
Developer Dynamics and Syntactic Quality
of Commit Messages in OSS Projects

Kuljit Kaur Chahal(&) and Munish Saini

Department of Computer Science, Guru Nanak Dev University, Amritsar, India
kuljitchahal@yahoo.com

Abstract. Community dynamics play an important role in the Open Source
Software (OSS) development paradigm. Researchers have extensively studied
the human aspects of the OSS paradigm from the point of view of community
formation to community evolution. A few studies relate community dynamics
with OSS product attributes such as code quality. However, the impact of
community dynamics on non-code contributions such as commits has not been
explored. In this paper, the aim is to analyze the impact of community dynamics
on syntactic quality of commit messages of an OSS project. We first propose
and validate a commit message quality model, and then use that model to
analyze the OSS projects. Empirical analysis of seven OSS projects available in
the Git repository shows that a small group of contributors active at the same
time in a project leads to high syntactic quality contributions. These observa-
tions may prove useful to developers as well as project managers who need
quantifiable techniques for monitoring the OSS projects.

CCS Concepts: CCS ! Software and its engineering ! Software notations
and tools ! Software configuration management and version control systems

Keywords: Open Source Software (OSS) � Software evolution
Source code management � Commit activity � Commit message quality

1 Introduction

Open Source Software (OSS) development is presumed to entail collaborative partic-
ipation of geographically distributed developers for creating a successful project.
A source code management system such as Git records and manages contributions of
participants in the project repository. Majority of the participants are volunteers. Major
motivations for participants include developing and improving skills, getting recog-
nition for the skills, and building a reputation which in turn helps them in furthering
their commercial endeavors [8]. Sans any organization control, they can join or leave
an OSS project as per their own convenience. Unlike commercial software in which
committed employees contribute regularly, an OSS project generally depends upon
contributions from self-motivated individuals who belong to different geographical
locations, and diverse cultures and backgrounds. More recently, corporate backed OSS
projects are also emerging on the landscape. Large corporates such as IBM, HP support
OSS development with their own resources (i.e. their paid workforce contributes) in

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 61–76, 2018.
https://doi.org/10.1007/978-3-319-92375-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_6&domain=pdf

various projects that they use in their own products. Whatever the mode of partici-
pation, we can say that OSS community plays an important role in the OSS devel-
opment paradigm.

However, this is not static but a very dynamic community. There are no fixed roles.
A member can contribute to an OSS project in a number of ways depending upon his
skill set (as a developer, tester, or documenter). Not only this, he/she can fluidly shift
from being an end user to a developer (for example a tool user can work on improving
the tool). Due to the volunteer nature of participation, there could be many lean periods
in a project’s activity when participants are busy in their regular life activities, for
example working on a full-time job on weekdays, enjoying vacations, or not con-
tributing due to inexplicable reasons. It will be interesting to investigate community
dynamics and its impacts on OSS development processes.

In this paper, we are interested in understanding the impact of community dynamics
on the quality of contributions committed to a project’s repository.

A commit, a software change that involves a source code or other type of contri-
bution such as documentation, is a fundamental component of an OSS development
process. In the recent past, commit analysis has been a topic of active research to
understand the software development processes of OSS projects [8, 12, 13]. For
example commit activity (measured as the number of commits in a unit of time) of an
OSS project is correlated with successfulness of the project [13]. A developer with high
commit frequency is more productive. A project with high commit frequency is healthy
as it gets regular contributions. There is not much research on this topic to define commit
quality or to use commit quality information to characterize OSS projects or developers’
contribution practices. A few studies have analyzed commits of software projects from
quality perspective [1], though there is a lot of work focusing on evaluating the code
quality of OSS projects. In this paper, we propose to answer the following question:

What is the impact of community dynamics on commit message (syntactic) quality
in the context of OSS projects?

A good quality commit contains a well-crafted message with all the necessary
details (meta-data) to effectively convey the change to current or future developers [5].
It not only makes the changes contributed by others easy to understand but also helps in
recalling one’s own changes contributed in the past. A good commit message should
follow a simple and consistent style for specifying commit meta-data and content.

With respect to commit message quality in OSS projects, we propose a commit
message syntactic quality model in Sect. 3. Following this model, each commit mes-
sage can be assigned a commit score. In this study, we are focusing only on the
syntactic view of commit messages. The syntactic analysis shows “writing styles of the
contributors” i.e. whether they follow the rules of the syntax while describing their
commits. We analyzed 202,561 commit messages of seven OSS projects to understand
the way committers commit changes in a Source Code Management (SCM) system
specifically Git.

Paper organization: The rest of the paper is organized as follows. Next section
presents the related work. Rest of the sections present the commit quality model, the
data collection steps, and the results in that order. In the end, a section mentions
limitations of the study followed by conclusions and future work.

62 K. K. Chahal and M. Saini

2 Related Work

The success of an OSS project suggestively depends upon the type of community
support available to the project as social aspects significantly determine evolution
[6, 16]. However, in the context of the OSS paradigm, the community itself is dynamic
in nature. This section discusses the prior work related to community dynamics and its
impact on OSS processes. A few of the works related to commit quality and commit
analysis are also mentioned.

