
123

14th IFIP WG 2.13 International Conference, OSS 2018
Athens, Greece, June 8–10, 2018
Proceedings

Open Source Systems:
Enterprise Software
and Solutions

IFIP AICT 525

Ioannis Stamelos
Jesus M. Gonzalez-Barahoña

Iraklis Varlamis
Dimosthenis Anagnostopoulos

(Eds.)

IFIP Advances in Information
and Communication Technology 525

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

TC 1 – Foundations of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

TC 10 – Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell, Plymouth University, UK

TC 12 – Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 – Human-Computer Interaction
Marco Winckler, University Paul Sabatier, Toulouse, France

TC 14 – Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

Ioannis Stamelos • Jesus M. Gonzalez-Barahoña
Iraklis Varlamis • Dimosthenis Anagnostopoulos (Eds.)

Open Source Systems:
Enterprise Software
and Solutions
14th IFIP WG 2.13 International Conference, OSS 2018
Athens, Greece, June 8–10, 2018
Proceedings

123

Editors
Ioannis Stamelos
Aristotle University of Thessaloniki
Thessaloniki
Greece

Jesus M. Gonzalez-Barahoña
King Juan Carlos University
Fuenlabrada
Spain

Iraklis Varlamis
Harokopio University of Athens
Tavros, Athens
Greece

Dimosthenis Anagnostopoulos
Harokopio University of Athens
Tavros, Athens
Greece

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-92374-1 ISBN 978-3-319-92375-8 (eBook)
https://doi.org/10.1007/978-3-319-92375-8

Library of Congress Control Number: 2018946627

© IFIP International Federation for Information Processing 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9682-460X
http://orcid.org/0000-0002-0876-8167
http://orcid.org/0000-0003-0747-4252

General Chair’s Message

I would like to welcome you to the proceedings of the 14th International Conference on
Open Source Systems (OSS 2018) held in Athens during June 8–10, 2018. OSS 2018
was an emblematic international conference in the area of open source systems and I
was much honored to serve this year as the general chair of this conference.

Apart from being an international forum where professionals from academia and
industry gather to share research and discuss all aspects of FLOSS and new FLOSS
initiatives, this year’s OSS conference also focused on practical experiences, as open
source enterprise software has reached a high level of popularity. An increasing number
of organizations recognize the benefits that FLOSS offers, bringing open source soft-
ware into their business.

I am also very proud of this year’s program, which included an exceptional line-up
of keynote speeches, by Tony Wasserman and Jörn Altman, and a collection of
technical papers.

This conference would not have been possible without the contributions and efforts
of many, not the least of whom are the program chairs (Iraklis Varlamis, Ioannis
Stamelos, and Jesus Gonzalez-Barahoña), the Program Committee members, our local
organizers (Konstantinos Tserpes, Dimitrios Michail, and George Dimitrakopoulos),
the Greek Open Technologies Alliance (GFOSS) for supporting OSS 2018 and Mara
Nikolaidi, the rector of Harokopio University of Athens. I would also like to thank
Tony Wasserman for his valuable support throughout all conference organizing
activities and most importantly, you, the members of the OSS community.

June 2018 Dimosthenis Anagnostopoulos

Program Chairs’ Message

It is a great pleasure to welcome you to the proceedings of the 14th International
Conference on Open Source Systems (OSS 2018). The range of papers published in
Open Source Systems: Open Source Enterprise Software and Solutions cover a range
of topics related to free, libre, and open source software (FLOSS), including: licensing,
organizational and management issues; best practices and case studies; quality and
reusability of projects, tools, and systems.

The OSS series of conferences aims to provide an international forum where a
diverse community of professionals from academia, industry, and the public sector, as
well as diverse FLOSS initiatives can come together to share research findings and
practical experiences. The conference is also a forum to provide information and
education to practitioners, identify directions for further research, and to be an ongoing
platform for technology transfer, no matter which form of FLOSS is being pursued.

We are very pleased to have received 38 contributions (34 full and four short paper
submissions) for the technical program, from which we included 14 full papers and one
short paper (representing an acceptance rate of 41% for full papers). Every paper
received on average three reviews by members of the Program Committee, and was
carefully discussed by Program Committee members until a consensus was reached.
Based on the reviews for each paper, one of the two program chairs initiated an online
discussion among the reviewers in order to reach consensus. The two program chairs
facilitated this process for the different papers. All decisions were based on the quality
of the papers, which considered the reviews and the outcome of the discussions.

The program also included two keynotes (by Anthony Wasserman and Jörn Alt-
mann), two tutorials and one “Working Session on Developing a FLOSS Body of
Knowledge.” We would like to give special thanks to all the people who allowed us to
present such an outstanding program, and we would especially like to mention: the
Program Committee members and additional reviewers; the community and publicity
chairs; the session chairs; all the authors who submitted their papers to OSS 2018; the
General Chair (Dimosthenis Anagnostopoulos), and the local organizers (Konstantinos
Tserpes, Dimitrios Michail, and George Dimitrakopoulos). We are also grateful to the
Greek Open Technologies Alliance (GFOSS) for supporting OSS 2018, the rector of
Harokopio University of Athens, Maria Nikolaidi, for her valuable assistance and a
number of other people without whom this conference would not have happened.

June 2018 Ioannis Stamelos
Jesus M. Gonzalez-Barahoña

Iraklis Varlamis

Preface

The 14 full and one short papers that were selected for presentation are organized
thematically as follows:

Organizational Aspects of OSS Projects

The work of Eckert [1] draws parallels between OSS projects and organizations and
explains with paradigms how the components of an organizational framework— people,
organization, and assets— map to the respective elements of an OSS community.

Wen et al. [2] investigate a 30-month government–academia partnership in order to
depict the differences in project management methods employed by the government
and by academia and provide best practices that favor team management in collabo-
rative works.

Ilin et al. [3] perform a study on founders, developers, and managers of 13
crowdfunding initiatives involving open source products to determine how commu-
nities, crowdfunding campaigns, and open source are associated. Their findings indi-
cate common characteristics among the three, a family-like relationship between the
community and the organizers, who perceive community as a success factor for their
crowdfunding campaigns.

OSS Project Validity

Kritikos and Stamelos [4] propose an evaluation approach based on the adaptation
of the City Resilience Framework to OSS with the aim of providing a strong theoretical
basis for evaluating OSS projects.

Pinto et al. [5] study the subject of opening the software history and investigate the
reasons behind removing the software history when open-sourcing and the challenges
that developers face with the lack of availability of software history.

Chalal and Saini [6] propose and validate a commit message quality model, and use
it to analyze seven OSS projects. Their analysis shows that when a small group of
contributors is active at the same time in a project, this leads to high syntactic quality
contributions.

Mining OSS Data

Kouzari et al. [7] perform an empirical process-mining research on the Koha open
source integrated library system and find that the bug closure process followed in the
project is very similar to the declared one but that variations do occur under specific
circumstances. In this way, they highlight the importance of process mining in OSS

projects in order to investigate the processes followed and identify outliers helping to
standardize and improve the processes and to enhance the collaboration among
members of the community.

Ribeiro et al. [8] present Kiskadee, a system to support the usage of static analysis
during software development by providing carefully ranked static analysis reports. The
software runs multiple static analyzers on the source code and then classifies and ranks
all the potential bugs by importance.

Caetano et al. [9] introduce an approach based on software issues to support
decision-making regarding open source software development activities such as release
planning and retrospectives. They form an issue dependency topology and apply a
PageRank algorithm to suggest an importance ranking of the software issues, which
can then be used by project leaders as an input to planning activities.

OSS in Public Administration

The work of Williams [10] presents how a FLOSS software, Open Source Internet
Research Tool, OSIRT, has the opportunity to flourish in the sector of law enforcement,
especially because of the cuts to budgets being made to law enforcement services.

Koloniaris et al. [11] record the current penetration and usage of free and open
source software in the municipalities of Greece and compare its potential with the
current state of computerization and the hardware level. They examine the possibility
of improving the services provided to the citizens as well as the cost aspects from the
use of OSS.

Vafopoulos et al. [12] propose a model conceptualization (Linked Open Economy,
LOE) capable of exploiting the massive amount and variety of open economic data that
are gradually becoming available by governments and open source communities. LOE
will create a common ground to serve as a catalyst in providing more efficient answers
in important economic activities.

OSS Governance

Harutyunyan et al. [13] present a study of ten companies with advanced FLOSS gover-
nance practices and conclude with a partial theory of FLOSS governance tool require-
ments by industry. By providing a detailed hierarchical list of these industry-relevant
requirements, they offer a unique insight into industry understanding of FLOSS gover-
nance tools and their expectations, alongside existing tools and their features.

OSS Reusability

Routis et al. [14] present the ReWeee Platform, a collaborative community platform,
developed exclusively with open source software. Using only OSS components, they
manage to develop the platform writing less than 10% code and reusing more than 20
software components.

X Preface

Kyriakou et al. [15] examine how Rust and Node.js and their respective tooling and
package repositories can be used for discovering existing OSS implemented in C/C++.
With an incremental methodology applied in a proof-of-concept situation, they show
the potential increase in discoverability, code quality, and portability, along with viable
performance degradation of portable binaries.

June 2018 Ioannis Stamelos
Jesus M. Gonzalez-Barahoña

Iraklis Varlamis
Dimosthenis Anagnostopoulos

Preface XI

Organization

Organizing Committee

General Chair

Dimosthenis Anagnostopoulos Harokopio University of Athens, Greece

Program Chairs

Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Jesus M. Gonzalez-Barahoña Universidad Rey Juan Carlos, Spain
Iraklis Varlamis Harokopio University of Athens, Greece

Local Organizing Chairs

Konstantinos Tserpes Harokopio University of Athens, Greece
Dimitrios Michail Harokopio University of Athens, Greece

Proceedings Chair

George Dimitrakopoulos Harokopio University of Athens, Greece

Community Chair

Nikos Roussos Greenpeace and Greek FOSS, Greece

Publicity Chairs

Europe

Stefano Zacchiroli Paris Diderot University and Inria, France

Asia

Akinori Ihara Nara Institute of Science and Technology, Japan

North America

Mei Nagappan Rochester Institute of Technology, USA

South America

Igor Steinmacher UTFPR, Brazil

Advisory Committee

Tony Wasserman Carnegie Mellon University, USA
Diomidis Spinellis Athens University of Economics and Business,

Greece
Gregorio Robles Universidad Rey Juan Carlos, Spain
Imed Hammouda Chalmers and University of Gothenburg, Sweden

Program Committee

Ampatzoglou Apostolos Aristotle University of Thessaloniki, Greece
Anagnostopoulos Ioannis University of Thessaly, Greece
Andreatos Antonios Hellenic Air Force Academy, Greece
Angelis Lefteris Aristotle University of Thessaloniki, Greece
Assaf Anwar KADDB, Jordan
Bibi Stamatia University of Western Macedonia, Greece
Boldyreff Cornelia University of East London, UK
Cánovas Izquierdo Javier Luis Open University of Catalonia, Spain
Capiluppi Andrea Brunel University, UK
Chatzigewrgiiou Alexandros University of Macedonia, Greece
Crowston Kevin Syracuse University, USA
Dasygenis Minas University of Western Macedonia, Greece
El Baamrani Khalid Université Cadi Ayyad, Morocco
Fermigier Stéfane Nuxeo, France
Ihara Akinori Nara Institute of Science and Technology, Japan
Kakarontzas George TEI of Thessaly, Greece
Karam Walid University of Balamand, Lebanon
Koch Stefan Johannes Kepler University, Austria
Kon Fabio University of São Paulo, Brazil
Labastida i Juan Ignasi University of Barcelona, Spain
Lanubile Filippo University of Bari, Italy
Lavazza Luigi Università degli Studi dell’Insubria, Italy
Lenarduzzi Valentina Tampere University of Technology, Finland
Louridas Panagiotis Athens University of Economics and Business,

Greece
Michail Dimitrios Harokopio University of Athens, Greece
Mikkonen Tommi Tampere University of Technology, Finland
Morasca Sandro Università degli Studi dell’Insubria, Italy
Nagappan Mei Rochester Institute of Technology, USA
Nikolaidi Maria Harokopio University of Athens, Greece
Ottom Mohammad Ashraf Yarmouk University, Jordan
Papaspyrou Nikolaos National Technical University of Athens, Greece

XIV Organization

Riehle Dirk Friedrich Alexander University Erlangen-Nürnberg,
Germany

Rizomiliotis Panagiotis University of the Aegean, Greece
Russo Barbara Free University of Bozen-Bolzano, Italy
Steinmacher Igor Universidade Tecnológica Federal do Paraná, Brazil
Taibi Davide University of Bozen-Bolzano, Italy
Theodoros Karounos Open Technologies Alliance (GFOSS), Greece
Travassos Guilherme COPPE/UFRJ, Brazil
Tserpes Konstantinos Harokopio University of Athens, Greece
Tzotsos Angelos National Technical University of Athens, Greece
Vassilakis Costas University of the Peloponnese, Greece
Vavalis Manolis University of Thessaly, Greece
Vlachos Vasileios TEI of Larissa, Greece
Voyiatzis Ioannis Athens University of Applied Sciences, Greece
Weber Jens University of Victoria, Canada
Zacchiroli Stefano Paris Diderot University, France
Zavras Alexis Intel Corporation, Germany

Sponsors

With the Support of

Organization XV

Contents

Organizational Aspects of OSS Projects

How Can Open Source Software Projects Be Compared
with Organizations?. 3

Remo Eckert

FLOSS Project Management in Government-Academia Collaboration 15
Melissa Wen, Paulo Meirelles, Rodrigo Siqueira, and Fabio Kon

Insights into the Trilateral Relationship of Crowdfunding Campaigns,
Open Source and Communities . 26

Patricija Ilin, Dimitrios Platis, and Imed Hammouda

OSS Projects Validity

Open Source Software Resilience Framework . 39
Apostolos Kritikos and Ioannis Stamelos

Leaving Behind the Software History When Transitioning to Open Source:
Reasons and Implications . 50

Gustavo Pinto, Igor Steinmacher, and Marco Gerosa

Developer Dynamics and Syntactic Quality of Commit Messages
in OSS Projects . 61

Kuljit Kaur Chahal and Munish Saini

Mining OSS Data

Process Mining for Process Conformance Checking in an OSS Project:
An Empirical Research . 79

Elia Kouzari, Lazaros Sotiriadis, and Ioannis Stamelos

Ranking Source Code Static Analysis Warnings for Continuous
Monitoring of FLOSS Repositories . 90

Athos Ribeiro, Paulo Meirelles, Nelson Lago, and Fabio Kon

Using PageRank to Reveal Relevant Issues to Support Decision-Making
on Open Source Projects . 102

Alessandro Caetano, Leonardo Leite, Paulo Meirelles, Hilmer Neri,
Fabio Kon, and Guilherme Horta Travassos

OSS in Public Administration

Creating and Integrating a FLOSS Product into UK Law Enforcement. 117
Joseph Williams

Possibilities of Use of Free and Open Source Software in the Greek
Local Authorities . 128

Stavros Koloniaris, George Kousiouris, and Mara Nikolaidou

Mining and Linking Open Economic Data from Governmental
Communities . 144

Michalis Vafopoulos, Stylianos Rallis, Ioannis Anagnostopoulos,
Vassilios Peristeras, Dimitrios Negkas, Ilias Skaros, and Aggelos Tzani

OSS Governance

Understanding Industry Requirements for FLOSS Governance Tools 151
Nikolay Harutyunyan, Andreas Bauer, and Dirk Riehle

OSS Reusability

Building a Social Platform Using FLOSS to Support Collaborative
Communities: The ReWeee Case Study . 171

Ioannis Routis, Anargyros Tsadimas, and Mara Nikolaidou

Improving C/C++ Open Source Software Discoverability by Utilizing
Rust and Node.js Ecosystems . 181

Kyriakos-Ioannis D. Kyriakou, Nikolaos D. Tselikas,
and Georgia M. Kapitsaki

Author Index . 193

XVIII Contents

Organizational Aspects of OSS Projects

How Can Open Source Software Projects
Be Compared with Organizations?

Remo Eckert(&)

University of Bern, Bern, Switzerland
remo.eckert@iwi.unibe.ch

Abstract. The existence of a community plays a central role in the develop-
ment of Open Source Software (OSS). Communities are commonly defined as a
group of people sharing common norms or values. The common interest of an
OSS project is obvious: to develop software under an OSS license. When we
look at the rather general definition of a community, we see that there is a
similarity to the term ‘organization’. This paper draws parallels between OSS
projects and the general elements of an organization and shows the different
elements comprised in an OSS community: people, organization and assets.
Each of those elements is enriched with examples from different research in the
corresponding OSS research stream and provides a broad overview of the ele-
ments of OSS projects. With the help of this comparison, research on OSS can
be made more focused and aligned with organizational research.

Keywords: Open Source Software � OSS governance � OSS framework

1 Introduction

The phenomenon of OSS has attained much attention over the years. In the academic
literature, different aspects of OSS and its development have been examined and dis-
cussed. Quite often, however, the terms used to describe the different phenomena
around OSS are not exactly defined and even more the relationship between different
concepts is not clarified. For example, OSS research often uses various different
concepts of a collective that works together to reach a common goal, such like com-
munity, project, organization, or foundation. This results in a situation where it is not
always clear what is exactly meant with the concepts, what do they comprise and how
they relate to each other.

The development of OSS takes place in an OSS project. By creating a three-phase
model, de Laat [1] describes the structural evolution of an OSS project. In phase one,
governance is spontaneous and explicit coordination and control are non-existent.
Phase two introduces internal governance with formal tools, e.g. division of roles,
training, modularization or decision-making. This enables an OSS project to be gov-
erned internally in order to increase efficiency and effectiveness as the community
grows. Eventually, in phase three, if the OSS project is successful and both companies
and other organizations wish to participate, there is a need for institutionalization (a
legal entity such as a foundation) to involve outside parties such as organizations [1].

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 3–14, 2018.
https://doi.org/10.1007/978-3-319-92375-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_1&domain=pdf

Governance within OSS projects has been widely discussed for many years [2–4].
One frequently used definition of OSS governance is “the means of achieving the
direction, control, and coordination of wholly or partially autonomous individuals and
organizations on behalf of an OSS development project to which they jointly con-
tribute” [5]. In order to better understand what governance of an OSS project is, one
needs first to understand the different elements of what is to be governed. However,
there is no research that attempts to explain those different elements of an OSS project.
Thus, there is a need for studies that contribute to a better understanding of the different
elements comprised within an OSS project. Therefore, this paper attempts to answer the
following question: What are the different elements comprised within an OSS project?
To answer our research question, we have developed a framework in which OSS
projects are compared to the elements of an organization.

The remainder of this paper is structured as follows: Sect. 2 shows the elements of
an organization because we perceive an OSS project as an organization in the most
generic sense. Section 3 adapts these elements to OSS projects and explains the dif-
ferent elements of an OSS project. Section 4 discusses the results and the implications
thereof for both theory and practice.

2 The Elements of an Organization

An organization is defined as an entity comprising multiple actors with a collective goal
[6]. According to organizational research, governance combines various mechanisms to
encourage people to do things that align with the organization’s goals [7].

According to Luhmann [6], there are three characteristics that highlight the orga-
nization: first, an organization can decide which people are part of it and which are not.
The organization can define restrictions and rules; failure to observe these rules can
result in exclusion. Second, organizations have goals and the decisions an organization
takes are oriented around these goals. Generally, organizations have several processes,
which can be structured either in management processes, in core processes or in
supporting processes. Core processes are central for an organization to earn money,
whereas management processes structure an organization to achieve those core pro-
cesses. Supporting processes are necessary to run the core processes, but are not central
to an organization [8]. Third, organizations have hierarchies, which regulate the
position of members within the organization. Processes and hierarchies enable an
organization to coordinate its people. Processes and hierarchies, both formal and
informal, therefore represent mechanisms of governance to align the behavior of people
according to organizational goals [7].

Besides people, common goals, roles, rules and structures, most - if not all -
organizations are in need of assets. Assets are tangible or intangible goods and can be
owned or controlled to produce and have a positive economic value. Moreover, they
can be converted into cash [9]. From an accounting viewpoint, an asset is a resource
controlled by an entity as a result of past events and from which future economic
benefits are expected to flow to the entity. An asset can be tangible or intangible [10].

The establishment of a legal entity helps to protect an organization from various
threats such as liability. Figure 1 combines Luhmann [6] and the accounting viewpoint

4 R. Eckert

and shows the different elements of an organization. Although Fig. 1 implies a
well-defined structure, each element is closely interlinked with the other elements.

3 Organizational Framework of OSS Projects

In the following subsections, we explain how each of the corresponding elements of
people, organization and assets can be understood in regards to OSS projects. The
following subsections show that the similarities between an organization and OSS can
be structured according to our organizational framework.

3.1 People

OSS projects are associations consisting of people who come together virtually in
pursuit of a common goal [11]. The motivation to contribute to an OSS project differs:
contributors to an OSS project can either be paid by an employer, or are volunteers. In
general, their reasons for contributing to OSS projects can be categorized as either
intrinsic or extrinsic motivation [12]. An action is extrinsically motivated when it is
performed in order to obtain some separable outcome, whereas an intrinsically moti-
vated action is carried out for the mere interest in or joy of performing it [13]. However,
the motivations behind employees and volunteers contributing to an OSS projects differ
[14]. A developer’s “itch worth scratching”, as stated by Raymond, might be not as
strong for a paid developer as for a volunteer [15]. Tasks such as project design,
coordination, testing, documentation and bug-fixing are usually less attractive for
volunteers and could therefore be carried out by hired people to ensure that these tasks
will be done properly [16]. We therefore distinguish between hired people and
volunteers.

Volunteers. The involvement of a community in an OSS project is a vital factor for
the success of the project because the community promotes the project and its devel-
opment [17, 18]. Therefore, attracting and gaining volunteers for a new OSS-project is
one of the main focus of community building. The community can ease the way in
which new volunteers can join the community by defining guidelines, compiling
mailing lists and wikis and answering project-related questions [19]. Moreover, the
software quality itself may increase the success rate of attracting new members,
whereas several methods of enhancing the quality of the code exist, ranging from code

Fig. 1. Organizational framework.

How Can OSS Projects Be Compared with Organizations? 5

refactoring to documentation [20]. On the technical side, increasing modularity of the
source code is one incentive for attracting new developers [21]. Another way to attract
more volunteers to an OSS project is to use an issue tracking system [22]. OSS projects
typically have an open issue tracker where developers and users of the software can
report bugs and feature requests [23]. With the help of issue trackers, potential new
contributors can get in touch with the existing community. In their literature review,
von Krogh et al. [12] distinguish between intrinsic, internalized extrinsic or extrinsic
motivations. As stated by von Krogh et al. [12], some motivations are by definition
extrinsic, but could be internalized by developers so that they are perceived as
self-regulating behavior rather than external impositions.

Hired Contributors. A high number of developers are paid by an employer for their
OSS efforts [24]. In a study by O’Mahony and Bechky [25], 63% of respondents were
paid by a corporate sponsor. In the GNOME project, tasks which are usually less
attractive to volunteers, such as project design and coordination, testing, documentation
and bug-fixing are carried out by employees [16]. People who are paid to contribute to
an OSS project may be paid directly by an organization which benefits from the
developed software. For example, Red Hat will make more money on support if Linux
is used more. Another example is Intel. It will sell more semiconductors if an operating
system is free, and a computer therefore costs less. As a result, such companies hope to
benefit from allocating their own employees to an OSS project [26, 27]. Berdou [28]
distinguishes between free sponsorship, clear mandate, OSS-friendly jobs and
sub-contracting. In free sponsorship, developers receive no clear instruction from their
employer about what they should work on. For the most part, they are former vol-
unteers, who are expected to work on more or less the same things they used to. In
contrast to free sponsorship, those who have a clear mandate from their employer, are
told what they ought to work on, such as integrating different aspects of the project into
company products, or building on their projects’ platform to create commercial
applications. OSS-friendly jobs are jobs where people are expected to develop pro-
prietary software, but are also allowed to spend part of their time working on OSS
projects. Their terms of work can be formal or informal and resemble part-time free
sponsorship. In sub-contracting, meanwhile, people are paid to solve a problem or
develop a specific application. This form could also include bounty programs (cash
reward offered for development) and self-employed developers. However, people can
also be paid by an OSS foundation, as it is in the GNOME Foundation, where the
executive director and an administrator, as well as other contractors, are paid via
membership fees to accelerate community growth and sustainability [29].

3.2 Organization

Some OSS projects, especially bigger ones, have formal membership rules and
agreements, such as the membership fee and bylaws with different roles and functions
[19]. Bylaws are rules established by the community to regulate itself in a structural
and in a procedural way. As an example, the bylaws of the Eclipse Foundation regulate
the overall purpose of the community, the powers and duties of the various roles within
the community, how and when members are elected and how meetings are organized.

6 R. Eckert

Moreover, the Eclipse Foundation bylaws explain how decisions are made, explain the
tasks of the different committees, councils, boards and the different forms of mem-
bership [30]. Contributions not only help the software to evolve, but also redefine the
role of the contributors, thereby changing the social dynamics of the community.
Consequently, project leaders and core members should focus not only on the evolution
of the software itself, but also on the creation of an environment and culture that fosters
and encourage new members to move toward the center of the OSS community. This
can happen by means of both formal and informal mechanisms. Such mechanisms
allow developers to work independently, by encouraging or helping other developers to
work in ways that are expected by the community [31].

Structures. Relationships with external groups, leadership and control are common
sources of conflict in an OSS project. In the worst case, these can even lead to a
breakdown or a software fork where a subgroup of contributors develop their own
version of the code [32, 33]. A structure regulates the coordination efforts between
different actors. Although there is no strict hierarchy in some OSS communities, their
structure is not completely flat. According to [34], roles and their associated influence
can be earned through contributions to the community. The resulting informal com-
munity structure, called the “onion-model” can be depicted as layers, where the roles
closer to the center (e.g. the project leader and core members) have a greater influence
than the roles in the outer layers (e.g. readers and passive users). The roles are not fixed
and can change over time, depending on the contributions of the community members
involved. The processes are in many cases more informal than formal, anyone can join
and the relations and roles change over time [35]. Roles do not imply authority, but
instead responsibility. Authority, as an example in the NetBeans community, is based
on reputation and respect [31].

O’Mahony and Ferraro [36] show how a community uses a formal bureaucratic basis
of authority to reinforce its meritocratic norms. They show how an OSS project designed
a governance system that combines a constitutional basis of authority with democratic
mechanisms to ensure control by the majority. A governance system shapes the way in
which project-wide decisions are made. Moreover, governance structures ensure that a
project could survive a change in leadership or crucial positions within the project. The
need to coordinate member activities and integrate their contributions necessitates a
structure. Analyzing the Debian project, O’Mahony and Ferraro [36] distinguish
between four different forms of governance, where the community develops from an
informal to a formal structure. In the Debian project, the de facto governance worked
well for the first five years. There were no formal means of governance. In the designing
governance phase, a formal definition of roles, rights and responsibilities was estab-
lished. The resulting governance system embraced two elements - the formal positional
authority and the limitation of that authority through democratic means. In phase three,
implementing governance, the new formal governance structure accepted by the com-
munity, was implemented. Candidates nominated themselves and the community could
give them their vote. In phase four, stabilizing governance, the leadership forms began
to reach settlement.

How Can OSS Projects Be Compared with Organizations? 7

Processes. Like an organization, an OSS project also has various processes, which can
be structured in core processes, management processes and support processes.

Core Processes. While many OSS projects are built by a small number of individuals,
in large projects, a significant number of individuals and firms contribute to the project
[5, 27, 37]. Formal rules about the development process ensure that operational tasks,
such as requirements elicitation, assignment of people to tasks, release control, etc. are
organized [5]. The Eclipse development process, for example, describes the principles
upon which the process should rely: openness, transparency and meritocracy. More-
over, each project is supposed to make a project plan available to the community at the
beginning of each development cycle (for each major and minor release) [38]. Another
core process is requirements engineering. German [16] illustrates how several leaders
in the GNOME project provide a list of requirements that the system should satisfy and
reference applications the project should replace. However, not all requirements are an
output of the leaders. Requirements for a new module or components are born from
discussions in mailing lists or on an issue tracker [22]. Requirements can be formulated
in a vision developed by community leaders; by imitating the features from reference
applications; by discussions in a mailing list; by providing a prototype with the
implemented requirements to work on; or by a post-hoc requirement where the
requirements are unknown to the rest of the community and are fulfilled by the
developer seeking those requirements. What those methods have in common is that
they are usually informal and prioritized by the leaders of the project, maintainers of the
module or by a foundation [37].

Management Processes. OSS projects, especially larger ones, exhibit formal structures
that can be described in bylaws. German [16] describes how the board of directors in
the GNOME community is elected. The board of directors is democratically elected by
the rest of the foundation members. In addition, the community has a rule that restricts
the power of a single organization by imposing a maximum number of board seats.
Moreover, board members must represent the interests of the GNOME community, not
the interests of their own organization. This rule, as stated, has already been enforced
several times in the past.

Supporting Processes. The developed software asset needs to be protected from
lawsuits from the legal entity that owns it [39]. Therefore, the OSS community needs to
ensure that contributions do not infringe third-party IP-rights. For example, a con-
tributor agreement ensures that the OSS community cannot be subject to a firm’s
ownership claim and is therefore seen in some OSS projects as a precondition to any
code contribution [25]. Another example of a supporting process is the funding pro-
cess. Since there are different forms of memberships and fees, the Eclipse Bylaws
define which people have to pay for becoming a member and how much [30]. The
secretary is responsible for invoicing membership fees and collecting fees, if necessary
with a dues notice. The annual report, which is publicly available, provides an over-
view of the financial situation of the Eclipse community in terms of revenues and
expenses. This report, which encompasses far more than just the financial situation,
also constitutes a supporting process.

8 R. Eckert

3.3 Assets

We distinguish between tangible and intangible assets, which are described in detail in
the following.

Tangible Assets. With respect to the development of software, the availability of an IT
Infrastructure is an important aspect. Gutwin et al. [40] found that distributed developers
do need to maintain awareness of one another, more specifically, both a general
awareness of the entire team and more detailed knowledge of the individuals they plan to
work with. The main mechanisms for maintaining this awareness of who is involved in
the project and what their activities are, are text-based communication tools that are
commonly used in OSS project, e.g. mailing lists, wikis or text chats. For specific
awareness, such as people’s expertise and activities, an operating IT Infrastructure with
a decentralized version control system such as GIT [41], bug trackers for submitting
bugs and feature requests, e.g. Bugzilla [22] and mailing lists [5, 36] are needed.
Collaboration among the participating members takes place with the help of these tools
and simplifies the effort required for distributed software development [16]. As rec-
ommended by German [16], communication should be carried out via a variety of tools.
All such tools, including the servers they run on, represent IT Infrastructure [16, 42].

If an OSS project wants to obtain contributions, it needs to market itself. This
includes hosting a website with the published source code of the OSS project.
Therefore, a webserver is required. As an example, a committer must have access to the
latest code base in order to insert changes into that base [43]. Normally, this is done
using a decentralized version control system (DVCS) such as GIT, which facilitates
collaboration among various developers [41]. However, a DVCS and a website need to
run on a server with guaranteed Internet access. As described by German [16], at the
level of community IT Infrastructure, servers as well as bandwidth are required to
communicate and share collaborators’ progress. As an example, the GNOME com-
munity relies upon donations from the Autonomous University of Mexico and other
organizations that provide its IT Infrastructure [16].

Because the majority of work in an OSS project is performed by globally dis-
tributed individuals, face-to-face meetings are rather rare. However, they help to better
communicate and resolve potential conflicts [40]. Consequently, infrastructure in the
form of rooms for meetings and an internet connection can help to reduce potential
communication problems. Moreover, if the OSS project has a legal entity, its address
can be used for corresponding purposes.

Intangible Assets. Although OSS does not fully meet the conditions to be included as
an asset in financial reports [44], it can be protected in different ways, such as intel-
lectual property rights (IPR), trademarks and brands. As stated by Fitzgerald [45],
trademarks or brands are alternative mechanisms to protect IPR in addition to the
license itself. A trademark can protect the OSS project’s reputation by preventing other
projects using their name or brand (e.g. a software fork with other goals than the main
project). The goal of a trademark is to prevent customers from confusion as to the
origins of the product or service [46]. A common practice among OSS foundations is to
own the copyright of the source code and related texts, as stated by Riehle [47].

How Can OSS Projects Be Compared with Organizations? 9

However, a legal basis for a growing community, especially when firms are
involved, is necessary. Firms are reluctant to donate code to a project without trans-
ferring responsibility for it. Without a legal owner, firms hesitate to donate code and
transfer responsibility for future maintenance. The establishment of a foundation offers
firms a legal entity to which ownership can be transferred [16, 25]. IPR are better
defined and more defensible when owned by a single legal entity as opposed to various
individuals. Having a single and central copyright holder means that it holds the asset
and therefore can protect it more easily compared to the situation when hundreds of
contributors hold the individual rights to their parts. Furthermore, a legal entity ensures
that volunteer contributors are protected against individual liability, and can enter into
agreements collectively and protect their code, trademarks, licenses and brands on their
behalf [39].

4 Discussion

Our organizational framework compares OSS projects with the typical elements of an
organization by showing the different elements exhibited by an OSS project and
comparing these with the elements of an organization. According to our framework, the
three main elements of an OSS project are people, organization and assets. Each of
those elements is enriched with examples from different research in the corresponding
OSS research stream and provides a broad overview of the elements of OSS projects.

The people dimension refers to the concept of a community. Contributors to an
OSS project therefore can either be hired or volunteers. OSS projects are associations
consisting of people who come together virtually in pursuit of a common goal [11].
Tasks such as the project design, coordination, testing, documentation and bug-fixing
are less attractive for volunteers and could therefore be carried out hired staff to ensure
that these tasks are done [16]. Due to the fact that, in some OSS projects, more than
half of the contributors are paid by a corporate sponsor [25], we see that OSS gov-
ernance is becoming increasingly important. A key aspect of OSS governance is
therefore managing the community [5].

What we call the organizational dimension as well as the asset dimension, can be
compared to the concept of governance. Similar to Markus [5], we see formal and
informal structures and norms as one of the main elements of OSS governance. Dif-
ferent projects have a varying degree of formalism, with some lacking any formal
descriptions at all on how decisions are made. However, there are a number of OSS
projects with formal rules and agreements, such the bylaws, with different roles and
functions [19]. When firms participate in an OSS project, the degree of formalism may
increase [25]. Similar to Markus [5], we see ownership of assets as one of the main
areas of OSS governance. Although OSS does not fully meet the conditions to be
included in financial reports as an asset [44], OSS projects often possess other assets,
such as IPR, trademarks, brands or IT Infrastructure [16, 45]. However, there are plenty
of opportunities for OSS projects to use IT Infrastructure from other organizations
without possessing them (e.g. GitHub as a DVCS).

What de Laat [1] describes as institutionalization in order to involve outside parties,
is what the legal entity is in our framework.

10 R. Eckert

In their paper, Lindman and Hammouda [48] illustrate the role of OSS foundations
and the relationships between OSS communities and other OSS foundations. Although
their unit of analysis was OSS foundations, the taxonomy can be compared to the
organizational framework in our study; each of their elements can also be found in our
organizational framework.

Our framework describes the different elements comprised within a single OSS
project and shows the broad variety and complex constellation surrounding such a
project. However, as an example, an OSS community may have different projects (e.g.
different software products with different goals) and therefore a project does not cor-
respond to the organization (the three dimensions of our framework). Moreover, an
umbrella organization such as the Linux Foundation may offer their legal entity in order
to protect the project and to offer services relating those three dimensions of our
framework. Therefore, the legal aspect of the organizations does not need to correspond
to the project. We see our framework as a first step to better understand and differ-
entiate the concepts and different elements in order to ask more specific questions
relating OSS research.

Our organizational framework broadens the view of Riehle and Berschneider [49]
that shows 3 different ways in which a mature OSS project can govern itself in the
future: (1) continue as is, (2) create its own legal entity or (3) affiliate with an existing
OSS foundation. In our view, in addition to these 3 forms, an “in-between” solution
involving collaboration with different OSS foundations is also possible. Such collab-
oration can be in all areas of our organizational framework or in specific areas only.
This is the case in the LibreOffice community which has its own legal entity (The
Document Foundation), but buys some services in the funding process from another
foundation [50].

For practitioners, our framework will help to provide a better understanding of the
structure an OSS project can have and how the different elements can be organized,
similar to an organization. Moreover, our framework can provide practitioners valuable
insights on several managerial aspects relating to OSS governance.

References

1. De Laat, P.B.: Governance of open source software: state of the art. J. Manag. Gov. 11, 165–
177 (2007)

2. De Noni, I., Ganzaroli, A., Orsi, L.: The evolution of OSS governance: a dimensional
comparative analysis. Scand. J. Manag. 29, 247–263 (2013)

3. Franck, E., Jungwirth, C.: Reconciling rent-seekers and donators–the governance structure of
open source. J. Manag. Gov. 7, 401–421 (2003)

4. Schaarschmidt, M., Walsh, G., von Kortzfleisch, H.F.O.: How do firms influence open
source software communities? A framework and empirical analysis of different governance
modes. Inf. Organ. 25, 99–114 (2015)

5. Markus, M.L.: The governance of free/open source software projects: monolithic,
multidimensional, or configurational? J. Manag. Gov. 11, 151–163 (2007)

6. Luhmann, N.: Funktionen und Folgen formaler Organisation. Duncker & Humblot, Berlin
(1964)

How Can OSS Projects Be Compared with Organizations? 11

7. Choudhury, V., Sabherwal, R.: Portfolios of control in outsourced software development
projects. Inf. Syst. Res. 14, 291–314 (2003)

8. Becker, J., Kahn, D.: The process in focus. In: Becker, J., Kugeler, M., Rosemann, M. (eds.)
Process Management: A Guide for the Design of Business Processes, pp. 1–12. Springer,
Heidelberg (2003)

9. O’Sullivan, A., Sheffrin, S.M.: Economics: Principles in Action. Pearson Prentice Hall,
Upper Saddle River (2003)

10. IFRS Foundation: International Financial Reporting Standards. http://www.ifrs.org/issued-
standards/list-of-standards/. Accessed 19 Jan 2018

11. Rheingold, H.: The Virtual Community: Homesteading on the Electronic Frontier. MIT
Press, Cambridge (2000)

12. von Krogh, G., Haefliger, S., Spaeth, S., Wallin, M.W.: Carrots and rainbows: motivation
and social practice in open source software development. MIS Q. 36, 649–676 (2012)

13. Deci, E.L., Ryan, R.M.: The general causality orientations scale: self-determination in
personality. J. Res. Pers. 19, 109–134 (1985)

14. Roberson, Q.M., Stewart, M.M.: Understanding the motivational effects of procedural and
informational justice in feedback processes. Br. J. Psychol. 97, 281–298 (2006)

15. Raymond, E.S.: The Cathedral & The Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly Media Inc., Sebastopol (2001)

16. German, D.M.: The GNOME project: a case study of open source, global software
development. Softw. Process Improv. Pract. 8, 201–215 (2003)

17. Bagozzi, R.P., Dholakia, U.M.: Open source software user communities: a study of
participation in Linux user groups. Manag. Sci. 52, 1099–1115 (2006)

18. Iivari, N.: Empowering the users? A critical textual analysis of the role of users in open
source software development. AI Soc. 23, 511–528 (2009)

19. von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization in open
source software innovation: a case study. Res. Policy 32, 1217–1241 (2003)

20. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source-growing an open source ecosystem. J. Syst. Softw. 85, 1467–1478 (2012)

21. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex software
designs: an empirical study of open source and proprietary code. Manag. Sci. 52, 1015–1030
(2006)

22. Heppler, L., Eckert, R., Stuermer, M.: Who cares about my feature request? In: Crowston,
K., Hammouda, I., Lundell, B., Robles, G., Gamalielsson, J., Lindman, J. (eds.) OSS 2016.
IAICT, vol. 472, pp. 85–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39225-7_7

23. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the 28th
International Conference on Software Engineering, pp. 361–370. ACM, New York (2006)

24. Hars, A., Ou, S.: Working for free? Motivations of participating in open source projects. In:
Proceedings of the 34th Annual Hawaii International Conference on System Sciences,
pp. 25–39. IEEE (2001)

25. O’Mahony, S., Bechky, B.A.: Boundary organizations: enabling collaboration among
unexpected allies. Adm. Sci. Q. 53, 422–459 (2008)

26. Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and firms to
take part in the open source movement: from community to business. Knowl. Technol.
Policy 18, 40–64 (2006)

27. Lerner, J., Tirole, J.: Some simple economics of open source. J. Ind. Econ. 50, 197–234
(2002)

12 R. Eckert

http://www.ifrs.org/issued-standards/list-of-standards/
http://www.ifrs.org/issued-standards/list-of-standards/
http://dx.doi.org/10.1007/978-3-319-39225-7_7
http://dx.doi.org/10.1007/978-3-319-39225-7_7

28. Berdou, E.: Insiders and outsiders: paid contributors and the dynamics of cooperation in
community led F/OS projects. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G. (eds.) OSS 2006. IIFIP, vol. 203, pp. 201–208. Springer, Boston, MA (2006).
https://doi.org/10.1007/0-387-34226-5_20

29. GNOME Foundation: GNOME Foundation - Fiscal Year 2016 Annual Report. https://www.
gnome.org/wp-content/uploads/2017/07/GAR2016-web.pdf. Accessed 19 Jan 2018

30. The Eclipse Foundation: Bylaws of Eclipse Foundation, Inc. https://www.eclipse.org/org/
documents/Eclipse%20BYLAWS%202011_08_15%20Final.pdf. Accessed 19 Jan 2018

31. Jensen, C., Scacchi, W.: Collaboration, leadership, control, and conflict negotiation and the
netbeans.org open source software development community. In: System Sciences, p. 196b.
IEEE (2005)

32. Gamalielsson, J., Lundell, B.: Sustainability of open source software communities beyond a
fork: how and why has the LibreOffice project evolved? J. Syst. Softw. 89, 128–145 (2014)

33. West, J., O’Mahony, S.: Contrasting community building in sponsored and community
founded open source projects. In: Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, HICSS 2005 (2005)

34. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns of
open-source software systems and communities. In: Proceedings of the International
Workshop on Principles of Software Evolution, pp. 76–85. ACM (2002)

35. Dahlander, L., Magnusson, M.G.: Relationships between open source software companies
and communities: observations from Nordic firms. Res. Policy 34, 481–493 (2005)

36. O’Mahony, S., Ferraro, F.: The emergence of governance in an open source community.
Acad. Manag. J. 50, 1079–1106 (2007)

37. Scacchi, W.: Understanding the requirements for developing open source software systems.
IEE Softw. Proc. 149, 24–39 (2002)

38. The eclipse foundation: eclipse development process. https://www.eclipse.org/projects/dev_
process/development_process.php. Accessed 19 Jan 2018

39. O’Mahony, S.: Guarding the commons: how community managed software projects protect
their work. Res. Policy 32, 1179–1198 (2003)

40. Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed software develop-
ment. In: Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work, pp. 72–81 (2004)

41. Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., German, D.M.: Open source-style
collaborative development practices in commercial projects using Github. In: Proceedings of
the 37th International Conference on Software Engineering, pp. 574–585. IEEE Press (2015)

42. Ducheneaut, N.: Socialization in an open source software community: a socio-technical
analysis. Comput. Support. Coop. Work (CSCW) 14, 323–368 (2005)

43. Jørgensen, N.: Putting it all in the trunk: incremental software development in the FreeBSD
open source project. Inf. Syst. J. 11, 321–336 (2001)

44. García-García, J., Alonso de Magdaleno, M.I.: Valuation of open source software: how do
you put a value on free? Revista de Gestão, Finanças e Contabilidade 3 (2013)

45. Fitzgerald, B.: The transformation of open source software. MIS Q. 30, 587–598 (2006)
46. Anderson, H., Dare, T.: Passport without a Visa: open source software licensing and

trademarks. Int. Free Open Source Softw. Law Rev. 1, 99–110 (2010)
47. Riehle, D.: The economic case for open source foundations. Computer 43, 86–90 (2010)
48. Jung, Y., Kim, J., Shin, J., Yi, K.: Taming false alarms from a domain-unaware C analyzer

by a Bayesian statistical post analysis. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS,
vol. 3672, pp. 203–217. Springer, Heidelberg (2005). https://doi.org/10.1007/11547662_15

How Can OSS Projects Be Compared with Organizations? 13

http://dx.doi.org/10.1007/0-387-34226-5_20
https://www.gnome.org/wp-content/uploads/2017/07/GAR2016-web.pdf
https://www.gnome.org/wp-content/uploads/2017/07/GAR2016-web.pdf
https://www.eclipse.org/org/documents/Eclipse%20BYLAWS%202011_08_15%20Final.pdf
https://www.eclipse.org/org/documents/Eclipse%20BYLAWS%202011_08_15%20Final.pdf
https://www.eclipse.org/projects/dev_process/development_process.php
https://www.eclipse.org/projects/dev_process/development_process.php
http://dx.doi.org/10.1007/11547662_15

49. Riehle, D., Berschneider, S.: A model of open source developer foundations. In: Hammouda,
I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IAICT, vol. 378, pp. 15–28.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33442-9_2

50. Software in the Public Interest, Inc. http://www.spi-inc.org/projects/libreoffice. Accessed 19
Jan 2019

14 R. Eckert

http://dx.doi.org/10.1007/978-3-642-33442-9_2
http://www.spi-inc.org/projects/libreoffice

FLOSS Project Management
in Government-Academia Collaboration

Melissa Wen, Paulo Meirelles, Rodrigo Siqueira(B), and Fabio Kon

FLOSS Competence Center, University of São Paulo, São Paulo, Brazil
{wen,paulormm,siqueira,fabio.kon}@ime.usp.br

Abstract. Government and academia can collaborate on bringing inno-
vation and filling design-reality gaps in e-government projects. How-
ever, differences in project management methods employed by the orga-
nizations is often a challenge for collaborative works. Bearing that in
mind, we investigated a 30-month government-academia partnership to
find appropriate ways to get around this obstacle. From the analysis of
post-mortem data, we present a set of best practices based on FLOSS
and agile software development approaches that favors team manage-
ment in government-academia collaborations in e-government develop-
ment projects.

Keywords: Open source software · Free software
Project management

1 Introduction

E-government projects differ from others due to their complexity and extension
[2]. They are complex because they combine development, innovation, infor-
mation & communications technologies, politics, and social impact. They are
extensive, however, regarding their scope, target audience, organizational size,
time, and the corresponding resistance to change. Developing an innovative
e-government project that meets the needs of society is a issue that may be
addressed alternatively through collaborative projects between government and
academia. This collaborative work has challenges such as organizing the collab-
oration project, aligning goals, synchronizing the pace of between government
and academia, and overcoming the failure trend of e-government projects [7].

One of the leading causes of e-government project failure is poor project man-
agement [2]. In this sense, the proper management of the collaboration project
should be a relevant concern when government and academia combine efforts to
develop an e-government solution. Academia commonly works on cutting-edge
development methodologies while the government still relies on traditional tech-
niques. Changing the development process of one of this large-size institutions
represents an organizational disturbance with impacts on structure, culture, and

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 15–25, 2018.
https://doi.org/10.1007/978-3-319-92375-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_2&domain=pdf

16 M. Wen et al.

management practices [10]. As a result, government and academia have to har-
monize their view to increasing the chances of success in projects with tight
deadlines and short budgets.

We have investigated the adoption of recommended community standards
from Free/Libre and Open Source Software (FLOSS) and agile values as a
strategy to harmonize different management approaches, due to the plurality
of FLOSS ecosystems and the diversity favored by agile methodologies. Open
communication, project modularity, the community of users, and fast response
to problems are just a few of the FLOSS ecosystem practices [5,15]. Individ-
uals and interactions, working software, customer collaboration, responding to
change are the values agile development [3]. With this in mind, FLOSS and agile
practices may improve the cooperation of distinct teams.

In this work, we examine the empirical method developed during 30 months of
a government-academia project that helped to harmonize the differences between
both organization management cultures. We discuss both quantitative and qual-
itative analyses of the benefits of FLOSS and agile practices in an e-government
project. We identify and trace the best practices based on FLOSS ecosystems
and agile methodology. We collect and analyze data from the project reposi-
tory. Finally, we conduct a survey target at projects participants to find their
perception around the set of best practices, and which of them are useful to
government-academia collaboration. In doing so, we aim to help academia bet-
ter understand critical issues they will be confronted with when engaging in a
government-academia software project.

2 Related Work

Discussions on how to introduce new management methods into an organization
are present in several works. Nerur et al. recognized critical issues concerning the
migration from traditional to agile software development by comparing practices
of both methodologies [10]. The authors point out managerial, organizational,
people, process, and technological issues to be rethought and reconfigured in an
organization for a successful migration. Strode et al. investigated the relationship
between the adoption of agile methodologies and organizational culture [14] by
evaluating nine projects. They identified a set of six factors directly linked to agile
methods and concluded that the presence of these aspects in an organization is
proportional to the value of agile methodologies usage for their projects. As Nerur
et al., Strode et al. also said that the adoption of agile development techniques
does indeed produce changes in an organization’s culture.

Some works also discuss how academia can collaborate with the industry in
the management of software projects. Chookittikul et al. evaluated the increasing
use of the agile techniques in software development companies in Thailand. The
authors suggested that universities should create curricula that develop in their
undergraduate students practical skills required by industry (mainly agile prac-
tices) to promote growth in local software businesses [6]. Sandberg et al. report
the use of Scrum in an industry-academia research consortium (involving ten
industry partners and five universities in Sweden) [12]. Through a case study,

FLOSS Project Management in Government-Academia Collaboration 17

they demonstrate that being able to bring together the meaningful activities
of the stakeholders is essential to the success of collaborative research between
industry and academia.

Complex and large-scale organizations, such as the public administration,
have to deal with multiple project variables. Alleman et al. describe a production
deployment for the US government, focusing on the methodology applied to
address long-term planning and value estimation [1]. In the Brazilian context,
Melo et al. [9] investigates the growing adoption of agile methodologies in this
country’s IT industry. The results of their survey highlight some mismatch that
companies faces when developing software for public administration.

Several works tried to highlight the FLOSS practices, while others attempted
to determine the relationship between FLOSS practices and agile methods.
Capiluppi et al. examined about 400 projects to find FLOSS project proper-
ties [5]. In their work, they extracted generic characterization (project size, age,
license, and programming language), analyzed the average number of people
involved in the project, the community of users, and documentation character-
istics. Warsta et al. found differences and similarities between agile development
and FLOSS practices [15]. The authors argued that FLOSS development may
differ from agile in their philosophical and economic perspectives, on the other
hand, both share the definition of work. Finally, Eric Raymond describes many
of his experiences and decisions in his work with FLOSS communities [11], and
his report in 1999 has many intersections with the agile manifesto in 2001.

This paper differs itself from others by studying the government-academia
collaboration for developing a production-level solution. From questionnaires,
interviews, and development activities data, we extracted best practices that
helped to harmonize the interactions between two different development process
and satisfied the management process of both sides. We analyzed the decisions
made from the FLOSS and agile perspectives.

3 Research Design

We studied practical alternatives to harmonize the software project lifecycle
when confronting different development processes from crucial stakeholders. We
are interested in the relationship between government and academia from the
project management perspective, without the enforcement of changing their
internal processes. We present two research questions that guided this work:

RQ1. How to introduce FLOSS and agile best practices into government-
academia collaboration projects?

RQ2. What practices favor effective team management in government-academia
collaborative projects?

To answer these questions, we used the case study as research method. We
selected as a case the evolution of the Brazilian Public Software (SPB) portal [8], a
government-academia collaborative project based on FLOSS systems. To validate
our answers, we covered three different points of view: developers, government
agent, and data collected from the project repository.

18 M. Wen et al.

3.1 The Case Study

The project to evolve the SPB portal was a partnership between government
and academia held between 2014 and 2016 [8]. The old version of SPB suffered
from maintenance problems and design-reality gaps. In this sense, the Ministry
of Planning (MPOG) decided to join the University of Braśılia (UnB) and the
University of São Paulo (USP) to develop a new platform. This platform had
the primary requirement to be based on existing FLOSS projects and integrate
multiple systems into one, providing the end user with a unified experience.

In short, the SPB portal evolved into a Collaborative Development Environ-
ment (CDE) [4]. It was a novelty in the context of the Brazilian government,
due to the technologies employed and its diverse features, which includes social
networking, mailing lists, version control system, and source code quality moni-
toring. All software is integrated using a system-of-systems framework [8]. These
characteristics led the project to interact with different FLOSS projects and
communities.

The platform development took place at the Advanced Laboratory of Pro-
duction, Research, and Innovation in Software Engineering (LAPPIS/UnB) and
the FLOSS Competence Center at USP (CCSL/USP), both with experience in
FLOSS development. Undergraduate interns, IT professionals, and professors
formed a partially distributed development team. Their activities followed the
workflow of biweekly sprints and 4-month releases.

