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Abstract Nonlinear normal modes of forced chaotic vibrations can be found in
models which are obtained by discretization of some elastic systems that have lost
stability under external compressive force. Transient nonlinear normal modes, which
exist only for some specific values of the system energy, appear in nonlinear dissipa-
tive systems in vicinity of external or internal resonance. These dissipative systems
under resonance conditions are analyzed by transformation to reduced systems stated
with respect to the parameter which characterizes the system energy, the arctangent
of the amplitudes ratio and the phase difference.

1 Introduction

Concept of nonlinear normal modes (NNMs), first proposed by Kauderer and Rosen-
berg [1, 2], is an important step of investigation of the nonlinear systems behavior.
Principal fundamentals of the NNMs theory and different applications of the theory
are presented in [3–5].

The NNMs concept can be used not only for periodic vibrations. In particular,
the NNMs having smooth trajectories in configuration space and chaotic in time
behavior can be found in some non-conservative systems. Such vibration modes are
observed in post-buckling dynamics of elastic systems that have lost stability under
external compressive force.

In vicinity of the internal resonance the transfer of energy from unstable NNMs
to stable ones is noted. This phenomenon is discussed in various publications. A
description of the energy transfer was presented in the pioneering publication [6],
where it was showed that in spring pendulum a transfer of angular oscillation mode
to vertical oscillation one, and back, takes place near the fundamental frequencies
ratio of 2:1. The transfer of energy caused by internal resonancewas also investigated
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in [7–9]. Some principal results in problems of the energy transfer are summarized
in the book [10]. The book [11] is devoted to complex behavior of autonomous and
non-autonomous nonlinear systems under the internal resonance conditions. Here
an interaction of nonlinear vibration modes in neighborhood of external and internal
resonances in nonlinear dissipative systems is analyzed by themultiple scalesmethod
[12] and a transformation to so-called reduced system. The reduced system is written
with respect to some variable which characterizes the system energy, arctangent of
ratio of amplitudes and difference of phases. Earlier the reduced system was used
for conservative systems in [13, 14] and for dissipative systems in [15]. The new
phenomenon in analysis of transient of the dissipative system near resonance is an
appearance of so-called transient nonlinear normal vibration modes (TNNMs) [15]
which are realized only for some levels of the systems energy that is, for some specific
values of time, corresponding to these energy levels. It is important that near these
values of time motions of the dissipative systems are close to the modes, that is the
TNNMs are attractive.

An appearance of TNNMs in the systemwith a limited power-supply (or non-ideal
system) having nonlinear absorber and in the spring-pendulum system (oscillator-
rotator) is considered. The systems with a limited power-supply are characterized
by interaction of source of energy and elastic sub-system which is under action of
the source. The most important effect observed in such systems is the Sommerfeld
effect [16], when the stable resonance regimewith large amplitudes is appeared in the
elastic sub-system. Resonance dynamics of such systems was first described by V.O.
Kononenko [17]. Then investigations on the subject were continued in numerous
publications, in particular, in [18–20]. Some surveys on studies of the non-ideal
systems dynamics are made in [12, 21]. Transfer of energy from some unstable mode
to other stable one, that is the so-called “saturation phenomenon”, in such systems
under the internal resonance condition, is described in [22].Reduction of the vibration
amplitudes in the non-ideal systems coupled with different type nonlinear absorbers
and dampers, is studied in [23, 24]. Forced synchronic regimes of the oscillator-
rotator system are analyzed in [25]. Free stationary and non-stationary regimes, as
well localization of energy in such system are considered in [26].