Some studies in the past focused only on static community structure to understand
the demographic diversity of community members [14], gender differences [15], and
role of the core members [22]. While [4] studied community dynamics using social
network analysis to understand the changes that happen to a community over a period
of time. Changes in the community structure are presented with the help of temporal
visualization and quantitative analysis.

Bird and Nagappan [7] analyzed two large OSS projects, Firefox and Eclipse, to
investigate the impact of distributed locations of the developers on the quality of the
code they contributed. They found that quality of components (measured using the
number of defects) developed by distributed teams was bad in comparison to the
quality of components developed by collocated teams.

Ahmed et al. [2] relate poor coding practices with growth in the number of
developers. The study concludes that code as well as design quality declines as the
number of developers increases. Souza and Silva [21] analyze effect of developer
sentiment levels (as expressed in commit messages) on build status of Travis, a
Continuous Integration server. The results suggest that negative sentiment reduces the
chances of a successful build, though the effect is minor.

Santos and Hindle [18] studied the unusualness of commit messages by training
n-gram language models on 120,000 commits of OSS projects and used cross-entropy
as an indicator of a commit message’s “unusualness”. Their work focused mainly on
finding the unusualness of a commit message, and further correlating it with code
quality. Agrawal et al. [1] studied the commit quality of five high-performance com-
puting projects and compared the performance of the projects with three low perfor-
mance computing projects.

Most of the works in the research literature on commit analysis of OSS projects
deal with identifying commit size distribution [3], commit frequency distribution [13],
commit characterization [17, 23], and contributor’s commit activity distribution [8].
Chełkowski et al. [8] analyzed commit contributions of Apache contributors to high-
light inequalities among open source contributors’ in producing content in the OSS
paradigm which is often described as collaborative.

Lack of literature on the subject and the broad nature of practitioner recommen-
dations suggest a need for a research study regarding the quality analysis of the commit
messages recorded in a source code management system. We followed a Multi-vocal
Literature Review (MLR) approach [8]. In this study, our focus is on measuring
commit message quality syntactically by using 11 syntactical metrics by introducing a
novel approach to calculate commit quality. Moreover, we focused on finding if there is
any relation between community evolution and the commit message quality of the OSS

Developer Dynamics and Syntactic Quality of Commit Messages 63

projects. The commit message quality is correlated with the number of contributors to
understand the impact of community dynamics on development processes of the OSS
projects.

3 The Proposed Model and Its Validation

A set of measures, to calculate the syntactic quality of commit messages recorded in
SCM system of the OSS projects, are devised after consulting a bulk of literature
(published [1], or available online [9]) to understand “how to write a good commit
message”. The online search to this topic “how to write a good commit message” or
“good commit logs” yielded a large number of results. We followed a double
cross-check approach to select the commit quality metrics. Both the authors analyzed
the top 33 web links (beyond this the content was repeated) individually, and noted all
the rules and identified the possible list of attributes that can act as commit quality
measures. At the last, we combined the rules and the lists of attributes that were
identified by both the authors. This double cross-check approach avoided any rule or
attribute to get skipped from the analysis. After consulting the literature, common rules
indicating a good quality commit message are identified as shown in Table 1:

By considering all these rules, we devised 11 commit quality measures (see
Table 2). Out of which, seven are for subject line (title), and the rest four are for the
body (multiline description) of a commit message. After evaluating the count and
values for the commit messages, the proposed approach assigns scores to each measure
on a scale of 1 to 5 (as shown in Table 2).

Next step was to see whether the proposed rules and the corresponding metric
definitions sound reasonable from practitioners’ point of view. We chose the survey
based method to get inputs from practitioners. In response to a survey request, 20
developers volunteered to participate in the survey. Most of the participants were

Table 1. Rules for writing a good commit

1. Title (subject line) of commit message should be short (between 50–72 characters)
2. Subject line should end with a dot
3. Capitalize the subject line i.e. first character of the subject line should be capital
4. Use imperative mood in the subject line for example use words like fix, add, update in

place of fixing, adding, and updating etc.
5. Subject line should be concise and limit the number of “and”, “or”
6. Subject line should not include details such as bug number, file name, ticket number,

and any other external references
7. Subject line and body must be separated by a blank line
8. Body of a commit message must have multiline description. It should be well

explanatory detailing why and what is changed
9. Body of a commit message should not contain lots of bullets, hyphens, or asterisks
10. Commit should have one logical change

64 K. K. Chahal and M. Saini

graduates, with a total of 16 graduate and 4 undergraduate degree holders. Their
industrial experience varied from 5 to 7 years in software projects based on Java/C#. In
the survey, the participants were provided a sample of commits and were asked to
upvote a rule if they agree, downvote a rule if they don’t agree, or post a neutral
response if it does not matter to them while reading a commit message. They also
reported their votes on metric definitions.

As a result of this survey (see Table 3), we concluded that the rules and the metrics
to evaluate the commits were useful and reasonable.

