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Preface

The 8th International Workshop on Biomedical Image Registration (WBIR 2018,
https://wbir2018.nl) was held in Leiden, The Netherlands, June 28–29, 2018. The
workshop brought together leading researchers in the area of biomedical image reg-
istration to present and discuss recent developments and methodology in the field.
WBIR 2018 was jointly organized by the image registration groups from Erasmus MC,
Rotterdam, and LUMC, Leiden. The workshop included both oral and poster presen-
tations in a single track, two keynote lectures, an image registration challenge, a
post-conference hackathon, and ample opportunities for discussion.

Preceding editions of WBIR have been running mostly standalone as a 2-day
workshop, alternating between U.S. and European locations: Bled, Slovenia (1999);
Philadelphia, USA (2003); Utrecht, The Netherlands (2006); Lübeck, Germany (2010);
Nashville, USA (2012); London, UK (2014); and Las Vegas, USA (2016).

The WBIR 2018 proceedings, published in the Lecture Notes in Computer Science,
were established through a rigorous peer-review process in a double-blind fashion by at
least three members of the Program Committee. The international Program Committee
consisted of 31 senior scientists in the field of medical image registration. From a total
of 17 submissions, 11 were selected for oral or poster presentation. This year, three
papers were on the topic of sliding motion, three on groupwise image registration, one
on acceleration, and four on applications and evaluation. New to WBIR, this year we
invited 1-page abstract submissions in addition to full-paper submissions. This gave
scientists the opportunity to present early work and to get feedback from conference
attendees on recently published or submitted journal papers not presented previously.
A total of 16 abstracts were submitted, which do not appear in the proceedings, but
were presented at the conference.

Three excellent keynote speakers enriched the program. Prof. Dr. Jan-Jakob Sonke
spoke about the utilization of image registration in the context of adaptive radiation
therapy. Prof. Dr. Max Welling spoke about graph neural networks and related
attention mechanisms for use in medical imaging. Prof. Dr. Julia Schnabel postulated
that our field is currently finding itself at the cross-roads under the thought-provoking
title “Is image registration a solved problem?”. The program incorporated presentation
of the design and results of the Continuous Registration Challenge, a new idea for
benchmarking medical image registration algorithms. A post-conference hackathon,
organized in collaboration with the Insight Toolkit (ITK) community and Kitware
(Matt McCormick), greatly stimulated the implementation of ideas emerging from the
workshop and enabled integration of new registration methods in the challenge.

Many contributed to the success of WBIR 2018. In particular, we would like to
thank the members of the Program Committee for their work that assures the high



quality of the workshop. Dr. Oleh Dzyubachyk is acknowledged as the proceedings
editor, and Sahar Yousefi, MSc, as the webmaster. We also thank Inria, Quantib and
the Netherlands Organisation for Scientific Research (NWO) for their financial support,
and the MICCAI Society for their endorsement. Finally, we would like to thank all
participants of WBIR 2018 for their contributions and discussions. We hope you had a
great time in Leiden!

June 2018 Stefan Klein
Marius Staring

Stanley Durrleman
Stefan Sommer

VI Preface



Organization

WBIR 2018 was jointly organized by the image registration groups from Erasmus MC,
Rotterdam, and LUMC, Leiden.

General Chairs

Stefan Klein Erasmus MC, The Netherlands
Marius Staring Leiden University Medical Center, The Netherlands

Program Chairs

Stanley Durrleman Inria/ICM ARAMIS Lab, France
Stefan Sommer University of Copenhagen, Denmark

Local Organization

Oleh Dzyubachyk Leiden University Medical Center, The Netherlands
Sahar Yousefi Leiden University Medical Center, The Netherlands

Program Committee

Gary Christensen Iowa Institute for Biomedical Imaging, USA
Olivier Commowick Inria, France
Adrian Dalca Massachusetts Institute of Technology, USA
Benoit Dawant Vanderbilt University, USA
Ali Gholipour Harvard Medical School, USA
Ender Konukoglu ETH-Zurich, Switzerland
Sebastian Kurtek Florida State University, USA
Christian Ledig Imperial College London, UK
Marco Lorenzi Inria, France
Andreas Maier Friedrich-Alexander Universität, Germany
Stephen Marsland Massey University, New Zealand
Matt McCormick Kitware Inc., USA
Marc Modat University College London, UK
Kensaku Mori Nagoya University, Japan
Wiro Niessen Erasmus Medical Center, The Netherlands
Marc Niethammer University of North Carolina at Chapel Hill, USA
Bartłomiej Papież University of Oxford, UK
Josien Pluim Technical University Eindhoven, The Netherlands
Kilian Pohl SRI International, USA
Karl Rohr University of Heidelberg, Germany



Daniel Rueckert Imperial College London, UK
Benoit Scherrer Harvard Medical School, USA
Julia Schnabel King’s College London, UK
Dinggang Shen University of North Carolina, USA
Aristeidis Sotiras University of Pennsylvania, USA
Colin Studholme University of Washington, USA
Lisa Tang The University of British Columbia, Canada
Matthew Toews Ecole de Technologie Superieure, Canada
Carole Twining University of Manchester, UK
Jef Vandemeulebroucke Vrije Universiteit Brussel, Belgium
Tom Vercauteren University College London, UK

VIII Organization



Contents

Sliding Motion

An Inhomogeneous Multi-resolution Regularization Concept for
Discontinuity Preserving Image Registration . . . . . . . . . . . . . . . . . . . . . . . . 3

Christoph Jud, Robin Sandkühler, and Philippe C. Cattin

Statistical Motion Mask and Sliding Registration. . . . . . . . . . . . . . . . . . . . . 13
Björn Eiben, Elena H. Tran, Martin J. Menten, Uwe Oelfke,
David J. Hawkes, and Jamie R. McClelland

Adaptive Graph Diffusion Regularisation for Discontinuity Preserving
Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Robin Sandkühler, Christoph Jud, Simon Pezold,
and Philippe C. Cattin

Groupwise Registration

Fast Groupwise 4D Deformable Image Registration for Irregular
Breathing Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bartłomiej W. Papież, Daniel R. McGowan, Michael Skwarski,
Geoff S. Higgins, Julia A. Schnabel, and Sir Michael Brady

A Novel Similarity Measure for Image Sequences . . . . . . . . . . . . . . . . . . . . 47
Kai Brehmer, Benjamin Wacker, and Jan Modersitzki

Semi-automated Processing of Real-Time CMR Scans for
Left Ventricle Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Rahil Shahzad, Martin Fasshauer, Boudewijn P. F. Lelieveldt,
Joachim Lotz, and Rob van der Geest

Acceleration

Averaged Stochastic Optimization for Medical Image Registration
Based on Variance Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Wei Sun, Dirk H. J. Poot, Xuan Yang, Wiro J. Niessen,
and Stefan Klein



Applications and Evaluation

Registration Evaluation by De-enhancing CT Images. . . . . . . . . . . . . . . . . . 83
Manh Ha Luu, Hassan Boulkhrif, Adriaan Moelker,
and Theo van Walsum

Evaluation of Multi-metric Registration for Online Adaptive Proton
Therapy of Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Mohamed S. Elmahdy, Thyrza Jagt, Sahar Yousefi, Hessam Sokooti,
Roel Zinkstok, Mischa Hoogeman, and Marius Staring

Instrument Pose Estimation Using Registration for Otobasis Surgery . . . . . . . 105
David Kügler, Martin Andrade Jastrzebski, and Anirban Mukhopadhyay

Local Image Registration Uncertainty Estimation Using
Polynomial Chaos Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Gokhan Gunay, Sebastian van der Voort, Manh Ha Luu,
Adriaan Moelker, and Stefan Klein

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

X Contents



Sliding Motion



An Inhomogeneous Multi-resolution
Regularization Concept for Discontinuity

Preserving Image Registration

Christoph Jud(B), Robin Sandkühler, and Philippe C. Cattin

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
christoph.jud@unibas.ch

Abstract. Sliding organs pose challenges in the registration of dynamic
medical images because the smoothness criterion which is commonly
assumed over the whole image domain does not apply at the sliding
interfaces. In this case, image registration methods have to cope with
local discontinuities in the correspondence map. We present a new regis-
tration methodology based on a multi-resolution transformation model
which is defined as a directed acyclic graph. The graph’s edges connect
consecutive resolution levels enabling to inhomogeneously pass displace-
ments through to higher levels. Thus, they are well suited to cope with
local discontinuities while aiming at smooth correspondence maps. We
introduce three regularization terms which operate on the graph. A total
variation term ensuring discontinuity preserving smoothness, a sparsity
term on zero edge-weights to prevent trivial solutions and a term which
prefers transformations which are explained in lower resolution levels.
For an early proof of concept we analyze the registration performance of
our method on synthetic 2D data and on a 2D slice of the POPI model.

1 Introduction

Temporally resolved medical images have gained a lot of attention in the past
years. They show promise because the motion information contained therein
allows to draw conclusions about the anatomical dynamics. An integral part for
extracting the motion from such images forms the process of finding correspond-
ing structures of successive images which is referred to as image registration. As
image registration is a nonlinear ill-posed problem regularization is inevitable to
attain plausible correspondence. Smoothness of the correspondence map as an
additional assumption is the most common regularization. It can be obtained by
mainly three mutually non-exclusive ways. (I) Smoothness is implicitly derived
by multi-resolution optimization [6,17]. (II) In addition to image similarities a
smoothness measure on the correspondence map is optimized e.g. the diffusion
regularization [8,18] and/or (III) the correspondence map is defined in a smooth
basis e.g. a b-spline basis [3,13].

In this paper, we present a new non-parametric formulation for image regis-
tration which is targeted to the case where organs slide along each other, whose
c© Springer International Publishing AG, part of Springer Nature 2018
S. Klein et al. (Eds.): WBIR 2018, LNCS 10883, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-319-92258-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92258-4_1&domain=pdf


4 C. Jud et al.

sliding interfaces locally contradict global smoothness assumptions. The novelty
of our approach lies in the explicit treatment of local discontinuities which are
built into the main objective. Specifically, in our method, we achieve smooth
correspondence maps with point (I) and (II). We build (I) a hierarchy of dis-
placement fields with resolution levels starting from one pixel (rigid translation)
up to a displacement field that has the resolution of the images. Going up the
hierarchy, the degrees of freedom is increased from level to level which gradually
relaxes the influence of a level on the smoothness in the last level. To tackle
discontinuities, we integrate a weighted propagation of displacements through
the hierarchy in form of a directed acyclic graph (see Fig. 1). The weights are
in the interval of [−1, 1], thus, a displacement can be directly passed through
(homogeneous case: weight = 1), it can be consumed (static and dynamic struc-
ture: weight = 0) or its direction can be inverted (dynamic structures moving
in opposing directions: weight = −1). In addition, we introduce (II) a total
variation smoothness term considering the total variation on each level. It is for-
mulated such that it notably accounts for the weighted propagation in order to
prevent total variation penalties across sliding interfaces. Furthermore, we do an
L1 regularization on the weights and an L2 regularization on the displacements.

×××××

×

Fig. 1. Transformation model visualized as a directed acyclic graph. The nodes define
the displacement at a certain position and the edges are the weights for the weighted
propagation of the displacement down the displacement field hierarchy. The bottom
level has the pixel size of the images. In blue and highlighted with crosses a neighbor-
hood of a node is outlined. Each node has a bias which can initiate a displacement.
(Color figure online)

Nonparametric image registration has been widely studied for more than
two decades. Starting in the 90’ [1,18] a lot of advanced approaches have been
successfully applied to medical images. For a comprehensive review about image
registration methods we refer to [16,21]. For methods which particularly address
the sliding organ problem there are major categories of approaches. In [12,15],
the registration task is divided into image regions segmenting the sliding parts
in the image. The resulting correspondence map yields a composition of the reg-
istered regions. However, the sliding interfaces have to be known in advance.
Various approaches [2,3,9,10,14] rely on local image features as e.g. image gra-
dients, to identify the sliding interfaces and to relax the regularization across the
interfaces. The implicit assumption made in these approaches is, that the sliding
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interfaces are located at high image gradients. For abdominal images, this is true
for the lung and its sliding interface to the thoracic cavity. Nonetheless, it does
not hold for sliding interfaces in general as e.g. the interface between the liver
and the thoracic cavity. In [5,11], the sliding interfaces are derived by motion
segmentation of the spatial transformation. The interfaces found are gradually
refined during optimization based on the current correspondence map. To reach a
stable convergence, however, remains challenging as the registration parameters
and the motion segmentation are treated independently in the optimization. To
avoid alternated optimization, in [4], motion segmentation is performed implic-
itly in the regularization term. No regional constraint on the segmentation was
integrated though. In [3,22], sparsity is regularized to become robust against
abrupt changes in the correspondence. However, the sliding interfaces are not
explicitly considered.

Expressing discontinuities for the sliding interfaces requires high degrees of
freedom which has to be trade-off against smoothness. It has been shown that
starting with low degrees of freedom and successively adding more and more
during optimization is advantageous to reach good optima [7]. This is why hier-
archical image registration has found its way into most of the registration meth-
ods. However, only few approaches simultaneously optimize the full hierarchy
of resolution levels at once [17,19] and they do not address sliding interfaces.
In addition, it is not clear how to pass discontinuities contained in one level
upwards the resolution hierarchy without an appropriate propagation.

The contribution of this paper is as follows. We present a concept of a trans-
formation model which is flexible enough to express discontinuities and simul-
taneously can handle smooth regions on multiple scales. We implement it with
a graph-based multi-resolution displacement field with a closely connected total
variation regularizer which operates on the graph. Furthermore, we add an L1
penalty on the graph weights and an L2 penalty on the displacements. We show
first results on synthetic 2D images and on a 2D slice of the POPI model [20] as
an early proof of concept.

2 Method

A single-level displacement field as a transformation model where each pixel
in the image domain can be transformed independently would not have any
constraints, thus, discontinuous transformations could be well described. The
same holds for a hierarchy of displacement fields. So, what is the motivation
behind a hierarchy of displacement fields? Multi-grid methods found the way
from general mathematical programming [7] to image registration methods [17].
Optimizing coarse approximation of a problem first and gradually refining the
approximation during optimization has the effect of (I) smoothing the objective
function and (II) reducing the sensitivity of the initialization to local minima. For
common image registration objectives that means that the image gradient for a
parameter in a coarser level is integrated over a larger domain than for one on
the level of the image resolution which results in the effect of (I) and (II). For the
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sliding organ problem, however, gradients of opposing sides of sliding interfaces
may cancel out each other. Therefore, we propose the weighted propagation
to higher levels where the domain which is influenced by a parameter can be
constrained.

2.1 Transformation Model

Let X := {xi}n
i=1 be a set of n points lying on a regular grid and covering the

joint image domain of the reference and target image IR, IT : X → IR which map
the d-dimensional input X ⊂ IRd to intensity values. Let further f : X → IRd

transform the reference coordinate system.
Image registration can be formulated as an optimization problem:

f∗ := arg min
f

1
|X |

∑

x∈X
L(IR(x + f(x)), IT (x)) + ηR[f,X ], (1)

where f∗ is a minimizer of Eq. 1, L is a loss-function, R a regularization term
weighted with the hyper-parameter η and |·| the cardinality of a set. Throughout
the paper, we use the squared difference loss L(x, x′) := (x − x′)2. The regu-
larization term R is explained in Sect. 2.2. The transformation f is defined to
have a graph structure with several levels. Each level of the graph represents a
different resolution, where the first level defines a coarse and the last a fine one.
During minimization, the finer levels are successively added for the optimization
and simultaneously optimized with the coarser levels.

Definition of the Graph. Let the transformation f be a directed acyclic
graph having L levels, where each level l has Nl nodes {cl

i}Nl
i=1. Let the nodes be

connected with directed edges φ(wl−1
ji ) ∈ [−1, 1], wl−1

ji ∈ IR connecting the j-th
node of level l − 1 with the i-th node of level l, where φ is a logistic function.
We define the value of a node as

cl
i = slbl

i +
1

|Bl
i|

∑

j∈Bl
i

φ(wl−1
ji )cl−1

j , (2)

where the root node c01 = s0b01, the biases bl
i ∈ IRd and the scales sl ∈ IR+. The

index set Bl
i contains the indices of the neighboring nodes cl−1

j ∈ IRd (in the
preceding level) of a node cl

i. Nodes in the highest level f(xi) := cL−1
i define the

spatial transformation of f .
The number of nodes per level Nl =

(
2 d
√

Nl−1 + 1
)d and N0 = 1 (see Fig. 1

for a 1D example). Each node cl
i within the joint image region has a position in

the image which corresponds to an xL−1
j ∈ X where the spacing between nodes

is the spacing of the preceding level divided by two. The root node c01 is placed
in the center of X . We only consider edges wl−1

ji which connect nodes cl−1
j with

neighboring nodes cl
i denoted as j ∈ Bl

i. We define the neighborhood of a node
by considering ±2 nodes in each space dimension resulting in a maximum size
of the neighborhood of 5d nodes. For regularization purposes (see Sect. 2.2) we
set the scale values sl = 2l.
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Logistic Function. To complete the definition of the transformation f we
choose the following somewhat non-standard “logistic” function

φ(w) := sin(w) (3)

because of several advantages. It maps each value into the desired interval [−1, 1]
and has gradients between [−1, 1]. A vanishing gradient of 0 is only attained at
points π/2+kπ, for k ∈ Z. Compared to the sigmoid function, where large steps
lead to saturation, hitting vanishing gradients by chance is unlikely using the
sine function.

2.2 Regularization

In the following, we construct three different regularization terms for the hier-
archical transformation model. The TV-regularizer Rs which favors piece-wise
smooth transformations, the sparsity regularizer Rw which penalizes weights
which deviate from the values −1 and 1 and the bias regularizer Rb which favors
transformations explained in lower levels by penalizing the magnitude of the
biases. Finally, we replace the regularization term of Eq. 1 by

R[f ] := ηsRs[f ] + ηwRw[f ] + ηbRb[f ] (4)

with the hyper-parameters ηs, ηw and ηb.

TV Regularization with Edge Consideration. To regularize for smooth
transformations, neighboring displacements which are similar should be desir-
able. This can be expressed by ‖cl

i − cl
j‖ for neighboring cl

i and cl
j . We modify

the norm to account for nodes which are located on opposing sides of sliding
interfaces by defining the TV regularizer as:

Rs =
L−1∑

l=1

Nl∑

i=1

∑

j∈Bl
i

∑

k∈(Bl
i∩Bl

j)

∥∥∥φ(wl−1
ki )cl

i − φ(wl−1
kj )cl

j

∥∥∥
ε︸ ︷︷ ︸

C

∥∥∥φ(wl−1
ki )φ(wl−1

kj )
∥∥∥

ε︸ ︷︷ ︸
W

,

where ‖x‖ε :=
√

xT x + ε. The special form of C with the factors φ is motivated
as follows. If cl

i and cl
j are located on opposing sides of a sliding interface the

contribution of the norm to the regularization term should be neglected. This
can be achieved in two ways: if one node belongs to a static and the other to a
dynamic structure the weights can be set to zero (W = 0). If the nodes belong to
distinct dynamic structures which slide along each other in opposite direction,
the influence of the norm can be reduced by setting the weights for one node
to 1 and for the other to −1. To summarize, the impact of the node cl

i to Rs

can be reduced by either aligning its neighboring nodes cl
j (possibly in opposite

direction) or by setting the weights connecting the two nodes over nodes in the
preceding level to φ(wl−1

ki ) = φ(wl−1
kj ) = 0. Note that the first sum starts with

level 1 as level 0 does not have any neighboring nodes on the same level. We
simplify notation and omit the normalization factors of the inner three sums.
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Sparsity Regularization on Edges. The piece-wise smoothness of Rs is
enforced by the TV norm of neighboring nodes, however, the impact of this
norm can be canceled out by the weights. One solution to minimize Rs is to set
all weight parameters to ±π

2 such that the weights φ(w) = 0. We prevent such
trivial solutions by an additional term Rw which penalizes weights deviating
from the value ±1.

Rw =
L−1∑

l=1

Nl∑

i=1

∑

j∈Bl
i

2
π

min
(∣∣∣

π

2
− wl−1

ji

∣∣∣,
∣∣∣ − π

2
− wl−1

ji

∣∣∣
)

, (5)

where Rw is further normalized by the number of considered weights. In Fig. 2,
the influence of a weight parameter to the regularizer Rw is plotted.

−π −π
2 0 π

2
π

0

1

2

w

Fig. 2. Contribution of a weight to the regularization term Rw.

Regularization of Biases. As displacements are propagated upwards through
the hierarchy of displacement fields, lower levels have a stronger influence on the
smoothness of the final transformation i.e. the highest resolution level. Hence,
favoring biases in lower levels directly means that smooth transformations are
preferred. Therefore, we add a third regularization term

Rb =
L−1∑

l=0

Nl∑

i=1

‖bl
i‖2, (6)

where Rb is further normalized by the number of considered biases. Because the
biases bl

i are scaled with sl, whose values decrease going up the hierarchy, the
value of Rb can be reduced by explaining transformations with biases in lower
levels.

3 Results

We evaluate our new hierarchical registration method (HReg) on two synthetic
datasets to investigate hypothetical sliding organ boundaries. We compare our
method to the sparse kernel machine (SKM) [3] based on the ground truth corre-
spondence which is known in these examples. Furthermore, we show a qualitative
result on a 2D slice of the 4DCT POPI model to verify a meaningful registra-
tion performance on biomedical data. In all experiments, we calculate analytical
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derivatives with respect to the biases and the weight parameters and minimize
with an LBFGS optimizer including line search. For the sparsity regularizer Rw,
we use the sub-gradient of zero at values w = ±π

2 and w = 0. The biases and
weight parameters are initialized to zero and π

6 respectively.

Fig. 3. Synthetic reference and target images. left: shift example, right: circle example.

Synthetic Examples. In the shift example, the shadings in the upper and
lower part are shifted by 12 pixels in opposite directions between the target
and reference image (c.f. Fig. 3). In the circle example, IR(x) = x×e1

π , where
e1 is a unit vector. The inner and outer part are rotated by 15◦ in opposite
directions between the target and reference image. The images in both examples
have a size of 120 × 120 px and 7 graph-levels where used (127 × 127 px). As an
evaluation measure, we define the error to the ground truth displacement field
fgt as E[f, fgt] := |X |−1

∑
x∈X ‖f(x) − fgt(x)‖.

Table 1. Ground truth difference E[f, fgt] [px] (init stands for the initial difference.)

init SKM HReg

Shift 12 5.35 5.23

Circle 12 1.95 1.60

We manually tuned the hyper-parameters to starting values ηs = ηw = ηb =
D[finit] ·10−2 for the shift and ηs = ηw = ηb = D[finit] ·10−3 for the circle exper-
iment where D[finit] is the integrated loss-function for the initial transformation
finit. The L1 regularization weight of the SKM was set for the three scale levels
to {10−6, 10−7, 10−8}. The sliding interfaces along the shift and circle respec-
tively are well registered by HReg (see Fig. 4). There are remaining registration
artifacts in the rotation center and the left and right side of the sliding interface.
The resulting error E[f, fgt] of our method compared to the SKM method is
similar (c.f. Table 1). Although, the SKM method achieved similar registration
performance the correspondence map is smooth across the sliding interfaces.



10 C. Jud et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Results of synthetic experiments (top row SKM, bottom row HReg). (a, c, e, g)
warped reference where the final f∗ is visualized with arrows, (b, d, f, h) checkerboard
warped by the final f∗.

Exhalation SKM HReg

Fig. 5. Experiment with a slice of the POPI model. The displacement field is visualized
as arrows colored in yellow. The background image is the warped inhalation slice. (Color
figure online)

POPI Slice. For a qualitative evaluation, we register an inhalation and the
corresponding exhalation slice of the 4DCT POPI model [20]. We re-sampled
the images to a size of 125 × 103 px and used 7 levels in the transformation
f . We manually set the hyper-parameters to ηs = D[finit], ηw = D[finit] · 10−1,
ηb = D[finit] · 10−4. When adding levels in the optimization the parameter ηs is
changed to satisfy η

(l)
s Rs[f

(l)
∗ ] = η

(l+1)
s Rs[f

(l+1)
init ] where the superscripts indicate

how many levels are optimized. Thus, f
(l)
∗ indicates the resulting minimizer f∗

after optimizing with l levels and f
(l+1)
init the initial transformation when starting

the optimization with l + 1 levels. For the SKM method, we generated a weight



An Inhomogeneous Multi-resolution Regularization Concept 11

image Iw = −IT which is further scaled to the interval [0.1, 1]. SKM and HReg
perform on par looking at the registration result in Fig. 5. The weight image
provided to the SKM, however, has the effect that the lower vertebrae are better
mapped than in HReg. HReg in turn, better registers the inner part of the left
lung.