On the managerial aspect, at the project beginning, the collaboration man-
agement and strategic discussions happened only once a month, when project
leaders and MPOG directors met in person at the ministry’s headquarters.
Table 1 summarizes the organizational differences in both involved sides.

Table 1. Differences between academia and government sides.

Characteristics Academia Goverment
Responsibilities Platform development activites Contracts and collaboration management

Team size

42 undergraduate interns
2 professors
6 senior developers with significant
experience in FLOSS projects
2 Designers (UX specialists)

1 director
1 coordinator
2 requirement analysts

Workplace LAPPIS at UnB and CCSL at USP MPOG headquarters
Management approaches FLOSS practices and Agile values Mindset from RUP, CMMI, and PMBOK

During the course of the project, we were unable to fully extract all the
possible benefits from this workflow. Conflicts between the internal management
processes and differences in pace and goals of each institution were compromising
the platform development. To improve the project management process and
reducing the mismatch between government and academia, professors, with the
senior developers’ collaboration, incrementally employed a set of best practices
based on FLOSS and agile values.

Although the government initiative to work with the university, they had a
natural barrier to accept the non-traditional development approaches. The devel-
opment leaders made decisions in a non-systematic way to promote the usage of

FLOSS Project Management in Government-Academia Collaboration 19

FLOSS and agile techniques in such way that the government understood the
value of the collaboration. In this scenario, the SPB project became a proper
case to comprehend the processes harmonization between government and uni-
versity. In this paper, we analyzed and codified the set of project decisions and
how they favored the collaboration progress.

3.2 Survey, Interview and Data Collection

We separated the project team into three groups: undergraduate interns, IT
professionals (senior developers and designers), and MPOG analysts. For the
first two, we sent online questionnaires, and for the last ones, we conducted 2-h
interviews. Table 2 presents the details of these processes.

Table 2. Surveying the project participants

Undergraduate Interns Senior Developers MPOG Analysts
Research technique Online questionnaire Online questionnaire Interview

Discussed topics

(1) project organization
(2) the development process
(3) communication and relationship with members
(4) knowledge sharing
(5) experience with FLOSS projects

(1) professional profile
(2) organization, communication
and development methodologies
(3) satisfaction with
the developed platform
(4) lessons learned

Number of interviewed 42 8 2
Rate of responses 88% (37) 100% 100%
Average age at the end
of the project

22 years old 30 years old 30 years old

Gender
8% women
92% man

13% women
87% man

100% women

Experience
background

43% of the interns had the SPB
project as their first contact with
FLOSS

11 years of experience; worked in at
least 5 companies; participated in 4 to
80 distinct projects; 86%of them had
some background with FLOSS before
the SPB project

more than 7 years working in the
government; SPB project represented
their first experience of government-
academia collaboration

Finally, we analyzed the data from the central project repository considering
all the issues and commits. From April 2015 to June 2016, 59 distinct authors
opened 879 issues, 64 different users made the total of 4,658 comments. The
development team made 3,256 commits in this above-mentioned repository.

4 Results

The SPB portal project had two phases according to the traceability of project
management activities. The first one, between January 2014 and March 2015,
is non-traceable since only the universities managed the development activities.
The communication between government and academia was, generally, in private
channels, such as professional e-mails, personal meetings, and telephone calls.
Therefore, the quantitative data found for this period are not conclusive or have
little expressiveness, and we do not examine them.

The second phase, from April 2015 to the end of the project (June 2016),
has meaningful data. Much of the management and communication activities

20 M. Wen et al.

were recorded and published on online channels and tools. During this period,
the development leaders consolidated several FLOSS practices and agile values
employed in the development process. At the end, the academic team had an
empirical management approach for meeting the government bureaucracies.

Decision 1: Use of the system under development to develop the sys-
tem itself. Due to the platform features for software development and social
network, the development coordinators decided to use the platform under con-
struction to develop the system itself. Gradually, in addition to development
activities, government and academia migrated the project management and the
communication between teams to the portal environment.

In short, the wiki feature was used for logging meetings, defining goals, plan-
ning sprints, documenting deployment procedures and user guides. The issue
tracker was used for discussing requirements, monitoring features under devel-
opment, requesting and recording changes, and validating the delivered func-
tionalities. Finally, the mailing list was used for collaborative construction of
requirements, defining schedules, and scheduling meetings between institutions.

Our surveys report Mailing list (100%) and Issue Tracker (62.5%) as the
main means of interaction between senior developers and interns. The develop-
ment team and MPOG staff also interacted mostly via Mailing List (87.5%) and
Issue tracker (50%). According to one of the interviewees, this movement made
the communication more transparent and efficient. An MPOG analyst said that
“Communicating well goes far beyond the speed. It means enabling someone to
tell everyone about everything that is happening in the project. We did not use
emails, we use more mailing list and avoid emails. This usage helped us consid-
erably. Everything was public and did not pollute our email box. So, when you
wanted to know something, you could access the SPB list and see everything”.

Migrating to the SPB platform also easied monitoring of activities and
increased interactions between developers and public servants. The data col-
lected from the repository highlight the frequent use of the platform by both
sides teams. In the last 15 months of the project, 59 different authors opened
the central repository issues, 8 of them were MPOG agents. These issues received
comments from 64 distinct users, 9 of them from MPOG. When we consider the
issues with more interactions, those which had ten comments or more, we notice
that the government team also felt comfortable in using the tool to interact
directly with the development team. In a set of 102 active issues, MPOG staff
created 43 of them (this represents 42% of the most active issues).

For the MPOG analysts, interaction via repository improved communica-
tion. “There was a big evolution, we increased our communication via Gitlab”.
Migrating to the platform also led MPOG staff to trust the developed code:
“Everything was validated. We tested the functionalities and developed the project
on the SPB platform itself. Hence, the use of the system homologated most of
its features. From the moment we began to use it for developing, this validation
was constant. We felt confident in the code produced”.

The above-mentioned decision also collaborated to meet the government’s
demand for meticulous documentation of the software design and stages of

FLOSS Project Management in Government-Academia Collaboration 21

development without bureaucratizing or modifying the development process.
The usage of the platform for project team management conducted the organic
production of documentation and records, as mentioned in one of the MPOG
responses: “It was a great learning experience. There are many things documented
in emails as well as in the portal itself. We can access the tools at any time and
find out how we develop a solution. We can remember the positive points”.

Decision 2: Brings together government staff and development team.
In the first phase of the project, the interviewed MPOG analysts did not partic-
ipate in any direct interaction with any university representative, even though
they were the ones in charge of the government in ensuring the collaboration
agreement and the delivery of the products. Because of this, they relied on feed-
back from their superiors on inter-institutional meetings. They reported that
there was significant communication noise in the internal dialogues with their
superiors, as well as between their superiors and the development team.

In the second phase of the project, these analysts became direct representa-
tives of the government and started to visit the university’s laboratory bi-weekly.
One of the analysts believed that “at this point, the communication started to
change”. The new dynamics reduced communication misunderstandings and uni-
fied both sides, as reported by another interviewee: “It was very positive. We
liked to go there and to interact with the team. I think it brought more unity,
more integration into the project”. 73% of the interns considered positive the
direct participation of the MPOG staff, and 81% of them believed the presence
of government staff in sprint ceremonies was relevant for the project develop-
ment. For 76% of the interns, writing the requirements together with the MPOG
staff was very important to better meet expectations of both sides. According
to one of them, “Joint planning and timely meetings were very important for
understanding the needs of MPOG”.

The closest dialogue between government and academia generated empa-
thy, as reported by one of the interviewees: “Knowing people in person makes
a big difference in the relationship because it causes empathy. You know who
that person is. He’s not merly a name”. Consequently, this empathy helped to
synchronize the execution pace of activities: “Visiting the lab and meeting the
developers encouraged us to validate resources faster and give faster feedback to
the team. In return, they also quickly answered us any question”.

The implementation of a Continuous Delivery pipeline also reinforced the
teams’ synchronization [13]. For 81% of the interns and 75% of the IT profes-
sionals, deploying new versions of the SPB portal in production was a moti-
vator during the project. On the government side, this approach helped to
overcome the government bias toward low productivity of collaborative projects
with academia, as mentioned by themselves: “Government staff has a bias that
universities do not deliver products. However, in this project, we made many
deliveries with high quality. Nowadays, I think if we had paid the same amount
for a company, it would not have done the amount of features we did with the
technical quality we have”. Additionally, the deployment of each new version
also share a common understanding of the process from one side to the other, as

22 M. Wen et al.

mentioned by a MPOG analyst: “We had only the strategic vision of the project.
When we needed to deal with technical issues, we had some difficulty planning
the four-month releases. However, in the last stages of the project I realized that
this was not a problem. The team was delivering and the results were available
in production. The team was qualified, the code had quality, and the project was
well executed. So in practice, our difficulty in interpreting the technical details
did not impact the release planning”.

Decision 3: Organized development team into priority fronts, and for
each one, hire at least one specialist from the IT market. The devel-
opment team had four work areas divided by the main demands of the project:
User Experience, DevOps, Integration of Systems, and Social Networking. For
each segment, at least one professional in the IT market was hired to raise the
quality of the product. Senior developers have been selected based on their vast
experience in FLOSS systems and their knowledge on tools used in the project.

The presence of senior developers in the project contributed to conciliate the
development processes of each institution and make better technical decisions, as
quoted in one of the answers to the senior developer’s questionnaire: “I think my
main contribution was to balance the relations between the MPOG staff and the
university team”. 63% of the IT professionals believed they have collaborated to
conciliate the management and development process between the two institutions
and also 63% of them helped MPOG staff express their requests more clearly.
Government analysts were also more open to suggestions from these developers:
“They are upstream developers of the systems that integrate the platform. They
conveyed trust, and then we trust in the developed code”. According to question-
naire responses, IT professionals largely agreed with the project development
process. For 63%, this process has close similarity to their previous experiences.
In contrast, 62.5% of them did not understand the MPOG’s project management
process and 50% believed this process could affect their project productivity.

The senior developers were also responsible for improving the management
and technical knowledge of the interns about practices from industry and open
source projects. 91% of the interns believed that working with professionals was
essential for learning, and, for all of them, working with IT professionals was
important during the project. 75% of the IT professionals believed that “Working
in pairs with a senior” and 63% that “Participate in joint review tasks” were the
tasks with the involvement of them that most contributed to the evolution of the
interns in the project. 75% believed that the knowledge shared by them to one
intern was widespread among the others in the team. Government analysts also
pointed this knowledge sharing: “On the university side, we noticed a significant
improvement in the platform with the hiring of the systems original developers.
They had a guide on how to best develop each feature and were able to solve
non-trivial problems quickly”.

Organizing the development team and hiring of the IT professionals allowed
each team to self-organize and gain more autonomy in the management of their
tasks. There was a development coach to lead each team, and a “meta-coach”
supported all of them in their internal management activities. The coaches (most

FLOSS Project Management in Government-Academia Collaboration 23

advanced interns) were points of reference in the development process. 89% of
the interns said that the presence of the coach was essential to the sprint’s run-
ning, and for 88% of the of the IT professionals the coaches was essential for
their interaction with the development team. MPOG analysts saw the coaches
as facilitators their activities and communication with the development team.
They said “I interacted more with the project coordinator (professor) and team
coaches”, “Usually, we contact a coach to clarify some requirements or to under-
stand some feature. The coaches were more available than senior developers and,
sometimes, they would take our question to a senior developer”.

5 Discussion

Our results reveal a set of nine management practices successfully employed
in above-mentioned case. We analyzed unsystematic decisions made during a
30-month collaborative project and identified three macro-decisions that har-
monized the differences of the management processes of each organization.
We collected evidence from the gathered data that demonstrates the benefits
obtained with the adoption of a collection of practices. Table 3 summarizes
macro-decisions, practices, and benefits.

Table 3. Empirical SPB management decisions and its benefits.

Decision Practice Explanation Benefits

Use of the system
under development to
develop the system
itself

– The features and tools of the platform under
development supported the project management and
communication activities.

– Communicating with transparency and efficiency.
– Easy monitoring of activities.
– More interactions between developers and public

servants.
– Confidence in the developed code.
– Organic documentation.

Bring together
government staff and
development team

– Government staff, academic coordinators, senior
developers and team coaches biweekly meet at the
university lab, academia headquarters, for sprint
planning and review.

– Conduct on the platform technical discussions
between government staff and the development team.

– Involve government board directors only in strategic
planning of the project.

– Build a continuous delivery pipeline with stages
involving both sides.

– Reducing communication misunderstanding.
– Better meeting expectations of both sides.
– Improvement of the decision-making process.
– Overcoming the government bias regarding low

productivity of collaborative projects with academia.
– Synchronizing the execution pace of activities.
– Sharing a common understanding of the process from

one side to the other.

Organize the
development team
into priority fronts,
and for each one, hire
at least one specialist
from the IT market

– The coordinators separated the development team into
priority work areas considering the main demands of
the project.

– IT market professionals with recognized experience on
each front were hired to work in person or remotely.

– Define among the interns the leadership roles: a coach
for each front, and a meta-coach of the entire develop-
ment team.

– Each team has certain self-organization, being guided
by one intern-coach and at least one senior developer.

– Conciliating the development processes of each institu-
tion, taking better technical decisions.

– Improving the management and technical knowledge.
– Self-organizing and gaining autonomy in the manage-

ment of their tasks.

The results presented here corroborate the lessons learned in our previous
work on studying the SPB project case [8]. Evidence from the data collected,
responses to questionnaires, and interviews reinforce what has been reported by

24 M. Wen et al.

the academic coordination of the project, adding the point of views of govern-
ment and other roles involved on the academic side. In short, the government
staff took time to understand how collaboration works and to realize that the
project should not assume a client-executor relationship, but rather that both
organizations were at the same hierarchical level in the work plan.

The decisions, practices, and benefits presented presented in Table 3 should
be evaluated and used in contexts with more substantial plurality and diversity
of government stakeholders. This study has a few obvious limitations. First,
we point out the lack of communication records and low traceability of the
management data referring to the first phase of the project. Second, we consider
a drawback the hiatus between the completion of the project and the conduction
of interviews and questionnaires, since we rely on the memory of the interviewees
to rescue the events. Finally, the current situation of the respondents, such as
their current working mindset, may also alter their perception on the topics
addressed in the questionnaire and consequently their responses.

6 Conclusion

Organizational culture is built and reinforced every life year of a large organiza-
tion. These cultural values reflect on the internal management processes and the
norms of communication among its members. In the context of software devel-
opment projects, each institution adopts development methods that best meet
its managerial procedures and organizational routines. When two large organi-
zations decide to develop a solution collaboratively, the development methods
and workflow of one may conflict with the interests of the other. In a case
of government-academia collaboration, conciliating their different management
processes is crucial, since the poor and unadaptable management could lead the
project to fail, resulting in the waste of tax-payer resources.

In this study, we investigated the management method employed at the SPB
portal project, a partnership between the Brazilian government and universities.
As a result, we identified a set of FLOSS and agile best practices, empirically
employed by the development leaders, which improved the workflow and rela-
tionship between the organizations involved.

Regarding our first research question “How to introduce FLOSS and agile
best practices into government-academia collaboration projects?”, we examined
the SPB project and identified three macro-decisions taken by the academic
coordinators that drove them to intuitively and unsystematically adopt nine
FLOSS and agile best practices in the development process.

The interviews responses allowed us to understand how FLOSS and agile
practices have benefited the project management. Based on that, we answered
our second research question “What practices favor effective team management
in government-academia collaborative projects?”, making explicit 14 benefits
obtained from the use of the nine best practices, presented in Table 3.

Finally, we collected a significant amount of data and testimonials related to
the teaching of software engineering. We consider the studied project an edu-
cational case, an example of teaching FLOSS and agile techniques applied to

FLOSS Project Management in Government-Academia Collaboration 25

real-world software development. As future work, we intend to analyze this col-
lected information to propose improvements in educational methods for teaching
software engineering to undergraduate students as well.

References

1. Alleman, G.B., Henderson, M., Seggelke, R.: Making agile development work in
a government contracting environment-measuring velocity with earned value. In:
Proceedings of the Agile Development Conference, ADC 2003, pp. 114–119. IEEE
(2003)

2. Anthopoulos, L., Reddick, C.G., Giannakidou, I., Mavridis, N.: Why e-government
projects fail? An analysis of the healthcare.gov website. Gov. Inf. Q. 33, 161–173
(2016)

3. Beck, K., Beedle, M., Bennekum, A., et al.: Manifesto for agile software develop-
ment. Agile alliance (2001). Accessed 14 June 2010

4. Booch, G., Brown, A.W.: Collaborative Development Environments. Advances in
Computers, vol. 59, pp. 1–27. Elsevier (2003)

5. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of open source projects. In:
Proceedings of the Seventh European Conference on Software Maintenance and
Reengineering, pp. 317–327. IEEE (2003)

6. Chookittikul, W., Kourik, J., Maher, P.E.: Reducing the gap between academia
and industry: the case for agile methods in Thailand, pp. 239–244 (2011)

7. Goldfinch, S.: Pessimism, computer failure, and information systems development
in the public sector. Public Adm. Rev. 67, 917–929 (2007)

8. Meirelles, P., Wen, M., Terceiro, A., Siqueira, R., Kanashiro, L., Neri, H.: Brazilian
public software portal: an integrated platform for collaborative development. In:
Proceedings of the 13th International Symposium on Open Collaboration, Open-
Sym 2017, pp. 16:1–16:10. ACM (2017)

9. Melo, C., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Goldman, A.,
Kon, F.: The evolution of agile software development in Brazil. J. Braz. Comput.
Soc. 19, 523–552 (2013)

10. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile method-
ologies. Commun. ACM 48(5), 72–78 (2005)

11. Raymond, E.: The cathedral and the bazaar. Philos. Technol. 12(3), 23 (1999)
12. Sandberg, A.B., Crnkovic, I.: Meeting industry: academia research collaboration

challenges with agile methodologies. In: Proceedings of the 39th International Con-
ference on Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP 2017, pp. 73–82. IEEE Press (2017)

13. Siqueira, R., Camarinha, D., Wen, M., Meirelles, P., Kon, F.: Continuous delivery:
building trust in a large-scale, complex government organization. IEEE Softw.
35(2), 38–43 (2018)

14. Strode, D.E., Huff, S.L., Tretiakov, A.: The impact of organizational culture on
agile method use. In: 42nd Hawaii International Conference on System Sciences,
HICSS 2009, pp. 1–9. IEEE (2009)

15. Warsta, J., Abrahamsson, P.: Is open source software development essentially an
agile method. In: Proceedings of the 3rd Workshop on Open Source Software Engi-
neering, pp. 143–147 (2003)

Insights into the Trilateral Relationship
of Crowdfunding Campaigns, Open

Source and Communities

Patricija Ilin1, Dimitrios Platis2(B), and Imed Hammouda3,4

1 Univerity of Gothenburg, Gothenburg, Sweden
ilinpatricia@outlook.com

2 Aptiv PLC, Gothenburg, Sweden
dimitrios.platis@aptiv.com

3 Mediterranean Institute of Technology, South Mediterranean University,
Tunis, Tunisia

imed.hammouda@medtech.tn
4 Chalmers and University of Gothenburg, Gothenburg, Sweden

Abstract. Crowdfunding campaigns enable individuals to bring their
ideas to production by appealing directly to the end-market and the
global community. A number of these projects are open source, seemingly,
counteracting the funding process. We interviewed founders, developers
and managers of 13 crowdfunding initiatives involving open source prod-
ucts to determine how communities, crowdfunding campaigns and open
source are associated. Our findings verified the existence of common char-
acteristics among the cases, the emergence of a family-like relationship
between the organizers and the community, as well as the community
perceived as a success factor. We suggest that the development of cer-
tain niche products inherently leads to the adoption of open source as a
licensing model and crowdfunding as the capital gathering process.

1 Introduction

During the recent years, we have seen the rise of start-up companies as well
as their contribution to the economy by creating job positions, enabling the
youths to innovate and taking their ideas to the market. One way these ideas get
investment to reach the market and influence market trends is via crowdfunding
platforms with crowd raised contributions, such as Kickstarter, Indiegogo and
Crowd Supply. According to Massolution’s crowdfunding report, summed up
in [2], the total global crowdfunding revenue was over $16.2 billion worldwide
in 2014. The report further shows that the leading regions were N. America,
Asia and Europe, and the crowdfunding models that had grown the most in
percentage were the donation and the equity-based models.

Lately, we have witnessed the merge of these two trends, open source and
crowdfunding, often ending up in successful projects. What ties the open source

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 26–36, 2018.
https://doi.org/10.1007/978-3-319-92375-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_3&domain=pdf

Crowdfunding Campaigns, Open Source and Communities 27

and crowdfunding together is the idea of social influence from a devoted crowd
movement that supports the organizers and steers the outcome of a project.
Social networking is, in this case, a fundamental component for both of the cases.
Because of the networking attribute, the crowdfunding backers who support a
project, typically help invest in it and market it through word of mouth among
their friends and families on websites such as Facebook and Twitter. Likewise in
open source, communities can be formed that lead to companionship and inspire
the individuals to not only contribute to a project but also engage into activities
to popularize it, as in the case of Linux User Groups [1].

Previous research in this area is mainly focused on what motivations people
have for investing in a crowdfunding project (e.g. [3,4]) or what motivations they
have for participating in an open source community (e.g. [5–7]). Other research
also sheds a light on what impact social media has on crowdfunding projects
(e.g. [8]) or what role communities in general play in crowdfunding projects
(e.g. [9,10]).

Despite many open source products being crowdfunded during the latest
years, there has not been enough research to shed light on the characteristics
of those campaigns and how they are associated with the corresponding com-
munities. This study will aim to fill this gap, by attempting to determine the
characteristics the specific crowdfunding campaigns, the communication process
between the campaign organizers and the communities as well as the possible
impact of the communities when crowdfunding an open source project.

2 Background

2.1 Crowdfunding

Obtaining resources for a start-up or a product is often considered challenging.
Typically, it can require a loan, finding investors, applying for a grant etc. When
these tactics are not fruitful or sufficient, online crowdfunding can come in handy.
Crowdfunding is an alternative way to raise money with the help of a large
number of individuals from all over the world, who see potential in a product,
project, social cause or service. The project can be anything from a physical
product such as a smartphone case to a trip, book publishing, the start-up of a
business, a concert or an expense (e.g. medical). The crowdfunding methods are
typically based on donations, peer-to-peer or peer-to-business loans, rewards or
equity, meaning that people who fund products can become co-owners.

In our research, we investigate initiatives launched on reward-based plat-
forms, focused on physical products. They have adopted an all-or-nothing model,
i.e. contributions will be returned unless the project reaches its funding goal.

2.2 Communities

Throughout the years, communities have been examined from different perspec-
tives by researchers. Shared values and interests are what pervades the com-
munities and results in mutual relationships and unselfish acts of kindness to

28 P. Ilin et al.

one another. Findings by Li et al. (2006) [12] as well as Wu et al. (2010) [13]
show that the more values the members of a community share such as goals,
appropriate behavior and policies, the stronger the competence, commitment
and altruism is among the members. Additionally, the members’ bond results in
a higher level of satisfaction and enhances belongingness.

This view is further elaborated in [14] where it is claimed that apart from
homogeneous behaviors, interpersonal relationships and bonds need be the foun-
dation of the community for it to thrive. This leads to a knowledge community
or network of practice, traditionally called a community of practice. These com-
munities describe big groups or networks of people online, that may or may not
know each other or meet face to face. They share common goals and purposes
and use communication to fulfill these goals [15,16].

2.3 Doing Business with Open Source

One of the most crucial decisions when doing business with open source soft-
ware is the license under which the derived works can be distributed. That
being said, not all open source products have the same profit potential. Krishna-
murthy (2003) divides OSS products into categories based on their importance
and customer applicability [17]. In this study, we investigated cases with prod-
ucts of lower customer applicability which, depending on their importance, can
be regarded as high or low profile nichers.

Based on the nature of typical open source crowdfunding campaigns, we
determined three business models as most applicable, taken from [18,19]. The
Support seller model, which involves releasing the source while charging for
services such as packaging, branding, distribution, customizing and supporting
it. Brand licensing aims to sell the trademark. Finally, in Loss leader model, an
open source product is used for marketing purposes to attract attention towards
another, more profitable, product.

2.4 Previous Studies

Gerber et al. (2012) have been looking at the motivations for posting and fund-
ing crowdfunding projects online. Their study shows that the participation-
motivations among crowdfunding project creators depend on the idea of
strengthening commitment to community members and their feedback [3]. Sim-
ilarly, Brabham (2010:1139–1140) reveals that members are driven by oppor-
tunities in the form of money, skills and creating a portfolio. Additionally, he
characterizes members “vibrant and obsessed” and deems these traits essential
for a thriving crowdsourcing community.

Moreover, Hars and Ou (2001) have divided the motivation of members in
an open source community in intrinsic e.g. altruism and identification with a
community and extrinsic, direct compensation and personal needs [7]. On the
other hand, Lakhani and Wolf (2003), propose creativity as the main motive [6].

Regarding the impact of social media on crowdfunding projects, Lu et al.
(2014) mapped principles that have a positive effect on crowdfunding. They

Crowdfunding Campaigns, Open Source and Communities 29

have observed that early promotional activities are strongly connected to the
outcome and stress the benefit of using multiple platforms for promotion [8]. As
to the impact of communities, Bard et al. (2014) highlight the importance of
recognizing them as more than just financers. They are a devoted group sharing
ideas and information [10]. Finally, Matheus (2016) suggests the success rate
of a crowdfunding platform depends on creators backing other projects, lessons
learned and connection with the backers [9].

3 Research Questions and Methodology

In the current work we investigate the socio-technical attributes present in
crowdfunding campaigns of open source products, from the perspective of the
campaign organizers. Utilizing the research questions as the protocol to help
us explore the topic, we begin by identifying the advantages and disadvantages
hereditary in such campaigns as well as the business aspects are relevant. Next,
we track the communication tools and how they are used as well as investigate
the relationship between the organizers and the community. Finally, we attempt
to determine the impact of the communities by combining the results of the
previous questions with empirical data.

– RQ1: What are the characteristics of a crowdfunding campaign of open source
products?

– RQ2: How can the relationship and communication between the campaign
organizers and the community be described?

– RQ3: What is the impact of the community on an open source crowdfunding
campaign according to the organizers perspective?

Due to the scarcity of previous literature on the specific topic, we opted
for a qualitative research method which enables handling of ambiguous data
and paves the way for the subjects’ viewpoints. Moreover, it leads to a more
in-depth description of characteristics, settings and practices which would oth-
erwise not emerge with quantitative methods. Stemming from the open-ended
goal of our research, we conducted semi-structured interviews to collect the nec-
essary empirical data. This technique allows the suggestion of further follow-up
questions, formulating a dialogue through the question-answer approach.

The initial goal was to conduct face to face interviews with campaign organiz-
ers from Sweden. However, when this was proven neither possible nor sufficient
we shifted our attention to the global scene. The interviewees were sought after
in major online crowdfunding platforms, i.e. Kickstarter, Indiegogo and Crowd
Supply. The primary criteria for selecting campaigns included open source ele-
ments to have been developed for the respective products as well as contact
information to be available. Altogether, we approached 53 campaign organizers
via their email and social media accounts. 20 of them responded. Eventually, 12
interviews were conducted via Skype and 1 via email. The majority (8) of the
projects published both software and hardware, 2 of them only software and 1
just the hardware. The rest planned an open source release in the near future.

30 P. Ilin et al.

Based on the research questions, we compiled an interview guide consisting of
20 interviews, which were slightly modified on the course of time to suit each case
better. This was deemed necessary as some questions were not always applicable.
For example, some worked alone or had a well-established business prior to the
campaign while others worked in teams or did not create a company at all. To
ensure participants did not feel distant or estranged, they were introduced to
the topic via emails prior to the interview and whenever the connection quality
permitted, video calls were made.

4 Results and Analysis

During the interviews, we collected a plethora of data, documenting the expe-
riences, perspectives and actions of 13 campaign organizers. This section shall
present some interesting excerpts, present and discuss the collected information
as well as correlate them, where applicable, with existing literature.

4.1 Characteristics

“I want to be someone who contributes back because I’m rather taking
huge advantage of other people’s work.” - Study participant

The motivation behind organizing a campaign of an open source product can be
split into four categories. The first concerns creating inspiration and facilitat-
ing innovation through the released source, in exchange for feedback and help.
This was also seen in the elements of open communication and shared improve-
ments that constitute the pillars of the hacker culture and techno-meritocracy
[11]. Moreover, organizers perceived the crowdfunding campaigns as the means to
popularize their product, by broadening the awareness around it and its domain.
The third perspective that was encountered during this research was that hob-
byists (e.g. Makers) often desire or expect products to be open source. Finally,
some viewed open source as a gesture of gratitude for the help they had received.
This sense of altruism and identification is also encountered in [7].

Next, using a bottom-up approach, such as crowdfunding, makes the cam-
paign perceived as less profit-oriented. Due to the open source nature of the
products, the organizers feel like they get more publicity among hobbyists and
enthusiasts. Releasing the code makes it easier to reach the crowd and inspires
generosity, goodwill and altruistic feelings which translate into financial support
for the campaign. Interestingly, keeping supporters in suspense was an explana-
tion for not releasing the source before the campaign. Therefore open source is
not just the catalyst that increases engagement and loyalty but also a marketing
tool, which is in alignment with the findings of Krishnamurthy [17].

Furthermore, crowdfunding campaigns often appeared to be the sole viable
option for commercializing a niche open source product. One of the reasons is
that customers who can provide most revenue, such as businesses and public
institutions, will not normally take the risk to purchase an unfinished product.

Crowdfunding Campaigns, Open Source and Communities 31

Secondly, many investors either do not take open source seriously, seeing the
product as “less professional” or worse, view open source as a threat. From their
perspective, a competitor can utilize the existing source to beat the original
developers to the market. Lastly, if a community has already been formulated
around a project, crowdfunding is a relatively secure way to gather resources,
as it is likely for the community to support it financially. This can be linked to
the research of Gerber et al. (2012), who argue about the extrinsic motivation
of campaign organizers in the pursue to secure funding [3].

“You’re using Kickstarter, not only to get the money but also to raise
awareness and to start building a community. With open source, the only
way it can survive is people using and contributing to it every day, so, it’s
really gotta be a thriving community.” - Study participant

Open source, being a factor that facilitates the formulation of communities,
appears to integrate well with crowdfunding campaigns. During the interviews,
an organizer mentioned the importance of early community members who, with
their ideas and discussions, helped to boost the crowdfunding campaign, espe-
cially in the beginning. This importance is in pair with the observations by Lu,
Xie, Kong and Lu (2014) on the relation between the outcome of a campaign
and early promotional activities [8]. Moreover, the positive effects of the open
source nature are also prevalent after the campaign when the supporters get
their hands on the product and start to engage or contribute to it in diverse
ways. These factors deem open source highly compatible with crowdfunding.

“We encourage copying. We spread the word and we give all the things
you need to create your own project. [..] The only thing we try to work
against is the use of our brand name.” - Study participant

Having a product open exposes it to the risk of getting cloned and beaten
to the market. This can increase competition and damage the profitability. To
tackle this, some of the interviewees did not release the source until the end
of the campaign. What is more, a proposal for mitigating this risk involved
keeping parts of the product closed, such as the hardware. On the other hand,
others were not as negative when it comes to cloning. They either embraced
it as inevitable and a sign of success or viewed it as a non-threat since the
existence of a dedicated community around the product would allow it to be
financially viable. Protection against clones can explain the organizer efforts to
present themselves as equals among the community and not as a party that
simply intends to financially exploit them.

Additionally, it is usually expected for a crowdfunding campaign of an open
source product not to offer just software. Particularly, software is expected to
come at no cost. More importantly, it became evident that the target audience
prefers to pay for hardware or services around the software, rather than just the
software itself. This can be interpreted by the fact that the source of the soft-
ware, once acquired, can be easily transformed into a functional artifact. This

32 P. Ilin et al.

is not the case with hardware which needs to be fabricated, the necessary com-
ponents to be acquired at a retail price and assembled. Equivalently, additional
software services (e.g. cloud storage or servers) are also hard or costly to set up
by individual users, therefore they would be more inclined to purchase them.
We documented tendency to support products, someone would have to pay for
regardless of whether they were open source or not.

Most organizers initially had no other goal than to test the product’s mar-
ketability. A formal business perspective surfaced along the way. Their crowd-
funding goal became to eventually establish a line of products, reach out to a
big market and grow a business. Surprisingly or not, the participants showed
no awareness of open source business models. That being said, the model they
mainly identified themselves with was that of the support seller [19]. The inter-
viewees aligned themselves with the specific model on the grounds of the support
that they and their communities offer to each other. In this instance, support is
given for free. However, we can perceive the hardware, that typically accompanies
the software, as packaging that is shipped to the campaign backers. Therefore,
the combination of packaging, distribution and branding feasibly places these
cases under the support seller business model.

4.2 Relationship

“A community is much like a garden. Fertile soil, plenty of water, plenty
of attention and you know, sometimes, as well, it’s a bit of luck. It’s good
weather. But you get out of a community as much as you put in. And
only by being incredibly active and giving a community the tools and the
resources they need to become engaged, is the only way you can not only
build a bigger community but build a more powerful community. One that
can really empower themselves.” - Study participant

Looking at the relationship between the communities and the organizers, we
should first note that we did not discover any norm as to when a dedicated
community, around the product, is created. Moreover, previous involvement in
open source communities and projects did not play a significant role. This might
come as a surprise, as one could assume prior engagement with the community
would help the audience identify themselves easier with the organizers.

With Makers being the primary target group, both online and offline commu-
nication channels were utilized. The most popular online channels were Twitter,
Facebook and mailing lists. Interestingly, some of the organizers maintained sep-
arate channels, based on technical skills. The most common offline means were
talks on conferences and participation in Maker Faires. Despite many engaging
face-to-face with their target group, some participants stressed how these types
of activities are time-consuming and ultimately not effective during a campaign.

Furthermore, we saw that involvement with the communities came with
mutual communication and a close connection. This involved shared attitudes,
reciprocity, selflessness and a sense of goodwill. Many organizers became emo-
tionally tangled with the communities, concerning them as family members

Crowdfunding Campaigns, Open Source and Communities 33

rather than merely customers and sensing a bond to them regardless of geo-
graphical location. Moreover, four elements surfaced, outlining the organizers’
role: listening, asking, answering and supporting the communities. Important
elements that characterized the communication was selflessness and a positive,
proactive attitude. The latter was worded as “being nice” while the campaign
organizers mentioned they witnessed a similar stance as a response.

This show of goodwill can be traced in Brabham (2010) who explains how
members are enthusiastic and committed to the same cause as the organizers,
recognizing themselves as more than just customers [4]. Community members not
identifying as mere customers but as organic parts of the project is an attribute
also prevalent in the hacker culture ethics. They have the power to influence its
direction, help it evolve and are defined by reciprocity and altruism [20].

4.3 Impact

“Maker community doesn’t like closed sourced products. From a marketing
perspective, they are more into open source.” - Study participant

To evaluate the impact of the community on a crowdfunding campaign, we
examine its effect on the following activities: (a) the promotion, (b) the received
contributions and feedback and (c) the business aspects.

As discussed previously, communities can catalyze the reach of a campaign
and boost the marketing efforts. A noteworthy factor regarding the promotion
of the products was that the majority did not have open source as their pri-
mary marketing point. They preferred to focus more on facts, need and usage.
Therefore, it is not surprising that some of the interviewees claimed open source
had no major effect on their publicity. Furthermore, two of them pointed out
mainstream media proved to be unfamiliar with the field or regarded it as unpro-
fessional. On the contrary, the hobbyist community valued open source. Thus,
despite open source not being the primary statement of the promotion, it did
eventually become relevant since organizers had to be careful not to depict them-
selves as “too business oriented”. A company’s intentions to generate revenue
can conflict with the open source communitie’ norms and value, therefore great
attention should be paid to keep everyone aligned.

Next, in most occasions software was released after the campaign, therefore
limiting the interaction with the community to inquiries regarding the func-
tionality and feature requests. The most significant reasons behind this were to
ensure a final bug-free product and avoid being beaten to the market. In the
case of products that had released the source before the beginning of the cam-
paign, all but two received a large amount of contribution. It typically consisted
of features, usability remarks, code issues and bug reports. Furthermore, a point
that was often stressed out, was the importance of listening to feedback. Feed-
back would come in forms of suggestions, constructive criticism and in some
cases negative and questionable comments about the work done on the product.
Sorting through it could be time-consuming, but still proved to be vital for a

34 P. Ilin et al.

Fig. 1. Dependencies around a niche product

healthy relationship with the community members as well as for the progress of
the product.

Nearly half of the campaign organizers aimed to create a line of products
utilizing the crowdfunding campaign as the basis for this initiative. The existence
of a vibrant and active community that offers feedback, develops and raises
awareness can be viewed as fundamental for a long-lasting and successful product
ecosystem. Additionally, most of the products involved in this research should
be considered as high and low profile nichers targeting a crowd that values open
source. This target group expects parts of the product to be open and therefore
this translates into going down the open source path, business-wise.

Moreover, crowdfunding is often regarded as the only viable option to finance
an open source product. Combining these two points, we come to realize that
the impact of the community is not only the deciding factor behind the prod-
uct being open source but also behind selecting crowdfunding as the means to
commercialize it. By taking a step back we can generalize the above observa-
tion. Figure 1 visualizes the interdependent relationships between crowdfunding,
communities and open source around niche products. We discover the coupling
between these three concepts compels the creators to open source and crowdfund
their product, once they attempt to gain the support of a relevant community.

5 Validity Threats

Threats to validity is a typical concern related to open-ended, qualitative stud-
ies with semi-structured interviews. This can be, up to a point, attributed to
authors having to use creativity, critical thinking, improvisation and therefore

Crowdfunding Campaigns, Open Source and Communities 35

exhibit a certain degree of subjectivity in order to maintain vivid and interest-
ing discussions [21]. We utilized the scheme by Runeson and Höst (2009) [22] to
classify the different threats so to employ mitigation tactics against them.

Internal validity is related to risks around the research process which increase
the bias. We made an effort to approach a diverse crowd in terms of technology,
geographical location and sex. However, the responses we received were primarily
by males who were involved in campaigns of products that had both software
and hardware elements. Additionally, one interview was conducted via email,
instead of a call, which could have inadvertently influenced the collected data.

Furthermore, most of the cases appealed to a rather specific market segment,
i.e. Makers and Hackers. This constitutes a serious external validity constraint,
thus we do not deem it feasible to generalize our results beyond this class of
products. Moreover, participants were selected on a rather ad-hoc basis, having
to manually determine whether they developed open source elements as well
as the availability of contact details. This leaves room for selection bias. To
minimize it we tried to involve a large and diverse sample which also offers us a
degree of reproducibility. Lastly, interviews were conducted in English, i.e. not
the native tongue of all participants, which could threaten construct validity.

6 Conclusion

Open source and crowdfunding share a common pillar, communities, which
enables their union to be compatible and often fruitful. The first question
when contemplating upon open source being crowdfunded is why would someone
assume the risk of investing in a product not yet in the market, considering that
at some point in time its source will be released. It appears what backers are
usually willing to pay for is, difficult to reproduce, hardware that incorporates
open source software. Open source and the potential of a developer community
around the product safeguard its evolution and user support.

Communities are perceived to play an important role in crowdfunding cam-
paigns. Metaphorically speaking, if sales to high-profile customers allow a prod-
uct to walk then communities, supporting it through its early stages, allow it to
stand up. This importance becomes even more prevailing when open source is
involved, as communities are one of the determining factors behind the success or
demise of an open source project. Campaign organizers repeatedly emphasized
the need to engage as often as possible with the community and place themselves
among their customers to increase the sense of belongingness. Moreover, they
avoided appearing as business-oriented outsiders who just want to sell a product.

Furthermore, launching a product with low customer applicability targeting
communities accustomed to open source, paves the way for the product itself
becoming open source and eventually acquiring resources via a crowdfunding
campaign. This signifies the magnitude of influence communities have on such
products. As future research, we suggest the verification our results through the
prism of backers as well as examining the platform characteristics that facilitate
crowdfunding of open source projects.

36 P. Ilin et al.

References

1. Bagozzi, R., Dholakia, U.: Open source software user communities: a study of
participation in Linux user groups. Manage. Sci. 52(7), 1099–1115 (2006)

2. Marketwired: Crowdfunding Market Grows 167% in 2014: Crowdfunding Platforms
Raise $16.2 Billion, 31 March 2015. https://goo.gl/v5QyrG. Accessed 10 Mar 2017

3. Gerber, E., Hui, J., Kou, P.: Crowdfunding: Why People Are Motivated to Post
and Fund Projects on Crowdfunding Platforms. Northwestern University Creative
Action Lab., USA (2012)

4. Brabham, D.C.: Moving the crowd at threadless: motivations for participation in
a crowdsourcing application. Inf. Commun. Soc. 13(8), 1122–1145 (2010)

5. Budhathoki, N.R., Haythornthwaite, C.: Motivation for open collaboration: crowd
and community models and the case of OpenStreetMap. Am. Behav. Sci. 57(5),
548–575 (2013)

6. Lakhani, K.R., Wolf, R.G.: Why hackers do what they do: understanding motiva-
tion and effort in free/open source software projects. Perspect. Free Open Sour.
Softw. 1, 3–22 (2005)

7. Hars, A., Ou, S.: Working for free? Motivations of participating in open source
projects. In: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences, pp. 25–39. IEEE (2001)

8. Lu, C.T., Xie, S., Kong, X., Yu, P.S.: Inferring the impacts of social media on
crowdfunding. In: Proceedings of the 7th ACM International Conference on Web
Search and Data Mining, pp. 573–582. ACM, February 2014

9. Matheus, A.A.R.: The Role of Online Crowdfunding Communities in Funding
Cycle Success: Evidence from Kickstarter. Universidade do Porto (2016)

10. Bard, A., Brännström, E., Fahlberg, D.: Crowdfunding – En ständig kommunika-
tion. En studie p̊a en communitys relevans runt ett crowdfundat projekt. Institu-
tionen för informatik. Ume̊a Universitet (2014)

11. Castells, M.: The Internet Galaxy: Reflections on the Internet, Business, and Soci-
ety. Oxford University Press on Demand, Oxford (2002)

12. Li, D., Browne, G.J., Wetherbe, J.C.: Why do internet users stick with a specific
web site? a relationship perspective. Int. J. Electron. Commer. 10(4), 105–141
(2006)

13. Wu, J.J., Chen, Y.H., Chung, Y.S.: Trust factors influencing virtual community
members: a study of transaction communities. J. Bus. Res. 63(9), 1025–1032 (2010)

14. Parks, M.R.: Social network sites as virtual communities. In: Papacharissi, Z. (ed.)
A Networked Self: Identity, Community, and Culture on Social Network Sites, pp.
108–109. Taylor & Francis, USA (2011)

15. Borg, E.: Discourse Community. ELT J. 57(4), 398–400 (2003)
16. Wasko, M.M., Faraj, S.: Why should i share? Examining social capital and knowl-

edge contribution in electronic networks of practice. MIS Q. 29, 35–57 (2005)
17. Krishnamurthy, S.: An Analysis of Open Source Business Models. MIT Press, Cam-

bridge (2003)
18. Raymond, E.S.: The magic cauldron (1999)
19. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source

by An Accidental Revolutionary. O’Reilly Media Inc., Sebastopol (2001)
20. Raymond, E.S.: How to become a hacker. Database Netw. J. 33(2), 8–9 (2003)
21. Maxwell, J.A.: Understanding and validity in qualitative research. Harv. Educ.

Rev. 62(3), 279 (1992)
22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

https://goo.gl/v5QyrG

OSS Projects Validity

Open Source Software Resilience
Framework

Apostolos Kritikos(B) and Ioannis Stamelos

Aristotle University of Thessaloniki, University Campus,
54124 Thessaloniki, Greece

{akritiko,stamelos}@csd.auth.gr
http://www.csd.auth.gr

Abstract. An Open Source Software (OSS) project can be utilized
either as is, to serve specific needs on an application level, or on the
source code level, as a part of another software system serving as a com-
ponent, a library, or even an autonomous third party dependency. There
are several OSS quality models that provide metrics to measure specific
aspects of the project, like its structural quality. Although other dimen-
sions, like community health and activity, software governance principles
or license permissiveness, are taken into account, there is no universally
accepted OSS assessment model. In this work we are proposing an evalu-
ation approach based on the adaptation of the City Resilience Framework
to OSS with the aim of providing a strong theoretical basis for evaluating
OSS projects.

Keywords: Open source software · Software resilience
Software engineering · Software quality · Software metrics

1 Background

Open Source Software (OSS) has been continuously growing and evolving for
over two decades now. It started as a revolutionary software engineering app-
roach, producing software that was freely and openly available to be used, edited,
copied, even commercially utilized. Since then, it has been fueling the develop-
ment process of companies with source code, testing and bug fixing. Moreover it
has been one of the main drivers for the birth of healthy, successful companies
[1,2].

In the beginning, the focus about OSS revolved mainly around its devel-
opment style. Eric Raymond in [3] compares closed source development to a
Cathedral because of its structured and concrete definition of work and roles. In
contrast, open source development resembles to a bazaar, a place with no strict
rules, where people can openly and freely contribute. As Raymond specifically
states “No quiet, reverent cathedral-building here rather, the Linux community
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 39–49, 2018.
https://doi.org/10.1007/978-3-319-92375-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_4&domain=pdf

40 A. Kritikos and I. Stamelos

seemed to resemble a great babbling bazaar of differing agendas and approaches
(aptly symbolized by the Linux archive sites, who’d take submissions from any-
one) out of which a coherent and stable system could seemingly emerge only by
a succession of miracles” meaning that in a time where closed (or proprietary)
software development was the norm, an open approach of collectively developed
software seemed odd and likely to fail.

The fact that OSS succeeded is a result of several factors. A primary and
extensively studied factor is structural quality which led to the proposal of several
quality models like ISO25010 [4] for evaluating software in general or Open
Source specific ones like OpenBRR [5]. In [6] Midha and Palvia identify several
other factors outside the scope of source code and software structure. The level
of permissiveness of the license under which the OSS is published, community
aspects such as number of active developers and end users, language translations
are some indicative examples. In [7] the authors study Open Source Governance
models, another important factor for OSS success.

In [8] Miguel presents the evolution of quality models between 1977 and 2013.
The models are further categorized to Basic Models (1977–2001) with the aim of
evaluating the software product as a whole and Tailored Quality Models (2001–
2013) which extend to component evaluation. The latter category includes the
OSS specific quality models as well. The study compares and contrasts the mod-
els based on their characteristics and concludes that generic quality evaluation
models cannot easily be applied in specific cases. On the other hand tailored
quality models usually cover the needs of very specific domains limiting their
applicability.

In [9] Wasserman describes the evolution of Business Readiness Rating
(BRR) model to OSSpal. As Wasserman very aptly states, software quality,
maturity, stability, documentation, community and so forth vary in different
OSS projects and continuously change as those projects evolve. Therefore it is
important for OSS evaluation models to include, apart from numerical scores
and metrics, qualitative criteria as well.

In [10] the authors are combining quality assurance methodologies with social
network analysis techniques to study competition and collaboration in large
OSS ecosystems. Community wise, in [11] the authors are proposing a reference
model for evaluating the maturity of an OSS project’s community. They focus
on the socio-technical practices of OSS software development and try to combine
characteristics of existing software quality models to this end.

The aforementioned diverse set of factors which are responsible for the success
of an OSS dictates the need to approach it as an evolving system in order to
be able to study it in a holistic way. Moreover, in order for an OSS to be able
to succeed and achieve longevity, it is crucial to be resilient to survive potential
stresses and crises that might occur. Such stresses or crises could be related
with forks of the project that might drive the attention of the original project’s
community away, migration of lead developers or even part of the development
community to other forks or projects, an unsuccessful major release that might
hurt the reputation of the project, changes to the license, migration to another

Open Source Software Resilience Framework 41

forge and so forth. In [12] Gamalielsson and Lundell study the case of Libre
Office, an OSS project that started as a fork of Open Office, but managed to
retain the development community and evolve, as of the time of writing, to a
successful OSS project.

In this publication we are trying to adapt the concept of City Resilience, a
term found in the scientific field of Urban Planning and Architecture, to OSS
evolution. The term resilience is defined in [13] as the ability [of a system] to
cope with change. In [14] the author defines a resilient system as one that can
take a hit to a critical component and recover and come back for more in a
known, bounded and generally acceptable period of times. In [15] the authors of
the City Resilience Framework, which inspired this paper, define city resilience
as follows: “city resilience describes the capacity of cities to function, so that the
people living and working in cities particularly the poor and vulnerable survive
and thrive no matter what stresses or shocks they encounter”.

From the aforementioned literature it becomes clear that an OSS project can
be approached from several perspectives. The structure of its source code, the
community that was built around it (developers, end users, testers), business
related aspects (license, business models). In order to be able to holistically
evaluate an OSS project we need to study it as a continuously evolving system.
In this work we are proposing a framework with the aim of studying the resilience
of an OSS project trying to combine several of the aforementioned perspectives.

The rest of the paper is organized as follows. In Sect. 2 we analyze the City
Resilience Framework, a framework designed to measure Urban Resilience, which
inspired our work. In Sect. 3 we present the adaptation of the City Resilience
Framework to OSS. In Sect. 4 we demonstrate the application of the Open Source
Resilience Framework to two (2) Open Source projects. In Sect. 5 we discuss
possible threats to validity and, finally, in Sect. 6 we summarize our conclusions
and we discuss ideas for future work.

2 City Resilience Framework

The City Resilience Framework (CRF), as presented in [15], is the result of
research undertaken with the aim of establishing an accessible, evidence-based
definition of Urban Resilience by Arup and the Rockefeller Foundation. The CRF
is, as of the time of writing, used by the 100 Resilient Cities [16] a non profit
organization to primarily evaluate the Urban Resilience of more than 90 cities
around the world and, additionally, to assist the cities on crises with tailored
made resilience strategies.

Trying to tackle the fact that every city is unique the City Resilient Index
(CRI) was proposed. It is a set of indicators, variables and metrics that allow
cities to understand, baseline and subsequently measure local resilience over
time. As the authors of [17] state “The CRI will measure relative performance
over time rather than comparison between cities. It will not deliver an overall
single score for comparing performance between cities, neither will it provide a
world ranking of the most resilient cities.”

42 A. Kritikos and I. Stamelos

2.1 City Resilience Index

City Resilience Index (CRI) suggests that resilience of a city is related to four
(4) key dimensions that are further decomposed to twelve (12) goals that can
help a city achieve resilience. These dimensions and goals are the following:

1. Health & well-being: Related to people, working and living in the city.
Goals: (1) Minimal human vulnerability, (2) Diverse livelihoods & employ-
ment (3) Effective safeguards to human health & life.

2. Economy & society: Related to the organization of cities on a social and
economical level. Goals: (1) Sustainable economy, (2) Comprehensive security
& rule of law, (3) Collective identity & community support.

3. Infrastructure & environment: Related to place, the quality of infras-
tructure and ecosystems. Goals: (1) Reliable mobility & communications, (2)
Effective provision of critical services, Reduced exposure & fragility.

4. Leadership & strategy: Related to knowledge of the past and adapting
appropriately for the future. Goals: (1) Effective leadership & management,
(2) Empowered stakeholders, (3) Integrated development planning.

Finally, the aforementioned goals are, on a third level, analyzed in indicators
in order to identify the critical factors that contribute towards the resilience of
urban systems.

3 Adaptation of City Resilience Index to Open Source
Software

We argue that Open Source Software projects share a conceptual similarity with
cities. They are dynamic and continuously evolving systems with their own struc-
tural properties, they attract people that form communities around them which,
on a second level, may utilize a governance model. Some OSS projects have com-
mercial activity. As it is happening with cities, OSS projects can face stresses
and crises (i.e. developers abandoning the project to work on a fork or users
massively migrate to a competitive project).

In this section we are presenting our attempt to adapt the City Resilience
Index to Open Source Software projects. We aim in utilizing the models and met-
rics of the extensive literature on OSS quality, metrics and evaluation and provide
a framework that will measure the relative performance of an OSS project over
time rather than a comparison between projects.

3.1 Open Source Software Resilience Framework (OSSRF)

Following the City Resilience Framework paradigm, Open Source Software
Resiliency Framework (OSSRF) is also being primarily structured to four (4)
dimensions that are then analyzed in twelve (12) goals and, on a third level, on
a set of indicators for each goal.

Open Source Software Resilience Framework 43

3.1.1 Dimensions
As in the CRF we propose four key dimensions related to Open Source Software
as follows:

1. Source Code: The first dimension of CRF is Health & Well-being and it is
related with people. In Open Source Software we consider source code (i.e.
classes) to be the structural unit of the project. In this dimension we will
take under consideration aspects like the activity and growth rate of an OSS
project along with some other related aspects.

2. Business & Legal: The second dimension of CRF is Economy & Society and
is related with organization. In Open Source Software the norm is voluntary
work but, more mature projects are utilizing Open Source Business Models
to offer commercial services (be it pro features or support). For those types
of projects licensing plays a key role when it comes to commercialization.

