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This book is dedicated to

Professor Leonid I. Manevitch

On the occasion of His 80th birthday



Preface

This volume is a collection of papers contributed by colleagues and disciples as a
tribute to eminent scientist, Prof. Leonid Isakovich Manevitch on the occasion of
his 80th birthday. The researches of Prof. Manevitch cover various fields of
mechanics and physics, in particular, Mechanics of Solids, Nonlinear Dynamics,
Polymer Materials and Nanostructures, Condensed Matter Mechanics and Physics
(L. I. Manevitch’s scientific achievements are outlined in the Appendix to this
volume).

Working as a Professor at Dnepropetrovsk University (Ukraine) and later as
a Researcher and Head of Laboratory of Polymer Physics and Mechanics in
N. N. Semenov Institute of Chemical Physics in Moscow, he brought up many
pupils and created well-known and highly branched scientific school that made a
significant contribution to the aforementioned fields of science.

This book contains articles by well-known scientists who actively work in the
fields where Prof. Manevitch was very active over almost six decades.
Geographically, this volume covers researches from Canada, France, Germany,
Israel, Italy, Poland, Russia, Ukraine, UK, and USA. It includes 27 articles divided
into the following sections:

I. Stationary and nonstationary dynamics of oscillators and oscillatory chains;
II. Molecular dynamics of polymer crystals and nanostructures;
III. Condensed matter mechanics and physics;
IV. Theory of beams, plates, and shells;
V. Theory of elasticity and thermo-elasticity.

Appendix contains short survey of scientific achivements of L. Manevitch,
prepared by I. Andrianov, O. Gendelman, A. Manevich, Yu. Mikhlin and
V. Smirnov.

vii



We believe that this Festschrift will be of great interest to researchers and
practitioners in the abovementioned areas.

Köln, Germany Igor V. Andrianov
Haifa, Israel Oleg V. Gendelman
Dnepr, Ukraine Arkadiy I. Manevich
Kharkov, Ukraine Yuri V. Mikhlin
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Part I
Stationary and Non-stationary Dynamics

of Oscillators and Oscillatory Chains



Wide Frequency Higher-Order Dynamic
Model for Transient Waves in a Lattice

Igor V. Andrianov, Vladyslav V. Danishevskyy, Julius D. Kaplunov
and Bernd Markert

Abstract Propagation of transient waves through a periodic elastic lattice is con-
sidered. Asymptotic solutions are used to describe the effective dynamic properties
of the structure at frequencies close to the continuous and anti-continuous limits.
Matching the asymptotic solutions by two-point Padé approximants, we derive a
new dynamic equation that is applicable in a wide frequency range. An advantage
of the proposed approach is that all the macroscopic parameters can be determined
explicitly in terms of the microscopic properties of the medium. Dispersion diagram
is evaluated and the propagation of transient waves induced by pulse and harmonic
loads is studied. The developed analytical model is verified by comparison with data
of numerical simulations.

1 Introduction

In the last years there has been a rapid growth in research interest in the dynamic
response of multi-scale heterogeneous media and structures. This increased atten-
tion is motivated, primarily, by remarkable properties of mechanical composites

I. V. Andrianov · B. Markert
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4 I. V. Andrianov et al.

and metamaterials (see, for example, a review by Zheludev and Kivshar [1]). The
potential engineering applications include noise control devices, vibration reduction
and seismic isolation, negative refraction and flat lenses, waves focusing materials,
acoustic diodes, acoustically invisible cloaks. Recent progress in the field is outlined
by Maldovan [2] and Hussein et al. [3].

The specific dynamic behaviour of heterogeneous media can not be described
properly in terms of the classical continuous elasticity, so refined gradient approaches
are required. These approaches can be interpreted as either phenomenological or
analytical.

Phenomenological models are based on allowing the medium additional internal
degrees of freedom (e.g., considering a system of micro particles and postulating
some interactions between them). The origins of the phenomenological elasticity
were introduced by Cosserats and Le Roux more than 100 years ago. Later on,
various models were developed and specified; for a detailed review of the subject we
refer to Askes and Aifantis [4]. A disadvantage of the phenomenological approaches
is that the relationships between micro- and macroscale properties are not known a
priori. Hence, the macroscopic parameters of the model are usually expected to be
deduced from experimental observations.

Analytical approaches address directly non-local (e.g., discrete) problems and can
employ different types of the homogenisation procedure [5]. Using non-local models
(for example, a lattice with a physically justified interaction potential) gives a possi-
bility to predict relationships between the microscopic and macroscopic parameters
on a rigorous theoretical basis. Transformation of non-local models into gradient
ones can be justified by a continuous approximation of corresponding integral or
pseudo-differential operators [6].

The approaches discussed above allows evaluation of higher-order dynamic equa-
tions that are applicable only in some limiting cases, namely, in the vicinity of reso-
nant frequencies of the unit cells. Here we propose a new macroscopic model, which
can describe the behaviour of a heterogeneous medium in a wide frequency range.
The developed procedure is based on asymptotic solutions obtained at the low- and
at the high-frequency limits, which are further matched using the method of two-
point Padé approximants [7]. The derived higher-order equation captures precisely
the dispersive properties of the medium. Moreover, it can also be applied to solving
macroscopic boundary value problems.

As an illustrative example, we consider the dynamic response of a monatomic
lattice subjected to external pulse and harmonic loads. Discrete lattice-type mod-
els are widely used to describe vibrations in crystals [8], in foams [9], in cellular
structures and bone tissues [10]. Some novel applications include modelling of poly-
mer molecules, atomic lattices (e.g., graphene), and nanocrystalline materials [11,
12]. Discrete models can also appear in engineering, e.g., for simulating lightweight
truss structures with attached masses (like overhead power cables) or interactions of
railway coaches.

The important feature of the pulse load problem is that during the transient wave
propagation the coupling forces between the particles can exceed sufficiently the
magnitude of the initial excitation. This effect is caused by a spatial redistribution
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Fig. 1 Monatomic lattice
under consideration 1 2 3 4

X
n

l

of energy due to the heterogeneity of the structure and it can never be observed in
homogeneous media. One of the earliest studies of this problem was presented by
Filimonov et al. [13]. Some recent results can be found, for example, in papers by
Metrikine [14], Askes et al. [15], Andrianov et al. [16] and references therein. The
analytical model developed in our study exhibits excellent agreement with the direct
numerical solution.

The paper is organised as follows. In Sect. 2, we consider dispersion properties
of the lattice and obtain the higher-order dynamic equation. In Sect. 3, the proposed
macroscopicmodel is used to study transientwaves propagation.Concluding remarks
are given in Sect. 4.

2 Monatomic Lattice and the Higher-Order Dynamic
Equation

Let us consider an infinite lattice consisting of identical particles of the mass m
connected by massless springs of rigidity c (Fig. 1). The equation of motion reads

m
d2un
dT 2

+ c(2un − un+1 − un−1) � 0, (1)

where u is the displacement; n is the index number of the particle, n � 0,±1,±2, . . .;
T is the time variable. The time-harmonic wave is represented by the expression

u � A exp(−ikn)exp(i � T ), (2)

where A is the amplitude; k is the non-dimensional wave number; � is the angular
frequency. Substituting (2) into (1), we obtain the dispersion relation as follows

ω2 � 4sin2(k/2), (3)

where ω is the non-dimensional frequency, ω2 � �2 m/c.
A simple analysis of formula (3) shows that wave propagation is allowed in the

frequency range 0 < ω < 2. At the long-wave (so called continuous) limit, as
k → 0, the frequency vanishes, ω → 0, so no vibrations occur and the motion
is simply a rigid body translation. The opposite (anti-continuous) limit, k → π,
describes a standing wave with zero group velocity and non-zero frequency, ω → 2.
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Fig. 2 Dispersion relation
of the lattice. Solid
curves—exact solution (3),
circles—Padé approximant
(6)

This regime can be considered as a “hidden” or “trapped” mode, in the sense that no
energy is transmitted onmacro scale, but onmicro scale the lattice exhibits saw-tooth
oscillations. As ω > 2, the wave number k becomes complex. Then the spectrum of
the lattice exhibits a band gap and the signal decays exponentially with an attenuation
coefficient equal to the imaginary part of the wave number.

In the limiting cases discussed above, the dispersion relation (3) can be expressed
by asymptotic relations

ω2 ∼ k2 as k → 0, (4)

ω2 ∼ 4 − (π − k)2 as k → π. (5)

Matching expressions (4) and (5) with the help of two-point Padé approximants [7],
we obtain

ω2 ≈ a1k2 + a2k4

1 + a3k2 + a4k4
. (6)

Here the coefficients a1, . . . , a4 are determined in such a way that the leading terms
of the power series expansions of Padé approximant (6) at k → 0 and k → π must
coincide with formulas (4) and (5) up to O

(
k2

)
, O

[
(π − k)2

]
accordingly. Fulfilling

this condition, we derive

a1 � 1, a2 � 64 − π4

π6
, a3 � π2 − 8

4π2
, a4 � 64 + 4π2 − π4

4π6
.

In Fig. 2, formula (6) is compared with the exact dispersion relation (3). We note
that the numerical results are essentially indistinguishable.

For any real k, the denominator of the derived Padé approximant does not equal
zero. Therefore, expression (6) can be rewritten as follows
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ω2 − a1k
2 − a2k

4 + a3ω
2k2 + a4ω

2k4 � 0. (7)

Let us introduce the continuous coordinate X scaled in such a way that X � nl at
the nodes of the lattice, where l is the distance between the particles. Using non-
dimensional variables, the time-harmonic solution (2) reads

u � A exp(−ikx) exp(i ω t),

where x � X/ l; t � T (c/m)1/2; k � 2π l/L , L is the wave length. Then one can
easily show

∂2u

∂x2
� −k2u,

∂4u

∂x4
� k4u,

∂2u

∂t2
� −ω2u,

∂4u

∂x2∂t2
� ω2k2u,

∂6u

∂x4∂t2
� −ω2k4u. (8)

Making use of expressions (8), the dispersion relation (7) allows us to obtain a higher-
order differential equation that describes wave propagation in the entire region of the
wave number 0 ≤ k ≤ π:

a1
∂2u

∂x2
− ∂2u

∂t2
− a2

∂4u

∂x4
+ a3

∂4u

∂x2∂t2
− a4

∂6u

∂x4∂t2
� 0. (9)

Equation (9) includes three dispersive terms and may be considered as a general-
isation of double-dispersive equations, which were employed by many authors to
simulate elastic waves in waveguides with a free lateral surface (see, for example,
[17] and references therein). In the theory of waves in structured solids, double- and
triple-dispersion equations can be obtained by imposing some additional internal
degrees of freedom on the system (see, for example, a review by Berezovski et al.
[18]). It should be noted that such non-local models include a number of phenomeno-
logical parameters, which for real materials remain usually unknown. Whereas, the
approach proposed in this paper allows us to evaluate all the coefficients of Eq. (9)
theoretically basing on the information about the internal structure of the medium
and its properties. The developed macroscopic model is able to describe the long-
wave case and, at the same time, it is valid in a high-frequency domain in the vicinity
of the stop-band threshold.

3 Dynamic Response to External Loads

Equation (9) can be applied to solving boundary value problems. As a benchmark
test, let us study the dynamic response of the semi-infinite (x ≥ 0) lattice to an
external load applied at the edge x � 0.

We consider two types of excitations: a pulse load and a harmonic load. The initial
and the boundary conditions read

u|t�0� ∂u

∂t
|t�0� 0; (10)
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a1
∂u

∂x
− a2

∂3u

∂x3
+ a3

∂3u

∂x∂t2
− a4

∂5u

∂x3∂t2
|x�0� −p0(t)l; (11)

u → 0,
∂u

∂x
→ 0 as x → ∞; (12)

where the function p0(t) describes the external excitation. For the pulse load p0(t) �
p δ(t) and for the harmonic load p0(t) � psin(ω t). Here p � P/(cl); P is the
amplitude of the external force; δ(t) is the Dirac delta function.

Boundary conditions (11), (12) come naturally from the physical reasons. It
should be noted that Eq. (9) includes the fourth-order spatial derivatives and, conse-
quently, additional boundary conditions are required. This is a typical difficulty that
arises when higher-order models, derived originally for infinite media, are applied
to bounded domains. Kaplunov and Pichugin [19] have shown that general solutions
of the higher-order models combine contributions of long wave solutions associated
with the macroscopic problem and short wave solutions localised in the vicinity
of boundaries. The latter are induced particularly by the presence of higher-order
derivative terms. The short wave solutions describe extraneous boundary layers that
have no physical sense. Therefore, additional boundary conditions for Eq. (9) should
be formulated in such a way to eliminate spurious short wave solutions. For the
monatomic lattice this principle yields:

∂2u

∂x2

∣
∣∣∣∣
x�0

� 0. (13)

Problem (9)–(13) can be solved by applying the Laplace transform

us(x, s) � ∞∫
0
u(x, t) exp(−st)dt.

In the Laplace domain we obtain

−s2us +
(
a1 + s2a3

)d2us
dx2

− (
a2 + s2a4

)d4us
dx4

� 0; (14)

(
a1 + s2a3

)dus
dx

− (
a2 + s2a4

)d3us
dx3

∣∣∣∣
∣
x�0

� −pl for the pulse load, (15)

(
a1 + s2a3

)dus
dx

− (
a2 + s2a4

)d3us
dx3

∣∣
∣∣∣
x�0

� −pl
ω

s2 + ω2
for the harmonic load;

d2us
dx2

∣∣∣∣∣
x�0

� 0; (16)

us → 0,
dus
dx

→ 0 as x → ∞. (17)
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A general solution of Eq. (14) that meets the boundary conditions (17) read

us � C1 exp(−κ1x) + C2 exp(−κ2x). (18)

Substituting (18) into (14), we get a characteristic equation for κ1, κ2 as follows

(
a2 + s2a4

)
κ4 − (

a1 + s2a3
)
κ2 + s2 � 0. (19)

In order to implement conditions (17), we have to choose two positive roots of
Eq. (19) such that Re(κ1, κ2) > 0 for Re(s) > 0. Then we obtain

κ1,2 �

√√√√a1 + s2a3 ±
√
s4

(
a23 − 4a4

)
+ 2s2(a1a3 − 2a2) + a21

2
(
a2 + s2a4

) . (20)

Substituting (18), (20) into the boundary conditions (15), (16) provides us with a
system of two linear equations for the constants C1, C2, which yields for the pulse
load

C1 � κ2 pl

D1 + s2D2
, C2 � −κ21

κ22
C1;

and for the harmonic one

C1 � κ2 pl ω(
D1 + s2D2

)(
s2 + ω̄2

) , C2 � −κ21

κ22
C1;

where D1 � −a1κ21 +
(
a1 − a2κ21

)
κ1κ2 + a2κ21κ

2
2, D2 � −a3κ21 +

(
a3 − a4κ21

)
κ1κ2 +

a4κ21κ
2
2.

The inverse Laplace transform is determined by the integral

u(x, t) � 1

2π i

γ+i∞
∫

γ−i ∞
us(x, s) exp(st)ds. (21)

Here γ is a real positive constant that has to be larger than the real parts of all
singularities of the function us . Since the derived solution has no singularities at the
right half-plane of the complex s-plane, we may choose any positive value of γ. In
the examples below integral (21) is evaluated numerically inMaple with γ � 0.1.

Numerical results for the pulse load problem are presented at Fig. 3
(t � 20, p � 1). The analytical solution is verified by a numerical simulation of
the discrete lattice performed by the Runge-Kutta fourth-order method. Three types
of higher-order boundary conditions are examined. Additional solutions are eval-
uated, when instead of Eq. (13) one assumes ∂u/∂x |x�0� 0 or ∂3u/∂x3|x�0� 0.
We can observe that Eq. (13) ensures the best accuracy of the obtained results (see
Fig. 3b). The case of the harmonic load is presented at Fig. 4

(
ω2 � 2

)
.
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(a) (b)

(c)

Fig. 3 Dynamic response of the lattice to the pulse load. Solid curves—analytical solution employ-
ing different boundary conditions; dots—data of the numerical simulation. a ∂u/∂x |x�0� 0, b
∂2u/∂x2|x�0� 0, c ∂3u/∂x3|x�0� 0

Fig. 4 Dynamic response of the lattice to the harmonic load. Solid curves—analytical solution;
dots—data of the numerical simulation
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It should be noted that the profile of the transientwaves in the lattice is qualitatively
similar to the wave fronts appearing in plates and shells (see, for example, Kaplunov
et al. [20] and references therein). This displays an analogue between the propagation
of elastic waves in heterogeneous media and in thin wave guides [21].

4 Conclusions

Anew approach to predict the dynamic behaviour of periodically heterogeneous elas-
tic structures is proposed. As an illustrative example, amonatomic latticewas consid-
ered. Asymptotic solutions were employed to approximate the dispersion properties
at the low- and high-frequency limits. Matching the limiting solutions by the method
of two-point Padé approximants, we have derived a new higher-order dynamic equa-
tion valid in the entire frequency range. The developed model encapsulates informa-
tion about the microstructure and, in contrary to many phenomenological theories
of gradient elasticity, all its coefficients can be determined on a rigorous theoretical
basis.

The proposed macroscopic equation captures the dispersive properties of the lat-
tice. Moreover, it can also be applied to solving boundary value problems. The
propagation of transient waves excited by pulse and harmonic loads was studied. An
important feature of the pulse load problem is that, due to a spatial redistribution of
energy, the internal forces arising in a heterogeneous medium can be higher than the
magnitude of the initial excitation. This effect is crucial for the dynamic failure of
structures. The developed analytical model demonstrates excellent agreement with
the direct numerical solutions.

The proposed approach can be further generalised to continuous and multi-
dimensional structures.
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Analysis of the Beating States in the
System of Nonlinearly Coupled
Parametrically Forced Oscillators

V. Kislovsky and Y. Starosvetsky

Abstract Present study focuses on the special response regimes of resonant energy
transfer emerging in the system of two nonlinearly coupled, parametrically forced
oscillators. Assuming the 1:1 internal resonant interaction we find the special condi-
tions on the system parameters leading to the formation of these special dynamical
states in the un-damped as well as the weakly damped cases. Numerical simulation
of the model under consideration is in a complete agreement with the analytical
predictions derived in the study.

1 Introduction

The well-known phenomenon of resonant energy transfer [1–10] remains one of the
most intensively studied subjects in various aspects of applied physics and engineer-
ing. This phenomenon is ubiquitous in a wide variety of physical and engineering
problems. Obviously, the predictive capacity of the well-known analytical and semi-
analytical methods applied for the analysis of nonstationary system response regimes
is quite limited.

Thus the common approacheswhich have been proven to be successful in studying
theweakly nonstationary processes appear to be quite inappropriate for the analysis of
highly nonstationary regimes [1]. Quite recently, the concept of Limiting Phase Tra-
jectories (LPTs) has been proposed by Manevitch et al. [11–14] which was intended
to analyse the regimes of resonant energy transfer [11–22].

In the present paperwe analyse the resonantmechanismsof formation anddestruc-
tion of special states of recurrent energy transfer exhibited by the two-oscillatormodel
subject to a parametric excitation. Using the multi-time-scale expansion under a 1:1
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resonance conditions we derive the slow flow model. The derived slow model is
analysed further and the special conditions on the system parameters, which guaran-
tee the existence of special beating states, are obtained for the undamped as well as
the damped cases. We note that the results of numerical simulations of the original
system are found to be in a perfect agreement with the analysis.

2 Model

The basic model under consideration comprises the system of two parametrically
forced and nonlinearly coupled oscillators. The non-dimensional equations ofmotion
read

ẍ1 + ελẋ1 + [(1 + εσ ) − εA cos(2t)]x1 � ε(x2 − x1)
3

ẍ2 + ελẋ2 + [(1 + εσ ) + εA cos(2t)]x2 � ε(x1 − x2)
3 (1)

where μ1, μ2 are the parameters of nonlinear coupling, σ is the frequency detuning
parameter, A stands for the amplitude of the parametric forcing and ε is a formal
small system parameter (0 < ε � 1) which scales the magnitude of the damping,
forcing, frequency mismatch and the coupling terms.

The ultimate goal of the present study is to analyze the mechanisms of formation
and destruction of some special regimes of synchronized beating states manifested
by the complete energy exchanges between the two parametrically forced oscillators.

3 Slow Flow Model

To derive the slow flow model we follow the standard procedure (see e.g. [1–10])
of complexification and the regular multi-scale expansion. To this end the complex
variables are introduced as follows

ψ1 � ẋ1 + i x1, ψ2 � ẋ2 + i x2. (2)

Substituting (2) into (1) we use the multi-scale expansion in the form

ψi � ψi0(τ0, τ1) + εψi1(τ0, τ1) + O(ε2),
∂

∂t
� ∂

∂τ0
+ ε

∂

∂τ1
+ . . . . (3)

Following the steps of the standard multi-scale analysis [1–10] up to the first order
(O(ε)) one arrives at the following slow flow model,
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ψi0 � ϕi (τ1) exp(iτ0), i � 1, 2

ϕ′
1 � iσ

2
ϕ1 +

i A

4
ϕ∗
1 − λ

2
ϕ1 − 3i

8
|ϕ2 − ϕ1|2(ϕ2 − ϕ1)

ϕ′
2 � iσ

2
ϕ2 − i A

4
ϕ∗
2 − λ

2
ϕ2 − 3i

8
|ϕ2 − ϕ1|2(ϕ1 − ϕ2) (4)

4 Non-dissipative Case (λ � 0)

Let us start the analysis from a non-dissipative case. It can be shown that for the
non-dissipative case System (4) possesses the following conserved quantities

M � ϕ1ϕ
∗
2 + ϕ∗

1ϕ2

H � σ
(|ϕ1|2 + |ϕ2|2

)
+

A

4

(
ϕ2
1 + ϕ∗2

1 − ϕ2
2 − ϕ∗2

2

)
+
3

8
|ϕ2 − ϕ1|4. (5)

It is convenient to introduce the slow-flow model coordinates in their polar form

ϕk � Nk(τ1) exp(iδk(τ1)), k � 1, 2 (6)

Further, using the conserved quantity M, one arrives at the following important
relation

N1N2 cos
 � M, 
 � δ1 − δ2 (7)

It is worthwhile noting that the regimes of complete energy exchanges between
the coupled oscillators must satisfy M � 0, as these special regimes recurrently
path through the localized states (i.e. N1

(
τ ∗
1

) � 0, N2
(
τ ∗
1

)
> 0 and N1

(
τ ∗∗
1

)
>

0, N2
(
τ ∗∗
1

) � 0). This observation immediately brings us to the following stationary
values of the relative phase.


 � π

2
+ πn, n � 0,±1,±2, . . . (8)

Using M � 0 one can easily show that the second conserved quantity (H) takes the
following simplified form,

H � σN +
A

2
N cos(2δ1) +

3

8
N 2 (9)

where N � N 2
1 + N 2

2 . In Fig. 1 we plot the phase portrait (N vs. δ1). As one can
infer from the observation of the phase portrait of Fig. 1, there exist several types
of beating regimes (BR). Let us start with the simplest BR which corresponds to
the fixed point of the phase portrait (Fig. 1). In fact this regime is characterized by
the stationarity of the norm

(
N (τ1) � N 2

1 + N 2
2 � const

)
and is denoted on Fig. 1
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Fig. 1 Phase portrait of N versus δ1. System parameters: A � 1, σ � 0

as Nst . This regime can be attributed to the classical beating response where equal
amount of energy is being exchanged between the coupled, parametrically forced
oscillators.

We illustrate the time-histories of this response in Fig. 2a. Slight mismatch from
the fixed point obviously brings to the modulations of N (t). Two types of the trajec-
tories can be distinguished in this case (i.e. phase locked and those with the drifting
phase).Additional special trajectory,which separates between the phase locked orbits
and the orbits with the phase drift, is denoted with the bold line on the phase portrait
of Fig. 1. This trajectory is a separatrix which is characterized by the infinitely long,
complete energy exchange between the oscillators. In Fig. 2 we illustrate the time
histories of the slow and the full models corresponding to the four distinct beating
states of the system namely, stationary (i.e. N (τ1) � const) (Fig. 2a), near stationary
(Fig. 2b), essentially nonstationary (Fig. 2c) and finally a close to separatrix (Fig. 2d)
beating state.

The fixed point of the diagram of Fig. 1 can be calculated directly from (9).
Thus setting cos(2δ1) � ±1 in (9) one arrives at the following expressions for the
stationary values (fixed point) of N , δ1 and H � hST

N1ST � 2

3
{A − 2σ }, δ1ST � π

2
− δ2ST

N2ST � −2

3
{A + 2σ }, δ2ST � πk, k � 0,±1,±2, . . . . (10)

From the results of (10) one can directly obtain the conditions for the existence of
stationary beating regimes (SBS), which read

A/2 > σ −1st stable BS (N � N1ST )

−A/2 > σ −2nd unstable BS (N � N2ST ).
(11)
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Fig. 2 Time histories of the original model (1) (green thin-line) and the slow-flow model (4) (bold
red line), a stationary regime (N � NST ), b weakly nonstationary, c essentially nonstationary, d
near separatrix

Analytical description of the beating states under consideration can be further derived
from the slow flow model (4) using (8). Thus, substituting (6) into (4) and splitting
into the real and imaginary parts one has

δ′
1 � σ

2
+

A

4
cos(2δ1) +

3

8

(
N 2
1 + N 2

2

)

δ′
2 � σ

2
− A

4
cos(2δ2) +

3

8

(
N 2
1 + N 2

2

)

N ′
1 � A

4
N1 sin(2δ1) ∓ 3

8

(
N 2
1 + N 2

2

)
N2

N ′
2 � − A

4
N2 sin(2δ2) ± 3

8

(
N 2
1 + N 2

2

)
N1. (12)

Using (8) in (12) and performing some trivial algebraic manipulations one arrives at
the following reduced model,
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N ′ � A

2
sin(2δ1)N

δ′
1 � σ

2
+

A

4
cos(2δ1) +

3

8
N . (13)

Obviously enough, the dynamics of (13) is depicted by (9) and has been discussed
above. Let us consider the third and the fourth equations of (12) under the assumption
(8),

N ′
1 � A

4
N1 sin(2δ1) ∓ 3

8

(
N 2
1 + N 2

2

)
N2

N ′
2 � A

4
N2 sin(2δ1) ± 3

8

(
N 2
1 + N 2

2

)
N1. (14)

Analytical solution of the classical BR shown in Fig. 2a is derivable from (14). Noting
that this BS satisfies

(
N � NST , δ1 � π

2 + πn
)
we end up with the following linear

system:

N ′
1 � ∓3

8
NST N2, N ′

2 � ±3

8
NST N1 (15)

System (15) can be immediately replaced with the second order ODE (linear oscil-
lator),

N ′′
1 +

(
9

64
N 2

ST

)
N1 � 0 (16)

Solution of (16) yields the harmonic response for both amplitudes (N1, N2)

N1 � √
NST cos

(
3

8
NST τ1

)
, N2 � √

NST sin

(
3

8
NST τ1

)
(17)

Thus recalling that the solution of the separatrix corresponds to the special case of
H � 0 which satisfies,

N � −8

3
σ − 8A

6
cos(2δ1) (18)

We complete the present chapter with the computation of simple periodic regimes of
(1). To this end we resort to the complex form (4). Further, seeking for the stationary
solutions we set both time derivatives of (4) to zero which yields the following set
of equations,

0 � iσ

2
ϕ1 +

i A

4
ϕ∗
1 − λ

2
ϕ1 − 3i

8
|ϕ2 − ϕ1|2(ϕ2 − ϕ1)

0 � iσ

2
ϕ2 − i A

4
ϕ∗
2 − λ

2
ϕ2 − 3i

8
|ϕ2 − ϕ1|2(ϕ1 − ϕ2) (19)
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Further analysis of (19) is easier in the new set of complex coordinates

w � ϕ1 − ϕ2, z � ϕ1 + ϕ2 (20)

Substituting (20) into (19) one has,

σw +
A

2
z∗ +

3

2
w|w|2 � 0, σ z +

A

2
w∗ � 0 (21)

Solutions of (21) can be readily obtained, reading the following

(1) 0<σ <
A

2
: |w| �

[
A2 − 4σ 2

6σ

]1/2

, |z| � A

2σ

[
A2 − 4σ 2

6σ

]1/2

(2) σ < − A

2
: |w| �

[
A2 − 4σ 2

6σ

]1/2

, |z| � − A

2σ

[
A2 − 4σ 2

6σ

]1/2

ϑz + ϑw � πm (22)

and in the original coordinates,

(23)

ϕ1 � −|w|
2

[
A

2σ
exp (−iϑw) − exp (iϑw)

]
, ϕ2

� −|w|
2

[
A

2σ
exp (−iϑw) + exp (iϑw)

]
, ϑw

∈ [0, 2π ]

We note that the solutions of (23) exist only in the certain ranges of frequency
detuning parameter 0<σ < A

2 and σ < − A
2 . In Fig. 3 we plot the time histories of

the stationary (simple periodic) regimes of the original model (1) corresponding to
the analytical solutions given by (23). Stability analysis as well as the bifurcation
structure of these periodic regimes is beyond the scope of the present paper and will
be published elsewhere.

5 Dissipative Case

It can be shown that for the dissipative case System (4) satisfies the following first
order ODE,

dM

dτ1
� −λM, M � ϕ1ϕ

∗
2 + ϕ∗

1ϕ2. (24)

Thus as is obvious from (24), M → 0 as τ1 → ∞. In what follows, we demonstrate
the emergence of special, stationary BRs as attractive/repelling solutions. Again
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Fig. 3 Simple periodic regimes of the original model. System parameters: A � 1.5, ε� 0.05 (1)
(Left Panel) (σ � 0.5) (Right Panel) (σ� − 1)

seeking for the steady-state beating response regimes (BRs) we study the dynamics
of (4) satisfying M � 0. This immediately yields the following stationary solutions
of the relative phase,


 � π

2
+ πn, n � 0, 1, 2, . . . (
 � δ1 − δ2). (25)

Further, using (25) we write down (4),

N ′
1 � A

4
N1 sin(2δ1) ∓ 3

8

(
N 2
1 + N 2

2

)
N2 − λ

2
N1

N ′
2 � − A

4
N2 sin(2δ2) ± 3

8

(
N 2
1 + N 2

2

)
N1 − λ

2
N2

δ′
1 � σ

2
+

A

4
cos(2δ1) +

3

8

(
N 2
1 + N 2

2

)

δ′
2 � σ

2
− A

4
cos(2δ2) +

3

8

(
N 2
1 + N 2

2

)
. (26)

Using (25) in (26) and some rather trivial algebraic manipulations, System (26) can
be further reduced and reads,

N ′ �
(
A

2
sin(2δ1) − λ

)
N

δ′
1 � σ

2
+

A

4
cos(2δ1) +

3

8
N . (27)
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The stationary BRs of (27) read the following,

N1ST � −2

3

{
2σ −

√
A2 − 4λ2

}
, δ1ST � 1

2

(
π − arcsin

(
2λ

A

))

N2ST � −2

3

{
2σ +

√
A2 − 4λ2

}
, δ2ST � 1

2
arcsin

(
2λ

A

)
. (28)

where the pair (δ1ST , N1ST ) stands for the stable stationary BS solution (stable focus)
while (δ2ST , N2ST ) for the unstable one (saddle). From (28) one can directly infer
the conditions for the existence of the BS solutions,

Stable BS solution: A2 ≥ 4
(
σ 2 + λ2

)
, σ > 0

A2 ≥ 4λ2, σ < 0

Un - stable BS solution: A2 ≤ 4
(
σ 2 + λ2

)
, σ < 0

. (29)

As is evident from (29) both stable and unstable BR solutions coexist in the range

2λ ≤ A ≤ 2
(
σ 2 + λ2)1/2, σ < 0. (30)

Analytical description of the stationary beating states can be derived from (26) using
(28) which reduces to the solution of the following second order linear ODE,

N ′′
1 +

(
9

64
N 2

ST

)
N1 � 0. (31)

The solution of (31) reads,

N1 � √
NST cos

(
3

8
NST τ1

)
, N2 � √

NST sin

(
3

8
NST τ1

)
. (32)

As is clear from the analysis brought above, there exists a single stable and unstable
beating regimes (SBR and UBR). Additionally, it can be shown that the stationary
response regimes corresponding to a simple periodic motion do not exist in the
dissipative case under consideration. In Fig. 4 (left panel) we plot the phase plane
corresponding to the reduced order model (27) and in Fig. 4 (right panel) we plot
the time histories of the response of the original model (1) (for the same system
parameters). As is clear from the results of Fig. 4, starting a bit off the stable beating
regime the system is being gradually attracted to this special dynamical state ending
up with recurrent complete energy exchanges between the parametrically forced
oscillators. This result of numerical simulation of the full model is in a complete
agreement with the analytical model (see the right panel of Fig. 4).
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Fig. 4 (Left Panel) Phase plane, System (27) (Right Panel) Stable beating response of the original
model. System parameters: A � 0.55, σ � −0.3, ε � 0.05

6 Conclusions

We analysed the special mechanisms of formation and destruction of special beating
regimes exhibited by the two-oscillator model subject to a parametric excitation.
We separately treated the non-dissipative as well as the weakly dissipative cases.
In the former we presented the analysis for the special family of beating regimes
(BRs) characterized by the complete energy exchange between the coupled oscilla-
tors. Among all the regimes of nonlinear beats characterized by the complete energy
exchanges between the oscillators, we singled out the special types of regimes satis-
fying

(
N � |ϕ1(τ1)|2 + |ϕ2(τ1)|2 � const

)
. We derived the formation of both stable

and unstable regimes of that kind which have been characterized by the uniform,
recurrent excitations emerging on each parametrically forced oscillator. Additional,
special beating regime which has been revealed in the analysis is the regime man-
ifested by a one-cycle, complete energy exchange between the oscillators which
occurs in the infinitely long time. Along with the beating states of the system we
also analysed the family of (simple) localized periodic regimes exhibiting the in- and
out-of-phase motion.We found analytically the ranges in the system parameter space
for their existence. In the weakly dissipative case we have shown analytically that the
only, non-trivial, steady state solution emerging in the system under consideration is
the regime of nonlinear beats manifested by the complete energy exchanges between
the parametrically forced oscillators. We depicted these regimes analytically and
found the necessary conditions on the system parameters for the existence of these
unique, stable solutions.

Acknowledgements Authors are grateful to Prof. L.I. Manevitch and Dr. M. Kovaleva from N.N.
Semenov Institute of Chemical Physics, Moscow, Russia, for fruitful discussions.
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Is Energy Localization Possible
in the Conditions of Non-local
Acoustic Vacuum?

Irina P. Koroleva (Kikot) and Leonid I. Manevitch

Abstract We present results of analytical and numerical study of planar dynamics
of amembrane consisting of one longitudinal and N transversal strings without a pre-
liminary stretching with uniformly distributed discrete masses. In the previous paper
it was shown that in the most significant case of predominantly transversal dynamics
an effective non-local axial force is formed in longitudinal string and equations of
motion cannot be linearized. Therefore the membrane oscillates in the conditions of
“non-local” acoustic vacuum and can be used as an efficient energy trap. Adequate
analytical description of non-stationary resonance dynamics at such conditions is
achieved in terms of limiting phase trajectories (LPT) corresponding to maximum
possible energy exchange between different parts (clusters) of the membrane. We
have revealed also in these terms the conditions of energy localization in the initially
excited cluster. Analytical results are confirmed by numerical simulation data.

1 Introduction

It was shown recently [1] that in the limit of low energy a fixed-fixed chain of lin-
early coupled particles performing in-plane transverse oscillations possesses strongly
nonlinear dynamics due to geometric nonlinearity, forming a nonlinear acoustic vac-
uum. This designation denotes the fact that the speed of sound as defined in the
sense of classical acoustic theory is zero in that medium, so the resulting equations
of motion lack any linear stiffness components. However a significant feature of the
considered system was the presence of strongly non-local terms in the governing
equations of motion (in the sense that each equation directly involves all particle
displacements), in-spite of the fact that the physical spring-mass chain has only local
(nearest-neighbor) interactions between the particles. These non-local terms consti-
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tute a time- dependent effective speed of sound for this medium, which is completely
tunable with energy. A rich structure of resonance manifolds of varying dimensions
were identified in the nonlinear sonic vacuum, and 1:1 resonance interactions are
studied asymptotically to prove the possibility of strong energy exchanges between
nonlinear modes.

One of distinctive features of the chain without transversal strings was that its
nonlinear normal modes NNMs [2] could be exactly determined in the limit of
acoustic vacuum. Moreover, the analysis has shown that the number of NNMs in this
case was equal to the dimensionality of the configuration space and that no NNM
bifurcations were possible. In addition, the most intensive 1:1 resonance intermodal
interaction was realized by two NNMs with the highest wave numbers. However, the
unstretched string model considered in [1] is in some sense a special case, since one
of the most significant features of dynamical systems with homogeneous potential
is that the number of NNMs may exceed the number of degrees of freedom due to
mode bifurcations [3]. One can expect that such NNM bifurcations will also lead to
drasticmodificationof the non-stationary resonancedynamics of the acoustic vacuum
described by Limiting Phase Trajectories(LPTs) [4], corresponding to maximum
energy exchange between different parts of the system. Thus it is of great interest to
consider an extension of the nonlinear acoustic vacuum developed in [1] so that the
modified system has the capacity to undergo NNM bifurcations. Such a study can
provide us with the opportunity to investigate how these bifurcations can affect the
non-stationary resonant dynamics corresponding to resonant energy exchange and
localization.

First example of localized excitations in many-particle systems in the conditions
of acoustic vacuum was presented in the paper [5]. It was the chain with integer
power elastic characteristic different from unity, and the solitary wave solutions
were obtained. The following studies dealt with solitary waves(compactons) in the
uncompressed granular chain [6] and breathers in purely cubic without [7] or with [8]
anchor spring. In all these cases, as well as in the paper [9], devoted to two-particle
systems, the authors dealt with “local” acoustic vacuum.

Contrary to this, the current paper deals with the case of non-local acoustic vac-
uum, because as we mentioned above, the elastic terms depend on all particle dis-
placements. The case of the membrane with one longitudinal and two transversal
strings questions was considered in our previous paper [10]. Here we present an
extension to much more complicated system with arbitrary finite number of discrete
masses.

2 The Model and Equations of Motion

Lets consider an unstretched membrane with one longitudinal and N transversal
strings with uniformly distributed equal masses (see Fig. 1). The equations of motion
may be presented as
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m
d2Uj

dt2
+ Tj cos θ j − Tj+1 cos θ j+1 = 0, j = 1, . . . , N ,

m
d2Vj

dt2
+ cV 3

j + Tj sin θ j − Tj+1 sin θ j+1 = 0, j = 1, . . . , N , (1)

with Uj , Vj being longitudinal and transversal displacements of jth mass, respec-
tively; θ j is angle between j th segment and its equilibrium position. The effect of
transversal strings is described by cubic term.

The tensile forces are proportional to deformations and may be written as

Tj = K
1

l

[
(Uj −Uj−1) + 1

2l
(Vj − Vj−1)

2

]
,

with l being equilibrium length of one segment and K being stiffness coefficient.
We consider the case when amplitude of transversal oscillations a is much smaller

then equilibrium length, that is ε = a/ l � 1 may be considered as small parameter.
Also we introduce the slow time scale τ0 = εt , because we consider low-frequency
dynamics. Comparing orders of different terms in (1), we obtain for the first equa-
tion that inertial term may be neglected, so the tensile forces in all segments are
approximately equal to each other and therefore are equal to their mean value:

T =< Tj >= 1

N + 1
K

1

2l2

N∑
s=0

(Vs+1 − Vs)
2 (2)

This mechanism of nonlocal force formation was discussed in more detailed in
the paper [1]. Analogous simplification in continuum limit is refered to as Kirchhoff
model [11, 12]. Considering the second equation in system (1), we obtain the fol-
lowing equation system for transversal motion (parameterμ = K

Cl3 describes relation
between longitudinal and transversal string stiffnesses):

d2v j
dτ 2

0

+ v3j
μ

+

N∑
s=0

(vs+1 − vs)2

2(N + 1)

(
2v j − v j+1 − v j−1

) = 0, v0 = vN+1 = 0, (3)

where Vj = εv j , v j are normalized displacements, and ω0 =
√

K
lm .

3 Nonlinear Normal Modes

It was shown in the paper [1] that for oscillatory chain (which corresponds to a
particular case ofmembranewith only one longitudinal string andwith no transversal
strings)in the conditions of acoustic vacuum the dynamical system has exactly N
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Fig. 1 Oscillator chain with elastic support (reprinted from [10] with permission from Elsevier)

NNMs, which moreover coincides with normal modes of harmonic string, that is
have sine-like form. When transversal strings are present it isn’t the case: the spatial
distribution of the displacements in considered system is no more exactly sine-like.
However, we can use homogenity of system (3) to search the stationary solutions,
that is solutions of the form v j (t) = A(t)C j . Let’s substitute this into the Eq. (3):

Ä(t)C j + 1

μ
A3(t)C3

j + 1

2(N + 1)
A3(t)

N∑
s=0

(Cs+1 − Cs)
2 (

2C j − C j+1 − C j−1
) = 0,

C0 = CN+1 = 0; j = 1, N . (4)

Due to homogenity we can separate the variables:

Ä

A3(t)
= −

1
μ
C3

j + 1
2(N+1)

N∑
s=0

(Cs+1 − Cs)
2
(
2C j − C j+1 − C j−1

)
C j

, j = 1, N .

Since the left hand side depends only on time t and the right hand side depends
only on index j , they both should be equal to constant.

−
1
μ
C3

j + 1
2(N+1)

N∑
s=0

(Cs+1 − Cs)
2
(
2C j − C j+1 − C j−1

)
C j

= B, j = 1, N .
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We can also renormalize (by the factor 3
√
B) the variablesC j and get the following

equations for coefficients C j :

1
μ
C3

j + 1
2(N+1)

N∑
s=0

(Cs+1 − Cs)
2
(
2C j − C j+1 − C j−1

)
C j

= 1, j = 1, N (5)

This is a system of N nonlinear algebraic equations with N variables C j , j =
1, N . We can solve it numerically.

Such approach has been used in the case of N = 10 particles for finding the mode
profiles for k = N − 1, k = N th modes. These two modes are considered because
as will be shown further, their interaction is the most important for description of
intensive energy exchange and localization. The result is shown in the Fig. 2. We can
see that the mode profiles are very close to sine-like form.

4 Two-Mode Approximation

Given the essential (non-linearizable) stiffness nonlinearity of the dynamical system
(3) we resort to a previously elaborated methodology (see, for example, [1, 10])
based on the assumption of a resonance between the NNMs, to study analytically its
stationary and non-stationary dynamics. To this end, we re-write system (3) as,

(
v̈ j + ω2v j

)
+ ε1γ

(
1

μ
v3j − ω2v j + 2v j − v j−1 − v j+1

2(N + 1)

N∑
s=0

(vs+1 − vs)
2

)
= 0, j = 1, N .

(6)

Here ω is a supposed resonance frequency. Combination in the right hand side
should be small since we consider a system near resonance. It is reflected by intro-
ducing the small parameter ε1 � 1.We introduce a bookkeeping parameter γ = ε−1

1
to provide an equivalence of systems (3) and (6). We introduce complex variables:

ψ j = v̇ j + iωv j , Φ j = ψ j+1 − ψ j , j = 1, . . . , N .

Then

ψ̇ j − iωψ j = −ε1γ

{
1

μ

(
ψ j − ψ∗

j

2iω

)3

+ iω

2
(ψ j − ψ∗

j )

+ 1

2(N + 1)

[(
Φ j−1 − Φ∗

j−1

2iω

)
−

(
Φ j − Φ∗

j

2iω

)] N∑
s=0

(
Φs − Φ∗

s

2iω

)2
}

, j = 1, N .
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Fig. 2 Profiles of exact
modes for
μ = ∞, μ = 10, μ = 1.2
for N − 1, N th modes. The
chain consists of N = 10
particles
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Applying a procedure of multiscale expansion we introduce a super-slow time
scale τ1 = ε1τ0. Taking into account that d

dτ0
= ∂

∂τ0
+ ε1

∂
∂τ1

+ · · · , we are looking
for a solution in the following form: ψ j = ψ j0 + ε1ψ j1 + · · · , j = 1, N . We substi-
tute this expansion into system (6) and equate the terms of each order by parameter ε1
to zero. In the first approximation we get: ψ j0 = eiωτ0ϕ j (τ1), j = 1, N . We substi-
tute this expression into the equation for complex variables and consider next order
of smallness. To avoid appearance of secular terms while inegrating over time τ0,
coefficient before eiωτ0 should be zero. Thus we obtain the system which determines
the "amplitude" functions ϕ j (τ1), j = 1, N in super-slow time τ1:
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∂ϕ j,0

∂τ1
+ γ

3ϕ j,0|ϕ j,0|2
8μiω3 − γ

4(N + 1)iω
(2ϕ∗

j,0 − ϕ∗
j−1,0 − ϕ∗

j+1,0)

N∑
s=0

(ϕs+1,0 − ϕs,0)
2

4ω2

− γ

4iω

1

(N + 1)
(2ϕ j,0 − ϕ j−1,0 − ϕ j+1,0)

N∑
s=0

|ϕs+1,0 −ϕs,0|2
2ω2 +γ

iω

2
ϕ j,0 = 0, j = 1, N .

Now ϕm
j = am(τ0)exp

( iπ jm
N+1

)
is an exact solution of these equations. Also ϕm

j =
am(τ0)exp

( − iπ jm
N+1

)
is an exact equation. Sine-like expression ϕm

j = am(τ0) sin
π jm
N+1

is an exact solution only in the case when the transversal strings are absent.
Also it satisfies the boundary conditions (fixed ends). That’s because we are look-
ing for a solution in two-mode approximation as ϕ j = sin jπm

N+1 Am + sin jπk
N+1 Ak =

e
i jπm
N+1 −e

−i jπm
N+1

2i Ȧm + e
i jπk
N+1 −e

−i jπk
N+1

2i Ȧk . Projecting these equations onto the two NNMs

(equating the coefficient before e
i jπm
N+1 to zero) we obtain following:

Ȧm − 3iγ

32μω3
· (
3Am |Am |2 + 2A2

k A
∗
m + 4Am |Ak |2

)

+ iγ

32ω3
ω2
m

[
3ω2

m |Am |2Am + 2ω2
k |Ak |2Am + ω2

k A
2
k A

∗
m

] +γ iω
2 Am = 0

Ȧk − 3iγ

32μω3
· (
3Ak |Ak |2 + 2A2

m A
∗
k + 4Ak |Am |2) (7)

+ iγ

32ω3
ω2
k

[
3ω2

k |Ak |2Ak + 2ω2
m |Am |2Ak + ω2

m A
2
m A

∗
k

] +γ iω
2 Ak = 0.

Here for shortness and convenience we denote ω2
k = 4 sin2 πk

2(N+1) .
The obtained system is integrable because besides the integral of energy it pos-

sesses a second integral
N = |Am |2 + |Ak |2, (8)

that can be verified directly. Due to existence of the second integral it is possible to
introduce angular variables:

Am = √
N cos θeiδ1 , Ak = √

N sin θeiδ2 .

Here θ and Δ = δ1 − δ2 characterize relationship between amplitudes of the two
NNMs and phase shift between them respectively.

Equations (8) in angular variables can be written as follows:

1
2 sin 2θΔ̇ = 3γ N

32μω3

(
1
4 sin 4θ + 1

2 sin 4θ cos 2Δ

)

+ γ N
32ω3

(
3
2 sin 2θ(ω4

k sin
2 θ − ω4

m cos2 θ) + 1
4ω

2
mω2

k sin 4θ(cos 2Δ + 2)

)
(9)
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Fig. 3 Resonance domain for different μ. Chain consists of N = 100 particles

θ̇ = 3γ N
32μω3 sin 2θ sin 2Δ + γ N

32ω3 ω
2
kω

2
m

1
2 sin 2θ sin 2Δ

Occurence of resonance is defined by existence of stationary point of this system.
From the second equationwe get:Δe = π/2. Substituting this value into the equation
for θ , we get:

− 3

2μ
cos 2θ +

[
3

2

(
ω4
k sin

2 θ − ω4
m cos2 θ

) − 1

2
ω2
mω2

k cos 2θ

]
= 0.

Hence we get an expression for stationary value of θ :

tg2θe =
3
μ

+ 3ω4
m − ω2

mω2
k

3
μ

+ 3ω4
k − ω2

mω2
k

.

This expression leads to real value of tgθ when

3
μ

+ 3ω4
m − ω2

mω2
k

3
μ

+ 3ω4
k − ω2

mω2
k

> 0.

In fact, this inequality is the condition of resonance occurence. Corresponding
resonance domains for different values of μ are shown in the Fig. 3. We see that
presence of transversal strings increases essentially the quantity of resonances.

5 Cluster Variables

The significant case deals with the possibility of the energy exchange between differ-
ent parts of the system. We’ll show that adequate description of the energy exchange
and localization in the considered system can be achieved by introducing cluster
variables, corresponding to combinations of two resonant NNMs.We introduce clus-
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ter variables Y1 = Am+Ak
2 ,Y2 = Am−Ak

2 . The motion equations (8) in these variables
accept the following view:

Ẏ1 − 3iγ
32μω3

(
9Y1|Y1|2 + Y 2

2 Y
∗
1 + 2Y1|Y2|2

) − γ iω
2 Y1

+ iγ
64ω3

(
3AY1|Y1|2 + 6CY2|Y1|2 + BY 2

2 Y
∗
1 + 3CY 2

1 Y
∗
2 + 2BY1|Y2|2 + 3CY2|Y2|2

) = 0

Ẏ2 − 3iγ
32μω3

(
9Y2|Y2|2 + Y 2

1 Y
∗
2 + 2Y2|Y1|2

) − γ iω
2 Y2

+ iγ
64ω3

(
3AY2|Y2|2 + 6CY1|Y2|2 + BY 2

1 Y
∗
2 + 3CY 2

2 Y
∗
1 + 2BY2|Y1|2 + 3CY1|Y1|2

) = 0

(10)

Here we introduce denotations, similar to those in the previous paper [13]: A =(
ω2
k + ω2

m

)2
, B = 3ω4

k − 2ω2
kω

2
m + 3ω4

m,C = ω4
m − ω4

k , M = 3
4μ .

Similarly to the case of modal variables, the obtained system is integrable because
besides the integral of energy it possesses a second integral

N = |Y1|2 + |Y2|2, (11)

that enables to introduce angular variables:

Y1 = √
N cos θeiδ1 ,Y2 = √

N sin θeiδ2 .

Here θ andΔ = δ1 − δ2 characterize relationship between amplitudes of two clusters
and phase shift between them.

In these variables we obtain following system:

1

2
sin 2θΔ̇ = M

(
−7

4
sin 4θ + 1

4
sin 4θ cos 2Δ

)

−1

2

(
3A

4
sin 4θ − B

4
sin 4θ(cos 2Δ + 2) − 3C cos 2θ cosΔ

)

θ̇ = 3

2μ
sin 2θ sin 2Δ + 1

2
(B sin θ cos θ sin 2Δ + 3C sinΔ) .

(12)

Here overdot denotes differentiation with respect to normalized (for convenience)
time τ ∗

1 = γ N
32ω3 τ1.

This first-order system of real equations possesses the energy integral:

H = −M

(
9

2
sin4 θ + 9

2
cos4 θ + 1

4
sin2 2θ(cos 2Δ + 2)

)

+1

2

(
−3A

2
(sin4 θ + cos4 θ) − 3C sin 2θ cosΔ − B sin2 θ cos2 θ(cos 2Δ + 2)

)
,

(13)
hence it is integrable. In angular variables the stationary (equilibrium) points corre-
spond to NNMs of initial system.
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6 Phase Plane

In this section we focus mostly on two modes with highest wavenumbers (i.e.
(N − 1)th and N th modes) because in this case cluster variables have the most
intuitive sense: Y1 corresponds to one half of the longitudinal string and Y2 — to
another half. However the same analysis may be held for any pair of resonant modes.

Due to existence of the integral of motion the simplest way of investigation is
to study a topology of phase plane. First of all let us note that the point (θ = π/4,
Δ = π ), which corresponds to the N − 1th mode, is always unstable and has saddle
type (it can be derived analytically from hamiltonian (13). The stability of the point
θ = π/4,Δ = 0, which corresponds to N th NNM, will be discussed further.

Comparing phase planes for different values of parameterμwe reveal two dynam-
ical transitions which are reflected in the phase plane topology. The first one is caused
by instability andbifurcationof the highestNNM(thepoint θ = π/4,Δ = 0). It leads
to appearance of two additional NNMs and a separatrix which encircles them. When
μ > μcr1 (as in a particular case also, when there is no transversal strings, 1/μ = 0),
there are four critical points. When μ < μcr1, a bifurcation is observed: the point
(θ = π/4,Δ = 0) (corresponding to in-phase motion of clusters) becomes unstable
and two additional equilibrium points appear. These equilibrium points correspond
to predominant stationary energy localization on one of clusters. The critical value
of the parameter μ can be found analytically from the condition

∂2H

∂θ2

∣∣∣∣
θ=π/4,Δ=0

= 0. (14)

Hence

μcr1 = 3

−A + 2C + B
.

In the case of two highest modes (i.e. (N − 1)th and N th) for the membrane with
N = 10 transversal strings μcr1 = 2.65.

The first topological transition is a significant stage of the system evolution
(in parametric space). This stage precedes to second topological transition which
leads to spontaneous energy localization on initially excited cluster, when μ < μcr2

(complete energy exchange becomes impossible). It is possible to find a critical
value μcr2 analytically from the condition of coincidence of separatrix and LPT:
H(π/4, 0) = H(0, π). Hence

μcr2 = 3

−A + 4C + B
.

For two highest NNMs μcr2 = 1.35 if N = 10.
The obtained results are confirmed by numerical integration of initial system (3)

with initial conditions corresponding to excitation of one cluster which is formed by
resonance interaction of twohighestmodes (v j = sin π j (N−1)

N+1 + sin π j N
N+1 ) (seeFig. 4).
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Fig. 4 Energy exchange and energy localization in initial variables and corresponding phase plane
in angular variables

Whenμ < μcr2 the energy localization is realized; whenμ > μcr1 we observe com-
plete energy exchange. Between two critical values μcr2 < μ < μcr1 the energy
exchange is still possible but takes more time (see time scale on the plots.)

6.1 Analytical Description of LPT

Complete energy exchange between clusters described by LPT is a fundamental non-
stationary process very important in applications. Therefore it is desirable though
challenging to describe the process analytically. It can be done in angular variables
satisfying the Eq. (12). Since LPT is given by

H(θ,Δ) = H(0, 0),

where hamiltonian is defined as (13), we obtain following equation:

−M

(
9

2
sin4 θ + 9

2
cos4 θ + 1

4
sin2 2θ(cos 2Δ + 2)

)

−3A

4
(sin4 θ + cos4 θ) − 3C

2
sin 2θ cosΔ − B

2

sin2 2θ

4
(cos 2Δ + 2) = −9

2
M − 3A

4
.

It enables to define relationship between θ and Δ on LPT:
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Fig. 5 Comparison of numerical simulation of the system (12) (red lines) and analytical approxi-
mation (15) (blue lines) for LPT; μ = 3, N = 10, two last modes are considered

−M

(
−9

4
sin2 2θ + 1

4
sin2 2θ(cos 2Δ + 2)

)

+1

2

(
3A

4
sin2 2θ − 3C sin 2θ cosΔ − B

4
sin2 2θ(cos 2Δ + 2)

)
= 0.

Hence either θ = 0, θ = π/2, that corresponds to straight lines of LPT, or

cosΔ =
3
2C −

√(
3
2C

)2 + (2M − B
8 + 3A

8 )(2M + B) sin2 2θ

(−M − B
2 ) sin 2θ

.

Therefore, we get analytical representation of LPT:

θ = π

2
τ(t/a),

Δ = −arccos

⎛
⎝ 3

2C −
√(

3
2C

)2 + (2M − B
8 + 3A

8 )(2M + B) sin2 πτ

(−M − B
2 ) sin πτ

⎞
⎠ .

(15)
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Here τ is a saw-tooth function with the period T = 2a :

τ(τ1) = 0.5 ((2/π)arcsin(sin(πτ1/a − π/2)) + 1) ,

e(τ ) is its derivative in sense of generalized functions: e(τ1) = dτ/dτ1. Period may
be found (as an integral) from temporal equation for θ :

T = 2a = 2

π/2∫
0

dθ

M sin 2θ sin 2Δ + 1
2 (B sin θ cos θ sin 2Δ + 3C sinΔ)

.

We refer the reader to [14] formore detailed description of non-smooth basic function
technique.

The comparison of numerical simulation of the system (12) and analytical approx-
imation (15) for LPT is shown in the Fig. 5.One can see very good agreement between
numerical and analytical results.

7 Conclusions

The adequate analysis of strongly modulated processes in nonlinear dynamics goes
out of framework of the conventional paradigm. The concept of Limiting Phase
Trajectories which turns out to be an alternative to Nonlinear Normal Modes concept
gives an efficient tool for such analysis. The mathematical content of this concept is
closely connected with non-smooth transformations [14].

In particular, we reveal that for a membrane consisting of one longitudinal and
N transversal strings in conditions of “non-local” acoustic vacuum there exists a
regular regime of complete energy exchange between different domains of the longi-
tudinal string (clusters) and nonstationary energy localization on the excited cluster,
alongside with NNMs and stationary energy localization (predominantly localized
NNMs). These regimes have been described analytically, and corresponding thresh-
olds in parametric space were defined. Possibility of existence of different regimes
in the same system is due to transversal strings, that enables also to widen essen-
tially the resonance domain. Therefore, the considered membrane can be used as an
efficient energy sink.

Acknowledgements We are grateful to the Russian Foundation for Basic Research (Grants No.
17-01-00582, 16-02-00400) for financial support of this work.
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Phase Dynamics of Intrinsic Localized
Modes in Two Weakly Coupled
Nonlinear Chains and Correspondence
Between Periodic Tunneling of Classical
and Quantum Objects
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Abstract We present a brief survey of the phase-coherent dynamics of intrinsic
localized modes (discrete breathers) in a system of two weakly coupled nonlin-
ear chains and its comparison with periodic tunneling of a quantum particle in a
double-well potential andwithmacroscopic quantum tunneling of twoweakly linked
Bose–Einstein condensates. We consider the dynamics of relative phase of two
classically-tunneling intrinsic localized modes in weakly coupled nonlinear chains
and show that the dynamics of the relative phase in the π/2 tunnelingmode coincides
exactlywith the experimentally observed dynamics of the relative phase of a quantum
particle, periodically tunneling in a double-well potential. The observed coincidence
demonstrates the correspondence between the dynamics of classical localized exci-
tations in two weakly coupled nonlinear chains and tunneling dynamics of quantum
object in the double-well potential. We show that in both π/2 and winding tunneling
modes, the relative phase experiences periodic jumps byπ in the instants of complete
depopulation of one of the weakly coupled chains or potential wells. The connec-
tion of the observed phase dynamics with the non-quantum uncertainty principle is
discussed.
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1 Introduction

Tunneling through a barrier is purely quantummechanical phenomenon. On amacro-
scopic scale it is realized in Josephson effect between two weakly coupled phase-
coherent condensates. The latter can be two superconductors separated by a thin
barrier [1], two reservoirs of superfluid helium connected by nanoscopic apertures
[2, 3], or two weakly linked Bose–Einstein condensates in a macroscopic double-
well potential (single bosonic Josephson junction) [4]. In this Chapter we discuss the
profound analogy between classical phase-coherent dynamics of intrinsic localized
modes (ILMs) in two weakly coupled nonlinear chains and tunneling dynamics of
quantum objects. Corresponding equations of classical tunneling dynamics of
two weakly coupled ILMs (wandering breathers) were obtained in the first papers
in this field [5–7] and were later applied to a great variety of nonlinear mechanical
systems [8]. Here we show that the dynamics of the relative phase of the ILMs in
two weakly coupled nonlinear chains in the π/2 tunneling mode, first described in
[5–7], exactly coincides with the experimentally observed dynamics of the relative
phase of a quantum particle periodically tunneling in a double-well potential, which
revealed the abrupt changes (jumps) of the phase between the π/2 and −π/2 values
at the instants when the particle is fully localized in one of the coupled potential
wells [9]. We show that in both π/2 and winding tunneling modes, the relative phase
experiences periodic jumps by π in the instants of complete depopulation of one of
two weakly coupled chains or potential wells.

Nonlinear excitations (solitons, kink-solitons, intrinsic localized modes and dis-
crete breathers) can be created most easily in low-dimensional (1D and quasi-1D)
systems [10–20]. Recent experiments have demonstrated the existence of intrinsic
localized modes and discrete breathers in various systems such as coupled nonlinear
optical waveguides [21], low-dimensional crystals [22], antiferromagnetic materials
[23], micromechanical oscillator arrays [24, 25], Josephson junction arrays [26, 27],
photonic structures and micromechanical systems [28], α-helices [29, 30], and α-
uranium [31]. Slowly-moving ILMsand supersonic kink-solitonswere also described
in 1D nonlinear chains [15, 17, 32–37] and quasi-1D polymer crystals [38]. One-
dimensional arrays of magnetic or optical microtraps for BECs of ultracold quantum
gaseswith tunneling coupling provide a newfield for the studies of coherent nonlinear
dynamics in low-dimensional systems [39, 40].

Here, we discuss another conceptual aspect of classical nonlinear excitations by
considering the analogy between dynamics of phase-coherent ILMs, either station-
ary or slowly-moving, in two weakly coupled nonlinear chains and quantum tunnel-
ing dynamics of a quantum particle periodically tunneling in a double-well potential
[9] and of two weakly linked macroscopic condensates in a single bosonic Joseph-
son junction [5–7]. There are two qualitatively different dynamical regimes of the
coupled ILMs or discrete breathers, the nonlinear Rabi-like oscillations of the low-
amplitude ILMs between the chains (tunneling ILM), and one-chain-localization
(nonlinear self-trapping) for the high-amplitude ILM. These two regimes, which are
separated by a separatrix mode with zero rate of energy and excitation exchange, are
analogous to the two regimes in nonlinear dynamics of macroscopic Bose–Einstein
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condensates in a single bosonic Josephson junction [4]. Phase-coherent dynamics
of the coupled classical ILMs is described by a pair of equations completely sim-
ilar to that for Bose–Einstein condensates in a single bosonic Josephson junction
[41, 42]. The considered evolution of the relative phase of two weakly coupled ILMs
is analogous to the evolution of relative quantum-mechanical phase between two
macroscopic condensates, which was directly measured in a single bosonic Joseph-
son junction by means of interference [4]. Moreover, the separatrix in the excitation
exchange between macroscopic phase-coherent ensembles of particles in weakly
coupled classical chains with “repulsive” nonlinearity can be considered as a nonlin-
ear dynamical model of the reversible interaction-induced superfluid-Mott-insulator
transition, which was observed in Bose–Einstein condensate in a lattice with tunnel-
ing intersite coupling [43].

2 Model

Following [5–7], we consider two identical linearly coupled identical anharmonic
chains (with unit lattice period), which we model with the Fermi-Pasta-Ulam (β-
FPU) Hamiltonian:

H =
∑

n

[
2∑

i=1

[
1

2
p(i)2
n + 1

2
(u(i)

n+1 − u(i)
n )2

+1

4
β (u(i)

n+1 − u(i)
n )4

]
+ 1

2
C(u(1)

n − u(2)
n )2

]
, (1)

where u(i)
n is displacement of the nth particle from its equilibrium position in the i th

chain, p(i)
n = u̇(i)

n is particle momentum, β and C are, respectively, dimensionless
intra-chain nonlinear and inter-chain linear force constants (in units of intra-chain
linear force constant). We assume that the coupling is weak, C�1, and do not
include the nonlinear inter-chain interaction. Hamiltonian (1) describes, e.g., purely
transverse particle motion [15].

We are interested in high-frequency and therefore short-wavelength dynamics
of the coupled chains, when the displacements of the nearest-neighbour particles
are mainly anti-phase. For this case we introduce continuous envelope-functions
for the particle displacements in the chains, u(i)

n = fi (x)(−1)n , ∂ fi/∂x � 1, where
x = n is a continuous spatial coordinate along the i th chain, which allow us to write
partial differential equations for fi (x, t), see, e.g., [11, 15, 33, 34, 44]. Then from
Hamiltonian (1) we get the following equations for fi (x, t), i = 1, 2:

f̈i + (4 + C) fi + ∂2 fi
∂x2

+ 16β f 3i − C f3−i = 0. (2)

In order to deal with the amplitude and phase of the coupled nonlinear excitations,
it is useful to introduce complex wave fields Ψ (x, t)i for each chain, cf. [44]:
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fi (x, t) = 1

2

[
Ψi (x, t) exp(−iωmt) + Ψi (x, t)

∗ exp(iωmt)
]
, (3)

whereωm = √
4 + C ≈ 2 + C/4 is characteristic frequency slightly above the max-

imal phonon frequency of isolated chains (equal to 2 in each chain). Assuming that
characteristic frequencies of thefieldsΨ (x, t)i are small in comparisonwithωm , from
Eqs. (2) and (3) we get the following coupled nonlinear-Schrödinger-type equations
for Ψ (x, t)i , i = 1, 2:

− iωmΨ̇i + 1

2

∂2Ψi

∂x2
+ 6β | Ψi |2 Ψi = C

2
Ψ3−i , (4)

and complex-conjugated equations for Ψ ∗
i . Similar Schrödinger-type and nonlinear-

Schrödinger-type equations for complex envelope functions of classical displacement
fields were obtained in [44, 45].

Using Eq. (4), one can readily show the existence of the following integrals of
motion and inter-chain flux:

Ns =
∫ [| Ψ1 |2 + | Ψ2 |2] dx ≡ N1 + N2, (5)

Es =
∫

[
2∑

i=1

(3β | Ψi |4 −1

2
| ∂Ψi

∂x
|2) − 1

2
C(Ψ1Ψ

∗
2 + Ψ2Ψ

∗
1 )]dx, (6)

Psx = − i

2

∫ 2∑

i=1

[
Ψi

∂Ψ ∗
i

∂x
− Ψ ∗

i

∂Ψi

∂x

]
dx, (7)

Ji = iC

2ωm

∫ [
ΨiΨ

∗
3−i − Ψ ∗

i Ψ3−i
]
dx = −J3−i , (8)

which describe, respectively, the total number of excitations, total energy, total
momentum along the chain axis, and total inter-chain flux of excitations (which
conserves the total number of them, Ṅi + Ji = 0), cf. [44]. The existence of these
integrals of motion and inter-chain flux demonstrates that the exchange of energy
between two coupled nonlinear systems is a coherent phenomenon, which depends,
in general, on the initial conditions.

3 Tunneling Dynamics of Weakly Coupled ILMs

To describe a slowly-moving ILM, tunneling between two weakly coupled non-
linear chains with positive (repulsive) anharmonic force constant β, we assume the
following form for the complex fields Ψ1 and Ψ2 [5–7]:
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Ψ1 = Ψmax
exp[i(kx − Ωt)]
cosh[κ1(x − V t)] cosΘ exp(− i

2
Δ), (9)

Ψ2 = Ψmax
exp[i(kx − Ωt)]
cosh[κ2(x − V t)] sinΘ exp(

i

2
Δ), (10)

where Ω>0 describes a shift of the ILM frequency ω with respect to ωm , V�1 and
k�1 are the velocity and wavenumber related with the moving ILM, κi describe
inverse localization lengths. Here Δ = Δ(t − kx/ω) stands for the reduced phase
of the lattice excitations in the coupled chains, while the parameter Θ = Θ(t −
kx/ω) describes the relative population (population imbalance) of the two chains
z = (n1 − n2)/(n1 − n2) = cos 2Θ , where ni = |Ψ1|2 is local density of excitations
in the i th chain, and n1 + n2 = |Ψmax |2 = const .

Parameters Δ and Θ determine the inter-chain flux of excitations, cf. Eq. (8):

J1 = −J2 = CΨ 2
max

2ωm

∫
sin 2Θ sinΔ

cosh[κ1(x − V t)] cosh[κ2(x − V t)]dx . (11)

The relative phase Φ, which we will compare below with the relative phase in
quantum tunneling dynamics, is defined as

Φ = arg

[
Ψ2

Ψ1

]
= arg

[
tan θ exp(iΔ)

]
. (12)

It is worth underlining that the relative and reduced phases Φ and Δ coincide
in the case of tunneling dynamics, in which the tunneling object does not reach
during its evolution the state of complete depopulation of one of the weakly cou-
pled atomic chains or potential wells, which corresponds to |z| = 1. Such tunneling
dynamics, with equal relative and reduced phases, was realized, e.g., in Ref. [4]
for the Bose–Einstein condensate in weakly linked double-well potential (bosonic
Josephson junction).

Using Eqs. (4), (9) and (10), after some algebra we obtain dispersion equations
for the introduced parameters,

Ω = 1

2ωm
[3βΨ 2

max − k2 − C
cosΔ

sin(2Θ)
], V = ∂Ω

∂k
, (13)

κ2
1 = 6βΨ 2

max 〈cos2 Θ〉, κ2
2 = 6βΨ 2

max 〈sin2 Θ〉, (14)

and evolution equations for the phases Θ and Δ:

Θ̇ = C

2ωm
sinΔ, (15)

Δ̇ = 3βΨ 2
max

ωm
cos(2Θ) + C

ωm
cosΔ cot(2Θ). (16)
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Angular brackets in Eq. (14) denote the time-averaged and therefore
time-independent quantities, which take into account the possibility of the integra-
tion along the trajectory of the slowly-moving ILM in the integrals like that given by
Eqs. (5)–(8). In the derivation of Eqs. (15) and (16), it was assumed explicitly that
the ratio cosh[κ1(x−V t)]

cosh[κ2(x−V t)] is equal to one. The latter is valid for small-amplitude ILMs
with long localization lengths, κ1,2 � 1. In this case the above assumption, which is
exact for the central region of the ILMs, x-V t≈ 0, will be (approximately) valid for
a large number of particles, which form weakly localized tunneling ILM in weakly
coupled nonlinear chains.

Equations (15) and (16) can be written in an equivalent form for the reduced
relative phaseΔ and relative population of the twochains z = (n1 − n2)/(n1 + n2) =
cos 2Θ , which are canonically conjugate, except the point of |z| = 1, see below:

ż = −∂Hef f

∂Δ
= − C

ωm

√
1 − z2 sinΔ, (17)

Δ̇ = ∂Hef f

∂z
= 3βΨ 2

max

ωm
z + C

ωm

z√
1 − z2

cosΔ, (18)

with the following effective Hamiltonian [which has the dimension of frequency]:

Hef f = 3βΨ 2
max

2ωm
z2 − C

ωm

√
1 − z2 cosΔ. (19)

The very same equations were derived in [41, 42] in connection with theoret-
ical studies, based on macroscopic quantum Gross–Pitaevskii equation, of coher-
ent atomic tunneling and coherent oscillations between two weakly coupled Bose–
Einstein condensates, which were later used in the analysis of the experimental
realization of a single bosonic Josephson junction [4]. In our case, Eqs. (17) and (18)
describe the exchange of lattice excitations between the chains rather than atomic
tunneling. One can consider such excitation exchange as a classical counterpart of
macroscopic quantum tunneling dynamics.

It is noteworthy that the equations,which are similar to Eqs. (15) and (16), describe
the dynamics of two weakly coupled identical nonlinear oscillators. Therefore the
tunneling intrinsic localized modes can be considered as weakly coupled phase-
coherent nonlinear macroscopic oscillators.

Equations (15) and (16) can be solved analytically for the given initial conditions.
[For the weak coupling, in the following we assume ωm = 2]. Using the ansatz,

cosΔ = A(t)/ sin(2Θ), (20)

where A = 0 for Θ = 0, we get from Eqs. (15) and (16):

Ȧ = −(3βΨ 2
max/C) sin(4Θ)Θ̇. (21)
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We are seaking for a solution of Eqs. (15) and (16) with the initial condition
Θ(0) = 0, which corresponds to zero complex field Ψ2 in the second chain at t=0
and which is realized in our simulations. For Θ(0) = 0 and A(0) = 0, we obtain

A = −3βΨ 2
max

2C
sin2(2Θ),

cosΔ = −3βΨ 2
max

2C
sin(2Θ) = −3βΨ 2

max

2C

√
1 − z2, (22)

which corresponds to Δ(0) = π/2 (or Δ(0) = −π/2). Then Eqs. (15) and (16) take
the following form:

Θ̇ = C

4
sinΔ, Δ̇ = 3βΨ 2

max

4
cos(2Θ). (23)

Finally, from Eqs. (22) and (23) we get the following two equivalent pendulum
equations:

δ̈ + C2

4
sin δ = 0 (24)

- for δ = 2Δ − π , and

Ξ̈ + Ω2
0 sinΞ = 0 (25)

- for Ξ = 4Θ , where Ω2
0 = (3βΨ 2

max/4)
2. We are interested in the solution of

Eq. (24) with the initial conditions δ(0) = 0 and δ̇(0) = 3
2βΨ 2

max . The corre-
sponding initial conditions for Ξ in Eq. (25) are Ξ(0) = 0 and Ξ̇(0) = C .

The important property of the solution of the pendulum equation, (24) or (25),
which has exact analytical solution, see, e.g., [46], is the existence of two qualita-
tively different dynamical regimes of excitation and energy exchange, which have a
separatrix corresponding to the condition | S | = 1, where S = 3βΨ 2

max/(2C) is the
nonlinearity-over-coupling parameter.

For | S |� 1 or | β |Ψ 2
max� 2C/3, the phaseΘ linearly grows with the “running”

time t̃ ≡ t − kx/ω:

Θ ≈ C̃
t̃

4
+ 9β2Ψ 4

max

64C̃2
sin(C̃ t̃),

Δ ≈ π

2
+ 3βΨ 2

max

2C̃
sin(C̃

t̃

2
), (26)

z ≈ cos(C̃
t̃

2
),

C̃ = C − Ω2
0

C
= C − 9β2Ψ 4

max

16C
.
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Fig. 1 Time evolution of relative phase Φ in the π/2 tunneling mode between two weakly coupled
nonlinear chains, for S ≡ 3βΨ 2

max/(2C) = 0 (blue straight lines), S = 0.15 (red curved lines) and
S = −0.15 (green curved lines). Dynamics of the relative phase is described by Eqs. (12) and (26),
time is measured in C−1

In this regime, Θ spans the full range from 0 to 2π , which corresponds to the
total energy exchange between the nonlinear chains and therefore to the ILM, peri-
odically tunneling between the two chains, when the reduced phase Δ is close to
π/2. We call the excitation exchange in this regime as the π/2 tunneling mode of
ILM. According to Eq. (11), the inter-chain flux of excitations and energy in this
mode is ∝CΨmax sin 2Θ sinΔ≈CΨmax sin(Ct̃/2).

The relative phase Φ is defined by Eq. (12) and its time evolution in the π/2
tunneling mode, described by Eq. (26), is presented in Fig. 1 for different values of
the parameter S in the weakly-nonlinear limit. [Negative parameter S, caused by
negative nonlinear force constant β, corresponds to the tunneling dark soli ton
in the vibrational pattern of the confined lattice mode with eigenfrequency slightly
below ωm in the system of two weakly coupled identical nonlinear chains with
equal finite lengths, when the factorsΨmax exp[i(kx − Ωt)]/ cosh[κi (x − V t)]with
Ω > 0 in the complex fields (9) and (10), are replaced by the factorsΨmax exp(i(kx −
Ωt) tanh[κi (x − V t)] with Ω < 0, i = 1, 2, see e.g., [15].]

Figure1 clearly shows that there are abrupt changes (jumps) of the relative phase
Φ byπ , betweenπ/2 and -π/2, at each instant when the ILM is located completely in
one of the coupled chains and the relative population is equal to unit inmodulus, |z| =
1. According to Eq. (26), the interval between such instants in the weakly-nonlinear
limit is given by 2π/C . In the case of vanishing nonlinearity, the time evolution of the
relative phaseΦ coincides exactly with the experimentally observed dynamics of the
relative phase of the tunneling quantum particles in a double-well potential [9]. The
jumps of the relative phase at the instants of |z| = 1 are related with the uncertainty
of the phase when the particle wave function is exactly zero in one of the coupled
potential wells or chains, Ψi = 0 either for i = 1 or i = 2, see Eqs. (9) and (10). On
the other hand, the abrupt change of the relative phase can be related with the non-
quantum uncertainty principle: the variables z and Φ are canonically conjugate,
see Eqs. (17) and (18), and therefore cannot be measured simultaneously because the
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product of their uncertainties Δz and ΔΦ is bounded from below by the inequality
Δz · ΔΦ ≥ 1/2. At the instants of |z| = 1, the inter-chain tunneling current is zero,
ż = 0, see (11), and therefore the relative population z and correspondingly the
location of the ILM or quantum particle is well defined, which makes the value of
Φ be uncertain at these instants. On the other hand, the reduced phase Δ is a single-
valued function and the wave functions (9) and (10) of the displacement fields,
which are determined by this phase, are the single-valued functions as it is required
by quantum mechanics [47] and the jumps by π of the relative phase Φ, which
is determined by (12), do not make the wave functions ambiguous functions. The
continuity of theΔ andΘ functions is also confirmed by the existence of the second-
order pendulum Eqs. (24) and (25) for these functions, which provide description of
the tunneling dynamics, equivalent to that given by Eq. (23). Since both the classical
ILM in a system of two weakly coupled nonlinear chains and the quantum particle,
tunneling in a double-well potential, can be described with the use of the canonically
conjugate relative population z and relative phase Φ, there is clear coincidence of
the phase dynamics and the correspondence between periodic tunneling of classical
and quantum objects.

The phase dynamics in the π/2 tunneling mode can also be compared with the
phase dynamics in the quantum Rabi oscillations, see, e.g., [48]. Here, for the super-
position of two states

Ψ (t) = a1(t) | 1 > +a2(t) | 2 > (27)

with equal on-site energies E1 = E2 ≡ E , Schrödinger equations for the complex
amplitudes a1 and a2 are the following:

i ȧ1 = Ea1 + γ a2,

i ȧ2 = Ea2 + γ a1, (28)

where parameter γ is the coupling matrix element between the states, and � = 1.
For the initial conditions a1(0) = 1 and a2(0) = 0 and the value of the coupling
parameter γ = −C/4, which corresponds to Eqs. (4) and (28) have the solution,

a1 = cos(γ t) exp(−i Et) = cos(Ct/4) exp(−i Et),

a2 = −i sin(γ t) exp(−i Et) = i sin(Ct/4) exp(−i Et), (29)

which exactly corresponds to the π/2 tunneling mode, described by Eq. (26) in
the linear case S = 0 for the ansatz given by Eqs. (9) and (10) with Θ = Ct/4
and Δ = π/2. [In the system of two weakly coupled atomic chains, the linear case
S = 0 corresponds to twoweakly coupled identical harmonic chains with equal finite
lengths when the π/2 tunneling mode describes the periodic inter-chain tunneling
of the confined harmonic vibrational mode with eigenfrequency ω = ωm at the top
of acoustic band of the chains.] Therefore the π/2 tunneling mode for 0 <| S |< 1
can be considered as the nonlinear Rabi-like oscillations of excitation population
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in two coupled anharmonic chains, in which the wave functions Ψ1 and Ψ2 in (9)
and (10) play role of the complex amplitudes a1 and a2 in the superposition of two
states (27). The π/2 tunneling mode, which is described by the single-valued wave
function in accordance with the requirement of quantum mechanics [47], can also
be realized in two weakly linked Bose–Einstein condensates.

