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Abstract
Our understanding on how the genome is structured has improved substantially 
since the human genome was first sequenced in 2001. The sequencing of  livestock 
and other model animals, in addition to other organisms, has also helped to iden-
tify common genomic patterns and features, which can now be summarised in 
genome maps. The annotation of sequence variation in the livestock genomes has 
opened up the possibility of using its genomic information for improving the 
prediction accuracy of its genetic merit. This chapter will give a general view on 
the main features annotated to the livestock genomes and outline the application 
of molecular information in the prediction of the genetic breeding value of the 
animals. The advantages and limitations of implementing this methodology in 
distinct production systems are also discussed.

4.1  The Evolution of Genetic Maps

Before the sequence of the genome was available for most livestock and model 
animals, researchers used genetic maps to orderly map genes and markers in the 
genome. A genetic map is simply a representation of the distribution of genes and 
other genetic features within the genome of one species. Specific techniques were 
developed to respond to questions such as in which chromosome a certain gene (or 
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marker) is mapped, or which were its closest genes/markers, or even in which par-
ticular order a small number of loci were mapped in a given chromosome. Thus, 
three distinct types of genetic maps—cytogenetic, linkage and physical—were 
developed to answer the questions above complementary (Fig. 4.1). Silver (1995) 
includes an excellent revision on genetic maps. A brief summary is presented here.

Cytogenetic maps relied on the hybridisation of a fluorescently labelled gene- 
specific probe (a synthetic DNA fragment) to its target gene in condensed whole- 
chromosome preparations (such as in karyotypes). The resolution of this type of 
mapping was low, but it allowed mapping a limited number of genes to the telomeric, 
centromeric or short (named ‘p’) or long (named ‘q’) arms of chromosomes. 
Complementary to these efforts, other researchers developed linkage maps, which 
were based on the frequency of recombination between two or more heterozygous 
loci (markers or genes) over generations. Loci that are close together in the same 
chromosome tend to be inherited together more often than loci that are apart. Linkage 
maps are generated by counting the number of offspring that receive either parental 
or recombinant allele combinations from a heterozygous parent. The frequency of 
recombination between two loci is directly related to the distance between them, 
measured in centiMorgans (1 cM equals a crossover rate of 1%). This measure of the 
linkage disequilibrium between loci allowed establishing their relative order and dis-
tance, a critical information in the pre-genomic era. Finally, the physical maps anal-
ysed the genomic DNA directly, usually by subcloning large DNA fragments into 
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DNA vectors such as BACs (bacteria artificial chromosomes) or YACs (yeast artifi-
cial chromosomes), which could be easily propagated in the lab using standard 
microbiology methods. These DNA fragments were usually generated by restricting 
targeted fractions of chromosomal DNA with several restriction enzymes to obtain 
overlapping fragments. By comparing the structure of these fragments, the relative 
position of each gene and their upstream and downstream flanking sequences could 
be identified. At its highest resolution, a physical map will give us the full sequence 
of the whole genome. Consequently, physical maps are measured in base pairs (bp) 
or its derived units (kbp, Mbp, Gbp). Nowadays, the genome of the main livestock 
species (chicken, cow, sheep, pig, horse and rabbit) has been sequenced, and efforts 
are being made to update and improve the information annotated to them. A sum-
mary and comparison of this information are given in the following sections.

4.2  Current State of the Livestock Genomes

While the first draft of the human genome sequence was delivered in 2001, we had 
to wait a number of years for the first sequence of the cow (2004), chicken (2005), 
horse (2007), pig (2010), rabbit (2014) and sheep (2014) genomes. Although whole 
genomes can be sequenced by different methods, in practice all of them result in a 
pool of millions of short (75–150 bp) or long (>500 bp) sequence reads. The first 
hurdle in describing a genome is to identify and assemble overlapping sequences 
into larger fragments (called contigs) to eventually reconstitute the sequence of 
whole chromosomes. For this, new bioinformatic programmes able to deal with 
these massive data had to be developed and implemented. In all species, the first 
genome drafts had a large number of gaps rendering incomplete chromosomes. 
However, these have progressively been filled in as newer versions were released. 
The exception is the chicken genome, which is structured in 38 autosomes, many of 
which are relatively small and uniform in size, often termed microchromosomes. 
Several properties (e.g. %GC content, gene and repeat density) contribute to the fact 
that some of them are not yet assembled (or only partially) even in the latest version 
of the genome (Warren et al. 2017). In this species, linkage groups estimated from 
linkage maps are still of use to study genes located in these missing regions.

The most updated version of farm animal genomes is available at www.ensembl.
org. The importance of these updated versions is double: first, it is a precious mate-
rial for researchers to study the structure of the genome and to investigate genes 
related to production traits or disease. They also provide a scaffold to assemble new 
whole-genome sequencing (WGS) data from other animals of the same species in a 
much faster and accurate way. As the costs of WGS have become more affordable, 
it is now feasible to describe genetic variability in a population by sequencing key 
genetic contributors. Sound scaffolds are critical to identify, map and compare 
sequence variants across these individuals.

