this ratio is the same as the limit of

the following ratio:

EITa _ . Co—D¢K _

kI BT T kM TR KT (7.28)

Therefore, the first two terms of the cost function tend asymptotically to zero
when K tends to infinity while the term c;IE[ N, ] is increasing (from 22p3/(1—p?)
when K = 2 to the asymptotic value c24p2/(1 — 2p) when K tends to infinity). In
this situation the optimal K may not be finite if the penalty coefficient c; is not large
enough.

The second situation is different in the sense that K has to be finite in order
to have a stable solution. In this case, the intermittent server has to work in the
front office a percentage of time S greater than (A/u — 1) in order that the system
admits a steady state solution. The maximal feasible value Ky« of K is given by
Kmax = max{K|S1(K) > A/u — 1}. Practically, if K, is large enough (i.e., when
(A/pm — 1) is not close to unity), the cost c2[E[N,,] should be large when K = K«
and we may expect the cost function to be convex. However, the convexity of C(K)
has not been investigated theoretically. Also, from a practical point of view, the
parameter ¢; has again to be not too small with respect to ¢ and ¢ in order to avoid
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Fig. 7.5 Variable cost function, with p = 0.35, ¢g = 0.5, ¢; = 1. Case 1 (stars): c; = 0.15. Case
2 (sign+): ¢ = 0.03

the limit behavior where the second server would come once a year to empty the
waiting room.

In Fig. 7.5, we have plotted two sets of values of C(K) when p = 0.35 (alone
the permanent server queue would have a utilization factor of 0.7), for ¢cg = 0.5,
c¢1 = 1. Case ¢ = 0.15 (noted with stars) gives an optimal K* = 5. From Figs. 7.3
and 7.4, we can check that for this optimal solution the mean pseudo-idle period of
the second server is around 70 times the mean service time while the mean pseudo-
busy period is close to 5 times the mean service time. But case ¢, = 0.03 (noted
with sign +) gives a decreasing cost for K € [2, 30].

7.6 Conclusions

We have shown in this paper the importance of intermittent servers in order to reduce
the response times without increasing significantly the idle times of servers. For
such situations where a single server would satisfy the stability condition (A < ),
a nontrivial result is that the pseudo-idle period of the second server is significantly
longer than what would be generally expected by the management and also that the
pseudo-busy period stays small; and so the second server can keep his main activity
in the back office.

We can think of applications in architectures for quite large telecommunication
switches where we have “guard” processors to help the congested input queues on
demand. It may also help in the context of network function virtualization (NFV) in
which a service might be deployed on demand to face a transient congestion. Not
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only these results are interesting by themselves if such a situation occurs in a real
situation but also, this study can be used to check simulation models used for a more
complex situation.

Appendix 1: Determination of Eq. (7.11)

K—1
Starting from the normalizing equation: So + S; = 1, where So = 7o + Z Ti0
i=1

K—1 00
and S| = o + Z i+ Z m; , we first consider the partial sum Sp:
i=1 i=K

K-1 K-1
So = 7o + Z 7i,0 = 1o + Z TK—i,0 »
i=1 i=1

K—1[i-1 K-1
:770+7TK—1,OZ Zfﬁj :7TO+7TK—1,OZ(K_i)¢l_1 .
i=1 \ j=0 i=1

K—1 K-1
=m0 +7TK-1.0 (qubl_l - Zicb'_l) :
i=1 i=1

or (if ¢ # 1):

_ pk-1 _ k-1 N\ K
So=7To+7TK—1,o(K(1 ") (U-K¢ + (K —1)¢ )>,

(1—-¢) (1—¢)?