The separatrix, realized for | S |= 1 and Hef f = C/ωm , is characterized by infi-
nite oscillation period of the physical pendulum (24) or (25), which corresponds
to the infinite period of the inter-chain energy exchange. For the considered initial
conditions, the separatrix is described by the following solution of Eq. (23):

Θ = arctan[exp(C
2
t)] − π

4
, Δ = 2 arctan[exp(C

2
t)], (30)

z(0) = 1, z(∞) = 0, Δ(0) = π

2
, Δ(∞) = π. (31)

There is no difference between the reduced Δ and relative Φ phases in the sep-
aratrix mode, see the aforementioned arguments in connection with Eq. (12) for the
coincidence of the two phases. The flux of the inter-chain excitation exchange is zero
at the separatrix for t → ∞: Ji = 0 since sinΔ = 0, see Eq. (11).

Beyond the separatrix, in the limit of | S | 1 or | β |Ψ 2
max  2C/3, one has

Θ ≈ C

3βΨ 2
max

sin(
3

4
βΨ 2

max t̃), Δ ≈ π

2
+ 3

4
βΨ 2

max t̃ . (32)

This dynamical regime corresponds to the asymmetric nonlinear mode (known, e.g.,
for two coupled nonlinear waveguides [49–51]), in which one system, here is chain 1,
carries almost all vibrational energy while the other is almost at rest. This excitation-
exchange regime can be called as the winding tunneling mode because of linear
increase in time of the reduced phase Δ. The relative phase Φ experiences peri-
odic jumps by π , with the period of 2π/ | S |, see Fig. 2. The time instants of the
relative-phase jumps coincide with the instants of |z| = 1, similar to the case of the
phase jumps by π in the π/2 tunneling mode shown in Fig. 1. In the winding tun-
neling mode, the energy exchange between the coupled chains is relatively weak
and gradually decreases with the increase of the parameter | S | beyond the separa-
trix value of | S |= 1. The inter-chain flux of excitations and energy in this mode is
∝ CΨmax sin 2Θ sinΔ ∝ (C2/Ψmax ) sin(3βΨ 2

max t̃/2).
The two dynamical regimes of energy and excitation exchange between ILMs in

two weakly coupled nonlinear chains, given by Eqs. (26) and (32), are analogous,
respectively, to anharmonic Josephson-like oscillations or nonlinear self-trapping,
which were detected in a single bosonic Josephson junction [4].

It is worth mentioning that the form and frequency of a stationary or slowly-
moving ILM in an isolated chain can be obtained only in the winding tunneling
(self-trapping) mode, in which one can consider the limit of C→ 0 (for positive β).
Indeed, according to Eq. (32), in this limit one has Θ = 0 in Eqs. (9) and (10) and
ILM frequency is obtained from Eqs. (13), (22) and (32), and is equal to
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Fig. 2 Time evolution of
relative Φ (red lines) and
reduced Δ (blue line) phases
of two ILMs in the winding
tunneling mode between two
weakly coupled nonlinear
chains, for
S ≡ 3βΨ 2

max/(2C) = 1.2.
Dynamics of the relative and
reduced phases is described
by Eqs. (12) and (32), time is
measured in C−1

ω = 2 + Ω + 3

8
βΨ 2

max = 2 + 3

2
βΨ 2

max − k2

4
. (33)

This expression for the ILM frequency fully coincides with the known expressions
for a single stationary or slowly-moving ILM in the small-amplitude limit, see, e.g.,
Refs. [5–7, 11, 44]. This coincidence confirms the correct choice of the distribution
of the reduced phase Δ between the tunneling objects, given by −iΔ/2 and iΔ/2 in
the exponents in Eqs. (9) and (10), similar to that in the superposition of two states in
quantummechanics [48]. It is important to underline that to get this expression forω,
one has to take explicitly into account in Eq. (9) the linear increase in time (winding
up) of the reduced relative phase Δ in the self-trapping mode, given by Eq. (32).
The winding up of the relative phase of two weakly coupled macroscopic BECs
in the nonlinear self-trapping mode has been directly measured in a single bosonic
Josephson junction [4]. This finding gives us an additional argument in favour of the
profound similarity between macroscopic tunneling quantum dynamics and phase-
coherent dynamics of weakly coupled intrinsic localized modes.

4 Conclusions

In conclusion, we have discussed analytical description of two qualitatively differ-
ent regimes of energy exchange between phase-coherent intrinsic localized modes in
two weakly linked nonlinear chains. These regimes have a profound analogy, and are
described by a similar pair of equations, to the anharmonic Josephson-like oscilla-
tions and nonlinear self-trapping, which were observed in a single bosonic Josephson
junction. We show that the dynamics of the relative phase in the π/2 tunneling mode
exactly coincides with the experimentally observed dynamics of the relative phase of
a quantum particle, periodically tunneling in a double-well potential. The π/2 tun-
neling mode can also be observed in two weakly linked Bose–Einstein condensates.
The observed coincidence demonstrates the correspondence between the dynamics of
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classical localized excitations in two weakly coupled nonlinear chains and tunneling
dynamics of quantum particles in a double-well potential. In both π/2 and winding
tunnelingmodes, the relative phaseΦ experiences periodic jumps byπ in the instants
of complete depopulation of one of the two weakly coupled chains or potential wells,
when |z| = 1. The connection of the observed phase dynamics with the non-quantum
uncertainty principle is discussed. The obtained dispersion and evolution equations,
together with the wave functions of the coupled nonlinear excitations, can be applied
to the tunneling macroscopic Bose–Einstein condensate, moving along two weakly
linked bosonic waveguides, to classically-tunneling phase-coherent intrinsic local-
ized modes (discrete breathers) in two weakly linked macromolecules, α-helices or
DNA, and to electron-phonon and exciton-phonon polarons in two weakly coupled
polymer molecules or semiconductor waveguides.
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Non-linear Beatings as Non-stationary
Synchronization of Weakly Coupled
Autogenerators

Margarita A. Kovaleva, Leonid I. Manevitch and Valery N. Pilipchuk

Abstract The present work represents a selective overview of recent advances in
the area dealing with a new type of synchronization in systems of weakly coupled
active oscillators. The description is focused on the evolution of non-stationary beat
wise self-sustained oscillations developed as attractors and repellers when the system
non-linearity and dissipation is varied.

1 Introduction

Systems of weakly coupled oscillators are often used as simple models of various
non-linear oscillatory processes in different fields of Science. For instance, coupled
Van der Pol or Van der Pol–Duffing oscillators is one of the fundamental models in
nonlinear dynamics [1, 2], and many other fields of physics, biophysics, and inter-
disciplinary areas of research [1, 3–6]. In the continuum limit, the description of
such system can be reduced to the complex Ginzburg–Landau equation [6–9], which
may have both periodic and localized solutions [1, 7–9]. The simplest discrete model
of this type, which consists of two nonlinear dissipative oscillators, was considered
in a number of publications [3, 4, 6]. The main attention was usually paid to syn-
chronization of oscillators in dynamics close to nonlinear normal modes (NNMs)
[1, 3, 4, 6, 10]. Specifically, this is a 1:1 resonance characterized by conservation
of the energy initially imparted to oscillators [11, 12]. It has been shown recently
that beats with complete energy exchange between oscillators in the conservative
case are, in fact, a fundamental type of motions alternative to NNMs [12], which is
referred to as the limiting phase trajectory (LPT) [13, 14]. The LPT is defined as the
phase trajectory which corresponds to the most intensive resonant energy exchange
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between the two coupled oscillatory subsystems. These can be individual oscillators
of the two-oscillator model or different groups of oscillators in a certain oscillatory
chain [12]. Along LPT, the energy is recurrently passing through the unique state of
complete localization on one of the sub-systems; see e.g. [12–14]. In terms of the
LPT, a transition from the intense recurrent energy exchange to energy localization
can also be described [13, 14]. Clearly, in conservative systems, neither the LPT nor
NNM can be an attractor. In contrast, active dissipative systems can possess NNM
attractors corresponding to synchronization of oscillators [1, 3, 4, 6, 10].

In the present work we review the recent results concerning the intensive LPT
beating as phase attractors or repellers in weakly coupled generators including dif-
ferent dynamic transitions due to system parameter variations [15–18]. In particular,
synchronous oscillations developed as intensive beatings are found to exist in the sys-
tem of two coupled generators with hard excitation and a relatively weak coupling.
This new type of synchronization can also be observed in the system of genera-
tors when the coupling is imposed via linear oscillator. The analogy to the quantum
2-level system interacting with the external field was analyzed in [19, 20].

2 Empirical Model of Self-localization with Dissipative
Coupling

A dissipative chain of coupled oscillators, which is described in this section, was
suggested in somewhat empirical way to illustrate the possibility of energy self-
localization [21]. However, some dynamic behaviors of this model appeared to be
quite similar to those found later in different models eventually leading to new physi-
cal interpretations, in particular, such as non-stationary synchronization; see the next
section. The term ‘auto-localization’ means that the system itself may come into the
nonlinear local mode vibration and stay there regardless initial energy distribution
among its particles. As follows from the Poincare’s recurrence theorem, such phe-
nomena are rather impossible within the class of conservative systems. However,
interactions between the system particles can be designed in specific ways in order
to achieve desired phenomena. It is assumed that such a design can be implemented
practicallywithin the class of electromechanical devices, whichmay help to optimize
vibration suppression. Let us consider an array of N harmonic oscillators such that
each of the oscillators interacts with only the nearest neighbors. The corresponding
differential equations of motion are of the form

ẍ j + �2x j � β(x j−1 − 2x j + x j+1) + α[(E j − E j−1)E j−1 − (E j+1 − E j )E j+1]ẋ j

where j � 1, . . . , N , E j � (ẋ2j +�2x2j )/2 is the total energy of the jth oscillator, the
boundary conditions of fixed ends are imposed on the chain,Ω , β, and α are constant
parameters of the model. On the right-hand side of this equation, two groups of terms
describe coupling between the oscillators. If α = 0 then the only linear coupling
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remains, and the chain becomes perfectly conservative. In this case, under special
initial conditions, N different linear normal modes, can take place. It is well known
that any other motion is combined of the linear normal mode motions, whereas
the energy is conserved on each of the modes the way it was initially distributed
between the modes. In other words, if α = 0, no energy localization is possible on
individual particles. However, another group of terms with the common factor α,
has the opposite to linear elastic interaction effect. These nonlinear terms simulate
possible ‘competition’ between the oscillators, in other words, a one-way energy
flow to the neighbor whose energy is lager.

The model was considered in terms of complex amplitudes introduced as x j �
[A j (t) exp(i�t) + Ā j (t) exp(−i�t)]/2. In the particular case of two-degrees-of free-
dom,N= 2, the transformed system admits first integral K � |A1|2+|A2|2 � const.,
which allows for the system reduction through transition to phase variables as
A1 � √

K cosψ exp(iϕ1) and A2 � √
K sinψ exp(iϕ2). Finally, the reduced sys-

tem takes the form

d�

dp
� − cot 2ψ cos�,

dψ

dp
� −1

2
(sin� + λ sin 4ψ)

where � � ϕ2 − ϕ1 is phase difference, p � �t/β is a new time scale, and λ �
αK 2�5/(16β) is a parameter of both non-linear non-conservative effects.

Figure 1 illustrates a typical behavior of the phase states on the phase plane (a)
and in time histories (b) and (c). It is seen that the phase cell boundary is a periodic
attractor (limit cycle) whose period admits exact analytical expression in the form
T � 2π/

√
1 − λ2. It is seen that T → ∞ as λ → 1, which actually points to the

energy localization effects since the energy exchange between the two oscillators
takes the infinitely long time. In addition, the temporal behavior of the phase differ-
ence between the oscillators becomes almost constant except for very narrow time
intervals. Physical interpretation of this effect was suggested later, however, based
on different type of models, as described below.

3 The Model of Non-stationary Synchronization and Its
Reduction

The essence of the non-stationary synchronization phenomenon can be illustrated
in all the details based on the model of two weakly coupled generators with hard
excitation. We consider the evolution of the system in the vicinity of the primary 1:1
resonance. However, for generality reason, the oscillators can be slightly detuned:

d2u1
dt2

+ u1 + 8αεu31 + 2βε(u1 − u2) + 2ε(γ − 4bu21 + 8du41)
du1
dt

� 0;

d2u2
dt2

+ u2 + 4εκu2 + 8αεu32 + 2βε(u2 − u1) + 2ε(γ − 4bu22 + 8du42)
du2
dt

� 0. (1)
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Fig. 1 Dynamic transition to the periodic attractor of phase system: a phase portrait showing the
cell boundary as a periodic limit cycle [21]; b and c transition to ‘non-smooth’ temporal shapes
corresponding to the attractor; λ � 0.2, �(0) � 0, ψ(0) � π/4 + 0.1

Introducing complex variables ψ j � v j + iu j , v j � du j/dt ( j � 1, 2), or

inversely, v j �
(
ψ j + ψ∗

j

)
/2 and u j � −i

(
ψ j − ψ∗

j

)
/2, where the asterisk indi-

cates complex conjugate, brings system (1) to the complex form
dψ1

dt
+ iψ1 − ε

(
iα
(
ψ1 − ψ∗

1

)3 + iβ
((

ψ1 − ψ∗
1

)− (
ψ2 − ψ∗

2

))
+
(
γ + b

(
ψ1 − ψ∗

1

)2 + d
(
ψ1 − ψ∗

1

)4)(
ψ1 + ψ∗

1

)) � 0,

dψ2

dt
+ iψ2 − ε

(
2iκψ2 + iα

(
ψ2 − ψ∗

2

)3 + iβ
((

ψ2 − ψ∗
2

)− (
ψ3 − ψ∗

3

))
+
(
γ + b

(
ψ2 − ψ∗

2

)2 + d
(
ψ2 − ψ∗

2

)4)(
ψ2 + ψ∗

2

)) � 0.

Following the idea of two variable expansions, we separate the “fast” τ0 � t and
“slow” τ1 � εt time scales, taking into account that d

dt � ∂
∂τ0

+ε ∂
∂τ1

. Then, represent-

ing solutions in the form ψ j � [
φ j,0(τ0, τ1) + εφ j,1(τ0, τ1) + O(ε2)

]
eiτ0 , ( j � 1, 2)

and applying the two-scale method, gives the leading-order approximation [17]

d f1
dτ1

− 3iα| f1|2 f1 +
(
γ − b| f1|2 + d| f1|4

)
f1 + iβ f2 � 0,

d f2
dτ1

− 3iα| f2|2 f2 − 2iκ f2 +
(
γ − b| f2|2 + d| f2|4

)
f2 + iβ f1 � 0, (2)

where new complex coordinates f j are given by ϕ j,0 � f j eiβτ1 . Equations (2) repre-
sent a generalization of equations derived in the references [15, 16], which accounts
for the detuning effect described by the term 2iκ f2 in the second equation.

Representing the complex coordinates in the form f1 � R1eiδ1 , f2 � R2eiδ2 , we
obtain a system of three real-valued equations



Non-linear Beatings as Non-stationary Synchronization … 57

dR1

dτ1
+ γ R1 − bR3

1 + dR5
1 + βR2 sin� � 0,

dR2

dτ1
+ γ R2 − bR3

2 + dR5
2 − βR1 sin� � 0,

R1R2
d�

dτ1
− 2κR1R2 + 3αR1R2(R

2
2 − R2

1) + β(R2
2 − R2

1) cos� � 0, (3)

where � � δ2 − δ1. The principal idea of the above transition from system (1)
to system (3) is that system (3) possesses an additional symmetry, as compared to
system (1), and therefore it reveals both types of the dynamic synchronization NNMs
and LPTs from the unified standpoint of symmetries as discussed below.

4 The NNM and LPT Symmetries

First, let us consider the system (3) without detuning, κ � 0. While being non-
integrable, system (3), possesses, nevertheless, the discrete symmetry, namely it
preserves its form under the coordinate replacements:

R1 → R2, R2 → R1,� → −�

R1 → −R2, R2 → −R1,� → � (4)

Symmetries (4) provide the existence of in-phase (R1 � R2,� � 0) and out-
of-phase (R1 � R2,� � π ) NNMs, respectively. In the general case, the form of
Eq. (4) does not explicitly reveal any other symmetries, discrete or continuous, except
of temporal translation. However, if any non-trivial continuous symmetry does exist
under certain conditions, it can be found in the framework of the Lie group theory [22]
by manipulating the infinitesimal differential operator of the dynamical system (3),
X � X0 + X1, where X0 � ξ(R1, R2,�) ∂

∂τ1
+η(R1, R2,�) ∂

∂R1
+ ζ (R1, R2,�) ∂

∂R2
+

ς(R1, R2,�) ∂
∂�

, X1—is the first continuation of the operator X0 whose components
are given by time derivatives in system (3). Following the technique [22] and con-
sidering the partial differential equations for the components of operator X, reveals
under special conditions the existence of rotation group in the plane (R1R2) with
the invariant I ≡ N � R2

1 + R2
2 . For the rotational symmetry to take place, the

parameters of system (4) must satisfy the relation

b2 � 9γ d/2 (5)

under the excitation level determined by the number

N � 2b/3d. (6)
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In this case, introducing the coordinate transformation R1 � √
N sin θ , R2 �√

N cos θ finally gives the reduced system

dθ

dτ2
� 1

2
(sin� − λ sin 4θ),

sin 2θ
d�

dτ2
� cos 2θ cos� + 2k sin 4θ, (7)

where τ2 � 2βτ1 is a new temporal scale, and parameters k � 3αN
2β and λ �

N 2d
8β characterize the nonlinearity and dissipation, relative to the coupling of the
generators, respectively.

5 Phase Plane Analysis and Effect of Dissipation

We start from the particular case λ � 0 when system (7) represents the conservative
case and the NNMs are stable (Fig. 2a). Two branches of LPT associate with the
complete energy exchange between the generators. We choose the parameter of
nonlinearity between 0 and 1/4 to avoid the conservative-type bifurcation of the
NNMs which occurs at k = 1/4 and will be considered below. Note that transition to
the non-conservative casemakes the notion of energy somewhat vague. Nevertheless,
the energy term of the corresponding conservative oscillator still can be viewed as a
Lyapunov’s function describing the excitation level in the non-conservative case.

At first, we vary the dissipative parameter. When λ is relatively small, the sys-
tem has two unstable focuses corresponding to the NNMs of the original sys-
tem (1) (Fig. 2b). The focuses transform into unstable nodes when λ2 > 1 − 2k
(Fig. 2, panels (b) and (c)). If the dissipative parameter λ does not exceed the value
1
2

(
1 +

√
1 − 4k2

)
, the only attractor of the system is the LPT with the intensive

energy exchange between the oscillators. The phase shift between the oscillators on
the LPT remains near±π/2 almost all the time (Fig. 3d) while sign switches of the
phase shift take negligibly short time as the system approaches the LTP attractor.

Therefore, the oscillators become synchronized in a nonconventional way that
can be qualified as the ‘LPT-type synchronization’. We underline that the attracting
behavior of LPTs presented in Fig. 1 means that LPT attracts all phase trajectories
corresponding to the arbitrary energy distribution between the oscillators. However,
the attractor itself still represents a particular solution which takes place under cer-
tain initial conditions similarly to the conventional limit cycles. Moreover, we can
show numerically that, by changing the magnitude of N within a wide range while
preserving the dissipative parameters, we obtain the similar attracting behavior of
LPT. Therefore, the perfectly symmetric case can serve as a generating model for
description of the LPT synchronization in a more general situation.
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Fig. 2 Phase planes of the system (7) in terms of the variables θ and � characterizing the relation-
ship between the generators’ amplitudes, R1 and R2, and phases, δ1 and δ2, as R1 � √

N sin θ ,
R2 � √

N cos θ and � � δ2 − δ1: a nonlinearity parameter k = 0.2, dissipative parameter, λ =
0 (conservative system), the stationary points (0, π/4) and (π, π/4) correspond to stable in-phase
and out-of-phase NNMs, respectively; the two branches of LPT (solid pink lines) associate with
the complete energy exchange between the generators, namely when θ � 0 or θ � π/2, the energy
is concentrated on one of the oscillators; b k = 0.2, λ = 0.1 —the stationary points transform into
unstable focuses, the left branch of the LPT becomes unclosed, and the right branch transforms
into the attractor; c k = 0.1, λ = 0.9 —the further increase of the dissipative parameter results in
the transformation of the unstable focuses into the unstable nodes, however the LPT-like attractor
still survives; d k = 0.1, λ = 0.99—the LPT-like attractor corresponding to the intensive energy
exchange between the generators is destroyed and the localized nonlinear normal mode (LNNM)
becomes a new attractor; all the results are in a good agreement with simulations of the original
system (1) (see Fig. 4) [15]

Further, if λ ≥ 1
2

(
1 +

√
1 − 4k2

)
, the LPT becomes unstable, and the attractor is a

stationary point corresponding to the localized NNMwith the energy predominantly
trapped on one of the two oscillators (Fig. 2d). Such a transition to localized mode
was described earlier for somewhat artificially designed model in [21].

It is important to note that the evolution of the LPT leading to the transition from
the energy exchange to the energy localization, turns out to be independent of the
evolution of the stationary points and occurs “later” than the transformation from
unstable focus to unstable node (Fig. 3e) In the range of intensive energy exchange,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 The basic functions τ (ξ ) (a) and e(ξ ) (b), and the time histories of the phases θ (c) and
� (d) obtained from system (7) for the set of parameters corresponding to Fig. 2b; transition to
non-smooth variables allows finding the appropriate analytical representation (8) for θ (e) and �

(f) of the functions characterizing the relationship between the excitations of two oscillators and
the relative phase shift [15]

one can obtain the analytical solution of system (7) by adapting the analytical tool
of nonsmooth temporal substitutions [26]:

θ � Aτ +
λ

4
[cos(4Aτ ) − 1]e + . . . ,

� � π −
[π
2

− 2k sin (2Aτ )
]
e + . . . , (8)

where the basis functions τ � τ (τ2/(2A)) and e � e(τ2/(2A)) are illustrated by
Fig. 3, panels (a), (b); the period of solution (8) T = 4A = 2π is found from the
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Fig. 4 The transition from the energy exchange to the energy localization in the system (3) of
two coupled generators. We show the temporal behavior of the amplitudes Ri � |ψi | � u2i + v2i
(i = 1, 2) obtained by numerical integration of the original system (1) to verify the existence of
a new type of synchronization: R1—orange line, R2—blue line; a k = 0.1, λ = 0.98—the energy
exchange just before the transition to localization; b k = 0.1, λ = 0.99—the behavior just over
the localization threshold, most of the energy is localized on one of the oscillators; c the non-
conventional synchronization corresponding to the parameters set of Fig. 2b, far from the localization
threshold; and d the conventional synchronization on out-of-phase NNM when the parameters of
generators do not satisfy the accepted symmetry conditions [15]

full energy exchange condition, which is equivalent to the smoothness condition,
θ (1) =π /2, of the function; and temporal shapes of the solution are shown in Fig. 3c–f,
respectively. The numerical solution, which is illustrated by Fig. 3c, d, appears to be
in good compliance with the analytical solution (8) shown in Fig. 3e, f.

The behavior of the system before and after the transition from non-conventional
synchronizationon theLPT to the synchronizationon the localizedNNMis illustrated
in Fig. 4a, b, in terms of the original variables. The non-conventional synchronization
on the LPT far from the localization threshold is shown in Fig. 4c.
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We presented also for comparison the plot demonstrating well-studied conven-
tional synchronization in Fig. 4d, which is realized on the out-of-phaseNNM. The set
of parameters in the latter case was taken “far enough” from the accepted symmetry
conditions.

6 The Role of Nonlinearity

As noticed in Introduction, the LPT associates with the complete energy transfer
between the oscillators, and thus it can play the role of a ‘nonstationary alternative’ to
stationary NNM dynamic regimes. There are two subsequent topological transitions
that can be observed in the phase plane. The first one occurs when the nonlinearity
parameter k exceeds the value 1/4. At this nonlinearity level, the anti-phase NNM
becomes unstable and two new stationary points are born as a result of supercritical
pitchfork bifurcation. From the physical standpoint, such a bifurcation points to the
onset of energy localization on individual oscillators, which is the so-called nonlinear
local modes (NLMs). This happens due to the fact that high nonlinearity levels make
the oscillators effectively stiffer or, in otherwords, the couplingbetween themweaker.

Following [18], Fig. 5 presents phase portraits of system (7) under a gradually
increasing nonlinearity level while the dissipation parameter is fixed, λ>0. As seen
from Fig. 5, all the topological transformations happen inside the cell of anti-phase
mode. Due to the presence of non-conservative term, the NNM stationary point
becomes unstable focus while the nonlinearity level is low enough. In this case, a
limit cycle, which is very close to the cell boundary, becomes the only attractor of the
system representing the non-stationary LPT-type synchronization. Note that the term
‘limit cycle’ relates to the reduced system (3) describing the slow-time modulation
dynamics of the original system (1).During this type of synchronization, the “energy”
is periodically transferred fromone oscillator to anotherwhile the phase shift between
the oscillators � remains almost constant all the time except for very narrow time
intervals. During such interval the phase shift � jumps along the horizontal pieces
of limit cycle while the “energy” distribution, described by the angle\theta is almost
fixed. As mentioned previous section such temporal behaviors admit approximations
with the non-smooth periodic basis [16] analogously to solution (8). Note that the
limit cycle can be attractor provided that the nonlinear dissipation parameters satisfies
the relationship b2 � 9γ d/2.

Now we focus on the evolution of the phase plane assuming the nonlinearity
parameter can vary within a relatively large range. We showed that the evolution
of the phase flow inside the cell of anti-phase mode develops in several stages as
follows; see Fig. 5. In particular, increasing the non-linearity parameter k above
the anti-phase NNM’s stability threshold still keeps the limit cycle corresponding to
nonconventional synchronization stable, although the two newNNMs are seen bifur-
cated from the antiphase mode; Fig. 5b. When the newborn normal modes become
stable focuses, two unstable limit cycles (repellers) encircling each of the newborn
modes develop demonstrating Hopf bifurcation of each focus; see the red curves in
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Fig. 5 Evolution of the phase plane of system (7) in the ‘weakly nonlinear’ case, due to a gradual
nonlinearity increase, where the variables θ and � characterize the relation between the two ampli-
tudes and the phase shift, respectively, λ = 0.1—weak dissipation, a k = 0.23 and the stationary
points are unstable focuses, the limit cycle corresponding to LPT becomes attractor; b k = 0.26 the
out-of-phase NNM becomes unstable, two new unstable stationary points are born separated by a
saddle point, the limit cycle is still stable; c k = 0.31—further increase of the nonlinearity does not
affect the topology of phase portrait, however, the limit cycles encircling the newborn stationary
points can be observed; d k = 0.34—two unstable limit cycles collide by forming one unstable limit
cycle, attractors of the system remain same; e k = 0.4—stable and unstable limit cycles collided, the
two stable focuses on the right hand side become the only attractors of the system; f k = 1—rotating
phase trajectory appears, which is eventually captured by a stable focus [18]



64 M. A. Kovaleva et al.

Fig. 6 Numerical solutions of Eq. (1): a inside of the repeller: u1(0) � 0.4794; v1(0) � 0; u2(0) �
−0.8776; v2(0) � 0; b outside of the repeller: u1(0) � 0.4794; v1(0) � 0; u2(0) � 0.8776; v2(0) �
0 the parameter values are: ε = 0.01; α = 0.9071; β = 1.0; b = 2.4; d = 0.8; k = 0.34; λ = 0.1 [18]

Fig. 5c. Since the both repellers occur from the separatrix loops, the dynamics in their
vicinities are extremely slow compared to those close to the larger (stable) limit cycle.

If we further increase the nonlinearity parameter the repellers collide with each
other to form a new (unstable) limit cycle that separates two areas of attraction; see the
red curve in Fig. 5d. Outside the repeller loop, the non-conventional synchronization
is possible, while inside the repeller synchronization on one of the two localized
NNMs is developed. In Fig. 6, we illustrate the behavior of system (1) using the set of
parameters, corresponding to Fig. 5d. In particular, Fig. 6a shows the dynamics under
the initial conditions inside the repeller. It is seen that most of the energy/excitation
becomes localized on the second oscillator. When the initial conditions are taken
outside the repeller, the system becomes attracted to the beat-wise dynamics with
the intensive energy exchange; see Fig. 6b. Therefore, the repellers separate domains
of attraction of different types of synchronization.

Eventually the stable and unstable limiting cycles collide and the newborn focuses
become the only attractors of the system; see Fig. 5e. These attractors correspond to
a synchronization with predominantly one of the two oscillators excited.

To predict the parameter range for the existence of repellers we study the stability
of the stationary points in the neighborhood of anti-phase mode. Such stationary
points can be interpreted as additional nonlinear normal modes with partial local-
ization of excitation on one of the two oscillators. Figure 7b presents the bifurcation
diagramof stationary points in the phase plane (θ ;Δ).We see that the stability of new-
born stationary points is associated with the appearance of the repellers surrounding
them. Note that the coordinates of both points admit exact analytical solutions [18]

θ1 � 1

2
arcsin(A),

�1 � π − arccos (4k A) (9)
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Fig. 7 Left panel: The boundary of stable quasi local modes in the non-linearity (k)—dissipation
(λ) plane and bifurcation diagram showing the amplitude of the stationary points (9), for different
values of the parameter k and for λ = 0.1; blue color denotes stable solutions, red color denotes
unstable ones. Right panel: Phase portraits of system (7) above (a) and below (b) the boundary,
which is shown in the left panel: a k = 0.34, λ = 0.1; b k = 0.28, λ = 0.1; in particular, the fragment
(b) shows the saddle point A, corresponding to the unstable antiphase mode, two stable spiral points
L, corresponding to stable ‘quasi’ local modes, the unstable ULC and stable SLC limit cycles [18]

and

θ2 � π

2
− 1

2
arcsin(A) ,

�2 � π + arccos(4k A) , (10)

where A �
√√√√ 1

2

(
1 + 4k2

λ2 −
√(

1 + 4k2
λ2

)2 − 1
λ2

)
. The presence of solutions (9) and

(10) enables us to linearize system (7) near the stationary points and thus conduct
their local stability analysis. Note that eigen values of the corresponding Jacobian
matrixes appear to be the same for both points due to the symmetry. In other words,
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Fig. 8 Time history of the transition from the unstable ULC to stable SLC limit cycles; see the
phase portrait in Fig. 7b, c

points (9) and (10) possess the same stability properties as soon as nonlinearity
and dissipation parameters of system (7) remain fixed. The result of such analysis
is summarized in Fig. 7, where the curve represents a manifold of parameters that
separates the areas of positive and negative Lyapunov’s exponents in such a way that
they are positive below the curve. Therefore, points (9) and (10) are stable above
while unstable below the curve in Fig. 7. Direct numerical integrations of Eq. (7) on
both sides of the boundary are illustrated in Fig. 8 to confirm our conclusion.

Remark In the vicinity of the antiphase mode the system (7) can be represented in
the form:

dx

dτ2
� 2(1 − 4k)y +

8

3
(1 + 2k)y3 − x2y

dy

dτ2
� −1

2
x + 2λy +

1

12
x3 − 16

3
λy3 (11)

where � � π + x , and θ � π/4 + y. As is seen from the Fig. 7 the system (11)
represents evolution of all the (stable and unstable) limit cycles of the system (7).
When the unstable limit are born, the stationary points inside each of them become
stable focuses.

7 The Effect of Soft and Stiff Nonlinearities

In the previous sections we studied the case of the ‘hard’ nonlinearity. If the sign of
the parameter is changed to negative, the effect of the conservative nonlinearity is
changed quite drastically from the standpoint of its effect on the evolution of the phase
planes. Let us note that all the analysis provided for the case of ‘stiff nonlinearity can
be completed for the ‘soft’ one as well. The new asymptotic system will coincide
with the system (3). Only the sign of the parameter k must be changed. Therefore,
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the phase plane analysis remains applicable to the case of soft nonlinearity leading
however to quite different outcome. For instance, the anti-phase NNM will remain
stable in all the range of parameters considered, while the in-phase NNM becomes
unstable if the threshold value k = 1/4 is exceeded. In the non-conservative case,
the stable limit cycle with the intensive energy exchange occurs around the in-phase
mode. All the phase plane analysis can be conducted similarly to the ‘stiff case. The
only difference is that the in-phase and anti-phase mode cells will replace each other
on the phase plane.

8 Synchronization in the Presence of Detuning

If we repeat the asymptotic procedure respecting the weak detuning of the two
generator we obtain a similar to (7) system:

dθ

dτ2
� 1

2
(sin� − λ sin 4θ),

sin 2θ
d�

dτ2
� cos 2θ cos� + 2k sin 4θ + g sin 2θ, (12)

where parameters k � 3αN
2β , λ � N 2d

8β , and g � κ
β
characterize the nonlinearity,

dissipation and detuning, respectively. In the Fig. 9 we show that the non-stationary
synchronization is preserved in some range of the weak detuning.

Remembering that if the detuning is zero, g = 0, and the dissipation parameter is
small enough, then, within the interval 0 < k < 1/4, the system has two unstable
focuses (θ,�) � (π/4, 0) and (θ,�) � (π/4, π ). They become unstable nodes if

λ2 > 1 − 2k. When 0 < λ <
(
1 +

√
1 − 4k2

)
/2 the intensive energy exchange

between the two oscillators is observed along the boundary between phase cells in
the phase plane (LPT). If the detuning is gradually increased starting from zero,
then we see first a slight deformation of the LPT-attractor. Then the nonlinear local
mode (NLM), which corresponds to the energy localization on mostly one of the two
generators, becomes the only attractor of the system (Fig. 9).

Now, if we increase the nonlinearity parameter, k >1/4, then the phase diagram of
conservative systemchanges its structure.Namely, the stationary point corresponding
to the out-of-phase NNM transforms from center to saddle so that out-of-phase mode
loses its stability. As a result, new stationary points corresponding to NLMs occur
as shown in Fig. 5b. For dissipative case and large enough values of nonlinearity
parameter k these two stationary points become stable focuses so that the NLMs
become attractors. Depending on the initial conditions the phase trajectories are
attracted by one of the two focuses; see Fig. 5e. Adding some detuning leads to no
significant change of the phase plane picture, except one of the two NLMs becomes
dominating as an attractor on the phase plane (Fig. 10). The area of attraction of the
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Fig. 9 Evolution of the phase plane of system (12) in the ‘weakly nonlinear’ case, k = 0.2, due
to a gradual increase of the frequency detuning parameter c λ = 0.1 and g = 0.1 the limit cycle is
slightly deformed but still remains attractor; d λ = 0.1 and g = 0.2—the limit cycle disappears by
giving rise to the ‘running phase’ trajectory, which becomes attractor; e λ = 0.1 and g = 0.5—the
NLM becomes the only attractor of the system with energy localization on the generator with lower
frequency; f λ = 0.1 and g = 1.- further increase of the detuning does not affect the topology of
phase portrait, however, the energy localization effect becomes stronger [17]

mode with the higher frequency decreases with the increase of the detuning, and it
disappears completely at some threshold value of the detuning; see Fig. 10d.

Further, Fig. 11 illustrates the evolution of phase portrait due to detuning increase
under a stronger influence of dissipative terms. The result of strong dissipation is that
the limit cycles along the cell boundaries (LPTs), corresponding to themost intensive
energy exchange between generators, become broken apart by new stationary points
associated with NLMs. Compared to Fig. 7, these NLMs are born on the limit cycle,
at the cell boundary, not inside the cell; compare, for instance, Figs. 9b and 11a.
This enables us to bridge the gap between nonstationary synchronization and NLMs.
In the case when detuning is present disappearance of LPT synchronization is also
accompanied by the birth of two stable and two unstable stationary points (stable
focuses and saddles can be seen at the phase plane Fig. 11c) exactly as in the case
when the detuning is absent (Fig. 2d). Note that those correspond to limiting cycles
in the initial system. If now we increase significantly the dissipation parameter of
the system while the nonlinearity term is relatively small and detuning is absent,
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Fig. 10 Evolution of the phase diagrams of system (12) due to the detuning increase under the
greater nonlinearity level, k = 0.4: a λ = 0.1 and g = 0.1—the attraction area of one of the two
NLMs is shrinking; d λ = 0.1 and g = 0.2 most of the energy localizes on the active oscillator with
lower frequency [17]

the limiting cycle corresponding to intensive energy exchange becomes unstable as
two new stationary points are born (Fig. 4). Note that the presence of NLMs is not
affected by the detuning increase in some range, as clearly seen fromFig. 9 fragments
(b), (c), and (d), where the corresponding stationary points are just slightly shifted in
both horizontal and vertical directions. However, detuning breaks the symmetry, that
manifests in the shift of the left saddle and its annihilation with the unstable node,
corresponding to the out-of-phase NNM (see Fig. 11c). Final stage of the evolution
(with increase of detuning) consists in annihilation of the right stable focus and
saddle point. It leads to qualitative change of the phase plane and as a result only
one attractor (stable stationary point), corresponding to limiting cycle (of the full
system) on the LNM remains.

9 Non-symmetric Case

Figure 12 shows the results of numerical integration of system (7) for the initial
conditions or the parameters of the system that do not match symmetry conditions.
Thus, in this case we analyze the stability regions for the regimes determined for a
system with symmetry. In the case of symmetry breaking, the representation on the
R1, R2 plane is more informative than the graph in the θ ,Δ plane; this is illustrated in
Fig. 13a, b. The set of parameters corresponds to that in Fig. 13b; the initial energy of
excitation of the oscillators is I ≡ N � R2

1 + R2
2 (which is essential for satisfying the

symmetry conditions). If the initial conditions correspond to the initial energy of the
oscillators determined by symmetry condition (5), (6) (see Fig. 13b) (e.g., the ampli-
tude of one of the oscillators decreases; see Fig. 13c), the LPT attractor attracts all
phase trajectories as before. Upon a further decrease in the initial energy, the system
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Fig. 11 Evolution of the phase diagrams of system (12) due to the detuning increase under the
greater dissipation parameter value λ = 0.85, k = 0.2: a detuning g = 0—system of identical
oscillators; b g = 0.02 system with a weak detuning, red dots mark stationary point obtained
analytically; c g = 0.1; d g = 0.5 [17]

tends to a stable equilibriumposition (Fig. 13d). Conversely, if the initial energy of the
oscillators exceeds the value required for fulfillment of the symmetry conditions, the
regime of steady-state energy transfer (LPT—synchronization) sets in a wide range
of initial conditions (Fig. 13e). When symmetry is broken due to a change in one of
parameters (e.g., parameter b) in both directions, the LPT—synchronization limit is
attained (Fig. 13f). Thus, we have shown that the found regime of LPT synchroniza-
tion in which the LPT is an attractor can be implemented in a certain range of initial
conditions and for values of parameters that do not correspond to symmetry. It should
also be noted that the regime illustrated in Fig. 13d is the so-called case of oscillation
death, which was considered earlier for dissipatively coupled oscillators [6].



Non-linear Beatings as Non-stationary Synchronization … 71

Fig. 12 ε = 0.01; α = 0.268; β = 1.0; b = 1.2; d = 0.8; k = 0.2; λ = 0.1; E0(0) � 0.5; u1(0) �
0; v1(0) � 0.0001; u2(0) � 0; v2(0) � 1; numerical solutions of Eqs. (1) [17]

10 Energy Balance Approach

Recall that the limit cycle can exist if the balance between the energy inflow and
outflow during one period of the oscillation holds. Let us consider first van der Pol’s
oscillator:

d2u

dt2
+ u + ε(bu2 − γ )

du

dt
� 0, (13)

where ε—is small parameter.
Assuming 0 < ε 	 1 and thus harmonic temporal shape of the oscillation,

u � A cos t , gives the work of dissipative force done over one period

I �
2π∫

0

(bu2 − γ )

(
du

dt

)2

dt � A2π

(
bA2

4
− γ

)

If I = 0, then there is a balance between the energy inflow and outflow, which
gives the amplitude of limit cycle A � 2

√
γ /b.

Now let us apply similar approach to the dissipative terms of the equations in the
slow time-scale (2). For simplicity reason we integrate along one period of the linear
beating as
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Fig. 13 Numerical study of
the ranges of parameters and
initial conditions in which
the regime of the LPT
synchronization in the
system (3) can be realized: a
representation on the plane
(R1, R2), the parameters set
corresponds to Fig. 2b, initial
excitation level is I = N = R2

1
+R2

2, which is necessary for
the symmetry conditions to
hold; b same regime on the
(θ ,Δ) plane; the symmetry
break is made with initial
excitation level not equal to
1, c R1 = 0.95, R2 = 0:
non-conventional
synchronization attracts the
phase trajectories; d R1 =
0.85, R2 = 0: system comes
to equilibrium; e R1 = 10, R2
= 0: LPT synchronization
attracts the phase
trajectories; the parameters
of the system differ from
those under symmetry

conditions: b �
√

9γ d
2 (1 + δ)

f LPT synchronization, δ =
0.1 b in-phase mode (NNM
synchronization), δ = 0.2; (c)
LPT synchronization, δ =
–0.001; d the system evolves
to the equilibrium position, δ
= –0.005 [16]
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I �
2π/β∫

0

(
γ − b| fi |2 + d| fi |4

)
f 2i dτ1, i � 1, 2, (14)

where, due to the assumption of small nonlinearity, the envelope-functions are sup-
posed to have the harmonic temporal shape

f1 � iC sin(βτ1), f2 � iC cos(βτ1). (15)

Substituting (15) in (14) gives

I � C2

2

2π

β

(
−γ + b

3

4
C2 − 5

8
C4

)
(16)

The condition I � 0 gives C2 �
(
3
4b ±

√
9
16b

2 − 5
2dγ

)
/
(
5
4d
)
under condition

b2 ≥ 40

9
dγ (17)

and

C2 � N � 3

5

b

d
(18)

Estimates (17)–(18) is fairly close to that obtained by symmetry analysis:

b2 � 9

2
dγ, N � 2

3

b

d
(19)

In Fig. 14 we illustrate the evolution of the non-linear beating for different initial
conditions and parameter sets. The border condition obtained by integration criterion
is too rough and the nonlinear beating realized for the set (18) is unstable, while the
prediction of the area, given by the inequality (17) holds, as for broad area ‘above’
the border the nonlinear beating regime is stable.

11 Model with Coupling via Linear Oscillator

This section deals with a two-level quantum model [23], according to which the
interaction of a material system with a electromagnetic field can cause the loss of
stability of the lower level. As a result of this instability, the role of the ground state
is played by a periodic process generating superradiance. A classical analogue of a
super radiant quantum transition is given by two generators weakly coupled through
a linear oscillator. The reason for the transition to intensive energy exchange is the
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Fig. 14 Comparison of the nonlinear beating realization for different parameter sets: energy esti-
mate—blue line; symmetry analysis—red line; condition (17) with a slight overshoot—green line

instability of the nonlinear normal mode (NNM) in the classical system similar to
instability of the ground state in the quantum system.

d2u1
dt2

+ u1 + 8αεu31 + 2βε(u1 − u2) + 2ε(4bu21 − γ )
du1
dt

� 0;

d2u2
dt2

+ (1 − 2εκ)u2 + 2βε(u2 − u1) + 2βε(u2 − u3) + 2εη
du2
dt

� 0;

d2u3
dt2

+ u3 + 8αεu33 + 2β2ε(u3 − u2) + 2ε(4bu23 − γ )
du3
dt

� 0. (20)

where 0<ε 	1, and therefore nonlinearity, damping, and coupling are small;
η- parameter of damping on the linear oscillator, α β, κ as in previous sections
characterize nonlinearity, coupling and detuning correspondingly, b and γ are non-
linear and linear dissipative terms of the generator; in addition, it is assumed that α
= b = 1, β = 1.2, and κ = 1.

There are three NNMs in the system with ampli-

tudes
{
1,−(β − κ) −√

(β − κ)2 + 8β2, 1
}
, {1, 0, −1} and{

1,−(β − κ) +
√
(β − κ)2 + 8β2, 1

}
[24] and frequencies �I � 1 +

ε
(
3β − � −

√
(β − �)2 + 8β2

)
, �I I � 1 + 2βε, �I I I � 1 +
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Fig. 15 Numerical realization of NNM II at η = 0.3 at initial conditions similar to those correspond-
ing to mode II (grey lines) and of intense energy exchange at η = 0.11 (black lines); the quantities
Ri � |ψi | � u2i + v

2
i (i = 1, 2, 3) characterize the intensity of excitation of the oscillators described

by system (17); a first generator, b linear oscillator, and c second generator [20]

ε
(
3β − � +

√
(β − �)2 + 8β2

)
correspondingly. Mode I is stable over the entire

η range; mode III is unstable throughout the η range; mode II becomes unstable at
a certain value of the dissipation parameter η, for given set of the parameters η =
ηcr ~0.21. This means that the system is moved away from normal mode II, and
it appears that the disturbance is directed along the vector corresponding to mode
I. Figure 15 shows the numerical results characterizing the time evolution of the
amplitude of each oscillator at η = 0.3 (gray lines) and initial conditions similar
to those corresponding to mode II. Since the pattern of mode I is similar (with the
exception of the linear oscillator, the amplitude of which goes to zero), it is not
shown in the Fig. 15.
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Fig. 16 Illustration of energy exchange mechanism; see Fig. 15a–c [20]

The instability ofmode II leads to a regimeof intensive stationary energy exchange
between the two generators; fraction of energy transferred depends on the parameter
η, reaching more than 90%. Energy exchange process is shown in Fig. 15 (black
lines) for η = 0.11; the initial conditions are essentially asymmetrical. It should be
noted that a similar process occurs under a wide range of initial conditions, including
those corresponding to the unstable mode II. Such behavior is typical to that for the
attractor vicinity; i.e., a wide range of initial conditions leads to this trajectory. The
evolution of the system cannot be adequately described in terms of NNM, since they
correspond to a fixed energy of each oscillator. Obviously, themotion of the system is
similar to that takes place for LPT. Note that the vibrational frequency of the energy
evolution of the linear oscillator in Fig. 16 is twice of those of each generator.
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Fig. 17 Stability loss of the energy exchange process: η = 0.09 at initial conditions similar to those
corresponding to mode II: a first generator, b linear oscillator, and c second generator [19]

If the value of controlling parameter η is below second threshold value (η<0.1),
the energy exchange regime loses its stability and after some acts of energy exchange
the system is attracted by a stableNNM.The energy evolution forη=0.09 is presented
in the Fig. 17.

12 Quantum Analogy

Superradiant quantum transition (SQT) is one of the most important quantum phe-
nomena having numerous physical applications. Although its first model was pro-
posed as long ago as 1954, the discussion of the SQT mechanisms, as well as search
for possible classical analogues of this phenomenon is still ongoing. Some of the
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proposed models involve thermodynamic analyses of an ensemble of dipoles, while
others deal with the interaction of dipoles with a resonant field. A number of models
describe SQT type processes as a formation of unstable pulse.

However, there is a fundamental model, based on quantum electrodynamics,
which takes into account the dynamic factors that lead to the instability of the ground
state of a two-level system in the presence of resonant electromagnetic radiation [6].
This model, a further development of the Dicke model, describes the mechanism of
the formation of a new ground state, far from the original. At a relatively low den-
sity of resonant radiation, the traditional two-level system demonstrates the normal
behavior: the lower level is stable, whereas the upper is unstable. If the upper level
of the system is overpopulated, classical laser radiation arises with spontaneous
transition to the lower level. However, at certain threshold values of the coupling
parameter and field frequency, the lower level becomes unstable. This gives rise to
steady oscillations between the two levels, a process corresponding to SQT.

The starting system reads as [23]

χ̇1 � −igA∗χ2;

χ̇2 � −igAχ1;

i

2
Ä + Ȧ + iμA � −gχ∗

1χ2. (21)

where χ1, and χ2 are the wave functions of the lower and upper levels of the material
system andA is a characteristic of the electromagnetic field. System (21) has integrals

χ∗
1χ1 + χ∗

2χ2 � 1

Q � A∗A +
i

2
(A∗ Ȧ + Ȧ∗A) + χ∗

2χ2 (22)

H � Q +
1

2
A∗ Ȧ + μA∗A + g(Aχ∗

2χ1 + A∗χ∗
1χ2)

The system possesses three stationary states: I.χ1 � 0;χ2 
� 0; A � 0, A∗ �
0;—the lower level in the absence of the field, the ground state in the domain of
its stability; II. χ1 
� 0;χ2 � 0; A � 0, A∗ � 0;—the upper unsustainable level;
III.χ1 � 0;χ2 � 0; A 
� 0;—the field does not interact with the two-level system.

Change of variables, χ1 � cos θ eiδ1 , χ2 � sin θ eiδ2 , � � δ1 − δ2 and differen-
tiation with respect to the time transforms original equation (19) for the field to the
form

...
A − 2i Ä + 2μ Ȧ − 2ig2A cos 2θ � 0 (23)
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or for A � a + ib; and using the integrals of the system

Q � a2 + b2 + (ȧb − ḃa) + sin2 θ ; H � Q +
1

2
(ȧ2 + ḃ2) + μ(a2 + b2) + g sin 2θ (a cos� − b sin�)

we obtain a system:

ä + 2b̈ + 2μȧ + 2g2b(1 − 2(Q − (a2 + b2) − (ȧb − aḃ))) � 0

b̈ + 2ä + 2μḃ + 2g2a(1 − 2(Q − (a2 + b2) − (ȧb − aḃ))) � 0

These two equations describe the dynamics of the field for a given value of the
integral Q. The values of θ and Δ, describing the behavior of the levels, can be
determined by using the integrals (0 < θ < π/2, π/2 < � < π/2):

θ � arcsin
(
Q −

√
(a2 + b2) − (ȧb − ḃa)

) � � arcsin
(
a/

√
a2 + b2

)

− arcsin
[(

H − Q − 1
2 (ȧ

2 + ḃ2) − μ(a2 + b2)
)
/g sin 2θ

]

(24)

In order to investigate the stability of the ground state, we linearize Eq. (23) in the
vicinity of state I and obtain a condition on the instability of the ground state [23]:

g2 > g2C � 8

27
+
2

3
μ +

[
4

9
+
2

3
μ2

]3/2
(forμ � 0, gC � 0.769).

For the initial conditions corresponding to oscillations, namely: ω � 1.2; a �
0.01; b � 10−8; ȧ � 1 ∗ 10−10; ḃ � ωa; ä � −ω2a; b̈ � 10−10 the system behavior
changes sharply after passing through the point of stability loss of the ground state
(Fig. 17). The time scale of the process of superradiance becomes comparable with
the field oscillation period, as values of g far from the critical one (Fig. 18). As seen
from Fig. 18, both the field envelope-function and amplitude of the wave functions
of the levels with the same period (Fig. 19) also show periodic variations, which
correspond to the process of superradiance.
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Fig. 18 Upper panel: evolution of the field components a and b at g = 0.76 (blue line) and g = 0.77
(red line); lower panel: evolution of the wave-functions at g = 0.76 (blue line) and g = 0.77 (red
line) [20]

13 Conclusions

It should be emphasized that the scenario of the nonstationary LPT-type synchroniza-
tion seems to be universal in the range of parameters in which NNM synchronization
is rather impossible, as confirmed by the presented results. The importance of the
“symmetric” case considered in forth section is that it provides a detailed analytical
investigation revealing the new type of synchronization. In addition, such investiga-
tionsmake it possible to establish the conditions for a transition to energy localization.
After the prediction of the range of dissipative parameters in which the nonstationary
synchronization exists, it can be observed experimentally in physical, chemical, and
biological systems simulated with two coupled oscillators.
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(a) (b)

(c)

Fig. 19 Evolution of the field components a and b and the ratio of the amplitudes of the wavefunc-
tions of the levels θ at g = 0.76 (red line) and g = 0.9 (blue line) [20]

Appendix: Symmetry Analysis

The conditions of the system invariance leads to partial differential equations for the
constituents of operator (3) as follows

ητ + p1ηR1 + p2ηR2 + p3ηΔ − p1ξτ − p21ξR1 − p1 p2ξR2 − p1 p3ξΔ

� ξ
[−γ p1 + 3bR2

1 p1 − 10dR4
1 p1 + βp2 sinΔ + p3βR2 cosΔ

]

+ η
[−γ + 3bR2

1 − 10dR4
1

]
+ ζ [β sinΔ] + ς [βR2 cosΔ]

ζτ + p1ζR1 + p2ζR2 + p3ζ� − p2ξτ − p1 p2ξR1 − p22ξR2 − p2 p3ξ�

� ξ
[−γ p2 + 3bR2

2 p2 − 10dR4
2 p2 + βp1sin� − p3βR1cos�

]

+ η[β sin�] + ζ
[−γ + 3bR2

2 − 10dR4
2

]
+ ς [−βR1cos�] (1A)

ςτ + p1ςR1 + p2ςR2 + p3ςΔ − p3ξτ − p1 p3ξR1 − p1 p2ξR2 − p23ξΔ

� ξ

⎡
⎣−3α(2R2 p2 − 2R1 p1) − β

⎛
⎝cosΔ(R1 p2 − R2 p1)

(
R2
1 + R2

2

)

R2
1 R

2
2

+ β sinΔ

(
R2
2 − R2

1

)

R1R2
p3

⎞
⎠
⎤
⎦
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+ η

⎛
⎝6αR2

1 + β cosΔ

(
R2
1 + R2

2

)

R2
1 R2

⎞
⎠− ζ

⎛
⎝6αR2

2 + β cosΔ

(
R2
1 + R2

2

)

R1R
2
2

⎞
⎠ + ς

⎛
⎝β sinΔ

(
R2
2 − R2

1

)

R1R2

⎞
⎠

Solving Eq. (1A), gives the Lie group operator

X � ∂

∂τ1
+ (−γ R1 + bR3

1 − 2dR5
1 + βR2 sin�)

∂

∂R1
+ (−γ R2 + bR3

2 − 2dR5
2 − βR1 sin�)

∂

∂R2

+

(
−3α(R2

2 − R2
1) − β

(R2
2 − R2

1)

R1R2
cos�

)
∂

∂�
+ X1

If exists, the corresponding invariant, say I , must satisfy the condition

X I ≡ ∂ I

∂τ1
+ (−γ R1 + bR3

1 − 2dR5
1 + βR2 sinΔ)

∂ I

∂R1

+ (−γ R2 + bR3
2 − 2dR5

2 − βR1 sinΔ)
∂

∂R2

+

(
−3α(R2

2 − R2
1) − β

(R2
2 − R2

1)

R1R2
cosΔ

)
∂ I

∂Δ
+ X1 I � 0

As mentioned in the main text, it is assumed that I � I (R1, R2). In this case, the
variables R1, R2 satisfy the following ordinary differential equation, which can be
also directly obtained from first two Eqs. (3),

dR1

(−γ R1 + bR3
1 − 2dR5

1 + βR2 sinΔ)
� dR2

(−γ R2 + bR3
2 − 2dR5

2 − βR1 sinΔ)
(2A)

The group operator becomes a rotation operator with the invariant I ≡ N �
R2
1 + R2

2 if the parameters of the system (3) satisfy the relation b2 � 9γ d/2 while the
initial conditions provide the excitation level N � 2b/3d. This can be easily proved
using the combination of 1st equation of (3) multiplied by R1 minus 2nd equation of
(3) multiplied by R2.
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Normal Modes of Chaotic Vibrations
and Transient Normal Modes
in Nonlinear Systems

Yuri V. Mikhlin, Katarina Yu. Plaksiy, Tatyana V. Shmatko
and Gayane V. Rudneva

Abstract Nonlinear normal modes of forced chaotic vibrations can be found in
models which are obtained by discretization of some elastic systems that have lost
stability under external compressive force. Transient nonlinear normal modes, which
exist only for some specific values of the system energy, appear in nonlinear dissipa-
tive systems in vicinity of external or internal resonance. These dissipative systems
under resonance conditions are analyzed by transformation to reduced systems stated
with respect to the parameter which characterizes the system energy, the arctangent
of the amplitudes ratio and the phase difference.

1 Introduction

Concept of nonlinear normal modes (NNMs), first proposed by Kauderer and Rosen-
berg [1, 2], is an important step of investigation of the nonlinear systems behavior.
Principal fundamentals of the NNMs theory and different applications of the theory
are presented in [3–5].

The NNMs concept can be used not only for periodic vibrations. In particular,
the NNMs having smooth trajectories in configuration space and chaotic in time
behavior can be found in some non-conservative systems. Such vibration modes are
observed in post-buckling dynamics of elastic systems that have lost stability under
external compressive force.

In vicinity of the internal resonance the transfer of energy from unstable NNMs
to stable ones is noted. This phenomenon is discussed in various publications. A
description of the energy transfer was presented in the pioneering publication [6],
where it was showed that in spring pendulum a transfer of angular oscillation mode
to vertical oscillation one, and back, takes place near the fundamental frequencies
ratio of 2:1. The transfer of energy caused by internal resonancewas also investigated
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in [7–9]. Some principal results in problems of the energy transfer are summarized
in the book [10]. The book [11] is devoted to complex behavior of autonomous and
non-autonomous nonlinear systems under the internal resonance conditions. Here
an interaction of nonlinear vibration modes in neighborhood of external and internal
resonances in nonlinear dissipative systems is analyzed by themultiple scalesmethod
[12] and a transformation to so-called reduced system. The reduced system is written
with respect to some variable which characterizes the system energy, arctangent of
ratio of amplitudes and difference of phases. Earlier the reduced system was used
for conservative systems in [13, 14] and for dissipative systems in [15]. The new
phenomenon in analysis of transient of the dissipative system near resonance is an
appearance of so-called transient nonlinear normal vibration modes (TNNMs) [15]
which are realized only for some levels of the systems energy that is, for some specific
values of time, corresponding to these energy levels. It is important that near these
values of time motions of the dissipative systems are close to the modes, that is the
TNNMs are attractive.

An appearance of TNNMs in the systemwith a limited power-supply (or non-ideal
system) having nonlinear absorber and in the spring-pendulum system (oscillator-
rotator) is considered. The systems with a limited power-supply are characterized
by interaction of source of energy and elastic sub-system which is under action of
the source. The most important effect observed in such systems is the Sommerfeld
effect [16], when the stable resonance regimewith large amplitudes is appeared in the
elastic sub-system. Resonance dynamics of such systems was first described by V.O.
Kononenko [17]. Then investigations on the subject were continued in numerous
publications, in particular, in [18–20]. Some surveys on studies of the non-ideal
systems dynamics are made in [12, 21]. Transfer of energy from some unstable mode
to other stable one, that is the so-called “saturation phenomenon”, in such systems
under the internal resonance condition, is described in [22].Reduction of the vibration
amplitudes in the non-ideal systems coupled with different type nonlinear absorbers
and dampers, is studied in [23, 24]. Forced synchronic regimes of the oscillator-
rotator system are analyzed in [25]. Free stationary and non-stationary regimes, as
well localization of energy in such system are considered in [26].

The paper is organized as follow. Forced NNMs in models which are obtained by
discretization of some elastic systems are examined in Sect. 2. These NNMs with
chaotic in time behavior, are obtained in post-buckling dynamics of such systems. In
Sect. 3, external resonances on the first fundamental frequency and both external and
internal resonances in the dissipative system with a limited power supply coupled
with nonlinear absorber are considered. Resonance behavior in the dissipative spring-
pendulum system for a case of simultaneous external and internal resonances is
considered in Sect. 4. Modes of coupled vibrations and localized modes, including
TNNMs are obtained; their influence to transient process in these systems is shown.
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2 Forced Nonlinear Normal Modes of Chaotic Vibrations

Consider the following system that can be obtained by discretization of equations of
nonlinear dynamics of some elastic systems:

ÿ1 + δ ẏ1 − αy1 + βy31 + cy1y
2
2 � f cosωt,

ÿ2 + δ ẏ2 + ay2 + by32 + cy2 y
2
1 � 0, (1)

where y1(t) and y2(t) are unknown functions; δ is the coefficient determining friction;
all coefficients are positive, excepting the coefficient α which can have any sign. In
the case α > 0 the Eq. (1) describe post-critical dynamics of the corresponding
elastic systems.

The system (1) can be obtained, in particular, in the following problems: the beam
bending vibrations within framework of the Kirchhoff beam theory and the dynamics
of cylindrical shells described by the Donnell equations can be considered. Then a
discretization by the Bubnov–Galerkin procedure is used. If displacements of the
nonlinear elastic system are approximated by a single harmonic of the Fourier series
expansion for spatial coordinates, a system having a single degree of freedom is
obtained. Behavior of the model described by the non-autonomous Duffing equation
was examined in numerous publications. Chaotic motions begin when the force
amplitudes are slowly increased [27]. If two harmonics of the Fourier series for
spatial coordinates are used, one obtains a set of two second order ODEs, coupled in
nonlinear terms only. Two NNMs, which are determined by smooth trajectories in
the system configuration place, exist here. One of these modes can be chaotic in time
in some domain of the system parameters. Boundaries of the domain are determined
as some combination of the external amplitude and parameters of nonlinearity and
dissipation. The energy transfer from some vibrationmode to another one is possible.
Thus one can formulate a problem of the stability of periodic or chaotic vibration
mode in the higher-dimensional spaces. The orbital stability of trajectories of the
regular or chaotic modes is determined by the numerical-analytical approach which
is based on the known Lyapunov definition of stability [28].

In Figs. 1 and 2 phase places of the variables y1(t) and y2(t) show orbital stabil-
ity/instability of the NNM trajectory y2 � 0 for some parameters of the system (1).
The variable y2 is considered here as variation of the NNM trajectory in orthogonal
direction. Note that these results are obtained for the problem of the post-buckling
nonlinear beam dynamics.
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Fig. 1 The unstable mode of regular vibrations

Fig. 2 The stable mode of chaotic vibrations

3 Transient Nonlinear Normal Modes
in Dissipative System with a Limited Power-Supply
Coupled with Nonlinear Absorber

One considers the resonance behavior of the dissipative non-ideal systemwhich con-
tains the nonlinear absorber with cubic type nonlinearity. Model under consideration
is shown in Fig. 3. The motor D acts to the elastic sub-system by the crank shaft.
The nonlinear oscillator is attached to the elastic sub-system of the mass M.
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Fig. 3 System with a limited
power-supply coupled with
non-linear absorber

Equations describing motion of the system are the following:

I ϕ̈ � ε(L(ϕ̇) − H (ϕ̇) + c1r (x − r sin ϕ) cosϕ),

Mẍ + εηẋ + cx + c2(x − y) + γ (x − y)3 � εc1r sin ϕ,

εmÿ + εη ẏ − c2(x − y) − γ (x − y)3 � 0.

(2)

Here the following notation is used: M is a mass of the elastic sub-system; r is a
radius of the crank shaft; coefficients c � c0 + c1 and c2 characterize stiffness of
springs in the system;m is a mass of the nonlinear absorber; I is a moment of inertia
of rotating masses; H (ϕ̇) � dϕ̇ is the moment of resistance to rotation; L � a + bϕ̇
is a driving moment of the motor. The small parameter ε characterizes a smallness of
mass of absorber with respect to the mass of elastic sub-system, of dissipation in the
system and of the vibration components in variability in time of the angle ϕ velocity
with respect to the constant component of the velocity.

Equations of motion (2) are transformed and presented of the next form:

ϕ̈ � ε( Ā + ϕ̇ + C̄x cosϕ − D̄ sin 2ϕ),

ẍ + ω2
x x − qy + 2εηx ẋ + εγx (x − y)3 � εk sin ϕ,

ÿ + ω2
y y − ω2

y x + 2εηy ẏ − εγy(x − y)3 � 0,

(3)

where Ā � a
I , B̄ � b−d

I , C̄ � c1r
I , D̄ � c1r2

2I , ω
2
x � c+c2

M , 2ηx � η

M , γx � γ

M , q � c2
M ,

k � c1r
M , ω2

y � c2
m , 2ηy � η

m , γy � γ

m .
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One transforms the system (3) to principal coordinates, solving corresponding eigen-
value problem of the linearized system. Fundamental frequencies and coordinates of
eigenvectors χ1,2 � (α1,2, β1,2) are the following:

ω2
1,2

�
(ω2

x + ω2
y) ∓

√
(ω2

x − ω2
y)

2 + 4ω2
yq

2
, (4)

α1,2 � 1, β1,2 � 2ω2
y

(ω2
y − ω2

x ) ±
√
(ω2

x − ω2
y)

2 + 4ω2
yq

. (5)

In the principal coordinates the system under consideration can be written of the
form:

ϕ̈ � ε( Ā + B̄ϕ̇ + C̄(z1 + z2) cosϕ − D̄ sin 2ϕ),

z̈1 + ω2
1z1 � εβ2

β2−β1
(−2ηx (ż1 + ż2) − γx (z1 + z2 − β1z1 − β2z2)3 + k sin ϕ)

− ε
β2−β1

(−2ηy(β1 ż1 + β2 ż2) + γy(z1 + z2 − β1z1 − β2z2)3),

z̈2 + ω2
2z2 � ε

β2−β1
(−2ηy(β1 ż1 + β2 ż2) + γy(z1 + z2 − β1z1 − β2z2)3)

− εβ1

β2−β1
(−2ηx (ż1 + ż2) − γx (z1 + z2 − β1z1 − β2z2)3 + k sin ϕ).

(6)

To analyze the external resonance on the fundamental frequency corresponding to the
coordinate z1, one introduces the detuning parameter� by the relation�2 � ω2

1+ε�.
The multiple scale method [12] is used here. So, the following scales of time as
new independent variables are introduced: T0 � t ; T1 � εt, etc. All generalized
coordinates of the system (6) are presented as functions of these variables. The next
standard transformations are used:

d

dτ
� ∂

∂T0
+ ε

∂

∂T1
+ · · · , d2

dτ 2
� ∂2

∂T 2
0

+ 2ε
∂2

∂T1∂T0
+ · · · (7)

The variables ϕ, z1 and z2 are presented also as power series by the small parameter.
Saving only the zero and first approximations by the small parameter, ϕ � ϕ0 + εϕ1,
z1 � z10 + εz11, z2 � z20 + εz21, one obtains the following PDE systems:

∂2ϕ0

∂T 2
0

� 0,
∂2z10
∂T 2

0

+ �2z10 � 0,
∂2z20
∂T 2

0

+ ω2
2z20 � 0, (8)
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∂2ϕ1
∂T 2

0
� −2 ∂2ϕ0

∂T0∂T1
+ Ā + B̄

(
∂ϕ0
∂T0

)
+ C̄(z10 + z20) cosϕ0 − D̄ sin 2ϕ0,

∂2z11
∂T 2

0
+ �2z11 � −2 ∂2z10

∂T0∂T1
+ �z10 + 1

β2−β1

[
β2

(
−2ηx

∂(z10+z20)
∂T0

− γx (z10 + z20

−β1z10 − β2z20)3 + k sin ϕ0
)
+ 2ηy

∂(β1z10+β2z20)
∂T0

− γy(z10 + z20 − β1z10 − β2z20)3
]
,

∂2z20
∂T 2

0
+ ω2

2z20 � −2 ∂2z20
∂T0∂T1

+ 1
β2−β1

[
−2ηy

∂(β1z10+β2z20)
∂T0

+ γy(z10 + z20

−β1z10 − β2z20)3 − β1

(
−2ηx

∂(z10+z20)
∂T0

− γx (z10 + z20 − β1z10 − β2z20)3 + k sin ϕ0

)]
.

(9)

Solution of the Eq. (8) is presented as

ϕ0 � �t, z10 � C1e
i�T0 + C̄1e

−i�T0 , z20 � C2e
iω2T0 + C̄2e

−iω2T0 , (10)

where � is the constant by the time scale T0, but this is a function by the scale T1.
Introducing relations (10) to the system (9), it is possible to write the following

conditions of the secular terms elimination:
∂�

∂T1
� 1

2
( Ā + B̄�) +

1

4
C̄(C1 + C̄1),

− 2i�
∂C1

∂T1
+ (� + i L�)C1 + 2C1(�T0 − i)

∂�

∂T1
− MC2

1 C̄1 − PC1C2C̄2 − i N � 0,

− 2iω2
∂C2

∂T1
+ i SC2 + RC2

2 C̄2 + TC2C1C̄1 � 0, (11)

where L � 2
β2−β1

(β1ηy − β2ηx ), P � 6(1−β1)(1−β2)2

β2−β1
(β2γx + γy), N � kβ2

2(β2−β1)
,

M � 3(1−β1)3

β2−β1
(β2γx + γy), S � 2ω2

β2−β1
(β1ηx − β2ηy), T � 6(1−β2)(1−β1)2

β2−β1
(β1γx + γy),

R � 3(1−β2)3

β2−β1
(β1γx + γy).

By the change of variables, C1 � a1eib1 , C2 � a2eib2 one has from the system
(11) the following equations with respect to amplitudes and phases of the unknown
solutions in the resonance domain, and the equation with respect to the variables �:

∂�

∂T1
� 1

2
( Ā + B̄� + C̄a1 cos b1),

∂a1
∂T1

� L

2
a1 − a1

�

∂�

∂T1
− N

2�
cos b1,

∂b1
∂T1

� − �

2�
+

M

2�
a21 +

P

2�
a22 + T0

∂�

∂T1
+

N

2�a1
sin b1,

∂a2
∂T1

� S

2ω2
a2,

∂b2
∂T1

� − R

2ω2
a22 − T

2ω2
a21 . (12)

Note that the first equation of the system (12) corresponds to unsteady regime when
the variable � changes in time. If � � const , one obtains the well-known relation
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[17, 19, 20] connecting the rotor constant and amplitude of the elastic vibration as
L(�)− H (�)−0, 5�ηA2

1 � 0, where A1 � 2a1 is the vibration amplitude, and η is
a coefficient of dissipation. Here the unsteady behavior of the non-ideal system under
consideration is investigated. The change of variables, a1 � K sinψ , a2 � K cosψ ,
is introduced, and the following reduced system [13–15] is obtained:

∂�

∂T1
� 1

2
( Ā + B̄� + C̄K sinψ cos b1),

∂K

∂T1
� L� − Ā − B̄�

2�
K sin2 ψ +

S

2ω2
K cos2 ψ −

(
C̄

2�
K 2 sin2 ψ +

N

2�

)
cos b1 sinψ,

∂ψ

∂T1
�

(
L� − Ā − B̄�

2�
− S

2ω2

)
sinψ cosψ −

(
C̄

2�
K sin2 ψ +

N

2�K

)
cosψ cos b1,

∂b1
∂T1

� − � + �T0( Ā + B̄�)

2�
− T0C̄

2
K sinψ cos b1 +

M

2�
K 2 sin2 ψ +

P

2�
K 2 cos2 ψ +

N

2�K sinψ
sin b1,

∂b2
∂T1

� − R

2ω2
K 2 cos2 ψ − T

2ω2
K 2 sin2 ψ, (13)

where the variable parameter K characterizes the reduced system energy; ψ is an
arctangent of ratio of amplitudes. Equation with respect to difference of phases,
ϕ � b1 − b2 can be written as

∂ϕ

∂T1
� −� + �T0( Ā + B̄�)

2�
− T0C̄

2
K sinψ cos b1 +

M

2�
K 2 sin2 ψ +

P

2�
K 2 cos2 ψ

+
N

2�K sinψ
sin b1 +

R

2ω2
K 2 cos2 ψ +

T

2ω2
K 2 sin2 ψ. (14)

One analyzes the equilibriums in the Eqs. (13), (14). The relation sinψ � 0 cor-
responds to energy localization on the coordinate z2, and the relation cosψ � 0
corresponds to energy localization on the coordinate z1.

Under the relation sinψ � 0 a condition of existence of the equilibrium in the
third equation of the system (13) gives us the equation cos b1 � 0. This equilibrium
corresponds to the following relation for the energy: ∂K

∂T1
� S

2ω2
K . Taking into account

that the parameter S is negative for any system parameters, we can conclude that
the energy of this equilibrium position decreases; so, the localized vibrations are
unstable. If cosψ � 0, the third equation of the system (13) is an identity. So, this
equilibrium position of the reduced system is situated at the straight line ψ � π

2 .
In this case a conclusion about change of energy and stability of the equilibrium
position can be made by analysis of trajectories in the place (ϕ, ψ).

For a case when both sinψ �� 0 and cosψ �� 0, an existence of
the equilibrium position of the third equation of the system (13) is possi-
ble if cos b1 � (L�− Ā−B̄�−S�/ω2)K sinψ

N+C̄K 2 sin2 ψ
. One has from here the inequality∣∣∣ (L�− Ā−B̄�−S�/ω2)K sinψ

N+C̄K 2 sin2 ψ

∣∣∣ ≤ 1. On the other hand, the function sinψ can be found

from the equation

C̄K 2 cos b1 sin
2 ψ − (L� − Ā − B̄� − S�/ω2)K sinψ + N cos b1 � 0,

that is, sinψ � (L�− Ā−B̄�−S�/ω2)±
√

(L− Ā−B̄�−S�/ω2)2−4C̄ N cos b21
2C̄K cos b1

.
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Fig. 4 Dependence ϕ(ψ) for the external resonance on the first fundamental frequency

Onehas fromhere an inequality,

∣∣∣∣
(L�− Ā−B̄�−S�/ω2)±

√
(L− Ā−B̄�−S�/ω2)2−4C̄ N cos b21

2C̄K cos b1

∣∣∣∣ ≤
1, and a condition of the discriminant positiveness as (L� − Ā− B̄� − S�/ω2)2 −
4C̄ N cos b21 ≥ 0.

We can see from the Eq. (13) that in this case ψ and ϕ are functions of K , so,
this equilibrium position is not stationary. This position corresponds to vibrations
which are equivalent to NNMs of coupled vibrations of the conservative sub-system
of the system (6). This mode of coupled vibrations is realized only for some specific
value of time, corresponding to conditions presented above, so, it can be called as
transient nonlinear vibration mode (TNNM). It is interesting that near this value of
time motions of the system are close to the mode, that is, the TNNM is attractive.

The system (13) is integrated by the Runge–Kutta method; initial conditions take
values on the interval 0 ≤ ψ(0) ≤ π/2, and the following system parameters are
chosen: K (0) � 0.1, c0 � 1 N/m, c1 � 1 N/m, c2 � 0.2 N/m, M � 1 kg, m � 0.05
kg, β � 0.05, γ � 0.3 N/m, r � 0.05 m, Ā � 0.115, B̄ � −0.08, C̄ � 0.01
and �(0) � −0.5. A dependence ϕ(ψ) is shown in Fig. 4 where trajectories do not
remain near the straight line ψ � 0, and tend in time to the line ψ � π

2 , that is,
localized on z1 vibrations are stable near resonance, and localized on z2 vibrations
lose stability. Some trajectories approach the equilibrium position corresponding to
the TNNM of coupled vibrations, and remain near this state while one exists. When
the time increases the coupled vibrations disappear, and motions of the system tend
to the stable localized mode.

The transfer from the localization on z1 to the stable vibrationmode of localization
on z2 is shown in Fig. 5. We can see that for some values of time trajectories in Fig. 5
are close to two TNNMs of the coupled vibrations which appear here.

Similar results can be obtained for a case of external resonance on the second
fundamental frequency. For a case of both external and internal resonances after the
transformation to reduced system and analysis of the system the following conclu-
sions can be made (corresponding relations are not presented here): two localized
vibration modes are TNNMs existing only for some values of time when the specific



94 Y. V. Mikhlin et al.

Fig. 5 Dependences z2 (z1) for the external resonance on the first fundamental frequency

Fig. 6 Dependence ϕ(ψ) for the both external and internal resonances

values of energy are reached. Any time only coupled vibrations exist in the system.
The reduced system is integrated by the Runge–Kutta method. Initial conditions are
changed on the interval 0≤ψ(0)≤π/2, and the next system parameters are chosen:
K (0) � 0.1, c0 � 0.1 N/m, c1 � 0.14 N/m, c2 � 0.01 N/m, M � 1 kg, m � 0.1
kg, β � 0.2, γ � 1.5 N/m, r � 2.1 m, Ā � 0.02, B̄ � −0.009, C̄ � 0.005 and
�(0) � 0.04. Dependence ϕ(ψ) is shown in Fig. 6 where we can see two equilibrium
positions corresponding to coupled vibrations of the elastic subsystem and absorber.
TNNMs correspond toψ� 0 andπ/2. All trajectories pass from the equilibriumposi-
tion at the top of the figure to the equilibrium position in the bottom of the figure, the
last one corresponds to the stable mode of coupled vibrations. The obtained results
are confirmed by direct numerical simulation of the initial nonlinear system.



Normal Modes of Chaotic Vibrations and Transient Normal Modes … 95

4 Transient Nonlinear Normal Modes in Dissipative
Spring-Pendulum System Under Resonance Conditions

The spring-pendulum system with small dissipation under external periodic excita-
tion is considered (Fig. 7).

Equations of motion of the system are the following:

ü + ω2
ux + εηuu̇ − μ(θ̈ sin θ + θ̇2 cos θ ) � ε2 f cos τ,

θ̈ + εηθ θ̇ + p2 sin θ − ü sin θ � 0, (15)

where u � y
R , τ � �t , ω �

√
k

M+m , p
2 � g

RΩ
, μ � m/(m + M), ω2

u � 1/Ω2,

f � F0
(M+m)Rω2Ω2 , ηu � βu

(M+m)Ω , ηθ � βθ

mΩ
; βu and βθ are coefficients of dissipation;

ε is the small parameter.
There are two Kauderer–Rosenberg NNMs in the system (15) without dissipation

and external excitation: the localized u− mode of vertical vibrations (u � u(τ ), θ �
0) and the non-localized mode, when vibration amplitudes for vertical and angle
coordinates are comparable. When dissipation exists, vibration modes are not the
Kauderer–Rosenberg NNMs, because they are not periodic.