Then we calculated the total score for each commit message. We cannot use these
scores of individual measures as such to calculate the total score of message quality of a
commit as different commit measures have different scales (few commit measures have
values on scale 1–5, whereas other have values on the scale 1–2). Therefore, we first
normalized the commit scores of individual measures to a common scale [0, 1]. The
normalization of commit measures is done by using the following formula [20]:

Normalized commit message score = ActualScore/MaxScore ð1Þ

Total commit score =
X11

1

WCS CommitMeasure i ð2Þ

In order to further validate the results of the commit message quality score, the
results of the proposed model for a sample of 100 commits messages (50 with commit

Table 2. Commit message syntactic quality measures

Commit quality measures Commit score Unit
1 2 3 4 5

Length of title ¼0 or >72 1–10 11–30 31–50 51–72 Number of
characters

Title ends with dots No Yes y ! 1, n ! 0
Title first character capital No Yes y ! 1, n ! 0
Count number of “and” “or”
in title

>6 5–6 3–4 1–2 0 Count

Count number of “file
name” in title

>6 5–6 3–4 1–2 0 Count

Count number of external
references in title

>6 5–6 3–4 1–2 0 Count

Imperative mode in title No Yes y ! 1, n ! 0
Commit body existence No Yes y ! 1, n ! 0
Count number of “file
name” in body

0 10> 6–10 3–5 1–2 Count

Count number of external
references in body

0 10> 6–10 3–5 1–2 Count

Count number of paragraph
in body

0 10> 5–10 3–4 1–2 Count

Developer Dynamics and Syntactic Quality of Commit Messages 65

messages as per the rules and 50 otherwise) were compared with the assessment results
made available by the same survey participants. The results show that 84% of the
commit messages were correctly judged by the proposed model. Specifically, for
commit messages with good quality, about 88% of messages were correctly judged,
and about 80% of messages with poor quality were correctly judged by the proposed
model. This shows that the proposed model is effective.

4 Data Collection

Seven OSS projects were selected on the basis of their popularity, age, size, number of
people involved, and availability of the project repository in Git (an open source
distributed version control system).

PostGreSQL is an object-relational data base management system. glibc is a
GNU C library used in the GNU/Linux systems. Eclipse-CDT is an industrial strength
IDE for developing C/C++ programs and plug-in tools. GnuCash is a double entry
accounting software for personal and small enterprises. WordPress is web publishing
software. Firebug is a web browser extension for Mozilla Firefox for debugging and
performance analysis of web pages rendered in the browser. Rhino is a JavaScript
engine. It is an open source application of JavaScript. It is regularly implanted into Java
applications to give scripting to end users.

Table 3. Survey responses

Rule Upvotes Downvotes Neutral

1. Title (subject line) of commit message should
be short (between 50–72 characters)

15 4 1

2. Subject line should end with a dot 10 7 3
3. Capitalize the subject line i.e. first character of

the subject line should be capital
8 6 6

4. Use imperative mood in the subject line for
example use words like fix, add, update in place
of fixing, adding, and updating etc.

20 – –

5. Subject line should be concise and limit the
number of “and”, “or”

18 – 2

6. Subject line should not include details such as
bug number, file name, ticket number, and any
other external references

17 – 3

7. Subject line and body must be separated by a
blank line

12 2 6

8. Body of a commit message must have multiline
description. It should be well explanatory
detailing why and what is changed

19 – 1

9. Body of a commit message should not contain
lots of bullets, hyphens, or asterisks

18 – 2

10. Commit should have one logical change 20 – –

66 K. K. Chahal and M. Saini

Development repositories of the OSS projects are obtained from the Github
(www.github.com). A repository is downloaded by making a clone of the original
repository onto the local machine by using Gitbash (www.git-scm.com). A script is
written in Java to fetch the commit messages and number of contributors for the
observation period for all the OSS projects. Table 4 summarizes the statistics of the
datasets collected for all the seven projects.

5 Result and Analysis

This study explores the commit messages of seven OSS projects to calculate and
analyze the commit quality of these commit messages. Further, the commit message
quality measures are used to answer the research question specified in Sect. 1.

In this section, we first analyze the commit message quality of the OSS projects as
they evolve over a period of time. But before that, we look at the differences in levels of
the commit message quality in these projects. With the help of box plots, Fig. 1 shows
the variation in the commit message quality across the projects. GnuCash and Word-
Press have the best median values (>0.80) for the commit message score. Next is
Firebug with median commit message score 0.75. The remaining four projects (which
includes very popular projects PostgreSQL and Eclipse-CDT) have median commit
message scores less than 0.70.

Table 4. Descriptive statistics of the OSS projects

OSS projects Origin date Number of months Number of contributors Commit messages

PostgreSQL Jul, 1996 239 43 54355
glibc Feb, 1989 321 410 43313
Eclipse-CDT Jun, 2002 168 203 28817
GnuCash Nov, 1997 222 105 21969
WordPress Apr, 2003 158 73 37333
Firebug Aug, 2007 181 45 13043
Rhino Apr, 1999 105 56 3721

PostgreSQL glibc Eclipse-CDT GnuCash WordPress Firebug Rhino
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C
om

m
it

S
co

re

 Median 25%-75% Non-Outlier Range Outliers Extremes

Fig. 1. Variation in commit quality of the OSS projects

Developer Dynamics and Syntactic Quality of Commit Messages 67

http://www.github.com
http://www.git-scm.com

Eclipse-CDT has many outliers towards the upper side of the box plot otherwise,
the median commit score is the minimum in comparison to other projects.

