
Leaving Behind the Software History
When Transitioning to Open Source:

Reasons and Implications

Gustavo Pinto1, Igor Steinmacher2,3(B), and Marco Gerosa3

1 Federal University of Pará, Belém, PA, Brazil
gpinto@ufpa.br

2 Federal University of Technology, Campo Mourão, Paraná, Brazil
igorfs@utfpr.edu.br

3 Northern Arizona University, Flagstaff, USA
Marco.Gerosa@nau.edu

Abstract. Maintenance of software history is regarded to be one of the
most relevant features of Version Control Systems (VCS) and is well-
known to be indispensable for software developers. However, transition-
ing from proprietary to open source software poses a challenge: keeping
the software history might make available years of historical records and
internal matters from the company that built the software. On the other
hand, removing the software history may disturb the development and
may be harmful to new contributors. We conducted a survey with open
source software projects that made this shift to investigate (1) the rea-
sons why they removed the software history and (2) the challenges that
developers face with the lack of availability of software history. Among
the results, we found that the most common reason for removing the
software history is because it is entangled with proprietary code (the
fact that the history contains sensitive information appears next). Inter-
estingly, most core developers believed that the lack of software history
is, in the worst case, “a very minor inconvenience.”

1 Introduction

Maintaining software history, or commit history, is one of the main benefits of
Version Controls Systems (VCSs). Developers refer to the software history not
only when they need to navigate through changes related to their tasks, but
also to learn from previous mistakes or to decide what to do next [23]. Indeed,
a recent survey evidenced that software history is indispensable for developers:
61% of the respondents said to examine history up to a few times a day [4]. Prac-
titioners also report acquiring knowledge when examining software history [14].
In particular, the recent introduction of social coding hosting websites made
software history of open source software projects more accessible and under-
standable. As a consequence, even end users are taking advantage of the software

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 50–60, 2018.
https://doi.org/10.1007/978-3-319-92375-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_5&domain=pdf


Leaving Behind the Software History When Transitioning to Open Source 51

history [11]. Researchers also leverage software history to conduct several stud-
ies, for instance, regarding the impact of co-changes on software maintenance
activities [5], to estimate defects [20], or to fix bugs [3].

However, when open-sourcing their projects, several companies chose not to
open the commit history. If decision makers decide to keep the software history
with information from the entire development process, they might share sensitive
data that is only supposed to be accessed by internal members of the software
company (e.g., database passwords). However, if decision makers decide not to
keep the software history, they might introduce an additional burden for the
software development team (e.g., when dealing with maintenance tasks) or even
for new contributors interested in joining the new open source project.

This kind of trade-off is relevant since many software companies, even those
that were well-restrictive when it comes to publishing their software artifacts,
are now releasing their former proprietary projects under open source licenses.
As a notable example, in 2015, Apple released Swift, a programming language
designed to be the successor of Objective-C on mobile platforms, under Apache 2,
an open source software license. A quick search on HackerNews1 — a developer-
oriented news aggregator — reveals that there are more than 200 news regarding
proprietary software projects that became open source2.

To shed some light on the trade-offs of keeping the software history, we sur-
veyed proprietary software projects that made the shift to open-source and did
not open the software history. We selected 50 projects by searching at news
aggregators, mailing lists, or README files (details in Sect. 2.2). To understand
the reasons and challenges of working with a non-trivial, yet history-free open
source project, we posted questions in the project issue trackers or mailing lists.
Based on the responses, we characterized a variety of reasons that explain the
lack of software history, such as: “[the history] contains sensitive information,”
“housekeeping needed,” and “licensing and legal reasons.” Still, regarding the
challenges associated with the lack of software history, although some respon-
dents acknowledge the importance of such history, they reported to have very
few problems with it, as one maintainer mentioned, “I’m probably the person
most likely to access it, and I’d estimate that I use it only a few times per year”.

In summary, this paper makes the following main contributions:

– The reasons that lead project maintainers to leave behind the software history
when transitioning to open source;

– The discovery that some project maintainers do not value software history as
predicted by the literature.