4 Conclusion

We have proposed a new registration methodology targeted to the sliding organ
problem. It is based on a hierarchical transformation model which has the form
of a directed acyclic graph. The introduced regularization, which operates on
this graph, is able to tackle the contradicting requirements on the correspon-
dence map to be mostly smooth and to contain local discontinuities at sliding
boundaries. We have analyzed the performance of our method on synthetic 2D
registration examples and could show that compared to the SKM method, slid-
ing interfaces are well registered. Finally, we have provided promising results on
a 2D slice of the POPI model. Nevertheless, further investigations and tests are
required for the individual components of the method which is planned for the
future. As we have shown a proof of concept, we believe our method provides a
rich framework for image registration problems with inhomogeneous smoothness
requirements.
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Abstract. Accurate registration of images depicting respiratory
motion, e.g. 4DCT or 4DMR, can be challenging due to sliding motion
that occurs between the chest wall and organs within the pleural sac
(lungs, mediastinum, liver). In this paper we propose a methodology
that (1) segments one of the images to be registered (the source or
floating/moving image) into two distinct regions by fitting a statisti-
cal motion mask, and (2) registers the image with a modified B-spline
registration algorithm that can account for sliding motion between the
regions. This registration requires the segmentation of the regions in the
source image domain as a signed distance map. Two underlying trans-
formations allow the regions to deform independently, while a constraint
term based on the transformed distance maps penalises gaps and overlaps
between the regions. Although implemented in a B-spline algorithm, the
required modifications are not specific to the transformation type and
thus can be applied to parametric and non-parametric frameworks alike.
The registration accuracy is evaluated using the landmark registration
error on the basis of the publicly available DIR-Lab dataset. The overall
average landmark error after registration is 1.21 mm and the average gap
and overlap volumes are 26.4 cm3 and 34.5 cm3 respectively. The fitted
statistical motion masks are compared to previously proposed motion
masks and the corresponding mean Dice coefficient is 0.96.

Keywords: Sliding motion · B-Spline registration
Statistical shape model · Motion mask

1 Introduction

Registration of images which contain anatomical regions that slide along each
other is an ongoing research topic. The major challenge is that registration is an
ill-posed problem and thus requires some regularisation which usually constrains
the transformation to be smooth. This smoothness assumption however is not
true across a sliding interface where discontinuities in the transformation are
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present. A prominent example where sliding occurs is respiratory motion of the
lung along the chest wall, facilitated by the pleural sac that encloses not only the
lungs and heart, but also liver and further lower abdominal organs. As a result,
registration of images of the thorax depicting respiratory motion is challenging.

Several registration methods for handling sliding motion have been proposed
in the literature [1,5,7,10,13,14]. Most of these methods require a segmentation
of the sliding regions either in the target image or in both target and source
image. But for applications such as contour propagation in radiotherapy, it is
preferable to segment the source image where the contours have been defined.
Furthermore, for combined motion modelling and motion compensated image
reconstruction from partial image data [8] it is essential to segment the source
image as the target ‘images’ may be partial image data (e.g. individual slices,
projections) which can be very challenging or impossible to accurately segment.
Some methods do not require a prior segmentation in either image, but use a
regularisation term that permits sliding motion [13]. While such methods are
appealing, there is a possibility they may not correctly represent the sliding
motion in areas of homogeneous intensities, for instance where the liver meets
the chest wall. Furthermore, they do not model a true discontinuous motion,
but approximate the sliding as a shear motion. However, it is acknowledged
that while the discontinuous motion is more realistic, in practice this may not
be important. Therefore, for some applications such as motion modelling from
partial image data or radiotherapy dose accumulation, it may be desirable to
explicitly specify where the sliding motion should occur, especially if parts of
the sliding interface are not easily identifiable in the images. To the best of our
knowledge, none of the published methods that require a segmentation allows
the sliding regions to be specified only in the source image domain.

Identification of the sliding regions in CT images was proposed by
Vandemeulebroucke et al. [12]. Their motion mask includes the lungs and other
inferior organs that slide together and is thus anatomically more plausible than
just a lung segmentation. However, this motion mask generation is designed
specifically for CT images as it utilises features that can be relatively easily seg-
mented from such images, namely lungs, thorax, and bones. Moreover, applica-
tion of our implementation of this method proved to be time consuming because,
(1) level-set evolutions are computationally expensive and (2) we did not find
a single set of parameters that worked across all patients. Some manual cor-
rections of the bony structures were also required where pacemakers or high
intensity abdominal regions were present and morphologically connected to the
bones.

The purpose of this paper is therefore twofold. In Sect. 2.1 we propose a
motion mask generation on the basis of a statistical shape model [4] being fit
to the source image. A resulting signed distance map where the zero-crossing
identifies the interface of sliding image regions is then utilised by our sliding
B-spline registration. The sliding framework is presented in Sect. 2.2. The results
are quantitatively evaluated on the publicly available DIR-Lab dataset [2,3].
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2 Materials and Methods

2.1 Statistical Motion Masks

The motion mask generation by Vandemeulebroucke et al. [12] uses a sequence
of level-set evolutions that are controlled by three CT-based feature images,
namely lungs, thorax, and bones. This method produces suitable motion masks
from CT images, but cannot be used with MR images (which we intend to
apply our method to in the future), and can be time consuming. Therefore, we
build a statistical shape model of the motion masks from a large number of
4DCT images, that captures the inter-patient variation in the motion masks.
This statistical shape model can then be used to segment a new image more
rapidly than the original method, and can potentially be used on MR images.
This shape model is fitted to directional intensity gradients which are present
in both CT and MR images, such as the low-to-high intensity contrast between
lung and surrounding tissue or the high-to-low contrast between thorax and air.

The generation of the statistical motion mask comprises of the following steps
and is summarised in Fig. 1:

1. Calculate intra-subject average 4DCT image by group-wise registration,
2. Generate motion mask based on average 4DCT images according to [12],
3. Inter-patient group-wise registration of average 4DCT images,

Fig. 1. Flow chart for the generation of the statistical motion mask. (1) Average 4DCT
images (avg.) are generated by intra-patient group-wise registration of the different
phases (T00-T90). (2) From these average images features are extracted and motion
masks are calculated for each subject. (3) Inter-subject group-wise registration of aver-
age 4DCT images and (4) application of the transformations to the mask to create a
population average motion mask. (5) A surface mesh is generated from the average
motion mask image. (6/7) The surface mesh is transformed back to the individual
images. (8) The deformations are captured in a statistical motion mask.



16 B. Eiben et al.

4. Use registration results to form the population-average motion mask image,
5. Convert population-average motion mask image into mesh representation,
6. Use registration results to transform motion mask mesh to each subject,
7. Refine mesh to better match individual motion mask images [6],
8. Statistical motion mask calculation [4].

A prerequisite for building a statistical shape model is the point-to-point cor-
respondence between individual motion mask meshes (7) [4]. This is why one
population-average motion mask mesh is generated (5) and then transformed back
to each subject (6/7), rather than simply generating the meshes from each indi-
vidual motion mask image. As the transformed mesh does not perfectly match the
individual motion mask images due to registration errors, the mesh is refined by a
surface alignment algorithm [6] where the transformed average mesh is iteratively
deformed towards a target surface, in this case the motion masks calculated in (2).
The final statistical shape model is formed by applying PCA on the refined mesh
coordinates, and comprises the average shape and eigenvectors/principal compo-
nents that define the modes of variation of the shape.

Once the statistical motion mask exists, an appearance representation in the
form of intensity gradients is calculated along the mesh normals determining
for each node if positive, negative or mixed intensity gradients dominate. Such
gradients are measured in the direction of the outward facing mesh normals
on the average 4DCT images. Only those nodes that have a clear positive or
negative intensity gradient across all subjects will be used during mask fitting.

To fit the statistical motion mask to an image, i.e. finding the weights for
each mode of variation and a global rigid transformation, we follow the iterative
multi-scale process by Cootes et al. [4], but make the shape model lock onto
either positive or negative image gradients as identified above.

Due to the shape of the motion mask, the positioning and extent in the
inferior part of the mask is not well constrained. To improve the SI-scaling of the
mask, we also include the lung-diaphragm boundary as two additional surfaces
to the statistical motion mask. These surfaces also lock on the directional image
gradients in the diaphragm region. This improves the scaling of the fitted mask
in the SI-direction. For our application we also want the mask to extend below
the image boundaries. Hence during the mask fitting the most inferior nodes
of the statistical model are displaced inferiorly until they are below the image
boundary (c.f. Fig. 4(b)).

2.2 Sliding Registration Framework

The proposed sliding framework uses two separate transformations for the two
regions involved, region A and region B. This facilitates independent motion
and thus the desired deformation discontinuity at the regions’ interface. The
corresponding transformations are denoted as TA(x) and TB(x). The method
also requires a signed distance map D(x) which defines the two regions, and can
be pre-calculated based on the fitted statistical motion mask. Let region A be
identified by negative values D < 0 and region B by positive values D ≥ 0.
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Fig. 2. Schematic of transformed distance maps DA and DB , their sum DA+B and
product DAB as they are used in the sliding registration approach. The green overlay
depicts region A after transformation with TA and the yellow overlay shows region B
after TB . The grey line (bottom left) indicates the boundary where the transformation
switches from TA to TB and negative values of DAB indicate gaps and overlaps. (Color
figure online)

In order to calculate the deformed image it is necessary to determine which
of the two transformations to use for each voxel in the target image. This is done
by deforming the distance map with both transformations, DA(x) = D(TA(x))
and DB(x) = D(TB(x)), and summing the resulting deformed distance maps,
DA+B = DA + DB . Then

T(x) =

{
TA(x) for DA+B(x) < 0
TB(x) otherwise

. (1)

The independent motion of the two regions can result in gaps between or
overlap of the two regions. The above approach for determining which transfor-
mation should be used at each voxel means that the transition between using TA

and TB will occur in the middle of any gaps and overlaps (see Fig. 2). However,
even with this approach the gaps and overlaps will still lead to a violation of
a one-to-one mapping between the images. Therefore, a gap-overlap constraint
term (GOCT) is introduced, which is based on the product of the deformed dis-
tance maps DAB = DADB , and penalises any gaps and overlaps that occur (see
Fig. 2). This term is non-zero only at positions where gaps and overlaps occur.

CGOCT(x) =

{
−DAB(x) for DAB(x) < 0
0 otherwise

(2)

The total value of the constraint term is then calculated as the sum of CGOCT

over all voxels normalised by the number of voxels.
The transformations are both optimised simultaneously by calculating the

gradient of the cost function (i.e. sum of similarity metric(s), CGOCT, and other
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constraint terms) with respect to each of the individual transformations. When
calculating the gradient of the similarity metric(s) with respect to TA, only
the voxels that are transformed by TA (i.e. DA+B < 0) contribute towards the
gradient calculation. And likewise, only voxels transformed by TB contribute
towards the gradient with respect to TB. The gradient of CGOCT with respect
to TA is given by

∂CGOCT(x)
∂TA(x)

=

{
−DB(x)∂DA(x)

∂TA(x) for DA(x)DB(x) < 0

0 otherwise
, (3)

where ∂DA(x)/∂TA(x) is the spatial gradient of the distance map warped by the
deformation field for region A. The gradients of any other constraint terms are
calculated for each transformation separately, in exactly the same way as they
would be for a standard (non-sliding) registration.

The sliding framework was used to modify NiftyReg, an open source B-spline
registration software [9].

2.3 Image and Landmark Data

To build the statistical motion masks, 4DCT datasets from 32 subjects were
used, each comprising of 10 respiratory phases. The first ten image sets were
taken from the publicly available DIR-Lab dataset [2,3]. The remaining datasets
were acquired as part of standard clinical practice from patients with either
early-stage (14 cases) or locally-advanced (8 cases) non-small cell lung cancer.

The DIR-Lab dataset also contains 300 manually selected corresponding
landmarks in the end-exhale and end-inhale phases. These were used to quantify
the registration accuracy in terms of a landmark registration error (LME). Note
that most of the LME values given on the DIR-Lab website have been calcu-
lated using the ‘snap-to-voxel’ approach [3], so for comparability reasons we also
follow the same approach here.

3 Results

3.1 Statistical Motion Mask Fitting Accuracy

The fitting accuracy of the statistical motion mask with respect to the num-
ber of modes included in the model was evaluated against the level-set based
motion mask in terms of the Dice coefficient and mean contour distance by
using a leave-one-out evaluation strategy. To evaluate the dependency of the fit-
ting accuracy on the number of modes of variation (i.e. number of eigenvectors
of the statistical shape model), the fitting was performed in a multi-scale fash-
ion with three resolution levels corresponding to intensity sampling distances
along the mesh normal of 4 mm, 2 mm, and 1 mm and 200 iterations per level.
The results are shown as box-plots in Fig. 3. The highest mean Dice coefficient
of 0.96 ± 0.02 was achieved with 20 modes, whereas the lowest mean contour
distance of 3.67 ± 2.00 mm was achieved with 25 modes.
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Fig. 3. Motion mask fitting accuracy in terms of the Dice coefficient (a) and mean
contour distance (b). Red line represents the median value, the box extends from
the first and the third quartile, and the whiskers extend the box by 1.5 times the
interquartile range. (Color figure online)
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Fig. 4. (a) Cumulative, relative variation described by statistical shape model as a
function of the number of modes of variation, i, used in the 32 leave-one-out models.
For each model a grey curve is plotted and the average over all models is shown in
black. (b) Level-set based motion mask (red) and statistical motion mask (white line)
fitted to case 1 of the DIR-Lab dataset. (Color figure online)

Furthermore the variation covered by the shape model as a function of the
number of modes is given in Fig. 4(a). For a coverage of 95% of the variation
observed in the dataset 16 modes are required, and for 98% coverage 23 modes.
After considering the Dice coefficient results, the mean contour distance results,
and the percentage of variation covered, it was decided to use 23 modes for all
the following experiments. An example result for this fitting configuration for the
first case of the DIR-Lab dataset is shown in Fig. 4(b) along with the level-set
based result.



20 B. Eiben et al.

3.2 Registration Accuracy

The registration accuracy was quantified using the DIR-Lab datasets as follows:
The source image was selected to be the end-exhale image and the statistical
motion mask (built leaving out the current dataset) was fitted in the same fashion
as described in Sect. 3.1 using 23 modes of variation. A signed distance map was
calculated from that motion mask and used as input into the sliding registration.
In order to keep the number of parameters for the registration to a minimum,
no other constraint terms were used. Different B-spline control point spacings
(sx = [5, 10, . . . , 30] mm) and CGOCT weights (wgo = [0.8, 0.85, 0.9, 0.95]) were
investigated. For comparison, standard, i.e. non-sliding, B-spline registrations
with the same control-point spacings and no additional constraint terms were
performed and evaluated. For all registrations Local Normalised Cross Correla-
tion (LNCC) was used as the similarity measure.
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(a) non-sliding B-spline registration
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(b) sliding B-spline registration

Fig. 5. Mean landmark errors (LME) over all 10 DIR-lab datasets and all landmarks
after registration with respect to the control point spacing sx. For the sliding registra-
tion results, (b), errors are given for several gap-overlap-constraint weights, wgo. All
values are given in mm.

The landmark errors after alignment with the standard B-spline registration
are shown in Fig. 5(a). Here the lowest average LME is 2.09 mm and results from
a control-point spacing of sx = 5 mm. The LME increases for coarser control-
point grids.

The results for the sliding registration are shown in Fig. 5(b). The lowest aver-
age LME of 1.21 mm is achieved for a gap/overlap constraint weight wgo = 0.8
and a control-point spacing of sx = 20 mm. However, results with this spac-
ing and wgo = [0.8, 0.85, 0.9] are very close together and below 1.34 mm. Com-
pared with other methods, our resulting average landmark registration error
is lower than those reported for instance by Papiez et al. [10] (1.95 mm), Wu
et al. [14] (1.47 mm), Delmon et al. [5] (1.66 mm), and Berendsen et al. [1]
(1.36 mm); but slightly larger the one reported by Hua et al. [7] (1.17 mm) or
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Fig. 6. Gap (a) and overlap (b) volumes in cubic centimetres with respect to the
corresponding constraint weight wgo for several control point spacings sx.

Table 1. Gap (Vgap) and overlap volumes (Voverlap) of segmentation-based methods as
reported in the literature [1,5,7,14]. All values are given in cm3.

Wu 2008 Delmon 2013 Berendsen 2014 Hua 2017 Our method

Vgap 88.2 80.0 76.5 94.0 26.4

Voverlap 52.5 55.1 37.4 18.8 34.5

Vgap ∪ Voverlap 130.7 135.1 113.9 112.8 60.9

Vishnevskiy et al. [13] (0.95 mm). A comprehensive list of landmark errors
achieved by various algorithms is published on the DIR-Lab website [11].

Figure 6 shows the average gap and overlap volumes given in cubic centime-
tres as a function of the gap/overlap constraint weight for all tested control-point
spacings. Gap and overlap volumes decrease towards higher constraint weights
and smaller control point spacings. For the configuration that produces the low-
est LME, the average gap and overlap volumes are 26.4 cm3 and 34.5 cm3 respec-
tively. For comparison, gap, overlap and their combined volumes as reported
by [1,5,7,14] for segmentation-based methods on the same DIR-Lab dataset are
shown in Table 1.

4 Discussion and Conclusion

In this paper we present a method to register images which contain regions
that slide along each other, and demonstrating this on 4DCTs of the thorax. To
achieve this source images are segmented into sliding regions by fitting a statisti-
cal motion mask which encompasses the lungs, heart and further inferior organs.
This segmentation is used as an additional input for a modified B-spline regis-
tration. The modification implements a sliding framework that allows for using
different transformation types and/or other constraint terms for each region.
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Defining the sliding regions in the source image domain can be beneficial for
applications such as contour propagation for radiotherapy, and is required for
motion modelling, and motion compensated image reconstruction from partial
image data [8].

The statistical motion mask fitting is an extension of the work of Vandemeule-
broucke et al. [12] who calculate a motion mask on the basis of image features
that are extracted from CT images and multiple level-set evolution steps. This
procedure is computationally expensive and is only applicable to CT images. The
statistical motion mask can be fitted relatively fast and the method is designed
to be applicable to MR as well as CT images. However, a quantitative evaluation
on MR images will be subject of future work.

The sliding registration requires the segmentation of the two regions in the
form of a signed distance map that can be pre-calculated. Each region is associ-
ated with a separate transformation which allows the regions to move indepen-
dently from each other. A new constraint term has been used to help prevent
gaps and overlaps occurring between the two regions, and hence maintain a
one-to-one mapping between the images.

The proposed registration method achieved an average registration accu-
racy of 1.21 mm. These errors are based on manually identified correspondences
and thus are subject to inter- and intra-observer errors which range between
0.70 mm and 1.13 mm [2]. This poses a lower limit on the measurable accuracy.
While the DIR-Lab dataset provides an excellent tool for algorithm compari-
son, tests of statistical significance of algorithm performances however are not
possible without gaining access to the full landmark error distributions for all
algorithms being compared. Furthermore our method outperformed other seg-
mentation based methods in terms of combined gap and overlap volumes. The
reduction in gap and overlap volumes could be important for applications such
as radiotherapy dose accumulation, but further work is required to demonstrate
this.

One limitation of our method is that currently only two regions can be han-
dled. Nevertheless, from our experiments this is sufficient for registrations of the
respiratory motion in the thorax.
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Abstract. Registration of thoracic images is central when studying for
example physiological changes of the lung. Due to sliding organ motion
and intensity changes based on respiration the registration of thoracic
images is challenging. We present a novel regularisation method based
on adaptive anisotropic graph diffusion. Without the need of a mask it
preserves discontinuities of the transformation at sliding organ bound-
aries and enforces smoothness in areas with similar motion. The graph
diffusion regularisation provides a direct way to achieve anisotropic diffu-
sion at sliding organ boundaries by reducing the weight of corresponding
edges in the graph which cross the sliding interfaces. Since the graph
diffusion is defined by the edge weights of the graph, we develop an
adaptive edge weight function to detect sliding boundaries. We imple-
ment the adaptive graph diffusion regularisation method in the Demons
registration framework. The presented method is tested on synthetic 2D
images and on the public 4D-CT DIR-Lab data set, where we are able
to correctly detect the sliding organ boundaries.

1 Introduction

The registration of images of the human thorax is essential for the analysis or the
monitoring of physiological properties of the upper abdomen. However, thoracic
images are affected by sliding organ motion at the thoracic cavity, and corre-
sponding mass points undergo cyclic intensity changes over the respiratory cycle.
If images are affected by sliding organ motion the global smoothness assumption
of the transformation often does not hold, because of local discontinuities in the
transformation at these boundaries.

Several registration approaches haven been presented to overcome the trade-
off between global smoothness and local discontinuity preservation. Based on
their definition parametric approaches are more likely to achieve global smooth-
ness, if the chosen basis function is smooth. In order to preserve local discon-
tinuities with a parametric approach, a stationary first order B-spline kernel
combined with a Total Variation (TV) regularisation is introduced in [19]. A non-
stationary kernel is described in [6]. Here, a smooth kernel is locally adapted in its
shape based on the image intensities. Non-parametric approaches are well suited
c© Springer International Publishing AG, part of Springer Nature 2018
S. Klein et al. (Eds.): WBIR 2018, LNCS 10883, pp. 24–34, 2018.
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for local discontinuity preservation, as they directly estimate the transformation
for each pixel. Different direction-dependent regularisation methods based on
the image intensities or the transformation are presented in [4,11,16]. In [12] an
adaptive Gaussian regularisation based on bilateral filtering is shown. Segmen-
tation of the sliding boundaries can also be used by either building a motion
segmentation [7] during the registration, or assuming a prior segmentation to
locally adapt the transformation model [5]. Several graph based approaches have
been introduced in the past. Using a graph based formulation for TV regulari-
sation [2] or a non-local regularisation based on the minimum spanning tree of a
graph [13]. In both methods the image intensities are used to calculate the edge
weights of the graph.

As mentioned before parametric approaches are well suited for global
smoothness, and non-parametric regularisation, especially anisotropic diffusion
[4,11,16], are effective to preserve local discontinuities. In order to achieve both,
we propose the graph diffusion as regularisation method for image registration.
Graph diffusion allows global smoothness while at the same time local differ-
ences on the pixel level are considered. It was shown to be a valid regularisation
operator for kernel-based learning algorithms [17] and a reliable and computa-
tionally efficient method in the area of edge-preserving image smoothing [20].
Anisotropic diffusion can be achieved with graph diffusion in a straightforward
way by modifying the edge weight between nodes. In order to achieve anisotropic
diffusion at local discontinuities, we need to reduce the edge weights of nodes
which are located on different sites of a sliding organ boundary.

In this work, we present the adaptive anisotropic graph diffusion regulari-
sation method (A2GD) to enforce global smoothness and preserve local discon-
tinuities of the transformation. We achieve this without prior information (e.g.
segmentation) of the sliding organ boundaries. A local adaptive edge weight func-
tion is developed to create anisotropic diffusion only at sliding organ interfaces
and isotropic diffusion in areas with similar motion. The proposed regularisation
is implemented in the Demons framework [18] and replaces the isotropic diffu-
sion regularisation. To the extent of our knowledge, graph diffusion has not been
used as regularisation method for image registration before.

2 Background

Let T,R : X → R be the target and reference image over the image domain
X . We define the image domain X = {xi}n

i=1 as a set of regular distributed
grid points xi in d-dimensions. The registration problem can be defined as a
regularised minimisation problem:

f = arg min
u

S[T,Ru] + ϕR[u], (1)

where transformation of interest f : X → R
d is a minimiser of (1). Here, S[·, ·]

is the similarity measure for the target image T and the transformed refer-
ence image Rf with Rf (xi) = R(xi + f(xi)). In order to restrict the space of
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admissible transformations, prior knowledge of the transformation space (e.g.
smoothness) can be applied to the registration problem by the regularisation
term R[·]. The parameter ϕ controls the influence of the regularisation e.g. the
smoothness of the transformation. A possible method to find a transformation
that minimises (1) is the Demons method proposed by Thirion [18]. He proposed
an iterative method to determine f by alternating minimising the similarity S
and computing the regularisation R. A generalisation of this idea is shown in
Algorithm 1. Thirion proposed an isotropic diffusion process as regularisation to
smooth the transformation. Isotropic diffusion can be achieved by

RID[f ] = KG
ϕ ∗ f l l = 1, . . . , d (2)

for each spatial dimension l. Here, ∗ is the convolution and KG
ϕ is a Gaussian

kernel (diffusion kernel) with a kernel size of
√

2ϕ [1].

Algorithm 1. Demons registration framework
1: Inputs:

T , R, N := number of iterations, σ := kernel size, α := step size
2: Initialise:

f ← 0
3: for i = 1 to N do
4: s ← ∇S[T, Rf ] compute image force (demons)
5: f ← f + αs update transformation
6: f ← Kσ ∗ f smooth transformation

3 Method

We summarise in the following the definition of diffusion on graphs, how it can be
calculated efficiently, and how we use it as regularisation for image registration.
Further, we propose our extension the adaptive anisotropic graph diffusion regu-
lariser (A2GD), and an edge weight function to detect sliding organ boundaries.

