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Abstract Higher order effective boundary conditions are derived for a coated half-
space. Comparison with the long wavelength expansion of the exact solution of a
plane time-harmonic problem for the coating demonstrates the validity of the pro-
posed formulation. At the same time the corrections to the simplest leading order
effective conditions, earlier obtained in thewidely cited paper (Bövik (1996). J. Appl.
Mech. 63(1), 162–167.) [1], are proven to be asymptotically inconsistent.

1 Introduction

Thin films and coatings find numerous applications, including in particular, engi-
neering and biological sciences, see e.g. [2–5]. The effect of a thin coating is often
modeled by imposing the so-called effective boundary conditions along the surface
of a substrate. These conditions first were derived in [6] using adhoc assumptions
originating from the classical theory of plate extensions. Later on, it was suggested
in [1] that the results of [6] are not consistent, and refined boundary conditions
were proposed starting from rather heuristic arguments. The asymptotic procedure
exposed in [7] justifies at leading order the consistency of the effective boundary
conditions in [6] and also reveals that the extra terms in [1] are in fact of a higher
order. Moreover, as it was briefly mentioned in [7], the development in [1] is not
asymptotically consistent at the next order as well.
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Fig. 1 A coated half-space

It is remarkable that the boundary conditions in [1] were exploited not only before
but also after the publication of the critical comments in [7], e.g. see [8–10] along
with [11–13]. This is partly an inspiration for revisiting the original problem for a
coated elastic half-space aiming at establishing higher order effective conditions.

As in [7],we adapt the asymptoticmethodologywell established for the thin elastic
structures, e.g. see [14, 15] and references therein. At leading order, we validate again
the results in [6]. At next order, we arrive at refined effective conditions. They are
tested by comparisonwith the exact solution of a plane strain time-harmonic problem.
As it might be expected, the comparison demonstrates that the boundary conditions
in [1] are not consistent at a higher order.

2 Statement of the Problem

We consider a linearly elastic isotropic layer of thickness h occupying the area 0 ≤
x3 ≤ h, lying on an elastic half-space x3 ≥ h. The prescribed vertical force P =
P(x1, x2, t) is acting on the free surface of the layer, see Fig. 1.

The 3D equations in linear elasticity can be written as

∂σi i

∂xi
+ ∂σi j

∂x j
+ ∂σi3

∂x3
= ρ

∂2ui
∂t2

,

∂σi3

∂xi
+ ∂σ j3

∂x j
+ ∂σ33

∂x3
= ρ

∂2u3
∂t2

.

(1)

Here and below i �= j = 1, 2 and n = 1, 2, 3, un are the displacements, σin,σ3n are
stresses, and ρ is the volume density. The constitutive relations are

σi j = μ

(
∂ui
∂x j

+ ∂u j

∂xi

)
, σi i = (λ + 2μ)

∂ui
∂xi

+ λ

(
∂u j

∂x j
+ ∂u3

∂x3

)
,

σi3 = σ3i = μ

(
∂ui
∂x3

+ ∂u3
∂xi

)
, σ33 = λ

(
∂ui
∂xi

+ ∂u j

∂x j

)
+ (λ + 2μ)

∂u3
∂x3

,

(2)
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where λ and μ are the Lamé parameters. In addition, the wave speeds are given by

c1 =
√

λ + 2μ

ρ
, c2 =

√
μ

ρ
. (3)

In case of the coating, below we supply with suffix 0 the parameters in the Eqs. (1)–
(3), using the notations ρ0, λ0, μ0, c10 and c20.

We impose the boundary conditions

σ33 = −P and σi3 = 0 (4)

at the surface of the coating x3 = 0 and also assume continuity of the displacements
un and stresses σn3 along the interface x3 = h.