As a result of the genome sequencing projects, we have been able to measure the 
total size of the genome, which is specific to each species. In the five farm animals 
analysed here, it ranges from 1.2 Gbp in chicken to 2.7 Gbp in rabbit (Table 4.1). As 
a reference, the human genome is slightly longer (3.1 Gbp), but the longest genome 
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so far sequenced is the loblolly pine tree (Pinus taeda) which spans 23.2 Gbp (Neale 
et al. 2014). As we will see below, there is no linear correlation between the size of 
a genome and the number of genes it contains.

4.3  Gene Annotation in the Livestock Genomes

Once the sequence is established, the next step in order to build a genomic map is to 
annotate the genetic elements underlying each genome. This annotation step is con-
stantly evolving as new elements are still being discovered. The first features to be 
mapped to the genomes were the protein-coding genes. By doing so, researchers 
realised that animal genomes were, at once, simpler and more complex than 
expected. Humans, farm animals, mice and simpler animals such as the earthworm 
Caenorhabditis elegans have all approximately the same number of genes, around 
20,000 (Fig. 4.2 and Table 4.1). This number of genes seemed too low to explain the 
complexity of larger mammals. Moreover, the coding sequences only spanned a 
very small percentage of the total genomic sequence of farm animals, about 1.5–
2%. This means 98% of the genome does not encode for proteins, the ultimate effec-
tors of cellular functions. About a quarter of this non-coding (nc) DNA are intron 
sequences, that is, gene sequences that are transcribed by the RNA polymerases but 
that are spliced out of the mature mRNA by the spliceosome. Half of the 70% 
remaining genomic DNA contains repetitive DNA elements such as micro-/minisat-
ellites or transposon-derived sequences (LINEs, SINEs, Alu, LTRs, etc.).

Strikingly, the proportion of ncDNA in the genome, unlike the total number of 
protein-coding genes, increases in parallel with evolutionary complexity (Fig. 4.2). 
Thus, in simple organisms such as prokaryotes or yeasts, 70–85% of the genome 
encodes proteins, while in invertebrates (earthworm, fruitful), this figure drops to 
20–25% and reaches the overwhelming 1.5–2% value in humans and farm animals. 
The presence of ncDNA has been explained by several mechanisms. Initially, all 
this additional ncDNA of unknown (and unpredictable) function was thought to be 
an evolutionary artefact, a carry-over of non-functional (and non-damaging) DNA 
that had accumulated over evolution without adding any specific advantage to the 
species. Moreover, although there was a degree of sequence conservation in the 
protein-coding DNA, sequences were much more divergent in ncDNA, reinforcing 
the hypothesis of lack of function. In consequence, the ncDNA was often called 
‘junk DNA’ to designate its lack of purpose. However, as it became more and more 
obvious that the number of protein-coding genes was not the main drive of biologi-
cal evolution, the attention was turned into ncDNA.

In this context, the ENCODE project was set up to annotate functional elements 
in the genome of humans and model organisms. The consortia of research groups 
participating in this initiative designed two types of experiments: one group aiming 
at identifying DNA that was being transcribed into RNA and another group target-
ing chemical labels in the chromatin (epigenome). One of the first results reported 
by the ENCODE consortia was that more than 80% of the genome was being tran-
scribed into RNA. This phenomenon was called pervasive transcription to express 
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the permanent state of transcription of most of the genome (Libri 2015). As protein-
coding genes only span 25% of the genome (adding exons and introns together), 
that means most of the transcribed RNA was in fact non-coding RNA (ncRNA) 
molecules. Thus, a new category of non-coding genes was defined (Table  4.1), 
which, like coding genes, are also organised in exons and introns and have regula-
tory elements that control expression.

Currently, the annotation of protein-coding genes is almost complete in most 
animal genomes. The exception is again the chicken genome, where 360 genes are 
still missing in the current annotation, which most likely map to unassembled 
microchromosomes (Warren et al. 2017). In contrast, the mapping of nc-genes is 
still at its initial stages, particularly in farm animals. As a reference, in humans there 
are similar numbers of protein-coding and non-coding genes, indicating that anno-
tation in farm animals is probably underestimated (Table 4.1). Based on the length 
of the transcripts, ncRNAs can be classified into small ncRNAs (usually <200 nt- 
long) and long ncRNA (>200 nt-long) molecules. Small ncRNA can be divided into 
further categories (Wright 2014), although probably the best characterised are the 
family of microRNA (miRNA) genes. These represent a group of genes that, once 
transcribed and processed, generate short structures of double-stranded (ds) RNA, 
usually ~21 nt-long. About 80% of miRNA genes map to intronic DNA, usually in 
polycistronic clusters from which up to ten miRNAs are co-expressed (Hausser and 
Zavolan 2014). This has facilitated their mapping, and they are probably the best 
annotated class of nc-genes in the farm animal genomes. miRNA are strong regula-
tors of the translation rate of protein-coding mRNAs. By binding usually to the 3′ 
untranslated regions (3′UTR) of the mRNA, the miRNA are able to put the 
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translation of that miRNA on hold. This represents an additional layer of regulation 
of the expression of protein-coding genes, from DNA to proteins. On the other 
hand, long intergenic ncRNA (lincRNA) represents a new class of ncRNA that has 
brought much excitement, even though few data are yet available for most of them. 
In general, these genes are transcribed at very low levels (about 100- to 1000-fold 
lower than the average protein-coding gene) from >60% of the genome. Most lin-
cRNA genes are active only in some cell types or at certain developmental stages 
and are thought to be one of the key organisers of development and probably a main 
evolutionary drive (Hangauer et al. 2013).