3.1 Adaptive Graph Diffusion Regularisation

In order to apply graph diffusion as regularisation RGD[f ], the transformation f
is modelled as an undirected weighted grid graph G = (V,E,W ) with n nodes.
Each node vi ∈ V , with the node position xi ∈ X , represents f(xi). The set of
edges is given as E ⊆ V × V . An edge eij ∈ E connects the nodes vi and vj .
The weight matrix W ∈ R

n×n contains the edge weights of the graph with
W (i, j) = w(eij) and w : E → [0, 1]. A central element in spectral graph theory
is the graph Laplacian matrix L ∈ R

n×n. The Laplacian matrix is a symmetric
matrix and is defined as L = D − W with

L(i, j) =

⎧
⎪⎨

⎪⎩

D(i, j) − W (i, j), if i = j

−W (i, j), if eij ∈ E

0, otherwise,
(3)

where D ∈ R
n×n is the diagonal degree matrix with D(i, i) =

∑n
j=1 W (i, j).
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The diffusion rate or the flow between two nodes is determined by the weight
of the edge between both nodes. This allows to define arbitrary anisotropic dif-
fusion by only modifying the edge weights of the graph. In order to define the
diffusion process on graphs, Eq. (2) can be rewritten as

RGD[f ] = KGD
ϕ f̄ l = exp(−ϕL)f̄ l l = 1, . . . , d. (4)

Here, f̄ i ∈ R
n×1 is the column vector representation of the transformation f

and KGD
ϕ ∈ R

n×n is the graph diffusion kernel [8,20] with the matrix exponential
exp(·). If the edge weights are set according to the node position xi and xj with
w(eij) = exp(−||xi − xj ||2/4ϕ), then (2) and (4) will provide the same results.
We refer the reader to [20] for a more detailed description of graph diffusion.

In order to achieve an adaptive graph diffusion regularisation we make the
graph diffusion kernel KGD

ϕ non-static. We do this by updating the edge weights
in the weight matrix Wk in each iteration k with the edge weight function pre-
sented bellow. The final adaptive graph diffusion regularisation is defined as

RA2GD[fk+1,Wk] = KGD
ϕ (Wk)f̄ l

k+1 = exp(−ϕL(Wk))f̄ l
k+1 l = 1, . . . , d. (5)

Computation of the Graph Diffusion. Calculating the matrix exponential
of the Laplace matrix L is the major computational challenge for the graph
diffusion. For the matrix L, the matrix exponential can be defined as

exp(L) =
∞∑

k=0

1
k!

Lk. (6)

Different approaches exists to compute the matrix exponential [10]. The graph
Laplacian matrix L can be of high order, therefore the computation becomes
costly. However, the explicit calculation of the matrix exponential is not required
for the graph diffusion. In order to compute the graph diffusion only the action of
the graph diffusion kernel to the transformation vector is needed (4). It has been
shown in [14] that those kind of actions can be efficiently approximated with the
Krylov subspace projection methods. Therefore, exp(L)f is approximated by an
element of the Krylov subspace Km(L, f) = span{f, Lf, L2f, . . . , Lm−1f}, where
m is the dimension of the Krylov subspace. Normally the Krylov space dimension
(m < 50) is much smaller compared to n which can be in the range of a few
million in case of 3D registration. Since L is a hermitian matrix, the Lanczos
algorithm [9] offers a computationally efficient way to find the approximating
element of Km(L, f). The final approximation of (4) is then given as

f̄ l
smooth = exp(−ϕL)f̄ l ≈ ||f̄ l||2P exp(Q)e1. (7)

Here, P ∈ R
n×m is the projection matrix, Q ∈ R

m×m a symmetric tridiagonal
matrix, and e1 is the first unit vector. Both matrices P and Q are the results
of the Lanczos algorithm. The approximation only requires the matrix expo-
nential of a matrix with the order of m instead of the order of n. Since Q is
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a symmetric tridiagonal matrix, we compute the matrix exponential of Q by
exp(Q) = Λ exp(Γ )Λ−1. Each column in Λ is an eigenvector of Q and Γ is a
diagonal matrix of the corresponding eigenvalues. The matrix exponential of Γ
is the exponential of each diagonal element of Γ .

Local Edge Update. The graph diffusion allows an anisotropic diffusion pro-
cess by modifying corresponding edge weights. However, detecting the corre-
sponding edges only in one information domain (e.g. image intensities) is chal-
lenging, since sliding organ boundaries not always correspond to intensity dif-
ferences (see Fig. 1, Case (I)). We define five cases (see Fig. 1) to adapt the edge
weights either for anisotropic or isotropic diffusion. In Case (I) and (II), the
edges crosses a sliding organ boundary and therefore their edge weights need to
be zero to enforce anisotropic diffusion. The other edges are either inside the same
organ (Case (III) and (V)) or crossing an organ boundary where both organs
move similarly (Case (IV)). In cases (III) to (V) isotropic diffusion is desired
and therefore the edge weights should be one. We propose a locally adaptive
edge weight function to cover all five cases based on three different information
domains. The first two are the image intensity domain (Case III, V)

wimg(eij) = exp(−δimg||T (xi) − T (xj)||), (8)

and the transformation domain (Case I–V)

wf(eij) = exp(−δf||f(xi) − f(xj)||), (9)

with the scaling parameter δimg and δf The third domain is described by the rela-
tion between the direction of the image gradient and the direction of the transfor-
mation (Case II, IV) based on the Nagel-Enkelmann operator [11]. Adapting the
pixel-wise Nagel-Enkelmann operator to an edge weight function for the graph
diffusion results in

w⊥(eij) = 0.5
( ||∇Imax(eij)f(xi)T ||

||∇Imax(eij)|| ||f(xi)|| +
||∇Imax(eij)f(xj)T ||

||∇Imax(eij)|| ||f(xj)||
)

(10)

with

∇Imax(ei,j) =

{
∇T (xi), ||∇T (xi)|| ≥ ||∇T (xj)||
∇T (xj), otherwise.

(11)

The final weight function is then given as

w(eij) = τwf(eij) + (1 − τ)[(wimg(eij)wf(eij) + (1 − wimg)w⊥(eij)]. (12)

The scale function τ ∈ [0, 1] in (12) allows to adapt the scale between the image
based domains (8) and (10) and the transformation domain (9). The final edge
weights are thresholded with

w̄k(eij) =

{
0, wk(eij) < 0.5
1, else

. (13)
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(II)

(III)

(IV)

(V)

(I)

Fig. 1. Different cases, which are considered for the edge weight adaptation at sliding
interfaces (dashed green) based on image gradients (red), transformation (blue) and
intensity differences (gray values). (Color figure online)

In order to reduce the effect of oscillating edge weights an exponential smoothing

Wk+1(i, j) = ρWk(i, j) + (1 − ρ)w̄k+1(eij) (14)

is applied, where ρ is the exponential decay rate.

Node Isolation. A node vi is isolated from the graph, if all edges connected to
this node have a zero weight D(i, i) = 0. Isolated nodes can cause artefacts in
the transformation, because they are excluded from the regularisation. In order
to prevent node isolation, all weights of the edges connected to a node vi with
D(i, i) < β will be set to one. We choose β ≤ 2 in 2D and β ≤ 3 in 3D , so that
the reset will not affect nodes at sliding boundaries.

3.2 Transformation Update

The update of the transformation in the Demons framework can be written in
the form of a gradient descent update

fk+1 = fk + ηk∇S[T,Rfk
]. (15)

In order to improve the convergence of the Demons framework we replace (15)
by the well known Momentum optimiser equations

bk+1 = αkvk + ηk∇S[T,Rfk
] (16)

fk+1 = fk + bk+1 (17)

as introduced in [15]. We set ηk = 1/(||∇Rfk
||2 + ψ) according to [18].
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4 Results

We evaluated our adaptive graph diffusion regularisation method on synthetic
2D images with given ground truth, and on the public available DIR-Lab data
sets.

4.1 Synthetic Experiments

We define a target image T with a size of 256 × 256 pixels and the intensities
T (x) = x × e1/π, where e1 is a unit vector (Fig. 2a). The inner part of the target
image is rotated by 15◦ and the outer part is rotated in the opposite direction,
in order to simulate a sliding boundary (Fig. 2b).

(a) (b) (c)(a)
0

4

(d) (e) (f) (g)

Fig. 2. Target image (a) and reference image (b) for the synthetic experiment. The
red circle shows the sliding organ boundary between the inner and the outer region.
Registration result with edge update (d) and the corresponding warped checker board
(e), and without edge update (f) and the corresponding warped checker board (g). The
graph degree matrix at the end of the registration is shown in (c).

The SMSE[T,Rf ] = 1/n
∑n

i=1(T (xi) − Rf (x))2 metric is used as similarity
measure. We choose w(eij) = 0.5 · (1 + ||f(xi)T f(xj)||2/||f(xi)||2||f(xj)||2) as
edge weight function, because the sliding organ boundary in the image can be
mainly described by direction differences of the displacement. Further, we used
a multi-scale approach with three resolutions {64, 128, 256}. The regularisation
parameter are set to ϕ0 = {4, 8, 13} and ϕmin = {1, 2, 2}. In each iteration
the current regularisation weight is given by ϕk = ϕ0 ∗ exp(−0.05k) + ϕmin All
remaining parameters are set as follows: m = 30, ψ = 0.01, ρ = 0.9, α = 0.9, and
N = {100, 100, 200} iterations. All edge weights w(eij) are initialised with one.
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The results of the proposed regularisation method for the synthetic experi-
ments are shown in Fig. 2d with edge update and in Fig. 2f without edge update.
With edge updates during the registration the ground truth displacement is very
well estimated. The sliding boundary is clearly detected as we can see a reduc-
tion of the degree matrix values only at the sliding organ boundary (Fig. 2c). If
we apply the transformation result from the method without the edge update
to a checker board, we get strong distortion at the sliding boundary (Fig. 2g).
Compared to this, our presented method reduce the distortion at sliding organ
boundaries to a minimum (Fig. 2e).

4.2 DIR-Lab Data Set

The publicly available DIR-Lab1 data set contains 10 4D-CT image series of
different individuals. All images have a size between 256 × 256 × 94 voxel and
512 × 512 × 136 voxel, with a voxel size in the range of 0.97 × 0.97 × 2.5mm3

and 1.16 × 1.16 × 2.5mm3. For all images we clip the intensities between 50HU
and 1200HU, scale them in a range of [0, 1], and resample all to a voxel size of
1 × 1 × 1mm3. For the evaluation of the registration result, the DIR-Lab data
set provides 300 landmarks for the maximal inhalation and maximal exhalation
of the breathing cycle. As images similarity measure the normalised local cross
correlation Slcc is used. We use the derivative approximation of Slcc introduced
in [3].

Table 1. Mean snap to voxel TRE in millimetre based on the 300 landmarks of DIR-
Lab data set.

Case #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean

No Reg 3.87 4.34 6.96 9.86 7.51 10.93 11.03 15.01 7.94 7.33 8.48

MST [13] 0.83 0.87 1.10 1.96 1.36 1.77 1.58 2.08 1.50 1.40 1.44

A2GD 1.12 1.20 1.27 1.61 1.53 1.32 1.38 1.45 1.36 1.34 1.36

A multi-scale approach with four scales is used for the registration. At the
end of each scale level, the transformation result is projected to the next scale
level as initial value. All parameters are set as follows: N = {200, 200, 200, 300},
m = 30, ρ = {0.9}, σlcc = {2, 8, 10, 15}, δimg = 5, δf = {1, 0.5, 0.25, 0.125},
ψ = {0.5, 0.3, 0.2, 0.2} and increased with 10−3, The regularisation parameter is
set to ϕ = {2, 3, 3, 3}. We set τ0 = 0 and increase it linear with a factor of 10−5

in each iteration. With this configuration the average run time is 5 min for one
image pair on a GPU.

In Table 1 the mean TRE for all 10 data sets based on the 300 landmarks is
shown. We compare our method to the MST based graph regularisation method
[13]. As shown in Fig. 3 our method is able achieve global smoothness of the
transformation and preserves discontinuities at sliding organ boundaries.
1 http://www.dir-lab.com.

http://www.dir-lab.com
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32[mm]

0[mm]

Fig. 3. Displacement field of the #8 case of the DIR-Lab data set.

5 Conclusion

We presented a novel regularisation method based on adaptive anisotropic graph
diffusion. Without the need of a prior segmentation of the sliding organ bound-
aries our proposed regularisation method enforces global smoothness and pre-
serves local discontinuities. In order to achieve anisotropic diffusion at sliding
organ boundaries we developed an adaptive edge weight function based on local
image intensities and the transformation. The results show that we are able to
well detect the sliding organ boundaries and preserve the discontinuities in the
transformation for the synthetic examples and for the DIR-Lab data set. We
achieve a sub-millimetre difference, if we compare our TRE results to results of
state of the art methods.
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Abstract. Tumor heterogeneity can be assessed quantitatively by ana-
lyzing dynamic contrast-enhanced imaging modalities potentially leading
to improvement in the diagnosis and treatment of cancer, for example
of the lung. However, the acquisition of standard lung sequences is often
compromised by irregular breathing motion artefacts, resulting in unsys-
tematic errors when estimating tissue perfusion parameters. In this work,
we illustrate implicit deformable image registration that integrates the
Demons algorithm using the local correlation coefficient as a similarity
measure, and locally adaptive regularization that enables incorporation
of both spatial sliding motions and irregular temporal motion patterns.
We also propose a practical numerical approximation of the regulariza-
tion model to improve both computational time and registration accu-
racy, which are important when analyzing long clinical sequences. Our
quantitative analysis of 4D lung Computed Tomography and Computed
Tomography Perfusion scans from clinical lung trial shows significant
improvement over state-of-the-art pairwise registration approaches.

1 Introduction

Dynamic imaging modalities such as Computed Tomography Perfusion (CTP)
or Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) have
attracted significant interest in quantitative oncological imaging since they have
the great potential for the assessment of tumor heterogeneity, leading, in turn,
to improvements in diagnosis and the formulation of personalized patient treat-
ment plan [5,10]. These dynamic modalities have been widely used in clinical
applications related to brain [7] or head and neck radiotherapy [4], but their
c© Springer International Publishing AG, part of Springer Nature 2018
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application has been rather limited in lung and abdominal radiotherapy, not
least because of the deformations caused primarily by breathing [20]. The com-
plexity of human lung motion and the irregular temporal motion patterns rule
out generic deformable image registration methods as they are unable to model
accurately the properties of the relevant tissues. Therefore, modeling and ana-
lyzing lung and abdominal motion has been recognized as an important element
of many biomedical image analysis applications [16].

1.1 Related Work

The standard approach to motion correction of dynamic sequences is to perform
state-of-the-art pairwise deformable registration algorithms [17] between the ref-
erence and the follow-up volumes from a sequence. While such an approach is
straightforward, it results in inverse inconsistency and transitivity errors [6] of
the estimated transformations due to accumulation of errors in the sequence.
Such errors are then propagated to any subsequent pharmacokinetic analysis.
Additionally, there is bias introduced in the registration results due to the selec-
tion of a fixed reference volume, since choosing an outlying reference volume may
be disadvantageous as all registrations will need to estimate inadequate large
displacement fields. To reduce errors related to estimation of the displacement
fields, numerous methods have incorporated temporal smoothness constraints
[1,2,12,18]. However, temporal regularization models do not solve the problem
of the fixed reference volume, and so temporal groupwise image registration has
been proposed [13,21,22]. Simultaneous registration of all images in a sequence
reduces the bias introduced by a fixed reference volume, while temporal regu-
larization preserves smoothness of the estimated displacement fields. Although
such an approach is more robust to outliers, temporal smoothness is implausible
for irregular motion artefacts, which are apparent for patients with lung cancer
or other co-morbidities.

Contributions. We explore groupwise deformable image registration [22] to
dynamic lung Computed Tomography (CT) as a method that is intrinsically
invariant to the selection of reference volume and irregularity of lung expi-
ration/inspiration motion pattern. In particular, we developed a groupwise
deformable image registration derived from the LCC Demons [11] with adaptive
regularization using local spatial and temporal filtering of the estimated dis-
placement fields [14]. The main contributions of the manuscript are as follows:
we extend 3D guided image filtering to its 4D counterpart to enable efficient
spatio-temporal regularization of the estimated displacement fields from group-
wise image registration. Guided image filtering [9] is a computationally attrac-
tive, linear image filtering technique, and here we used it to propagate spatio-
temporal information from a so-called guidance image to the regularization. We
present a numerical approximation which significantly reduces the computational
burden whilst improving registration accuracy, which is important when dealing
with large 4D data set. The improved performance on a publicly available lung
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CT data set [3] is quantitatively assessed. Finally, the robustness of the method
on a challenging clinical application of CTP motion compensation for patients
with non-small cell lung cancer is demonstrated.

2 Methods

2.1 Classic Groupwise Deformable Image Registration

In the classic formulation [6], groupwise deformable image registration is defined
as a global energy minimization problem:

û = arg min
u

(ε(u) = Sim(I(u)) + αReg(u)) (1)

with respect to a set of displacement fields u describing geometrical correspon-
dences between a set of M input images I = [Im : Ω → R, Ω ∈ R

3,m = 1, . . . M ].
If a reference image Iref for groupwise deformable image registration is explicitly
provided, the process of estimation of the set of displacement fields to such a ref-
erence image is called reference-based groupwise registration and the objective
function ε is defined as follows:

ε(u) =
M∑

m=1

Sim(Iref , Im(um)) + α

M∑

m=1

Reg(um) (2)

In the case when the reference image Iref is not provided, the estimation of the
set of the displacement fields from each image Im in the set I is performed with
respect to the unknown reference image, considering minimization the sum of
the similarity measure Sim between each pair of the input images as follows:

ε(u) =
M∑

m=1

M∑

n=1
n�=m

Sim(Im(um), In(un)) + α

M∑

m=1

Reg(um) (3)

The objective function of the implicit groupwise deformable image registration
defined by Eq. (3) can be solved using a variety of methods. Because of its sim-
plicity and efficiency, we choose the Demons framework [19] to solve Eq. (3). For
the Demons framework, the optimization procedure alternates between minimiz-
ing the energy related to the similarity measure Sim and the regularization Reg
in an iterative manner. The contributions of this work will be described in detail
in the following sections.

2.2 Groupwise Similarity Measure

From the fact that the symmetric image registration can be seen as an implicit
groupwise image registration with only two input images, the minimization pro-
cess of groupwise registration (Eq. (3)) is similar to the symmetric registra-
tion [11]. In the standard Demons registration, the displacement field is esti-
mated by the minimization of the sum of the squared differences (SSD) between
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the input images. In the case of the time scans acquired with contrast agent,
the SSD is not viable choice since it is not robust to the local intensity changes
caused by wash-in and wash-out of contrast. Here, we propose to replace SSD-
based groupwise registration to the local correlation coefficient (LCC) based
counterpart. LCC-Demons has already been used for symmetric brain MRI reg-
istration due to the independence of any additive and multiplicative noise in
the data [11]. The LCC similarity measure between a pair of images I1 and I2
defined for symmetric registration is defined in the following way:

LCC(I1(u1), I2(u2)) =
Ī1(u1)Ī2(u2)

(Ī1(u1))2(Ī2(u2))2
(4)

where Ī1 and Ī2 are the local mean image intensities for image I1 and I2, respec-
tively. Following the derivation in [11], the LCC symmetric update of the dis-
placement field for the Demons can be calculated with a closed form formula as
follows:

du12(x) =
−2forcelcc

(forcelcc + σ2
noise)

(5)

at any spatial position x in the image domain, σ2
noise is a noise estimator, and

forcelcc = G ∗
(

I1∇IT2
I1I2

− I2∇IT1
I1I2

+
I1∇IT1

I21
− I2∇IT2

I22

)
(6)

where G∗ is a Gaussian kernel for smoothing. Finally, the average update of
the displacement field for the groupwise registration is calculated using the log-
Euclidean mean for vector field du(x) given by:

dum(x) =
1

M − 1

M∑

n=1
n�=m

(dumn(x)) (7)

2.3 Spatio-Temporal Filtering of Displacement Fields

Motion correction for intra-subject dynamic imaging of lungs is challenging due
to the complexity of motion to be estimated stemming from patient breathing
during acquisition. The standard regularization model of the Demons framework
realized by Gaussian smoothing of the estimated displacement field has been
shown to be inadequate to model respiratory motion. Here, we extend a previ-
ous approach [14], where spatially adaptive filtering of displacement field using
the guided image filtering technique was developed, and we present a generic
approach for 4D regularization. In our approach, the estimated displacement
field is additionally filtered by considering the temporal context of the guidance
information encoded in the dynamic imaging.

Following [14,15], the initial displacement field uin is first spatially filtered
considering the context of the guidance information Ig as follows:

utmp(x) =
∑

y∈N
Wspatial (Ig,x,y) (uin(y) + dum(y)) (8)
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where N is the local spatial neighborhood (a box window of size rN ), and
Wspatial are the kernel weights for spatial filter. Similarly, the filtered displace-
ment field utmp is then temporally filtered again using the dynamic context of
the guidance information Ig(t) in the following way:

uout(x) =
∑

t∈T
Wtemporal (Ig,x, t) (utmp(x, t) + dum(x, t)) (9)

where T is the local temporal neighborhood (a box window of size rT ), and
Wtemporal are the kernel weights for temporal filter.

Our regularization method is composed of two main steps: spatial adaptive
filtering of the displacement field to enforce discontinuity preserving properties
at lung interfaces; and adaptive temporal filtering of the displacement field to
ensure capture of temporal (ir)regularities of the patient’s motion pattern. In
our framework, these two steps could not be combined in one step of filtering
the estimated displacement field, because the local spatial neighborhood and the
local temporal neighborhood have different units, and respective parameters rN
and rT need to be setup separately.

Regularization with Subsampled Guided Image Filter. Since medical
volumes can easily be 512 × 512× 120 or larger, a linear time (with respect of
the number of voxels) can be still considered to be computationally significant,
particularly since the filtering procedure is repeated at every iteration of the
presented deformable registration. Therefore, we adapt a speed-up strategy for
fast guided filters mentioned in [8] to improve performance of the presented
filtering-based regularization. Most of the computation time for the guided fil-
ters is spent on the estimation of the filter coefficients, however the coefficients
do not need to be estimated from full-resolution volumes. Therefore, to estimate
those coefficients, we subsample the input and guidance image by factor s, and
perform all computations related to filtering of the displacement on the subsam-
pled volumes. Then, the coefficients estimated from the subsampled volumes are
upsampled to the original size of the volumes, and then the final step of guided
filtering is performed using the original guidance image IG and the upsampled
coefficients. Due to the use of a subsampled image to estimate the filter coeffi-
cients, the computational cost of filtering can be reduced approximately by s2 as
only the final step is performed on full size volume. Comparison of the influence
of filtering of the estimated displacement using the subsampled volumes is shown
in Sect. 3.2.

3 Experiments

3.1 Data Description

For quantitative evaluation of the proposed regularization method we use a pub-
licly available 4D CT data set [3]. The Dir-Lab data set consists of 10 consec-
utive respiratory cycle phase volumes with spatial resolution varying between
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0.97 × 0.97 × 2.5 and 1.16 × 1.16 × 2.5 mm3. To quantify registration accuracy,
the Target Registration Error (TRE) was calculated for the well-distributed set
of landmarks, which are provided with this data set (300 landmarks per case for
inhale and exhale volumes).

For the second experiment, the method was evaluated on CTP data from
a clinical trial (NCT02628080) acquired at the Churchill Hospital in Oxford
evaluating whether an investigational drug (atovaquone) alters tumour hypoxia.
The data reported here are for the pre-atovaquone scans. For the CTP patients
are imaged supine on a GE Discovery 710 PET/CT scanner with a 45s cine
mode CT using 120 kV and 60 mA. During this 70 mL contrast (Omnipaque
300) is injected at 5 mL/s followed by 25 mL water at 5 mL/s. The patient is
instructed to hold their breath for as long as possible (at inspiration) and if
necessary to breathe out very slowly.

3.2 Results for Publicly Available 4D Lung CT Dataset

Table 1 shows the TRE based on 300 well-populated, manually annotated land-
marks for all ten cases included in the Dir-Lab data set [3]. The initial TRE is
8.46 ± 5.5 mm and the transformations estimated by the proposed method with
subsampling factor s = 4 reduces the TRE to 1.47 ± 0.5 mm, achieving the best
result in our comparison.

Table 1. Results achieved by the proposed method with different value of the sub-
sampling factor s for 4D registration of CT lung from Dir-Lab data set. The method
with the subsampling factor s = 4 shows the lowest average Target Registration Error
(TRE) among all methods.