2 Method

In this section, we describe our research questions (Sect. 2.1), the projects stud-
ied and how we found them (Sect. 2.2), and our survey design and application
(Sect. 2.3).
1 https://news.ycombinator.com/.
2 https://hn.algolia.com/?query=%22is%20now%20open%20source%22

https://news.ycombinator.com/
https://hn.algolia.com/?query=%22is%20now%20open%20source%22


52 G. Pinto et al.

2.1 Research Questions

To guide our research, we investigated the following important but overlooked
research questions:

RQ1: Why some projects do not open the software history when going open
source?
Why: Although one might believe that the reasons behind the removal of the
software history are straightforward (e.g., to protect sensitive data about the
company), this research question is intended to bring evidence to confirm or
refute this belief, as well as to uncover additional reasons.

RQ2: What are the challenges associated with the lack of software history?
Why: To understand the hidden challenges triggered by the lack of software
history. This better understanding can, in turn, motivate researchers and tool
makers to improve existing VCS tools in order to mitigate these challenges, or
even to avoid the need of leaving behind the software history.

2.2 Studied Projects

We selected a set of active and non-trivial proprietary software projects that
recently (i.e., no later than 2014) became open source. To identify these projects,
we used a convenience sampling approach: we searched in mailing lists, blog
posts, and newsletters for indication of whether a proprietary project became
open source. We double checked the first commit(s) for anything indicating
whether the source code was imported all at once or not. Such commit usu-
ally has an informative message and a high number of additions. For instance,
the first commit from project deepvariant was named “Initial release of Deep-
Variant”, and had 49,522 additions (0 deletions) in 270 files.3 We started this
search in June 2016 and proceeded until we found 50 instances of proprietary
projects that deleted their software history when transitioning to open source.
Among them were IndexTank from LinkedIn, caravel from Airbnb, msbuild
from Microsoft, and Haxl from Facebook. Throughout this process, we found
only eight projects that kept the software history. We sent open questions to the
50 selected projects and received answers from 35 projects, which had been con-
sidered for this study; the list of the 35 projects is available at Table 1. Although
the list of studied projects is not exhaustive, it contains a variety of projects,
with relation to their domains, programming language use, and size in terms of
lines of code. Figure 1 depicts some characteristics of the studied projects.

2.3 Survey

To better understand the reasons for the removal and the problems related with
the lack of history, we designed a survey aimed at gathering insights about the
importance of the lack of software history. We asked four open questions:

3 https://github.com/google/deepvariant/commit/8b84eab.

https://github.com/google/deepvariant/commit/8b84eab


Leaving Behind the Software History When Transitioning to Open Source 53

commits contributors releases stars forks issues prs

0
1

2
3

4
5

6

# 
O

cc
ur

re
nc

es
 (

in
 th

ou
sa

nd
s)

Fig. 1. Characteristics of the analyzed projects

Q1. Why did the software development team decide not to keep the software
history?
Q2. Did the core developers face any kind of problems when trying to refer to
the old history? If so, how did they solve these problems?
Q3. Did the newcomers face any kind of problems when trying to refer to the
old history? If so, how did they solve these problems?
Q4. How does the lack of software history impact understanding and evolution
of software?

We sent the questionnaire by creating issues in the issue trackers of the selected
projects. This approach has been successfully employed in recent related work
(e.g., [2]). Projects Tensorflow and Scratch closed the issues, suggesting other
means to send research inquiries.4,5 We, therefore, approached these projects
through their mailing lists (tensorflow indeed replied our research inquiries
through the mailing list: http://bit.ly/2qR3Mm1). When doing so, one mailing
list user contacted us, asking: “If you’d like another proprietary project that went
open source and left behind its history, card.io did that,” which we promptly
accepted. In total, we collect answers from developers of 35 open source projects
(totalizing 41 answers; we received up to four answers per project). For the
majority of projects (project ChakraCore is the only exception), the respondents
were within the top-10 most active ones.