The third type of genes mapped to the genomes is pseudogenes (Table  4.1). 
These represent ‘dead genes’, relics from former protein-coding genes, usually gen-
erated by gene duplication, that have been inactivated in the course of evolution 
through accumulation of mutations. The gene graveyard is extensive in the human 
and cow genome (14,638 and 26,740 pseudogenes, respectively) but is probably 
underrepresented in chicken, pig, sheep and horse. It is not unusual for a pseudo-
genes to be transcribed into mRNA, but they very rarely get translated into proteins, 
due to unstable messengers or to accumulation of premature STOP codons (Xu and 
Zhang 2016).

Altogether, protein-coding genes, non-coding genes and pseudogenes generate a 
large number of transcripts (around 20,000–50,000  in farm animals but close to 
200,000 in humans). The tenfold higher number of transcripts in humans is explained 
mainly by alternative splicing of exons and introns, which takes place in ~94% of 
the human (protein-coding and non-coding) genes. This is a process that also takes 
place in the animal transcripts but to a lower extent (for instance, if has been esti-
mated to affect 21% of cow genes). Current genomic maps also include information 
on alternative transcripts and predicted proteins generated by each gene. Beyond 
question, this is a major source of functional variation that can explain the larger 
biological complexity of livestock animals and certainly that of humans.

4.4  Annotation of Regulatory Elements

The second set of experiments carried out in the frame of the ENCODE project had 
the aim to identify the regulatory elements of the genome, that is, stretches of genomic 
DNA that regulate (activate/inactivate) the expression of genes. The two main types of 
regulatory elements are promoters and enhancers (Fig.  4.3). Promoters are DNA 
sequences around the transcription start site of a gene where the proteins of the tran-
scription machinery assemble. The transcription complex represents a runway for the 
RNA polymerase II to land and start transcription. Enhancers, on the other hand, are 
usually located remotely from gene promoters. They physically interact with promot-
ers stabilising or disassembling the transcription complex. Enhancers are essential for 
the correct spatio-temporal activation of gene expression (Andersson 2015). For 
instance, an enhancer may act to increase the transcription of a gene with a possibly 
weak promoter or may provide essential, additional information not encoded in the 
gene promoter itself. Enhancer function is highly specific to cell type and state 
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compared to protein-coding genes. Hence, a gene may be regulated by different 
enhancers in different cell types, at different developmental stages and in response to 
different signals. Enhancers can be hundreds of kbp away from the regulated genes, 
and it is not unusual to find several (untargeted) genes between them (Fig. 4.4). Hence, 
to put enhancers proximal to the correct target gene promoters in three-dimensional 
space, the DNA must be structured into chromatin loops (Fig. 4.5). A current hype is 
the elaboration of 3D dynamic genomic maps of how these loops evolve during cel-
lular differentiation according to the required change in gene expression.

These functional elements are currently being annotated to the livestock genomes 
thanks to the efforts of the FAANG (Functional Annotation of the Animal Genomes) 
initiative. Annotations are much more advanced in humans and model animals. As a 
reference, there are 70,292 promoters and 399,124 enhancers in the human genome 
(ENCODE Project Consortium 2012), and about half of each are active in any given 
cell (Won et al. 2013). Regulatory elements are difficult to identify by computational 
analysis of the genome sequence as in general they lack evolutionary constraint, 
which means their sequence is not conserved across species despite having the same 
function. A combination of wet-lab techniques is needed to position epigenetic labels 
that are characteristic of silent, poised or active regulatory elements (ENCODE 
Project Consortium 2012). A second common feature of promoters and enhancers is 
that they are bidirectionally transcribed; that is, RNA is synthesised from both strands 
flanking the element, producing relatively short non- polyadenylated enhancer RNAs 
(eRNAs). Synthesis of eRNA is essential for full enhancer functionality. This explains 
a large part of the non-coding RNA pervasively transcribed in the genome and indi-
cates there is an extensive overlap between transcription and regulation. Overall, the 
results from the ENCODE project claim a shift from the gene-centric vision of the 
genome to a more dynamic and holistic interpretation of genomic function.