The paper is organized as follow. Forced NNMs in models which are obtained by
discretization of some elastic systems are examined in Sect. 2. These NNMs with
chaotic in time behavior, are obtained in post-buckling dynamics of such systems. In
Sect. 3, external resonances on the first fundamental frequency and both external and
internal resonances in the dissipative system with a limited power supply coupled
with nonlinear absorber are considered. Resonance behavior in the dissipative spring-
pendulum system for a case of simultaneous external and internal resonances is
considered in Sect. 4. Modes of coupled vibrations and localized modes, including
TNNMs are obtained; their influence to transient process in these systems is shown.
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2 Forced Nonlinear Normal Modes of Chaotic Vibrations

Consider the following system that can be obtained by discretization of equations of
nonlinear dynamics of some elastic systems:

ÿ1 + δ ẏ1 − αy1 + βy31 + cy1y
2
2 � f cosωt,

ÿ2 + δ ẏ2 + ay2 + by32 + cy2 y
2
1 � 0, (1)

where y1(t) and y2(t) are unknown functions; δ is the coefficient determining friction;
all coefficients are positive, excepting the coefficient α which can have any sign. In
the case α > 0 the Eq. (1) describe post-critical dynamics of the corresponding
elastic systems.

The system (1) can be obtained, in particular, in the following problems: the beam
bending vibrations within framework of the Kirchhoff beam theory and the dynamics
of cylindrical shells described by the Donnell equations can be considered. Then a
discretization by the Bubnov–Galerkin procedure is used. If displacements of the
nonlinear elastic system are approximated by a single harmonic of the Fourier series
expansion for spatial coordinates, a system having a single degree of freedom is
obtained. Behavior of the model described by the non-autonomous Duffing equation
was examined in numerous publications. Chaotic motions begin when the force
amplitudes are slowly increased [27]. If two harmonics of the Fourier series for
spatial coordinates are used, one obtains a set of two second order ODEs, coupled in
nonlinear terms only. Two NNMs, which are determined by smooth trajectories in
the system configuration place, exist here. One of these modes can be chaotic in time
in some domain of the system parameters. Boundaries of the domain are determined
as some combination of the external amplitude and parameters of nonlinearity and
dissipation. The energy transfer from some vibrationmode to another one is possible.
Thus one can formulate a problem of the stability of periodic or chaotic vibration
mode in the higher-dimensional spaces. The orbital stability of trajectories of the
regular or chaotic modes is determined by the numerical-analytical approach which
is based on the known Lyapunov definition of stability [28].

In Figs. 1 and 2 phase places of the variables y1(t) and y2(t) show orbital stabil-
ity/instability of the NNM trajectory y2 � 0 for some parameters of the system (1).
The variable y2 is considered here as variation of the NNM trajectory in orthogonal
direction. Note that these results are obtained for the problem of the post-buckling
nonlinear beam dynamics.
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Fig. 1 The unstable mode of regular vibrations

Fig. 2 The stable mode of chaotic vibrations

3 Transient Nonlinear Normal Modes
in Dissipative System with a Limited Power-Supply
Coupled with Nonlinear Absorber

One considers the resonance behavior of the dissipative non-ideal systemwhich con-
tains the nonlinear absorber with cubic type nonlinearity. Model under consideration
is shown in Fig. 3. The motor D acts to the elastic sub-system by the crank shaft.
The nonlinear oscillator is attached to the elastic sub-system of the mass M.
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Fig. 3 System with a limited
power-supply coupled with
non-linear absorber

Equations describing motion of the system are the following:

I ϕ̈ � ε(L(ϕ̇) − H (ϕ̇) + c1r (x − r sin ϕ) cosϕ),

Mẍ + εηẋ + cx + c2(x − y) + γ (x − y)3 � εc1r sin ϕ,

εmÿ + εη ẏ − c2(x − y) − γ (x − y)3 � 0.

(2)

Here the following notation is used: M is a mass of the elastic sub-system; r is a
radius of the crank shaft; coefficients c � c0 + c1 and c2 characterize stiffness of
springs in the system;m is a mass of the nonlinear absorber; I is a moment of inertia
of rotating masses; H (ϕ̇) � dϕ̇ is the moment of resistance to rotation; L � a + bϕ̇
is a driving moment of the motor. The small parameter ε characterizes a smallness of
mass of absorber with respect to the mass of elastic sub-system, of dissipation in the
system and of the vibration components in variability in time of the angle ϕ velocity
with respect to the constant component of the velocity.