To compile the survey results, we qualitatively analyzed the answers following
coding procedures [22]. The qualitative analysis was conducted independently by
the first two authors, followed by a consensus meeting. To enrich some of the
findings, we opted to use some quotes throughout the results section. Among
similar opinions, we chose to quote only the one we considered the most repre-
sentative for each case.

4 https://github.com/LLK/scratch-flash/issues/1112.
5 https://github.com/tensorflow/tensorflow/issues/2361.

http://bit.ly/2qR3Mm1
https://github.com/LLK/scratch-flash/issues/1112
https://github.com/tensorflow/tensorflow/issues/2361


54 G. Pinto et al.

Table 1. The list of projects studied. Project card.io has no issue id because the
maintainer personally got in touch with us by email. To see the response online, one
needs to concatenate the project’s URL + /issues/ + the issue id, resulting in, for
instance, https://github.com/Microsoft/msbuild/issues/621.

Projects URL Issue Id

msbuild github.com/Microsoft/msbuild 621

ChakraCore github.com/Microsoft/ChakraCore 1280

heron github.com/twitter/heron 1018

caravel github.com/airbnb/superset 470

fbctf github.com/facebook/fbctf 49

Tensorflow github.com/tensorflow/tensorflow 2361

jsaction github.com/google/jsaction 11

card.io github.com/card-io/card.io-dmz −−−
openwebrtc github.com/EricssonResearch/openwebrtc 611

manta github.com/joyent/manta 14

triton github.com/joyent/triton 202

Dshell github.com/USArmyResearchLab/Dshell 87

buffer-ios github.com/bufferapp/buffer-ios-image-viewer 42

django-knowledge github.com/zapier/django-knowledge 70

warp-ctc github.com/baidu-research/warp-ctc 42

codecombat github.com/codecombat/codecombat 3775

djinni github.com/dropbox/djinni 253

superpowers-core github.com/superpowers/superpowers-core 143

GameMaker github.com/gandrewstone/GameMaker 2

opentoonz github.com/opentoonz/opentoonz 640

magento2 github.com/magento/magento2 5654

IndexTank github.com/linkedin/indextank-engine 43

ShareLatex github.com/sharelatex/web-sharelatex 282

Haxl github.com/facebook/Haxl 52

reason github.com/facebook/reason 651

redex github.com/facebook/redex 164

torchnet github.com/torchnet/torchnet 28

torch github.com/facebook/fb.resnet.torch 86

draft-js github.com/facebook/draft-js 555

pinball github.com/pinterest/pinball 74

decoda github.com/unknownworlds/decoda 33

mrjob github.com/Yelp/mrjob 1356

deepvariant github.com/google/deepvariant 36

fsharp-support github.com/JetBrains/fsharp-support 6

escape github.com/ankyra/escape 4

https://github.com/Microsoft/msbuild/issues/621
http://github.com/Microsoft/msbuild
http://github.com/Microsoft/ChakraCore
http://github.com/twitter/heron
http://github.com/airbnb/superset
http://github.com/facebook/fbctf
http://github.com/tensorflow/tensorflow
http://github.com/google/jsaction
http://github.com/card-io/card.io-dmz
http://github.com/EricssonResearch/openwebrtc
http://github.com/joyent/manta
http://github.com/joyent/triton
http://github.com/USArmyResearchLab/Dshell
http://github.com/bufferapp/buffer-ios-image-viewer
http://github.com/zapier/django-knowledge
http://github.com/baidu-research/warp-ctc
http://github.com/codecombat/codecombat
http://github.com/dropbox/djinni
http://github.com/superpowers/superpowers-core
http://github.com/gandrewstone/GameMaker
http://github.com/opentoonz/opentoonz
http://github.com/magento/magento2
http://github.com/linkedin/indextank-engine
http://github.com/sharelatex/web-sharelatex
http://github.com/facebook/Haxl
http://github.com/facebook/reason
http://github.com/facebook/redex
http://github.com/torchnet/torchnet
http://github.com/facebook/fb.resnet.torch
http://github.com/facebook/draft-js
http://github.com/pinterest/pinball
http://github.com/unknownworlds/decoda
http://github.com/Yelp/mrjob
http://github.com/google/deepvariant
http://github.com/JetBrains/fsharp-support
http://github.com/ankyra/escape