Enh1 Enh2Pr1 Gene1 Gene2 Gene3

Non-coding RNA

Protein4Protein2Protein1

Gene4Pr2 Pr3 Pr4

Fig. 4.3 Spatial relationship between enhancers (Enh), promoters (Pr) and genes. Promoter ele-
ments are positioned close to the transcriptional start site of both protein-coding and non-coding 
genes. Both types of genes are transcribed into RNA, but only the protein-encoding genes are 
translated into proteins. Enhancers can be located upstream, downstream and even inside the genes 
they are regulating
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4.5  Mapping the Genomic Sequence Variation

Another objective of the genome annotation initiatives has been to catalogue the 
new mutations described in each genome and to map them in the genomic context. 
For simplification, in the annotated genomes, mutations are classified as either short 
variants or structural variants. Short variants include single nucleotide polymor-
phisms (SNPs) and insertion/deletions (indels) of short nucleotide runs. By large, 
most short variants have two possible versions, called alleles. For instance, for a 
given SNP, an adenine can change into a guanidine, so A and G constitute the two 
alternative alleles. The data to annotate these variants come from specialised data-
bases such as the dbSNP (www.ncbi.nlm.nih.gov/snp) and from sequencing centres 
(e.g. the Broad Institute). Short variants are very common. Taking figures in 
Table 4.1, it is estimated that in farm animals there is one short variant per 30–50 bp 
(even more frequent in humans; 1 in 15 bp). However, although the amount of intra-
species sequence variation is disturbingly high, the numbers are expected to be 
much lower within a given breed or commercial line. In genomic maps, short vari-
ants are annotated over other genomic features such as genes. For variants overlap-
ping protein-coding genes, an estimation of the effects on the final protein is also 
calculated and annotated on the map. Protein structure predictor programmes such 
as SWIFT (www.bioinfo.org.cn/swift) are routinely used for this purpose. Under 
structural variants, repetitions in larger regions of DNA, of at least 1 kb in size, are 
gathered. It can include inversions, balanced translocations or genomic imbalances 
(insertions and deletions), commonly referred to as copy number variants (CNVs). 
This is an area of uneven annotation across the genomes, with total numbers ranging 
from ~200,000 in horse and pig to none in the chicken genome. The number of pos-
sible alleles per structural variants is more variable and can go from complete dele-
tion (zero copies) up to three to four copies of the fragment.

Variation data, particularly SNP information, have been used to build for each 
species dense panels of markers evenly distributed across the genome. Novel bio-
technological tools have been developed to genotype these panels. Currently, two 
companies lead the market of genotyping platforms for livestock animals. They 
provide a range of SNP-based arrays (also known as SNP-chips) to genotype at vari-
able densities (Table 4.2). These chips are currently used to improve the accuracy of 
predictions of breeding values in several species, as we will see in the following 
sections.

4.6  Genomic Selection

The use of genetic markers to improve the efficiency of current selection pro-
grammes was proposed 40 years ago by Moses Soller (1978). At that time, few 
markers were available, and the expectation was to find some gene with a substan-
tial effect linked to the marker and increase its frequency in the population. 
Unfortunately, most production traits in livestock species are determined by a large 
number of genes with small effect, and consequently the method was inefficient. 
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Table 4.2 Summary of the commercial high-density genotyping chips currently available for the 
main livestock species

Species Chip name No. of SNPs

Average 
interval 
between 
SNPs (kb)

Average 
MAF across 
tested 
populations Supplier

Chicken Axiom Chicken 
array

580,961 Affymetrix

Cattle BovineSNP50 54,001 50.6 0.26 Illumina
BovineHD 777,000 3.43 0.25 Illumina
BovineLDv2 7931 383 0.31 Illumina
Bovine3Ka 2900 Illumina
Axiom BOS1 array 648,855 Affymetrix

Horse Axiom Equine 
Array

650,000 Affymetrix

Pig PorcineSNP60 64,232 43.4 0.28 Illumina
GGP Porcine HD >65,000 43.0 GeneSeek
Axiom Porcine 
650K

658.692 3.34 0.32 Affymetrix

Sheep OvineSNP50 54,241 50.9 0.28 Illumina
OvineHD 603,350 5 0.30 Illumina

Rabbit Axiom OricunSNP 200,000 15–20 0.20 Affymetrix
aSubset of SNP50 panel for prediction of milk yield, protein % and fertility