_ a4 TEo10 KO —¢) — (1 —¢X)

(1—9) (1—9¢)
o g (L 20) K(1—¢)—(1—¢5)
0T, 19

_ ( <1+2¢)<K(1—¢)—<1—¢K)>>

=m |1+ ,
(1 —¢)Do

_ 7o Y _ N 200 K-l

= o (90 =97 + (142010 — D1 = 9) = 921 =657 1)])

Considering now the partial sum Sy, i.e., the steady state probability that the
back-office server is helping the front-office server, we have:
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K—1 00 K—1 (1+,O)—2,0i ©
Si=) mat+y mo=miy ————+agy p K,
i=1 i=K pri i=K
_ L K-DUtp ’i‘ S
ST A=) A &P TR Ay
(K =D +p) 2 (1-p5 (1+p) =20 1
=71 — 711 + 711
(I—p) (I—=p) A=p) (I-=p) (A=p)
(K —1)(1 + p) 1 1+ (K = D+ p)
:7‘[1’1 —ﬂlyl = 7T1,1 9
(I—p) (I—p) (I—p)
(I =9)K+p(K—-1D)]
=y .
(I —p)Do

Given that Sy + S1 = 1, we get the expression of probability 7o when ¢ # 1:

(1 =p)(1—¢)Do
D

) (7.29)

0

where D was defined by relation (7.12).

For the special case where ¢ = 1, it is not difficult, starting from the specific
relations between probabilities given at the end of Sect.7.3.1, to find the following
expressions:

_3K(K+1) -4 _GK -1 203K —2)

0= 6K —2 0 T 3exk-2" MT3kk+13-2)°
(7.30)

Appendix 2: Determination of the Mean Number of Customers

In order to obtain the expression, let us start by computing two partial sums (Bg and
B1), under the condition ¢ # 1:

K—1 K—-1 K—-1 i—1
By=) imo= Y (K—i)mxkio = nx10y (K—=i)|Y ¢'|.
i=1 i=1 i=1 j=0

K—1 :
L (I=9"

= _ K —
TK-1,0 ;21( i) T
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= ?1’(_—1;)(2 —KZ¢> +K+¢Zl¢l 1)

Tx_10 (KK +1) K-1 K—l. -
— v - K i i
(1_¢)< 5 ;«s +¢>;z¢>

_ TK10 <K<K+1)_ K +¢(1—¢K)>
(- \ 2 (1-¢) (-9

_U=pd=-¢)d+2¢) (K(K+1) K ¢l —¢>K))

D, > I—¢)  (1—9¢7

and secondly:

K—-1 00 K—-1 00
= Z i1+ Ziﬂ’i = Z imi1 + 7k Z i,Ol_K
i=1 i=K i=1 i=K

K—1 K—-1 i
_ (1+p) 2ip! ( +p)
Ik (Z’(l—p) g(l—p)>+’”’ Z

i=1 1 =K
A+p'& 2t & (1+4p) & .
=g Y i L L K+ip,
T Ty 2 gy LK
T K(K —1) o (1 +,0)>
= (a4 - +K , 731
<1—p>(( N a—p tXa—p (731

(-9 KK—1) K+pK—1)
_ i
T =)Dy <( B T S gt )

(1—¢)2< K(K —1) K+,0(K—1)>
= 1 .
D, 1+ p) 5 + a—p

From that we get the expression of the expectation of the number of customers:

E[N] = By + B = Zlﬂzo-i-zlml-i-zlm,

=(l—p)(1—¢)(1+2¢)(K(K+1)_ (K) Jr<15(1—<1>K)>
D 2 (1-¢) (1-9)?
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(1—¢)2( K(K = 1) K+,0(K—1))
~ 7 (A ,
=, Ut )
(1—¢) K(K +1) K ¢(1—¢K)>
= 1—p)(1+2 -
D, {( p)(1+ <z>)< 3 (1_¢)+ e
K(K—1) K+pK-1)
1— 1
c-o (4 pKED Ko o))

This last result corresponds to the expression presented in Sect. 7.3.2. In the special
situation where ¢ = 1, let us first consider the sum By. Starting from the equality
Bo=mk_1.0 Z{ijl(K—i)(Z"f;lo #/), obtained above, we get:

K—-1

Bo=mk_10 ) (K —ii,

i=l1
K—1 K—1
TK-1.0 <K Z i— Z i2>
i=l1 i=l1

K(K+1) (K—DKQK —1)
=7TK-1,0 <K - ) ,

2 6
<(1< - 1)K(K~|—1)>
=TTK-1,0
6
3 (K-DHK(K+1) (K-DK(K +1)
= T = 7o
3K -2 6 23K —2)

Let us now consider the sum B;. We may start from the expression (7.31) of B
obtained above. Since here p = 1/2, we get:

Bl=%(31<(1(+3)—4) = %(Hf(lﬂﬁ)—“) :

After summation of By and B; and use of the expression of mp given by rela-
tion (7.30), we are able to exhibit the following expression:

K(K(K +3)+8) —4

E[N] =
(K(K +3)—-2)
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Chapter 8 ®
Simulation from the Tail of the Univariate o
and Multivariate Normal Distribution

Zdravko Botev and Pierre L’Ecuyer

8.1 Introduction

We consider the problem of simulating a standard normal random variable X,
conditional on a < X < b, where a < b are real numbers, and at least one
of them is finite. We are particularly interested in the situation where the interval
(a, b) is far in one of the tails, that is, we assume that a > 0 (the case where b < 0
is covered by symmetry). We do not consider the case where a < 0 < b, as it
can be handled easily via standard methods, which do not always work well in the
tail case a > 0. Moreover, if we insist on using inversion, the standard inversion
methods break down when we are far in the tail. Inversion is preferable to a rejection
method (in general) in various simulation applications, for example to maintain
synchronization and monotonicity when comparing systems with common random
numbers, for derivative estimation and optimization, when using quasi-Monte Carlo
methods, etc. [6, 12—15]. For this reason, a good inversion method is needed, even
if rejection is faster. We examine both rejection and inversion methods in this paper.

These problems occur in particular for the estimation of certain Bayesian
regression models and for exact simulation from these models; see [4, 7] and the
references given there. The simulation from the Bayesian posterior requires repeated
draws from a standard normal distribution truncated to different intervals, often far
in the tail. Note that to generate X from a more general normal distribution with
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mean y and variance o2 truncated to an interval (a’, b'), it suffices to apply a simple
linear transformation to recover the standard normal problem studied here.
This paper has three main contributions.

1. Comparison amongst univariate methods. The first contribution is to review and
compare the speed and efficiency of some of the most popular methods [7, 8,
11, 18, 22, 24] for the tail of the univariate normal distribution. These methods
are designed to be efficient whena > Oand b = oo (ora = —ooand b K 0
by symmetry), and are not necessarily efficient when the interval [a, b] contains
0. We find that these methods may be adapted in principle to a finite interval
[a, b], but they may become inefficient when the interval [a, b] is narrow. We also
find that the largely ignored (or forgotten) method of Marsaglia [19] is typically
more efficient than the widely used accept-reject methods of Geweke [9] and
Robert [22].

2. Accurate inversion for univariate truncated normal. All of the methods cited
above are rejection methods and we found no reliable inversion method for an
interval far in the tail (say, for a > 38; see Sect. 8.2). Our second contribution is
to propose a new accurate inversion method for arbitrarily large a. Our inversion
algorithm is based on a numerically stable implementation of the solution of a
nonlinear equation via Newton’s method.

3. Rejection method for multivariate truncated normal. Our third contribution is to
propose a simple rejection method in the multivariate setting, where we wish
to simulate a vector X with mean zero and covariance matrix ¥ € R9*4
conditional on X > a (the inequality is componentwise). We find that, under
some conditions, the proposed method can yield an acceptance probability that
approaches unity as we move deeper into the tail region.