Before Subsampling factor s

s = 1 [14] s = 2 s = 3 s = 4 s = 5 s = 6

c1 3.89± 2.9 0.95± 0.9 1.08± 1.1 0.88± 1.0 0.90± 1.0 0.86± 1.0 0.86± 1.0

c2 4.34± 3.9 0.95± 1.0 1.00± 1.0 0.98± 1.1 0.94± 1.0 0.91± 1.0 0.92± 1.0

c3 6.94± 4.1 1.06± 1.1 1.09± 1.1 1.03± 1.1 1.06± 1.1 1.08± 1.1 1.27± 1.2

c4 9.83± 4.9 3.19± 4.8 3.16± 4.3 2.71± 3.7 2.53± 3.2 2.62± 3.1 2.70± 3.0

c5 7.48± 5.5 1.40± 1.5 1.44± 1.6 1.33± 1.5 1.31± 1.5 1.41± 1.5 1.51± 1.5

c6 10.9± 7.0 2.74± 3.2 2.63± 3.2 2.19± 2.5 1.89± 1.9 1.82± 1.6 1.88± 1.4

c7 11.0± 7.4 1.69± 1.6 1.67± 1.6 1.52± 1.4 1.52± 1.4 1.74± 1.6 1.91± 1.4

c8 15.0± 9.0 2.45± 3.1 2.10± 2.6 1.85± 2.3 1.87± 2.3 2.02± 2.4 2.35± 2.4

c9 7.92± 4.0 1.56± 1.0 1.31± 1.2 1.33± 1.1 1.37± 1.1 1.55± 1.2 1.79± 1.2

c10 7.30± 6.4 1.46± 1.8 1.40± 1.7 1.36± 1.5 1.27± 1.4 1.29± 1.3 1.43± 1.3

¯TRE 8.46± 5.5 1.71± 0.8 1.69± 0.7 1.52± 0.6 1.47± 0.5 1.53± 0.5 1.66± 0.6

Visualization of the results for the presented method is shown in Fig. 1. Red
arrows depict regions of interest where the presented method with the subsam-
pling factor s = 4 outperformed the baseline method with the subsampling
factor s = 1.
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Fig. 1. Visualization of the image intensity differences (top) and 2D projection of the
Target Registration Error (bottom) before registration (a), and after performing the
proposed method with the subsampling factor (b) s = 1 [14], and (c) s = 4 for the
challenging case 6 from Dir-Lab. Color overlay is given for the coronal view of inhale
(green) and exhale (magenta) volumes. TRE is projected on the coronal plane and
denoted by the size and color of circles. A clear improvement after registration using
the presented method is visible (labeled by red arrows). (Color figure online)

Fig. 2. Axial (left) view for reference volume with cyan and magenta pointers indicating
the locations of their corresponding time-cuts for CTP in the challenging case #AT010
before and after registration using the proposed method with the subsampling factor
(b) s = 4.
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3.3 Results for Lung Tumor CTP

At the time of writing, we have analyzed 11 dynamic 4D-CTP scans of patients
who have a lung tumor. Registration quality was evaluated via the Correlation
Coefficient (CC), and for all data sets, and noticeable improvement was found
(avg. CC before = 0.96, and after = 0.99). Figure 2 shows an axial view of an
exemplar CTP and the time-cuts, which demonstrate visual improvement in
alignment over acquisition time of CTP volumes.

4 Discussion and Conclusions

In this paper, we have presented a new class of 4D regularization model based
on 4D guided image filtering, that can be easily incorporated into groupwise
deformable image registration. Furthermore, we have shown that the use of the
subsampled guided image to calculate the filter’s coefficient for the displacement
fields improves the registration accuracy while reduces computational cost of
registration. This is particularly important for long temporal acquisitions such as
DCE-MRI or CTP, which consists of several volumes. From a clinical perspective,
our registration framework compensates for misalignment between consecutive
CTP volumes caused by patient-specific breath-hold variability, resulting in the
improved alignment of structure of interest in the lungs. We obtained a good
visual alignment of the CTP data, however actual registration errors measured
by the densely distributed landmarks was not assessed. Manual annotations of
temporal functional imaging e.g. Computed Tomography Perfusion is inevitably
labor-intensive. Furthermore, intensity changes caused by contrast uptake or the
low contrast of lung tissue in Computed Tomography Perfusion makes accurate
annotation even more challenging. For these reasons, we compared our method
using publicly available lung 4D CT data set [3]. We next aim to quantify the
impact of our method on estimation of tissue perfusion parameters.
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R., Lüsebrink, F., Schulze, P., Speck, O.: Motion correction in MRI of the brain.
Phys. Med. Biol. 61(5), R32 (2016)

8. He, K., Sun, J.: Fast guided filter. arXiv preprint arXiv:1505.00996 (2015)
9. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach.

Intell. 35(6), 1397–1409 (2013)
10. Koyama, H., Ohno, Y., Seki, S., Nishio, M., Yoshikawa, T., Matsumoto, S., Sug-

imura, K.: Magnetic resonance imaging for lung cancer. J. Thorac. Imaging 28(3),
138–150 (2013)

11. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X., Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI): LCC-Demons: a robust and accurate symmetric diffeomor-
phic registration algorithm. Neuroimage 81, 470–483 (2013)

12. McClelland, J.R., Blackall, J.M., Tarte, S., Chandler, A.C., Hughes, S., Ahmad,
S., Landau, D.B., Hawkes, D.J.: A continuous 4D motion model from multiple
respiratory cycles for use in lung radiotherapy. Med. Phys. 33(9), 3348–3358 (2006)

13. Metz, C.T., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid regis-
tration of dynamic medical imaging data using nD+ t B-splines and a groupwise
optimization approach. Med. Image Anal. 15(2), 238–249 (2011)
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Abstract. Quantification of image similarity is a common problem in
image processing. For pairs of two images, a variety of options is avail-
able and well-understood. However, some applications such as dynamic
imaging or serial sectioning involve the analysis of image sequences and
thus require a simultaneous and unbiased comparison of many images.

This paper proposes a new similarity measure, that takes a global
perspective and involves all images at the same time. The key idea is to
look at Schatten-q-norms of a matrix assembled from normalized gradi-
ent fields of the image sequence. In particular, for q = 0, the measure
is minimized if the gradient information from the image sequence has a
low rank.

This global perspective of the novel SqN-measure does not only allow
to register sequences from dynamic imaging, e.g. DCE-MRI, but is also
a new opportunity to simultaneously register serial sections, e.g. in his-
tology. In this way, an accumulation of small, local registration errors
may be avoided.

First numerical experiments show very promising results for a DCE-
MRI sequence of a human kidney as well as for a set of serial sections. The
global structure of the data used for registration with SqN is preserved
in all cases.

1 Introduction

Quantification of image similarity is a common problem in image processing.
For pairs of two images, a variety of options such as sum of squared differences
(SSD), normalized gradient fields (NGF), or mutual information (MI) exists and
these measures are well-understood; see e.g. [12,13,17]. However, some applica-
tions such as dynamic imaging or serial sectioning involve the analysis of image
sequences and thus require a simultaneous and unbiased comparison of many
images.

In some of these applications, image intensity may changes over time. For
example, the glomerular filtration rate (GFR) is an important parameter for
kidney malfunction [18]. The GFR might be determined on the basis of a time
series of dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
c© Springer International Publishing AG, part of Springer Nature 2018
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This sequence then needs to be registered in order to correct for motion arti-
facts; see, e.g., [7,9]. Another example is the analysis of a histological serial
sectioning. Here, the staining of sections might be different and/or can express
severe variations.

For applications like these, a proper image similarity measure is crucial. A
standard approach is to perform a sequential comparison of pairs of two images
from the sequence. However, a sequential registration is restricted to local rather
than global information. Moreover, there might be issues choosing a suited start-
ing image and determining the order of the sequence. Results may depend on
these choices. There also exists a variety of statistical approaches for global image
registration; see e.g. [5,10,16,21]. However, we focus on a new global measure
which is based on deterministic image features.

In this paper, we propose the new SqN similarity measure, that is designed
to compare a complete image sequence simultaneously and thus automatically
distributing information in a global way. Our key idea is to look at Schatten-
q-norms (more precisely: Schatten-q-quasinorms) of a matrix that is assembled
from normalized gradient fields of the image sequence. Particularly for q = 0,
the measure is minimized for sequences of images where the gradient matrix has
low rank and the approach is thus connected to principal component analysis
and sparsity.

Our idea is motivated from color image denoising; see Möllenhoff et al. [14]. In
that context, similar concepts are used as a regularization for TV denoising, and
the gradient matrix is formed directly from gradients of the three color channels.
In our paper, we interpret the individual images from a sequence as individual
channels and use a Schatten-q-norm of the matrix of normalized gradients as
a data fitting term rather than as a regularizer. As we will show, this can be
viewed as a natural extension of NGF [6] and can thus deal with multi-modal
frames. We remark that the concept also relates to ideas in video compression.

Our paper is organized as follows: At first we describe the novel distance
measure and its relation to NGF as well as its characteristics. Moreover, we
show numerical results for DCE-MRI time series and a H&E stained histological
serial section of a mouse brain. We compare the performance of SqN with NGF
(DCE-MRI) and the well-known SSD (serial sectioning). Our examples show that
SqN results at least comparable registration results but is about six times faster
as the competitive approaches. To conclude our paper, we discuss the numerical
results and give a brief outlook on what our next steps are.

2 The Novel Similarity Measure SqN

Our new distance measure is motivated by a regularizer for color image denoising;
see [14]. The underlying idea is that in natural images, gradients of the different
color channels are linearly dependent; see also Fig. 1. Therefore, an appropriate
measure of dependency such as Schatten-q-norms [24] are excellent regularizers in
color image denoising. This idea can be generalized to more than three channels
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and is therefore useful in applications such as parameter estimation in DCE-
MRI [8] or the registration of multiple images as they appear for example in
serial sectioning or time series [11].

We motivate our extension starting with a conceptual simpler but computa-
tional infeasible approach. The main point is to motivate the use of Schatten-
q-norms. We then present a computational tractable version that is based on
local image gradients. In contrast to [14] where a similar measure is used as
regularizer, we also propose to use our new functional as a distance measure.

∇u3

∇u2 ∇u1
∇u1

∇u2

∇u3

∇u2

Fig. 1. Illustration of a local gradient matrix A = [∇u1, ∇u2, ∇u3] ∈ R
2,3 of three

color channels; illustration adapted from [14]. The rank of A is two (left) or one (center
and right).

We recall that any matrix A ∈ R
n,T has a singular value decomposition

(SVD) [4],

A = Udiag(S)V �, with U�U = En, V �V = ET .

Here, Ed denotes the d-by-d identity matrix, S = (σ1, . . . , σmin{n,T}) is a vector
with ordered entries σj ≥ σj+1 ≥ 0 and diag(S) ∈ R

n,T denotes a diagonal
matrix. Using the SVD, the Schatten-q-(quasi)-norm of A is then defined as

‖A‖qS,q := ‖S‖qq =
∑

i σ
q
i for q ≥ 0.

An optimal choice of q is obviously application dependent. In particular for
registration problems, it is topic of current research. Note that for q = 0, the
measure counts non-zero entries and is not a norm but a so-called quasinorm.
With q = 0, we thus promote sparsity of S and hence low rank of A. However,
optimization of the 0-quasinorm is non-trivial and it is typically replaced by the
minimization of the 1-norm; see [2]. Following [14], we use q = 1/2 in this paper.

We are now ready to describe our novel similarity measure. To this end, we
assume that T ∈ N discrete images It are given, where each It is of dimension
m1 ×· · ·×md ∈ N

d and d ∈ N denotes the spatial dimension. Let n := m1 · · · md

and It be reshaped as n × 1 array. The first idea is to look at the rank of
A = [I1, . . . , IT ] ∈ R

n,T as an indicator for the linear dependency of the images.
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Note that this approach is similar to a principal component analysis of the
data. However, this approach is not suitable for images with varying intensities
such as DCE-MRI or serial sections. Although this approach is conceptually
appealing, it is computationally challenging as the complexity of the SVD is
O (

min{nT 2, Tn2})
[4].

We escape the complexity problem by applying the measure to local struc-
tures. More precisely, we define our new distance measure SqN for a sequence of
T images by

SqN(I1, . . . , IT ) :=
∫

‖A(x)‖qS,q dx,

where

A(x) := [η1, . . . , ηT ] ∈ R
d,T and

ηt := (∇It(x)�∇It(x) + η2)−1/2 ∇It(x).

Here, η > 0 is a parameter discriminating signal from noise; see also [6]. If the
noise level is unknown, we pick a small value, e.g. η = 10−5 in our experiments
where every entry of It lies in [0, 256).

We now outline the connection to NGF [6]. For two images I1 and I2, fixed
x, η = 0 and with α := | cos ∠(∇I1,∇I2)|, we have

A�A =
( 1 α

α 1

)
with singular values σ2

1 = 1 + α and σ2
2 = 1 − α.

Particularly for q = 0, the distance is minimal if the image gradients are collinear,
i.e. α = 1. Therefore, our new measure might be interpreted as a generalization of
the normalized gradient field based distance measure [6]. Analogous arguments
hold for 0 ≤ q < 2. Remarkably, for q = 2, the energy function is constant and the
measure thus meaningless. For q > 2, the function is minimal for perpendicular
gradients.

3 Numerical Results for Dynamic Imaging and Serial
Sections

We now present results for the registration of DCE-MRI sequences of a human
kidney and a histological serial sectioning of a mouse brain.

We start with registrations of DCE-MRI sequences of a human kidney; data
courtesy of Jarle Rørvik, Haukeland University Hospital Bergen, Norway. Here,
3D images are taken at 49 time points. The objective is to register the images
while maintaining the dynamics. More precisely, we use 146-by-82 coronal slices
of a 146-by-82-by-52-by-49 volume for z-Slice 25; see Fig. 2.

Our registration scheme is based on the variational image registration frame-
work FAIR [13]. More precisely, we minimize

J (y1, . . . , yT ) = SqN(I1(y1), . . . , IT (yT )) + α
∑T

t=1 S(yt).
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data-t1 data-t2 data-t3

MIP-original MIP-SqN MIP-NGF

Fig. 2. DCE-MRI data of a human kidney; data courtesy of Jarle Rørvik, Haukeland
University Hospital Bergen, Norway. Top row: Displayed are 2D slices at three repre-
sentative time points during contrast agent uptake. Images are rotated by 90 degrees
for presentation purposes. Bottom row: Coronal view of maximum intensity projections∑

j>i |Ij − Ii| for original, SqN-registered, and NGF-registered data. Note the blurred
and doubled structures in the non-registered data.

For ease of presentation, we use the curvature regularizer S(y) =
∫

(Δy)2 dx with
regularization parameter α = 0.1 [1]. Optimization is performed in a standard
way using a Gauß-Newton algorithm with Armijo linesearch [15] within a multi-
level framework [13]. All computations are performed using MATLAB.

Figure 2 (top row) shows three representative coronal slices of the original
dataset. The slices correspond to different times during acquisition. Different
phases of contrast agent uptake are visible, particularly within the kidney.

sagittal-1 sagittal-2 axial-1 axial-2
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N
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F

Fig. 3. Two exemplary sagittal and axial slices of the data, each; see also Fig. 2. Orig-
inal, non-registered data (top row), SqN-registered data (middle row, q = 0.5), and
NGF-registered data (bottom row), η = 25. Note that the laminar structure of the
tissue is only visible after registration. The axial sections in this visualization do not
necessarily correspond.
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Figure 3 displays sagittal and axial slices of the same volume, two each. The
top row shows non-registered slices where motion artefacts are clearly visible.
The middle row shows corresponding SqN-registration results for q = 0.5 and
the bottom row shows results for sequential NGF, respectively. More precisely,
we optimized

J NGF(y1, . . . , yT ) =
∑T−1

t=1

{
NGF(It(yt), It+1(yt+1)) + α S(yt)

}

using alternating optimization, i.e.

yk+1
t = argminyt

J NGF(yk+1
1 , . . . , yk+1

t−1 , yt, yk
t+1, . . . , y

k
T ), t = 1, . . . , T.

As to be expected, the SqN and NGF results are very similar. However,
within our non-optimized MATLAB framework, the SqN-registration is about

Reference Template Absolute Difference

−140−120−100 −80 −60 −40 −20 0 20 40 60 80 100 120 140
Pixelshift

SSD
MI
NGF
SqN,q=0.1
SqN,q=0.5
SqN,q=1

Fig. 4. Results for a translation of two stained histological serial sections; data courtesy
of O. Schmitt, University of Rostock, Germany [19]. The top row displays the similar
slices 160 (reference) and 170 (template) of a stack of 189 slices in total as well as
the absolute difference image. The bottom row displays the corresponding energies of
the different distance measures listed in the legend. The images used for translation
are of size 256 × 256 pixel. The y axis of the graphs are scaled individually for better
comparison.
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six times faster than the NGF registration — even if the alternating optimization
approach is limited to a forward-backward sweep.

Figure 2 also illustrates the intensity variations in the original and regis-
tered data. It is apparent that intensity variations due to motion have been
reduced tremendously. Note that the variations, in particular in kidney and
bladder (partly visible), are still visible and therefore the schemes allow for a
subsequent dynamical analysis.

The SqN measure is also capable of serial section registration. Figure 5 dis-
plays results for a H&E stained histological serial section of a mouse brain; 189
sections of 512-by-512 pixel; data courtesy of O. Schmitt, University of Rostock,

lattigaslanoroclaixa
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q

=
0.

5
SS

D

Fig. 5. Registration results for a stained histological serial sectioning; data courtesy
of O. Schmitt, University of Rostock, Germany [19]. Displayed from left to right are
exemplarily an axial, coronal, and sagittal slice of the 3D data of size 512-by-512-by-
189. Displayed are non-registered data (top row), SqN-registered data (middle row)
and SSD-registered data (bottom row). Note that the different slices do not necessarily
correspond.
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Germany; see [19] for experimental details. As this data has been normalized, we
compare an SqN registration with a sequential SSD based approach. The figure
displays the original data (top row), SqN results (middle row), and SSD results
(bottom row). It is apparent that registration can reconstruct the local brain
structure. Here, the SSD results appear to be slightly more blurred.

Note that a sequential approach involves an alternating optimization frame-
work and is based on a fixed initial and final slice to avoid the so-called banana-
effect [3,19,20,23], i.e. a global drift of structures due to sequential registration.
The sequential registration process may accumulate small errors that can cause
a major drift of the overall structure; see [23] for examples.

In contrast, the SqN approach enables a global optimization which in addition
can be performed in just one pass. Moreover, our experiments indicate that SqN
does not introduce global drifts.

Figure 4 shows the results of a translation experiment for the distance mea-
sures SSD, MI, NGF as wells as for SqN for three different configurations of
the parameter q. It is apparent that q has an impact on the global minimum of
the energy in this experiment. All measures have the same minimizer which is
achieved for the template image in its origin when it is not shifted as shown in
the difference image of Fig. 4.

4 Discussion and Conclusions

The novel SqN image similarity measure has been proposed. The new mea-
sure is motivated from color image denoising [14]. The main idea is to quantify
structural image information expressed by normalized intensity gradients with
Schatten-q-(quasi)-norms. For q = 0, the measure quantifies sparsity, i.e. redun-
dancy of information in an image sequence. Moreover, using the normalized
gradient fields as structural information, the focus is on image structures and
not on intensity. Therefore, the new measure is effective in a multi-modal setup
and it might be interpreted as an extension of NGF [6].

The novel measure considers the image sequence as a whole and therefore
has no bias towards a particular ordering, which is common in a sequential
setup. Therefore, the new measure provides also a global information transport,
which might be beneficial for particular applications. In particular, it omits an
unwanted drift of structure as it is very common in sequential approaches; so-
called banana-effect [20].

We show the potential of the new measure in a registration setup. More
precisely, we show how easily the new measure can be integrated in an existing
registration framework such as FAIR [13]. Both, the measure and its analytic
derivative are computed and thus, efficient optimization techniques can be used.

Exemplarily, we demonstrate the power of the measure in a registration prob-
lem for a dynamic contrast enhanced MRI sequence and histological serial sec-
tioning. As it turns out, the new scheme produces results of at least comparable
quality much faster (about six times faster in our experiments).
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Particularly for serial section registrations, we escape an additional itera-
tive process on the sequences of sections and make use of global information
transport.

Our next steps include to come up with a more efficient implementation which
is suitable in a 3D setup. We remark that the main computational cost is not the
computation of the SVD of the gradient matrix. This involves the computation of
eigenvalues of a T -by-T matrix, where T is the number of images in the sequence.
In particular, T does not dependent on the spatial dimension of the data or the
spatial resolution. However, the computation of the gradient matrix A does.

Moreover, we will investigate the impact of the distance measure in the anal-
ysis of the dynamic information within the DCE-MRI setting. With this knowl-
edge, we would be able to quantify an optimal choice for the parameter q. In our
current experiments, it appears that the impact of q is rather small unless we
pick values close to q = 2. We also will compare the measure to global statistical
measures (e.g. [5,10,16,21]) already used in this field of registration and image
processing.

An implementation of SqN will soon be available within the FAIR-Toolbox;
see https://github.com/C4IR.
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Abstract. We present a workflow for processing real-time cardiac MR
(RT-CMR) scans for segmenting the left ventricle (LV) on short-axis
slices (SAX). Our method is based on image registration, where the LV
endocardium and epicardium are segmented by propagating a reference
contour over all the frames of the RT-CMR SAX scans. Our method
was evaluated on 19 subjects, the accuracy of the automatic LV endo-
cardium and epicardium segmentation was compared to those defined
manually. The proposed method obtained a dice similarity coefficient
(DSC) of 0.94 and a mean surface-to-surface distance (MSD) measure of
0.89± 0.53 mm. Additionally, a number of automatically obtained clin-
ical measures were compared to ground truth values. On average we
obtained a Pearson’s correlation coefficient (R) of 0.94 (0.99–0.74).

Keywords: Realtime-MR · Left ventricle · Segmentation
Registration · Semi-automatic

1 Introduction

Conventional Cardiac Magnetic Resonance (CMR) imaging interpolates a car-
diac cycle from averaged data acquired over several heartbeats in order to eval-
uate cardiac function, these CMR scans require ECG triggering and breath-
holding (for 10–15 s) [1]. Variations between heartbeats caused by arrhythmia
blur the image due to this averaging. Also, some subjects are unable to hold their
breaths for the duration of the scan which also result in blurred images. More-
over, beat-to-beat variations are believed to yield valuable information about
early stages of heart failure as well as diseases to the heart muscle. To this end,
a real-time CMR (RT-CMR) method has been developed that can achieve high-
resolution imaging of a 2D slice at a high frame rate [2]. RT-CMR does not
c© Springer International Publishing AG, part of Springer Nature 2018
S. Klein et al. (Eds.): WBIR 2018, LNCS 10883, pp. 57–66, 2018.
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require ECG triggering or breath-holding. Thus the sequence is able to acquire
diagnostic quality images in patients with an irregular heart beat or for patients
who have difficulty in holding their breaths [3].

In order to derive diagnostic information from the CMR scans a number of
clinical measures have to be quantified. This is traditionally performed using
(semi-)automatic image processing techniques on the conventional cine (2d + t)
short-axis scans (SAX). Where the endocardium and the epicardium of the left
ventricle (LV) is segmented from a number of slices extending from the apex to
the base of the heart. The slices are segmented at the end-diastolic and the end-
systolic cardiac phases to obtain the end-diastolic volume (EDV) and end-systolic
volume (ESV), respectively. However, processing RT-CMR SAX scans using the
traditional approach is unrealistic because of the sheer number of cardiac scans
acquired for each SAX slice. Typically each RT-CMR SAX slice consists of 80–
150 timepoints acquired over a number of cardiac cycles. Moreover, because no
ECG triggering or breath-holding is used during acquisition, the location of the
LV and the cardiac phase do not match between the SAX slices. Thus identifying
the LV end-diastolic/systolic phases over the SAX slices is cumbersome.

The purpose of our study is to develop and evaluate a semi-automated
method which is able to segment the LV endocardium and epicardium on all
the acquired temporal frames and over multiple SAX slices using the RT-CMR
scans. The LV segmentations are subsequently used to compute a number of clin-
ically important measures such as the EDV, ESV, stroke volume (SV), ejection
fraction (EF), and the myocardial mass.

2 Method

The proposed method consists of two main parts: (i) an image registration based
approach for segmenting the LV endocardium and epicardium contours over all
the acquired temporal frames, and (ii) a method that can identify the end dias-
tolic and systolic timepoints from the segmented LV for every slice to compute
the clinical measures.

2.1 Segmenting the Left Ventricle

An image registration based approach is used for delineating the LV endocardium
and epicardium contours. Image registration based approaches [4] can be used
to exploit the cyclic nature i.e. the continuous beating heart over multiple heart
beats and model the deformation over the acquired cardiac scans. The RT-CMR
short-axis cardiac data has two main motion components, the motion caused
due to the beating heart, and the motion caused due to breathing.

To segment a region of interest (ROI) from the RT-CMR SAX slice, our
method requires three steps: (i) all the timepoints from a SAX slice are simulta-
neously registered in a groupwise manner to compute forward transformations,
(ii) to determine the coordinate mapping for each of the cardiac timepoints to
the rest an inverse transformation is computed, and (iii) both the forward and
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Fig. 1. Registration and contour propagation workflow. A single slice of RT-CMR
image stacked over the time dimension (a). RT-CMR image stack after registration (b).
Initialized endocardium (blue) and epicardium (red) contours on a single timepoint to
be propagated (c). The computed deformation field for a random cardiac time point (d).
The propagated contours over all the cardiac time points using the proposed workflow
(e). (Color figure online)

the inverse transformations are combined such that a reference ROI defined on
one timepoint can be transformed to the remaining timepoints. In our workflow
the reference LV contours are manually defined in a single frame, usually on a
frame where the LV can be clearly distinguished. Figure 1 shows a schematic of
the registration approach.

The registration model used in this paper is based on the work of Metz et al.
[5]. In brief, for the forward transformation this registration method incorpo-
rates spatiotemporal dimensions with the aim to minimize the change of voxel
image intensity using a free-form B-spline transformation model. The method
searches for the B-spline transformation that aligns all the cardiac timepoints
to a mean frame by minimizing the variance of voxel intensity values over time.
The registration method ensures a smooth deformation over the time dimension,
which we expect from our cardiac data. An inverse transformation is computed
in order to estimate the coordinate mapping from one timepoint to another.
The inverse transformation is computed as a registration problem. For more
details readers are referred to [5]. Using the obtained transformations reference
contour(s) can then be propagated over all the timepoints for each of the SAX
slices. Figure 1 shows a RT-CMR slice stacked along the time-dimension, the
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stack has been clipped through the LV to visualise the motion components. The
registered image stack (forward transformation) shows that the cardiac motion
has been accurately captured. Example of a few propagated contours are also
shown.