3. Integration & Reuse: The third dimension of CRF is related to place. Open
Source Software projects usually reuse components of other OSS projects or
are being reused themselves. In this spirit, in the third dimension of the Open
Source Software Resilience Framework we will be dealing with the aspects of
integration and reuse.

4. Social (Community): Finally the last dimension of CRF is about Lead-
ership & Strategy and is related with utilizing knowledge from the past to
become better and more resilient in the future. In Open Source Software both
leadership and strategy related processes are usually connected with the com-
munity. Moreover most of the knowledge related to an Open Source Software
usually comes from its community activity (i.e. feature proposal, bug reports,
translations, documentation, testing and so forth).

3.1.2 Goals
The aforementioned dimensions are further decomposed to the following twelve
(12) goals:

Source Code

1. Continuous Growth
2. Holistic Documentation
3. Systematic Testing & Violation Minimization

Business & Legal

1. Economic Sustainability
2. Flexible Licensing
3. External Organization Support

Integration & Reuse

1. Low Dependability
2. Low Complexity
3. Ease of Integration

44 A. Kritikos and I. Stamelos

Social (Community)

1. Well defined Project Standards
2. Well Defined Governance
3. Developer Base Activity

3.1.3 Indicators
Finally, the twelve (12) goals are further analyzed to indicators in order to pro-
vide a more specific description of the goals. For the purposes of this paper we
will analyze the indicators related to the goals of the Business & Legal dimen-
sion. Due to space limitations, we provide the full analysis of the indicators
to the following url: http://users.auth.gr/akritiko/ossrf indicators.html for the
intended audience.

1. Economic Sustainability
1.1. Donations: 0 (no) or 1 (yes) based on whether the OSS project accepts

donations. 0 is considered a non resilient value.
1.2. Commercial features: 0 (no) or 1 (yes) based on whether the OSS project

offers commercial features or a pro (paid) version. The indicator was based
to the work of [18]. 0 is considered a non resilient value.

1.3. Paid support: 0 (no) or 1 (yes) based on whether the OSS project offers
a paid plan for support [18]. 0 is considered a non resilient value.

2. Flexible Licensing
2.1. Level or permissiveness: 0 (all restrictive - i.e. commercial), 1 (persistent

i.e. GPL), 2 (all permissive - i.e. BSD). We base the indicator to the of
[19]. The indicator is considered non resilient when it is less than 1.

2.2. Level of persistence: 0 (no) or 1 (yes) based on whether there are parts
of the project’s code or dependencies published under persistent licenses
(i.e. GPL). We base the indicator to the of [19]. 1 is considered a non
resilient value.

3. External Organization Support: 0 (no) or 1 (yes) based on whether the
OSS project is supported by an external organization (non profit, governmen-
tal or corporate). 0 is considered a non resilient value.

3.1.4 Resilience Determination Mechanism
Since the evaluation of a project regarding its resilience is based on indicators we
need a mechanism to determine whether the OSS project under review is resilient
and, on a second level, how its resiliency changes as it evolves. Starting to the
indicators level we will consider an OSS project successful towards a resilience
goal when it is considered resilient at least to 50% of the goals ingredients.

Moving to the dimensions level, an OSS project will be considered successful
towards a resilience dimension when it is considered resilient at least to 50% of
the goals of the specific dimension. Likewise, on a project level, the OSS project
is considered resilient when at least two (2) out of four (4) dimension (50%) are
considered resilient.

http://users.auth.gr/akritiko/ossrf_indicators.html

Open Source Software Resilience Framework 45

4 Open Source Software Resilience Framework
Application

In this section we will be demonstrating the application of the OSSRF to two
OSS projects, the OKapi and WooCommerce, using the indicators analyzed in
the previous sections. Due to space limitations, for our demonstration purposes
will be using only the fully analyzed dimension “Business & Legal”.

Since the OSSRF takes under consideration the evolution of OSS projects we
would normally have to apply the framework to all the major releases of the two
projects. Due to limitation spaces we chose to use the last major release of each
year from the beginning of each project until either the year the project became
inactive (i.e. for the case of OKapi) or the last full year (i.e. 2017) for the case
of WooCommerce. We do not consider alpha, beta releases or release candidates
so if some early years of the project have been excluded is because there were
no major release back then.

4.1 OKapi - A Non Resilient Project

The first project, OKapi is a small framework for building web applications. It’s
built on PHP and is hosted in Github [20]. It started during 2008 and hasn’t been
updated since July 2011. We selected this case in order to test our framework
to a project that intuitively seems non resilient.

The versions of the releases of OKapi to which we will be applying the
OSSRF, with their corresponding dating (year/month) are shown to the fol-
lowing table: By applying the Business & Legal dimension’s indicators to OKapi
we are getting the results as shown in Table 1. In order to make the demon-
stration of the Resilience Determination Mechanism we proposed at Sect. 3.1.4
easier, we have marked the values of the indicators to Table 2 with (F), if an
indicator is considered non resilient, and (S) if it is considered resilient.

Table 1. OKapi releases

Version 1.1.5 1.2.1 1.2.3

Date 2008/12 2009/12 2010/12

OKapi is officially not maintained but even when it was there is no indication
that supported donations, commercial features or support. There is no official
website or reference in any related document, to our best knowledge, about
revenue streams for the project. Therefore we consider the project non resilient
regarding the indicators of the first goal. As far as the licensing part is concerned,
there is no license defined to the project and OKapi does not seem to reuse other
open source projects. Therefore the project is considered non resilient as far as
the “Level of permissiveness” is concerned but it is considered resilient towards
the “Level of persistence”. Therefore regarding the goal “Flexible Licensing”

46 A. Kritikos and I. Stamelos

Table 2. OKapi - Business & Legal dimension. Goals & indicators

Indicator v1.1.5 v1.2.1 v1.2.3

Economic Sustainability

Donations 0 (F) 0 (F) 0 (F)

Commercial features 0 (F) 0 (F) 0 (F)

Paid support 0 (F) 0 (F) 0 (F)

Flexible Licensing

Level or permissiveness 0 (F) 0 (F) 0 (F)

Level of persistence 0 (S) 0 (S) 0 (S)

External Organization Support

External Organization Support 0 (F) 0 (F) 0 (F)

OKapi is considered resilient. Finally, there is no indication that OKapi was
ever supported by an external organization therefore we consider the project non
resilient towards this goal. The aforementioned results apply to all the versions
of the project.

Based on the results two out of three goals are considered non resilient
for the OKapi project. Therefore based on OSSRF, the project is considered
non resilient.

4.2 WooCommerce - A Resilient Project

The second project is WooCommerce, an open source eCommerce plug-in for
WordPress content management system, written also in PHP and hosted in
Github [21]. It started as an OSS project in 2011 and, as of the time of writing,
is still active. We selected this case in order to test our framework to a project
that intuitively seems resilient.

The versions of the releases of WooCommerce to which we will be applying
the OSSRF, with their corresponding dating (year/month) are shown to Table 3.
By applying the Business & Legal dimension’s indicators to WooCommerce we
are getting the results as shown in the Table 4.

Table 3. WooCommerce releases

Version 1.3.2 1.6.6 2.0.20 2.0.10 2.0.12 2.6.11 3.2.6

Date 2011/12 2012/12 2013/12 2014/12 2015/12 2016/12 2017/12

WooCommerce is a free and OSS WordPress plug-in but there are commercial
plug-ins created for WooCommerce. There is also paid support offered. To our
best knowledge it does not support donations. Additionally, WooCommerce is
published under GPL license and some of its dependencies are published under

Open Source Software Resilience Framework 47

Table 4. WooCommerce - Business & Legal dimension. Goals & indicators

Indicator v1.3.2 v1.6.6 v2.0.20 v2.0.10 v2.0.12 v2.6.11 v3.2.6

Economic Sustainability

Donations 0 (F) 0 (F) 0 (F) 0 (F) 0 (F) 0 (F) 0 (F)

Commercial features 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S)

Paid support 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S)

Flexible Licensing

Level or permissiveness 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S)

Level of persistence 1 (F) 1 (F) 1 (F) 1 (F) 1 (F) 1 (F) 1 (F)

External Organization Support

External Organization Support 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S) 1 (S)

persistent license (i.e. wc-e2e-page-objects). Finally WooCommerce is backed
from both the WordPress Foundation and the Automattic Company, both well-
known organizations. Towards “Economic Sustainability” goal the project is con-
sidered resilient since 2 out of 3 indicators are considered resilient. Regarding
“Flexible Licensing” it is also considered resilient since 1 of 2 indicators is con-
sidered resilient. Finally, “External Organization Support” is also considered
resilient. The aforementioned findings apply to all versions.

Therefore based on OSSRF, the project is considered resilient.

5 Threats to Validity

We should note that OSSRF should be applied to project of a relative maturity
in terms of community and age (we would intuitively suggest at least 10 con-
tributors and a maturity of more than a year). Applying it in solo maintained
OSS projects, or projects that not yet have reached the proposed maturity may
lead to misleading results.

OSSRF is an adaptation of the City Resilience framework to Open Source
Software. Although the structure of the original framework was retained, despite
the conceptual similarities that we have already mentioned earlier, the mapping
of dimensions, goals and indicators is a product of the subjective lens of the
authors.

In the application of the OSSRF to the two projects we have applied the
indicators of one of the four available dimensions of the OSSRF, “Business &
Legal” dimension.

Regarding the goals and indicators, some of them are based on metrics avail-
able for object oriented source code. Additionally, as far as control version sys-
tems are concerned, for the needs of this publication we selected projects that
are hosted in Github.

48 A. Kritikos and I. Stamelos

As far as the scales and their aggregation is concerned, in this preliminary
approach we considered each criterion equally important and the threshold for
defining a project as resilient or non resilient is 50%.

Finally, both of the projects analyzed in this paper, were developed in PHP
and their domains are close (OKapi was a framework for web applications and
WooCommerce is a plugin for a WordPress which is also considered by some a
kind of web framework).

6 Conclusions and Future Work

This is a preliminary work proposing an evaluation approach with the aim of
providing a strong theoretical basis for evaluating OSS projects adapting the
concept of Urban Resilience to OSS. By doing so, we are trying to benefit form
the advantage of resiliency to follow the evolution of a dynamic system (such
as a city or an OSS) while at the same time we are providing a framework that
can take under consideration concepts such as crises and or stresses that can
theoretically impact the survival of an OSS. We applied a single dimension of
the OSSRF to an intuitively non resilient OSS project and an intuitively resilient
one and the results seem to concur with the initial intuitions.

For future work we intend to thoroughly fine-tune the rest of the indicators
by testing it to a variety of OSS projects. This will also allow us to investigate
how the OSSRF responds to projects of different age, community size or source
code size and complexity. We also intend to investigate whether the software
domain of an OSS project affects the results of the application of the OSSRF.

Regarding the framework itself we will experiment with other approached
regarding the “Resilience determination mechanism” (i.e. weighted goals).

In addition we will be extending the OSSRF to be able to work with a
variety of control version systems (not only git-like but also Mercurial, SVN,
CVS). In a similar spirit will would like to experiment with projects of different
programming languages (i.e. Java).

Another challenging idea for future work would be to apply OSSRF to OSS
projects that are known to have faced specific stresses or crises in order to identify
how those crises relate with the resiliency levels of an OSS project.

Finally we intend to attempt and request feedback, in the form of a survey,
from key players of the Open Source Software international community (lead
developers, stakeholders, academics and so forth) about OSSRF.

References

1. Weber, S.: The Success of Open Source. Harvard University Press, Cambridge
(2004)

2. Thakker, D., Schireson, M.: The Money In Open-Source Software (2016). https://
techcrunch.com/2016/02/09/the-money-in-open-source-software/

3. Raymond, E.: The Cathedral and the bazaar. Philos. Technol. 12(3), 23 (1999)

https://techcrunch.com/2016/02/09/the-money-in-open-source-software/
https://techcrunch.com/2016/02/09/the-money-in-open-source-software/

Open Source Software Resilience Framework 49

4. Organización Internacional de Normalización: ISO-IEC 25010: 2011 Systems and
Software Engineering-Systems and Software Quality Requirements and Evaluation
(SQuaRE)-System and Software Quality Models. ISO (2011)

5. Wasserman, A., Pal, M., Chan, C.: The business readiness rating model: an evalu-
ation framework for open source. In: Proceedings of the EFOSS Workshop, Como,
Italy (2006)

6. Midha, V., Palvia, P.: Factors affecting the success of open source software. J. Syst.
Softw. 85(4), 895–905 (2012)

7. Vision Mobile: Open governance index-measuring the true openness of open source
projects from android to WebKit (2011)

8. Miguel, J.P., Mauricio, D., Rodŕıguez, G.: A review of software quality models for
the evaluation of software products. arXiv preprint arXiv:1412.2977 (2014)

9. Wasserman, A.I., Guo, X., McMillian, B., Qian, K., Wei, M.-Y., Xu, Q.: OSSpal:
finding and evaluating open source software. In: Balaguer, F., Di Cosmo, R., Gar-
rido, A., Kon, F., Robles, G., Zacchiroli, S. (eds.) OSS 2017. IAICT, vol. 496, pp.
193–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57735-7 18

10. Teixeira, J., Robles, G., González-Barahona, J.M.: Lessons learned from applying
social network analysis on an industrial free/libre/open source software ecosystem.
J. Internet Serv. Appl. 6(1), 14 (2015)

11. Andrade, S., Saraiva, F.: Principled evaluation of strengths and weaknesses in
FLOSS communities: a systematic mixed methods maturity model approach. In:
Balaguer, F., Di Cosmo, R., Garrido, A., Kon, F., Robles, G., Zacchiroli, S. (eds.)
OSS 2017. IAICT, vol. 496, pp. 34–46. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57735-7 4

12. Gamalielsson, J., Lundell, B.: Sustainability of open source software communities
beyond a fork: how and why has the libreoffice project evolved? J. Syst. Softw. 89,
128–145 (2014)

13. Wieland, A., Wallenburg, C.M.: The influence of relational competencies on supply
chain resilience: a relational view. Int. J. Phys. Distrib. Logist. Manag. 43(4), 300–
320 (2013)

14. Axelrod, C.W.: Investing in software resiliency (2009)
15. Da Silva, J., Morera, B.: City resilience framework. Arup & Rock-

efeller Foundation (2014). http://publications.arup.com/Publications/C/City
Resilience Framework.aspx. Accessed 15 Dec 2015

16. Resilient Cities (2013). http://www.100resilientcities.org/
17. City Resilience Index: City resilience framework. The Rockefeller Foundation and

ARUP (2014)
18. Munga, N., Fogwill, T., Williams, Q.: The adoption of open source software in

business models: a red hat and IBM case study. In: Proceedings of the 2009 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists, pp. 112–121. ACM (2009)

19. Välimäki, M., Oksanen, V.: Evaluation of open source licensing models for a com-
pany developing mass market software. Law and Technology (2002)

20. OKapi Github Repository. https://github.com/liip/Okapi
21. WooCommerce Github Repository. https://github.com/liip/Okapi

http://arxiv.org/abs/1412.2977
https://doi.org/10.1007/978-3-319-57735-7_18
https://doi.org/10.1007/978-3-319-57735-7_4
https://doi.org/10.1007/978-3-319-57735-7_4
http://publications.arup.com/Publications/C/City_Resilience_Framework.aspx
http://publications.arup.com/Publications/C/City_Resilience_Framework.aspx
http://www.100resilientcities.org/
https://github.com/liip/Okapi
https://github.com/liip/Okapi

Leaving Behind the Software History
When Transitioning to Open Source:

Reasons and Implications

Gustavo Pinto1, Igor Steinmacher2,3(B), and Marco Gerosa3

1 Federal University of Pará, Belém, PA, Brazil
gpinto@ufpa.br

2 Federal University of Technology, Campo Mourão, Paraná, Brazil
igorfs@utfpr.edu.br

3 Northern Arizona University, Flagstaff, USA
Marco.Gerosa@nau.edu

Abstract. Maintenance of software history is regarded to be one of the
most relevant features of Version Control Systems (VCS) and is well-
known to be indispensable for software developers. However, transition-
ing from proprietary to open source software poses a challenge: keeping
the software history might make available years of historical records and
internal matters from the company that built the software. On the other
hand, removing the software history may disturb the development and
may be harmful to new contributors. We conducted a survey with open
source software projects that made this shift to investigate (1) the rea-
sons why they removed the software history and (2) the challenges that
developers face with the lack of availability of software history. Among
the results, we found that the most common reason for removing the
software history is because it is entangled with proprietary code (the
fact that the history contains sensitive information appears next). Inter-
estingly, most core developers believed that the lack of software history
is, in the worst case, “a very minor inconvenience.”

1 Introduction

Maintaining software history, or commit history, is one of the main benefits of
Version Controls Systems (VCSs). Developers refer to the software history not
only when they need to navigate through changes related to their tasks, but
also to learn from previous mistakes or to decide what to do next [23]. Indeed,
a recent survey evidenced that software history is indispensable for developers:
61% of the respondents said to examine history up to a few times a day [4]. Prac-
titioners also report acquiring knowledge when examining software history [14].
In particular, the recent introduction of social coding hosting websites made
software history of open source software projects more accessible and under-
standable. As a consequence, even end users are taking advantage of the software

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 50–60, 2018.
https://doi.org/10.1007/978-3-319-92375-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_5&domain=pdf

Leaving Behind the Software History When Transitioning to Open Source 51

history [11]. Researchers also leverage software history to conduct several stud-
ies, for instance, regarding the impact of co-changes on software maintenance
activities [5], to estimate defects [20], or to fix bugs [3].

However, when open-sourcing their projects, several companies chose not to
open the commit history. If decision makers decide to keep the software history
with information from the entire development process, they might share sensitive
data that is only supposed to be accessed by internal members of the software
company (e.g., database passwords). However, if decision makers decide not to
keep the software history, they might introduce an additional burden for the
software development team (e.g., when dealing with maintenance tasks) or even
for new contributors interested in joining the new open source project.

This kind of trade-off is relevant since many software companies, even those
that were well-restrictive when it comes to publishing their software artifacts,
are now releasing their former proprietary projects under open source licenses.
As a notable example, in 2015, Apple released Swift, a programming language
designed to be the successor of Objective-C on mobile platforms, under Apache 2,
an open source software license. A quick search on HackerNews1 — a developer-
oriented news aggregator — reveals that there are more than 200 news regarding
proprietary software projects that became open source2.

To shed some light on the trade-offs of keeping the software history, we sur-
veyed proprietary software projects that made the shift to open-source and did
not open the software history. We selected 50 projects by searching at news
aggregators, mailing lists, or README files (details in Sect. 2.2). To understand
the reasons and challenges of working with a non-trivial, yet history-free open
source project, we posted questions in the project issue trackers or mailing lists.
Based on the responses, we characterized a variety of reasons that explain the
lack of software history, such as: “[the history] contains sensitive information,”
“housekeeping needed,” and “licensing and legal reasons.” Still, regarding the
challenges associated with the lack of software history, although some respon-
dents acknowledge the importance of such history, they reported to have very
few problems with it, as one maintainer mentioned, “I’m probably the person
most likely to access it, and I’d estimate that I use it only a few times per year”.

In summary, this paper makes the following main contributions:

– The reasons that lead project maintainers to leave behind the software history
when transitioning to open source;

– The discovery that some project maintainers do not value software history as
predicted by the literature.

2 Method

In this section, we describe our research questions (Sect. 2.1), the projects stud-
ied and how we found them (Sect. 2.2), and our survey design and application
(Sect. 2.3).
1 https://news.ycombinator.com/.
2 https://hn.algolia.com/?query=%22is%20now%20open%20source%22

https://news.ycombinator.com/
https://hn.algolia.com/?query=%22is%20now%20open%20source%22

52 G. Pinto et al.

2.1 Research Questions

To guide our research, we investigated the following important but overlooked
research questions:

RQ1: Why some projects do not open the software history when going open
source?
Why: Although one might believe that the reasons behind the removal of the
software history are straightforward (e.g., to protect sensitive data about the
company), this research question is intended to bring evidence to confirm or
refute this belief, as well as to uncover additional reasons.

RQ2: What are the challenges associated with the lack of software history?
Why: To understand the hidden challenges triggered by the lack of software
history. This better understanding can, in turn, motivate researchers and tool
makers to improve existing VCS tools in order to mitigate these challenges, or
even to avoid the need of leaving behind the software history.

2.2 Studied Projects

We selected a set of active and non-trivial proprietary software projects that
recently (i.e., no later than 2014) became open source. To identify these projects,
we used a convenience sampling approach: we searched in mailing lists, blog
posts, and newsletters for indication of whether a proprietary project became
open source. We double checked the first commit(s) for anything indicating
whether the source code was imported all at once or not. Such commit usu-
ally has an informative message and a high number of additions. For instance,
the first commit from project deepvariant was named “Initial release of Deep-
Variant”, and had 49,522 additions (0 deletions) in 270 files.3 We started this
search in June 2016 and proceeded until we found 50 instances of proprietary
projects that deleted their software history when transitioning to open source.
Among them were IndexTank from LinkedIn, caravel from Airbnb, msbuild
from Microsoft, and Haxl from Facebook. Throughout this process, we found
only eight projects that kept the software history. We sent open questions to the
50 selected projects and received answers from 35 projects, which had been con-
sidered for this study; the list of the 35 projects is available at Table 1. Although
the list of studied projects is not exhaustive, it contains a variety of projects,
with relation to their domains, programming language use, and size in terms of
lines of code. Figure 1 depicts some characteristics of the studied projects.

2.3 Survey

To better understand the reasons for the removal and the problems related with
the lack of history, we designed a survey aimed at gathering insights about the
importance of the lack of software history. We asked four open questions:

3 https://github.com/google/deepvariant/commit/8b84eab.

https://github.com/google/deepvariant/commit/8b84eab

Leaving Behind the Software History When Transitioning to Open Source 53

commits contributors releases stars forks issues prs

0
1

2
3

4
5

6

O

cc
ur

re
nc

es
 (

in
 th

ou
sa

nd
s)

Fig. 1. Characteristics of the analyzed projects

Q1. Why did the software development team decide not to keep the software
history?
Q2. Did the core developers face any kind of problems when trying to refer to
the old history? If so, how did they solve these problems?
Q3. Did the newcomers face any kind of problems when trying to refer to the
old history? If so, how did they solve these problems?
Q4. How does the lack of software history impact understanding and evolution
of software?

We sent the questionnaire by creating issues in the issue trackers of the selected
projects. This approach has been successfully employed in recent related work
(e.g., [2]). Projects Tensorflow and Scratch closed the issues, suggesting other
means to send research inquiries.4,5 We, therefore, approached these projects
through their mailing lists (tensorflow indeed replied our research inquiries
through the mailing list: http://bit.ly/2qR3Mm1). When doing so, one mailing
list user contacted us, asking: “If you’d like another proprietary project that went
open source and left behind its history, card.io did that,” which we promptly
accepted. In total, we collect answers from developers of 35 open source projects
(totalizing 41 answers; we received up to four answers per project). For the
majority of projects (project ChakraCore is the only exception), the respondents
were within the top-10 most active ones.

To compile the survey results, we qualitatively analyzed the answers following
coding procedures [22]. The qualitative analysis was conducted independently by
the first two authors, followed by a consensus meeting. To enrich some of the
findings, we opted to use some quotes throughout the results section. Among
similar opinions, we chose to quote only the one we considered the most repre-
sentative for each case.

4 https://github.com/LLK/scratch-flash/issues/1112.
5 https://github.com/tensorflow/tensorflow/issues/2361.

http://bit.ly/2qR3Mm1
https://github.com/LLK/scratch-flash/issues/1112
https://github.com/tensorflow/tensorflow/issues/2361

54 G. Pinto et al.

Table 1. The list of projects studied. Project card.io has no issue id because the
maintainer personally got in touch with us by email. To see the response online, one
needs to concatenate the project’s URL + /issues/ + the issue id, resulting in, for
instance, https://github.com/Microsoft/msbuild/issues/621.

Projects URL Issue Id

msbuild github.com/Microsoft/msbuild 621

ChakraCore github.com/Microsoft/ChakraCore 1280

heron github.com/twitter/heron 1018

caravel github.com/airbnb/superset 470

fbctf github.com/facebook/fbctf 49

Tensorflow github.com/tensorflow/tensorflow 2361

jsaction github.com/google/jsaction 11

card.io github.com/card-io/card.io-dmz −−−
openwebrtc github.com/EricssonResearch/openwebrtc 611

manta github.com/joyent/manta 14

triton github.com/joyent/triton 202

Dshell github.com/USArmyResearchLab/Dshell 87

buffer-ios github.com/bufferapp/buffer-ios-image-viewer 42

django-knowledge github.com/zapier/django-knowledge 70

warp-ctc github.com/baidu-research/warp-ctc 42

codecombat github.com/codecombat/codecombat 3775

djinni github.com/dropbox/djinni 253

superpowers-core github.com/superpowers/superpowers-core 143

GameMaker github.com/gandrewstone/GameMaker 2

opentoonz github.com/opentoonz/opentoonz 640

magento2 github.com/magento/magento2 5654

IndexTank github.com/linkedin/indextank-engine 43

ShareLatex github.com/sharelatex/web-sharelatex 282

Haxl github.com/facebook/Haxl 52

reason github.com/facebook/reason 651

redex github.com/facebook/redex 164

torchnet github.com/torchnet/torchnet 28

torch github.com/facebook/fb.resnet.torch 86

draft-js github.com/facebook/draft-js 555

pinball github.com/pinterest/pinball 74

decoda github.com/unknownworlds/decoda 33

mrjob github.com/Yelp/mrjob 1356

deepvariant github.com/google/deepvariant 36

fsharp-support github.com/JetBrains/fsharp-support 6

escape github.com/ankyra/escape 4

https://github.com/Microsoft/msbuild/issues/621
http://github.com/Microsoft/msbuild
http://github.com/Microsoft/ChakraCore
http://github.com/twitter/heron
http://github.com/airbnb/superset
http://github.com/facebook/fbctf
http://github.com/tensorflow/tensorflow
http://github.com/google/jsaction
http://github.com/card-io/card.io-dmz
http://github.com/EricssonResearch/openwebrtc
http://github.com/joyent/manta
http://github.com/joyent/triton
http://github.com/USArmyResearchLab/Dshell
http://github.com/bufferapp/buffer-ios-image-viewer
http://github.com/zapier/django-knowledge
http://github.com/baidu-research/warp-ctc
http://github.com/codecombat/codecombat
http://github.com/dropbox/djinni
http://github.com/superpowers/superpowers-core
http://github.com/gandrewstone/GameMaker
http://github.com/opentoonz/opentoonz
http://github.com/magento/magento2
http://github.com/linkedin/indextank-engine
http://github.com/sharelatex/web-sharelatex
http://github.com/facebook/Haxl
http://github.com/facebook/reason
http://github.com/facebook/redex
http://github.com/torchnet/torchnet
http://github.com/facebook/fb.resnet.torch
http://github.com/facebook/draft-js
http://github.com/pinterest/pinball
http://github.com/unknownworlds/decoda
http://github.com/Yelp/mrjob
http://github.com/google/deepvariant
http://github.com/JetBrains/fsharp-support
http://github.com/ankyra/escape

Leaving Behind the Software History When Transitioning to Open Source 55

3 RQ1: Why Some Projects Do Not Open the Software
History?

While analyzing the answers, we observed that the lack of software history occurs
for several reasons (some respondents described more than one reason):

Entangled with proprietary code (11 occurrences). We found that some
projects became open source by open-sourcing a small part of a bigger project.
As one respondent mentioned “Extracting just the subfolder would have been dif-
ficult, and older versions would not have built.” Another respondent summarized
this process as: “first get something working, and then disentangle it from your
own proprietary code, configuration, etc.” The same respondent also suggested
that this might be a common pattern in OSS projects.

Contains sensitive information (11 occurrences). Some projects had
hard-coded sensitive information (e.g., credentials of a remote database) in the
source code, e.g., “DeepVariant was originally developed within Google, using
our internal systems. [...] the earliest commits may contain information we can-
not share, so upon releasing DeepVariant we squashed the history.” Although
one could simply delete the commits that alter this information, one respondent
mentioned that they “have to do an audit of the change descriptions to make
sure the descriptions are appropriate for being published publicly,” which they
were unwilling to do. As another respondent said: “Going through potentially
thousands of commits, realistically, means no one will take on the heroic task of
even open-sourcing the product.” Thus, the only way to effectively remove this
sensitive information is removing the entire software history.

Housekeeping needed (7 occurrences). As Fogel already anticipated [8],
prior to releasing a proprietary software as open source, one needs to exert
some effort toward improving code quality and documentation, as stated by one
respondent: “We cleaned out embarrassing or inappropriate comments, brought
the code up to OSS standards, and generally improved code hygiene, robust-
ness, and security.” However, it was unexpected that the amount of refactor-
ing required would prevent the software history from being useful, as another
respondent said: “the amount of reorganization that happened *just before* open-
sourcing meant that it would be harder to track the history than to just understand
the current state.”

Of less importance (4 occurrences). Contrary to recent studies (e.g., [4]),
some developers believed that the software history does not deserve such impor-
tance. One respondent suggested that “two of the primary motivations for keep-
ing history are egos and understanding bug fixes. [our project] was low on ego,
and we were careful to comment non-trivial or subtle bug fixes, so those two his-
torical artifacts weighed less heavily.” Another respondent highlighted another
aspect of this lack of importance: “remember that often something started as one
person’s random weekend project. Keeping a pristine history might not have been
a priority.”

56 G. Pinto et al.

License and legal reasons (4 occurrences). We also found non-technical and
legal reasons. As one respondent mentioned: “[Deleting the software history] also
made it much easier to get the lawyers at our parent company to agree to open
source it–instead of having to review the entire history for safety, they could
review just the current state.” Another reason is that some now open source
applications rely on proprietary code. Therefore, to maintain license compliance,
the developers have to maintain that code internally. Ultimately, one respondent
summarized this reason: “Legal and policy reasons created incentives to release
less source.”

Did not use a VCS before (3 occurrences). Some projects became open
source shortly after their bootstrap. Thus, there was no need to use any VCS,
as one respondent said, “there simply was no formal software history kept, and
direct cooperation between experienced developers was sufficient to develop it to
a releasable state.” For these projects, the first commit at GitHub was their first
use of a version control system.

Used another VCS before (3 occurrences). One respondent said that
“Before moving to GitHub, TensorFlow was developed on a system other than
Git, and transferring history was not straightforward.” Moreover, the same
respondent suggested that the effort needed for migrating the software history
from one VCS to another does not outweigh the benefits of keeping it: “[the]
value [of keeping the software history] was at best unclear, so we didn’t do it.”

4 RQ2: What Are the Challenges Associated
with the Lack of Software History?

Most of the project maintainers reported that they had few problems with the
lack of software history; as one respondent mentioned: “none of the core devel-
opers has wanted or needed to go look back through the history.” Another respon-
dent stated that “based on practical experience, a history [of] more than a year is
used very rarely”, which might explain this behavior. Moreover, another respon-
dent suggested that institutional knowledge, i.e., the combined knowledge of the
many contributors to a project, can be an effective substitute for formal software
history, for instance: “communication between developers, documentation in and
outside of the source code, and the easily understood idiomatic expressions of the
Python language were/are sufficient to maintain project coherency.”

Even though these comments are in sharp contradiction with recent related
work [4], it does not suggest that the software history is unimportant. Indeed,
some respondents acknowledged its importance (e.g., “We very much agree that
the software history is extremely useful for developers”). Still, ten respondents
suggested that the original software history is internally maintained, as one
respondent highlighted: “we still use the non-git system internally and can refer
to history if we need to.” However, the respondents also suggested that the
internal software history is not actively used, as one respondent indicated: “The
old history is still available internally. I’m probably the person most likely to

Leaving Behind the Software History When Transitioning to Open Source 57

access it, and I’d estimate that I use it only a few times per year.” Nevertheless,
maintaining two software histories for the same project might require additional
effort, which can make it difficult to track down the origins of the code.

Similarly, we found that maintainers do not think that the lack of software
history is a significant problem for newcomers; all respondents shared this belief.
However, most of the respondents said that they are not aware of any problems.
Some newcomers may have faced problems, but not reported them, or gave up
contributing. Project maintainers often suggested different ways that newcomers
can mitigate this problem, as one respondent mentioned: “they have the code to
look at and also code which is non-obvious should anyway have comments, else
they could ask people who worked on the code before it was released.”

Finally, regarding software evolution, we found a remarkable uniformity
among the respondents; all of them believed that the lack of software history
does not greatly impact software evolution and understanding. In the worse
case, one respondent characterized the lack of history “as a very minor incon-
venience.” Even more interestingly, one respondent said that software history of
an active project loses importance over time: “For a fast-moving project, history
from more than half a year ago is not particularly valuable for development.”

Along with this line of thought, Codoban et al. [4] observed that software
developers need better tools to visualize software history. We believe that this
lack of tools to properly visualize software history might create the perception
that it is “not particularly valuable for development.” Ultimately, we observed
that the burden the lack of history may cause is “certainly not enough to outweigh
the costs of making it public,” which is particularly relevant to the software
projects under study.

5 Implications and Limitations

In this section we discuss some implications of our findings, and state the limi-
tations of this work.

5.1 Implications

Based on our findings, we discuss some implications for stakeholders. We
observed that some respondents mentioned a lack of tools to ease the migra-
tion between version control systems, for instance: “I think this one may have
been moving between source code repository technologies (SVN to Git) and the
tools did not work well enough.” Researchers and tool builders can propose a
new set of tools to better support the transition between VCSs. Additionally, we
observed that a common way to open-source a software project is by extracting
only a small part of an existing project. However, this activity might be extremely
difficult to conduct without appropriated tool support. As a result, developers
leave behind the software history. Researchers can explore better techniques to
extract only parts (or features) of the software while keeping only the relevant
software history. Since some respondents mentioned that old software history

58 G. Pinto et al.

is not particularly valuable for development, VCS designers can also propose
lightweight VCSs, in which only the N most recent changes are kept, where N is
based on project’s activity or user choice. Programming language designers can
also introduce programming language constructs that keep track of the evolution
of certain parts of the code.

5.2 Limitations

As any empirical study, this one has limitations and threats to validity. First, we
selected our projects by searching blog posts, newsletters, and README files;
the first author manually conducted this process. Due to the qualitative nature
of this approach (and the timeliness of a proprietary project becoming open
source), one could find different projects. Moreover, we used GitHub’s issues to
send out our questionnaires. Such public participation can also be a threat since
anyone could answer our questions. To mitigate this threat, we verified whether
the respondents were active project members. We found that the majority of the
respondents were among the top-10 most active contributors (only one respon-
dent was not in the top-10). However, nine respondents do not appear as a
contributor of the studied project. This might happen because the software his-
tory was removed and their contributions might have been removed as well.
By comparing the user’s affiliation and the project’s affiliation on GitHub, we
confirmed the affiliation of five of them. The remaining four did not state any
affiliation. Also, we observed that some open source projects do not use issues
for discussions. We, therefore, got in touch through the mailing list. Still, we
certainly did not discover all challenges and reasons behind the lack of software
history. Replications are necessary to fully understand the phenomenon. To facil-
itate replication, we made available the list of studied projects and the responses
received in our survey on the companion website: http://bit.ly/dataset-oss2018.

6 Related Work

Some studies focus specifically on GitHub’s features, which allow developers
to track activities and form detailed impressions of social and technical abili-
ties [12,24]. Community size, interest, and activeness have also being explored
[17,21]. Moreover, there is a recent growth of studies targeting proprietary
projects under development in social coding websites. Kalliamvakou et al. [10]
examined how proprietary software projects use GitHub. They found that these
projects apply practices such as reduced communication, independent work, and
self-organization. Some research has investigated how proprietary projects adopt
OSS-related practices to mitigate challenges related to the lack of communica-
tion and awareness [18,19]. More recently, we conducted some studies to under-
stand how the contributions from employees (the ones hired by a software com-
pany) differs from volunteers (the ones the contribute in their free time) [7,15].
Regarding licensing, some studies investigated licenses inconsistencies and vio-
lations [1,9,13], and other focus on license evolution [6,25,26].

http://bit.ly/dataset-oss2018

Leaving Behind the Software History When Transitioning to Open Source 59

The closest work is an in-depth investigation of the contribution charac-
teristics of Company-Owned OSS projects that kept the software history [16].
However, to the best of our knowledge, there is no study targeting the impact
of the lack of the software history on proprietary projects that made the shift
to open source software.

7 Conclusion

In this paper, we challenge an important belief related to the importance of
software history. After the identification of a set of projects that left behind
their entire software history after transitioning to open source, we deployed a
survey to better understand (1) the reasons that lead to this removal and (2)
the hidden challenges that arose due to its lack. We found eight reasons that
might justify the decision of removing the software history, such as “entangled
with proprietary code,” “housekeeping needed,” and “license and legal reasons.”
More interestingly, however, is the fact that when asked whether the lack of
software history might impact understanding and evolving of the software, some
respondents believed that the lack of history does not place any significant bur-
den on developers.

For future work, we plan to better understand the newcomers’ perception of
the lack of software history and contrast our results with the analysis of projects
that kept the history when migrating to open source.

Acknowledgments. We thank our respondents and the reviewers. This work is sup-
ported by CNPq #406308/2016-0; PROPESP/UFPA; and FAPESP #2015/24527-3.

References

1. Almeida, D.A., Murphy, G.C., Wilson, G., Hoye, M.: Do software developers under-
stand open source licenses? In: ICPC 2017, pp. 1–11. IEEE Press (2017)

2. Avelino, G., Passos, L., Hora, A., Valente, M.T.: A novel approach for estimating
truck factors. In: ICPC 2016, pp. 1–10 (2016)

3. Bachmann, A., Bird, C., Rahman, F., Devanbu, P., Bernstein, A.: The missing
links: bugs and bug-fix commits. In: FSE 2010, pp. 97–106 (2010)

4. Codoban, M., Ragavan, S.S., Dig, D., Bailey, B.: Software history under the lens:
a study on why and how developers examine it. In: ICSME 2015, pp. 1–10 (2015)

5. de Oliveira, M.C., Bonifácio, R., Ramos, G.N., Ribeiro, M.: Unveiling and reasoning
about co-change dependencies. In: Modularity 2016, pp. 25–36 (2016)

6. Di Penta, M., German, D.M., Guéhéneuc, Y.-G., Antoniol, G.: An exploratory
study of the evolution of software licensing. In: ICSE 2010, vol. 1, pp. 145–154.
IEEE (2010)

7. Dias, L.F., Steinmacher, I., Pinto, G.: Who drives company-owned OSS projects:
Employees or volunteers? In: V Workshop on Software Visualization, Evolution
and Maintenance, VEM, p. 10 (2017)

8. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software
Project, 1st edn. O’Reilly Media, Sebastopol (2013)

60 G. Pinto et al.

9. German, D.M., Di Penta, M., Davies, J.: Understanding and auditing the licensing
of open source software distributions. In: ICPC 2010, pp. 84–93. IEEE (2010)

10. Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., German, D.M.: Open source-
style collaborative development practices in commercial projects using GitHub. In:
ICSE 2015, pp. 574–585 (2015)

11. Kuttal, S.K., Sarma, A., Rothermel, G.: On the benefits of providing versioning
support for end users: an empirical study. ACM Trans. Comput.-Hum. Interact.
21(2), 9:1–9:43 (2014)

12. Marlow, J., Dabbish, L., Herbsleb, J.: Impression formation in online peer produc-
tion: activity traces and personal profiles in GitHub. In: CSCW (2013)

13. Meloca, R.M., Pinto, G., Baiser, L.P., Mattos, M., Polato, I., Wiese, I.S., German,
D.M.: A study of non-approved open-source licenses. In: MSR 2018. IEEE Press
(2018)

14. Pham, R., Singer, L., Liskin, O., Filho, F.F., Schneider, K.: Creating a shared
understanding of testing culture on a social coding site. In: ICSE 2013, pp. 112–
121 (2013)

15. Pinto, G., Dias, L.F., Steinmacher, I.: Who gets a patch accepted first? comparing
the contributions of employees and volunteers. In: 2018 11th IEEE/ACM Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE@ICSE 2018, Gothenburg, Sweden, May 2018

16. Pinto, G., Steinmacher, I., Dias, L.F., Gerosa, M.: On the challenges of open-
sourcing proprietary software projects. Empir. Softw. Eng. 1–27 (2018)

17. Pinto, G., Steinmacher, I., Gerosa, M.A.: More common than you think: an in-
depth study of casual contributors. In: SANER 2016, pp. 112–123 (2016)

18. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B., Odenwald, T.: Open collaboration within corporations using software forges.
IEEE Softw. 26(2), 52–58 (2009)

19. Sharma, S., Sugumaran, V., Rajagopalan, B.: A framework for creating hybrid-
open source software communities. Inf. Syst. J. 12(1), 7–26 (2002)

20. Steff, M., Russo, B.: Co-evolution of logical couplings and commits for defect esti-
mation. In: MSR 2012, pp. 213–216 (2012)

21. Steinmacher, I., Pinto, G., Wiese, I., Gerosa, M.A.: Almost there: a study on quasi-
contributors in open-source software projects. In: ICSE 2018 (2018)

22. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory, 3rd edn. SAGE, Thousand Oaks (2007)

23. Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S.: How do software engineers under-
stand code changes?: An exploratory study in industry. In: FSE 2012, pp. 51:1–
51:11 (2012)

24. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for
evaluating contribution in GitHub. In: ICSE 2014, pp. 356–366 (2014)

25. Vendome, C., Bavota, G., Di Penta, M., Linares-Vásquez, M., German, D., Poshy-
vanyk, D.: License usage and changes: a large-scale study on github. Empir Softw.
Eng. 22(3), 1–41 (2017)

26. Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German, D., Poshy-
vanyk, D.: Machine learning-based detection of open source license exceptions. In:
ICSE 2017, pp. 118–129 (2017)

Developer Dynamics and Syntactic Quality
of Commit Messages in OSS Projects

Kuljit Kaur Chahal(&) and Munish Saini

Department of Computer Science, Guru Nanak Dev University, Amritsar, India
kuljitchahal@yahoo.com

Abstract. Community dynamics play an important role in the Open Source
Software (OSS) development paradigm. Researchers have extensively studied
the human aspects of the OSS paradigm from the point of view of community
formation to community evolution. A few studies relate community dynamics
with OSS product attributes such as code quality. However, the impact of
community dynamics on non-code contributions such as commits has not been
explored. In this paper, the aim is to analyze the impact of community dynamics
on syntactic quality of commit messages of an OSS project. We first propose
and validate a commit message quality model, and then use that model to
analyze the OSS projects. Empirical analysis of seven OSS projects available in
the Git repository shows that a small group of contributors active at the same
time in a project leads to high syntactic quality contributions. These observa-
tions may prove useful to developers as well as project managers who need
quantifiable techniques for monitoring the OSS projects.

CCS Concepts: CCS ! Software and its engineering ! Software notations
and tools ! Software configuration management and version control systems

Keywords: Open Source Software (OSS) � Software evolution
Source code management � Commit activity � Commit message quality

1 Introduction

Open Source Software (OSS) development is presumed to entail collaborative partic-
ipation of geographically distributed developers for creating a successful project.
A source code management system such as Git records and manages contributions of
participants in the project repository. Majority of the participants are volunteers. Major
motivations for participants include developing and improving skills, getting recog-
nition for the skills, and building a reputation which in turn helps them in furthering
their commercial endeavors [8]. Sans any organization control, they can join or leave
an OSS project as per their own convenience. Unlike commercial software in which
committed employees contribute regularly, an OSS project generally depends upon
contributions from self-motivated individuals who belong to different geographical
locations, and diverse cultures and backgrounds. More recently, corporate backed OSS
projects are also emerging on the landscape. Large corporates such as IBM, HP support
OSS development with their own resources (i.e. their paid workforce contributes) in

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 61–76, 2018.
https://doi.org/10.1007/978-3-319-92375-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_6&domain=pdf

various projects that they use in their own products. Whatever the mode of partici-
pation, we can say that OSS community plays an important role in the OSS devel-
opment paradigm.

However, this is not static but a very dynamic community. There are no fixed roles.
A member can contribute to an OSS project in a number of ways depending upon his
skill set (as a developer, tester, or documenter). Not only this, he/she can fluidly shift
from being an end user to a developer (for example a tool user can work on improving
the tool). Due to the volunteer nature of participation, there could be many lean periods
in a project’s activity when participants are busy in their regular life activities, for
example working on a full-time job on weekdays, enjoying vacations, or not con-
tributing due to inexplicable reasons. It will be interesting to investigate community
dynamics and its impacts on OSS development processes.

In this paper, we are interested in understanding the impact of community dynamics
on the quality of contributions committed to a project’s repository.

A commit, a software change that involves a source code or other type of contri-
bution such as documentation, is a fundamental component of an OSS development
process. In the recent past, commit analysis has been a topic of active research to
understand the software development processes of OSS projects [8, 12, 13]. For
example commit activity (measured as the number of commits in a unit of time) of an
OSS project is correlated with successfulness of the project [13]. A developer with high
commit frequency is more productive. A project with high commit frequency is healthy
as it gets regular contributions. There is not much research on this topic to define commit
quality or to use commit quality information to characterize OSS projects or developers’
contribution practices. A few studies have analyzed commits of software projects from
quality perspective [1], though there is a lot of work focusing on evaluating the code
quality of OSS projects. In this paper, we propose to answer the following question:

What is the impact of community dynamics on commit message (syntactic) quality
in the context of OSS projects?

A good quality commit contains a well-crafted message with all the necessary
details (meta-data) to effectively convey the change to current or future developers [5].
It not only makes the changes contributed by others easy to understand but also helps in
recalling one’s own changes contributed in the past. A good commit message should
follow a simple and consistent style for specifying commit meta-data and content.

With respect to commit message quality in OSS projects, we propose a commit
message syntactic quality model in Sect. 3. Following this model, each commit mes-
sage can be assigned a commit score. In this study, we are focusing only on the
syntactic view of commit messages. The syntactic analysis shows “writing styles of the
contributors” i.e. whether they follow the rules of the syntax while describing their
commits. We analyzed 202,561 commit messages of seven OSS projects to understand
the way committers commit changes in a Source Code Management (SCM) system
specifically Git.

Paper organization: The rest of the paper is organized as follows. Next section
presents the related work. Rest of the sections present the commit quality model, the
data collection steps, and the results in that order. In the end, a section mentions
limitations of the study followed by conclusions and future work.

62 K. K. Chahal and M. Saini

2 Related Work

The success of an OSS project suggestively depends upon the type of community
support available to the project as social aspects significantly determine evolution
[6, 16]. However, in the context of the OSS paradigm, the community itself is dynamic
in nature. This section discusses the prior work related to community dynamics and its
impact on OSS processes. A few of the works related to commit quality and commit
analysis are also mentioned.

Some studies in the past focused only on static community structure to understand
the demographic diversity of community members [14], gender differences [15], and
role of the core members [22]. While [4] studied community dynamics using social
network analysis to understand the changes that happen to a community over a period
of time. Changes in the community structure are presented with the help of temporal
visualization and quantitative analysis.

Bird and Nagappan [7] analyzed two large OSS projects, Firefox and Eclipse, to
investigate the impact of distributed locations of the developers on the quality of the
code they contributed. They found that quality of components (measured using the
number of defects) developed by distributed teams was bad in comparison to the
quality of components developed by collocated teams.

Ahmed et al. [2] relate poor coding practices with growth in the number of
developers. The study concludes that code as well as design quality declines as the
number of developers increases. Souza and Silva [21] analyze effect of developer
sentiment levels (as expressed in commit messages) on build status of Travis, a
Continuous Integration server. The results suggest that negative sentiment reduces the
chances of a successful build, though the effect is minor.

Santos and Hindle [18] studied the unusualness of commit messages by training
n-gram language models on 120,000 commits of OSS projects and used cross-entropy
as an indicator of a commit message’s “unusualness”. Their work focused mainly on
finding the unusualness of a commit message, and further correlating it with code
quality. Agrawal et al. [1] studied the commit quality of five high-performance com-
puting projects and compared the performance of the projects with three low perfor-
mance computing projects.

Most of the works in the research literature on commit analysis of OSS projects
deal with identifying commit size distribution [3], commit frequency distribution [13],
commit characterization [17, 23], and contributor’s commit activity distribution [8].
Chełkowski et al. [8] analyzed commit contributions of Apache contributors to high-
light inequalities among open source contributors’ in producing content in the OSS
paradigm which is often described as collaborative.

Lack of literature on the subject and the broad nature of practitioner recommen-
dations suggest a need for a research study regarding the quality analysis of the commit
messages recorded in a source code management system. We followed a Multi-vocal
Literature Review (MLR) approach [8]. In this study, our focus is on measuring
commit message quality syntactically by using 11 syntactical metrics by introducing a
novel approach to calculate commit quality. Moreover, we focused on finding if there is
any relation between community evolution and the commit message quality of the OSS

Developer Dynamics and Syntactic Quality of Commit Messages 63

projects. The commit message quality is correlated with the number of contributors to
understand the impact of community dynamics on development processes of the OSS
projects.

3 The Proposed Model and Its Validation

A set of measures, to calculate the syntactic quality of commit messages recorded in
SCM system of the OSS projects, are devised after consulting a bulk of literature
(published [1], or available online [9]) to understand “how to write a good commit
message”. The online search to this topic “how to write a good commit message” or
“good commit logs” yielded a large number of results. We followed a double
cross-check approach to select the commit quality metrics. Both the authors analyzed
the top 33 web links (beyond this the content was repeated) individually, and noted all
the rules and identified the possible list of attributes that can act as commit quality
measures. At the last, we combined the rules and the lists of attributes that were
identified by both the authors. This double cross-check approach avoided any rule or
attribute to get skipped from the analysis. After consulting the literature, common rules
indicating a good quality commit message are identified as shown in Table 1:

By considering all these rules, we devised 11 commit quality measures (see
Table 2). Out of which, seven are for subject line (title), and the rest four are for the
body (multiline description) of a commit message. After evaluating the count and
values for the commit messages, the proposed approach assigns scores to each measure
on a scale of 1 to 5 (as shown in Table 2).

Next step was to see whether the proposed rules and the corresponding metric
definitions sound reasonable from practitioners’ point of view. We chose the survey
based method to get inputs from practitioners. In response to a survey request, 20
developers volunteered to participate in the survey. Most of the participants were

Table 1. Rules for writing a good commit

1. Title (subject line) of commit message should be short (between 50–72 characters)
2. Subject line should end with a dot
3. Capitalize the subject line i.e. first character of the subject line should be capital
4. Use imperative mood in the subject line for example use words like fix, add, update in

place of fixing, adding, and updating etc.
5. Subject line should be concise and limit the number of “and”, “or”
6. Subject line should not include details such as bug number, file name, ticket number,

and any other external references
7. Subject line and body must be separated by a blank line
8. Body of a commit message must have multiline description. It should be well

explanatory detailing why and what is changed
9. Body of a commit message should not contain lots of bullets, hyphens, or asterisks
10. Commit should have one logical change

64 K. K. Chahal and M. Saini

graduates, with a total of 16 graduate and 4 undergraduate degree holders. Their
industrial experience varied from 5 to 7 years in software projects based on Java/C#. In
the survey, the participants were provided a sample of commits and were asked to
upvote a rule if they agree, downvote a rule if they don’t agree, or post a neutral
response if it does not matter to them while reading a commit message. They also
reported their votes on metric definitions.

As a result of this survey (see Table 3), we concluded that the rules and the metrics
to evaluate the commits were useful and reasonable.

Then we calculated the total score for each commit message. We cannot use these
scores of individual measures as such to calculate the total score of message quality of a
commit as different commit measures have different scales (few commit measures have
values on scale 1–5, whereas other have values on the scale 1–2). Therefore, we first
normalized the commit scores of individual measures to a common scale [0, 1]. The
normalization of commit measures is done by using the following formula [20]:

Normalized commit message score = ActualScore/MaxScore ð1Þ

Total commit score =
X11

1

WCS CommitMeasure i ð2Þ

In order to further validate the results of the commit message quality score, the
results of the proposed model for a sample of 100 commits messages (50 with commit

Table 2. Commit message syntactic quality measures

Commit quality measures Commit score Unit
1 2 3 4 5

Length of title ¼0 or >72 1–10 11–30 31–50 51–72 Number of
characters

Title ends with dots No Yes y ! 1, n ! 0
Title first character capital No Yes y ! 1, n ! 0
Count number of “and” “or”
in title

>6 5–6 3–4 1–2 0 Count

Count number of “file
name” in title

>6 5–6 3–4 1–2 0 Count

Count number of external
references in title

>6 5–6 3–4 1–2 0 Count

Imperative mode in title No Yes y ! 1, n ! 0
Commit body existence No Yes y ! 1, n ! 0
Count number of “file
name” in body

0 10> 6–10 3–5 1–2 Count

Count number of external
references in body

0 10> 6–10 3–5 1–2 Count

Count number of paragraph
in body

0 10> 5–10 3–4 1–2 Count

Developer Dynamics and Syntactic Quality of Commit Messages 65

messages as per the rules and 50 otherwise) were compared with the assessment results
made available by the same survey participants. The results show that 84% of the
commit messages were correctly judged by the proposed model. Specifically, for
commit messages with good quality, about 88% of messages were correctly judged,
and about 80% of messages with poor quality were correctly judged by the proposed
model. This shows that the proposed model is effective.