Leaving Behind the Software History When Transitioning to Open Source 55

3 RQ1: Why Some Projects Do Not Open the Software
History?

While analyzing the answers, we observed that the lack of software history occurs
for several reasons (some respondents described more than one reason):

Entangled with proprietary code (11 occurrences). We found that some
projects became open source by open-sourcing a small part of a bigger project.
As one respondent mentioned “Extracting just the subfolder would have been dif-
ficult, and older versions would not have built.” Another respondent summarized
this process as: “first get something working, and then disentangle it from your
own proprietary code, configuration, etc.” The same respondent also suggested
that this might be a common pattern in OSS projects.

Contains sensitive information (11 occurrences). Some projects had
hard-coded sensitive information (e.g., credentials of a remote database) in the
source code, e.g., “DeepVariant was originally developed within Google, using
our internal systems. [...] the earliest commits may contain information we can-
not share, so upon releasing DeepVariant we squashed the history.” Although
one could simply delete the commits that alter this information, one respondent
mentioned that they “have to do an audit of the change descriptions to make
sure the descriptions are appropriate for being published publicly,” which they
were unwilling to do. As another respondent said: “Going through potentially
thousands of commits, realistically, means no one will take on the heroic task of
even open-sourcing the product.” Thus, the only way to effectively remove this
sensitive information is removing the entire software history.

Housekeeping needed (7 occurrences). As Fogel already anticipated [8],
prior to releasing a proprietary software as open source, one needs to exert
some effort toward improving code quality and documentation, as stated by one
respondent: “We cleaned out embarrassing or inappropriate comments, brought
the code up to OSS standards, and generally improved code hygiene, robust-
ness, and security.” However, it was unexpected that the amount of refactor-
ing required would prevent the software history from being useful, as another
respondent said: “the amount of reorganization that happened *just before* open-
sourcing meant that it would be harder to track the history than to just understand
the current state.”

Of less importance (4 occurrences). Contrary to recent studies (e.g., [4]),
some developers believed that the software history does not deserve such impor-
tance. One respondent suggested that “two of the primary motivations for keep-
ing history are egos and understanding bug fixes. [our project] was low on ego,
and we were careful to comment non-trivial or subtle bug fixes, so those two his-
torical artifacts weighed less heavily.” Another respondent highlighted another
aspect of this lack of importance: “remember that often something started as one
person’s random weekend project. Keeping a pristine history might not have been
a priority.”



56 G. Pinto et al.

License and legal reasons (4 occurrences). We also found non-technical and
legal reasons. As one respondent mentioned: “[Deleting the software history] also
made it much easier to get the lawyers at our parent company to agree to open
source it–instead of having to review the entire history for safety, they could
review just the current state.” Another reason is that some now open source
applications rely on proprietary code. Therefore, to maintain license compliance,
the developers have to maintain that code internally. Ultimately, one respondent
summarized this reason: “Legal and policy reasons created incentives to release
less source.”

Did not use a VCS before (3 occurrences). Some projects became open
source shortly after their bootstrap. Thus, there was no need to use any VCS,
as one respondent said, “there simply was no formal software history kept, and
direct cooperation between experienced developers was sufficient to develop it to
a releasable state.” For these projects, the first commit at GitHub was their first
use of a version control system.

Used another VCS before (3 occurrences). One respondent said that
“Before moving to GitHub, TensorFlow was developed on a system other than
Git, and transferring history was not straightforward.” Moreover, the same
respondent suggested that the effort needed for migrating the software history
from one VCS to another does not outweigh the benefits of keeping it: “[the]
value [of keeping the software history] was at best unclear, so we didn’t do it.”