Equations of motion (2) are transformed and presented of the next form:

ϕ̈ � ε( Ā + ϕ̇ + C̄x cosϕ − D̄ sin 2ϕ),

ẍ + ω2
x x − qy + 2εηx ẋ + εγx (x − y)3 � εk sin ϕ,

ÿ + ω2
y y − ω2

y x + 2εηy ẏ − εγy(x − y)3 � 0,

(3)

where Ā � a
I , B̄ � b−d

I , C̄ � c1r
I , D̄ � c1r2

2I , ω
2
x � c+c2

M , 2ηx � η

M , γx � γ

M , q � c2
M ,

k � c1r
M , ω2

y � c2
m , 2ηy � η

m , γy � γ

m .
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One transforms the system (3) to principal coordinates, solving corresponding eigen-
value problem of the linearized system. Fundamental frequencies and coordinates of
eigenvectors χ1,2 � (α1,2, β1,2) are the following:

ω2
1,2

�
(ω2

x + ω2
y) ∓

√
(ω2

x − ω2
y)

2 + 4ω2
yq

2
, (4)

α1,2 � 1, β1,2 � 2ω2
y

(ω2
y − ω2

x ) ±
√
(ω2

x − ω2
y)

2 + 4ω2
yq

. (5)

In the principal coordinates the system under consideration can be written of the
form:

ϕ̈ � ε( Ā + B̄ϕ̇ + C̄(z1 + z2) cosϕ − D̄ sin 2ϕ),

z̈1 + ω2
1z1 � εβ2

β2−β1
(−2ηx (ż1 + ż2) − γx (z1 + z2 − β1z1 − β2z2)3 + k sin ϕ)

− ε
β2−β1

(−2ηy(β1 ż1 + β2 ż2) + γy(z1 + z2 − β1z1 − β2z2)3),

z̈2 + ω2
2z2 � ε

β2−β1
(−2ηy(β1 ż1 + β2 ż2) + γy(z1 + z2 − β1z1 − β2z2)3)

− εβ1

β2−β1
(−2ηx (ż1 + ż2) − γx (z1 + z2 − β1z1 − β2z2)3 + k sin ϕ).

(6)

To analyze the external resonance on the fundamental frequency corresponding to the
coordinate z1, one introduces the detuning parameter� by the relation�2 � ω2

1+ε�.
The multiple scale method [12] is used here. So, the following scales of time as
new independent variables are introduced: T0 � t ; T1 � εt, etc. All generalized
coordinates of the system (6) are presented as functions of these variables. The next
standard transformations are used:

d

dτ
� ∂

∂T0
+ ε

∂

∂T1
+ · · · , d2

dτ 2
� ∂2

∂T 2
0

+ 2ε
∂2

∂T1∂T0
+ · · · (7)

The variables ϕ, z1 and z2 are presented also as power series by the small parameter.
Saving only the zero and first approximations by the small parameter, ϕ � ϕ0 + εϕ1,
z1 � z10 + εz11, z2 � z20 + εz21, one obtains the following PDE systems:

∂2ϕ0

∂T 2
0

� 0,
∂2z10
∂T 2

0

+ �2z10 � 0,
∂2z20
∂T 2

0

+ ω2
2z20 � 0, (8)
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∂2ϕ1
∂T 2