4 Data Collection

Seven OSS projects were selected on the basis of their popularity, age, size, number of
people involved, and availability of the project repository in Git (an open source
distributed version control system).

PostGreSQL is an object-relational data base management system. glibc is a
GNU C library used in the GNU/Linux systems. Eclipse-CDT is an industrial strength
IDE for developing C/C++ programs and plug-in tools. GnuCash is a double entry
accounting software for personal and small enterprises. WordPress is web publishing
software. Firebug is a web browser extension for Mozilla Firefox for debugging and
performance analysis of web pages rendered in the browser. Rhino is a JavaScript
engine. It is an open source application of JavaScript. It is regularly implanted into Java
applications to give scripting to end users.

Table 3. Survey responses

Rule Upvotes Downvotes Neutral

1. Title (subject line) of commit message should
be short (between 50–72 characters)

15 4 1

2. Subject line should end with a dot 10 7 3
3. Capitalize the subject line i.e. first character of

the subject line should be capital
8 6 6

4. Use imperative mood in the subject line for
example use words like fix, add, update in place
of fixing, adding, and updating etc.

20 – –

5. Subject line should be concise and limit the
number of “and”, “or”

18 – 2

6. Subject line should not include details such as
bug number, file name, ticket number, and any
other external references

17 – 3

7. Subject line and body must be separated by a
blank line

12 2 6

8. Body of a commit message must have multiline
description. It should be well explanatory
detailing why and what is changed

19 – 1

9. Body of a commit message should not contain
lots of bullets, hyphens, or asterisks

18 – 2

10. Commit should have one logical change 20 – –

66 K. K. Chahal and M. Saini

Development repositories of the OSS projects are obtained from the Github
(www.github.com). A repository is downloaded by making a clone of the original
repository onto the local machine by using Gitbash (www.git-scm.com). A script is
written in Java to fetch the commit messages and number of contributors for the
observation period for all the OSS projects. Table 4 summarizes the statistics of the
datasets collected for all the seven projects.

5 Result and Analysis

This study explores the commit messages of seven OSS projects to calculate and
analyze the commit quality of these commit messages. Further, the commit message
quality measures are used to answer the research question specified in Sect. 1.

In this section, we first analyze the commit message quality of the OSS projects as
they evolve over a period of time. But before that, we look at the differences in levels of
the commit message quality in these projects. With the help of box plots, Fig. 1 shows
the variation in the commit message quality across the projects. GnuCash and Word-
Press have the best median values (>0.80) for the commit message score. Next is
Firebug with median commit message score 0.75. The remaining four projects (which
includes very popular projects PostgreSQL and Eclipse-CDT) have median commit
message scores less than 0.70.

Table 4. Descriptive statistics of the OSS projects

OSS projects Origin date Number of months Number of contributors Commit messages

PostgreSQL Jul, 1996 239 43 54355
glibc Feb, 1989 321 410 43313
Eclipse-CDT Jun, 2002 168 203 28817
GnuCash Nov, 1997 222 105 21969
WordPress Apr, 2003 158 73 37333
Firebug Aug, 2007 181 45 13043
Rhino Apr, 1999 105 56 3721

PostgreSQL glibc Eclipse-CDT GnuCash WordPress Firebug Rhino
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C
om

m
it

S
co

re

 Median 25%-75% Non-Outlier Range Outliers Extremes

Fig. 1. Variation in commit quality of the OSS projects

Developer Dynamics and Syntactic Quality of Commit Messages 67

http://www.github.com
http://www.git-scm.com

Eclipse-CDT has many outliers towards the upper side of the box plot otherwise,
the median commit score is the minimum in comparison to other projects.

Next, we analyzed the commit message quality evolution in these projects. Intu-
itively, commit message quality should improve over the period of time as a project
matures as core team of experienced developers is supposed to vet commits submitted
by less experienced developers. We can see in Fig. 2a, c (on next page) that commit
message quality improves after staying stable for a long period of time. In Fig. 2g, it
stays stable throughout. We note from Table 5 that commit message score of these
projects follows an increasing trend when analyzed using linear regression [19]. In case
of the other three projects (see Fig. 2d–f), it drops down and shows a decreasing trend
when analyzed using linear regression. We believe that this behavior may be due to
developer dynamics. A detailed explanation of this behavior of the OSS projects is due
until discussion of the next section. The in-between variation (e.g. decrease in March
2008 for the glibc project) in commit message score of these projects needs further
analysis to understand the factors responsible for such behavior. In the next section, we
revisit this type of behavior to find the factors that may have affected the commit
message score. From the above observations, we can conclude that the commit mes-
sage quality does not always improve as a software project matures. Some of the
projects in this case study point to slender periods when commit message quality goes
down.

5.1 Does the Number of Contributors Affect the Commit Message
Syntactic Quality?

In OSS projects, developer community plays an important role. Contributors contribute
by writing new code and documentation, and also make changes to fix bugs, or to
improve the overall quality of a software project. Therefore, it is important to see the
relation of contributors’ participation in OSS projects with their commit message
quality. We want to examine whether an increase in the number of contributors
coincides with the increase in the commit message quality of the OSS projects. Intu-
itively, better commit message quality can be expected as multiple contributors should
share the responsibility, and contribute to the project in a better way. Single contrib-
utors or small teams may not be able to produce good contributions when they are
bogged down by the work pressure.

To begin with, we analyzed the variation in the number of contributors across the
OSS projects.

Figure 3 shows that maximum range is in case of the glibc project. glibc is a very
old project, started in 1989, a project with the longest history. As far as the median
values are concerned, Eclipse-CDT has the largest team size of 15 contributors in a
month. Eclipse-CDT enjoys the reputation of a very popular project among the
developer community. In all the other cases, team size is less than 10 contributors. Four
out of the seven projects i.e. glibc, WordPress, Firebug, and GnuCash have a median
value of 5 contributors in a month. Among these four projects, three (WordPress,
Firebug, and GnuCash) have the best commit score (median > 0.75). Interestingly,
commit message quality is worst in the Eclipse-CDT project (Fig. 1 box plot for
commit score). Whereas small teams in four other projects are better in producing good

68 K. K. Chahal and M. Saini

quality work. Eclipse is a mature project, and such projects also tend to allow con-
tributions from peripheral developers. Therefore, a large team may not ensure better
work quality if peripheral (may be untrusted) contributors are allowed to submit
changes. It could also be due to if core team does not bother to vet such changes.

Figure 4(a–g) shows contributor churn of the OSS projects over a period of time. In
all the OSS projects except Rhino, the number of contributors follows an increasing
trend over the period of time (see Table 6). We can observe that after initial few years,
developer participation has increased manifold notably in the projects PostgreSQL,
glibc, Eclipse-CDT, and WordPress. However, for the project like Eclipse-CDT, this

Ju
l 1

99
6

N
ov

 1
99

7

M
ar

 1
99

9

Ju
l 2

00
0

N
ov

 2
00

1

M
ar

 2
00

3

Ju
l 2

00
4

N
ov

 2
00

5

M
ar

 2
00

7

Ju
l 2

00
8

N
ov

 2
00

9

M
ar

 2
01

1

Ju
l 2

01
2

N
ov

 2
01

3

M
ar

 2
01

5

Month-Year

0.60

0.64

0.68

0.72

0.76

0.80

0.84
C

om
m

it
Sc

or
e

(a)

Fe
b

19
89

Se
p

19
91

Ju
l 1

99
3

M
ay

 1
99

5

M
ar

 1
99

7

Ja
n

19
99

N
ov

 2
00

0

Se
p

20
02

Ju
l 2

00
4

M
ay

 2
00

6

M
ar

 2
00

8

Ja
n

20
10

N
ov

 2
01

1

Se
p

20
13

Ju
l 2

01
5

Month-Year

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

C
om

m
it

Sc
or

e

(b)

Ju
n

20
02

Ju
n

20
03

Ju
n

20
04

Ju
n

20
05

Ju
n

20
06

Ju
n

20
07

Ju
n

20
08

Ju
n

20
09

Ju
n

20
10

Ju
n

20
11

Ju
n

20
12

Ju
n

20
13

Ju
n

20
14

Ju
n

20
15

Month-Year

0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88

C
om

m
it

S
co

re

(c)

N
ov

 1
99

7

F
eb

 1
99

9

Ju
n

20
00

S
ep

 2
00

1

D
ec

 2
00

2

M
ar

 2
00

4

Ju
n

20
05

S
ep

 2
00

6

D
ec

 2
00

7

M
ar

 2
00

9

Ju
n

20
10

S
ep

 2
01

1

D
ec

 2
01

2

M
ar

 2
01

4

Ju
n

20
15

Month-Year

0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88

C
om

m
it

S
co

re
(d)

A
pr

 2
00

3

M
ar

 2
00

4

F
eb

 2
00

5

Ja
n

20
06

D
ec

 2
00

6

N
ov

 2
00

7

O
ct

 2
00

8

S
ep

 2
00

9

A
ug

 2
01

0

Ju
l 2

01
1

Ju
n

20
12

M
ay

 2
01

3

A
pr

 2
01

4

M
ar

 2
01

5

F
eb

 2
01

6

Month-Year

0.68
0.72
0.76
0.80
0.84
0.88

C
om

m
it

S
co

re

(e)

Au
g

20
07

Ap
r 2

00
8

D
ec

 2
00

8

Au
g

20
09

Ap
r 2

01
0

D
ec

 2
01

0

Au
g

20
11

Ap
r 2

01
2

D
ec

 2
01

2

Au
g

20
13

Ap
r 2

01
4

D
ec

 2
01

4

Au
g

20
15

M
ay

 2
01

6

Month-Year

0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84

C
om

m
it

Sc
or

e

(f)

A
pr

 1
99

9

M
ay

 2
00

0

Ju
n

20
01

Ju
l 2

00
2

A
ug

 2
00

3

S
ep

 2
00

4

N
ov

 2
00

5

Fe
b

20
07

M
ar

 2
00

8

M
ay

 2
00

9

Ju
n

20
10

A
ug

 2
01

1

S
ep

 2
01

2

Ja
n

20
15

Month-Year

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

C
om

m
it

S
co

re

(g)

Fig. 2. Average commit message score for (a) PostgreSQL, (b) glibc, (c) Eclipse-CDT,
(d) GnuCash, (e) WordPress, (f) Firebug, (g) Rhino

Developer Dynamics and Syntactic Quality of Commit Messages 69

initial period is very small i.e. only two years, but for glibc it is very long. We can see a
surge in the number of contributors of glibc only after 2009 - the year its code base was
migrated from CVS to Git. Similar contributor pattern can be seen for the GnuCash
project as well whose code base shifted to Git in 2014. Shifting of source code
management to the Git repository perhaps reduced the barriers for new contributors to
enter. Git uses the fork and pull request model in which a contributor forks the code
branch to which it wants to contribute, makes changes to the clone, and then submits it.
When accepted, such contributions can be easily merged with the main branch. It
suggests that modern tools have improved the process of code contribution.

In case of Firebug, the pouring in of contributors stopped around April 2014. An
interesting observation is when we relate it to the commit activity of the project; it also
dried up around the same time. Firebug is an extension of the Mozilla Firefox web
browser for debugging and monitoring of the web pages rendered in the browser.
Project pages reveal that the Firebug project was abandoned during this period of time.
People unhappy with this development, as a result, chose Google Chrome over Mozilla
Firefox as they had earlier preferred Firefox just because of the Firebug plug-in
available with it.

Table 5. Trend in commit scores of the OSS projects

OSS project Regression equation Trend

PostgreSQL y = 0.62 + 0.00065x Increasing
glibc y = 0.61 + 0.00029x Increasing
Eclipse-CDT y = 0.57 + 0.0010x Increasing
GnuCash y = 0.79 − 0.0001x Decreasing
WordPress y = 0.82 − 0.0003x Decreasing
Firebug y = 0.83 − 0.002x Decreasing
Rhino y = 0.641 + 8.67E−5x Increasing

PostgreSQL glibc Eclipse-CDT GnuCash WordPress Firebug Rhino
0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f C
on

tri
bu

to
rs

 Median 25%-75% Non-Outlier Range Outliers Extremes

Fig. 3. Variation in the number of contributors of the OSS projects

70 K. K. Chahal and M. Saini

Ju
l 1

99
6

N
ov

 1
99

7

M
ar

 1
99

9

Ju
l 2

00
0

N
ov

 2
00

1

M
ar

 2
00

3

Ju
l 2

00
4

N
ov

 2
00

5

M
ar

 2
00

7

Ju
l 2

00
8

N
ov

 2
00

9

M
ar

 2
01

1

Ju
l 2

01
2

N
ov

 2
01

3

M
ar

 2
01

5

Month-Year

0
2
4
6
8

10
12
14
16
18
20

N
o.

 o
f D

ev
el

op
er

s

(a) (b)

Ju
n

20
02

Ju
n

20
03

Ju
n

20
04

Ju
n

20
05

Ju
n

20
06

Ju
n

20
07

Ju
n

20
08

Ju
n

20
09

Ju
n

20
10

Ju
n

20
11

Ju
n

20
12

Ju
n

20
13

Ju
n

20
14

Ju
n

20
15

Month-Year

0
4
8

12
16
20
24

N
o.

 o
f C

on
tri

bu
to

rs

(c)

N
ov

 1
99

7

Fe
b

19
99

Ju
n

20
00

S
ep

 2
00

1

D
ec

 2
00

2

M
ar

 2
00

4

Ju
n

20
05

S
ep

 2
00

6

D
ec

 2
00

7

M
ar

 2
00

9

Ju
n

20
10

S
ep

 2
01

1

D
ec

 2
01

2

M
ar

 2
01

4

Ju
n

20
15

Month-Year

0
2
4
6
8

10
12
14
16
18

N
o.

 o
f C

on
tri

bu
to

rs

(d)

A
pr

 2
00

3

M
ar

 2
00

4

F
eb

 2
00

5

Ja
n

20
06

D
ec

 2
00

6

N
ov

 2
00

7

O
ct

 2
00

8

S
ep

 2
00

9

A
ug

 2
01

0

Ju
l 2

01
1

Ju
n

20
12

M
ay

 2
01

3

A
pr

 2
01

4

M
ar

 2
01

5

F
eb

 2
01

6

Month-Year

0
5

10
15
20
25
30
35

N
o.

 o
f C

on
tr

ib
ut

or
s

(e)

A
ug

 2
00

7

A
pr

 2
00

8

D
ec

 2
00

8

A
ug

 2
00

9

A
pr

 2
01

0

D
ec

 2
01

0

A
ug

 2
01

1

A
pr

 2
01

2

D
ec

 2
01

2

A
ug

 2
01

3

A
pr

 2
01

4

D
ec

 2
01

4

A
ug

 2
01

5

M
ay

 2
01

6

Month-Year

0
2
4
6
8

10
12

N
o.

 o
f C

on
tr

ib
ut

or
s

(f)

A
pr

 1
99

9

M
ay

 2
00

0

Ju
n

20
01

Ju
l 2

00
2

A
ug

 2
00

3

S
ep

 2
00

4

N
ov

 2
00

5

Fe
b

20
07

M
ar

 2
00

8

M
ay

 2
00

9

Ju
n

20
10

A
ug

 2
01

1

S
ep

 2
01

2

Ja
n

20
15

Month-Year

0
1
2
3
4
5
6
7

N
o.

 o
f C

on
tri

bu
to

rs

(g)

Fe
b

19
89

Se
p

19
91

Ju
l 1

99
3

M
ay

 1
99

5

M
ar

 1
99

7

Ja
n

19
99

N
ov

 2
00

0

Se
p

20
02

Ju
l 2

00
4

M
ay

 2
00

6

M
ar

 2
00

8

Ja
n

20
10

N
ov

 2
01

1

Se
p

20
13

Ju
l 2

01
5

Month-Year

0
5

10
15
20
25
30
35
40

N
o.

 o
f C

on
tri

bu
to

rs

Fig. 4. Average number of contributors per month for (a) PostgreSQL, (b) glibc, (c)
Eclipse-CDT, (d) GnuCash, (e) WordPress, (f) Firebug, (g) Rhino

Table 6. Trend in number of contributors

OSS project Regression equation Trend

PostgreSQL y = 5.48 + 0.031x Increasing
glibc y = 0.064x − 2.05 Increasing
Eclipse-CDT y = 9.25 + 0.048x Increasing
GnuCash y = 2.95 + 0.022x Increasing
WordPress y = 0.098x − 0.15 Increasing
Firebug y = 4.12 + 0.006x Increasing
Rhino y = 2.12 − 0.0008x Decreasing

Developer Dynamics and Syntactic Quality of Commit Messages 71

5.2 Understanding the Contribution Pattern

In order to explore further the commit message quality of these projects, we decided to
analyze the volume and the quality of contribution of the individual contributors in
these OSS projects. The basis of this decision was the outcome of the previous studies
on the patterns of contribution in OSS projects that the bulk of the activity is due to a
relatively small number of contributors [8]. The social structure of OSS projects is
more notably known as the onion model [10] in which core members form the
innermost layer and peripheral contributors belong to the outer layers. Contributors of
OSS projects are put into core and periphery categories where core contributors are
supposed to possess better skills and have more authority on the project development
over the peripheral contributors.

Therefore in this regard, the first step is to find commit distribution among different
contributors of the OSS projects to identify the core group of contributors. Next, we
analyze their commit behavior from two perspectives – commitment (i.e. regularity to
commit), and the level of skill (i.e. commit message quality), as these are among the
factors that determine the status of a contributor in the social structure of an OSS
project.

Table 7 presents the total contribution (in %) of the different contributors of the
OSS projects. It shows the commit distribution of only top six contributors (as beyond
this number the individual contribution drops significantly in this dataset). Contribu-
tions of the rest (excluding the top six contributors) are merged under the head ‘others’.
PostgreSQL, glibc, and Rhino have approximately 80% contributions from top 6
contributors. Firebug has 80% contributions from top three contributors only. For the
rest three projects i.e. Eclipse-CDT, GnuCash, WordPress, contributions are more
widespread.

We know that, in this data set, Eclipse-CDT has the largest (median) number of
contributors. The contribution is also quite equally spread among all the contributors of
the project as per the data in Table 7. Majority of the Eclipse-CDT commits are from
non-core (external) contributors. That may be the reason for low commit quality in the
project. Though contribution pattern is uniformly spread across different contributors in
case of GnuCash and WordPress projects as well, but they have small team size. At the
same time, their commit message quality is good. A small number of contributors are

Table 7. Contributor wise commits distribution (in %)

OSS projects C1 C2 C3 C4 C5 C6 Other

PostgreSQL 34.53 26.52 7.35 3.62 3.33 3.1 21.55
glibc 40.58 24.18 4.72 4.14 3.56 3.36 19.46
Eclipse-CDT 10.11 7.9 6.43 5.64 5.56 5.52 58.84
GnuCash 16.66 14.84 12.65 7.93 7.57 7.57 32.78
WordPress 22.13 7.67 7.4 5.24 4.79 3.82 48.95
Firebug 46.8 19.66 14.37 6.08 2.99 1.29 8.81
Rhino 30.42 20.78 11.82 5.36 4.93 3.35 23.34

72 K. K. Chahal and M. Saini

responsible for the commit activity, work distribution is balanced, and commit message
quality is also good.

For the commitment or regularity of the commit activity, we tracked their commit
activity over the period of time. In Fig. 5(a–g), a horizontal line represents the period
when a contributor is active. If there is no contribution in a month, then there is a gap in
the line. We can observe in the figure that some of the lines represent continuous
activity indicating a regular activity, whereas in some cases there are gaps indicating
irregular activity.

It shows that a few contributors are more regular in commit activities. Only a few of
them contribute regularly to a repository. The commit activity of different contributors
overlaps at several points. Except Rhino, all other projects have at least one contributor
with regular commit activity of not less than six years. We can see that when multiple
contributors are active in a project at the same time, commit quality is better.

For the PostgreSQL project, commit quality improves after 2010 (see Fig. 2a).
Multiple committers are active around the same time. In case of the glibc project,

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. Committing behavior of the top 6 contributors of (a) PostgreSQL, (b) glibc, (c)
Eclipse-CDT, (d) GnuCash, (e) WordPress, (f) Firebug, (g) Rhino

Developer Dynamics and Syntactic Quality of Commit Messages 73

commit quality improves from 1999 to 2004, and after a dip, again from 2009 onwards
(see Fig. 2b). Look at the figures for the same time periods, multiple committers are
active at the same time. Same is the case for GnuCash and WordPress. In the GnuCash
project, commit quality decreases in 2014. At the same time, we can see in the Fig. 5d,
the number of active contributors also reduces. There is only one contributor after that
time period. In case of the WordPress project, commit quality goes down around 2012
(see Fig. 2e). Around the same time period, all the active contributors stop contributing
(Fig. 5e). Three new contributors join in, and their commits are perhaps not yet of good
quality. WordPress project follows a liberal procedure to let people join the project.
The Rhino project has the least activity in the group of analyzed projects. Committer
activeness is also scant for this project.

Therefore, based on the above discussion, we can say that a group of contributors
active at the same time in a project leads to high-quality contributions. It may be a
consequence of the uniform work distribution among multiple contributors. It could
also be due to the availability of peer-support which helps in gaining insights and
developing better ideas.

This study shows that as code contribution practices evolve, commit activity
improves. Pull request systems are found to be more efficient for source code man-
agement. Previous research also shows that process effectiveness ignites users’ interest
in an OSS project [11].

Open source projects have contributors with diverse skill sets. Individuals with
better skills are likely more powerful and, are the core contributors. Non-core con-
tributors are individuals who lack knowledge and experience in comparison to the core
contributors. External contributors can affect the commit message quality in two dif-
ferent ways. One is when non-core contributors contribute work with mediocre quality.
For example, the case of the Eclipse-CDT project, which has a uniformly spread
contributions from a large number of contributors. Second is when multiple commits
are committed as part of a single large commit as is the case of the PostgreSQL. In both
the cases, commit message quality suffers.

6 Limitations of the Study

This study considers the commits that are posted in the revision control tool Git. Any
changes performed in the source code, but not logged through the tool may not have
become part of the study.

Selection of the subject systems is biased towards projects with valid Git
repositories.

Though we developed objective measures to capture different aspects of a good
commit message, but certain features might have got skipped by both the authors.

74 K. K. Chahal and M. Saini

7 Conclusions and Future Work

In an OSS community, people are not committed to use or contribute to a particular
project regularly. Sometimes, the community support flourishes, and sometimes it
dwindles. The major objective of this study was to understand the impact of community
dynamics on the quality of contributions submitted to a source code management
system of an OSS project. A commit message quality model is proposed to evaluate the
syntactic quality of commit meta-data submitted by the developers of an OSS project.
GnuCash and WordPress have very high commit quality throughout in comparison to
other five projects analyzed in this study. As per our observation, it is due to the
balanced load among core developers of these projects who are active during the same
time period. Though Eclipse-CDT has the same trait as far as the contribution pattern is
concerned, but its commit quality is quiet low. We believe contribution from non-core
developers is the reason. Furthermore, choice of source code management for repos-
itory management also matters a lot in attracting contributors. We found that as projects
(e.g. glibc) shifted from traditional SCM systems to modern SCM such as Git, the code
contribution process improved. We aim to extend the work further to see the semantic
quality of commits. Another proposal is to see the commit message quality of different
types of commits such as corrective v/s non-corrective. Future work should also
investigate the relevance of commit message quality with quality of the code con-
tributed as part of commits.

References

1. Agrawal, K., Amreen, S., Mockus, A.: Commit quality in five high performance computing
projects. In: Proceedings of the 2015 International Workshop on Software Engineering for
High Performance Computing in Science, pp. 24–29. IEEE Press (2015)

2. Ahmed, I., Ghorashi, S., Jensen, C.: An exploration of code quality in FOSS projects. In:
Corral, L., Sillitti, A., Succi, G., Vlasenko, J., Wasserman, Anthony I. (eds.) OSS 2014.
IAICT, vol. 427, pp. 181–190. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55128-4_26

3. Arafat, O., Riehle, D.: The commit size distribution of open source software. In: Proceedings
of the HICSS 2009, Hawaii, USA, 5–8 January 2009, pp. 1–8. IEEE Computer Society
Press, New York (2009)

4. Azarbakht, A., Jensen, C.: Drawing the big picture: temporal visualization of dynamic
collaboration graphs of OSS software forks. In: Corral, L., Sillitti, A., Succi, G., Vlasenko,
J., Wasserman, Anthony I. (eds.) OSS 2014. IAICT, vol. 427, pp. 41–50. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55128-4_5

5. Beams, C.: How to write a git commit message (2016). http://chris.beams.io/posts/git-
commit/. Accessed 26 Mar 2016

6. Berdou, E.: Organization in Open Source Communities: At the Crossroads of the Gift and
Market Economies. Routledge, New York (2011)

7. Bird, C., Nagappan, N.: Who? where? what? examining distributed development in two
large open source projects. In: Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, pp. 237–246 (2012)

Developer Dynamics and Syntactic Quality of Commit Messages 75

http://dx.doi.org/10.1007/978-3-642-55128-4_26
http://dx.doi.org/10.1007/978-3-642-55128-4_26
http://dx.doi.org/10.1007/978-3-642-55128-4_5
http://chris.beams.io/posts/git-commit/
http://chris.beams.io/posts/git-commit/

8. Chełkowski, T., Gloor, P., Jemielniak, D.: Inequalities in open source software development:
analysis of contributor’s commits in apache software foundation projects. PLoS ONE 11, 4
(2016)

9. Marcolesco, D.J.: Writing good commit messages. https://github.com/erlang/otp/wiki/
Writing-good-commit-messages. Accessed 28 July 2016

10. David, P.A., Rullani, F.: Dynamics of innovation in an “open source” collaboration
environment: lurking, laboring, and launching FLOSS projects on SourceForge. Ind.
Corp. Change 17(4), 647–710 (2008)

11. Ghapanchi, A.H., Aurum, A., Daneshgar, F.: The impact of process effectiveness on user
interest in contributing to the open source software projects. J. Softw. 7(1), 212–219 (2012)

12. Gonzalez-Barahona, J.M., Robles, G., Herraiz, I., Ortega, F.: Studying the laws of software
evolution in a long lived FLOSS project. J. Softw. Evol. Process 26(7), 589–612 (2014)

13. Kolassa, C., Riehle, D., Salim, M.: The empirical commit frequency distribution of open
source projects. In: Proceedings of the 2013 Joint International Symposium on Wikis and
Open Collaboration, OpenSym 2013. ACM (2013)

14. Kunegis, J., Sizov, S., Schwagereit, F., Fay, D.: Diversity dynamics in online networks. In:
Proceedings of the 23rd ACM Conference on Hypertext and Social Media, USA (2012)

15. Kuechler, V., Gilbertson, C., Jensen, C.: Gender differences in early free and open source
software joining process. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.)
OSS 2012. IAICT, vol. 378, pp. 78–93. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33442-9_6

16. Mens, T., Goeminne, M.: Analysing the evolution of social aspects of open source software
ecosystems. In: Jansen, S., Bosch, J., Ahmed, F., Campbell, P. (eds.) Proceedings of the
Workshop on Software Ecosystems (IWSECO 2011) (2011)

17. Saini, M., Kaur, K.K.: Change profile analysis of open source software systems to
understand their evolutionary behavior. Front. Comput. Sci. (2016). https://doi.org/10.1007/
s11704-016-6301-0

18. Santos, E., Hindle, A.: Judging a commit by its cover: correlating commit message entropy
with build status on travis-CI. In: Proceedings of the 13th International Conference on
Mining Software Repositories (MSR 2016), pp. 504–507. ACM, New York (2016)

19. Seber, G., Lee, A.: Linear Regression Analysis, vol. 936. Wiley, Hoboken (2012)
20. Scott, W.R.: Score normalization as a fair grading practice. http://www.ericdigests.org/2003-

4/score-normilization.html. Accessed 20 July 2016
21. Souza, R., Silva, B.: Sentiment analysis of travis CI builds. In: 14th International Conference

on Mining Software Repositories (2017)
22. Martinez Torres, M.R., Toral, S.L., Perales, M., Barrero, F.: Analysis of the core team role in

open source communities. In: 2011 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), pp. 109–114. IEEE (2011)

23. Levin, S., Yehudai, A.: Boosting automatic commit classification into maintenance activities
by utilizing source code changes. In: Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering, Toronto, Canada, 8
November 2017, pp. 97–106 (2017)

76 K. K. Chahal and M. Saini

https://github.com/erlang/otp/wiki/Writing-good-commit-messages
https://github.com/erlang/otp/wiki/Writing-good-commit-messages
http://dx.doi.org/10.1007/978-3-642-33442-9_6
http://dx.doi.org/10.1007/978-3-642-33442-9_6
http://dx.doi.org/10.1007/s11704-016-6301-0
http://dx.doi.org/10.1007/s11704-016-6301-0
http://www.ericdigests.org/2003-4/score-normilization.html
http://www.ericdigests.org/2003-4/score-normilization.html

Mining OSS Data

Process Mining for Process Conformance
Checking in an OSS Project:

An Empirical Research

Elia Kouzari(&), Lazaros Sotiriadis, and Ioannis Stamelos

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
ekouzari@csd.auth.gr

Abstract. With almost 20 years of research, Process Mining can now be
considered to be in a mature phase allowing its application to a variety of
sectors. In this article, the bug closure process that is followed by a community
of an open source software project is investigated in order to perform process
conformance checking. Actual data that reveal the process steps have been
extracted from the project’s Bugzilla database and have been used as input in
Disco process mining tool. The data includes extracted information for more
than 19,000 bugs for the past 15 years in a csv form, formatted appropriately to
construct an event log suitable for process mining. The extracted models have
been compared to the process described in the project’s blogs and wikis by the
community. The same models are also compared to the bug closure process that
Bugzilla suggests to be used by the projects using this software for bug tracking
purposes. The findings reveal that indeed the process followed in the OSS
project is very similar to the declared one but variations do occur under specific
circumstances. However, the process is not identical to the one proposed by
Bugzilla suggesting that each OSS project can customize its processes in order
to better address the needs of the project and the community. This empirical
research highlights the importance of process mining in OSS projects in order to
investigate the processes followed and identify outliers helping to standardize
and improve the processes and enhance the collaboration among the members of
the communities.

Keywords: Open source software � Process mining
Open source communities � Software event logs � Process conformance

1 Introduction

Scientific research has been focusing in the field of Process Mining, developing plat-
forms, tools and algorithms for almost 20 years now. Process Mining is extensively
applied in a variety of fields and sectors like healthcare, insurances, software etc. [1–5].
Dozens of algorithms can be applied in the context of process mining either on a
standalone basis or through the platforms that have been designed to facilitate this.

The majority of applied research in this field focuses on process discovery since this
minimizes the cost of understanding the current ‘As-is’ process [6]. However, a lot of

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 79–89, 2018.
https://doi.org/10.1007/978-3-319-92375-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_7&domain=pdf

interest arises in the aspect of process conformance as well. According to van der Aalst
[7] process discovery is the technique that takes an event log and produces a process
map explaining the behavior recorded in the log. On the other hand, process confor-
mance is the procedure where an existing process model is compared with an event log
of the same process to indicate whether the reality, as recorded in the log, meets the
proposed model and vice versa.

Kouzari and Stamelos [8] suggested that the application of process mining in open
source software could reveal not only the variety of processes followed by open source
communities but it could also help standardize or improve core activities like the way
tasks are shared and bugs are closed. Given the fact that in Open Source Software there
is a huge amount of process-relevant data publicly available online, OSS communities
are a great opportunity to discover and analyze software processes. These data can be
usually extracted from mailing lists, discussion forums, source repositories and binary
release sections [9].

In this article, the authors proceed to process conformance checking of the bug
reporting and closing process of a large Open Source Software project by examining
the documentation of the project and extracting the process model that is believed to be
followed against the ‘As-is’ process that is extracted from the event log. In addition,
this process is also compared with the general Bugzilla guidelines for bug reporting and
resolution.

The rest of the article is structured as follows: Sect. 2 describes the background of
this work and poses the research question. Section 3 explains the methodology fol-
lowed and Sect. 4 presents the findings of the research. Finally, Sect. 5 contains the
discussion, conclusions and future work.

2 Background Work

2.1 Bugzilla

Bugzilla is an open source software system for bug tracking. It is currently the most
widely used bug tracking system [10]. This bug tracker allows open source commu-
nities to handle the discovered bugs by facilitating the communication of problems
effectively throughout the data management chain. This ensures that each reported bug
is stored in the project’s Bugzilla database along with each detail regarding its state and
the steps taken or not towards its resolution.

The lifecycle of a bug in Bugzilla is illustrated in Fig. 1. This workflow can be
customized to meet the needs of every community and every project using it as a
back-tracking system. In Fig. 1 only the default bug statuses are shown.

The main process followed in Fig. 1 is as follows: When a bug is first reported in the
system, its status changes to “UNCONFIRMED”. The bug remains in this state until it
receives a specific number of votes by community members that is indeed reproduced. By
the time the votes are sufficient, the bug status changes to “NEW”. A bug can auto-
matically at first be set to “NEW” when the user/developer reporting it has the right to
change its status. Following, the bug can be assigned to a specific developer or can be left

80 E. Kouzari et al.

open for anyone to resolve it. At this moment, the status of the bug is set to
“ASSIGNED”. The developers resolve the bug, and a patch is sent for Quality Assurance
(QA). When the QA tests are successful, the bug becomes “RESOLVED” and “VER-
IFIED”. In case QA tests fail, the bug can be set to “REOPEN” and short after this to
“ASSIGNED” or “RESOLVED” once again. A bug must be “CLOSED” by the person
who first reported it. It is obvious that a lot of variations are also possible depending on
the nature of the bug and the authority of the person who first reports it [11].

2.2 Koha Open Source Integrated Library System

Koha is a web-based open source ILS written in Perl and distributed under GNU
General Public License1. With a very active community of developers around the
world, Koha was first released in 2000 and since then it has gained wide acceptance, as
it is utilized in hundreds of organizations (both in the governmental and private sector)
around the world [12]. Koha interacts with a MySQL database and supports a variety of

Fig. 1. The lifecycle of a bug in Bugzilla (source: https://wiki.documentfoundation.org/QA/
Bugzilla/Fields/Status)

1 https://koha-community.org.

Process Mining for Process Conformance Checking in an OSS Project 81

https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Status
https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Status
https://koha-community.org

library activities with the most widely used being cataloguing, acquisition, circulation
and administration [13]. Being able to be installed and function in all Operating
Systems (Linux, Unix, Windows, MacOS), Koha offers a very configurable and
adaptable user interface, allowing each organization to set it up accordingly to the
procedures and policies followed in each case.

For bug tracking purposes, Koha maintains its own Bugzilla database. Since the
project has an active community, there are wikis2, IRC3 (chats) and blogs4 that describe
the procedures followed in the project and facilitate the communication and coordi-
nation of the community.

The Koha blog describes the bugs workflow process as follows: A user or a
developer can report a bug through Bugzilla. Everyone should file a bug report, even
developers who intend to immediately fix one. The Koha project does not actively use
the Priority field in Bugzilla. However, severity field is indicated to be important. For
this reason, along with the bug report the user has to also assign the severity of a bug.
For unclear situations “normal” severity is suggested. Once a bug is reported it is
assigned to a developer. At this stage, a bug can be left idle, if no one takes action on it,
and it can also be reassigned. Once a person decides to work on a bug, he has to first
accept it and update its status from New to Assigned. When a solution to a bug is
available, a patch is submitted turning the status of a bug to “Patch-Sent”. The Koha
Release Manager evaluates the submitted patch and if the patch works it is marked as
“pushed”. A resolved bug is altered from “Assigned” to “Resolved - Fixed”. Koha
Wiki clearly suggests that the user should review the Bugzilla Bug Writing Guidelines
prior to submitting a bug to Koha.

Based on all these characteristics and its large and active community of developers
and users, Koha is considered at the time as an ideal candidate in the context of this
research.

2.3 Research Question

In Sect. 2.2 the Koha bugs workflow is presented as declared in the official pages of
Koha project. In terms of process mining, the abovementioned process is considered
the “As-Is” process followed. Since Koha is an open source project its data and code
are available through the tools used by the community. It would be of great interest to
mine the actual process followed to resolve the bugs using data from the project’s
Bugzilla database and perform process conformance checking. As a result, the research
question investigated in this paper is the following:

RQ: Does the community of Koha Open Source ILS conforms to the bug resolution process
described in the project’s pages or not? If not, what is the actual process followed?

2 https://wiki.koha-community.org.
3 https://koha-community.org/get-involved/irc/.
4 https://www.myacpl.org/koha/.

82 E. Kouzari et al.

https://wiki.koha-community.org
https://koha-community.org/get-involved/irc/
https://www.myacpl.org/koha/

3 Methodology

Anyone can register in the Bugzilla page for Koha project in order to view all the bugs
listed along with the history of each bug. The main Bugzilla page illustrates all current
bugs with their current state. In order to get all the actions performed for the resolution
of a bug, one must locate a bug and then using the bug id provided he may visit the
specific page that illustrates in tabular format the actions taken so far for it.

The methodology shown in Fig. 2 was used to gather all information for all bugs
listed in Koha project so far for cleaning/transformation of data for process mining.

3.1 Locate Relevant Data

First, the relevant data was located in the Bugzilla database. Using Bash scripting and
Wget tool, the data was extracted in html form and appended in a single html file. This
procedure gathered historical data for 19,311 bugs between 15/06/2002 and
14/12/2017.

3.2 Data Preparation

Html2text was used to remove any text formatted from the gathered data. In addition,
to be able to further format the data in a csv form and to create a tabular representation
suitable of an event log for process mining, further scripting was required (grep, icony,
recode, sed, tr, cat, uniq, sort, echo). As a result, a csv file with 359,395 records was
created containing information for 19,311 bugs.

3.3 Clean Data

For each record, the following columns were present: Event_Id, Bug_Id,
Bug_Description, User_Email, Action_datetime, Action_Type and Action_Data.
Although this file contained all the required columns to be used as an event log [14],
further cleaning of the file had to be performed in order to keep those data that would
reveal the process followed for bug resolution. While the first 5 columns reveal their
role, columns Action_Type and Action_Data were used to keep the most important
information. For every variable mentioned in column Action_Type, a different set of
values was used in column Action_Data. After analysis of each variable in the
Action_Type column and taking in mind the described process followed for bug res-
olution in Koha Blogs and Wikis, the csv file was filtered to keep the records for the
following variables of Action_Type column: Status, Priority, Severity, Resolution.

Fig. 2. The methodology followed in this article for process conformance check

Process Mining for Process Conformance Checking in an OSS Project 83

Table 1 below presents the Action_Data values per Action_Type selected for
filtering.

Finally, a csv file with 97,372 records for 19,311 bugs was extracted that was used
as an event log for Process Mining. The rest of the steps that concern the process
mining and the process conformance check are presented in Sect. 4.

4 Findings

4.1 Process Mining

For Process Mining, Disco5 process mining tool was used. Initially the event log was
used as input to Disco. Prior to the process mining, the columns of the event log had to
be assigned as Case_ID (Bug_Id), Resource (User_Email), Timestamp (Action_Date-
time), and Activity (Action_Type and Action_Data). Event_ID and Bug_Description
were ignored as they had no role in affecting the bug resolution process.

The event log was then used for process mining revealing a “spaghetti model” that
it was impossible to highlight useful information regarding the process mined.

The extracted model highlighted the most used statuses but it was hard to analyze
and compare to the suggested process. To extract safest conclusions, 47,9% of the most
common activities of the diagram were filtered creating a new, clearer process model.

Despite the second process model was significantly more clear than the first one, it
was clearly affected by the status of the first 283 bugs in the event log. This was proved
by Status/Closed that was shown to be the first step of the process (and the last) for the
majority of the cases. With further analysis of the event log, the authors noticed that for
the first 283 bugs only a record indicating that a bug’s status was set to “CLOSED”
existed. This could affect the actual process followed since no history for the resolution
process of these bugs was available. In the next session, this is further explained.6

Table 1. Action_Data values per Action_Type variable

Action_Type
variable

Corresponding Action_Data values

Priority P1, P1-high, P2, P3, P4, P5, P5-low, PATCH-Sent, PATCH-Sent-P5
Resolution –, DUPLICATE, FIXED, INVALID, LATER, MOVED, REMIND,

WISHLIST, WONTFIX, WORKSFORME
Severity blocker, critical, enhancement, major, minor, newfeature, normal, trivial
Status ASSIGNED, BLOCKED, CLOSED, REOPENED, RESOLVED,

UNCONFIRMED, VERIFIED Failed QA, InDiscussion, Needs Signoff,
NEW, Passed QA, Patch doesn’t Apply, Pushed by Module Maintainer,
Pushed for QA, Pushed to Master, Pushed to Stable, Signed Off

5 https://fluxicon.com/disco/.
6 Additional information on the first process models extracted by the event log and discussed in this
section are available online at http://switch.csd.auth.gr/.

84 E. Kouzari et al.

https://fluxicon.com/disco/
http://switch.csd.auth.gr/

A new event log, ignoring the first 283 bugs was used as a new input with the same
parameters in Disco. The process map created for the new event log is shown in Fig. 3.

In the diagram of Fig. 3 a clearer process is extracted. The dark process steps
indicate the most common statuses and the darker arrows indicate the most frequent
transitions from these process steps. One can identify from this diagram that the most
common process path followed is the following:

Needs Sign Off -> Signed Off -> Passed QA -> Pushed to Master -> Pushed to
Stable -> Resolved -> Resolution/Fixed -> Closed.

All of the process steps mentioned are associated with the value “Status” of the
Action_Type field, except from Fixed that is associated with the value “Resolution” of
the Action_Type field.

The same event log was inserted into Disco, keeping only dimensions “Status” and
“Resolution” of the column “Action_Type”. To extract a more precise model, focused
on the resolved bugs, an endpoint filter was applied to the event log. The end event
value was set to “FIXED” keeping 10% of the cases and 17% of events. As a result, the
process model of Fig. 4 was produced.

In this model, the process is almost identical to Fig. 3 with an exception towards
the end of the process. However, the bug resolution process remains unaltered even
though a significant number of cases are not included indicating that the community is
consistent to the steps taken to resolve a bug.

4.2 Process Conformance Check

By observing Figs. 3 and 4 one can conclude that the discovered process is very similar
to the one described in the community’s blogs and wikis. By these means we can

Fig. 3. The process model extracted when the first 283 bugs are removed from the event log

Process Mining for Process Conformance Checking in an OSS Project 85

clearly say that the Koha community does conform to the process suggested for bug
resolution.

Focusing on Fig. 3, where the model contains more cases since it includes all the
bugs and not just those that have been fixed, it is obvious that there is a main process,
identical to the one proposed by the community but this is not exclusive. There are
some exceptions, some process variations that are obvious. Disco has the ability to
reveal these paths along with their frequency. As a result, Table 2 presents the 5 most
frequent process variances that do not follow the proposed guidelines for bug
resolution.

4,14% of the time, a bug is automatically Resolved and Closed. This happens either
because it is an old bug and no other relevant historical data is available, either because
the person who identifies a bug automatically fixes it. However, it is recommended by
the community to report each and every bug even if that means the bug is instantly
resolved. For this reason, the abovementioned path does not conform to the bug res-
olution process.

Fig. 4. A process model extracted for all bugs that are FIXED

86 E. Kouzari et al.

The same seems to happen with the rest of the process variances. In all of the
variances, either the bug is not set to Needs SignOff from the beginning of the bug
resolution process or several process steps are omitted until the bug is set to Closed.

In the Discussion session below this is further discussed and compared to the
Bugzilla suggested process for bug resolution.

5 Discussion and Future Work

The event log created by the Bugzilla database of Koha OSS ILS revealed that the
community does follow in practice the bug resolution process described in the official
documentation of the project. However, there are some cases where this is not true. It
was mentioned earlier that the first 283 bugs did not include any other information
rather than a record indicating they were closed. This indicates that 15 years back,
when the project was not in a mature phase the community was using another bug
resolution process. This might have happened due to a limited number of bugs or due to
the lack of mature bug tracking tools. Starting from bug with bugID = 284 there is
precise information about the bug and all of its states throughout the resolution process.

At the same time, one can observe that although the community follows a specific
process for bug resolution, there are some process variances that do not conform to the
proposed guidelines. This illustrates that in an open source software community there is
freedom to act and modify procedures that are not as strict as in proprietary software.
A developer might decide to act based on his knowledge and experience in a specific
situation.

Comparing the bug resolution process of Koha with the proposed guidelines for
bug resolution by Bugzilla it is obvious that there are a lot of differences. With a closer
look a correlation is identified in some of the states. The RESOLVED status of Bugzilla
corresponds to Needs SignOff of Koha and VERIFIED status of Bugzilla corresponds
to Signed Off of Koha. This reveals that open source software tools can be freely
customized to address the needs of each community of users and developers. At the
same time, each OSS community is free to investigate how OSS tools can be modified
to be used in favor of their own processes.

As stated earlier, Koha is a very active and serious community that is well orga-
nized. In addition, the project contains excellent documentation that the users can
address in order to find answers to their questions. For even better communications
there are IRC chat rooms where users and developers can further discuss any related

Table 2. The 5 most frequent process variances that do not conform to the process guidelines

Process Variance Frequency

RESOLVED -> FIXED -> CLOSED 4,14%
PATCH-Sent -> RESOLVED -> FIXED -> CLOSED 1,64%
ASSIGNED -> PATCH-Sent -> RESOLVED -> FIXED -> CLOSED 1,42%
Needs SignOff -> Failed QA 0,37%
ASSIGNED -> RESOLVED -> FIXED -> CLOSED 0,32%

Process Mining for Process Conformance Checking in an OSS Project 87

issues. The documentation of the project and the good communication between the
members of Koha community is illustrated in the process conformance check per-
formed in this article.

However, other communities, less structured and active might face a variety of
problems in the management of their processes. Process mining not only can highlight
problems in the existing processes followed by OSS communities but it can also use
projects like Koha as a benchmark to reveal aspects of processes that can be further
improved in other projects. Nonetheless, the extracted process models can be used for
predictions regarding the future of a given project in terms of survival, software quality
and maturity.

Recently, Bugzilla released newer documentation containing a newer version of the
lifecycle of a Bugzilla bug. It would be of great interest to investigate projects fol-
lowing the new guidelines for bug resolution and also see which of the projects
currently following the former guidelines will decide to modify their processes and the
effect this will bring to process efficiency. Future work includes further empirical
research on process conformance for OSS projects. Especially for bug management, the
newly released Bugzilla process needs to be taken into account.

References

1. Rojas, E., Munoz-Gama, J., Sepulveda, M., Capurro, D.: Process mining in healthcare: a
literature review. J. Biomed. Inf. 61, 224–236 (2016)

2. Partington, A., Wynn, M.T., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical
processes: a comparative analysis of four Australian hospitals. ACM Trans. Manag. Inf. Syst.
5(4), 1–19 (2015)

3. Delias, P., Doumpos, M., Manolitzas, P., Grigoroudis, E., Matsatsinis, N.: Clustering
healthcare processes with a robust approach. In: 26th European Conference on Operational
Research, November 2015, pp. 1–6 (2013)

4. De Weerdt, J., Schupp, A., Vanderloock, A., Baesens, B.: Process mining for the
multi-faceted analysis of business processes—a case study in a financial services
organization. Comput. Ind. 64(1), 57–67 (2013)

5. Rubin, V.A., Mitsyuk, A.A., Lomazova, I.A., van der Aalst, W.M.: Process mining can be
applied to software too! In: Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, p. 57. ACM, September 2014

6. Rozinat, A., Gunther, C.W.: The added value of process mining. BPTrends (2014). https://
www.bptrends.com/the-added-value-of-process-mining/. Accessed 16 Jan 2018

7. Van Der Aalst, W.: Data science in action. Process Mining, 2nd edn, pp. 25–52. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_2

8. Kouzari, E., Stamelos, I.: Process mining in software events of open source software
projects. In: 2nd International Symposium & 24th National Conference on Operational
Research, HELORS 2013, 25–27 September 2013, Athens, Greece (2013)

9. Jensen, C., Scacchi, W.: Data mining for software process discovery in open source software
development communities. In: Proceedings of Workshop on Mining Software Repositories,
pp. 96–100, May 2004

10. Barnson, M.P., Steenhagen, J., Weissman, T.: The Bugzilla Guide-2.17.5 Development
Release. The Bugzilla Team (2003)

88 E. Kouzari et al.

https://www.bptrends.com/the-added-value-of-process-mining/
https://www.bptrends.com/the-added-value-of-process-mining/
http://dx.doi.org/10.1007/978-3-662-49851-4_2

11. Akbarinasaji, S., Caglayan, B., Bener, A.: Predicting bug-fixing time: a replication study
using an open source software project. J. Syst. Softw. 136, 173–186 (2018)

12. Kouzari, E., Stamelos, I.: Process Mining applied on library information system usage-A
case study (2017). Manuscript submitted for publication

13. Macan, B., Fernandez, V.G., Stojanovski, J.: Open source solutions for libraries: ABCD vs
Koha. Program 47(2), 136–154 (2013)

14. Van Der Aalst, W.M., Dustdar, S.: Process mining put into context. IEEE Internet Comput.
16(1), 82–86 (2012)

Process Mining for Process Conformance Checking in an OSS Project 89

Ranking Source Code Static Analysis
Warnings for Continuous Monitoring

of FLOSS Repositories

Athos Ribeiro1(B), Paulo Meirelles1,2, Nelson Lago1, and Fabio Kon1

1 FLOSS Competence Center, University of São Paulo, São Paulo, Brazil
{athoscr,lago,fabio.kon}@ime.usp.br

2 Department of Health Informatics, Federal University of São Paulo,
São Paulo, Brazil

paulo@softwarelivre.org

Abstract. Performing source code static analysis during the software
development cycle is a difficult task. There are different static analyzers
available, and each of them usually works better in a small subset of
problems, making it hard to choose a single tool. Combining the analysis
of different tools solves this problem, but brings about other problems,
namely the generated false positives and a large amount of unsorted
alarms. This paper presents kiskadee, a system to support the usage
of static analysis during software development by providing carefully
ranked static analysis reports. First, it runs multiple static analyzers on
the source code. Then, using a classification model, the potential bugs
detected by the static analyzers are ranked based on their importance,
with critical flaws ranked first, and potential false positives ranked last.
Our experimental results show that, on average, when inspecting warn-
ings ranked by kiskadee, one hits 5.2 times less false positives before each
bug than when using a randomly sorted warning list.

Keywords: Static analysis · Software quality · False positives
Free software · Open Source Software

1 Introduction

Source code static analysis is a valuable technique to support software assurance.
In theory, it can explore abstractions of all possible program behaviors, which
is not feasible with software testing [11]. Thus, it can find software bugs using a
complementary approach to automated tests.

However, the fundamental problems of static analysis are undecidable [15], so
approximations must be made, leading static analyzers to generate false alarms
or to miss occurrences of software flaws. False positives are produced when a
static analyzer processes bug-free code and reports it as buggy code. The tool
may also miss actual bugs when it processes buggy code and report it as a
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 90–101, 2018.
https://doi.org/10.1007/978-3-319-92375-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_8&domain=pdf

Ranking Source Code Static Analysis Warnings 91

bug-free code [5] (false negatives). Since static analysis enumerates many exe-
cution paths, static analyzer reports frequently contain an excessive amount of
information, which often includes a substantial amount of false positives.

The high amount of information generated combined with a significant false
alarm rate hinder the inclusion of static analyzers in the software development
cycle. Moreover, false positives require manual inspection, which increases the
effort of analyzing tool reports [10,17] and may even cause static analyzers to
be discarded as irrelevant [14]. Literature suggests that using multiple static
analyzers improves static analysis coverage [5] since some tools perform better
in specific tasks due to different analysis methods. This practice may decrease
the number of false negatives but is likely to generate more false positives as the
number of tools used increases.

In this study, we present kiskadee, a system designed to support continuous
static analysis in software repositories using multiple static analyzers to generate
reports using a common output language. By running multiple static analyzers
on the same code base, kiskadee reduces the number of false negatives in the
analysis. To address false positives, kiskadee ranks warnings in the static analysis
reports using the AdaBoost algorithm’s [8] classification probabilities. Warnings
with the highest rank are more likely to indicate real and more critical software
flaws and warnings with the lowest rank are more likely to be false positives. In
this context, a warning is a single issue produced by a static analyzer.
Finally, kiskadee stores the ranked static analysis reports in a database. The
ranked reports in the database are made available to kiskadee users, providing
them with more accurate data and favoring the use of static analysis.

