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Abstract. In the paper examined was the influence of the cutting regime
parameters on surface roughness parameters during turning of hard steel with
cubic boron nitrite cutting insert. In this study for modeling of surface finish
parameters was used central compositional design of experiment and artificial
neural network. The values of surface roughness parameters Ra and Rt were
predicted by this two-modeling methodology and determined models were then
compared. The results showed that the proposed systems can significantly
increase the accuracy of the product profile when compared to the conventional
approaches. The results indicate that the design of experiments with central
composition plan modeling technique and artificial neural network can be
effectively used for the prediction of the surface roughness for hard steel and
determined significand cutting regime parameters.
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1 Introduction

Increasingly, research in manufacturing processes and systems is evaluating processes
to improve their efficiency, productivity and quality. The quality of finished products is
defined by how closely the finished product adheres to certain specifications, including
dimensions and surface quality. Surface quality is defined and identified by the com-
bination of surface finish, surface texture, and surface roughness. Surface roughness
(Ra, Rmax) is the commonest index for determining surface quality [1, 2].

Manufacturing processes do not allow achieving the theoretical surface roughness
due to defects appearing on machined surfaces and mainly generated by deficiencies
and imbalances in the process. Due to these aspects, measuring procedures are nec-
essary; as it permits one to establish the real state of surfaces to manufacture parts with
higher accuracy. To know the surface quality, it is necessary to employ theoretical
models making it feasible to do predictions in function of response parameters [3–5].
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A lot of analytically methods were also developed and used for predicting surface
roughness. An empirical model for prediction of surface roughness in finish turning [6].
Nonlinear regression analysis, with logarithmic data transformation is applied in
developing the empirical model. Metal cutting experiments and statistical tests
demonstrate that the model developed in this research produces smaller errors and has a
satisfactory result. The mathematical models for modeling and analyzing the vibration
and surface roughness in the precision turning with a diamond cutting tool [7].

Recently, some initial investigations in applying the basic artificial intelligence
approach to model of machining processes, have appeared in the literature, concludes
that the modeling of surface roughness in machining processes has mainly used
Artificial Neural Networks and fuzzy set theory [8, 9]. Average mean arithmetic surface
roughness, Ra using artificial neural network was predicted in [10]. Surface roughness
and surface finish have been considered in [11–14]. Research of the influence of
machining parameters combination to obtain a good surface finish in turning and to
predict the surface roughness values using fuzzy modeling is presented in [15]. Also,
may notice that the neural network used in the study, where the enabling resolution of
the problem that is difficult to define and mathematically model. This can be seen in the
work where the neural network was based on the face milling machining processes,
where is aimed to produce the relationship of cutting force versus instantaneous angle
u [16]. Use of coolants and lubricants in hard machining were presented in [17, 18].

In this paper, cutting speed, feed and depth of cut as machining regime were
selected. Response surface methodology and artificial neural network models of surface
roughness parameters Ra and Rmax were developed for modeling.

2 Experimental Procedure and Material

Machining tests was done on the universal lathe - Prvomajska DK480. In the study was
used interchangeable insert of CBN (cubic boron nitrite) CNMA 120404 ABC 25/F
producer ATRON Germany. Used was appropriate insert holder for external processing
PCLNR 25 25 M16.

The markings of the cutting tips according to DIN 4983 more closely define the
geometry, as follows: the shape of the plate C ! rhomb; the rake angle N ! = 0,
C ! = 7; tolerance class M; Type of tile ! with opening A, W and G; length of
cutting blade ! 12.7 mm (12); cutting edge thickness ! 4.76 mm (04); radius of tool
tip ! 0.4 mm (04). All inserts have a rake angle (–6°) (Table 1).

Table 1. Experimental input factor levels

Factor levels Cutting speed
v (m/min)

Feed
f (mm/rev)

Dept of cut
a (mm)

Highest +1.41 180 0,25 0,7
High +1 160 0,2 0,5
Middle 0 120 0,1 0,22
Small –1 90 0,05 0,1
Smallest –1.41 80 0,045 0,07
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The machining regime was:

• Cutting speed (m/min),
• Feed f (mm/rev), and
• depth of cut, a (mm).

Preparation of the workpiece was carried out before the experimental performance.
The workpiece was thermally treated steel Č3840 (90MnCrV8) whose hardness after
heat treatment was 55 HRC, cross-section Ø34 mm and length 500 mm. Before
machining start It was necessary to remove a certain layer of material in order to avoid
throwing-ovality and the results were more reliable. The length of the bar of 500 mm,
was divided into 24 fields with a length of 10 mm on which the longitudinal cutting
was performed. Each field on workpiece was planned for the measurement of one
experimental point. Cutting without the presence of cooling and lubricating agents was
provided

Measuring the surface roughness parameters with the Talysurf-6 measuring device
was done. After processing by a computer, the results, was printing or writing on
screen. The personal computer was connected to the Talysurf-6 measuring device using
a serial connection COM-3. Instead of the printer, a computer was connected with a
special adapter with a measuring machine Talysurf-6. The basic parts of the measuring
device Talysurf-6 are shown in Fig. 1.