The leading order effective boundary conditions on the surface of the substrate,
modelling the effect of the coating, can be written as, see (3.18) in [7],

σ33 = ρ0h
∂2u3
∂t2

− P,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1 − κ−2
0 )

∂2ui
∂x2i

+ (3 − 4κ−2
0 )

∂2u j

∂xi∂x j

)]
,

(5)

where κ0 = c10/c20. In absence of surface loading (P = 0) these conditions coincide
with those in [6] derived starting from the 2D theory of plate extension. More recent
developments in [1], see also [9] treating a similar anisotropic problem, claim that
the effective conditions (5) ignore several essential h-terms. The formulae (35) and
(36) in [1] rewritten in the notation specified in this section, similarly to [7], can be
presented as

σ33 = ρ0h
∂2u3
∂t2

− h

(
∂σi3

∂xi
+ ∂σ j3

∂x j

)
,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1 − κ−2
0 )

∂2ui
∂x2i

+(3 − 4κ−2
0 )

∂2u j

∂xi∂x j

)]
− h(1 − 2κ−2

0 )
∂σ33

∂xi
.

(6)

The underlined terms in formulae (6) do not appear in the effective conditions (5).
The former may be also transformed to
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Fig. 2 Boundary value
problem for a thin coating

σ33 = ρ0h
∂2u3
∂t2

− ρ0h2
[

∂3ui
∂t2∂xi

+ ∂3u j

∂t2∂x j
− c220

(
∂3ui

∂xi∂x2j
+ ∂3u j

∂x2i ∂x j

+4(1 − κ−2
0 )

[
∂3ui
∂x3i

+ ∂3u j

∂x3j

]
+ (3 − 4κ−2

0 )

[
∂3u j

∂x2i ∂x j
+ ∂3ui

∂xi∂x2j

])]

+h2(1 − 2κ−2
0 )

(
∂2σ33

∂x2i
+ ∂2σ33

∂x2j

)
,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1 − κ−2
0 )

∂2ui
∂x2i

+ (3 − 4κ−2
0 )

∂2u j

∂xi∂x j

)]

−h2(1 − 2κ−2
0 )

(
ρ0

∂3u3
∂t2∂xi

−
[
∂2σi3

∂x2i
+ ∂2σ j3

∂xi∂x j

])
.

(7)

It is already pretty clear at this stage that all extra h2-terms in (7) can be neglected at
leading order. In what follows, this observation is asymptotically justified. We also
show below that h2-terms in (7) are not identical to a proper asymptotic correction
to (5).

3 Asymptotic Analysis

The aim of the paper is to determine an asymptotic correction to the leading order
effective boundary conditions (5), in order to address consistency of (6), or equiva-
lently, (7). Here we implement an asymptotic procedure similar to [7], modifying it
slightly according to amore recent treatment in [16]. As usual, we study the boundary
value problem for an elastic coating with the Dirichlet boundary conditions

un = vn (8)

at the interface x3 = h, where vn = vn(x1, x2, t) denote prescribed displacements,
see Fig. 2.

We assume that the thickness of the coating h is small compared to typical wave
length L , therefore, we introduce a geometric parameter given by
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ε = h

L
� 1. (9)

We also specify dimensionless variables

ξi = xi
L

, η = x3
h

, τ = tc20
L

. (10)

According to the conventional asymptotic procedure, e.g. [7, 14], and ref. therein,
we adopt the scaling

un = Lu∗
n, vn = Lv∗

n , P = μ0εp∗

σi i = μ0σ
∗
i i , σi j = μ0σ

∗
i j , σn3 = μ0εσ

∗
n3,

(11)

where all quantities with the asterisk are assumed to be of the same asymptotic order.
The Eq. (1) and the constitutive relations (2) rewritten in dimensionless form,

become

∂σ∗
i i

∂ξi
+ ∂σ∗

i j

∂ξ j
+ ∂σ∗

i3

∂η
= ∂2u∗

i

∂τ 2
, (12)

∂σ∗
33

∂η
+ ε

(
∂σ∗

i3

∂ξi
+ ∂σ∗

j3

∂ξ j

)
= ∂2u∗

3

∂τ 2
, (13)

and

σ∗
i j = ∂u∗

i

∂ξ j
+ ∂u∗

j

∂ξi
, (14)

εσ∗
i i = (κ2

0 − 2)
∂u∗

3

∂η
+ ε

(
κ2
0
∂u∗

i

∂ξi
+ (κ2

0 − 2)
∂u∗

j

∂ξ j

)
, (15)

ε2σ∗
i3 = ∂u∗

i

∂η
+ ε

∂u∗
3

∂ξi
, (16)

ε2σ∗
33 = κ2

0
∂u∗

3

∂η
+ ε(κ2

0 − 2)