When QTL detection started in the 1990s and it was feasible to use more markers, 
it seemed that alleles of medium effect could increase their frequencies by marker- 
assisted selection, and higher responses to selection could be obtained (Lande and 
Thompson 1990). However, as Blasco (2008) noticed, there was a notorious dis-
crepancy between simulation results, relatively optimistic, and practical application 
of marker-assisted selection, which gave deceptively small improvements. The 
problem was, as Smith and Smith (1993) stressed, the lack of enough markers to 
cover the whole genome and capture the signals of genes with small effect on the 
traits. When the genome sequences of livestock species were published, first in 
2004  in cattle and later in the other species, chips with a large amount of SNPs 
became available at an affordable cost, and its use in selection programmes was 
examined. The first chips of 10,000 SNPs were not well distributed along the 
genome and were not efficient, but in December 2007 a well-distributed 57,000 
SNPs chip was for the first time commercialised. In 2008 the first genetic evalua-
tions for dairy cattle using genomics started in several countries, and in 2009, the 
USDA published the first official dairy cattle genomic evaluations. The impact in 
dairy cattle selection programmes was dramatic, doubling the rate of improvement 
of total genetic merit (Wiggans et al. 2017); thus the use of genomic selection was 
rapidly investigated for the other livestock species. Dairy cattle has some special 
characteristics that permit an efficient use of genomic selection, as we will see later, 
but the use of genomic selection in other species is not as straightforward (Blasco 
and Toro 2014; Jonas and de Koning 2015). Nevertheless, genomic selection can 
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contribute to the efficiency of current selection programmes, if the strategies of 
implementation are carefully studied and the cost of genotyping is low enough. It 
seems that very high-density SNP chips do not lead to a much higher accuracy of 
prediction; for example, Van Raden et al. (2011) obtained a gain in accuracy of only 
1.6% when using 500,000 markers instead of 50,000. Even SNP chips of 3000 
markers, using imputation techniques that we will comment later, give good results 
(Berry and Kearney 2011, in cattle; Cleveland and Hickey 2013, in pigs), which 
permits examining scenarios less favourable than the dairy cattle one.

4.7  Predicting Breeding Values with Genomic Selection

The methods for predicting breeding values with genomic selection were developed 
in a seminal paper by Meuwissen et al. (2001) before we had access to the SNP 
chips. Predicting breeding values has two steps. First, we collect data form a set of 
animals, for example, 4000 animals, the ‘reference population’, and genotype all of 
them with a high-density chip with, for example, 50,000 SNPs. Now we need to 
prepare the prediction equation. To do this, we generate one variable ziper SNP hav-
ing an arbitrary value indicating whether the SNP ‘i’ is ‘homozygous’ for one base, 
‘heterozygous’ (i.e. has different bases) or ‘homozygous’ for the other base. Calling 
‘M’ and ‘m’ the two positions of the bases of one SNP, we have for each SNP.

SNPi MiMi Mimi mimi

zi 1 0 −1

The values 1, 0 and −1 are arbitrary and can be substituted by other values (e.g. 
2, 1, 0). The coding is additive; it is related to the number of copies of one reference 
allele, ‘M’ in this example. The use of capital letter ‘M’ does not mean that we are 
considering dominance effects, although models that are more complex can include 
this possibility (Vitezica et al. 2016). We will consider in this simple example that 
the data are pre-corrected to make the formula simpler. The regression equation is

 
y a a z a z a z a z e= + + + + + +0 1 1 2 2 3 3 50 000 50 000 , ,  

where a1, a2, a3⋯a50, 000 are the coefficients of regression and z1, z2, z3⋯z50, 000 are the 
variables associated to each SNP. The genetic value of the animal is

 
a a z a z a z a z= + + + +1 1 2 2 3 3 50 000 50 000 , ,  

(we can add, if we like, the intercept a0of the regression equation). Now we have to 
estimate the coefficients, and we are faced with the problem that there are much 
more unknowns than the equations that we have; the equation system cannot be 
solved by classical procedures. However, the system has a solution using Bayesian 
statistics under some assumptions about the prior information on the SNPs we have 
(see Blasco 2017, for details). We can thus obtain the estimates of the regression 
coefficients ˆ ˆ ˆ ˆ, , ,a a a a1 2 3 50 000 , and we are ready to predict the breeding value of 

new individuals.
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In the second step, we will predict the genetic value of animals that may have or 
not have their own data. Suppose first that the animal has no phenotypic data, but it 
has been genotyped, and we know the values of each of the variables zi for this ani-
mal. By substituting in the equation, we can predict its genetic value:

 
ˆ ˆ ˆ ˆ ˆ

, ,a a z a z a z a z= + + + +1 1 2 2 3 3 50 000 50 000  

The genetic value of each new animal will be predicted using the same coeffi-
cients ˆ ˆ ˆ ˆ, , ,a a a a1 2 3 50 000  with the variables zi of the new animal provided by its 

SNPs. It is important to notice that the coefficients do not indicate the importance of 
each SNP, since the variables z1, z2, z3⋯z50, 000 are correlated. We have said before 
that SNPs close to each other are frequently associated in its genetic transmission; 
even if they are in different chromosomes, they can be associated in its transmis-
sion, for example, due to selection. The equation is useful to predict the whole 
genetic value ‘â’ of an animal, but not to detect single genes. The coefficient of a 
SNP in a multiple regression is not the same as the coefficient that can be found 
when this SNP is fit in isolation. The coefficients of the equation will also change 
depending on the number of SNPs considered, because the sum of all of the terms 
in the multiple regression equation should give the same genetic value â of the ani-
mal; thus when many SNPs are considered, they have smaller individual effects.