Next, we analyzed the commit message quality evolution in these projects. Intu-
itively, commit message quality should improve over the period of time as a project
matures as core team of experienced developers is supposed to vet commits submitted
by less experienced developers. We can see in Fig. 2a, c (on next page) that commit
message quality improves after staying stable for a long period of time. In Fig. 2g, it
stays stable throughout. We note from Table 5 that commit message score of these
projects follows an increasing trend when analyzed using linear regression [19]. In case
of the other three projects (see Fig. 2d–f), it drops down and shows a decreasing trend
when analyzed using linear regression. We believe that this behavior may be due to
developer dynamics. A detailed explanation of this behavior of the OSS projects is due
until discussion of the next section. The in-between variation (e.g. decrease in March
2008 for the glibc project) in commit message score of these projects needs further
analysis to understand the factors responsible for such behavior. In the next section, we
revisit this type of behavior to find the factors that may have affected the commit
message score. From the above observations, we can conclude that the commit mes-
sage quality does not always improve as a software project matures. Some of the
projects in this case study point to slender periods when commit message quality goes
down.

5.1 Does the Number of Contributors Affect the Commit Message
Syntactic Quality?

In OSS projects, developer community plays an important role. Contributors contribute
by writing new code and documentation, and also make changes to fix bugs, or to
improve the overall quality of a software project. Therefore, it is important to see the
relation of contributors’ participation in OSS projects with their commit message
quality. We want to examine whether an increase in the number of contributors
coincides with the increase in the commit message quality of the OSS projects. Intu-
itively, better commit message quality can be expected as multiple contributors should
share the responsibility, and contribute to the project in a better way. Single contrib-
utors or small teams may not be able to produce good contributions when they are
bogged down by the work pressure.

To begin with, we analyzed the variation in the number of contributors across the
OSS projects.

Figure 3 shows that maximum range is in case of the glibc project. glibc is a very
old project, started in 1989, a project with the longest history. As far as the median
values are concerned, Eclipse-CDT has the largest team size of 15 contributors in a
month. Eclipse-CDT enjoys the reputation of a very popular project among the
developer community. In all the other cases, team size is less than 10 contributors. Four
out of the seven projects i.e. glibc, WordPress, Firebug, and GnuCash have a median
value of 5 contributors in a month. Among these four projects, three (WordPress,
Firebug, and GnuCash) have the best commit score (median > 0.75). Interestingly,
commit message quality is worst in the Eclipse-CDT project (Fig. 1 box plot for
commit score). Whereas small teams in four other projects are better in producing good

68 K. K. Chahal and M. Saini

quality work. Eclipse is a mature project, and such projects also tend to allow con-
tributions from peripheral developers. Therefore, a large team may not ensure better
work quality if peripheral (may be untrusted) contributors are allowed to submit
changes. It could also be due to if core team does not bother to vet such changes.

Figure 4(a–g) shows contributor churn of the OSS projects over a period of time. In
all the OSS projects except Rhino, the number of contributors follows an increasing
trend over the period of time (see Table 6). We can observe that after initial few years,
developer participation has increased manifold notably in the projects PostgreSQL,
glibc, Eclipse-CDT, and WordPress. However, for the project like Eclipse-CDT, this

Ju
l 1

99
6

N
ov

 1
99

7

M
ar

 1
99

9

Ju
l 2

00
0

N
ov

 2
00

1

M
ar

 2
00

3

Ju
l 2

00
4

N
ov

 2
00

5

M
ar

 2
00

7

Ju
l 2

00
8

N
ov

 2
00

9

M
ar

 2
01

1

Ju
l 2

01
2

N
ov

 2
01

3

M
ar

 2
01

5

Month-Year

0.60

0.64

0.68

0.72

0.76

0.80

0.84
C

om
m

it
Sc

or
e

(a)

Fe
b

19
89

Se
p

19
91

Ju
l 1

99
3

M
ay

 1
99

5

M
ar

 1
99

7

Ja
n

19
99

N
ov

 2
00

0

Se
p

20
02

Ju
l 2

00
4

M
ay

 2
00

6

M
ar

 2
00

8

Ja
n

20
10

N
ov

 2
01

1

Se
p

20
13

Ju
l 2

01
5

Month-Year

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

C
om

m
it

Sc
or

e

(b)

Ju
n

20
02

Ju
n

20
03

Ju
n

20
04

Ju
n

20
05

Ju
n

20
06

Ju
n

20
07

Ju
n

20
08

Ju
n

20
09

Ju
n

20
10

Ju
n

20
11

Ju
n

20
12

Ju
n

20
13

Ju
n

20
14

Ju
n

20
15

Month-Year

0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88

C
om

m
it

S
co

re

(c)

N
ov

 1
99

7

F
eb

 1
99

9

Ju
n

20
00

S
ep

 2
00

1

D
ec

 2
00

2

M
ar

 2
00

4

Ju
n

20
05

S
ep

 2
00

6

D
ec

 2
00

7

M
ar

 2
00

9

Ju
n

20
10

S
ep

 2
01

1

D
ec

 2
01

2

M
ar

 2
01

4

Ju
n

20
15

Month-Year

0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88

C
om

m
it

S
co

re
(d)

A
pr

 2
00

3

M
ar

 2
00

4

F
eb

 2
00

5

Ja
n

20
06

D
ec

 2
00

6

N
ov

 2
00

7

O
ct

 2
00

8

S
ep

 2
00

9

A
ug

 2
01

0

Ju
l 2

01
1

Ju
n

20
12

M
ay

 2
01

3

A
pr

 2
01

4

M
ar

 2
01

5

F
eb

 2
01

6

Month-Year

0.68
0.72
0.76
0.80
0.84
0.88

C
om

m
it

S
co

re

(e)