4 RQ2: What Are the Challenges Associated
with the Lack of Software History?

Most of the project maintainers reported that they had few problems with the
lack of software history; as one respondent mentioned: “none of the core devel-
opers has wanted or needed to go look back through the history.” Another respon-
dent stated that “based on practical experience, a history [of ] more than a year is
used very rarely”, which might explain this behavior. Moreover, another respon-
dent suggested that institutional knowledge, i.e., the combined knowledge of the
many contributors to a project, can be an effective substitute for formal software
history, for instance: “communication between developers, documentation in and
outside of the source code, and the easily understood idiomatic expressions of the
Python language were/are sufficient to maintain project coherency.”

Even though these comments are in sharp contradiction with recent related
work [4], it does not suggest that the software history is unimportant. Indeed,
some respondents acknowledged its importance (e.g., “We very much agree that
the software history is extremely useful for developers”). Still, ten respondents
suggested that the original software history is internally maintained, as one
respondent highlighted: “we still use the non-git system internally and can refer
to history if we need to.” However, the respondents also suggested that the
internal software history is not actively used, as one respondent indicated: “The
old history is still available internally. I’m probably the person most likely to



Leaving Behind the Software History When Transitioning to Open Source 57

access it, and I’d estimate that I use it only a few times per year.” Nevertheless,
maintaining two software histories for the same project might require additional
effort, which can make it difficult to track down the origins of the code.

Similarly, we found that maintainers do not think that the lack of software
history is a significant problem for newcomers; all respondents shared this belief.
However, most of the respondents said that they are not aware of any problems.
Some newcomers may have faced problems, but not reported them, or gave up
contributing. Project maintainers often suggested different ways that newcomers
can mitigate this problem, as one respondent mentioned: “they have the code to
look at and also code which is non-obvious should anyway have comments, else
they could ask people who worked on the code before it was released.”

Finally, regarding software evolution, we found a remarkable uniformity
among the respondents; all of them believed that the lack of software history
does not greatly impact software evolution and understanding. In the worse
case, one respondent characterized the lack of history “as a very minor incon-
venience.” Even more interestingly, one respondent said that software history of
an active project loses importance over time: “For a fast-moving project, history
from more than half a year ago is not particularly valuable for development.”

Along with this line of thought, Codoban et al. [4] observed that software
developers need better tools to visualize software history. We believe that this
lack of tools to properly visualize software history might create the perception
that it is “not particularly valuable for development.” Ultimately, we observed
that the burden the lack of history may cause is “certainly not enough to outweigh
the costs of making it public,” which is particularly relevant to the software
projects under study.

5 Implications and Limitations

In this section we discuss some implications of our findings, and state the limi-
tations of this work.

5.1 Implications

Based on our findings, we discuss some implications for stakeholders. We
observed that some respondents mentioned a lack of tools to ease the migra-
tion between version control systems, for instance: “I think this one may have
been moving between source code repository technologies (SVN to Git) and the
tools did not work well enough.” Researchers and tool builders can propose a
new set of tools to better support the transition between VCSs. Additionally, we
observed that a common way to open-source a software project is by extracting
only a small part of an existing project. However, this activity might be extremely
difficult to conduct without appropriated tool support. As a result, developers
leave behind the software history. Researchers can explore better techniques to
extract only parts (or features) of the software while keeping only the relevant
software history. Since some respondents mentioned that old software history



58 G. Pinto et al.

is not particularly valuable for development, VCS designers can also propose
lightweight VCSs, in which only the N most recent changes are kept, where N is
based on project’s activity or user choice. Programming language designers can
also introduce programming language constructs that keep track of the evolution
of certain parts of the code.