0
� −2 ∂2ϕ0

∂T0∂T1
+ Ā + B̄

(
∂ϕ0
∂T0

)
+ C̄(z10 + z20) cosϕ0 − D̄ sin 2ϕ0,

∂2z11
∂T 2

0
+ �2z11 � −2 ∂2z10

∂T0∂T1
+ �z10 + 1

β2−β1

[
β2

(
−2ηx

∂(z10+z20)
∂T0

− γx (z10 + z20

−β1z10 − β2z20)3 + k sin ϕ0
)
+ 2ηy

∂(β1z10+β2z20)
∂T0

− γy(z10 + z20 − β1z10 − β2z20)3
]
,

∂2z20
∂T 2

0
+ ω2

2z20 � −2 ∂2z20
∂T0∂T1

+ 1
β2−β1

[
−2ηy

∂(β1z10+β2z20)
∂T0

+ γy(z10 + z20

−β1z10 − β2z20)3 − β1

(
−2ηx

∂(z10+z20)
∂T0

− γx (z10 + z20 − β1z10 − β2z20)3 + k sin ϕ0

)]
.

(9)

Solution of the Eq. (8) is presented as

ϕ0 � �t, z10 � C1e
i�T0 + C̄1e

−i�T0 , z20 � C2e
iω2T0 + C̄2e

−iω2T0 , (10)

where � is the constant by the time scale T0, but this is a function by the scale T1.
Introducing relations (10) to the system (9), it is possible to write the following

conditions of the secular terms elimination:
∂�

∂T1
� 1

2
( Ā + B̄�) +

1

4
C̄(C1 + C̄1),

− 2i�
∂C1

∂T1
+ (� + i L�)C1 + 2C1(�T0 − i)

∂�

∂T1
− MC2

1 C̄1 − PC1C2C̄2 − i N � 0,

− 2iω2
∂C2

∂T1
+ i SC2 + RC2

2 C̄2 + TC2C1C̄1 � 0, (11)

where L � 2
β2−β1

(β1ηy − β2ηx ), P � 6(1−β1)(1−β2)2

β2−β1
(β2γx + γy), N � kβ2

2(β2−β1)
,

M � 3(1−β1)3

β2−β1
(β2γx + γy), S � 2ω2

β2−β1
(β1ηx − β2ηy), T � 6(1−β2)(1−β1)2

β2−β1
(β1γx + γy),

R � 3(1−β2)3

β2−β1
(β1γx + γy).

By the change of variables, C1 � a1eib1 , C2 � a2eib2 one has from the system
(11) the following equations with respect to amplitudes and phases of the unknown
solutions in the resonance domain, and the equation with respect to the variables �:

∂�

∂T1
� 1

2
( Ā + B̄� + C̄a1 cos b1),

∂a1
∂T1

� L

2
a1 − a1

�

∂�

∂T1
− N

2�
cos b1,

∂b1
∂T1

� − �

2�
+

M

2�
a21 +

P

2�
a22 + T0

∂�

∂T1
+

N

2�a1
sin b1,

∂a2
∂T1

� S

2ω2
a2,

∂b2
∂T1

� − R

2ω2
a22 − T

2ω2
a21 . (12)

Note that the first equation of the system (12) corresponds to unsteady regime when
the variable � changes in time. If � � const , one obtains the well-known relation
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[17, 19, 20] connecting the rotor constant and amplitude of the elastic vibration as
L(�)− H (�)−0, 5�ηA2

1 � 0, where A1 � 2a1 is the vibration amplitude, and η is
a coefficient of dissipation. Here the unsteady behavior of the non-ideal system under
consideration is investigated. The change of variables, a1 � K sinψ , a2 � K cosψ ,
is introduced, and the following reduced system [13–15] is obtained:

∂�

∂T1
� 1

2
( Ā + B̄� + C̄K sinψ cos b1),

∂K

∂T1
� L� − Ā − B̄�

2�
K sin2 ψ +

S

2ω2
K cos2 ψ −

(
C̄

2�
K 2 sin2 ψ +

N

2�

)
cos b1 sinψ,

∂ψ

∂T1
�

(
L� − Ā − B̄�

2�
− S

2ω2

)
sinψ cosψ −

(
C̄

2�
K sin2 ψ +

N

2�K

)
cosψ cos b1,

∂b1
∂T1

� − � + �T0( Ā + B̄�)