The different Bayesian statistical methods for solving the equations depend on 
different prior assumptions about the genetic determination of the traits; for exam-
ple, the trait can be determined by many genes of small effect each one or by some 
major genes, some intermediate ones and many genes with small effects. The suc-
cess of each method depends on whether the actual genetic determination of the trait 
reflects well what the prior information assumes, although Fernando and Garrick 
(2013) have noticed that in real applications, the simplest model that considers the 
traits determined by many genes with small effects works just as well as the more 
complex models and sometimes even better. This occurs probably because in prac-
tice, even if there are genes with medium-large effects, they are not in close associa-
tion with only few markers, but their effect is captured by many markers.

When the animal has no data, its breeding value can be estimated by weighing 
the information of its relatives appropriately, a technique called selection index, in 
which several traits can be simultaneously used for selection weighed according to 
their economic importance (Falconer and Mackay 1996). Now, if the animal is gen-
otyped, the estimated breeding value from the genomic equation can also be appro-
priately weighed and integrated with the breeding value provided by the selection 
index. The information given by the SNP chips can be used to better assess the 
actual relationships between individuals. For example, we know that on average full 
sibs share half of their genomic information, but by crossing two heterozygotes 
Aa × Aa, we could produce full sibs that are more similar than others. If we have 
three full sibs AA, AA and aa coming from this cross, the two first full sibs are more 
similar than the first and the third or the second and the third sib. Taking into account 
all SNPs, we can have a more accurate idea about the actual correlation between 
relatives. This allows being more accurate in the genetic evaluation.
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In current breeding programmes, the correction of environmental effects (parity, 
season, herd, batch, etc.) is done at the same time as the genetic evaluation, using a 
technique called best linear unbiased prediction (BLUP, see Blasco 2017, for details). 
When all genomic relationships are used in the evaluation, this procedure is known 
as ‘genomic-BLUP’ (G-BLUP; see e.g. Clark and Van der Werf 2013). It can be 
shown that this procedure is equivalent to solving the genomic equations under a 
model assuming that the genetic determination of the trait depends on many genes 
with small effects each one (Habier et al. 2007). Nowadays there is a wide consensus 
about the reasons of the success of genomic selection; rather than a better assessment 
of the ‘genetic architecture’ of the trait, it is mainly related to a better determination 
of the actual relationships between relatives. Genomic information can be integrated 
with BLUP, and the evaluation is made with all data of all animals and all important 
traits, integrating the information provided by the genomic equations, a procedure 
that is called ‘single step’ (Legarra et al. 2009; Misztal et al. 2009).

4.8  Difficulties in Implementing Genomic Selection

Blasco and Toro (2014) and Jonas and de Koning (2015) have detailed some of the 
difficulties of implementing genomic selection in current breeding programmes. 
First, to create the equations to be used in prediction, we need a large ‘reference 
population’ of several thousand animals. This is not a problem in dairy cattle, but in 
other species, it can be a serious problem. In prolific species, for example, selection 
is performed in small nucleuses, sometimes with few hundred females. Some alter-
natives can be considered, for example, using sibs from multiplication farms or 
using animals from several generations (Chen et  al. 2011) or crossbred animals 
(Knol et al. 2016), but the efficiency of the equations rapidly decays, thus alternative 
strategies should be examined with care. A second problem is the need of generating 
new equations every three or four generations, because due to recombination, the 
associations between SNPs and causal genes are lost with time. Ibañez and Blasco 
(2011) have shown that the accuracy of the equations is rapidly lost generation after 
generation, which means that new large reference populations are needed from time 
to time. In practice, instead of having large reference populations every few genera-
tions, phenotypes are collected every generation to update the equations. This is not 
a problem for routinely recorded traits (e.g. litter size), but it can be a problem for 
more expensive traits.

Another major problem of genomic selection is the cost of genotyping. This cost 
has been dramatically reduced in the last years, but it is still important for species in 
which the individual value of the animal is small and the generation interval is short 
(pigs, poultry, rabbits), which implies frequent genotyping with high cost with 
respect to the value of the animal. A way of facing this problem is to use low-density 
chips with only few hundreds or thousands SNPs, inferring the missing SNPs from 
high-density chips. This technique, called ‘imputation’, is based on that recombina-
tion which is low in a single generation and has produced efficient results (Huang 
et al. 2012; Cleveland and Hickey 2013). Imputation from high-density chips should 
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be repeated every three or four generations, because recombination leads to errors 
of imputation. Nowadays, instead of having a reference population, some high- 
density chips are used every generation for repeating imputation.