To consider motions of the system under consideration in the vicinity of both
external and internal resonances one introduces to equations of motion (15) two
detuning parameters Δ1 and Δ2 by two relations. First relation, ω2

u � 1 + εΔ1

corresponds to the vicinity of external resonance, and the second one, p2 � 0.25 +
ε�2 corresponds to the vicinity of the main parametrical resonance of the system
(15). Using these resonance relations and expansions in power series for sinθ and
cosθ, one has the following equations of the first and second approximations by the
small parameter ε:

Fig. 7 Spring-pendulum system
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∂2u0
∂T 2

0

+ u0 � 0,

∂2θ0

∂T 2
0

+
1

4
θ0 � 0, (16)

∂2u1
∂T 2

0

+ u1 � −�1u0 − 2
∂2u0

∂T1∂T0
+ μ

(
∂2θ0

∂T 2
0

)
θ0 + μ

(
∂θ0

∂T0

)2

− ηu
∂u0
∂T0

+
f

2
(eiT0 + e−iT0 ),

∂2θ1

∂T 2
0

+ θ1 � −�2θ0 − 2
∂2θ0

∂T1∂T0
+

(
∂2u0
∂T 2

0

)
θ0 − ηθ

∂θ0

∂T0
. (17)

Solution of the system (16),

u0 � Cu(T1)e
iT0 + C̄u(T1)e

−iT0 ,

θ0 � Cθ (T1)e
1
2 iT0 + C̄θ (T1)e

− 1
2 iT0 , (18)

is substituted to Eq. (17). Then secular terms are eliminated; as a result, one has the
following nonlinear equations:

2i
∂Cu

∂T1
+

μ

2
C2

θ + Cu�1 + iηuCu − f

2
� 0,

i
∂Cθ

∂T1
+ CuC̄θ + Cθ�2 +

1

2
iηθCθ � 0. (19)

Change of variables, Cu � aueiβu , Cθ � aθeiβθ gives the system of modulation
equations written with respect to amplitudes au , aθ and phases βu , βθ . Next change
of variables, au �

√
μ

2 K cosψ , aθ � K sinψ , gives the reduced system, written
with respect to the energy K , the arctangent of the amplitudes ratio ψ and the phases
βu , βθ :

K ′ � −K
(ηu

2
cos2 ψ +

ηθ

2
sin2 ψ

)
− f

2
√

μ
sin βu cosψ,

ψ ′ � sinψ

(√
μ

2
K sin(2βθ − βu) +

ηu − ηθ

2
cosψ +

f

2
√

μK
sin βu

)
,

β ′
u � �1

2
+

√
μ

2

K sin2 ψ

cosψ
cos(2βθ − βu) − f

2
√

μK cosψ
cosβu,

β ′
θ � �2 +

√
μ

2
K cosψ cos(2βθ − βu). (20)

Equilibrium positions for the second equation of the system (20) are considered.
Condition sinψ ≡ 0 corresponds to the localized mode of the spring vibrations.
This mode exists for all values of the energy K ; it is described by the straight line
ψ � 0 in the plane (ψ, ϕ). For the case, when both cosψ �� 0, and sinψ �� 0, it is
possible to observe mode of coupled vibrations of the system (15). Condition of the
mode existence can be obtained from the second equation of the reduced system (20)



Normal Modes of Chaotic Vibrations and Transient Normal Modes … 97

Fig. 8 Trajectories in the
place (ψ, ϕ)

as cosψ �
√

μ

ηθ−ηu
K sin(2βθ − βu) +

f
2
√

μK (ηθ−ηu )
sin βu . This condition corresponds

to two modes of coupled vibrations. The further examination shows that one of them
is stable and another one is the transient mode of coupled vibrations.

To construct trajectories in the place (ψ, ϕ) the system (20) is integrated numer-
ically, when the initial value of arctangent of the amplitudes ratio changes on the
interval 0 ≤ ψ(0) ≤ π

2 , K (0) � 0.5 and system parameters are the following:
ηu � 0.3, ηθ � 0.2, μ � 0.4, �1 � 0.2, �2 � 0.1, f � 0.35. Trajectories in the
place (ψ, ϕ) for the case of simultaneous external and internal resonances are shown
in Fig. 8. Each trajectory has a loop near some quasi-equilibrium state of the reduced
system. This state moves in the space (ψ, ϕ) and corresponds to TNNM of coupled
vibrations existing only for specific values of the system energy, that is, the TNNM
exist in some moments of time corresponding to these energy levels. This transient
mode is attractive and other motions are close to this TNNM near the mentioned
moment of time. We can see in the Fig. 8, that later, when the TNNM disappears,
trajectories in the plane (ψ, ϕ) approach the equilibrium position which corresponds
to the stable mode of coupled vibrations. Note that this equilibrium position is closer
to the straight line ψ � π

2 , which corresponds to localized on pendulum vibrations,
than to the straight line ψ � 0, which corresponds to localized vibrations of spring.
We can see that the mode of the localized vibrations of spring is not stable.

To illustrate behavior of the spring-pendulum system in vicinity of the resonance
the initial system is integrated numerically on the interval τ ∈ [0, 5000] for the
following initial values au(0) � 0.05, aθ (0) � 0.01, βu(0) � 0.1, βθ (0) � 0.2
and system parameters ηu � 0.3, ηθ � 0.2, f � 0.35, �1 � 0.2, �2 � 0.1.
The first approximation of the solution can be written as u0 � 2au cos(τ + βu),
θ0 � 2aθ cos( 12τ + βθ ). Trajectories in the system configuration plane are shown in
Fig. 9 for the following intervals of time: τ ∈ [0, 100] (Fig. 8a), τ ∈ [4800, 5000]
(Fig. 8b) and τ ∈ [0, 5000] (Fig. 8c). Here the transient nonlinear normal mode of
coupled vibrations appears. At the beginning of the processmotions of the system are
close to this TNNMwhich is determined by parabolic trajectory (Fig. 8a). Then, due
to instability of this mode, motions of the system tend to the stable mode of coupled
vibrations. Trajectory of this stable mode can be observed in Fig. 8b where vibrations
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Fig. 9 Trajectories u(θ) in configuration space for t ∈ [0, 100] (a); t ∈ [4800, 5000] (b); t ∈
[0, 5000] (c)

for large values of time are shown. The stable mode is close to the localized mode
of the pendulum vibrations, and this fact can be used in the problem of vibration
absorption. Namely, it is possible to guarantee the energy transfer from vibrations of
spring to vibrations of pendulum, where the vibration energy can be dissipated. It is
clear that the numerical simulation fully confirms results obtained by analysis of the
reduced system.

5 Conclusion

The NNMs which are different from the NNMs proposed by Kauderer–Rosenberg
are obtained in some non-conservative systems. Namely, NNMs having smooth tra-
jectories in configuration space and chaotic in time behavior can be found in analysis
of some of elastic systems. It seems that this is typical situation in post-buckling
dynamics of shells, arches etc.

Resonance dynamics of the dissipative limited power-supply system with a non-
linear vibration absorber and the dissipative spring-pendulum system is investigated
by the multiple-scale method and transformation to the reduced system. In the non-
ideal system, in the case of external resonance on the first fundamental frequency,
except the localized vibration modes, the TNNM of coupled vibrations appears. This
mode exists only for some value of energy, that is, for a single moment of time. This
mode is attractive near the mentioned moment of time. In the case of simultaneous
external and internal resonances two modes of coupled vibrations appear; one of
them is unstable, and motions of the system come close to the stable NNMs of the
coupled vibrations. Two localized modes are TNNMs in this case. Existence of the
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localized modes depends on the energy levels and the system parameters; they are
attractive near moments of their existence. For the dissipative spring-pendulum sys-
tem in the case of simultaneous external and internal resonances the mode of coupled
vibrations is stable, and the localized mode loses stability. The TNNM also exists
here for some level of the system energy. Reliability of obtained analytical results is
verified by numerical simulation. We can conclude that such transient normal modes
essentially affects to transient process of the nonlinear dissipative system.
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Advanced Nonlinear System
Identification for Modal Interactions
in Nonlinear Structures: A Review

K. J. Moore, A. Mojahed, M. Kurt, M. Eriten, D. M. McFarland,
L. A. Bergman and A. F. Vakakis

Abstract In this work, we review a recently developed method for the character-
ization and identification of strongly nonlinear dynamical systems, including the
detection of strongly nonlinear modal interactions, directly from transient response
data. The method synergistically combines the proper orthogonal decomposition and
the Rayleigh quotient to create estimated frequency-energy plots (FEPs) that cap-
ture the rich and interesting nonlinear dynamical interactions. The method is first
applied to the experimentally measured response of a cantilever beam with a local,
smooth nonlinearity. In this application, the estimated FEP reveals the presence of
nonsmooth perturbations that connect different nonlinear normal modes (NNMs)
of the system. The wavelet-bounded empirical mode decomposition and slow-flow
analysis are used to demonstrate that the nonsmooth perturbations correspond to
strongly nonlinear internal resonances between two NNMs. In the second example,
the method is applied to the experimentally measured response of a cantilever beam
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with a local, nonlinear attachment in the form of a nonlinear energy sink (NES).
An estimated frequency-displacement plot for the NES is created, and an optimiza-
tion routine is then used to identify the unknown parameters for a given model of
the nonlinearity. Ultimately, the method is conceptually and computationally simple
compared to traditional methods while providing significant insight into the non-
linear physics governing dynamical systems with strong, local nonlinearity directly
from measured time series data.

1 Introduction

Modal analysis, system identification and reduced-order modeling have been thor-
oughly studied in [5, 8, 28]. Nonlinear system identification (NSI) methods for
nonlinear dynamical systems [15, 26], including the method of proper orthogonal
decomposition (POD), [6, 13, 14, 16, 22] and a new promising technique for nonlin-
ear system identification [31], which involves employing empirical mode decompo-
sition (EMD) [7, 10, 11, 33], that operates under the assumption that measured time
series can be decomposed into a finite set of harmonic components in the form of
fast, nearly monochromatic oscillations that are modulated by slowly varying ampli-
tudes. Using these NSI techniques, [17] showed that strong nonlinearities can lead to
strongly nonlinear beat phenomena, which are the result of strongly nonlinear modal
interactions, i.e. internal resonances (IRs) which occur between the nonlinear normal
modes of the system.

Nonlinear normal modes (NNMs) are defined to be time-periodic oscillations,
which one may regard as the nonlinear extensions of the linear vibrational normal
modes [30]. While there are no modal interactions, the NNMs are synchronous,
time-periodic oscillations; in contrast, in the case that IRs happen (which results in
nonlinear energy exchange between modes), mode mixing is realized. In this case,
non-synchronous oscillations with more than one participating NNM occur which
cause scalemixing in the nonlinear dynamics that makes scale separation impossible.
IRs depend highly on the total energy of the system and the necessary condition for
them to occur is that the frequency ratio of the NNMs is a rational number. Also,
IRs take place at different energy levels due to the fact that lower NNMs are affected
at lower energy levels while higher NNMs are not affected as much. IRs have been
shown to cause energy localization as in targeted energy transfer [29, 30], which
lead to significantly altered stress distributions that can result in component failures
[4], along with triggering bifurcations in the dynamics that change the stability of
NNMs [1].

Utilizing POD to extract proper orthogonal modes (POMs), which represent the
participating NNMs, and computing the Rayleigh quotient (RQ) using the POMs as
trial vectors, [9] generalized the results described in [17]. By plotting the resulting
RQs as functions of energy in the form of a frequency-energy plot (FEP) [29], it
was revealed that the dynamics of the nonlinear system can be divided into three
distinctive regimes. Of these, two are linear–in the low and high energy limits–
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and are connected by the third regime,a strongly nonlinear transition regime. The
duration of this nonlinear transition regime has been found to increasewith increasing
frequency. These regimes are different for each NNM because each modal response
depends on the system energy. Additionally, by looking at the the RQ-FEP curves,
one can see that there exist a number of non-smooth perturbations (spikes) which
appeared to be the result of NNMs mixing due to occurrence of IRs.

The study performed by [23] on two comparable cantilever beams, each with
strong, local nonlinearity led, to a physical interpretation of these spikes and sub-
stantiated the claim that these spikes represent modal interactions in the dynamics of
stronlgy nonlinear systems. In order to investigate the physics of the spikes, POMs
corresponding to RQs off and on the spikes were examined. The POMs computed
off the spikes were found to correspond to periodic solutions of the non-interacting
NNMs, while on the spikes the POMs of interacting NNMs were found to be similar
and corresponded to the mixed periodic solutions of the NNMs during an IR. Fur-
thermore, in the displacement responses for points on and off the spikes the presence
of slow-flow dynamics [18, 20, 21, 31], which occurs as result of IRs, was inves-
tigated by means of the wavelet-bounded empirical mode decomposition [25]. The
aforementioned analysis showed that only the responses corresponding to points on
the spikes contained internal resonances. This demonstrated that the spikes in RQ-
FEP are the result of IRs in the dynamics. In short, the appearance of spikes in the
RQ-FEP or similar POMs mean the presence of IRs, while the absence of spikes and
dissimilar POMs corresponds to the absence of such IRs.

2 Preliminary Concepts and the Proposed Method

2.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) [6, 13, 14, 16, 22] is a system identification
and model reduction tool that extracts an orthonormal basis of modes, termed the
proper orthogonal modes (POMs), that represent a large set of interdependent vari-
ables in a least-squares sense. For linear response data, the POMs have been proven
to be the minimum number of mutually orthogonal modes necessary to reconstruct
that linear response data. Moreover, the POMs converge to the linear normal modes
of vibration for classically damped, linear, discrete systems with mass matrices pro-
portional to the identity matrix and in the limit of infinite measurement points [6]. In
this work, we consider spatially discretized models of continuous systems obtained
using the finite element (FE) method and, accordingly, employ the singular value
decomposition (SVD), which is equivalent to POD for discrete systems [6]. The
response data matrix X of dimensions m × n is factored as,

X = USV T , (1)
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where U is an m × m orthonormal matrix containing the left singular vectors, S is
an m × n pseudo-diagonal and positive semi-definite matrix containing the singular
values, and V is an n × n orthonormal matrix composed of the right singular vectors.
The left singular vectors, which are equivalent to the POMs, and the POVs are
computed as the eigenvectors and eigenvalues of the matrix XXT respectively. The
singular values are equal to the POVs squared and divided by the number of samples
m. The right singular vectors, V contain the time modulation of the corresponding
POMs, normalized by the singular values, and are computed as the eigenvectors of
the matrix XT X.

2.2 Rayleigh Quotient

The Rayleigh quotient is a classical operator that uses a trial vector (discrete systems)
or function (continuous systems) to estimate the fundamental natural frequency of a
linear system. The frequencies of higher vibration modes can be estimated provided
that the new trial vector or function is mass-orthogonal to the trial vectors used to
estimate the lower modes. Since the FE method is used to discretize the continuous
structures in this work, we employ the discrete version of the RQ:

R(v) = vT Kv

vT Mv
, (2)

where v is the trial vector, K is the stiffness matrix, and M is the mass matrix. A
celebrated property of the RQ is its relative insensitivity to the trial vector, which
permits the use of a large range of trial vectors, provided that the trial vectors satisfy
the relevant boundary conditions. Moreover, the RQ has a minimum value equal to
the fundamental eigenvalue of the linearmass and stiffnessmatrices. In this study, the
frequencies of each system are estimated using the POMs extracted from the trans-
lational degrees of freedom (DOFs) of continuous structures in bending. Although
the POMs are not mass-orthogonal (they are mutually orthogonal), we use them
independently to estimate the frequencies of their respective modes as

fi = 1

2π

√
R(vi ). (3)

Consequently, the procedure is ad hoc and there is no guarantee that the estimated
frequencies will correspond to the natural frequencies of the nonlinear systems under
study. Nevertheless, it will be shown that the RQ-based procedure will lead to phys-
ically meaningful results, indicating that the computed POMs are close to the linear
modes of the systems considered.
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2.3 The Wavelet-Bounded Empirical Mode Decomposition

The empirical mode decomposition (EMD) proposed by [11] decomposes an oscil-
latory signal into a finite basis of nearly orthogonal, monochromatic intrinsic mode
functions (IMFs). By using a sifting algorithm, EMD decomposes an oscillatory
signal, x(t), into N nearly orthogonal IMFs that satisfy

x(t) =
N∑

i=1

ci (t) + RN+1(t), max (RN+1(t)) < τ, (4)

where ci (t) is the i th IMF and RN+1(t) is the remainder signal with an amplitude less
than the tolerance τ. In theory, each IMF possesses a single characteristic time scale
such that the IMF is physically and mathematically representative of a single time
scale contained in the original signal [19, 27, 32]. However, in practice, applying
EMDoften results inmore IMFs than the number of characteristic time scales present
in the original signal (i.e., the method yields spurious, non-physically meaningful
IMFswhich need to be eliminated before the dynamical analysis can commence), and
care must be taken to select only the physically meaningful IMFs from the extracted
ones [10–12].

Another pitfall of EMD is the issue of mode mixing, where a single IMF contains
multiple components at different frequencies and, therefore, is not representative of
any single time scale contained in the original signal. The wavelet-bounded EMD
(WBEMD) [25] solves the issue of mode mixing by isolating each IMF around the
frequency of a particular component (NNM). This is accomplished by first applying
EMD to the signal combined with a masking signal [3],

s(t) = αmax [zi (t)] sin(βωi t), (5)

where α and β are free parameters used by the optimization routine, ωi is the fre-
quency of the component being extracted, and

zi (t) = x(t) −
i−1∑

q=1

cq(t). (6)

Following the application of EMD, the IMF is transformed to the maximum
wavelet domain [25], where a bounding function is fitted over the IMF. Finally, the
isolation of the IMF is measured by computing the area under the bounding function.
It follows that well-separated IMFs result in a bounding-function area that is smaller
than that of poorly separated IMFs. Thus,WBEMDminimizes the bounding-function
area by adjusting the masking-signal parameters, α and β such that a well-separated
IMF is extracted. The use of WBEMD will be critical in the next section, where we
will use the IMFs to demonstrate that the proposed method captures these strongly
nonlinear interactions while relying only on the systems known linear properties.
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2.4 The Proposed Method

The proposed method requires that the system be naturally described by evolving
time scales and a characteristic, time-varying energy quantity, that the formulation of
the RQ operator be permitted, and that non-mixed response data is available, which
reflects the fact that the method is data-driven. By “non-mixed,” we mean that all
variables or measurements in the response data must possess the same units of mea-
sure (i.e., all displacements or accelerations) to ensure that the results from POD are
meaningful [2]. Further assumptions are provided in [23]. If the RQ operator cannot
be formulated for the system, the method can still be applied using the POMs and
their time-varying shapes instead of estimated frequency-energy plots. For mechan-
ical structures undergoing linear and nonlinear vibrations, the modal characteristics
of the system and mechanical energy serve as the evolving time scales and character-
istic, time-varying energy quantity, respectively. For such systems, the RQ operator
is formulated using linear models (FE models in this work) updated to capture the
relevant modal properties of the experimental systems. We refer the reader to [5, 8,
28] for discussions of linear model updating. The response data in this work takes
the form of displacement response data, which is obtained by numerical integration
and filtering of measured acceleration responses.

The proposed method is divided into two processes: first, the nonlinearity is char-
acterized and the accompanying strongly nonlinear modal interactions are identified
using theRQ-FEPcreated using thePOMSextracted from the displacement response.
Second, the user computes the characteristic displacement (defined below), creates a
RQ frequency-displacement plot (RQ-FDP) and identifies the nonlinearity by fitting
a model to the RQ-FDP. The method is summarized by the following steps:

1. For n measurement coordinates, extract n POMs using SVD from windowed
segments of a single time record.

2. Using the POMs, compute the estimated RQs for the NNMs within the frequency
range of interest and plot these as functions of energy or time.

3. Characterize the nonlinearity and identify the modal interactions present in the
measured response using the RQ-FEP.

4. Compute the characteristic displacement as defined for the system and plot theRQ
estimates as functions of that characteristic displacement to form the RQ-FDP.

5. Based on the previous characterization, propose a model for the nonlinearity and
derive the frequency-displacement relationship.

6. dentify the unknown parameters explicitly or using an optimization routine.

The characteristic displacement for the window defined by the interval [T1, T2] is

δc = 1

T2 − T1

∫ T2

T1

|δ|dt, (7)

where δ is the relative displacement between the attachment and the point of attach-
ment on the structure. For discrete signals, the characteristic displacement is defined
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as

δc = 1

N

N∑

n=1

|δn|, (8)

for N points in the interval [T1, T2]. The resulting characteristic displacement enables
us to plot the estimated frequencies as functions of displacement. In this work,
we consider a local nonlinear attachment in the form of an NES and model the
nonlinearity as α|δ|βδ where δ is the relative displacement between the NES and its
attachment points. For this nonlinearity, the equation of motion for the NES is

üN ES + d

m
δ̇ +

(
ω2
n +

α

m
|δ|β

)
δ = 0, (9)

and, replacing the relative displacement with the characteristic displacement, the
displacement-dependent frequency equation is

f (δc) = 1

2π

√
ω2
n +

α

m
δ

β
c . (10)

As will be seen in Sect. 4, if the estimated frequency of the NES intersects the i th
NNM with frequency fi at the characteristic displacement δi , then we can relate α

to β by requiring that f (δi ) = fi . Thus,

α = m

δ
β

i

(
(2π fi )

2 − ω2
n

)
, (11)

and substituting (11) into (10) results in

f (δc) = 1

2π

√

ω2
n +

(
(2π fi )

2 − ω2
n

) (
δc

δi

)β

. (12)

The remaining parameter is identified using an optimization routine (described in
[24]) that maximizes the R-squared value between the RQ-FDP for the NES and the
model in (12).

3 Detection of Strongly Nonlinear Modal Interactions

The described methodology is validated by being applied to the experimentally mea-
sured response of the cantilever shown in Fig. 1a. The beam is low-carbon steel,
0.749m long with a 0.045 × 0.008 m2 cross section and was connected at 0.7m
from its fixed end to two 0.0762m long steel wires with of diameter 0.0012m. The
wires were attached to a steel shaft extended from the beam via two shaft collars. In
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Fig. 1 a Top and front view of beam used in experiments. b Top and front view of nonlinear
attachment. Reprinted with permission from [23]

order to achieve a 3:1 IR with a low-amplitude excitation, the length of the beam and
the attachment shown in Fig. 1b were tuned in such a way that the frequency ratio
of the two first NNMs was close to 3:1. The beam was excited at the position of the
attachment by an impulse from a PCB Piezotronics modal impact hammer (model
086C01). Using PCB accelerometers (models U356A11 and Y353B17) with nom-
inal sensitivities of 1mV/(m/s2) along with VibPilot hardware (m+p International,
Hannover, Germany) and m+p analyzer software, the acceleration responses of 14
locations along the beemwere recorded for a duration of 2 s with 16384Hz sampling
rate. Measurements showed that the 9th accelerometer was saturated, and therefore
the corresponding data was removed from the data set before analysis. To compute
the velocities, the accelerations were numerically integrated and filtered, using a
third-order Butterworth high-pass filter with a cutoff frequency of 18Hz. Numeri-
cally integrating the velocities and then high-pass filtering the resulting signal with
a cutoff frequency of 10Hz, the displacements were computed. Additionally, before
and after each integration the temporal means of the signals were subtracted so that
the accelerations, velocities and displacements had zero mean.

The proposed method is used to study the displacement response of the beam
subjected to the large amplitude impact shown in Fig. 2a. The nonstationary nature
of the displacement can be seen in both the wavelet and Fourier spectra shown in
Fig. 2b. The FFT shows that the first and the second NNMs cover frequency ranges
from 21.6 to 31.5Hz and 68.8 to 73Hz, respectively, while the third NNM contains
only a single peak at 186.6Hz. Looking at the wavelet spectra of the displacement,
the hardening nature of the nonlinearity can be seen; for instance, the first NNM
frequency decreases from 31 to 21.5Hz as the total energy of the system decreases
due to dissipation.

Since the method does not require a priori knowledge of the nonlinearity, the
nonlinearity was not identified in this work, and the attachment was modeled as a
point mass and a discrete linear spring from the beam to ground. For this model, the
mass of the attachment was measured to be 0.171kg and the density of the beam
was chosen to be 7800kg/m3. By matching the first six bending eigenfrequencies
of the beam, found from the low-amplitude impact experiment, with those obtained
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Fig. 2 a High-amplitude, impulsive load applied at nonlinearity location, b Time series, wavelet
transform, and FFT of the displacement at the nonlinearity location (integrated from accelerometer
measurements). Reprinted with permission from [23]

from an FE model of the beam using Euler–Bernoulli beam elements, the elastic
modulus of the beam and the linear stiffness of the attachment were identified. The
GlobalSearch function of MATLAB was used to perform a global minimization of
the error norm

εk =
6∑

n=1

∣∣∣ωExp
n − ωFE

n

∣∣∣

nω
Exp
n

, (13)

where | · | denotes absolute value. The contribution of each mode is weighted by its
modal number.Note that by usingGuyan reductionmethod, the rotationalDOFswere
condensed out of the FE matrices. After performing the global search, the identified
values for elastic modulus and linear stiffness turned out to be 1.90 × 1011 N/m2

and 10854 N/m, respectively, and the average error for the first six bending modes
between the experimental and FE model eigenfrequencies was 2.73%.

According to the data presented in Fig. 2b, the energy of the experimental system
dissipates quickly within the recorded time window. Thus, in order to capture and
analyze the transient response of the experimental system, the 2 s time window needs
to be divided into sufficiently small segments to capture at least a half cycle of the
first NNM as well as the transient response of the system. Consequently, for the
experimental system under study, the 2 s time window is divided into 92 nonover-
lapping time segments, each with 0.0216s duration. Notice that the first 0.0251s
portion of the recorded response is excluded from the data set because this portion
was recorded before the impact was applied. Thirteen POMs are extracted out of
each time segment. Because of the damping effects, internal resonances are more
likely to happen between the first two NNMs than between the higher NNMs, so
only the POMs corresponding to the first and second NNMs are taken into consider-
ation. To obtain the final POMswith least effects of measurement noise, a sixth-order
polynomial with zero constant, linear and quadratic terms is fitted to each POM at
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Fig. 3 RQ frequency computed using the POMs corresponding to the first two NNMs plotted as
a function of a time and b estimated energy. The black dashed lines represent the experimental
frequencies at low energies. Reprinted with permission from [23]

each accelerometer location. Note that data from the 9th accelerometer was not used
because of the reason explained before.

That the first capture happens in such a short period of time implies that a great
amount of energy is dissipated quickly, which is not caused only by the viscous
damping in the system. The other factor that causes this rapid dissipation of energy
is the IR that is indicated by the first spike in Fig. 3a, b. During this modal interaction,
the energy in the first NNM is irreversibly transferred to the secondNNM, and there it
gets dissipated at a higher rate. Looking at the wavelet spectrum of the system during
the first spike, i.e. Fig. 3b, one can see that the frequency ratio of the second and first
NNMs is 72 to 28.6Hz, which is approximately a 5:2 ratio. This ratio indicates that
first spike is the result of a 5:2 IR.

While the first spike in the RQ happens in a short period of time, the second
and third spikes occur for a longer period of time and almost right after each other.
These two spikes being close to each other indicates that the third IR happens almost
immediately after the second IR, which corresponds to the second spike. According
to the wavelet spectrum shown in Fig. 2b, the frequencies of the first and second
NNMs during these IRs are 23 and 68.8Hz, respectively, which indicate 3:1 IRs
during the second and third spikes. It should be mentioned that the system was
tuned so that a 3:1 IR can be achieved at low energy levels, which explains why the
last two IRs remain active for a longer period of time compared to the first spike.
Moreover, because of this tuning, for a certain change in the energy level of the
system, the frequency change around the 3:1 IR is much lower than that around the
5:2 IR. For this reason, it can be concluded that the energy threshold for 3:1 IR to
happen is much larger than the threshold for a 5:2 IR to happen. Several spikes with
small amplitude on the curve for the first spike can be seen from 1.7 to 2 s, which
one may consider as modal interactions. Because the first POM corresponding to
these spikes corresponds to only the first NNM (specifically, the only node is at the
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Fig. 4 POMs 1 and 2 for each of the nine red dots in Fig. 3. Reprinted with permission from [23]

fixed boundary), we can conclude that these spikes are results of signal decay, small
measurement and numerical errors.

The POMs corresponding to the nine red dots in Fig. 3 are shown in Fig. 4. While
away from the spikes, i.e. at points i, iii, iv, vi, viii, and ix, the POMs represent
the periodic solutions of their corresponding NNMs. However, on the spikes, i.e. at
points ii, v, and vii, the POMs become similar to the periodic solution of the second
NNM, in which both POMs have one anti-node near the center and one at the free
end. These results are very similar to those obtained for the computational system,
which is further evidence that the previous theoretical results represent physical phe-
nomena. Also, in accordance to what was explained before, one can clearly see that
the POMs corresponding to the first and second NNMs are not similar on spike ix.
This means that even though there is a spike on point ix, but this spike does not rep-
resent any modal interactions between the first and second NNMs. Additionally, the
slight oscillation that has appeared in the first POM is caused by small measurement
and numerical errors that result in deviation from the linear, experimental natural
frequency.

The existence of IRs is demonstrated by computing the slow phases of the NNMs.
Up to this point, WBEMD is applied to the response presented in Fig. 2b, four well-
separated IMFs which represent four individual NNMs are extracted and their corre-
sponding phase trajectories are computed. Since it was predicted that the first modal
interaction corresponds to a 5:2 IR, the corresponding phase trajectory, along with
a zoomed-in view of its initial portion, is plotted in Fig. 5a. The single loop in the
zoomed-in view occurs between 0.02 and 0.13 s, which is the duration of the first
spike shown in Fig. 3. The presence of this loop and its correspondence with the first
spike is a further proof that the first spike is indeed the result of a 5:2 IR and not a
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(a) (b)

Fig. 5 a Phase trajectory for	5:2(t) = 5θ1(t) − 2θ2(t),which corresponds to the second and third
spikes in Fig. 3. b Phase trajectory for 	3:1(t) = 3θ1(t) − 1θ2(t), which corresponds to the first
spike in Fig. 3. Reprinted with permission from [23]

numerical artifact. Figure5b and its zommed-in views depict 3:1 trajectories and the
two loops corresponding to the second and third spikes, respectively. These loops are
non-time-like and indicate that 3:1 IRs occur between the first and second NNMs.
As before, the interval in which each loop occurs corresponds to the duration of the
loops corresponding spikes. Moreover, the fact that there are two loops in the 3:1
trajectory plot confirms the modal interactions represented as spikes in Fig. 3.

According to the presented and discussed results, the current method proves to
be a valuable and powerful tool for detecting strongly nonlinear modal interactions
directly frommeasured data. By means of this method one can get significant insight
into the governing nonlinear physics of the response of dynamical systems with
smooth and local nonlinearities. Hence, this method is a valuable tool to gain a
thorough understanding of the transient responses of strongly nonlinear dynamical
systems, including nonlinear modal interactions caused by IRs.

4 Nonlinear System Identification of a Strongly Nonlinear
Attachment

Todemonstrate theNSIprocedure presented inSect. 2.4,we apply it to the experimen-
tally measured response of the cantilevered wing in Fig. 6a. The wing is aluminum
and detailed dimensions can be found in [24]. A local NES is attached to the free end
of the wing. The nonlinearity is realized through transverse displacements of thin
steel wires, which are fixed at both ends and each have a diameter of 0.00036 m and a
length of 0.0552 m. The attachment, depicted in Fig. 6b, results in a hardening-type,
ideally essential nonlinearity; however, the resulting force-displacement relationship
is not purely nonlinear. Instead, a small linear stiffness is introduced by pretension in
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Fig. 6 a Front view of wing used in experiments. b Front and top view of the nonlinear attachment.
c Model used for the nonlinear attachment and baseplate. Modified and reprinted from [24]

the wires due to the boundary conditions, resulting in a natural frequency associated
with the motion of the NES. The diameter of the wires was tuned such that a 1:1 IR
between the NES and the second NNM is realizable using a standard modal ham-
mer. The acceleration responses of the wing and the NES were measured using PCB
Piezotronics accelerometers (models U356A11 and Y353B17) for an impact applied
using a PCB Piezotronics modal impact hammer (model 086C01). The acceleration
response of the wing was measured at 14 location along the leading and trailing
edges. Using VibPilot hardware (m+p International, Hannover, Germany) and m+p
analyzer software, the responses were measured for a duration of 8 s at a sampling
rate of 4096Hz. The displacement and velocity responses of the wing and NES were
obtained using the same numerical integration scheme used in the prior experiments
with the cantilever beam, except that the cut-off frequency was set to 2Hz.

To demonstrate the proposed NSI method, we study the response of the wing
to the impact depicted in Fig. 7a. The corresponding velocity response of the NES
and the corresponding wavelet transform and frequency response function (FRF)
are depicted in Fig. 7b. Both the wavelet and FRF reveal the nonstationary nature of
the response. Full details of the model for the wing and NES are provided in [24];
we present a summary of the modeling procedure here. The wing is modeled using
the FE mesh described in [24] using an elastic modulus of N/m2 and a density of
2700 kg/m3. The added mass of the base plate is modeled as two lumped masses at
the leading and trailing edges of the free end of the wing, which allows the added
mass to affect both the bending and torsional NNMs. The mass of the base plate was
measured to be 0.408 kg. The attachment is modeled as a discrete mass with linear
and nonlinear springs coupling it to the leading and trailing edges. The mass of the
attachment is found to be 0.908 kg, and the frequency of the NES at small energy is
8.36 Hz. The linear stiffness coupling the NES to the wing was computed to be 241.5
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Fig. 7 a High-amplitude, impulsive load applied at nonlinearity location, b Time series, wavelet
transform, and FRF of the velocity of the NES (integrated from accelerometer measurements).
Reprinted from [24]

N/m using an optimization routine that minimized the error between the frequency
of the NES NNM in the FE model and that of experimental system.

As in Sect. 3, the time window is divided into segments that are sufficiently small
to capture the transient nature of the response, but large enough to capture at least
one-half cycle of the first NNM. For this system, we use a segment length of 0.173s
and consider the response in thewindow defined by [0.09,7.5], which results in a total
of 42 nonoverlapping time segments. The first 0.09 s of the measurement is excluded
from the analysis because it contained the response of the wing to ambient vibration
before the impact. For each time segment, we extract 15 POMs; however, only
those corresponding to the first four NNMs are analyzed. A fourth-order polynomial
with no constant or linear terms is fitted to each POM, which reduces the effect of
measurement noise. The final POMs are created by evaluating the polynomials at
each accelerometer location.

Using the POMs, we compute the RQ for the first four NNMs for each time
segment and plot them as functions of time in Fig. 8a. In this plot, there are two
periods of IR between the NES and the second NNM. The first occurs from an energy
of 0.363–0.103J and the second corresponds to the spike that occurs at 0.0880J.
For this system, the relative displacement is defined as the difference between the
displacement of the NES and the average of the displacement of the leading and
trailing edges at the tip of the wing. Following the procedure presented in Sect. 2.4,
we compute the characteristic displacement defined by (8) for each segment and
plot the RQ in Fig. 8b, where the frequency-displacement pairs have been sorted
in ascending order based on the displacements. Using the low-energy frequency of
the second NNM, f2 = 14.34Hz, the corresponding characteristic displacement is
found to be δ2 = 0.00150musing linear interpolation.Using the optimization routine
described in [24], the parameters α = 3.4887× 108 N/m3.0714 and β = 2.0714 are
found. The resulting frequency-displacement curve for the identified parameters is
depicted as the red line in Fig. 8b.
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Fig. 8 a The RQ-FEP for the response depicted in Fig. 7. b Comparison of the RQ FDP for the
NES and the identified model. Modified and reprinted from [24]

The identified model is validated by comparing its response to that of the exact
system for multiple forcing values. Although the nonlinearity is identified using
displacements, the displacement response is dominated by the first bending mode
(which is why this NNM was filtered out from the characteristic displacement),
and effects from higher NNMs are difficult to ascertain. Instead, we present the
velocity responses of the measured and identified systems in Fig. 9a for the impact
depicted in Fig. 7a, which corresponds to the response used to perform the identifica-
tion. The velocity responses for impacts of 264.8, 504.4 and 1158.6 N are shown in
Fig. 9b–d, respectively, and correspond to measurements that were not used to per-
form the identification. The match between the velocity responses, the wavelets and
the FRFs confirm that the identified system accurately models the measured system
for multiple forcing impacts. These results validate the proposed method for nonlin-
ear system identification of strongly nonlinear attachments in both theoretical and
experimental frameworks.

5 Concluding Remarks

We studied the experimental responses of two mechanical systems with smooth,
local nonlinearities. The first system was a cantilever beam with a smooth, nonlinear
spring attached near its free end and the second system was a model airplane wing
with a local NES connected to the tip. Using POD, energy-dependent POMs were
extracted from the displacement responses of each system, and were representative
of the NNMs governing each system. For both systems, the frequencies of the NNMs
were estimated using the discrete RQ with the POMs as trial vectors. The estimated
frequencieswere plotted as functions of time and energy, which revealed the presence
of non-smooth perturbations (spikes), which appeared to indicate strongly nonlinear
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Fig. 9 Themeasured and predicted response for impacts of a 829N, b 265N, c 504N and d 1158N.
Modified and reprinted from [24]

modal interactions. The POMs corresponding to the points off and on the spikes
were found to be similar to the periodic solutions of non-interacting and interacting
NNMs, respectively.

Thedisplacement response of the beamwasdecomposed intowell-separated IMFs
using WBEMD, and using the Hilbert transform a phase variable for each spike was
defined and the corresponding phase trajectories examined. The spikes were found
to correspond to periods of non-time-like behavior (loops), which indicated the pres-
ence of strongly nonlinear IRs. The estimated frequencies of the model wing were
also plotted as functions of characteristic displacement, which was used to identify
the nonlinear stiffness coupling the NES to the wing. The resulting model accurately
reproduced the relevant nonlinear dynamics for all four loading cases investigated.
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Non-smooth Spatial and Temporal
Substitutions in Impact Dynamics

Valery N. Pilipchuk

Abstract This paper presents an overview of physical ideas and mathematical
methods for implementing non-smooth and discontinuous substitutions in dynam-
ical systems. A general purpose of such substitutions is to bring the differential
equations of motion to the form, which is convenient for further use of analyti-
cal and numerical methods of analyses. Three different approaches are discussed
as follows: positional coordinate transformation, state variables transformation, and
temporal transformations. Also a new type of substitutions eliminating both infinite
and step-wise discontinuities and thus completely smoothing the system is suggested.
Different illustrating examples are introduced.

1 Introduction

Discontinuities of states in physical models often represent the result of intentional
idealization of abrupt but still smooth changes in dynamical characteristics. Such ide-
alizations help to skip complicated details of modeling on relatively narrow intervals
of impact interactions by considering their integral effects. However, every discon-
tinuity of states actually breaks the system into two systems, and thus increases the
system dimension as many as twice even though the equations may remain the same
before and after the collision. This work will outline and illustrate different ideas
of preventing the dimension increase when dealing with discontinuities of dynamic
states. Note that many analytical methods dealing with dynamical systems prelimi-
narily adapt the equations of motions through different substitutions and transforma-
tions in order to ease further steps of analyses. Although a universal recipe for such
substitutions is rather difficult to suggest, there are some general principles to fol-
low. For instance, classes of transformations should comply with classes of systems
considered. The term classes remains intentionally unspecified here since it may
indicate any generic feature of the model, such as linearity or nonlinearity, a class
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of smoothness, or other mathematical properties. In particular, this work focuses on
substitutions including nonsmooth or discontinuous functions.

Generally speaking, differential operationswith nonsmooth functions require gen-
eralized interpretations of equalities as integral identities, in other words, in terms of
distributions [39]. In linear cases, such interpretations are usually quite straightfor-
ward since distributions represent linear functionals [50]. Nonlinear models however
impose certain structural constraints on the presence of non-smooth or discontinuous
functions in differential equations [5, 6]. Moreover, whether or not some combina-
tions of discontinuous functions are meaningful may depend upon physical contents
of variables participating in such combinations [23]. From the mathematical stand-
point, physical interpretations allow for narrowing families of smooth functions that
have discontinuities in their asymptotic limits. As a result, some combinations of
discontinuous functions may acquire certain meanings of distributions.

To conclude this, as follows from the above remarks, despite of the universal
notations, discontinuous functions may still inherit some features of the correspond-
ing generating families of smooth functions. Therefore, analytical manipulations
with discontinuous and delta-functions must account for both physical content of
the problem and mathematical structure of equations. Unfortunately, intuitive use of
delta-functions may lead to mathematical ambiguities and logical missteps; explana-
tions and illustrations of the related issues from different standpoints can be found in
[5, 54]. This happens by twomain reasons. First, according to the so-called sequential
approach, the delta-function is actually not a function but the limit of very different
sequences of functions or a linear integral operator in the theory of distributions.
Second, the symbol of delta function is used sometimes just as a logical operator
formalizing specifics of transitions through discontinuities, for instance, δ−(t) or
δ+(t). In Sect. 2.2 below, the issue is illustrated on example discussed earlier in [5].
In the most direct way, such complications can be avoided by considering models
on different time intervals and introducing appropriate matching conditions for the
corresponding pieces of solutions. In many cases, however, the matching times are
a priory unknown and must also be determined from the same matching conditions.
As mentioned at the beginning, this work gives an overview of another approaches
satisfying the matching conditions automatically through specific non-smooth trans-
formations of variables. Briefly, topics of this paper are as follows: (1) Caratheodori
equations and discontinuous substitutions [5] for systems under external pulses and
wave propagation problems, (2) non-smooth positional coordinate transformations
for impact systems with elastic perfectly stiff constraints and possible extensions on
non-elastic constraints [52–54], (3) non-smooth state (phase) space transformation
[11, 12, 14] and applications to modeling the impact dynamics with an arbitrary
coefficient of restitution, and (4) generalizations of non-smooth temporal transfor-
mations [28, 29] for impact systems with one-sided barriers, periodic and modulated
motions.
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2 Nonsmooth Coordinates and Velocities

2.1 Systems with Delta-Pulses Included as Summands

Different types of differential equations with distributions were considered by
Filippov [5]. In particular, it was shown that the effect of discontinuous singu-
lar terms can be included separately into specific discontinuous substitutions for
unknown functions in such a way that new equations are free of singular terms. As a
result, it becomes possible to prove the existence and investigate different properties
of solutions with conventional qualitative tools. Note that the differential equations
including distributions must be interpreted in a generalized way in terms of integral
identities. In many cases, the corresponding generalization is based on the integral
form of the differential equation ẋ = f (t, x):

x(t) = x(t0) +
t∫

0

f (s, x(s))ds. (1)

If the function f (t, x) is discontinuous in t , but still continuous in x , then the
functions satisfying (1) can be viewed as solutions of the equation ẋ = f (t, x).
Generally, integration in (1) should comply with the concept of Lebesgue integral.
In this case, the function f (t, x) does not have to be point-wise defined.1 If f (t, x)
includes δ-functions as summands then some preliminary transformation may help
to justify further manipulations. As a simple illustration, let us consider a single
degree-of-freedom system whose velocity, v = v(t), is described by the differential
equation

v̇ + kv3 = qδ (t − t1) , (2)

where k, q and t1 are constant parameters, and δ is the Dirac’delta function.
Equation (2) describes a unit-mass particle in a nonlinearly viscous media with

the cubic dissipation law. In this case, the δ-input generates a step-wise discontinuity
of the response v(t) at t = t1, nevertheless the nonlinear operation in (2) remains
meaningful. Moreover, the δ-pulse can be eliminated from Eq. (2) by means of the
following substitution

v = u + qθ (t − t1) , (3)

where u = u (t) is a new unknown function, and θ (t − t1) is the Heaviside unit-step
at t = t1.

Substituting (3) in (2), and taking into account that θ̇(t − t1) = δ (t − t1) and
θ2 (t − t1) = θ (t − t1), gives equation

1Practically, such an extension almost never contradicts to physical contents of modeling; recall
that the differential equations of motion are derived from variational principles formulated in the
integral form.
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u̇ + ku3 = Q(u, q)θ (t − t1) , (4)

where Q = −(q3 + 3uq2 + 3u2q).
In contrast to (2), Eq. (4) includes no δ -function and thus admits a visualization

of its phase flow on the (t, v) -plane. Note that substitution (3) is easy to generalize
on equation

v̇ = f (v, t) +
∞∑
i=1

qiδ (t − ti ) , (5)

where f (v, t) is assumed to have no singularities within some domain of the (v, t)-
plane, {qi } and {ti } are sets of constants.

In this case, the following substitution eliminates all the δ -functions from Eq. (5)

v = u(t) +
∞∑
i=1

qiθ (t − ti ) . (6)

Further generalization on the vector-form equations is quite obvious. Compli-
cations may occur however when the structure of original equations is changed as
described in the Sect. 2.3. Finally, note that substitutions of type (3) and (6) as well
as its different variations are widely used in the literature to describe moving discon-
tinuity waves [8, 23, 51].

2.2 Distributions as Parametric Inputs

As mentioned in Sect. 1, using the delta-function intuitively may face some logical
problems. The related example is considered below in this section based on the linear
initial value problem [5]

v̇ + kδ (t − t1) v = 0; (7)

v(0) = v0,

where k and t1 > 0 are constant.
On first look, Eq. (7) may serve as an adequate model for a 1D motion of free

particle striking a very narrow super-viscous layer at the neighborhood of time t = t1.
Since δ (t − t1) = 0 everywhere except for t = t1 then, according to Eq. (7), v̇ = 0 in
both subintervals t < t1 and t > t1. As a result, the velocity v is constant but may be
different before and after the point t = t1. Therefore, taking into account the initial
condition suggests solution

v = v0[1 − λθ (t − t1)], (8)
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where λ is an unknown constant parameter quantifying the discontinuity of function
v(t), such that v = v0 for t < t1 and v = −λv0 for t > t1.

However, Eq. (7) shows that the jump of the solution depends on the behavior of
solution itself near the point t = t1. Namely, integrating both sides of the equations
over the interval (t1 − ε, t1 + ε) and taking into account the basic property of δ-
function gives v(t1 + 0) − v(t1 − 0) = −kv(t1), as ε → 0. In this case, there is no
certain choice for v(t1), or λ, and thus additional assumptions regarding the model
are required to uniquely determine the velocity jump. This becomes even more clear
after substitution (8) in (7) with the intent to find λ. After simple manipulations, such
substitution gives

θ(t − t1)δ(t − t1) = αδ(t − t1), (9)

where α = λ−1 − k−1, or λ = k/(1 + αk).
Now, following the idea of distribution theory and taking into account the property

of delta function brings (9) to the form

∞∫

−∞
θ(t − t1)δ(t − t1)dt = α. (10)

According to the property of delta-function, Eq. (10) formally gives θ(0) = α,
which means that α can be any number from the interval 0 ≤ α ≤ 1, because zero
is the point of step-wise discontinuity of the function θ. This just reminds the well
known fact that the combination θ(t − t1)δ(t − t1) has no certain meaning in the
distribution theory, and therefore the number α on the right remains uncertain. Try-
ing to resolve this uncertainty, let assume that θε(t) is a sequence of differentiable
functions such that θε(t) → θ(t) and thus dθε(t)/dt → δ(t) as ε → 0 in the sense
of so-called weak limit, for instance,

θε(t) = 1

2

(
1 + tanh

t

ε2

)
→ θ(t);

δε(t) = dθε(t)

dt
= 1

2ε2
cosh−2 t

ε2
→ δ(t). (11)

Therefore, we assume that both functions θ(t) and δ(t) are generated by the same
family of smooth functions θε(t). Then the integral in Eq. (10) is calculated explicitly
as

lim
ε→0

∞∫

−∞
θε(t)

dθε(t)

dt
dt = 1

2
= α. (12)

However, in our case, we cannot use the number α = 1/2 for determining the
discontinuity parameter λ in (8) as soon as there is no reason to believe that functions
θ and δ, in (8) and (7), respectively, are generated by the same family of smooth
functions. Moreover, it is rather not the case at all [34]. This can be illustrated with
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replacing the function δ in Eq. (7) with its smooth pre-limit δε defined in (11). The
corresponding regular separable equation has the solution,

v = v0 exp

[
−1

2
k

(
tanh

1

ε2
+ tanh

t − t1
ε2

)]

such that
v = v0 {1 − [1 − exp(−k)]θ(t − t1)} as ε → 0. (13)

Comparing (13) to (8) gives λ = 1 − exp(−k) and therefore

α = λ−1 − k−1 = 1

1 − exp(−k)
− 1

k
. (14)

However, expression (14) shows that the number α = 1/2 (12) is reached only as
k → 0, when the model (7) makes no sense.

Remark 1 A formal asymptotic approach can provide some justification for model
(7) at least in the leading-order approximation as follows. Let us assume that 0 < k �
1, and v = v0 + kv1 + k2v2 + O(k3). Then Eq. (7) gives v̇0 = 0, v̇1 + v0δ (t − t1) =
0, v̇2 + v1δ (t − t1) = 0, . . . . Since v0 is continuous (constant) then the equation
for v1 is meaningful and gives solution with a step-wise discontinuity at t = t1.
However, the equation for v2 has a discontinuous factor with the delta-pulse and thus
is questionable.

Remark 2 The second-order equation ẍ + kδ (t − t1) x = 0 is replaced with the sys-
tem, ẋ = v and v̇ = −kδ (t − t1) x , which does not lead to any contradiction, since
the coordinate x appears to be non-smooth but continuous.

As follows from this section, using the generalized δ-function for physical mod-
eling requires proper justifications. Due to the fact that models are different, justifi-
cations must be different as well, which is an obvious inconvenience. This is why the
idea of so-called non-smooth transformations is being developed with the purpose
of incorporating singularities of models into the corresponding transformations in a
more or less universal way, and then deal with classical problem formulations for
the resultant systems. Simple examples of nonsmooth transformations of unknown
functions were given already in Sect. 2.1 following the Ref. [5]. Below in this work
we introduce some generalization, and discuss other non-smooth transformations
developed earlier.

2.3 Continualization of Impulsively Loaded Systems

Note that substitution (6) eliminates δ-impulses fromsystem (5) and thus significantly
improves the system smoothness, however, the resultant system still has step-wise
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discontinuities due to the presence of Heaviside unit-step function. In the present
section, we propose a generalization of substitution (6) such that the new equation
includes no discontinuities at all. Consider the multidimensional linear system with
variable coefficients

v̇ = A(t)v +
∞∑
i=1

qiδ (t − ti ) , (15)

where v(t) ∈ Rn , and A(t) is at least one time continuously differentiable n × n-
matrix-function.

Let us introduce the so-called ramp function as R(t) = (t + |t |)/2, such that
Ṙ(t) = θ(t) is Heaviside’s unit-step function, and R̈(t) = δ(t).

Proposition 1 Substitution

v = u(t) +
∞∑
i=1

[ pi (t)R (t − ti ) + q iθ (t − ti )], (16)

where pi (t) = A(t)qi , brings impulsively loaded system (15) to the class of contin-
uous systems of the form

u̇ = A(t)u +
∞∑
i=1

[A2(t) − Ȧ(t)]qi R (t − ti ) . (17)

Proof Substituting (16) in Eq. (15) gives

u̇ +
∞∑
i=1

[ pi (t) − A(t)qi ]θ (t − ti )

= A(t)u +
∞∑
i=1

[A(t) pi (t) − ṗi (t)]R (t − ti ) .

Choosing pi (t) = A(t)qi gives (17). �

2.4 Nonsmooth Positional Coordinates

The idea of nonsmooth coordinates deals with elastic but perfectly stiff barriers
reflecting moving particles in a mirror-wise manner. Since outcome of such reflec-
tions is predictable then it can be built into the mechanical model in advance by
means of the corresponding nonsmooth coordinates. It was shown in Refs. [52, 53]
that introducing nonsmooth coordinates effectively eliminates barriers by unfolding
the configuration space. As a result, the differential equations of motion are derived
on the entire time interval with no impact conditions. For illustrating purposes, con-
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sider the following N -degree-of-freedom Lagrangian system

L = 1

2

N∑
i=1

q̇2
i − 1

2

N∑
i=0

ki (qi+1 − qi )
2; (18)

|qi (t)| ≤ 1; (19)

q0(t) ≡ qN+1(t) ≡ 0. (20)

This is a chain of unit-mass particles connected by linearly elastic springs of
stiffness ki . Perfectly stiff elastic constraints are imposed on each of the coordinates
according to (19). Although Lagrangian (18) generates linear differential equations,
these equations alone do not completely describe the system. Due to the presence of
constraints (19), the system is actually strongly nonlinear, and this becomes obvious
in adequately chosen coordinates. Transition to such coordinates is described by

qi = τ (xi ), (21)

where τ is the triangular wave

τ (x) =
{
x for − 1 ≤ x ≤ 1
−x + 2 for 1 ≤ x ≤ 3

(22)

τ (x)
∀x= τ (4 + x)

Note that notation (22) and normalization of the period differ from those intro-
duced in original works [52, 53]. The only reason for such modification is to deal
with the triangular wave of unit slope2

[τ ′(x)]2 = 1 (23)

for almost all x .
The coordinate transformation (21) brings system (18) through (20) to the form

L = 1

2

N∑
i=1

ẋ2i − 1

2

N∑
i=0

ki [τ (xi+1) − τ (xi )]2; (24)

x0(t) ≡ xN+1(t) ≡ 0. (25)

It is seen from (24) that transformation (22) preserves the quadratic form of
kinetic energy while the constraint conditions (19) are satisfied automatically due to
the property |τ (x) | ≤ 1. In contrast to (18), Lagrangian (24) completely describes
the model on the entire time interval 0 ≤ t < ∞. However, in terms of the new
coordinates, the potential energy acquired a non-local cell-wise structure so that the

2Although this condition does no matter for the method introduced in Refs. [52–54], Sect. 3 of the
present paper describes another method for which property (23) is essential.



Non-smooth Spatial and Temporal Substitutions in Impact Dynamics 127

corresponding differential equations ofmotion are essentially nonlinear; for example,
see (26) below. Now every impact interaction with constraints is interpreted as a
transition from one cell to another as illustrated below on the two degrees-of-freedom
model, N = 2. In this case, Lagrangian (24) gives the differential equations ofmotion
on the infinite plane −∞ < xi < ∞ (i = 1, 2) with no constraints

ẍ1 + [(k0 + k1)τ (x1) − k1τ (x2)]τ ′(x1) = 0;
ẍ2 + [(k1 + k2)τ (x2) − k1τ (x1)]τ ′(x2) = 0. (26)

Figure1a shows the corresponding equipotential energy levels and a sample tra-
jectory of beat-wise dynamics. It is seen, for instance, that the system is trapped in
some cells sometimes for the energy exchange process. After one of the two masses
accumulated the energy, which is sufficient to reach the barrier, the impact event
happens accompanied by the transition to another cell. The fact of energy exchange
inside a trapping cell is confirmed by the transversality of incoming and outcoming
pieces of the trajectory. As long as the mass remains in impact regime, its trajectory
is passing through one cell to another until the system is trapped again in another
cell for a new energy exchange process. A similar geometrical interpretation but
for impact normal mode dynamics was introduced earlier in [49], where the impact
modes were associated with ‘hidden geometrical symmetries’ revealed by periodic
patterns of equipotential lines as shown in Fig. 1b.

In particular, closed form analytical solutions for different impact modes were
obtained by means of the averaging procedure. Note that, according to the original
works [52, 53], applicability of the averaging procedure constitutes the major advan-
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(a) (b)

Fig. 1 a Equipotential energy levels in the unfolded configuration plane and a sample dynamic
trajectory obtained under the initial conditions at t = 0: x1 = 0.5, x2 = 0.0, ẋ1 = 1.0, and ẋ2 = 0.0;
bThe impactmode trajectories in the unfolded configurationplane: in-phase andout-of-phasemodes
(the diagonal lines), and local modes (the horizontal and vertical lines.)
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tage given by transformation (21) since the infinite impact forces are effectively elim-
inated from the system. Similar kind of visualization for a two-degree-of-freedom
vibrating system with only one mass under two-sided constraint condition was used
in [36].

Although original works [52, 53], deal with illustrating models of deterministic
dynamics, further applications were shiftedmostly into the area of random vibrations
[4, 26, 40]. From the standpoint of practical applications, inelastic effects of inter-
actions with stiff constraints become essential. Generally, impact dissipation effects
can be modeled by the dissipative term [1, 4] (1 − κ)ẋ |ẋ |δ−(x), where δ−(x) is a
specific rule rather than the conventional Dirac’s function. According to this rule,
the impulsive damping acts right before the result of such damping namely velocity
jump occurs. Such damping model is justified if the restitution coefficient κ is close
to unity so that the factor 1 − κ is small. In this case, the integral effect of the impul-
sive damping can play the role perturbation within asymptotic procedures, in which
the velocity ẋ is given by an unperturbed system and therefore remains continuous.
Non-elastic impact interactions with constraints can be modeled also in a purely
geometrical way however under some conditions on the type of motions [54].

2.5 Nonsmooth Transformation of Dynamic States

Transformations eliminating non-elastic constraints should obviously involve both
types of the state variables - coordinates and velocities. Let us consider the case of
harmonic oscillator under the constraint condition

ẋ = Ax; (27)

x1 > 0, (28)

where x = [x1(t), x2(t)]T is the state vector such that x2 = ẋ1, and

A =
[
0 1
−ω2 0

]
. (29)

It is also assumed that every collision with the barrier x1 = 0 at some time t∗
happens with a momentary energy loss characterized by the coefficient of restitution
κ:

x1(t
∗) = 0: x2(t

∗ + 0) = −κx2(t
∗ − 0). (30)

The idea is to unfold the phase space in such way that the energy loss occurs auto-
matically whenever the system crosses preimage of the line x1 = 0. The correspond-
ing non-conservative transformation was introduced in [11, 12] as a transformation
of state vector, x −→ y, of the form
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x = Sy, (31)

where y = [s(t), v(t)]T is a new state vector, and the transition matrix is given by

S =
[
1 0
0 1 − ksgn(sv)

]
sgn(s), (32)

where k = (1 − κ)/(1 + κ).
Note that transformation (31) is strongly nonlinear due to the dependence

S = S(y, k). Nevertheless, substitution (31), gives equation

ẏ = (S−1AS)y. (33)

It is seen that the transformed equation (33) has the same form as it would
have in the case of constant matrix S. However, the matrix S is constant almost
everywhere except for discontinuity lines in the plane sv. A formal substitution of
(31) in (27) would eventually impose specific conditions on distributions similar to
those described in Sect. 2.2. In the component-wise form, expressions (31) and (33)
are written as, respectively,

x1 = x1(s, v) ≡ ssgn(s);
x2 = x2(s, v) ≡ sgn(s)[1 − ksgn(sv)]v (34)

and

ṡ = [1 − ksgn(sv)]v;
v̇ = −ω2s[1 + ksgn(sv)]/(1 − k2). (35)

Figure2a and b illustrates a sample trajectory of the harmonic oscillator in its
original transformed phase planes, respectively. Now both unknown components of
the state vector are continuous, whereas effects of non-elastic collisions (30) are
captured by transformation (34). Further, consider the general case of one-degree-
of-freedom nonlinear oscillator

ẋ1 = x2;
ẋ2 = − f (x1, x2, t), (36)

whose motion is restricted to the positive half plane x1 > 0 by a non-elastic barrier
at x1 = 0 of the restitution coefficient κ.

Applying transformation (34) to system (36), gives

ṡ = [1 − ksgn(sv)]v;
v̇ = − f (x1(s, v), x2(s, v), t)sgn(s)[1 + ksgn(sv)]/(1 − k2). (37)
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Fig. 2 a The original phase plane of the harmonic oscillator with a perfectly stiff but inelastic
one-sided barrier; b The phase trajectory of inelastic impact oscillator in the auxiliary coordinates

Although the technique is illustrated on a one-degree-of-freedom model, similar
coordinate transformations apply tomultiple degree-of-freedomsystems by choosing
one of the coordinates perpendicular to the constraint. For that reason, it is convenient
to use the descriptive Routh function whose normal to the constraint coordinate is
Lagrangianwhereas other coordinates and associatedmomenta areHamiltonian [12].
As mentioned in Sect. 1, improving the class of smoothness of dynamical systems
extends applicability of different analytical tools, such as, for instance, bifurcation
analyses [12]. In fact, before the transformation, discontinuities of phase trajectories
as those shown in Fig. 2a would complicate any local analyses. However, the trans-
formation improves the class of smoothness which is needed to build major objects
of local analyses and averaging tools. A regular approach to stability and bifurcation
analysis in impact systems was proposed in [13]. In particular, it was shown that
the discontinuous bifurcation of grazing impact can be regularized. This may lead
to a new interpretation of grazing bifurcations. Namely, after such bifurcation, some
periodic motion might survive and even preserve stability.

3 Nonsmooth Temporal Arguments

In this section, we describe nonsmooth substitutions of the independent variables,
which is the temporal argument in the present context. It is shown below that such
nonsmooth substitutions associate with common temporal symmetries of motions
regardless of types of systems. This approach was originally developed for the class
of strongly non-linear but smooth oscillators [28, 29]. However, its main specifics
are clearly seen even in the case of non-oscillatory motion of a classic unit-mass
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particle under returning potential force. The idea is to employ the most ‘elementary’
strongly nonlinear dynamics as a basis for observing strongly nonlinear dynamic
effects in general case [33]. Examples of such ‘elementary’ nonlinear processes
are found among the rigid-body motions [27]. However, the key question is how
to bridge the gap between the classes of smooth and nonsmooth motions within
the same mathematical formalism. It will be shown below on simple examples that
nonsmooth substitutions of temporal argument may play the role of such a bridge.

3.1 Positive Time

Let us consider the motion of a unit-mass particle under the restoring monotonically
increasing force f (x)

ẍ + f (x) = 0. (38)

The initial conditions are x = x0 > 0 and ẋ = v0 < 0 at t = t0 < 0.As the particle
reaches a turning point at some time t = a it makes a U-turn. Since Eq. (38) admits
the group t −→ −t , the reverse motion will be symmetric with respect to the time
point t = a. Such a prediction incorporates into the differential equation of motion
(38) through the new temporal argument, x = x(s) [33],

t −→ s: s = |t − a|. (39)

Note that the function s(t) describes the coordinate of a free particle striking
a perfectly stiff obstacle with no energy loss at some time t = a. Although the
temporal shape of the dynamics of system (38) is different, the function s(t) captures
its symmetry with respect to the turning point t = a. Therefore, the substitution of
argument (39) includes important information into the differential equation ofmotion
before any solution procedure is applied. Obviously, ṡ =sgn(t − a) and s̈ = 2δ(t −
a), therefore, except possibly for a single point t = a, the following relationship
holds

ṡ2 = 1 (40)

then, substituting (39) in (38), gives

d2x

ds2
+ f (x) = 0, s > 0; (41)

dx

ds
= 0, s = 0, (42)

where condition condition (42) eliminates the singularity caused by the derivative s̈,
which formally occurs due to the non-smoothness of substitution (39).

From geometrical standpoint, substitution (39) reverses the time direction exactly
when the particle makes the U-turn. Although the form of the equation remains the
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same, certain advantages are achieved [27]. For instance, even a drastically simplified
equation, say d2x/ds2 = 0, still preserves the main dynamical event, which is the
U-turn of the particle. Such a simplification effectively replaces the smooth potential
barrierwith a perfectly stiff one, as follows from the general solution, x = As(t) + B,
where A and B are arbitrary constants of integration. Now, if some perturbation series
converges for s ≥ 0, then it is automatically converges for the entire interval of the
original time, −∞ < t < ∞.

As another example, let us consider the case of impulsively loaded single degree-
of-freedom system,

ẍ + f (x) = 2pδ(t − a) = ps̈, (43)

where p = const .
Substituting (39) in (43) and taking into account (40), gives3

d2x

ds2
+ f (x) =

(
p − dx

ds

)
s̈. (44)

Eliminating the singularity ps̈ in (44), gives the same Eq. (41) however under
non-homogeneous boundary condition

dx

ds
= p if s = 0. (45)

Since substitution (39) is non-invertible on the entire time interval, then using the
argument s in a general case of dynamical systems appears to be less straightforward
but nonetheless possible based on the following identity

t = a + sṡ. (46)

Due to relationship (40), the combination (46) represents a specific complex num-
ber with the basis {1, ṡ} [33]. In contrast to the conventional elliptic complex algebra,
the operation 1/t with (46) may not hold. Interestingly enough, such algebraic struc-
tures has been known for quite a long time [3, 47] with no relation to nonsmooth
functions or any dynamical systems. In the modern mathematical literature, it is usu-
ally introduced just as a set of abstract elements and referred to as a simple example
of the so-called Clifford’s algebras.We prefer the term ‘hyperbolic algebra’ although
many synonyms do exist [15]. Some areas of physics are linked to this algebra quite
closely [9], however constructive applications are rather limited. The hyperbolic
numbers are isomorphic to symmetric 2 × 2-matrixes as for instance,

t2 = (a + sṡ)2 ←→
(
a s
s a

)2

. (47)

3It is worth to compare this technique with that described in Sect. 2.1 based on the first-order
equation.
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We emphasize that, in our case, the hyperbolic structure is generated naturally
rather than imposed by abstract mathematical assumptions. Since the components of
our hyperbolic numbers are functions of time then differential and integral operations
can be introduced. Briefly, for practically any function x (t), it can be shown that
[32]

x (t) = x (a + sṡ) = X (s) + Y (s) ṡ; (48)

X (s) = 1

2
[x (a + s) + x (a − s)] ;

Y (s) = 1

2
[x (a + s) − x (a − s)] .

Obviously, algebraic manipulations with the element X + Y ṡ can be conducted
in the same way as manipulations with the element t = a + sṡ since both belong to
the same algebra. Then, taking into account (40) gives first time derivative

ẋ (t) = Y ′ (s) + X ′ (s) ṡ + ps̈, (49)

where, p = Y (0).
According to (48), the number p must be zero, if the function x(t) is continuous.

In this case, the derivative ẋ (t) belongs to the same hyperbolic algebra as the function
x(t) does. High-order derivatives can be considered in the same as soon as the result
of differentiation remains continuous. At some stage of differentiation, the singular
term s̈ = 2δ(t − a) can be preserved in order to eliminate a similar type of singularity
from the differential equation ofmotion, if needed; regarding second-order equations,
see (44) and (45) for illustration. In case of Eq. (38), it was possible to set Y (s) ≡ 0
in representation (48) due to the specific temporal symmetry of the process dictated
by the differential equation of motion. Generally speaking, however, both ‘real’
X and ‘imaginary’ Y components must be considered in (48). For instance, using
representation (48) and considering the functions X (s) and Y (s) as new unknowns,
solution of the initial value problem ẋ + λx = 2pδ(t − a) = ps̈ and x(0) = 0 can
be found in the form x = p exp(−λs)(1 + ṡ) [27].

Remark 3 In addition to the original basis {1, ṡ}, the so-called ‘idempotent’ orthog-
onal basis can be introduced as [33] i± = (1 ± ṡ)/2, such that t = (a + s)i+ + (a −
s)i−. Since i2± = i± and i+i− = 0, then tα = (a + s)αi+ + (a − s)αi− for any real
number α.

The advantage of the idempotent basis is that the differential equations of motion
with respect to the two components become decoupled. However, the boundary con-
ditions become more complicated. Representations of solutions in the idempotent
basis were used recently to describe acoustic wave propagation in periodic com-
posite media [38]. Note that, from the mathematical point of view, the term time
simply means argument of the unknown function. This is the main distinctive fea-
ture of the present methodology, in which nonsmooth transformations are applied to
arguments. Typically, the unknown functions are modified as well. However, such
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Fig. 3 a Standard impact
oscillator; b harmonic
oscillator between perfectly
stiff two-sided constraints

modifications are imposed due to the irreversibility of the argument substitutions and
lead to hyperbolic elements.

3.2 Triangular Wave Time Substitution

Since any vibrating process is a sequence of U-turns then the corresponding nons-
mooth time substitution can be combined of functions given by (39) with different
signs and temporal shifts. In periodic case of the period T = 4, such combination
is given by the triangular wave function (22), whose argument is replaced by time,
τ = (2/π)arcsin sin(πt/2). A mechanical model generating such time substitution
is a free particle moving in between to perfectly stiff barriers with no energy loss;
see Fig. 3a. The direct verification shows that, during one period of vibrations, the
time variable admits representation in the form of hyperbolic element as

t = 1 + (τ − 1) τ̇ if − 1 < t < 3, (50)

where the derivative τ̇ is the rectangular wave, such that τ̇ 2 = 1, and therefore (50)
is a periodic version of (46) with the basis {1, τ̇ }.

In physical terms, it follows from (50) that any periodic process, whose period is
normalized to T = 4, is uniquely expressed through the dynamic states of standard
impact oscillator in the form [29]

x (t) = X (τ ) + Y (τ ) τ̇ ; (51)

X (τ ) = 1

2
[x (τ ) + x (2 − τ )] ;

Y (τ ) = 1

2
[x (τ ) − x (2 − τ )] .

Identity (51) means that the triangular and rectangular waves capture temporal
symmetries of periodic processes regardless specifics of individual vibrating sys-
tems. Different applications of nonsmooth argument substitutions with the related
techniques to problems of theoretical and applied mechanics can be found in [7,
10, 16–19, 24, 25, 37, 41–43, 45]. The methodology was adapted also to the non-
linear normal mode analyses and included in monograph [48]. Another important
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area of application deserves rather special consideration. While the idea of NNMs is
effective in case of weak or no energy exchange, the concept of the limiting phase
trajectories [18] considers the opposite situation namely intense energy exchanges
between weakly coupled oscillators or modes [20–22]. In this case, nonsmooth time
substitutions are invoked by the temporal behavior of phase angle, which is respon-
sible for energy distribution. This resembles the triangular wave as the energy swing
reaches its asymptotic limit.

A class of strongly nonlinear traveling waves and localized modes in one-
dimensional homogeneous granular chains with no precompression were considered
in [44]. As a result, the authors developed a systematic semianalytical approaches for
computing different families of nonlinear traveling waves parametrized by spatial
wave number and energy.

3.3 Modeling Energy Losses at Perfectly Stiff Barriers

Let us consider a free vibro-impact model as shown in Fig. 3b. Introducing the nota-
tion �2 = k/m brings the differential equation of motion between the barriers to the
form

ẍ + �2x = 0, |x | ≤ � (52)

under the impact conditions at x = ±�:

ẋ(ti + 0) = −kẋ(ti − 0); (53)

0 ≤ k ≤ 1.

Here ti is the collision time, and k is the so-called coefficient of restitution, which
is convenient to represent in the form

k = 1 − ε (54)

such that ε = 0 means a perfectly ‘elastic’ collision with no energy loss, whereas
ε = 1 is a perfectly ‘plastic’ limit, when all the kinetic energymomentarily dissipates
at the collision time. In the present work, the energy loss due to collisions is assumed
to be small so that

0 < ε � 1. (55)

Assuming that the oscillator strikes each of the amplitude limiters ones per one
cycle of oscillations, we replace (52) with the effective model with no constraints
however under the “external” pulses [31]

ẍ + �2x = pτ ′′(ϕ), (56)
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where p = p(ϕ) is a phase dependent quantity associated with the impact impulses,
andϕ = ϕ(t) is the phase such that the period of effective impulsive forcing function
is normalized to T = 4; both functions p and ϕ are unknown at this stage.

Further, solution is represented in the form (51), where the original time argument
t is replaced by the phase ϕ

x(t) = X (τ ) + Y (τ )τ ′, τ = τ (ϕ), ϕ = ϕ(t). (57)

Substituting (57) in (56) and (53), and introducing notation for the phase time
rate, ω(t) = ϕ̇(t), gives the boundary value problem [35]

ω2X ′′ + �2X + Y ′ω̇ = 0; (58)

ω2Y ′′ + �2Y + X ′ω̇ = 0;

τ = ±1: Y = 0, X ′ω2 = p; (59)

τ = ±1: X = ±�; (60)

τ = ±1: Y ′ ∓ X ′ = −(1 − ε)
(
Y ′ ± X ′) . (61)

The second equation in (59) serves for determining the unknown parameter p,
and dictates the symmetry condition X ′|τ=1 = X ′|τ=−1. Note that, the derivation of
inelastic impact condition (61) in terms of the triangular wave temporal argument
was obtained very recently and appears to be not straightforward. This allowed
us to apply the asymptotic averaging approach based on the assumption (55). In
particular, solution of the boundary value problem (58) through (61) is found the
form of asymptotic expansions

X (τ ) = X0(τ ) + X1(τ )ε + X2(τ )ε2 + O
(
ε3

) ;
Y (τ ) = Y0(τ ) + Y1(τ )ε + Y2(τ )ε2 + O

(
ε3

) ; (62)

ω = ω0(η) + ω1(η)ε + ω2(η)ε2 + O
(
ε3

) ;
p = p0(η) + p1(η)ε + p2(η)ε2 + O

(
ε3

)
,

where η = εt is a slow temporal scale dictated by the rate of energy loss.
In particular, the leading order asymptotic solution is [35]

x(t) = �

[
sin λτ

sin λ
− ε

2�

dλ

dη

(
cosλτ

cosλ
− τ

sin λτ

sin λ

)
dτ

dϕ

]
+ O(ε2); (63)

p = �2�

λ tan λ
+ O(ε), (64)

where τ = τ (ϕ), ϕ̇ = ω = λ−1�, and the auxiliary slowly varying ‘frequency ratio’
obeys the first-order differential equation
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Fig. 4 a Temporal shape of impact oscillations under the following parameters:� = 1.0,� = 1.0,
ε = 0.2, and ω(0) = 5.0; b velocity

λ̇ = ε
�

2
(1 + cos 2λ)

(
1 + sin 2λ

2λ

)−1

. (65)

A sample case of solution (63) is illustrated in Fig. 4. Note that, within the present
modeling, the amplitude of vibration cannot change even though the intensity of
impact interaction with constraints is diminishing with time. The reason is that no
energy loss is assumed in between the limiters, and the systemshould eventually reach
some ‘grazing’ regime with near zero impact pulses but still the same amplitude [2].

4 Concluding Remarks

In this work, we outlined very different ways to modeling dynamical systems with
discontinuities by choosing proper spatial coordinates or temporal arguments within
the class of nonsmooth functions. In particular, we described three groups ofmethods
using non-smooth functions for modeling mechanical systems under either external
impulsive loads or internal impact interactions. Physical basis and mathematical
implementations of these methods are quite different. However, the purpose of use
seems to be the same, namely - eliminating singularities from the corresponding
differential equations of motions in order to consider the problem within the classi-
cal theory of differential equations with the set of well developed analytical tools.
Section2.1 describes simple and effective way eliminating delta-impulses from the
system by splitting the unknown solution into smooth and step-wise discontinuous
subcomponents, if the impulse times are known. Then, it is shown in Sects. 2.4 and
2.5 that impact singularities can be incorporated into appropriate non-smooth space-
unfolding generalized coordinates in such a way that the dynamics in the new state
space is continuous. Due to the fact that the corresponding coordinate transforma-
tions are strongly nonlinear, the resultant system is typically strongly nonlinear as
well, regardless the type of dynamics between collision times. It must be noticed that
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the independent argument (time) is not affected by any of the above substitutions.
However, as described in Sect. 3, the singularities due external impulses or internal
interactions can be eliminated by means of nonsmooth substitutions for the temporal
argument without any drastic changes of the differential equations. For instance, if
the equations are linear between collisions, then the linearity is preserved after the
nonsmooth temporal substitution has been applied. Another specific feature of the
nonsmooth time substitutions is the induced hyperbolic structure of spatial coordi-
nates. Keeping in mind that the conventional complex numbers create the so-called
elliptic algebra, we can conclude that the tool of nonsmooth temporal substitutions
may generate a reasonable alternative to quasi harmonic analyses. Finally note that
it is possible to combine different transformations described in the present survey
whenever technical reasons for such combinations are present; some examples can
be found in [30, 46].
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Revolution of Pendula: Rotational
Dynamics of the Coupled Pendula

Valeri V. Smirnov

Abstract The analysis of the rotational dynamics of two coupled pendula is pre-
sented. The description of the oscillations of the pendulum on the background of the
rotation with the average velocity was performed by the asymptotic method for the
single pendulum. The source and the significance of the formation of the Limiting
Phase Trajectory is clarified. The stability analysis of the rotation of two coupled
pendula shows a qualitative difference between in-phase and out-of-phase rotational
modes. It is shown that the origin of the in-phase rotation instability is its parametric
excitation by the out-of-phase perturbations. The domain of in-phase rotation insta-
bility has been determined in the space of the system parameters. The analytic results
are confirmed by the numerical simulation data.

1 Introduction

The pendulum is one of most famous objects in the history of the science. All peo-
ple learning the natural sciences start their studying the periodic motion from the
small-amplitude oscillations of the pendulum [1]. However, the significance of the
pendulum not specialized as the teaching aids. Many models in the modern physics
from the classicalmechanics up to the quantumfield theory, in the chemistry, biology,
etc. are based on the dynamical equations of pendulum’s motion [2–5]. The dynam-
ics of the pendula coupled by the nonlinear periodic potential (both the oscillatory
and the rotational regimes) is essential for the problems of the thermoconductivity of
quasi-one-dimesional lattices [6, 7], the rotational mobility in the flexible polymeric
chains [8, 9], including DNA [10, 11], the existence and interactions of the intrinsic
localizedmodes in the Heisenberg ferromagnetics [8, 12] and the Josephson junction
ladders [13]. The non-stationary dynamics of the weakly coupled pendula and the
forced pendulum were studied in [14, 15], respectively. The effect of the dissipation
and the external force on the rotational of the coupled pendula was considered in
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[16, 17]. The pendulum’s motion demonstrates the diversity of the dynamical
behaviours that allows us to understand the transitions between regular and chaotic
motions [18, 19]. In spite of the enormous volume of the studies, the problem of
pendulum motion remains very exciting for the researches. It is of interest from
the viewpoint of the applied as well as the fundamental sciences. The latter needs
in understanding the basic principles of the dynamics of the essentially nonlinear
system. Due to the strong nonlinearity of the pendulum’s motion with the large
amplitudes including the rotations, the majority of the problems are studied in the
quasi-linear approximation or by the numerical methods. However, the analytic stud-
ies are very important for the progress of the nonlinear dynamics.

The aim of this paper is the description of the pendulum rotation as the process
of the small amplitude oscillations on the background of the rotation with the aver-
age angle velocity. Introducing the complex variables we obtain the equations, the
stationary solution of which describes these oscillations, while the non-stationary
solutions correspond to the nearby trajectories in the phase space of the system. The
rotation of the coupled pendula is considered from the viewpoint of the stability
the in-phase and out-of-phase rotational modes. It is shown that the problem of the
stability is reduced to the study of the parametric resonance, which can be solved
analytically.

2 Rotation of Single Pendulum

We begin from the reformulation of the dynamical problem for the single pendulum.
The pendulum energy is determined as follows:

H = 1

2

(
dϕ

dt

)2

+ σ(1 − cosϕ), (1)

where the dimensionless variables have been introduced: t = √
g/ lt ′ with t ′ is the

real time; l and g are the pendulum length and the acceleration due to gravity. ϕ is
the deviation the pendulum from the origin. The “gravity” constant σ is kept for the
generality and for the real pendulum σ = 1. Corresponding equation of motion has
the form

d2ϕ

dt2
+ σ sin ϕ = 0. (2)

If the energy is smaller than 2σ , the pendulum undergoes a periodic oscillations with
an amplitude Q < π and the frequency

ω =
√
2J1(Q)

Q
, (3)

where J1 is theBessel functionof thefirst order and the amplitudeQ= arccos
(
1− E0

σ

)
.
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Fig. 1 The phase plane of
the single pendulum. σ = 1

The periodic oscillations correspond to the close trajectories surrounding equi-
librium point on the phase plane of the system. The rotation of the pendulum with
energy E0 > 2σ corresponds to the transit-time trajectories on the phase plane (see
Fig. 1). The rotation period is equal to

T =
∮

dt = 2
∫ π

0

dϕ√
2 (E0 − σ(1 − cosϕ))

= 2
√
2K (2σ/E0)√

E0
, (4)

where K is the complete elliptic integral of the first kind.
The average angle velocity is

ω = 2π

T
= π

√
E0√

2K (2σ/E0)
. (5)

The instant velocity differs from the average one and it is undergoes a periodic
oscillations with the period T and the amplitude, which depends on the rotation
energy. It is clear that if the energy of the rotation is large enough, these oscillations
are small and ϕ ≈ ωt . In such a case the equation of motion is

d2ϕ

dt2
+ σ sinωt = 0. (6)

It has the obvious solution
ϕ = ωt + λ sinωt, (7)
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where λ = σ
ω2 � 1 and dϕ

dt = ω + σ
ω
cosωt . Let’ s try to define the oscillation ampli-

tude. First, we need in the separation of the rotation and oscillation constituents. We
assume that the instant angle ϕ is the sum of the rotation with the average angle
velocity ω and oscillation φ:

ϕ = ωt + φ(t). (8)

So, the equation of motion is transformed into following form:

d2φ

dt2
+ σ(cosφ sinωt + sin φ cosωt) = 0. (9)

This is the time to introduce the complex variable:

Ψ = 1√
2

(
i√
ω

dφ

dt
+ √

ωφ

)
;

φ = 1√
2ω

(
Ψ + Ψ ∗) ; dφ

dt
=

√
ω

2

(
Ψ − Ψ ∗) ; (10)

d2φ

dt2
= −i

√
2ω

dΨ

dt
+ ω3/2

√
2

(
Ψ − Ψ ∗) .