2 Related Work

Muske and Serebrenik [16] provided an overview of different techniques on how
to handle static analysis alarms. In this survey, the authors classified part of
the techniques as the automatic post-processing of the alarms, which includes
ranking or classification of alarms. We assessed the studies and techniques under
the aforementioned classification to better position the present work.

Previous studies show that the most relevant features for training accurate
machine learning models to arbitrate about the positiveness of static analysis
alarms are extracted from properties intrinsic to the analyzed project, namely
the project change history, function and file names, and even the name of the pro-
grammer who introduced the change that triggered the alarm [9,12,13,20,21].
Since these project-specific features are in great part responsible for the high
accuracy of the models proposed up to now, a model trained on such features
cannot be readily used to query about alarms generated for other projects, ham-
pering the general availability of the model in automated post-analysis tools.

Ruthruff et al. [20] propose a method to predict if a warning is an actionable
fault, i.e., if it is not a false positive and if a programmer should fix it. It uses a
screening approach for model building that discards metrics with low predictive
power. Among the factors used to predict false positives, which happened 85%

92 A. Ribeiro et al.

of the times in the authors study, are the priority given by the static analyzer,
the file length, and code indentation, suggesting that the authors performed
additional code analysis to extract factors from the code.

As discussed, related works emphasize that the most important character-
istics to arbitrate on static analysis warnings positiveness are internal to the
analyzed project. Our study differs from them by assessing static analysis warn-
ings only with the information present in the warnings themselves, therefore,
the approach in itself usually produces poor results. To compensate for this, we
use multiple static analyzers with kiskadee to generate more information and
correlate the information provided by them to assess the correctness of a given
warning better. Since this strategy still might result in a low-quality classifier, we
turn to ensemble techniques to generate and combine multiple weak classifiers
generated this way into a stronger one [19].

3 Continuous Static Analysis with kiskadee

In Free/Libre and Open Source Software (FLOSS) projects, a common source
of bug reports are the GNU/Linux distributions. These distributions ship thou-
sands of software projects, which they call packages. Distribution developers
refer to the projects that maintain the software they ship in the distribution as
upstream. It is not unusual for distribution developers to report bugs in upstream
projects or to send patches to fix bugs found by their distribution users or during
the packaging process.

By continuously running multiple static analyzers in several of these pack-
ages, i.e., once for each version of the package, we can create a database of static
analysis reports on software projects of different sizes and application domains.
Developers can then use the information in this database to find and act on
software flaws.

We chose to use GNU/Linux distributions due to the high amount of soft-
ware packages available and the well-defined and documented interfaces they
provide to download the latest versions of these packages. It is also an advan-
tage that the cultural norm for GNU/Linux distribution developers is to report
(and often propose fixes for) bugs. Therefore, using their repositories for this
work may provide a broader user base for the tools and techniques developed in
this research.

To continuously run static analysis on software packages and handle the false
alarms generated by these analyses, we developed kiskadee. Figure 1 represents
kiskadee’s architecture overview, where the numbers denote its execution flow.
In steps (1) and (2), kiskadee monitors software repositories for new releases.
In step (3), kiskadee downloads the source code of each new software version
in a repository it monitors and runs a set of predefined static analyzers on it
in step (4). In step (5), kiskadee translates each static analyzer report to a
common warnings report format. This common format is needed because each
static analyzer defines its unique format to report warnings. In step (6), kiskadee
ranks the warnings based on their probability of being real bugs, where warnings

Ranking Source Code Static Analysis Warnings 93

Fig. 1. kiskadee design overview.

on the top have a higher probability of being real bugs and warnings on the
bottom are more likely to be false positives. This ranking step is performed
with a classification model, described in Sect. 4. The ranked warnings are then
saved in a database in step (7), using kiskadee’s common warning report format.
Finally, in step (8), kiskadee provides an API consumed by a visualization tool
to display the ranked warnings filtered by package versions. The information
provided can be used either by distribution developers to evaluate and report
possible bugs upstream or by upstream developers themselves. Researchers can
also use kiskadee’s database in different contexts.

FLOSS development communities have been discussing a common static anal-
ysis report output format. The Fedora Project Static Analysis Special Interest
Group [3] designed a tool to run static analyzers during the package build process
[2]. Although the tool itself is in its early development stages and not ready for
usage in production, the developers discussed [4] a common report format for the
static analyzers in their mailing lists. After a few iterations, with Debian Project
developers collaboration, they created Firehose, a complete definition of a com-
mon warnings report format for static analyzers and a set of tools to generate,
parse, and verify this format. We use Firehose as kiskadee’s common warning
report format, eliminating the need to design a new format and to develop the
tools to handle it, like parsers and generators.

kiskadee was run with three static analysis tools to generate the warnings
data set for our experiments. The Criteria to select the tools were: (1) The tool
must be able to examine C/C++ code for security flaws (e.g., buffer overflows,

94 A. Ribeiro et al.

null pointer dereferences); and (2) the tool source code must be released under
an FLOSS license.

Criterion 1 ensures the tool can analyze a subset of the test cases in our
data set, introduced in Sect. 4, whereas criterion 2 preserves us from disputes
by tool vendors regarding the analysis of the results (such as allegations of sub-
optimal tool calibration or detrimental calculation methodology). FLOSS tools
also simplify the process of retrieving string constructs for static analyzer warn-
ing messages and categories when necessary, since we can verify their source
code. Following the criteria, the static analyzers selected were Clang Static Ana-
lyzer (version 3.9.1), Cppcheck (version 1.79), and Frama-C (version 1.14 with
the value analysis plugin activated).

Fedora Project uses an external system to monitor the software projects they
distribute. Anitya [1] maps upstream projects to distribution package names.
Whenever a new version of an upstream project is released, Anitya publishes
the new release in a Fedora infrastructure publish-subscribe system where other
systems in the distribution infrastructure can handle it. New software versions
are published by Anitya as soon as they are released upstream. Analyzing these
new software versions with kiskadee as early as they are released allows the dis-
tribution developers to address potential bugs found by kiskadee before the soft-
ware is shipped to final users. Therefore, kiskadee monitors packages by reading
information published by Anitya in the Fedora infrastructure publish-subscribe
system.

kiskadee can point to other software repositories as well through its plugin
architecture (kiskadee’s fetchers). Each fetcher must implement functions that
define which repository to monitor, how to monitor it, and which static analyzers
to run for that repository. Hence, we can extend kiskadee to run different static
analyzers for different software repositories or GNU/Linux distributions.

4 Ranking Warnings

To create and train a predictive model, before analyzing project repositories, we
ran kiskadee on Juliet [6], a publicly available test suite composed of a collection
of source code snippets with specific flaws injected in known locations, which
facilitates the assessment of static analysis tools. By running kiskadee on Juliet
(without the ranking step), we obtained the analysis reports (a set of warnings)
in the Firehose format, easing further processing. Then, we checked whether each
single warning matched one of the injected flaws in the test suite, labeling them
either as true positive or false positive. After the labeling step, we extracted the
characteristics used to train our model. These did not include any characteris-
tics from the analyzed source code and project history, which tend to be the
most relevant ones when predicting warnings positiveness, as shown in previous
works [12,21]. By not using the characteristics aforementioned, we can produce a
general model that can be used with any project without prior knowledge about
it, eliminating the need to perform the expensive model training step for each
project one may want to analyze. This means that the model obtained during

Ranking Source Code Static Analysis Warnings 95

the preparation of this paper can be used directly by kiskadee in production to
rank warnings in any given project.

To compensate for not using the most relevant characteristics pointed by
previous works, we used an ensemble learning method [19] to train several weak
classifiers, which were then able to vote about the positiveness of new examples.
Finally, instead of just classifying new examples as true and false positives, we
ranked the warnings based on their probabilities of being real flaws, where the
top entries were more likely to be of interest, and the bottom entries were more
likely to be false positives.

The results obtained were auspicious: using three static analyzers with a false
positive rate of 0.61 when aggregating all three tool warnings in a single report,
we achieved an accuracy of 0.8 over the test set. This accuracy was not too
distant from the state of the art (0.85 [20]), which depends on characteristics
specific to the project being analyzed to train their model. Since our model
does not depend on project-specific features, it may receive any project as input
without the need to train a different model for each analyzed project.

The following steps describe the techniques and tools used to collect and
prepare the data to train our model, as well as the methodology used to train
the model and rank the static analysis warnings.

Step 1: Choosing Data Sources. A data set of labeled static analysis warnings
may be obtained by running static analyzers on previously selected source code
and matching the triggered warnings with actual software defects, labeling the
warnings as true or false positives. The source code used for extracting the data
set may consist of real-world software or synthetic test cases, i.e., programs
written with intentional defects.

Juliet [6] is a synthetic C/C++ test suite created by the United States
National Security Agency (NSA) and distributed by the National Institute of
Standards and Technology (NIST) under the public domain. It is composed of
61,387 test cases covering 118 different software flaw categories. Each test case
is a code section with an instance of a specific flaw (to capture true positives)
and an additional section with a correct, fixed instance of that previous flawed
section (to capture false positives). Juliet also includes a user guide with instruc-
tions on how to assess and label static analysis tool warnings generated over its
test cases. We use Juliet version 1.2 to generate our data set.

Before examining Juliet with kiskadee static analysis tools, we pruned the
test suite to prevent analysis of test cases that depend on constructs of specific
operating systems or external libraries. Table 1 shows the total number of test
cases in Juliet before pruning and the number of test cases after the pruning step
for both C and C++. The latter are the tests examined by the static analyzers
for alarms generation, consisting of 39,100 C/C++ test cases.

Step 2: Collecting Labeled Warnings from Multiple Static Analyzers.
Based on Juliet documentation, we process each file in the remaining test cases
to produce a list (L) with information on whether a static analysis warning for
a given location should be labeled as true positive or false positive. Then, we
run each static analyzer on the pruned test suite to generate the static analyses

96 A. Ribeiro et al.

Table 1. Number of Juliet test cases.

Before pruning After pruning

C 36,078 22,459

C++ 25,309 16,641

Total 61,387 39,100

Table 2. Warnings generated per tool.

Tool Warnings

Clang static analyzer 37,229

Cppcheck 124,025

Frama-C 120,573

Total 281,827

Table 3. Labeled warnings per tool.

Tool Warnings TP FP FP Rate Precision

Clang analyzer 6207 984 5223 0.84 0.16

Cppcheck 4035 314 3721 0.92 0.08

Frama-C 15717 8892 6825 0.43 0.57

Aggregated tools 25959 10190 15769 0.61 0.39

reports. Table 2 shows the total number of warnings generated, before discarding
warnings whose labeling step cannot be automated based on Juliet documen-
tation. By matching each warning produced by the static analyzers with the
corresponding flaw categories covered by Juliet, we can use the list L to produce
labels for each warning.

This set of labeled warnings can finally be examined to extract a training set
from it, as discussed next. Table 3 summarizes the findings of the static analyzers
on the test cases, including the number of true and false positives generated (TP
and FP, respectively), the false positive rates, and the precision for each tool
and for the whole kiskadee report, i.e., the aggregated reports composed of the
warnings of all tools.

Step 3: Extracting Features from Labeled Warnings. We obtain the fea-
tures used to train our classifier from the set of labeled warnings. Here, a feature
is any characteristic that can be attributed to a warning in the data set. To select
relevant features for false and positive alarm classification, we refer to previous
studies that also rely on characteristics extracted from alarms and source code
to classify alarms [9,12,13,20]. For instance, Kremenek et al. [13] demonstrate
that the tool warning positiveness is highly correlated to code locality.

We extract our set of features by processing the aggregated report of labeled
warnings. While we can infer the name of the tool that triggered a warning, the
programming language analyzed, and the severity of the warning by looking at a
single warning at a time, other features require processing the whole aggregated
report to be extracted. Namely, these are (1) the number of times the same
location was pointed as flawed in the report, (2) the number of warnings triggered
around the location of a given warning (e.g., warnings for locations at most 3 lines
away from the current warning), (3) the category of the software flaw suggested

Ranking Source Code Static Analysis Warnings 97

by the warning, (4) which other static analyzers generated warnings for the same
location, and (5) the number of warnings generated for the same file the current
warning is pointing to.

Step 4: Training Decision Trees with AdaBoost. Given the data collected,
we build a prediction model to classify each triggered warning as being a true
positive or a false positive. The classification results may also be used to rank
the warnings, as we describe in Step 5.

Since we do not post-analyze the source code nor inspect the project history
of the analyzed software projects, which are shown to be the best places to look
for features to arbitrate on source code static analysis warnings positiveness,
we turn to ensemble learning methods to train several weak classifiers with our
feature set. These weak classifiers combined can then arbitrate on new examples
together, composing a stronger classifier with lower error [19].

One widely used ensemble learning method is boosting [19], whose main idea
is to run a weak learning algorithm several times in different distributions of the
training set to generate and combine various weak classifiers into a stronger one.
For this study, we use the AdaBoost algorithm [8], a more general version of the
original boosting algorithm [18].

The AdaBoost algorithm works with any given base learner. We use a decision
tree learning algorithm as our base learner because we have both categorical and
non-categorical features in our data set, and decision trees can work with both,
without the need to pre-process the data set. Furthermore, as shown in the
literature, decision trees perform well with AdaBoost [7].

We divide our data set into a training set and a test set. The training set
is built by randomly selecting 75% of the examples labeled as true positives
and 75% of the examples labeled as false positives from the features data set.
We then proceed to train our predictive model using 10-fold cross-validation
with the training set. We perform the 10-fold cross-validation technique with
different values for T (number of weak classifiers trained) in AdaBoost. We then
compare the average performance of the classifiers obtained for each distinct
value of T validated in this manner and use the best model trained during the
cross-validation for that T to classify the test set.

Step 5: Ranking Static Analysis Warnings. We use the model trained in
Step 4 to rank the warnings in a static analysis report based on the model
classification probabilities. We reorder the warnings in a list according to the
probability of the warning being a true positive, where warnings with higher
probabilities are ranked in the top of the list and warnings with lower proba-
bilities of being true positives are arranged in the bottom of the list. This way,
a programmer inspecting the ranked static analysis report may examine only
the top warnings in the list up to a given threshold, assuming a certain risk of
missing true positives. Alternatively, he/she may stop inspecting warnings when
false positives start to abound.

98 A. Ribeiro et al.

5 Results and Discussion

Although we use a binary classification algorithm to train our model, we do
not need to limit ourselves to a direct binary classification; it is also possible to
use the trained predictive model to rank warnings according to their expected
relevance. Next, we present and discuss the results obtained with kiskadee’s
ranking approach. While comparing our results with other ranking approaches
or, at least, with the ranking order of each tool would be ideal, these would
not be feasible. In the first case, we would have to replicate other works with
our data set; in the second, it would not make sense to compare the results of
a single tool to the aggregate results. Therefore, we chose to compare kiskadee
with a random ranking algorithm.

To evaluate our ranking performance over the test set, we refer to the method-
ology presented by Kremenek et al. [13], which we describe below.

We define S(R) to be the sum of FPj , the cumulative number of false positive
warnings found before reaching the jth true positive warning when navigating a
ranked list (starting from the first entry) ordered by a ranking algorithm R.

S (R) =
Ntp∑

j=1

FP j (1)

It is worth observing that S (R) = 0 for an optimal ranking algorithm and
S (R) = Ntp ×Nfp for the worst ranking algorithm, where Ntp and Nfp are the
total number of true positive warnings and false positive warnings in the list,
respectively.

We then define the average of the cumulative number of false positive warn-
ings found before reaching each true positive warning, FPavg (Eq. 2).

FPavg =
S (R)
Ntp

(2)

Finally, we measure the performance ratio of our ranking algorithm against
a random ranking algorithm, which shuffles the list of warnings, with Eq. (3).

Performance =
FPavg(random)

FPavg(AdaBoost ranking)
(3)

In a perfect ranking situation, the first false positive occurrence would be
positioned after the last true positive occurrence, therefore, FPavg = 0. For
our test set, in the worst case scenario, one would hit all the false positives
before finding the first true positive. Leading to FPavg = 3942. When applying
a random ranking algorithm, we found FPavg = 1992, while, for kiskadee’s
ranking approach, FPavg = 380 over our test set.

The median kiskadee model performance over random, as proposed by
Kremenek et al. [13], was 5.2, which indicates that, on average, one hits 5.2
times more false positives before each true positive with a random ranked warn-
ing list than one would if using the proposed ranking. Figure 2 shows the number

Ranking Source Code Static Analysis Warnings 99

0 1000 2000 3000 4000 5000 6000

0
50

0
10

00
15

00
20

00
25

00

Inspections

Ac
tu

al
 fl

aw
s

fo
un

d

Optimal
kiskadee
Random
Worst

Fig. 2. Number of actual flaws found in top-down inspection of lists ranked with dif-
ferent approaches.

of real flaws found in a ranked list per inspected entries (warnings) for differ-
ent ranking models applied to the test set: optimal, where all the real flaws are
in the top of the list; worst, where all the false positives are in the top of the
list; random, where the entries are randomly shuffled in a list; and model, which
represents the ranking model proposed for kiskadee.

As Fig. 2 shows, kiskadee’s model outperforms the random ranking algorithm
by presenting all software flaws in the test set after 3990 inspections, while the
random ranking algorithm presents software flaws in a linear relation with the
number of inspections, where the last few real software flaws in the test set are
only presented in the end of the list, after 6486 inspections.

6 Conclusion

Different from related works, kiskadee’s ranking approach does not use features
based on the analyzed project intrinsic properties for model training, namely,
source code change history and code metrics. Consequently, by smoothly decreas-
ing the classification accuracy, the model obtained can be used successfully with
any given software project. This is a compelling trade-off to enable kiskadee to
analyze and rank any project given as input, allowing the continuous monitor-
ing and analysis of different software repositories, such as the ones provided by
GNU/Linux distributions.

kiskadee can be used to reduce the cost of inspecting false alarms by setting
a minimum value for the rate in which real flaws are found per inspection in a
ranked list (i.e., a confidence level). When the rate of real flaws per inspections
drops below that level, one could stop the inspection for that warning list. Inter-
esting future works include studying confidence levels and the trade-off between

100 A. Ribeiro et al.

loss of information and the cost of inspecting a larger number of false alarms,
improving the classification model by collecting users feedback, and investigating
other algorithms besides AdaBoost with decision trees as classifiers.

kiskadee is licensed under the GNU Affero General Public License. Its devel-
opment repository, the complete project documentation (including UI screen-
shots), and the data set used for the ranking experiments here presented are
available at pagure.io/kiskadee.

References

1. Anitya project website. https://release-monitoring.org. Accessed 5 Jan 2018
2. Fedora mock-with-analysis project. github.com/fedora-static-analysis/mock-with-

analysis. Accessed 5 Jan 2018
3. Fedora project static analysis special interest group. fedoraproject.org/wiki/

StaticAnalysis. Accessed 5 Jan 2018
4. Firehose mailing list archives. http://lists.fedoraproject.org/archives/list/firehose-

devel@lists.fedoraproject.org. Accessed 5 Jan 2018
5. Black, P.E.: Static analyzers in software engineering. J. Defense Softw. Eng. 22(3),

16–17 (2009)
6. Boland, T., Black, P.E.: Juliet 1.1 C/C++ and Java test suite. Computer 45(10),

88–90 (2012)
7. Drucker, H., Cortes, C.: Boosting decision trees. In: Advances in Neural Informa-

tion Processing Systems, pp. 479–485 (1996)
8. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc.

Artif. Intell. 14(771–780), 1612 (1999)
9. Heckman, S., Williams, L.: A model building process for identifying actionable

static analysis alerts. In: International Conference on Software Testing Verification
and Validation, ICST 2009, pp. 161–170. IEEE (2009)

10. Heckman, S.S.: Adaptively ranking alerts generated from automated static analy-
sis. Crossroads 14(1), 7 (2007)

11. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12), 92–106
(2004). https://doi.acm.org/10.1145/1052883.1052895

12. Jung, Y., Kim, J., Shin, J., Yi, K.: Taming false alarms from a domain-unaware C
analyzer by a Bayesian statistical post analysis. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 203–217. Springer, Heidelberg (2005). https://doi.
org/10.1007/11547662 15

13. Kremenek, T., Ashcraft, K., Yang, J., Engler, D.: Correlation exploitation in error
ranking. ACM SIGSOFT Softw. Eng. Notes 29, 83–93 (2004)

14. Kremenek, T., Engler, D.: Z-ranking: using statistical analysis to counter the
impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 295–315. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-44898-5 16

15. Landi, W.: Undecidability of static analysis. ACM Lett. Prog. Lang. Syst.
(LOPLAS) 1(4), 323–337 (1992). http://dl.acm.org/citation.cfm?id=161494.
161501

16. Muske, T., Serebrenik, A.: Survey of approaches for handling static analysis alarms.
In: 2016 IEEE 16th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 157–166. IEEE (2016)

http://pagure.io/kiskadee
https://release-monitoring.org
http://github.com/fedora-static-analysis/mock-with-
http://github.com/fedora-static-analysis/mock-with-analysis
http://fedoraproject.org/wiki/StaticAnalysis
http://fedoraproject.org/wiki/StaticAnalysis
http://lists.fedoraproject.org/archives/list/firehose-devel@lists.fedoraproject.org
http://lists.fedoraproject.org/archives/list/firehose-devel@lists.fedoraproject.org
https://doi.acm.org/10.1145/1052883.1052895
https://doi.org/10.1007/11547662_15
https://doi.org/10.1007/11547662_15
https://doi.org/10.1007/3-540-44898-5_16
https://doi.org/10.1007/3-540-44898-5_16
http://dl.acm.org/citation.cfm?id=161494.161501
http://dl.acm.org/citation.cfm?id=161494.161501

Ranking Source Code Static Analysis Warnings 101

17. Muske, T.B., Baid, A., Sanas, T.: Review efforts reduction by partitioning of static
analysis warnings. In: 2013 IEEE 13th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pp. 106–115. IEEE (2013)

18. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag.
6(3), 21–45 (2006)

19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2 edn. Pearson
Education, Upper Saddle River (2003)

20. Ruthruff, J.R., Penix, J., Morgenthaler, J.D., Elbaum, S., Rothermel, G.: Predict-
ing accurate and actionable static analysis warnings: an experimental approach. In:
Proceedings of the 30th International Conference on Software Engineering, ICSE
2008, pp. 341–350. ACM, New York (2008). https://doi.acm.org/10.1145/1368088.
1368135

21. Yoon, J., Jin, M., Jung, Y.: Reducing false alarms from an industrial-strength
static analyzer by SVM. In: 2014 21st Asia-Pacific Software Engineering Conference
(APSEC), vol. 2, pp. 3–6. IEEE (2014)

https://doi.acm.org/10.1145/1368088.1368135
https://doi.acm.org/10.1145/1368088.1368135

Using PageRank to Reveal Relevant
Issues to Support Decision-Making

on Open Source Projects

Alessandro Caetano1(B), Leonardo Leite2, Paulo Meirelles2,3, Hilmer Neri1,4,
Fabio Kon2, and Guilherme Horta Travassos1

1 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{alessandrocb,gth}@cos.ufrj.br

2 FLOSS Competence Center, University of São Paulo, São Paulo, Brazil
{leofl,kon}@ime.usp.br

3 Department of Health Informatics,
Federal University of São Paulo, São Paulo, Brazil

paulo@softwarelivre.org
4 UnB Faculty in Gama, University of Brasilia, Brasilia, Brazil

hilmer@unb.br

Abstract. Software release planning is crucial to software projects that
adopt incremental development. Open source projects depend on their
globally distributed maintainers’ communities who share project infor-
mation, usually described in the software project repository as issues, to
plan the contents and timing of the next releases. This paper introduces
an approach based on software issues to support decision-making regard-
ing open source software development activities such as release planning
and retrospectives. It uses the PageRank algorithm to suggest an impor-
tance ranking of the software issues based on the issues dependencies
topology. When based on a highly connected topology, project leaders
can use this rank as an input to planning activities. The observation of
two open source projects indicates the feasibility of our approach.

Keywords: Open Source Software · Free software
Issue management · Decision-making · PageRank
Empirical software engineering

1 Introduction

The developers’ community is responsible for managing the next evolutionary
actions in Open Source Software (OSS) projects. Such steps can identify dif-
ferent types of software issues, such as new features, artifacts, improvements,
comments, bug fixes, among others. Collaborative Development Environments
(CDE) [3], such as GitHub and GitLab, provide essential collaboration tools,
such as issue trackers, in addition to their code repositories. An issue tracker

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 102–113, 2018.
https://doi.org/10.1007/978-3-319-92375-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_9&domain=pdf

Using PageRank to Reveal Relevant Issues to Support Decision-Making 103

supports the community in registering new issues and discussing them, keeping
track of future work as well as recording the achieved results. Although the con-
cept of “issue”has a broader meaning than the concept of “bug” (a.k.a. software
defect), in some contexts, an issue tracker can be called a “bug tracker” and
its produced report, a “bug report”. An issue tracker can provide essential data
about the software project history and status. Data-driven decisions can con-
tribute to the software development process improvement, helping to the timely
delivery of high-quality software [6].

Researchers have conducted investigations on mining software artifacts to
provide useful insights for the decision-making process on software projects [1].
Codemine [6], for example, collects and analyzes engineering process data from
across a diverse set of Microsoft product teams. Baysal et al. inquire Mozilla
developers about how qualitative dashboards can support real-time developer
decision-making for daily tasks [2]. Robles et al. mine commit history to estimate
effort spent on a project [14]. Borges et al. mine open source GitHub repositories
to predict popularity based on repository properties [4]. In our work, issues are
the software artifacts mined to support decision-making.

An essential input data to planning activities are the history of the project
(past issues) and the set of opened issues. One could consider a set of related
issues as indicating some relevant theme within an OSS community. Open issues
can point to essential topics so far neglected and deserving attention. It is also
possible to use information regarding closed issues to observe where a project
community concentrated its efforts. Thus, looking at the history of the issues is
similar to performing a retrospective study, in which the software development
team can learn from the experiences and plan for future improvements [15]. It
is possible to use the retrospective based on the history of the issues to support
decision-making and the prioritization of activities, and also to help identify most
energy spent by the team during releases. The relevance of observing previously
invested efforts is evident in the research of Robles et al., in which a model
estimates the effort on the OpenStack system based on its commit history [14].

Goyal and Sardana explore issues mining, comparing techniques for assigning
the developer with maximum expertise related to a given bug to resolve it [8].
The match considers various meta-fields of the target bug and the meta-fields
of bugs already solved by the developer. The authors also explore the effect
of knowledge decay over time, a different meta-field weighting strategy, and
developer commits history. Although our analysis target is the same, the bug
report, our perspective is different, since we analyze the relevance of issues for
the community as a whole, and not for specific developers.

Some works handle the summarization of bug reports containing lengthy
conversations, so the reader can quickly grasp what matters in a given bug
report. He et al. focus on summarization improvement based on duplicated bug
reports analysis [10]. They apply the PageRank algorithm in a network in which
nodes are the sentences of a bug report, and the similarity among them defines
the edges, so the rank of sentences defines which ones belong to the summary.
Although we also use PageRank to bug reports, our approach is different since we

104 A. Caetano et al.

apply PageRank to reveal relevant issues from an issue set, and not to summarize
a single bug report.

From another point of view, Steinmacher et al. identified 50 entry barriers
faced by new developers in OSS projects [16]. Among them were (i) the lack
of a list of project needs and issues, (ii) the organization of the backlog in the
repository, and (iii) the access to the tasks. Thus, besides supporting planning
and retrospective activities, the history of the issues is input to newcomers to
know the project better and decide where to focus efforts.

A well-organized project may have hundreds or even thousands of issues.
Considering such significant set of issues is hard for decision-making, one should
analyze every single software issue to produce consistent high-level patterns.
For this reason, OSS communities could benefit from automated approaches to
extract relevant information from the issue tracker to support decision-making
activities.

In the issue tracker facilities provided by the GitHub and GitLab, users can
reference an issue from comments or titles on other software issues, creating a
network of linked issues (see Sect. 2). Considering such issues network, we pro-
pose in this paper an approach to define the top-ranked software issues from a
given repository, by using the PageRank algorithm [13] to determine the rele-
vance of issues based on their network centrality. Issues with a large number of
references (dependencies) are more likely to be highly relevant, and consequently,
those referenced by relevant issues are more likely to be also highly relevant. This
way, the outcome of the PageRank algorithm (a list of software issues ordered by
relevance) can support retrospective studies, planning activities, and look for rel-
evant opportunities for newcomers to work out. Therefore, this paper intends to
answer the following research question: Can the PageRank algorithm identify
relevant issues on OSS projects to support decision-making?

We used two observational studies with two OSS projects to support the
answering of this question. The observed results indicate that the use of
PageRank could be somewhat feasible since some ranked relevant issues pre-
sented terms aligned to the planning documentation, and others were related to
effort-consuming activities.

We organized the remaining of this paper as follows. Section 2 describes some
basic concepts on the model of software issues and the PageRank algorithm.
Section 3 presents our proposal to determine the relevance order of software
issues according to the PageRank algorithm. In Sect. 4 we discuss the evaluation
of our approach. Section 5 presents some threats to the validity of this study.
Finally, Sect. 6 draws our conclusions and future work.

2 Background

In this section, we present how to build a graph representation of software issues
extracted from Github and Gitlab platforms. We also discuss the PageRank, a
link analysis algorithm that we applied to find the top-ranked software project
issues.

Using PageRank to Reveal Relevant Issues to Support Decision-Making 105

2.1 The Software Issue Model

Software issues are used in CDEs such as GitHub and GitLab to organize com-
munity activities. Software issues can have many purposes, such as discussing
new ideas, asking for help, registering desired new features, artifacts improve-
ments, fixes and so forth.

Each software issue has a number, a title, a textual description, and com-
mentaries by its contributors. An issue title or commentary may refer to another
software issue through a short link by using the “#” sign followed by the issue
number. Commit messages can also refer to software issues in this style.

A software issue starts in the “open” state and finishes in the “closed” state.
An issue is closed when it is addressed, rejected, or incorporated by another soft-
ware issue. It may be assigned to a specific member of the software community
and linked to a milestone. In this context, a milestone is a cohesive collection
of software issues, possibly associated with a due date. A milestone, therefore,
represents a project goal in a higher level of abstraction than just one issue.

2.2 The PageRank Algorithm

Larry Page and Sergey Brin created the PageRank algorithm in 1999 [13]. It cal-
culates the relative importance of web pages, and it has applications in search
engines, traffic estimates, and web browsing. The premise of the PageRank algo-
rithm is that each web page has some outbound and inbound links and that
pages with a large number of links are more relevant than pages with fewer
links. Besides, the algorithm takes into account the relevance of incoming links
to a page: if the web page has an inbound link that has high relevance, that page
tends to be more important than another one having several links coming from
less relevant pages. The equation used to calculate the rank in the PageRank
algorithm is:

PR(x) = α

(
1
N

)
+ (1 − α)

∑
y∈L(x)

PR(y)
C(y)

, (1)

in which x a web page, PR(x) is the page rank of x. L(x) represents the pages
with links to x, C(y) is the out-degree of y, α represents the probability of a
random jump from one of the links, that is, in a random-surfer model it represents
the probability of the surfer restart the algorithm at any given page, preventing
the algorithm to be stuck in a node with zero out-degree. N represents the total
number of pages analyzed.

3 Using PageRank to Reveal Relevant Software Issues

Our approach to analyzing the relevance of issues consists in using the PageRank
algorithm, i.e., applying Eq. 1 to software issues rather than to web pages. So,
the first step of our procedure is generating a directed graph based on data
retrieved from the software repository. We retrieve such data using the APIs

106 A. Caetano et al.

provided by GitHub and GitLab. In the generated graph, a vertex represents a
software issue, and a directed edge represents a link from a software issue to
another one, only issues linked using the “#” sign are considered.

Before applying the PageRank algorithm, two transformations are performed
in the graph. The first is to connect all software issues within the same milestone.
We consider this connection because software issues within the same milestone
have a semantic bind that means that all of them must be fulfilled so that a
higher-level objective is achieved. The second transformation eliminates software
issues with no links. A software issue is kept whether it has at least one inbound
link or one outbound link. This transformation is made because software issues
with no links are irrelevant to the analysis and affect the rank scale, so pruning
these software issues generates a result that is easier to interpret.

After the graph is prepared, Eq. 1 is applied to the graph with α = 0.85, which
is the default value used in NetworkX [9], a library for network manipulation we
used, and the recommended value from the original Pagerank proposition [5].
The result is the assignment of a real number called “rank” to each software
issue and a list of software issues ordered from the highest to the lowest rank.

Our implementation source code (including data retrieving, graph prepa-
ration, and PageRank execution) is available at GitLab1. We built the auto-
mated solution in Python. The top-ranked libraries we used are Matplotlib for
data visualization [11]; Scipy2 for numerical computing; Pandas3 for data frame
manipulation; NetworkX [9] to generate a digraph and compute the PageRank;
and NLTK4 to find the patterns we were looking for in the issue text.

4 Evaluation

We automated an approach to be used by any project that adopts the GitHub
or GitLab issue trackers to organize the software community activities. We eval-
uated it by observing two OSS projects: Brazilian Public Software portal5, with
its project repository in its own GitLab instance, and Parliamentary Radar6,
which uses Github.com to host its project repositories. We choose these Brazil-
ian software projects because they documented their roadmaps and backlogs,
which enabled us to use this documentation to evaluate the algorithm results.
Moreover, the proximity of our research group to the developers of these two
software projects helped us to perform qualitative assessments regarding our
findings with the project members.

The Brazilian Public Software (SPB) portal is an integrated platform for
collaborative software development of OSS projects used by the Brazilian pub-
lic administration [12]. It includes facilities for social networking, mailing lists,

1 https://gitlab.com/AlessandroCaetano/PageRanking.
2 https://scipy.org.
3 http://pandas.pydata.org.
4 http://nltk.org.
5 https://softwarepublico.gov.br.
6 http://radarparlamentar.polignu.org.

https://gitlab.com/AlessandroCaetano/PageRanking
https://scipy.org
http://pandas.pydata.org
http://nltk.org
https://softwarepublico.gov.br
http://radarparlamentar.polignu.org

Using PageRank to Reveal Relevant Issues to Support Decision-Making 107

version control, and monitoring of source code quality, making it a system-of-
systems. The Parliamentary Radar project uses open government data to per-
form cluster analysis on bill votes of legislative houses of Brazil.

The input to PageRank algorithm is the software issues graph. Figures 1
and 2 present the generation of the software issues graphs, which is the first
step of our approach, for the SPB Portal and Parliamentary Radar projects.
In these figures, the tiny red circles (altogether forming an ellipse) represent
the software issues, whereas the straight lines represent links between them. In
short, the graphs use a circular layout, as proposed by Doğrusöz et al. [7].

Fig. 1. Software issues circular graph of the SPB Portal project.

Fig. 2. Software issues circular graph of the Parliamentary Radar project.

The SPB graph already contains the transformations to linking the issues
of the same milestone and pruning those with no links. The Radar Parliamen-
tary graph includes the transformation of pruning software issues with no links.
However, since the Parliamentary Radar project does not systematically use
milestones, we did not perform the linkage of software issues of the same mile-
stones to it.

108 A. Caetano et al.

Table 1. The top ten ranked issues of the SPB Portal.

Issue Rank

Moderation of saved resource values of usage report 0.00593

Configure NGINX to serve syslog data 0.00345

Show error message close to the institution field on usage report 0.00345

Run Gitlab 8.5 with the built package 0.00345

Global search improvement 0.00345

White screen on community lateral block edition 0.00345

Portal wiki news import 0.00304

Broken user registration (username: boscojr) 0.00263

Add user e-mail on join community request processing screen 0.00263

Remove SISP question from new institution creation 0.00263

For the SPB portal project, the removal of issues with no links decreased
from 800 to 127 the number of software issues in the graph. After the cut, about
62.5% of them have only one link. Some issues appear with two and three links,
and there are also three issues with four, five and six links each. Using the issues
graph of Fig. 1, we performed the PageRank algorithm. Table 1 shows the top
ten ranked issues.

Table 2. The top ten ranked issues of the Radar Parlamentar.

Issue Rank

Import legislative house 0.01242

Controversial polls 0.01242

Highlight party on the chart 0.01242

Duplicated parties and parliamentarians 0.01242

Advanced analysis 0.01242

Filtered polling list refactoring 0.01112

Automatic creation of dumps 0.01047

Solving issues 248, 241 e 250 0.01047

Without party voters on cdep in 1997 0.01047

Creation of Executive Chief Importer 0.01047

The removal of Parliamentary Radar project issues with no links decreased
from 300 to 71 the number of software issues in the graph. After the cut, about
50% of them had just one link. Some issues appear with two, three and four
links, and there is one issue with eleven links. Using the issues graph of Fig. 2,
we performed the PageRank algorithm. Table 2 shows the top-ranked issues.

Using PageRank to Reveal Relevant Issues to Support Decision-Making 109

The rank values of SPB project issues varied from 0.002 to 0.0172. The
median is 0.0028 and the mean 0.0040 with a standard deviation of 0.0018.
About half of the issues presented the same rank of 0.002. The histogram in
Fig. 3 represents the distribution of the generated ranking. For the Parliamentary
Radar project issues, the ranks values varied in a range from 0.0046 to 0.0124.
The median is 0.0059 and the mean 0.0063 with a standard deviation of 0.0020.
Figure 4 presents the histogram plot for the Parliamentary Radar.

Fig. 3. Histogram of ranks for the SPB Portal issues.

Fig. 4. Histogram of ranks for the Parliamentary Radar issues.

We compared the top-ranked software issues of the SPB portal project to the
planning of the two last releases documented on the SPB wiki. We performed the
comparison looking for the terms present in issue titles, descriptions, and wiki
pages. In the SPB releases documentation, some priority features were “soft-
ware usage report”, “global search improvement”, and “general improvements”.

110 A. Caetano et al.

These terms align with terms found in the top-ranked software issues. We also
conducted an open interview with the SPB Portal coordinator presenting the
ranked list of issues to him, who provided feedback that the ranked list showed
the issues that consumed the most effort from the team at the project end. It
suggests the feasibility of our approach in capturing some of the relevant
issues from the management point of view.

The Parliamentary Radar project maintains its roadmap and backlog orga-
nized in the Wiki at its repository. Its backlog7 describes features desired for the
project. A set of software issues may represent different tasks to implement a
feature. We compare the ranked list of software issues of Parliamentary Radar
project and its roadmap to evaluate the result of our PageRank execution. In
this way, it was possible to align the top-ranked issues with the features pre-
sented in the backlog to indicate if the proposed approach to determining the
software issue relevance gives satisfactory results.

When comparing the Parliamentary Radar ranked software issues list with
the project backlog, we observed that our solution identified software issues that
were prioritized by developers. With this, we also conducted an open interview
with three core developers of Parliamentary Radar and presented the ranked
list of issues to them. We got the feedback that the highly relevant issues list
presented the three issues that consumed the most effort from the team at that
moment, which indicates that our approach was able to identify highly
relevant software issues from the developer point of view.

Moreover, the Parliamentary Radar developers stated that if they had this
suggestion when planning the next release, they could have prioritized other
software issues included in the list instead of some that they preferred to priori-
tize. They also stated that the list of ranked software issues could also be useful
during the team retrospective since it can help developers to identify the most
discussed ones. The Parliamentary Radar developers also proposed that new-
comers can use the list of ranked software issues to have an insight on what the
software community is working on, creating a better way for their engagement
in the software under development.

5 Threats to Validity

An internal validity threat occurs because the Parliamentary Radar roadmap had
not been updated at the time we executed our scripts. So, the roadmap could
not be related to software issues created after the last wiki update. However, the
Parliamentary Radar wiki content had enough information to correlate software
issues terms and planning documentation. Moreover, in the SPB Portal project,
the wiki content was more reliable, so the sound results for both projects support
the applicability of such comparison.

About external validity, we acknowledge that executing our approach with
only two OSS projects imposes barriers to a broader generalization regarding
our approach applicability. However, at least the positive observations of these

7 https://github.com/radar-parlamentar/radar/wiki/Roadmap.

https://github.com/radar-parlamentar/radar/wiki/Roadmap

Using PageRank to Reveal Relevant Issues to Support Decision-Making 111

two projects are encouraging and can motivate other communities to try out
our proposal. Our approach is limited by how the developers organize the issue
tracker of their projects. Since the algorithm depends on the links of the issues,
it requires a cultural practice for the community to create these links.

In the evaluation process, the main reproducibility problem is the manual
comparison made between terms found on top-ranked software issues and terms
present in the planning documentation. An automated process for such compar-
ison would be more suitable. On the other hand, the planning documentation
for both SPB Portal and Parliamentary Radar projects are relatively small, so
we hope someone trying to reproduce our study might get very similar results.

6 Conclusion

We presented the application of the PageRank algorithm to a network of software
issues retrieved from OSS projects. Its use results in a ranking of issues, which
can support a software community in decision-making activities, such as the
planning of releases, retrospective studies, and helping newcomers to know the
project better.

The presented results showed the feasibility of our approach for the Brazilian
Public Software portal and Parliamentary Radar projects because some of the
top-ranked software issues were also present in their planning documentation.
Furthermore, in open interviews with the coordinators and the core developers of
the projects, they found the software issues rank insightful in both management
and development views. Therefore, we consider that the PageRank algorithm
may be used to extract a small set of relevant issues from OSS repositories to
support decision-making activities regarding retrospective studies, to support
new developers to engage on activities that are currently being worked by the
software community, and to track the effort of the team. However, before gener-
alizing its use for all OSS projects, it is vital to understand peculiarities of the
software community and project that could affect the results.

Answering the question “Can the PageRank algorithm identify relevant issues
on OSS projects to support decision-making activities?”, the obtained results
indicate that our approach can adequately work for those software projects using
the Github or Gitlab software issue trackers and in which the contributors
create a substantial number of links among issues. The issues should
represent activities for the developers, the links between them should represent
the relations between two or more activities, that way the algorithm can rank the
issues helping the developers prioritize them. Given OSS projects following the
specific structures presented in this study, we can answer our research question
positively, since the algorithm was able to reveal a set of relevant issues regarding
both the software projects. However, since we applied our approach to two OSS
projects, more studies are necessary to strengthen this claim.

The adoption of our approach by OSS communities requires a way to inte-
grate the execution and the presentation of results without the need to manually
run scripts. To facilitate more studies based on our approach, we shared a pack-
age with the scripts used in this study on Gitlab, as described in Sect. 3. Future

112 A. Caetano et al.

studies can evaluate the impact of our graph transformations, i.e., linking soft-
ware issues within the same milestone and pruning those with no links. Finally,
structured interviews with adopters of the approach would allow a better eval-
uation triangulation and broaden its applicability assessment for an extensive
range of OSS projects.

References

1. Abdellatif, T.M., Capretz, L.F., Ho, D.: Software analytics to software practice: a
systematic literature review. In: Proceedings of the First International Workshop
on BIG Data Software Engineering, BIGDSE 2015, pp. 30–36. IEEE (2015)

2. Baysal, O., Holmes, R., Godfrey, M.W.: Developer dashboards: the need for qual-
itative analytics. IEEE Softw. 30(4), 46–52 (2013)

3. Booch, G., Brown, A.W.: Collaborative Development Environments. Advances in
Computers, vol. 59, pp. 1–27. Elsevier (2003)

4. Borges, H., Hora, A., Valente, M.T.: Predicting the popularity of github reposi-
tories. In: Proceedings of the 12th International Conference on Predictive Models
and Data Analytics in Software Engineering, PROMISE 2016, pp. 9:1–9:10. ACM
(2016)

5. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search
engine. Comput. Netw. 56(18), 3825–3833 (2012)

6. Czerwonka, J., Nagappan, N., Schulte, W., Murphy, B.: CODEMINE: building a
software development data analytics platform at Microsoft. IEEE Softw. 30(4),
64–71 (2013)

7. Doğrusöz, U., Madden, B., Madden, P.: Circular layout in the Graph Layout
toolkit. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 92–100. Springer, Hei-
delberg (1997). https://doi.org/10.1007/3-540-62495-3 40

8. Goyal, A., Sardana, N.: Efficient bug triage in issue tracking systems. In: Proceed-
ings of the Doctoral Consortium at the 13th International Conference on Open
Source Systems, pp. 15–24 (2017)

9. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-
ics, and function using NetworkX. In: Proceedings of the 7th Python in Science
Conference, SciPy 2008, pp. 11–15 (2008)

10. He, J., Nazar, N., Zhang, J., Zhang, T., Ren, Z.: PRST: a pagerank-based sum-
marization technique for summarizing bug reports with duplicates. Int. J. Softw.
Eng. Knowl. Eng. 27(6), 869–896 (2017)

11. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),
90–95 (2007)

12. Meirelles, P., Wen, M., Terceiro, A., Siqueira, R., Kanashiro, L., Neri, H.: Brazilian
Public Software Portal: an integrated platform for collaborative development. In:
Proceedings of the 13th International Symposium on Open Collaboration, Open-
Sym 2017, pp. 16:1–16:10. ACM (2017)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. Technical report 1999–66, Stanford InfoLab (1999)

14. Robles, G., González-Barahona, J.M., Cervigón, C., Capiluppi, A., Izquierdo-
Cortázar, D.: Estimating development effort in free/open source software projects
by mining software repositories: a case study of OpenStack. In: Proceedings of
the 11th Working Conference on Mining Software Repositories, MSR 2014, pp.
222–231. ACM (2014)

https://doi.org/10.1007/3-540-62495-3_40

Using PageRank to Reveal Relevant Issues to Support Decision-Making 113

15. Schwaber, K., Sutherland, J.: Sprint retrospective. In: The Definitive Guide
to Scrum: The Rules of the Game. Scrum.Org and ScrumInc (2016). www.
scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf

16. Steinmacher, I., Chaves, A.P., Conte, T.U., Gerosa, M.A.: Preliminary empirical
identification of barriers faced by newcomers to open source software projects. In:
28th Brazilian Symposium on Software Engineering, SBES 2014, pp. 51–60. IEEE
(2014)

www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf

OSS in Public Administration

Creating and Integrating a FLOSS Product
into UK Law Enforcement

Joseph Williams(&)

Department of Computing, Digital Forensics and Cybersecurity,
Canterbury Christ Church University,

North Holmes Road, Canterbury, Kent CT1 1QU, UK
joseph.williams@canterbury.ac.uk

Abstract. Open Source Internet Research Tool (OSIRT) is a free and open
source software tool that enables law enforcement officials to conduct online
research and obtain artefacts in an evidential and lawful manner. Over the past
three years, OSIRT has seen growth from a handful of users within UK law
enforcement, to a reach that extends to countries across the globe which also
sees usage outside of law enforcement and beyond its original scope.
This paper will reflect upon OSIRT’s development, and discusses issues

surrounding the development of a FLOSS product for UK law enforcement.
With cuts to budgets being made to law enforcement services, FLOSS software
like OSIRT has an opportunity to flourish in this sector. To establish OSIRT’s
and FLOSS’ integration into UK law enforcement, interviews, a small case
study and questionnaires were conducted with serving police officers, police
trainers and an IT administrator; all have experience with OSIRT.

Keywords: Open source research � Open source intelligence
Internet investigations � Law enforcement � Open source software

1 Introduction

With cuts to policing budgets in the UK expected to hit £700 m by 2020 [1], police
services are finding themselves needing to reduce expenditure. One of the areas law
enforcement can save is by integrating FLOSS. With an ever-increasing rise in cyber-
crime, policing is now seeing itself requiring a shift from ‘traditional’ roles to a digital,
online presence with a need for officers to be capable of conducting online investigations.

The Internet plays host to a variety of artefacts law enforcement can also use for
intelligence purposes, further extending the need for officers to be able to obtain
information using technology. To aid law enforcement in conducting research online,
OSIRT, a FLOSS product, was created in collaboration with the UK’s College of
Policing.

This paper looks at OSIRT’s integration and usage within UK law enforcement by
looking at, often closed-sourced, tools that were previously used when conducting open
source research and why this plethora of different tools was standardized with OSIRT.
To support this, views and experiences of law enforcement officials (LEOs) are con-
sidered by means of a case study, interviews and questionnaires.

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 117–127, 2018.
https://doi.org/10.1007/978-3-319-92375-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_10&domain=pdf

2 Background

This section will review how police conduct open source investigations in the UK,
including technical limitations and the need for software standardization. This section
will also look at how the UK government are encouraging public services to adopt
FLOSS.

2.1 Open Source Research

As part of their daily investigative routines, LEOs across the United Kingdom conduct
Open Source Research (OSR), which the Association of Chief Police Officers (ACPO)
define as “The collection, evaluation and analysis of materials from sources available to
the public, whether on payment or otherwise, to use as intelligence or evidence within
investigations” [2].

Given a typical OSR workflow, LEOs must manually log any action they have
taken. For example, every website visited must be logged with a date and time stamp. If
anything tangible is obtained from that website, such as a screenshot or download, it
must be hashed using a suitable hashing algorithm and logged with a date and time
stamp in tandem with the originating URL. Any artefacts obtained (e.g. screenshots)
are then placed into a suitable directory structure, or directly onto the note taking
application of choice to complete the audit log. Any extra annotations the investigator
wishes to make are also then added.

This only tells part of the story, however, in order to obtain these artefacts, LEOs
have to use an exhaustive variety of different tools. These tools differ in quality,
usability, and price and will often vary from constabulary to constabulary. Largely,
they amount to a web browser, static and dynamic screen capturing tools, a hashing
tool and a note taking application for manually maintaining an audit log.

2.2 Toolkit Standardization

To aid digital investigators in conducting OSR, and to help standardize procedures, the
UK’s College of Policing runs a Researching Identifying and Tracing the Electronic
Suspect (RITES) course1. The RITES course is a week-long training package aimed at
LEOs of all skill levels, with a strong focus around conducting open source investi-
gations and research. As part of this course, trainers provide a standard toolset.
However, trainers noted that the introduction of too many tools, and manual audit log
entry, overloaded the students.

To establish current practices and tool usage in the working environment, a short
questionnaire was distributed to LEOs within the UK who have a range of experience
of conducting OSR. The levels of experience ranged from less than one year, to over
six years with the participants ranked from Police Constables to Inspectors. Twenty
responses were received from twelve constabularies. In addition to establishing current

1 http://www.college.police.uk/What-we-do/Learning/Professional-Training/digital-and-cyber-crime/
Pages/Researching-Identifying-Tracing-Electronic-Suspect.aspx (Last accessed: January 14th 2018).

118 J. Williams

http://www.college.police.uk/What-we-do/Learning/Professional-Training/digital-and-cyber-crime/Pages/Researching-Identifying-Tracing-Electronic-Suspect.aspx
http://www.college.police.uk/What-we-do/Learning/Professional-Training/digital-and-cyber-crime/Pages/Researching-Identifying-Tracing-Electronic-Suspect.aspx

tool usage, an exploratory question asked what LEOs would like to see from an
all-in-one OSR tool. Figure 1 shows the tool usage results from the questionnaire.

Respondents were also asked “Does the cost of some tools prohibit you from being
able to use them?”, 13 responded “yes”. A question then asked, “I am more inclined to
use a tool if it is free of charge.”, 12 responded “yes”.

Additionally, audit log maintenance was time consuming and prone to uninten-
tional mistakes; such as a digital investigator forgetting to log when action was taken.
Given the nature of the potential evidence being obtained, such oversight may com-
promise a case, and contravenes principle 3 of ACPO guidelines stating the require-
ment for an audit trail [3]. The trainers at the College of Policing identified these
shortcomings, and issued a specification requesting a means to encapsulate the func-
tionality required into a single tool; this prompted the creation of Open Source Internet
Research Tool (OSIRT).

2.3 OSIRT

OSIRT is a free and open source C# application available under the MIT license for
Windows 7, 8, 8.1 and 10 with a repository available on GitHub at https://github.com/
joe-williams-cccu/OSIRTv2. Portable and installable builds are available at http://
osirtbrowser.com/get-osirt/, where feedback is highly encouraged by the developer.

Fig. 1. Tool usage when conducting OSR

Creating and Integrating a FLOSS Product into UK Law Enforcement 119

https://github.com/joe-williams-cccu/OSIRTv2
https://github.com/joe-williams-cccu/OSIRTv2
http://osirtbrowser.com/get-osirt/
http://osirtbrowser.com/get-osirt/

OSIRT is a web-browser and investigative tool that is designed to aid LEOs of all
skill-levels to conduct OSR. OSIRT automatically logs all websites visited, allows the
capture of full-page and partial screenshots in addition to video capturing, along with a
plethora of other tools for the digital investigator to effectively conduct OSR while
adhering to the law and procedural policies. Gathered intelligence is automatically
logged within an evidential container, hashed, then date and time stamped with a report
then generated for dissemination.

OSIRT’s overall goal is to provide an accessible piece of software for all LEOs to
conduct OSR on both the surface and deep web.

OSIRT’s development was split into two phases. Firstly, a prototype was rapidly
created that implemented much of the core functionality from the initial requirements.
This prototype allowed for garnering feedback, which ensured OSIRT was the tool
LEOs required to conduct OSR. Secondly, a ‘release’ version was generated based on
the prototype, and this version is the basis of this paper.