(
∂u∗

i

∂ξi
+ ∂u∗

j

∂ξ j

)
, (17)

with the transformed boundary conditions

σ∗
33 = −p∗ and σ∗

i3 = 0, η = 0,
and

u∗
n = v∗

n , η = 1.
(18)

First, expressing
∂u∗

3

∂η
from (17) and substituting the result into (15), we obtain
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σ∗
i i = 4(1 − κ−2

0 )
∂u∗

i

∂ξi
+ 2(1 − 2κ−2

0 )
∂u∗

j

∂ξ j
+ (1 − 2κ−2

0 )εσ∗
33. (19)

Next, we expand the displacements and stresses as

⎛
⎜⎜⎜⎜⎜⎜⎝

u∗
n

σ∗
i i

σ∗
i j

σ∗
3i

σ∗
33

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u(0)
n

σ(0)
i i

σ(0)
i j

σ(0)
3i

σ(0)
33

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ε

⎛
⎜⎜⎜⎜⎜⎜⎝

u(1)
n

σ(1)
i i

σ(1)
i j

σ(1)
3i

σ(1)
33

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ε2

⎛
⎜⎜⎜⎜⎜⎜⎝

u(2)
n

σ(2)
i i

σ(2)
i j

σ(2)
3i

σ(2)
33

⎞
⎟⎟⎟⎟⎟⎟⎠

+ · · · (20)

On substituting the latter into the Eqs. (12)–(17) and (19), we have at leading order

∂σ(0)
i i

∂ξi
+ ∂σ(0)

i j

∂ξ j
+ ∂σ(0)

i3

∂η
= ∂2u(0)

i

∂τ 2
,

∂σ(0)
33

∂η
= ∂2u(0)

3

∂τ 2
,

σ(0)
i j = ∂u(0)

i

∂ξ j
+ ∂u(0)

j

∂ξi
,

∂u(0)
n

∂η
= 0,

σ(0)
i i = 4(1 − κ−2

0 )
∂u(0)

i

∂ξi
+ 2(1 − 2κ−2

0 )
∂u(0)

j

∂ξ j
,

(21)

with the boundary conditions

σ(0)
33 = −p∗ and σ(0)

i3 = 0, η = 0,
and

u(0)
n = v∗

n , η = 1.
(22)

Integrating the leading order Eq. (21) together with the boundary conditions (22),
gives

u(0)
n = v∗

n , (23)

σ(0)
33 = η

∂2v∗
3

∂τ 2
− p∗, (24)

σ(0)
i i = 4(1 − κ−2

0 )
∂v∗

i

∂ξi
+ 2(1 − 2κ−2

0 )
∂v∗

j

∂ξ j
, (25)

σ(0)
i3 = η

[
∂2v∗

i

∂τ 2
− ∂2v∗

i

∂ξ2j
− 4(1 − κ−2

0 )
∂2v∗

i

∂ξ2i
− (3 − 4κ−2

0 )
∂2v∗

j

∂ξiξ j

]
. (26)
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At next asymptotic order, the governing equations take the form

∂σ(1)
i i

∂ξi
+ ∂σ(1)

i j

∂ξ j
+ ∂σ(1)

i3

∂η
= ∂2u(1)

i

∂τ 2
, (27)

∂σ(1)
33

∂η
+ ∂σ(0)

i3

∂ξi
+ ∂σ(0)

j3

∂ξ j
= ∂2u(1)

3

∂τ 2
, (28)

σ(1)
i j = ∂u(1)

i

∂ξ j
+ ∂u(1)

j

∂ξi
, (29)

σ(0)
i i = (κ2

0 − 2)
∂u(1)

3

∂η
+ κ2

0
∂u(0)

i

∂ξi
+ (κ2

0 − 2)
∂u(0)

j

∂ξ j
, (30)

∂u(1)
i

∂η
+ ∂u(0)

3

∂ξi
= 0, (31)

κ2
0
∂u(1)

3

∂η
+ (κ2

0 − 2)

(
∂u(0)

i

∂ξi
+ ∂u(0)

j

∂ξ j

)
= 0, (32)

σ(1)
i i = 4(1 − κ−2

0 )
∂u(1)

i

∂ξi
+ (1 − 2κ−2

0 )

(
2
∂u(1)

j

∂ξ j
+ σ(0)

33

)
, (33)

with the boundary conditions

σ(1)
n3 = 0, η = 0, (34)

and
u(1)
n = 0, η = 1. (35)

First, we obtain from (31) and (32), respectively, satisfying (35)

u(1)
i = (1 − η)

∂v∗
3

∂ξi
,

and

u(1)
3 = (1 − 2κ−2

0 )(1 − η)

(
∂v∗

i

∂ξi
+ ∂v∗

j

∂ξ j

)
.