Substituting expressions (10) into Eq. (9) and expanding the trigonometric functions
into Taylor series, we can write

i
dΨ

dt
− ω

2

(
Ψ − Ψ ∗) − σ

2
√
2ω

⎛
⎝−i

(
eitω − e−i tω

) ∑
k

(−1)k

(2k)!
(

Ψ + Ψ ∗
√
2ω

)2k
(11)

+
(
e−i tω + eitω

) ∑
k

(−1)k

(2k + 1)!
(

Ψ + Ψ ∗
√
2ω

)2k+1
⎞
⎠ = 0.

Because the frequency of oscillations coincides with the average velocity of the
rotation, we should extract the rotation frequency as follows:

Ψ = χe−iωt . (12)

Substituting this expression into above equation we get the equation for unknown
complex function χ . However, taking into account solution (7) one should assume
that this variable is a constant. So, multiplying the equation by eiωt and integrating
for the period T , we obtain

ω

2
χ + iσ

2
√
2ω

∞∑
k=0

(−1)k

(2ω)k

(
χ k+1χ∗k−1

(k − 1)!(k + 1)! − χ kχ∗k

(k!)2
)

= 0. (13)
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The sums in Eq. (13) can be calculated, and the final equation is written as follows:

ω

2
χ + iσ

2
√
2ω

(
χ − χ∗

χ∗ J0

(√
2

ω
|χ |

)
− √

2ω
|χ |
χ∗2 J1

(√
2

ω
|χ |

))
= 0, (14)

where J0 and J1 are the Bessel functions of zero and first order.
Equation (14) allows us to define the amplitude of the oscillations around the

average angle velocity (5) during the period. Representing the value χ as aeiδ , we
obtain two equations:

(√
2

ω
σ sin δ J2

(√
2

ω
a

)
+ aω

)
cos δ = 0. (15)

√
2

ω
σ sin2 δ J0

(√
2

ω
a

)
+ σ

(
1 − 2 sin2(δ)

)
a

J1

(√
2

ω
a

)
− aω sin δ = 0. (16)

Equation (15) has two solutions but only one of them is physically sensible. It is
δ = π/2. It correlates with approximating solution (7) obtained above. Taking into
account the value of δ after some simple reductions, we obtain the transcendental
equation for variable a, which can be solved numerically for a fixed value of the
average angle velocity ω.

σ

a
J1

(√
2

ω
a

)
− ωa = 0. (17)

The comparison of the value
√

2
ω
a, which is the amplitude of the oscillating

function φ, with the asymptotic value λ (see Eq. (7)) is shown in Fig. 2. It is clear
that the compliance between these values is excellent for the energies E0 > 3.0. One
should note, that, in spite of the analysis has beenperformedunder the assumption that
the oscillatory component is small enough (the high-energy rotations), its expansion
into the range of the low-energy rotations demonstrates the same behaviour as the
expansion of the value λ(ω).

Now it is important to compare the value of the rotationvelocity definedbyEq. (17)
with the exact solution. Such comparison is represented in Fig. 3. One can see that
the compliance between values is good enough for the rotation energy E0 > 2.75,
but the plots show different behaviour near the start point of the rotation E0 = 2. It is
very expected behaviour because of the essential anharmonicity (and the retardation)
of the oscillations in the vicinity of the separatrix.
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Fig. 2 Comparison of the
solutions of Eq. (17) (solid
red curve) with the
asymptotic value λ (dashed
black curve) at the different
values of the rotation energy
E0. The parameter σ = 1
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Fig. 3 Comparison of the
exact value of the rotation
velocity (solid black curve)
with the solutions of Eq. (17)
(dashed red curve) and the
asymptotic value (dot-dashed
blue curve) at the different
values of the rotation energy
E0. The parameter σ = 1

2.5 3.0 3.5 4.0
E0

1.6

1.8

2.0

2.2

2.4

2.6

2.8

d
dt

Equations (15) and (16) are the equations of the equilibrium for the system with
energy

H1 = ω

2
a2 − σ J1

(√
2

ω
a

)
sin δ (18)

or

H1 = ω

2
|χ |2 − i

σ

2
J1

(√
2

ω
|χ |

)
χ − χ∗

|χ | . (19)

Considering expression (18) as the Hamilton function, one can obtain the non-
stationary equation for the variables a, δ. The set of the canonical variables of the
Hamilton function (18) is formed by the values a2 and δ. In such a case, the dynamical
equations can be written as follows:
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da2

dt
= 2a

da

dt
= −∂H1

∂δ
, (20)

dδ

dt
= ∂H1

∂a2
= 1

2a

∂H1

∂a
.

Anon-stationary dynamics of the systemwithHamilton function (18) occurswhen
the initial conditions do not correspond to the stationary point which are determined
by Eqs. (15) and (16) at the fixed value of parameter ω. In such a case the imaginary
point moves along the one of the trajectories surrounding the stationary state (see
Fig. 4). One should note that there are two kinds of the trajectories. The trajectories of
the first kind encircle the stationary point and the trajectories of second type are the
transit-time ones, along of which the variable δ increases indefinitely. These classes
of the trajectories are separated by the Limiting Phase Trajectory (LPT) which is
shown in Fig. 4 by red dashed line.

What is the non-stationary dynamics from the viewpoint of original system (1)?
Coming back to the variable ϕ (see Eqs. (8) and (10)), one can write follows:

ϕ(t) = ω t +
√

2

ω
a sin (ω t + δ). (21)

If a and δ are the constant values, which are determined by Eqs. (15) and (16),
the functions ϕ, dϕ/dt describe the trajectory on phase portrait in Fig. 1, which is
specified by the parameter ω. If it is wrong, ϕ is the slowly changed function, its
slowness is determined by the time of the single pass of the representing point along
some trajectory in phase portrait on Fig. 4.

Fig. 4 Phase portrait of
system (18) in the variables
(δ, a). The Limiting Phase
Trajectory is shown by the
red dashed curve

0
0.0
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However, because of the trajectory set in Fig. 1 is dense everywhere, there is
no non-stationary regimes in the single pendulum rotation. Therefore, one should
conclude that the non-stationary trajectories on the phase portrait on Fig. 4 describe
the neighbourhood of the chosen trajectory on Fig. 1. So, the non-stationary dynamics
of the single pendulum rotation is sensible if we need in accounting the external
perturbations, but the non-stationary approach is very effective for the dynamical
analysis of more complicated systems, where the processes of the energy exchange
and localization are important.

In the next sectionwewill consider twoweakly coupled pendulums under rotation
and will use the above procedure for the study of non-stationary dynamics.

3 Rotation of Two Weakly Coupled Pendulums

The energy of two pendulums is determined as follows:

H =
∑
j=1,2

(
1

2

(
dϕ j

dt

)2

+ σ(1 − cosϕ j ) + β

2

(
1 − cos

(
ϕ j − ϕ3− j

)))
. (22)

The equation of motion has the form

d2ϕ j

dt2
− β sin

(
ϕ3− j − ϕ j

) + σ sin ϕ j = 0; j = 1, 2. (23)

It can be checked immediately that the in-phase mode ψ1 = (ϕ1 + ϕ2)/2 as well
as the out-of phase mode ψ2 = (ϕ1 − ϕ2)/2 are the exact solutions of the equations:

d2ψ1

dt2
+ σ cosψ2 sinψ1 = 0, (24)

d2ψ2

dt2
+ β sin 2ψ2 + σ cosψ1 sinψ2 = 0.

Continuing the oscillatory terminology, we call the uni-directional and contra-
directional rotations as the in-phase and out-of-phase modes, respectively. The prob-
lemof the description of the coupled pendula rotations is thatwe can not construct any
unified set of the asymptotic equations for the different kinds of rotations, because
the sign of the rotation velocity is essential for the asymptotic procedure. Therefore
we need in a separated description of the each mode.
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3.1 In-Phase Rotation of Coupled Pendula

We start from the analysis of more simple in-phase mode. The first of Eq. (24) shows
that if the out-of-phase component is negligible, the system is the analogue of the
single pendulum and the results of the previous section can be used immediately.

However, if we take an interest in the stability of the in-phase rotation of the
coupled pendula, one should consider the interaction of the modes. The numerical
simulation shows that the instability of in-phase rotation of coupled pendula can be
manifested as a short-time modulation of the rotation frequency of the both pendula
(Fig. 5). Figure5 shows a manifestation of the instability near its low boundary in the
plane {ω, β}. The unstable in-phase rotation far from the low boundary is specified
by abrupt acceleration and retardation of the pendula up to transition of one of them
into the oscillatory movement.

Nowwe try to find the source of the instability and to define the crucial parameters.
Let us assume that the rotation frequency is large enough and the variable ψ1 ≈ ωt
(see previous section), while the energy of out-of-phase mode ψ2 is small. In such a
case we propose that the first of Eq. (24) is satisfied and we write the second of these
equations as follows:

d2ψ2

dt2
+ (2β cosψ2 + σ cosωt) sinψ2 = 0. (25)

Accounting that ψ2 takes a small value, we assume cosψ2 ≈ 1. (Generally speaking
this assumptions is not required, but it makes the follows calculations more trans-
parent.) So, Eq. (25) becomes

d2ψ2

dt2
+ (2β + σ cosωt) sinψ2 = 0. (26)
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Fig. 5 Instability of the in-phase rotation of two coupled pendula. a The rotation velocities ϕ j ′
of the first and second pendula (blue and red dashed curves, respectively) versus time t . b The
difference of rotation velocities of the pendula for the time range, which corresponds to the panel
a. The parameters are σ = 1, β = 0.8, ω = 2.7945
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Equation (26) is the well-known equation of the parametrically excited pendulum.
Therefore, the parametric resonance should occur for the some combinations of the
parameters {β, σ, ω}. Because we assume that the “gravity” force (σ ) is constant,
we can vary the rotation frequency ω and the coupling parameter β. In order to find
the boundaries of the parametric resonance, we will use the approach, which is an
analogue of used above. It is known [20] that the first parametric resonance occurs
at the frequency, which is equal to the half of the own frequency of the system. So,
we introduce the complex variables similar to presented above Eq. (10), changing
the frequency ω by the value Ω = ω/2. The method of the extraction of the secular
terms has been already described in detail above, therefore we write the stationary
equations for the amplitude a and the phase δ immediately:

σ
a J2

(√
2
Ω
a

)
sin 2δ = 0 (27)

Ω
2 a − 1√

2Ω
2β J1

(√
2
Ω
a

)
− σ√

2Ω

[
J1

(√
2
Ω
a

)
−

√
2Ω
a J2

(√
2
Ω
a

)]
cos 2δ = 0.

Equations (27) describe the stationary oscillations with the frequency Ω for the
system, which is defined by Eq. (26). One can show that the value a = 0 satisfies
Eq. (27) at various values of δ.

The energy corresponding to Eq. (27) is written as follows:

H2 = Ω

2
a2 − 2β

(
1 − J0

(√
2

Ω
a

))
− σ J2

(√
2

Ω
a

)
cos2δ. (28)

Considering this value as the Hamilton function of reduced system, one can obtain
the equations of motion according to rules (20). Let us consider the phase plane of
the system with Hamilton function (28). Some examples of it are shown in Fig. 6.

If the coupling parameterβ is small enough, there is no stationary solutions, which
are differed from the a = 0. Therefore, no parametric instability exists due to that
any excitation in the vicinity the line a = 0 can not grow. The phase plane which is
specific for small values of coupling parameter β is shown in panel (a) of Fig. 6.

Figure6b shows the phase plane of system (28) after the first bifurcation resulting
in the generation of new stationary state with a �= 0 at the line δ = 0. The stationary
value of the amplitude a can be found as the solution of Eq. (27). This stationary
state is surrounded by the set of the close trajectories, the most remote of which
passes through zero state (a = 0). It is the LPT (see previous section). This trajectory
separates two different sets of the trajectories - the periodic and transit-time ones.
It is important to emphasize that the parametric instability starting from zero state
(with an arbitrary value of the phase δ) is realized via the LPT.
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Fig. 6 The phase plane of system (28) at three values of the coupling β a β = 0.5, b β = 0.7228,
c β = 1.2275. ω = 2.7945, σ = 1

One can calculate the threshold value of the coupling parameter β, taking
into account that the creation of stationary state in Fig. 6 needs in the condition
∂2H2/∂a2 < 0 for the variables’ values a = 0 and δ = 0. So, one can formulate the
criterion for the bifurcation threshold:

∂2H2

∂a2 |a=0,δ=0
= 0. (29)

This condition leads to next value of the instability threshold:

βbottom = 1

4

(
2Ω2 − σ

)
. (30)
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Fig. 7 The domain of
instability of the in-phase
rotation on the plane (ω, β).
The solid and dashed curves
correspond to instability
thresholds (30) and (31),
respectively. The color
points show the numerically
measured values (blue and
red points correspond to low
and high boundaries of
instability, respectively)
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Figure6c shows the phase plane after second bifurcation resulting in the creation
of stationary points at the phase δ = ±π/2. It is important that every stationary point
is the saddle, i.e., corresponds to unstable state. The latter means that the trajectories
passing through this point are the separatrixes (they are shown by the red dashed
curves in Fig. 6c). Therefore, they distinctly separate the space below and above of
them and none trajectories starting below the separatrix can not grow. So, the creation
of these stationary states leads to the inhibition of the parametric instability. One can
estimate the threshold of this process using the criterion (29) for the δ = π/2. The
crucial value of the coupling parameter β turns out to be:

βtop = 1

4

(
2Ω2 + σ

)
. (31)

One can compare the threshold values (30) and (31) with the data of the numerical
simulation of original system (23). Figure7 shows the domain of instability in the
plane (ω, β) as it is calculated by criteria (30) and (31). The red and blue points
represent the instability thresholds measured in the numerical simulation. One can
say that the agreement is excellent.

3.2 Out-of-Phase Rotation of Coupled Pendula

The out-of-phase mode ψ2 is described by second of Eq. (23). Under assumption
ψ1 = 0 it has the form:

d2ψ2

dt2
+ β sin 2ψ2 + σ sinψ2 = 0. (32)
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Fig. 8 The part of the phase
plane of the system (32) for
the parameters
σ = 1, β = 1. The
approximate solution (35) is
shown by the red dashed
line. The respective exact
trajectory is marked by blue
line. The total energy E0 = 8
and the rotation frequency
ω = 3.5868
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This equation is essentially differed from the first of Eq. (23) because of the
presence of sin 2ψ2. If the coupling constant β > σ/2 the additional stationary point
occurs (see Fig. 8). Therefore, there is no single-frequency solution for Eq. (32). Nat-
urally, one can find the exact solution of this equation in the quadrature. However,
such a representation does not allow us to analyse the stability of the out-of-phase
rotationmode. In order to perform the stability analysis we use the approximate solu-
tion, which can be found by analogy with Eq. (7). We can assume that the oscillatory
part of the solution is small enough and rewrite Eq. (32) as follows:

d2ψ2

dt2
+ β sin 2ωt + σ sinωt = 0, (33)

where the rotation frequency

ω = π

(∫ π

0

dψ√
2 (E0 − β (1 − cos 2ψ) − σ (1 − cosψ))

)−1

. (34)

In such a case we can write the solution of Eq. (33) as follows:

ψ2 = ωt + σ

ω2
sinωt + β

4ω2
sin 2ωt . (35)

The comparison of solution (35) with the exact trajectories in the phase plane is
represented in Fig. 8

In order to analyse the stability of the out-of-phase rotation one should use the
first of Eq. (24) in the form:

d2ψ1

dt2
+ σ cosψ2 sinψ1 ≈ d2ψ1

dt2
+ σ cosωt sinψ1 = 0. (36)
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Fig. 9 The phase plane of
system (37) for the
parameters:
σ = 1, ω = 3.5868

One can see that this equation is similar to Eq. (27) under assumption β = 0. So,
we can use the results of the previous section and write the respective Hamilton
function for the disturbance:

H = Ω

2
a2 − σ J2

(√
2

Ω
a

)
cos2δ, (37)

where Ω = ω/2.
The topology of the phase plane of system (37) is shown in Fig. 9 and it is similar

to the one in Fig. 6a. There is no stationary states in this phase portrait and all of the
trajectories are the transit-time ones. It is important that the phase portrait preserves
the same structure for any values of rotation frequency. This fact allows us to conclude
that the out-of-phase rotations of coupled pendula is the stable process.

4 Conclusion

We considered the rotational motion of both the single and the coupled pendula in
the different regimes. The asymptotic analysis of the oscillation of the pendulum’s
velocity during the rotation has been preliminary performed for the single pendulum.
It shows the efficiency of the method for the description of the rotation. The anal-
ysis of the stability of the both in-phase and out-of-phase rotations of two coupled
pendula shows the qualitative difference between these modes. If the out-of-phase
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rotation shows the stability for all values of the parameters (the “gravity” force σ ,
coupling parameter β and rotation frequency ω), the in-phase mode demonstrates
some range of instability for these parameters. We have found the origin of instabil-
ity in the parametric excitation of the out-of-phase mode by the in-phase rotation.
(It is interesting to note that in spite of difference between the conservative (this
work) and the dissipative forced dynamics [17] of the coupled pendula the condi-
tions and scenario of the in-phase rotation instability turn out to be actually the same.)
The analysis performed in the framework of the asymptotic approach allows us to
find both the sources of instability and their boundaries. All the trajectories of the
out-of-phase perturbations, which can lead to destruction of the in-phase rotation,
are the transit-time ones for the small values of the coupling β and an arbitrary
values of the rotation frequencies. The low boundary of the parameter corresponds
to the formation of the center-type stationary point. Its generation is accompanied
by the creation of the LTP, which separates the transit-time and closed trajectories
and passes through zero value of the perturbation’s amplitude. Therefore any small
out-of-phase perturbations are forced along the LPT that leads to the instability of
the in-phase rotation. This situation occurs while the coupling β grows up to the
value at which the second bifurcation happens. As the result of this bifurcation new
saddle-type stationary states arise. However, the separatrix crossing this stationary
point does not forbids only small amplitude perturbations. Therefore, at this point
the instability of in-phase rotation becomes to be impossible. The method used for
the analysis permits to find the analytic dependences of the instability boundaries on
the system parameters. The estimations made in the framework of the method, are
in excellent agreement with the numerical simulation data.
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Plane Motion of a Rigid Body Suspended
on Nonlinear Spring-Damper

Roman Starosta, Grażyna Sypniewska-Kamińska and Jan Awrejcewicz

Abstract The paper deals with the analytical investigation of the behaviour of the
harmonically excited physical pendulum suspended on the nonlinear spring. The
asymptotic method of multiple scales (MS) has been used to derive approximate
solutions in the analytical form. The applied approach allows one to perform a qual-
itative analysis of the behaviour of the system. MS method gives possibility, among
others, to recognize resonance conditions which can appear in the system.

1 Introduction

Although pendulums are relatively simple systems, they can be used to simulate the
dynamics of a variety of engineering devices and machine parts. The behaviour of
pendulum-type mechanical systems with nonlinear and parametric interactions is
complicated, and hence its understanding and prediction are important from a point
of view of both the theory and application. The coupling of the equations of motion
results in a possibility of autoparametric excitation and is connected to the energy
exchange between vibration modes [6]. Various kinds of pendulums are widely dis-
cussed in numerous references and analytical investigations are recently of great
interest of many researchers. Main and parametric resonances of the kinematically
driven spring pendulum are studied in the paper [2]. The nonlinear response of a
system including a double pendulum and having three degrees of freedom (DOFs)
is analytically investigated in the paper [5]. Stationary and non-stationary resonant
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Poznan University of Technology, Institute of Applied Mechanics, Poznań, Poland
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dynamics of the harmonically forced pendulum is the subject of the paper [4]. The
physical pendulum suspended on the spring-damper which has linear features has
beenmodelled and discussed in the article [1]. The present paper extends these inves-
tigations and presents further development of the model and results of asymptotic
analysis.

2 Problem Formulation and Equations of Motion

Plane motion of a rigid body mounted on a spring-damper suspension is analyzed in
the paper. The scheme of the system is presented in Fig. 1. The spring is assumed to
be massless and nonlinear. The non-linearity is of the cubic type, and k1 and k2 are
constant elastic coefficients. L0 denotes the spring length in the non-stretched state.
There is a purely viscous damper having a damping coefficient C1, and the damper
and the spring are arranged in parallel. The rigid body of massm is connected to this
system via a pin joint A. The distance between the point A and the mass centre C of
the body is denoted by S and called further the eccentricity. The body moment of
inertia relative to the axis passing through the centre of mass C and perpendicular
to the plane of motion is equal to IC . In the direction compatible with the main axis
of the suspension system acts the known force F the magnitude of which changes
harmonically F(t) � F0 cos(�1t). Besides, the system is loaded by two known
harmonically changing torques M1(t) � M01 cos(�2t) and M2(t) � M02 cos(�3t)
shown in Fig. 1. There are also assumed two torques of the viscous nature attenuate
the swing vibration related to the angles � and�, where C2 and C3 are their viscous
coefficients. The body is free in its plane motion, so it has three degrees of freedom.
The time functions X (t), �(t) and �(t) are assumed as the generalized coordinates.
The coordinate X (t) is understood as the total elongation of the spring involving also
the static elongation Xr that satisfies the equilibrium condition

k2X
3
r + k1Xr � mg. (1)

The kinetic and potential energy of the system are

T � m S Ẋ �̇ sin(� − �) + S m �̇ �̇(L0 + X) cos(� − �) +
1

2
R2

A
m�̇2 +

m

2
(L0 + X)2�̇2 +

m

2
Ẋ2,

(2)

V � 1

2
k1X

2 +
1

4
k2X

4 − mg((L0 + X) cos(�) + S cos(�)). (3)

In Eq. (2) occurs the quantity denoted by RA which is a radius of gyration of the body
with respect to the axis passing through the joint A and perpendicular to the plane
of motion. The radius RA is related to the inertia moment IC by commonly known
parallel axis theorem

mR2
A � IC + mS2. (4)



Plane Motion of a Rigid Body Suspended … 159

Fig. 1 Mass-spring-damper
system
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In order to obtain the equations of motion we write the equations Lagrange equa-
tions of the second kind

d
dt

(
∂L
∂ Ẋ

)
− (

∂L
∂X

) � QX , d
dt

(
∂L
∂�̇

)
− (

∂L
∂�

) � Q�, d
dt

(
∂L
∂�̇

)
− (

∂L
∂�

) � Q�, (5)

where L � T − V is the Lagrange function, and the general forces are given by

QX � F0 cos(�1t) − C1 Ẋ ,

Q� � M02 cos(�2t) − C2�̇,

Q� � M03 cos(�3t) − C3�̇. (6)

The dimensionless form of the equations of motion derived from (5) is as follow

ξ̈ + c1ξ̇ + ξ + α ξ 3 + 3ξrα ξ 2 + 3ξ 2
r α ξ − w2

2(cosϕ − 1) − (1 + ξ)ϕ̇2

− s cos(ϕ − γ )γ̇ 2 + s sin(ϕ − γ )γ̈ � f1 cos(p1τ), (7)

ϕ̈
(
1 + 2ξ + ξ 2

)
+ w2

2 sin ϕ(1 + ξ) + c2ϕ̇ + 2ξ̇ ϕ̇ + 2ξ ξ̇ ϕ̇

+ s sin(ϕ − γ )(1 + ξ)γ̇ 2 + s cos(ϕ − γ )(1 + ξ)γ̈ � f2 cos(p2τ), (8)

γ̈ + w2
3 sin γ + c3γ̇ + 2

w2
3

w2
2

cos(ϕ − γ )ẋ ϕ̇ − w2
3

w2
2

(1 + ξ) sin(ϕ − γ )ϕ̇2

+
w2
3

w2
2

sin(ϕ − γ )ξ̈ +
w2
3

w2
2

(1 + ξ) cos(ϕ − γ )ϕ̈ � f3 cos(p3τ). (9)
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The frequency ω1 �
√

k1
m and the spring length L � L0 + Xr in the static

equilibrium position are assumed as the reference quantities. The functions
ϕ(τ ) and γ (τ ) of the dimensionless time τ � ω1t are generalized coordinates
related to �(t) and �(t), respectively, whereas ξ (t) is associated with X (t) by
the relation ξ (t) � X (t)/L . The others dimensionless quantities are defined as fol-
lows:

s � S/L , ξ � X/L , ξr � Xr/L ,

c1 � C1
mω1

, c2 � C2
mL2ω1

, c3 � C3

ω1m r2AL
2 , f1 � F0

mLω2
1
, f2 � M01

mL2ω2
1
, f3 � M02

ω2
1m R2

AL
2 ,

α � k2L2

ω2
1m

, w2 � ω2
ω1
, w3 � ω3

ω1
, p1 � Ω1

ω1
, p2 � Ω2

ω1
, p3 � Ω3

ω1
, where ω2

2 � g
L and

ω2
3 � S g

RA
. Dimensionless counterpart of condition (1) is

α ξ 3
r + ξr � w2

2. (10)

Equations (7)–(9) are supplemented by the initial conditions related the generalized
coordinates and their first derivatives

ξ(0) � u01, ξ̇ (0) � u02, ϕ(0) � u03, ϕ̇(0) � u04, γ (0) � u05, γ̇ (0) � u06, (11)

where dimensionless quantities u01, . . . , u06 are known.

3 Multiple Scales Method

The oscillations of the system are investigated in the neighborhood of the equilibrium
position, hence the trigonometric functions of the generalized coordinates can be
substituted by their power series approximations

sin ϕ ≈ ϕ − ϕ3/6, cos ϕ ≈ 1 − φ2/2, sin γ ≈ γ − γ 3/6, cos γ ≈ 1 − γ 2/2. (12)

The method of multiple scales (MSM) is used to solve the initial value problem
described by (7)–(9) and (11). According to this method, we introduce two scales
related to the dimensionless time as follows: the fast scale τ0 � τ and the slow scale
τ1 � ετ , where ε is the small parameter. Then, taking into account the existence of
three scales we assume the following expansion of the functions ξ , ϕ, and γ in the
power series of the small parameter

ξ �
2∑

k�1
εk xk(τ0, τ1) + O

(
ε3

)
, ϕ �

2∑
k�1

εkφk(τ0, τ1) + O
(
ε3

)
, γ �

2∑
k�1

εkχk(τ0, τ1) + O
(
ε3

)
.

(13)
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The ordinary derivatives with respect to time τ are equivalent to the following
differential operators for the two introduced time scales

d
dτ

� ∂
∂τ0

+ ε ∂
∂τ1

,

d2

dτ 2 � ∂2

∂τ 2
0
+ 2ε ∂2

∂τ0∂τ1
+ ε2 ∂2

∂τ 2
1
+ O(ε3).

(14)

Moreover, the amplitudes of generalized forces, all damping coefficients, and the
eccentricity are assumed to be small, therefore they are expressed in the form [3]

ci � ε c̃i , fi � ε2 f̃i , i � 1, 2, 3, s � ε s̃, α � ε α̃, (15)

where each of the quantities c̃i , f̃i , s̃, α̃ can be understood as O(1) as ε → 0.
Substituting, in sequence (12), (13) and (15) into the original Eqs. (7)–(9) and

replacing the ordinary derivatives by the differential operators (14) we obtain the
equations in which the small parameter ε appears in the first, second, and higher
powers. These equations should be satisfied for any value of the small parameter. So,
after ordering each of these equations according to the powers of small parameter we
require that the coefficients of each order of ε equal to zero. Omitting the coefficients
of order higher than two,we obtain a sequence of six equations that should be satisfied
instead of the original equations. We can organize them into two groups:

• equations of the first order approximation

∂2x1
∂ τ 2

0

+ x1 � 0, (16)

∂2φ1

∂τ 2
0

+ w2
2φ1 � 0, (17)

∂2χ1

∂τ 2
0

+ w2
3χ1 +

w2
3

w2
2

∂2φ1

∂τ 2
0

� 0, (18)

• equations of the second order approximation

∂2x2
∂τ20

+ x2 � f̃1 cos(τ0 p1) − 3ξ2r α̃x1 − 1

2
w2
2φ

2
1 − c̃1

∂x1
∂τ0

− 2
∂2x1

∂τ0∂τ1
+

(
∂φ1

∂τ0

)2
, (19)

∂2φ2

∂τ20

+ w2
2φ2 � f̃2 cos(τ0 p2) − s̃

∂2χ1

∂τ20

− w2
2x1φ1 − c̃2

∂φ1

∂τ0
− 2 x1

∂2φ1

∂τ20

− 2
∂x1
∂τ0

∂φ1

∂τ0
− 2

∂2φ1

∂τ0∂τ1
,

(20)

∂2χ2
∂τ20

+ w2
3χ2 +

w2
3

w2
2

∂2φ2
∂τ20

� f̃3 cos(τ0 p3) − c̃3
∂χ1
∂τ0

− w2
3

w2
2

(
(φ1 − χ1)

∂2x1
∂τ20

+ x1
∂2φ1
∂τ20

)
−

2 ∂2χ1
∂τ0∂τ1

− 2
w2
3

w2
2

(
∂2φ1

∂τ0∂τ1
+ ∂x1

∂τ0

∂φ1
∂τ0

)
,

(21)
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The applied procedure replace, in the approximatemeaning, the original equations
of motion (7)–(9) with the system of six partial differential Eqs. (16)–(21). This
system is solved recursively i.e. solutions of the equations of the lower order are
introduced into the equations of higher order approximation. It is worth to notice
that differential operators are the same for each step of approximation. The operators
of two first equations in every group are mutually independent what significantly
simplifies the solving. In every group, the third equation is coupled with the second
one. This dependence demands solving at first the first two equations at every step
of approximation procedure. Next these solutions are introduced into Eqs. (18) and
(21). The general solution of Eqs. (16)–(17) can be presented in the form

x1 � B1e
i τ0 + B̄1e

−i τ0 , (22)

φ1 � B2e
iw2τ0 + B̄2e

−iw2τ0 , (23)

where i denotes the imaginary unit.
The solution (23) is then introduced into Eq. (18) what allows to obtain its solution

χ1 � B3e
iτ0w3 + B̄3e

−iτ0w3 +
w2
3

w2
2 − w2

3

(
B2e

iw2τ0 + B̄2e
−iw2τ0

)
. (24)

The symbol Bi for i = 1, 2, 3 in (22)–(24) denotes the unknown complex-valued
functions of time scale τ1, whereas the bar over the symbol denotes its complex
conjugate function.

After introducing solutions (22)–(23) into equations of the second order (19)–(20),
the secular terms appear. Elimination of them leads to the solvability conditions

2i
dB1

dτ1
+ 3B1α̃ z2r + ic̃1B1 � 0, (25)

2iw2
dB2

dτ1
+ ic̃2w2B2 +

w2
2w

2
3

w2
2 − w2

3

s̃ B2 � 0. (26)

There exist also two equations that are conjugate to Eqs. (25)–(26).
Taking advantage of solutions (22)–(24) and conditions (25)–(26), the solutions

to Eqs. (19)–(20) are as follows

x2 � 3e2iw2 τ0w2
2B

2
2

2
(
−1 + 4w2

2

) + w2
2B2 B̄2 +

ei p1τ0 f̃1

2
(
1 − p21

) + CC, (27)

φ2 � − ei(1+w2)τ0w2(2 + w2)

1 + 2w2
B1B2 +

ei(−1+w2)τ0w2(−2 + w2)

−1 + 2w2
B̄1B2 +

eiw3τ0w2
3 s̃

w2
2 − w2

3

B3 +
ei p2τ0 f̃2
2(w2

2 − p22)
+ CC. (28)

Substituting all the previously obtained solutions i.e. (22)–(24), (27)–(28) and con-
ditions (25)–(26) into Eq. (21), and then demanding of elimination of secular terms
lead to the following solvability condition
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−iw3B3c̃3 +
w6
3 s̃

w2
2

(
w2
2 − w2

3

) − 2iw3
∂B3

∂τ1
� 0. (29)

Beside, we obtain also the condition which is conjugate to (29).
The solution to the Eq. (21) in the following general form

χ2 �
ei (1+w2)τ0w2

3

(
−1 + 2w3

2 + w4
2 − w2

2w
2
3 − 2w2

(
1 + w2

3

))
B1B2

(1 + 2w2)(w2 − w3)(1 + w2 − w3)(w2 + w3)(1 + w2 + w3)
+
ei (1+w3)τ0w2

3B1B3

w2
2(1 + 2w3)

+
ei (−1+w2)τ0w2

3

(
1 + 2w3

2 − w4
2 + w2

2w
2
3 − 2w2

(
1 + w2

3

))
B̄1B2

(−1 + 2w2)(w2 − w3)(−1 + w2 − w3)(w2 + w3)(−1 + w2 + w3)
+
ei (−1+w3)τ0w2

3 B̄1B3

w2
2(−1 + 2w3)

−
i ei w2τ0w2

3

((
w4
3 − w2

2w
2
3

)
c̃2 + w2

(
w3
2 − w2w

2
3

)
c̃3 + iw2w

4
3 s̃

)
B2

(−1 + 2w2)
(
w2
2 − w2

3

)
(−1 + w2 − w3)(−1 + w2 + w3)

+
ei p2τ0 p22w

2
3 f̃2

2w2
2

(
p22 − w2

2

)(
p22 − w2

3

)

− ei p3τ0 f̃3

2
(
p23 − w2

3

) (30)

has been obtained analytically.
The solution of the considered problem, given by (22)–(24), (27)–(28) and (30),

is valid when the oscillations take place away from any resonance. However, the
analytical form of the approximate solution of the problem allows to recognize the
parameters of the system for which the resonances occur. The resonance case appears
when any of the polynomials that stand in the denominators of the solutions (27)–(28)
and (30) tends to zero. The resonances detected in this way can be selected as:

(i) primary external resonance, when p1 = 1, p2 = w2, p3 = w3;
(ii) internal resonance, when w2 = 1/2, w2 = w3, w3 = 1/2, p2 = w3, w2 +w3 = 1,

w2–w3 = 1.

Satisfying of one or more of the conditions listed above, implies the need to modify
the method of solution, what is described in Sect. 5.

4 Non-resonant Vibration

The solvability conditions (25), (26) and (29) (togetherwith their complex conjugated
forms) constitute a set of constraints with respect to unknown functions B1(τ1),
B̄1(τ1), B2(τ1), B̄2(τ1), B3(τ1), B̄3(τ1). They have form of the ordinary differential
equationswith respect to these functions. Let us postulate that the unknown complex-
valued functions Bi (τ1) are of the following exponential form

Bi � ãi (τ1)

2
eiψi (τ1), and ai � εãi , i � 1, 2, 3, (31)

where ai (τ1), ψi (τ1) are real-valued functions and have the meaning of the vibration
amplitudes and the phases, respectively.
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Substituting relationships (31) into solvability conditions (25), (26) and (29),
and then separating real and imaginary parts leads to the modulation equations of
amplitudes and phases

da1
dτ

� −1

2
c1a1,

dψ1

dτ
� 3

2
ξ 2
r α, (32)

da2
dτ

� −1

2
c2a2,

dψ2

dτ
� s w2w2

3

2
(
w2
2 − w2

3

) , (33)

da3
dτ

� −1

2
c3a3,

dψ3

dτ
� sw5

3

2w2
2

(
w2
2 − w2

3

) . (34)

Equations (32)–(34) are written after returning to the original denotations according
to (15) and (31). The initial conditions supplementing the set (32)–(34) are

a1(0) � a10, ψ1(0) � ψ10, a2(0) � a20, ψ2(0) � ψ20, a3(0) � a30, ψ3(0) � ψ30.

(35)

The sets of initial conditions (11) and (35) must be agreed one to another using the
final analytical form of the solution.

Solution to the modulation Eqs. (32)–(34) follows

a1 � a10e
−c1 τ/2, ψ1 � 3

2
ξ 2
r ατ + ψ10 (36)

a2 � a20e
−c2 τ/2, ψ2 � s w2w2

3τ

2
(
w2
2 − w2

3

) + ψ20, (37)

a3 � a30e
−c3 τ/2, ψ3 � − s w5

3τ

2w2
2

(
w2
2 − w2

3

) + ψ30. (38)

Finally, expressing the complex-valued functions Bi (τ1) by the real-valued func-
tions ai (τ1), ψi (τ1) according to (31) and then substituting (36)–(38) into solutions
(22)–(24), (27), (28) and (30), one can obtain the approximate solution to the original
problem (7)–(9) with (11). The solution has the following analytical form

ξ � a1 cos(τ + ψ1) − f1 cos(p1τ )

p21 − 1
+
1

4
w2
2a

2
2 +

3w2
2a

2
2 cos(2w2τ + 2ψ2)

4(2w2 − 1)(2w2 + 1)
(39)

ϕ � a2 cos(w2τ + ψ2) − f2 cos(p2τ )

p22 − w2
2

+
sw2

3a3 cos(w3τ + ψ3)

w2
2 − w2

3

−
w2a1a2

(
(3w2 + 2 − 2w2

2) cos(τ − w2τ + ψ1 − ψ2) + (3w2 − 2 + 2w2
2) cos(τ + w2τ + ψ1 + ψ2)

)

2(4w2
2 − 1)

(40)
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γ � a3 cos(w2τ + ψ2) − f3 cos(p3τ)

p23 − w2
3

+
p22w

2
3 f2 cos(p2τ)

w2
2

(
p22 − w2

2

)(
p22 − w2

3

) +
s w6

3a2 cos(w2τ + ψ2)

(w2 − w3)
3(w2 + w3)

3

+
w2
3

(
−1 + 2w3

2 + w4
2 − w2

2w
2
3 − 2w2

(
1 + w2

3

))
a1a2 cos(τ + w2τ + ψ1 + ψ2)

2(1 + 2w2)(w2 − w3)(1 + w2 − w3)(w2 + w3)(1 + w2 + w3)

−
w2
3

(
−1 + 2w2 − 2w3

2 + w4
2 − w2

2w
2
3 + 2w2w

2
3

)
a1a2 cos(τ − w2τ + ψ1 − ψ2)

2(1 + 2w2)(w2 − w3)(1 + w2 − w3)(w2 + w3)(1 + w2 + w3)

− w2
3a1a3 cos(τ − w3τ + ψ1 − ψ3)

2w2
2(1 − 2w3)

+
w2
3a1a3 cos(τ + w3τ + ψ1 + ψ3)

2w2
2(1 + 2w3)

− w2
3a2 cos(w2τ + ψ2)

(w2 − w3)(w2 + w3)
(41)

As is earlier mentioned, the solutions (39)–(41) are valid only for non-resonant
vibration. If the system is close to any of resonance cases then singularities appear
in the analytical solution since some of the denominators in (39)–(41) tend to zero.

The correctness of the solution (39)–(41) is confirmed by numerical solution of
the original problem (7)–(9) and (11) obtained using the functions of Mathematica
software. The example of time histories of the system oscillations involving the
strong influence of the initial conditions are presented in Fig. 2. Parameters fixed in
calculations are as follows:

10 20 30 40 50

0.04

0.02

0.02

0.04

z

20 40 60 80 100

0.04

0.02

0.02

0.04

20 40 60 80 100

0.005

0.005

Fig. 2 Time history of vibration; solid curve—analytical solution, dashed curve—numerical solu-
tion

α = 2.25, f 2 = 0.01, f 3 = 0.002, f 1 = 0.05, c1 = 0.001,
c2 = 0.001, c3 = 0.001, w2 = 0.32, w3 = 0.09, p1 = 2.3, p2 = 1.28, p3 = 1.18,
e = 0.3, a10 = 0.04, a20 = 0.04, a30 = 0.004, ψ10 = 0.0, ψ20 = 0.0, ψ30 = 0.0.

Figure 2 consists of three parts. Each of them present two solutions related to
general coordinate z(τ ), ϕ(τ ) and γ (τ ), (from left to right, respectively). These
solutions are obtained in two ways as analytical solutions (39)–(41) using MSM and
by numerical integration of the original equations.

5 Resonant Vibration

Let us consider the case of the three primary main resonances, induced by the triple
external loading, occurring simultaneously i.e. 1≈p1, w2 ≈p2, and w3 ≈p3. The
resonance effects are reflected in the secular generating terms. In order to deal with
the resonance, the detuning parameters, as a measure of the distance of the system
vibration from the strict resonance conditions, are introduced in the following way



166 R. Starosta et al.

p1 � 1 + σ1, p2 � w2 + σ2,p3 � w3 + σ3. (42)

We assume the detuning parameters are of the order of small parameter, i.e. we take

σi � εσ̃i i � 1, 2, 3. (43)

The conditions (42)–(43) are introduced into Eqs. (7)–(9). Further procedure is anal-
ogous to this one described in the two previous sections. Therefore, we focus mainly
on the secular terms generated by the resonance conditions (42). As a result of elim-
ination of these secular terms we get the solvability conditions of the problem. They
may be written as follows

2i
dB1

dτ1
+ 3B1α̃ ξ 2

r + ic̃1B1 − 1

2
ei τ1σ1 f̃1 � 0, (44)

2iw2
dB2

dτ1
+ ic̃2w2B2 +

w2
2w

2
3

w2
2 − w2

3

s̃ B2 − 1

2
ei τ1σ2 f̃2 � 0, (45)

−iw3B3c̃3 +
w6
3 s̃ B3

w2
2

(
w2
2 − w2

3

) − 2iw3
dB3

dτ1
+
1

2
ei τ1σ3 f̃3 � 0. (46)

5.1 Modulation Problem Near Resonances

The solvability conditions (44)–(46) create a system of the ordinary differential
equations with respect to unknown functions B1(τ1), B̄1(τ1), B2(τ1), B̄2(τ1), B3(τ1),
B̄3(τ1). After introducing the exponential form (31) for the complex-valued functions
Bi (τ1), it is convenient to define the modified phases in the following way

θ1(τ1) � τ1σ̃1 − ψ1(τ1),

θ2(τ1) � τ1σ̃2 − ψ2(τ1),

θ3(τ1) � τ1σ̃3 − ψ3(τ1).

(47)

After substitution the modified phases (47) into solvability conditions (44)–(46) and
having returned to the original denotations according to (14)–(15), (31) and (43), the
obtained modulation equations become autonomous of the following form

da1
dτ

� −1

2
a1c1 +

f1
2
sin(θ1), (48)

dθ1

dτ
a1 � a1σ1 − 3

2
ξ 2
r αa1 +

f1
2

cos(θ1), (49)

da2
dτ

� −1

2
c2a2 +

f2
2w2

sin(θ2), (50)

dθ2

dτ
a2 � σ2a2 − s w2w2

3a2
2
(
w2
2 − w2

3

) +
f2
w2

cos(θ2), (51)
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Fig. 3 Temporal behaviour of amplitudes and modified phases which tend to steady point

da3
dτ

� −1

2
c3a3 +

f3
2w3

sin(θ3), (52)

dθ3

dτ
a3 � σ3a3 +

s w5
3a3

2w2
2

(
w2
2 − w2

3

) +
f3
w3

cos(θ3). (53)

In contrary to the previously discussed case of the non-resonant vibration, the
modulation Eqs. (48)–(53) cannot be solved in the analytical manner.

The initial conditions supplementing the set (48)–(53) are as follows

a1(0) � a10, ψ1(0) � ψ10, a2(0) � a20, ψ2(0) � ψ20, a3(0) � a30, ψ3(0) � ψ30,

(54)

and must be compatible with the initial conditions (11).
The modulation curves describe the slow time changes in the motion. For some

conditions vibration tends to the steady values of the amplitudes and phases. This
case is presented in Fig. 3. The assumed parameters are:

σ 1 = 0.01, σ 2 = 0.01, σ 3 = 0.01, w2 = 0.293, w3 = 0.055, s = 0.02, f 1 = 0.00025,
f 2 = 0.00005, f 3 = 0.00005, c1 = 0.00223, c2 = 0.0031, c3 = 0.003, α = 0.2,
a10 = 0.01, a20 = 0.01, a30 = 0.01, ψ10 = 0, ψ20 = 0, ψ30 = 0 .

Equations (48)–(53) describe effects related to the slow time scale. They allow to
observe and follow non-steady oscillations, and to recognize and follow qualitative
transitions in the character of motion. A good way of illustration of the dynamical
behaviour of the system are trajectories depicted in a space the points of which are
amplitudes and modified phases, and so the functions connected to the modulation
equations. The projections of the trajectories onto the chosen planes of this space are
shown in Fig. 4. The simulations are carried out for the same data as previously.

After the transient state, all trajectories achieve the stable steady state, although
the duration of the transient vibration is various for the particular general coordinates.
The steady state conditions correspond to the demand of vanish of time derivatives
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Fig. 4 Trajectories of motion in the amplitude-modified plane; red points indicate stable state

of amplitudes and modified phases in modulation Eqs. (48)–(53). They are governed
by the following equations

−1

2
a1c1 +

f1
2
sin(θ1) � 0, (55)

a1σ1 − 3

2
ξ 2
r αa1 +

f1
2

cos(θ1) � 0, (56)

−1

2
c2a2 +

f2
2w2

sin(θ2) � 0, (57)

σ2a2 − s w2w2
3a2

2
(
w2
2 − w2

3

) +
f2
w2

cos(θ2) � 0, (58)

−1

2
c3a3 +

f3
2w3

sin(θ3) � 0, (59)

σ3a3 +
s w5

3a3
2w2

2

(
w2
2 − w2

3

) +
f3
w3

cos(θ3) � 0. (60)

Equations (55)–(60) stand for algebraic system with unknown values of amplitudes
and modified phases a1, a2, a3, θ1, θ2 and θ3 in steady-state motion.

The fully explicit form of the approximate solution of the original problem in case
of the resonance is usually impossible to achieve. The modulation equations due to
their complexity are solved in numericalmanner. Having however the solutions of the
governing equations in the analytic form of functions of amplitudes and phases (or
modified phases), we can substitute the numerical solutions into this analytical form.
Time histories obtained in this way with comparison to the numerically obtained
solutions are presented in Fig. 5. The results presented in Fig. 5 are obtained for
the same values of system parameters as the ones listed above and demonstrated in
Figs. 3 and 4.
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Fig. 5 Time histories; upper graphs are obtained analytically while the lower ones numerically

6 Conclusions

The approximate solution to the governing equations has been obtained using the
multi scales method with two time scales. The analytical form of this solution is
the main advantage of the applied approach, giving the possibility to the qualitative
and quantitative study of the system dynamics in a wide range of the frequency
spectrum. The approximate solution for non-resonant vibration has been obtained in
fully analytical form because the modulation equations governing the evolution of
amplitudes and phases in the slow time scale were solved analytically. Admittedly an
approximate but however analytical form of this solution create, among others, the
possibility to determine the conditions at which the resonances occur. The adequate
conditions for possible resonances have been detected. The case of three primary
main resonances occurring simultaneously has been considered.
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Supermolecular Structure Formation
During Electrospinning, and Its Effect
on Electrospun Polymer Nanofiber
Unique Features

Arkadii Arinstein

Abstract Electrospun polymer nanofibers demonstrate outstanding mechanical
and unusual thermodynamic properties as compared to macroscopic-scale struc-
tures. Now-a-days is wide accepted that these features are attributed to nanofiber
microstructure (Arinstein et al. Nat Nanotechnol 2:59–62, 2007, [1]). It is clear
that this microstructure is formed during the electrospinning process character-
ized by a high stretching rate and rapid evaporation. The first circumstance (high
stretching rate) results in formation of non-equilibrium supermolecular structure;
whereas the second one (rapid evaporation) provides the fixing of the formed internal
non-equilibrium structure of electrospun polymer nanofibers. Thus, when studying
microstructure formation, its fast evolution must be taken into account.

1 Introduction

The phenomenon of size-dependent behavior of objects having nano-scale size, is
now well known and observed in different nano-objects, such as polymer nanofibers
[1, 2], metallic nanowires [3], and thin polymer films [4]. Many experimental studies
have demonstrated the effect of size on the mechanical, thermomechanical, and ther-
modynamic properties of the above nano-objects. For example, the elastic modulus
of nanowires [3], polypyrrole nanotubes [5], and electrospun polystyrene and nylon-
6.6 nanofibers [1, 2] sharply increases when their diameter becomes sufficiently
small. Also, a shift in the glass transition and melting temperatures was observed
in polymer nano-objects [6]. At first the explanations of the above size-dependent
behavior were attributing to surface tension [5] or near-surface layers [7, 8]. Unfor-
tunately, all these proposed mechanisms cannot satisfactorily describe the above
phenomena quantitatively. As an alternative, we suggested that the dominant role in

A. Arinstein (B)
Department of Mechanical Engineering, Technion, Israel Institute of Technology,
32000 Haifa, Israel
e-mail: mearin@technion.ac.il

© Springer International Publishing AG, part of Springer Nature 2019
I. V. Andrianov et al. (eds.), Problems of Nonlinear Mechanics
and Physics of Materials, Advanced Structured Materials 94,
https://doi.org/10.1007/978-3-319-92234-8_11

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92234-8_11&domain=pdf


174 A. Arinstein

size-dependent behavior of polymer nanofibers (in particular, in their reinforcement)
belongs to confinement-induced phenomena [1].

Further progress in understanding of the features of electrospun polymer
nanofibers influencing their behavior requires examination of their internal struc-
ture, more specifically, the supermolecular structures in the amorphous regions of
the polymer matrix, as well as crystallite ordering. At the initial stages of such analy-
ses, the impact of fabrication conditions upon the final state of the polymer matrix of
as-spun nanofibers must be determined. In doing so, the high strain rate (on the order
103 s−1) acting during electrospinning [10–16], must be taken into account. This
dominant factor is believed to cause stretching and orientation of polymer chains, as
indicated by in-process measurements of jets, using birefringence [17] and Raman
[18] techniques.

In parallel, extremely rapid solvent evaporation adversely affects the polymer
matrix macrostructure of as-spun nanofibers. Rapid evaporation first leads to forma-
tion of a solid skin, followed by further evaporation from the liquid core, leaving
voids previously occupied by solvents and allowing partial relaxation of the matrix.
This frequently induces generation of a heterogeneous and porous fiber structure
[19, 20]. Theoretical analysis [21, 22], confirmed by experimental observations [19]
and computer simulation [23], demonstrated that a sharp increase in polymer density
at the fiber-vapor interface is induced upon rapid solvent evaporation, consequently
increasing heterogeneity and porosity of a solidificating polymer matrix.

Thus, heterogeneous, high-porosity fiber structures should be formed under cer-
tain electrospinning conditions (see Fig. 1a). At the same time, skin formation pre-
vents further stretching and orientation of polymer chains within the semiliquid fiber
core. Relaxation of the non-equilibrium state of the stretched macromolecules con-
sequentially occurs, with no detectable influence of the fabrication conditions on the
final state of the polymer matrix of as-spun nanofibers. On the other hand, there exist
spinning conditions resulting in homogeneous as-spun fiber structures (see Fig. 1b).
In such cases, relaxation of stretched polymer chains is suppressed, and the effect of
fabrication conditions on the final state of the nanofiber polymer matrix should be
noticeable.

If the mechanisms resulting in formation of the porous structure of as-spun poly-
mer nanofibers are well understood [19, 21, 22], the physical principals providing
generation of the nanofibers with homogeneous structure, require clarification. The
required mechanism can be proposed based on the assumption that the polymer
system, which is an interconnected network of subchains, undergoes substantial
stretching during electrospinning. It’s clear that under high rapid stretching, the ini-
tial equilibrium state of this polymer network transforms to an almost fully stretched
state along the jet; in doing so, this stretching should be accompanied by radial
contraction of the network.

This stretching hypothesis was developed in [25], where a theoretical model
describing the polymer system as an entangled network and its evolution in the ini-
tial stage of electrospinning was proposed. It was shown that the initial equilibrium
state of the polymer network can transform to an almost fully stretched state along
the jet. The observed stretching is accompanied by network contraction across the
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Fig. 1 SEM images of electrospun nanofibers fabricated from 10 wt.% PCL (Mw 80 kDa) in
DCM/DMF (75:25 wt.%), in an electric field of 0.63 kV/cm [24]. aHeterogeneous fibers fabricated
at a flow rate of 20 ml/h and b homogeneous fibers fabricated at a flow rate of 3 ml/h [25]

jet. These theoretical results were experimentally confirmed by X-ray phase-contrast
imaging of electrospinning jets of PEO (polyethylene oxide) and PMMA (poly-
methyl methacrylate) semidilute solutions. The similar ideas were also discussed
in [26], where instability development in a jet of a viscoelastic polymer solution
under high stretching was examined. It turned out that above some threshold value
of deformation degree corresponding to almost maximum possible stretching (about
of 90% of the maximum), the volume content of residual solvent in the system
sharply decreases and tends to zero. By the other words, under very high draw ratio,
the solvent is “wringing out” of the polymer network, resulting in oriented filament
formation and polymer solidification.

2 Theoretical Modelling of Polymer Dynamics During
Electrospinning

2.1 Velocity and Radius of an Electrospinning Jet

Under an electric field, the moving solution jet accelerates, so that its local velocity
contains both longitudinal and radial components. Hydrodynamic analysis demon-
strates that in the jet beginning the longitudinal velocity can be approximated by a
parabolic profile, whereas the radial velocity component increases linearly along the
jet [27]:

vz ≈ v0

(
1 +

z

z0

)2

+ · · · , vr ≈ −v0

(
1 +

z

z0

)
r

z0
+ · · · (1)
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Therefore, the jet takes on a hyperbolic form:

rJ (z) ≈ r0
1 + /z0

, (2)

here v0 is the jet initial velocity, and r0 is the jet initial radius. The characteristic
length z0 determines the scale of velocity increase, and depends on the flow rate,
viscosity, electric field and electric conductivity of the solution [27].

Typical values of these parameters, measured by optical microscopy of the jet [15,
16], and substantiated by our experimental observations are v0 ∝ (1÷5)×10−2 m/s
and z0 ∝ (0.5÷ 1)× 10−3 m. Such hydrodynamic flux with increasing longitudinal
velocity influences on the polymer macromolecules results in their nonequilibrium
conformation state and heterogeneous distribution inside the jet.

It is clear that this regularity is applicable only on the initial stage of jet spinning,
since the velocity increase of the liquid jet is limited, due to viscosity increase as a
result of solvent evaporation and final solidification of the jet.

2.2 Polymer System Structure

It is well known that viscoelasticity is a prerequisite for polymer solution spinnability,
meaning that spinnable solutions are semidilute, highly entangled. Therefore, the
polymer system is assumed to be a network, whose connectivity is provided by
topological knots [11] (see Fig. 2a). The sections of macromolecules between two
adjacent topological knots are called subchains, which feature a conformation at
equilibrium that corresponds to their nonzero end-to-enddistance, even in the absence
of external force. This end-to-end distance is equal to the distance between two
topological knots or to an averagemesh size ξ0 of the network in a semidilute solution

ξ0 ∝ Rg
(
c/c *

)ν/(1−3ν)
(3)

where Rg ∝ aN ν is the end-to-end distance of a polymer coil, c is the mass concen-
tration of the polymer solution, c* is the crossover concentration of macromolecules
overlap, N is the number of monomers in a polymer chain, and a is the monomer
scale.

Solvents usually used in such systems vary between good and moderately poor
solvents; so the conformation of a polymer chain should be a Gaussian or swelled
coil (1/2 < v < 3/5). On the other hand, the polymer concentration in spinnable
solutions is relatively high [(5÷10) × c*], and this prevents a coil swelling. There-
fore, for simplicity, we can assume that v � 1/2. Assuming Gaussian statistics of
subchains, one can estimate the number of monomers, NS , in a subchain as follows:

NS � (ξ0/a)
2 � N

(
c/c *

)−2
(4)
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Thus, the elements of the system which undergo noticeable stretching are the
above-defined subchains which form the polymeric physical network with topo-
logical links arising as a result of a chain entanglement. This topological network
provides the required viscoelasticity of the polymer solution. Moreover, under rapid
deformation this physical network can be regarded as a gel (the high-elastic state)
and this fact is of high importance for further analysis. The evolution of subchain
conformation under stretching of the polymer network will now be examined.

2.3 Axial Stretching of an Entangled Polymer Network
During Electrospinning

The polymer network in question can be approximated by a lattice model of “beads”
and linear “springs,” similar to the Rouse model. Each bead represents a topological
knot and is connected to six adjacent beads by springs, or polymer subchains which
demonstrate Gaussian statistics leading to a linear force-elongation relationship. In
spite of the fact that the above polymeric network is a random one, the system
in question can be approximated by a regular cubic lattice with elementary cell
having the scale of the above mesh size, ξ0 (see Fig. 2a, and also Fig. 5a). The
averaging of the system over the jet cross-section results in a one-dimensional chain
of springs interconnecting the beads, each bead having an effective subchain mass,

Fig. 2 a Illustration of polymer network stretching in an electrospinning jet. b and c Definition
of the polymer network parameters: b in z-direction, c in radial direction r. d On-line fast X-ray
phase-contrast image of spinning jet: zooming on the Taylor cone. The lines at z1 = 0.02 mm and
z2 = 0.5 mm indicate the cross sections of the absorption measurements across the electrospinning
jet [25]
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m. The beads are influenced by an effective hydrodynamic force proportional to the
effective subchain size, as well as entropic elastic forces from its two neighbors (see
Fig. 2b). The dynamics of this chain of springs can be described by the following
difference-differential equation:

m
d2zn
dt2

� aeff η

[
vz(zn) − dzn

dt

]
+
kBT

ξ 2
0

{
[zn+1 − zn − ξ0] − [

zn − zn−1 − ξ0
]}

, (5)

here η is the effective viscosity of the dilute solution surrounding the polymer net-
work, vz is the jet velocity from Eq. (1), and kBT/ξ 2

0 is the linear entropic elasticity
of a polymer sub-chain, kB is Boltzmann constant. According to Eq. (4), the average
mesh size, ξ0, is assumed as ξ0 � aN 1/2

s .
This difference equation can be approximated by a differential equation relative to

the space argument, l ≡ ξ0n, and then reduced to the following form by introducing
the dimensionless argument, ζ ≡ (l + v0t)/z0, and function, ẑ(ζ ) ≡ z(l, t)/z0:

d2ẑ(ζ )

dζ 2
� α

[
v̂z
(
ẑ
) − d ẑ(ζ )

dζ

]
, (6)

here v̂z
(
ẑ
) ≡ vz(z)/v0, and α � z0v0aeff η/[m(v20 − c2net)] ∝ 103 ÷ 104 >> 1 is a

dimensionless parameter. The parameter cnet � √
T/m is the “sound” velocity in

the polymer network (as the polymer network demonstrates only entropic elasticity
of a semidilute solution, it is much lower than the sound velocity in solid polymer
systems). The polymer is at equilibrium at the cross-section z � −z0, so the boundary
conditions at the point ẑ � −1 correspond to zero-acceleration and zero-velocity,
while at ẑ � +∞ free boundary conditions are assumed.

Using the substitutiond ẑ(ζ )/dζ � P(ẑ), the second-order differential equation (6)
can be reduced to a first-order equation:

dP(ẑ)

d ẑ
� α

[
v̂z(ẑ)

P(ẑ)
− 1

]
, (7)

The solution of Eq. (7) can be obtained, using a 1/α-approximation. Assuming
that

v̂z(ẑ)

P(ẑ)
− 1 � 1

α
P1(ẑ) + . . . , (8)

we obtain P1(ẑ) � dv(ẑ)/d ẑ, so within accuracy of (1/α)2, the function P(ẑ) is

P(ẑ) � d ẑ(ζ )

dζ
� dz(l, t)

dl
� ξ||(ẑ)

ξ0
≈ v̂z(ẑ)

1 + 1
α
dv̂z(ẑ)/d ẑ

, (9)

and the function ẑ(ζ ) can be obtained as an inverse function:
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Fig. 3 a Polymer network
conformation. Relative radial
contraction, ξ⊥/ξ0, (solid
line), and relative axial
stretching, ξ‖/aNs, (dashed
and dot-dashed lines), versus
relative axial position, z/z0.
The results were obtained by
the simulation (dashed and
solid lines) and theoretical
model (dot-dashed line). The
system parameters were: NS
= 400, and α = 1000 [25]

ζ (ẑ) �
ẑ∫

0

dx

v̂z(x)
− 1

α
ln [v̂z(ẑ)] (10)

The stretching of the polymer network, ξ||(ẑ), introduced in Eq. (9), allows one to
determine the stretching level of a mesh size in the direction of the jet, as a function
of the position ẑ along the jet.

ξ||(ẑ) � ξ0
dz(l, t)

dl
≈ ξ0v̂z(ẑ)

1 + 1
α
dv̂z(ẑ)/d ẑ

, (11)

The sign of the parameter α which depends on the sign of the term v20 − c2net , and
its magnitude determine the behavior of the system: for α > 0 the jet local velocity
is faster than the polymer network local velocity, and the effect of the hydrodynamic
force is dominant; for α < 0 the polymer network local velocity is faster than the
jet local velocity, and the effect of network connectivity is dominant (i.e. stretching
is caused by a pull at the far end of the jet). For α >> 1 the derivative in Eq. (9)
vanishes, and the polymer network local velocity coincides with the jet local velocity.
At large z, where the jet velocity vz saturates to v∞, the stretching ratio converges to
ξ||/ξ0 ≈ v∞/v0, confirming that the stretched conformation of the polymer network
remains even after velocity saturation.

The obtained dependence ξ||/aNs is shown in Fig. 3 (dot-dashed lines)with respect
to the position z/z0 along the jet, for unsaturated longitudinal velocity, vz, from
the first equation of the Eq. (1). The theoretical calculations were supported by
numerical simulations basing on the 3D randomwalk model under external field (see
Fig. 3, dashed lines). The difference between analytical calculations and numerical
simulations is observed for the highly stretched state of polymer subchains, when
the stretching of the polymer subchains according to Eq. (9) exceeds the maximal
possible elongation corresponding to fully-stretched state, whereas the stretching,
calculated on the base of the 3D random walk simulations, tends to saturation.
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A term preventing the unlimited stretching of subchains, can be introduced into
Eq. (5) by replacing the linear elasticity of polymer subchains, kBT/ξ 2

0 , with the
nonlinear kBT/

{
ξ 2
0 [1 − (zn+1 − zn)/aNs]

}
. However, such a modification cannot cor-

rectly describe the real system behavior due to the additional processes, associated
with high level of polymer subchain stretching. For example, almost fully-stretched
subchains begin to disentangle, thereby raising the subchain length, ξ0.

This disentanglement process was discussed in our review paper [28] on the base
of experimental observations [29–34]. It turns out that the simple estimation of a
shrinking of the radius of a spinning jet caused only by solvent evaporation and
stretching of the topological network without its reorganization, shows that the final
diameter of as-spun fibers cannot be less than 10µm, whereas in real electrospinning
process, the fibers with diameters of diameters of 100 nm and even less can be
obtained. Indeed, the typical polymer concentrations (cp) of a polymer solution are
amounting of about 10–15%. Therefore, as a result of only solvent evaporation,
the fiber radius can be reduced down to rJ0

√
cP (here rJ0 is the initial jet radius).

The discussed above stretching of the topological network without its reorganization
results in elongation and shrinking of a polymer slug in

√
Ns times, so the final fiber

radius, RF , can be

RF ∝ rJ0
√
cP
/
Ns ≈ 10 − 30 µm, (12)

here the initial jet radius, rJ0, is assumed of about 1 mm, and the polymer subchains
of the topological network corresponding to average mesh size ξ0 � a

√
Ns, consist

of 100–1000 monomers.
In addition, the highly stretched polymer network begins to affect the effective

viscosity of the solution, influencing the jet velocity. Furthermore, slipping of the
solvent surface layer relative to the polymer network is also possible.

Therefore, it is reasonable to restrict ourselves to the simplest model describing
only the initial stage of polymer network evolution inside the electrospinning jet.
Although the proposed model does not describe the final state of the polymer matrix
in electrospun nanofibers, and is applicable only to the initial part of the jet where the
stretching of a polymer system is not too high, it allows to understand the tendency
in the evolution of the polymer during the electrospinning process.

Note that the transformation of subchains from a coil-like equilibrium state into a
stretched state occurs as a continuous crossover, and no phase transition is observed,
in contrast to the well-known coil-stretch transition, described by de Gennes [35].
Unlike stretching of an individual chain, during network stretching locally the dom-
inant force that provides this transformation is the elastic force, whereas the hydro-
dynamic forces give rise to the global stretching of the network. As a result, the
network subchains are subjected to the action of the network portion situated farther
along the jet, a force independent of local stretching. In contrast, the force acting
on an individual polymer chain under an ultrahigh velocity gradient increases with
macromolecule stretching. Similar behavior (continuous crossover from a coil-like
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state into a stretched one) was observed by Balabaev et al. upon examination of the
state of an individual macromolecule under an external force acting on its ends [36].

2.4 Radial Contraction

When analyzing the compression of the polymer network in a plane perpendicular
to the jet, the process becomes stationary quite rapidly and can be presented as a
one-dimensional (1D) chain of springs (see Fig. 2c) in a steady state, described by
the following differential equation:

kBT

ξ 2
0

{
[Rn+1 − Rn − ξ⊥] − [

Rn − Rn−1 − ξ⊥
]}

+ aeff ηvr(Rn) � 0, (13)

here the transversal mesh size ξ⊥ � ξ⊥(z) describes the radial contraction due to
stretching, parametrically dependent on z. At the cross-section z � −z0 the parameter
ξ⊥ is assumed to be the initial network mesh size, ξ0.

This difference equation can be also approximated by a differential equation:

d2R(ρ, z)

d2ρ
− κ2(z)R(ρ, z) � 0, (14)

here ρ � r
/
z0, κ(z) � κ0[ξ0

/
ξ⊥(z)]

√
1 + z

/
z0, κ2

0 � z0v0aeff η
/
mc2net �

(v20
/
c2net − 1)α, (κ0 ∝ 10 ÷ 102), and the velocity vr from Eq. (1) is used.

Taking into account that the outermost nodes of the polymer network have only
one neighbor generating an elastic force acting inward, the boundary conditions for
Eq. (14) are

dR(ρ)

dρ

∣∣∣∣
ρ�ρ0

− z0 +
ξ⊥(z)
z0

κ2(z)R(ρ0) � 0, R(0) � 0 (15)

here ρ0 ≡ ρ0(z) � rJ (z)
/
z0 corresponds to the jet radius in the cross section z (see

Eq. (2)), and ξ⊥ is the lateral contraction of the mesh size due to the axial stretching
ξ||:

ξ⊥ ∼� 3ξ0

2 +
[
1 − (aξ||/ξ 2

0 )
2
]−2 (16)

The solution of Eq. (14) with boundary conditions (15) is:

r(ρ, z) � z0 sinh[κ(z)ρ]
/
cosh[κ(z)ρ0]

κ(z)
{
1 +

[
ξ⊥(z)

/
z0
]
κ(z) tanh[κ(z)ρ0]

} (17)
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The polymer network radius is given at ρ � ρ0 by the following form

rP(z) � z0 tanh[κ(z)ρ0]

κ(z)
{
1 +

[
ξ⊥(z)

/
z0
]
κ(z) tanh[κ(z)ρ0]

} (18)

For small values of argument of hyperbolic tangent, κ(z)ρ0 << 1, and
κ(z)ξ⊥(z)

/
z0 << 1, Eq. (18) demonstrates no radial contraction of the polymer

network, yielding

rP(z) � z0ρ0 � rJ (z) (19)

For large values of the argument of hyperbolic tangent, (κ(z)ρ0 >> 1), one can
assume that tanh [κ(z)ρ0] ≈ 1, so that Eq. (18) can be simplified. Taking into account
the fact that κ(z)ξ⊥(z)

/
z0 << 1, in case of finite z

/
z0 one can write

rP(z) ∼� ξ⊥(z)
ξ0

z0

κ0

√
1 + z

/
z0

, (20)

and in the case of large z (z
/
z0 >> 1), the polymer network has the following form

rP(z) ∼� z0
κ2
0

(
ξ0
/
z0
) (
1 + z

/
z0
) , (21)

indicating a constant ratio between the jet and polymer radii. However, the last
asymptote lacks physical significance, as the effects dominant at this stage of the
processes are not accounted for, thereby making the model inappropriate far from
the jet start.

An approximate dependence of the polymer network radius on the jet radius,
rJ (z), is given by

rP(z) ≈ ξ⊥(z)

ξ0

r0
1 + z

/
z0

� ξ⊥(z)

ξ0
rJ (z), (22)

showing that the axial stretching is the dominant factor determining the network
radius, while the radial hydrodynamic compression has a negligible effect. When
presenting this relationship as a function of position z along the jet and comparing
it to Eq. (20), a rapid narrowing of the network radius is observed with respect to
the jet radius (see Fig. 4). The expected outcome is a substantial rise in polymer
concentration towards the jet center.

Summarizing the above results, one can conclude that no contraction of the poly-
mer network occurs at the initial region of the jet. The intermediate asymptote demon-
strates that the radial hydrodynamic effect is negligible, and that longitudinal stretch-
ing acts as the dominant factor affecting polymer network contraction, resulting in
shortened distances between adjacent topological knots in the transversal direction.
In the case of very large z (z

/
z0 >> 1), the form of the polymer network conforms
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Fig. 4 Polymer network contraction. Relative jet radius, rJ /r0 (solid line), and polymer network
radius, rP/r0 (dashed line—Eq. (22) and dot-dashed line—Eq. (20)), as a function of the relative
axial position, z/z0. The inset displays radial contraction, ξ⊥/ξ0, obtained by simulations, as a
function of the relative radial position, r/rP , at three axial positions, z = 0 (solid line), z/z0 = 2.5
(dashed line), and z/z0 = 3.5 (dot-dashed line). Parameters are the same as in Fig. 3 [25]

to that of the jet. Note that the last asymptote is barely discernable in a real system,
due to rapid solvent evaporation in this region, which acts as the dominant factor
determining the state of the polymer system.

2.5 System State Depending on Network Strain

Let us consider the deformation of elementary cell of the polymer network in question
under system stretching. Introducing the network strain as λ � ξ||

/
ξ0, we get that

the relative contraction, ξ⊥
/

ξ0, of elementary cell versus strain is

ξ⊥(λ)
ξ0

� 3

2 +
{
1 − [(

a
/

ξ0
)
(λ − 1)

]2}−1/2 � 3

2 +
{
1 − [c0(λ − 1)] 2

}−1/2 ,

(23)

here c0 � VP

/
V (0)
Cell � a3NS

/
ξ 3
0 ∝ (a

/
ξ0)3−1/ν is the initial local volumetric

concentration of the polymer (if ν � 1
/
2, the concentration is c0 � a

/
ξ0); and it is

taken into account that at low strain (λ → 1), the relative contraction also is small
(ξ⊥

/
ξ0 → 1).

This cell contraction results in the contraction of the polymer network as a whole
in the same proportion, so the effective radius of the polymer network, rP(λ), reduces
with stretching as
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Fig. 5 Schematic illustration of polymer network structure and its stretching. An initial jet state
(a); low stretching of the jet (b); high stretching of the jet (c); a formed filament and arising of
capillary instability (d). The explanation of the equations and inequalities are given in the text [26]

rP(λ) � 3rP,0

2 +
{
1 − [c0(λ − 1)]2

}−1/2 , (24)

here rP,0(λ) is the initial radius of the unstretched polymer network.
Note that the jet stretching results in its contraction in accordance to volume

conservation law of incompressible liquid:

rJ (λ) � r0
/√

λ, (25)

here r0 and rJ (λ) are the radii of initial and stretched jets, respectively.
This jet contraction does not affect the polymer network state, if rP(λ) < rJ (λ),

whereas in opposite case, if rP(λ) > rJ (λ), an additional hydrodynamic forces are
acting on the polymer network, generating its additional contraction. In the first case
the polymer network contraction is being described by the Eq. (24); whereas in the
latter case this Eq. (24) is to be modified by the following way [26]

r̃P(λ) � 3rJ (λ)

2 +
{
1 − [c0(λ − 1)]2

}−1/2 � 3

2 +
{
1 − [c0(λ − 1)]2

}−1/2 · r0√
λ

(26)

The lateral contraction, ξ⊥, of the mesh size also is to be renormalized in the same
way:

ξ̃⊥(λ) � 3

2 +
{
1 − [c0(λ − 1)]2

}−1/2 · ξ0√
λ

(27)

It turns out that the hydrodynamic contraction of the polymer network is dominant
if the jet stretching is not too high (see Fig. 5b); whereas the polymer network
contraction due to its stretching is dominant only in case of very high (see Fig. 5c),
almostmaximum-possible stretching (see Fig. 6a).Note that the last case corresponds
to the situation when the polymer contraction results in a filament formation in the
center of the stretching jet (see Fig. 5d).
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Fig. 6 a The polymer network contraction versus polymer network stretching: with additional
contraction due to hydrodynamic forces. b The volumetric solvent concentration versus polymer
network stretching (the vertical dashed lines show the maximum possible stretching) [26]

The effective radius of the zone containing almost the entire polymer, is shown in
the Fig. 6a. A zone outside of this radius (between solid and dashed lines in Fig. 6a)
contains almost pure solvent. So, we have a situation of phase separation: oriented
polymer in the center of a jet surrounded by a solvent (maybe by a dilute solution).

A non-linear response of the polymer network under stretching results in changes
in its volume that, in turn, results in changes in local polymer concentration. Indeed,
the volumetric polymer concentration in stretched system is

c(λ) � VP

VCell(λ)
� VP

V (0)
Cell

· V (0)
Cell

VCell(λ)
, (28)

here the initial cell volume is V (0)
Cell � ξ 3

0 , and the volume of the stretched cell is
VCell(λ) � ξ̃ 2

⊥(λ) ξ||. The first factor in the Eq. (28) corresponds to initial polymer
concentration, c0; and the second one can be calculated with the help of the Eq. (27):

c(λ) � c0
ξ 2
0

λξ̃ 2
⊥(λ)

�
[
2 +

{
1 − [c0(λ − 1)]2

}−1/2
]2 c0

9
(29)

Using the obtained dependence (29), the volumetric portion of residual solvent,
1 − c(λ), remaining in the stretched network, is depicted the Fig. 6b. The vertical
dashed lines indicate the maximum-possible stretching of the system in question (for
given initial polymer concentrations) with no disentanglement of the topological
network. In case of relative low deformations, the solvent content is decreasing
slowly, but beyond some threshold, corresponding to almost maximum possible
stretching (about of 90% of the maximum), the volume content of residual solvent
sharply decreases and tends to zero. By the other words, under very high draw ratio,
the solvent is “wringing out” of the polymer network, resulting in oriented filament
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formation and polymer solidification. So, this model can be called the model of
“wringing out a wet rag”.

Note that the filament formation under high draw ratio seems similar to a phase
separation process. Nevertheless, in our opinion, the polymer densification due to a
lateral contraction of the polymer network being accompanied by the solvent replace-
ment, is dominant, and the phase separation (if this term can be used) occurs only
in the last stage of the process (see Fig. 5d) that corresponds to results of [37, 38]
where the “blistering” effect described.

3 Experimental

The above theoretical analysis demonstrating a possibility for polymer redistribution,
got the validation on the base of some experimental observations, such as fast X-ray
imaging [39, 40] of electrospinning jets, as well as analysis of “bead-on-a-string
structure” evolution [26].

3.1 Fast X-Ray Phase-Contrast Imaging

On the base of on-line fast X-ray phase-contrast imaging [39, 40], the radiation
absorption of Poly(ethylene oxide) and Poly(methyl methacrylate) semi-dilute solu-
tions was measured in the straight regions of electrospinning jets [25].

The idea of this experimental examinationwas to compare profiles of the radiation
transmission, measured across the jet close to the jet start as well as farther along the
jet, with those obtained by the wave propagation simulation for homogeneous poly-
mer solution. The agreement between the experimental profiles and the simulation
data indicates that the polymer distribution across the spinning jet is homogeneous.
And in the case of variation of the experimental profile relative to simulation, the
heterogeneous distribution of polymer across the spinning jet is observed.

Realizing this idea, profiles of the radiation transmission, Texp, were measured
across the jet close to the jet start as well as farther along the jet, for PEO as well
as for PMMA. The results of this measurement and simulations for the spinning
homogeneous solution of 3 wt.% PEO in water at two z-positions (z1 = 0.02 mm and
z2 = 0.02mm), are presented in the Fig. 7. In these figures themeasured transmission,
Texp, (thin solid line) and its smoothing (thick solid line) compared to simulated
transmission, Tsim, (dashed line) are shown. The inset displays calculated variations
in X-ray absorption coefficient, 
α(r, z), (dashed line), and resulting variations in
the local polymer mass concentration, 
cP(r, z), (solid line).

Close to the jet start, the radiation transmissions Texp and Tsim almost coincide,
as expected for homogeneous polymer solution (see Fig. 7a), whereas farther along
the jet, Texp rises above Tsim at the jet center (see Fig. 7b). Since in the used solution,
the polymer has a lower absorption coefficient compared to the solvent, the decrease
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Fig. 7 Typical absorption measurements across the spinning jet of a solution of 3 wt.% PEO in
water at two z-positions indicated in Fig. 2d. a z = 0.02 mm; b z = 0.5 mm. The inset displays
calculated variations in X-ray absorption coefficient, and resulting variations in the local polymer
concentration [26]. Detailed explanation see in the text

(increase) in absorption reflects a polymer concentration increase (decrease). Based
on the above experimental observations one can conclude thatwhile almost no change
in absorption coefficient, and hence in polymer concentration, was observed across
the jet close to the jet start (see inset in Fig. 7a), the absorption coefficient varied
across the jet with respect to its initial value, when measured at points farther along
the jet, indicating a non-uniform polymer concentration distribution with increased
concentration in the jet center (see inset in Fig. 7b). Indeed, a decrease in absorption
coefficient which corresponds to a rise in the polymer concentration, was observed
namely close to the jet center, while absorption coefficient increased, whenmeasured
at greater distances from the center and this increase corresponds to the polymer
concentration decrease, as expected from the redistribution of the polymer across
the jet.

3.2 “Bead-on-a-String Structure”

The analysis of instability development in a jet of a viscoelastic polymer solution
under high stretching [26] allows one to observe some phenomenon being of high
interest for our discussion. The point is that the stability of the jet form is being
determined by the relationship between the solution elasticity and the surface tension.
A jet stretching results in a sharp radial gradient in the polymer distribution: the
polymer concentration is sharply increasing in the jet center, whereas a low-viscous
fluid is remaining in near-surface layer. As a result, the central oriented polymer
filament surrounded by the shell layer consistingmainly of a solvent, is being formed.