As the RITES course runs throughout the year, it offers an opportunity for con-
tinuous feedback from users; allowing features to be dynamically implemented, giving
maximum flexibility. As an incremental approach provides users with a “core product”
[4] additions to OSIRT can be made as a result of law enforcement evaluation and
response.

2.4 FLOSS Integration into UK Public Services

In 2012, the UK Government released a report acknowledging FLOSS “is not widely
used in Government IT” [5]. This is contrary to previously issued guidance, as early as
2004, that pushed for more governmental agencies to make use of FLOSS. Current
policy sees that FLOSS should be “actively and fairly consider[ed]” over its proprietary
counterpart [6]. During the UK Government’s re-push for FLOSS integration, they
released alongside their 2012 report a list of FLOSS alternatives to well-known pro-
prietary systems [5]. In November 2017, the UK Government once again stressed the
use of open source “to improve transparency, flexibility and accountability” [7] and
provided a 15-point guide to evaluating the use of open source software.

Waring and Maddocks [8] also highlighted that FLOSS was seldom used in the
public sector, perhaps due to skills shortages, but those with a “degree of autonomy”
may be more able and willing to integrate FLOSS. Law enforcement within the UK are
allowed some choice, in which IT decisions, depending upon an officer’s skill set, can
be made on an individual level. That said, there is little data surrounding what software
law enforcement are using and for what purpose.

The potential reason for the slow uptake of FLOSS is that it may bring with it
negative perceptions. From personal experience, it is not unusual to receive commu-
nications surrounding OSIRT’s provenance and why the software is free-of-charge.
Questions typically fall in to one of five categories: security, maintenance, technical
support, cost and training. These are five points will form the focus of the case study
surrounding OSIRT as a FLOSS product.

120 J. Williams

3 Methodology

3.1 Interviews

Two sets of interviews were conducted, the first were sixteen semi-structured inter-
views held with LEOs taking the RITES course, along with two interviews from the
RITES course trainers and four interviews by officers from UK constabularies. All
officers interviewed had experience conducting OSR, and had been in a policing role
ranging from 6 to 22 years. These interviews covered their experience of using OSIRT
over the RITES course, along with general questions involving their experience con-
ducting OSR and what existing tools they used.

The second batch of interviews looked at OSIRT’s integration and the impact of
FLOSS into a police force with three participants being interviewed; an Inspector,
Detective Constable and IT Administrator. The police service in this case-study has
approximately 40 active OSIRT users. The three participants were chosen as they all
have a different perspective when integrating or using software. Questions to these
participants looked closer at OSIRT’s integration as a FLOSS product and how it can
make an impact. These questions looked at five key areas: Trust, maintenance, tech-
nical support, cost and training.

All interviews lasted from 15 to 45 min.

3.2 General Questionnaires

OSIRT is used extensively during the RITES course, performing a central role where
LEOs use it to conduct an open source investigation, capturing evidence for a fabri-
cated case; a task performed throughout the five days of the course. This fictitious
investigation provides a robust scenario in which OSIRT can be thoroughly tested by
the very users it is intended for. Additionally, each increment of OSIRT is beta tested
on the RITES course before general release, and by several LEOs in a live environ-
ment. Feedback is sent directly to the author from the LEO, or collated by the lead
trainer and passed back.

This study used an opportunity sample to distribute questionnaires to 42 attendees
of the RITES course over five courses. The questionnaire focused on OSR, existing
tool usage, FLOSS and OSIRT.

4 Results and Discussion

4.1 Case Study Interviews

Trust and Security. A common question received in one form or another is “How can
I trust this software?” this is an important question any user should be asking when
using software, but it is particularly important on sensitive systems such as policing
where evidential artefacts are being obtained. All three interviewees highlighted being
able to trust software as being an important factor of usage. The Inspector said “We
trust OSIRT because we’ve spoken to you, and we can contact you. If this was some

Creating and Integrating a FLOSS Product into UK Law Enforcement 121

software made by ‘who-knows’ then it would be a different story”. The IT adminis-
trator also highlighted the fact OSIRT being open-source made trusting “easier” and
although they are “not an advanced programmer” just the thought of the source code
being available provides peace of mind.

Without being a large software distributor, it is, understandably, hard for those to
trust a product made by an individual, making OSIRT open source was an attempt to
assuage those concerns. OSIRT is both linked to a university and has collaborative
links with the College of Policing, aiding in abating trust issues.

Maintenance. Updating is a challenge that is faced by any development team, but as a
lone developer working on an FLOSS project, this concern feels amplified by potential
consumers. The IT administrator highlighted this initial concern surrounding OSIRT,
“We need to ensure our systems are water-tight, so updates are important.” The
Detective Constable highlighted the dynamic nature of their work and the importance
of keeping abreast of current technological advances as a key driver for updates “It
feels the nature of my work changes on a yearly basis, who knows what I’ll be working
on next year, so having a tool that keeps on top of that, like OSIRT has been, is
important to me”.

The Inspector also noted that updates were “important” but spoke about skills within
the police service that may aid in development. Some police services within the UK are
adopting ‘cyber-specials’, a volunteer group with exceptional skills in areas of
cybersecurity. The Inspector said that “Given that OSIRT is available [open-source]
means we can look at giving the [cyber] specials tasks in updating OSIRT”. OSIRT,
presently, has no developer community beyond the author so an opportunity to work
with volunteers in policing roles provides a good opportunity to extend and maintain
OSIRT.

Technical Support. While closely linked to ‘maintenance’ the ability to provide
support and help if needed was an issue raised by all participants. The Detective
Constable, who is a daily OSIRT user, highlighted the need to be able to reach out and
how “scarce” technical support is, particularly for free tools. “The thing with paid for
tools is that, as part of the contract, technical assistance is part of the cost, so we can
reach out”. This officer felt that was not always the case with free tools, where there is
no contact available. “I’ve had my fingers burnt before where I used some open source
tool and it stopped working with an error message, but I had no way of contacting the
developer”. The Inspector echoed this sentiment, also adding the ability to reach out
and get support if needed was “crucial”.

The IT administrator agreed with this, too, but said that this is “par-for-the-course”
using FLOSS and that expectations of support should be lowered. “To me, this is the
sole trade-off. You lower the initial costs, but may face larger ones supporting free
software”.

Cost. Unsurprisingly, the cost of OSIRT was a driving factor in its implementation
within this police services’ system. The Inspector said that they had looked at “a couple
of other tools”, however, the cost of these tools was “too high” with some of the tools
being “£60–£150 a user per year.” The Inspector also highlighted that buying licenses

122 J. Williams

could be better spent, “If I wanted to roll that out, that would cost me thousands but I
have OSIRT for free which means that budget can be spent on other things”.

The IT administrator also noted cost and said “money does not necessarily mean
better quality”. While the administrator said that where proprietary software was used,
they were in a position to look at FLOSS alternatives if needed. The administrator said
that some forces “may not have this flexibility [to introduce FLOSS] due to policy, but
things are changing”.

The Detective Constable was, seemingly, least averse to cost and instead highlighted
the importance quality software was to deliver the “best service” whether the best
software was free “shouldn’t decide what’s best for the best results, luckily OSIRT for
me is the best tool for the job”, but they “understood” why management would be
forced to look at free alternatives.

Software where there is no immediate charge may invoke a ‘try before you buy’
response as there is not a commitment to integrate the product if it does not work out.

Monetary costs are not the only considerations to any implementation of, or change
to alternative, software. Further considerations include costs in time, deployment and
training.

Training. One issue surrounding the use of more FLOSS products was the need to
provide training on the new technology. This is not particularly a FLOSS issue, as any
piece of software will require familiarization. The Detective Constable spoke about the
“comfort zone” and changing an officer’s workflow may cause them to “resent” the
new software; highlighting the need for a robust training plan to abate those concerns.

The Inspector highlighted additional training as a cost/benefit trade-off “Of course
you get the software for free, but we have things in place already and replacing
software means training, it means time, and we have to trade-off the cost of licenses
versus the cost of training”.

OSIRT is fortunate in that it is used as the tool on the RITES course, providing
officer’s hands-on use over the five-days as part of a wider training package. Addi-
tionally, as part of OSIRT’s development, usability tests have been conducted by
means of observations, SUS questionnaires [9] and cognitive walkthroughs [10].
Conducting these usability tests, arguably, enhance OSIRT’s ease-of-use which may
then lead to require less training for OSIRT itself.

Summary. While this short case-study is not necessarily, nor does it claim to be,
representative it does highlight experiences, thought-processes and issues faced by
those using and making decisions when integrating software into systems. These
interviews are reflective of the conversations had with several police services within the
past, and while anecdotal in nature, does support the need for, and successful imple-
mentation of, OSIRT in law enforcement systems.

4.2 OSIRT Interviews and Questionnaires

This section looks at the 22 interviews and 42 questionnaires conducted with various
LEOs and trainers. The topics covered OSIRT and how, if applicable, the participants
conduct OSR.

Creating and Integrating a FLOSS Product into UK Law Enforcement 123

OSIRT as Part of LEO Training. Interviews and discussions with the lead trainer for
the RITES course have shown that OSIRT has had a positive impact. The lead trainer
noted that before OSIRT, the audit log was all maintained within a spreadsheet.
“[Spreadsheets] were so time consuming, and you’ve noticed on the course we have
people with different skill bases, so if you add the complexity of trying to operate a
spreadsheet, trying to fit an image inside a cell on top of all the tools they have to use,
you can imagine how complex that is. OSIRT pulled that all together, and streamlined
the process”.

Since OSIRT has been introduced on the course, there has been a “large increase” in
the number of students who fully complete the ‘live’ open source investigation, where
previously auditing and reporting were identified as issues.

OSIRT Integration into Workflow. Respondents were asked in the general ques-
tionnaire “Can you see OSIRT being integrated into your current role?” thirty-six out of
forty-two responded “Yes”. During the interviews, participants from the RITES course
were asked about how they could see OSIRT’s integration into their roles, with thirteen
participants making positive comments that it would be “simple” or “easy” to do so.
A response from a Detective Sergeant noted “It’s quite a simple sort of transition to
move away from our current system, which is to use pen and paper to record things,
and straight into using OSIRT”, another noted that their procedure involved a
spreadsheet and a notebook, and while they would not stop hand writing notes,
OSIRT’s automated logging of actions was “a God send”. Those that could not see
OSIRT being integrated either said their current IT infrastructure makes it too bur-
densome (two), or that OSIRT could not integrate into their role at all (one).

The four officers interviewed from the constabularies, who have been using OSIRT
as part of their investigations, all noted OSIRT has saved them time. “Its [OSIRT] at
least halved, probably more actually, how long it takes me to conduct [open source]
research”, noted one interviewee.

Automated Logging and Reporting. The end product after an investigation is crucial
for LEOs with all respondents noting the report output by OSIRT was in their top three
features. An interviewee noted that reporting “[…] can be a complete pain, so anything
that can do it for me is fantastic”, a sentiment largely echoed by nine other intervie-
wees. While the report generation was popular amongst respondents, seven intervie-
wees did mention that the report could do with some cosmetic changes.

The automated logging of actions was another popular choice, with thirteen LEOs
acknowledging during the interviews that logging every minute action as not possible.
An interviewee noted that “Seeing my audit in OSIRT surprised me, […] I performed a
lot of actions that I wouldn’t really think twice about. Opening Google, performing a
search and clicking a link are actually three [actions], but I’ve always considered [it]
just one”. The majority of interviewees all explicitly mentioned how the automated log
was a time saver.

Respondents to the questionnaire shed some light as to why the automated logging
and reporting is an ideal feature, as when asked in the questionnaire “How do you
maintain an audit log when conducting OSR?” all respondents used some manual
means for logging. Table 1 summarizes their results. Multiple answers were selectable;
hence the responses exceeding 42.

124 J. Williams

OSIRT’s automated logging and report generation were very popular amongst
interviewees and questionnaire respondents. It was not unusual to hear an officer
criticize the monotony of having to manually maintain an audit log, and how an
automated system is better not only to save time but to also ensure guidelines and
policies are enforced.

Screen Capturing. The ability to capture screenshots and screen recordings was also
favorable among respondents. Interviewees frequently commented that having this
functionality for free is good, as they do not necessarily have the budget to afford the
licenses for some tools. “Screen recording tools can be very expensive, or have an
upper limit of how much you can record if they are free. The inbuilt video capture in
OSIRT does not impose limits, plus it’s free”. One interviewee said, when asked about
what screen capturing tools they use, “Anything I can find and is free. I used to use
FastStone Capture but the free trial run out, and I cannot obtain a license.” A similar
story was raised by six other interviewees.

Ten interviewees commented that being able to take full-page screenshots of large
pages, such as Facebook, was beneficial to them. An interviewee noted “We have to
take small screenshots, then stitch them back together. So OSIRT is going to be
extremely useful.”

5 Reflection

Developing OSIRT has been a highly rewarding experience and has provided oppor-
tunities to deliver a useful tool for law enforcement. OSIRT’s growth has seen it shift
from a simple training tool to use across the globe, with a user base ranging from
Barbados to Israel. While OSIRT’s growth is exciting, it has brought with it additional
challenges. OSIRT was written only with UK law enforcement in mind, and as such is
British-centric in its design. Obviously, the nature of the Internet makes nothing
localized and purposeful software will disseminate to wherever it finds a use, and this
brings with it a need for internationalization.

Table 1. How LEOs maintain their audit log

How do you maintain and audit log when conducting
OSR? (Select all that are relevant)

Spreadsheet (E.g. Excel) 26
Word processing document (E.g. Word) 17
Pen and paper 10
In-house solution 4
Zotero (or other bookmarking app) 2
Web browser’s inbuilt bookmarking functionality 8
Forensic CaseNotes 3
Notepad/++ 2
I don’t maintain an audit log 0
Other 4

Creating and Integrating a FLOSS Product into UK Law Enforcement 125

Being an academic, sometimes it is easy to forget that software must be shipped and
that people are going to be using it, and will need support. Thankfully, OSIRT is
buoyed in the policing community with many questions answered before being con-
tacted. That said, if OSIRT did not have that internal support it would be considerably
harder to manage as an individual.

6 Conclusion

Over the past three years, OSIRT has gone from a prototype used on the College of
Policing’s RITES training course to a fully-fledged piece of software used by various
law enforcement agencies and individuals across the globe. OSIRT has been well
received, with responses pointing to its rich feature integration and time saving through
automation as a significant reason for this positive reaction.

Feedback is continually given and encouraged, with this avenue providing feed-
back which enhances OSIRT’s trust and offers an opportunity for growth. The
case-study highlighted the balance OSIRT must straddle with being FLOSS, and the
importance that trust, support, maintenance, cost and training have. There is a con-
scious need to ensure pros of the software outweigh both the imagined and potential
cons. Only by being aware of and managing those expectations can FLOSS flourish.

By receiving both positive responses and suggestions for improvement, OSIRT is
perpetually evolving along a path dictated by the very people who comprise its target
audience. Having such direction will be crucial in OSIRT’s continued development.

References

1. Dodd, V.: Britain’s police budgets to lose £700 m by 2020, amid rising crime (2017). http://
www.theguardian.com/uk-news/2017/nov/09/britains-police-budgets-to-lose-700m-by-
2020-amid-rising

2. Association of Chief Police Officers: Online Research and Investigation (2013). http://
library.college.police.uk/docs/appref/online-research-and-investigation-guidance.pdf

3. Association of Chief Police Officers: ACPO Good Practice Guide for Digital Evidence
(2012). http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_
Guide_for_Digital_Evidence_v5.pdf

4. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher
Education, New York (2014)

5. Cabinet Office, Home Office: Open Source Software Options for Government (2012)
6. Cabinet Office, Home Office: All About Open Source - An Introduction to Open Source

Software for Government IT (2012). https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/61962/open_source.pdf

7. UK Government Digital Service: Be open and use open source - GOV.UK. https://www.gov.
uk/guidance/be-open-and-use-open-source

126 J. Williams

http://www.theguardian.com/uk-news/2017/nov/09/britains-police-budgets-to-lose-700m-by-2020-amid-rising
http://www.theguardian.com/uk-news/2017/nov/09/britains-police-budgets-to-lose-700m-by-2020-amid-rising
http://www.theguardian.com/uk-news/2017/nov/09/britains-police-budgets-to-lose-700m-by-2020-amid-rising
http://library.college.police.uk/docs/appref/online-research-and-investigation-guidance.pdf
http://library.college.police.uk/docs/appref/online-research-and-investigation-guidance.pdf
http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/61962/open_source.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/61962/open_source.pdf
https://www.gov.uk/guidance/be-open-and-use-open-source
https://www.gov.uk/guidance/be-open-and-use-open-source

8. Waring, T., Maddocks, P.: Open Source Software implementation in the UK public sector:
evidence from the field and implications for the future. Int. J. Inf. Manag. 25, 411–428
(2005)

9. Brooke, J.: SUS-A quick and dirty usability scale. Usability Eval. Ind. 189, 4–7 (1996)
10. Wharton, C., Rieman, J., Lewis, C., Polson, P.: Usability Inspection Methods. Wiley, New

York (1994)

Creating and Integrating a FLOSS Product into UK Law Enforcement 127

Possibilities of Use of Free and Open Source
Software in the Greek Local Authorities

Stavros Koloniaris(&), George Kousiouris, and Mara Nikolaidou

Department of Informatics and Telematics, Harokopio University of Athens,
9, Omirou Street, 177 78 Athens, Greece

skoloniaris@gmail.com, {gkousiou,mara}@hua.gr

Abstract. Use of Free and Open Source software has started to get an increased
level of functionality and trust, following the existence of a variety of solutions
and supporting communities across the Web. In this paper, the current pene-
tration and usage of Free and Open Source Software in the municipalities of
Greece was recorded, as well as its potential especially when compared with the
current state of computerization and hardware level. Conclusions were drawn on
whether the municipalities will benefit from the usage of Free and Open Source
Software, in technical and financial terms, as well as proposals are submitted in
how the municipalities can benefit from an uptake in technology (especially
Cloud computing), given their existing IT staffing and municipality organiza-
tion. The possibility of improving the provided services to the citizens by using
this software is also examined as well as cost aspects that can be improved.

Keywords: Free and open source software � Adoption � Municipalities
Government � Survey � Cost analysis

1 Introduction

The municipalities of Greece provide a variety of services to their citizens and perform
different processes within their responsibilities and obligations. All their processes
involve and use an IT sector in order to provide the required services. Although the
computerization of the Greek municipalities and the usage of IT infrastructure to per-
form their operations is not something new, most of them fail to use modern tech-
nologies and are bind to proprietary software and high specification hardware. This leads
them to have an increased operational cost, which eventually bounces to the citizens.

Furthermore, because of the ongoing economical crisis, the budgets of the
municipalities are decreased and the available funds that can be invested in IT are
cut-off to minimum. Many local authorities are forced to operate with old infrastructure
and abolished or near end of life cycle software. This situation puts them in high risk,
since they become vulnerable to hacking operations and exploits, risking to lose funds
and data of their citizens.

In the year 2009 the total budget of all 325 Greek municipalities for IT expenses,
including both hardware and software, was 22,409 million euro for buying new
equipment and software plus another 5,985 million euro for service and updating
purposes of the existing software. Those amounts are no longer available thus it

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 128–143, 2018.
https://doi.org/10.1007/978-3-319-92375-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_11&domain=pdf

became essential to find a way to continue providing the same, or even better quality of
services to the citizens, by using late software but in decreased cost. Another goal is to
increase the life time of the existing hardware so that it will not need an upgrade or
replacement for a longer period of time.

The use of Free and Open Source Software may be the answer to this quest and the
purpose of the current research is to evaluate the benefits and profits that the munic-
ipalities will enjoy from the usage of FOSS in relation to the risks that they must take
and the dangers that they may encounter [1, 2]. By following the example of other
European municipalities, such as Munich in Germany, and great organization, such as
NASAs, or even Governments, such as China, the Greek municipalities may become
able to save resources for using them in more crucial sectors [3, 7, 9, 12–14].

2 Information Gathering and Computational Details

2.1 Questionnaire Creation

There are no official records on each municipality’s existing infrastructure, since they
were free to call for offers and choose the winner on their own, according to their needs
and pursuits. This happens for both hardware and software, so the municipalities may
perform the same operations in different ways, using totally unique compilation of
hardware and software.

In order to gather and organize such kind of information, a questionnaire was
created that was directed to each municipalities IT department. The purpose of this
questionnaire was to gather information on the existing hardware infrastructure of each
municipality, the existing software in use as well as the reason it is used for, the
knowledge that the IT department’s employees have on modern technologies and the
ability they could have on deploying those technologies and support its usage.

2.2 Questionnaire Creation

The questionnaire that was created was intended to be anonymous and the participants
were all invited to participate via personal telephone communication with the head of
each municipality IT department. There was a field were the participant was asked to
reveal the municipality where he is employed but that was just to ensure that there are
no double answers to the questionnaire from the same municipality.

The questionnaire had six sections:
Section 1, Utilized Hardware: In the first section the participant was invited to list

the hardware specifications of the personal computers that are used in the municipality.
The speed of the structured network wiring was answered in this section as well. The
purpose of those questions was to estimate the remaining lifetime of the hardware and
to check the probability of extending its lifetime through the use of free and open
source software. The network speed that the cabling could offer would help to check
the probability of using network or cloud services.

Section 2, Utilized Software: Information about the installed operating systems and
the proprietary software that it is being used was gathered in this section. The

Possibilities of Use of Free and Open Source Software 129

information gathered was used to check if there is free and open source software that
could provide the same usability whilst being less resource consuming than the pro-
prietary software.

Section 3, Provided Services: The third section had questions about the backbone
of the municipality’s infrastructure. The participants gave information about the servers
their municipality has and the services that they offer to the rest of the departments. The
purpose was to check the estimated life span of the servers hardware and the probability
of using free and open software to expand their usability. This section also helped to
check if the municipalities use centralized services and services provided through
network in any of their activities.

Section 4, Cloud: The questions of this section were about cloud based services and
technologies. The purpose was to check the degree of penetration of cloud computing
in the municipalities and to identify the difficulties that occur when trying to implement
cloud based solutions in the municipalities.

Section 5, Support Plan: In this section were gathered information about each
municipalities IT support plan and the cost of it. The purpose was the see if there are
possibilities of lowering the support cost by providing network or cloud based services
and by using free and open source software.

Section 6, FOSS: The last section of the questionnaire was intended the check if the
IT departments employees of each municipality have the knowledge and the ability to
learn, deploy, use and support free and open source software. Some opinions on what
are the factors of success or failure in using free and open source software were
gathered in this section.

The questionnaire itself was accessible online and created by using a free and open
source platform (Lime Survey). All questions were optional while partially completed
questionnaires were also acceptable.

2.3 Contact Establishment

Greece has 325 municipalities. The participants were contacted via telephone and a link
to the questionnaire was sent to each one of them to the e-mail address that they
provided. The contact period was from early to end of June 2017, while the ques-
tionnaire was online and accepting answers up to the end of July 2017.

There was no success in communicating with 55 of the municipalities IT depart-
ment. In those cases, a link of the questionnaire was sent to the main e-mail address of
the municipality, with a kind request to be forwarded to the IT department.

There were also 99 municipalities that stated they do not have an IT department and
the support comes completely from an external associate.

3 Results and Discussion

3.1 Participation and Statistics

The goal was to gather at least 30 participations in the questionnaire. When the
answering period ended there were 61 full answers to the questionnaire plus additional

130 S. Koloniaris et al.

59 incomplete answers. The above accomplishment gave the possibility to continue the
research by taking in mind only the completed answers, while the incomplete were
studied in some cases to gather additional information but mostly for statistic reasons.

From the 61 complete answers there were 7 that the participant did not share the
name of the municipality to which they are employed. The remaining 54 municipalities
have a combined population of 2.554.332 citizens which is the 23,62% of the total
population of Greece. Furthermore, the total number of computers that those munici-
palities have deployed in their departments is 8.750 PCs.

99 of the municipalities that were contacted stated that they do not have an IT
department which means that at least 30% of Greece’s local authorities are depended
on an external partner to provide them with IT support (Table 1).

3.2 Absolute Numbers and Cost Calculations for Workstations

The 61 IT departments declared that their municipalities have a total of 8.750 com-
puters deployed. About 1.108 of those are running on an Intel Pentium or a corre-
sponding to that generation AMD processor, which means that they are over 15 years
old. Another 3.066 computers are equipped with an Intel Core, Core 2, Core 2 duo
processor or an equivalent AMD processor, aged at about or over 10 years.

When checking the installed memory on each of those computers, there are 2.386
computers than have 2 GB or less RAM installed, and another 1.229 computers that
have 1 GB or less installed.

It is the logical continuity of the above computer specification, that there are 2.003
computers that their operation is based on Microsoft’s Windows XP or Microsoft’s
Windows Vista, which operating systems are already been abandoned and not sup-
ported or updated any more. Furthermore, there are 2.738 computers that operate on
Microsoft’s Windows 7 or Microsoft’s Windows 8/8.1, which operating systems are
closing to their end of life cycle, since their mainstream support has ended and they are
closing to the end of their extended support (Fig. 1).

All the above conclude that over half of the existing workstations need an urgent
upgrade or will soon need an upgrade, on either their hardware, their operating system
or both.

The upgrading cost for hardware is estimated to be over 1.500.000 euro and the
cost of new licenses for the later operating system would be another 784.500 euro
(Table 2).

Furthermore, most of the computers of the local authorities have installed propri-
etary software that serves the needs of their day-to-day operation. Almost all IT
departments mentioned that their computers have an office suite installed, with
Microsoft’s Office in all of its versions being the most popular, while there are some
municipalities that use a mix of proprietary and FOSS suite having Microsoft’s Office

Table 1. Contact and answer details

Contacted Complete
answers

Municipality percentage
(complete answers)

Population
coverage

325 61 18,7% 23,62%

Possibilities of Use of Free and Open Source Software 131

and Libre/OpenOffice simultaneously. Other proprietary software that it is used
includes but is not limited to client-based antivirus program, from vendors such as
ESET, Kaspersky, Panda and Symantec, a file compression manager, mostly WinRAR,
a PDF creator and manipulation tool and a CAD suite, mostly Autodesk’s AutoCAD.

The number of computers that have the above mentioned software installed is not
clearly declared, but it could be assumed that at least half of those computers have a
Microsoft’s Office Suite and a client-based antivirus. It could be also assumed that 25%
of those computers have a proprietary PDF creator/manipulation program and a pro-
prietary file compression manager. Lastly, it could be assumed that an average of 3
computers per municipality have a CAD suite installed. Under all the above assump-
tions, the estimated cost of the installed proprietary software raises up to 3.512.650
euro, which is the cumulative amount that will need to be spent over time when these
programs need to be upgraded. It should be mentioned that some of those programs,
such as the CAD suite and the antivirus suite, operate on yearly subscription and a
continuous renewal of a 5 year period was assumed in order to calculate the cost of
those programs (Fig. 2).

Besides the above, a series of more purposeful software where mentioned. Those
included programs that served the needs of warehouse management and logistics,
financial management, civilian communication and complaints recording, e-protocol,
HR and payroll, public works monitoring. The cost of this software is unclear since
they are offered as “by request”, according to the needs of each organization, the
components that should be bundled to it and the support plan that will accompany it.

Fig. 1. The percentage of RAM availability in municipality workstations

Table 2. Number and upgrade cost of workstations

#Workstations 10 years and
older

Cost of H/W
upgrade

Cost of OS
S/W upgrade

Cost of Other S/W
(estimated)

8750 4741 (54,18%) 1.500.000E 784.500E 3.512.650E

132 S. Koloniaris et al.

However, even though an estimation of their cost cannot be accurate, it cannot be
considered negligible and proposals on alternatives should be made for these programs
as well.

3.3 Absolute Numbers and Cost Calculations for Backbone
Infrastructure

Besides workstations, the questionnaire asked for information about the backbone
infrastructure of the municipalities. In the municipalities that answered the question-
naire there are 312 servers offering services to the workstations.

There are 6 of the 61 municipalities that still use a server which operates on
Microsoft Windows NT/2000 server edition and another 33 that operate on Microsoft
Windows Server 2003, including all of its versions. The support for those operating
systems has already ended and no service packs or updates of any kind have been
released for them in many years, which render them vulnerable to modern security and
operational dangers.

Furthermore, there are 40 municipalities that still have servers operating on
Microsoft Windows Server 2008, an operating system that in most of its versions is not
supported any more, while the versions that are still supported are closing to their
extended support end date.

Of the municipalities that answered, 21 have deployed servers running Microsoft
Windows 2012 server, including all versions, and only 3 have servers running
Microsoft Windows 2016 server. Lastly there are 15 municipalities that have deployed
servers running a Linux Server distribution.

The servers are used to provide various services to the departments of the
municipality and to the citizens in some cases. Some of those services are file (storage)
services, backup services, database and other application services (Fig. 3).

Fig. 2. Operating System usage in workstations (no longer supported versions in red, near end
of life versions in yellow) (Color figure online)

Possibilities of Use of Free and Open Source Software 133

By assuming that one third of the servers are operating with an older operating
system that needs replacement, the cumulative cost of the licenses is estimated to be at
99.088 euro, which does not take into account the extra cost of the required service
packages that are needed in each case or the hardware upgrades that should be done
beforehand (Fig. 4).

On examining the existing structured network installation, most of the munici-
palities have a 1000BASE-TX (Gigabit Ethernet) infrastructure and only 12 of them,
mostly small in population and coverage area or near the borders and island munici-
palities, are still operating on 100BASE-TX (Fast Ethernet) network infrastructure. In
most use cases the Fast Ethernet infrastructure could be considered to be sufficient, but
surely an upgrade of this infrastructure would be needed if a complete server-based or
cloud-based implementation would be deployed in the future. In this scenario the
largest municipalities would need to upgrade their Gigabit Ethernet infrastructure to
fiber optics in order to not suffer from network delays and bottleneck phenomena.

Service provided Answers Percentage
File (Storage) services 40 65,57%
Printing Services 13 21,31%
Backup Services 39 63,93%
Virtualization (VMs) 22 36,07%
Web Services 31 50,82%
Application Services 38 62,30%
Mail Services 13 21,31%
Database Services 43 70,49%
Other 2 3,28%

Fig. 3. Services provided by municipality servers

Fig. 4. Used OS on Municipality Servers (in red the no longer supported versions) (Color figure
online)

134 S. Koloniaris et al.

3.4 Cloud Computing in the Municipalities

The survey also examined the knowledge and the familiarity that the IT department’s
employees have with the concepts of cloud computing, as well as the existence of any
such a service in their municipality.

The answer to the question of knowledge and familiarity was unanimously affir-
mative but the deployment statistics are discouraging. Only 4 of the municipalities
provide public cloud services to their departments and another 11 that provide private
cloud services. Most of these implementation are used for file sharing through remote
departments of the municipality.

Nevertheless, the majority of the respondents believe that cloud services could and
should be offered in order to achieve lower operational costs and take advantage of the
benefits that this technology has to offer, such as scalability and operating system
independency. However, there are still concerns about the data safety that a cloud
implementation could provide and the fact that a device has to be online in order to
operate on cloud basis (Fig. 5).

3.5 Free and Open Source Software (FOSS) in the Municipalities

The main purpose of the current research was to determine if it is possible to reduce the
cumulative cost of computerization of a municipality by using Free and Open Source
Software. So it was essential to check the experience that the IT department’s
employees have on FOSS. As in the cloud section, all the respondents replied that have
knowledge of what is FOSS but only 34 of them stated that there is some familiar-
ization of IT department’s employees with FOSS.

Only 35 of them stated that they use some kind of FOSS in their organization and
that is mainly limited to the use of a FOSS office suite such as Libre/OpenOffice. Some
of them use a FOSS mail client (Mozilla Thunderbird), alternative internet browsers
(Google Chrome, Mozilla Firefox) and a CMS (Joomla, Wordpress). Once again it is
clear that the penetration of FOSS in the Greek municipalities is at an early stage and
that they are bind to proprietary software in order to operate.

When asked if the change from proprietary to Free and Open Source Software
would be possible and would have positive effects to their organization, only 22 of the
respondents replied positively. Even worse is the belief that a change to the use of
FOSS will not be accepted by the end users (resistance to change phenomena) since
only 10 participants though that this is likely to happen without the occurrence of any
major problem (Fig. 6).

Cloud services offered Answers Percentage
Yes, via public cloud 4 9,84%
Yes, via private cloud 12 21,31%
No 37 60,66%

Fig. 5. The percentage of municipalities that offer cloud based services

Possibilities of Use of Free and Open Source Software 135

On the more technical and financial side the most favored factors that would lead
FOSS to be successfully accepted in a municipality was considered to be the low or no
cost of acquisition and maintenance of this software and the continuous upgrades that
those software obtain through their supporting companies or the user communities. On
the contrary, the main reasons that would lead such an attempt to failure where con-
sidered to be that FOSS software does not provide out of the box full functionality and
that there are is insufficient training in usage of FOSS since there are not known
certification programs that provide such kind of training. High favored reasons of
failure where also the belief that support of FOSS is often insufficient and that the
communities that develop and maintain FOSS cannot provide the same degree of
security that a commercial company does at all levels of software support.

Through the communication that was made with the IT departments that eventually
involved in the current research and answered the questionnaire, there was another
conclusion made, that beyond the resistance to change phenomena, which includes the
end users, there is also a fear of the unknown, which concerns the IT departments
employees. Most of them have been skeptical and doubtful about the possibility of a
radical change in the way they work and support their departments and the possibility
that they would be requested to learn and support something totally new (Fig. 7).

Advantages of using FOSS
Answers Percentage

Small or no cost 37 60,66%
Lower hardware requirements and
greater durability 11 18,03%
Existence of active communities that
support and evolve the available soft-
ware 28 45,90%
Faster incorporation of software inno-
vations 10 16,39%
They are easily customizable and can
be optimized to the individual needs of
each user 9 14,75%
Easy functionality expansion by adding
modules 17 27,87%
Plaethora of available tutorials as well
as online community support 14 22,95%

Fig. 6. Believed advantages of deploying and using FOSS

136 S. Koloniaris et al.

3.6 Software Support Plans

Lastly, the cost of the existing software support plans was examined as well as the
involvement of external supporters. Apart from the 99 municipalities that do not have
an in house IT department and are totally dependent on support from external partners,
all of the municipalities that have such a department and answered the questionnaire
have a support plan that involves someone from outside the municipality itself. 48 of
them gave an estimation of the current financial year budget for software support and
the sum is over 1.650.000 euro.

The majority of the municipalities have a maintenance/support contract with an
external partner concerning the provided software. Since the involvement of the IT
departments in supporting the proprietary software seems to be minimal, it is no
surprise that there are no complaints concerning the functionality of the used software.
Only 13 are concerned about the reduced functionality that the software in use pro-
vides, compared to the required one, and even fewer state that the current software
cannot be upgraded due to its high cost

4 Proposals that Include Foss and Usage of Modern
Technologies

4.1 Operating Systems and Commonly Used Software

About half of the computers that exist in the participating municipalities are over aged
and unable to run the modern proprietary operating systems and software efficiently.
Although the minimum requirements of modern proprietary operating systems are rel-
atively low, they still require more resources than the available modern free operating
systems [4]. In addition, the cost difference makes the free operating systems a fine
choice.

There are some choices of free operating systems, with the Linux family being the
most popular and better supported, while BSD and Solaris are yet excellent choices [5].
Linux has been around for over two decades now and has dominated as an operating
system for web servers, mainframes and supercomputers, but still its acceptance for
desktop, workstations and everyday use computers is relatively low [6]. Nevertheless it

Disadvantages of using FOSS
Answers Percentage

Inadequate support 19 31,15%
Insufficient documentation 14 22,95%
They do not provide full functionality 25 40,98%
Insufficient training in FOSS and lack of certifications 21 34,43%
Does not integrate innovations and is evolutionarily behind
commercial competition 10 16,39%
User communities do not provide the security provided by a
commercial company at all levels of software support 19 31,15%

Fig. 7. Believed disadvantages of deploying and using FOSS

Possibilities of Use of Free and Open Source Software 137

makes an excellent choice for public sectors workstation since some of the most
popular distributions have very low hardware requirements making it ideal for use in
older computers. Modern distributions deployed with an LXDE or XFCE desktop
environment can be efficiently used in a 20 year old, Pentium 4 era, computer with as
low as 256 MB of RAM. Furthermore, the most popular distributions offer long term
support (LTS) versions of their operating systems that are actively supported with
updates for up to five years (Fig. 8).

Most of Linux distributions come with preinstalled packages that serve the
everyday use needs while there is a plethora of alternative software to be freely
obtained and used through its public repositories.

A more precise approach that could cover most use cases that where proposed from
the respondents is the use of an Ubuntu Linux distribution with a lightweight LXDE
graphical environment (Lubuntu) loaded with LibreOffice as an office suite and PDF
editor, Peazip as an archive manager, LibreCAD as a CAD suite and ClamAV as an
antivirus suite, although an antivirus is probably not needed at all. There are many
more alternative programs that can be used to serve the same purposes and that makes
the current proposal to be one of the many available choices. There is also proprietary
software available for Linux operating systems that may offer a different use experience
than the free ones and are usually offered in affordable prices.

The majority of these programs are compatible with their proprietary rivals and the
exchange of produced files between them rarely produce problems that cannot be easily
addressed. Furthermore, the modern look of the graphical environment can be modified
and disguised in such a way that the end user will not easily realize the difference,
making it easier to bend their resistance to change.

The implementation of the current proposal can lead to savings, counted in millions
of euro, amounts of funds that can be utilized in other areas of the municipality’s
activities [8].

Hardware requirements comparison
Windows 10 Lubuntu 17.10
1 GHz processor or faster, 32

or 64 bit;
512 MHz processor or faster,

32 or 64 bit;
1 GB of RAM for the 32 bits

version, or at least 2 for the 64 bit
version;

512 MB of RAM;

16 GB of hard drive (32 bit) or
20 GB (64 bit);

6 GB hard drive;

Graphics card that supports Di-
rectX 9 with WDDM 1.0
controler or superior

no fancy graphics

Fig. 8. Hardware requirements comparison between Windows 10 and the later Ubuntu Linux
with LXDE desktop environment

138 S. Koloniaris et al.

4.2 Purposeful Software

User communities that are involved in software development have produced a huge
variety of programs that serve the needs of practically every user and organization.
Most of them are given s open source which means that they can be freely altered and
adjusted to the needs of the organization.

There are free and open source programs that can cover the needs of all areas of
activity of a municipality. In context of the current research it was considered to be
inappropriate to directly compare the used software with FOSS, since there were no
records on specific usage that each of the proprietary software served and the way it is
utilized and used in each municipality. A more thorough research would be needed in
order to determine the true intended usage of this software in order to safely propose
alternatives.

Nevertheless, honorable mentions should be made on free and open source software
that serve the generic needs that where discussed. Those include but are not limited to
OrangeHRM as an HR management software, Scriptum as an e-protocol, OpenWMS
as an warehouse management, GnuCash and Eqonomize as a financial and accounting
software, SuiteCRM, OpenBravo as an ERP solution. There are many more available
options that can be freely obtained, examined, altered and used, whilst many of them
can be utilized in server-client or even cloud basis and used through a web browser,
making it unnecessary to install them separately on each workstation while its main-
tenance would be easier [10].

4.3 Server Operating Systems and Software

As already mentioned, Linux is the dominating operating system used in web servers,
mainframes and supercomputers worldwide. Obviously, it is considered to be the most
secure and stable choice for such a purpose and there are major companies that have
their Linux server releases available offering alongside with them support plans on
demand.

The hardware requirements for Linux servers are so low that it can even be
deployed on a 20 year old PC, so the existing hardware could be used as is without the
urgent need of any upgrade. The basics services that a server should offer are easily
triggered, including file (storage) services, backup services, mail services, printing
services and web services. Other services can be deployed as well, including those that
were mentioned as purposeful software and can be offered in a server-client basis.
Virtual machines can also be deployed, using FOSS such as KVM or Xen.

Furthermore, the existing server infrastructure can be used to deploy private cloud
and offer remote services to the municipalities departments. There are tools available
that can help deploying and managing cloud services such as the OpenStack, Kuber-
netes, Juju etc. There are also new technologies emerging, such as containerization, that
are even more lightweight and help provide more services without the need of new and
powerful hardware. The use of a FOSS tool such as Docker for this purpose will help
even more in keeping the current hardware operational without the need for its upgrade
or replacement.

Possibilities of Use of Free and Open Source Software 139

Most of the servers maintenance procedures can be executed remotely, so even if
the municipality does not have an IT department or its employees do not have the
ability to operate in a Linux server environment, those procedures can be executed
from a far from a cooperating department of another municipality (Fig. 9).

4.4 Cloud Computing Utilization Possibilities

Cloud technologies are far from known to the Greek municipalities. None has
implemented a cloud based approach and the only usage of commercial cloud services
seems to be for file sharing purposes. Through the questionnaire it became clear that
there is confusion between the concepts of server-client basis services and cloud
services.

However, there is a prospect for the development and usage of cloud services in the
Greek Municipalities [11]. A prospect that would lead to a technological leap and
would dramatically reduce the need for powerful and expensive hardware,
cost-effective software and continuous on-site support. Since the services would be
offered remotely there will be only a need for internet-connected hardware. Most
services could be offered as web-based services, so the need for purposeful software
will be also reduced since a simple web browser will be enough to do the work.

There can be two possible scenarios for adopting the cloud computing technologies.
The first is that every municipality deploys its own cloud network using the existing
hardware and the available software that has already been proposed. In this case, each
municipality would be free to adopt a plan differently from the others, having the
ability to differentiate its implementation according to the specific needs it may have.

Server OS comparison

Windows Linux

Cost Per user license Free with support plans availa-
ble

User interface Graphical Command line

Remote access Not available by default, needs
to be installed

Integrated (terminal & shell)

Software availability Popular proprietary software is
supported

Most proprietary software are
not ported to Linux but there is a
big amount of FOSS available

Hardware support Usually supported by OS There is a latency in porting
drivers for newer devices

Safety Open to users, very prone to er-
rors, very likely to be attacked

Users do not have access to sys-
tem settings, security holes and
vulnerabilities are corrected imme-
diately

Support Long term support available Varies depending on distribution
and version

Documentation Well documented Complete source code of the
system, API, libraries, and applica-
tions available: MAN and Info
pages

Fig. 9. Server OS feature comparison

140 S. Koloniaris et al.

A team of able IT specialist would be needed in order to work on the project, a team
that would have to be outsourced, if there are no available and adequately qualified
human resources from within the municipality’s IT department. According to this plan
there would be a need to deploy up to 325 private cloud networks, one for each
municipality, and up to the same number of IT supporting teams would be needed in
order to ensure its continuous operation. The cost for such an approach would be
discouraging for the smaller municipalities that luck the funding or do not have capable
teams for working on such a project.

The second scenario would involve higher authorities from the municipalities, in
order to create a centralized cloud infrastructure that would serve the needs of all
municipalities in the same distinct way, with little choices of differentiation.

The local authorities in Greece are divided into two levels. The first level includes
the municipalities themselves and the administrative body of the Central Union of
Municipalities of Greece. The second level includes the thirteen administrative regions
of Greece, that each includes regional units which are further subdivided into the
municipalities.

A cloud network could be created in each of the administrative regions, serving the
needs of its municipalities. In this way the need for hardware and specialized personnel
for the implementation of the cloud infrastructure would be decreased to 13 and only a
small supporting team would be needed in each municipality. Furthermore, a totally
centralized cloud infrastructure could be implemented under the responsibility of the
Central Union of Municipalities, an infrastructure that could be based in the Unions
headquarters and from there to serve the needs of all municipalities all over Greece.

In this way all municipalities would benefit since they all would be able to use new
technologies, to unify, consolidate and automate their processes and offer the same
services to all citizens. There would be a need for a team in charge of assuring the
central cloud infrastructure operation and care for its maintenance. There will be no
need for large support teams in the municipalities since most of the operations would
be held and executed on the cloud. It is even possible under certain circumstances for
only a team of supporters per administrative region to be enough.

An estimation of the cost for such an infrastructure would be around 800.000 euro,
a cost that is very small considering the annual spent of the municipalities towards their
existing infrastructure. The annual operational cost of the cloud would be around
150.000 euro, including the power and cooling costs. The municipalities themselves
would only need active internet connections and hardware able to connect to it, making
most of the existing hardware enough for the purpose. The cost for software could be
reduced down to zero, with the exception of some software that may not have alter-
natives on FOSS repositories. A support plan for the software is not calculated in the
above estimation, and if one is needed its cost would probably not exceed the sum of
25.000 euro annually.

Furthermore, the cloud can offer increased levels of security, reliability scalability,
manageability and immediate upgrades for all municipalities simultaneously [16]. Also,
such an attempt would offer possibilities of centralized management of request and
processes as well as more efficient gathering of data necessary for analysis, statistics
and future planning.

Possibilities of Use of Free and Open Source Software 141

The whole plan implies the agreement of all municipalities and the definition of a
joint action plan with a view to create a cloud computing infrastructure that will operate
according to the overall needs of all municipalities and that will eventually benefit them
all equally, with the ultimate goal being the citizens satisfaction from providing cost
effective and more efficient services to them.

5 Conclusions

The computerization of the Greek municipalities is still in a stage that can be char-
acterized as “early”, while the used hardware and software resources are considerably
out of date. There is a need of adopting new technologies that will raise the quality of
the provided services to the citizens while lowering its operational and maintenance
costs.

The usage of Free and Open Source Software locally is the first step to such an
attempt, while the creation of a cloud infrastructure that would serve the needs of all
municipalities is the ultimate goal. Especially for the latter, it could also hide the
performance drawback of the ageing workstations as well as act as a centralized point
of security given their vulnerabilities due to no longer supported software versions.
Based on the municipalities characteristics and available IT resources, two separate
proposals were considered, one based on the overall regional administrative areas and a
centralized one.

For the FOSS case, except for the obvious cases of OSs, Office suites and anti-
viruses, the use can be easily extended to more advanced software such as CAD, HR,
ERP, CRM and e-protocol based solutions, whose commercial licensing costs equiv-
alents are also considerably higher.

The combination of FOSS and Cloud technologies would give to the municipalities
bleeding – due to the continuous crisis - economy a surplus of about 5 million euros
that can be used in other areas of competence. Setting a common goal and the coop-
eration of all stakeholders is essential in order for this to succeed, and if it succeeds it
would benefit them all and mostly the citizens.

References

1. Rosen, L.: Open Source Licensing, Software Freedom and Intellectual Property Law.
Prentice Hall, Upper Saddle River (2004)

2. Wong, K., Sayo, P.: FOSS A General Introduction. International Open Source Network
(2004)

3. Hall, A.J.: Open Source Business Models: Making Money by Giving It Away. The Linux
Foundation (2015)

4. Raymond, E.: The Cathedral & the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly Media, Sebastopol (2009)

5. DiBona, C., Ockman, S.: Open Sources: Voices from the Open Source Revolution. O’Reilly
Media, Sebastopol (2008)

6. Pintscher, L.: Open Advice: FOSS: What We Wish We Had Known When We Started. Lulu
(2012)

142 S. Koloniaris et al.

7. The National IT and Telecom Agency of Denmark: Open Source Software and the Public
Sector. The National IT and Telecom Agency (2009)

8. Ghosh, R.A.: CODE: Collaborative Ownership and the Digital Economy. The MIT Press,
Cambridge (2005)

9. Busquets, J.P.: El Ayuntamiento de Barcelona rompe con el ‘software’ de Microsoft, El Pais,
4 December 2017

10. Wheeler, D.A.: Why Open Source Software/Free Software (OSS/FS, FLOSS, or FOSS)?
Look at the Numbers! (2015). https://www.dwheeler.com/oss_fs_why.html

11. Stallman, R.M.: Free Software, Free Society: Selected Essays of Richard M. Stallman. GNU
Press, Boston (2002)

12. Dua, A.: Linux is Running in Almost all of the Supercomputers. TechFAE (2017). https://
www.techfae.com/linux-running-almost-supercomputers/. Accessed 25 June 2017

13. Jim Gruen: Linux in space. The Linux Foundation (2012)
14. CERN: Linux @ CERN. http://linux.web.cern.ch/linux/install/
15. Bouras, C., Kokkinos, V., Tseliou, G.: Methodology for Public Administrators for selecting

between open source and proprietary software. Telematics Inform. J. (2011). www.elsevier.com
16. Blackduck: The 7 Myths of IP Risk: The Real Exposure Issues with Free and Open Source

Software. Black Duck Software White Paper (2012)

Possibilities of Use of Free and Open Source Software 143

https://www.dwheeler.com/oss_fs_why.html
https://www.techfae.com/linux-running-almost-supercomputers/
https://www.techfae.com/linux-running-almost-supercomputers/
http://linux.web.cern.ch/linux/install/
http://www.elsevier.com

Mining and Linking Open Economic Data
from Governmental Communities

Michalis Vafopoulos1(&), Stylianos Rallis2,
Ioannis Anagnostopoulos3, Vassilios Peristeras4, Dimitrios Negkas1,

Ilias Skaros1, and Aggelos Tzani1

1 Software and Knowledge Engineering Laboratory, IIT,
NCSR-“Demokritos”, Athens, Greece

vaf@aegean.gr, dimneg@gmail.com,

skaros.ilias@gmail.com, tzaniaggelos@hotmail.com
2 School of Engineering, Department of Production and Management

Engineering, Democritus University of Thrace, Xanthi, Greece
strallis@gmail.com

3 School of Sciences, Department of Computer Science and Biomedical
Informatics, University of Thessaly, Lamia, Greece

janag@dib.uth.gr
4 School of Science and Technology, International Hellenic University,

Thessaloniki, Greece
v.peristeras@ihu.edu.gr

Abstract. In this paper, we propose a model conceptualization (Linked Open
Economy - LOE) capable of exploiting the massive amount and variety of open
economic data that are gradually becoming available by governments and open
source communities. The main aim is to unleash the power of open data and
open source systems and create a common ground to serve as a catalyst in
providing more efficient answers in important economic activities.

Keywords: Open data � Open systems � Government � Economy

1 Introduction

In order to ensure transparency and provide valuable means of innovation, many
governments demand from their public authorities to open their data (e.g. data.gov.uk),
as well as to support their provision and maintenance with crowd-source independent
repositories and open-source systems (like CKAN1 etc.). Towards this end, there are
also many organized initiatives and projects. To name a few, the IBP2 promotes public
access to accountable budget systems, thus allowing citizens to investigate whether
central governments manage properly procedures in respect to public finances. Simi-
larly, the Open Budgets3, the Big Data Europe4 and the Your Data Stories5 H2020

1 ckan.org.
2 internationalbudget.org/.
3 OpenBudgets.eu.
4 BigDataEurope.eu.
5 YourDataStories.eu.

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 144–148, 2018.
https://doi.org/10.1007/978-3-319-92375-8_12

http://data.gov.uk
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_12&domain=pdf
http://ckan.org
http://internationalbudget.org/
http://OpenBudgets.eu
http://BigDataEurope.eu
http://YourDataStories.eu

projects provide a scalable platform for public administrations to publish and preserve
open economic data under open-source support (e.g. GitHub). A comprehensive review
of other similar initiatives can be found in [1].

2 Our Proposed Model

There are several standards, controlled vocabularies and ontological schemes for
achieving semantic linking between open data. In the economy domain, the most
important are: (i) the GoodRelations ontology [2], (ii) the Public Contracts ontology
[3], (iii) the Organization ontology, and (iv) the vCard ontology. All above ontologies
and schemas are cross-linked with several domain-independent controlled-vocabularies
such as FOAF, DC Terms, SKOS [4], and DBpedia.

Based on the above (data and interoperability standards), we propose the Linked
Open Economy (LOE) model (see Fig. 1), which is an economy-driven rather than a
data- or statistics-driven approach. The model has been designed to better balance the
trade-off of, being as generic as to be scalable to future open data categories, and as
specific as to be compatible with existing initiatives. Furthermore, its top-level con-
ceptualization interlinks the main publicly available data for the economy, as well as it
models the flows incorporated in public budgeting, procurement and subsidies/aid.
Detailed information about LOE modeling, as well as its main classes and properties
can be found at https://github.com/LinkedEcon/LinkedEconomyOntology-ELOD.

3 Application Case Study: Greek Public Procurement

The Central Electronic Registry of Public Procurement (KHMDHS) (eprocurement.
gov.gr) is the official procurement portal of the Greek government which contains
information on all public contracts for goods, services, and public works worth more
than €1,000. It was established to reinforce transparency and effective management of

Fig. 1. The Linked Open Economy (LOE) model.

Mining and Linking Open Economic Data 145

https://github.com/LinkedEcon/LinkedEconomyOntology-ELOD
http://eprocurement.gov.gr
http://eprocurement.gov.gr

public procurement. According to the Linked Economy Ontology (hereafter under the
elod prefix), the basic model consist of:

elod:DecisionDomain
In this dataset the “tenders” concept is available. In order to model this part of the

LOE flow, we use the pc:Contract class. The main parts are the following:

• the contracting authority which issues a contract,
• the CPV code which characterizes the products or services,
• the specified price of the contract including the currency specification, and
• the tender to whom a contract is awarded.

elod:SpendingDomain
The main components are:

• the authority which pays for the products or services,
• the sponsor who is paid for the offered products or services,
• the CPV code which characterizes the products or services, and
• the expense amount including the currency specification.