(36)

Then, using (29), we have

σ(1)
i j = 2(1 − η)

∂2v∗
3

∂ξi∂ξ j
. (37)

Next, we deduce from (28) and (34)
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σ(1)
33 = η

κ2
0

(
(η − 2 + κ2

0 − ηκ2
0)

[
∂3v∗

i

∂ξi∂τ 2
+ ∂3v∗

j

∂ξ j∂τ 2

]

+2η(κ2
0 − 1)

[
∂3v∗

i

∂ξi∂ξ2j
+ ∂3v∗

j

∂ξ2i ∂ξ j
+ ∂3v∗

i

∂ξ3i
+ ∂3v∗

j

∂ξ3j

])
.

(38)

As a result, (33) becomes

σ(1)
i i = 2(η − 1)

[
2(κ−2

0 − 1)
∂2v∗

3

∂ξ2i
− (1 − 2κ−2

0 )
∂2v∗

3

∂ξ2j

]

+(1 − 2κ−2
0 )

[
η
∂2v∗

3

∂τ 2
− p∗

]
.

(39)

Therefore, (27) implies

σ(1)
i3 = −η

[
(η − 1 − ηκ−2

0 )
∂3v∗

3

∂ξi∂τ 2
+ 2(κ−2

0 − 1)(η − 2)
(

∂3v∗
3

∂ξi∂ξ2j
+ ∂3v∗

3

∂ξ3i

)
− (1 − 2κ−2

0 )
∂ p∗

∂ξi

]
.

(40)

Finally, substituting the leading order formulae (24) and (26) and O(ε) corrections
(38) and (40) into the expansions (20), we arrive at

σ∗
33 = η

∂2v∗
3

∂τ 2
− p∗ + ε

η

κ2
0

[
(η − 2 + κ2

0 − ηκ2
0)

(
∂3v∗

i

∂ξi∂τ 2
+ ∂3v∗

j

∂ξ j∂τ 2

)

+2η(κ2
0 − 1)

(
∂3v∗

i

∂ξi∂ξ2j
+ ∂3v∗

j

∂ξ2i ∂ξ j
+ ∂3v∗

i

∂ξ3i
+ ∂3v∗

j

∂ξ3j

)]
+ ...,

σ∗
i3 = η

[
∂2v∗

i

∂τ 2
− ∂2v∗

i

∂ξ2j
− 4(1 − κ−2

0 )
∂2v∗

i

∂ξ2i
− (3 − 4κ−2

0 )
∂2v∗

j

∂ξiξ j

]

−εη

[
(η − 1 − ηκ−2

0 )
∂3v∗

3

∂ξi∂τ 2
+ 2(κ−2

0 − 1)(η − 2)
(

∂3v∗
3

∂ξi∂ξ2j
+ ∂3v∗

3

∂ξ3i

)
− (1 − 2κ−2

0 )
∂ p∗

∂ξi

]
+ ....

(41)

The continuity of the displacements, see (8), and stresses at the interface x3 = h
readily results in refined effective boundary conditions for the substrate x3 ≥ h. In
the original variables they take the form
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σ33 = ρ0h
∂2u3
∂t2

− P + ρ0h2

κ2
0

[
2c22(κ

2
0 − 1)

(
∂3ui

∂xi∂x2j
+ ∂3u j

∂x2i ∂x j

+∂3ui
∂x3i

+ ∂3u j

∂x3j

)
−

(
∂3ui

∂xi∂t2
+ ∂3u j

∂x j∂t2

)]
,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1−κ−2
0 )

∂2ui
∂x2i

+ (3− 4κ−2
0 )

∂2u j

∂xi∂x j

)]

+ρ0h2

κ2
0

[
∂3u3

∂xi∂t2
+ 2c22(1 − κ2

0)

(
∂3u3

∂xi∂x2j
+ ∂3u3

∂x3i

)]
+ h

κ2
0 − 2

κ2
0

∂P

∂xi
.