Although, such a polymer state looks like a phase separation, one can accept also
an alternative point of view that the phenomenon can be explained in the framework
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Fig. 8 a Consecutive stages of “phase separation”, accompanied by formation of a near-surface
solvent layer. b Appearance of separate droplets. The full observation time was 16 s. Noticeable
waves appeared in the third second; droplets united with their neighbors and formed larger droplets
in the seventh second; the large droplet descended along a string, collecting all solvent in the fifteenth
second [26]

of “wringing out wet rag” mechanism proposed in [26]. This mechanism is based on
the same or similar ideas proposed in [25] and discussed above.

The main portion of experiments was carried out according to the following
scheme. A drop of the volume of about 1 mm3 of polymer solution was pressed out
from a syringe on a glass plate and then the syringe moved up with constant veloc-
ity (≈ 10 mm/s). The process was filmed for the further analysis. The experiments
were performed with entangled concentrated (18–22%) solutions of polyacryloni-
trile (PAN) with MW = 94.6 kDa in dimethyl sulfoxide (DMSO), at temperature of
20 °C. The crossover concentration, c * , for this system equals about of 0.5%.

A snapshot demonstrating the solvent wringing out of a fiber and the formation
of a surface layer of the solvent around of an oriented polymer filament, is depicted
in the Fig. 8a. The more prolonged evolution of the surface instability is shown in
Fig. 8b. The observed process stages are: the formation of a layer of a liquid with low
viscosity on a cylindrical surface, the transformation of this layer into an unduloid
structures, and finally, this structure transforms of into individual droplets.

The kinetics of droplet formation is presented in Fig. 9. In this series of experi-
ments, a light beam was directed along the fiber axis from the bottom of a syringe.
The jet works as a light guide, and the optical heterogeneity (local change in the
refraction index) allows us to visualise the boundary between regions with high and
low polymer concentration (polymeric core and solvent).
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Fig. 9 Consequent stages of the phase separation in stretching of an entangled polymer solution,
accompanied by formation of near-surface solvent layer and by appearance of separate drops.
(PAN/DMSO 20% solution). Time step equals 0.5 s. The light intensities showing the polymer
distribution across the jet in three cross-sections of the left snapshot are depicted in the three bottom
plots [26]

Analysing these images, one can conclude that a shrinkage of a polymer core
occurs with stretching. The solvent release begins in the form of a liquid cylinder
at some distance from the Taylor cone vertex which corresponds to the definite
extension ratio where critical conditions for “phase separation” have been reached.
As can see on the snapshot 1, the jet diameter is ∼90 µm at the distance equal to
2/3 of the full length and decreases along the jet up to 20 µm. This shrinkage is
accompanied by polymeric core formation (see Fig. 9, plots a, b, and c). Two next
snapshots demonstrate the further reducing of the jet diameter. This decrease in the jet
diameter is accompanied by droplet initiation. Separate droplets are distinguishable
and can be seen by the naked eye. These droplets can be simply collected and taken
off with blotter paper. The chemical analysis of the collected droplets shows that
usually they contain no more than 0.5% of a residual polymer in comparison to
18–22% in the initial solution.

In addition, the droplets, formed close to the cone vertex, started to move back
towards the cone against gravity and were dissolved in the unstretched part of the
jet. This observation has the simple explanation: the droplet motion is caused by
capillary forces. Indeed, the Laplace pressure increases with a decrease in the jet
diameter, and this pressure gradient results in the above movement of the droplets in
the direction of an increase in the jet diameter. At the same time, in the central part
of the jet where the jet diameter does not vary, the droplets do not move and remain
on a core surface until they will evaporate without dissolving the oriented polymer
filament.
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The described phenomenon is rather similar to the mentioned above “blistering”
effect described in [37, 38], but actually these two processes (blistering and consid-
ered above) are similar only in the final stage of macromolecule stretching. However,
the initial stage of appearance of the solvent shell as well, when the solvent is being
pressed out to the jet surface, and the polymer filament is forming in the jet center,
is governed by different physical mechanism related to high stretching level of a
polymer network accompanying by its radial contraction. By the other words, the
formation of a polymer filament, surrounded by a liquid shell, is not related to the
equilibrium thermodynamics of the system. The point is that under very high stretch-
ing of a polymer solution the solvent is “wringing out” of the polymer network due
to effects of excluded volume, resulting in the formation of an oriented filament and
polymer solidification.

4 Size-Dependent Behaviour of Electrospun Polymer
Nanofibers and Their Internal Structure

The next step in our examinations is related to understanding of a physical mech-
anisms resulting in the confinement-induced size-dependent behavior of polymer
nanofibers. Below, a theoretical model for require physical mechanism proposed
in our work [41], is being discussed. Taking into account the fact that the size-
dependent behavior was demonstrated both by amorphous and by semi-crystalline
polymer nanofibers, we can conclude that the amorphous portion of the polymer
matrix of as-spun nanofibers plays a dominant role in the phenomenon in question.
Therefore, we can restrict our consideration only by amorphous polymer nanofibers,
more specifically, we focus on examination of their internal structure formed during
nanofiber fabrication.

4.1 The Structure of an Amorphous Polymer Matrix of
Electrospun Nanofibers

As a result of discussed above evolution of polymer solution during a spinning, the
final state of polymer matrix of electrospun fiber is non-equilibrium one, demonstrat-
ing some level of frozen supermolecular ordering. The high strain rate (of the order
103 s−1) acting during electrospinning [14–16], results in stretching and orientation
of the polymer chains in the solution [25, 42]. Unfortunately, up to now there is no
detailed information regarding the structure of polymer matrix inside of electrospun
nanofibers. We know only that after solidification of the spinning jet the amorphous
portion of polymer inside of electrospun fibers is partially oriented along the fiber
axis.
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Fig. 10 Schematic internal
structure of as-spun polymer
nanofiber. a A cross-section
along a fiber. b A
cross-section across a fiber. c
The effective regular lattice
of effective “anisotropic
particles” across a fiber [41]
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y
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Let us assume that the above amorphous portion of the nanofiber polymer matrix
contains anisotropic regions consisting of directional-correlated worm-like sub-
chains, partially oriented along the fiber. These ordered regions have no clearly
delineated boundaries and smoothly transfer one into another. Nevertheless, in order
to introduce an effective internal structure of electrospun polymer nanofibers, these
ordered regions can be assumed as ellipsoid-like “anisotropic particles” with one
long, l||, and two short, df , axes; in doing so, the long axis of these “anisotropic parti-
cles” is tilted relative to the fiber axis. The tilt angle, θ , is a random parameter being
described by a distribution function. Themean-value of the tilt angle,�, corresponds
to the degree of orientational ordering in amorphous polymer matrix. The orienta-
tional ordering is characterized by the order parameter, η � 0.5

(
3
〈
cos2 θ

〉 − 1
)
, so

cos � �
√〈

cos2 θ
〉 �

√
(2η + 1)

/
3. The typical values of the order parameter for

polymer electrospun nanofibers is not too high. For example, the order parameter,
η, for Nylon-6,6 electrospun nanofibers was about of 0.2 [1] and � ≈ π/4, whereas
for a completely disordered polymer matrix (η � 0) the mean-value of the tilt angle
is� ≈ π/3. Below we will use the mean-value of the tilt angle,�, and such approx-
imation sufficiently simplifies the mathematical calculations. Note that even if two
neighbor “particles” have the same tilt angle, these “particles” can be nonparallel
due to possibility of free rotations in the plane perpendicular to the fiber axis (see
Fig. 10a, b).

The above anisotropic ordered regions, separated by thin amorphous layers, play
the role of structural elements reflecting the supermolecular structure of polymer
matrix of electrospun nanofibers. Note that the mechanical properties of the intro-
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Fig. 11 Morphologies of molecular chain orientation of PC nanofibers: a AFM image, b and c
TEM images [47]

duced “particles” are also anisotropic: in direction of the long axis the elastic modu-
lus, E||, is much higher than in perpendicular directions, E⊥, and this fact is of great
importance for our concept. It is reasonable to assume thatE⊥ is approximately equal
to the Young’s modulus of bulk polymer: E⊥ ≈ Ebulk (E|| >> Ebulk ).

The key point of the proposed model of the internal structure of electrospun
nanofibers is: the nanofiber can be considered as a “composite” consisting of effec-
tive “anisotropic particles” (the ellipsoid-like regions), surrounded by a binder (thin
amorphous polymer layers). This idea is based on the following experimental obser-
vations and theoretical analysis. Recently Malkin et al. have shown that high rate
deformation of the macromolecular network results in the formation of large inho-
mogeneous structures—grains or bundles [43]. Note that this phenomenon is in line
with the well-known phenomenon called “shear-induced concentration fluctuations
and/or phase separation” which has been examined both theoretically [44, 45] and
experimentally [46]. Taking into account the fact that the electrospinning process is
accompanied by high strain rate, it is reasonable to assume that the similar structures
can be forming also in electrospun polymer nanofibers.

In addition, recently Xu et al. analyzing the phase contrast and transmission elec-
tron microscopy images, have shown that the electrospun polycarbonate nanofibers
exhibit a cylinder-like structure composed of molecular chains that are highly ori-
ented along the fiber axis [47]; and such a structure seems very similar to described
above (see Fig. 11).

The similar structure of electrospun polystyrene-block-polyisoprene nanofibers
was observed also by Kalra et al. [48].

The simplest scale estimation of the introduced above structural elements inside of
electrospun polymer nanofibers can be obtained, examining of the network structure
evolution of polymer solution in the stretching jet during the spinning (see Sect. 4.2).

The polymer subchains between two nearest (along the chain) topological knots
are stretching due to hydrodynamic flux with an increasing velocity; and this stretch-
ing of subchains in the direction along the fiber axis results in their compression in
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perpendicular directions. This compression is related to the stretching of a subchain
by Eq. (16) which can be modified into following form:

ξ⊥
ξ0

∼� 3

2 +
[
1 − (ξ||

/
an)2

]−2 (30)

here n � (ξ0
/
a)2 � N (c

/
c∗)−2 is the monomer number in above subchains, a is

the scale of one monomer, c is solution polymer concentration; c∗ is the crossover
concentration of macromolecules overlap; N is the number of monomers of polymer
chain (polymerization degree). Assuming, N � 103, c

/
c∗ � 4, we get that n ≈ 50,

the ratios ξ||
/

ξ0 and ξ⊥
/

ξ0 can amount 10–15 and 0.5 respectively, so the aspect
ratio ξ||

/
ξ⊥ can amount 20–30.

Such the aspect ratio allows one to consider the stretched subchains as worm-
like objects and to apply the concept of orientational self-ordering to the system in
question. The self-ordering of worm-like subchains which is caused by effects of
excluded volume, in contrast to the hydrodynamic stretching, is not dominant, but
this mechanism controls the ordering kinetics, determining the local scale of ordered
regions within electrospun polymer nanofibers after solidification. The thickness of a
bundle consisting of directional-correlated worm-like subchains inside of a polymer
solution jet can be estimated with the help of the following equation, obtained in
[49] on the base of the modified Onsager model [50, 51]:

ds � ξ 2
||

ξ⊥
√
cV

[ln (1 − cV )]2, (31)

here cV is volumetric polymer concentration in the solution (the free volume in
polymer solution, ϑ � 1 − cV , amounts about 0.9). After fiber solidification the
bundle thickness reduces up to value:

df � a√
cV

[
ξ||
ξ⊥

ln (1 − cV )

]2
≈ 3 nm (32)

Note that the estimation of the correlation length, obtained in [1], exceeds the
above bundle thickness, df, by two orders of magnitude. This difference is caused by
the fact that the bundle thickness (32) corresponds to a polymer solution correlations,
frozen due to rapid solvent evaporation whereas the correlation length, obtained in
[1], corresponds to condensed state of semi-flexible polymer chain. Nevertheless,
assuming the stretched subchain as a Kuhn segment, in condensed state the bundle
thickness (32) has the same order of magnitude like the correlation length, obtained
in [1].

The length of the above bundle can be estimated, assuming the random shift of
neighboringworm-like subchains relative to each other in the fiber direction resulting
in the diffusive law of the bundle length depending on the chain number in the bundle:
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l|| ∝ ξ||
2

√
df
a

� ξ 2
|| |ln (1 − cV )|
2ξ⊥c

1/4
V

≈ 10 nm (33)

Last two Eqs. (32) and (33) allow one to calculate the aspect ratio of the ordered
anisotropic regions

ε � df
l||

� 2|ln (1 − cV )|
(ξ⊥

/
a) c1/4V

≈ 1

3
(34)

Thus, according our assumption, the nanofiber polymer matrix contains
anisotropic regions consisting of directional-correlated worm-like subchains, par-
tially orientated along the fiber; and the geometrical parameters of these ordered
regions (“anisotropic particles”) are described by Eqs. (32) and (33).

At first glance, the system of such type can be analyzed on the base of the theories
of composite elasticity. However, in the framework of these theories the accounting
of the boundary conditions which are the key point of the problem in question, is
very hard (may be, unsolvable) problem. In addition, this analogy with a composite
material is hardly applicable due to the extreme high concentration of the “anisotropic
particles”. Another analogy with granular materials or cellular solids seems more
suitable. The main distinction of granular materials from the system in question is
weak linking between grains. Nevertheless, in case of deformation mode at which
this distinction is of no importance the behavior of granular material and as-spun
polymer nanofibers can be similar. Indeed, C. Tekoĝlut et al. showed with the help
of the two-dimensional numerical simulations that granular solid demonstrates the
size-dependent behavior: in case of shear and indentation deformations, the stiffness
and the strength of granular sample are increasing with decrease of its thickness [52].

Summing this section, one can conclude that the introduced micro-structure of
electrospun polymer nanofiber is suitable and can be a base for further analysis of
the problem in question.

4.2 The Mathematical Model for Polymer Nanofiber
Elongation

Unfortunately, no suitable theory describing the above phenomenon in granularmate-
rials, is known, so a novel mathematical model should be considered.

Let us to examine a monolayer (in a cross-section of the fiber) of the introduced
“anisotropic particles”. Thismonolayer having thickness l0 � l|| cos �, lies in the xy-
plane (the z-axis is oriented along the fiber). In spite of the fact that these “anisotropic
particles” are located randomly, in order to simplify the mathematical description of
the system a regular square lattice with period df can be introduced (see Fig. 10c).
The “particles” are situated in the lattice nodes numbered by number pairs (i, j).
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In case of need, the irregular character of the system in question can be taken into
account by introducing of random fluctuation of system parameters.

Under external stretching force the considered monolayer undergoes an elon-
gation, 
l, which is accompanied by relative rotations of the above “anisotropic
particles”. The “particle” rotation occurs because of a torque arising due to local
stress. This torque strives to decrease the angle between “particle” long axis, l||,
and fiber axis. At the same time, the relative displacement of neighbor “particles”
gives rise to a torque having the opposite sign, so the rotation angle corresponds to
the equality of these two torques. Confinement effect is that the above rotations are
hindered by the fiber surface layer in which no rotations occur; and this fact is to be
taken into account by boundary conditions. As a result, the elastic modulus depends
on the diameter of the deformed fiber. In case of small fiber diameters this restriction
is dominant while the effect decreases with increase of fiber diameter, and tends to
zero for large fiber diameters.

The elongation of the considered monolayer, 
l, is caused by two reasons: due
to longitudinal elongation of the “anisotropic particles”, and due to its rotations (an
impact of a transversal deformation of the “particles” with low elastic constant, Ebulk ,
into fiber elongation is not taken into account due to the fact that this deformation
type is repressed due to counteraction of neighbor “particles”). Thus, the fiber strain
is

ε � 
l

l|| cos �
� σi,j cos �

E||
+ δθi,j tan �, (35)

here δθi, j is the rotation angle of the “particle” located in the point (xi, yj).
The Eq. (35) can be rewritten as the relationship between the local stress, σi, j, and

the local rotation angle, δθi, j

σi,j � E||ε
1 − (δθi,j

/
ε) tan �

cos �
, (36)

here the strain, ε, does not vary in fiber cross-section.
The mean-stress, σ̄ , is to be defined as

σ̄ � 1

S

∑
i,j

σi,j � E||ε
cos �

⎡
⎣1 − tan �

S

∑
i,j

δθi,j

ε

⎤
⎦ (37)

And, with accordance to the definition Eeff � σ̄
/

ε, the required effective elastic
modulus of our system is calculated as following

Eeff � E||
cos �

[
1 − 2 tan �

R2

R∫
0

δθ (r)

ε
rdr

]
, (38)

here the radial symmetry of the system in question is taken into account.
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Let us estimate the local torques acting on a trial “particle”. The first torque,M+,
which strives to decrease the angle between long ellipse axis, l||, and fiber axis, is
proportional to the local stress, σi, j, to the square of the long axis of the ellipsoid, l||,
as well as to the first-degree of the short one, df . In addition, this torque is equal to
zero for the isotropic sphere-like particle or if the angle, �, between long ellipsoid
axis, l||, and the fiber axis is equal to 0 orπ

/
2. So, the torqueM+ can be approximated

by the following equation

M+ ∝ σi,j l
2
||df sin � cos �(1 − ε) (39)

There are two torques caused by elastic deformation and shear stress arising as a
result of relative rotation of two neighbor ellipsoids, and acting in opposite direction.
The first one,Mel , is proportional to the third power of the ellipsoid long axis, l||, to
cos2 θ , and to the rotation angle, δθi, j; in so doing the elastic constant is approximately
equal to the Yang’s modulus of amorphous polymer corresponding to bulk modulus,
Ebulk . So, the torque Mel can be approximated as

Mel ∝ Eaml
3
|| cos

2 � · δθi,j (40)

The second torque,Msh, is proportional to thefirst-degree of the ellipsoid long axis,
l||, to the third power of the short one, df , and to the differences in the rotation angles
of the neighbor ellipsoids, δθi, j. In addition, this torque is inversely proportional to
the thickness of a layer between two neighbor “particles” consisting of one or two
polymer chains, so the thickness of this inter-layer can be taken as the scale of one
monomer, a. In this case the elastic constant, E||, is related to the chain stretching
due to presence of tie molecules, so E|| >> Ebulk . Thus, the torque Msh can be
approximated as

Msh ∝ E||
l||d3

f

a

[(
δθi,j − δθi−1,j

)
+
(
δθi,j − δθi+1,j

)
+
(
δθi,j − δθi,j−1

)
+
(
δθi,j − δθi,j+1

)]
(41)

In equilibrium the torques acting in opposite direction, are to compensate each
other, and this condition allows one to write the following equation determining the
internal state of deformed fiber

σi,j l2||df sin � cos �(1 − ε) �
Eaml3||δθi, j cos � − E||

l||d3
f

a

[(
δθi+1,j + δθi−1,j − 2δθi,j

)
+
(
δθi,j+1 + δθi,j−1 − 2δθi,j

)]
(42)

This difference Eq. (42) can be approximated by the differential one:

1

ξ

d

dξ
ξ
d

dξ
�(ξ ) � �(ξ ) − �0 (43)



Supermolecular Structure Formation During Electrospinning … 197

here ξ ≡ ξi � idf
/
r0 ≡ r

/
r0, r0 �

d2
f

/√
al||

[
(1 − ε) tan � sin � +

(
Eam

/
E||ε cos �

)]
(r0 ≈ 10 ÷ 20 nm) and

�0 � [
tan � +

(
Eam

/
E||ε(1 − ε) tan �

)]−1
.

The boundary conditions for the Eq. (43) are

d

dξ
�(ξ)

∣∣∣∣
ξ�0

� 0, �(R
/
r0) � 0 (44)

The solution of the Eq. (43) satisfying the boundary conditions (44), is

�(ξ) � �0

[
1 − I0(ξ )

I0(R
/
r0)

]
, (45)

here I0(ξ ) � J0(iξ ) is the Bessel function.
Multiplying the Eq. (43) by ξ and integrating it over ξ , we find that

2

R2

R∫
0

δθ (r)

ε
rdr � 2r20

R2

R/ r0∫
0

�(ξ ) ξdξ � �0

[
1 − 2r0

R

d

dξ
ln [I0((ξ))]

∣∣∣∣
ξ�R/ r0

]
,

(46)

and the effective modulus, Eeff , is

Eeff � Ebulk + 
E
r0
R

d ln [I0(ξ )]

dξ

∣∣∣∣
ξ�R/ r0

, (47)

here Ebulk � Eam cos �
/
[ε(1 − ε) sin2 �], 
E � 2E||

/
cos �, and the strong

inequality Ebulk << E|| is taken into account.
Using the asymptotic behavior of Bessel function I0(ξ ) for small and large argu-

ments, one canfind that for largefiber diameters, the effectivemodulus,Eeff , increases
with diameter decreases:

Eeff ≈ Ebulk +
2E||
cos �

r0
R

, R > r0 (48)

However, for small fiber diameters (R < r0) the increase of the effective modulus,
Eeff , stops, and it tends to a certain finite value:

Eeff ≈ E||
cos �

[
1 − 1

8

(
R
/
r0
)2]

, R < r0 (49)

Unfortunately, the obtained Eq. (47) describes the elastic modulus of electro-
spun nanofibers depending on their diameter not so well. Although this dependence
demonstrates, as expected, an increase in the elastic modulus of nanofibers with
decrease of their diameters, the calculated increase turns out to be much weaker
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Fig. 12 Dependence of relative Young’s modulus, Eeff /Ebulk , versus nanofiber diameter, D. The
dashed line corresponds to the Eq. (47) describing the Young’s modulus, Eeff , at r0 = 10 nm. The
solid line demonstrates the modified dependence, Êeff (56) corresponding to the renormalization
of the ratio R/r0 (55) with ãN γ = 40. The dashed-dot line corresponds to the asymptote (57). The
ratio 
E/Ebulk = 25. The circles and triangles show the experimental values of relative Young’s
modulus, Eeff /Ebulk , for electrospun Nylon-6,6 nanofibers, obtained by the tensile test (O) [1], by
the resonant vibration method (∇) [53], and by the 3-point bending method (
) [9, 41]

compare to the one, observed experimentally (see Fig. 12, dashed line). Such dis-
agreement is related to the fact that the scale of the introduced above ordered regions,
l|| and df do not vary with variation of fiber diameters, whereas from the physical
point of view such a dependence should take place, and it is to be taken into account.

4.3 Scaling of the Size-Dependent Elastic Modulus of
Electrospun Polymer Nanofibers

Up to now the normalization parameter, r0, which depends, in particular, on the sizes
of ordered regions (the thickness, df , and the length, l||) assumed to be independent
on the fiber diameter. But both these parameters, both the thickness, df , and the
length, l|, depend on the volumetric polymer concentration in the solution, cV . In
turn, the concentration of the spinning solution, cV , affects the radius of electrospun
nanofibers. Thus, the parameters df , and l|, should vary with variation of the fiber
diameter, and therefore, the normalization parameter, r0, depends on the radius of
electrospun nanofibers, R. This dependence will be defined below with the help of
well-known scaling equations.

First of all, taking into account the fact that concentrations which are usually using
in electrospinning, are relatively low (cV ≤ 0.15), and assuming that ln (1− x) ≈ x,
the Eqs. (32) and (33) can be rewritten as the following scaling dependences
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df ∝ an2c3/2V , l|| ∝ an2c3/4V , (50)

where n � (ξ0
/
a)ν � N (cV

/
c∗
V )

1/ (1−3ν) is the monomer number in the subchains
of the topological polymer network, c∗

V � N 1−3ν is the volumetric crossover con-
centration of macromolecules overlap. Therefore, the normalization parameter, r0,
depends on the volumetric polymer concentration, cV , as well as on the polymeriza-
tion degree, N , and this dependence also can be approximated by a scaling equation

r0 ∝ d2
f

/√
al|| ∝ a

(
nc7/8V

)3 � aN α
(
cV
/
c∗
V

)−α/ (3ν−1)
(51)

where α � 3[1 − 7(3ν − 1)
/
8].

It iswell known that the radius of electrospun nanofibers depends on concentration
of spinning solution. Thus, Gupta et al. [13] showed that the relative concentration
of spinning solution, cV

/
c∗
V , and the final radius of electrospun nanofibers, R, also

are related by the scaling equation

R

R0
∝ (

cV
/
c∗
V

)β
(52)

here R0 is the normalization parameter R0 ≈ 10−3 − 10−2 µm. The index β equals
to about 3. According the data, presented by Gupta et al. β ≈ 3.1; [13] the other
measurements using a different types of polymer, have shown the following values:
β ≈ 3.0 [14] or β ≈ 2.9 [14].

As a result, the normalization parameter, r0, increases with the fiber radius
decrease

r0 ∝ aN α
(
R
/
R0
)−α/ β(3ν−1)

(53)

Let us present the normalization parameter, r0, in the following form

r0 ∝ aN γ
(
R
/
R0N

γ
)−α/ β(3ν−1)

(54)

here γ � αβ(3ν − 1)
/
[α + β(3ν − 1)].

The last Eq. (54) for the normalization parameter, r0, allows to present the ratio
R
/
r0 in the form of a power function of the fiber radius, R,

R

r0
� (

R
/
ãN γ

)δ
(55)

here ã � (R0
/
a)γ / β(3ν−1)a and δ � 1 + α

/
β(3ν − 1).

Substituting the ratio (55) into Eq. (47), we receive the modified equation for the
effective module, Êeff (see Fig. 12, solid line)
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Êeff � Ebulk + 
E
1

ξ

d ln [I0(ξ )]

dξ

∣∣∣∣
ξ�(R/ ãN γ )

δ

(56)

In case of large fiber diameters (R >> ãN γ ) the effective modulus, Êeff , increases
with fiber diameter decrease according the power law

Êeff ≈ Ebulk + 
E
(
ãN γ

/
R
)δ

, (57)

whereas for small fiber diameters (R << ãN γ ) the effective modulus, Êeff , tends to
a certain finite value also according the power law with the doubled index

Êeff ≈ 
E

[
1 − 1

8

(
R
/
ãN γ

)2δ]
(58)

Note that though the behavior of the asymptote for small fiber diameters (58)
seems reasonable, its accuracy is not too high due to the fact that the continuous
approximation (43) of the difference Eq. (42) in this case is too rough. Therefore, for
the comparison to the experimental data we should restrict ourselves by asymptote
for large fiber diameters (R >> ãN γ ). And indeed, the Eq. (57) agree well to
the experimental data for electrospun Nylon-6,6 nanofibers [1, 9, 52] (see Fig. 12,
dashed-dot line).

The values of the indexes γ and δ in the above Eqs. (55)–(58) cannot be considered
as a free model parameters and are to be calculated. As the solvents which are usually
used in electrospinning, are a good ones, the index ν can be estimated as ν ≈ 0.55.
Assuming β ≈ 2.9, we receive that γ ≈ 0.75 and δ ≈ 1.6.

The dependence (56), Êeff

/
Ebulk , with ãN γ � 40 nm is depicted on the Fig. 12

(solid line). In order to compare the dependence (47) and its modification (56), the
values of the parameter
E

/
Ebulk were chosen the same in both cases:
E

/
Ebulk �

25. One can see that themodified dependence (56) demonstrates the better agreement
with the experimental data compared with dependence (47), particularly for thin
fibers, in region of small fiber diameters where the noticeable discrepancy between
Eq. (47) and experimental data is being observed.

The obtained dependence can be verified on the base of experimental observations
of Ji et al. [2] that the molecular weight affects the elastic modulus of electrospun
nanofibers; and the relative elasticmoduli of electrospun nanofibers of variousmolec-
ular weights can be described by onemaster curve as a function of fiber radius, scaled
by Rg, i.e., according to power law. And in the Eq. (55), the argument, R, is scaled
by the factor ãN γ having the same form as the radius of gyration, Rg ∝ aNν .

However, in spite of such a similarity, the index γ ≈ 0.75 is too high in order
to consider the scaling factor ãN γ as an approximation for the radius of gyration,
Rg ∝ aNν (for the system in question the maximum possible value of index ν is
0.6). Therefore, the scaling property of the Eq. (56) seems non-applicable for the
explanation of the effect of themolecularweight on the elasticmodulus of electrospun
nanofibers.
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Fig. 13 Relative moduli of
fibers, fabricated of the
polymers of various
molecular weights, as a
function of their radius,
rescaled by ãN γ (the used
data is taken from [2]). The
fitting of the experimental
data results in the function 1
+ 35x1.5, depictured by the
dashed line [41]
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Nevertheless, this contradiction can be resolved by alternative interpretation of
the experimental data. The point is that the index ν in the scaling factor Rg ∝ aN ν

can be modified within the accuracy of the experimental data. By the other words,
the values of fiber radius in the experimental data can be rescaled by the factor, N ν̃ ,
with another index, ν̃, being higher than ν. Indeed, such a rescaling by the factor N γ

with γ ≈ 0.75 results in the fact that all experimental points collapse on one curve
(see Fig. 13).

Moreover, the linear fitting of the rescaled experimental data in the double-log
coordinates results in the following equation for the approximating curve

Erel ≈ 1 + 35
(
R
/
aN 0.75

)1.5
(59)

The index value in the Eq. (59) is δ � 1.5, i.e., slightly less than the calculated
index value δ ≈ 1.6 in the Eq. (55). Such a small difference is in this case negligible,
showing a good agreement of the theoretical model to the experimental data.

5 Conclusions

The theoretical modelling of dynamics of the polymer network structure within the
electrospinning jet of highly entangled, semidilute polymer solutions demonstrates
that the polymer network can transform from a free state to an almost fully stretched
state under extreme longitudinal acceleration. The stretching of the network is accom-
panied by substantial lateral contraction that leads to a rise in polymer concentration
at the jet center. This outcome was confirmed experimentally by X-ray absorption
measurements of the jet [25], as well as by analysis of the redistribution in the inten-
sity of the visible light in a stretched semidilute entangled polymer solution [26].
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As a result of the above evolution, the non-equilibrium state of polymer matrix
inside of electrospun nanofibers is being formed. This supermolecular structure,
formed as a result of electrospinning of semidilute entangled polymer solution, con-
sists of anisotropic regions containing directional-correlated well packed worm-like
subchains, partially oriented along the fiber. In reality, these ordered regions have no
clearly delineated boundaries and smoothly transfer one into another. At the same
time, the ordered regions are separated each fromother by amorphous polymer layers.

In our opinion, just such an internal non-equilibrium structure of electrospun
polymer nanofibers provides their unique features, in particular, the size-dependent
behaviour which is caused by confinement of the supermolecular structures, formed
as a result of electrospinning process. Moreover, the proposed model [41] describes
the mechanism realizing the above confinement effect: due to interaction between
ordered regions, themobility suppression in near-surface layers hampers deformation
of polymer matrix inside of electrospun fibers. If the scale of such surface influence
on the deformability of electrospun fibers is comparable to their radius, the effective
modulus start to depend on the fiber diameter, i.e., the size-dependent behaviour will
be observed. However, in the case of thick fibers, when their radii are much larger
of the interaction scale of ordered regions, the fibers demonstrate the properties of
regular bulk specimens.
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Recent Developments in Theory
and Modeling of Polymer-Based
Nanocomposites

Valeriy V. Ginzburg

Abstract Polymer-based nanocomposites represent relatively new class of materi-
als, often with unique synergy of polymer (“matrix”) and inorganic (“filler”) proper-
ties. In recent years, the industry developed new techniques to reduce the size of the
fillers (from 10–100 microns in conventional composites to <100 nm in nanocom-
posites), and to functionalize their surfaces, thus enabling better control over the
spatial distribution of the particles in the matrix. The structure of resulting materials
is thus a complex product of particle/polymer interactions, particle size and shape,
and processing history. In turn, the properties of the composite material are a func-
tion of its microstructure (e.g., particle aggregation or dispersion), as well as the
properties of the matrix, filler, and interfacial regions. Today, theory and modeling
of nanocomposites is one of the most rapidly developing areas in Polymer Science.
In this review, I discuss theoretical and computational work related to the prediction
of the nanocomposite structure and morphology.

1 Introduction

In July of 2000, I was finishing my postdoctoral fellowship at the University of
Pittsburgh. Prof. Manevitch (“L. I.”, as he is called by his colleagues and former
students) was visiting the U.S. at the time and was in Pittsburgh as part of that trip.
We spent several days walking around the historic Oakland area near the University,
discussing each other’s research. At that time, my postdoc advisor was Prof. Anna
Balazs, and her most recent emphasis was on polymer-clay nanocomposites (PNC).
In the late 1980s and early 1990s, Toyota researchers demonstrated that the addition
of montmorillonite clay to Nylon-6 polymer matrix can lead to a~2X increase in
modulus even at 2–4 wt.% filler levels [76, 117]. Extensive experimental studies
demonstrated that depending on the polymer/clay surface interaction, the clay fillers
can remain aggregated (“immiscible morphology”), allow some degree of polymer
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Fig. 1 Morphologies of polymer-clay nanocomposites (idealized schematic representation)

penetration between the adjacent platelets (“intercalated morphology”), or separate
completely and mix with the polymer as single sheets (“exfoliated morphology”), as
shown in Fig. 1 [36, 79, 157, 158]. Dr. Richard Vaia and Prof. Emmanuel Giannelis
proposed that the polymer-clay nanocomposite morphology is mainly influenced by
the interplay between the polymer entropy losses due to confinement between the
two adjacent plates and the potential enthalpy gains due to any favorable interaction
between the polymer and surface. They concluded that polar polymers like Nylon-6
have favorable interactions with the clay surfaces and thus could form intercalated
hybrids with clays more easily than, say, polyethylene or polypropylene [155, 156].
To counter this effect, one could make the clay surface more polymer-like by cova-
lently grafting short-chain nonpolar oligomers. Suchorganically-modified clayswere
indeed synthesized (e.g., Cloisite® organoclay by Southern Clay Co.) and used in
industry, often with mixed results. Prof. Balazs and her collaborators (Drs. Ekaterina
Zhulina, Chandralekha Singh, Yulia Lyatskaya, June Huh, Dmitri Kuznetsov, and
the author of this review) developed theoretical approaches to explain how the inter-
action between the polymer matrix, organic ligands, and clay surfaces can determine
the phase behavior of the polymer-clay nanocomposite [7–9, 37, 38, 43, 45, 65, 83,
84, 95].

The question that L. I. and I discussed in Pittsburgh was this—if thermodynamics
of polymer/clay interactions favor intercalation or exfoliation, how does this pro-
cess take place? Profs. A. Baljon, R. Loring, and co-workers considered the case
where the clay platelets were relatively small and rigid and modeled the scenario
where they remained parallel while the intercalating polymer was pushing them
apart [10, 86–88]. However, for larger clay platelets, it was more likely that inter-
calation would occur only in a small area, where the two surfaces would be pried
apart (perhaps due to hydrodynamic stresses). Then, as the polymer penetrates into
the space between the platelets, a “kink” can move along to push the transition from
“closed” to “intercalated” state (Fig. 2). As a result of this discussion (later joined
remotely by Prof. Oleg Gendelman), we proposed a model for the “kink” or “soli-
tonic” mechanism of exfoliation [35, 44]. This model also helped us estimate the
hydrodynamic stresses needed to exfoliate or intercalate clays in polymers such as
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Fig. 2 Kink model of
polymer intercalation
between clay platelets (a)
and effective double-well
potential used to model the
kink. Reproduced with
permission from Ref. [44].
Copyright 2001 American
Physical Society

typical commercial polyethylene or polypropylene [6]. Thus, it is easy to realize that
even when polymer and organoclay are favored to mix, the resulting morphology
depends strongly on the processing history (e.g., the design of the extruder used,
etc.), and the ultimate properties could be very different from the “ideal” scenario.

Severalmonths later, I joinedTheDowChemicalCompany inMidland,Michigan.
One of Dow’s scientists at the time, Dr. Jozef Bicerano, was interested in understand-
ing how the arrangement of clay particles impacts the nanocomposite properties such
as viscosity [12], modulus [17] and gas permeability [31]. The appeal of clay par-
ticles as fillers was often tied to their anisotropy—property changes were strongly
tied to the filler aspect ratio. We used and developed various micromechanical mod-
els to relate structure to properties, initially for polymer-clay nanocomposites, and
subsequently for other systems [11].

Over the past two decades, the nanocomposite field broadened substantially to
include many new types of fillers (carbon nanotubes, graphene, metal nanoparticles,
SiO2 nanoparticles, etc.) and many new applications (electrically conducting coat-
ings, photonic materials, etc.) [80]. In this chapter, I attempt to describe some recent
developments in theory and modeling of polymer-based nanocomposite materials.
(While there is some overlap with an earlier review [40] published in 2010, I have
added discussion of many new developments that took place subsequently.) Note that
this review is limited to the nanocomposite structure and phase behavior prediction,
with emphasis on the mesoscale, field-theoretical and hybrid approaches; a more
comprehensive review will be published elsewhere.



208 V. V. Ginzburg

2 Polymer-Based Nanocomposites: Morphology and
Structure Prediction

Predicting morphologies of nanocomposite materials usually requires understand-
ing events occurring on several length scales. The smallest lengthscale (0.1–1 nm)
involves interactions between individual atoms. At the next scale (1–10 nm), one
considers interactions between repeat units of the polymer matrix and grafted lig-
ands, as well as individual nanoparticles. Finally, at the next level (10–100 nm), one
can resolve the large-scale morphology, such as crystalline arrangement of particles,
aggregate size, etc. Moving from one level to another involves a process known
as coarse-graining, where one can derive interaction potentials between larger-scale
“objects” (e.g., repeat units) on the basis of simulations on the smaller scale [24, 115,
116]. While some studies include rigorous coarse-graining, many others concentrate
primarily on modeling a specific length scale and undertaking parametric explo-
rations in which the interactions between various objects are characterized by, say,
Flory-Huggins interaction parameters. In this section, I start from molecular-level
simulations (atomistic Molecular Dynamics) and then proceed to discuss coarse-
grained or “mesoscale” models.

2.1 Molecular-Level Simulations

Molecular-level simulations (e.g., Molecular Dynamics, MD) are a necessary first
step to investigate the intrinsic properties of the fillers, the polymers, the organic
ligands grafted onto the fillers, as well as the properties of both polymers and ligands
confined in the spaces between adjacent filler particles. In some instances, MD simu-
lations can be used even to directly predict macroscale properties. Those studies can
help elucidate the impact of the surface functionalization of the filler on the thermal
conductivity of composites, as well as predict the relationship between the thermal
conductivity and the minimum distance between the nanofillers.

For polymer-nanoclay hybrids, atomistic MD simulations were used to compute
the intrinsic properties of the clay platelets themselves, as well as the configurations
of the grafted organic ligands, and the potential ofmean force (PMF) between the clay
platelets as function of their separation. In a series of papers, Mazo et al. [106–109]
modeled the elastic properties of pure montmorillonite (MMT) clay platelets, as
well as hydrated MMT, MMT with grafted poly(ethylene oxide) (PEO) oligomers,
and pyrophillite platelets. Heinz et al. used MD simulations to investigate elastic
properties of nanoclays, adsorption of various polymers onto the nanoclay surfaces,
and the PMF between those organoclays as a function of the ligand chemistry and
grafting density [26, 57–59, 167]. Other examples of the use of MD for pure silicate
and polymer-silicate materials have been described by Coveney and co-workers in a
number of recent papers [22, 145, 146]. They also propose approaches on integrating
MD simulations into a multi-scale framework.
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2.2 Mesoscale Modeling Approaches

Even as atomistic MD simulations are necessary to capture the details of the short-
range interactions between various atoms and molecules present in the system, they
can usually address only relatively small ensembles, not enough to predict mesoscale
structures. Thus, the majority of nanocomposite simulations today are coarse-
grained. Usually in coarse-grained (CG) simulations, several atoms are combined
to form a single “bead”, and the interactions between the beads are re-parameterized
[115, 116]. Polymer chains are then represented as “strings” comprised of such
mesoscale or coarse-grained beads. One can then simulate the behavior of such sys-
tems directly, usingMolecular Dynamics (or, as alternatives, Brownian Dynamics or
Dissipative Particle Dynamics) and compute thermodynamic variables for the sys-
tem as time averages from the simulation runs. Alternatively, one can re-write the
thermodynamic partition function of the same system in terms of local densities of
individual monomer types and/or correlation functions. The former approach is often
termed “particle-based” models, and the second “field-based” models or theories. In
nanocomposite literature, there are also “hybrid” models where the fillers are treated
as “particles” while the polymers are described by the density “fields” contributing
to the forces acting on the particles.

2.2.1 Particle-Based Models

Coarse-grained particle-based models are widely used today in predicting structure
and mechanical properties of nanocomposites. Typical strategies for coarse-grained
Molecular Dynamics or Monte Carlo simulations in nanocomposites are described
by various authors, [2, 164, 168] Some examples are given below.

Nanocomposites with Plate-like Fillers. The most typical examples of plate-like
fillers are nanoclays (montmorillonite, bentonite, and others). Thermodynamics of
exfoliation and intercalation in mixtures of bare and organically modified clays with
polymers have been studied by multiple authors. Vaia and co-workers [3, 141] used
coarse-grained Molecular Dynamics (CG-MD) to investigate how the exfoliation
and intercalation of organoclays in polymer matrices depended on the structure and
grafting density of the grafted surfactants. Farmer and co-workers expanded thiswork
to include factors like added solvent, clay sheet flexibility, and others [56–59, 119,
120]. Scocchi et al. [137–139] developedDissipative ParticleDynamics (DPD) based
approach to study the structure of polymer (such as Nylon 6) layers in the vicinity
of the clay particles. All these studies provided important guidance in designing
organoclays for improved dispersion and exfoliation.

Nanocomposites with Rod-like Nanofillers. The examples of rod-like nanofillers
include carbon nanotubes (single-wall and multi-wall), as well as metal (gold and
silver) nanorods with various aspect ratios. The dispersion of nanorods in the poly-
mer depends strongly on the balance between the repulsive and attractive forces, as
discussed, e.g., in a recent review [63]. Hore and co-workers used Dissipative Par-
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ticle Dynamics (DPD) to determine the aggregation/dispersion phase diagram for a
simple case of a brushed nanorod in a matrix chemically identical to its brush [71].
Karatrantos et al. [70] utilized DPD simulations to investigate how the dynamics of
polymer changes in the presence of nanorods, showing that the effective density of
entanglements can change substantially in the vicinity of the fillers.

Modeling the behavior of nanorods in a block copolymer or polymer blend rep-
resents a further challenge. Hore and Laradji [62] used DPD to describe how the
nanorods can potentially compatibilize immiscible polymer blends by going to the
interfaces and reducing the interfacial tension. Balazs and co-workers [121, 163]
developed a hybrid field-particle approach to model the dynamics of A-preferential
nanorods in phase-separating AB-binary blends. Given the multidimensional param-
eter space and the multitude of possible morphologies (typically, non-equilibrium),
understanding of these systems will remain an area of interest for polymer science
in the near future.

Nanocomposites with SphericalNanofillers. The literature on polymer-dispersed
nanospheres (such as silica or metal nanoparticles) is probably the most immense,
going back to classical research on colloid-polymer interactions [4, 5]. For the case
of nanocolloids dispersed in themelt, Smith and co-workers performed CG-MD sim-
ulations showing that for the case where polymer matrix does not have a preferential
attraction to the particle and the particle volume fraction is not too low, depletion
attraction causes the nanoparticles to aggregate, the effect depending strongly on the
nanoparticle size [142, 143]. Most of the studies confirmed that nanoparticles placed
in a polymermelt tend to aggregate, unless therewas a preferential attraction between
them and the polymer matrix. Interestingly, though, Mackay et al. [96] found that
highly-crosslinked PS nanoparticles can be dispersed in a linear PS, provided that the
nanoparticle radius was smaller than the matrix polymer radius of gyration, RP/Rg

<1. While this scaling seems reasonable for purely entropic systems (nanoparticles
with RP/Rg << 1 represent a relatively small obstacle to the polymer chains and thus
the conformational entropy loss by the polymers cannot overcome the translational
entropy loss by the particles if one compares dispersed state to the aggregated state;
the opposite would be true when RP/Rg >> 1), there is, to my knowledge, no rigor-
ous theory to describe this transition (see Ganesan and Jayaraman [34] and Kumar,
Ganesan, and Riggleman [81]). One additional complication could be whether the
cross-linked polymer nanoparticle can be considered a “hard” or “bare” sphere, or is
it perhaps closer to the case of “hairy” or organically-modified nanoparticles. This
is the case we consider next.

Grafting of organic ligands onto the particle surface is widely used to promote
the particle dispersion in the matrix. The dispersion of nanoparticles with ligands of
length N in amatrix having length P, in the simplest possible scenario, depends on the
P/N ratio—if P/N >>1, the ligands are usually unable to separate the particles and the
nanocomposite is in the aggregated state; if, on the other hand, P/N << 1, the steric
repulsion overcomes the depletion attraction, and particles become well-dispersed.
This picture generally holds for all particle shapes (platelets, rods, or spheres), with
only some quantitative changes, [34, 55, 61, 69, 153] in the limit of very large
particle curvatures. For nanoscale particles, especially spheres, one expects that the



Recent Developments in Theory and Modeling of Polymer … 211

Fig. 3 Phase diagram for “hairy” spherical nanoparticles in polymer matrix. Here, σ is the grafting
density, N is the ligand length, P is the matrix length, and α = N/P. Labeling of morphologies:
WD—widely dispersed; PS—phase-separated (aggregates); S—strings; CS—connected sheets;
SC—small clusters. Various symbols correspond to experimental data from various research groups
and studies. Reproduced with permission from [82]. Copyright 2013 American Chemical Society

boundary between aggregation and dispersion shifts towards smaller ligand lengths,
all other things being equal [55, 153] Furthermore, dispersion of nanospheres in a
polymer melt can be improved by using bidisperse or polydisperse ligands, as shown
by Jayaraman and Martin in their Monte Carlo simulations [102, 104].

Intriguingly, Akcora and co-workers [1] demonstrated that grafted nanoparticles
in a polymer melt display a variety of morphologies. In addition to the expected
aggregated and dispersed states, the authors also found nanoparticle “sheets” and
“strings”. The morphology was found to be a function of the same P/N ratio, as well
as the ligand grafting density (Fig. 3). Kumar and co-workers [16, 51, 82, 125] used
experiments and Monte Carlo simulations to elucidate the origins of this behavior.
They found that even though the ligand density is isotropic in the limit of a single
particle in a polymer matrix, the presence of other particles in the vicinity breaks the
symmetry. Thus, it is not appropriate to replace the effect of the ligand shell with a
simple pairwise interparticle potential (as is often done in colloidal dispersion analy-
sis). More appropriate is to compare the “hairy” nanoparticles to soft spheres, having
hard core and deformable shell; simulations by Glaser et al. [46] showed that such
core-shell particles had richer phase behavior than either pure hard spheres or spheres
with pairwise interaction potentials. It is now fully accepted and confirmed inmultiple
experiments that “hairy” nanoparticles in polymer matrices form various anisotropic
structures even as the building blocks themselves are perfectly isotropic [113].
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One can dispose of the matrix altogether, creating “one-component nanocom-
posites”, also referred to as “nanoparticle organic hybrid materials” (NOHM) [14,
15, 23, 27, 28, 50, 74, 75]. Since these materials are one-component, they—like
block copolymers—should generally exhibit microphase separation, not macro-
scopic aggregation. Changing the ligand characteristics (e.g., using block copolymer
ligands or a mixture of ligands of various molecular weights and chemical com-
positions) could expand the complexity of possible morphologies, while changing
the particle nature (metal, semiconductor, or polymeric) could determine for which
application the composite would be best suited. Thus, HNPs could become ideal
“building blocks” for versatile nanostructure engineering, as envisioned, e.g., by
Cheng et al. [144, 165, 166, 169] and Glotzer et al. [19, 47–49, 123, 170]

2.2.2 Field-Based and Theoretical Models

In this section, I describe three methods that have been successfully used to describe
thermodynamics and phase behavior of nanocomposites: [1] Integral equation theo-
ries and specifically Polymer Reference Interaction Site Model (PRISM); [2] Den-
sity Functional Theory (DFT), and [3] Self-Consistent Field Theory (SCFT). In the
SCFT sub-section, I will also include the SCF-DFT formalism originally proposed
by Thompson, Ginzburg, Matsen, and Balazs [148] for the case of bare spheri-
cal nanoparticles in block copolymer melts, and extended [41, 42] to describe the
“hairy” nanoparticles. Theoretical approaches also include Strong Segregation The-
ory (SST), which has been successfully applied to describe the phases of block
copolymer/nanoparticle mixtures [66, 124] and single-component hairy nanoparti-
cles [125]. For more details, see recent reviews [33, 34].

Integral Equation Theories. Integral equation theories aim to describe the struc-
ture of a complex fluid by computing the interparticle pair correlation function,
g(r), and using it to draw conclusions about the short-range ordering (if any); in
multicomponent mixtures, the pair correlation functions can be computed between
various species present in the system. For simple liquids, this approach goes back to
the work of Ornstein and Zernike (OZ) (Ornstein and Zernike [118]. To solve the OZ
equations and compute the correlation function, one needs to introduce additional
conditions such as closure approximation (usually based on molecular theory, simu-
lations, or experiments). Some of the most well-known closure approximations are
Percus-Yevick (PY) [122] and hypernetted chain (HNC) [114, 159].

This approach can be generalized to describe single andmulticomponent polymer
melts, as discussed, e.g., by Schweizer and Curro [136]. The method developed by
Schweizer and Curro—Polymer Reference Interaction Site Model or PRISM [134,
135]—has by now become one of the most widely used in describing the struc-
ture of polymers melts, solutions, colloid-polymer dispersions, and nanocomposites.
Recently, Jayaraman and co-workers developed the so-called PRISM-MC approach
in which the intramolecular contribution to the correlation function is determined
based on single-chain Monte Carlo simulations (see [34] for a succinct yet detailed
description of this technique); they then applied it to compute the polymer-mediated



Recent Developments in Theory and Modeling of Polymer … 213

potential of mean force (PMF) between organically-modified nanospheres in poly-
mer melt [68, 99–101, 103, 112]. Among interesting findings from those studies was
that the ligand polydispersity improves the dispersion of the nanoparticles in the
melt, all other things being equal [99, 101, 103].

Density Functional Theory (DFT). One significant drawback of the liquid state
theories is that they are,well, liquid state theories. Inmany cases, one needs to explore
the structure of not just the liquid (disordered) state, but also various crystalline
and possibly liquid crystalline states. For example, in the case of hard spheres [53,
130] or Lennard-Jones spheres, [52–54] the fluid is known to organize into face-
centered-cubic (FCC) crystalline morphology at high sphere volume fraction due to
entropic and/or enthalpic considerations. The liquid-state theory is able to describe
the liquid branch of the pressure-density phase diagram but not the solid branch or the
coexistence of the two branches; to do this, one needs to use DFT-type approaches.

Classical (fluids) DFT originates from the same Hohenberg-Kohn theorem [60]
that gave rise to the quantum DFT, namely that the overall free energy F is a unique
functional of the single-particle density, ρ(r) [162]. The free energy functional con-
sists of the ideal-gas contribution, f id, and the excess free energy, f ex. The latter is
constructed so that the equation of state for the liquid branch (below the liquid-solid
transition) is satisfied, and that the liquid-solid transition itself is also captured cor-
rectly. For various ways of constructing f ex, see [126, 131, 147]. For the case of
polymeric liquids, one needs to include the influence of intramolecular (bonded)
interactions, as well as enthalpic (Flory-Huggins) interactions between different
monomer types. Those effects are treated as perturbations, [151, 152, 160, 161]
resulting in a complex non-local free energy functional such as iSAFT (interfacial
Statistical Associating Fluid Theory) [67, 97]. Frischknecht et al. [110, 111] applied
a modified DFT formalism to describe the behavior of polymer-nanoparticle mixture
near a hard wall. According to the simulations, the particles stay away from the hard
wall at low volume fractions, but prefer to segregate to the wall and form a mono-
layer there as their volume fraction is increased. Overall, DFT showed excellent
promise for describing polymer nanocomposites; I note, however, that so far, most
DFT analyses were performed for quasi-one-dimensional systems (most likely, due
to computational resource limitations).

Self -Consistent Field Theory (SCFT) and SCFT-DFT Approaches. Polymer
SCFT is a widely used approach that is based on the Edwards’ description of flexible
Gaussian polymer chains with excluded volume, [25] combined with the Flory-
Huggins [29, 64] lattice description of non-bonded interactions (for more details,
see Fredrickson et al. [30, 32, 39]. Schmid [132, 133] and many other authors).
Within SCFT, one minimizes the free energy functional with respect to the monomer
densities and conjugate chemical potentials, to obtain self-consistency equations
which are then solved iteratively. Those equations could, in principle, have multiple
solutions corresponding to various morphologies (disordered, FCC, BCC, lamellar,
hexagonal, etc.). It is then possible to calculate free energies of individual structures,
and, for each point in parameter space, select the morphology with the lowest free
energy. However, in its simplest form, SCFT is not suited to describe nanoparticles
or other three-dimensional objects. To use the SCFT mechanism for investigating
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nanocomposites, Balazs and co-workers proposed combining it with the DFT-like
description of the nanoparticles [18, 85, 89–94, 148, 149, 150, 154]. The SCFT-
DFT formalism turned out to be computationally less expensive than a pure DFT
approach, and provided good insights into the nanoparticle ordering in bulk block
copolymers and in polymer thin films [90, 91]. Another example where SCFT-DFT
provided interesting new results was the case of a “tadpole” copolymer where a
single A-ligand was grafted onto a B-nanosphere; the calculations of Lee, Balazs,
Thompson, and Hill [85] showed the formation of a hexagonal phase. For the case
of AB-diblocks, mixed with the A-preferential nanospheres, [148] the distribution
of nanoparticles within the A-domains showed a good qualitative agreement with
experimental results [13].

The above investigations (except for the “tadpole” study) considered only “bald”
nanoparticles. Recently,Ginzburg [41, 42] proposed amodification of the SCFT-DFT
approach that allows for explicit accounting for multiple grafting ligands, provided
the ligands are “weakly grafted” and thus able to move around the nanoparticle
surface. For the case of single-component nanocomposites (“hairy” nanoparticles
without matrix polymer), he predicted [42] several soft-crystalline morphologies
similar to those of block copolymers (lamellar, hexagonal cylinders, FCC spherical,
and “sheets”, see Fig. 4). The morphologies are similar to earlier predictions [47, 48,
98, 170] and support potential use of “hairy” or “tethered” nanoparticles as “design
materials” able to form various anisotropic structures. The SCFT-DFT formalism is
able to account for the main driving force in this anisotropic self-assembly—the re-
arrangement of ligands so that the effective interaction between the particles becomes
anisotropic and “polarized”.

While SCFT-DFT is a fast and straightforward technique, questions remain about
some of its major assumptions. The description of nanoparticles using density fields
implies that there is some degree of “smearing” and overlap between the particles and
polymers, which is not quite physical (same criticism can be applied to the pure DFT
approach as well). Increasing the enthalpic incompatibility (large Flory-Huggins
parameter) between the particles and all polymer species can help solve this problem,
however, this can be at a cost of slowing down the calculation and potentially even
causing numerical divergences. More studies are needed to determine the “sweet
spot” for both SCFT-DFT and other field-based approaches.

Another SCFT-based field theory of nanocomposites was recently proposed by
Riggleman and co-workers [20, 21, 77, 78]. Their model uses a SCFT-like descrip-
tion for the polymers, while for the nanoparticles, they utilize the effective “cavity
function” (mathematically describing the shape of the particle), which must be con-
voluted with the particle center probability to yield the effective particle density.
Riggleman’s approach allows for a straightforward generalization to the case of non-
spherical fillers, as well as fillers in confined geometries, and fillers with various
grafting ligands. Recently, Riggleman and co-workers investigated the dispersion
of nanorods in thin films, and compared their results with experiments and other
theoretical approaches [127].



Recent Developments in Theory and Modeling of Polymer … 215

Fig. 4 SCFT-DFT phase map for single-component “hairy nanoparticle” (HNP) melts. Here, N is
the ligand length, and σ is the grafting density. Nanoparticle radius R = 3.05 nm. Reproduced with
permission from [42]. Copyright 2017 American Chemical Society

2.2.3 Hybrid Models

Finally, we briefly mention the so-called hybrid models where particles and poly-
mers are described in different ways. Usually, in these studies, the polymers are
represented using a density field or an order parameter, while the particles are mod-
eled as solid objects, either fixed in place or able to jump from one position to the
next. For example, Reister and Fredrickson [128, 129] considered the case of “bare”
and “hairy” spherical nanoparticles immersed in a lamella-forming diblock copoly-
mer, and calculated the effective potential of mean force between the particles as
function of their separation and positions relative to the block copolymer lamel-
lae. This approach was subsequently expanded by Matsen and co-workers [72, 73,
105]. They developed an elegant multi-coordinate system (MCS) approach to solv-
ing SCFT equations in the presence of one or two spherical particles, and, in one
example, computed the positional distribution function of Janus nanoparticles in a
lamellar diblock copolymer.

Today, probably the most successful hybrid approach is the so-called Hybrid
Particle Field (HPF) approach developed by Sides and Fredrickson [140]. Within the
HPF approach, the particles are represented as “cavity functions”, and the polymer
is forced to avoid the particle-occupied space due to the incompressibility constraint.
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Fig. 5 Experimental TEM images (a, b) and HPF simulations (c, d) of nanoparticles in symmetric
(f = 0.5) diblock copolymers. The nanoparticles favor one of the blocks. As the nanoparticle volume
fraction is increased, themorphology is changed from lamellar to distorted hexagonal, as observed in
both experiment and simulation.Reproducedwith permission from [140].Copyright 2006American
Physical Society

This is not dissimilar from the SCF-DFT approach of Balazs et al. [85, 92–94, 148,
149, 150] or from the field theory of Riggleman et al. [20, 77, 78] (which itself was
highly influenced by the HPF method). However, unlike in the field theories, within
HPF, the coordinates of the particle centers, ri, are explicitly retained as degrees of
freedom. Thus, the free energy is a “mixed” functional of densities (for polymers) and
center coordinates (for nanoparticles); theminimization procedure then includes self-
consistency equations for the polymeric species and Langevin or Brownian dynamics
for the particles. The method was successful in describing the distribution of “bare”
nanoparticles in lamellae- and cylinder-forming diblocks, and agreed reasonably
well with experimental results (Fig. 5). However, collecting sufficient statistics on
the particles requires a very long time, making the HPF approach computationally
expensive.
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3 Summary and Outlook

Today, polymer-based nanocomposites are widely utilized in a number of techno-
logical applications, yet their adoption is not as ubiquitous as was originally hoped.
In a recent Perspective in Macromolecules, Kumar, Benicewicz, Vaia, and Winey
[80] discussed why nanocomposites have taken foothold in some industries (filler
rubber in tire industry; membranes for gas separations; continuous fiber-reinforced
thermoset composites; dielectric materials for capacitors and insulation) but not in
others. Many of the bottlenecks are related to engineering concerns (filler availability
and cost; environmental impact; difficulties in processing, especially for high filler
loading; overall need to balance cost and performance of the final material). Others,
however, are critically linked to the topics discussed in this paper—how one can
control the dispersion of the nanoparticles, and how one can then optimize the dis-
persion to improve the overall material properties. Certainly, the answer to both of
these questions can be often found through theory and modeling.

As discussed above, theory and modeling of polymer nanocomposites is still
developing rapidly, and will remain one of the most active fields in applied poly-
mer science for years to come. In a recent Perspective in the Journal of Chemical
Physics, Kumar, Ganesan, andRiggleman formulated several specific challenges that
nanocomposite theory andmodeling will need to tackle in the near future [81]. Those
challenges vary from predicting the structure (how does the nanofiller size, the ligand
length, architecture, and grafting density impact the nanocomposite morphology) to
dynamics (how do the nanofillers influence the melt viscosity and other rheological
characteristics) to properties in the solid state. Ultimately, as those individual models
are developed, it would be necessary to combine them together in a combined frame-
work. Examples of such multi-scale combinations are still very few and far between,
and their development will be one of the most exciting and challenging tasks in the
coming years.

Acknowledgements I am greatly indebted to Drs. Robbyn Prange and Cathy Tway for critical
reading of this manuscript and many helpful suggestions.
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B↔A Transition in a Short DNA
Molecule

Natalya A. Kovaleva and Elena A. Zubova

Abstract In the framework of the ‘sugar’ coarse-grained DNAmodel [N.A. Koval-
eva, I.P. Koroleva (Kikot), M.A. Mazo, Journal of Molecular Modeling 23(2):66
(2017), https://doi.org/10.1007/s00894-017-3209-z], we study the transition
between B and A forms of a short DNA molecule (12 base pairs) when the con-
centration of salt changes. The model exploits the explicit ions and implicit water
representation and allows to separately change the friction of the ions and of the
DNA molecule. We compare the behavior of the system for different values of fric-
tion which proved to not affect the order of the transition, but allowed to determine
the roles of the DNA and the ions in the behavior of the conglomerate. We find the
order (the first) and the point of the transition (0.316M) in the case of ‘inviscid’
water (zero friction for both the ions and the DNA, the NVE ensemble). The helix
consisting of 12bp (more than thousand atoms) proved to exhibit the features of
small systems. Namely, even at low salt concentrations, one can observe the jumps
from B-DNA to A-DNA and back. We analyse the structure of the A-DNA and find
the reasons for such a behavior.

1 Introduction

DNA is being actively studied experimentally and theoretically because of its extraor-
dinary biological role. The basic objects of theoretical interest are (in addition to the
principles of protein-DNA recognition) protein binding to DNA, transcription, and
replication. In these processes, both chains of the DNA double helix are strongly
distorted, including the changes in the conformation of the ribose rings. Their con-
formational mobility is one of the main sources of flexibility of the double helix. The
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change in the conformation of sugars from C2’-endo (C1’-exo) to C3’-endo causes
the transition from one geometric form of the double helix (B) to the other (A).

A local transition to A-DNA often occurs in physiological saline, and is also
observed when DNA interacts with minor groove binding proteins (TBP, SRY, LEF-
1, PurR). The necessary local increase in the minor groove width is achieved through
the switching of several ribose rings to the A-DNA conformation [1]. In DNA–
protein complexes, many other biologically determined local transitions from B- to
A-DNA have been found [2]. In particular, this transition is observed when DNA
binds to enzymes which interact with the atoms located inside the molecule in the
B form. In addition, there is evidence of the possible role of local transitions to the
A form during replication [3]. It is believed that such transitions are caused by the
effect on DNA of partial charges on the surface of proteins. DNA can also adopt the
A-form conformation when the properties of the solution or the number or type of
ions around the molecule change, for example, when ethanol is added to the water
and the salt concentration (NaCl) is increased [4, 5].

An adequate theoretical (molecular dynamics) study of the B-A conformational
transition is difficult for two reasons. The first reason is the well-known imbalance of
the AMBER and CHARMM all-atom force fields usually used for DNA modeling.
The AMBER force field is “B-philic”, while the CHARMM force field is “A-philic”
[6, 7]. Correction of the dihedral angle potentials in the CHARMM force field in
2012 [8] led [9] to some improvement in the modeling by this field of the A to B
transition problematic for this field. Appropriate changes have also been made to the
AMBER force field [10]. As a result, the minima of the potential of mean force at the
pseudo-rotational angle corresponding to the A-form decreased. The new AMBER
force field parmbsc1 has not yet been tested for the B to A transition.

The second reason for the difficulties in studying the A-B transitions is their
duration (a few nanoseconds together with the waiting time). With such times, it is
difficult to collect the necessary statistics within the framework of an all-atommodel,
especially with explicit water. We first proposed [11, 12] a coarse-grained DNA
model capable of reproducing both forms under appropriate conditions - B-DNA at
low and A-DNA at high NaCl concentration - and both the transitions between them.
In this model, both the ions in solution and the charges on the DNA surface (negative
on phosphates and partial positive and negative on bases) are explicitly included.
Their solvation is taken into account by the form of interaction potentials between
them, which ensures the adequacy of the representation of the balance of interactions
in the complex of the DNA molecule with the neighboring ions. Both for the DNA
beads and for the ions, a Langevin thermostat is used, which also introduces friction
against water molecules. Unlike all-atom models, our model allows for the variation
ofwater viscosity.When the thermostat is switched off (NVEensemble), the effective
friction is zero, both for the DNA beads and for the ions. This provides a unique
opportunity to investigate the behavior of DNA in both the cases of experimental
water viscosity and under “ideal” conditions, when the dynamics of the molecule is
dominated by its inertial properties. The proposed CG DNA model allows the full
investigation of the transition between A and B forms of the DNA, both the structure
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of the DNA-ions conglomerate and collecting the statistics needed for the analysis
of the order of the transition.

The article is organized as follows. In the second chapter, we shortly describe the
sugar CG DNA model. The formulas and the constants of the force field are listed
in the Appendix. In the third chapter, we investigate the influence of the friction on
the character of the A-B transition, and determine the order and the point (the salt
concentration) of the transition. More detailed analysis of the structure of the system
is carried out in the fourth chapter.

2 Description of the Sugar CG DNA Model

We use the ‘sugar’ CG model proposed in [11]. The way of combining the atoms
into grains is shown in Fig. 1. Every one of the two DNA strands is modeled by a
zigzag of alternating grains P and C3’: ...-P-C3’-P-C3’-... (see Fig. 2). These grains
are connected by CG bonds. A grain C1’ is linked to each C3’ grain by another CG
bond. This “comb” is a skeleton of the strand. The grain C1’and grains on the base
B1, B2, B3 are connected by very rigid CG bonds C1’-B1, C1’-B3, B1-B2, B2-B3,
B2-B3. We keep grains C1’, B1, B2 and B3 in one plane by means of rigid dihedral
angle C1’-B1-B3-B2. The three rigidly bound grains (B1, B2, B3) almost freely
rotate around glycosidic bond C1’-N(1,9) (position of atom N(1,9) is calculated on
each step from coordinates of grains B1, B2, B3).

To maintain the shape of the helix ...-P-C3’-P-C3’-..., we introduce, besides the
CG bonds, the CG angle C3’-P-C3’ and two dihedral angles C3’-P-C3’-P and P-
C3’-P-C3’. The position of the glycosidic bond C1’-N(1,9) relative to the “skeleton”
helix is supported by two CG angles P-C1’-N(1,9) and C3’-C1’-N(1,9). Another
dihedral angle C1’-C3’-P-C3’ provides base pair opening.

Riboseflexibility ismodeledby thedeformationof thepyramid{P(1)P(2)C1’C3’}.
The possibility of sugar repuckering is provided by a double-well potential for theCG
bondC1’-P. The length of the edgeP(1)-P(2) correlateswith length of the double-well
bond:

U = 1

2
kP(|P(1)P(2)| + tP

∣
∣C1′P(2)

∣
∣ − lP0)

2, (1)

where tP > 0. The grains P(1) and C1’ are connected by a soft CG bond.
Themodel system consist of a DNAdouble helix and explicit sodium and chlorine

ions. The potential energy of the system includes ten distinct contributions:

H = Ebase + Ehydr−bonds + Estacking+
+ Eval−bonds + Eval−angles + Etors−angles+
+ Eel + EvdW + Eion−DN A + Eion−ion (2)

Potential functions and the used parameters are collected in Table1 in Appendix. The
term Ebase describes the energy of deformation of rigid bases. The terms Ehydr−bonds
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Fig. 1 Coarse-graining of nucleotide backbone in a DNA strand.We show locations of grains in the
sugar CGDNAmodel and (for the backbone) - groups of atoms united into the grains. A nucleobase
rotates about the glycosidic bond χ

Fig. 2 CG bonds and angles of the sugar CGmodel. The double-well bond C1’-P(2) models ribose
flexibility, the length |P(1)P(2)| correlates with the length |C1’P(2)| (potential (1) is symbolically
depicted as the polyline P(1)-P(2)-C1’)
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Table 1 A summary of potential functions and parameters of the sugar CG DNAmodel. The order
of grains in the notation of bonds and angles is their order along the chain direction (see Fig. 2).
The letter N stands for atom N1 (or N9), and C - for atom C6 (or C8) on bases

in [13]

 in Table

 in Tables
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Table 2 Parameters A, Dk , Ck , Rk for potentials of interaction between a sodium ion and a phos-
phate grain Na+-P−, between a chlorine ion and a phosphate grain Cl−-P− between two sodium
ions Na+-Na+ and between a sodium ion and a chlorine ion Na+-Cl− and between two chlorine
ions Cl−-Cl− in the sugar CG DNA model

Parameter Dimension Na+-P− Cl−-P− Na+-Na+ Na+-Cl− Cl−-Cl−

A kcal/mol·Å12 8.50 · 105 10.2 · 107 15.0 · 105 2.2 · 105 4.0 · 107
D1 kcal/mol −1.25 −0.05 −0.62 −1.36 −0.52

D2 kcal/mol 1.54 0.54 0.29 1.87 0.29

D3 kcal/mol −0.73 −0.02 −0.55 −0.27 −0.07

D4 kcal/mol 0.53 0.25 0.16 0.276 0.06

D5 kcal/mol −0.38 0 −0.25 −0.073 −0.022

C1 Å−2 0.92 2.9 1.4 5.0 3.0

C2 Å−2 5.00 2.0 4.0 2.0 4.0

C3 Å−2 0.75 0.5 0.7 1.5 3.5

C4 Å−2 5.50 0.7 5.5 5.5 3.0

C5 Å−2 0.90 0 1.5 5.0 3.0

R1 Å 3.65 5.4 3.40 2.80 5.00

R2 Å 4.18 6.7 4.75 3.62 6.35

R3 Å 5.86 8.6 6.20 5.20 7.60

R4 Å 6.70 8.9 7.15 6.00 8.50

R5 Å 7.97 0 8.47 6.80 9.70

ε 80 80 80 80 80

and Estacking stand for energy of hydrogen bonds between complementary bases and
for base pairs stacking, correspondingly. We recalculate the coordinates of all nucle-
obase atoms on each step and compute these terms using the all atom force field
AMBER. The terms Eval−bonds, Eval−angles, Etors−angles describe energy of defor-
mation of the CG bonds, CG angles and dihedral angles on the strands of the CG
DNA. Equilibrium values of the angles and the bonds, not pertaining to the ribose
flexibility, were chosen equal to the values in A-DNA. For the rigidities, we chose the
maximal values. Two wells in the double-well potential of the bond C1’-P(2) were
made of equal depth. Coulombic interactions Eel between charged phosphate beads
have distance dependent permittivity. We introduce van der Waals interactions EvdW

for the beads P and C3′ not connected through CG bonds, CG angles or dihedral
angles.

Interaction of ions with DNA Eion−DN A includes interactions with charged phos-
phate beads P and beads on bases andwith uncharged beads (C1’, C3’). In the present
realization of the model, we introduce sequence dependence: the charges on beads of
a base depend on the type of this base. Interactions of ions one with another Eion−ion

and with charges on DNA (phosphate beads and beads on bases) Eion−DN A take into
account solvation effects (besides direct Coulomb force). The detailed description
and the constants of all the potentials are collected in Appendix. The description of
the resulting force field is given in Tables1, 2, 3, 4, 5 and 6.
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Table 3 Parameters A, Dk , Ck , Rk for potentials of interaction between a sodium ion and a base
grain Na+-B j in the sugar CG DNA model

Parameter Dimension Na+-B1 Na+-B2 Na+-B3 Na+-B1 Na+-B2 Na+-B3

Adenine Guanine

A 12
√
kcal/molÅ 2.43 4.0 3.256 1.78 2.187 3.97

D1 kcal/mol −1.0 −1.237 −1.11 −0.85 −0.75 −1.18

D2 kcal/mol 1.6 0.307 2.1 2.149 1.5 0.304

D3 kcal/mol −0.4 −0.3 −0.298 −0.55 −0.298 −0.243

D4 kcal/mol 0.2 0.115 0.13 0.2 0.132 0.114

D5 kcal/mol −0.1 −0.08 −0.0895 −0.3 −0.22 −0.073

C1 Å−2 2 2 2.8 4.5 4.5 4.5

C2 Å−2 4 4.5 4 3 3.4 3.6

C3 Å−2 2 2 2 2 2 2

C4 Å−2 7 7 7 7 7 5

C5 Å−2 2 2 2 2 2 3

R1 Å 2.52 4.05 3.5 2.4 2.5 4.06

R2 Å 3.6 5.27 4.7 3.29 3.29 5.27

R3 Å 4.9 6.53 5.8 4.8 4.6 6.53

R4 Å 6.2 7.53 6.9 5.94 5.94 7.53

R5 Å 7.4 8.53 7.8 6.9 6.8 8.53

Thymine Cytosine

A 12
√
kcal/molÅ 3.86 2.366 2.366 4.92 4.0 2.366

D1 kcal/mol −1.4 −1.0 −1.0 −1.7 −1.4 −0.6

D2 kcal/mol 0.483 2.19 2.19 0.283 0.31 2.147

D3 kcal/mol -0.5 −0.298 −0.298 −0.5 −0.41 −0.298

D4 kcal/mol 0.104 0.132 0.132 0.104 0.104 0.132

D5 kcal/mol −0.073 −0.0895 −0.0895 −0.21 −0.17 −0.0895

C1 Å−2 3 3.42 3.42 1.5 1.5 3.42

C2 Å−2 5 4.5 4.5 5.5 4.5 4.5

C3 Å−2 1.5 2.0 2.0 2.0 1.6 2.0

C4 Å−2 5 7 7 5.0 5.0 7.0

C5 Å−2 3 2 2 3.0 3.0 2.0

R1 Å 3.9 2.66 2.66 4.94 4.03 2.66

R2 Å 4.8 3.45 3.45 6.2 5.07 3.45

R3 Å 5.2 4.96 4.96 7.4 6.23 4.96

R4 Å 6.46 6.1 6.1 8.46 7.53 6.1

R5 Å 7.4 6.96 6.96 9.4 8.53 6.96

ε 80 80 80 80 80 80
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Table 4 Parameters A, Dk , Ck , Rk for potentials of interaction between a chlorine ion and a base
grain Cl−-B j in the sugar CG DNA model

Parameter Dimension Cl−-B1 Cl−-B2 Cl−-B3 Cl−-B1 Cl−-B2 Cl−-B3

Adenine Guanine

A 12
√
kcal/molÅ 5.7 3.2 5.7 4.6 3.2 3.2

D1 kcal/mol −1.5 −1.11 −1.5 −1.36 −1.11 −1.11

D2 kcal/mol 0.29 2.1 0.29 0.317 2.1 2.10

D3 kcal/mol −0.245 −0.298 −0.245 −0.245 −0.298 −0.298

D4 kcal/mol 0.105 0.13 0.105 0.105 0.13 0.130

D5 kcal/mol −0.07 −0.0895 −0.073 −0.070 −0.0895 −0.0895

C1 Å−2 3 2.8 3 3 2.8 2.8

C2 Å−2 4 4 4 4 4 4

C3 Å−2 2 2 2 2 2 2

C4 Å−2 4 7 4 4 7 7

C5 Å−2 3 2 3 3 2 2

R1 Å 5.65 3.3 5.81 4.6 3.3 3.3

R2 Å 6.96 4.59 6.96 5.96 4.62 4.59

R3 Å 8.11 5.74 8.11 7.11 5.77 5.74

R4 Å 9.11 6.74 9.11 8.11 6.9 6.74

R5 Å 10.11 7.74 10.11 9.11 7.77 7.74

Thymine Cytosine

A 12
√
kcal/molÅ 4.1 4.79 4.79 4.1 3.2 4.79

D1 kcal/mol −1.3 −1.39 −1.39 −1.3 −1.11 −1.39

D2 kcal/mol 2.1 0.317 0.317 2.1 2.1 0.317

D3 kcal/mol −0.298 −0.245 −0.245 −0.298 −0.298 −0.245

D4 kcal/mol 0.13 0.105 0.105 0.13 0.13 0.105

D5 kcal/mol −0.0895 −0.070 −0.070 −0.0895 −0.0895 −0.070

C1 Å−2 2.8 3 3 2.8 2.8 3

C2 Å−2. 4 4 4 4 4 4

C3 Å−2 2 2 2 2 2 2

C4 Å−2 7 4 4 7 7 4

C5 Å−2 2 3 3 2 2 3

R1 Å 4.12 4.76 4.76 4.12 3.3 4.76

R2 Å 5.46 6.12 6.12 5.46 4.59 6.12

R3 Å 6.61 7.27 7.27 6.61 5.74 7.27

R4 Å 7.61 8.27 8.27 7.61 6.74 8.27

R5 Å 8.61 9.27 9.27 8.61 7.74 9.27

ε 80 80 80 80 80 80
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Table 5 Masses of grains m1, m2, m3 and moments of inertia of real ixx and iyy and CG Ixx and
Iyy bases A, T, G, C. Masses of grains are given in a.e.m., moments of inertia - in a.e.m.·Å2

X m1 m2 m3 ixx Ixx iyy Iyy

A 52.230 28.139 53.632 690 475 1704 1712

T 51.822 16.204 56.974 584 256 1636 1543

G 61.731 34.357 53.912 1302 800 1885 1858

C 39.254 35.492 35.254 233 164 1344 1231

Table 6 Charges (in units of the elementary charge e) of base grains interactingwith ions in solution

Type of base B1 B2 B3

Adenine −0.048 0.109 −0.061

Thymine 0.390 −0.240 −0.150

Guanine −0.496 0.134 0.362

Cytosine 0.433 0.061 −0.494

The influence of water on DNA and on ions is described implicitly, by Langevin
equation. Experimental damping constant (friction) is equal to γ1 = 50ps−1 for the
DNA beads and γ2 = 70ps−1 for the ions.

The energy minimization (near different initial states at corresponding boundary
and initial conditions) confirms the existence of two equilibrium states of the system:
A-DNA and B-DNA. In a large reservoir: a cube 60 × 60 × 60Å, DNA takes B
form. In this volume, the additional 32 salt ions (16 Na+ and 16 Cl−) give the
molar concentration 0.12M, very close to the one of physiological saline. In a small
volume: a cylinder with diameter 18.5Åand height 30Å(salt concentration with the
same number of additional ions is 0.8M), DNAmolecule takes A form. The obtained
stable configurations at temperature 300K are shown in Fig. 3.

3 The Influence of Water Viscosity, the Order and the
Location of the A-B Transition

In our CG model, in contrast to the all atom models, the viscosity of water - friction
coefficients for ions and for DNA grains - may be selected separately and arbitrarily.
It gives the unique opportunity to investigate the influence of friction against water
molecules on the A-B transition. We compared the case without friction with the
cases of low friction for both the DNA and the ions; low friction for the DNA and
high friction (corresponding to the experiment) for the ions; high friction for the
DNA (corresponding to the experiment) and low friction for the ions; and, finally,
experimental case of the high friction for both the DNA and the ions (see Fig. 4).
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Fig. 3 Frames from the trajectories of sugar CG A-DNA (on the right) and B-DNA (on the left).
Temperature is 300K. Sodium ions are yellow, chlorine - blue

Weobtained the trajectorieswith a duration of 360ns for a series of concentrations.
It turned out that the introduction of realistic friction into the model reduces the
frequency of transitions by two orders, but the order of the transition does not change.
Namely, since the system is very small, even quite far from the transition point, the
molecule can make transitions to the second state, not characteristic for the given
concentration, due to thermal fluctuations. The maximum number of such jumps is
present for the low friction of the DNA. Thus, it is the DNA, and not ions, which
initiates the transitions - due to the presence of two locally stable configurations (first
of all, for the bases). The high ion friction leads to a delay in the configuration with
a higher minimum, while fast ions quickly return the system to the ground state at
the given concentration.
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Fig. 4 Examples of calculated trajectories for the concentration of additional salt 0.19M. The
average width of the major groove along the molecule (which is about 25Å in the B-DNA, and
about 10Å in the A-DNA) is plotted against time (inns)

In the B to A transition, the distance between the bases starts to change first,
then the major groove begins to narrow, and only at the end of the transition the
sugars are repuckered (the double-well bonds move from one well to another) and
the helix abruptly changes its geometry (the slide parameter adjusts much later than
the parameters shift and twist). The number of ions near the axis of the molecule
begins to grow immediately after the beginning of the change in the magnitude of
the major groove. In the B to A transition, the groove begins to narrow from one end,
while in the A to B transition, it widens from both the ends.