2�
− T0C̄

2
K sinψ cos b1 +

M

2�
K 2 sin2 ψ +

P

2�
K 2 cos2 ψ +

N

2�K sinψ
sin b1,

∂b2
∂T1

� − R

2ω2
K 2 cos2 ψ − T

2ω2
K 2 sin2 ψ, (13)

where the variable parameter K characterizes the reduced system energy; ψ is an
arctangent of ratio of amplitudes. Equation with respect to difference of phases,
ϕ � b1 − b2 can be written as

∂ϕ

∂T1
� −� + �T0( Ā + B̄�)

2�
− T0C̄

2
K sinψ cos b1 +

M

2�
K 2 sin2 ψ +

P

2�
K 2 cos2 ψ

+
N

2�K sinψ
sin b1 +

R

2ω2
K 2 cos2 ψ +

T

2ω2
K 2 sin2 ψ. (14)

One analyzes the equilibriums in the Eqs. (13), (14). The relation sinψ � 0 cor-
responds to energy localization on the coordinate z2, and the relation cosψ � 0
corresponds to energy localization on the coordinate z1.

Under the relation sinψ � 0 a condition of existence of the equilibrium in the
third equation of the system (13) gives us the equation cos b1 � 0. This equilibrium
corresponds to the following relation for the energy: ∂K

∂T1
� S

2ω2
K . Taking into account

that the parameter S is negative for any system parameters, we can conclude that
the energy of this equilibrium position decreases; so, the localized vibrations are
unstable. If cosψ � 0, the third equation of the system (13) is an identity. So, this
equilibrium position of the reduced system is situated at the straight line ψ � π

2 .
In this case a conclusion about change of energy and stability of the equilibrium
position can be made by analysis of trajectories in the place (ϕ, ψ).

For a case when both sinψ �� 0 and cosψ �� 0, an existence of
the equilibrium position of the third equation of the system (13) is possi-
ble if cos b1 � (L�− Ā−B̄�−S�/ω2)K sinψ

N+C̄K 2 sin2 ψ
. One has from here the inequality∣∣∣ (L�− Ā−B̄�−S�/ω2)K sinψ

N+C̄K 2 sin2 ψ

∣∣∣ ≤ 1. On the other hand, the function sinψ can be found

from the equation

C̄K 2 cos b1 sin
2 ψ − (L� − Ā − B̄� − S�/ω2)K sinψ + N cos b1 � 0,

that is, sinψ � (L�− Ā−B̄�−S�/ω2)±
√

(L− Ā−B̄�−S�/ω2)2−4C̄ N cos b21
2C̄K cos b1

.
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Fig. 4 Dependence ϕ(ψ) for the external resonance on the first fundamental frequency

Onehas fromhere an inequality,

∣∣∣∣
(L�− Ā−B̄�−S�/ω2)±

√
(L− Ā−B̄�−S�/ω2)2−4C̄ N cos b21

2C̄K cos b1

∣∣∣∣ ≤
1, and a condition of the discriminant positiveness as (L� − Ā− B̄� − S�/ω2)2 −
4C̄ N cos b21 ≥ 0.

We can see from the Eq. (13) that in this case ψ and ϕ are functions of K , so,
this equilibrium position is not stationary. This position corresponds to vibrations
which are equivalent to NNMs of coupled vibrations of the conservative sub-system
of the system (6). This mode of coupled vibrations is realized only for some specific
value of time, corresponding to conditions presented above, so, it can be called as
transient nonlinear vibration mode (TNNM). It is interesting that near this value of
time motions of the system are close to the mode, that is, the TNNM is attractive.