5.2 Limitations

As any empirical study, this one has limitations and threats to validity. First, we
selected our projects by searching blog posts, newsletters, and README files;
the first author manually conducted this process. Due to the qualitative nature
of this approach (and the timeliness of a proprietary project becoming open
source), one could find different projects. Moreover, we used GitHub’s issues to
send out our questionnaires. Such public participation can also be a threat since
anyone could answer our questions. To mitigate this threat, we verified whether
the respondents were active project members. We found that the majority of the
respondents were among the top-10 most active contributors (only one respon-
dent was not in the top-10). However, nine respondents do not appear as a
contributor of the studied project. This might happen because the software his-
tory was removed and their contributions might have been removed as well.
By comparing the user’s affiliation and the project’s affiliation on GitHub, we
confirmed the affiliation of five of them. The remaining four did not state any
affiliation. Also, we observed that some open source projects do not use issues
for discussions. We, therefore, got in touch through the mailing list. Still, we
certainly did not discover all challenges and reasons behind the lack of software
history. Replications are necessary to fully understand the phenomenon. To facil-
itate replication, we made available the list of studied projects and the responses
received in our survey on the companion website: http://bit.ly/dataset-oss2018.

6 Related Work

Some studies focus specifically on GitHub’s features, which allow developers
to track activities and form detailed impressions of social and technical abili-
ties [12,24]. Community size, interest, and activeness have also being explored
[17,21]. Moreover, there is a recent growth of studies targeting proprietary
projects under development in social coding websites. Kalliamvakou et al. [10]
examined how proprietary software projects use GitHub. They found that these
projects apply practices such as reduced communication, independent work, and
self-organization. Some research has investigated how proprietary projects adopt
OSS-related practices to mitigate challenges related to the lack of communica-
tion and awareness [18,19]. More recently, we conducted some studies to under-
stand how the contributions from employees (the ones hired by a software com-
pany) differs from volunteers (the ones the contribute in their free time) [7,15].
Regarding licensing, some studies investigated licenses inconsistencies and vio-
lations [1,9,13], and other focus on license evolution [6,25,26].

http://bit.ly/dataset-oss2018


Leaving Behind the Software History When Transitioning to Open Source 59

The closest work is an in-depth investigation of the contribution charac-
teristics of Company-Owned OSS projects that kept the software history [16].
However, to the best of our knowledge, there is no study targeting the impact
of the lack of the software history on proprietary projects that made the shift
to open source software.

7 Conclusion

In this paper, we challenge an important belief related to the importance of
software history. After the identification of a set of projects that left behind
their entire software history after transitioning to open source, we deployed a
survey to better understand (1) the reasons that lead to this removal and (2)
the hidden challenges that arose due to its lack. We found eight reasons that
might justify the decision of removing the software history, such as “entangled
with proprietary code,” “housekeeping needed,” and “license and legal reasons.”
More interestingly, however, is the fact that when asked whether the lack of
software history might impact understanding and evolving of the software, some
respondents believed that the lack of history does not place any significant bur-
den on developers.

For future work, we plan to better understand the newcomers’ perception of
the lack of software history and contrast our results with the analysis of projects
that kept the history when migrating to open source.

Acknowledgments. We thank our respondents and the reviewers. This work is sup-
ported by CNPq #406308/2016-0; PROPESP/UFPA; and FAPESP #2015/24527-3.

References

1. Almeida, D.A., Murphy, G.C., Wilson, G., Hoye, M.: Do software developers under-
stand open source licenses? In: ICPC 2017, pp. 1–11. IEEE Press (2017)

2. Avelino, G., Passos, L., Hora, A., Valente, M.T.: A novel approach for estimating
truck factors. In: ICPC 2016, pp. 1–10 (2016)

3. Bachmann, A., Bird, C., Rahman, F., Devanbu, P., Bernstein, A.: The missing
links: bugs and bug-fix commits. In: FSE 2010, pp. 97–106 (2010)

4. Codoban, M., Ragavan, S.S., Dig, D., Bailey, B.: Software history under the lens:
a study on why and how developers examine it. In: ICSME 2015, pp. 1–10 (2015)

5. de Oliveira, M.C., Bonifácio, R., Ramos, G.N., Ribeiro, M.: Unveiling and reasoning
about co-change dependencies. In: Modularity 2016, pp. 25–36 (2016)

6. Di Penta, M., German, D.M., Guéhéneuc, Y.-G., Antoniol, G.: An exploratory
study of the evolution of software licensing. In: ICSE 2010, vol. 1, pp. 145–154.
IEEE (2010)