As the type of the transition for the small molecule does not seem to be affected
by friction, one may determine the type in the case of ‘inviscid’ water (zero friction
for both the ions and the DNA, the NVE ensemble). For this purpose, we obtained
the trajectories for a large series of concentrations of additional salt, the only control
parameter we used. We considered two order parameters: the average major groove
width and the interaction energy between phosphate grains and sodium ions. We
calculated autocorrelation functions of the order parameters, and chose the time
between the counts for histograms to be 10 ns. The collected statistics was 750–1850
points. The histograms of the order parameters turned out to be double-peaked (also
for the concentrations near the transition point), which signals a first order transition
(see Fig. 5). For both the parameters, the area under the peaks turned out to be equal at
the concentration of the additional salt 0.316M, which we regarded as the transition
point. Figure6 shows the salt concentration dependence of the (time-averaged) major
groove width (the average distance between the nearest phosphate beads located on
different DNA strands) and frequency of the jumps between the forms. The large
dispersion of the groove width over a wide range of concentrations from 0.15 to
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Fig. 5 Histograms of the order parameters at a point near the transition (NVE ensemble). The
values of the parameters (the average major groove width (in angstroms) and the interaction energy
between the DNA phosphate grains and the sodium ions (in eV)) are plotted against the number of
points on the trajectory with such parameters. The total number of points is 1845. The time between
counts is 10ns. The salt concentration is 0.31M
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Fig. 6 Frequency of jumps between the B- and A- forms and the average width of the major
groove (the value was measured every picosecond along a 30ns trajectory) as a function of salt
concentration

0.45M reflects global B to A transitions (jumps). There is no intermediate shape
between A and B forms, neither a configuration partly in B and partly in A form. The
DNA molecule consisting of 12 base pairs (more than 1000 atoms) behaves like a
small atom cluster near the transition between two configurations. To understand this
behavior, in the next chapter we will consider the structure of the DNA-ions system
more closely.
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4 The Structure of the DNA-Ions Conglomerate
in the ‘Inviscid’ Water

For a DNAmolecule, it is natural to characterize the ion cloud around this molecules
by a cylindrical distribution function. Figure7 shows the functions for the A- and
B-forms. The most noticeable difference between them is observed at distances less
than 5 angstroms from the axis of the molecule. In the A-form, these distances
correspond to the location of ions in the deep major groove (Fig. 3). In the B-form,
this space is occupied by the atoms of the molecule itself, and the ions are unable
to be there. Interestingly, the ions, including those located deep inside the major
groove, migrate throughout the available volume of the solution not only in the B-
but also in the A-form. Figure8 shows the dynamics of all sodium ions relative to the
surface of the major groove of A-DNA. One can see that each ion enters the major
groove and leaves it to occur in the solution several times during one nanosecond.
Because of the lack of water viscosity, many ions go into the groove just for a few
picoseconds,which is impossible in realDNA.However, for the realDNAaswell, the
conglomerate of themolecule and the ions is dynamic, with a constant replacement of
ions within the groove. This is the mechanism how the molecule is aware of changes

A-DNA
B-DNA

r, Aº

Fig. 7 Cylindrical distribution function (Cdf) of ions as a function of the distance r from the axis
of the DNA molecule in A- and B-forms. For each form, the distances from the axis (r) are marked
at which the beads of the molecule itself are located: phosphorus (P), two beads belonging to ribose
(C1’ and C3’), and three beads on the bases (B1, B2, and B3). For the clarity of the picture, we kept
the grains of the DNA molecule immobile
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Fig. 8 Distance between
sodium ions and the nearest
beads of the major groove
surface of A-DNA (beads P,
B1, and B2) as a function of
time. For distances smaller
than 4 angstroms, the ions
are located inside the major
groove; for distances larger
than 8 angstroms, the ions
are in the solution outside the
DNA helix
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im
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in the ion concentration in the external solution, and correspondingly responds to
them by changing its geometrical shape. In the model without water viscosity, the
ions forming this conglomerate spend 100–200 ps in the major groove. There are,
on average, only eight or nine ions inside the A-form, but they are the critical part
of this conglomerate. This is the reason why the DNA molecule made of more than
a thousand atoms (12bp), behaves as a small system.

5 Discussion and Conclusions

We saw that the introduction of the sugar CG model allowed to fully study the B-A
transition in a DNA molecule. We were able to easily collect the needed statistics
to determine the order of the transition, which required the calculation of many
trajectories of hundreds of microseconds long. On the other hand, the model is
detailed enough to catch the local structure of the double helix during the transition.

We studied a short DNAmolecule, 12 base pairs long. As the control parameter for
the transition we chose the salt concentration because the dependence of the effective
ions potentials proved to be not sufficient for the transition [13], andwe used identical
potentials for all the concentrations. The natural order parameter of the system is the
average major groove width. We obtained the dependence of the order parameter on
the concentrations, and the histogram of the parameter for a series of concentrations.
The histogram proved to be double-peaked, and we never found the molecule in a
shape intermediate betweenAandB forms, or in a configuration partly inB and partly
in A form during an appreciable time interval. So, the DNA molecule consisting of
12 base pairs (more than 1000 atoms) behaves like a small atom cluster near the
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transition between two conformations. Namely, the molecule jumps between B and
A form even at low concentrations, where the B-DNA corresponds to the global
minimum of the thermodynamic potential. The reason for it is that there are, on
average, only eight or nine ions inside the A-DNA, but they are the critical part of this
conglomerate. From the shape of the histogram, we also concluded that the transition
has to be of the first order (as it should be from the symmetry considerations). The
frequency of jumps between the A and B forms reaches 1 per nanosecond and is the
highest in the vicinity of the transition. The friction of the DNA grains and the ions
does not affect the type of the transition.

We also investigated the structure and behavior of the DNA-ions conglomerate.
The A-DNA proved to be a dynamical ensemble, with the ions entering the deep
major groove from the solution and then leaving. The possibility to independently
vary the friction of the DNA and the ions allowed to easily determine the roles of the
molecule and the ions in the conglomerate. The DNA molecule initiates the jumps
between the A and B forms, as it has two local energy minima, because of both the
base pairs interactions and the sugar conformations (which we model by the double-
well bond C1’-P). The ions turned out to be responsible for keeping the geometrical
shape of the molecule corresponding to the concentration. The high ion friction leads
to a delay in the configuration with a higher minimum, while fast ions quickly return
the system to the ground state at the given concentration.

Acknowledgements We thank Dr. I.A. Strelnikov for pointing out some errata in numerical values
and in one formula in the tables in [11]. We appreciate financial support of the Russian Science
Foundation (grant 16-13-10302). The simulations were carried out in the Joint Supercomputer
Center of Russian Academy of Sciences.

Appendix: The Sugar DNA CG Force Field: Potential
Functions and Parameters

In the Tables1, 2, 3, 4, 5 and 6, we list the current potentials of interactions between
the grains of the sugarGCDNAmodel, and the corresponding constants of themodel.
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2D Chain Models of Nanoribbon Scrolls

Alexander V. Savin and Mikhail A. Mazo

Abstract We propose a simplified 2D model of the molecular chain that allows
to describe molecular nanoribbon’s scrolled packings of various structures as spiral
packaging chain. The model allows to obtain the possible stationary states of single-
layer nanoribbons scrolls of graphene, graphane, fluorographene, fluorographane,
graphone C4H and fluorographone C4F. We show the stability of scrolled packings
and calculate the dependence of energy, the number of coils, inner and outer radius
of the scrolled packing on the nanoribbon length. It is shown that a scrolled pack-
ing is the most energetically favorable conformation for nanoribbons of graphene,
graphane, fluorographene, and fluorographane at large lengths. A double-scrolled
packing when the nanoribbon is symmetrically rolled into a scroll from opposite
ends is more advantageous for longer lengths nanoribbons of graphone and fluoro-
graphone. We show the possibility of existence of scrolled packings for nanoribbons
of fluorographene and existence of two different types of scrolls for nanoribbons of
fluorographane. The simplicity of the proposed model allows to consider the dynam-
ics of molecular nanoribbon scrolls of sufficiently large lengths and at sufficiently
large time intervals.

1 Introduction

Due to its unique electrical and mechanical properties, graphene in various confor-
mations is of great interest [1–5]. Graphene is a two-dimensional structure with a
peak rigidity and tensile strength, but easily flexing in space. Secondary structures of
graphene (folds, scrolls) can be attributed to a special class of carbon nanomaterials,
the stability of which is provided by weak non-valent (van der Waals) interactions
of carbon atoms. In 1960 it was found that use of graphite lubricant from flat pieces
of graphite causes the forming of microscopic scrolls that play the role of roller
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bearings and provide a low value of the coefficient of friction [6]. Graphene nanorib-
bon, folding into a scroll, forms a new quasi-one-dimensional structure, which has a
cross-section in the form of truncated Archimedean spiral. The geometric shape of
the scroll is determined by the energy balance between the increasing van der Waals
energy of the contacting areas of the graphene sheet and the energy lost due to the
nanoribbon’s bending.

There are several experimental technologies for obtaining scrolls of graphene
nanoribbon and studying their structure and properties [7–12]. The properties of
the scrolled packing of carbon nanoribbons were studied in a series of theoretical
researches. Electrical, optical and mechanical properties of short nanoribbons scrolls
were modeled from the first principles [13–15]. The mechanical properties of longer
nanoribbons scrolls and different scenarios of their self-assembly were described
using the molecular dynamics method in numerous articles [16–26]. The mechanical
properties of long nanoribbons scrolls were described in the context of the continuum
model of an elastic coiled rod [16, 21, 27, 28], in which the flexural energy of the
rod is compensated by the energy from the interaction of the contacting surfaces.

All-atom models have always been used for modeling the dynamics of folds and
scrolls of nanoribbons. Such models require considerable computer resources and
do not allow to consider the dynamics of long nanoribbons over significant time
intervals. Therefore, only scrolls having two or three coils are usually considered.
The complexity of the all-atomic models also makes it difficult to carry out a full
analysis of possible stationary packings of long nanoribbons. To overcome these
difficulties, we proposed a 2D model of the molecular chain [29, 30] that allows to
describe with high accuracy the possible stationary states of graphene nanoribbons
scrolled packings.

Here, we propose amore simplifiedmodel of a 2D chain that allows to describe the
stationary states of scrolled packings of molecular nanoribbons with different chemi-
cal structures. Using the model, we obtained possible stationary states of single-layer
nanoribbons scrolls of graphene, graphane, fluorographene, fluorographane, gra-
phone C4H and fluorographone C4F. The model can be used both for the description
of scrolled packings of molecular nanoribbons with the same surfaces (nanoribbons
of boron nitride, silicene, phosphorene, carbon nitride, etc.), and for the nanoribbons
which sides have different chemical modification (nanoribbons of graphone and their
analogs).

2 Chain Model of Molecular Nanoribbon

Molecular nanoribbon is a narrow, straight-edged strip, cut from a single-layered
molecular plane. The simplest example of such molecular plane is a graphene sheet
(isolated monolayer of carbon atoms of crystalline graphite) and its various chem-
ical modifications: graphane (fully hydrogenated on both sides graphene sheet),
fluorographene (fluorinated graphene), fluorographane (hydrogenated on one side
and fluorinated on the other side graphene sheet), graphone C4H (hydrogenated
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on one side with a density of 0.25 graphene sheet) and fluorographone C4F – see
Fig. 1a–f.

As is known, graphene and its modifications are elastically isotropic materials,
the longitudinal and flexural rigidity of which is weakly dependent on chirality of the
structure. Therefore, for definiteness, we will consider nanoribbons with the zigzag
structure shown in Figs. 1 and 2a.

Suppose that in the ground state the nanoribbon lies in the plane xz of the three-
dimensional space along the axis x - see Fig. 2a. Such nanoribbon is a periodic
structure with a constant step. Translational cells of this structure form atoms located
along lines parallel to the z axis (along transverse lines). We consider such motions
of the nanoribbon, when its atoms located on lines parallel to the z axis move as
a rigid whole in the xy plane, keeping its coordinates along the z axis. Then these
atomic lines can be considered as effective particles moving in the xy plane, and the
movement of the nanoribbon is reduced to the motion of a chain of these particles –
see Fig. 2b, c.

Thus, the longitudinal and flexural movements of the nanoribbon can be described
as the motion of a chain of pointwise particles in the xy plane. The simplest model
of a molecular chain in two-dimensional space is shown in Fig. 2c. The Hamiltonian
of the chain has the following form

H =
N∑

n=1

1

2
M(ẋ2n + ẏ2n ) +

N−1∑

n=1

V (Rn) +
N−1∑

n=2

U (θn) +
N−3∑

n=1

N∑

m=n+3

W (rnm), (1)

where N – number of particles in the chain, M – particle mass, and the vector
un = (xn, yn) defines the position of the nth particle.

The potential
V (R) = K (R − a)2/2, (2)

is responsible for the longitudinal rigidness of the chain, K – interaction rigidness, a –
equilibrium bond length (chain step), Rn = |un+1 − un| – distance between neighbor
particles n and n + 1.

The potential

U (θ) = ε[1 − cos(θ − θ0)] ≈ ε(θ − θ0)
2/2, (3)

describes the flexural chain mobility, θ – the valence angle formed by two neighbor
bonds, θ0 – equilibrium angle, the parameter ε > 0 specifies the flexural rigidity of
the chain. For the n-th valent angle cos(θn) = −(un−1,un)/|un−1| · |un|.

The Lennard-Jones (l, k) potential

W (r) = ε[l(r0/r)k − k(r0/r)
l]/(k − l), (4)
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Fig. 1 Structures of
nanoribbons a graphene
(C12H2)11C10H12 (of size
29.85 × 13.44Å2);
b graphane
(C12H14)11C10H22;
c fluorographene
(C12F14)11C10F22;
d fluorographane
(C12H8F6)11C10H15F5;
e graphone (C12H3)11C18
f fluorographone
(C12F3)11C18
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Fig. 2 View a from the top
and b from the side of the
graphane nanoribbon
(C8H10)∞ with a zigzag
structure (the nanoribbon lies
in the plane xz), c a
mechanical model of a chain
of particles in the plane xy in
which the particle defines the
position of the corresponding
transverse line of nanoribbon
atoms (n is the line number).
The potential V (r) describes
the longitudinal rigidity, and
the angular potential U (θ) –
the flexural rigidity of the
chain

(a)

(b)

(c)

n − 1 n n + 1

y

x

z

C
H

V (r) U(θ)

describes a weak non-valent interaction between remote chain particles, ε – bond
energy, r0 – equilibrium bond length, k > l (degree of repulsion k is always greater
than the degree of attraction l), rnm = |un − um | – distance between particles
n and m.

The step of the chain a is found as half of the period of the ground state of a flat zig-
zag nanoribbon. The parameter K , which determines the longitudinal rigidness, and
the parameter ε, which determines the flexural rigidness of the chain, can be obtained
from the analysis of the dispersion curves of the nanoribbon. The parameters of the
Lennard-Jones potential (4) can either be directly calculated as sums of the non-valent
interactions of one atom with the transverse line of nanoribbon atoms, or estimated
from the analysis of the structure of nanoribbon scroll obtained using a full-atomic
model. Values of the parameters of the chain model for the nanoribbons of graphene
CC, graphane HCCH, fluorographene FCCF, fluorographane HCCF, graphone C4H
and fluorographone C4F are presented in the Table1.

While constructing the model, wide nanoribbons are considered, so the chemi-
cal modification of its edges can be ignored, and all parameters of the nanoribbon
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Table 1 Values of the parameters of the two-dimensional chain model for the nanoribbon of
graphene CC, graphane HCCH, fluorographene FCCF and fluorographane HCCF, graphone C4H
and fluorographone C4F

Nanoribbon M (mp) a(Å) K (N/m) ε (eV) θ0 (deg) ε0 (eV) r0 (Å) k l

CC 24 1.228 910.0 7.00 180 0.01970 3.68 8 5

HCCH 26 1.261 607.2 3.38 180 0.00984 5.01 16 6

FCCF 62 1.285 606.6 4.00 180 0.00304 5.75 20 9

HCCF 44 1.285 607.0 3.70 177 0.00325 5.06 16 3

C4H 24.5 1.250 800.0 5.00 171 0.01430 4.30 20 5

C4F 32.5 1.260 800.0 6.00 173 0.01900 4.60 24 7

should be normalized on its width. In this case, the particle mass M for graphene
nanoribbon will be equal to the mass of two carbon atoms (M = 2MC = 24mp), for
nanoribbon of graphaneM = 2(MC + MH ) = 26mp, fluorographeneM = 2(MC +
MF ) = 62mp, fluorographane M = 2MC + MH + MF = 44mp, graphone M =
2MC + 0.5MH = 24.5mp and fluorographone M = 2MC + 0.5MF = 32.5mp,
where mp – proton mass.

The longitudinal and flexural rigidness parameters of the chain K and ε for
graphene are obtained in [29, 30]. For values of K = 910 N/m and ε = 7 eV, the
dispersion curves of the chain most exactly coincide with the dispersion curves of
a flat graphene nanoribbon corresponding to its longitudinal and flexural vibrations.
The values of K and ε for other nanostructures can also be obtained from the analy-
sis of the dispersion curves of nanoribbons obtained using a full-atomic model. The
force fields COMPASS [31] and CFF91 were used for the analysis of the structure
and dynamics of nanoribbons of graphane, fluorographene, and fluorographane.

Van derWaals interactions of atoms in the COMPASS force field are described by
the Lennard-Jones potential (4) with parameters l = 6, k = 9. We consider nanorib-
bon of graphene and using this potential calculate the interaction energy of two bound
carbon atoms located on one transverse linewith all carbon atoms located on the other
transverse line of the nanoribbon. The calculations show that the dependence of this
interaction energy of two different transverse lines of atoms on the distance between
the lines is well described by the Lennard-Jones potential (4) with parameters l = 5,
k = 8 – see Fig. 3. Similar calculations of the transverse lines of atoms interaction
energy can also be made for graphane nanoribbons (here it will be necessary to cal-
culate the interaction energy of a group of bound atoms H–C–C–H of one transverse
line with all atoms of another transverse line). The calculations show that the energy
of the interaction of transverse lines for graphane can also be described with good
accuracy by a potential (4) with parameters l = 6, k = 16.

For nanoribbons of fluorographene, fluorographane, graphone andfluorographone
parameters of the interaction potential (4) can be more conveniently estimated from
the analysis of stationary states of nanoribbons scrolls obtained with help of the
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Fig. 3 Paired potentials of
the non-valent interaction of
the chain nodes W (r) for the
nanoribbons of graphene
CC, graphane HCCH,
fluorographene FCCF,
fluorographane HCCF,
graphone C4H and
fluorographone C4F (curves
1, 2, 3, 4, 5 and 6). Dotted
curves give the dependencies
calculated using a
full-atomic model of a wide
nanoribbon 3 4 5 6 7 8 9
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full-atomic models. The analysis shows that the fluorographene nanoribbon has the
weakest nonvalent interaction (this is due to Coulomb repulsion of fluorine atoms).

3 Stationary States of Nanoribbon Scrolls

To find the stationary state of nanoribbon scrolls, it is necessary to solve theminimum
problem

Etotal → min, (5)

i.e. to minimize the potential energy of a full-atom model of the nanoribbon along
all coordinates of its atoms, starting from the initial scroll-like configuration.

Using a chain model to find a scroll structure, it is necessary to solve the minimum
problem

E =
N−1∑

n=1

V (Rn) +
N−1∑

n=2

U (θn) +
N−3∑

n=1

N∑

m=n+3

W (rnm) → min : {un}Nn=1, (6)

where N – the number of particles in the chain [nanoribbon length L = (N − 1)a].
The problem (6) was solved numerically using the conjugate gradient method.

To verify stability of the obtained stationary configuration {u0
n}Nn=1 we found the

eigenvalues of the matrix of second derivatives of dimension 2N × 2N

B =
(

∂E

∂un∂um

∣∣∣∣{u0l }Nl=1

)N , N

n=1,m=1

. (7)

The stationary configuration of the chain will be stable only if all eigenvalues of
the symmetric matrix B are nonnegative: λi ≥ 0, i = 1, 2, . . . , 2N . Note that for the
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stable configuration first three eigenvalues are always zero:λ1 = λ2 = λ3 = 0. These
eigenvalues correspond to the motion of chain in the plane as rigid body (shift in two
coordinates and rotation). The remaining positive eigenvalues λi > 0 correspond
to the natural oscillations of the structure with frequencies ωi = √

λ3+i/M, i =
1, . . . , 2N − 3.

The structure of the stationary state of the chain is determined by its initial config-
uration used in solving the minimum problem (6). Varying the initial configuration,
it is possible to obtain various stable chain packages. The linear configuration of the
chain (flat nanoribbon) is stable if the angle θ0 = 180◦. The presence of non-valent
interactions of chain particles leads to the existence on the plane other, more energy-
efficient stationary packings of the chain. The spiral packing (scrolled packing of
nanoribbons) will be more energetically advantageous for long chain.

Typical view of the scrolled packing nanoribbon and the corresponding two-
dimensional spiral packing is shown inFig. 4.As canbe seen from thefigure, the spiral
packing of the chain practically coincides with the cross-section of the nanoribbon
scroll. The geometry of a scroll (spiral) is given by the number of its coils Nc and its
internal and external radii R1 and R2.

Scrolled packing of nanoribbon corresponds to the chain arrangement in the shape
of anArchimedean spiral with an inner cavity. The center of the spiral is conveniently
defined as the center of its mass

u0 = (x0, y0) = 1

N

N∑

n=1

u0
n,

where u0
n = (x0n , y

0
n ) is the two-dimensional radius vectors of the nth chain node of

the stationary spiral. In the polar coordinate system it can be written as

Fig. 4 Scrolled packing a of graphane nanoribbons (C12H14)99C10H22 of size 252 × 13.7Å2 and
its b two-dimensional chain model (number of chain links N = 200, number of coil Nc = 2.67,
scroll inner radius R1 = 11.7Å, scroll outer radius R2 = 19.0Å)
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x0n = x0 + rn cos(φn), y0n = y0 + rn sin(φn),

where the radius rn = |u0
n − u0| and the angle φn increase monotonically with

increasing node number n = 1, 2, . . . , N . The spiral can be characterized by the
number of coils

Nc = (φn − φ1)/2π.

It is also convenient to define the integer number of coils nc = [Nc] + 1, where [x]
is the integer part of x . Let us define the inner radius of the scroll by its first coil:

R1 = 1

n1

n1∑

n=1

rn,

where n1 is the number of chain nodes involved in formation of the spiral first coil
(maximal value of index n wherein φn < φ1 + 2π ). The outer radius of the scroll
can be defined by its last coil as

R2 = 1

n2

N∑

n=N−n2+1

rn,

where n2 is the number of chain nodes involved in the formation of the spiral last
coil (N − n2 + 1 is the minimal value of n wherein φn > φN − 2π ).

The twisting rigidity of the spiral is characterized by the lowest natural frequency
ω1 = √

λ4/M . This frequency corresponds to the periodic twisting/untwisting oscil-
lations of the spiral. In the approximation of a continuous elastic rod this oscillation
motion has been studied in [16, 27].

4 Scrolled Packing of Graphane Nanoribbons

The structure of scrolled packing of graphene nanoribbons was considered in the
articles [29, 30]. The simpler model proposed here leads to the same results, so we
consider the scroll packings of the other five types of nanoribbons.

Let us first describe the possible stationary structures of graphane nanoribbons.
To do this, we consider the dependence of the number of coils Nc, inner R1 and outer
radius R2 and the smallest natural frequency ω1 on the number of chain nodes N [on
the chain length L = (N − 1)a] – see Fig. 5.

A typical form of packages for nanoribbons of different lengths is shown in Fig. 6.
Single-coil configuration (the number of coils nc = 1) of the scroll (a) can exist
only for nanoribbons of length L ∈ [50.4, 76.6]Å (for 41 ≤ N ≤ 62). Double-coil
configuration (nc = 2) of the scroll (b) is stable at lengths L ∈ [60.5, 187.9]Å (49 ≤
N ≤ 150), (c) three-coil (nc = 3) – at L ∈ [167.7, 339.2]Å (134 ≤ N ≤ 270), (d)
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Fig. 5 Dependencies of a
number of scroll coils Nc of
graphane nanoribbon, b the
specific energy of the
structure E/N for the scroll
and the flat nanoribbon
(curves 2 and 3), c inner R1
and outer radius R2 of the
scroll (curves 4 and 5), d the
lowest frequency of the
scroll’s natural oscillations
ω1 (curve 6) on the number
of chain particles N .
Markers give values obtained
using a full-atomic model of
a nanoribbon
(C12H14)N/2−1C10H22 with
width D = 13.7Å. Dashed
lines give power-law
dependencies
Nc = 0.105N 0.61,
R1 = 5N 0.16Å,
R2 = 01.45N 0.49Å,
ω1 = 135/N cm−1
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Fig. 6 Scrolled packing of
graphane nanoribbons for
chain with number particles:
a N = 62 (number of the
scroll coils Nc = 0.97, inner
and outer radius of the scroll
R1 = R2 = 11.98Å); b
N = 62 (Nc = 1.33,
R1 = 9.33Å, R2 = 10.29Å);
c N = 270 (Nc = 2.99,
R1 = 13.31Å,
R2 = 22.82Å); d N = 270
(Nc = 3.23, R1 = 11.68Å,
R2 = 22.10Å); e N = 1400
(Nc = 8.6, R1 = 14.64Å,
R2 = 50.74Å)

four-coil (nc = 4) – at L ∈ [314.0, 503.1]Å (250 ≤ N ≤ 400), and (e) structures
with five or more coils (nc ≥ 5) are stable for L ≥ 503.1Å (N ≥ 400).

At certain lengths, there may be two stable configurations of the scroll packing –
see Fig. 6c and d. This bistability is due to the non-valent interaction of the nanoribbon
ends. In one configuration, the ends interact more strongly (are closer to each other),
in the other – weaker (the ends are more distant from each other). Such bistability
also exists for scrolls of graphene nanoribbons [30]. Therefore, the dependence of
Nc, R1, R2, ω1 on the length (on the number of particles in the chain N ) is divided
into branches corresponding to the configurations of the scrolled packing with the
same number of coils nc – see Fig. 5.
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As can be seen from Fig. 5 increasing the nanoribbon length leads to a mono-
tonic increase of the coils of its scrolled packing according to the power law
Nc ≈ 0.105N 0.61 for N → ∞. With increasing length the radius of inner cavity
R1 ≈ 5N 0.16Å and the outer scroll radius R2 ≈ 1.45N 0.49Å also increase. The spe-
cific energy of the spiral (scroll) E/N decreases monotonically with increasing num-
ber of particles (the longer is the nanoribbon, the greater is the energy gain from its
assembly into a scroll). At small lengths L < 101Å (N < 81) the flat form of the
nanoribbon is most advantageous in energy, and at lengths L ≥ 101Å (N ≥ 81) the
scrolled packing becomes more profitable.

The eigenmode of the lowest positive frequency ω1 is the twisting-untwisting
mode when all nodes of the model chain move along the Archimedes spiral. The
increase in the scroll length leads to a decrease in the frequency of this oscillation
ω1 ≈ 135/N cm−1 for N → ∞ – see Fig. 5d. By the similar law, the smallest natural
frequency of the scrolled packing of graphene nanoribbon decreases [16, 27, 30].

To verify the results obtained via the chain model, stationary scrolled packings of
graphane nanoribbons of various lengths were also found using a full-atomic model.
The graphane nanoribbon of width D = 13.7Å corresponding to a chain of N links
can be described by formula (C12H14)N/2−1C10H22 – see Figs. 1b and 2b. As can
be seen from Fig. 5, the full-atomic model leads to the same values of the number
of coils Nc and the radii of the scroll R1, R2, as the two-dimensional chain model.
Thus, the chainmodel for graphane nanoribbonmakes it possible to find their scrolled
packings with good accuracy.

5 Scrolled Packing of Fluorographene Nanoribbons

The fluorographene nanoribbon differs from the graphane nanoribbon in such a way
that its carbon atoms are joined by fluorine atoms instead of hydrogen atoms. The
fluorine atom is much larger than the hydrogen atom, and the C–F valence bond is
more strongly polarized than the C–H bond (in the COMPASS force field [31] it is
assumed that on theC–F bond atoms there are charges qC = 0.25e, qF = −0.25e, and
on the C–H bond atoms – charges qC = −0.053e, qH = 0.053e, where e – electron
charge).Coulomb repulsionof negatively chargedfluorine atoms leads to a significant
weakening of the interaction between the contacting sections of the nanoribbon. The
analysis of the full-atom model of nanoribbon shows that the contacting regions of
the nanoribbon continue to be attracted to each other, and the nanoribbons can form
stable scrolled structures – see Fig. 7.

The large size of thefluorine atoms and the strongpolarization of the valence bonds
C–F make it difficult to directly calculate the nonvalent interaction potential W (r)
for the chain model. The parameters k and l of the potential (4) can be estimated from
the asymptotics of the interaction energy of the nanoribbon sections as they approach
and distance from each other. The parameters r0 and ε here were chosen so that the
structure of the scrolls obtained using a full-atomic model would best coincide with
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Fig. 7 Scrolled packing of fluorographene nanoribbons (C12F14)99C10F22 of size 256.3 × 14.2Å2

(number of particles N = 200) with a number of coils Nc = 1.94 (inner radius R1 = 18.2Å, outer
radius of the scroll R2 = 23.5Å) and b Nc = 2.16 (R1 = 15.7Å, R2 = 22.1Å)

the structure of the spiral chain packages obtained using the chain model. The best
match is achieved when using the values of the parameters presented in the Table1.

The dependence of the number of coils Nc, inner R1 and outer radius R2 of
the scroll on the number of chain nodes N for fluorographene nanoribbon is given
in Fig. 8. There are only two or more coils scrolled packings for fluorographene
nanoribbons (number of coils Nc > 1). Double-coil configuration (nc = 2) can exist
only for nanoribbons of length L ∈ [86, 294]Å (for 68 ≤ N ≤ 230). Three-coil
configuration (nc = 3) of the scroll is stable at lengths L ∈ [256, 513]Å (200 ≤ N ≤
400), four-coil (nc = 4) – at L ∈ [513, 641]Å (400 ≤ N ≤ 600), five-coil (nc = 5)
– at L ∈ [641, 1078]Å (600 ≤ N ≤ 840), and structures with five or more coils
(nc ≥ 5) are stable for L ≥ 1078Å (N ≥ 840).

At certain lengths, there can be simultaneously two stable configurations of the
scrolled packing of the nanoribbon (see Fig. 7). This bistability aswell as for graphane
nanoribbons is due to the non-covalent interaction of the nanoribbon ends. Because
of this, the dependencies Nc, R1 and R2 on N are divided into branches corresponding
to the configurations of a scrolled packing with the same number of coils nc – see
Fig. 8.

As can be seen from Fig. 8 increasing the nanoribbon length leads to a monotonic
increase in the number of coils of its scrolled packing according to the power law
Nc ≈ 0.083N 0.61 for N → ∞. With increasing length, the radius of the inner cavity
also grows according to the power law R1 ≈ 7N 0.18Å and the outer radius of the
scroll R2 ≈ 1.8N 0.48Å. The specific energy of the spiral (scroll) E/N decreases
monotonically with the number of particles – the longer the nanoribbon, the greater
the energy gain from its assembly into a scroll. The flat form of the nanoribbon is
most advantageous in energy at small lengths L < 154Å (N < 121), and the scrolled
packing becomes more profitable at lengths L ≥ 154Å (N ≥ 121).

Stationary scrolled packing of fluorographene nanoribbons of various lengths was
also found using a all-atomicmodel to verify the results obtained via the chainmodel.
The fluorographene nanoribbon of width D = 14.2Å corresponding to a chain of
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Fig. 8 Dependencies of a
number of scroll coils Nc of
fluorographene nanoribbons,
b the specific energy of the
structure E/N for the scroll
and the flat nanoribbon
(curves 2 and 3), c inner R1
and outer radius R2 of the
scroll (curves 4 and 5) on the
number of chain particles N .
Markers give values obtained
using a full-atomic model of
a nanoribbon
(C12F14)N/2−1C10F22 with
width D = 14.2Å. Dashed
lines give power-law
dependencies
Nc = 0.083N 0.61 (curve 1),
R1 = 7N 0.18Å,
R2 = 1.8N 0.48Å (curves 4
and 5)
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N links can be described by formula (C12F14)N/2−1C10F22 – see Fig. 1c. As can be
seen from Fig. 8 a full-atomic model gives a good coincidence of the number of coils
Nc and scroll radii R1, R2 with the values obtained via the chain model. Thus, the
chain model for fluorographene nanoribbons also makes it possible to find with good
accuracy their scrolled packings.

6 Scrolled Packing of Fluorographane Nanoribbons

Let us consider the fluorographane nanoribbon shown in Fig. 1d. The main feature
of this nanoribbon is the non-equivalence of its sides. One side of it is hydrogenated
(hydrogen atoms are attached to carbon atoms), and the other is fluorinated (fluorine
atoms are attached to carbon atoms). Since fluorine atoms are larger than hydrogen
atoms and have a much greater electrical charge, they are more repulsive from each
other. Therefore, the flat form of such nanoribbon is not a stable state. Nanoribbon
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always bends and forms a convex surface the outer side of which contains fluorine
atoms, and the inside contains hydrogen atoms. If nanoribbon length considerably
exceeds its width, in the ground state it takes the form of a circular arc – see Fig. 9a.
Formation of the arc leads to the convergence of the nanoribbon ends, which can
lead to the self-assembly of the nanoribbon into a scroll structure [32].

In the chain model the non equivalence of nanoribbon sides is reflected in differ-
ence of the equilibrium value of the bond angle θ0 from 180◦. For a fluorographane
nanoribbon angle θ0 = 177◦. Convex nanoribbon can be rolled into a scroll by two
ways - to the scroll in which its outer side contains fluorine atoms and to the scroll in
which its outer side contains hydrogen atoms – see Fig. 9b and c. The most advanta-
geous in energy is always the first form of the scroll, since in it the convexity of the
nanoribbon coincides with its bend in the scroll. In the chain model these forms of
the scroll correspond to the chain packings in a spiral with different chirality (right
and left spiral).

The dependence of the number of coils Nc, the specific energy E/N , inner R1

and outer radius R2 of the scroll on the number of particles N is given in Fig. 10.
As can be seen from the figure, a scroll of nanoribbon with a fluorinated outer
surface is always more energy efficient and has a more compact shape than a scroll
with a hydrogenated outer surface. The number of coils Nc ≈ 0.165N 0.56 for the
first form and Nc ≈ 0.135N 0.56 for the second form of the scroll. The inner cavity
radius of the first form scroll is practically independent of its length R1 ≈ 8.4Å,
and the outer radius R2 ≈ 1.1N 0.53Å. For the second form scroll R1 ≈ 3.8N 0.23Å,
R2 ≈ 1.35N 0.51Å for N → ∞.

It is necessary to note that both forms of scroll having different twist are stable
configurations. The most energetically advantageous first form of a scroll can be
formed by nanoribbons of length L > 45.0Å (N > 35), and the second – only by
nanoribbons of length L > 70.7Å (N > 55).

Fig. 9 The ground state a of fluorographene nanoribbons (C12H8F6)47C10H17F5 (ribbon width
D = 13.9Å, number of particles N = 96). The most b and the least c energetically favorable
scrolled packings of nanoribbon (C12H8F6)127C10H17F5 (N = 256): packingwith fluorinated outer
surface (number of scroll coils Nc = 3.43, scroll radii R1 = 9.1Å, R2 = 21.8Å) and packing with
fluorinated inner surface (Nc = 2.8, R1 = 14.4Å, R2 = 23.4Å). The energy difference between
conformations b and c 	E = 29.7eV
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Fig. 10 Dependencies of a
the number of scroll coils Nc,
b the specific energy E/N , c
inner R1 and outer radius R2
of the scrolled packing of
fluorographene nanoribbons
on the number of chain
particles N . Curves 1, 3, 5
and 6 give dependencies for
scroll with fluorinated outer
surface, curves 2, 4, 7 and 8 -
for scroll with fluorinated
inner surface. Markers give
values obtained using the
full-atomic model of
nanoribbon
(C12H8F6)N/2−1C10H17F5
of width D = 13.9Å.
Dashed lines give power-law
dependencies
Nc = 0.165N 0.56 and
Nc = 0.135N 0.56 (curves 1
and 2), R1 = 8.4Å,
R2 = 1.1N 0.53Å (curves 5
and 6) and R1 = 3.8N 0.23Å,
R2 = 1.35N 0.51Å (curves 7
and 8)
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To verify the results obtained via the chain model, stationary scrolled packing of
fluorographane nanoribbons of various lengths was also found using a full-atomic
model. The fluorographane nanoribbonwidth D = 13.9Å corresponding to the chain
of N links can be described by the formula (C12H8F6)N/2−1C10H17F5 – see Fig. 1d.
As can be seen from Fig. 10 the 2D chain model gives a good coincidence of the
number of coils Nc and the radii of the scroll R1, R2 with the values obtained via
the full-atomic model. Thus, the chain model for fluorographane nanoribbons also
allows to find their scrolled packings.

7 Scrolled Packing of Graphone Nanoribbons

Graphone C4H (25% one-side hydrogenated graphene sheet) is the most stable struc-
ture formed by hydrogenation on one side of a graphene sheet [33]. Attaching a
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hydrogen (fluorine) atom leads to a local change in the valence bonds with sp2

hybridization by sp3, which entails to the appearance of local convexity in the sheet.
The addition of hydrogen atoms along a single line leads to a break in the flat sheet
of graphene along this line to the formation of a dihedral angle [34, 35].

One-side hydrogenation (fluorination) of graphene nanoribbon entails to non
equivalence of its sides. The flat form of the nanoribbon becomes unstable, it bends
and forms a convex surface on the outside with attached atoms. Strong bending of
the nanoribbon leads to its folding into scroll structures [36, 37].

In the chain model the non equivalence of nanoribbon sides is reflected in a
difference of the equilibrium value of the bond angle θ0 from 180◦. The non equiva-
lence of graphone nanoribbon sides is more revealed than that of the fluorographane
nanoribbons, here the angle θ = 171◦ for C4H and θ = 173◦ for C4F. Graphone
nanoribbons are always rolled up so that its convex side is the outer side of the scroll
– see Fig. 11. As can be seen from the figure, it is possible to fold the nanoribbon
into a single-scrolled (a), (d) and a double-scrolled (b), (c) packing. The double-
scrolled packing becomes more energy efficient for graphone C4H with the number
of particles N > 700 (L > 874Å), and for C4F - with N > 1400 (L > 1763Å) – see
Figs. 12b and 13b.

Fig. 11 Single-scrolled a, d and double-scrolled b, c packings of graphone nanoribbons C4H,
C4F with number of chain particles N = 1001. For packing a number of coils Nc = 9.12, inner
and outer radii of the scroll R1 = 5.29Å, R2 = 38.40Å; b Nc = 6.21, R1 = 5.26Å, R2 = 26.41Å;
c Nc = 8.68, R1 = 6.54Å, R2 = 40.14Å; d Nc = 5.95, R1 = 6.24Å, R2 = 27.56Å
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Fig. 12 Dependencies of a
number of scroll coils Nc; b
specific energy E/N ; c inner
R1 and outer R2 of
single-scrolled (curves 1, 3,
5 and 6) and double-scrolled
(curves 2, 4, 7 and 8)
packings of graphone
nanoribbons C4H on the
number of chain particles N .
Markers give values obtained
using the full-atomic model
of nanoribbon
(C12H3)N/2−1C18 of width
D = 11.4Å
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Dependence of the number of coils Nc, the specific energy E/N , inner R1 and
outer radius R2 of single-scrolled and double-scrolled nanoribbon packings on its
length (on the number of chain particles N ) for C4H and C4F are shown in Figs. 12
and 13. A feature of graphone scrolls is a decrease in the inner radius R1 with an
increase in the nanoribbon length. The inner cavity decreases monotonically, and
the number of coils and the outer diameter of the scroll increase monotonically with
increasing nanoribbon length.

For graphone C4H specific energy E/N decreases monotonically at N < 361
(L < 450Å) and increases monotonically at N > 361 for single-scrolled (double-
scrolled) packing of nanoribbon – see Fig. 12b. For double-scroll specific energy
decreases monotonically at N < 801 (L > 1000Å) and increases monotonically at
N > 801. For fluorographone C4F switching from decrease to increase in the specific
energy takes place with the number of chain particles N = 701 (L = 882Å) for
single-scrolled packing of nanoribbon – see Fig. 13b. For double-scroll this switching
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Fig. 13 Dependencies of a
number of scroll coils Nc; b
specific energy E/N ; c inner
R1 and outer R2 of
single-scrolled (curves 1, 3,
5 and 6) and double-scrolled
(curves 2, 4, 7 and 8)
packings of fluorographone
nanoribbon C4F on the
number of chain particles N .
Markers give values obtained
using the full-atomic model
of nanoribbon
(C12F3)N/2−1C18 of width
D = 11.5Å
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take place at N = 1601 (L = 2016Å). The increase in the energy of the scrolled
packing for large nanoribbon lengths is due to the fact that for larger scroll diameters,
it’s further winding of the nanoribbon becomes less energetically favorable (the small
curvature of the outer layers does not allow to realize the natural curvature of the
layer with nonequivalent sides). Therefore, for the length L > 100nm (L > 202nm)
graphone nanoribbons C4H (C4F) will forms not the scrolls having a cross-sectional
shape of a flat spiral, but more complex 3D spiral structures.

To verify the results obtained via the chain model, stationary scrolled packing
of graphone nanoribbons C4H (C4F) of different lengths was also found using the
full-atomic model. The graphone nanoribbon of width D = 11.4Å [D = 11.5Å]
corresponding to a chain of N particles can be described by formula (C12H3)N/2−1C18

[(C12F3)N/2−1C18] – see Fig. 1e, f. As can be seen from Figs. 12 and 13 the two-
dimensional chain model for graphone nanoribbons also gives a good coincidence
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of the number of coils Nc and the radii of the scroll R1, R2 with the values obtained
via the full-atomic model.

8 Conclusions

All-atomic modeling of long nanoribbon dynamics requires considerable computing
resources and to solve this problem we propose a simple 2D model of a molecular
chain that allows to describe folded and scrolled packages of nanoribbons. Here,
we propose the most simplified 2D model of a two-dimensional chain, allowing
to describe the scroll conformations of graphene-like single-layer nanoribbons of
graphene, graphane, fluorographene, fluorographane (hydrogenated on one side and
fluorinated on the other side graphene), graphone C4H (partially hydrogenated on
one side graphene) and fluorographone C4F.

The Hamiltonian of the chain model (1) takes into account the longitudinal and
flexural nanoribbon rigidness, as well as non-valent interactions between the trans-
verse layers of nanoribbon atoms. Using the model, possible stationary states of the
scrolls were obtained. The dependencies of energy, the number of coils, the inner
and outer radii of the scrolled packing on the nanoribbon length was analyzed and it
was shown that a scrolled packing is the most energetically favorable conformation
for nanoribbons depicted above. The longer nanoribbons of graphone and fluoro-
graphone, a double-scrolled packing is more advantageous when the nanoribbon is
symmetrically rolled into scrolls from opposite ends. The possibility of the existence
of rolled packing for nanoribbon of fluorographene was shown and two different
types of fluorographane rolls that in the chain model correspond to the left and right
spirals of Archimedes were discovered. To verify the results obtained via the chain
model we also used the full-atom model and found scrolled packings of graphene,
graphane, fluorographene, fluorographane, graphone C4H and fluorographone C4F
nanoribbons of different lengths. The chainmodel allows to find the scrolled packings
for these nanoribbons with good accuracy.

The simplicity of the proposed model allows to consider the dynamics of molec-
ular nanoribbon scrolls of sufficiently large lengths and at sufficiently large time
intervals. The model can be used for the description of scrolled packings of molec-
ular nanoribbons with the same surfaces (nanoribbons of boron nitride, silicene,
phosphorene, carbon nitride, etc.), of the nanoribbons which sides have different
chemical modification (nanoribbons of graphone and their analogs) and for describ-
ing the dynamics of multi-layered nanoribbons.
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Interaction Between DNA Molecule
and Nanosize Pore

Robert A. Turusov

The author thanks his colleague, anniversary celebrant L.I.
Manevich for the idea of this work.

Abstract We present a new approach in studying the interaction between DNA
macromolecule and nanopore. This approach is based on the “method of contact
layer” which is elaborated by the author in application to description of adhesive
interaction in the frameworks of “Adhesive mechanics”. We suggest now to extend
the method onto nanomechanics.

1 Introduction

This publication [1] describes direct experimental measurement (carried out for the
first time ever) of electrophoretic force that occurs while pulling a single DNA
molecule through a nanopore in a solid body as a function of the pore size. Theory of
this method, which has already been offered in publications [2–5] regards the force in
electrophoresis as a result of interaction between ionic screening and hydrodynam-
ics. Authors [1] simulate this process with Poisson–Boltzmann and Stokes equations
and receive a good agreement with experimental data. This method is meant for
DNA sequencing, i.e. to define the sequences of nucleotides forming the molecule,
by observing the change of the electrophoretic force in the process of DNA pulling
through a nanopore. It is likely that the hydrodynamic approach applied there allows
to evaluate the force integrally, i.e. as an average value throughout the nanopore
length. But this length is likely to be significantly longer than one DNA molecular
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Fig. 1 DNA molecule in a nanopore model. 1—DNA molecule, 2—solid elastic body with a
nanopore, 3—electric field between DNA and nanopore (contact layer)

fragment. That’s why the electrophoretic force will be a result of interaction of the
pore ‘walls’ with several DNA molecular groups. In this article its authors basing
on a mechanical model that describes adhesive interaction between reinforcing fiber
and polymer matrix, and on the strength of this model in trials, when the fiber was
pulled out of thematrix, offer an ‘incremental’ way of estimation, based on investiga-
tion of the narrow zone of tangential stress concentration, the tangential stress being
applied along the fiber on the ‘fiber-polymer adhesive’ boundary. The incremental
characteristic here is represented by adhesive strength τad , which presumably reflects
the charge nature of the DNA fragment with the length approximately equal to the
width of the stress concentration zone. The problem of stress distribution in such
adhesive model can be solved by the contact layer method [6–9] and is represented
in an attachment below. The results of the solution and its analysis is used in the
text itself. Authors presume that this approach may also be applied to estimate the
interaction between an enzyme and DNA.

2 Interaction Simulation

ADNAmolecule is being pulled through a nanosize pore in a solid body. Let us pre-
sume that the DNAmolecule and the walls of the nanopore represent an electrostatic
cylindrical condenser. Let’s name linear density of the charge as σ � q

/
l

(
Kl

/
m

)
,

where q—total charge of the DNA piece limited by a nanopore, L—length of the
nanopore, r1—radius of the inner cylinder (core), simulating the DNA, r2—nanopore
radius—here it’s the outer radius of the condensor (Fig. 1).

Then, according to the Gauss theorem for electrostatics, the interaction force of
the core surface length unit with the nanopore walls is:
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Fr (r1) � E(r1)σ � σ 2

2πε0ε r1
(1)

Here E(r)—is the electrostatic field intensity. Let us assume that the solid body
with the nanopore is immobilized (settled fixed), and a certain pulling force F is
applied to one of the ends of the central core (i.e. to the DNA along its axis). Let us
also assume that the core has also changed its position against the nanopore elastically
without breaking any links on relatively small length dl.As a result the radiuses, being
elongated, form a small displacement angle γ with the previous position. As a result,
shear force per unit length occurs

dFf r � Frγ dl � σ 2

2πε0ε r1
γ dl (2)

Dividing (2) by γ dl we receive average (by nanopore length) shear modulus G*:

G∗ � dFf r

γ dl
� Fr � 1

2πεε0

σ 2

r1
(3)

It is well known that potential difference between the core and the nanopore wall
is

ϕ(r1) − ϕ(r2) � σ

2πεε0
ln

r1
r2

(4)

Therefore the average density of charge is:

σ � 2πεε0[ϕ(r1) − ϕ(r2)]

ln
(
r2

/
r1

) (5)

From (5) and (3) we receive an average shear modulus

G∗ � 2πεε0[ϕ(r1) − ϕ(r2)]
2

r1
[
ln

(
r2

/
r1

)]2 (6)

Dimension of shear modulus is N/m2. Let us call the cylindrical layer between
the matrix r2 and the fiber (i.e. DNA molecule) r1—a contact layer. There are no
normal stresses σx , perpendicular to any cross section x � const. I.e. this layer is
anisotropic. In such a continuous medium Young’s modulus in radial direction is
identically linked to shear modulus with this simple equation E * � 2G * .

Thus, pulling a DNA molecule through a nanopore we are measuring a certain
force, destructing the settled interaction between themolecule and the pore.Although
the distribution of the tangential stress remains unrevealed.

To find the relation τp(x, r1) let us regard the DNAmolecule as a thin cylindrical
solid core (fiber) and the matrix 2 with nanopore—as a hollow cylinder of finite size
with inner radius r2, outer radius R and length l (Fig. 1). We consider the problem as
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Fig. 2 Stresses in the elements of central (a) and outer (b) cylindrical cores; c—displacements
«u » in axial direction in the cores and the contact layer

generally axisymmetric. In addition let’s not take into consideration a small possible
shrinkage of the diameter during elongation of the fiber along the axis. It’s highly
possible that the electric field in the pore being significant, the molecule can change
its size while getting into it. This possible fact is neglected in our approach.

I.e., let us presume that there exists a certain anisotropic layer of small thickness
δ (of the electric nature—in our case) between the polymer matrix and the fiber, and
this layer can transfer normal stresses σr and tangential ones—τr x [1–3]. Let’s write
down the balance equations for the elements of the above mentioned cores 1 and 2
of dx length (Fig. 2c):

for the central core element (DNA molecule) 1:

(dσx1
/
dx)dxπ r21 + τr x (r1)dx 2π r1 � 0; (7)

for cylindrical element 2 of the matrix r2, separating the matrix from the contact
layer:

(dσx2
/
dx)dx π (R2 − r22 ) − τr x (r2)dx 2πr2 � 0 (8)

after reduction:

τr x (x, r1) � −(r1
/
2)(dσx1

/
dx);

τr x (x, r2) � R2 − r22
2r2

dσx2

dx
. (9)

Let us mark normal forces in cores as N1 � πr21σx1 and N2 � π (R2 − r22 )σx2,
and rewrite the Eq. (9) in a more convenient way:

dN1
/
dx � −2πr1τr x (x, r1); dN1

/
dx � 2πr2τr x (x, r2) (10)
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One of these equations can be substituted by a balance equation of a part of the
model in any cross section x :

N1 + N2 � 0 (11)

After reduction

∂τ (x, r )
/

∂r + τ (xr )
/
r � 0 (12)

Integrating (12):

τ (x, r ) � − f (x)/r, (r1 ≤ r ≤ r2) (13)

Let’s mark the displacement along the x axis according to the layers u1, u2 and
in the contact layer u3 (see Fig. 2c). To keep the continuity (solidness) of the model
on the boundaries r1 and r2 the following criteria should take place:

u3(x, r1) � u1(x); u3(x, r2) � u2(x). (14)

Deformations in layers 1 and 2 can be described with the help of Cauchy relations

εx1 � du1
/
dx ; εx2 � du2

/
dx (15)

For contact layer 3, the change of radial displacement along x being neglected,
we receive the following equation for shear deformations:

εr x � ∂u3(x, r )
/

∂r , (r1 ≤ r ≤ r2) (16)

Presuming the deformations in cylinders 1 and 2 are elastic and linked with the
stresses by Hooke law:

exi � σxi
/
Ei � Ni

/
Si Ei , i � 1, 2. (17)

In contact layer 3 only shear deformations occur, also linked with tangential
stresses by Hooke law:

εr x � erx � τ (x, r )
/
G∗. (18)

From (15)–(18):

u3(x, r ) �
∫

εr xdx + ϕ(x) � − f (x)

G∗ ln r + ϕ(x). (19)

From boundary conditions (14):
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r � r1 : u1 � − f (x)

G∗ ln r1 + ϕ(x); r � r2 : u2 � − f (x)

G∗ ln r2 + ϕ(x). (20)

Subtracting the first equation from the second in (20) and differentiating with
respect to x:

d

dx
(u1 − u2) � 1

G∗ ln
r2
r1

[
d f (x)

dx

]
(21)

Substituting Eqs. (15), (17), (10) and (17) in (21), we receive an equation for the
required functional relation N1:

d2N1

dx2
� 2πG∗

ln(r2
/
r1)

[(
1

E1S1
+

1

E2S2

)]
N1 (22)

Let us mark

ω2 � 2πG∗

β ln(r2
/
r1)

, β � π

1
/
(E1r21 ) + 1

/
[E2(R2 − r22 )]

(23)

And rewrite Eq. (22) as:

d2N1
/
dx2 − ω2N1 � 0 (24)

Solution of (24):

N1(x) � A chωx + B shωx (25)

Boundary conditions here are the following:

x � 0 N1 � 0; x � l : N1 � P. (26)

From (25) and (26):

A � 0; B � P

sh ν
; ν � ω l.

Finally:

N1(x) � −N2(x) � P

(
sh (ω x)

sh ν

)
(27)

τr x (x, r) � − f (x)

r
� −1

r

(
1

2π

dN1

dx

)
� − ω

2πr

[
P
ch (ω x)

sh ν

]
,

ν � ω l (28)
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Fig. 3 Distribution of tangential stresses in a cylindrical ‘fiber-polymer’ sample near the ‘fiber-
polymer’ boundary

Let us presume that R is large in comparison with the nanopore radius. That’s
why the parameter of tensile stiffness still stays in Eq. (23): β � Eπ r21 . Then the
parameter ω:

ω �
√

2G∗

E1r21 ln
r2
r1

(29)

If r2 − r1 � δ << r1, after expanding the logarithm:

ω �
√
2G∗/ E1δ r1 (30)

I.e. the main difference between this model and the model ‘fiber-polymer’ [6–9]
is in ability to control the shear modulus G* of the contact layer (in our case it’s
electric layer, and the modulus is the difference of potentials), or, in other words,
stiffness of the contact layer G*/δ. Its value defines the width of the zone of tangential
stresses concentration near the point of DNA exit from the pore (or near the fiber exit
from the matrix [7, 9]) and the maximum of these stresses. Keeping under control
the value of G*, we can control the length of the fragments being torn at the output.
Other sequencing methods are also possible with the above-mentioned approach.

Figure 3 represents an example of distribution of the tangential stresses on the
‘fiber-polymer’ boundary, thermal stresses taken into account. The calculations were
made with the following parameters of the model:

r1 � 4 ◦ 10−3 mm, R � 1 mm, l � 1 mm, α1 � 10−5 K−1,

α2 � 8 ◦ 10−5 K−1, E1 � 2 ◦ 105 MPa, E2 � 4 ◦ 103 MPa,

G∗/δ � 25 ◦ 104 MPa
/
mm, μ1 � 0, 3,

μ2 � 0, 35, (α2 − α1) �T � −0, 5 ◦ 10−2, P � 10−2 N.

As it can be seen from the Fig. 3 the tangential stress are centered near the exit of
the fiber from the polymer matrix while x= l/2. The statement that the action takes
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place in the zone of stresses concentration and the fiber/molecule piece which is torn,
has the length roughly equal to the width of the zone of the stresses concentration,
is based on trials and one-dimensional solution. It’s partially verified by the solution
for two-dimensional problem. Strict demonstration is to be received.
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Wave-Particle Duality
and Quantum-Classical Analogy

Leonid I. Manevitch

Abstract Mathematical analogy between the systems of weakly coupled oscilla-
tors and multi-level quantum system allows considering them in the framework
of a unified approach. In particular, an asymptotic interpretation of wave-particle
duality provides an efficient analytical tool for solving both linear and nonlinear
non-stationary dynamical problems of classical and quantum mechanics.

1 Introduction

1.1 Genesis of Wave-Particle Duality

It is well-known that the alternative versions regarding the light nature were proposed
at dawn of theoretical physics. Newton’s corpuscular model could easily explain a
rectilinear propagation of light. However, it was not so successful when dealing with
a superposition of the beams going by different ways through a clearance between
lens and underlying glass. On the contrary, the appearance of the ring fringes in
this case was easily explained by alternative theory of the wave perturbations in the
hypothetic elastic ether. In spite of the fact that thewave theorydidnot describe simply
the rectilinear light propagation, its explanation became possible due formulation by
Huygens of his name principle.

Huygens’s principle opened the possibility to understand different wave mani-
festations of the light. However, the most significant of them, i.e. interference and
diffraction were not initially recognized as its consequences. The complete under-
standing had been attained after the decisive experiments of T. Young and A. Fresnel.
They led to common conclusion: Huygens was right. As F. Arago claimed: “who
might think that the light merging with the light can induce the gloom!” When
Maxwell discovered electromagnetic nature of the light, the conclusion concerning
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its wave nature was extended to any electromagnetic radiation. It was a second great
synthesis in the physics after world-wide Newton’s gravitation law.

The wave electromagnetic theory remained to be indisputable advancement even
after the demonstration of its contradiction to thermodynamics laws. Let us remind
the essence of this contradiction. As classical thermodynamics claims the energy of
the radiation in the box with non-transparent heated walls has to be uniformly dis-
tributed between the normal waves of all possible lengths (frequencies). The lengths
of electromagnetic waves in the cavity (inside the box) can be infinitely small (then
the frequencies are infinitely large). Therefore, their number as well as the general
energy becomes infinite (“ultraviolet catastrophe”). This contradiction is removed
byM. Planck’s hypothesis supposing that the absolutely black body irradiates by the
discrete energy portions only. Then the contribution of the high frequencies sharply
decreases and turns out to be finite. Several years later A. Einstein supposed that the
carriers of Planck’s discrete portions are the particles, i.e., he returned to Newton’s
corpuscles and explained on this base the phenomenon of photoelectric effect. The
reasons of Planck and Einstein were strongly different. The former one wanted to
theoretically describe the frequency and temperature dependences of the radiation
density with preservation of the wave paradigm. However, while solving brilliantly
the first problem, he could preserve the wave picture only due to incorrectness in his
arguments, which was recognized later. As for Einstein, he paid the main attention to
the “ultraviolet catastrophe” considering it as inevitable consequence of the classi-
cal wave paradigm which remained nevertheless necessary as an explanation of the
interference and diffraction [10].

This contradiction seemed to be insuperable and therefore the notion of photon
was not accepted by the physical community over almost two decades. “A. Einstein
did not even attempt to remove the internal contradictions of his interpretation. He
accepted the contradictions as something that, probably, can be understoodmuch later
due to entirely new thinking” [8]. The hypothesis of light quanta was considered,
in particular, by M. Planck as a misconception, although deserving the forgiveness
because of Einstein’s other scientific achievements.

However, A. Kompton’s experiment revealed that the radiation scattering on elec-
trons is similar to that of a collection of particles having the mass and momentum.
Two years later, S. Bose showed that Planck’s formula can be obtained without any
reference to waves. It is sufficient to suppose that the radiation is a gas of non-
interacting but undistinguished particles which is not subordinated to the classical
statistics of independent events. In other words, the particles, being non-interacting,
are nevertheless statistically dependent. Then P. Dirac and P. Jordan concluded that
it is possible, similarly, if to restrict the consideration with the wave description
without the notion “corpuscule”, but performing the wave quantization [17]. Finally,
it became clear that even the explanation of photoelectric effect does not require
the consideration of the radiation as a collection of particles. Thus, it seems that
both interpretations are admissible in the radiation theory. However, we have to keep
in mind that, contrary to the classical theory, the non-interacting waves as well as
non-interacting particles are statistically dependent.
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1.2 Duality and Statistical Dependence

It is clear that statistical dependence of two throwing indistinguishing coins means
decreasing the probability of failing out of heads (or tails) from 3/4 to 2/3, but what
does it mean in the case of the quantized waves or particles? To answer this question,
it is convenient to use R. Feynman’s formulation of the quantum mechanics via
the path integrals [4]. Let us imagine that the particle is in a point A (or the wave
amplitude has a value a) at the initial moment, and comes finally into a point B (the
wave amplitude accepts a value b). We consider all possible paths connecting the
points A and B. In the classical physics, only one trajectory can be realized. If the
actual trajectory is spreading, we would no longer be able to talk about the particle.
In the quantum mechanics, all geometrically possible trajectories contribute into the
path integral. This means that the notion of particle ceases to be definite. However,
the notion of the stationary state corresponding to certain energy and obtained by
quantization of normal modes of radiation remains definite. In the classical limit,
when the energy is high enough, one can connect the stationary states only with a
statistical description of the normal modes. A stationary state itself is so far from
the classical wave, as the Feynman particle is far from the intuitive notion of a
particle. In both cases, we have to deal, generally speaking, with a probabilistic
description. Feynman’s formulation of the quantum mechanics allows explaining
the wave properties of the radiation by considering an ideal gas of dynamically
independent, but statistically dependent particles. Their dependence, which is taken
into account by the Bose-Einstein statistics, reflects the possibility of Feynman’s
particle “to pass simultaneously” all possible trajectories.

1.3 On the Asymptotic Interpretation of Duality

Then, what is the role of the “wave—particle” duality? Does the discussion relating
to this phenomenon should be left only to the historians of science? Such a radical
position is not justified, at least because of the phenomenon of the wave packet
reduction in the measurement, a meaningful discussion of which continues to this
day [39]. But in the context of this article, it is useful to refer also to Einstein’s
presentation of the mean square fluctuations of the energy and momentum of the
radiation [10]. The formulas for these quantities contain the additive contributions,
which correspond to the ensemble of the classical waves and the classical ideal gas
of particles with energy hν:

(ε2) � (Vdν)[hνρ + (c/8πν2)ρ2];�2/τ � (1/c)[hνρ + (c2/8πν2)ρ2]Adν, (1)

where

ρ(ν, T ) � (8πν2/c2)(hν)[exp(hν/kT ) − 1]−1 (2)
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is the Planck energy distribution of the thermal radiation over the frequencies at
a temperature T per unit volume and unit frequency interval, ν− the frequency of
the radiation, V—the volume of the vessel containing the radiation, c—speed of
light, k and h—Boltzmann and Planck constants, respectively, τ - relaxation time,
A—the area of the flat, ideally reflecting plate located in the vessel with the radiation
at a temperature determined by its walls, and able to move freely in a direction
perpendicular to its plane.

It is known that the limit of Planck’s formula for the high frequencies and the low
temperatures is the Wien distribution:

ρ(ν, T ) � a exp(−b/kT ), (3)

where

a � (8πν2/c2)b; b � hν, (4)

and at low frequencies and high temperatures—the Rayleigh–Jeans distribution

ρ(ν, T ) � (8πν2/c2)(kT ). (5)

Einstein showed that the wave theory can give only the second terms in the above
formulas (1) for the fluctuations of the energy and the momentum. On the other
hand, if the radiation consists of an ideal gas of the classical particles with energy
hν, the classical statistics would lead to the appearance of the only first terms in (1).
Moreover, each of two first terms can be interpreted as resulting from limitingWien’s
expression (3) (classical corpuscular approach) and each of the second terms—from
the Rayleigh–Jeans limiting expression (5) (classical wave approximation) [10].

The fact that the relative weights of the two contributions are determined by the
frequency of radiation and temperature indicates the asymptotic nature of the particle
and wave representations of the radiation, which are subordinated to the classical
statistics. Of course, in the high-frequency (low temperature) limit a “quantum trace”
remains, but actually only in themagnitude of the particle energy. It is noteworthy that
the transition to the Bose-Einstein statistics for the purely corpuscular or pure wave
approach is asymptotically equivalent to the integration of the two contributions.

1.4 Coherence and Quantum-Classical Analogy

The quantum-classical analogy, which is discussed below, shows that the problem of
thewave-particle duality alsomanifests in an important class of the classical systems.
This allows considering the quantum and classical problems in parallel, and to clarify
the asymptotic interpretation of the wave-particle dualism, both qualitatively and
quantitatively. Keeping in mind this analogy, let us discuss the limiting transition
to the classical particles and waves. The key concept here is coherence. Usually,
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the limiting transition from quantum to classical mechanics, according to Bohr’s
correspondence principle, is due to the presence of a multi-photon excitation, when
the transition between the discrete energy levels can be considered as continuous.
However, by staying in the framework of the quantum mechanics, we must still keep
the appropriate probabilistic estimations corresponding to the multi-photon levels.
In other words, the limiting case is not the Newtonian mechanics but the classical
statisticalmechanics [3]. This is easily seenwhendealingwith the quantumoscillator.
Its multi-photon levels reflect the predominant presence of the oscillator in the region
of maximum deviation from the equilibrium. This is valid also for the ensemble of
classical oscillators because the maximum deviation corresponds to the minimum
velocity.

As for the coherent state which was first constructed by E. Schrödinger for the
quantum oscillator in the form of thewave packet, it does not spread because includes
all the energy levels which are equidistant [20, 48].The coherent state is close to the
classical description of the oscillator as possible. This provides the existence of a
limiting transition from quantum mechanics to Newtonian mechanics. The phase of
the wave function is one of the significant characteristics of the coherent state while
in each of the stationary states it remains uncertain. Moreover, it is the phase of the
order parameter that prohibits spreading the wave packet. The conjugate to the phase
variable in theHeisenberg uncertainty relation is the number of quanta corresponding
in this case to the coherent state. This does not lead to a contradiction, while the
number of energy levels is infinite, and therefore any restrictions in the uncertainty
of the number of photons do not occur. On this basis, R. Glauber developed the
method of coherent states [5], which, in fact, generalizes the original Schrödinger’s
result. However, when one tries to extend the notion of the coherent state to the
system, other than the harmonic oscillator, four kinds of difficulties arise. First,
the spectrum of energy levels, as a rule, is not equidistant, so that construction
of an exact coherent state (in the sense of Glauber) is not possible. The proposed
procedures of generalization to the systems with a non-equidistant spectrum do not
ensure preservation of all the properties of the exact coherent state, providing its
proximity to the classical solution [56]. For example, the wave packet spreads with
time, and the product of uncertainties of momentum and position is not constant.
Second, these procedures are not applicable if one takes into account nonlinearity
that arises in the quantum problem when using self-consistent field method for the
dimension reduction. Third,Glauber’s approach is directly applicable,when a ground
state can be identified. It is not so, e.g., in the case of the spin chain, in spite of the
fact that the energy spectrum is equidistant in this case. Finally, for a finite number
of energy levels the phase cannot be a characteristic of the process because of the
above mentioned uncertainty relation. However, its violation does not preclude the
existence of the coherence properties,which are studied, for example, in laser physics,
based on a two or three-component model [51]. All this compels to think that the
usually considered coherence conditions conceal a more general property. We deal
here with the manifestation of the coherence effects in the classical and quantum
systems, with infinite and the finite spectra, linear and nonlinear. In a brief form,
the idea of generalization can be formulated as follows: “For a fixed number of
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particles, when the concept of phase has no sense, coherence manifests in certain
correlations between the particles. Moreover, these correlations in the case of an
indefinite number of the particles lead to the usual notion of the phase (i.e., the
coherent states of Glauber—(LM))” [56].

An analogy between the systems of weakly coupled oscillators (linear and nonlin-
ear) and multi-level quantum systems sheds an additional light on this situation. We
briefly describe this analogy considering as an example a two-level quantum system
and, correspondingly, the classical system of two weakly coupled oscillators.

2 Two-Level Quantum Systems

In quantum mechanics, an arbitrary state< s| of two-component model can be rep-
resented as a superposition of two selected basis states<1| and<2| (6) (see, e.g.,
[61]):

< s|� a1 < 1|+ a2 < 2| , (6)

where ai(τ )—the complex amplitude corresponding to the detection of the system
in the j-basis state at time τ (j � 1, 2).

Then the value of aj(τ + �τ ) for small �τ can be represented as superposition
of the basis states at time τ (the causality principle):

a j (τ + �τ) � δk j +
i

h
ck j (τ )�τ, (7)

δk j—the Kronecker delta, and the fundamental quantum equations (�τ→ 0) with
taking into account (7) have the form:

⎧
⎨

⎩

−i� da1
dτ

� c11a1 + c12a2

−i� da2
dτ

� c21a1 + c22a2
(8)

In some special cases coefficients cki in (8) can be considered as independent
of the time, and assume that c12 � c21 is the real number. The basis states, which
form a complete system, usually correspond to partial, well distinguishable subsys-
tems. For example, such subsystems in the hydrogen molecule with two electrons
having the opposites spins can describe the states close to the atomic ones, and their
superposition describes the molecular (valence) bond. In the ammonia molecule they
correspond to nitrogen atoms disposition from one or another side of the plane in
which the hydrogen atoms arrange. It is understandable that the basis states, generally
speaking, do not coincide with those corresponding to the energy levels.
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3 The Classical System of Two Weakly Coupled Oscillators

The classical system of two weakly coupled oscillators with identical masses and
close frequencies is described (in the dimensionless form) by the following equations

⎧
⎨

⎩

d2u1
d τ̃ 2 + u1 + 2βε(u1 − u2) � 0

d2u2
d τ̃ 2 + (1 + 2εγ )u2 + 2βε(u2 − u1) � 0

, (9)

where u j � Uj

L0
; τ̃ �

√
c1
m t ; 2βε � c12

c1
; 2εγ � c2−c1

c1
, t—time, Uj—the displace-

ment of the particle with number j, m—mass of each particle, c j—the rigidity of the
oscillator, c12—the rigidity of coupling, L0—the distance between the masses in the
absence of the deformation, ε � 1, j �1, 2.

Taking into account the smallness of the parameter ε, for asymptotic analysis of
equations of motion (9), it is useful to introduce the complex variables

ψ j � (v j + iu j ); ψ∗
j � (v j − iu j ), v j � du j

d τ̃
, j � 1, 2 (10)

The equations of motion in the variables (10) take the form:
⎧
⎨

⎩

dψ1

d τ̃
− iψ1 − iεβ[(ψ1 − ψ∗

1 ) − (ψ2 − ψ∗
2 )] � 0

dψ2

d τ̃
− i[(1 + εγ )ψ2 − εγψ∗

2 )] − iεβ[(ψ2 − ψ∗
2 ) − (ψ1 − ψ∗

1 )] � 0
(11)

The method of two-scale expansions allows one to introduce explicitly the “slow
time” τ1 � ετ0 (alongside with the “fast time” τ̃ � τ0).

Then, given that

d

d τ̃
� ∂

∂τ0
+ ε

∂

∂τ1
, (12)

and the unknown solution of Eqs. (11) can be represented by the expansions

ψ j (τ0, τ1) � ψ j,0(τ0, τ1) + εψ j,1(τ0, τ1) + . . . ., j � 1, 2, (13)

with taking into account relation (12), we obtain in the main asymptotic approxima-
tion (see Appendix A):

⎧
⎪⎨

⎪⎩

−i d f1,0dτ1
+ β( f1,0 − f2,0) � 0

−i d f2,0dτ1
+ β[(1 − γ /β) f2,0 − f1,0] � 0

, (14)

where f j,0(τ1) � ψ j,0e−iτ0 , j � 1, 2.
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4 The Quantum-Classical Analogy

Thus, in this approximation the classical system is described by the same Eqs. (8) as
the two-component quantum system with constant real parameters (14), in which

ai � fi,0, � � 1, c11 � β, c22 � β(1 − γ /β), c12 � c21 � −β, τ1 � ετ̃ (15)

Consequently, while assuming (15), one can give both classical and quantum
interpretation of the solutions of these equations.

If we accept for simplification that γ � 0, then the stationary states of a two-
level quantum system corresponding to the normal modes of a classical system of
oscillators satisfy the equation

d A

dτ1
� α1A;

dB

dτ1
� α2B, (16)

where A � a1 + a2; B � a1 − a2, α1 � c11 + c12, α2 � c11 − c12.
In the quantum mechanics A � A0eiα1τ0 , B � B0eiα2τ0 are the new basis states

with energies α1 i α2, respectively. If the system (16) is prepared in one of these
stationary states corresponding to the normal modes of the classical system, it can be
remained in this state during infinite time interval. If, however, the system starts the
evolution from f 1.0(0) (f 2.0(0)� 0), or f 2.0(0) (f 1.0(0)� 0), we can predict the periodic
variation of the transition probabilities between the initial basis states corresponding
to the process of beating in the classical system of weakly coupled oscillators. An
analogy with well-known I. Rabi oscillations which were initially discovered in the
atomic nuclei is evident.

5 Analysis of Two-Component Classical and Quantum
Models

Using one of the integrals of the complex system: N � ∣
∣ f1,0

∣
∣2 +

∣
∣ f2,0

∣
∣2, we introduce

new real variables

fi,0 � √
N cos θ · eiδ1 , f2,0 � √

N sin θ · eiδ2 . (17)

The time evolution equations in the variables (17) take the form

dθ

dτ1
� β sin�

sin 2θ
d�

dτ1
� 2β cos 2θ cos�, (18)

where � � δ1 − δ2, and have integral H0 � β cos� sin 2θ .
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LPT NNM

Fig. 1 The phase plane of the variables �, θ
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Fig. 2 Time dependence of non-smooth variables

The stationary states of a quantum system (the normal modes of the system of
weakly coupled classical oscillators) are the stationary points of the phase plane,
corresponding to the system (18), which are shown in Fig. 1.

Themaximumpossible energy exchange between the initial basis states or oscilla-
tors (in the classical interpretation) and, therefore, the periodic change of probabilities
(in the quantum interpretation) is described by the limiting phase trajectory (LPT),
which is maximally distant from the stationary points (Fig. 1). The time dependences
of the input variables, through which the LPTs can be naturally expressed, are shown
in Fig. 2.

To keep the analogy with the classical systems, we assign the term “quantum par-
ticle” to each of the original basis states, the linear combinations of which determine
the stationary state (“collective” or “wave” excitation). The change in the initial con-
ditions in classical and quantum problems leads to possibility of a transition from the
wave (normal mode or stationary state) to a “particle” representation of the process in
terms of the LPTs. The feasibility of such a transition is confirmed by the very simple
behavior of LPT in time in adequate non-smooth variables: θ � π

2 τ (τ1), � � π
2 e(τ1)

presented in Fig. 2. (see also Appendix B).
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This behavior corresponds to the oscillations of a classical particle between rigid
walls. Since the function θ (τ1) characterizes actually the ratio of the excitation inten-
sities of the oscillators, its profile gives a fair representation of the energy exchange
with some period in slow time (see Appendix B). In the two-level quantum systems,
this function describes the periodic dominance of each of the basis states. In the above
example with the hydrogen molecule, we are talking about the states in which the
electron with a preassigned spin is localized near one or other proton. Measurement
at a certain time detects the system in the certain basis state with probability that is
expressed in the terms of the saw-tooth function θ (τ1). The described approach is
adequately presented in terms of the LPTswith using the non-smooth basis functions.
This approach can be naturally extended to nonlinear systems, where the principle
of superposition is already not valid.

Note that possible temporal dependence of the parameters of the system in the
classical system of weakly coupled oscillators means a change in the elastic and
inertial properties. In the quantum case it corresponds, e.g., to the presence of the
constant (in time) field. Then the irreversible energy exchange between the classical
oscillators, or the quantum tunneling by the well-known Landau-Zener mechanism
can be realized [18, 65]. The quantum-classical analogy allows the manifestation of
a new type of the energy traps in which an irreversible energy transfer is achieved
due to the relatively slow passage through the resonance of the classical system [14,
16, 36].

6 Linear Multi-level System

Our approach to the time-dependent dynamics is naturally extended to the linear
systems with many degrees of freedom (oscillatory chains), but we deal here with
the “coherence domains” instead the weakly interacting oscillators. The “coherence
domains” are formed due to crowding the frequency spectrum near the maximum
frequency (Fig. 3), and they include some set of the real particles. With an increase
in the number of particles in the oscillatory chain, the number of resonant normal
modes, the combination of which forms the coherence domain, also increases.

Figure 4 shows an intense energy exchange between the coherence domains cor-
responding to the motion over the LPT. In this case each coherence domain includes
ten real particles. In essence, we are talking about the extension of the concept of
the beats to the linear systems with many degrees of freedom. Obviously, the similar
results can be obtained for a multi-level quantum system with constant parameters.
For example, a number of equidistant (or close to it), i.e., co-resonant levels can coex-
ist with non-equidistant levels. This is the case in the problems of the propagation of
the electronic or magnetic excitations in the finite periodic structures in the presence
of external fields (respectively, a constant electric field or magnetic field with a con-
stant gradient). In the infinite periodic structures, the electronic and magnetic energy
spectra are equidistant [11, 63] but a ground state is absent. Therefore, in this case
the Glauber approach is not applicable. However, one can consider that an electron
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Fig. 3 Crowding of the
frequency spectrum with an
increase of the number of
particles in the linearized
system (oscillatory chain
with periodic boundary
conditions). All modes,
except the lowest (not
shown, because it has zero
frequency) and the mode
with the maximum
frequency, are double
degenerate

moving in a periodic lattice under the influence of a constant electric field is in the
coherent state corresponding to the Bloch oscillations (contrary to transitional move-
ment in the absence of a field or a periodic potential). Their frequency depends on the
field [49]. In the case of a finite periodic structure, the spectrum is not equidistant.
However, then the electronic and magnetic systems can allocate a certain number of
co-resonant energy levels [6, 9]. Therefore, the mathematical analogy between the
multi-dimensional classical and quantum problems in this case is preserved.

We can say that the seemingly various interpretations of wave-particle duality can
come close if we consider that the “wave” approach of Planck, Dirac, and Jordan
deals actually with the statistically dependent waves, as well as the “corpuscular”
approach S. Bose and A. Einstein deals with statistically dependent particles. How-
ever, while the basic variables are selected as dynamically and statistically indepen-
dent (or almost independent) elementary excitations, they, by necessity, are almost
the “wave-like” in the one region of the spectrum, and almost the “particle-like”—in
another region. The “wave-particle” duality in this sense is an asymptotic concept
with a specific physical and mathematical content, including the notions of “coher-
ence domains” and “limiting phase trajectories.”

It is noteworthy that the quantum-classical analogy “works” not only in the above-
mentioned case of the linear systems with variable parameters [14, 16]. It also holds
for nonlinear chains (including the oscillators, weakly interacting with the external
field [28, 37, 57, 60]), when the manifestation of the coherence is supplemented by
an intermodal interaction.
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Fig. 4 Energy exchange between the effective particles: upper graph—the energy (vertical) as a
function of time and number of particles, the lower graph—a section of the energy surface

7 Nonlinear Systems

In the nonlinear case, as in the linear approximation, an adequate understanding of the
intense energy exchange is achieved with the introduction of “coherence domains”,
whose dynamics is described by the LPTs. In addition, a transition from energy
transfer to energy localization can be naturally explained in the terms of LPTs [28,
57]. In essence, this approach reveals also the physical nature of breathers formed in
the oscillatory chain with a large number of particles, in particular, in the polymer
chains (see, for example, [12, 35]). At the same time, there is a range of the initial
conditions, exposure to which determines the applicability of the wave language
(NNMs). Let us dwell on the classical nonlinear system—the finite periodic Fermi-
Pasta-Ulam (FPU) chain with Hamilton function
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H �
N∑

j

P2
j

2m
+ V (Q j+1 − Q j )

V (x) � 1

2
x2 +

α

3
x3 +

β

4
x4

QN+1 � Q1 (19)

The number of particles in (19) is assumed to be even. To simplify the calculations,
we assume that α � 0. The generalization to the asymmetric system is given in [57,
59]. The strong coupling between the particles induces, as usual, the transition to the
normal coordinates with using the canonical transformation (see Appendix C).