The measured was values of surface roughness parameters: Ra, Rmax. The mea-
surement results of these parameters and estimated values by central compositional
three factorial models are given in Table 2.

Implementation of factorial experimental plan: in the Table 3 are given results of
dispersion analyses, adequacy of models and significance of parameters.

Fig. 1. Surface roughness measurement system Talysurf-6 connected with computer
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Analyze of adequacy of models shows that both models are adequate because
coefficients are smaller than Ft = 6.61. Cutting speed and depth of cut are not signif-
icant because values are smaller than Ft = 4.47.

Table 2. The measurement and modeled results - input parameters

No. Factor Ri measured Ri RSM model Ri neural network
v
[m/min]

f
[mm/rev]

a
[mm]

Ra

[µm]
Rmax

[µm]
Ra

[µm]
Rmax

[µm]
Ra

[µm]
Rmax

[µm]

1 90 0,05 0,10 0.61 3.7 0.39 2.86 0.6592 3.7574
2 160 0,05 0,10 0.36 2.1 0.38 2.80 0.3557 1.9229
3 90 0,20 0,10 0.81 4.5 0.88 4.81 0.8331 4.6422
4 160 0,20 0,10 0.62 3.46 0.86 4.71 0.5893 2.9841
5 90 0,05 0,50 0.71 5.1 0.39 2.59 0.7777 5.0833
6 160 0,05 0,50 0.47 4.8 0.38 2.54 0.6832 5.3483
7 90 0,20 0,50 0.8 4.2 0.89 4.36 0.8527 4.0420
8 160 0,20 0,50 0.73 4.1 0.87 4.26 0.8288 4.4420
9 120 0,10 0,22 0.53 2.8 0.58 3.50 0.3581 1.6534
10 120 0,10 0,22 0.48 2.9 0.58 3.50 0.3588 1.6588
11 120 0,10 0,22 0.33 1.8 0.58 3.50 0.3582 1.6539
12 120 0,10 0,22 0.34 1.8 0.58 3.50 0.3558 1.6365
13 80 0,10 0,22 0.42 2.2 0.59 3.55 0.2565 1.5225
14 180 0,10 0,22 0.66 3.1 0.57 3.45 0.59537 2.7949
15 120 0,045 0,22 0.27 2.1 0.36 2.59 0.3057 1.7402
16 120 0,25 0,22 1.80 8.1 1.00 4.93 1.8051 8.2975
17 120 0,10 0,07 0.60 6.6 0.58 3.75 0.7843 6.6161
18 120 0,10 0,70 0.70 3.9 0.59 3.26 0.7456 3.9992
19 80 0,10 0,22 0.47 2.9 0.59 3.55 0.4533 2.5444
20 180 0,10 0,22 0.652 3.48 0.57 3.45 0.6655 3.2542
21 120 0,045 0,22 0.33 2.15 0.36 2.59 0.2790 1.8978
22 120 0,25 0,22 1.9 8.2 1.00 4.93 1.8304 8.3473
23 120 0,10 0,07 0.73 6.2 0.58 3.75 0.8895 6.6167
24 120 0,10 0,70 0.445 2.48 0.59 3.26 0.5301 2.2659

Table 3. Adequacy of models and significance of parameters

Model adequacy Ra Rmax

Fa = 3,2288 Fa = 4,0491

Significance of parameters Fro 143,19 655,65
Fr1 (v) 0,05 (*) 0,03 (*)
Fr2 (f) 53,95 18,75
Fr3 (a) 0,01(*) 0,682 (*)
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2.1 Artificial Neural Network Modelling

Artificial neural network (ANN) method is becoming useful as the alternative approach
to conventional techniques, or as the component of integrated systems. It is an attempt
to predict, within a specialized software, the multiple layers of a number of elementary
units called neurons [14]. The MATLAB software, Neural Network Toolbox function,
was used to create, train, validate, and predict the different ANNs reported in this
research.

In this work, one of the most popular feed-forward networks was selected. This
network is a multi-layer architecture proving to be an excellent universal approximation
of nonlinear functions. The feed-forward neural network was trained by TRAINLM
algorithms. The TRAINLM is a network training function that updates weight and bias
values to Levenberg-Marquardt optimization.

Learning is a process by which the free parameters of the neural network are
adapted through a continuous process of simulation by the environment in which the
network is embedded. The learning function can be applied to individual weights and
biases within the network. The LEARNGDM learning algorithms in feed-forward
networks are used to adapt networks. Gradient descent method (GDM) was used to
minimize the mean squared error between the network output and the actual error rate.
It trains the network with gradient descent with the momentum back-propagation
method. The back-propagation learning in feed-forward networks belongs to the real of
supervised learning, in which the pairs of input and output values are fed into the
network for many cycles, so that the network ‘learns’ the relationship between the input
and the output.