2.2 Computing the Clinical Measures

Once the LV endocardium and epicardium have been segmented for all the time-
points and over all the short-axis slices of a subject. Area-time curves can be
computed, these curves represent the change in surface-area of the segmented
LV contour over the acquired timepoints. As each acquisition covers multiple
cardiac cycles these curves display a number of peaks and valleys which cor-
respond to diastolic and systolic phases respectively. These peaks and valleys
are automatically detected by searching for local maxima’s and minima’s in the
area-time curve. The end-diastolic and end-systolic area is obtained by comput-
ing the median value of the peaks and the valleys of the area-time curve for a
slices. Figure 2 shows one such area-time curve.

Fig. 2. Area-time curve for a random SAX slice. Dashed lines represent the median
value of the peaks (*) and valleys (o).

The end diastolic volume (EDV) for a subject can be computed as:

EDV =
s∑

i=1

Pi ∗ T,
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Fig. 3. Endocardium and epicardium area-time curves for a subject. Different colours
correspond to different SAX slices, peaks and valleys are detected as ‘*’ and ‘o’, respec-
tively.

where i is the slice number, s is the maximum number of short-axis slices con-
taining the LV, P is the median of the peak values for a slice and T is the slice
thickness. The end systolic volume (ESV) is similarly obtained by summing over
all the median values of the valleys (V ). The EDV and ESV are obtained for
the endocardium. Similarly the epicardial diastolic and systolic volumes can be
obtained, by using the epicardial area-time curves. An example of the area-time
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curves for a subject is shown in Fig. 3. It should be noted that the peaks and
the valleys (cardiac phases) of the curves do not align with each other, this is
because the data is not ECG triggered.

Stroke volume (SV) is calculated as:

SV = EDV − ESV.

Ejection fraction (EF) is obtained as:

EF =
SV

EDV
× 100%.

Myocardial mass (Mass) is obtained as:

Mass = (EDVepi − EDVendo) ∗ 1.05g,

where EDVepi is the EDV of the epicardium and EDVendo is the endocardial
EDV, 1.05 is a constant which is used to obtain the mass in grams.

3 Experiments and Results

3.1 Data Acquisition

We retrospectively obtained 19 RT-CMR datasets of healthy subjects. These
were acquired on Skyra 3T MRI scanner (Siemens Medical Solutions, Forch-
heim, Germany) at University Medical Center Göttingen (Germany). The scans
have an in-plane resolution of 1.6 × 1.6 mm and a slice thickness of either 6 or
6.6 mm. Each of these subjects have either 80 or 150 timepoints with a temporal
resolution of 33 ms. On a typical SAX scan the LV is covered by 11 slices.

Ground truth clinical measures were manually obtained for all 19 subjects,
using MASS software (LUMC, Leiden, The Netherlands). An experienced user
manually delineated the LV endocardium and epicardium on one diastolic and
systolic phase.

3.2 Registration Parameters

All image registrations were performed using elastix, a publicly available regis-
tration software package [6]. Most of the registration parameters were optimized
in our previous study (on cine CMR scans) [7]. Only minor changes had to be
made to adapt for the RT-CMR scans. In short, registration was performed as
follows. For both the forward and inverse registration a multi-resolution coarse-
to-fine approach using four resolutions was used. Adaptive stochastic gradient
descent was used for optimization [8]. The number of voxels randomly sampled
in each iteration was set to 2000, and the number of iterations was also set to
2000. As a cost function “Variance Over Last Dimension” was used for forward
registration and “Displacement Magnitude Penalty” for the inverse registration
[5]. A B-spline grid was defined by control points with 10 mm separation in-plane
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Fig. 4. Dice similarity coefficient for the LV endocardium (blue) and epicardium (red)
contours over random multiple single slices for all 19 subject. (Color figure online)

and 1 mm in the time dimension. A powers-of-2 pyramid schedule for the grid
was used over the 4 resolutions. The average registration time for a SAX slice
is approximately 5 min on an desktop running Intel Xenon CPU 3.60 GHz and
16 GB RAM.

3.3 Results

To evaluate our method two experiments were carried out. In the first exper-
iment, the quality of the LV segmentation was evaluated. This was done by
comparing the dice similarity coefficient (DSC) and the mean surface-to-surface
contour distance (MSD) between the automatically propagated contour and a
manually defined contour. The manual contour was delineated by an indepen-
dent user on a random timepoint on a few SAX slices (blinded to the segmen-
tation results). In the second experiment, the clinical measures obtained using
the proposed method were compared to the ground truth values. This was con-
ducted by computing Pearson’s correlation coefficient (R) and Bland-Altman
analysis. Results show that the average DSC and MSD over all the subjects
is 0.93 and 0.95 ± 0.55 mm, respectively for the endocardium, and 0.95 and
0.82 ± 0.52 mm for the epicardium contours. Figure 4 shows the DSC values for
both the endocardium and the epicardium contours for each of the 19 subjects
over multiple SAX slices. Table 1 shows the results for the clinical measures. Most
of the measures have an R of 0.99 and narrow limits of agreement. The differ-
ence between the automatic method and the ground truth is not statistically
significant. Figure 5 shows plots for three measures.
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Fig. 5. Correlation and Bland-Altman plots for EDV, ESV and Mass. R is the Pearson’s
coefficient, n is the number of subjects and RCP is the reproducibility coefficient.
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Table 1. Performance of the proposed method. R is the Pearson correlation coefficient.
B-A is the Bland-Altman bias along with the 95% CI. Abs diff is the average absolute
difference.

Measure R B-A (95% CI) Abs diff

EDV (ml) 0.99 −5.6(−13, 2) 5.9 ± 3.5

ESV (ml) 0.98 1.7(−8, 11) 4.3 ± 2.7

SV (ml) 0.88 −7.4(−17, 2) 7.5 ± 4.6

EF (%) 0.74 −4.3(−11, 2) 4.6 ± 2.9

EDVepi (ml) 0.99 −1.5(−13, 10) 4.5 ± 3.5

ESVepi (ml) 0.99 −8.0(−20, 4) 8.3 ± 5.6

Mass (g) 0.99 4.4(−6, 15) 5.4 ± 4.3

4 Discussion and Conclusion

We present and evaluate a method for segmenting the LV from RT-CMR SAX
scans. Results show good agreement with manual segmentation. Comparing the
clinical measures showed excellent correlation with most of the ground truth
measures. The values for stroke volume (SV) and ejection fraction (EF) were
a bit low. This is mainly because the error accumulates over the end-diastolic
(EDV) and end-systolic volumes (ESV). However, the myocardial mass has very
good agreements.

The groupwise registration model used in this paper has advantages over
the traditional pairwise registration approach as we do not have to provide a
reference image during registration. This approach also avoids a bias towards a
reference image and takes into account the intensity information of all images
simultaneously. Moreover, this allows the user the freedom to choose any time-
point for defining the reference LV contour used for propagation.

A drawback of our method is that we evaluated our method only on healthy
subjects. But we do believe that our method would have a similar performance
on subjects with arrhythmia. In the current work we have demonstrated the
feasibility of using a semi-automated method to efficiently process RT-CMR
scans to assess the cardiac function.
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Abstract. In image registration the optimal transformation parameters
of a given transformation model are typically obtained by minimizing a
cost function. Stochastic gradient descent (SGD) is an efficient optimiza-
tion algorithm for image registration. In SGD optimization, stochastic
approximations of the cost function derivative are used in each iteration
to update the transformation parameters. The stochastic approximation
error leads to large variance in the parameters. To enforce convergence
nonetheless, SGD methods are typically implemented in combination
with a gradually decreasing update step size. However, selecting a proper
sequence of step sizes is a major challenge in practice. An alternative
strategy in numerical optimization is to use a constant step size and
enforce convergence by averaging the parameters obtained by SGD over
several iterations. It was proven mathematically that the highest possi-
ble rate of convergence is achieved in this way. Inspired by this work,
we propose an averaged SGD (Avg-SGD) method for efficient image reg-
istration. In the Avg-SGD approach, a constant step size is used, in
combination with an exponentially weighted iterate averaging scheme.
Experiments on 3D lung CT scans demonstrate the effectiveness of the
Avg-SGD method in terms of convergence rate, accuracy and precision.

1 Introduction

To solve a registration problem, a cost function that measures the dissimi-
larity between images is usually defined, and then minimized by a numerical
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optimization routine. In [1], stochastic gradient descent (SGD) approach was
implemented by using in each iteration a newly selected random subset of image
data for calculation of the cost function gradient. So far, SGD approaches have
been widely applied in many registration problems, e.g., [2–4]. In SGD optimiza-
tion the issue of selecting a good sequence of step sizes γ is a major challenge in
practice [5]. SGD methods are typically implemented in combination with a grad-
ually decreasing step size. The selection of γ is critical for the performance of the
optimization process. If the step size γ is chosen too small, the minimizing pro-
cess of the cost function will be too slow and easily get stuck at an early stage. If
γ is selected too large, the noise during the stochastic optimization will become
too large and the reliability of the optimization cannot be guaranteed. In both
cases, the convergence rates of optimization are not optimal. To estimate γ auto-
matically in image registration problems, an adaptive stochastic gradient descent
(ASGD) optimizer was proposed in [6]. In the ASGD method, an image-driven
mechanism is used to predict a reasonable value of γ, which satisfies several theo-
retical conditions for convergence. However, the ASGD optimizer has a relatively
high computation cost during the estimation process when the number of trans-
formation parameters becomes high. To tackle this issue, a fast ASGD optimizer
was proposed in [7]. Although the ASGD method provides a reasonable choice of
γ, it does not claim to achieve an optimal rate of convergence.

The convergence rate of SGD can be accelerated by using the second-order
information (i.e., Hessian matrix) of the cost function. When the second-order
information is adopted, the former scalar γ becomes a matrix which is employed
to control the step size according to the curvature of the optimization landscape.
Because the second-order information is not known in advance, various methods
for predicting the Hessian matrix were proposed in [8]. However, the computa-
tional cost of determining the full Hessian matrix is usually too high to maintain.
Therefore, different approaches for estimating an approximated Hessian matrix
were proposed in [9]. However, those approximated estimations cannot guaran-
tee a convergence rate which is as good as when using the full Hessian matrix
in practice [10].

An alternative strategy to accelerate the convergence rate was proposed by
Polyak and Juditsky [11]. They proposed to average the iterates of a SGD opti-
mization, and proved that the averaged sequence of the estimated parameters
converges in an optimal rate, which is as good as full second-order SGD. We
refer to this method as Avg-SGD. With this approach, we may use a larger than
usual step size γ and let the averaging take care of the increased noise effects
that are due to the larger step size. In this way we can substantially improve the
overall convergence speed and make the choice of γ less critical. Compared with
the second-order SGD, the averaging technique is easy to implement and more
attractive in practice.

In this paper we investigate the potential of the Avg-SGD method for image
registration. In theoretical analyses, it is typically assumed that the iteration
number k → ∞ [5]. However, this assumption is impractical for image reg-
istration where we only have limited computation time. Given finite k, it is
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preferable to skip or alleviate the effect of iterates in the early phase of optimiza-
tion because the estimated transformation parameters may change dramatically.
In this research, we present an exponential Avg-SGD method where the effect of
the early iterations is exponentially decreased, avoiding the need to set a hard
threshold k0 for the commence of averaging. We compared the new Avg-SGD
method with the state-of-the-art ASGD optimizer in the experiments on 3D real
imaging data with nonrigid registration.

2 Method

2.1 Stochastic Optimization for Image Registration

Let F (x) : ΩF ⊂ R
D → R and M(x) : ΩM ⊂ R

D → R denote the D-dimensional
fixed and moving images where x represents an image coordinate, and ΩF and
ΩM are the fixed and moving image domains, respectively. Suppose T(µ,x) :
R

P × ΩF → ΩM is a coordinate transformation where µ ∈ R
P represents the

vector of transformation parameters. T(µ,x) could be a translation, rigid, affine
or nonrigid (e.g., B-spline) transformation model. Then, the registration problem
is defined as:

µ̂ = arg min
µ

C (µ, ΩF ) , (1)

where C(µ, ΩF ) calculates the dissimilarity between the original fixed image
F (x) and the deformed moving image M(T(µ,x)) on the domain x ∈ ΩF .
Examples of C are mutual information [12], the sum of squared differences (SSD),
and normalized correlation coefficient. For instance, the cost function C of SSD
is defined as:

C (µ, ΩF ) =
1

|ΩF |
∑

xi∈ΩF

(F (xi) − M (T(µ,xi)))
2
. (2)

In image registration, an iterative optimization strategy is applied to solve
Eq. (1) and determine the optimal set of parameters µ̂. In the evaluation of differ-
ent optimizers [1], the SGD optimizer turned out to be a competitive alternative
to deterministic algorithms in nonrigid registration problems. SGD optimization
is based on the following iterative update strategy:

µk+1 = µk − γkg̃k, k = 0, 1, 2 . . . K, (3)

where g̃k represents a stochastic approximation of the cost function derivative
∂C/∂µ, evaluated at the current estimated transformation parameters µk, and
γk is a scalar gain factor that controls the step size along g̃k.

2.2 Averaged Stochastic Gradient Descent (Avg-SGD)

Let us define
lim

k→∞
µk = µ∗. (4)
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The asymptotic normality under certain assumptions of the rate of convergence
of SGD can be defined as [6]:

√
k(µk − µ∗) d−→ N (0,V ), (5)

where d−→ represents the convergence in distribution as k → ∞, and N (0,V ) is
a multivariate normal distribution with mean 0 and covariance matrix V .

To accelerate the convergence of stochastic optimization, Polyak and Juditsky
[11] and Ruppert [13] proposed to average the trajectory of stochastic optimiza-
tion. In contrast to other accelerating techniques (e.g., second-order SGD), the
averaging technique is simple and requires no prior information about the cost
function. The original Polyak averaging can be formulated as:

µ̄k =
1

k + 1

k∑

i=0

µi, (6)

where µ̄k is the sequence of averaged parameters. It is worth noting that this
iterate averaging process does not interfere with the original SGD algorithm; the
estimates µk are unaffected by µ̄k. The basic idea is that µ̄k converges faster
to µ∗ than µk does. In [11], Polyak and Juditsky presented a proof that µ̄k

converges to µ∗ as good as the full second-order algorithm. In later work [14],
Yin showed that √

k(µ̄k − µ∗) d−→ N (0, V̄ ), (7)

where V̄ is the smallest possible covariance matrix when an asymptotically opti-
mal matrix-valued step size (e.g., second-order SGD) is adopted.

If γk → 0 slower than O(1/k), Kushner and Yin extended the averaging
theory to a window definition [5]:

µ̄win
k =

γk

τ

k∑

i=k−τ/γk+1

µi, (8)

where k ≥ τ/γk − 1 and the number of iterates in the window of averaging is
τ/γk = o(k) for arbitrary real τ > 0. They proved that

(µ̄win
k − µ∗) d−→ N (0,

γkV̄

τ
). (9)

Equation (9) shows that the covariance matrix V̄ can be reduced proportionally
to the size of averaging window τ/γk. In [5], they confirmed that this desirable
property of averaging holds both for constant and decreasing step size γk.

In practice, we only have a finite number of iterations K which is different
from the theoretical analysis under the assumption k → ∞. Because µi may
change substantially in the initial phase of optimization, it would be preferable
to skip or alleviate the effect of first k0 iterations in Eq. (6). One easy way is to
skip the iterations before k0, and only the iterates from k0 to k are averaged to
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compute µ̄post
k . However, there is no prior information to properly choose k0 for

a practical problem. If k0 is too small, the ‘premature’ µi where i ≤ k0 could be
involved in the averaging calculation. If k0 is too large, the number of averaged
iterates will become too low to achieve substantial acceleration of convergence.

To remedy the issue of choosing k0, we define an exponential moving average:

µ̄ex
k+1 = (1 − ε)µ̄ex

k + εµk+1 = (1 − ε)k+1µ0 + ε
k+1∑

j=1

(1 − ε)k+1−jµj , (10)

where 0 < ε < 1 and µ̄ex
0 = µ0. In this exponential averaging method, the

influence of previous iterates is decreased exponentially. In this way, we avoid
the need to set a hard threshold k0. The influence of initial iterations is gradually
decayed. The weighing factor ε needs to be set by the user. In this work, we fixed
ε to a constant parameter for all experiments.

Note that for the choice ε = 1/(k + 2), Eq. (10) boils down to a recursive
formulation of the original Polyak averaging method (Eq. (6)).

Table 1. Summary of registration methods.

Method Step size (γ) Optimization

SGD-constant Constant SGD

SGD-adaptive Adaptively decreasing SGD

Avg-constant Constant Avg-SGD

Avg-adaptive Adaptively decreasing Avg-SGD

2.3 Step Size Selection

The use of Avg-SGD may allow us to use a constant step size γ instead of a decay-
ing step size, which may benefit the convergence rate in non-asymptotic settings.
The increased noise on µk due to the large step sizes in later iterations could be
attenuated by the averaging process in the Avg-SGD method. In this work, we
will therefore compare different step size selection schemes in combination with
the Avg-SGD and conventional SGD approaches. Table 1 summarizes the regis-
tration methods evaluated in this work. In Table 1, the SGD-constant method
represents the ordinary SGD optimizer using constant γ. The SGD-adaptive
method is the standard ASGD optimizer equipped with adaptively decreasing
γ in [6]. The Avg-constant method represents the proposed Avg-SGD approach
using constant γ. The Avg-adaptive approach is the Avg-SGD method combined
with the adaptively decreasing γ. The initial step sizes of all methods are the
same and calculated as described in [6].
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3 Experiments

As a generic technique, the Avg-SGD approach can in principle be used in com-
bination with any transformation model and similarity metric. In this work, we
evaluated the Avg-SGD method in the setting of nonrigid B-spline transforma-
tion model using SSD metrics for 3D lung CT registration problem. All methods
were implemented as part of the open source image registration package elastix
[15]. The number of random samples S was set to 2000. The number of itera-
tions K of the optimizer was set to 2000. For the Avg-SGD in Eq. (10), we fixed
ε = 0.01 in all experiments.

To investigate the performance on different distortion levels, we used a multi-
level optimization, in which the transformation parameters µ̂ estimated at level
l were used to initialize µ0 at level l + 1. For this purpose, we used the result
µ̂ = µK obtained by the conventional SGD-adaptive method, to ensure that
in each level all methods start from the same point µ0. No image blurring was
performed. Two levels were used for the nonrigid registration experiments. The
B-spline control point spacing η was set to 64 and 32 mm in the two levels,
respectively.

3.1 Evaluation Measures

To quantify different aspects of convergence behavior, we use three measures:
accuracy curves, reproducibility curves, and fluctuation.

Let Γ (k) represent registration accuracy as a function of the iteration num-
ber k. We compute the mean of Γ (k) over multiple registration cases, and plot
this mean as a function of k, to obtain accuracy curves. The reproducibility
measure assesses the change of the registration accuracy caused by intrinsic ran-
domness of SGD optimization. To quantify this, the registrations were repeated
with R = 20 random seeds. The random seed affects the selection of the ran-
dom subsets Ω̃k

F which represents the random samples Ω̃F at iteration k. The
standard deviation of registration accuracy was calculated over those seeds to
measure the reproducibility of each method. Thus, we can define the repro-
ducibility as: Std(Γr(k)) with Γr(k) the accuracy at iteration k using random
seed r. In the experiments, the reproducibility is evaluated at multiple iterations
k and is plotted as a function of k, in order to obtain reproducibility curves.

The fluctuation of the accuracy curve over the last 100 iterations was com-
puted to assess the variability of the registration result near the end of optimiza-
tion procedure. Large fluctuation of Γ (k) in the final iterations would indicate
the optimization has not fully converged yet. The second-order derivative of the
curve was adopted to measure the fluctuation. The second-order derivative at
iteration k can be approximated by finite difference:

Γ ′′(k) ≈ Γ (k + 1) − 2Γ (k) + Γ (k − 1), (11)

where Γ (k) represents the registration accuracy at iteration k. For each test
case, we calculate the root mean square of these second-order derivatives over
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the last 100 iterations, and we summarize the results of all test cases using box
plots.

3.2 Nonrigid Registration on 3D Lung CT

The publicly available DIR-Lab 3D chest CT data set facilitates a rigorous and
objective assessment of the spatial accuracy of registration methods [16]. The
DIR-Lab data set contains 10 pairs of scans with 300 manually annotated land-
marks on the lungs, which allows us to evaluate the registration accuracy. The
voxel sizes and dimensions of these scans are around 1.0 × 1.0 × 2.5 mm and
around 256 × 256 × 110 voxels. To focus on the lung region, lung masks were
created to restrict the registration. The masks were created by thresholding,
3D-6-neighborhood connected component analysis, and morphological closing
operation using a spherical kernel with a diameter of 9 voxels. In the exper-
iments, the exhale phase (moving image) was registered to the inhale phase
(fixed image). The mean of target registration errors (TRE), which measure the
distances between the transformed and ground truth landmarks, was used to
measure the registration accuracy Γ . Here, each test was repeated with 20 ran-
dom seeds. Therefore, there are in total 10 × 20 test cases for 10 patients over
20 random seeds.

4 Results

Figure 1 shows the results of candidate approaches using two-level registration
on lung CT data. Figures 1(a) and (c) present the mean of Γ (k) over 10 ×
20 registration cases, at each iteration k = 0, 100, 200, . . . K for the first and
second registration levels, respectively. As shown in Fig. 1(a) the methods using
constant γ converged faster than the approaches using adaptively decreasing γ
at the first registration level. It can also be found that the SGD-constant and
Avg-constant method obtained similar final accuracy. At the second registration
level (Fig. 1(c)), the methods using constant γ still outperformed the approaches
using adaptively decreasing γ. In addition, the proposed Avg-constant method
achieved a better convergence rate than the SGD-constant approach.

Table 2. Registration accuracy (mm) on lung CT data using B-spline transformation.

SGD-constant SGD-adaptive Avg-constant Avg-adaptive

Level 1 1.66± 0.37 1.92± 0.77 1.65± 0.32 1.92± 0.78

Level 2 1.45± 0.28 1.46± 0.35 1.43± 0.28 1.46± 0.35

The results of final registration accuracy achieved by candidate approaches
at each registration level are presented in Table 2. It can be observed that the
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Fig. 1. Convergence curve and reproducibility curves of registration methods on lung
CT data using B-spline transformation. (a) and (c) averaged convergence curves on
from the first to the second registration levels over 10 × 20 test cases; (b) and (d)
averaged reproducibility curves from the first to the second registration levels over
10 × 20 test cases.

proposed Avg-constant method constantly generated the best registration accu-
racy at each level. In comparison with the previous research on the same data
[17], the averaged registration accuracy reported in Table 2 is better.

Figures 1(b) and (d) show the reproducibility Std(Γr(k)) over 20 random
seeds. The reproducibilities are averaged over 10 patients. As shown in Fig. 1(b),
the final values of Std(Γr(k)) of the SGD-constant and Avg-constant approaches
are better than the methods using adaptively decreasing γ. It can be noticed that
the Avg-constant method achieved the best reproducibility. At the second reg-
istration level (Fig. 1(d)), the SGD-constant method was the least reproducible
among all methods. In contrast, the reproducibility was improved by using the
Avg-constant method.

Fig. 2. Degrees of fluctuations of registration methods on lung CT data.
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Figure 2 shows the degree of fluctuation at the final registration level on lung
data. It can be observed that the SGD-constant method produced the largest
fluctuation among all methods. However, the proposed Avg-constant approach
reduced the fluctuation substantially.

5 Discussion

We proposed the Avg-SGD optimization method for image registration. The
Avg-SGD method uses a constant instead of a decreasing step size γ, in order
to accelerate optimization. The averaging process of the Avg-SGD approach
compensates for the increased noise due to constant γ. The performance of the
Avg-SGD method was evaluated in comparison to the state-of-the-art ASGD
optimizer. The improvements in registration accuracy, registration reproducibil-
ity and fluctuation of the convergence curve prove the effectiveness of the Avg-
SGD method.

For large initial deformation, both the SGD-constant and Avg-constant
methods achieved faster convergence rate than the approaches using adaptively
decreasing γ. However, the constant γ resulted in large fluctuations around the
optimum and thus lower reproducibility of the final solution obtained by the
SGD-constant approach. The proposed Avg-SGD approach compensates for the
fluctuations caused by constant γ, which was confirmed by the improved repro-
ducibility curves. Compared with the methods using constant γ, the approaches
using adaptively decreasing γ even obtained lower reproducibility. The reason is
that these methods did not really converge yet at k = K, which causes a higher
variation over different random seeds.

For small initial deformation, the noise caused by the constant γ has sig-
nificant influence on the SGD method. The better convergence rate was still
preserved by using the new Avg-SGD method. The reproducibility of the result
in case of small initial deformation proves that the Avg-SGD method can effec-
tively reduce the noise effect due to constant γ.