Organization Classes
The essential elements of the organization are given by the vat Id, the name, the vat

Id type, and the country registered at.

elod:PriceDomain
In the same sense as above, we use the gr:Offering class as well as the following:

• gr:BusinessEntity: This class represents the organizations. It is one of the four
classes used for their modeling.

• gr:SomeItems: This class contains the information of a service or product.
• elod:SpendingItem: This class represents decisions that involve spending actions.
• gr:UnitPriceSpecification: This class represents a conceptual entity that specifies

the price asked for a service or product. It specifies the price, the currency and
whether the price includes VAT or not.

In order to combine and compare products which belong to a gr:Offering from
different instances of elod:PriceDomain class we use the class elod:CPV in the second
level of our modeling. For example the instances of gr:Offering class in KHMDHS
Data set are linked to an elod:CPV instance, the same connection exists in eprices Data
set as well. Thus, we can extract information based on a common elod:CPV instance
from different elod:PriceDomain resources.

The basic part of elod:CPV instance is:

• The unique code of cpv and the property which specifies it is elod:cpvCode.
• The Greek and English name of this category by using the properties elod:

cpvGreekSubject and elod:cpvEnglisSubject.

146 M. Vafopoulos et al.

4 Conclusions

LOE can be used to (i) enable information exchange between open source systems,
(ii) integrate open data from heterogeneous sources and (iii) publish semantic and
linked data related to economic activities. It can also be connected to market processes
as analytically described in [1] where the generic LOE model is introduced. At the end
of this short paper, we depict a SPARQL query for an open API endpoint (http://143.
233.226.49:8890/sparql). This query asks for retail tomato prices from the official
Greek Price Observatory and compares them with wholesale prices provided by the
Central Market of Thessaloniki/ KATH (in three different qualities) for a specific day.
Retail stores with the highest and the lowest prices are also provided. Finally, the query
returns the price paid for a specific public contract for tomatoes, thus combining
information from governmental communities and market itself.

Beyond government and public authorities, we do believe that LOE can provide
high valuable insights to other domain stakeholders (e.g. citizens, developers,
researchers, journalists, companies etc.), who can use it as an establish and compact
common ground to get and compile valuable economic information.

Endpoint: http://143.233.226.49:8890/sparql
PREFIX pc: <http://purl.org/procurement/public-contracts#>
PREFIX elod: <http://linkedeconomy.org/ontology#>
PREFIX gr: <http://purl.org/goodrelations/v1#>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>
SELECT DISTINCT ?signatureDate ?buyer (str(?buyerLegalName) as ?buyerName)
(str(?sellerLegalName) as ?sellerName)
?cpvEnglishSubject ?amountOfThisGood
(xsd:decimal((1+?vatPercentage/100)*?amount) AS ?amountInclVat)
?minPriceWholesail ?maxPriceWholesail
FROM <http://linkedeconomy.org/EprocurementProper>
FROM <http://linkedeconomy.org/Organizations>
FROM <http://linkedeconomy.org/KATH>
FROM <http://publicspending.net/DiavgeiaI/CPV>
WHERE {
<http://linkedeconomy.org/resource/Contract/15PAY002574748> elod:buyer ?buyer ;
pc:item ?offering ;
elod:signatureDate ?signatureDate .
?offering gr:includesObject ?tqn ;
gr:hasPriceSpecification ?ups ;
elod:seller ?seller .
?tqn gr:typeOfGood ?someItems ;
gr:amountOfThisGood ?amountOfThisGood .
?ups elod:hasVat ?vat ;
gr:hasCurrencyValue ?amount ;
gr:valueAddedTaxIncluded ?taxIncluded .

Mining and Linking Open Economic Data 147

http://143.233.226.49:8890/sparql
http://143.233.226.49:8890/sparql

Acknowledgments. This paper is supported by the project “Open Journalism – OpJ”, which has
received funding from the Digital News Initiative (DNI) Innovation Fund.

References

1. Vafopoulos, M., Vafeiadis, G., Razis, G., Anagnostopoulos, I., Negkas, D., Galanos, L.:
Linked Open Economy: Take Full Advantage of Economic Data (2016). https://doi.org/10.
2139/ssrn.2732218

2. Hepp, M.: GoodRelations: an ontology for describing products and services offers on the web.
In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 329–346.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87696-0_29

3. Nečaský, M., Klímek, J., Mynarz, J., Knap, T., Svátek, V., Stárka, J.: Linked data support for
filing public contracts. Comput. Ind. 65(5), 862–877 (2014)

4. Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS core: simple knowledge
organisation for the web. In: International Conference on Dublin Core and Metadata
Applications, pp. 3–10 (2005)

elod:year <http://linkedeconomy.org/resource/Year/2015> .
?upsWholesail gr:hasMinCurrencyValue ?minPriceWholesail ; gr:hasMaxCurrencyValue
?maxPriceWholesail;
gr:validThrough "2015-02-11T00:00:00"^^xsd:dateTime ;
rdfs:label "Category II"^^xsd:string. ?tqnWholesail gr:typeOfGood ?someItemsWholesail.
?someItemsWholesail elod:hasCpv <http://linkedeconomy.org/resource/CPV/03221240-0> ;
elod:productEnglishName ?nameProductWholesail .
}

?vat elod:vatPercentage ?vatPercentage .
?someItems elod:productCategory <http://linkedeconomy.org/resource/CPV/03221240-0> ;

gr:description ?description .
OPTIONAL {
?someItems elod:producedAt ?producedAt } .
<http://linkedeconomy.org/resource/CPV/03221240-0> elod:cpvEnglishSubject
?cpvEnglishSubject .
OPTIONAL {
?buyer gr:legalName ?buyerLegalName .
}.
OPTIONAL {
?buyer vcard:hasAddress ?address .
?address vcard:postal-code "55337"^^xsd:string .
}
OPTIONAL {
?seller gr:legalName ?sellerLegalName .
}
#KATH
?offerWholesail gr:includesObject ?tqnWholesail; gr:hasPriceSpecification ?upsWholesail ;

148 M. Vafopoulos et al.

http://dx.doi.org/10.2139/ssrn.2732218
http://dx.doi.org/10.2139/ssrn.2732218
http://dx.doi.org/10.1007/978-3-540-87696-0_29

OSS Governance

Understanding Industry Requirements
for FLOSS Governance Tools

Nikolay Harutyunyan(&), Andreas Bauer, and Dirk Riehle

Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
{nikolay.harutyunyan,andi.bauer}@fau.de,

dirk@riehle.org

Abstract. Almost all software products today incorporate free/libre, and open
source software (FLOSS) components. Companies must govern their FLOSS
use to avoid potential risks to their intellectual property resulting from the use of
FLOSS components. A particular challenge is license compliance. To manage
the complexity of license compliance, companies should use tools and
well-defined processes to perform these tasks time and cost efficiently. This
paper investigates and presents common industry requirements for FLOSS
governance tools, followed by an evaluation of the suggested requirements by
matching them with the features of existing tools.
We chose 10 industry leading companies through polar theoretical sampling

and interviewed their FLOSS governance experts to derive a theory of industry
needs and requirements for tooling. We then analyzed the features of a gover-
nance tools sample and used this analysis to evaluate two categories of our
theory: FLOSS license scanning and FLOSS in product bills of materials. The
result is a list of FLOSS governance requirements based on our qualitative study
of the industry, evaluated using the existing governance tool features. For higher
practical relevance, we cast our theory as a requirements specification for
FLOSS governance tools.

Keywords: Open source software � FLOSS � FOSS � Open source governance
FLOSS governance tools � Company requirements for FLOSS tools

1 Introduction

Commercial use of FLOSS is on the rise as more companies realize the benefits of
using FLOSS components in their products, going beyond the commonplace use of
FLOSS development tools [9, 12, 19, 25, 34, 35]. In 2017 a report by the European
Commission estimated that using FLOSS saves the European economy an estimated
EUR 114 billion per year directly and up to EUR 399 billion per year overall [11].
However, companies also need to govern and regulate their use of FLOSS components
to avoid common threats, such as FLOSS license non-compliance, copyright and patent
infringement, that can result in litigation, cease and desist claims or product recalls [2,
33, 37, 39]. In the context of this paper, we define FLOSS governance as the set of
processes, best practices and tools employed by companies to use FLOSS components
as part of their commercial products while minimizing their risks and maximizing their
benefit from such use.

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 151–167, 2018.
https://doi.org/10.1007/978-3-319-92375-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_13&domain=pdf

FLOSS governance processes and tools can apply to the commercial use, contri-
bution or leadership of FLOSS projects. We limited the scope of this paper only to the
commercial use of FLOSS components, intentionally excluding governance consid-
erations of FLOSS contribution or leadership by companies. This is in line with our
earlier definition of FLOSS governance. Such focus allowed us to generate an in-depth
theory covering the earliest maturity phase of industry involvement with open source
that is of highest practical relevance to most companies today and novel to the growing
open source research [20].

Despite the practical relevance of the issue, research has been slow to address the
use of FLOSS in products. The existing literature is limited to general FLOSS gov-
ernance research [1, 3, 4], to research of the governance of open source communities
and their development practices [26, 28, 36, 40], and to FLOSS license compliance
related governance [10, 13–17, 31, 42, 46]. However, past research has not compre-
hensively addressed FLOSS governance requirements and best practices in industry.
A particularly practical aspect of FLOSS governance is its automation through tooling,
which ensures increased efficiency and better integration into the development process.
Focusing on the specific aspect of FLOSS governance tooling, we addressed this gap
by asking the following research question:
RQ:What are the core industry requirements for FLOSS governance tools needed to
facilitate the use of FLOSS components in commercial products?

The research method employed is an adaptation of the grounded theory method [5,
6] called the QDAcity RE method for structural domain modeling using qualitative data
analysis [23]. We chose this novel, yet promising research method because it enables
using qualitative data analysis (QDA) to develop a theory that can be specifically cast
as a requirements specification. Answering our research question, we aimed to cast our
theory as a list of common industry requirements for FLOSS governance tools. This
format is well-understood in the industry and can, therefore, ensure a high practical
value of our research results. Data gathering and analysis were performed using formal
semi-structured interviews, researcher notes, and materials review. We interviewed 15
FLOSS governance and compliance experts from 10 diverse companies chosen through
theoretical sampling of more than 140 companies.

There are few reports on commercial adoption of FLOSS that are cast as lists of
requirements focusing on technical and managerial aspects of using FLOSS in pro-
prietary products [46]. However, neither academic nor practitioner literature offers a
detailed list of industry requirements for FLOSS governance or its tooling that goes
beyond a high-level of abstraction [30]. In this paper, we addressed this research gap
with our main contribution – the theory of industry requirements for FLOSS gover-
nance tools. Our theory indicated four key categories of FLOSS governance tool
requirements in no particular order:

• Tracking and Reuse of FLOSS components
• License Compliance of FLOSS components
• Search and Selection of FLOSS components
• Other requirements (security, education, etc.)

We then broke down each of these categories into detailed requirements and
sub-requirements.

152 N. Harutyunyan et al.

To evaluate our theory, we analyzed marketing materials and demos of 6 widely
used and representative FLOSS governance tools. We compared the key tool features
with our suggested theory and evaluated our proposed requirements confirming many
of them. In future publications, we also plan to address other aspects of FLOSS
governance in high detail, including industry best practices for FLOSS supply chain
management and license compliance.

2 Related Work

The early research on FLOSS governance in companies was part of the broader
research on the commercial use of FLOSS development tools and components [1, 20].
In a systematic literature review on FLOSS adoption in industry, Hauge et al. identified
only a limited amount of research focusing on FLOSS component selection by com-
panies [7, 8, 22, 45] and knowledge sharing within FLOSS communities [24, 27, 43].
Hauge et al. [20] did not identify any academic studies focused on the actual industry
practice of using FLOSS components in products, thus suggesting that further research
is needed on this topic. Our literature review confirmed this research gap prompting us
to conduct this study of 10 industry-representative companies.

We set our research scope and that of the related work review to the commercial use
of FLOSS components in products and industry requirements for FLOSS governance
tooling. We explicitly excluded FLOSS governance related to industry contribution to
or leadership of FLOSS projects. We did not identify literature explicitly focused on
FLOSS governance tool requirements. However, we found indirect references to the
topic that we used as a starting point for our research. We derived three key categories
of FLOSS governance requirements that can be addressed through tooling:

• Tracking and Reuse of FLOSS components [21, 32, 44]
• License Compliance of FLOSS components [10, 13–17, 31, 42, 46]
• Search and Selection of FLOSS components [7, 8, 22, 41, 45]

Tracking and Reuse. With the growing availability of high-quality FLOSS compo-
nents, software developers increasingly use FLOSS components in commercial prod-
ucts. FLOSS governance policies in many companies require developers to track and
document such FLOSS use [21, 32]. This enables the well-structured management and
reuse of FLOSS components that have been added into product software. Umarji et al.
[45] suggest using FLOSS governance tools to create and maintain libraries of reusable
FLOSS components. Our findings confirm this as one of the industry requirements for
FLOSS governance tools.

Other requirements focus on supply chain management [30], automated manage-
ment of bill of materials [42], maintenance of FLOSS component metadata in product
architecture models [38], etc. Our theory confirms and captures these requirements.

License Compliance. Wang and Wang present a number of requirements for industry
adoption of FLOSS. Some of these requirements can be translated into industry
requirements for FLOSS governance tools. The authors suggest a managerial
requirement for license compliance that includes understanding different FLOSS

Understanding Industry Requirements for FLOSS Governance Tools 153

licenses and documenting their terms [46]. Our theory suggests that industry requires
the use of FLOSS governance tools for documenting company interpretation of most
common and used FLOSS licenses and their implications. This requirement is also
confirmed by industry associations, such as The Open Source Automation Development
Lab eG, which in 2017 attempted to standardize FLOSS license obligations through
checklists and own license describing language that can eventually be used in a FLOSS
governance tool [10].

Other industry requirements for compliance tools include automated FLOSS license
scanning [14, 15], automated FLOSS code detection in company’s codebase and in its
supply chain using source code and binary scans [16, 31, 42], checking FLOSS license
compatibility when mixing licenses [17] etc. We confirm all these requirements
through expert interviews and formalize them in our theory, while recognizing the
technological complexity of fulfilling these requirements by the currently existing
tooling.

Search and Selection. Umarji et al. [45] surveyed a sample of 69 programmers. Their
research suggested that software developers require and use tools for the search and
selection of FLOSS components. The majority of the survey respondents said they used
general-purpose search engines with some also using project hosting sites and
code-specific search engines. Our expert interviews confirmed the requirement for
search and selection of FLOSS components. A requirement in our proposed theory
formalizes this industry need.

Other industry requirements for search and selection of FLOSS components focus
on the automated identification of software families and types of FLOSS communities
[41]. Our theory did not confirm the industry requirement for the tool-assisted software
family identification, but did confirm the need for the tool-assisted identification and
evaluation of FLOSS communities.

Many other requirements are suggested in both academic literature and practitioner
white papers. However, in this section, we combined and presented the literature
related to only several key requirements due to our narrow scope.

3 Research Method

We conducted a two-step study that consists of:

1. Deriving a theory based on our understanding of key industry requirements for
FLOSS governance tools through expert interviews

2. Evaluating our understanding of industry requirements through marketing materials
and demos of existing FLOSS governance tools

Our research approach is represented in Fig. 1 and explained below.
For theory building, we conducted 15 interviews with ten industry-leading

companies to understand their requirements for FLOSS governance tools.
We employed an adaptation of the grounded theory [5, 6] method called the

QDAcity RE method for structural domain modeling using qualitative data analysis
[23]. Corbin and Strauss [6] or Charmaz [5] define the grounded theory method as one

154 N. Harutyunyan et al.

that consists of systematic, yet flexible guidelines for collecting and analyzing quali-
tative data to construct a theory from that data. Kaufmann and Riehle [23] accept this
definition, but extend the method to a more structured, traceable and iterative one
providing guidelines for data collection, creation and application of a code system. This
enabled us to use the QDAcity-RE method for requirements engineering based on our
industry expert interviews. The result is a partial theory of industry requirements for
FLOSS governance tools cast as a requirements specification.

For theory evaluation,
we reviewed marketing
materials and demos of 6
widely used FLOSS gover-
nance tools. We used the
QDAcity RE method and
qualitative data analysis to
derive the common features
they offer to meet industry
needs for automating FLOSS
governance.

Assuming that the tool
vendors as a whole under-
stand industry needs and
offer tools that address these
needs, we compared the
common tool features to our

partial theory of industry requirements. We evaluated which tool features match the
industry requirements in our proposed theory and which ones do not. We used this
evaluation to demonstrate that our theory represents the current state of industry
requirements for FLOSS governance tools. To the extent that our theory agrees with
tool features, we put the work of industry product managers onto a sound scientific
base of theory development based on the user’s perspective.

3.1 Theoretical Sampling

For theory building, we chose ten companies sampled from our industry network of
about 140 companies with advanced FLOSS governance practices. The companies in
our sample have advanced understanding of FLOSS governance and use internal and/or
external governance tools. We conducted polar theoretical sampling to cover a diverse
and representative set of companies. Polar sampling aims to choose companies with
highly varying characteristics. We considered diverse dimensions including types of
business models, customer types, company size, market position and company matu-
rity. The resulting sample of companies includes small, medium and large companies
with both enterprise and retail customers and varying business models. The list of
companies and their essential characteristics are presented in Table 1. Company names
are anonymized per their request.

Fig. 1. Theory Building using Industry Requirements and
Theory Evaluation using Tool Features

Understanding Industry Requirements for FLOSS Governance Tools 155

For theory evaluation, we chose 6 widely used and prominent FLOSS governance
tools that represent the broader spectrum of FLOSS governance tools [44]. Not all tools
compete but have some overlap in their functionalities, like support for license scan-
ning or component repository management. To reduce bias, we made sure that our
selection differs in these dimensions:

• By the license under which a vendor makes its tool available. The sampling con-
tains tools that are licensed under permissive and copyleft type open source
licenses, and proprietary closed source licenses.

• By the delivery model of a tool. A critical factor for companies is the ability to
choose whether a software tool is available as cloud-based service or can be used
on-premise, depending on aspects like costs, customization, and security.

• By the scannable artifacts. For scanning of license information, tools can analyze
source code or binary artifacts. Scanning of binary artifacts is necessary if the
source code of dependent components is not available. In contrast scanning of
source code artifacts provide better results.

We also consider other dimensions for the theoretical sampling (maturity of a tool,
automation and integration into the development process, and additional audit service
by experts), but to offer more depth we focus on the three key dimensions presented
above. The list of tools and their key characteristics are presented in Table 2.

Table 1. Theoretical sample of companies

Company Company
domain

By business
model

By type of
customer

By size
(employees)

Company 1 Consulting SP-OS, SDS Enterprise Medium
Company 2 Automotive SDS Enterprise Small
Company 3 Automotive SDS Enterprise Large
Company 4 Enterprise

Software
SP-OS Enterprise,

retail
Medium

Company 5 Enterprise
Software

SP-CS Enterprise,
retail

Medium

Company 6 Enterprise
Software

SP-OS, SP-CS,
MC, GT

Enterprise,
retail

Large

Company 7 Enterprise
Software

SP-OS, MC, GT Enterprise,
retail

Medium

Company 8 FLOSS
Foundation

OSF Enterprise,
retail

Small

Company 9 Hardware and
Software

OP Enterprise Large

Company 10 Legal MC Enterprise,
government

Large

Legend for Table 1: SDS= Software development service, SP-OS= Software product vendor for
open source software,
SP-CS = Software product vendor for closed source software, GT = Governance tool providers,
MC = Management consulting,
OSF = Open source foundation, OP = Other products incorporating software

156 N. Harutyunyan et al.

3.2 Data Gathering and Analysis

For data gathering, we mainly used semi-structured interviews conducted by one or
two researchers with FLOSS governance experts or responsible coworkers from the
sampled companies. In seven companies we interviewed one expert, in one company
we interviewed two experts, and in two companies we interviewed three experts. In
total, we conducted 15 interviews. When possible, we recorded and transcribed the
interviews. In three cases we took notes. We also studied additional materials both
public and private about these companies and their FLOSS governance practices.

We developed key questions and an interview guideline for the semi-structured
interviews and kept them stable, except for few iterative adjustments from company to
company, throughout the whole data gathering process. The interviews were
exploratory in line with our grounded-theory-based research method.

For data analysis, we followed the QDAcity-RE method performing iterative and
incremental qualitative data analysis (QDA) supported by the MaxQDA software. We
developed two separate coding systems for the theory building using expert interviews
and for the theory evaluation using tool marketing materials and demos.

During the QDA coding process, we iteratively refined the code system. Reaching
theoretical saturation [23], the code system became the basis for our theory. Individual
codes correspond to low-level tool requirements in our requirements specification. Both
for theory building and evaluation, our code systems consist of hierarchical codes. We
did not apply the top category codes in our QDA. We followed the QDAcity-RE
method’s QDA process as follows:

• Open coding. We created a basic set of codes from which the hierarchy is built.
Open codes are direct annotations of primary materials and link to them for
data-theory traceability.

• Axial coding. We built a code system by deriving more abstract concepts and
categories from open codes, thus developing the axes of the code system.

Table 2. Sampling of governance tools

Tool Tool provider By license By delivery
model

By scannable
artifacts

Black Duck Hub Black Duck Software by
Synopsys

Proprietary Cloud-based Source and
binary code

DejaCode nexB Apache
2.0

Cloud-based,
on premise

Source and
binary code

FOSSology FOSSology FLOSS
project

GPL-2.0 On premise Source and
binary code

FOSSA FOSSA Proprietary Cloud-based,
on premise

Source code

OSS-Review-Toolkit OSS-Review-Toolkit
(ORT) FLOSS project

Apache
2.0

On premise Source code

WhiteSource WhiteSource Software Proprietary Cloud-based,
on premise

Source and
binary code

Understanding Industry Requirements for FLOSS Governance Tools 157

• Selective coding. We applied the codes to the gathered data and chose which codes
are important and which are not. We adjusted the coding system by removing the
irrelevant codes and by adding the ones that emerged when applying the axial
codes.

4 Research Results

This section presents our partial theory of industry requirements for FLOSS gover-
nance tools, followed by the evaluation of the suggested theory through feature analysis
of existing FLOSS governance tools. Section 4.1 presents our theory cast as a
requirements specification for high practical relevance. Section 4.2 presents our eval-
uation of the theory.

4.1 Theory of Industry Requirements for FLOSS Governance Tools

We limited our scope to FLOSS governance tools related to the commercial use of
FLOSS components, explicitly excluding companies’ contribution to or leadership of
FLOSS projects. We only present the requirements that have been directly derived or
inferred from our data, thus excluding the ones that have been presented in the liter-
ature, but not confirmed by our industry study. The result is a partial theory that covers
the key requirement categories and requirements based on our sample. Analyzing 15
expert interviews, researcher notes and company materials, we derived the following
high-level industry requirements for FLOSS governance tools:

1. Tracking and Reuse of FLOSS components
1:1. The tool should help users identify the use of FLOSS components in their

code base.
1:2. The tool should help users report the use of FLOSS components in a product

architecture model.
1:3. The tool should help users update FLOSS components and their metadata.
1:4. The tool should help users maintain a bill of materials of the FLOSS com-

ponents used in a product.
1:5. The tool should help users reuse FLOSS components that have already been

used in a product.

Virtually all companies track their use of FLOSS components in order to efficiently
manage FLOSS integration into their products, as well as to enable cost-saving reuse of
FLOSS components already used by the company’s other developers. Efficient FLOSS
component management ensures a company’s ability to maintain and produce upon
customer request an up-to-date bill of materials. One interview partner mentions this
requirement for this use case (Requirement 1.4):

“So, we do have tools to keep track of different components or licenses we’re using. If you get
requests or requirements from customers to provide a list of used [FLOSS] components and
licenses, we use this tool to track those and push those requirements into our [development]
process.” (Company 7)

158 N. Harutyunyan et al.

Another expert suggests a requirement to enable tracking and reusing FLOSS
components (Requirement 1.5):

“What we have there at the moment is that [for] half of the company we have essential
database or half of the company uses that central database of components and their licenses.”
(Company 2)

2. License Compliance of FLOSS components
2:1. The tool should help users interpret open source licenses.
2:2. The tool should help users document the identified licenses of the used

FLOSS components in the company’s open source license repository or
license handbook.

2:3. The tool should help users find and document the unidentified licenses of the
used FLOSS components in the company’s open source license repository
or license handbook.

2:4. The tool should help users approve the use of a FLOSS component in a
product based on FLOSS license compliance guidelines.

2:5. The tool should help users distribute a product that is compliant with the
FLOSS licenses of the FLOSS components used in that product.

FLOSS license compliance is a central aspect and key tool requirement category to
the companies we studied. Companies strive to automate license compliance, license
scanning and license management. Some companies employ continuous
integration/deployment and thus require appropriate license compliance tools that can
be integrated in their development process. Tool requirements for license compliance
go on to encompass automated license interpretation, license identification and docu-
mentation, etc.

An expert from Company 7 mentions the tool requirement for automating FLOSS
license scanning and identification of other FLOSS component metadata (Requirement
2.2), as well as the requirement for automating component approval (Requirement 2.4):

“We have a full toolset that goes through and scans the code, that pulls out all the license
information, the authorship [copyright] information, and runs that through our process for
verification, for compliance, for compatibility and so forth.” (Company 7)

Another expert talks about the need to find and document the unidentified FLOSS
components and licenses (Requirement 2.3):

“We need this [license scanning] tool to re-check if any of the developers are not handling
[FLOSS components] in the way [the management] wants, to better do it because we have no
possibility to check it in a clear way if you have no tool.” (Company 3)

3. Search and Selection of FLOSS components
3:1. The tool should help users search for FLOSS components.
3:2. The tool should help users select best FLOSS components.
3:3. The tool should help users estimate the cost of using an FLOSS component.

Companies need to FLOSS governance tools to efficiently search and select the
right FLOSS components, which translates into tool requirements on evaluating

Understanding Industry Requirements for FLOSS Governance Tools 159

different component candidates and estimating the cost of their usage. One interviewee
talks about the role of tools in FLOSS component selection process (Requirement 3.2):

“When you move on from a strategic decision to component selection like with components of
open source projects to be used, then we have a process that we require the projects to name all
the open source components to assess that they want to use, that they assess the license, that
they check the license, and that they document that and that again this assessment is com-
municated to upper management and signed off that.” (Company 2)

4. Other requirements
4:1. The tool should help users detect and prevent security vulnerabilities in

product’s FLOSS components.
4:2. The tool should help users document and communicate company’s FLOSS

governance strategy, policies and best practices.
4:3. The tool should help users get training on FLOSS governance and compli-

ance when using open source software in products and contributing to
open source projects.

The detailed subcategories of requirements for Tracking and Reuse of FLOSS
components are demonstrated in Table 3. The detailed subcategories of requirements
for License Compliance of FLOSS components are demonstrated in Table 4. The
detailed subcategories of requirements for Search and Selection of FLOSS components
are demonstrated in Table 5.

4.2 Evaluation

This section presents the evaluation of our suggested theory using the feature analysis
of existing FLOSS governance tools. We analyzed marketing materials and demos of
six widely used FLOSS governance tools. The analysis resulted in the following list of
common key features related to FLOSS use in products:

• Component Tracking & Reporting: support for bill of materials, component
inventory, knowledge base (external inventory), license obligation reporting, and
commonly accepted data exchange standard support;

• Scanning/License Checking: support for licenses identification, copyright identifi-
cation, code origin identification, and license management;

• Policies: support for applying/ensuring FLOSS policies;
• Security: support for security vulnerability detection;
• Development Integration & Automation: support for integration into continuous

integration and deployment.

To ensure the depth of evaluation, we focus on two main requirement categories:
Tracking and Reuse of FLOSS components and License Compliance of FLOSS
components. We chose these categories because these requirements are fundamental to
any software company according to the analysis of the industry interviews and tools
support of these requirements as base functionalities.

160 N. Harutyunyan et al.

Tracking and Reuse of FLOSS components. The identification of FLOSS compo-
nents and their licenses in a given software product or component is a core function-
ality of all sampled tools. All the high-level requirements of the category 1 in the
proposed theory are matched by the features of the sampled tools. For example, Black
Duck Software enables its users to identify the used FLOSS components (Requirement
1.1) in both the source code and in binaries (with lesser precision):

“[Black Duck Hub enables to] fully discover all open source in your code” (Black Duck Hub)

Table 3. Tracking and Reuse of FLOSS components requirements

1. The tool should help users identify the use of FLOSS components in their code base.
a. The tool should allow reading in an existing code base.
b. The tool should allow automated finding of open source licenses in an existing code base.
c. The tool should allow automated finding of open source software checked-in and used by a company developer.
d. The tool should allow automated finding of open source software not checked-in, but used by a company develop-

er.
e. The tool should allow automated finding of open source software that is part of the supplied proprietary software

using commonly accepted data exchange standards (such as SPDX).
f. The tool should allow automated finding of open source software that is part of the supplied proprietary software

using binary or source code scanning.

2. The tool should help users report the use of FLOSS components in a product architecture model.
a. The tool should allow creating a product architecture model to systematically record use of FLOSS components,

their metadata and component dependencies.
b. The tool should allow manual recording of metadata of the used FLOSS components.
c. The tool should allow confirming the metadata of FLOSS components identified automatically.
d. The tool should allow modifying the metadata of FLOSS components identified automatically.
e. The tool should allow removing the metadata of FLOSS components identified automatically.
f. The tool should allow automated reporting of a newly used FLOSS component within the build process and/or con-

tinuous integration process.
g. The tool should allow reporting undeclared use of FLOSS components and their metadata.

3. The tool should help users update FLOSS components and their metadata.
a. The tool should allow automated updates of FLOSS components to their newest available versions.
b. The tool should allow to back up the current versions of FLOSS components before updating them.
c. The tool should allow automated identification of changed metadata including FLOSS component license and cop-

yright information.
d. The tool should allow automated history recording of FLOSS components and their metadata.

4. The tool should help users maintain bill of materials of the FLOSS components used in a product.
a. The tool should allow creating a formal bill of material using a commonly accepted data exchange standard (such

as SPDX).
b. The tool should allow automated generation of a formal bill of materials using company’s product architecture

model.
c. The tool should allow developers to add identified and reported metadata on used FLOSS components into the

formal bill of materials.
d. The tool should allow developers to update the formal bill of materials.
e. The tool should allow automated generation of a bill of materials instance in a structured textual format.
f. The tool should allow automated generation of a bill of materials instance in a commonly accepted data exchange

standard (such as SPDX) format.

5. The tool should help users reuse FLOSS components that have already been used in a product.
a. The tool should allow creating a centralized and company-wide accessible FLOSS component repository.
b. The tool should allow automated adding of FLOSS components and their metadata into the repository using the

product architecture model.
c. The tool should allow automated updating of FLOSS components repository using the product architecture model.
d. The tool should allow all company developers to access the FLOSS components repository.
e. The tool should allow searching in the FLOSS component repository.
f. The tool should allow finding the company developers who used an FLOSS component from the repository.

Understanding Industry Requirements for FLOSS Governance Tools 161

Table 4. License Compliance of FLOSS components requirements

cense repository or license handbook.
d. The tool should allow users to add license interpretation of the FLOSS licenses of the used FLOSS components to

company’s license repository or license handbook.
e. The tool should allow users to change license interpretation in the license repository or license handbook.
f. The tool should allow developers to request license interpretation of a FLOSS license of an FLOSS component s/he

wants to use in a product.
g. The tool should allow open source program office to discuss license interpretation requests.
h. The tool should allow open source program office to fulfill license interpretation requests.

2. The tool should help users document the identified licenses of the used FLOSS components in the company’s
open source license repository or license handbook.
a. The tool should allow creating an open source license repository.
b. The tool should allow developers, lawyers and managers to read the open source license repository.
c. The tool should allow automated inventorying of known open source licenses from the product architecture model.
d. The tool should allow users to add new open source licenses into the open source license repository.
e. The tool should allow users to remove obsolete open source licenses from the open source license repository.
f. The tool should support the commonly accepted data exchange standards (such as SPDX).
g. The tool should allow users to search open source license information in the open source license.

3. The tool should help users find and document the unidentified licenses of the used FLOSS components in com-
pany’s open source license repository or license handbook.

a. The tool should allow software package scanning to find the open source licenses unidentified previously through
product architecture model.

b. The tool should allow source code scanning for the internally developed code to find the origin of used, but uniden-
tified open source code and its license.

c. The tool should allow source code scanning for the FLOSS components taken from FLOSS projects to find the
origin of used, but unidentified open source code and its license.

d. The tool should allow binary scanning for the FLOSS components that are part of the supplied proprietary software
components to find the origin of used, but unidentified open source code and its license.

e. The tool should allow automated inventorying of the open source licenses identified because of binary and source
code scanning.

f. The tool should allow manual changing the automatically identified open source licenses.
g. The tool should allow removing the automatically identified open source licenses.
h. The tool should support binary and source code scanning integration into the build process and/or continuous inte-

gration process.
i. The tool should allow finding and documenting copyright notices, export restriction information and other compli-

ance-related metadata for FLOSS components used in a product.

4. The tool should help users approve the use of a FLOSS component in a product based on FLOSS license compli-
ance guidelines.
a. The tool should allow creating white lists of company-approved FLOSS licenses according to company policy.
b. The tool should allow creating black lists of company-blocked FLOSS licenses according to company policy.
c. The tool should allow updating white and black lists of FLOSS licenses.
d. The tool should allow creating license interpretation-based rules for automated recommendation on component use

approval according to company policy.
e. The tool should allow developers to request approval of FLOSS components with previously unassessed licenses.
f. The tool should allow lawyers to approve or block use of FLOSS components due to license incompatibility with

company policy.
g. The tool should allow automated recording of FLOSS license approval decisions in company’s open source license

repository.

5. The tool should help users distribute a product that is compliant with the FLOSS licenses of the FLOSS compo-
nents used in that product.
a. The tool should allow automated generating of FLOSS license obligations for each product using product architec-

ture model and open source license repository.
b. The tool should allow automated assignment of tasks that will ensure compliance with FLOSS license obligations.
c. The tool should allow automated audit of product’s bill of materials before distribution.
d. The tool should allow manual audit of product’s bill of materials before distribution.
e. The tool should allow adjusting product’s bill of materials before distribution.

1. The tool should help users interpret open source licenses.
a. The tool should allow user to document open source license interpretations using a formal language or notation

supported by the tool.
b. The tool should provide automated standard interpretation of the most common FLOSS licenses in company’s li-

cense repository or license handbook.
c. The tool should allow users to modify license interpretation of the most common FLOSS licenses in company’s li-

162 N. Harutyunyan et al.

FOSSA helps explore and report relationships between modules incl. the open
source ones (Requirement 1.2):

“[FOSSA allows its user to] explore relationships between modules and if/how dependencies
are included in your build” (FOSSA)

Black Duck Hub also has features for BOM maintenance (Requirement 1.4) and for
FLOSS component reuse (Requirement 1.5):

“We provide a license obligation report, including an easily consumable bill of materials
(BOM) that you can deliver to your customers and/or internal stakeholders.” (Black Duck Hub)

“[Black Duck Hub enables to] eliminate uncertainty and promote reuse [of FLOSS]” (Black
Duck Hub)

However, not all detailed (low-level) requirements from the proposed theory are
supported by existing tool features. Requirement 1.1.d, for example requires tools to
allow automated finding of open source software not checked-in but used by a com-
pany developer. This requirement is not entirely supported by any of the studied tool
because of its technological complexity.

License Compliance of FLOSS components. All the studied tools support FLOSS
license compliance features. They fulfill offer fulfilling requirements, such as license
interpretation, license identification and documentation, FLOSS component approval etc.

FOSSology covers several requirements related to FLOSS license compliance
(Requirement 2.2, 2.3) [18]:

“FOSSology is an open source license compliance software system and toolkit. As a toolkit you
can run license, copyright and export control scans from the command line. As a system, a
database and web UI are provided to give you a compliance workflow. License, copyright and
export scanners are tools available to help with your compliance activities.” (FOSSology)

Table 5. Search and Selection of FLOSS components requirements

a. The tool should allow automated search of available FLOSS components using publicly available data.
b. The tool should allow automated comparison of available FLOSS components using publicly available data.

2. The tool should help users select best FLOSS components.
a. The tool should allow automated health assessment of open source communities using publicly available data.
b. The tool should allow automated maturity assessment of open source communities using publicly available data.
c. The tool should allow automated corporate dependence assessment of open source communities using publicly

available data.
d. The tool should allow automated maturity assessment of open source communities using publicly available data.
e. The tool should allow automated responsiveness assessment of open source communities using publicly available

data.

3. The tool should help users estimate the cost of using an FLOSS component.
a. The tool should allow automated cost estimation of FLOSS component integration and maintenance in a product.
b. The tool should allow automated risk assessment of FLOSS community discontinuing its development of the

FLOSS component and automated cost estimation of internal maintenance of the FLOSS component.
c. The tool should allow users semi-automated estimation of the benefit of using an FLOSS component compared to

proprietary and in-house development alternatives.

1. The tool should help users search for FLOSS components.

Understanding Industry Requirements for FLOSS Governance Tools 163

However, none of our studied tools completely fulfill some of the following
low-level requirements: Requirement 2.1.b (automated standard interpretation of
common FLOSS licenses), Requirement 2.3.h (automated license checking within
continuous integration), Requirement 2.5.b (automated assignment of FLOSS com-
pliance tasks), Requirement 2.5.c (automated audit of product’s bill of materials before
distribution). One reason is the complex computational nature of the complete
automation of compliance tasks. An empirical study by German et al. [16] showed that
a deeper understanding of licensing issues requires human expertise, which limits the
automation of some license compliance tasks. Moreover, most companies don’t allow
complete automation of compliance as they require a human actor to be responsible for
legal matters, even if they use semi-automated tooling.

Our limited evaluation demonstrates that the high-level requirements of our theory
do match the features offered by industry leading FLOSS governance tools. The
evaluation shows that existing tools satisfy most of the low-level requirements by the
industry, but not others, such as requirements of complete automation.

5 Discussion

Our main contribution is the requirements specification presented in Sect. 4.1 and its
evaluation in Sect. 4.2.

We recognize that our research results are limited, but novel and practice relevant.
They present only a partial theory on the issue. However, we lay groundwork for future
studies into FLOSS governance tool requirements, that will hopefully expand our
requirements specification theory. Our work leads us to propose the following research
questions for future research:

RQ1: What are other detailed FLOSS governance tool requirements beyond
Tracking and Reuse of FLOSS components, License Compliance of FLOSS com-
ponents and Search and Selection of FLOSS components?
RQ2: How can FLOSS governance tool requirement theories be better evaluated or
validated?
RQ3: How to engineer FLOSS governance tool requirements of the future
addressing missing features and industry needs before companies become aware of
them?

6 Research Limitations

The study faces several limitations including those to internal validity and to external
validity:

Internal validity. Qualitative data research realized by one researcher has inherent
subjectivity and bias. Even though we followed the research method constructs care-
fully, there is bias associated with method interpretation and application to our specific
context. To address this limitation, we had a second coder analyze our data and

164 N. Harutyunyan et al.

improved our original QDA coding with that of the second coder. The high inter-coder
agreement between the original coding and the second coder coding suggests an
adequate quality of our code system and by extension an adequate quality of the
derived theory [29].

External validity. The resulting theory is based on the data gathered from the experts
of the ten companies we interviewed. We cannot claim broad generalizability of the
findings, even though we followed a careful theoretical sampling to ensure the appli-
cability of our results. This limitation can be tested with further validation studies.

7 Conclusion

This paper presents a study of ten industry companies with advanced FLOSS gover-
nance practices. Our study concluded in a partial theory of FLOSS governance tool
requirements by the industry. Also, we provide a detailed hierarchical list of these
industry relevant requirements. As such it offers unique insight into industry under-
standing of FLOSS governance tools and their expectations from them, alongside
existing tools and their features.

The data gathered through semi-structured interviews and materials collection was
analyzed using the novel adoption of grounded theory method – the QDAcity-RE
method. We cast our theory as a requirements specification making it applicable and
practice relevant to the companies willing to employ these requirements. Finally, we
evaluated our findings using six industry leading FLOSS governance tools and the
analysis of their features matched with the requirements of the suggested theory.

The study of the missing features of existing tools is out of scope of this paper but it
can be a valuable part of further research. Further research can also focus on the reasons
why tool providers do not fulfill the unsatisfied requirements of our theory (e.g. full
automation of compliance) and how such problems can be solved.

Acknowledgments. We would like to thank Hannes Dohrn, Michael Dorner, Maximilian
Capraro, Andreas Kaufmann and Shushanik Hakobyan for their generous feedback that helped us
improve our paper. We would also like to thank our industry partners that provided their valuable
time and expertise for this research project.

References

1. Aksulu, A., Wade, M.: A comprehensive review and synthesis of open source research.
J. Assoc. Inf. Syst. 11(11), 576 (2010)

2. Black Duck Software: 2017 Open Source Security and risk analysis. Center for Open Source
Research & Innovation. In: (self-published white paper) (2017)

3. Bonaccorsi, A., Rossi, C.: Why open source software can succeed. Res. Policy 32(7), 1243–
1258 (2003)

4. Capra, E., Francalanci, C., Merlo, F.: An empirical study on the relationship between
software design quality, development effort and governance in open source projects. IEEE
Trans. Softw. Eng. 34(6), 765–782 (2008)

5. Charmaz, K.: Constructing Grounded Theory. Sage, Thousand Oaks (2014)

Understanding Industry Requirements for FLOSS Governance Tools 165

6. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage Publications, Thousand Oaks (2014)

7. Cruz, D., Wieland, T., Ziegler, A.: Evaluation criteria for free/open source software products
based on project analysis. Softw. Process Improv. Pract. 11(2), 107–122 (2006)

8. Deprez, J.-C., Alexandre, S.: Comparing assessment methodologies for free/open source
software: OpenBRR and QSOS. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008. LNCS,
vol. 5089, pp. 189–203. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69566-0_17

9. Deshpande, A., Riehle, D.: The total growth of open source. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008. ITIFIP, vol. 275, pp. 197–209. Springer,
Boston, MA (2008). https://doi.org/10.1007/978-0-387-09684-1_16

10. Emde, C., Jaeger, T.: Open source license obligations checklists (version 5). In: Open Source
Automation Development Lab (self-published white paper) (2017)

11. European Commission: The economic and social impact of software & services on
competitiveness and innovation (SMART 2015/0015). Publications Office of the European
Union, Luxembourg, pp. 197–198 (2017)

12. Fitzgerald, B.: The transformation of open source software. MIS Q. 30(3), 587–598 (2006)
13. Gangadharan, G.R., De Paoli, S., D’Andrea, V., Weiss, M.: License compliance issues in

free and open source software. In: MCIS 2008 Proceedings, vol. 2 (2008)
14. Gangadharan, G.R., D’andrea, V., De Paoli, S., Weiss, M.: Managing license compliance in

free and open source software development. Inf. Syst. Front. 14(2), 143–154 (2012)
15. German, D.M., Hassan, A.E.: License integration patterns: Addressing license mismatches in

component-based development. In: Proceedings of the 31st International Conference on
Software Engineering, pp. 188–198. IEEE Computer Society, May 2009

16. German, D.M., Di Penta, M., Davies, J.: Understanding and auditing the licensing of open
source software distributions. In: 2010 IEEE 18th International Conference on Program
Comprehension (ICPC), pp. 84–93. IEEE, June 2010

17. German, D.M., Manabe, Y., Inoue, K.: A sentence-matching method for automatic license
identification of source code files. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, pp. 437–446. ACM, September 2010

18. Gobeille, R.: The fossology project. In: Proceedings of the 2008 International Working
Conference on Mining Software Repositories, pp. 47–50. ACM, May 2008

19. Hammond, J., Santinelli, P., Billings, J.J., Ledingham, B.: The tenth annual future of open
source survey. In: Black Duck Software (2016). (self-published presentation)

20. Hauge, Ø., Ayala, C., Conradi, R.: Adoption of open source software in software-intensive
organizations–A systematic literature review. Inf. Softw. Technol. 52(11), 1133–1154
(2010)

21. Helmreich, M.: Best practices of adopting open source software in closed source software
products. In: (Doctoral dissertation, Diplomarbeit, Friedrich-Alexander-Universität
Erlangen-Nürnberg) (2011)

22. Hummel, O., Janjic, W., Atkinson, C.: Code conjurer: pulling reusable software out of thin
air. IEEE Softw. 25(5), 45–52 (2008)

23. Kaufmann, A., Riehle, D.: The QDAcity-RE method for structural domain modeling using
qualitative data analysis. Requirements Eng. 1–18 (2017)

24. von Krogh, G., Spaeth, S., Haefliger, S.: Knowledge reuse in open source software: An
exploratory study of 15 open source projects. In: 2005 Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, HICSS 2005 p. 198b. IEEE, January
2005

25. Von Krogh, G., Von Hippel, E.: The promise of research on open source software. Manage.
Sci. 52(7), 975–983 (2006)

166 N. Harutyunyan et al.

http://dx.doi.org/10.1007/978-3-540-69566-0_17
http://dx.doi.org/10.1007/978-3-540-69566-0_17
http://dx.doi.org/10.1007/978-0-387-09684-1_16

26. De Laat, P.B.: Governance of open source software: state of the art. J. Manage. Governance
11(2), 165–177 (2007)

27. Lakhani, K.R., Von Hippel, E.: How open source software works:“free” user-to-user
assistance. Res. Policy 32(6), 923–943 (2003)

28. Lattemann, C., Stieglitz, S.: Framework for governance in open source communities. In:
2005 Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
HICSS 2005, p. 192a. IEEE, January 2005

29. Lombard, M., Snyder-Duch, J., Bracken, C.C.: Content analysis in mass communication:
assessment and reporting of intercoder reliability. Hum. Commun. Res. 28(4), 587–604
(2002)

30. OpenChain Specification (2018). https://www.openchainproject.org/spec
31. Di Penta, M., German, D.M., Antoniol, G.: Identifying licensing of jar archives using a

code-search approach. In: 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR), pp. 151–160. IEEE, May 2010

32. Popp, K.M.: Best practices for commercial use of open source software. In: Business
Models, Processes and Tools for Managing Open Source Software. BoD–Books on Demand
(2015)

33. Radcliffe, M., Odence, P.: The 2017 open source year in review. Black Duck Software, DLA
Piper. (self-published presentation) (2017)

34. Riehle, D.: The economic motivation of open source software: stakeholder perspectives.
Computer 40(4), 25–32 (2007)

35. Riehle, D.: The commercial open source business model. In: Nelson, M.L., Shaw, M.J.,
Strader, T.J. (eds.) AMCIS 2009. LNBIP, vol. 36, pp. 18–30. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03132-8_2

36. Riehle, D.: Controlling and steering open source projects. IEEE Comput. 44(7), 93–96
(2011)

37. Riehle, D., Lempetzeder, B.: Erfolgsmethoden der Open-Source-Governance
und-Compliance. In: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2014)

38. Riehle, D., Harutyunyan, N.: License clearance in software product governance. In: NII
Shonan (2017)

39. Ruffin, C., Ebert, C.: Using open source software in product development: a primer. IEEE
Softw. 21(1), 82–86 (2004)

40. Sadowski, B.M., Sadowski-Rasters, G., Duysters, G.: Transition of governance in a mature
open software source community: Evidence from the debian case. Inf. Econ. Policy 20(4),
323–332 (2008)

41. Semeteys, R.: Method for qualification and selection of open source software. In: Open
Source Business Resource, May 2008

42. Software Package Data Exchange (SPDX) (2018). https://spdx.org/
43. Sowe, S.K., Stamelos, I., Angelis, L.: Understanding knowledge sharing activities in

free/open source software projects: an empirical study. J. Syst. Softw. 81(3), 431–446 (2008)
44. Tools for Managing Open Source Programs (2018). https://www.linuxfoundation.org/tools-

managing-open-source-programs/
45. Umarji, M., Sim, S.E., Lopes, C.: Archetypal internet-scale source code searching. In:

Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008. ITIFIP, vol. 275,
pp. 257–263. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09684-1_21

46. Wang, H., Wang, C.: Open source software adoption: a status report. IEEE Softw. 18(2), 90–
95 (2001)

Understanding Industry Requirements for FLOSS Governance Tools 167

https://www.openchainproject.org/spec
http://dx.doi.org/10.1007/978-3-642-03132-8_2
https://spdx.org/
https://www.linuxfoundation.org/tools-managing-open-source-programs/
https://www.linuxfoundation.org/tools-managing-open-source-programs/
http://dx.doi.org/10.1007/978-0-387-09684-1_21

OSS Reusability

Building a Social Platform Using FLOSS
to Support Collaborative Communities:

The ReWeee Case Study

Ioannis Routis(B), Anargyros Tsadimas, and Mara Nikolaidou

Harokopio University of Athens, 70, El. Venizelou Str, 17671 Kallithea, Greece
{i.routis,tsadimas,mara}@hua.gr

Abstract. In this paper we present the development of a collaborative
community using exclusively open source software. After the definition
of the functional requirements of the project, we focus on finding specific
software components to satisfy these requirements. The intention was
to minimize the development effort and labor, relying on open source
software. As a result, the platform was developed writing less than 10%
of the required code and reusing more than 20 software components,
not counting the software dependencies. The new components developed
form our contribution to the community.

Keywords: Collaborative communities
Open source software development · Social networks
Component-based development

1 Introduction

Social networks have influenced the way that modern web applications are oper-
ating. A large number of them have adopted many characteristics of social
networks, such as user profiles, real time notifications, instant messages, defini-
tion of users relationships, history of user actions, etc. Moreover, social network
technology has been established as a prominent way of communication between
members of an organization or enterprise [3]. Smart Communities as these are
defined in [5], understand the potential of Internet technology, and make a con-
scious decision to adopt this technology to transform life and work in significant
and positive ways [7]. Social software systems aim at the production of specific
artifacts, thereby inviting users to participate in goal-oriented activities [4]. The
user to user interaction is a major feature of collaborative communities.

In collaborative communities, leadership is decentralized and structured hor-
izontally, a feature that makes communication on those groups more personal
and more conversational than in other traditional groups. For that reason, in
environments like those described above, the workflow and processes in gen-
eral need to be highly adaptive and loosely structured in order to make ideas
cross-fertilized and generate rich opportunities for innovation [6].

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 171–180, 2018.
https://doi.org/10.1007/978-3-319-92375-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_14&domain=pdf

172 I. Routis et al.

Such an adaptive process lies within the framework of the LIFE ReWeee
Project, which aims to facilitate and promote Electrical and Electronic Equip-
ment exchange and donation among households or households and public/private
bodies so as to prevent the creation of Waste Electrical and Electronic Equipment
(WEEE) [8].

Reuse of electrical and electronic equipment is among the top priorities in
the EU waste hierarchy. In order to enhance the public perception towards the
reuse of electric appliances and the prevention of WEEE generation, an initia-
tive has been undertaken by a group of partners, which is implemented via the
LIFE+ ReWeee project1. ReWeee Project includes a major action which is the
development of a web-based collaborative platform for donating and exchanging
Electrical and Electronic Equipment (EEE). That platform is used by house-
holds, companies and public services and its success lies within the social com-
munication between volunteers and their collaboration in order to achieve the
best possible result.

The challenge was to build the ReWeee platform using FLOSS and reuse
as many software components as possible. Due to the previous experience of
building applications with social characteristics, the development team decided
to build the platform using the Django framework2.

The remainder of this paper is organized as follows. In Sect. 2, the project
requirements are presented alongside with the collaborative platform perspec-
tive. Section 3 highlights how FLOSS could satisfy the above presented platform
requirements by not only using as-is or extending existing Django applications,
but also by developing new ones. The final section refers to the conclusion that
can be drawn for FLOSS adoption in web application development, while the
contribution of this work is presented as well.

2 Project Requirements

In ReWeee Platform, users are categorized in three main types. These are guest
users, registered users and administrators, that differentiate themselves as far
as their granted permissions upon the use of the platform is concerned. More
analytically, registered users are divided in two categories: a regular user, called
civilian and an NGO user, indicating a representative of an Non Government
Organization, while administrators include two different role types. The first
one, the manager, which is responsible to validate a NGO through a provided
official document (e.g., statute) and update the terms and conditions document
for the platform and the second one the administrator whose responsibilities
include user management, product categories management etc.

As far as the platform user authentication is concerned, when any unregis-
tered user visits the web platform for the first time, he gets prompted to register
into it, by creating a user account. The platform can authenticate users either
as usual, namely, via an email and a password or from the most popular social
1 ReWeee Project. https://www.reweee.gr/en.
2 Django Project. https://www.djangoproject.com/.

https://www.reweee.gr/en
https://www.reweee.gr/en
https://www.reweee.gr/en
https://www.djangoproject.com/

Building a Social Platform Using FLOSS 173

networks (i.e., Twitter, Facebook and Google Plus). This account can be created
by giving to the platform the necessary permissions for using personal user data.
For NGOs there is a second level of validation when a new NGO user subscribes
to the ReWeee platform.