The system (13) is integrated by the Runge–Kutta method; initial conditions take
values on the interval 0 ≤ ψ(0) ≤ π/2, and the following system parameters are
chosen: K (0) � 0.1, c0 � 1 N/m, c1 � 1 N/m, c2 � 0.2 N/m, M � 1 kg, m � 0.05
kg, β � 0.05, γ � 0.3 N/m, r � 0.05 m, Ā � 0.115, B̄ � −0.08, C̄ � 0.01
and �(0) � −0.5. A dependence ϕ(ψ) is shown in Fig. 4 where trajectories do not
remain near the straight line ψ � 0, and tend in time to the line ψ � π

2 , that is,
localized on z1 vibrations are stable near resonance, and localized on z2 vibrations
lose stability. Some trajectories approach the equilibrium position corresponding to
the TNNM of coupled vibrations, and remain near this state while one exists. When
the time increases the coupled vibrations disappear, and motions of the system tend
to the stable localized mode.

The transfer from the localization on z1 to the stable vibrationmode of localization
on z2 is shown in Fig. 5. We can see that for some values of time trajectories in Fig. 5
are close to two TNNMs of the coupled vibrations which appear here.

Similar results can be obtained for a case of external resonance on the second
fundamental frequency. For a case of both external and internal resonances after the
transformation to reduced system and analysis of the system the following conclu-
sions can be made (corresponding relations are not presented here): two localized
vibration modes are TNNMs existing only for some values of time when the specific
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Fig. 5 Dependences z2 (z1) for the external resonance on the first fundamental frequency

Fig. 6 Dependence ϕ(ψ) for the both external and internal resonances

values of energy are reached. Any time only coupled vibrations exist in the system.
The reduced system is integrated by the Runge–Kutta method. Initial conditions are
changed on the interval 0≤ψ(0)≤π/2, and the next system parameters are chosen:
K (0) � 0.1, c0 � 0.1 N/m, c1 � 0.14 N/m, c2 � 0.01 N/m, M � 1 kg, m � 0.1
kg, β � 0.2, γ � 1.5 N/m, r � 2.1 m, Ā � 0.02, B̄ � −0.009, C̄ � 0.005 and
�(0) � 0.04. Dependence ϕ(ψ) is shown in Fig. 6 where we can see two equilibrium
positions corresponding to coupled vibrations of the elastic subsystem and absorber.
TNNMs correspond toψ� 0 andπ/2. All trajectories pass from the equilibriumposi-
tion at the top of the figure to the equilibrium position in the bottom of the figure, the
last one corresponds to the stable mode of coupled vibrations. The obtained results
are confirmed by direct numerical simulation of the initial nonlinear system.
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4 Transient Nonlinear Normal Modes in Dissipative
Spring-Pendulum System Under Resonance Conditions

The spring-pendulum system with small dissipation under external periodic excita-
tion is considered (Fig. 7).

Equations of motion of the system are the following:

ü + ω2
ux + εηuu̇ − μ(θ̈ sin θ + θ̇2 cos θ ) � ε2 f cos τ,

θ̈ + εηθ θ̇ + p2 sin θ − ü sin θ � 0, (15)

where u � y
R , τ � �t , ω �

√
k

M+m , p
2 � g

RΩ
, μ � m/(m + M), ω2

u � 1/Ω2,

f � F0
(M+m)Rω2Ω2 , ηu � βu

(M+m)Ω , ηθ � βθ

mΩ
; βu and βθ are coefficients of dissipation;

ε is the small parameter.
There are two Kauderer–Rosenberg NNMs in the system (15) without dissipation

and external excitation: the localized u− mode of vertical vibrations (u � u(τ ), θ �
0) and the non-localized mode, when vibration amplitudes for vertical and angle
coordinates are comparable. When dissipation exists, vibration modes are not the
Kauderer–Rosenberg NNMs, because they are not periodic.