For this study, feed-forward network was selected since this architecture interac-
tively creates one neuron at a time. This is an optimization procedure based on the
gradient descent rule which adjusts the weights of the network to reduce the system
error is hierarchical. The network always consists of at least three layers of neurons: the
input, output, and middle hidden layer neurons. The input layer has inputs, which are:
v, the cutting speed (m/min); f, the feed (mm/rev); and a, [mm] the depth of cut. The
outputs are the values of surface roughness parameters: arithmetic mean roughness Ra

and maximal roughness hight Rmax. These parameters were set to optimize by the
neural network performance: the number of hidden layers is 12, the number of itera-
tions is 100 and the number of neurons in the hidden layer is 20.

In this study, a part of the experimental data was used for training and the
remaining data was used for testing the network. Each input has an associated weight
that determines its intensity. The neural network can be trained to perform certain tasks
where the data is fed into the network through an input layer.

This is processed through one or more intermediate hidden layers and finally it is
fed out to the network through an output layer as shown in Fig. 2. It must be high-
lighted that the best network architecture is reached by trial and error after considering
different combinations of the number of neurons in the hidden layer, the number of
hidden layers, spread parameter, and learning rate, depending on the type of neural
network being used.
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3 Results and Discussions

Equations for surface roughness modeling by design of experiment determined by
central compositional plan.

Ra ¼ 2; 8264 � v�0;04471 � s0;58975 � a0;00716

Rmax ¼ 9; 0036 � v�0;3717 � s0;37380 � a�0;6148

As mentioned before, neural network modeling was used for analysis and opti-
mization of surface roughness in turning process. The obtained results of neural net-
work model are given in the Table 4, side by side with the obtained experimental
results. For reduction of a deviation, is needed to increase the number of inputs.

Calculation of percental deviation for measured and model surface roughness
values was performed according next formula:

E ¼ Riexp � Rim
�
�

�
�

Riexp
� 100%

Fig. 2. Network input and output layer

Table 4. Experimental values and values obtained by neural network with percentage deviation
for 6 testing points

No. Factor Ri – experimental
roughness

Ri – modeled
roughness

v [m/s] s [mm/rev] a [mm] Ra [µm] Rmax [µm] Ra [µm] Rmax [µm]

1 81 0.1 0.22 0.47 2.9 0.4533 2.5444
2 182 0.1 0.22 0.652 3.48 0.6655 3.2542
3 121 0.045 0.22 0.33 2.15 0.2790 1.8978
4 122 0.25 0.22 1.9 8.2 1.8304 8.3473
5 123 0.1 0.07 0.73 6.2 0.8895 6.6167
6 119 0.1 0.7 0.445 2.48 0.5301 2.2659

Average deviation % 10.30 8.62
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Where are: Riexp- experimental value, Rim- model value.
Calculated percental deviation for first 18 experimental points are for Ra is 8.94 and

for Rmax is 9.94. Experimental values and values obtained by neural network with
percentage deviation for 6 testing points for neural network are in Table 4.

Any change in the cutting speed leads to a slowly corresponding change in the
value of surface roughness. The cutting speed has a small and decreasing effect, Fig. 3.
Influence of feed on value surface roughness is higher than the cutting speed effect.

Fig. 3. The surface roughness (Ra, Rmax) versus cutting speed

Fig. 4. The surface roughness (Ra, Rmax) versus feed
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Increasing feed increase surface roughness, Fig. 4. Depth of cut at least influences the
wear on the flank surface and surface roughness values slightly, Fig. 5.

Any change in the cutting speed leads to a slowly corresponding change in the
value of surface roughness. The cutting speed has a small and decreasing effect, Fig. 4.
Influence of feed on value surface roughness is higher than the cutting speed effect.
Increasing feed increase surface roughness, Fig. 5. Depth of cut at least influences the
wear on the flank surface and surface roughness values slightly.

4 Conclusion

Intelligent optimization techniques give the influence of cutting conditions on
machining surface quality during turning hard material, are investigated through
experimental verification. The investigation results confirm the highly consent of
experimental research and intelligent techniques modeling. The intelligent optimization
techniques and experimental results show some good information which could be used
by future researches for optimal control of machining conditions. This paper has
successfully established neural network model, for predicting the workpiece surface
roughness parameters. Figures 4 and 5 shows the compared predicted values obtained
by experiment and estimated by neural network shows a good comparison with those
obtained experimentally. The average deviations of models are checked and are found
to be adequate. The model adequacy can be further improved by considering more
variables and ranges of parameters.

Fig. 5. The surface roughness (Ra, Rmax) versus the cutting depth
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