Simulation methods for exact simulation from multivariate normal distributions
conditional on a general rectangular region, @ < X < b, were developed recently
in [3, 4, 6]. But for sampling in the tail, the proposed sampler in this paper has
two advantages compared to the samplers in these previous works. First, it is much
simpler to implement and faster, because it is specifically designed for the tail of
the multivariate normal. Second, the theoretical results in [3] do not apply when
the target pdf is the most general tail density (see (8.9) in Sect. 8.3), but they do
apply for our proposal in this paper. On the downside, the price one pays for these
two advantages is that the proposed sampler works only in the extreme tail setting
([a, oo] with a > 0), whereas the methods in [3, 4, 6] work in more general non-tail
settings ([@, b] which may contain 0).

This chapter is an expanded version of the conference paper [5]. The results of
Sect. 8.3 are new while those of Sect. 8.2 were contained in [5].
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8.2 Simulation from the Tail of the Univariate Normal

In this section, we use ¢ to denote the density of the standard normal distribution
(with mean 0 and variance 1), @ for its cumulative distribution function (cdf), @ for
the complementary cdf, and @ ! for the inverse cdf defined as ® ~!' (1) = min{x €
R | @(x) > u}. Thus, if X ~ N, 1), ®(x) = P[X < x] = ffoocﬁ(y)dy =
1 — @ (x). Conditional on ¢ < X < b, X has density

Fogm  fora<x<b (8.1)

We denote this truncated normal distribution by TN, 5 (0, 1).
It is well known that if U ~ U(0, 1), the uniform distribution over the interval
(0, 1), then

X =0 Y (@@)+ (@(b) — D(a)U) (8.2)

has exactly the standard normal distribution conditional on ¢ < X < b. But
even though very accurate approximations are available for @ and @', (8.2)
is sometimes useless for simulating X. One reason for this is that whenever
computations are made under the IEEE-754 double precision standard (which is
typical), any number of the form 1 — € for 0 < € < 2 x 10~'® (approximately)
is identified with 1.0, any positive number smaller than about 1073%* cannot be
represented at all (it is identified with 0), and numbers smaller than 107398 are
represented with less than 52 bits of accuracy.

This implies that @ (x) = @& (—x) is identified as 0 whenever x > 39 and is
identified as 1 whenever —x > 8.3. Thus, (8.2) cannot work when a > 8.3. In the
latter case, or whenever a > 0, it is much better to use the equivalent form:

X=-0 Y @@) — (P(a) — Pb)U), (8.3)

which is accurate for a up to about 37, assuming that we use accurate approxima-
tions of @ (x) for x > 0 and of @~ (u) foru < 1 /2. Such accurate approximations
are available, for example, in [2] for @~ !(u) and via the error function er £ on most
computer systems for @ (x). For larger values of a (and x), a different inversion
approach must be developed, as shown next.

8.2.1 [Inversion Far in the Right Tail

When @ (x) is too small to be represented as a floating-point double, we will

work instead with the Mills’ [21] ratio, defined as ¢ (x) % @ (x)/¢ (x), which is the
inverse of the hazard rate (or failure rate) evaluated at x. When x is large, this ratio
can be approximated by the truncated series (see [1]):
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r

Ix3x5x---xQ2n—-1)
(_l)nx2n+l

1
gx)~ —+ (8.4)
X

n=1

In our experiments with x > 10, we compared r = 5,6, 7, 8, and we found no
significant difference (up to machine precision) in the approximation of X in (8.3)
by the method we now describe. In view of (8.3), we want to find x such that @ (x) =
& (—x) = P(a) — (P (a) — D(b))u, for0 < u < 1, when a is large. This equation
can be rewritten as /i (x) = 0, where

hx) © Ba) — D) + (@ b) — B(a))u (8.5)

To solve h(x) = 0, we start by finding an approximate solution and then refine
this approximation via Newton iterations. We detail how this is achieved. To find
an approximate solution, we replace the normal cdf @ in (8.3) by the standard
Rayleigh distribution, whose complementary cdf and density are given by F (x) =
exp(—x2/2) and f(x) = x exp(—x2/2) for x > 0. Its inverse cdf can be written
explicitly as F~'(u) = (=21In(