(42)

Comparing these formulae at P = 0 with (7) we may expect that higher order
h2-terms will not coincide.

4 Comparison with the Exact Solution of a Plane Strain
Problem

In order to validate the asymptotic results obtained in the previous section, let us
consider a time-harmonic plane strain problem for the coating over the plane Ox1x3.
In this case the displacements can be taken as

u1 = ∂ϕ

∂x1
+ ∂ψ

∂x3
, u3 = ∂ϕ

∂x3
− ∂ψ

∂x1
, (43)

where ϕ and ψ are Lamé elastic potentials. The wave equations of motion become

Δϕ − 1

c210

∂2ϕ

∂t2
= 0, Δψ − 1

c220

∂2ψ

∂t2
= 0, (44)

where Δ = ∂2

∂x21
+ ∂2

∂x23
. The solutions of (44) are sought for in the form

ϕ = f (x3)e
ik(x1−ct), ψ = g(x3)e

ik(x1−ct). (45)

Substituting the latter into (44), we deduce

f (x3) = A1e
kx3α + A2e

−kx3α and g(x3) = A3e
kx3β + A4e

−kx3β, (46)

where Am , m = 1, 2, 3, 4, are arbitrary constants, and α =
√
1 − c2

c210
and β =

√
1 − c2

c220
.
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We consider a traction free upper face (P = 0), i.e. at x3 = 0

σk3 = 0, k = 1, 3, (47)

imposing the boundary conditions (8) at the lower face x3 = h with

vk = hBke
ik(x1−ct), (48)

where Bk are certain prescribed values.
On satisfying the boundary conditions, we have

⎛
⎜⎜⎝

iα −iα γ2 γ2

γ2 γ2 −iβ iβ
ikekhα ike−khα βkekhβ −βke−khβ

αkekhα −αke−khα −ikekhβ −ike−khβ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

hB1

hB3

⎞
⎟⎟⎠ (49)

where γ =
√
1 − 1

2

c2

c220
, and coefficients Am expressed through the given constants

Bk are presented in Appendix.
Then, substituting (45) and (46) into (43), we get

u1 = k
[
β(A3e2kx3β − A4)e−kx3β + i(A1e2kx3α + A2)e−kx3α

]
,

u3 = k
[
α(A1e2kx3α − A2)e−kx3α − i(A3e2kx3β + A4)e−kx3β

]
.

(50)

Here and below the factor eik(x1−ct) is omitted. Next, using the expressions above and
the constitutive relations (2), we have for the stresses at x3 = h

σ33 = 2μ0k2
[
γ2(A1e2khα + A2)e−khα − iβ(A3e2khβ − A4)e−khβ

]
,

σ13 = 2μ0k2
[
γ2(A3e2khβ + A4)e−khβ + iα(A1e2khα − A2)e−khα

]
.

(51)

The last expressions can be expanded into asymptotic series in the small parameter
ε = kh � 1

(
L = k−1 in (9)

)
to get

σ33

ε2μ0
= −B3ζ

2 − i B1
[
2 − κ−2

0 (2 + ζ2)
]
ε + · · · ,

σ13

ε2μ0
= B1

[
4(1 − κ−2

0 ) − ζ2
] + i B3

[
2 − κ−2

0 (2 + ζ2)
]
ε

− B1

3

[
20 + ζ2(ζ2 − 8) + κ−2

0 (6ζ2 − 44) + 4κ−4
0 (ζ2 + 6)

]
ε2 + · · · ,

(52)
where the dimensionless velocity is
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ζ = c

c20
. (53)

The asymptotic effective conditions (42) for the same displacements (48) pre-
scribed at the lower face, become

σ33 = k2h2ρ0
[−B3c2 − i B1kh

[
2c220 − κ−2

0 (2c220 + c2)
]]

,

σ13 = k2h2ρ0
[
B1

[
4c220(1 − κ−2

0 ) − c2
] + i B3kh

[
2c220 − κ−2

0 (2c220 + c2)
]]

,

(54)
or, rewritten in terms of ε and ζ,

σ33

ε2μ0
= −B3ζ

2 − i B1
[
2 − κ−2

0 (2 + ζ2)
]
ε,

σ13

ε2μ0
= B1

[
4(1 − κ−2

0 ) − ζ2
] + i B3

[
2 − κ−2

0 (2 + ζ2)
]
ε.