Au
g

20
07

Ap
r 2

00
8

D
ec

 2
00

8

Au
g

20
09

Ap
r 2

01
0

D
ec

 2
01

0

Au
g

20
11

Ap
r 2

01
2

D
ec

 2
01

2

Au
g

20
13

Ap
r 2

01
4

D
ec

 2
01

4

Au
g

20
15

M
ay

 2
01

6

Month-Year

0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84

C
om

m
it

Sc
or

e

(f)

A
pr

 1
99

9

M
ay

 2
00

0

Ju
n

20
01

Ju
l 2

00
2

A
ug

 2
00

3

S
ep

 2
00

4

N
ov

 2
00

5

Fe
b

20
07

M
ar

 2
00

8

M
ay

 2
00

9

Ju
n

20
10

A
ug

 2
01

1

S
ep

 2
01

2

Ja
n

20
15

Month-Year

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

C
om

m
it

S
co

re

(g)

Fig. 2. Average commit message score for (a) PostgreSQL, (b) glibc, (c) Eclipse-CDT,
(d) GnuCash, (e) WordPress, (f) Firebug, (g) Rhino

Developer Dynamics and Syntactic Quality of Commit Messages 69

initial period is very small i.e. only two years, but for glibc it is very long. We can see a
surge in the number of contributors of glibc only after 2009 - the year its code base was
migrated from CVS to Git. Similar contributor pattern can be seen for the GnuCash
project as well whose code base shifted to Git in 2014. Shifting of source code
management to the Git repository perhaps reduced the barriers for new contributors to
enter. Git uses the fork and pull request model in which a contributor forks the code
branch to which it wants to contribute, makes changes to the clone, and then submits it.
When accepted, such contributions can be easily merged with the main branch. It
suggests that modern tools have improved the process of code contribution.

In case of Firebug, the pouring in of contributors stopped around April 2014. An
interesting observation is when we relate it to the commit activity of the project; it also
dried up around the same time. Firebug is an extension of the Mozilla Firefox web
browser for debugging and monitoring of the web pages rendered in the browser.
Project pages reveal that the Firebug project was abandoned during this period of time.
People unhappy with this development, as a result, chose Google Chrome over Mozilla
Firefox as they had earlier preferred Firefox just because of the Firebug plug-in
available with it.

Table 5. Trend in commit scores of the OSS projects

OSS project Regression equation Trend

PostgreSQL y = 0.62 + 0.00065x Increasing
glibc y = 0.61 + 0.00029x Increasing
Eclipse-CDT y = 0.57 + 0.0010x Increasing
GnuCash y = 0.79 − 0.0001x Decreasing
WordPress y = 0.82 − 0.0003x Decreasing
Firebug y = 0.83 − 0.002x Decreasing
Rhino y = 0.641 + 8.67E−5x Increasing

PostgreSQL glibc Eclipse-CDT GnuCash WordPress Firebug Rhino
0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f C
on

tri
bu

to
rs

 Median 25%-75% Non-Outlier Range Outliers Extremes

Fig. 3. Variation in the number of contributors of the OSS projects

70 K. K. Chahal and M. Saini

Ju
l 1

99
6

N
ov

 1
99

7

M
ar

 1
99

9

Ju
l 2

00
0

N
ov

 2
00

1

M
ar

 2
00

3

Ju
l 2

00
4

N
ov

 2
00

5

M
ar

 2
00

7

Ju
l 2

00
8

N
ov

 2
00

9

M
ar

 2
01

1

Ju
l 2

01
2

N
ov

 2
01

3

M
ar

 2
01

5

Month-Year

0
2
4
6
8

10
12
14
16
18
20

N
o.

 o
f D

ev
el

op
er

s

(a) (b)

Ju
n

20
02

Ju
n

20
03

Ju
n

20
04

Ju
n

20
05

Ju
n

20
06

Ju
n

20
07

Ju
n

20
08

Ju
n

20
09

Ju
n

20
10

Ju
n

20
11

Ju
n

20
12

Ju
n

20
13

Ju
n

20
14

Ju
n

20
15

Month-Year

0
4
8

12
16
20
24

N
o.

 o
f C

on
tri

bu
to

rs

(c)

N
ov

 1
99

7

Fe
b

19
99

Ju
n

20
00

S
ep

 2
00

1

D
ec

 2
00

2

M
ar

 2
00

4

Ju
n

20
05

S
ep

 2
00

6

D
ec

 2
00

7

M
ar

 2
00

9

Ju
n

20
10

S
ep

 2
01

1

D
ec

 2
01

2

M
ar

 2
01

4

Ju
n

20
15

Month-Year

0
2
4
6
8

10
12
14
16
18

N
o.

 o
f C

on
tri

bu
to

rs

(d)

A
pr

 2
00

3

M
ar

 2
00

4

F
eb

 2
00

5

Ja
n

20
06

D
ec

 2
00

6

N
ov

 2
00

7

O
ct

 2
00

8

S
ep

 2
00

9

A
ug

 2
01

0

Ju
l 2

01
1

Ju
n

20
12

M
ay

 2
01

3

A
pr

 2
01

4

M
ar

 2
01

5

F
eb

 2
01

6

Month-Year

0
5

10
15
20
25
30
35

N
o.