7. Dias, L.F., Steinmacher, I., Pinto, G.: Who drives company-owned OSS projects:
Employees or volunteers? In: V Workshop on Software Visualization, Evolution
and Maintenance, VEM, p. 10 (2017)

8. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software
Project, 1st edn. O’Reilly Media, Sebastopol (2013)



60 G. Pinto et al.

9. German, D.M., Di Penta, M., Davies, J.: Understanding and auditing the licensing
of open source software distributions. In: ICPC 2010, pp. 84–93. IEEE (2010)

10. Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., German, D.M.: Open source-
style collaborative development practices in commercial projects using GitHub. In:
ICSE 2015, pp. 574–585 (2015)

11. Kuttal, S.K., Sarma, A., Rothermel, G.: On the benefits of providing versioning
support for end users: an empirical study. ACM Trans. Comput.-Hum. Interact.
21(2), 9:1–9:43 (2014)

12. Marlow, J., Dabbish, L., Herbsleb, J.: Impression formation in online peer produc-
tion: activity traces and personal profiles in GitHub. In: CSCW (2013)

13. Meloca, R.M., Pinto, G., Baiser, L.P., Mattos, M., Polato, I., Wiese, I.S., German,
D.M.: A study of non-approved open-source licenses. In: MSR 2018. IEEE Press
(2018)

14. Pham, R., Singer, L., Liskin, O., Filho, F.F., Schneider, K.: Creating a shared
understanding of testing culture on a social coding site. In: ICSE 2013, pp. 112–
121 (2013)

15. Pinto, G., Dias, L.F., Steinmacher, I.: Who gets a patch accepted first? comparing
the contributions of employees and volunteers. In: 2018 11th IEEE/ACM Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE@ICSE 2018, Gothenburg, Sweden, May 2018

16. Pinto, G., Steinmacher, I., Dias, L.F., Gerosa, M.: On the challenges of open-
sourcing proprietary software projects. Empir. Softw. Eng. 1–27 (2018)

17. Pinto, G., Steinmacher, I., Gerosa, M.A.: More common than you think: an in-
depth study of casual contributors. In: SANER 2016, pp. 112–123 (2016)

18. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B., Odenwald, T.: Open collaboration within corporations using software forges.
IEEE Softw. 26(2), 52–58 (2009)

19. Sharma, S., Sugumaran, V., Rajagopalan, B.: A framework for creating hybrid-
open source software communities. Inf. Syst. J. 12(1), 7–26 (2002)

20. Steff, M., Russo, B.: Co-evolution of logical couplings and commits for defect esti-
mation. In: MSR 2012, pp. 213–216 (2012)

21. Steinmacher, I., Pinto, G., Wiese, I., Gerosa, M.A.: Almost there: a study on quasi-
contributors in open-source software projects. In: ICSE 2018 (2018)

22. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory, 3rd edn. SAGE, Thousand Oaks (2007)

23. Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S.: How do software engineers under-
stand code changes?: An exploratory study in industry. In: FSE 2012, pp. 51:1–
51:11 (2012)

24. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for
evaluating contribution in GitHub. In: ICSE 2014, pp. 356–366 (2014)

25. Vendome, C., Bavota, G., Di Penta, M., Linares-Vásquez, M., German, D., Poshy-
vanyk, D.: License usage and changes: a large-scale study on github. Empir Softw.
Eng. 22(3), 1–41 (2017)

26. Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German, D., Poshy-
vanyk, D.: Machine learning-based detection of open source license exceptions. In:
ICSE 2017, pp. 118–129 (2017)


	Leaving Behind the Software History When Transitioning to Open Source: Reasons and Implications
	1 Introduction
	2 Method
	2.1 Research Questions
	2.2 Studied Projects
	2.3 Survey

	3 RQ1: Why Some Projects Do Not Open the Software History?
	4 RQ2: What Are the Challenges Associated with the Lack of Software History?
	5 Implications and Limitations
	5.1 Implications
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References