After a successful registration, the, from now on, registered platform user,
is able to submit an advertisement donating or exchanging an item, to declare
interest for an existing product and propose an offer to acquire it, as well as to
communicate with any other user who owns a desirable electric device. Products
are categorized in a multilevel hierarchy which was provided by the committee
of the ReWeee project. A product belongs to a lower level of hierarchy.

ReWeee platform enables messaging and notifications for its users so as to
enhance communication and collaboration for product exchange. Namely, when-
ever user expresses interest on a product, the owner of the product is notified via
email and through a notification inside the platform. In this product exchange
process the involved role interaction can either be civilian-to-civilian and civilian-
to-NGO.

Moreover, a registered user is not only able to search a product but also to
has a profile with information about his/her location, products, and rating in
which he can activate or deactivate an uploaded product. A registered platform
user can also comment in any advertisement that he had made use of. That way,
either the platform administrators or the appropriate users will be notified for
either the category change proposal or the commenting in an advertisement.

Finally, the stakeholders of the ReWeee project would like to view some
statistics about the products exchanged in specific periods of time, how many
users have been registered and are active etc. These reports are produced at any
time through the administration environment of the platform.

Fig. 1. Collaborative platform perspective

For the development of the collaborative platform and the satisfaction of its
requirements described above, an implementation strategy should be adopted.

174 I. Routis et al.

More specifically, as it is projected in Fig. 1, firstly, a set of already existing
packages should be reused in order to reduce coding effort and testing. Secondly,
some existing packages could undergone minor changes so as to adapt in project
development requirements. Thirdly, several new packages should be developed
for the satisfaction of requirements that the reuse of existing packages could not
satisfy.

3 Satisfying Project Requirements with FLOSS

The collaborative platform architecture is illustrated in Fig. 2. The operating sys-
tem of all servers is Debian Linux. The platform is a multi-layered application,
where the user interface is based on bootstrap front-end framework (forming the
django views), the data are kept in a Postgres database and the business logic
is implemented using django framework. A number of reusable software compo-
nents, called django packages or django applications were used in order to provide
the required functionality. Users management is relying on python-social-auth
and registration applications, while users interaction/communication is based
on django-messages and notification applications. The products definition and
exchange mechanism is based on the product application, which was developed
because there was not available any related application. Table 1 summarizes the
reused django applications and the reusability level of each one. Moreover, some
new django packages were developed to support the complete set of functional
requirements.

3.1 Django Framework

Django is a high-level Python Web framework that encourages rapid develop-
ment and clean, pragmatic design. It is based on Python programming language.
Django follows the model-view-template (MVT) architectural pattern3. It is dis-
tributed under BSD license. Django-packages4 is a directory of reusable django
applications.

3.2 Extending Django User Model

To support the required user roles, the default django user model was extended.
A UserProfile model class holds the common attributes of the users such as the
display name and two specific classes, extending the UserProfile class, namely
CivilianProfile and NGOProfile are defined for the specific user roles of the
community.

3 The Model-View-Controller design pattern. https://djangobook.com/model-view-co
ntroller-design-pattern/.

4 Django-packages. https://djangopackages.org/.

https://djangobook.com/model-view-controller-design-pattern/
https://djangobook.com/model-view-controller-design-pattern/
https://djangopackages.org/

Building a Social Platform Using FLOSS 175

Fig. 2. ReWeee platform architecture

3.3 Supporting Periodic Tasks

To satisfy specific functional requirements, such as constraints about the amount
of products that are exchanged between the users, it was necessary to periodically
check the amount of products exchanged per user. Moreover, for optimal process
completion control, it is required to check whether an exchange is completed on
time.

More specifically, reminders are being sent to user for completing a prod-
uct exchange/donation on time. An asynchronous task manager software could
satisfy these requirements. Celery5 is an asynchronous task queue/job queue
based on distributed message passing . It is focused on real-time operation, but
supports scheduling as well. Due to the fact that it is written in Python, it is
easy to integrate with django. Celery uses “brokers” to pass messages between a
Django Project and the Celery workers. Redis is an open source (BSD licensed),
in-memory data structure store, used as a database, cache and message broker.
Redis can serve as the message broker for the Celery. Supervisor6 was used in
order to run the celery worker and scheduler as daemon processes.

3.4 Reusable Applications with Minor Changes

Although the plenty of the reusable django application were exploited, in two
specific cases there was a need to modify some of them to feet the requirements
of the platform. The first case is the notification mechanism, where the html

5 Celery. http://www.celeryproject.org/.
6 Supervisor. A process control system. http://supervisord.org/.

http://www.celeryproject.org/
http://supervisord.org/

176 I. Routis et al.

templates of the application needed an extension to support all the attributes of
the exchange events. The second case was the registration application, where a
new step of verification was injected at the registration process.

Notifications. Notifications are a major characteristic of social networks. For
that reason, in the case of our platform the notifications application was widely
used as the whole task flow was mainly driven by the interchange of notifi-
cations and actions from the platform users. More analytically, notifications
occurred whenever a user expressed interest on a product, when an offer was
accepted/rejected or even when a user confirms or aborts an agreement about
an exchange. That way a notification event was triggered for another platform
user which could lead to another platform activity. To support this functionality,
the django-notifications package (see Table 1) was extended.

Table 1. Reused Django applications

Operation Library name Reusability

Messaging django-messages as is

Notifications django-notifications modified

Categories django-categories as is

Import/Export django-import-export as is

Rating django-star-ratings as is

Autocomplete django-autocomplete-light as is

Upload multiple files django-multiupload as is

Avatar django-avatar as is

Pagination django-endless-pagination as is

Captcha django-recaptcha as is

Terms and conditions django-termsandconditions as is

Cookies disclaimer django-cookie-law as is

Contact form django-envelope as is

Notify on model changes django-fieldsignals as is

Bootstrap forms django-forms-bootstrap as is

Registration django-registration modified

Social network authentication python-social-auth as is

Model translation django-modeltranslation as is

Admin ui django-jet as is

Task manager celery as is

Message broker django-redis as is

https://github.com/arneb/django-messages
https://github.com/django-notifications/django-notifications
https://github.com/callowayproject/django-categories
https://github.com/django-import-export/django-import-export
https://github.com/wildfish/django-star-ratings
https://github.com/yourlabs/django-autocomplete-light
https://github.com/Chive/django-multiupload
https://github.com/grantmcconnaughey/django-avatar
https://github.com/frankban/django-endless-pagination
https://github.com/praekelt/django-recaptcha
https://github.com/cyface/django-termsandconditions
https://github.com/TyMaszWeb/django-cookie-law
https://github.com/zsiciarz/django-envelope
https://github.com/craigds/django-fieldsignals
https://github.com/pinax/django-forms-bootstrap
https://github.com/ubernostrum/django-registration/blob/2.4.1/docs/index.rst
https://github.com/omab/python-social-auth
https://github.com/deschler/django-modeltranslation
https://github.com/geex-arts/django-jet
https://github.com/celery/celery/
https://github.com/niwinz/django-redis

Building a Social Platform Using FLOSS 177

Registration. Due to the platform user requirement analysis and the catego-
rization of roles that are involved, an extension was made to the default Django
Registration application. More specifically, on the one hand, for the NGO user,
an advanced authentication method was implemented as it was mentioned above.
Registration process was the same as with the plain users but its complexity
involved, a formal document inspection (organization statute) from one of the
administrator roles, the Platform Manager. The NGO user was inactive unless
its statute was verified. On the verification, an email informs the user of the
successful registration. On the other hand, for all the user types, it was planned
to provide the functionality of signing in the platform using a social network
choosing from the major ones (i.e. Facebook, Twitter, Google Plus). For the
implementation of this platform feature, the appropriate APIs were used. Dur-
ing the authentication on each social network, the user defined which information
platform could use (email, username, etc.).

3.5 Developed Applications

User Profiles. A civilian has a private profile (Fig. 3a), which is accessible
only from logged in users. An NGO user has a public profile, where basic info
are presented such as the name of the organization, the location (only area/city,
no specific location), the document that certifies the fact that this organization
is an NGO. For all user profiles rating information, along with comments from
other users are presented. Moreover some statistics about the products that this
individual has received and provided. Moreover a products list link and a send
message link are provided.

(a) A user profile page (b) A product in a leaf category

Fig. 3. A user profile and product view

178 I. Routis et al.

Product. A user can create products that he/she would like to exchange. For
each product a name, a state, a description and some images can be used to
characterize the product (Fig. 3b). Also the date that the product was added
is kept. Moreover, a user can express interest on acquiring a product. Upon
each interest declaration a user can define if he/she wants to provide some of
his/her products to support the specific exchange. Every time a uses expressed
interest on a product, the owner of the product is notified via email and by
a notification inside the platform. Here he/she can review the details of the
exchange and he/she can accept or decline the exchange. On the acceptance, the
users are physically exchanging the products and one last step is that the user
that acquires the product(s) is responsible to verify the exchange and has the
ability to rate the acquired products.

Products are categorized to leaf categories and a user can check the number of
products in each category hierarchy, as shown in Fig. 4. To effectively categorize
the products, the django-categories application was exploited. Django-categories
relies on django-mptt package7 [1], which provides utilities for implementing
Modified Preorder Tree Traversal with Django Models and working with trees
of Model instances.

Fig. 4. Products categories

Location. The need for the development of a new django application for loca-
tion is based on that there was not available a simple, reusable application where
a user could select a location using the Google Maps API and store this location
to user profile. Figure 5 presents the form where a user declares his/her area. A
developer can define specific attributes that are maintained in the datastore (for
example he/she could store only the area and the city, not a specific address).

7 django-mptt. Modified preorder tree traversal with django models. https://github
.com/django-mptt/django-mptt/.

https://github.com/django-mptt/django-mptt/
https://github.com/django-mptt/django-mptt/

Building a Social Platform Using FLOSS 179

Fig. 5. User location definition

3.6 Discussion

What was obtained throughout this development process was mainly the inspi-
ration not only to reuse but also to contribute to the FLOSS community. Using
existing software components from other developers promotes the interoperabil-
ity and applicability of software components as the result of minor modifications
ending in code refactoring and optimization. As an observation, in our case, the
development phase was decreased by around 70%, since the developed -from
scratch- code represented less than 10% of the total project. The remainder
of the development phase was used to test and integrate the adopted code, to
make the appropriate modifications and integrate the feedback of the final users
in order to ensure the platform acceptance. Obviously, the developed software
components are planned to return to the open source community as our contri-
bution in building a collaborative community. The ReWeee platform is currently
in internal testing mode from the participants. We are currently refactoring the
code and developing integration tests in order to ensure the interoperability with
the Django underlying environment.

4 Conclusions

Open source software developers reuse code because they want to integrate
functionality quickly, because they operate under limited resources in terms of
time and skills, and because they can mitigate development costs through code
reuse [2]. Although there is a large number of reusable software components
available, the reusability, the customization and the development of new com-
ponents is not a straightforward process. The documentation, the code quality
and the tests included in a software repository are some of the criteria that a
developer could rely on in order to select the appropriate software.

However, using existing software, it helps the maintainability of the software,
software bugs are resolved and refactoring is performed in order optimize the
performance and the security. Our contribution was two-fold, as it primarily
aimed to minimizing labor through the reuse of existing work and secondly to

180 I. Routis et al.

be set as a contribution of “FLOSS on top of FLOSS”, namely to create reusable
code and libraries which would be returned back to the FLOSS community.

Acknowledgment. This work is co-funded by the European Commission through the
LIFE+ Funding program, LIFE14 ENV/GR/000858: LIFE REWEEE.

References

1. Modified preorder tree traversal with django models. https://github.com/django-
mptt/django-mptt/. Accessed 29 Jan 2018

2. Haefliger, S., Von Krogh, G., Spaeth, S.: Code reuse in open source software. Man-
age. Sci. 54(1), 180–193 (2008)

3. Hatzi, O., Meletakis, G., Katsivelis, P., Kapouranis, A., Nikolaidou, M., Anagnos-
topoulos, D.: Extending the social network interaction model to facilitate collabo-
ration through service provision. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S.,
Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol.
175, pp. 94–108. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43745-2 7

4. Johannesson, P., Andersson, B., Wohed, P.: Business process management with
social software systems – a new paradigm for work organisation. In: Ardagna, D.,
Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 659–665. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8 66

5. Lindskog, H.: Smart communities initiatives. In: Proceedings of the 3rd ISOneWorld
Conference, vol. 16 (2004)

6. London, S.: Building collaborative communities. On Collaboration. Tate, London
(2012)

7. Meletakis, G., Hatzi, R., Katsivelis, P., Nikolaidou, M., Anagnostopoulos, D., Anas-
tasiou, C.A., Karfopoulou, E., Yannakoulia, M.: MedWeight smart community: a
social approach. In: Ismail, L., Zhang, L. (eds.) Information Innovation Technology
in Smart Cities, pp. 151–162. Springer, Singapore (2018). https://doi.org/10.1007/
978-981-10-1741-4 11

8. Routis, I., Nikolaidou, M., Anagnostopoulos, D.: Using CMMN to model social
processes. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp.
335–347. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 25

https://github.com/django-mptt/django-mptt/
https://github.com/django-mptt/django-mptt/
https://doi.org/10.1007/978-3-662-43745-2_7
https://doi.org/10.1007/978-3-662-43745-2_7
https://doi.org/10.1007/978-3-642-00328-8_66
https://doi.org/10.1007/978-981-10-1741-4_11
https://doi.org/10.1007/978-981-10-1741-4_11
https://doi.org/10.1007/978-3-319-74030-0_25

Improving C/C++ Open Source Software
Discoverability by Utilizing Rust

and Node.js Ecosystems

Kyriakos-Ioannis D. Kyriakou1, Nikolaos D. Tselikas1(&),
and Georgia M. Kapitsaki2

1 Communication Networks and Applications Laboratory,
Department of Informatics and Telecommunications, University of Peloponnese,

End of Karaiskaki Street, 22 100 Tripolis, Greece
{kyriakou,ntsel}@uop.gr

2 Department of Computer Science, University of Cyprus,
75 Kallipoleos Street, P.O. Box 20537, 1678 Nicosia, Cyprus

gkapi@cs.ucy.ac.cy

Abstract. Discovering Open Source Software (OSS) components efficiently is
not always an easy task. Node.js is a popular JavaScript runtime environment,
whereas Rust is widely used for system programming, and both can be utilized
for OSS discovery purposes. In this work, we examine whether Rust and Node.js
can be used, along with their respective tooling and package repositories, in order
to achieve improved discoverability of existing OSS implemented in C/C++.
The paper describes how the capabilities of Rust in C/C++ interoperability can be
combined with novel compilation techniques of low-level code to asm.js and
WebAssembly, in order to harness JavaScript’s popularity as the medium to
publicize hard to discover C/C++ OSS. A proposed incremental methodology is
presented and the main, as well as the collateral, effects of enforcing the proposed
methodology in a proof-of-concept situation are examined. Our findings indicate
potential increase in discoverability, code quality, portability, along with viable
performance degradation of portable binaries, demonstrating 8.7 times slower
execution compared to machine code, in a worst-case scenario.

Keywords: Free open source software � Software discoverability
Software performance evaluation � Software convergence
Software interoperability � C/C++ � WebAssembly � Node.js � Rust

1 Introduction

Node.js [1] is an open source JavaScript (JS) runtime built around V8 [2], the JS engine
used in Chromium, the base for Google’s Web browser. It has gained massive adoption
by developers and organizations around the world, because of its ease of development,
as well as the efficient, event-driven and non-blocking input/output (I/O) model.
According to the results of the 2017 annual survey conducted by Stack Overflow, JS

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
I. Stamelos et al. (Eds.): OSS 2018, IFIP AICT 525, pp. 181–192, 2018.
https://doi.org/10.1007/978-3-319-92375-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92375-8_15&domain=pdf

has been declared as the most popular programming language for the fifth consecutive
time [3]. The overall shifts in popularity throughout the years the survey has been
conducted, displays both JS and Node.js as technologies with the greatest gain in
traction among all popular choices; thus, representing the ubiquity of JS as a pro-
gramming language of choice, in both server and client infrastructures. JS as part of the
Web standard specifications, has enabled the production of complex applications that
require no installation or upgrades, enable real-time communications, provide access to
device-specific hardware and foster portability and accessibility, due to the prevalence
of Web browsers.

One key advantage that can be attributed to the success of JS based systems is
Node.js’ package manager, npm [4], which houses the largest distribution of open
source libraries in the world, counting over 570,000 individual modules [5]. Publicly
available modules provide ease in the discovery of building blocks, that enable rapid
prototyping of systems with minimal effort, through code reuse maximization [6].

Although Node.js applications are most commonly written in pure JS, the under-
lying interoperability with foreign compiled code is abstracted. According to Node.js’
announcement for version 8.0.0 of the platform, 30% of all modules rely indirectly on
native modules [7]. Node.js developers can provide their own bindings to C/C++
libraries, in order to extend the platform’s capabilities and optimize performance, but in
doing so, new challenges related to the application’s integrity arise. Furthermore,
re-purposing such modules to the Web platform has been largely impossible, due to the
fact that the only recognized programming language in such environments is JS. Recent
advancements have made compilation of lower-level languages to JS, or the
WebAssembly portable binary format, possible. Whereas these novel technologies
enable components to be written in C/C++, the long-studied challenges related to
memory-safety and language misuse, propagate towards the higher layer, where the
presumed safe JS code executes. In addition, the absence of a modules’ system and of a
common mechanism to package, document, discover and distribute libraries written in
C/C++ hinders the discovery of existing libraries.

Rust is a systems programming language designed to prevent common C/C++
pitfalls, while at the same time it incorporates contemporary development methods,
encouraging collaboration in OSS. Having the above as starting points, we observed an
opportunity to study whether Rust’s capabilities of providing safe interfaces to existing
libraries, can be combined with the proliferation of the npm ecosystem, in order to
enhance the discoverability and reuse potential of open source projects, and evaluate
the side effects of such a coupling. This work describes the process we have followed,
in order to perform the above investigation, and how this approach can positively affect
discoverability, as well as quality aspects.

The rest of the paper is structured as follows. Section 2 introduces the background
of this work describing the current state of JavaScript and C/C++ OSS, along with open
challenges. The main contribution of our work with its architecture are presented in
Sect. 3, and evaluated and discussed in Sect. 4. Finally, Sect. 5 concludes the paper
outlining directions of future work.

182 K.-I. D. Kyriakou et al.

2 Background and Motivation

Translation of programs written in C/C++ for the Web has been a recent topic of
interest in various fields of research. Compilation of audio tools has been examined by
Letz et al. and Zbyszyński et al. [8, 9], whereas a distributed evolutionary algorithm has
been investigated by Leclerc et al. [10]. Furthermore, the potential of using Rust
instead of other systems programming languages is another emerging recent topic. Rust
has been shown to produce efficient code for the implementation of garbage collectors
reducing at the same time the programmer error surface [11, 12]. Combination of both
is possible, and we were motivated to examine the application of these technologies
in junction with modern development trends in OSS, in order to improve the state of
C/C++ software discoverability. The rest of this section provides the background
information in order to justify our thought process, as well as the technologies chosen.

2.1 JavaScript in Open Source Projects

JS is one of the most popular programming languages intended to facilitate interaction
with the user in web applications [3]. More recently, it has been employed in
server-side infrastructure for distributed services, in cross-platform applications tar-
geting stationary and mobile users alike, but has also been used as a compilation target
for a plethora of programming languages [13]. In our previous work, we have exam-
ined the aforementioned aspects of JS by implementing a full-featured high-
performance cross-platform social application and distributed service, with only OSS
components, and evaluated the benefits and implications of our choices [14–16]. This
endeavor was only made possible due to the wide spectrum of focused OSS modules,
easily accessible via the npm repository. The word “module” is used to describe
building blocks, usually performing a single task, leading to composable, instead of
monolithic, design patterns. According to Modulecounts [5], a service monitoring
language for module repositories, npm averages 697 new modules/day, followed by
Packagist (PHP) with 136 modules/day and Maven Central (Java) with 100
modules/day. It is noteworthy, that npm module submissions follow an exponential
growth curve, clearly outpacing all the other repositories. Furthermore, TF Bissyandé
et al. have studied 100,000 OSS projects hosted on GitHub [17]. Their findings
exhibited that JS was the programming language that appeared the most frequently in
multi-language projects. The Node.js platform is such a multi-language project, where
its components are written in both JS and C/C++.

Node.js Architecture. The “Applications/Modules” space is where all JS project files
reside. They may make either direct, or indirect use of precompiled foreign code.
Additionally, required external dependencies, which are reused in the application’s
logic, belong in this space as well. Although JS has positive aspects, Node.js has to rely
upon compiled code to perform I/O operations [18]. The runtime’s garbage collector
(GC) abstracts the, potentially error prone, manual dynamic memory management, but
there is no thread-safety mechanism present when performing I/O, making memory
related faults, and race conditions possible [19]. Furthermore, failure points may be
present in the underlying foreign compiled code, propagating to the higher levels, and

Improving C/C++ Open Source Software Discoverability 183

leading to unexpected behaviors and faults. Node.js utilizes C/C++ libraries internally,
in order to provide access to the operating system resources. Such libraries provide
efficient solutions to all I/O related operations included as core functionalities. For
instance, the libuv project provides event-loop and asynchronous I/O access [20]. Other
examples of libraries used internally by Node.js are c-ares, zlib, and OpenSSL. The
“C/C++ Bindings” space is where the functionality of such libraries is exposed via the
core JS Application Programming Interface (API). Some examples in this space are the
os, fs, net and http modules.

Addons in Node.js refer to libraries and their corresponding bindings, which are not
included in the core modules [21]. They are usually written in C/C++, in order to
extend Node.js’ functionality, or provide performance gains, when a JS implementation
is found to be lacking. For instance, lWebSockets is a popular WebSocket protocol
implementation for Node.js, which out-performs all known pure JS implementations
[22]. Moreover, libxmljs provides bindings to the popular XML parsing C library,
libxml, fulfilling Node.js lack of XML support [23].

Although addons have capabilities to extend Node.js, they require knowledge of
how the V8 engine works and their implementations must be fine-tuned, in order to
avoid locking the main thread JS executes, duplication of memory allocations, data
races, memory faults, etc. Another method of interfacing shared objects with Node.js is
via the ffi module. It involves no elaborate setup, at the cost of highly reduced
performance on high Input/Output systems. We theorize that writing and publishing
Node.js bindings, may pose an opportunity for undiscoverable C/C++ OSS to receive
exposure and be collaboratively improved, due to the massive reuse potential in Node.
js projects. Unfortunately, their implementation is connected to a performance-
productivity trade-off.

2.2 Challenges in C/C++ OSS

OSS implemented in the popular systems programming languages C and C++ predates
the proliferation of cloud computing, which enabled OSS to flourish. There is evidence
of the inherent inflexible codebase componentization in the amount of build systems
available. Some well-known examples are CMake [24], qmake [25], SCons [26], and
GYP [27], with the latter being used by Node.js. Legacy codebases that are not using
such systems gradually degrade in maintainability, as observed by Dayani-Fard et al.
[28]. In contrast, most prevalent programming languages in OSS implement some form
of enforced conventions, as well as a queryable directory or repository, containing the
corresponding metadata for every published project, e.g. via mvn for Java [29], npm for
JS [4], gem for Ruby [30], pip for Python [31], etc. Those enforced conventions serve
as guidelines to interact with code repositories, document, license, test, build, dis-
tribute, etc., features which may exist for C/C++ in the form of various third-party
tools, but are incapable of providing the cohesion needed across OSS. The lack of
advocated methodology in C/C++ OSS is more apparent in legacy projects, with many
of them accessible only through manual pursuit via web search-engines. Downloading
arbitrary dependencies by-hand, extracting, copying-and-pasting, figuring out the right
compiler flags, are not uncommon practices.

184 K.-I. D. Kyriakou et al.

Finally, inconsistent dynamic memory management is common in even mainstream
utilities. For example, the GNU tool ls, has been known to leak memory, and is
considered as a non-issue by its maintainers [32]. Although in its intended use, the
operating system would handle the leak, using the library unknowingly of that issue in
a persistent system, e.g. a server, would pose a threat to robustness. Moreover, lack of
C/C++ programming experience may cause integer overflow/underflow leading to
“undefined behavior”. Type safety is not guaranteed by C/C++, and although programs
may not exhibit type errors, undefined behaviors are incorporated in the standard
specification, leading compilers to produce unspecified results and also to allow the
program to do practically anything. A simple example of iterator invalidation, leading
to undefined behavior is demonstrated in the following listing.

std::vector v;
v.push_back(MyObject);
for (auto x : v) {
 v.clear();
 x->whatever(); // results in undefined behavior
}

If the contents of a container that is being iterated over are destroyed, the program is
led into undefined behavior. This is an example of a perfectly valid code from a C++
compiler’s perspective, capable of halting the project using it. Such cases of undefined
behavior have already been investigated in depth [33]. Memory safety is set at risk by
null-pointer dereferences (NULL in C and nullptr in C++) that cause programs to
crash, dangling pointers allowing access to heap allocated resources that have not lived as
long as they had to, and buffer overruns allowing the program to access elements before
the start or beyond the end of an array [34]. Malicious software has been taking advantage
of the way C and C++ programs handle memory and exploiting bugs in the code. Hence,
OSS discovered in the wild may propagate unwanted effects to derivative projects.

2.3 Rust: A Young Contender in OSS

Rust was created in order to address the challenges presented in Sect. 2.2. It follows the
C++ philosophy of zero-cost abstractions and takes a step further, by incorporating
memory-safety and data-race free concurrency without the need for a GC [35]. This is
accomplished by statically tracking ownership and lifetimes of all variables and their
references. The ownership system enables Rust to automatically deallocate and run
destructors on all values immediately, when they go out of scope and prevents values
from being accessed after they are destroyed. Rust applies some established techniques
from academia, e.g. enums as algebraic data types, common in the ML family of
languages, and traits, which enable polymorphism similar to Haskell’s type classes.
Similarly to JS, both procedural and functional paradigms are used, as examined by
Poss [36].

Improving C/C++ Open Source Software Discoverability 185

Rust is available on GitHub, where all parts of the compiler and tooling are
accessible for contributions [37]. The integrated command line application cargo
serves as a complete project management tool. It is capable of instantiating new pro-
jects, building for various architectures, managing dependencies, testing, producing
documentation, and more. Furthermore, cargo is responsible for enforcing the
practices that enable OSS to be discoverable and maintainable. Interaction with C APIs
is free of overheads, and the binaries produced can be called from C with no setup. As
Rust utilizes LLVM for machine code emission, we were triggered to examine the
possibility of utilizing this system for bridging the gap between C/C++ codebases and
modern OSS development practices.

2.4 Compilation to JavaScript and WebAssembly

A strict subset of the JS programming language was designed as a compilation target,
in order to allow for translation of programs written in other languages. It became
known as asm.js, and the Emscripten compiler was created by Alon Zakai in 2011. This
language is statically compiled and has shown near native performance [38]. One of the
key benefits to its adoption was that even if a Web browser had not implemented
optimizations for the subset, it could still run on every JS interpreter. That is one reason
it is still in use as a fallback from the newer WebAssembly specification [39].
WebAssembly is a portable size and load-time efficient format, suitable for compilation
to the Web, implemented in all major Web browsers, but still under the process of
standardization via the W3C WebAssembly Working Group. It features language and
platform independence, safe execution, and has shown promising performance gains of
up to 5.89 times when replacing JS components with Rust code in real-use parsing
scenarios [40]. Currently not all features have been finalized and garbage collection,
threads, SIMD, etc. are in progress. It is relevant to both JS and C/C++/Rust OSS,
because the combination of those technologies may solve the portability issue in the
dissemination of multi-language OSS.

3 Exposing C/C++ OSS via Rust and Node.js

In this section the independent processes that realize our proposed methodology are
presented and discussed. Each process is incremental and not mandatory, but adds to a
project’s exposure. The high-level architecture of our proposal is presented in Fig. 1,
followed by a proof-of-concept example.

3.1 Using Rust to Package and Publish on crates.io

The processes of taking the source files of a C/C++ project and producing a package for
publishing are depicted in the upper-half part of Fig. 1. By issuing the cargo new
command, followed by the name of the package to be published, a local git repository
is initiated, and the Cargo.toml file holding the project’s metadata and dependencies is
produced. By adding the cc, and bindgen packages to the dependencies, the project
is now capable of generating bindings statically via header files, compiling the source

186 K.-I. D. Kyriakou et al.

files and linking them automatically. By creating a build.rs file, where the build
parameters are specified, the process is complete. The produced bindings can be
included in lib.rs, where a new Rust API may be written. By issuing the cargo
publish command, the package is uploaded to crates.io, the main Rust packages
repository, and can be discovered by querying it. As C/C++ and Rust can all emit asm.
js and WebAssembly files, portable executables may be built for reuse by JS
environments.

3.2 Using Node.js to Package and Publish on npm

The second part of the process is depicted in the lower-half part of Fig. 1. Node.js uses
a package.json file, to hold the project’s dependencies and metadata. It can be gen-
erated by issuing the npm init command. The library can be used directly by utilizing
the ffi module, but in order to create the more efficient Addon, the nan module or the
official N-API dependencies can be used. A C/C++ bridge must be created to convert
from C types to V8 types and provide a JS API. By instructing GYP via the bind-
ing.gyp file to use the bridge and link to the libraries produced by Rust, the Addon is
created. Finally, by creating an index.js file which exports the Addon, the asm.js and
WebAssembly, the process is complete. The package can be published on the npmjs.
org repository by using the npm publish command.

3.3 The Hypothetical Park-Miller-Carta PRNG Case

For our proof of concept scenario, we hypothesize that a researcher is seeking an
efficient Pseudo-Random Number Generator (PRNG) for a system’s prototype. They
are instructed by their colleague to use the Park-Miller-Carta PRNG.

Fig. 1. The proposed high-level architecture

Improving C/C++ Open Source Software Discoverability 187

We searched on GitHub for “Park Miller Carta PRNG”, and at the time this paper
was written, 1 result came up and it was a package implemented in JS. By searching the
Web, we came across a page dedicated to the algorithm, including documented sources
in assembly, C and C++ [41]. We proceeded to perform first step of the proposed
process, and created a local Rust project repository with cargo, where we included the
C/C++ source files.

The process of generating bindings automatically was successful and we then
created a safe interface for the library in Rust. The first observation was that when
interfacing with foreign code, the unsafe notation is constantly used. Its purpose is to
mark the calls to foreign functions, raw pointer dereferences, access to global mutable
variables, as well as inline assembly, the parts of the code the Rust compiler cannot
provide guarantees for. In the case of this particular PRNG library, the seed-state is
held in a global mutable variable. By writing tests to verify that the produced interface
is implemented correctly, the second observation was that the foreign code is not
thread-safe. Rust runs tests in parallel and, by adding the flag --test-threads=1,
to force consecutive execution, the tests pass. As the C/C++ implementation would
serve its intended use in 16bit microcontrollers, the original code was retained in a
module named ffi_unsafe, and documentation was written along with inline
tests-as-examples, to be part of the project’s documentation. In this particular case, the
library’s focus is rather narrow; hence, it was trivial to replace the unsafe blocks by
altering the way the state is stored and accessed. The product was an idiomatic
Rust API, including a C compatible API, that have been documented and tested. The
package was then pushed on GitHub and published on crates.io.

By utilizing the new C API, we compiled the library via emscripten to asm.js and
WebAssembly exposed from a high-level idiomatic API in the index.js file, in order to
be accessible to systems compatible with Node.js modules. The ffi module was used to
dynamically link directly to the shared object produced by Rust. At this point, we setup
a stress test to examine the potential performance degradation in each approach.

All versions were initialized with the seed 1. A for-loop cycled through each next
random integer invocation for 10 million times, in order to warm-up Node.js and
enable all the potential of Just-In-Time-Compilation. Then the benchmark library
performed the evaluation of each version. For Rust, the included library Bencher was
instructed to measure the execution time for 10 million integer generations, and was
averaged over 10 repetitions. Table 1 contains the results in mean number of execu-
tions per second, along with the mean divergences recorded. The software and hard-
ware specifications were the following: macOS 10.13, MacbookPro 2.3 GHz Intel Core
i5, 4 GB 1333 MHz DDR3, node v8.9.1, rustc 1.25.0-nightly, clang 4.0.0, emcc
1.37.29.

Table 1. Mean executions per second and mean divergence

Rust ffi WebAssembly asm.js

Executions/second 219,159,372 180,622 25,214,517 7,969,921
Divergence ±4.89% ±1.8% ±1.78% ±1.05%

188 K.-I. D. Kyriakou et al.

Thereafter, the ffi, WebAssembly and asm.js version, may be made available on
npm for direct distribution and use in all JS environments by creating a package.json
file and filling in the module’s metadata.

4 Results and Discussion

By following the proposed methodology on the hypothetical, albeit pragmatic scenario,
the following observations were made. The code and information related to this study
are available on [42].

4.1 Discoverability Improvement

According to the popular Web metrics provider Alexa, the website hosting the
examined Park-Miller-Carta PRNG implementation receives 1 page-view per day on
average, with an unknown amount of those views resulting in downloads. After pub-
lishing the investigated asm.js/WebAssembly implementations derived from the
type-checked code, as well as the Node.js ffi version, as a package on npm they
received 161 downloads in a period of about two and a half months, which translates to
about 2.15 downloads per day. Furthermore, the proof of concept package that was
published on crates.io averaged 0.7 additional downloads per day, during the same
period. The reported metrics suggest that re-packaged OSS according to our proposed
methodology can improve the state of C/C++ codebase distribution and discovery, by
multiplying the exposure to multiple repositories and providing a high-level API for
easier engagement. In addition, larger codebases can be modularized into more man-
ageable and maintainable components, and by publishing each one focused component,
exposure improvements can be realized collectively.

4.2 Code Quality Control

By interfacing the foreign C/C++ code with Rust, an undocumented thread-safety
weakness was discovered. An experienced programmer may have been able to realize
this fragility by going through the code, but in more complex scenarios, and especially
in the plane of OSS collaborations, code reviews alone cannot warrant the code’s
correctness. Wrapping error-prone code in Rust’s unsafe blocks and documenting them,
is a reasonable method to minimize the debugging surface. In addition, the process of
improving the quality of the code can be performed incrementally and largely unfocused
codebases can benefit from the concept of smaller components in the form of modules.

4.3 Performance Degradation

The scenario was deliberately chosen, in order to stress the performance of function
invocation during context-switching interoperability and determine the overhead. Rust
is able to call into C/C++ libraries without the associated overhead interpreted lan-
guages impose. Hence, calling the original PRNG library via the safe interface and
auto-generated bindings, exhibited the same performance as the corrected Rust version.

Improving C/C++ Open Source Software Discoverability 189

Node.js-C shared object interoperability was examined via the ffi module. This
choice was made in order to serve as a fair comparison against the asm.js and
WebAssembly versions, as the cost is about equal in terms of programming time. Our
measurements indicate that both asm.js and WebAssembly have superior performance,
by a factor of 44 and 140 times respectively. Due to the fact that the time the program
spends performing actual calculations, is much shorter than the time it spends
switching contexts, the modules were operating at their weakest possible scenario. The
V8 engine does not implement full optimizations for the asm.js subset, as it would have
performed similarly to the WebAssembly otherwise. Still the minimum observed
overhead by WebAssembly, while operating in a biased scenario against it, was found
to impose about 8.7 times slower execution, compared to the standalone native library.
The trade-off in performance vs productivity ratio appears to be improved by
WebAssembly vs the more common ffi approach, as a single codebase can produce, at
least, good-enough solutions for use in the most wide-spread platform, the Web.

4.4 Code Portability

The aspect of portability can be greatly improved by the proposed methodology.
Asm.js is capable of executing in all JS interpreters, and with practically every system
incorporating a Web browser, the coverage gains are immeasurable. WebAssembly,
while still in its infancy, exhibits the same trait for current Web browsers and Node.js,
but shows more future potential, with the on-progress features and its standardization.
Either technology was found to be capable of realizing portable libraries from C/C++/
Rust codebases. Finally, the Emscripten compiler is capable of bridging the gap of code
targeting the machine and the Web standards, and is expected be even more prominent
in the future.

5 Conclusions and Future Work

In this paper, we proposed a methodology for converting existing C/C++ OSS to
packages via Rust and Node.js, and publicizing them on the crates.io and npm
repositories. This procedure takes into account the state of Node.js and C/C++ com-
plexities, as well as the novel compilation to WebAssembly. Our evidence based on a
realistic scenario suggests that discoverability, code quality and portability are
improved, as well as the performance when compared to same cost time-wise existing
alternative, all beneficial aspects to OSS. We plan to conduct a larger-scale study, and
produce tooling to automate the process further. WebAssembly is still in a minimum-
viable-product state, once it matures and the JS engines are optimized further, we plan
to conduct research on the planned features, such as threading, which will enable more
intensive C/C++ libraries to be converted through our proposed methodology.

190 K.-I. D. Kyriakou et al.

References

1. Node.js. https://nodejs.org. Accessed 18 Jan 2018
2. V8 Repository. https://chromium.googlesource.com/v8/v8.git. Accessed 18 Jan 2018
3. Stack Overflow Survey 2017. https://insights.stackoverflow.com/survey/2017. Accessed 18

Jan 2018
4. npm. https://www.npmjs.com/. Accessed 18 Jan 2018
5. Modulecounts. http://www.modulecounts.com/. Accessed 18 Jan 2018
6. Sojer, M., Henkel, J.: Code reuse in open source software development: quantitative

evidence, drivers, and impediments (2010)
7. Node.js 8: Big improvements for the debugging and native module ecosystem. https://

medium.com/the-node-js-collection/node-js-8-big-improvements-for-the-debugging-and-
native-module-ecosystem. Accessed 18 Jan 2018

8. Letz, S., Denoux, S., Orlarey, Y., Fober, D.: Faust audio DSP language in the Web. In:
Proceedings of the Linux Audio Conference (LAC-15), Mainz, Germany, April 2015

9. Zbyszyński, M., Grierson, M., Fedden, L., Yee-King, M.: Write once run anywhere
revisited: machine learning and audio tools in the browser with C++ and emscripten (2017)

10. Leclerc, G., Auerbach, J.E., Iacca, G., Floreano, D.: The seamless peer and cloud evolution
framework. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
pp. 821–828. ACM, July 2016

11. Lin, Y., Blackburn, S.M., Hosking, A.L., Norrish, M.: Rust as a language for high
performance GC implementation. In: Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management, pp. 89–98. ACM, June 2016

12. Blanco-Cuaresma, S., Bolmont, E.: What can the programming language Rust do for
astrophysics? Proc. Int. Astron. Union 12(S325), 341–344 (2016)

13. List of Languages that compile to JS. https://github.com/jashkenas/coffeescript/wiki/list-of-
languages-that-compile-to-js. Accessed 18 Jan 2018

14. Chaniotis, I.K., Kyriakou, K.-I.D., Tselikas, N.D.: Proximity: a real-time, location aware
social web application built with Node.js and AngularJS. In: Daniel, F., Papadopoulos, G.A.,
Thiran, P. (eds.) MobiWIS 2013. LNCS, vol. 8093, pp. 292–295. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40276-0_23

15. Chaniotis, I.K., Kyriakou, K.I.D., Tselikas, N.D.: Is Node.js a viable option for building
modern web applications? A performance evaluation study. Computing 97(10), 1023–1044
(2015)

16. Kyriakou, K.I.D., Chaniotis, I.K., Tselikas, N.D.: The GPM meta-transcompiler: harmoniz-
ing JavaScript-oriented Web development with the upcoming ECMAScript 6 “Harmony”
specification. In: 12th Annual IEEE Consumer Communications and Networking Confer-
ence (CCNC), Las Vegas, NV, USA, pp. 176–181 (2015)

17. Bissyandé, T.F., Thung, F., Lo, D., Jiang, L., Réveillere, L.: Popularity, interoperability, and
impact of programming languages in 100,000 open source projects. In: 2013 IEEE 37th
Annual Computer Software and Applications Conference (COMPSAC), pp. 303–312. IEEE,
July 2013

18. Crockford, D.: JavaScript: The Good Parts: The Good Parts. O’Reilly Media, Inc.,
Sebastopol (2008)

19. Daloze, B., Marr, S., Bonetta, D., Mössenböck, H.: Efficient and thread-safe objects for
dynamically-typed languages. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pp. 642–659 (2016)

20. libuv. http://libuv.org/. Accessed 18 Jan 2018

Improving C/C++ Open Source Software Discoverability 191

https://nodejs.org
https://chromium.googlesource.com/v8/v8.git
https://insights.stackoverflow.com/survey/2017
https://www.npmjs.com/
http://www.modulecounts.com/
https://medium.com/the-node-js-collection/node-js-8-big-improvements-for-the-debugging-and-native-module-ecosystem
https://medium.com/the-node-js-collection/node-js-8-big-improvements-for-the-debugging-and-native-module-ecosystem
https://medium.com/the-node-js-collection/node-js-8-big-improvements-for-the-debugging-and-native-module-ecosystem
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
http://dx.doi.org/10.1007/978-3-642-40276-0_23
http://libuv.org/

21. Addons Node.js. https://nodejs.org/api/addons.html. Accessed 18 Jan 2018
22. lWebSockets. https://github.com/uNetworking/uWebSockets. Accessed 18 Jan 2018
23. libxml. https://github.com/libxmljs/libxmljs. Accessed 18 Jan 2018
24. CMake. https://cmake.org/. Accessed 18 Jan 2018
25. Qmake. http://doc.qt.io/qt-5/qmake-manual.html. Accessed 18 Jan 2018
26. SCons. http://scons.org/. Accessed 18 Jan 2018
27. GYP. https://gyp.gsrc.io/. Accessed 18 Jan 2018
28. Dayani-Fard, H., Yu, Y., Mylopoulos, J., Andritsos, P.: Improving the build architecture of

legacy C/C++ software systems. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 96–
110. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_8

29. Maven. https://maven.apache.org/. Accessed 18 Jan 2018
30. Ruby Gems. https://rubygems.org/. Accessed 18 Jan 2018
31. Pip Python. https://pypi.python.org/pypi/pip. Accessed 18 Jan 2018
32. bug#8755: “ls -l” leaks memory. https://lists.gnu.org/archive/html/bug-coreutils/2011-05/

msg00062.html. Accessed 18 Jan 2018
33. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in C/C++. ACM

Trans. Softw. Eng. Methodol. (TOSEM), 25(1), article 2 (2015)
34. Tselikis, G.S., Tselikas, N.D.: C: From Theory to Practice, 2nd edn. CRC Press, Boca Raton

(2017)
35. Stroustrup, B.: Abstraction and the C++ machine model. In: Wu, Z., Chen, C., Guo, M., Bu, J.

(eds.) ICESS 2004. LNCS, vol. 3605, pp. 1–13. Springer, Heidelberg (2005). https://doi.org/
10.1007/11535409_1

36. Poss, R.: Rust for functional programmers. arXiv preprint arXiv:1407.5670 (2014)
37. The Rust Programming Language. https://github.com/rust-lang. Accessed 18 Jan 2018
38. Zakai, A.: Emscripten: an LLVM-to-JavaScript compiler. In: Proceedings of the ACM

International Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion, pp. 301–312. ACM, October 2011

39. Rossberg, A.: WebAssembly: high speed at low cost for everyone. In: ML16: Proceedings of
the 2016 ACM SIGPLAN Workshop on ML (2016)

40. Oxidizing Source Maps with Rust and WebAssembly. https://hacks.mozilla.org/2018/01/
oxidizing-source-maps-with-rust-and-webassembly/. Accessed 26 Jan 2018

41. Park-Miller-Carta Pseudo-Random Number Generator. http://www.firstpr.com.au/dsp/
rand31/. Accessed 18 Jan 2018

42. rust_node_wasm. https://github.com/kenOfYugen/rust_node_wasm.git. Accessed 26 Jan
2018

192 K.-I. D. Kyriakou et al.

https://nodejs.org/api/addons.html
https://github.com/uNetworking/uWebSockets
https://github.com/libxmljs/libxmljs
https://cmake.org/
http://doc.qt.io/qt-5/qmake-manual.html
http://scons.org/
https://gyp.gsrc.io/
http://dx.doi.org/10.1007/978-3-540-31984-9_8
https://maven.apache.org/
https://rubygems.org/
https://pypi.python.org/pypi/pip
https://lists.gnu.org/archive/html/bug-coreutils/2011-05/msg00062.html
https://lists.gnu.org/archive/html/bug-coreutils/2011-05/msg00062.html
http://dx.doi.org/10.1007/11535409_1
http://dx.doi.org/10.1007/11535409_1
http://arxiv.org/abs/1407.5670
https://github.com/rust-lang
https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-webassembly/
https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-webassembly/
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
https://github.com/kenOfYugen/rust_node_wasm.git

Author Index

Anagnostopoulos, Ioannis 144

Bauer, Andreas 151

Caetano, Alessandro 102
Chahal, Kuljit Kaur 61

Eckert, Remo 3

Gerosa, Marco 50

Hammouda, Imed 26
Harutyunyan, Nikolay 151

Ilin, Patricija 26

Kapitsaki, Georgia M. 181
Koloniaris, Stavros 128
Kon, Fabio 15, 90, 102
Kousiouris, George 128
Kouzari, Elia 79
Kritikos, Apostolos 39
Kyriakou, Kyriakos-Ioannis D. 181

Lago, Nelson 90
Leite, Leonardo 102

Meirelles, Paulo 15, 90, 102

Negkas, Dimitrios 144
Neri, Hilmer 102
Nikolaidou, Mara 128, 171

Peristeras, Vassilios 144
Pinto, Gustavo 50
Platis, Dimitrios 26

Rallis, Stylianos 144
Ribeiro, Athos 90
Riehle, Dirk 151
Routis, Ioannis 171

Saini, Munish 61
Siqueira, Rodrigo 15
Skaros, Ilias 144
Sotiriadis, Lazaros 79
Stamelos, Ioannis 39, 79
Steinmacher, Igor 50

Travassos, Guilherme Horta 102
Tsadimas, Anargyros 171
Tselikas, Nikolaos D. 181
Tzani, Aggelos 144

Vafopoulos, Michalis 144

Wen, Melissa 15
Williams, Joseph 117

	General Chair’s Message
	Program Chairs’ Message
	Preface
	Organizational Aspects of OSS Projects
	OSS Project Validity
	Mining OSS Data
	OSS in Public Administration
	OSS Governance
	OSS Reusability

	Organization
	Contents
	Organizational Aspects of OSS Projects
	How Can Open Source Software Projects Be Compared with Organizations?
	Abstract
	1 Introduction
	2 The Elements of an Organization
	3 Organizational Framework of OSS Projects
	3.1 People
	3.2 Organization
	3.3 Assets

	4 Discussion
	References

	FLOSS Project Management in Government-Academia Collaboration
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 The Case Study
	3.2 Survey, Interview and Data Collection

	4 Results
	5 Discussion
	6 Conclusion
	References

	Insights into the Trilateral Relationship of Crowdfunding Campaigns, Open Source and Communities
	1 Introduction
	2 Background
	2.1 Crowdfunding
	2.2 Communities
	2.3 Doing Business with Open Source
	2.4 Previous Studies

	3 Research Questions and Methodology
	4 Results and Analysis
	4.1 Characteristics
	4.2 Relationship
	4.3 Impact

	5 Validity Threats
	6 Conclusion
	References

	OSS Projects Validity
	Open Source Software Resilience Framework
	1 Background
	2 City Resilience Framework
	2.1 City Resilience Index

	3 Adaptation of City Resilience Index to Open Source Software
	3.1 Open Source Software Resilience Framework (OSSRF)

	4 Open Source Software Resilience Framework Application
	4.1 OKapi - A Non Resilient Project
	4.2 WooCommerce - A Resilient Project

	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Leaving Behind the Software History When Transitioning to Open Source: Reasons and Implications
	1 Introduction
	2 Method
	2.1 Research Questions
	2.2 Studied Projects
	2.3 Survey

	3 RQ1: Why Some Projects Do Not Open the Software History?
	4 RQ2: What Are the Challenges Associated with the Lack of Software History?
	5 Implications and Limitations
	5.1 Implications
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	Developer Dynamics and Syntactic Quality of Commit Messages in OSS Projects
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Model and Its Validation
	4 Data Collection
	5 Result and Analysis
	5.1 Does the Number of Contributors Affect the Commit Message Syntactic Quality?
	5.2 Understanding the Contribution Pattern

	6 Limitations of the Study
	7 Conclusions and Future Work
	References

	Mining OSS Data
	Process Mining for Process Conformance Checking in an OSS Project: An Empirical Research
	Abstract
	1 Introduction
	2 Background Work
	2.1 Bugzilla
	2.2 Koha Open Source Integrated Library System
	2.3 Research Question

	3 Methodology
	3.1 Locate Relevant Data
	3.2 Data Preparation
	3.3 Clean Data

	4 Findings
	4.1 Process Mining
	4.2 Process Conformance Check

	5 Discussion and Future Work
	References

	Ranking Source Code Static Analysis Warnings for Continuous Monitoring of FLOSS Repositories
	1 Introduction
	2 Related Work
	3 Continuous Static Analysis with kiskadee
	4 Ranking Warnings
	5 Results and Discussion
	6 Conclusion
	References

	Using PageRank to Reveal Relevant Issues to Support Decision-Making on Open Source Projects
	1 Introduction
	2 Background
	2.1 The Software Issue Model
	2.2 The PageRank Algorithm

	3 Using PageRank to Reveal Relevant Software Issues
	4 Evaluation
	5 Threats to Validity
	6 Conclusion
	References

	OSS in Public Administration
	Creating and Integrating a FLOSS Product into UK Law Enforcement
	Abstract
	1 Introduction
	2 Background
	2.1 Open Source Research
	2.2 Toolkit Standardization
	2.3 OSIRT
	2.4 FLOSS Integration into UK Public Services

	3 Methodology
	3.1 Interviews
	3.2 General Questionnaires

	4 Results and Discussion
	4.1 Case Study Interviews
	4.2 OSIRT Interviews and Questionnaires

	5 Reflection
	6 Conclusion
	References

	Possibilities of Use of Free and Open Source Software in the Greek Local Authorities
	Abstract
	1 Introduction
	2 Information Gathering and Computational Details
	2.1 Questionnaire Creation
	2.2 Questionnaire Creation
	2.3 Contact Establishment

	3 Results and Discussion
	3.1 Participation and Statistics
	3.2 Absolute Numbers and Cost Calculations for Workstations
	3.3 Absolute Numbers and Cost Calculations for Backbone Infrastructure
	3.4 Cloud Computing in the Municipalities
	3.5 Free and Open Source Software (FOSS) in the Municipalities
	3.6 Software Support Plans

	4 Proposals that Include Foss and Usage of Modern Technologies
	4.1 Operating Systems and Commonly Used Software
	4.2 Purposeful Software
	4.3 Server Operating Systems and Software
	4.4 Cloud Computing Utilization Possibilities

	5 Conclusions
	References

	Mining and Linking Open Economic Data from Governmental Communities
	Abstract
	1 Introduction
	2 Our Proposed Model
	3 Application Case Study: Greek Public Procurement
	4 Conclusions
	Acknowledgments
	Acknowledgments
	References

	OSS Governance
	Understanding Industry Requirements for FLOSS Governance Tools
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Theoretical Sampling
	3.2 Data Gathering and Analysis

	4 Research Results
	4.1 Theory of Industry Requirements for FLOSS Governance Tools
	4.2 Evaluation

	5 Discussion
	6 Research Limitations
	7 Conclusion
	Acknowledgments
	References

	OSS Reusability
	Building a Social Platform Using FLOSS to Support Collaborative Communities: The ReWeee Case Study
	1 Introduction
	2 Project Requirements
	3 Satisfying Project Requirements with FLOSS
	3.1 Django Framework
	3.2 Extending Django User Model
	3.3 Supporting Periodic Tasks
	3.4 Reusable Applications with Minor Changes
	3.5 Developed Applications
	3.6 Discussion

	4 Conclusions
	References

	Improving C/C++ Open Source Software Discoverability by Utilizing Rust and Node.js Ecosystems
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 JavaScript in Open Source Projects
	2.2 Challenges in C/C++ OSS
	2.3 Rust: A Young Contender in OSS
	2.4 Compilation to JavaScript and WebAssembly

	3 Exposing C/C++ OSS via Rust and Node.js
	3.1 Using Rust to Package and Publish on crates.io
	3.2 Using Node.js to Package and Publish on npm
	3.3 The Hypothetical Park-Miller-Carta PRNG Case

	4 Results and Discussion
	4.1 Discoverability Improvement
	4.2 Code Quality Control
	4.3 Performance Degradation
	4.4 Code Portability

	5 Conclusions and Future Work
	References

	Author Index