 o
f C

on
tr

ib
ut

or
s

(e)

A
ug

 2
00

7

A
pr

 2
00

8

D
ec

 2
00

8

A
ug

 2
00

9

A
pr

 2
01

0

D
ec

 2
01

0

A
ug

 2
01

1

A
pr

 2
01

2

D
ec

 2
01

2

A
ug

 2
01

3

A
pr

 2
01

4

D
ec

 2
01

4

A
ug

 2
01

5

M
ay

 2
01

6

Month-Year

0
2
4
6
8

10
12

N
o.

 o
f C

on
tr

ib
ut

or
s

(f)

A
pr

 1
99

9

M
ay

 2
00

0

Ju
n

20
01

Ju
l 2

00
2

A
ug

 2
00

3

S
ep

 2
00

4

N
ov

 2
00

5

Fe
b

20
07

M
ar

 2
00

8

M
ay

 2
00

9

Ju
n

20
10

A
ug

 2
01

1

S
ep

 2
01

2

Ja
n

20
15

Month-Year

0
1
2
3
4
5
6
7

N
o.

 o
f C

on
tri

bu
to

rs

(g)

Fe
b

19
89

Se
p

19
91

Ju
l 1

99
3

M
ay

 1
99

5

M
ar

 1
99

7

Ja
n

19
99

N
ov

 2
00

0

Se
p

20
02

Ju
l 2

00
4

M
ay

 2
00

6

M
ar

 2
00

8

Ja
n

20
10

N
ov

 2
01

1

Se
p

20
13

Ju
l 2

01
5

Month-Year

0
5

10
15
20
25
30
35
40

N
o.

 o
f C

on
tri

bu
to

rs

Fig. 4. Average number of contributors per month for (a) PostgreSQL, (b) glibc, (c)
Eclipse-CDT, (d) GnuCash, (e) WordPress, (f) Firebug, (g) Rhino

Table 6. Trend in number of contributors

OSS project Regression equation Trend

PostgreSQL y = 5.48 + 0.031x Increasing
glibc y = 0.064x − 2.05 Increasing
Eclipse-CDT y = 9.25 + 0.048x Increasing
GnuCash y = 2.95 + 0.022x Increasing
WordPress y = 0.098x − 0.15 Increasing
Firebug y = 4.12 + 0.006x Increasing
Rhino y = 2.12 − 0.0008x Decreasing

Developer Dynamics and Syntactic Quality of Commit Messages 71

5.2 Understanding the Contribution Pattern

In order to explore further the commit message quality of these projects, we decided to
analyze the volume and the quality of contribution of the individual contributors in
these OSS projects. The basis of this decision was the outcome of the previous studies
on the patterns of contribution in OSS projects that the bulk of the activity is due to a
relatively small number of contributors [8]. The social structure of OSS projects is
more notably known as the onion model [10] in which core members form the
innermost layer and peripheral contributors belong to the outer layers. Contributors of
OSS projects are put into core and periphery categories where core contributors are
supposed to possess better skills and have more authority on the project development
over the peripheral contributors.

Therefore in this regard, the first step is to find commit distribution among different
contributors of the OSS projects to identify the core group of contributors. Next, we
analyze their commit behavior from two perspectives – commitment (i.e. regularity to
commit), and the level of skill (i.e. commit message quality), as these are among the
factors that determine the status of a contributor in the social structure of an OSS
project.

Table 7 presents the total contribution (in %) of the different contributors of the
OSS projects. It shows the commit distribution of only top six contributors (as beyond
this number the individual contribution drops significantly in this dataset). Contribu-
tions of the rest (excluding the top six contributors) are merged under the head ‘others’.
PostgreSQL, glibc, and Rhino have approximately 80% contributions from top 6
contributors. Firebug has 80% contributions from top three contributors only. For the
rest three projects i.e. Eclipse-CDT, GnuCash, WordPress, contributions are more
widespread.

We know that, in this data set, Eclipse-CDT has the largest (median) number of
contributors. The contribution is also quite equally spread among all the contributors of
the project as per the data in Table 7. Majority of the Eclipse-CDT commits are from
non-core (external) contributors. That may be the reason for low commit quality in the
project. Though contribution pattern is uniformly spread across different contributors in
case of GnuCash and WordPress projects as well, but they have small team size. At the
same time, their commit message quality is good. A small number of contributors are

Table 7. Contributor wise commits distribution (in %)

OSS projects C1 C2 C3 C4 C5 C6 Other

PostgreSQL 34.53 26.52 7.35 3.62 3.33 3.1 21.55
glibc 40.58 24.18 4.72 4.14 3.56 3.36 19.46
Eclipse-CDT 10.11 7.9 6.43 5.64 5.56 5.52 58.84
GnuCash 16.66 14.84 12.65 7.93 7.57 7.57 32.78
WordPress 22.13 7.67 7.4 5.24 4.79 3.82 48.95
Firebug 46.8 19.66 14.37 6.08 2.99 1.29 8.81
Rhino 30.42 20.78 11.82 5.36 4.93 3.35 23.34

72 K. K. Chahal and M. Saini

responsible for the commit activity, work distribution is balanced, and commit message
quality is also good.