Genomic selection was considered as a possible procedure for improving ‘diffi-
cult’ traits. For example, meat quality traits were considered natural candidates for 
genomic selection, hoping that after collecting the data in a reference population, 
many animals could be evaluated using their genomic data without the need of col-
lecting their phenotypic data or data from relatives. However, as the equations have 
to be reformulated after three or four generations, there is the need of continuous 
data collection to avoid reconstituting reference populations every few generations; 
thus genomic selection became less attractive, at least for short generation interval 
species such as pigs, poultry or rabbit. In dairy cattle, the index of conversion of 
food for milk is economically attractive but difficult to be recorded, but by collect-
ing these records in some specialised farms, a reference population and the equa-
tions needed for genomics could be prepared. As dairy cattle, particularly the 
Holstein breed, constitutes a global population in which most farmers use the same 
bulls, genomics could be used to estimate the genetic value of animals that have not 
been measured for this trait. Here the problem comes from the genotype per envi-
ronment interactions. Farms measuring food efficiency for milk production are 
good farms having the cows under a good environment. It is not clear that the best 
genetic animals in these farms will be the best in common farms under other envi-
ronments. This has happened yet with another ‘new trait’ in pigs, residual feed 
intake, where the relationship between the breeding values of the animals in the 
nucleus of selection and the commercial farms was null (Knap and Wang 2012).

The difficulties in the implementation of genomic selection do not invalidate 
genomics for selection programmes, since genomics is a tool and how to use it effi-
ciently is a matter of research. As we will see below, genomic selection has proved 
to be extremely useful in dairy cattle, but the cost of genotyping prevents its use in 
rabbit breeding programmes and complicates its application in pigs, lamb or poul-
try. Nevertheless, in pigs, poultry, lamb and beef cattle, genomic selections is, or can 
be, a useful complement to current selection programmes.

4.9  The Use of Genomic Selection in Breeding Programmes

Genomic selection has been applied with success in breeding programmes, with 
spectacular results in dairy cattle and with more modest results in other species. 
Nowadays there is no doubt that genomics is a useful tool for selection, but careful 
strategies for its implementation should be developed in most species to ensure its 
profitability.

Dairy cattle. Genomic selection has revolutionised the dairy cattle breeding pro-
grammes. As Schaeffer (2006) predicted before the first SNP chip was available, 
dairy cattle is particularly suitable for genomic selection. It has a long generation 
interval (6 years) due to the need of progeny test, the traits of interest (milk produc-
tion and quality) cannot be measured in the sire, selection pressure has to be applied 
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essentially in sires because the average parities of dams is about 2.7, and the dis-
semination of the genetic progress is cheap and easy via artificial insemination. It 
was not a problem to create large reference populations and maintain a continuous 
recording system to update the equations, since a single bull can have many daugh-
ters and all farms constitute a global nucleus linked by artificial insemination. 
Moreover, sires have a high price; thus genomic cost is not an impediment for devel-
oping genomic selection compared to other species. Genomic selection was imple-
mented in 2008 in several countries and nowadays is widely used for sire evaluation. 
Nowadays, as using imputation with 3000 SNPs chips has a high accuracy (up to 
99%, Van Eenennaam et al. 2013), dairy cows are also being genotyped. As a result 
of this wide implementation, generation interval has been halved and genetic prog-
ress doubled (Wiggans et  al. 2017). It is interesting to notice that other efficient 
programmes based on reducing the generation interval were proposed in the past, 
for example, MOET (multiple ovulation and embryo transfer, Nicholas and Smith 
1983). However, in addition to difficulties in implementation MOET (Simianier 
2016), as the accuracy of bulls evaluation was lower compared to proven bulls with 
100 daughters (0.45 versus 0.95), farmers were reluctant to use them. Now, genomic 
bulls have still lower accuracy (around 0.8), but farmers accept the loss of accuracy 
and use several genomic bulls to lower the risk. Obviously, this loss of accuracy is 
compensated by far by the reduction of the generation interval, but the fascination 
for the new technique may have played a role in its rapid acceptance.

Beef cattle. The success of genomic selection in dairy cattle has moved the whole 
industry to consider the introduction of genomics in current breeding programmes. 
However, beef cattle is organised in many breeding associations, with a much lower 
size than the dairy cattle breeds. Moreover, beef cattle are not always well con-
nected by artificial insemination. Because of this, it is not feasible for most beef 
cattle associations to have a ‘training population’ and a continuous recording as 
large as in dairy cattle. This has led to the proposal of using multibreed training 
populations for predictions, but the problem is that effectiveness of genomic breed-
ing value prediction is higher when training populations are close to the animals to 
be predicted, otherwise the prediction is poor (Lund et al. 2014); thus the use of 
multibreed populations is now under discussion. Another problem is the cost of 
genotyping. In beef cattle, the most commonly measured traits are weights at a 
given age. Usually these traits have relatively high heritabilities (about 0.40), which 
means that the accuracy of the individual phenotype is about 0.6–0.7, and it can 
become higher by adding information from relatives. Therefore, genomics should 
improve accuracy over 0.7 when the trait of interest can be measured just using a 
scale, although in some extensive systems collecting samples for genomics may be 
easier than using a scale. Imputation may be a solution, but imputation is precise 
only when the low-density chip is used in animals closely related to the ones used 
for imputation (Rolf et al. 2014); thus multibreed low-density chips may be of little 
utility. Although it is true that genomics has been used by commercial companies as 
a marketing tool (Rolf et al. 2014), genomics could improve the accuracy for traits 
not directly measured, for example, when the objective is weight at slaughter but 
only weight at weaning is measured, or for carcass traits. Even in all these cases, a 
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careful study should be made taking into account the large training populations 
needed and the permanent cost of genotyping in relation to the benefits expected.