To consider motions of the system under consideration in the vicinity of both
external and internal resonances one introduces to equations of motion (15) two
detuning parameters Δ1 and Δ2 by two relations. First relation, ω2

u � 1 + εΔ1

corresponds to the vicinity of external resonance, and the second one, p2 � 0.25 +
ε�2 corresponds to the vicinity of the main parametrical resonance of the system
(15). Using these resonance relations and expansions in power series for sinθ and
cosθ, one has the following equations of the first and second approximations by the
small parameter ε:

Fig. 7 Spring-pendulum system
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∂2u0
∂T 2

0

+ u0 � 0,

∂2θ0

∂T 2
0

+
1

4
θ0 � 0, (16)

∂2u1
∂T 2

0

+ u1 � −�1u0 − 2
∂2u0

∂T1∂T0
+ μ

(
∂2θ0

∂T 2
0

)
θ0 + μ

(
∂θ0

∂T0

)2

− ηu
∂u0
∂T0

+
f

2
(eiT0 + e−iT0 ),

∂2θ1

∂T 2
0

+ θ1 � −�2θ0 − 2
∂2θ0

∂T1∂T0
+

(
∂2u0
∂T 2

0

)
θ0 − ηθ

∂θ0

∂T0
. (17)

Solution of the system (16),

u0 � Cu(T1)e
iT0 + C̄u(T1)e

−iT0 ,

θ0 � Cθ (T1)e
1
2 iT0 + C̄θ (T1)e

− 1
2 iT0 , (18)

is substituted to Eq. (17). Then secular terms are eliminated; as a result, one has the
following nonlinear equations:

2i
∂Cu

∂T1
+

μ

2
C2

θ + Cu�1 + iηuCu − f

2
� 0,

i
∂Cθ

∂T1
+ CuC̄θ + Cθ�2 +

1

2
iηθCθ � 0. (19)

Change of variables, Cu � aueiβu , Cθ � aθeiβθ gives the system of modulation
equations written with respect to amplitudes au , aθ and phases βu , βθ . Next change
of variables, au �

√
μ

2 K cosψ , aθ � K sinψ , gives the reduced system, written
with respect to the energy K , the arctangent of the amplitudes ratio ψ and the phases
βu , βθ :

K ′ � −K
(ηu

2
cos2 ψ +

ηθ

2
sin2 ψ

)
− f

2
√

μ
sin βu cosψ,

ψ ′ � sinψ

(√
μ

2
K sin(2βθ − βu) +

ηu − ηθ

2
cosψ +

f

2
√

μK
sin βu

)
,

β ′
u � �1

2
+

√
μ

2

K sin2 ψ

cosψ
cos(2βθ − βu) − f

2
√

μK cosψ
cosβu,

β ′
θ � �2 +

√
μ

2
K cosψ cos(2βθ − βu). (20)

Equilibrium positions for the second equation of the system (20) are considered.
Condition sinψ ≡ 0 corresponds to the localized mode of the spring vibrations.
This mode exists for all values of the energy K ; it is described by the straight line
ψ � 0 in the plane (ψ, ϕ). For the case, when both cosψ �� 0, and sinψ �� 0, it is
possible to observe mode of coupled vibrations of the system (15). Condition of the
mode existence can be obtained from the second equation of the reduced system (20)
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Fig. 8 Trajectories in the
place (ψ, ϕ)

as cosψ �
√

μ

ηθ−ηu
K sin(2βθ − βu) +

f
2
√

μK (ηθ−ηu )
sin βu . This condition corresponds

to two modes of coupled vibrations. The further examination shows that one of them
is stable and another one is the transient mode of coupled vibrations.