The fluctuation of the convergence curve was also evaluated to measure regis-
tration precision. The variation of the accuracy over iterations is reflected by the
fluctuation measure. The boxplots (Fig. 2) clearly showed that the SGD-constant
method results in large fluctuations in the final iterations. This is exactly the
reason why SGD methods are usually implemented with decreasing step sizes;
due to the stochastic noise on the gradients g̃k convergence needs to be enforced
in some way. To achieve this, commonly, the step size is decreased with increasing
iteration number k. Indeed, the SGD-adaptive method resulted in low fluctua-
tion values. In this work, the Avg-SGD method proved to be another effective
way to dampen the fluctuations and enforce convergence, eliminating the need
to decrease the step size.

Regarding the computation time, the Avg-SGD approach was implemented
in a recursive manner. During the optimization, only one set of averaged trans-
formation parameters needs to be stored. To update the averaged parameters
we only need simple vector operations. Therefore, the additional computational
cost raised by the Avg-SGD method is trivial in practice.
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6 Conclusion

We developed the Avg-SGD optimization method for image registration. The
proposed approach compensates for the stochastic noise inherent to SGD by
averaging over iterations. Thanks to the iterative averaging, large step sizes can
be maintained throughout the entire optimization process, resulting in accel-
erated convergence while preserving the registration precision. The improved
registration results demonstrate the effectiveness of the Avg-SGD method.
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Abstract. Image registration is relevant for many medical procedures.
For CT-guided ablation procedures, integrating the lesion location from
diagnostic contrast-enhanced CT (CECT) images in interventional CT
images may provide better guidance for the interventional radiologist.
The main requirement for such methods is to accurately align the lesion
location. This, in general, can not be measured, and often surrogates are
used for the assessment. In this work, we present a method that permits
the assessment of the accuracy of the lesion localization, i.e. assessing the
value that is relevant for clinical practice. To this end, we developed a
method that virtually removes the contrast agent from an interventional
CT image, use this image for the registration, and use the original CECT
image for the assessment. For the experimental evaluation, imaging data
of 20 subjects (33 lesions) were used, and the registration accuracy of a
publicly available registration method was assessed using this method.

1 Introduction

Image guided minimally invasive interventions may benefit from registration to
align preoperative information (images, planning) with the patient during the
intervention.

The clinical context of this manuscript deals with percutaneous CT-guided
ablations of liver tumors. This is a minimally invasive intervention where a nee-
dle is introduced through the skin, such that the needle tip is at the lesion center,
after which energy (radiofrequency or micro wave) is applied to locally heat the
lesion and kill its cells. Correct needle placement is of paramount importance,
as incorrect placement may lead to partial ablation and recurrence of the lesion
and it may lead to excessive destruction of healthy tissue. Therefore, this inter-
vention is performed using image guidance: an interventional modality is used
to visualize the needle and the lesion. Generally, ultrasound, being a safe and
real-time modality, is being used for guidance, but not all lesions show sufficient
c© Springer International Publishing AG, part of Springer Nature 2018
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contrast in ultrasound. Therefore, CT imaging is also used as an interventional
modality for percutaneous ablations.

In CT-guidance first an unenhanced image is acquired, which serves as an
overview to plan the needle introduction. Subsequently, a needle is advanced,
with regular checks done by obtaining a CT image with the needle in place. After
the ablation, a CT scan with contrast is being made to assess the treatment.

Lesion localization in the initial unenhanced CT image may be difficult, as
many lesions are only visible on contrast-enhanced CT (CECT) images. Con-
trast agent is toxic, and can be used only once during an intervention, and is
preferably used to assess the treatment. However, a contrast-enhanced diagnos-
tic scan, showing the lesion and possibly other structures, is commonly available.
Therefore, interventionalists use a “mental mapping” approach, combining the
information from the diagnostic scan and the interventional scan, to map the
lesion location.

The latter task may be performed by a registration algorithm as well, and
several groups have investigated registration approaches that enable the anatom-
ical alignment of the liver in two CT scans. A crucial issue is the final Target
Registration Error (TRE) for these methods. Assessment of registration accu-
racy was considered an important issue ten years ago [1], and it still is today.
Rohlfing [2] demonstrated, be it in a rather artificial example that overlap and
similarity metrics are not always good predictors of registration accuracy. Still,
TRE is often not known and reported: most of the methods have been eval-
uated by using surrogate measures such as Dice and Mean Surface Distance
(MSD) or Hausdorff Distance (HD) over the liver surface [3–7]. The choice of
these metrics is caused by the lack of a reference standard for the lesion location
in the unenhanced image, an issue that is occurring more often in registration
evaluation. Interesting approaches are the assessment of landmarks, such as is
done in the lung CT challenges, and for which automated approaches have been
presented [8]. However, anatomical landmarks, because of their appearance in
the images, may align better than regions without a clear structure, such as is
the case in our application. Others have proposed to simulate deformations [9],
which provides a good ground truth for the assessment of the deformation field.

For clinical assessment, however, we are interested in assessing the target
registration error, and also investigating how that relates metrics such as mean
surface distance.

Purpose of this paper therefore is to develop and evaluate a method that per-
mits to assess the target registration accuracy for this liver registration problem.
The main contributions are a method to virtually de-enhance a CECT scan, and
the application of this method in assessing the TRE of an existing registration
method. In the following, we first detail the background and method of the vir-
tual de-enhancement contrast, and next we describe the experiments and the
results, which are followed by a discussion and conclusion.
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2 Method

The key idea behind the method is to use a contrast-enhanced interventional
scan for the evaluation. This scan contains the spatial information of the lesion,
and this information can serve as the ground truth. To prevent the registration
algorithm to be guided by the effects of contrast-enhancement (vessel visibility,
hyper- or hypointense lesions), the effect of the contrast agent is removed from
the image by a semi-automatic post-processing method. The resulting so-called
virtual un-enhanced CT (VUCT) image is subsequently used by the registration
approach, see Fig. 1. In this way, the registration cannot utilize the contrast
agent effects, thus mimicking the clinical target situation, while there is a good
reference standard for measuring the target registration error.

Fig. 1. Overall process of registration evaluation: the interventional CECT image (bot-
tom left) is de-enhanced, after which this virtually unenhanced image is used in the
registration. The lesion center obtained by transforming this position from the diag-
nostic scan to the interventional scan after registration is compared to the lesion center
in the original interventional scan, which was manually obtained.

In the following, each of the steps of the de-enhancement are explained in
more detail, see also Fig. 2.

2.1 Hyperintense Lesions and Vessels

As a prerequisite of the method, a segmentation of the liver is required. Whereas
several methods for automated liver segmentation are available, we used a man-
ual segmentation for this process. For a given image I we denote the liver mask
with Ml. Furthermore, we compute the statistics of the pixel intensities of the
liver, μl and σl.

Structures that are contrast-enhanced in the liver are vessels (mainly the
veins, as the images are generally portal-venous scans) and the lesion. There
may be other hyper-intense structures in the liver, that are not the result of the
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Fig. 2. De-enhancement process: left the original CECT, middle the vessels and the
tumor pixels are filled with intensity values in the range of the liver parenchyma, right
a blurred version of the middle one.

contrast enhancement, such as calcifications or surgical clips. As these structures
may guide the registration process, we do not want to remove these. Generally,
these structures are of higher intensity then the contrast-enhanced structures.
Therefore, we use a thresholding with two thresholds to select the candidate
pixels for de-enhancement. The thresholds are defined in terms of the mean μl

and standard deviation σl of the liver pixels. Thus, the mask containing the
hyperintense voxels to be de-enhanced, Mhigh, is determined as follows (with p
a pixel):

Mhigh(p) =

{
1 if μl + α1 ∗ σl < I(p) < μl + β1 ∗ σl and Ml(p) = 1
0 else

, (1)

where α1 and β1 are parameters that are set per patient. In the end, these
voxels’ values will be replaced with random gaussian values determined by the
distribution of the normal liver values, yielding the image Ihigh:

Ihigh(p) =

{
N(μl + α2 ∗ σl, β2 ∗ σl) if Mhigh(p) = 1
0 else

, (2)

where α2 and β2 are parameters to be set per image.

2.2 Hypointense Lesions

For the hypointense lesions, a similar strategy is followed. However, intensity
based thresholding such as done for the hyperintense lesions is not feasible,
as there are other low intensity structures with similar intensity that need to
be retained. Therefore, hypointense lesions are segmented manually, and subse-
quently a similar procedure is followed to construct Mlow and Ilow as for the
hyperintense lesions.
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2.3 Granularity and Borders

The initial non-enhanced image IV U−0 is obtained by a masked combination of
the three images:

IV U−0 = I · (not(Mhigh(or)Mlow)) + Ihigh · Mhigh + Ilow · Mlow. (3)

In IV U−0, the lesions and the vessels may still be visible, because of the
difference in granularity. Additionally, the borders between the liver pixels and
the de-enhanced regions are still clear. To address the granularity issue, IV U−0

is Gaussian blurred with a sigma of σg, yielding I ′
V U−0, which is subsequently

used to replace the low and high intensity voxels:

IV U−1 = I · (not(Mhigh(or)Mlow)) + I ′
V U−0 · (MhighorMlow) (4)

Subsequently, a similar blurring approach is applied to hide the borders
between the liver pixels and the replaced pixels, giving the final virtually unen-
hanced image IV U :

IV U = I · not(Ml) + I ′
V U−1 · Ml (5)

2.4 Parameter Settings

The method has several parameter settings: the intensity threshold parameters
(two for hyperintense and two for hypointense lesions), and the parameters for
the distribution replacing the intensities (again two for hyperintense and two for
hypointense lesions), and the σ’s for the Gaussian blurring. Whereas our initial
idea was to train the method to find optimal parameters that would work for
all images, this appeared to be unfeasible because of the variety in images and
image characteristics. Therefore, in the end, we opted for a manual setting of
these values per image.

3 Experiments

We used the method to de-enhance liver CECT images to assess the registra-
tion accuracy of a publicly available method for registration of diagnostic to
interventional liver images. Below we describe the data, implementation and the
experimental results.

3.1 Data

We retrospectively retrieved from the Erasmus MC PACS diagnostic and inter-
ventional CECT images for 20 subjects that had undergone ablation therapy for
liver tumors. All imaging data was anonymized prior to processing. The Institu-
tional Review Board (IRB) of Erasmus MC approved that the Medical Research
Involving Human Subjects Act does not apply to this study and that no informed
consent was required according to the local directives for retrospective studies
(MEC-2014-385).
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The 20 image pairs contain a total of 33 lesions, ranging from one to five
lesions per patient. There were 14 patients (28 lesions) with HCCs, 6 (7) with
colorectal metastases. Mean of maximum lesion diameter was 22 mm (range [11–
60 mm]). CT image pixel sizes ranged from 0.6–1 mm, slice spacing ranged from
2.5–3 mm.

A trained medical student (HB) performed the manual segmentation of the
liver and the lesions in both the diagnostic and interventional images using
an in-house developed tool based on MeVisLab. The same person performed
the de-enhancement, using an in-house developed tool build in MeVisLab. The
annotation and de-enhancement was supervised by an interventional radiologist
(AM) with eight years of experience.

3.2 Registration Algorithm Evaluation

We used Elastix [10] with settings according to [4] as registration algorithm. This
registration algorithm uses liver masks, for which we used enlarged (dilated)
versions of the manually segmented livers.

Additionally, to assess whether the presence of contrast agent in the images
makes a difference for the registration, we also assessed the registration results
when using the same registration approach using the original CECT images.

After registration, the resulting transformation was used to transform the
lesion from the diagnostic to the interventional scan. Subsequently, the center of
gravity was determined for the transformed lesion, as well as for the annotated
lesion in the interventional scan. The TRE was defined as the distance between
these two centers.

4 Results

4.1 De-enhancement

Table 1 lists the parameter settings statistics for the de-enhancement.

4.2 Registration Accuracy

The non-rigid registration with the VUCT images did not converge in one subject
(two lesions). In these cases, the rigid registration had a very large TRE. In the
other 19 subjects (31 lesions), the mean TRE for rigid registration was 10.3 mm,
and for the non-rigid registration it was 5.2 mm.

The non-rigid registration with the CECT images also did not converge for
one subject (same as where the VUCT registration did not converge). Over the
other subjects, the mean TRE for rigid registration was 9.9 mm, and for the
non-rigid registration is was 4.5 mm.

A boxplot of the errors is shown in Fig. 3, registration results are in Figs. 4
and 5.
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Table 1. Parameter values for segmentation of
hyper- and hypointense lesions, and parameters
(α2 and β2) for noise distribution replacing the
lesions.

Hyper Hypo

Param Mean Stdev Mean Stddev

α1 0.45 0.27 −0.092 0.57

β1 11 5.1 −11 2.6

α2 −0.31 0.22 0.14 0.35

β2 0.66 0.77 1.13 0.78

Fig. 3. TREs based on lesion cen-
ters, excluding the results of the
two subjects where the non-rigid
registration failed.

5 Discussion

The assessment of registration accuracy is a difficult task. In our application,
the only clinically relevant metric is how well a lesion from a diagnostic image
is aligned with the same lesion in the interventional image where the lesion is
inconspicuous. In the past, we have used interventional unenhanced CT images
for our registration development and assessment, using surrogate metrics such
as Dice over the liver, liver surface distance metrics and distance between visible
anatomical landmarks. The current setup allows us to assess the real TRE for
our application. It is important to note that our TRE also may include errors
that cannot be attributed to the registration, such as tumor growth. Whereas
this metric thus not solely addressed the registration error (and thus TRE may
not be the appropriate term), the error quantified is best related to the clinical
practice. Additionally, the reference standard locations were the center of gravity
of annotated lesions. In this way, we intended to reduce the effect of inter-
observer variation and discretization errors (because of the slice spacing); small
variations in annotation will have a minor effect on the center of gravity.

In a previous study involving registration of sixteen pairs of similar liver CT
images [4], Luu et al. obtained a Dice overlap of 90%, a MSD of 4.6 mm and mean
landmark distances of 5.3 mm. As these experiments were run on a different set
of patient data (though acquired in the same hospital, with similar protocols), we
should be careful in drawing strong conclusions. Still, distances are very similar
to our TRE results, which suggests that the mean landmark distances are a
good predictor of TRE. This may be explained by the fact that the method we
used includes a term in the registration that penalizes the second derivatives of
the deformation field, and thus enforces smooth deformation fields. It would be
interesting to assess whether this similarity holds for other registration methods
as well. The fact that the surface distance is less can be explained by the fact
that this metric only takes the error orthogonal to the surface into account.

When comparing the registration results of the original CECT with the
VUCT, the mean TRE of the CECT images is slightly smaller, for the rigid
as well as the non-rigid registration. These differences, however, are not statisti-
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Fig. 4. Example registration result: top left: diagnostic contrast-enhanced image with
annotated lesion; top right: interventional contrast-enhanced image with annotated
lesion; middle left: de-enhanced image; middle right: rigid registration result (VUCT,
one slice off); bottom left: VUCT registration result (lesion superimposed on VUCT
image); bottom right: CECT registration result.
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Fig. 5. Example registration result: subimages of the images in Fig. 4: top left: diagnos-
tic contrast-enhanced image with annotated lesion; top right: interventional contrast-
enhanced image with annotated lesion; middle left: de-enhanced image; middle right:
rigid registration result (VUCT, one slice off); bottom left: VUCT registration result
(lesion superimposed on VUCT image); bottom right: CECT registration result.
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cally significant. Whereas one would expect that the TRE would get less when
registering intra-model (two contrast-enhanced scans), these differences are thus
not very large. One of the reasons may be that the method parameters (such
as the spacing of the deformation field and the non-rigidity penalty term) have
been trained with non-contrast-enhanced cases as well, and thus slightly differ-
ence settings (e.g. less penalty) may result in better results for the intra-modal
registration.

The main limitation of the study is the de-enhancement process. Whereas for
human observers the effect of the contrast enhancement was not visible anymore,
there is no guarantee that there are no remaining effects that could be utilized
by a registration approach. Also, the de-enhancement was performed on the liver
only, which is the organ of interest in this study. As our registration approach
used masks to limit the area where the simulation metric is computed to an area
slightly larger than the liver, we do not expect that this makes a difference.

Nowadays, with dual-energy CT scanners, it is in principle possible to recon-
struct a non-enhanced and a CECT image from the same contrast-enhanced
acquisition. In the future, we intend to use such an approach to generate a ref-
erence standard for registration evaluation.

6 Conclusion

In conclusion, we presented a method to remove the effect of contrast enhance-
ment for CECT images. These VUCT images were used to assess registra-
tion accuracy, focusing on the lesion centers. The non-rigid registration method
applied has an error of 5.2 mm, which is similar to the results of a previous study
using a different metric.

Acknowledgements. Theo van Walsum was supported by ITEA project 13031:
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Abstract. Delineation of the target volume and Organs-At-Risk
(OARs) is a crucial step for proton therapy dose planning of prostate can-
cer. Adaptive proton therapy mandates automatic delineation, as manual
delineation is too time consuming while it should be fast and robust. In
this study, we propose an accurate and robust automatic propagation
of the delineations from the planning CT to the daily CT by means
of Deformable Image Registration (DIR). The proposed algorithm is a
multi-metric DIR method that jointly optimizes the registration of the
bladder contours and CT images. A 3D Dilated Convolutional Neural
Network (DCNN) was trained for automatic bladder segmentation of
the daily CT. The network was trained and tested on prostate data of 18
patients, each having 7 to 10 daily CT scans. The network achieved a Dice
Similarity Coefficient (DSC) of 92.7%± 1.6% for automatic bladder seg-
mentation. For the automatic contour propagation of the prostate, lymph
nodes, and seminal vesicles, the system achieved a DSC of 0.87 ± 0.03,
0.89±0.02, and 0.67±0.11 and Mean Surface Distance of 1.4±0.30 mm,
1.4± 0.29 mm, and 1.5± 0.37 mm, respectively. The proposed algorithm
is therefore very promising for clinical implementation in the context of
online adaptive proton therapy of prostate cancer.

Keywords: Deformable image registration
Convolutional neural networks (CNN) · Prostate cancer
Proton therapy

1 Introduction

Prostate cancer is one of the leading causes of mortality and the most common
cancer among men. The American Cancer Society estimates around 161,360
new cases and 26,730 deaths from prostate cancer in the United States for 2017
[1]. Intensity-Modulated Proton Therapy (IMPT) has shown the capability of
delivering a highly localized dose distributions to the target volume. IMPT is
c© Springer International Publishing AG, part of Springer Nature 2018
S. Klein et al. (Eds.): WBIR 2018, LNCS 10883, pp. 94–104, 2018.
https://doi.org/10.1007/978-3-319-92258-4_9
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however more sensitive to daily variations that may result in a suboptimal dose
distribution [2,3]. These variations could be due to anatomical changes in the
target volume and Organs-At-Risk (OARs) or a misalignment in the patient
positioning. In order to account for these variations, a margin is added to the
Clinical Target Volume (CTV) that leads to the Planning Target Volume (PTV).
These margins result in extra dose to the OARs, leading to an increase in the
treatment-related toxicities that may prevent dose escalation. Repeat imaging
and re-planning can handle this problem [4]. These repeat (inter-fraction) CT
scans have to be delineated first before generating a new treatment plan. There-
fore traditionally the inter-fraction re-contouring is not performed because it is
very time consuming and consequently new anatomical changes could be intro-
duced in the meantime. Therefore, it is vital for the automatic contouring to be
fast and robust, because otherwise there will be a need for fallback strategies
like manual correction that also take time.

The Atlas Based Auto Segmentation (ABAS) tool, Mirada, RayStation,
and MIM softwares are a well known commercial softwares for automatic re-
contouring. However, these softwares are considered a black box for the users,
and therefore limits the potential of parameter customization and tuning. Open
source DIR packages provide a high level of flexibility with a concrete scientific
evidence and reproducibility [5,6]. Qiao et al. [7] reported an MSD of 1.36±0.30
mm, 1.75 ± 0.84 mm, 1.49 ± 0.44 mm for the prostate, seminal vesicles, and
lymph nodes, respectively for 18 patients using the open source elastix soft-
ware. A clinical success rate of 69% was achieved, which means that 31% of the
delineations have to be corrected, leading to increased costs and a suboptimal
patient workflow. In 2011, Thor et al. deployed DIR to propagate the contours
of the prostate and OARs from CT to cone-beam CT [8]. The system achieved
a mean DSC of 0.80 for prostate, 0.77 for rectum, and 0.73 for the bladder with
a relatively high variance. Moreover, the system was not qualitatively evaluated
in terms of the dosimetric coverage. Recently, Woerner et al. [9] investigated
the error between different radiologists and both DIR and rigid registration in
different body regions. They only reported the results for the prostate, which
were 0.90, 0.99 mm, and 8.12 mm for the DSC, MSD, and Hausdorff Distance
(HD), respectively.

In order to improve the success rate of the automatic propagation of contours
using DIR, we propose a multi-metric based registration. Hereby, instead of
depending on the intensity of the images alone, we introduce a second objective
that specifically optimizes the bladder overlap, based on a bladder estimate
provided by a neural network.

2 Materials and Methods

2.1 Dataset

This study includes eighteen anonymized patients who were treated for prostate
cancer in 2007 using intensity-modulated radiation therapy at Haukeland Uni-
versity Hospital. Each patient has a planning CT and 7 to 10 repeat CT scans.
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Fig. 1. The architecture for the 3D-DCNN network where {1X, . . . , 16X} denotes the
dilation rate. The blue convolution blocks represent 3× 3× 3 kernels while the grey con-
volution blocks represent fully connected convolution layers implemented by 1× 1× 1
kernels. The green and red blocks denote batch normalization layers and dropout layers,
respectively. The red square represents the patch, while the yellow square represents
the receptive field. (Color figure online)

The field of view of the scans included the prostate, lymph nodes, seminal vesi-
cles, in addition to the bladder and rectum as the main OARs. Each scan has
90 to 180 slices with a slice thickness of around 2 mm. All the slices were of
size 512 × 512 with in-plane resolution of around 0.9 mm. The prostate, lymph
nodes, seminal vesicles, rectum, and bladder were delineated in each CT scan by
an expert and reviewed by another one.

2.2 Dilated Convolution Neural Network Architecture (DCNN)

Motion and filling of the bladder as well as the rectum have an important influ-
ence on the anatomical changes in the abdomen. Therefore, we hypothesize that
intensity-based DIR may improve in terms of accuracy and robustness if the
motion of either of these structures is taken into account explicitly. Since the
bladder is a well-defined structure that is relatively easy to delineate, we opt
to segment it fully automatically. In this study, we propose a 3D Dilated Con-
volutional Neural Network (3D-DCNN) in order to automatically segment the
bladder. Dilated convolution is a generalized version of the traditional convo-
lution process where more spacing is added to the convolution kernel so that
a larger spatial neighborhood is considered when calculating the feature maps.
This spacing is called the dilation rate; for traditional convolution the dilation
rate is 1. Using a dilation rate larger than 1 has several advantages. First, stack-
ing convolution layers with increasing dilation rate will accordingly enlarge the
Receptive Field (RF) of the neural network without adding additional trainable
parameters. Second, there is no need for adding down-sampling layers to have a
large RF and therefore the network can handle high resolution volumes using a
smaller number of trainable parameters. Figure 1 shows the architecture of the
dilated network. This network is a modified version of the architecture deployed
in [10]. The first six convolutional layers have a kernel size of 3× 3× 3, 32 fea-
ture maps, and a logarithmic increasing dilation rate. Dropout layers with a
dropout rate of 0.6 as well as batch normalization layers are introduced before
the last two fully convolutional layers. Moreover, the 2D convolution layers in
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Fig. 2. The proposed multi-metric registration process using elastix software.

the original architecture were replaced with 3D layers in order to consider the
homogeneity of tissues in 3D. Hence, it can help to get more accurate and robust
results. The network has a receptive field of 65× 65× 65 and has 144,551 train-
able parameters.

In order to train the network, the 18 patients are divided into three sets: 12
patients for training, 3 patients for validation, and 3 patients for testing. This
results in a total of 120, 28, and 30 CT scans for training, validation, and test-
ing, respectively. 1,000,000 patches of size 71× 71× 71 are randomly extracted
from the training volumes, making sure they are equally distributed between
foreground and background. Cross Entropy is deployed as a cost function and
the network is trained using the Adam optimizer with a fixed learning rate of
10−4. All the experiments were carried out using an NVIDIA GTX1080 Ti with
11 GB of GPU memory.