(55)

These formulae coincide with the two-term expansion of the exact solution (52).
Thus, the validity of the asymptotic results in Sect. 3 is confirmed.

Let us now test the conditions in [1] in a similar manner. In case of the displace-
ments (48) the relation (6) takes the form

σ33 = −h2ρ0
[
i B1k3h(4c220 − c2) + B3c2k2

]
1 + k2h2(1 − 2κ−2

0 )
,

σ13 = h2ρ0
[
B1k2(4c220(1 − κ2

0) − c2) + i B3kh(1 − 2κ−2
0 )

]
1 + k2h2(1 − 2κ−2

0 )
,

(56)

or, expanding the latter in ε,

σ33

ε2μ0
= −B3ζ

2 − i B1
[
4(1 − κ−2

0 ) − ζ2
]
ε + B3ζ

2(1 − 2κ−2
0 )ε2 + · · · ,

σ13

ε2μ0
= B1

[
4(1 − κ−2

0 ) − ζ2
] + i B3ζ

2(1 − 2κ−2
0 )ε

+B1(1 − 2κ−2
0 )

[
4(κ−2

0 − 1) + ζ2
]
ε2 + · · · .

(57)

These conditions coincide with the asymptotic expansion of the exact solution (52)
only at leading order. This means that the effect of the underlined terms in (6) appears
only at next order; in doing so, it is different from O(ε) correction in the asymptotic
expansion (52). As an illustration, in Fig. 3 for ν = 0.3 we plot the normalized
coefficients χE

k3 and χB
k3, k = 1, 3, at ε-terms in (52) and (57). They are
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Fig. 3 Comparison of coefficients at ε-terms

χE
33 = 2 − κ−2

0 (2 + ζ2), χB
33 = 4(1 − κ−2

0 ) − ζ2,

χE
13 = 2 − κ−2

0 (2 + ζ2), χB
13 = ζ2(1 − 2κ−2

0 ).
(58)

5 Conclusion

In this paper, we derive an asymptotic correction to the leading order effective bound-
ary conditions for a coated elastic half-space. The derived conditions are tested by
comparison with the exact solution of a plane time-harmonic problem. As a result,
the formulation in [6] is validated at leading order, whereas its corrections proposed
in [1] appears to be asymptotically inconsistent. The obtained conditions are of gen-
eral interest for elastodynamics, e.g. for developing refined asymptotic models for
surface waves, see [17, 18]. The latter provide a useful framework for modelling
coated solids subject to high-speed moving loads, see [19, 20].
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Appendix

The constants in (49) are

A1 = h
N1

D
, A2 = ekhαh

N2

D
, A3 = −h

N3

D
, A4 = −ekhβh

N4

D
, (59)

where
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N1 = i B1
(
ekhα(D1αβ + D2γ

4) − 2ekhβαβγ2
)

−B3β
(
ekhα(D2αβ + D1γ

4) − 2ekhβγ2
)
,

N2 = i B1
(
D1αβ − 2ekh(α+β)αβγ2 − γ4D2

)
+B3β

(
D1γ

4 − D2αβ − 2ekh(α+β)γ2
)
,

N3 = i B3
(
ekhβ(D3αβ + D4γ

4) − 2ekhααβγ2
)

+B1α
(
ekhβ(D4αβ + D3γ

4) − 2ekhαγ2
)
,

N4 = i B3
(
D3αβ − 2ekh(α+β)αβγ2 − γ4D4

)
−B1α

(
D3γ

4 − D4αβ − 2ekh(α+β)γ2
)
,

and
D = k

[
8ekh(α+β)αβγ2 + D2D4(α

2β2 + γ4) − D1D3αβ(1 + γ4)
]
,

(60)

with

D1 = 1 + e2khβ, D2 = 1 − e2khβ, D3 = 1 + e2khα, D4 = 1 − e2khα. (61)
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