To construct trajectories in the place (ψ, ϕ) the system (20) is integrated numer-
ically, when the initial value of arctangent of the amplitudes ratio changes on the
interval 0 ≤ ψ(0) ≤ π

2 , K (0) � 0.5 and system parameters are the following:
ηu � 0.3, ηθ � 0.2, μ � 0.4, �1 � 0.2, �2 � 0.1, f � 0.35. Trajectories in the
place (ψ, ϕ) for the case of simultaneous external and internal resonances are shown
in Fig. 8. Each trajectory has a loop near some quasi-equilibrium state of the reduced
system. This state moves in the space (ψ, ϕ) and corresponds to TNNM of coupled
vibrations existing only for specific values of the system energy, that is, the TNNM
exist in some moments of time corresponding to these energy levels. This transient
mode is attractive and other motions are close to this TNNM near the mentioned
moment of time. We can see in the Fig. 8, that later, when the TNNM disappears,
trajectories in the plane (ψ, ϕ) approach the equilibrium position which corresponds
to the stable mode of coupled vibrations. Note that this equilibrium position is closer
to the straight line ψ � π

2 , which corresponds to localized on pendulum vibrations,
than to the straight line ψ � 0, which corresponds to localized vibrations of spring.
We can see that the mode of the localized vibrations of spring is not stable.

To illustrate behavior of the spring-pendulum system in vicinity of the resonance
the initial system is integrated numerically on the interval τ ∈ [0, 5000] for the
following initial values au(0) � 0.05, aθ (0) � 0.01, βu(0) � 0.1, βθ (0) � 0.2
and system parameters ηu � 0.3, ηθ � 0.2, f � 0.35, �1 � 0.2, �2 � 0.1.
The first approximation of the solution can be written as u0 � 2au cos(τ + βu),
θ0 � 2aθ cos( 12τ + βθ ). Trajectories in the system configuration plane are shown in
Fig. 9 for the following intervals of time: τ ∈ [0, 100] (Fig. 8a), τ ∈ [4800, 5000]
(Fig. 8b) and τ ∈ [0, 5000] (Fig. 8c). Here the transient nonlinear normal mode of
coupled vibrations appears. At the beginning of the processmotions of the system are
close to this TNNMwhich is determined by parabolic trajectory (Fig. 8a). Then, due
to instability of this mode, motions of the system tend to the stable mode of coupled
vibrations. Trajectory of this stable mode can be observed in Fig. 8b where vibrations
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Fig. 9 Trajectories u(θ) in configuration space for t ∈ [0, 100] (a); t ∈ [4800, 5000] (b); t ∈
[0, 5000] (c)

for large values of time are shown. The stable mode is close to the localized mode
of the pendulum vibrations, and this fact can be used in the problem of vibration
absorption. Namely, it is possible to guarantee the energy transfer from vibrations of
spring to vibrations of pendulum, where the vibration energy can be dissipated. It is
clear that the numerical simulation fully confirms results obtained by analysis of the
reduced system.

5 Conclusion

The NNMs which are different from the NNMs proposed by Kauderer–Rosenberg
are obtained in some non-conservative systems. Namely, NNMs having smooth tra-
jectories in configuration space and chaotic in time behavior can be found in analysis
of some of elastic systems. It seems that this is typical situation in post-buckling
dynamics of shells, arches etc.

Resonance dynamics of the dissipative limited power-supply system with a non-
linear vibration absorber and the dissipative spring-pendulum system is investigated
by the multiple-scale method and transformation to the reduced system. In the non-
ideal system, in the case of external resonance on the first fundamental frequency,
except the localized vibration modes, the TNNM of coupled vibrations appears. This
mode exists only for some value of energy, that is, for a single moment of time. This
mode is attractive near the mentioned moment of time. In the case of simultaneous
external and internal resonances two modes of coupled vibrations appear; one of
them is unstable, and motions of the system come close to the stable NNMs of the
coupled vibrations. Two localized modes are TNNMs in this case. Existence of the
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localized modes depends on the energy levels and the system parameters; they are
attractive near moments of their existence. For the dissipative spring-pendulum sys-
tem in the case of simultaneous external and internal resonances the mode of coupled
vibrations is stable, and the localized mode loses stability. The TNNM also exists
here for some level of the system energy. Reliability of obtained analytical results is
verified by numerical simulation. We can conclude that such transient normal modes
essentially affects to transient process of the nonlinear dissipative system.
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