2.3 Image Registration

The open source package elastix was used for deformable image registration
[6]. This package is available from http://elastix.isi.uu.nl. All the experiments
were performed on a desktop PC operated on Windows 10 with 16 GB of memory
and an Intel Xeon E51620 CPU with 4 cores running at 3.6 GHz.

http://elastix.isi.uu.nl
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In this study, the planning CT of each patient together with the manual
delineation of the bladder are considered the moving images, while the repeat CT
of the same patient accompanied with the bladder segmentation resulting from
the proposed 3D-DCNN are the fixed images. The generated Deformation Vector
Field (DVF) is then used to propagate the remaining contours (prostate, seminal
vesicles, lymph nodes, and rectum) from the planning CT to the repeat CT. In
order to have a good registration initialization, the registrations were initialized
based on the center-of-gravity of the bony anatomy defined by a Hounsfield
number larger than 200. To remove the effect of the CT table, a mask of the body
torso was generated using Pulmo software [11]. The registration process is a two
step procedure. First, the CT images are aligned using a single resolution affine
transformation so that we can eliminate the large organ movements. Second, a
deformable registration is applied to tackle the local deformations of the organs.
A fast recursive implementation of the B-spline transformation was employed for
DIR [12]. Adaptive stochastic gradient descent was used for optimization [13].
Figure 2 illustrates the proposed registration pipeline. For the DIR stage we used
a three level Gaussian pyramid, and two cost functions. Mutual information
was used for the CT images. To take into account the bladder contours the
distance transform of the bladder segmentations is used instead of the binary
segmentations themselves, to ensure a smooth and stable optimization process.
This results in the following optimization problem:

∧
μ = arg min

µ
{C1 (IF , IM ;Tµ) + αC2 (DT (SF ) ,DT (SM ) ;Tµ)}, (1)

where C1 is the mutual information cost function, C2 is the Mean Square Dif-
ference (MSD) cost function, α is a weight balancing these two cost functions,
IF is the daily scan, IM is the planning scan, DT (SF ) is the distance transform
of the DCNN bladder segmentation, and DT (SM ) is the distance transform of
the manual annotation of the planning scan.

2.4 Registration Performance Evaluation

The registration quality is measured by the overlap and residual distance between
the manually and the automatically propagated contours of the daily CT for the
prostate, lymph nodes, seminal vesicles, rectum, and bladder. The most common
metrics for quality are the Dice Similarity Coefficient (DSC), the Mean Surface
Distance (MSD), and the Hausdorff Distance (HD), all computed in 3D.

DSC =
∑ 2|F ∩ M |

|F | + |M | , (2)

where F and M are the propagated contour and the ground truth contour,
respectively.

MSD =
1
2

(
1
n

n∑

i=1

d (ai,M) +
1
m

m∑

i=1

d (bi, F )

)
, (3)
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HD = max
{

max
i

{d (ai,M)} ,max
j

{d (bi, F )}
}

, (4)

where {a1, a2, ..., an} and {b1, b2, ..., bm} are the surface mesh points of the fixed
and moving contours, respectively and d (ai,M) = minj ||bj − ai||.

3 Experimental Results

3.1 DCNN Segmentation Performance

The DCNN network achieved an average segmentation DSC of 92.7%± 1.6% on
the test patients. It took an average of 15 s to segment a single volume using a
single GPU depending on the number of slices per volume.

3.2 Registration Performance

The weight α of the cost function for the bladder segmentation (C2) was set
to 0.05 for the first resolution and zero for the second and third resolutions.
These weights were chosen after a set of initial experiments. For investigating
the effect of the number of iterations on the registration performance, we var-
ied this parameter between 100 and 500 iterations. Table 1 illustrates the DSC
evaluations of the single-metric and multi-metric registrations for the set of iter-
ations. The overlap performance of the prostate, lymph nodes, and rectum were
very similar for single and multi metric registrations. For the seminal vesicles
and bladder the overlap was higher for multi-metric at 100 and 500 iterations.

The evaluations in terms of MSD are shown in Table 2. For the prostate,
seminal vesicles, rectum, and bladder, there was a significant improvement from
the affine transformation to DIR-100, and a slight improvement for 500 iterations
in both single and multi-metric registrations. This was not the case for lymph
nodes. However, the MSD errors for almost all the organs were within a voxel
size. The 95% HD showed a similar pattern as MSD as presented in Table 3.

Figure 3 shows the comparison of the registration performance between
single-metric (intensity image only) and multi-metric registrations (intensity
and bladder segmentation) for affine, 100, and 500 iterations. The comparison
illustrates the performance in terms of DSC, MSD, and 95%HD for the target
volumes and OARs. The figure shows much less outliers for the multi-metric reg-
istrations, especially for the seminal vesicles, which is a challenging structure due
to its small volume. Here, results above the top whisker (defined by 1.5 times
the inter-quartile range) are termed an outlier. In order to explore the upper
limit of the proposed method, it was tested with the manual annotation of the
bladder instead of the segmentation of the DCNN. The boxplot shows a very
similar pattern between the multi-metric registration using the bladder contours
from the DCNN network and the manually annotated bladder contours.
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Table 1. DSC value of the target volumes and OARs for different registration settings.
† and ‡ represent a significant difference (at p = 0.05) between single-metric and multi-
metric for 100 and 500 iterations, respectively.

Evaluation # it. Prostate SV† LN Rectum Bladder†‡

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

Affine 0.83 ± 0.08 0.34 ± 0.27 0.92 ± 0.03 0.69 ± 0.09 0.78 ± 0.07

Single-metric 100 0.87 ± 0.03 0.59 ± 0.22 0.90 ± 0.02 0.77 ± 0.08 0.90 ± 0.05

500 0.87 ± 0.04 0.63 ± 0.20 0.89 ± 0.02 0.78 ± 0.07 0.91 ± 0.06

Multi-metric 100 0.87 ± 0.03 0.67 ± 0.11 0.89 ± 0.02 0.78 ± 0.06 0.93 ± 0.03

500 0.87 ± 0.02 0.66 ± 0.11 0.89 ± 0.02 0.79 ± 0.06 0.93 ± 0.03

Table 2. MSD (mm) of the target volumes and OARs for different registration settings.
† and ‡ represent a significant difference (at p = 0.05) between single-metric and multi-
metric for 100 and 500 iterations, respectively.

Evaluation # it. Prostate SV† LN Rectum Bladder†‡

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

Affine 1.8 ± 0.78 3.7 ± 2.00 1.1 ± 0.37 4.1 ± 1.50 4.3 ± 1.70

Single-metric 100 1.4 ± 0.33 2.1 ± 1.40 1.3 ± 0.28 3.1 ± 1.30 2.0 ± 1.00

500 1.3 ± 0.35 1.9 ± 1.40 1.4 ± 0.27 3.0 ± 1.20 1.7 ± 0.87

Multi-metric 100 1.4 ± 0.30 1.5 ± 0.37 1.4 ± 0.29 2.9 ± 0.95 1.4 ± 0.38

500 1.3 ± 0.28 1.6 ± 0.42 1.4 ± 0.29 2.8 ± 0.88 1.3 ± 0.32

Table 3. %95HD (mm) of the target volumes and OARs for different registration
settings. † and ‡ represent a significant difference (at p = 0.05) between single-metric
and multi-metric for 100 and 500 iterations, respectively.

Evaluation # it. Prostate SV†‡ LN Rectum Bladder†‡

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

Affine 4.0 ± 1.70 7.8 ± 3.7 2.7 ± 1.00 11.0 ± 4.7 11.0 ± 4.7

Single-metric 100 3.2 ± 0.96 5.2 ± 3.3 3.3 ± 0.63 9.5 ± 4.3 5.9 ± 3.9

500 3.1 ± 1.00 4.9 ± 3.4 3.4 ± 0.63 9.3 ± 4.2 5.0 ± 3.4

Multi-metric 100 3.2 ± 0.97 4.0 ± 1.5 3.6 ± 0.71 8.7 ± 3.4 3.4 ± 1.4

500 3.0 ± 1.00 4.1 ± 1.5 3.6 ± 0.71 8.5 ± 3.2 3.2 ± 1.1
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Fig. 3. Boxplot comparison between single-metric and multi-metric image registration
versus the number of iterations. The columns show the DSC, MSD, and 95%HD from
left to right. Prostate, seminal vesicles, lymph nodes, rectum, and bladder are shown
from top to bottom rows, respectively. Here multi-metric DCNN is the result of using
the bladder segmentation of the network, while multi-metric GT is the result of using
the ground truth bladder delineation.

4 Discussion and Conclusion

In this study, we investigated the hypothesis of enhancing the performance and
robustness of the automatic contouring of the target volumes and OARs for
prostate cancer using multi-metric Deformable Image Registration (DIR). The
purpose of adaptive IMPT is to be able to use a small margin between PTV and
CTV, which is only a viable option if the daily re-planning can be performed in
an accurate and robust manner. This daily re-planning requires robust automatic
re-contouring in order to avoid local treatment-related toxicities and subsequent
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adverse side effects. The proposed automatic contouring algorithm was evaluated
geometrically. In order to improve the robustness of the registration process,
we introduced a multi-metric optimization. This optimization depends not only
on the intensity image but also on the segmentation of another organ. In this
study, we chose the bladder due to its well defined borders which eases the
segmentation process. The quality of the bladder segmentation has a significant
effect on steering the registration process, therefore it has to be accurate and
robust, so we chose 3D-DCNN. The network achieved a higher DSC than the
reported DSC of 81.9% in [14], where a CNN was combined with level sets to
segment the bladder in CT urography. It also outperformed the dice overlap of
72% reported in [15], where they attempted to segment all the abdominal organs
using a 2D Fully Convolutional Neural Network.

Initializing the registration process using the bony anatomy improved the
stability of the registration which is consistent with the findings in [13]. Moreover,
introducing a small weighting (α) of 0.05 at the first resolution managed to steer
the registration to a better local minima without causing any overfitting to the
bladder, therefore there was no need for further weighting in the second and
third resolutions.

In this study, we focused on the registration robustness represented by the
number of outliers and the variance in the system performance. Overall, the
multi-metric registration showed a significant decrease in the number of outliers
compared to the single-metric registration. Reducing the number of outliers for
the seminal vesicles, which is an important target volume, means a more pre-
cise targeting with potential benefits in terms of local control (lower probability
of recurrences). Moreover, much less outliers for rectum and especially blad-
der, which are OARs, means less dose to the OARs with potential benefits in
terms of treatment-induced complications after the therapy, so higher probabil-
ity of better quality-of-life after treatment, see Fig. 3. It also showed a significant
improvement in terms of the DSC, MSD, and 95% HD for the seminal vesicles and
bladder. For multi-metric registration, the overall performance gets slightly bet-
ter for 500 iterations and remarkably increased from affine transformation. The
figure shows a similar pattern between the multi-metric registration using the
manually annotated contours of the bladder and the contours from the DCNN
network. This pattern emphasizes that, the proposed method achieved the upper
limit of the system. For most of the organs, the registration performance in terms
of the MSD was less than 2 mm, which is less than the slice thickness.

In this study, we illustrated the effectiveness of deploying multi-metric reg-
istration using the elastix software in order to automatically re-contour daily
CT scans of the prostate. This re-contouring showed a promise for generating
daily treatment plans. Moreover, it showed a substantial improvement in the
system robustness, which means that more treatment plans can be directly used
without manual correction, which is a crucial factor for enabling online daily
adaptation and thus the use of relatively small treatment margins. Therefore,
the proposed method could facilitate online adaptive proton therapy of prostate
cancer.
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Abstract. Clinical outcome of several Minimally Invasive Surgeries
(MIS) heavily depend on the accuracy of intraoperative pose estimation
of the surgical instrument from intraoperative x-rays. The estimation
consists of finding the tool in a given set of x-rays and extracting the nec-
essary data to recreate the tool’s pose for further navigation - resulting
in severe consequences of incorrect estimation. Though state-of-the-art
MIS literature has exploited image registration as a tool for instrument
pose estimation, lack of practical considerations in previous study design
render their conclusion ineffective from a clinical standpoint. One major
issue of such a study is the lack of Ground Truth in clinical data -as
there are no direct ways of measuring the ground truth pose and indirect
estimation accumulates error. A systematic way to overcome this prob-
lem is to generate Digitally Reconstructed Radiographs (DRR), how-
ever, such procedure generates data which are free from measuring errors
(e.g. noise, number of projections), resulting claims of registration per-
formance inconclusive. Generalization of registration performance across
different instruments with different Degrees of Freedom (DoF) has not
been studied as well. By marrying a rigorous study design involving
several clinical scenarios with, for example, several optimizers, metrics
and others parameters for image registration, this paper bridges this
gap effectively. Although the pose estimation error scales inversely with
instrument size, we show image registration generalizes well for different
instruments and DoF. In particular, it is shown that increasing the num-
ber of x-ray projections can reduce the pose estimation error significantly
across instruments - which might lead to the acquisition of several x-rays
for pose estimation in a clinical workflow.

1 Introduction

Minimally Invasive Surgeries (MIS) presents several advantages over conven-
tional open surgical procedures since they require smaller incisions, resulting in
reduced trauma and lowered risk of infection [1,2]. As a result, MIS is becom-
ing increasingly popular across several surgical disciplines where traditionally an
open procedure with higher clinical risk was the only option e.g. bone surgery
[3]. However, the ability of avoiding risk structures for such MIS procedures is
limited by the accuracy of the estimation of the surgical instrument’s pose from

c© Springer International Publishing AG, part of Springer Nature 2018
S. Klein et al. (Eds.): WBIR 2018, LNCS 10883, pp. 105–114, 2018.
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intraoperative x-ray. Consequently instrument pose estimation has direct impact
to the clinical outcome of MIS. Major challenges to overcome for this pose esti-
mation task are the obstruction of line-of-sight, the reduced size of the tools,
and the lack of haptic feedback [4].

We consider MIS at the otobasis, where multiple clinical tasks require drilling,
e.g. cochlear implant, tumor resection, specific point drug delivery and several
other procedures. The feasibility and success of these interventions rely heavily
on precise navigation, which is currently ensured by removing the bone to provide
line-of-sight. Reliable and accurate pose estimation of the surgical instrument
is therefore a prerequisite of MIS in this region. In this paper, we study the
generalization ability of image registration techniques for pose estimation of
several instruments from intraoperative x-ray images during MIS at otobasis.

Several aspects of image registration have been studied for instrument pose
estimation in a general MIS [5–7] setting. For example, Rivaz et al. [8] studied
several image comparison metrics in different pose estimation setups. Similarly,
influence of image features on registration have been studied as well [9]. Addi-
tionally impact of optimizers and regularizers on the registration quality has been
studied. For example, Kelner et al. [10], proposed a hybrid optimization tech-
nique to overcome limitations inherent to specific metrics, methods and setups.
On the other hand, Peng et al. [11] and Russakoff et al. [12] explored novel
methods to execute the registration. Kügler et al. [13] even replaced Metric and
Opimizer by a convolutional neural network. Williamson et al. [3] studied ways
to estimate the pose of a robot-guided surgical drill tool based on the correla-
tion of the drilling force and the bone density in the mastoid extracted from 3-D
image data and was able to estimate it with a mean accuracy of 0.29 mm.

While those works present a variety of registration approaches for instrument
pose estimation, one crucial element of such study design namely valid ground
truth has not been studied properly. This is a major challenge for the evaluation
of pose estimation techniques. Most of those studies use Fiducial Markers on
phantoms for reference measurement. But this leaves us with no control over
the conditions of the images such as noise. In addition to that, the instrument’s
pose can only be described if the projection parameters of the c-arm machine
are known and this requires a large volume of data, such as the positions of the
instrument, the detector and the source. The expected accuracy required for a
valid evaluation of the pose estimation becomes a challenge due to the projection
nature of the c-arm.

To circumvent this problem, we opted to use Digitally Rendered Radiographs
(DRRs) as fixed images to have a ground truth reference position. However,
unlike simpler studies where DRRs generate noise free acquisitions, artificial
noise was added to our generated images simulating known problems inherent
to image acquisition due to electronic noise [14]. This resulted in simulated x-rays
very similar in appearance to he ones acquired in practical MIS scenarios.

The Major contribution of this paper is the development of a rigorous evalu-
ation framework to study the performance of image registration techniques dur-
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ing MIS at the Otobasis, which involves two different instruments with different
sizes and number of Degrees of Freedom (DoFs) as well as the effects of noise,
optimizers and metrics (Fig. 1).

Fig. 1. ITK based registration loop

2 Methods

This paper presents a study of the use of 2D x-ray images for the estimation
of surgical instrument’s poses with 6 or 8 DoFs and the impact of acquisition
setups on the accuracy of this estimation.

Problem Definition: Let P = (P1, · · · , Pn) be a set of projection matrices
used to obtain the reference radiographs S = (I1(P1), · · · , In(Pn)) showing the
instrument, whose pose we want to estimate.

For θ = (θ1, · · · , θk) describing the pose and the configuration of a model M
similar to the instrument, we have a generator capable of generating a set of n
DRRs S ′(θ,P) = (I ′

1(P1), · · · , I ′
n(Pn)) using the same projection matrices.

Given a similarity metric F(I, I ′) with I and I ′ two radiographs, we define
the task of instrument pose estimation through registration as the search for the
set of parameters θ̂ = (θ1, · · · , θk) which maximize the similarity A of the sets
of reference S and generated S ′ radiographs:

θ̂ = arg max
θ

n∑

i

A = arg max
θ

n∑

i

F(Si,S ′
i(θ)) (1)

In this paper θ has 6 and 8 components for two different instruments leading
to 6 and 8 DoFs optimization problems respectively.

In summary, the inputs to our registration method are the reference images
S, the projection parameters P, a 3D model of the instrument (mesh) M ,
an initial estimate of the instruments pose θ̂t=0 and a computer tomography
volume scan of the surrounding anatomy V . The method generates sets of DRRs
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S ′(θ̂t,P) and by increasing the similarity measure A between the reference and
the generated radiographs, finds better estimates of the ground truth pose θgt

= (θgt,1, · · · , θgt,n) of the instrument w.r.t. the camera.

Fig. 2. Surgical instrument models: (a) Screw - 6 DoF model (position and orientation)
and (b) Robot - 8 DoF model (position, orientation and joint configuration)

Implementation Concept: Our approach implements this parameter search
as an optimization loop based on the Insight Registration and Segmentation
Toolkit (ITK) [15] following Algorithm 1.

We apply the Correlation Coefficient (CC) and Mutual Information (MI)
metrics (F = FCC or F = FMI) to compare the respective fixed and moving
images. Correlation Coefficient is a symmetrical measure of linear dependence
between two random variables that relates to the various correlation measures
that have been used in image registration.

Mutual Information, on the other hand, only assumes a high likelihood of
“consistent intensity mappings”. Therefore two images are similar, if in a pixel-
wise comparison of image-intensities the same mappings between intensities reoc-
cur repeatedly. MI is robust against non-linear intensity mappings by design.

While the 6 DoF screw-model’s parameters include the spatial position
(x, y, z) and the orientation (Ox, Oy, Oz), the 8 DoF robot-model extends these
adding parameters that describe the flexing α and the extension Jext of its joint.
The joint of the robot spans the bellows section (Fig. 2b). The main diameter
for both instruments is approx. 3 mm.

Algorithm 1. Registration Algorithm

Input: P, S, θ̂t=0(θ1, · · · ), M , V
Output: θ̂tmax

1 for t in 1, · · · , tmax do

2 M t ← Deform Mesh (θ̂t−1)

3 S ′ ← Generate DRRs (θ̂t−1, P)
4 A ← ∑n

i F(Si, S ′
i)

5 θ̂t ← Optimize (A)

6 end
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Fig. 3. Ground truth images generation.

Fig. 4. Example fixed and moving image, the image part actually used for the regis-
tration is highlighted in red. (Color figure online)

Since a trustworthy ground truth is a prerequisite for any well defined evalu-
ation of the registration quality, we generate fixed images artificially. The ground
truth poses are calculated geometrically and their errors are therefore negligible.

In order to simulate differences in the acquisition of fixed and moving images
we introduce a distortion pipeline to simulate common x-ray properties. This
pipeline consists of an non-linear image intensity distortion and noise generators
as illustrated in Fig. 3. The noise generator simulates the Gaussian noise that
occurs in radiographs and is independent of tissue attenuation [14]. The non-
linear distortion filter (sigmoid filter) simulates the attenuation and detector-
response applying a pixel-wise transformation (Eq. 2) of the intensity to both
the computer tomography volume and the projections simulating varying x-ray
and detector properties:

f(x) = (fMax − fMin) ∗ 1
1 + e−(x−b)/a

+ fMin (2)

fMax and fMin denote the maximum and minimum intensity values of the
image respectively. The transformation parameters a and b define the non-
linearity and the normalization of the transformation. Finally, the images are
cut to regions of interest centered around the currently evaluated position of the
instrument projected onto the image. Figure 4 shows a moving and a fixed image
and highlights the selection of the region of interest.



110 D. Kügler et al.

Evaluation Metrics: Making use of this transformed ground truth, we evalu-
ate the registration accuracy by the mean linear euclidean distance Ld and the
angular difference Ad between the estimated pose and ground truth pose of the
fixed image.

Despite being an optimization parameter, we ignore the rotation around the
symmetry axis for the evaluation of the 6 DoF model. We ignore this rotation,
since it is ambiguous, hard to determine and not relevant for our application.

3 Experiments

We performed 8 different experiments corresponding to Figs. 5a and 6b with mul-
tiple scenarios as deviations from the standard scenario: 35 dB of peak signal-to-
noise ratio, 2 projections, the Covariance Matrix Adaptation Evolution Strategy
as optimizer and Coefficient Correlation. We performed 50 registration runs for
each scenario. We limited each run was limited to 400 iterations of the optimizer,
which was typically enough to achieve convergence.

We seed the initial estimate of the instrument pose with the ground truth
instrument pose plus a random perturbation of the individual components. The
perturbation was drawn component-wise from a Uniform distribution of 2 mm
and 2◦.

For the evaluation of the components of the registration pipeline, we per-
formed the tests using the 6 DoF model. We additionally evaluated the approach
on the 8 DoF model to generalize the results on the deformable instrument.

As stated by Bouget et al. [16] one of the limiting factors of the fast develop-
ment of technology in image registration is the lack of established surgical tool
data-sets and ranking of methods. We compared the performance of Mutual
Information and Coefficient Correlation (c.f. Fig. 5a).

The comparison of three different optimizers (One-plus-One, Amoeba and
CMA) extends this methodological analysis (c.f. Fig. 5b).

To our knowledge no analysis of the impact of image noise has been presented
with a focus on surgical instruments. We evaluated the effect of noise for both
instruments using Mutual Information (Fig. 5c for the screw and Fig. 5d for the
robot model respectively).

We varied the size of the 6 DoF instrument, to determine the impact of
instrument size on the pose estimation task. Although the detection of small
objects is a studied in computer vision as a whole, to our knowledge no analysis
has not been performed in the context of surgical instruments yet.

Separating c-arm and instrument pose estimation accuracies, we evaluated
how small imprecisions of the c-arm pose estimation (patient w.r.t. the c-arm)
influence the instrument pose estimation. We applied a small perturbation to
the ground truth Projection Parameters of 3.5◦ on the expected orientation of
the c-arm. This value is consistent with the upper range of possible positioning
calibration errors of a c-arm found by Silva et al. [17], who presented results of
1.5◦± 1.3◦ and 1.8◦ ± 1.7◦ depending on axis. We evaluated the resulting error
for both models (c.f. Fig. 5f).
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Fig. 5. Comparison of experimental scenarios: (a) Metrics, (b) Optimizers, effect of
noise (for screw (c) and robot (d)), (e) Size of instrument (for screw) and (f) Projection
parameters inaccuracy

Finally, we performed an analysis of the number of projections used for the
registration for both models (Fig. 6a) and using different noise levels (Fig. 6b).

4 Results and Discussion

We were able to achieve average pose estimation accuracies of 0.4 mm for both
models. These results are comparable to those of Otake et al. [18], Uneri et al.
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Fig. 6. Quantitative comparison to demonstrate the impact of number of projections
in combination with different instruments (a) and noise (b)

[5] and others, because the surgical instruments, whose pose is being estimated,
is typically larger in these publications.

Regarding the choice of components for the registration loop, Coefficient Cor-
relation Metric showed better results than Mattes Mutual Information (Fig. 5a).
But as mentioned by Markelj et al. [7] no method can be seen clearly superior
to other, since each one can be the most suitable to be used in some specific
situations. Figure 5b illustrates, that CMA performed better than the Amoeba
Optimizer by a factor of 2 and the One-plus-One optimizer is not suitable for
the instrument pose estimation problem.

We observed a small correlation of the accuracy to the noise level (c.f. Figs. 5c
and d), but in the overall bigger picture of comparisons the results are domi-
nated by other evaluated factors. Therefore we concluded, that the investigated
combination of MI and CMA is largely robust to pixel-wise gaussian noise.

The dominating factors are the model (c.f. Figs. 5a and c) and the number
of projections (see Figs. 6a and b) used for the registration. In the search for
explanations, why the results are so dominated by the model, we analyzed the
impact of the size of the object. We did not expect the model with more DoFs
to consistently outperform the simpler model in the evaluation. Although the
diameters of both models were approximately the same, the length of the mod-
els is different with the screw (6 DoF) being shorter than the robot (6 DoF).
Comparing the registration accuracy of different sized screws, we observed a
strong relationship between the instrument size and the pose estimation accu-
racy. With this dependence on the instrument size, we are confident the method
generalizes to different instruments, but an initialization quality dependent on
the instrument size is required.

The ambiguity of different parameters of the robot model lead to optimiza-
tions ending in local minima. We observed the following examples of local minima
for the optimizer: The optimizer mistook changes in z-depth for variations of the
joint extension or the limited change of the model geometry by rotation around
the instruments axis was not correctly interpreted. The registration could be
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stabilized by using additional projections (c.f. Figs. 6a and b), leading to better
pose estimation results. The largest contributions of the error in registrations
using one projections can be contributed to faulty depth-estimation. Interest-
ingly, the registration leads to better results for the image coordinate in one
projection than in even in the best of multiple projections.