Sheep and goat. Lambs and goats bred for milk production have the same scheme 
as in dairy cattle at a much lower scale, which limits the application of genomic 
selection. Meat sheep shares with beef cattle most of its problems for the efficient 
use of genomic selection. In both cases, the low price of the animals limits the appli-
cation of genomics due to the relatively high cost of genotyping. Rupp et al. (2016) 
have recently reviewed the application of genomics in sheep and goats. Gains in 
accuracy when applying genomic selection were rather modest, around 10–20%, 
even for milk production traits. Considering costs of genotyping, Shumbusho et al. 
(2016) estimated the economic advantages of using genomic selection in sheep 
meat to be only 15% in the best scenario. Similar results were found in Australian 
merino breed by Horton et al. (2015). Multibreed SNP chips have also been pro-
posed, but they share the same problems as in beef cattle.

Pigs. In pigs, progeny test is not performed, and generation interval is consequently 
short (around 1 year). Selection objectives are traits expressed in males and females 
with the exception of litter size, dissemination of genetic progress is made through a 
pyramidal structure of nucleus-multiplier-commercial farms (where genetic improve-
ment is performed only in the nucleus), and selection can be applied on dams because 
they are prolific animals. There is no global nucleus but several companies competing 
in a free market, having small nucleuses of around 25–50 males and 300–2000 females 
per line, and the price of selected animals is much lower than in dairy cattle. Moreover, 
as pigs are normally produced in a three-way cross scheme, the costs of genotyping 
are three times higher than when a single breed is used in production. With all of these 
constrains, the application of genomics has had less spectacular results than in dairy 
cattle; nevertheless the increment in profit when using genomic selection has been 
evaluated from 10% (Lillehammer et al. 2013) to 50% (Knol et al. 2016), depending 
on the implementation. Litter size is an obvious candidate for genomic selection 
because the trait is not expressed in the female when it should be selected, but herita-
bility of litter size is very low, so large reference populations are needed, and the 
strategy for obtaining them is not evident; for example, information from multipliers 
can be used or even information from crossbred commercial females, as we men-
tioned before. The success of genomic selection in pigs comes from a careful study of 
the strategies for implementing genomic selection (see Ibáñez et al. 2014 and Knol 
et  al. 2016 for a detailed description of some strategies). Imputation is important 
because genotyping is still economically relevant relatively to the price of selected 
animals, and the accuracy of imputation is high (around 97%, Cleveland and Hickey 
2013). The success of genomic selection comes, again, from a better estimation of the 
relationships between animals.

Poultry. Similar constraints to pigs arise in poultry, in which four-way cross 
schemes are common; nucleuses are also small, although it can be found large 
nucleuses up to 2000 males and 10,000 females. Generation interval is also very 
short, females produce a large amount of eggs, and the relevant traits are expressed 
mainly in females in layers and in both sexes in broilers. Genomics was imple-
mented in 2013  in both production systems. Careful imputation procedures have 
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obtained very good results in both layers and broilers, with accuracies of around 
97% with respect to the high-density SNP chip, and due to the continuous decreas-
ing in genotyping cost, medium density SNP chips are being used, removing the 
need of imputation (Wolc et al. 2016). A selection experiment in layers has evalu-
ated the response to selection using genomics when compared with a line in which 
the same sort of selection was performed without genomics. The results were vari-
able depending on the trait used in the selection index; traits like egg production 
number showed little advantage, but for some traits like egg weight, the use of 
genomic selection was much more efficient (Wolc et  al. 2015). Efficiency of 
genomic selection in broilers has been evaluated by comparing the increasing in 
precision when evaluating the genetic merit of some traits (Chen et al. 2011). In the 
sire line, selected mainly for growth rate, the increment of precision for body weight 
when using genomic selection was 20%, and for ultrasound measurements of the 
breast, it was 17%; the dam line had better results for the same traits, but it was 
selected mainly for reproductive traits. In general, the best advantage of the use of 
genomic selection, as in the other species, comes from traits that are not available at 
the moment of selection (Wolc et al. 2016).

Rabbits. Genomics has not been implemented in rabbits yet, mainly due to the 
cost of genotyping. The rabbit chip of 200,000 SNPs appeared recently (October of 
2015), and no low-density chips have been produced yet. Rabbit selection schemes 
are three-way crosses with the same structure as in pigs, and nucleuses are even 
smaller (from 20 males and 150 females per line); dam lines are mainly selected for 
litter size and sire lines for growth rate. Generation interval is very short (6–9 months), 
and the price of the animals is low, which represents the main constraint for the 
application of genomic selection. Research needs to be done to find the best strategy 
for implementing genomic selection in rabbits.
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