The frequencies of the linearized system are defined by the relation ωk �
2 sin(πk

N ), k � 0, . . . , N − 1, and the quadratic and quartic components of the
Hamiltonian take the form shown in Appendix C.

As in the case of two-dimensional systems, we introduce the complex variables
and rewrite the dynamic equations in complex form:

�k � 1√
2

(
dζk

dt
+ iωkζk

)

, �∗
k � 1√

2

(
dζk

dt
− iωkζk

)

(20)

The equations of motion in the variables (20) can be written as follows:

i
d�k

dt
+ ωk�k − β

8N
ωk

N−1∑

l,m,n�1

Ck,l,m,n(�l − �∗
l )(�m − �∗

m)(�n − �∗
n ) � 0 (21)

The original formulation of the problem does not contain a small parameter, and
it would seem that we cannot expect a possible generalization of the above results to
the multidimensional case. However, as it was mentioned above, with the increase
of the particles number a densification of the frequency spectrum in its upper part
is observed. Mathematical reflection of this fact is the appearance of the quantity
1/N in the formula for the natural frequencies, which will be considered as a small
parameter appropriate for construction of the asymptotic expansion corresponding
to Eq. (21). A quantum analogue of the considered classical model is a non-linear
multi-level quantum system.

Presentation of the frequencies ω N
2 ±1 in the form:

ω N
2 ±1 � 2 sin

[
π

N

(
N

2
± 1

)]

� 2 cos(
π

N
) ≈ ω N

2

[

1 − 1

2

( π

N

)2
]

, (22)

where ω N
2
—the upper limit frequency in the first Brillouin zone, confirms the spec-

trum densification at higher frequencies with increasing the number of particles,
which is also clearly seen in Fig. 3.

In accordance with the procedure of the multi-scale expansions we supposed that
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�k � ϕkeiωk t ϕk � √
ε(χk,1 + εχk,2 + ε2χk,3 + . . .),

τ0 � t ; τ1 � ε t ; τ2 � ε2 t ; ε � 1/N
(23)

The further calculations starting from relations (23) are presented in Appendix A
for the simplest example of weakly coupled linear oscillators.

We write the dynamic equations of the main asymptotic approximation for the
highest-frequency mode and two closest in frequency modes of the spectrum (22)
(it is clear that such a restriction is possible due to much weaker coupling with other
modes)

i dχN/2

dτ2
+ 3β

4 [|χN/2|2χN/2 + 2(|χN/2−1|2+|χN/2+1|2)χN/2+

(χ2
N/2−1 + χ2

N/2+1)χ
∗
N/2] � 0

i dχN/2−1

dτ2
− π2

2 χN/2−1 +
3β
8 [(4|χN/2|2+3|χN/2−1|2+

2|χN/2+1|2)χN/2−1 + (2χ2
N/2 + χ2

N/2+1)χ
∗
N/2−1] � 0

i dχN/2+1

dτ2
− π2

2 χN/2+1 +
3β
8 [(4|χN/2|2+3|χN/2+1|2+

2|χN/2−1|2)χN/2+1 + (2χ2
N/2 + χ2

N/2−1)χ
∗
N/2+1] � 0

(24)

X � |χN/2|2+|χN/2+1|2+|χN/2−1|2� const

Here we omit the second indices of the functions corresponding to the main
asymptotic approximation.

The transition from the waves to the coherence domains is implemented through
the change of variables

ψ1 � χN/2√
2

−
√
1 − 2c2√

2
χN/2−1 − cχN/2+1

ψ2 � χN/2√
2

+

√
1 − 2c2√

2
χN/2−1 + cχN/2+1

ϕ � √
2cχN/2−1 −

√
1 − 2c2χN/2+1 (25)

In fact, transformation (25) is a natural generalization of the above presented
procedure for two weakly coupled oscillators for Eq. (24). The account of the three
(not two) modes associates with the degeneracy of the normal modes which are close
in frequency to the upper boundary of the spectrum. Parameter “c” reflects the ratio
of the degenerate modes contributions in the initial conditions and varies from zero
to unity, but it is not present in the equations of motion for the coherence domains.

Preserving the invariant magnitude X= |ψ1|2 + |ψ2|2 + |ϕ|2, we consider for defi-
niteness the case ϕ =0. Since this invariant quantity is the integral of motion in the
slow time, the variablesψ1 andψ2 can be expressed in terms of the angular variables:
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ψ1 � √
X cos θ eiδ1 ; ψ2 � √

X sin θ eiδ2 . (26)

Then the Hamiltonian in the variables (26) takes the form:

H (θ,�) � X

64

[
27βX − 16π2 + 2(8π2 − 3βX ) cos� sin 2θ −
3βX (8 − cos2 �) sin2 2θ

]
, (27)

where �� δ2−δ1.
The equations of motion corresponding to Hamiltonian (27) are written as follows

dθ

dτ 2
+

1

32
[8π2 − 3βX (1 − cos� sin 2θ )] sin � � 0

sin 2θ
d�

dτ2
− 1

32
cos 2θ [(8π2 − 3βX ) cos� − 3βX (8 − cos2 � sin 2θ ] � 0 (28)

Let us consider the phase trajectory that characterizes the transition between the
states ψ1 (θ =0) v ψ2 (θ �π /2). This trajectory, which has two branches, encloses
the family of trajectories encircling the stationary points. This is the LPT as well as
in the case of two weakly coupled oscillators.

The corresponding temporal process leads to complete energy exchange between
two coherence domains. These time dependences clearly demonstrate the adequacy
of the concept of coherence domains and LPTs.

The graphs in Figs. 5, 6, 7, 8, 9 demonstrate the evolution of the phase plane
with an increase in the nonlinearity parameter, which in this case is denoted as βX .
They also illustrate the transition from the intense energy transfer to the energy
localization. The first transition mentioned in the captions is associated with the
dynamic instability of the boundary normal mode, followed by the birth of two new
stable normal modes, and the separatrix separating them. The full energy exchange
between the coherence domains, which is described by LPT, still remains possible.
The second transition occurs at the coincidence of the separatrix and the LPT, which
leads to the impossibility of the full energy exchange. As a result, one can observe
dominant energy localization on the excited coherence domain. The formation of a
mobile localized excitation (prototype of a breather in the infinite oscillatory chain)
[28, 57–59] also becomes possible.

In the case corresponding to Fig. 5, a periodic FPU chain contains ten particles,
from which the two coherence domains are formed. The mutual energy exchange
is described by LPT. Under initial conditions which are distant from the resonant
normal modes, the behavior of the system is adequately described in terms of weakly
interacting non-resonating normal modes exhibiting no coherence.

The system shows a complete energy transfer between the coherence domains that
occurs in spite of the bifurcation of the stationary state corresponding to instability of
the boundary normal mode, with the appearance of the new stable stationary points
and the separatrix, which encircles them.
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Fig. 5 The energy between the coherence domains before the first dynamical transition
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Fig. 6 The energy exchange between the coherence domains after first but before second dynamical
transition

The possibility of the energy transfer along the chain is demonstrated in Fig. 9. In
fact, alongside with the localized stationary excitation (mobile NNM), similar to the
breather with a constant profile in the infinite FPU chain one can observe a localized
nonstationary excitation (mobile LPT) with the breather with breathing profile. It
turns that the conditions for mobility of both stationary and nonstationary localized
excitations are the same, and they correspond to the second dynamical transition.
In this connection, we recall some parallels between the classical nonlinear field
theory and the quantum field theory. A.B. Migdal’s conclusion [40]: “A wonderful
idea to take a particle as the quantum states of some field was found to be extremely
fruitful; thefield is a primary concept” [39] has an important analogywith the classical
continuum dynamics. As it is well known, the excitations of a nonlinear material field
are not only the periodic waves but also the particle-like waves—solitons, e.g., the
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Fig. 7 The second dynamic transition in the periodic FPU chain, consisting of fifty particles. The
separatrix becomes the LPT, and a full energy exchange between the coherence domains becomes
impossible
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Fig. 8 The energy localization on the excited coherence domain is clearly seen

solitons of theKorteweg-deVries (KdV) or nonlinear Schrödinger equation (NSE) [2,
43, 55]. However, the consideration of solitons and breathers in terms of particles, not
just localizedwaves (i.e., the use of the classical “wave-particle” duality) is extremely
useful in the dynamic and thermodynamic problems [2, 55]. Also, this can be applied
to the non-integrable models of nonlinear physics, in particular, the polymer physics
[21, 27, 32–35, 41, 53, 54, 64]. The analogy between quantum theory and classical
nonlinear field theory can be extended up to the existence of a classical tunneling
[42].

The analysis of the finite periodic systems introduces important additional infor-
mation into these concepts. In this case, as shown above, there are two energy
thresholds. They define respectively the instability of the boundary normal mode
and merge of LPT with the separatrix which encircles the new stationary points
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Fig. 9 The mobility of localized excitations (breather analog in the infinite chain) after the second
dynamic transition

(NNMs) of new normal modes produced by the bifurcation of the boundary mode.
However, the energy thresholds disappear, when the number of the particles as well
as the resonances, goes to infinity; and thus it becomes possible an alternative, con-
tinuum approach. In this limit, one can use the inverse scattering method [43] in
the long-wavelength and short-wavelength approximation (modified KdF and NSE,
respectively). But then we cannot identify the stage of the intense energy exchange
and the transition to the energy localization, which is specific only for the finite sys-
tems. Thus, the physical aspect of the formation of a localized excitation (a weak
interaction between the coherence domains) remained to be unclarified. Prior to the
limiting transition this aspect is crucial, and the concept of the coherence domains
and LPT can describe analytically the intense energy exchange and localization in
the finite chains of weakly interacting oscillators (Appendix D).

Note again that the quantum analogue of classical models represents a non-linear
multi-level quantum system, in which the emergence of non-linearity is a conse-
quence of the self-consistency procedure (see Appendix E).

The considered LPTs in the conservative systemswith constant parameters are not
attractors, and in the presence of dissipative factors they occur only at certain stages
of non-stationary processes. However, as shown by the analysis of damped Duffing
oscillator under biharmonic excitation [60] and weakly coupled self-sustained (Van
der Pol—Duffing) oscillators [38], their role in the formation of strongly nonlinear
steady-state oscillations in the systems with dissipation can be decisive.
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As for the possibility of attractor-like behavior of LPT in the quantum case it
is actually implemented in the super-radiant transition between two energy levels,
which interact via an electromagnetic field [51].

8 Conclusion

Thus, the “wave—particle” duality in both quantum and classical physics can be
viewed as an asymptotic concept, allowing the effective analysis of the energy
exchange, localization and transfer in the terms of the coherence domains and LPTs.

Due to the important role in this concept, the notion of the coherence domain
should be clarified once more. The discussion of the mechanism of the intensive
energy exchange and the transition to the energy localization requires first of all
identifying the elementary excitations in the considered system.

In the gaseous media they are almost free motions of weakly interacting particles
(atoms or molecules), which are involved in the almost free motion. In the oscilla-
tory chain, as in all crystalline solids, the particles interact strongly. In this case the
weakly interacting NNMs of the oscillatory chain as a whole can be considered as
elementary excitations. However, as already noted, with an increase in the number
of the particles the resonance relations between the certain frequencies arise. Under
strongly asymmetric initial conditions, corresponding to a combination of the res-
onating normal modes, this leads to the appearance of the coherence domains. As a
result, the resonating NNMs cannot be considered as the elementary excitations. In
a system of two weakly coupled oscillators with strongly asymmetric initial condi-
tions the elementary excitations are the motions of the particles themselves, similarly
to the case of the gaseous medium. Their bias can be represented as the sum and
the difference of the modal variables; corresponding motion is beating. When the
number of the particles increases, in the presence of resonant modes a motion of the
coherence domains, including a certain number of the real particles, can be consid-
ered as the elementary excitation. Its bias (similar to that for two weakly coupled
oscillators) is constructed as combination of modal variables. The coupling between
the introduced coherence domains is weak, although the original equations of motion
may not contain a small parameter. Thus, the concept of the beats can be extended
to multidimensional systems. In addition, the introduction of the coherence domains
and LPTs allows an adequate description of the transition from the intense energy
exchange to the energy localization with increasing the excitation intensity. Thus, it
is possible to trace a connection of discrete models with continuous systems, having
localized solutions (breathers). We note that an increase in the number of the res-
onant modes means that the spatial extent of coherence domain is reduced, and it
approaches to the profile, typical for the breather in the infinite chain. An increase in
the number of such particles occurs when the resonant mode nearest to the boundary
of the spectrum is “uninhabited.” Of course, outside the intermodal resonance and
the coherence manifestation, the wave language is quite adequate. In the terms of
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the coherence domains and LPTs, a simple analytic description of the intense energy
exchange with the use of non-smooth functions can be obtained.

Quantum-classical analogy essentially extends the understanding of the role of
coherence, which was initially considered in the classical optics and then was essen-
tially clarified in the quantum theory, first of all in Glauber’s method of the coherent
states. Contrary to the classical optic fields, for which a partial coherence is typical,
this method deals with the complete coherence and can be rarely seen in the text-
books, mainly as an example of non-stationary quantum process. The extension to
the case of the non-homogeneous spectrum opens a possibility to apply efficiently the
quantum-classical analogy for the study of the non-stationary processes in both clas-
sical and quantum systems (linear and nonlinear). As an example, one can mention
the Bose-Einstein condensation (BEC), the Landau-Zener tunneling (LZT) [13–15,
52], the superconducting currents in the finite chains of the Josephson junctions [2,
52]. There is a significant difference between the classical and quantum systems in
this context. In the former case, the energy exchange aswell as the energy localization
occurs in a slow time scale as modulations of boundary normal mode. In the latter
case, there is no any carrier wave, and the slow time of classical system is the only
time scale here. The non-stationary processes and their qualitative change due to an
increase of the nonlinearity parameter or to a decrease of the coupling parameter are
described in this time scale.

Let us stop once more on the possible interpretation of the wave-particle duality
in the quantum statistics. As it is well known, and we have discussed this in con-
nection with Einstein’s representation of the energy and momentum fluctuations,
the high-frequency and low temperature limit of Planck’s distribution correspond
to ideal classical gas of distinguishable particles. Certainly, such systems obey the
Boltzmann statistics. Meanwhile, Bose’s hypothesis of particles identity leads to the
Planck distribution. The question is: what is an interpretation of the high-frequency
expansion of the Planck distribution, in which the terms following to the Wien law
(one, two, etc.) are taken into account? The main term corresponds to the classical
ideal gas of the distinguishable particles. Taking into account all terms of the expan-
sion, one deals with the quantum gas of the non-distinguishable particles, but what
is a possible interpretation of the intermediate cases? Apparently, the only possible,
although unexpected way out is a decrease of the degree of distinguishability with
an increase of the number of the terms in the expansion. Such an increase means
formally the growth of the statistical dependence of the particles. When the number
of the terms in the expansion goes to infinity, one deals with the gas of the abso-
lutely undistinguishable particles with the maximum possible statistical dependence.
This fact is coordinated with resolving the well-known Gibss paradox. The paradox
relates to the existence of the entropy jump after mixing of the gases consisting of the
particles with slightly different characteristics (but this is not true in the limiting case
of absolutely identical particles). Resolving of the paradox assumes the existence of
partially distinguishable internal states and a possibility of the continuous change of
the parameters characterizing the distinguishability [7]. Evidently, the reason of the
“tendency to indistinguishability” is a modification of the “particle” properties of the
ideal gas at the expense of the wave properties describing by the next terms of the
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expansion. From the other side, one can begin from the low-frequency and the high
temperature limit, corresponding to the “gas of normal waves”. Then, the next terms
of the expansion provide a modification of the “wave” properties at the expense of
“particle” properties

The low-frequency and high-frequency limits can be used for construction of
the two-point Pade-approximate (see, e.g., [1]), which coincides exactly with the
Planck distribution (in fact, he has come to his famous result namely by this man-
ner). However, in spite of the fact that the both limits can be obtained with using
the classical statistics assuming complete distinguishability of its objects, the cor-
responding Pade-approximate describes indistinguishable objects, which obey the
Bose-Einstein statistics. The wave-particle duality is, in essence, a payment for the
use of the classical language of the particles and waves. In the asymptotic interpreta-
tion, this means the applicability of the Maxwell–Boltzmann statistics. Surprisingly,
this fact is not recognized by certain contemporary physicists. Thus, the author of the
instructive book [44] writes about “outrageous Einstein’s mistake” in his first paper
devoted to quanta: “he has come to the interpretation of the black body radiation
as a gas of the light quanta basing on Wien’s law instead the Planck law”. But the
quantum properties of the radiation dominate just in that frequency and temperature
ranges, where Wien’s law is the adequate approximation of the Planck distribution!

We underline that using the asymptotic interpretation of the wave-particle duality
gives the mathematical meaning to the quantum-classical analogy and spreads the
area in which it turns out to be an efficient analytical tool up to study of the statistical
aspects of classical physics which are significant for thermodynamics [29].

Acknowledgements This work is supported by the Russian Science Foundation under grant 16-
13-10302.

Appendix A

In accordance with the procedure of the multi-scale expansions we suppose (see,
e.g., [25])

ψ j (τ0, τ1, . . .) � ψ j,0(τ0, τ1, ) + εψ j,1(τ0, τ1, . . .) + O(ε2), j � 1, 2.

τ̃ � τ0; τ1 � ετ0, . . .

d

d τ̃
� ∂

∂τ0
+ ε

∂

∂τ1
+ O(ε2)
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O(1) : ∂ψ j,0

∂τ0
− iψ j,0 � 0 → ψ j,0 � f j,0(τ1, . . .)eiτ0 , j � 1, 2

O(ε) :
∂ψ1,1

∂τ0
− iψ j,1 +

∂ f1,0
∂τ1

eiτ0 − iβ[( f1,0e
iτ0 − f ∗

1,0
e−iτ0 )−

( f2,0e
iτ0 − f ∗

2,0e
−iτ0 )] � 0;

∂ψ2,1

∂τ0
− i(ψ2,1 + γ f2,0e

iτ0 − γ f ∗
2,0e

−iτ0 ) +
∂ f2,0
∂τ1

eiτ0

−iβ[( f2,0e
iτ0 − f ∗

2,0e
−iτ0 ) − ( f1,0e

iτ0 − f ∗
1,0e

−iτ0 )] � 0;

(29)

The condition of the absence of the secular terms leads to the equations of the
principal asymptotic approximation:

⎧
⎪⎨

⎪⎩

−i d f1,0dτ1
+ β( f1,0 − f2,0) � 0

−i d f2,0dτ1
+ β[(1 − γ /β) f2,0 − f1,0] � 0

(30)

Exclusion of the secular terms is equivalent to averaging over the fast time.

Appendix B

Non-smooth variables were used in connection with the elaboration of the method of
non-smooth transformation for analysis of vibro-impact or close to them systems [31,
46, 47, 62]. Far going extension of this method was presented in [46]. It turned out
unexpectedly [21, 22] that functions τ (τ1), e(τ1) describe adequately the intensive
energy exchange in the systems, very different from the vibro-impact ones by both
their physical content and originalmathematical formulation. They describe the beats
by the most simple and obvious manner due to the choice of the appropriate non-
smooth variables τ (τ1), e(τ1).

The form) of the solution corresponding to LPT leads naturally to introducing the
saw-tooth time. After such transformation the solution is described by the smooth
functions of the non-smooth time (see Appendix D).

Appendix C

The canonical transformation of the variables for the periodic FPU chain has a view
[50]:
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Q j �
N−1∑

k�0
σ j,kζk

σ j,k �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
N

, k � 0
√

2
N sin

(
2πk j
N + γ

)
, k � 1, . . .

[
N−1
2

]

(−1) j√
N

, k � N
2

√
2
N cos

(
2πk j
N − γ

)
, k � N

2 + 1, . . . , N − 1

γ � π
4

σ j,k � 1√
N

[
sin

(
2πk j
N

)
+ cos

(
2πk j
N

)]

(31)

The quadratic and quartic constituents of the Hamilton function in the normal
coordinates of the linearized system are written as follows

H2 �
N−1∑

k�1

1

2
(η2

k + ω2
kξ

2
k )

H4 � β

8N

N−1∑

k,l,m,n�1

ωkωlωmωnCk,l,m,nξkξlξmξn

Ck,l,m,n � −�k+l+m+n + �k+l−m−n + �k−l+m−n + �k−l−m+n (32)

�r �
{
(−1)r , i f r � mN , m ∈ Z

0 otherwise.

Appendix D

The advantages of the techniques based on the use of the non-smooth variables are
evident while dealing with the nonlinear beats (see Appendix B). They can not be
presented as linear combination of NNM because the superposition principle is not
valid in this case. It was shown earlier [21–24, 26, 30, 50], that an efficient temporal
description of LPT in nonlinear chains is attained in the terms of the non-smooth
functions of slow time τ (τ2), e(τ2). They are plotted in Fig. 2 where τ (τ1) has to be
changed to τ (τ2) and e(τ1) to e(τ2).Then the dependent variables can be presented
as [47]
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θ � X1(τ ) + Y1(τ )e
(τ2

a

)
, � � X2(τ ) + Y2(τ )e

(τ2

a

)
(33)

After substitution into the equations of motion of the effective particles one
obtains the equations with respect to smooth functions of non-smooth variables
Xi (τ ), Yi (τ ); i � 1, 2.

Thepossibility of similar substitutions is based on the statement that every periodic
process, independently on the class of its smoothness, is expressed by the unique
manner as an element of the algebra of hyperbolic numbers through the variables τ

i e [62]:

x(τ2) � x(τ, e) � X (τ ) + e Y (τ ), e(τ2) � dτ

dτ2
. (34)

where X (τ ) � 1
2 [x(τ ) + x(2 − τ )], Y (τ ) � 1

2 [x(τ ) − x(2 − τ )] so, that x (τ, e) ≡
x(τ ) + e Y (τ (t), e (t)).

At that, the pair {1, e}, where e2 � 1 is a basis, and the algebraic operations as
well as differentiation or integration over time preserve the structure of hyperbolic
number. This property provides applicability and convenience of the corresponding
transformations while solving the differential equations [47].

Interestingly that the hyperbolic numbers which are frequently used for a simplest
illustration of the Clifford algebra, were known from the middle of XIX century as
abstract mathematical objects without any connection with vibration processes. On
the other side, the elliptic complex numbers with the basis {1, i} (i2 � −1) and
corresponding trigonometric functions turned out, in essence, the main tool for the
description of such processes.

The analytical presentation of the solution for the FPU chain in the terms of
power series over slow time (the periodicity of the process is taken into account by
introducing the independent variable τ ) can be written as follows:

Xi �
∞∑

l�0

X j,lτ
l, Yi �

∞∑

l�0

Y j,lτ
l , (35)

where j � 1, 2, and the plot corresponding to expressions (35) is presented in Fig. 10.
Close results can be obtained for the asymmetric FPUpotential [58]. The extension

to the case of the chain interacting with an elastic foundation is also possible. Then
a minimum frequency in the spectrum of the linearized system differs from zero
[28]. The coherence domains in this case are formed, contrary to the FPU chain,
in the low part of the spectrum (closely to the frequency gap) if one deals with a
soft nonlinearity (similarly to the Frenkel-Kontorova model). With such change all
the results presented above are valid. They can be applied to the analysis of the
nonlinear dynamics of crystalline oligomers in the vicinity of the optic branch of
the dispersion curve. This allows one to clarify the most efficient mechanisms of the
energy exchange and the transition to energy localization in such systems. Let us
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Fig. 10 Time behavior of the symmetric FPU chain corresponding to LPT in coordinates θ,�

note that the localization of the vibrations in polyatomic molecules and their role in
the relaxation processes are considered in monograph [45] (see also citations there).

Appendix E

Weconsider the two-level approximation corresponding to theGross-Pitaevsky equa-
tion (GP) [2, 52] as a starting point. The GP equation describes a series of the quan-
tum processes, e.g., the Bose-Einstein condensation (BEC), in the framework of
self-consistent field approach that is a source of nonlinearity

i�
∂�(r, t)

∂t
� − �

2

2m
∇2�(r, t) +

[
Vtrap(r) + g0|�(r, t)|2]�(r, t). (36)

Then the time evolution of the wave function of GP Eq. (36) can be presented
as a superposition of the wave functions corresponding to two natural basic states
between which a tunneling is possible:

�(r, t) � a1(t)�1(r) + a2(t)�2(r) (37)

The functions �1,2(r) in (37), depending on the space coordinate, are expressed
through symmetric�+(r)i and anti-symmetric�−(r) stationaryGPstates as follows
[52]:
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�1(r) � �+ + �−
2

�2(r) � �+ − �−
2

(38)

We take into account that
∫ ∣

∣�1,2(r)
∣
∣2dr � 1 and

∫
�1(r)�2(r)dr � 0.

Then, with taking into account (38), we obtain the discrete equations:

i�
∂a1
∂t

� (E0
1 +U1|a1|2)a1 − κa2,

i�
∂a2
∂t

� (E0
2 +U1|a2|2)a2 − κa1 (39)

This system is similar to that for two weakly interacting classical nonlinear oscil-
lators with cubic nonlinearity, in slow time. Its analysis is performed in [52], and in
terms ofLPTs in [22, 27]. The detailed development of theLPTconcept in application
to nonlinear problems is presented in [23, 24, 26, 30].

If one of the parameters of the quantum system (39) depends linearly on the time,
the similar procedure leads to the equations which describe a particular case of the
nonlinear LZT:

i ȧ+ � εta+ + �a− + γ |a+|2a+,
i ȧ− � �a+ + γ |a−|2a− (40)

The limiting magnitudes of the tunneling probabilities (when t → ∞) for system
(40) were calculated in [19], and full description of the process is presented in [13].
Here the mathematical analogy is clearly seen with the classical system of weakly
coupled nonlinear oscillators the linear stiffness of one of which changes in time.
It is possible to note that derivation of both quantum and corresponding classical
equations includes the averaging procedure. In quantum case such averaging is a
stage of the self-consistence field procedure. In the classical system it is that over
the fast time in the method of multiple scale expansions.
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Molecular Simulation of Plastic
Deformation of Oligomer Systems

Mikhail A. Mazo, Ivan A. Strelnikov, N. K. Balabaev and Alexander A. Berlin

Abstract Molecular dynamic simulation of low-temperature uniaxial compression
and tension of a glass from 1000molecules of C13H28 oligomer is carried out. Stress-
strain diagrams, an influence of deformation on density of the glass, and connection
between local density and atom rearrangements are discussed. The influence of orig-
inal level of stress on initial rate of stress relaxation are also investigated. The model-
ing results of mechanical behavior are in good agreement with experimental data for
glassy polymers, which allows one to use MD modeling for further in-depth study
of glass behavior mechanisms under mechanical actions.

1 Introduction

Molecular modeling is actively used for studying plastic deformation of amorphous
solid materials of various chemical constitution: metallic glasses, covalent materials
such as amorphous silicon and SiO2, and glassy polymers [1–16]. These researches
showed that in all these glasses at temperatures lower than≈0.6 Tg, where Tg—is the
temperature of vitrification, a qualitatively similar mechanism of plastic deformation
is realized [1, 2, 6, 14, 16]. An overall picture of plasticity is based on the theory
of existence of specific structural defects of yield in amorphous solids [1, 2, 6, 7],
so called plasticity carriers. Nowadays there are two popular theoretical models
where the structure of yield defects in amorphous solids for atomic scale and the
character of cooperative transformations in them are proposed. These are the model
of shear transformations which first appeared in work [17] and the model of shear
transformation zones [18].
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Progress in conceiving mechanisms of plastic deformation significantly owes to
computer simulation of metallic glass. Research of deformation behavior of polymer
glass in numerical experiments, in contrast to lowmolecular systems, faces additional
difficulties. A large amount of intramolecular degrees of freedom and a vast variety
of local structures makes the analysis of modelling results extremely difficult. For
that matter, the research of deformation behavior of oligomeric glasses of interest
was carried out only in work [19].

Earlier, we conducted amolecular dynamics simulation of low-temperature defor-
mation of glassy PE [20–23]. Mechanical and thermodynamic characteristics of
deformation process were researched, non-affine displacements of carbon atoms and
conformational transitions in chains in the direction of deformation were analyzed,
the connection of local density with local displacements was studied.

In the present study, we use molecular dynamic (MD) simulation of uniaxial
deformation of oligomer glass for analyzing the following questions. How does
density of oligomer glass change under uniaxial deformation? Does local density
affects structural rearrangements under deformation?What is the difference between
annealing before and after the yield peak?

The concept of free volume has already dominated within decades in the exam-
ination of structure and dynamics of glassy systems. It is widely accepted that in
disordered solids no mobility and deformation displacements are possible if the free
volume is sufficient (see, for example, reviews [6, 14, 16]). Earlier, analyzing defor-
mations of PE glass, we have shown that an increase in local volume in the glass
actually contributes to nucleation and development of plastic deformations [16]. It
is interesting to check whether this conclusion is true for oligomer glass.

Experimental data for the plastic deformation of some polymer films in the modes
of stress relaxation and creeping were obtained in, and a phenomenological model
was proposed [24, 25]. The model based on the assumption of formation and rise
during plastic deformation of some elements of the structure (named plastons). It
was interesting to perform MD simulation of the plastic deformation on glasses to
check these results and possibly elucidate the nature of structure element responsible
for plastic deformation.

2 Molecular Model and Modeling Techniques

Calculations were performed on a system of 1000 molecules of branched C13H28

oligomers in the approximation of united atoms (Fig. 1). CH2 and CH3 groups dis-
tinguished only by their weights, which were 14 and 15 Da, respectively. Valence
bonds and valence angles were modelled by harmonic potentials:

U (L) � KL (L − L0)
2;U (θ ) � Kθ (θ − θ0)

2,
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Fig. 1 Structure of C13H31
oligomer. Light are CH2 and
CH particles, dark are CH3

where L is the length of the valence bond, θ is the valence angle, L0 �0.153 nm, KL

�10475 kJ·mol−1 nm−2, x0 �113.0° and Kθ �167.6 kJ·mol−1 rad−2. The following
potential was used for dihedral angles:

U (ϕ) � K1[1 + cos(3ϕ)] + K2[1 + cos(ϕ)],

where φ is a rotation angle, K1 �6.7 kJ·mol−1, and K2 �1.634 kJ·mol−1. Nonvalent
interactions were given by Lennard-Jones potential:

U (ri j ) �
{
ULJ (ri j ) −ULJ (Rof f ); ri j < Rof f

0; ri j ≥ Rof f

UL J (ri j ) � ε

[(
Rmin

ri j

)12

− 2 ·
(
Rmin

ri j

)6
]

where rij is the distance between particles i and j, ε�0.503 kJ·kg−1, Rmin

� 0.42654 nm, and Roff � 1.05 nm.
Newton equation of motion was numerically integrated with the use of the Verlet

velocity algorithm [26] with integration step of 1 fs. The system temperature was
maintained with the use of collisional thermostat [27] with parameters λ � 5.5 ps−1

and m0 � 1 which insignificantly (on~0.01 ps) increased the system viscosity. Pres-
sure was maintained by a Berendsen thermostat [28]. On thousand molecules of
branchedC13H28 oligomerswere placed into a computational cubic cell with periodic
conditions. To obtain amorphous system for 270 ps, MD modelling was performed
at T � 300 K and low density ρ � 0.28 g·cm−3.

At the next step, the melt was uniformly cooled at constant pressure of 1 bar with
0.1 K ps−1 rate from 300 to 50 K and to 1 K. The systems were allowed to equilibrate
so that equilibrium density was reached at these two temperatures. For 50 K and 1 K
steady-state densities were to be close to 0.834 and 0.847 g·cm−3, respectively.
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3 True Stress—True Strain Curve

In deformation simulation, the key macroscopic characteristics that make it possi-
ble to estimate the quality of applied model are the relationship between stress σ

and strain ε and the shape of σ–ε curve (presence of the yield peak, strain softening
and strengthening, steady plastic flow). Glassy samples at both temperatures, 1 and
50 K, were uniaxially compressed and stretched to ε � 32% along one of the coor-
dinate axes at a rate of 10−4 ps−1. Along the other two axes of the samples, normal
pressure was maintained during loading of the samples.

Figure 2 demonstrates the obtained stress-strain σ–ε diagrams. As it can be seen,
the shape of the curves is typical of glassy polymers [14–16]: a linear dependence at
low strains (ε<1–2%) followed by a yield peak (εy ≈ 10%)with a yield tooth strain of
εy ~9–13%.At ε>15%, steady plastic flow state sets. Table 1 shows calculatedYoung
moduli and stresses σy. These values are close to the data of others computer simula-
tions [6, 10, 22]. It is to be expected that at 1 K the samples are harder than at 50 K.

4 Density During Deformation

During uniaxial deformation, density changes appear in a similar manner at both 1
and 50 K (Fig. 3). Compression initially produces a slight rise in sample average
density, which attains maximum at εt ≈ 5% and then demonstrates its continuous
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ε t, %

1

Fig. 2 True stress-true strain curves: uniaxial compression at 1 K (1) and 50 K (2); uniaxial tension
at 1 K (3) and 50 K (4)

Table 1 Young moduli and stresses σy at the yield points for glassy samples at two temperatures

Compression Stretching

1 K 50 K 1 K 50 K

E, GPa 2.66 ± 0.07 2.14 ± 0.03 2.49 ± 0.01 2.05 ± 0.03

σy, MPa 150 125 120 100
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Fig. 3 Density from
deformation, statistics by 4
samples. (1) 1 K,
compression; (2) 50 K,
compression; (3) 1 K,
tension; (4) 50 K, tension
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reduction. The initial sample density recovers at the range of strain softening at εt
≈ 12%. Once a stable flow regime is achieved, density drop decelerates in both
cases, and in the simulation of compression to |εt | > 20–25% density attains steady-
state level. Note that all these density changes in the samples under compression
are insignificant and deviation stays in the range of±1%. This behavior of oligomer
glass completely agrees with that we received earlier for glass PE [21–24].

Oligomer glass expands during stretching, but just as in the case of compression,
density attains the steady-state level, when steady plastic flow state sets in. Here
we see the difference from what was observed with PE stretching at the same rate,
where a slower relaxation of the system led to appearance of a large and continuously
growingwith deformation cavity [14, 22]. The total reduction in density of oligomeric
glass at stretching was somewhat larger than during compression and was 2.5% for
both temperatures.

5 Local Density and Local Rearrangements

As before for amorphous PE [16, 21], we used polygons of Voronoy and Delaunay
tessellation for calculating local density around each united atom and proposed by
Falk and Langer quantitative estimate of value of local rearrangement D2

min [29].
For this estimation, Falk and Langer suggested considering root-mean-square value
difference between real changes of distances between the particle at issue and its
surrounding particles and the changes corresponding to affine displacement εij in
this region at time �t:

D2(k, t,�t) �
∑
n∈R0

3∑
i�1

(r in(t) − r ik(t) −
3∑
j�1

fi j [r
j
n (t − �t) − r j

k (t − �t)])2
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where R0—the spherical region at issue around particle k, particle n occurs at time
t-�t, r j

n (t) and r
j
k (t)—j components of radius vector of particles k and n correspond-

ingly at time t.
Finding such a value f ij, which minimizes D2, defines local affine reorganization,

which best reflects the affine deformation of the environment, i.e. discrepancy. In this
case function f ij has a physical meaning of local tensor of distortion. We modified
this expression to some extent, calculating distortion tensor relative to center of mass
of particles, occurring in the sphere R0, which better reflects rearrangements in the
sphere:

D2
c,min(k, t,�t)

� min
fi j

〈∑
n∈R0

3∑
i�1

(r in(t) − CMi
k(t) −

3∑
j�1

fi j [r
j
n (t − �t) − CM j

k (t − �t)])2
〉

For estimate of non-affine displacement of particle k relative to its environment
we used the length D̄c,min(k, t,�t):

D̄c,min(k, t,�t) �
√
D2

c,min/N ,

where N –the number of particles in sphere R0.
At each step of the deformation �ε, we divided all observed non-affine displace-

ments by their size into 5 groups with the same number of elements in each. Figure 4
shows the dependence of volumes averages of Voronoi polytopes Vav for each group
from deformation εt (the segments connect the values of Vav for each of these groups
at the intervals [εt, εt + �ε]). It can be seen, both in compression and in tension,
larger displacements are observed for particles with larger local volume.
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Fig. 4 Dependence of averages of Voronoi polytopes Vav for each group of non-affine displace-
ments from deformation εt. a—compression; b—tension. 1—regions with the least non-affine dis-
placements, 5—regions with the largest non-affine displacements
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Thus, a larger local volume in glass actually contributes to nucleation and devel-
opment of plastic deformations. Probably, when analyzing mechanical properties of
polymer glasses at such small scales of the order of several nanometers, it is correct to
consider their structure as a construction, rather than a homogeneous medium. If so,
then relying only on such macroscopic parameters as local volume or a local tensor
of tension is possible only with some probability to localize places of the emergence
of plastic reorganization at external loading.

6 Relaxation

It was shown previously on polyarylate films that initial rate of stress relaxation σ̇0

depends on initial level of stress σ0. In particular, after the peak the yield σ̇0 is sig-
nificantly greater, than before it [30, 31]. Such behavior of relaxation was explained
by forming in the peak area of specific defects, which in these works were named
plastons, the number of which with further deformation changed insignificantly. In
the work [31] loop formation in dependence lnσ̇0 on σ0 was also observed when
with increasing deformation after the yield peakσ0 decreases a little and stabilization
σ̇0 occurs. As it turned, the effects are observed in numerical experiment both with
tension strain and with compression strain (Figs. 5, 6 and 7).

In the Fig. 5 on diagrams σ-εwemark the points, at which samples were annealed,
and in the Fig. 6—stress relaxation at sample annealing. It’s apparent that with equal
initial stress σx initial velocity of relaxation after yield peak is significantly bigger.
We also observed a loop like dependence of lnσ̇0 in σ0 on our model system (Fig. 7).

The results of MD modeling of mechanical behavior of different disordered
solid bodies in the complex regimes of deformation completely coincide with the
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Fig. 5 Deformation dependences with points where samples were annealed (Fig. 6); a—tension,
b—compression. (Reprinted by permission from Springer Nature [19])
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Fig. 6 Stress relaxation curves at T�1 K at sample annealing: a tension at initial deformation of
9.7% (1) and 15.3% (2); b compression at initial deformation of 7.8% (1) and 14.0% (2). (Reprinted
by permission from Springer Nature [19])
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Fig. 7 Dependence of initial rate of stress relaxation σ̇0 on initial level of stress σ0; a tension, b
compression. Points, connected by irregular curves,—estimates obtained at subsequent increasing
of deformation. Continuous curves—splines built on these points. (Reprinted by permission from
Springer Nature [19])

experimental data for the glassy polymers, which allows one to use MD modeling
for the further deep study of glass behavior mechanisms under mechanical actions.
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Plastic Deformation in Disordered Solids:
The State of the Art and Unresolved
Problems

Eduard F. Oleinik, Mikhail A. Mazo, Michael I. Kotelyanskii,
Sergey N. Rudnev and Olga B. Salamatina

Abstract Crystalline materials are deformed plastically through crystallographic
mechanisms based on the lattice’s periodicity. However, plasticity of disordered
solids can’t be described in these terms due to an absence of regular lattices. To
find the best way of the description of plastic response for disordered solids (DSs)
became a serious challenge for material science and solid-state physics. This paper
discusses current views on mechanism of plastic deformation in DSs and touches
some problems in the field. It is broadly accepted now that one, common mechanism
of plasticity operates in all DSs, independent on their chemical nature and interaction
potentials. Such mechanism is dictated by the structural disorder of glasses. Many
details of the mechanism are not well understood yet. Important features of the
mechanism are discussed in this paper, and several problems, which do not permit
the field to develop further successfully are considered.

1 Introduction

Plasticity of disordered solids (DSs) became the hot point of modern solid-state
physics during the last two decades [1–7]. It is not surprising due to practical and aca-
demic reasons: many disordered solids like glassy polymers (PGs), metallic glasses
(MGs), covalent amorphous solids and many others became important engineering
materials. From academic point of view physical processes of molecular relaxations,
mechanism of plastic deformation, static and dynamic heterogeneities, change in
potential energy landscape during an ageing and deformation and others attract inter-
est of researches [1, 4, 8]. Prof. L.I. Manevich was always interested by scientific
problems of DSs. In the 90-ties, together with his student Gendelman they found
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and described some specific defects characteristic for DSs [9]. Gendelman develops
this study further and found recently, that the deformation response of glasses is the
test protocol sensitive: different loading protocols give different spatial distribution
of plastic events in the deformed glassy samples [10]. This finding is very important
for understanding of plastic deformation mechanism in DSs. It possibly shows that
specific sites in glass, which may operate as the structural precursors facilitating
nucleation of new plastic events, do not exist in non-deformed DSs, and search for
them becomes pointless.

Study of DSs demonstrates serious progress during the last 20–25 years. Many
important features of their plasticity were discovered and analyzed by different tech-
niques, computer modeling, first of all [11–13]. New approaches in creation of the
analytical theories had appeared also [5–7]. Important common features of defor-
mation behavior of glassy solids were discovered [2, 3, 5–7, 14]. However, many
problems are still left unresolved and some serious challenges still exist in the field of
physics and mechanics of solid materials. In this paper we will outline briefly several
key features of the plastic deformation of DSs and will point out some problems
interfering with the field development.

2 Key Features of Inelastic Deformation of DSs

We consider the following common characteristics of deformation process in disor-
dered solids to be the key features of their response to external load. These features
are:

• It is broadly accepted now [1, 2] that plastic deformation in DSs is nucleated
and develops through a single mechanism, common for any DS in spite of dif-
ferent chemical nature and interparticle interaction potentials, binding atoms and
molecules in different glassy solids (metallic and inorganic covalent, organic poly-
meric and non-polymeric, frozen colloidal glasses and pastes) [1–3, 8]. An exis-
tence of one mechanism of plasticity in DSs does not mean that the kinetics and
other quantitative characteristics of deformation processes in them are the same.
Activation parameters of a nucleation of local plastic events, free energy of the
plasticity carriers, scale of plastic rearrangements, scale and type of disorder in
rearranging atomic/molecular clusters, different strength of constrains and rates
of their relaxations create quantitative differences in the process kinetics.

• The plasticity carriers are nucleated in glass by an action of applied load. Temper-
ature facilitates the nucleation. However, the temperature accelerates relaxation
of DS at loading. The nucleated primary plasticity carriers experience complex
atomic/molecular level local rearrangements under load and form final carriers
of plasticity. Final, the macroscopic plasticity carriers have the structure of shear
transformations (STs) [1–3, 14–16]. Such STs have analogs in the plasticity of
crystalline solids. The analogs are the sessile dislocations [1, 15], or twins and
martensitic transformations [1, 17, 18]. Plasticity carriers in DSs have much in
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common with their crystalline analogs but are less constrained. The nucleated car-
riers always carry increments of plastic strain γT in their structure. They are highly
localized [1–3, 10, 14]. The number of plasticity carriers grows upwith an increase
of an applied stress and strain through new local nucleation events. An increase
of the carrier’s concentration increases the total macroscopic plastic strain of a
sample also [1]. Nucleation of STs always raises total internal potential energy
of DSs under deformation because an external mechanical work is expended for
their nucleation [5, 19–21]. After straining of glass DSs become excited.

• The nucleation of carriers is the kinetic step controlling whole plasticity process
in DSs.

• DSs internal energy growth with macroscopic strain (ε) usually proceeds in a form
of the S-shaped curve eventually approaching a constant value �Umax [5, 19–21].
The�Umax level is different for each glass (for PGs andMGs at least). The kinetics
of the �Umax increase with strain ε exactly reflects the accumulation of the plastic
carriers in GSs. �Umax in each compound is directly related to the concentration
of plastic carriers necessary for developing a macroscopic steady plastic flow in
a given sample. The level of �Umax accumulated during loading of PGs is about
5–25 KJ·g−1 for glassy polymers at Troom [1, 19–22].

• Mechanical work W of deformation in a solid is always transformed in two ways:
partly into the deformation heat Q (dissipation processes), and partly into�U (the
change of structure of glass) [19, 21, 22]. About 95% or more of the expended W
at loading of crystalline metals at early stages of deformation is transformed into
the deformation heat [23, 24]. Such strong dissipation occurs during the process
of dislocation glide. We think, that friction of dislocations at their glide over
a crystalline lattice produces total deformation heat Qdef. Completely different
situation occurs in GSs, in glassy polymers for example [4, 19, 21–25]. About 95%
of the work W expended at Troom on compressive straining of GPs is transformed
into energy excess of a sample. Dissipation practically absent at early stages of
GPs’ deformation [19, 21]. Dissipation in GPs becomes noticeable at nominal
strains ε>30% at Troom. Undoubtedly, the work W is expended in GPs mainly for
nucleation of the excited carriers of plastic strain. Computer modeling had shown
that inGPs the carriers appearmainly due to the perturbations of the van-der-Waals
inter-chain interactions [25].

• The mechanics of the nucleated STs is well described in terms of the Eshelby
inclusion model [26]. Long-range elastic fields appear around STs. These elastic
fields work as a main source of the energy excess �U measured experimentally
for plastically deformed GPs [19, 21].

• Nucleation process of STs in GSs rises an important question: are any structural
precursors, facilitating the nucleation of STs necessary to be present in an initial
glass structure for nucleation of plastic events in it? Some deformation models do
suggest the necessity of precursors, but others don’t.

DSs are always the excited state of matter (both, deformed and nondeformed).
Thermodynamic characteristics of DSs strongly correlate with their structural disor-
der [14]. Structure of glasses is highly constrained due to disorder. The constrains
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manifest themselves through the enthalpy excess, which always exists in glasses.
Plastic deformation increases an excitation of DSs. For example, in organic glassy
polymers the enthalpy �H excess or elastic energy of deformation accumulated in
the excessive pressure fieldwere calculated from local tensors of hydrostatic pressure
�H〈p〉 and deviatoric stresses �H<τ> [1].

Estimations gave [1]:

�H〈p〉 � 1/2
∑

i
ci 〈pi 〉2/K and�H〈τ〉 � 1/2

∑
i
ci 〈τi 〉2/μ, (1)

where K is the bulk and μ is shear modules, and ci—fractions of chemically differ-
ent environments. The calculated values are �H〈p〉 �0.198×1010 J·m−3 and �H〈τ〉
�1.221×1010 J·m-3. Total enthalpy is �H�1.42×1010 J·m-3. These data indicate
that about 86% of the whole enthalpy excess is contained in the shear strain field and
only 14% is contained in the pressure strain field. Because of disorder in the system,
the excess of enthalpy for the amorphous PP, for example, is higher by a factor of~70
than the density of cohesion energy. Such excitation gave an important cause for high
sensitivity of DS’s properties and deformation on their thermal prehistory [1].

PGs always show additional amorphisation (anti-ageing process) at plastic defor-
mation [22, 27] at constant temperature. It, we believe, should be general for all
glasses. Amorphisation (additional disordering) is the result of creation of new free
volume at plastic deformation of PG’s. It was proved by PALS measurements [28]
and by computer modeling [25, 29].

For the macroscopic plasticity in DSs to occur, the percolation of plastic carriers
through whole sample is necessary. Study of plasticity of the amorphous Si [1, 3] had
shown, that the quantity, controlling start of the macroscopic plastic flow is not the
total free volume in the system, but the concentration of liquid-like structural cells.

3 The Mechanism of Plasticity in DSs

Weaccept, togetherwithmany researchers in theworld, that one commonmechanism
of plasticity operates in all DSs with different chemistry and inter-particle interaction
potentials [1–3, 30, 31]. The mechanism was carefully analyzed and checked for
several objects: a-Si (amorphous Si) [1, 3]MGs [14, 30, 31] and PGs [1–3]. However,
several approaches exist within this common mechanism and different approaches
give different views on stages of DS’s plasticity and sometimes guide a reader to
important differences in conclusions. Below we will shortly describe some of the
approaches.
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TOTAL DEVIATORIC STRAIN

Fig. 1 A typical computer-simulated stress-strain curve for an amorphous Si at 0 K [1.3]. Stress
jumps (jumps down at sample loading) are the processes of irreversible plastic relaxations which
occur locally in glassy sample under loading. The linear elastic stress rises between mentioned
relaxation jumps mirror a local stress increase. Local increments of plastic strain are nucleated at
each linear stress rise. At the end of these linear rises local mechanical instabilities are nucleated
in a glassy sample

3.1 The Shear Transformations (STs) Nucleation Model
[1, 3, 20]

Figure 1 shows a stress-strain curve of shear deformation of amorphous Si, demon-
strating main important features of deformation response of all DSs. The curve
consists of number of sharp drops and rises of stress and pressure. Stress and pres-
sure drops occur also at sample unloading. Pressure drops appear in the system at
the same strains as shown stress drops. Each drop mirrors one of many unit plastic
events, which are nucleated under the action of an external load. Similar curves with
stress drops were registered for many different polymeric and non-polymeric GSs
[1–3].

Macroscopic plasticity in GSs proceeds as series of localized random rearrange-
ments in atomic clusters of volume �i, each having the overall nature of a ST
[1, 3]. The atomic sites that suffer distortions are identified as the plastically rear-
ranging clusters, accompanied by a local dilatation or compaction. It was found, that
appeared transformation is triggered at the threshold stress τtr in a small sub-cluster,
with number of atoms 7±5.2 for a-Si. Local mechanical instability in volume �f

becomes nucleated in the representative volume V of glass. A local stress increment
is accumulated at each stress rise step, but not at a relaxation step. The volume ele-
ment �f has value about 8·10-27 m3 for deformation of a-Si and 8·10-30 m3 for MGs
[1]. The volume element�i increases in size with increasing kinematical constraints
imposed on relaxations by the nature of the atomic bonding [3].
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The sizes of stress drops point out that volume elements comprising individual
events are substantial in size relative to the size of the simulation cell. Thus, the
appearance of smooth plastic flowwould be achieved onlywhen the deformingmodel
volume becomes much larger than the volume of individual relaxation events and
contains a substantial number of uncorrelated events. An appearance of the relaxation
stress drops on a stress-strain curve is clear reflection of the fact that plastic flow is
an intrinsically non-affine process, unlike elasticity [1, 3].

Visualization of the atomic clusters [1, 3], within which the ST occurs develops
deeper understanding of the elementary plastic relaxation processes. The atomic
site that is identified as having undergone only an elastic change is considered to
be a part of the elastically flexing background matrix material. The atomic sites
that suffer distortions falling well outside this conservative range are identified as
being part of the plastically rearranging cluster. The contiguity of atomic sites that
have suffered large local changes identifies the transforming cluster undergoing a
plastic relaxation event. Plastic events of different sizes behave differently: small
event consisted only of a single relaxation step, the larger event is made up of a
series of consecutive relaxation steps. Some of small (triggering sub-clusters) do not
participate in avalanche, but bigger sub-clusters are involved. The most important
feature of the nucleated sub-clusters is that the transforming atomic clusters are
indeed the principal source of the plastic strain production in GSs [1–3].

Following the stress threshold (stress level before a stress drop) the next important
process becomes triggered. An autocatalytic avalanche of successive relaxations
starts. The relaxations continue up to the moment, when the volume �i becomes
completely unloaded. The avalanche normally nucleates structures with significantly
larger number of atoms in comparison with the initial sub-clusters. Some of after-
avalanche structures in GSs involve only few additional atoms to initial sub-clusters
(small stress drops on σ-ε curves). However, some of them (after large stress drops
in the curve) include about 400 atoms in average [1, 3]. One may observe such after-
avalanche structures play role of the strain carriers of the macroscopic plastic flow
in GSs.

And thefinal event appearing in this sequence of deformation steps in theSTmodel
of plasticity is related to the evolution of free volume ofwhole system.Not only stress
relaxes, but the internal potential energy and pressure are changed simultaneously
in the new cluster [1]. Atomic diffusion starts also, and the diffusion changes ratio
between liquid-like (LL) and the solid-like (SL) free volume Cohen-Grest [32] cells.
It was found that in a-Si fluidity is mediated not by sites with free volume excess
but by the atomic level environment with LL character [1]. LL cells later become
facilitators of the global plastic flow. The change of LL cells into the SL cells and
back occurs due to atomic diffusion. The fraction ϕ of the LL cells to the final level
of the stationary flow state (ϕ ≈ 0.5–0.55 [1, 3]) atom environments have undergone
transitions from SL to LL or vice versa during plastic flow of a-Si. During plastic
relaxation, atomic environments inside the transformation inclusion can change their
character from the SL (coordination number in a-Si close to 4) to theLL (coordination
number close to 5) and vice versa [3].
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Evidently, using a simple separation of complex plastic rearrangements in ST
mechanism of plasticity of GSs is quite artificial. In reality, all processes go con-
tinuously, and an appearance of the first structure (triggering sub-cluster) already
suggests the following processes (the avalanche and accumulation of the LL cells).
However, we used such separation for better understanding of the GS’s plasticity
details.

3.2 Shear Transformation Zone (STZ) Model [2, 5, 7]

Falk and Langer [2, 5, 7] formulated the model, where the structure and behavior
of fundamental unit plastic flow events looks differently compared to ST model.
After publication of the first paper the term shear transformation zone (STZ) had
appeared in scientific literature. In this model the nucleation of a local structure
accommodating plastic flow in GSs remain the main, rate controlling event of whole
deformation mechanism. Atomic level rearrangements, leading to unit plastic strain
production occur in thismodel as rearrangement of small group of atoms (4–10 atoms
in metallic glass) surrounded by more densely packed matrix [2]. When shear stress
is applied to the sample the atoms undergone orientation coordinated rearrangement
and an increment of shear strain γT appears in 3D local zone where rearranging
atoms are located. Local orientation of group of atoms is the main event differing the
STZ model from the ST model. Local strain increment appears in glass due to the
orientation. Integration over all such local strain increments gives total macroscopic
strain of a sample. Atoms in the zone undergone some displacements in all 3D
directions, but the main displacements occur in the direction of new orientation axes.
The surrounding matrix remains in the pure Hookean elastic state [2, 30, 31].

Computer simulations have shown that STs are associated with regions of
enhanced structural disorder and are sensitive to pressure [14]. There are funda-
mental differences between the STZ-based interpretations of plastic response of GSs
[3, 5, 7] and the view of the basic ST model. In [2] it was visualized that shape of
nucleated STZ should be elongated zones of atoms that can result in a two-level
relaxation process by flipping principal axes under stress (orientation displacement)
[3]. In this view STZs appear to be pre-existing in the structure and are considered
something like fertile material elements in basic STmodel. Under stress, these zones
appear to be polarized by flipping from initially unrelaxed to relaxed form. This is
radically different from understanding of STs, which do not pre-exist in the structure
but are a consequence of complex structural relaxations in clusters of atoms, giving
rise eventually to net transformation shear strains γT of only a few percent. Because
in the relaxation process load is shed from the unrelaxed cluster to its immediate
surroundings, local back stresses are established causing Bauschinger effects [3].
In paper [30] existence of STZs was confirmed experimentally in a colloidal glassy
system. It was shown also that the STZs are irreversible and thermally activated, and
that their transformation can induce the formation of new STZs. Furthermore, they
quantify the stress needed to cause a STZ to transform. Such theories are needed to
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pave theway for newmaterials that take advantage of the disorder inherent in glasses,
which may in the years ahead provide as rich a source of new materials advances as
crystals have to date [2].

3.3 Deformation of 2D Lennard–Jones (LD) Glass [33, 34]

Computer modeling of inelastic deformation of 2D LD glass [33, 34] demonstrated a
little different (in comparison with the basic ST model) picture of deformation at its
second stage. At Fig. 2 atomic level deformation rearrangements are shown. 2D glass
containing 539 spherical particles of two different diameters was simulated. Particles
interacted in accordance with the Lennard–Jones (LJ) potential. Shear was applied
to the system through the displacements of rigid walls on its boundary. Figure 2
depicts the nucleation and accumulation of local deformation events in the glass
during boundary displacements. Figure 2a illustrates the arrangement of particles
in the non-deformed glassy sample. The macroscopic shear strain γ was measured
from the displacement of boundaries.

Whole deformation process occurs as a sequence of localizes small-medium scale
atomic rearrangements (inelastic events ST-I—ST-III in Fig. 2), where inelastic strain
is accumulated. An increase of the external shear stress τ changes the behavior of
the system: at f ≈16–17 x 10-23 N the inelastic deformation starts (Fig. 2b).

Local shear strains were determined after Delaunay tessellation applied to whole
samples. The measures of local strains are the dashed areas of Delaunay triangles,
which are shown in Fig. 2a, c–e (in Fig. 2c–e atoms do not shown; only dots repre-
senting centers of atoms are shown). In Figs. 2c–2e nucleation of events producing
new plastic strain during sample loading are represented (events ST-I, ST-II and
ST-III).

The first plastic event in the system was registered at f > 2·10−22 N and γ > 0.04.
The growth of f leads to the emergence of local events, carrying newly produced
inelastic strains. Figure 2c shows the first unit local deformation event (ST-I). Defor-
mation of all regions beyond the shear ST-1 zone is elastic, and the coordinates of
atoms immediately regain their initial positions upon sample unloading. However,
newly formed region ST-I behaves differently. The residual strain stays in the region
ST-I after sample unloading. Macroscopic strain of the whole sample is γ � 0.025,
even though the strain in ST-1 region is much higher (Fig. 2c).

Allmacroscopic residual strain is concentrated only in the region of ST-1 structure.
Dimensions of the ST-I are small and involve only 2–3 neighboring coordination
spheres around the central atom of the event. All inelastic excessive deformation
energy �U total consists of localized plastic events. So, the stored deformation
energy is a local quantity also. The remainder areas of the sample contain only the
elastic component of excessive strain, stress and energy that immediately vanish
upon unloading (the stored energy is transformed into heat).

Further macroscopic straining entails the development of the second localized
sheared region ST-II (Fig. 2d). Characteristics of the ST-II region are similar to those
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Fig. 2 a Initial bi-component glassy system for computer simulation of deformation [34]; b force
f—shear strain diagram; c–e structural rearrangements in a computer glass in the course of shear
straining; nucleation of unit plastic events: c event ST-I, d event ST-II, and e event ST-III. Centers
of atoms—points and the Delaunay tessellation—triangles. Local strain is estimated through the
area of Delaunay triangles. Local shear strain γ�1.0 (black triangles), 0.5 (dark grey triangles), 0.3
(light grey triangles), and<0.02 (white triangles). τ—is the shear stress. (Reprinted by permission
from Springer Nature [34])

of ST-I. It is important that the ST-II region arises not by the growth of the ST-I
region, but at a certain distance from it. This result shows that each next plastic
event occurs by new nucleation process. It is seen from Fig. 2d that the ST-I region
experiences only very slight structural rearrangements upon nucleation of the ST-
II event. The net strain of the sample after appearance of the ST-II event becomes
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γ�0.05. The above results clearly show that the plastic deformation in thematerial is
accumulated via formation of independent localized STs; in other words, this process
is heterogeneous. An analysis of the above evidence demonstrated that, in ST-I and
ST-II, no dilation takes place. Each ST carries inelastic strain and excessive potential
energy appearing from the elastic field around local events ST-I and ST-II.

The nucleation of ST-III event changes all previous strain distribution picture.
Practically all sample cross section is covered byDelaunay triangleswith local strains
markedly higher than the average over the sample. Many new strained triangles had
appeared. It is difficult now to separate all individual STs. Possibly more than only
one plastic event is nucleated in the sample at this stage of the process. Or there
is the other possibility: all previously nucleated local plastic events become united
(coalescence stage of plasticity). At this deformation stage the percolation of plastic
carriers appear in glassy solid.

Contours of ST-I and ST-II events had changed at this stage of the process remark-
ably. Whole deformed region (ST-I+ST-II+ST-III) looks like an embryo of a shear
band. It looks that steady macroscopic plastic flow starts after formation of event
ST-III due to the percolation of carriers over entire sample. The main deviation of
the described deformation process from the basic ST model (Sect. 3.1) is that we do
not see any avalanche process. We do not see any growth of events ST-I and ST-II.
And we did not find any dilation or contraction in the events ST-I and ST-II. The
reason for such behavior in our 2D glass model is not clear yet.

Analysis of results shown in Fig. 3a–d leads to several important conclusions:

• Plastic deformation proceeds in the studied LDglass along the line, which coincide
with basic ST model, described in the Sect. 1. Plasticity on a sample scale is
accumulated by increase in number of individual localized deformation events. It
appears that each event is the final result of nucleation of rearranging clusters, i.e.
local structures which carry plastic strain increment.

• All plastic events appear consequently and cover all sample cross section before
a macroscopic steady plastic flow starts.

• The third event creates some global superstructure, which may be an embryo of
shear band or the structure, which where percolation occurs and the homogeneous
macroscopic plastic flow begins in a sample.

• Potential energy and shear stresses are distributed heterogeneously and localized
strongly inside of events ST-I through ST-III. Plastic deformation is substantially
heterogeneous both, with respect to the space of the sample and within each indi-
vidual event (from ST-I through ST-III). Delaunay triangles inside the event ST-I,
for example, carry strains γ≈0,3 up to 1,0. However, we do not see some impor-
tant details existing in the STmodel.We do not see the avalanche stage and change
of ST’s volume. The results say that the inelastic deformation process in 2D glass
does not coincide in some details with ST and with STZ models, and this fact
should find explanations in the future.
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4 Rearrangements in DSs by Structural Quantity
“Softness”

Recently, different approach to the description of rearrangements in DSs was pro-
posed [31, 35]. Below we will introduce the approach on the bases of these papers.
The approach is based on introduction of a microscopic structural quantity named
“softness”. Softness is a weighted integral over the local pair correlation function
gi(r). It was shown, that the probability that particles in DSs will rearrange is a func-
tion of their softness. The most important structural features contributing to softness
are the density of neighbors at the first peaks of the radial distribution functions gAA
(r) and gAB (r); these two features alone give 77% prediction accuracy for rearrange-
ments. Particles with more neighbors at the first peaks of gi(r) have a lower softness
and are thus more stable. These results are reminiscent of the cage picture, in which
an increase of population in the first-neighbor shell suppresses rearrangements, or
the free-volume picture, in which particles whose surroundings are closely packed
are more stable than those with more loosely packed neighborhoods. Overall, soft
particles typically have a structure that is looks like a higher-temperature liquid,
where there are more rearrangements, whereas hard particles have a structure that is
closer to a lower-temperature liquid.

Experiments and simulations enabled authors to measure the spatial correlations
and strain response of softness, as well as two measures of plasticity: the size of
rearrangements and the yield strain. All four quantities maintained remarkable com-
monality in their values for many DSs ranging from atoms to grains, spanning seven
orders of magnitude in diameter and 13 orders of magnitude in elastic modulus.
These commonalities link the spatial correlations for strain and strain response of
softness to rearrangement size and yield strain, respectively [35].

The probability that particles rearrange is a function of their softness. This proba-
bilityPR(S) is calculated as the fractionof particles of a softnessS, that are rearranging
at a given time. At each temperature probability PR(S) is a strong function of softness,
increasing by several orders of magnitude, especially at the lower temperatures, in
the range S>−3 to S�+3.
First, characterization of the size of rearrangements, which are the precursors to
global plasticity was performed in this work [35]. Rearrangements (or the initial
rearrangements in an avalanche) have been recognized as being localized in several
DSs systems, such as LD glasses, bubble rafts, foams, and colloidal glasses. To do
this, the quantity D2

min between times t and t+�t, introduced in [7] and modified in
[25] was used. This quantity captures the mean square deviation of a particle’s posi-
tion from the best-fit affine deformation of its neighborhood, and therefore measures
the non-affine motion of particle k at time t [4, 25]:

D2
min � 1/Mk

∑
[rik(t + �t)−Jk(t)rik(t)]2 (2)
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where rik(t) is the displacement vector between particles i and k at time t, Jk(t) is
the “best fit” local deformation gradient tensor about particle k that minimize D2

min
(k; t). Summation runs over the Mk particles within a radius RD

c of particle k.
To focus on the initial rearrangements, we calculate D2

min at the value of �t cor-
responding to the minimum of the correlation length ξr. All experiments show that
the correlations are reasonably well described by an exponential decay with a cor-
relation length ξr. Therefore, the size of rearrangements was characterized by ξr. To
measure the spatial extent of rearrangements, the normalized correlation function
was considered:

〈δD2
min(0)δD

2
min(r)〉 ≡ 〈D2

min(0) D
2
min(r)〉 − 〈D2

min(r)〉2/〈[Dmin]
2〉 − 〈D2

min〉2 (3)

Analysis of number of disordered solids draws a striking contrast with crystalline
solids.Overall 12 different systemswere studied. For six of these systems,which span
almost the entire range of Young’s modulus, particle size, and particle interactions
were obtained The particle positions versus time data needed for the analysis of
rearrangement size. Results for ξr versus particle diameter fall very close to the line
of best fit, ξr/d�1.1 ± 0.2, where d is the effective particle diameter. The result
shows that all studied DSs have only one size of rearrangements, close to a particle
diameter. In otherwords, common rearrangement size is typical feature ofDSs. There
are no rearrangements of different sizes in DSs. This results is difficult to explain in
the framework of plasticity models described above.

4.1 Relationship of Softness to Rearrangements

It was found that local structure of DSs alone can be used to develop a predic-
tive description of dynamics in glassy liquid sand and aged glasses, because the
“softness” depends only on the local structural environment of the particle. Thus,
softness can be determined from any static picture (or snapshot) of the structure
along deformation, time, or temperature trajectories. It has been shown that for LD
and oligomer glasses the energy barrier that must be surmounted for the particle
to rearrange decreases linearly with increasing softness. Thus, rearrangements are
exponentially more likely to involve particles with high softness. Note that not all
high-softness particles participate in rearrangements, like particles surrounding dis-
locations in crystals. Soft particles are simply more likely to rearrange than others.
Therefore, one would expect the size of a rearrangement to be limited by the spatial
extent of high-softness regions of glass.

In analogy to the previous discussion of D2
min, the size of structural heterogeneities

was quantified by considering the normalized spatial correlation function:

〈δS(0)δS(r)〉 ≡ 〈δS(0)δS(r)〉 − 〈S〉2/〈S2〉 − 〈S〉2 (4)
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As with D2
min, it was found that δS(0) δS(r) decays approximately exponentially

with the correlation length ξs. Thus, ξs is a good measure of the size of high-softness
regions that are more likely to rearrange. Authors find that the emergent correlations
of S are nearly universal. The spatial correlation length for softness (the size of soft
regions), ξs, falls on a common line ξs/d�1.1±0.2 for all systems studied. (In the
case of oligomers d� themonomer size, which also seriously contradicts with results
of ST and STZ models.) Results show the ratio ξr/ξs �0.97±0.07, with a scatter
significantly smaller than for ξr/d or ξs/d. The analysis provides compelling evidence
that the size of rearrangements, ξr, is encoded in the size of correlated soft regions
in the system, ξs, independent of the nature and even the sign of interactions, the
dimensionality of the system, and how the rearrangements were induced.

All provided data show, that the essential differences between plasticity in crystals
and plasticity in DSs can be summarized as follows. In crystals, there is universality
in the definition of the microscopic structural features which are correlated with
rearrangements. But DSs behave differently. In DSs there is emergent universality in
the properties like yield strain and rearrangement size, but there is not in crystals. The
origin of this universality is not yet understood. Results of thework [31, 35], however,
point to the possibility of a unifying framework and simplification of understanding
of plasticity in DSs.

5 Some Unresolved Problems in Plasticity of DSs

General picture of plasticity of DSs appears as reasonably understandable [1–3].
The main event defining the development of plasticity in DSs is the nucleation of
the primary carriers, STs or STZs, in a body. This process controls the kinetics of
all further rearrangements. Then further reorganizations of primary carriers occur.
Main of them is an avalanche which create the final size of the macroscopic plasticity
carriers and their size distribution. Plasticity carriers can’t glide in dislocation-like
manner in a glass. Therefore, repeating nucleation of them guides the whole plastic
processes in GSs. The concentration of the plasticity carriers necessary for the steady
flow is different in DSs of different chemistry. Characteristic of GSs responsible for
steady concentration of plasticity carriers in them is not clear yet also. The internal
potential energy�Uof a deformedDS is defined by concentration of the carriers. The
steady plastic flow starts when percolation of the macroscopic carriers over whole
sample occurs.

However, deep penetration in the plasticity mechanism demonstrates that many
important details of plastic rearrangements look controversial and not yet clear
enough. In the following we will describe some of such features. Many features
of nucleation of the primary carriers of plasticity in the model of softness in not
clear. Definitely, the carriers in this model should have the ST structure. However,
relation of their structure and size to the softness of glass is not understood now yet.
Below we’ll consider several unresolved problems in plastic deformation of DSs
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5.1 Is It Necessary for DSs to Have the Structural Precursors
for Development of Plastic Deformation?

Today there are two conflicting points of view. One group of researches considers
plasticity of DSs as an inherent local mechanical instability. This instability can be
understood by focusing on the Hessian matrix of the material with an eigen value
that goes to zero following a saddle-node bifurcation [1, 2, 10]. In the instability way
of thinking this is explained by the localization of the eigenvalue function associated
with the going them to zero eigenvalue [1, 10].

The other way of a system to react on an external load is the nucleation of STs in
some special (fertile [1, 3]) sites of a glass. In papers [2, 3, 14, 31, 35] itwas suggested,
that local structural precursors should exist in a virgin glass, and the plasticity starts
in such specific, some pre-existing structures occur in a virgin (non-deformed) glass.
In works [2, 35, 36] the size and internal complexity of the transformations must be
related to local cluster of misfit and the pre-existing excess enthalpy [3]. STZs appear
when, and these structures become polarized by external stress flipping from initially
unrelaxed to relaxed structural forms [2]. In the STmodel plastic strain increment γT

is accumulated inside of each ST. But in STZ model the increment appears due to an
orientation of an STZs. This is radical difference between the ST and STZ models.
It suggests that for nucleation of STZ in glass some structural precursor should exist
in glass before its loading [1, 3]. Do precursors exist in non-deformed glasses or not
we can’t say now.

5.2 Sizes of the Unit Plastic Events

The volume of an individual plastic event �i is the other important parameter of
the plastic process in GSs. Relaxations, leading to the formation of shear rearrange-
ments occur in this volume. In metallic glasses, where atomic interactions are nearly
isotropic, the relaxation volume is the smallest and is estimated as 8·10−30 m3 [1, 3].
By contrast, in the flexible chain glassy polymers, where the principal kinematical
forms of a plastic strain accommodation are rotations around single bonds of the
backbone, the volume �i is the largest for all studied DSs and has been estimated to
be 5·10−25 m3 [1, 3]. For a-Si, as a representative of a simple space network glass,
with more isotropic kinematical restrictions, estimates for �i are 8·10−27 m3, i.e.,
intermediate between the values for metallic and polymeric glasses. The average
transformation shear strain γT was guessed to be 2 to 3% in metallic glasses [3],
measured to be in the range of 1.7% in flexible chain glassy polymers by computer
simulation, and was determined to be 3.6% for a-Si [3].

The higher the kinematic constraints acting on the relaxation process in volume
�i, the larger is�i [1]. The type of atoms bonding in the glass undoubtedly affects the
strength of constraints. For example, polymer glasses composed of flexible chains,
this parameter is the highest among the materials at hand, �i ≈ 5·10−25 m3, which
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is expectable. Calculating in number of monomer units the sizes of rearranging
segments are: 1267 (PS), 4500 (PC), 6500 (PET) and 8600 (Kapton) monomers [1].
According to other authors, for PMMA the segment size is 3000 monomers [37, 38].
Evidently, such large values of�i for organic polymersmayoccur due to participation
of segmental motions in rearrangements and relaxation processes. The other reason
is strong anisotropy of polymer chains (and ordered structures) along and across of
chain axes [1, 3]. In [1, 20] is assumed that the size of the plastic segment is much
larger than the size of a computation cell. Such sizes of plastic rearrangements seem
to be too large. The simulation of glassy PE [25, 29, 39, 40] that the average length
of the segment participating in a single plastic event at T def � 50 K is as low as
14 methylene groups for the full-atom model and 24 for the united-atom model.
Data of papers [31, 35] demonstrate very different picture. In work [31] the sizes of
rearranging units occur to be about the diameter of monomer unit for oligomers. The
contradiction of the estimations is evident. A precise evaluation, however, requires
STZs direct observation, which is not feasible since STZs are local transition events
rather than being actual defects like dislocation.

Another question appears in the connection with structural description of DSs,
introduced in papers [41–43]. Authors found three types of atomic level defects in
DSs: n-, p- and τ—defects in computer simulations of structure of MGs. The defects
describe internal stresses in MG structure (or in dislocation cores of crystals), long
range elastic stress fields around the defects and symmetry of the defects. The picture
represents well many structural features and enthalpy excess in DSs [4]. However,
attempts to check abilities of the defects to initiate local plastic deformation in glasses
were not successful. And it is not clear why. At least two suggestions might be
considered: the first one—any structural precursors (atomic level defects in this case
and stress fields surrounding the defects) are not necessary for nucleation of plastic
rearrangements inDSs; the second assumption—n-, p- and τ—defects have too small
sizes (free volume) to nucleate plastic rearrangements in glasses. The question is not
resolved yet, but it looks that the resolution may appear soon. We believe that if we
will be able to find critical size (critical free volume) and type of a defect able to
nucleate a unit plastic event under action of external stress, it may strongly move us
to understanding of key features of plasticity in DSs.

5.3 Free and Activation Volumes in GSs

Method PALS gave possibility to measure the sizes and shape of the free volume
holes in glasses [28]. It is known now that the average size of the free volume holes
is about an order of magnitude smaller than that of the shear activation volume
V* (couple of hundred cubic angstroms compared to a couple of cubic nanome-
ter, respectively) [28, 44–46]. From this comparison important conclusion might be
deduced: the free volume holes serve only as active sites for shear transformations
rather than accommodating them. Therefore, larger free volume cavities can support
more localized shear events with smaller sizes. In smaller holes the localization effect
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is less dominant, and broad regions of DSs undergo shear deformation. This hypoth-
esis [45], however, requires further investigation via direct visualization of STZs. By
examining the strain rate and temperature sensitivity of the flow, it was found that the
geometrical properties of the STZs are only slightly dependent on the thermal his-
tory of the sample. In PC, STZs are shown to occur in almost flat ellipsoidal regions
with the volume about 480 nm3 which encompasses 5700 monomers, and with the
transformation shear strain of about 0.02. The nucleation Helmholtz free energy for
a single STZ is identified to be almost strain rate insensitive and is calculated to be
about 1.35 eV for the close strain rates [44]. Authors made these conclusions from
nano-indentation data [44, 45]. They came to the following inferences:

• The nucleation energy of a single STZ in PGs is about unity in eV units which
is not significantly smaller than that of the MGs. While the nucleation energy of
an STZ is directly related to the shear modulus of the material, one expects this
energy to be orders of magnitude bigger for MGs according to their considerably
higher shear modulus. However, the nucleation energy also depends on the size
of the STZ. The huge size of the STZs in PGs compared to MGs compensates for
their shear modulus discrepancy, and levels of activation energy in two materials.

• The transformation shear strain γT is not a universal value in PGs. The transfor-
mation shear strain is assumed to be about 0.015 in all types of glassy polymers [1,
3, 20], however, current analyses show that the value of this parameter is material
dependent and is about 0.02 in PC and 0.03 in PMMA. The shape of the STZs
in all types of glassy solids are assumed to be spherical [1, 3, 37, 38, 47]; how-
ever, current studies suggest that the shear transformation zones are formed in the
regions with the shape close to the flat ellipsoids in PMMA and PC. All these
data are close to results received in [1, 3], however, show some deviations. All
presented results tell as, that our vision of the size and shape of �i in GSs is not
very definite yet.

5.4 Enhancement of Molecular Motions in DSs During
Deformation

One of the most unexpected effects in deformation of DSs is a drastic acceleration of
the segmental dynamics of polymer chains under the action of external stress. The
effect was first discovered experimentally for a deuterated Nylon-6, where enhanced
mobility of the amorphous phase was found by NMR measurements [48, 49]. Next
evidences were discovered by the computer simulations of LD glasses. Much more
information was received in simulations of glassy PE subjected to the active uniaxial
compression [50, 51]. These simulations had shown:

• The rate of transitions between the states of PE chain with different conformations
grows by two to three orders of magnitude. The new flip-type molecular motions
along PE chains appear [52].
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• The acceleration of chain dynamics has almost no effect on the conformational
composition of PE glass.

• Once loading is stopped, the rates of conformational transitions decrease, and the
flip-type motions becomes hindered again.

• In the glassy state of PE conformational transitions are spatially heterogeneously
distributed in the system. Dynamic heterogeneity appearing in the deformation
process is not related to the heterogeneity of local density of the glass. The accel-
eration of molecular dynamics during the deformation of glassy polymers was
also supported in experiments with rotational dynamics of the fluorescent probe
in the glassy PMMA [53]. Creep experiments (σ = 0.54 σy) had shown that the
segmental motions in glassy PMMA at a constant loading rate accelerates from
the very onset of loading. The rate of segmental dynamics in PMMA increases by
several orders of magnitude by the end of the deformation process. The increase
in segmental mobility was also observed in the simulation of shear deformation
in the atactic glassy PS film [47]. All the results confirmed data received on PE
simulations [51].

The data on the acceleration of molecular dynamics under loading of glassy poly-
mers are often interpreted in terms of free volume grows during deformation. How-
ever, as was shown in [54], there are two types of behavior in changes of dynamics.
In tensile deformation, the acceleration correlates with the growth of volume, but
during uniaxial compression, macroscopic changes in volume are insignificant (less
than 0.5%) at all stresses, although mobility is nevertheless enhanced. It was also
shown that molecular mobility in chains is enhanced to the same extent for both ten-
sile and compression deformation protocols. Hence, it follows that a change in the
shape of potential energy surface rather than increase in volume during deformation
is responsible for the observed acceleration of dynamics.

Two dynamic characteristics of glassy polymers are very sensitive to deformation.
First is the rate of segmental mobility of chains, and the dynamic heterogeneity of
polymer glasses. The acceleration of the dynamics of chains is currently explained
in terms of two factors. One of them is the rejuvenation phenomenon moving the
system upward along potential energy surface, and the second factor is related to
the action of an applied stress, which “inclines” potential energy surface and thus
reduces the activation barrier of mobility and does not change the position of energy
minima [55]. Simulations in many cases are consistent with this viewpoint [56, 57].
Both of these acceleration mechanisms operate also in the theory advanced in [58].