5 Conclusion

Surgical pose estimation by image registration estimates the pose of surgical
instruments with the potential to aid doctors in understanding where instru-
ments are located, if they cannot be seen directly. For Computer-Aided Inter-
ventions in MIS, the possibility to measure the pose of manipulated instruments
using x-rays may open new opportunities and may provide options if line-of-sight
is impeded.

But to effectively use registration for otobasis surgery, methods capable of
greater accuracy for smaller instruments are required, for example for the esti-
mation of the electrode in cochlear implant insertion or placement control.

We show pose estimation with image registration generalizes across different
instruments and can aid surgeons and automated procedure gain better knowl-
edge of the interaction between the instruments and the patient. In the future
this could lead to image-registration-based navigation schemes being introduced
for a wide range of surgical applications.
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Abstract. Most image registration methods involve multiple user-
defined tuning parameters, such as regularization weights and smoothing
parameters. Changing these tuning parameters leads to differences in the
local deformation estimates that result from the registration algorithm.
Uncertainty in the optimal value of the tuning parameters thus leads to
uncertainty in the local deformation estimates. In this work, we propose
a method to quantify this uncertainty using an efficient surrogate mod-
eling approach based on polynomial chaos expansion. Given a specified
distribution on each input tuning parameter, this approach requires only
a few image registration runs to characterize the distribution of output
deformation estimates at each voxel. In experiments on liver CT images,
we evaluate the accuracy of the uncertainty estimate by comparing with
a brute force Monte Carlo estimate. The results show that there is a neg-
ligible difference between estimates of Monte-Carlo simulation and the
proposed method. The proposed method thus provides a good indication
of the uncertainty in local deformation estimates due to uncertainty in
the optimal setting of tuning parameters.

Keywords: Image registration · Uncertainty estimation
Polynomial chaos expansion · Surrogate modeling

1 Introduction

Image registration (IR) is an essential task in medical imaging, aimed at finding
spatial relations between images [15]. Most IR methods include multiple user-
defined parameters such as penalty weights and smoothing parameters. The per-
formance of IR is heavily affected by these parameters. They need to be tuned
so as to obtain desired IR outcomes and changes in these parameters cause vari-
ations in the local deformation estimates resulting from the IR algorithm. The
optimal values of the tuning parameters are uncertain. This uncertainty causes
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uncertainty in the local deformation estimates. Quantification and visualization
of this uncertainty would be helpful in assessing the reliability of the registration
results.

For a single tuning parameter, a straightforward solution to estimate IR
uncertainty due to uncertainty in that tuning parameter would be to perform a
Monte Carlo simulation, simply running the IR for different values of the tuning
parameter sampled from its prior distribution. However, this approach would
become prohibitively computationally demanding for multiple tuning param-
eters, as the number of required sampling points increases exponentially due
to the curse of dimensionality. In the literature, several studies have focused
on uncertainty estimation for IR. Kybic [7] presented a method to quantify
the uncertainty due to the stochastic nature of the images, using a bootstrap-
ping approach. Muenzing et al. [8] and Sokooti et al. [14] aim at predicting IR
uncertainty using machine learning techniques. Risholm et al. [11] presented a
Bayesian approach to image registration, estimating the posterior distribution
of the deformation field using a Markov Chain Monte-Carlo method. Hub et al.
[6] proposed a local uncertainty estimation method by examining the variance of
the similarity measure to local perturbations of the deformation field. Simpson et
al. [12] presented a probabilistic IR framework that infers the appropriate level
of regularization from the data, thereby also providing uncertainty estimates for
the deformation field. However, none of these works focuses specifically on the
uncertainty in IR due to the uncertainty in tuning parameters.

In this study, we propose a method to quantify the local IR uncertainty using
an efficient surrogate modeling approach based on polynomial chaos expansion
(PCE) [2]. Given a specified distribution on each input tuning parameter, this
approach requires only a few image registration runs to characterize the distri-
bution of output deformation estimates at each voxel. PCE is used for quantifi-
cation of uncertainty of a process with regard to its inputs in many branches
of engineering and science [17]. In our previous work [4], we explored the use of
PCE to generate approximate IR results for different tuning parameters in real
time, to facilitate interactive parameter tuning, but they did not evaluate the
use of PCE for quantifying IR uncertainty. To the best of our knowledge, this is
the first study where PCE is used to assess local IR uncertainty.

PCE models a process with one or more stochastic inputs using orthogonal
polynomials with a compact representation. Modeling of the process is estab-
lished by sampling the process outputs (here: deformation field) for a modest
number of values of the input parameters (here: tuning parameters). Once the
model is constructed, uncertainty of the output due to uncertainty in the input
parameters is derived straightforwardly from the coefficients of the polynomials.
Thanks to sparse grid sampling techniques [1,5,9], the PCE approach scales well
with increasing dimension of the input parameter space.
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2 Method

2.1 Uncertainty in Image Registration

The goal of IR is to estimate a spatial transformation T (x) between the D-
dimensional fixed image F (x) and moving image M(x). The transformation
maps coordinates x from the fixed image domain to the moving image domain,
such that the warped moving image M(T (x)) is aligned with the fixed image
F (x). IR is commonly formulated as a minimization problem:

T̂ = arg min
T

C(T ;F,M), (1)

where C(T ;F,M) is a cost function that measures the dissimilarity between
F (x) and M(T (x)), and frequently also includes penalty/regularisation terms
that promote desirable properties of the coordinate transformation T , such as
smoothness or invertibility.

Almost any IR algorithm involves a number of user-defined tuning parame-
ters, such as weights controlling the trade-off between dissimilarity and regular-
isation terms, settings of any smoothing filters used to preprocess the images,
number of histogram bins to compute mutual information, and so on. These user-
defined tuning parameters affect the solution T̂ . Denoting the tuning parameters
by a vector p, we make this dependence explicit as follows:

T̂p = arg min
T

C(T ;F,M,p), (2)

To establish reasonable values for p, it is common practice to perform some
initial experiments on training data with a gold standard (e.g., corresponding
landmarks or manual segmentations). However, the optimal value of p may differ
from image to image, the gold standard usually has limited accuracy itself, and
the size of the training data is often limited. Therefore, uncertainty in the optimal
value of p remains, and this leads to uncertainty in T̂p . Our aim is to quantify
the local uncertainty T̂p(x) at each coordinate x.

2.2 Polynomial Chaos Expansion

Fundamentals of PCE were first introduced by Wiener [19] by pointing out that
any second order random variable (Y ) can be approximated by a superposition
of polynomials of Gaussian random variables:

Y (X) ≈ YPCE(X) =
K∑

k=0

ckψk(X), (3)

where (YPCE) is the PCE approximation of Y , ψk are multivariate Hermite poly-
nomials, ck are their weighting coefficients, K is the number of polynomial basis
functions which follows from the maximum allowed polynomial order, and X is
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an N -dimensional Gaussian random vector. The ψk’s are members of the Her-
mite polynomial set and orthogonal to each other with respect to the Gaussian
measure. The PCE method can be extended to support other random variable
distributions for X as well, which lead to different choices of the polynomial sets
[20]. Finding the coefficients ck such that YPCE approximates the true value
Y is the main objective of the method and they are determined using spectral
projections as follows:

ck =
〈Y (X), ψk(X)〉
〈ψk(X), ψk(X)〉 =

∫
...

∫
Y (X)ψk(X)p(X)dX1...dXN

〈ψk(X), ψk(X)〉 . (4)

Finding ck can be computationally demanding especially for multiple input
parameters (high dimension N of X), and therefore, may pose a problem for
the feasibility of the method. However, the severity of the problem is consid-
erably alleviated by harnessing sparse grid based numerical integration [1,5,9].
In these approaches, the sparsity of the grid is controlled by the “sparse grid
level” setting [9]. Polynomial order and sparse grid level selection influence the
accuracy of the PCE approximation and determine the number and location of
sample points X required for the numerical integration in (4). The locations of
sample points are fully determined by these parameters and by the distribution
of X.

PCE construction is agnostic of the process Y (X), and treats it as a black
box function. Once the model YPCE has been trained by calculating the coeffi-
cients ck, statistical moments of the output can be efficiently computed [17]. For
example, taking the standard deviation as an uncertainty measure:

Std[Y ] =
√

EX [Y 2
PCE ] − EX [YPCE ]2. (5)

Since EX [YPCE ] = c0 and all ψk’s are orthogonal to each other, Eq. 5 boils
down to:

Std[Y ] =

√√√√
K∑

k=1

c2k 〈ψk(X), ψk(X)〉, (6)

where 〈ψk(X), ψk(X)〉 is a projection of the polynomials with the same index,
which is a constant that does not pose any computational overhead. Therefore,
the uncertainty in Y due to uncertainty in X can be straightforwardly computed
after the construction of the PCE model.

2.3 Local Image Registration Uncertainty Estimation with PCE

In our work, we are interested in quantifying the uncertainty in local transfor-
mation estimates T̂p(x) due to uncertainty in the tuning parameters p, and we
propose to use PCE for this purpose. For each voxel location xv in the fixed



Local Image Registration Uncertainty Estimation 119

image domain and for each dimension i = 1 . . . D, we construct an independent
PCE model:

T̂ i
p(xv) ≈

K∑

k=0

ci
k(xv)ψk(p). (7)

Here, it is assumed that the user has specified the distribution of p, reflecting
his/her prior knowledge on the feasible values of the tuning parameters, and has
selected suitable values for the polynomial order and the sparse grid level. The
coefficients ci

k(xv) are computed for all voxels as per Eq. 4, which requires the
execution of a modest number of IRs for the samples of p indicated by the PCE
algorithm.

Subsequently, for each voxel location xv and dimension index i, the standard
deviation is calculated as per Eq. 6

σi(xv) = Std[T̂ i
p(xv)] =

√√√√
K∑

k=1

ci
k(xv)2 〈ψk(p), ψk(p)〉. (8)

3 Experiments and Results

3.1 Dataset

7 pairs of abdominal CT images taken from 7 patients for ablation interventions
are used for verification of the method. They were anonymized and acquired
at Erasmus MC in 2014. Resolutions of images vary from 0.71 mm× 0.71 mm
to 0.84 mm× 0.84 mm (501× 492 to 512× 512 in-plane resolution), 3–5 mm slice
spacing and 1–2 mm slice thickness (16 to 70 slices). For each patient, we have one
intra-operative CT, treated as fixed image, and one pre-operative CT, treated as
moving image. Due to differences in patient position and breathing motion, large
deformations may occur, and image registration is desired to improve image-
guidance during the intervention.

3.2 Experiments

In our experiments, we implemented a parametric intensity-based IR method
using mutual information (MI) as a dissimilarity measure in combination with
two penalty terms P1 and P2. The IR can be mathematically represented by the
following optimization problem:

T̂p = arg min
T

MI(T ;F,M) + 2p1P1(T ) + 2p2P2(T ), (9)

with p = (p1, p2) the vector of N = 2 tuning parameters that serve as weighting
coefficients for the penalty terms P1 and P2. In the experiments, we chose trans-
form bending energy [16] and point-to-surface [3] penalty terms for P1 and P2,
respectively. Bending energy is an often used measure to promote smoothness
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of the deformation. The point-to-surface penalty term drives manually anno-
tated points in the fixed image onto the liver surface in the moving image,
and was proposed in [3] as an efficient way to incorporate user-provided con-
straints into the registration process. For the experiments in this work, we man-
ually segmented the liver surface in the moving image, and annotated around
75 points on the liver surface in the fixed image, as suggested by [3]. For
the transformation we used a B-spline free-form deformation model with an
isotropic control point spacing of 10 mm. Equation (9) was solved with a quasi-
Newton Broyden−Fletcher−Goldfarb−Shanno optimization method. No regis-
tration masks or deformation field boundary conditions were applied.

To assign a suitable distribution to the penalty weights p1 and p2, we per-
formed a one-dimensional grid search for each of these parameters, optimizing
the Dice overlaps between manual liver segmentations. Mean and standard devi-
ation of the optimal values for p1 and p2 obtained for the 7 image pairs were
computed and used as the center and spread parameters of the Gaussian distri-
butions of p1 (μ = 6, σ2 = 4) and p2 (μ = −9, σ2 = 1).

In the experiments, we select respectively 4 and 3 for polynomial order and
sparse grid level for the construction of the PCE model. Given this setting, 17
sample points (i.e., IR runs) are required to establish the model. Using the out-
come of these IRs, corresponding deformation fields are generated, PCE models
are constructed, and finally the uncertainty map σ(x) is obtained. In order to
assess the accuracy of the uncertainty map, we compare it with the result of
a brute-force Monte Carlo simulation using 225 IR runs. Both qualitative and
quantitative results are presented.

To implement the PCE model, we used the open source OpenPC library
[10,18].

3.3 Results

Figure 1 shows example slices of Dataset1. Panels (a) and (c) present the fixed
and moving images, respectively. The moving image after registration is shown
on panel (b). The deformed image was obtained using the ‘optimal’ setting of p
(i.e., at the mean of the distribution). PCE and Monte-Carlo simulation based
uncertainty maps of this registration are presented in Fig. 2 for x, y and z direc-
tions. It appears that results of the PCE are highly similar to Monte-Carlo
simulation based uncertainty estimates. PCE effectively captures small details
in the reference estimates and the performance is consistent in all directions.
Comparing the local uncertainty estimates with the image information at the
corresponding locations in the fixed and deformed moving image (Figs. 1(a) and
(b)), we observe that the uncertainty is higher in the background and lower
near salient structures such as the spine. Off note, the uncertainty in y-direction
(Fig. 2(d)) shows a clear minimum at the anterior skin/air interface.

In Table 1, mean standard deviations of the Monte-Carlo simulation (σmc)
and PCE model (σpce) and root mean square of their differences (Δσ) over all
voxels and directions are presented for 7 datasets. The results are in mm scale. In
interpreting these results, it should be noted that we did not apply any boundary
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conditions or image region mask for the implemented registrations. Therefore,
there occur large uncertainties around the boundaries of the image volume and
the regions outside the patient body where the image lacks salient structures,
as could be seen in Fig. 2. These large values explain the relatively high mean
uncertainties. Nonetheless, the root mean square different Δσ is consistently low
compared to the mean uncertainty, indicating that the efficient PCE matches
the brute-force Monte-Carlo estimate.

Fig. 1. Fixed image (a), registered moving image (b) and moving image (c).
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Fig. 2. Uncertainty maps obtained using Monte-Carlo simulations for x (a), y (c) and
z (e) directions and PCE model for x (b), y (d) and z (f) directions. The colour bar
shows local IR uncertainty σi(x) in mm units. (Color figure online)
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Table 1. Mean value of the uncertainties σ(x) over all voxels in each image, as com-
puted with the Monte-Carlo simulation (σmc), and with the proposed PCE approach
(σPCE). The last column shows the root mean square voxel-wise difference between
the two estimates (Δσ).

Dataset σmc in mm σpce in mm Δσ in mm

1 5.44 5.50 0.58

2 5.26 4.85 0.57

3 4.36 5.04 0.93

4 4.32 4.90 0.91

5 4.31 4.53 0.57

6 9.06 9.37 1.66

7 5.16 5.16 1.20

4 Discussion and Conclusion

Most image registration methods involve user-defined parameters which need to
be tuned for the sake registration performance. However, in general there is no
universal value for these parameters working well for all cases, and optimal val-
ues of these parameters may change even for different image pairs with the same
registration setup. Therefore, optimal values of these parameters bear uncertain-
ties which in turn cause uncertainties in the registration results. In this study,
we introduced a method for quantification of the local IR uncertainties, based
on a computationally efficient polynomial chaos expansion (PCE) approach.

In experiments on 7 abdominal CT image pairs, we evaluated the accuracy
of the uncertainty estimates by PCE, by comparing them to the results of an
(expensive) Monte-Carlo simulation. The Monte-Carlo simulation was realized
with 225 samples (i.e., IR executions at different settings of the tuning param-
eters), whereas the proposed PCE method only required 17 IR runs, making it
much more efficient. The results show that the local IR uncertainty estimates
by both methods are highly comparable, indicating the validity of the proposed
PCE approach.

In future work, we will extend the evaluation by including more tuning
parameters, such as B-spline control point spacing, step size of the optimization
method, number of histogram bins used in the computation of mutual informa-
tion, multi-scale image pyramid settings, and so on. Moreover, we will investigate
the use of ‘Sobol indices’, as a way to decompose the variance of the IR esti-
mates into fractions that can be attributed to individual tuning parameters or
to interactions of tuning parameters [13].



124 G. Gunay et al.

References

1. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on
least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

2. Crestaux, T., Matre, O.L., Martinez, J.M.: Polynomial chaos expansion for sensi-
tivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

3. Gunay, G., Luu, M.H., Moelker, A., van Walsum, T., Klein, S.: Semiautomated
registration of pre- and intraoperative CT for image-guided percutaneous liver
tumor ablation interventions. Med. Phys. 44(7), 3718–3725 (2017)

4. Gunay, G., van der Voort, S., Luu, M.H., Moelker, A., Klein, S.: Parameter sen-
sitivity analysis in medical image registration algorithms using polynomial chaos
expansions. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins,
D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 335–343. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66182-7 39

5. Hu, C., Youn, B.D.: Adaptive-sparse polynomial chaos expansion for reliability
analysis and design of complex engineering systems. Struct. Multidiscip. Optim.
43(3), 419–442 (2011)

6. Hub, M., Kessler, M.L., Karger, C.P.: A stochastic approach to estimate the uncer-
tainty involved in B-spline image registration. IEEE Trans. Med. Imaging 28(11),
1708–1716 (2009)

7. Kybic, J.: Bootstrap resampling for image registration uncertainty estimation with-
out ground truth. IEEE Trans. Image Process. 19(1), 64–73 (2010)

8. Muenzing, S.E., van Ginneken, B., Murphy, K., Pluim, J.P.: Supervised quality
assessment of medical image registration: application to intra-patient CT lung
registration. Med. Image Anal. 16, 1521–1531 (2012)

9. Perko, Z., Gilli, L., Lathouwers, D., Kloosterman, J.L.: Grid and basis adaptive
polynomial chaos techniques for sensitivity and uncertainty analysis. J. Comput.
Phys. 260, 54–84 (2014)

10. Perko, Z., van der Voort, S.R., van de Water, S., Hartman, C.M.H., Hoogeman, M.,
Lathouwers, D.: Fast and accurate sensitivity analysis of IMPT treatment plans
using polynomial chaos expansion. Phys. Med. Biol. 61(12), 4646 (2016)

11. Risholm, P., Pieper, S., Samset, E., Wells, W.M.: Summarizing and visualizing
uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W.,
Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 554–561. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5 68

12. Simpson, I.J., Schnabel, J.A., Groves, A.R., Andersson, J.L., Woolrich, M.W.:
Probabilistic inference of regularisation in non-rigid registration. NeuroImage
59(3), 2438–2451 (2012)

13. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001)

14. Sokooti, H., Saygili, G., Glocker, B., Lelieveldt, B.P.F., Staring, M.: Accuracy
estimation for medical image registration using regression forests. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9902, pp. 107–115. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46726-9 13

15. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration:
a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

16. Staring, M., Klein, S., Pluim, J.P.W.: A rigidity penalty term for nonrigid regis-
tration. Med. Phys. 34(11), 4098–4108 (2007)

https://doi.org/10.1007/978-3-319-66182-7_39
https://doi.org/10.1007/978-3-642-15745-5_68
https://doi.org/10.1007/978-3-319-46726-9_13
https://doi.org/10.1007/978-3-319-46726-9_13


Local Image Registration Uncertainty Estimation 125

17. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab.
Eng. Syst. Saf. 93(7), 964–979 (2008)

18. van der Voort, S., van de Water, S., Perk, Z., Heijmen, B., Lathouwers, D., Hooge-
man, M.: Robustness recipes for minimax robust optimization in intensity modu-
lated proton therapy for oropharyngeal cancer patients. Int. J. Radiat. Oncol. Biol.
Phys. 95(1), 163–170 (2016)

19. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)
20. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic

differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)



Author Index

Boulkhrif, Hassan 83
Brady, Sir Michael 37
Brehmer, Kai 47

Cattin, Philippe C. 3, 24

Eiben, Björn 13
Elmahdy, Mohamed S. 94

Fasshauer, Martin 57

Gunay, Gokhan 115

Hawkes, David J. 13
Higgins, Geoff S. 37
Hoogeman, Mischa 94

Jagt, Thyrza 94
Jastrzebski, Martin Andrade 105
Jud, Christoph 3, 24

Klein, Stefan 69, 115
Kügler, David 105

Lelieveldt, Boudewijn P. F. 57
Lotz, Joachim 57
Luu, Manh Ha 83, 115

McClelland, Jamie R. 13
McGowan, Daniel R. 37
Menten, Martin J. 13
Modersitzki, Jan 47

Moelker, Adriaan 83, 115
Mukhopadhyay, Anirban 105

Niessen, Wiro J. 69

Oelfke, Uwe 13

Papież, Bartłomiej W. 37
Pezold, Simon 24
Poot, Dirk H. J. 69

Sandkühler, Robin 3, 24
Schnabel, Julia A. 37
Shahzad, Rahil 57
Skwarski, Michael 37
Sokooti, Hessam 94
Staring, Marius 94
Sun, Wei 69

Tran, Elena H. 13

van der Geest, Rob 57
van der Voort, Sebastian 115
van Walsum, Theo 83

Wacker, Benjamin 47

Yang, Xuan 69
Yousefi, Sahar 94

Zinkstok, Roel 94


	Preface
	Organization
	Contents
	Sliding Motion
	An Inhomogeneous Multi-resolution Regularization Concept for Discontinuity Preserving Image Registration
	1 Introduction
	2 Method
	2.1 Transformation Model
	2.2 Regularization

	3 Results
	4 Conclusion
	References

	Statistical Motion Mask and Sliding Registration
	1 Introduction
	2 Materials and Methods
	2.1 Statistical Motion Masks
	2.2 Sliding Registration Framework
	2.3 Image and Landmark Data

	3 Results
	3.1 Statistical Motion Mask Fitting Accuracy
	3.2 Registration Accuracy

	4 Discussion and Conclusion
	References

	Adaptive Graph Diffusion Regularisation for Discontinuity Preserving Image Registration
	1 Introduction
	2 Background
	3 Method
	3.1 Adaptive Graph Diffusion Regularisation
	3.2 Transformation Update

	4 Results
	4.1 Synthetic Experiments
	4.2 DIR-Lab Data Set

	5 Conclusion
	References

	Groupwise Registration
	Fast Groupwise 4D Deformable Image Registration for Irregular Breathing Motion Estimation
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Classic Groupwise Deformable Image Registration
	2.2 Groupwise Similarity Measure
	2.3 Spatio-Temporal Filtering of Displacement Fields

	3 Experiments
	3.1 Data Description
	3.2 Results for Publicly Available 4D Lung CT Dataset
	3.3 Results for Lung Tumor CTP

	4 Discussion and Conclusions
	References

	A Novel Similarity Measure for Image Sequences
	1 Introduction
	2 The Novel Similarity Measure SqN
	3 Numerical Results for Dynamic Imaging and Serial Sections
	4 Discussion and Conclusions
	References

	Semi-automated Processing of Real-Time CMR Scans for Left Ventricle Segmentation
	1 Introduction
	2 Method
	2.1 Segmenting the Left Ventricle
	2.2 Computing the Clinical Measures

	3 Experiments and Results
	3.1 Data Acquisition
	3.2 Registration Parameters
	3.3 Results

	4 Discussion and Conclusion
	References

	Acceleration
	Averaged Stochastic Optimization for Medical Image Registration Based on Variance Reduction
	1 Introduction
	2 Method
	2.1 Stochastic Optimization for Image Registration
	2.2 Averaged Stochastic Gradient Descent (Avg-SGD)
	2.3 Step Size Selection

	3 Experiments
	3.1 Evaluation Measures
	3.2 Nonrigid Registration on 3D Lung CT

	4 Results
	5 Discussion
	6 Conclusion
	References

	Applications and Evaluation
	Registration Evaluation by De-enhancing CT Images
	1 Introduction
	2 Method
	2.1 Hyperintense Lesions and Vessels
	2.2 Hypointense Lesions
	2.3 Granularity and Borders
	2.4 Parameter Settings

	3 Experiments
	3.1 Data
	3.2 Registration Algorithm Evaluation

	4 Results
	4.1 De-enhancement
	4.2 Registration Accuracy

	5 Discussion
	6 Conclusion
	References

	Evaluation of Multi-metric Registration for Online Adaptive Proton Therapy of Prostate Cancer
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Dilated Convolution Neural Network Architecture (DCNN)
	2.3 Image Registration
	2.4 Registration Performance Evaluation

	3 Experimental Results
	3.1 DCNN Segmentation Performance
	3.2 Registration Performance

	4 Discussion and Conclusion
	References

	Instrument Pose Estimation Using Registration for Otobasis Surgery
	1 Introduction
	2 Methods
	3 Experiments
	4 Results and Discussion
	5 Conclusion
	References

	Local Image Registration Uncertainty Estimation Using Polynomial Chaos Expansions
	1 Introduction
	2 Method
	2.1 Uncertainty in Image Registration
	2.2 Polynomial Chaos Expansion
	2.3 Local Image Registration Uncertainty Estimation with PCE

	3 Experiments and Results
	3.1 Dataset
	3.2 Experiments
	3.3 Results

	4 Discussion and Conclusion
	References

	Author Index