For the commitment or regularity of the commit activity, we tracked their commit
activity over the period of time. In Fig. 5(a–g), a horizontal line represents the period
when a contributor is active. If there is no contribution in a month, then there is a gap in
the line. We can observe in the figure that some of the lines represent continuous
activity indicating a regular activity, whereas in some cases there are gaps indicating
irregular activity.

It shows that a few contributors are more regular in commit activities. Only a few of
them contribute regularly to a repository. The commit activity of different contributors
overlaps at several points. Except Rhino, all other projects have at least one contributor
with regular commit activity of not less than six years. We can see that when multiple
contributors are active in a project at the same time, commit quality is better.

For the PostgreSQL project, commit quality improves after 2010 (see Fig. 2a).
Multiple committers are active around the same time. In case of the glibc project,

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. Committing behavior of the top 6 contributors of (a) PostgreSQL, (b) glibc, (c)
Eclipse-CDT, (d) GnuCash, (e) WordPress, (f) Firebug, (g) Rhino

Developer Dynamics and Syntactic Quality of Commit Messages 73

commit quality improves from 1999 to 2004, and after a dip, again from 2009 onwards
(see Fig. 2b). Look at the figures for the same time periods, multiple committers are
active at the same time. Same is the case for GnuCash and WordPress. In the GnuCash
project, commit quality decreases in 2014. At the same time, we can see in the Fig. 5d,
the number of active contributors also reduces. There is only one contributor after that
time period. In case of the WordPress project, commit quality goes down around 2012
(see Fig. 2e). Around the same time period, all the active contributors stop contributing
(Fig. 5e). Three new contributors join in, and their commits are perhaps not yet of good
quality. WordPress project follows a liberal procedure to let people join the project.
The Rhino project has the least activity in the group of analyzed projects. Committer
activeness is also scant for this project.

Therefore, based on the above discussion, we can say that a group of contributors
active at the same time in a project leads to high-quality contributions. It may be a
consequence of the uniform work distribution among multiple contributors. It could
also be due to the availability of peer-support which helps in gaining insights and
developing better ideas.

This study shows that as code contribution practices evolve, commit activity
improves. Pull request systems are found to be more efficient for source code man-
agement. Previous research also shows that process effectiveness ignites users’ interest
in an OSS project [11].

Open source projects have contributors with diverse skill sets. Individuals with
better skills are likely more powerful and, are the core contributors. Non-core con-
tributors are individuals who lack knowledge and experience in comparison to the core
contributors. External contributors can affect the commit message quality in two dif-
ferent ways. One is when non-core contributors contribute work with mediocre quality.
For example, the case of the Eclipse-CDT project, which has a uniformly spread
contributions from a large number of contributors. Second is when multiple commits
are committed as part of a single large commit as is the case of the PostgreSQL. In both
the cases, commit message quality suffers.

6 Limitations of the Study

This study considers the commits that are posted in the revision control tool Git. Any
changes performed in the source code, but not logged through the tool may not have
become part of the study.

Selection of the subject systems is biased towards projects with valid Git
repositories.

Though we developed objective measures to capture different aspects of a good
commit message, but certain features might have got skipped by both the authors.

74 K. K. Chahal and M. Saini

7 Conclusions and Future Work

In an OSS community, people are not committed to use or contribute to a particular
project regularly. Sometimes, the community support flourishes, and sometimes it
dwindles. The major objective of this study was to understand the impact of community
dynamics on the quality of contributions submitted to a source code management
system of an OSS project. A commit message quality model is proposed to evaluate the
syntactic quality of commit meta-data submitted by the developers of an OSS project.
GnuCash and WordPress have very high commit quality throughout in comparison to
other five projects analyzed in this study. As per our observation, it is due to the
balanced load among core developers of these projects who are active during the same
time period. Though Eclipse-CDT has the same trait as far as the contribution pattern is
concerned, but its commit quality is quiet low. We believe contribution from non-core
developers is the reason. Furthermore, choice of source code management for repos-
itory management also matters a lot in attracting contributors. We found that as projects
(e.g. glibc) shifted from traditional SCM systems to modern SCM such as Git, the code
contribution process improved. We aim to extend the work further to see the semantic
quality of commits. Another proposal is to see the commit message quality of different
types of commits such as corrective v/s non-corrective. Future work should also
investigate the relevance of commit message quality with quality of the code con-
tributed as part of commits.

References

1. Agrawal, K., Amreen, S., Mockus, A.: Commit quality in five high performance computing
projects. In: Proceedings of the 2015 International Workshop on Software Engineering for
High Performance Computing in Science, pp. 24–29. IEEE Press (2015)

2. Ahmed, I., Ghorashi, S., Jensen, C.: An exploration of code quality in FOSS projects. In:
Corral, L., Sillitti, A., Succi, G., Vlasenko, J., Wasserman, Anthony I. (eds.) OSS 2014.
IAICT, vol. 427, pp. 181–190. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55128-4_26

3. Arafat, O., Riehle, D.: The commit size distribution of open source software. In: Proceedings
of the HICSS 2009, Hawaii, USA, 5–8 January 2009, pp. 1–8. IEEE Computer Society
Press, New York (2009)

4. Azarbakht, A., Jensen, C.: Drawing the big picture: temporal visualization of dynamic
collaboration graphs of OSS software forks. In: Corral, L., Sillitti, A., Succi, G., Vlasenko,
J., Wasserman, Anthony I. (eds.) OSS 2014. IAICT, vol. 427, pp. 41–50. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55128-4_5

5. Beams, C.: How to write a git commit message (2016). http://chris.beams.io/posts/git-
commit/. Accessed 26 Mar 2016

6. Berdou, E.: Organization in Open Source Communities: At the Crossroads of the Gift and
Market Economies. Routledge, New York (2011)

7. Bird, C., Nagappan, N.: Who? where? what? examining distributed development in two
large open source projects. In: Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, pp. 237–246 (2012)

Developer Dynamics and Syntactic Quality of Commit Messages 75

http://dx.doi.org/10.1007/978-3-642-55128-4_26
http://dx.doi.org/10.1007/978-3-642-55128-4_26
http://dx.doi.org/10.1007/978-3-642-55128-4_5
http://chris.beams.io/posts/git-commit/
http://chris.beams.io/posts/git-commit/

8. Chełkowski, T., Gloor, P., Jemielniak, D.: Inequalities in open source software development:
analysis of contributor’s commits in apache software foundation projects. PLoS ONE 11, 4
(2016)

9. Marcolesco, D.J.: Writing good commit messages. https://github.com/erlang/otp/wiki/
Writing-good-commit-messages. Accessed 28 July 2016

10. David, P.A., Rullani, F.: Dynamics of innovation in an “open source” collaboration
environment: lurking, laboring, and launching FLOSS projects on SourceForge. Ind.
Corp. Change 17(4), 647–710 (2008)

11. Ghapanchi, A.H., Aurum, A., Daneshgar, F.: The impact of process effectiveness on user
interest in contributing to the open source software projects. J. Softw. 7(1), 212–219 (2012)

12. Gonzalez-Barahona, J.M., Robles, G., Herraiz, I., Ortega, F.: Studying the laws of software
evolution in a long lived FLOSS project. J. Softw. Evol. Process 26(7), 589–612 (2014)

13. Kolassa, C., Riehle, D., Salim, M.: The empirical commit frequency distribution of open
source projects. In: Proceedings of the 2013 Joint International Symposium on Wikis and
Open Collaboration, OpenSym 2013. ACM (2013)

14. Kunegis, J., Sizov, S., Schwagereit, F., Fay, D.: Diversity dynamics in online networks. In:
Proceedings of the 23rd ACM Conference on Hypertext and Social Media, USA (2012)

15. Kuechler, V., Gilbertson, C., Jensen, C.: Gender differences in early free and open source
software joining process. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.)
OSS 2012. IAICT, vol. 378, pp. 78–93. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33442-9_6

16. Mens, T., Goeminne, M.: Analysing the evolution of social aspects of open source software
ecosystems. In: Jansen, S., Bosch, J., Ahmed, F., Campbell, P. (eds.) Proceedings of the
Workshop on Software Ecosystems (IWSECO 2011) (2011)

17. Saini, M., Kaur, K.K.: Change profile analysis of open source software systems to
understand their evolutionary behavior. Front. Comput. Sci. (2016). https://doi.org/10.1007/
s11704-016-6301-0

18. Santos, E., Hindle, A.: Judging a commit by its cover: correlating commit message entropy
with build status on travis-CI. In: Proceedings of the 13th International Conference on
Mining Software Repositories (MSR 2016), pp. 504–507. ACM, New York (2016)

19. Seber, G., Lee, A.: Linear Regression Analysis, vol. 936. Wiley, Hoboken (2012)
20. Scott, W.R.: Score normalization as a fair grading practice. http://www.ericdigests.org/2003-

4/score-normilization.html. Accessed 20 July 2016
21. Souza, R., Silva, B.: Sentiment analysis of travis CI builds. In: 14th International Conference

on Mining Software Repositories (2017)
22. Martinez Torres, M.R., Toral, S.L., Perales, M., Barrero, F.: Analysis of the core team role in

open source communities. In: 2011 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), pp. 109–114. IEEE (2011)

23. Levin, S., Yehudai, A.: Boosting automatic commit classification into maintenance activities
by utilizing source code changes. In: Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering, Toronto, Canada, 8
November 2017, pp. 97–106 (2017)

76 K. K. Chahal and M. Saini

https://github.com/erlang/otp/wiki/Writing-good-commit-messages
https://github.com/erlang/otp/wiki/Writing-good-commit-messages
http://dx.doi.org/10.1007/978-3-642-33442-9_6
http://dx.doi.org/10.1007/978-3-642-33442-9_6
http://dx.doi.org/10.1007/s11704-016-6301-0
http://dx.doi.org/10.1007/s11704-016-6301-0
http://www.ericdigests.org/2003-4/score-normilization.html
http://www.ericdigests.org/2003-4/score-normilization.html

	Developer Dynamics and Syntactic Quality of Commit Messages in OSS Projects
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Model and Its Validation
	4 Data Collection
	5 Result and Analysis
	5.1 Does the Number of Contributors Affect the Commit Message Syntactic Quality?
	5.2 Understanding the Contribution Pattern

	6 Limitations of the Study
	7 Conclusions and Future Work
	References