All mentioned problems of plastic deformation of GSs undoubtedly will be
resolved in near future. And one may expect that new knowledge will provide deeper
understanding of the deformation behavior of DSs.
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Shockwaves and Kinks in Exothermic
Nonlinear Chains

Itzik B. Shiroky and Oleg V. Gendelman

Abstract We address the problem of a transition front propagation in chains with
a bi-stable nondegenerate on-site potential and a nonlinear gradient coupling. For a
generic nonlinear coupling, one encounters a special regime of transitions, character-
ized by extremely narrow fronts, far supersonic velocities of the front propagation,
and long waves in the oscillatory tail. This regime is qualitatively associated with
a shock wave. In this case, the front propagation can be described with the help of
a simple reduced-order model; the latter delivers a kinetic law, which is almost not
sensitive to the fine details of the on-site potential. Besides, it is possible to predict
all main characteristics of the transition front, including its velocity, as well as the
frequency and the amplitude of the oscillatory tail. Numerical results are in a good
agreement with the analytical predictions. The suggested approach allows one to
consider the effects an on-site damping. When the damping is moderate, it is possi-
ble to consider the shock propagation in the damped chain as a perturbation of the
undamped dynamics. This approach also yields reasonable predictions. When the
damping is high, the transition front enters a completely different asymptotic regime
of a subsonic kink. The gradient nonlinearity generically turns negligible, and the
propagating front converges to the regime described by simple exact solution for
continuous model with a linear coupling.

1 Introduction

Transition fronts, also known as phase boundaries, are common in systems in which
the potential energy has more than one state of a stable equilibrium. A broad vari-
ety of processes in real systems and materials can be described by such switching
of states. Among many possible applications, one encounters dislocations in metals
[1–3], dry friction [4], dynamics of carbon nano tubes foams [5], pulse propagation
in cardio physiology [6], lattice distortions around twin boundaries [7], domain walls
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in ferroelectrics [8], crack propagation [9, 10], motion of fronts in semiconductor
superlattices [11], surface reconstruction phenomena [12], calcium release in cells
[13] and statistical mechanics [14]. Truskinovsky and Vainchtein in [15] addressed
martensitic phase transitions by presenting a discrete model with long- range inter-
actions. The model allows the derivation of a macroscopic dissipation law specified
as a relation between force and velocity. The dissipation is due to radiation of lattice
waves that carry energy from the front. Dynamics of crowdions in anisotropic crys-
tals was studied in [16, 17]. In [18] the damped and externally driven FK chain is
studied and the threshold forcing amplitude is found. Thismodel may be beneficial in
describing a chain of ions trapped on a metallic surface with an external AC electric
field as the drive, as well as in the study of Josephson junctions. Other applications
can be found in the comprehensive review of Braun and Kivshar [2].

It is beneficial in many cases to invoke discrete models for description of these
phenomena. In such models, the transition front (or other structural defect) is to
overcome the potential barrier caused by the discrete lattice. For this sake, it requires
either external forcing or energy supply in the lattice due to the front propagation.
This micro-scale effect disappears in continuous models, where the solutions, which
represent defects, can move freely without drag. On the other hand, discrete models
allow derivation of a relation between the external force or energy gain and the front
velocity, commonly known as the “kinetic relation”. At the micro level, when no
dissipation is assumed, the effect which describes the removal of the released energy
is known in literature as “radiative damping” [19]. The lattice waves that accompany
the transition front, have to remove at least the major portion of the gained energy,
while the rest of the energy may be spent for creating new surfaces as it happens in
the case of crack initiation [20, 21].

The broad family of the discrete models that describe such transitional phenom-
ena can be categorized to sub-classes. The multi-stability can appear in the on-site
potential [1, 19, 22–25], or in the interparticle coupling to describe, for instance,
martensitic phase transition [15, 26]. These models are often considered as Hamil-
tonian [1, 27, 28]. However, in certain cases the dissipation is included explicitly
[22, 29–31]. Nevertheless, the main reason for the ongoing growth in studies of
these systems is the numerous possible configurations of the multi-stable poten-
tials. The pioneering work of Frenkel and Kontorova [28] considered a sinusoidal
on-site potential, thus introducing the discrete version of the sine-Gordon equation.
Zolotaryuk considers a different periodic degenerate on-site potential and shows that
kinks can propagate even when the barriers are nearly flat and the wells are narrow
[32]. Smooth layouts of the on-site potentials (also referred to as fully nonlinear) are
studied numerically in [33, 34], and show that these might result in slower velocity
of the defect propagation. In [22] a linear chain with the smooth on-site potential is
studied by means of an approximate model.

A commonconfiguration that has been adopted inmanyworks, is that of a bi-stable
on-site potential [19, 27, 35]. The most interesting case is the non-degenerate on-
site potential with a certain energetic difference between the minima; this difference
dictates the direction of the front propagation. The simplestmodel of linearly coupled
chain an a bi-parabolic on-site potential with equal curvature wells was considered
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in the work of Atkinson and Cabrera [1], and further explored in the early works
of Ishioka [30] and Celli [36] and later works [19, 22, 27, 37]. The advantage of
this potential is that an analytical solution can be obtained through a direct Fourier
transform.The solution can be generalized to include also an on-site linear dissipation
[38]. The casewith different well curvatures requires application of theWiener–Hopf
method as was implemented in [39]. Paper [26] studies a modification of the bi-
parabolic potential by an inclusion of a non-convex region (a spinodal region) that
smoothens the cusp of the pure bi-parabolic potential.

Dynamics of the transition fronts in chains with a bi-stable on-site potential and
a nonlinear gradient coupling is much less explored. In weakly nonlinear lattices,
directional waveguiding has been achieved by using cubic Kerr nonlinearities in
nonhomogeneous systems [40]. In strongly nonlinear chains of elastically coupled
rotational pendula, a steady front propagation was observed in [41]. Recent studies
[29, 42] have addressed the case of a generic coupling with on-site dissipation and
suggested a law that connects the transported energywith the velocity and dissipation
ratio. The results were verified experimentally. Paper [43] explores a topological
soliton in a degenerateϕ4 model with a cubic gradient nonlinearity. It is demonstrated
that the soliton has a finite number of velocity values in which the propagation isn’t
accompanied by emission of phonons, and in such case a continuous approximation
holds. Further numerical exploration of a similar model is presented in [44] by
applying a pseudo-spectral technique. It is found that a single fixed point exists for the
explored solitons and it depends on the non-linearity parameter and the barrier of the
degenerate potential. The lattice with cubic nonlinearity and ϕ4 substrate potential is
addressed in [45]. The paper includes analytical results for wide kinks by application
of a continuum limit, while it is pointed out that narrow kinks exhibit essentially
different dynamics and require a different approach. Milchev [46] studies a system
with nonconvex inter-particle interaction. An analytical solution is obtained in the
continuum limit and it is shown that distortive waves and breakdown of conventional
kinks might be related to the inflection point of the nonconvex potential. A numerical
study of a one-dimensional chain with a nonlinear coupling and a non-degenerate
on-site potential was presented in [47]. It was shown that even at relatively weak
gradient nonlinearities, the velocity of the kink propagation increases dramatically.
It was also revealed numerically that for high values of nonlinear coupling β, the
front velocity is proportional to

√
β.

In several works, dynamics of Frenkel–Kontorova-based systems is analyzed by
means of equivalent reduced models [22, 31, 48, 49]. In [22] an approach named
“active point theory” is applied to construct approximate solutions for the case of
a damped chain with an on-site potential with cubic nonlinearity. A similar method
is used in [48]. In [31] the “local mode approximation” is employed to reduce the
damped Frenkel–Kontorova problem to an equivalent model of pendula. Generally,
these works demonstrate a good agreement of the simplistic models with the numer-
ical integration of the full multi-particle nonlinear equations.

The aforementioned studies, as well as the results obtained for some other mod-
els, demonstrate that the transition fronts can be crudely classified as belonging to
one of two categories: kinks and shocks, or shockwaves [50]. The kinks normally
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have a subsonic or slightly supersonic velocity, and strongly depend on fine details
of the model potentials. Contrary to that, the shockwaves can have far supersonic
velocities, and their dynamics is governed by conservation laws, similar to classical
Rankine–Hugoniot conditions for shockwaves in gases. In the latter case, the fine
details of the model potentials are less significant.

In the current report that is based on publications [51, 52], we explore chainswith a
nonlinear coupling and a non-degenerate bi-stable potential. As the coupling nonlin-
earity increases, the regime of front propagation gains clear features of a shockwave.
The characteristics of the transition front change dramatically compared to the case of
linear coupling: the front becomes very narrowwith an extreme energy concentration,
the front velocity become far supersonic, and the wavenumbers in the oscillatory tail
are very low. These properties allow a construction of a simple reduced model appli-
cable to arbitrary nonlinear couplings that depends only on general characteristics of
the on-site potential rather than on its fine details. The analytical approach proposed
is tested for important cases of asymmetric (Fermi-Pasta-Ulam, FPU) and saturat-
ing (Lennard-Jones, LJ) coupling potentials. The discussion is further expanded to
include an on-site linear damping is studied for two opposite limiting cases. It is
shown that the small damping can be considered as a perturbation of the conserva-
tive case, where the propagation is still governed by the shockwave dynamics. In the
opposite limit of high damping, the front propagation can be described by means of a
simple continuous linear model that describes the propagation of the subsonic kink.

2 Conservative Bi-Stable Chains

2.1 The Model

We consider a chain with a bi-stable nondegenerate on-site potential [27, 51] with a
generic nonlinear gradient coupling. Hamiltonian of this chain is written as follows:

H �
∞∑

n�1

[
p2n
2

+U1(ϕn+1 − ϕn) +U2(ϕn)

]
. (1)

Hereϕn is the displacement of the nth particle from the initial equilibrium state (meta-
stable),U1(ϕn+1 − ϕn) is the gradient potential of the interparticle interaction,U2(ϕn)

is a non-degenerate bi-stable on-site potential; pn � ϕ̇n , masses of all particles are
set to unity. U2(ϕn) is defined by three main characteristics: the energetic effect Q,
the height of the potential barrier B, and the coordinate difference between the stable
and meta-stable states ϕ∗. Minimum of the meta-stable state is set to ϕ � 0 without
affecting the generality. Obviously, infinite number of possible bi-stable potentials
have such characteristics. In the examples that are presented in this paper we restrict
ourselves to three typical shapes:
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Fig. 1 On-site
nondegenerate potential
U2(ϕ). Three possible
approximations with the
same basic shape parameters
are presented:
solid-blue—bi-parabolic
potential, line-dotted
green—4th order
polynomial, dashed red—6th
order polynomial

(1) Bi-parabolic potential with same curvatures of the two wells ω0:

U2(ϕn) �

⎧
⎪⎨

⎪⎩

ω2
0
2 ϕ2

n ϕn ≤ b �
√
2B

ω0

ω2
0
2 (ϕn − ϕ∗)2 − Q ϕn > b

(2)

Here, ϕ∗ �
√
2(Q+B)

ω0
+

√
2B

ω0

(2) 4th order polynomial potential

U2(ϕn) � a2ϕ
2
n + a3ϕ

3
n + a4ϕ

4
n (3)

(3) 6th order polynomial:

U2(ϕn) � b2ϕ
2
n + b3ϕ

3
n + b4ϕ

4
n + b5ϕ

5
n + b6ϕ

6
n (4)

For the 4th order polynomial, the constraints on B, Q, ϕ∗ uniquely define all coef-
ficients. For the 6th order polynomial there is more freedom with 5 coefficients to
choose. To obtain the essential deviation from the bi-parabolic potential, the coef-
ficients are chosen to annihilate the second derivative at the maximum (additional
condition stems from the fact that the third derivative in this point also must be zero).

The three examples are shown in Fig. 1. The necessary condition for nondegener-
acy of the potentials is Q > 0. In other terms, the energetic effectQ is the driving force
which determines the favorable direction of the reaction. While the three potentials
possess the same basic characteristics, the details are different. A notable difference
is the shape of the concave area which is sharp for the bi-parabolic potential, smooth
for the 4th order polynomial, and nearly flat for the 6th order polynomial.
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2.2 The Dynamics of Propagation in the Case of a Subsonic
Kink

Themain interest of the current paper is the formation and the dynamics a supersonic
shockwave in lattices described by Hamiltonian (1). Here, we briefly provide a short
description of the subsonic kinks that are also valid solutions of this system for
the sake of completeness and to clarify the essential differences when compared to
shockwaves. For instance, a kink is formed when the gradient potential is harmonic,
U1(r) � r2

/
2, as was previously studied in several works [1, 19, 27, 39]. If one

considers the classical bi-parabolic potential (2), the dispersion relation in each well
can be presented as follows:

ω2 � 4 sin2
(
k

2

)
+ ω2

0 (5)

Hereω is a frequency of linear waves in the system. Typical dynamic response in this
case is shown in Fig. 2 for a certain time instance. The only nonzero initial condition
is the velocity of particle #1 − ϕ̇1(0) � 10. From here on, this condition is denoted
in figures as “impulse 10”. One can observe that the transition zone includes about
5 particles simultaneously.

For the stationary propagation of the transition it is necessary that the front velocity
is equal to the phase velocity of the accompanying oscillatory tail, V � Vph . We are
primarily interested in the cases of rapid and stable front propagation, and therefore
assume that the velocity is large enough, so that it corresponds to a single value of
real wavevector k � k∗. Then, one obtains:

V � Vph � ω∗/k∗ (6)

Let us denote:

L(k) � ω2
0 + 4 sin2

(
k

2

)
− k2V 2

ph (7)

It is shown in [19] that the phase velocity can be expressed analytically as a function
of the energetic effect Q through the following “kinetic relation”:

√
1 + Q

/
B − 1

√
1 + Q

/
B + 1

� ω2
0

∑

k∈N±

1

|kL ′(k)| (8)

Here, N± are the real roots of the dispersion relation (5) of the chain. The phase
velocity is implicitly determined for any set of the system parameters, as Eq. (8)
can be satisfied only by a unique set of roots N± that are found from the dispersion
relation for a single value of frequency ω � ω∗.
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Fig. 2 Particle displacements in the chain with linear coupling. at t � 1000. Detailed structure of
the front zone is presented in the inset. Parameters: Q/B � 6, ω0 � 0.5, initial conditions: impulse
10. The inset depicts the front zone in details

To examine the sensitivity of solution (6)–(8) to variations in the shape of the
on-site potential, we numerically integrate the evolution equations obtained from
Hamiltonian (1), withU1(r) � r2

/
2 for on-site potentials (3), (4). The front velocity

as a function of ϕ∗ is presented in Fig. 3 for all three potential shapes. It easy to notice
that the results differ, as one would expect, but the difference in velocities is within
10–15% margin. Qualitative shapes of the curves are similar.

For the 6th order polynomial potential (4) one observes an interesting peculiari-
ty—time delay in the front initiation. Initially, the excitation remains almost perfectly
localized at the first particle in a regime of oscillations over both wells. In the con-
ducted numerical simulations, after periods of time that get longer with increasing
ϕ∗, the localized solution disintegrates into the propagating front. This finding is
demonstrated in a ϕ � ϕ(n, t) plot in Fig. 4. The excitation remains almost perfectly
localized at the first particle for about 790 time units. Small amount of energy is
irradiated into the rest of the chain, until the energy of the first particle reaches a
critical point, where the propagating front regime is established. This localization
and delay of the front initiation occur due to nonlinearity of the on-site potential.



340 I. B. Shiroky and O. V. Gendelman

Fig. 3 Front velocity as a function of ϕ∗; Solid blue—bi-parabolic potential, ‘o’ red—4th order
polynomial potential, ‘x’ green—6th order polynomial potential; parameters: Q/B � 1

Fig. 4 Delay of the front propagation for the 6th order polynomial potential (4), ϕ � ϕ(n, t);
parameters: Q/B � 1, ϕ∗ � 4.02, initial conditions: impulse 8

Similar localization gives rise to well-known discrete breather solutions. Thus, the
excitation of the propagating front can be interpreted as a loss of stability of the dis-
crete breather in the chain. Similar effect should be observed also for on-site potential
(3), but presumably for larger initial excitations.
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Fig. 5 Dynamic response of the chain with LJ coupling, σ � 20, ε � 21/3σ 2/18 , for t � 700.
On-site potential: bi-parabolic with parameters: Q � B � 0.5, ω0 � 0.5, Initial conditions:
impulse 10. The inset depicts the front zone in details

2.3 The Supersonic Shockwave Dominated by Gradient
Nonlinearities

In contrast to the previous subsection, if the gradient potential is nonlinear, the
front propagation can enter the shockwave regime completely dominated by the
coupling nonlinearity, rather than by the specific details of U2(ϕn). To illustrate
the phenomenon, we present the simulation results for the well-known LJ coupling

potential: U1(r) � ε
[
σ 12

(
r + 21/6σ

)−12 − σ 6
(
r + 21/6σ

)−6
]
. A typical response of

the chain is presented in n − ϕ plane for a fixed time instance (Fig. 5). The only
nonzero initial condition is the velocity of particle #1 − ϕ̇(0) � 10.

The specific example of the LJ coupling potential is considered in details in
Sect. 2.5. Here we suggest a generic simplified model for the description of shock-
waves qualitatively similar to the one presented abovewithout restricting ourselves to
any particular shape. We base the formulation of the model on the following obser-
vations. First, we observe that the velocity is far supersonic. For instance, for the
response in Fig. 5, the front propagates with velocity equal to 3.02 (for parameters
used in this simulation, the sound velocity is unit). In contrast, for the same on-site
potential, but with a linear coupling, the front would propagate with a velocity of
0.86. Then, we admit that the transition area is extremely narrow and includes only
1–2 particles, as in the typical example in Fig. 5. In addition, one observes that the
oscillatory tail has a very large wavelength compared to the narrow front area. In the
discussed example, each period of oscillations within the tail consists of about 36
particles. The combination of the last two observation yields that the energy concen-
tration in the front is very large compared to other parts of the system, and it happens
by virtue of the nonlinear coupling potential. To see that, we evaluate the average
density of the strain energy as follows:
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Fig. 6 Nearest-neighbor interaction energy of the chain with LJ coupling term σ � 20, ε �
21/3σ 2/18 at t � 700; On-site potential: bi-parabolic with: Q � B � 0.5, ω0 � 0.5, initial
conditions: impulse 10

Fig. 7 On-site interaction energy of the chain with LJ coupling term σ � 20, ε � 21/3σ 2/18 at
t � 700; On-site potential: bi-parabolic with: Q � B � 0.5, ω0 � 0.5, initial conditions: impulse
10

ēU1(n) � 1

τ

t1+τ∫

t1

U1(ϕn(t) − ϕn−1(t))dt (9)

Here τ � 1/V is the characteristic time of transition, such that for particles within
the transition region ϕn(t) � ϕn+1(t + τ). Typical numerical results for the chain with
LJ coupling are presented in Fig. 6. One admits that the concentration of energy is
extremely high in the narrow transition area when compared to the rest of the chain.

To construct the simplified model, we first assume the dominance of the nonlinear
term (Fig. 6) in the transition area, compared to contribution of the on-site potential
(the latter is illustrated in Fig. 7). The maximal energy of the on-site potential is 0.5,
which is less than 1% of the energy concentrated in the front zone due to the coupling
potential. Therefore, when describing the front zone, we can omitU2(ϕn) in Eq. (1).
However, the on-site potential affects the boundary conditions of the solution and
the oscillatory tail, as it will be demonstrated below. Hence, we obtain the following
approximate Hamiltonian for the transitional area:

Htransi tion ≈
∑

j

[
ϕ̇2
j

2
+U1

(
ϕ j+1 − ϕ j

)
]

(10)
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Here j are the indices of particles that belong to the transitional area.
Then, as wasmentioned earlier, the transition area is extremely narrow (cf. Fig. 5).

Therefore, only these few particles contribute in the summation in Eq. (10). We sim-
plify the problem further and admit that, at large enough velocities, the approximation
can take into account only the rapid transition of a single particle from themeta-stable
state to the vicinity of the stable state.

To complete the construction of the approximate model, we further observe that
the gradient in the transitional region is extremely large compared to both the pre-
front zone and the oscillatory tail. So, it is possible to assume that at one edge the
transitional region is attached to an almost a fixed particle that still has not left the
metastable position ϕ � 0.

At the other edge, the transition region is attached to the oscillatory tail. In order
to analyze the essence of the interaction of the particle in transition with the tail, we
first evaluate the dispersion relation in this area for the test case where the coupling
potential is in the form U1(r) � 1

2r
2 + β

4 r
4, and the on-site potential is bi-parabolic

(2). Let us introduce a complex variable [53]:

�n � ϕ̇n + iωϕn (11)

The derivatives in terms of � are written as follows:

ϕn � −i
�n − �∗

n

2ω
, ϕ̇n � �n + �∗

n

2
, ϕ̈n � �̇n − iω

2

(
�n + �∗

n

)
(12)

Substitution into the equations of motion for the stable branch and substitution of
the modulated harmonic function: �n � φneiωt , �̇n � φ̇neiωt + iωφeiωt yield:

φ̇ne
iωt +

iω

2
φne

iωt − iω

2
φ∗
ne

−iωt − iω2
0

2ω

(
φne

iωt − φ∗
ne

−iωt
)

− i

2ω

[
(2φn − φn−1 − φn+1)e

iωt − (
2φ∗

n − φ∗
n−1 − φ∗

n+1

)
e−iωt

]

+
i

8ω3
β
[(

(φn − φn+1)e
iωt − (

φ∗
n − φ∗

n+1

)
e−iωt

)3

+
(
(φn − φn−1)e

iωt − (
φ∗
n − φ∗

n−1

)
e−iωt

)3] � 0 (13)

Division by eiωt and subsequent averaging leads to the following slow-flow equations
for the wave amplitudes:

2ω

i
φ̇n + ω2φn − ω2

0φn − (2φn − φn−1 − φn+1)

− 3

4ω2
β

[
(φn − φn+1)

2
(
φ∗
n − φ∗

n+1

)
+

+(φn − φn−1)
2
(
φ∗
n − φ∗

n−1

)
]

� 0 (14)
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Fig. 8 A typical dispersion
relation plot

By substitutingφn � Aeikn one obtains the desired approximate nonlinear dispersion
relation:

ω2 − ω2
0 − 4 sin2

k

2
+
3βA2

ω2

[
sin2 k − 4 sin2

k

2

]
� 0 (15)

The immediate conclusion from (15) is that in the presence of nonlinear coupling
the nonlinear dispersion relation is a perturbation of the linear dispersion relation
presented in Fig. 8 and it can be used for the following conjecture. Clearly, in a
steady state propagation, the phase velocity (Vph � ω/k) must be equal to the front
velocity (V ) and when the latter is very high, the wavenumber k in the tail must be
very small, since it is the only possibility to obtain far supersonic phase velocity for a
given linear dispersion relation (Fig. 8). Thus, one can assume the particle at the front
approaches a nearly fixed point with coordinate 
, defined as the first maximum of
the oscillatory tail behind the transition (see Fig. 9).

To find the value of
 one should notice that close to the left bandgap of the linear
dispersion relation (Fig. 8), the group velocity is small. So, the energy transport
through the oscillatory tail can be neglected and the energy released due to the
front propagation is almost not transferred towards or from the front. Moreover, the
inter-particle energy can be neglected due to the low-strain in the tail. Due to these
peculiarities of the propagation, each particle in the tail oscillates approximately with
the energy released by the front at the single site. Hence, the energy balance for an
arbitrary particle n in the oscillatory tail can be simply expressed as:

ϕ̇2
n

2
+U2(ϕn) � 0 (16)

The peak of the oscillation, ϕn � 
, occurs when ϕ̇n � 0. Therefore, one has to
extract 
 from the following relation and to choose the relevant root:
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Fig. 9 Definition of 


U2(
) � 0 (17)

Specifically, for specific potentials used as examples in Fig. 1 we can obtain the
following exact expressions for 
:

Bi-parabolic potential (2):


 � ϕ∗ +
√
2Q

ω0
(18)

4th order polynomial potential (3):


 � 1

2a4

(
−a3 +

√
a23 − 4a4a2

)
(19)

For the 6th order polynomial (4) potential the expression is somewhat more awk-
ward, but easily computable.

To confirm these findings, we present in Fig. 10 the dependence of numerically
determined amplitude 
 versus β and compare it to analytic estimations (18), (19).
The amplitude converges to the asymptotic value for both considered cases. For
the case of the bi-parabolic potential the convergence is faster due to higher front
velocities for the same β. At value of β � 0.1 the convergence is within 1% of the
limit value for the bi-parabolic potential.

The resulting approximate single-DOF Hamiltonian for the particle inside the
transition front is written as follows:

H � ϕ̇2

2
+U1(0 − ϕ) +U1(ϕ − 
) (20)

From Hamiltonian (20), one obtains:
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Fig. 10 Amplitude of the transition front 
 as a function of β; Solid line—analytical value of 
,
‘o’—numerical values of 
; a bi-parabolic potential, b 4th order polynomial potential; parameters:
Q/B � 1, ω0 � 0.5

dt � dϕ√
2
√
U1(0) +U1(−
) −U1(−ϕ) −U1(ϕ − 
)

(21)

By using V � 1/
t(ϕ�
)∫

t�0
dt , the corresponding velocity is found from the following

expression:

V ≈ 1

∫

0

dϕ√
2
√
U1(0)+U1(−
)−U1(−ϕ)−U1(ϕ−
)

(22)

Expression (22) is the general formulation of the approximate model for the case of
the nonlinear gradient potentialU1. In Sects. 2.4 and 2.5 we verify the result for two
specific examples and test it for robustness to variations in the shape of the on-site
potential.

One should notice, that although the treatment is general, the specific parameters
for which the nonlinear regime is fully developed (a shock wave is formed), depend
on the parameters of the potentials. As a rule of thumb, this treatment holds for
responses with front velocity V > 2. For lower velocities, the coupling nonlinearity
expresses itself to a smaller extent, the front exhibits a crossover to the kink pattern,
and approximate model (16)–(22) loses its validity. A further explanation on the
validity of the shockwave analysis are provided in Sect. 2.6.
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2.4 Polynomial Coupling Potential in the Form of
Fermi-Pasta-Ulam (FPU)

The first specific gradient potential to illustrate the approach developed above is a
generalization of the linear-cubic coupling studied in [51]. This celebrated potential
(α-β—FPU) can be seen as a Taylor expansion of more general potentials, and is
presented in the following form:

U1(r) � 1

2
r2 +

α

3
r3 +

β

4
r4 (23)

α andβ are the stiffnesses of the quadratic and cubic nearest-neighbor springs respec-
tively. Without loss of generality the linear stiffness is set to unity. In the regime
dominated by the nonlinearities of the inter-particle interaction, the energy that is
contained within the linear portion of coupling is negligible compared to the nonlin-
ear terms. We neglect the linear coupling term, and by substitution of (23) into (20)
obtain the following Hamiltonian that describes the single particle dynamics in the
region of the front:

H � ϕ̇2

2
+

β

4

[
ϕ4 + (ϕ − 
)4

]
+

α

3

[−ϕ3 + (ϕ − 
)3
]

(24)

By substituting z � ϕ/
, integrating over the entire motion range 0 < z < 1, the
following solution is obtained for the SDOF model:

V � 

√

β√
2

1
1∫

0

dz√
[1−z4−(1−z)4]− 4

3
α

β
 [1−z3−(1−z)3]

(25)

Expression (25) involves a somewhat awkward elliptic integral. However, a simple
approximated expression can be obtained by defining a small parameterμ ≡ 4

3
α

β

�

1:

V � 

√

β√
2

1
1∫

0

dz√
1−z4−(1−z)4

− μ

2

1∫

0

[−1+z3+(1−z)3]dz

[1−z4−(1−z)4]
3
2
+ O

(
μ2

) (26)

Neglecting O
(
μ2

)
terms and integrating, one obtains:
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V ≈ 

√

β√
2

1(
K

(√
2
4

)
+ μ 3

7 E
(√

2
4

)) ≈ f1(β,
) + f2(α, β)

f1(β,
) � 1√
2K

(√
2
4

)

√

β, f2(α, β) � −
4E

(√
2
4

)

7
√
2K

(√
2
4

)2

α√
β

(27)

Here K and E are complete elliptic integrals of the first and the second kind respec-
tively. This analysis leads to a conclusion that the α − β problem can be treated as
two separate problems: the basic velocity due to the β − FPU nonlinearity ( f1), and
the modification of the basic velocity due to inclusion of a non-zero α − FPU term
( f2).

It was found from numerical simulations that in order to obtain a very good
quantitative agreement, it is enough to multiply f1 and f2 by constant coefficients
γ1 ≈ 1.33 and γ2 ≈ 1.6. Necessity of these corrections stems from the simplifica-
tion and assumptions taken. These factors were extracted from numerous numerical
simulations for varying α, β, 
 and although their chosen values should be treated
as an assumption, they remained nearly constant for the range of the front velocities
V > 2. Therefore, it is reasonable to assume that, with good accuracy, these factors
are nearly constant.

2.4.1 The Contribution of β − FPU

The basic problem is the pure β problem ( f1) which determines the nominal velocity
through values of β and 
. The β contribution can be effectively described by the
following scaling law:

V (α � 0) � f1(β,
) ∼ 

√

β (28)

Kinetic relation (28) implies that the following relations should be satisfied with a
sufficient accuracy:

(a) ln V � 1 · ln(
) + ln

(
γ1

[√
2K

(√
2
4

)]−1√
β

)

(b) ln V � 1
2 · ln(β) + ln

(
γ1

[√
2K

(√
2
4

)]−1



) (29)

Direct comparison between the numerical and the analytical results for the front
velocity are presented in Figs. 11 and 12 as functions of β and 
 respectively. In
Fig. 11 we see that for β < 0.1 the system is not yet in the regime dominated by the
nonlinear term, while for β above this threshold, the system can be described by the
proposed simple scaling law.
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Fig. 11 Validation of
scaling law (28) for the front
velocity versus the nonlinear
stiffness coefficient;
Line-dotted
blue—Numerical, Solid red
—Analytical; parameters:
Q/B � 1, ω0 � 0.5

Fig. 12 Front velocity as a function of potential parameter 
; ‘o’ blue—parabolic potential (2),
‘*’ red—4th order polynomial (3), ‘x’ green—6th order polynomial (4); solid black – Analytical;
Parameters: β � 0.3, B � 0.5, ω0 � 0.5

One of the main assumptions that led to derivation of the simplifiedmodel was the
possibility to neglect the particularities of the on-site potential. The characteristics
of the potential affected only the single parameter—fixed value of the “amplitude
of transition” 
. Each on-site potential yields a different value of 
; however, the
scaling law (28) that relates between the front velocity and
 is valid for broad range
of the on-site potentials with similar general characteristics (B, Q, ϕ∗). To check this
claim, we examine three different potentials mentioned above: bi-parabolic, 4 and
6th order polynomials with similar characteristics (Eqs. (2)–(4), Fig. 1). The com-
parison between these simulations and the analytical model is presented in Fig. 12
(V vs. 
). The results for all three potentials collapse on the same straight line. This
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Fig. 13 Comparison
between analytical prediction
and numerical result for the
rescaled front shape in the
case of β − FPU coupling

result supports the conjecture that the front velocity depends only on the parameter

, rather than on the exact potential shape. This weak dependence leads to an impor-
tant conclusion, that the model (28) is universal for modified shapes of the on-site
potential, when the nonlinear term is dominant and above the threshold value. Also,
the approximate model provides a good estimation of the numerical results with
accuracy that asymptotically improves at higher velocities.

The approximate model allows one can also obtain an approximate equation for
the time history of the particle inside the propagating front z � z

(
t̃
)
. For the particular

case of β − FPU nonlinearity without an α − FPU term it immediately follows
from (21):

t̃ �
√
2

γ

z∫

0

dz√
1 − z4 − (z − 1)4

, 0 < z < 1 (30)

Here the values of the actual time and ϕ can be obtained from: t � (



√
β
)−1

t̃, ϕ �

z.

Equation (30) describes the movement of the considered single particle inside the
front. The absence of systemparameters in the rescaled representation implies that the
basic structure of the front in the case of a shockwave does not depend on the system
parameters and any specific solution can be obtained by the appropriate rescaling of
this basic shape. Comparison of this rescaled shape of the transition region to the one
obtained numerically in the complete system is presented in Fig. 13. The agreement
is reasonable, albeit not perfect.
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Fig. 14 Modification of the front velocity due to α; solid blue—analytical estimation, circles
red—β � 0.1, triangles green—β � 0.2, diamonds purple—β � 0.5, squares turquoise—β � 0.7;
On-site potential: bi-parabolic with parameters: Q � 0.5, B � 0.5, ω0 � 0.5

2.4.2 The Contribution of α−FPU

The second problem is the contribution of α to the nominal velocity— f2. The contri-
bution can be described as a modification of the velocity established and dominated
by β term alone according to the following law:

V − V (α � 0) � f2(α, β) ∼ − α√
β

(31)

In Fig. 14 the modification of the front velocity is presented for different β and is
compared to the analytical predictions. It is seen that for β ≥ 0.2 the approximation
reasonably conforms to the numeric results. At β � 0.1 the approximation fails to
describe the front velocity accurately for positive α. This combination of parame-
ters corresponds to low front velocities, that lie beyond the scope of validity of the
simplified model, and thus cannot be classified as the shockwaves.

Remarkably, in expression (27), the contribution of α to the front velocity doesn’t
involve any characteristics of the on-site potential. Hence, unlike the β contribu-
tion that depends on knowing the potential shape (through expression (17)), the α

contribution can be determined for all potentials. To examine the legitimacy of this
statement, we present the results for three bi-stable on-site potentials defined above
(Fig. 1) in Fig. 15. All results collapse on the same line with a considerable accuracy.
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Fig. 15 Robustness of the α contribution to front velocity to different on-site potentials; solid
blue—analytical estimation, diamonds purple—bi-parabolic potential; triangles green—4th order
polynomial potential; circles red—6th order polynomial potential, common parameters: Q �
0.5, B � 0.5, ϕ∗ � 4.82

2.5 LJ Coupling Potential

In more realistic models, one should consider also non-polynomial coupling poten-
tials, and, in particular, the potentials that allow dissociation. Here we come back to
the LJ coupling in the following common form:

U1(r) � ULJ (r) � ε

[( σ

r + r∗
)12 −

( σ

r + r∗
)6

]
(32)

To set the force to zero at r � 0, the following condition should be satisfied:

dULJ

dr
(r � 0) � 0 → r∗ � 21/ 6σ (33)

A typical response of a chain with the LJ coupling was presented in Fig. 5. As it
was mentioned above, this regime can be classified as a shockwave. To describe the
regime analytically, we employ the SDOF approximation (17), (22) and consider the
following SDOF Hamiltonian:

H � ϕ̇2

2
+ULJ (−ϕ) +ULJ (ϕ − 
) (34)

One obtains the following expression for the front velocity:
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V ≈ 1

∫

0

dϕ√
2
√
ULJ (0)+ULJ (−
)−ULJ (−ϕ)−ULJ (ϕ−
)

(35)

The argument of the square root in (35) can be expanded to a Taylor series in the
following way:

ULJ (0) +ULJ (−
) −ULJ (−ϕ) −ULJ (ϕ − 
)

≈ ε

[
6σ 6

(

 − 21/ 6σ

)7 − 12σ 12

(

 − 21/ 6σ

)13

]
ϕ (36)

The substitution of (36) into (35) yields:

V ≈ 1

217/ 12
√
3
√




√
σ 14

(
σ − 2−1/ 6


)13 − σ 8

(
σ − 2−1/ 6


)7 (37)

From (37) one deduces that the velocity tends to infinity for σ → 2−1/ 6
. Also,
we see that no simple scaling law exists between the velocity and the governing
parameters σ,
.

To study the behavior for relatively low velocities, we adopt the previously
addressed FPUmodel as an approximation for the LJ potential, by means of a Taylor
expansion of the full potential. Taylor expansion of (32) yields:

U � U (0) +
1

2

18ε

21/ 3σ 2
r2 − 1

3

189ε

21/ 2σ 3
r3 +

1

4

1113ε

22/ 3σ 4
r4 + O

(
r5

)
(38)

Without affecting the generality, we set the coefficient of linear coupling to 1, achieve
a constraint on ε and express α, β as follows:

18ε

21/ 3σ 2
� 1

∣∣∣∣ → ε � 21/ 3σ 2

18
→ α � − 21

27/ 6σ
β � 371

6 · 21/ 3σ 2
(39)

This leads to the approximated FPU potential that is a function of a single parameter
σ :

Uα−β � U (0) +
1

2
r2 +

1

3

−21

27/ 6σ
r3 +

1

4

371

6 · 21/ 3σ 2
r4 (40)

The FPUapproximation is expected towork for small values of r. This correlateswith
high σ . In turn, high σ yields small values of α, β. This leads to a conclusion that at
high σ the value of velocity of the system with LJ coupling potential asymptotically
converges to the velocity with the linear coupling with potential 1

/
2r2. This value

can be expressed in closed analytic form, if the on-site potential is piecewise parabolic
[19, 22], and rescaled to the parametrization of the current analysis (8). In Fig. 16
the results of the velocity for the chain with LJ potential are presented. One observes
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Fig. 16 Front velocity of the chain with LJ coupling; blue-diamonds—numerical result of the full
LJ potential with σ � 20, red-triangles—numerical result of the approximated α−β potential, solid
yellow—SDOFmodel solution, horizontal dashed green—asymptotic value of the linearly coupled
chain, vertical dashed purple – asymptotic σ for which V → ∞. On-site potential is bi-parabolic
with B � 0.5, ω0 � 0.5; a Q � 0.1, b Q � 0.5

that the full solution converges to that with the FPU coupling at low velocities and
to the SDOF model at high velocities (in the fully established shockwave regime).

The main assumption that is taken during the analysis is that the only parameter
of the on-site potential that has a direct effect on the front velocity is 
 (Fig. 9). In
the current case, the relationship can’t be scaled by a simple law as can be seen even
from approximation (37). Hence, we check the self-consistency of the assumption
by numerically extracting the relationship between V and 
 for different on-site
potentials (Fig. 17), and discover that all results collapse on the same curve.

2.6 Validity of the Shock Wave Dynamics

The dynamic behavior that is described by simplified model (16)–(22) can be asso-
ciated with the shockwave for two reasons: it is far supersonic, and it is described by
basic laws of conservation, without requiring additional conditions that are related
to fine structure of the on-site potential [50]. This comes in contrast to the dynamics
of the kink that is observed for linear coupling and described by kinetic relation (8).
Although, as it was demonstrated in the examples, the analytical description of the
shockwaves corresponds well to numerical simulations, the formal limit of its valid-
ity is bounded to relatively high front velocities. Specifically, in the example with
LJ potential (Fig. 16) the assumption of shockwave is self-consistent for V > 2.5.
In a different example of FPU (Fig. 14), a discrepancy is between the results is seen
for α/

√
β < 0, β � 0.1; in this parametric region, the shock wave assumptions

are no more consistent. Together with results of [51], one can conclude that there
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Fig. 17 Front velocity of a chain with LJ interaction for different on-site potentials; blue
circles—bi-parabolic potential, red diamonds—4th order polynomial potential, yellow trian-
gles—6th order polynomial potential; common parameters: σ � 25, B � 0.5

is no distinct transition from a kink to a shockwave; instead, a smooth crossover is
observed.

A special attention has to be paid to the limiting case of Q � 0. This case
was addressed previously in [43, 44]. According to notations used in the paper, this
situation corresponds to a particular case
 � ϕ∗. Due to a lack of energy input from
the on-site potential, the steady propagation of the transition front is possible only if
the total energy of the tail reaches a constant value. To examine whether this scenario
is possible, we numerically excite the shock with different initial conditions. First,
we show in Fig. 18 the total energy within the propagating front as a function of time.
Expectedly, there is a minimal amount of energy required to initiate the shock; in the
current example it is Emin � 21.77 and it corresponds to a minimal initial velocity
applied to thefirst particle of ϕ̇0(0) � √

2Emin � 6.6. For two initial conditions above
this threshold: “impulse 7” and “impulse 10”, the energy of the front converges after
a sufficiently long time to Emin. Since the system is energy conserving, the rest of
the initial energy is located within the tail and must remain constant. According to
Fig. 19 this requirement is satisfied, as the amplitude of oscillations within the tail
gradually vanishes as the time increases.

Figure 20 presents the dependence of the shock velocity versus parameter 


defined above (Eq. (17) and Fig. 9) for the case of bi-parabolic on-site potential
with varying Q and linear—cubic nearest—neighbor coupling. One observes that
the front velocity in the limit Q → 0 is close to the linear trend obtained for Q > 0
[51], but demonstrates slight deviation in the vicinity of Q � 0. This deviation points
on certain inaccuracy of the approximate analytic model in this limit. Possible reason
for this inaccuracy lies in the fact that the model predicts strictly zero amplitude of
the oscillatory tail. In such case, the motion of particles in the vicinity of the front
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Fig. 18 Convergence of the
front energy to the terminal
value for Q � 0;
circles—initial conditions:
impulse 7, squares—initial
conditions: impulse 10,
horizontal dashed
yellow—minimal energy
required for the front
initiation. The gradient
nonlinearity is cubic with
β � 0.5; the on-site potential
is bi-parabolic with
Q � 0, B � 0.5, ω0 � 0.5

Fig. 19 Decay of amplitude
of the tail oscillations for
Q � 0; circles—initial
conditions: impulse 7,
squares—initial conditions:
impulse 10; The gradient
nonlinearity is cubic with
β � 0.5; the on-site potential
is bi–parabolic with
B � 0.5, ω0 � 0.5

becomes quite significant, and dynamics of the front must be considered with higher
accuracy than simple single-particle approximation (20). From the other side, the
simulation cannot exclude the possibility of low-amplitude energy irradiation from
the front after approaching the “steady-state” velocity.

3 Transition Fronts in the Chain with On-Site Linear
Damping

So far, we addressed conservative systems. Here we present an approach that allows
an account of the on-site linear damping in the frame of the previously developed
approach.
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Fig. 20 Front velocity versus 
 for Q → 0; Solid—numerical results, dashed—analytical predic-
tion [51]. The gradient nonlinearity is cubic with β � 0.5; the on-site potential is bi–parabolic with
B � 0.5, ω0 � 0.5

Fig. 21 A dynamic response
in the presence of on-site
damping; Gradient potential:
cubic with β � 0.5; On-site
potential: bi-parabolic with
Q � 0.5, B � 0.5, ω0 �
0.5; damping coefficient:
ξ � 0.005, initial conditions:
Impulse 10 Δ

3.1 The Case of Low Damping

We first consider the case of a small linear damping. In this case, the shockwave
pattern persists, and the impact of the damping can be described as a perturbation
of the solution for a Hamiltonian system (22), (17). In the frame of the single—par-
ticle model, the only effect of the on-site damping on the front velocity comes by
modification of 
 for the first particle within the stable well (Fig. 21). The energy
dissipation along the oscillatory tail has no effect on the front velocity.
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We assume that for low value of onsite damping coefficient ξ , the dynamics of the
particle within the transitional region can be approximately described by the same
single DOF Hamiltonian (20). During the motion of the single particle, energy is
dissipated from the system, and its total amount, in the first-order approximation,
can be expressed as follows:

Wξ � ξ


∫

0

ϕ̇dϕ � √
2ξ


∫

0

√
U1(0) +U1(−
) −U1(−ϕ) −U1(ϕ − 
)dϕ (41)

Thevalue
 is found through amodificationofEq. (17). In the current case, the energy
dissipated during the motion through the front has to be included in the energetic
balance. So, the modified balance of energy for the particle that has entered the stable
well can be expressed as follows:

U2(
) +Wξ � 0 (42)

After 
 is extracted from Eq. (42), the front velocity can be determined from (22).
This treatment is general for any combination of U1,U2. Here, we bring a specific
example with the following selection of potentials: U1 � r2

2 + βr4

4 , U2 a piecewise
parabolic potential (2). However, when the nonlinearity is dominant, and the damping
is small enough, we can neglect the contribution of the quadratic term. The work
done by the damping in this case is calculated as:

Wξ � ξ
3√β√
2

1∫

0

√
1 − z4 − (z − 1)4dz � I1ξ
3√β√

2
, I1 �

(
7

3
K

(√
2

4

)
− 2E

(√
2

4

))

(43)

Substitution of Eq. (43) and of the expression for the stable branch of the bi-parabolic
on-site potential (2) into (42) yields:

ω2
0

2

(

 − ϕ∗)2 − Q +

I1√
2cd

ξ
3β � 0 (44)

The value of 
 can be extracted for any set of parameters. Here, contrary to the
conservative case, its value depends not only on the parameters of potential U2, but
also on β and ξ . In (44) a correction factor cd is introduced, which is a result of
approximations and assumptions that were taken in the estimation ofWξ . Yet, for the
selected potentials, its value was found numerically to be nearly constant cd ≈ 1.5,
from verifications of the expression for different ξ and β. Once the value of 
 is
extracted, the velocity is found from the same expression as in the conservative case
(22). The results for the benchmark case of a bi-parabolic on-site potential and a
cubic gradient potential are presented in Fig. 22. The numerical results are in a good
agreement with the analytical model for front velocities which higher than 2, which
complies with all other findings in this work.
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Fig. 22 Front velocity in the
presence of on-site damping;
Solid line: analytical result
for β � 0.2, dashed line:
analytical result for β � 0.5,
line-dotted line: analytical
result for β � 0.7; Gradient
potential: cubic; On-site
potential: bi-parabolic with
Q � 0.5, B � 0.5, ω0 �
0.5

For ξ → 0 the following approximation for 
 is obtained:


 � 
0 −
(
ω0ϕ

∗ +
√
2Q

)3
I1

2cd
√
Qω4

0

ξ
√

β, 
0 � ϕ∗ +
√
2Q

ω0
(45)

Thus, the approximate expression for the change in velocity due to incorporation of
on-site damping is:

V − V (ξ � 0) ≈ −γ1
(
ω0ϕ

∗ +
√
2Q

)3
I1 I2

2cd
√
Qω4

0

ξβ, I2 �
(√

2K

(√
2

4

))−1

(46)

It turns out that the modification of the front velocity due to inclusion of the on-
site damping is proportional to β and ξ when the damping is small. To further
justify the claim that the inclusion of damping is a perturbation of the Hamiltonian
system, we examine the kinetic energy of the system. In Fig. 23 the dependencies of
total kinetic energy and the kinetic energy in the front region are shown. It is seen
that the kinetic energy of the front slightly decreases as the damping increased and
complies to the perturbative analytical result. On the other hand, the total kinetic
energy is asymptotically infinite as the damping tends to zero, and can’t be related
to the perturbative nature of the damping effect on the dynamics. This is yet another
evidence that the response in the strongly nonlinear shockwave regime is mostly
affected by the internal energy conversion within the front region, rather than on the
dynamics of the entire chain.
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Fig. 23 Kinetic energy as a function of damping coefficient, ‘o’- total kinetic energy, ‘*’—kinetic
energy of the front; Gradient potential: cubic with β � 0.5; On-site potential: bi-parabolic with
Q � 0.5, B � 0.5, ω0 � 0.5. Initial conditions: Impulse 10

Fig. 24 A typical response
in the presence of high
damping; gradient potential:
cubic with β � 0.5; on-site
potential: bi-parabolic with
Q � 0.5, B � 0.5, ω0 �
0.5. Damping coefficient -
ξ � 0.3; Initial conditions:
Impulse 10

3.2 The Case of Large Damping

Here we address the opposite case of a large damping. In this limiting case, the
propagating front conforms to the pattern of the subsonic kink. A typical response is
shown in Fig. 24.We see that when damping is high enough, it completely suppresses
the oscillations in the tail. Moreover, the front area becomes very wide (in this
example—20 particles).

The kink is smooth enough to consider the continuum limit. Besides, all gradients
are small enough to suppress the effect of nonlinear terms in the coupling forces.
Thus, for the sake of analytical treatment, we consider a linear chain with a linear on-
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site damping (with damping coefficient ξ ), subject to the non-degenerate substrate
potential (U2). Equations of motion are written in the following general form:

ϕ̈n + ξ ϕ̇n + (2ϕn − ϕn−1 − ϕn+1) � −∂U2(ϕn)

∂ϕn
(47)

Continuum limit of System (47) is written for the continuous field of displacement
ϕ(x, t) as follows:

ϕ̈ + ξ ϕ̇ − ϕ′′ � −∂U2(ϕ)

∂ϕ
(48)

According to previous treatment (Fig. 1 and Eq. (2)), the potential function obeys
the relationships:

U2(ϕ) �

⎧
⎪⎨

⎪⎩

ω2
0ϕ

2

2 + O
(
ϕ3

)
, ϕ → 0

ω2
0(ϕ−ϕ∗)2

2 − Q + O
[
(ϕ − ϕ∗)3

]
, ϕ → ϕ∗

(49)

We would like to describe the propagating kink that transmits the system from upper
to lower well and suppose the existence of travelling-wave solution in a form:

ϕ(x, t) � ϕ(x − V t), ϕ(x → −∞) � ϕ∗, ϕ(x → ∞) � 0 (50)

Travelling-wave ansatz (50) converts Eq. (48) to an ODE:

(V 2 − 1)ϕζζ − V ξϕζ � −∂U2(ϕ)

∂ϕ
, ζ � x − V t (51)

For general potential shape U2(ϕ) and for nonzero damping coefficient solution of
Eq. (51) is not known. To obtain a closed-form solution for the transition kink we
first adopt a piecewise parabolic approximation for the on-site potential (Eq. 2):

U2(ϕ) �

⎧
⎪⎨

⎪⎩

ω2
0ϕ

2

2 , ϕ < b

ω2
0(ϕ−ϕ∗)2

2 − Q, ϕ > b
(52)

It is obvious that B � ω2
0b

2
/
2. Then, to obtain a continuous potential function, one

should satisfy the following relationships:

ω2
0b

2

2
� ω2

0(b − ϕ∗)2

2
− Q ⇒ ϕ∗ − b �

√
2(B + Q)

ω0
(53)

So, we see that for selected potential function the parameters are not independent.
To derive the expression for the kink, we adopt that the transition between two wells
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of potential function (52) occurs at the point ζ � 0 (x � V t). Then, for the region
ζ > 0 Eq. (51) with potential (52) is reduced to the form:

(
V 2 − 1

)
ϕζζ − V ξϕζ � −ω2

0ϕ (54)

As it will be demonstrated below, the regime of transitions between the two wells
exists only for V < 1. The solution (54) of that decays to zero at infinity, is written
as:

ϕ+(ζ ) � C+ exp(λ+ζ ), ζ > 0, λ+ � −
√

ξ 2V 2 + 4ω2
0

(
1 − V 2

)
+ ξV

2
(
1 − V 2

) (55)

For the region ξ < 0 Eq. (51) with potential (52) is reduced to the form:

(
V 2 − 1

)
ϕζζ − V ξϕζ � −ω2

0

(
ϕ − ϕ∗) (56)

Solution (56) of that satisfies the boundary condition at ζ → −∞ is written as:

ϕ−(ζ ) � ϕ∗ − C− exp(λ−ζ ), ζ < 0, λ− �
√

ξ 2V 2 + 4ω2
0

(
1 − V 2

) − ξV

2
(
1 − V 2

) (57)

Expressions (55) and (57) should satisfy the followingmatching conditions at ζ � 0:

ϕ+(0) � ϕ−(0) � b, dϕ+(ζ )/dζ |ζ�0 � dϕ−(ζ )/dζ |ζ�0 (58)

Matching conditions (58) yield the following expressions:

C+ � b, C− � ϕ∗ − b, C+λ+ � −C−λ− (59)

Substitution of (53), (55) and (57) into (59) yields:
√

ξ 2V 2 + 4ω2
0

(
1 − V 2

) − ξV
√

ξ 2V 2 + 4ω2
0

(
1 − V 2

)
+ ξV

�
√

B

B + Q
(60)

It is easy to see that for ξ � 0 Eq. (60) is automatically satisfied for any velocity V ,
but only for the degenerate case Q � 0. In the non-degenerate case and for nonzero
damping equation (60) determines unique velocity of the kink. The front velocity
can be expressed explicitly as follows:

V � ω0(1 − a)√
aξ 2 + ω2

0(1 − a)2
≤ 1 a �

√
B

B + Q
(61)
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Fig. 25 Front velocity as a
function of damping
coefficient, solid blue –
analytical, ‘o’—β � 0,
‘triangles’—β � 0.2,
‘*’—β � 0.5, ‘diamonds’ –
β � 0.7; Gradient potential:
cubic; On-site potential:
bi-parabolic with Q �
0.5, B � 0.5, ω0 � 0.5.
Initial conditions: Impulse 10

As one could expect in the case of the subsonic kink, the velocity of propagation
depends on the internal structure of the on-site potential (B, Q, ω0) as was the case
in (8). The results of front velocity as a function of damping per (61) compared
to results obtained from numerical simulations are plotted in Fig. 25. Each curve
corresponds to a different value of nonlinear coefficient β. At very high damping we
observe that the curves tend to the analytical estimation. At the lower damping (under
ξ < 0.1) the continuum model fails to describe the dynamics, as the effect of cubic
nonlinearity becomes dominant and the front becomes accompanied by considerable
oscillations within the tail region responsible for the radiative damping.

Concluding Remarks
Inclusion of a nonlinear gradient coupling in lattices with a bi-stable on-site potential
leads to a dynamic behavior characteristic to shockwaves: supersonic velocity, narrow
front, low wavenumber of the oscillatory tail and an extreme energy concentration
in the front zone. This regime is not unique to a particular gradient nonlinearity;
rather it turns out to be a generic scenario for couplings above a certain threshold. In
such cases, properties of the front can be described in the framework of a reduced
analytical model with a single degree of freedom and appropriate boundary condi-
tions. Unlike the well-known kinks of the Atkinson-Cabrera model, the propagation
of the discussed shockwaves doesn’t depend on fine-details of the on-site potential.
Instead, the only parameter of the on-site potential that substantially affects the shock
is the coordinate 
 (Eq. (17)), easily computable to arbitrary on-site potentials. The
energetic effect of the transition Q is required only for evaluation of the oscillatory
tail amplitude. As specific examples we considered the FPU and LJ models and the
analytical predictions were in a good agreement with the numerical data.

Furthermore, it was demonstrated that the weak on-site linear damping can be
treated as a perturbation of the reduced model as far as the features of the shockwave
regime are preserved. On the other hand, the case of large damping corresponds to
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the opposite asymptotic limit of a subsonic kink propagation and can be treated with
a continuous approximate model that naturally yields aQ dependent kinetic relation.

The treatment presented above leaves many questions for further investigation.
First, the derived simplified model works fine only if the front propagation velocity
is relatively high. This regime requires considerable nonlinear component of the
coupling force. The crossover from kink to shockwave front propagation patterns
requires a more refined analytic technique. Other interesting problem is possible
extension of the simplified local model for higher dimensions.

Acknowledgements The authors are very grateful to Israel Science Foundation (grant 1696/17)
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Part IV
Theory of Beams, Plates and Shells



Local Buckling of Cylindrical Shells.
Pogorelov’s Geometrical Method

A. Yu. Evkin

Abstract The important role of local dimple-like equilibrium states in the buckling
mechanism of compressed cylindrical shell has been revealed in many experiments.
In the present paper amathematicalmodel describing features of local buckling of the
shells is suggested. It is based on Pogorelov’s geometrical method. Derived simple
analytical solution allowed estimating buckling loads and corresponding conditions.
Especially the influence of local external perturbations was studied. Simple formula
is suggested for design buckling load of elastic thin axially compressed cylindrical
shells, which is based on energy criterion as a measure of perturbations.

1 Introduction and a Brief Historical Excurse

Massive experiments were performed in the research Laboratory of Strength and
Reliability of Structures of Dnepropetrovsk State University in 1970 s, especially
when the Lab moved to a new building equipped with modern testing machines
and appliances. Most of tested specimens were cylindrical shells subject to axially
compressive load. The previous experimental data obtained by different researchers
had extremely wide dispersion and were hardly to predict theoretically. This “clas-
sical buckling problem” attracted attention of many researchers because they tried
to explain the significant discrepancy between theoretical and experimental results.
It was already clear that the significant difference between theoretical and experi-
mental results was mainly caused by structure imperfections and first of all by initial
deflections. However, the mechanism of the shell buckling was not explained and
therefore the problem of estimating design buckling load of real structures remained
not resolved.

A significant achievement was made when local dimple-like post-buckling equi-
librium states were discovered by Vladimirov et al. [1] and Ricardo [2]. This special
post-buckling pattern of the shell middle surface was observed at the load range
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of about 35–50% of classical buckling load when an additional lateral force was
applied as an external perturbation. The local equilibrium state with one buckle also
can occur if the cylindrical shell has a local dimple-like geometrical imperfection.
However, further increase of compressive load to approximately 50% of classical
buckling load led to global buckling of the shell with loss of its load-carrying capac-
ity. This axial compressive load was called “upper local buckling load”. On the other
hand, minimum compressive load was discovered when the local equilibrium shape
existed. This load was called “lower local buckling load”. Both local buckling loads
were studied in the Lab, especially their dependence on shell geometrical param-
eters. The domain when local stable equilibrium state existed was relatively small
(approximately from 35% to 50% of classical buckling load). It was the reason why
this equilibrium state was not observed before without applying special additional
local perturbations.

Next very important step in the research in this direction was made by Tennyson
[3] and Eßlinger [4]. Using high-speed camera, they observed the buckling process
of the shells and discovered that the process began with appearance of local dents
(one or several) and then in the buckling process intensive bending deformation of
the shell surface spread across the most part of the shell. This experimental result
has shown the importance of local equilibrium states of the shell in the mechanism
of shell buckling and gave another impulse to experimental study of local buckles
in the Lab. The result was published in Mossakovskii et al. [5], Manevich et al. [6]
and in other interesting research papers which we are not citing here because they
are published in Russian and are not easily accessible for readers.

Then the most important question arose: how to use this knowledge for design
buckling load estimation of real structures? It was obvious that perturbations (internal
and external) should be taken into account. Initial geometrical imperfections of large
scale real structures were not easy to measure. In addition, they significantly depend
onmanufacturing technology therefore can vary fromone type of structure to another.
Some of them (for example initial bending stresses) are hard to control. The current
NASA (1968) design recommendation [7] suggests a lower bound estimation of
design buckling load which is based on experimental data collected at that time.
But the estimation is overly conservative, especially nowadays when the quality of
structures increased significantly since the guidelines have been published.

Friedrichs [8] and Tsien [9] suggested energy criterion buckling load at some
value where total potential energy in initial trivial state is equal to total potential
energy at a stable post-buckling one. Certainly, the energy measure is the most
universal one in physics, however the suggested criterion seems to never have been
considered seriously [10] because initial equilibrium state A is separated from post-
buckling stable state D by energy barrier �AB which in Fig. 1b corresponds to
intermediate not stable equilibrium state B. Probably Jones [11] was the first who
suggested to use energy barrier as a measure of shell stability. Unfortunately, he
made a methodological mistake in the energy barrier calculation (see [12]) and, in
addition, applied a too rough estimation method.

Professor L.I. Manevich suggested estimating energy barrier corresponding to
local buckling of axially compressed cylindrical shells. The energy was measured
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Fig. 1 a Post-buckling load
deflection diagram and b
energy deflection diagram
corresponding to snap
through equilibrium states
A–B–D

directly in the experimentsMossakovskii et al. [5] andManevich et al. [6] by dropping
a steel ball on the surface of compressed cylindrical shell. The behaviour of shells
in these experiments was similar to behaviour of cylinders tested with static local
perturbations. At certain level of main compressive load and perturbation energy
local post-buckling patterns of the shell were observed. In addition, the energy bar-
rier was estimated whose order was about 1% of the shell deformation energy in
its initial unbuckled equilibrium state at compressive load level close to lower local
buckling load. Local post-buckling equilibrium states with 1, 2, 3, … coupled dim-
ples were discovered in the experiments. Corresponding lower buckling load values
decreased slightly with number of buckles. However, the energy barrier increased
approximately proportionally to this number. It was intuitively reasonable to assume
that post-buckling equilibrium shape with one local dimple corresponds to minimal
buckling energy barrier.

One can conclude that the snap through to equilibrium state of the shell with one
buckle is very likely at lower local buckling load because of presence of external and
internal perturbations in engineering applications. Furthermore, the perturbations
usually (or, again, more likely) have local character. Therefore lower local buckling
load can be a good candidate for a criterion for estimation of design buckling load.
Another candidate is the upper local buckling load which leads to loss of load-
carrying capacity of the structure. From this point of view, studying local equilibrium
states of the shell with one or several buckles and their dependence on different
geometrical parameters of the structure and boundary conditions was very important.

Such experimental research was done in the Lab. I was a student at that time and
observed all experiments. Professor L.I. Manevich was my Masters Degree thesis
supervisor. He suggested I create a mathematical model of local buckling behavior of
cylindrical shells and apply energy barrier concept to design buckling load estimation
of the compressed shells. Furthermore, he proposed to apply Pogorelov’s geometrical
method which was (as I understood later) the most adequate approach at that time.
This suggestion was the best luck in my research carrier.
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It is remarkable that concepts described above are being intensively developed
now. The energy barrier conception was developed by Horak et al. [13], Hutchinson
and Thompson [14], Hutchinson [10], Evkin and Lykhachova [12]. Horak et al. have
shown that minimum energy barrier of cylindrical shell buckling corresponds to local
buckle. This was intuitively understandable before, but they proved this assumption
by numerical analysis. In Evkin and Lykhachova [12] the energy criterion in com-
bination with asymptotic method allowed obtaining formula for design buckling
external pressure of spherical shell. The formula improved an overly conservative
correspondingNASAdesign recommendation. InHaynie et al. [15] andWagner et al.
[16, 17] concepts of additional local perturbations of different types were used for
design buckling load estimation of cylindrical shells subject to axial compression.
Nowadays, software packages like ANSYS and ABAQUS, which are based on finite
element method, allow behaviour simulation of compressed cylindrical shells with
local perturbations [15, 18]. For more references concerning the subject, see papers
cited in this paragraph.

2 Pogorelov’s Geometrical Method

Frommathematical point of view, the problem has twomain specifics. First, the post-
buckling shape is localized in both directions and it cannot be described by classical
buckling modes (trigonometrical functions), which are usually used in common ana-
lytical methods. Second, the deflections corresponding to lower (or upper) local
buckling load are not small compared to shell thickness. Deflection amplitude is
around 3–5 times the shell thickness at lower local buckling load, therefore linear
buckling solution is almost useless, even as a rough approximation. In Fig. 2 the
picture of cylindrical shell compressed by load which is close to lower local buck-
ling one is shown. Three different zones of deformed shell surface can be observed.
First zone Fe is a surface which is very close to initial cylindrical one. The second
part Fi is characterized by intensive bending and can be approximated by cylindrical
surface with horizontal generatrixes. Two parts Fe and Fi are separated by narrow
zone (along the curve γ ) with intensive bending and membrane deformations. The
curve γ is moving and the area of part Fi is increasing while deflection amplitude of
the post-buckling dimple is increasing.

The described situation (fast changing deformation zone γ whose location is not
fixed, plus significant non-linearity) caused the major problem for numerical meth-
ods. First reliable numerical solution for spherical shell with large deflections was
obtained by Gabril’iants and Feodos’ev [19] for the case of axially symmetric defor-
mation. Efficient finite elementmethods for significantly two-dimensional non-linear
problems had developed only at the end of the last century. They were implemented
and are available now in such commercial software as ANSYS and ABAQUS. In
addition to experimental data we will use results of ANSYS simulation for validation
of our analytical method which is based on Pogorelov’s geometrical approach.
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Fig. 2 Picture of
compressed cylindrical shell
with local dimple-like buckle

Pogorelov [20] developed geometrical method for describing behaviour of thin
shell with large deflections. It is based on assumption that middle shell surface of
the shell in post-buckling stage is close to some isometric mapping of the initial
surface. This type of deformation is pure bending which requires much less energy
than membrane type deformation, especially if deflections are large. However, load
carrying structures are designed in such manner that the pure bending is not allowed
because of boundary conditions (for cylindrical shells) or because of initial shell
shape (spherical shells). Pogorelov suggested to consider isometric mapping in the
set of not smooth surfaces. For spherical shell it is an inversion (mirror reflection)
of a spherical segment. There is a sharp crease which is a junction of two parts
of the shell (initial and inverted). In such mapping the surface is inextensional and
Gaussian curvature remains constant. For cylindrical shell this mapping is more
complicated than for spherical shell and will be considered in the next section. The
main deformation energy is concentered in the narrow zone of inner boundary layer
smoothing the unsmooth connectionbetween twoparts of the shell surface. Pogorelov
obtained the following formula for this deformation energy

Uγ � cEh5/2
∫

γ

α5/2

√
r
dsγ +

Eh3

12
(
1 − ν2

)
∫

γ

α(ke + ki ) dsγ , (2.1)

where h is shell thickness, E is elasticity modulus, ν is Poisson’s ratio. The integral
should be evaluated along the curve γ separating two parts of the shell middle surface
obtained after isometric mapping. Here r is curvature radius of the curve γ , ke and
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ki are normal curvatures of the surface in direction perpendicular to the curve; 2α is
the angle between planes tangent to the surfaces along the curve γ .

In Evkin [21] it is shown that Pogorelov’s approach and its formula can be obtained
by asymptotic analysis of convex shallow shell theory equations introducing a new
small parameter proportional to ratio of shell thickness to the deflection amplitude.
The second term in (2.1) belongs to terms of higher order of asymptotic solution
and exactly equals zero for spherical shell, therefore we will neglect this term in the
future consideration. There is a small difference in coefficient c calculations using
asymptotic formula and Pogorelov’s one. There is only an additional multiplier in

asymptotic formula, which is equal to 4

√(
1 − ν2

)
. Here we used the result obtained

by asymptotic method: c � 1.12/
[
12

(
1 − ν2

)]3/4
.

It is remarkable that the solutions of the asymptotic and Pogorelov’s methods are
more accurate for large (compared to shell thickness) deflections, therefore these
methods complement Koiter’s one, which is in contrast more accurate for small
deflections. Unfortunately, the asymptotic method has not been proved yet for cylin-
drical shells, however it is clear that the geometrical method can be quite an adequate
analytical one for studying the behaviour of buckled shells.

3 The Mathematical Model

The construction of the model describing behaviour of compressed cylindrical shells
with local buckles was based on experimental data and observations of such post-
buckling equilibrium states, aswell as on author’s experience in applying geometrical
and asymptotic methods. The model was then verified by comparison with experi-
mental results and numerical simulations.

According to the geometrical method, we have to construct a surface which is
an isometric mapping of the initial cylinder. The Gaussian curvature of this surface
should be equal to zero. In Mossakovskii et al. [22] this surface had two parts:
one part was the initial cylinder and the second part was a cylindrical surface with
horizontal generatrixes. They were separated by a curve, which was located on the
initial cylindrical surface. Created corresponding model provided a lower bound
estimation of shell buckling load parameters. However, it was inconsistent with
Pogorelov’s concept: the post-buckling surface had length of cross section perimeter
less than that of the initial circle. In Evkin and Krasovsky [23] this inconsistency was
omitted and the geometrical method was applied more accurately in case of local
buckling of cylindrical shells under uniform external pressure. In the present paper
we will develop the same approach for the case of axially compressed cylindrical
shell.

The fragment of an isometric mapping suggested by Pogorelov for cylindrical
shell is represented in Fig. 3. Curve γ (geometrical rib) separates cylindrical part
with horizontal generatrixes Fi from ruled surface Fe. There is a plane triangle
connecting ruled surface with initial circular cylinder. Circle γ0 could be a boundary
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Fig. 3 Fragment of
isometric mapping of
cylindrical shell surface with
local buckle

of a shell if it is under uniform compression (like in Evkin and Krasovsky [23]) or
(in our case) it is another geometrical rib. Deformation in the zone around γ0 can
be neglected because radius of corresponding curvature is much larger compared to
that of curve γ .

The equations of the curve γ is represented as the following

x � t, y � β(t), z � λ(t) (3.1)

under assumption that (λ′)2 << 1.
There is an important condition coupling above functions derived by Pogorelov

[20]:

λ′′ � 3β ′′

4R

(
β − β ′t

)
, ξ(t) � 3

2

(
β − β ′t

)
, (3.2)

where R is the shell radius.
These equations were derived from the condition that the surface represented in

Fig. 3 must map a plane without discontinuities along the curve γ . In this case the
angles between contagious plane at any point of γ and corresponding tangent planes
from left and right sides should be equal. For the axisymmetric inversion of a shell
of revolution this condition is satisfied automatically.

We obtained the following formulae for geometric parameters of the isometric
mapping:

α � 0.5 ξ d/R, 1/r � ∣∣β ′′∣∣/d3, dsγ � d dt, (3.3)
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where d �
√
1 + (β ′)2.

We introduce dimensions of the buckle (surface Fi ): in the axial direction it is 2lx
and in the circumferential direction it is 2ly . We assume that buckles are located in
the middle of the cylinder length. Because of symmetry with respect to two (vertical
and horizontal) planes, we can consider only quarter of the surface plotted in Fig. 3,
therefore integration can be performed from 0 to lx . Finally, we have equation for
the first term of (2.1) in the form

Uγ � 4cEh5/2
lx∫

0

√|β ′′| d2(0.5ξ/R)5/2dt. (3.4)

This is deformation energy concentrated at narrow zone along the curve γ . Esti-
mating bending deformation energy at the rest of the shell, we will neglect the cur-
vature changes of Fe, as well as curvature change of Fi in circumferential direction,
because by large deflections they are much smaller compared to curvature change
of Fi in axial direction. The last one is approximately equal to λ′′. Therefore the
bending deformation energy at Fi is

Ui � 2D

lx∫

0

β(λ′′)2dt, (3.5)

where D � Eh3/
[
12

(
1 − ν2

)]
is bending stiffness of the shell.

Deflection amplitude w0 at t � lx is

w0 � 3l2y
8R

. (3.6)

Therefore corresponding virtual work of lateral concentrated force Q applied at
this point of the shell surface is

AQ � Qw0 � Q
3l2y
8R

. (3.7)

We approximated curve γ by parabola with two parameters, ly (which defines
deflection amplitude according (3.6)) and lx :

β
(
t
) � ly

(
2t − t2

)
, (3.8)

where t � t/ lx . Then according to (3.2)

λ′′ � 0.5 l2y
(
t − 0.25t4

)
, ξ � 1.5t2. (3.9)
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Fig. 4 Loading and
boundary conditions of a
cylindrical shell

In Fig. 4 boundary and loading conditions are shown which were realized in
most experiments. The compressive load N was applied to the shell through rigid
elements A which had 2 degrees of freedom described by parameters a1 and a2. The
displacement function of element A and therefore displacement of the shell edge is

u � u0 + a1 + a2 cos(y/R), (3.10)

where u0 is displacement caused by shell loading in initial pre-buckling stage. Vir-
tual work of main compressive load at buckling stage can be easily calculated as
AN � 2a1N . The following two equilibrium equations of rigid element are used for
calculation of parameters a1 and a2:

2πR∫

0

σ(y) h dy � N , (3.11)

2πR∫

0

σ(y) h R cos(y/R)dy � 0. (3.12)
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Normal stresses σ are uniformly distributed along edge circle of the shell at initial
equilibrium stage, however after shell dimple-like buckling the distribution became
significantly non-homogenous and, therefore, the membrane deformation energy is
changed. Calculating this energy we will neglect shear stresses. In addition to the
geometrical method assumption (deflections are large compared to shell thickness),
this is another one which allowed us to significantly simplify analytical solution.
According to this assumption, we consider each longitudinal strip of the shell as a
compressed and bended column. Because deflections are very small compared to
shell length L , we can separate boundary displacement into two types: boundary
displacement caused by bending (only surface Fi is taken into account)

ub � 0.5

t(y)∫

0

(λ′)2dt (3.13)

and displacement uc(y) caused by column compressive deformation ε(y), which,
according to our assumption, is constant along the column. Therefore we have

ε(y) � 2uc(y)/L , σ (y) � Eε(y). (3.14)

Equations (3.10)–(3.13) allowed to derive formulae for parameters a1 and a2

a2 � 2a1, a1 � B1/π, B1 � 1

R

πR∫

0

t(y)∫

0

(λ′)2dt dy. (3.15)

Membrane deformation energy in post-buckling stage can be calculated using the
obtained formula

Uc � U0 +
2Eh

L

(
B3 − 3RB2

1

2π

)
, (3.16)

where B3 � 1
2R

πR∫
0

(
t(y)∫
0

(λ′)2
)

2dy and U0 � N 2L
4πRhE is shell deformation energy in

its initial bendingless state.
Actually, loading conditions represented in Fig. 4 allow to consider 4 different

types of them [24]. The first one is described above. It has two parameters (free
parallel displacement and rotation of the rigid element), which can be defined by
equilibrium Eqs. (3.11) and (3.12). The second type is characterized by rotation
only, but parallel displacement is restricted in this case. We put a1 � 0 instead of
using Eq. (3.11) in this case. In the third type rotation is restricted: equation a2 � 0
is used instead of (3.12). Finally, a1 � 0 and a2 � 0 in the fourth type, which is rigid
loading. We assigned index values k � 3, 2, 1, 0 corresponding to each of these
four described loading types respectively.
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In addition, we included equilibrium states with n dimple-like buckles in the
consideration. For loading types 1 and 2 (with rotation) the buckles should be located
(according to our model) close to each other in the not large part of the shell cross
section perimeter (less than shell radius).

For the case of parabola approximation (3.8) of a geometrical rib γ , we obtained
the formula for change of full potential energy U of the system, which includes
virtual works of both compressive load N and lateral force Q:

U � 3nb�
(
N , Q

)
π ZN

2 , (3.17)

� � 0.19η3w0 + 0.35w3/2
0

(
1 + 0.143η2

)

+ 0.29
w3.5
0 η2

√
Z

(
1 − 0.46knb

√
w0

Z

)
− 0.7Nw2

0η − Qw0. (3.18)

Here the following normalization is introduced

U � U

U0
, w0 � w0

h

√
1 − ν2, η � ly

lx
, Z � L2

Rh

√
1 − ν2, Q �

(
1 − ν2

)
RQ

Eh3
, N � N

Ncl
, (3.19)

where Ncl � 2πEh2/
√
3
(
1 − ν2

)
is classical buckling load, b � L/R.

Taking derivatives with respect to two variables η and w0, we obtain the final
equations corresponding to equilibrium state of buckled shell loaded both by lateral
and axially compressive force

0.57η2 + 0.0985η
√
w0 + 0.582η

w2.5
0√
Z

(
1 − 0.46knb

√
w0

Z

)
− 0.7w0N � 0, (3.20)

Q � 0.19η3 + 0.522
√
w0

(
1 + 0.143η2

)
+ 1.02η2

w2.5
0√
Z

(
1 − 0.46knb

√
w0

Z

)
− 1.4w0ηN .

(3.21)

The first equation is quadratic one with respect to η. Solving it for given compres-
sive load parameter N and normalized deflection amplitude w0 and then substituting
the solution in (3.21), we obtained the dependence Q(w0). A typical one is shown in
Fig. 5.

4 Validation and Analysis of the Model

There are two main assumptions used in our model. The first one is the assumption
about large deflections of considered equilibrium states of the shells. According to
our experience of applying asymptotic and geometrical methods, the obtained solu-
tion can be not bad lower bound estimation of main compressive load, deflections
and full potential energy even for moderate values of deflection amplitude. Accord-
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Fig. 5 Lateral load
deflection diagrams of
compressed cylinder
(L/R � 2.0, R/h � 210)

ing to the second assumption, we neglect shear stresses and therefore can assume
that normal axial stresses and deformations are constant in the longitudinal direction.
The model based on the assumptions was validated by finite element simulation and
experimental results. In all experiments considered below the specimens were manu-
factured from steel sheets (Poisson’s ratio ν � 0.3). The loading type 1 was realized.
But there was a difference in the attaching shell edges to the rigid elements. In most
experiments (Vladimirov et al. [1], Manevich et al. [6], Mossakovskii et al. [5]) and
in all numerical simulations the shells were considered as clamped to the rigid plate.
However in experiments completed by Krasovsky [25] and then cited in Evkin et al.
[24] the boundary condition in circumferential direction was significantly weaker.
This boundary condition matches our model more, because in this case shear stresses
are equal to zero not only in two symmetry planes and in the not buckled main part
of the shell, but also at the edges of the shells. In Krasovsky’s experiments displace-
ment parameters of the rigid plate were measured and the obtained result confirmed
the formula (3.15) derived from our model under the considered assumption. The
following relationship a2 � (2.006 ± 0.082) a1 was obtained in the test. We have to
note that neglecting shear stresses we obtain lower bound estimation as a result of
our model analysis.

The analyticalmethod allowsus tomake a conclusion about systemdependence on
its important parameters. According to normalization (3.19) and Eqs. (3.20), (3.21),
it depends only on Batdorf parameter Z � L2

√
1 − ν2/(Rh) if loading condition is

of type 4 (absolutely rigid loading, k � 0). For other types of loading conditions it
slightly depends on these types (on index k and radius to thickness ratio) if we have
just one local buckle (n � 1). For deflection amplitude w0/h ≤ 1 the normalized
system parameters do not depend on any geometrical and rigid structure parameters
at all. Certainly, this conclusion is valid in the scope of our model.

The structure behaviour in the dimple-like post-buckling stage depends on the
shell length, which is included in deformation energy (3.16). Even though the defor-
mation seems to be localized, the axial stresses are spread along the shell length and
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their distribution change in circumferential direction causes the dependence on shell
length in the case of local buckling.

4.1 Axially Compressed Cylindrical Shells Under Local
External Perturbations

In Fig. 5 the theoretical (curve 1) and experimental (curve 2) [24, 25], dependences of
lateral force parameter Q on normalized deflection amplitude are plotted for the fixed
value of main load parameter N � 0.458. Maximum Q

+
corresponds to buckling

state of the shell under considered load combination. Even though the maximum is
reached at not large deflection amplitude, the theoretical solution does not exceed
experimental result of shell testing (with geometrical parameters L/R � 2.0, R/h �
210) by much.

Some more useful information can be derived from the graphs. Points A and
B when Q � 0 correspond to post-buckling equilibrium states of the compressed
shells without external perturbations. Point A with deflection amplitude w0 corre-
sponds to intermediate unstable equilibrium state, whose energy level (barrier) can
be calculated as dashed area under the curve. At some value of compressive load
parameter N � N

−
there is only one point C when Q � 0 and the load deflection

curve is tangent to the horizontal axis. For N < N
−
the equilibrium state with one

dimple does not exist. Value N
−
is lower local buckling load parameter. Point B cor-

responds to post-buckling equilibrium state, which becomes unstable if compressive
load exceeds upper local buckling load N

+
.

Buckling load combinations of compressive and lateral load are shown in Fig. 6.
Result of our calculations is represented by curve 1 (L/R � 2.0, R/h � 210) and
compared with numerical simulation obtained by Marchenko [26] (curve 2). There
is a good agreement in the interval 0.3 ≤ N ≤ 0.6. For greater compressive load, the
maximum of perturbation load is reached in the range, where deflection amplitude
is small compared to shell thickness and geometrical method yields wrong result.

Experimental data obtained in Krasovsky [25] and published in Evkin et al. [25]
are shown by triangle symbols (L/R � 2.0, R/h � 210). Two types of loading
sequence were applied in the experiment. Empty triangle symbols correspond to the
case when local lateral load was applied first. Filled triangle symbols correspond to
the case when compressive load was applied first and then the local lateral force was
applied. No significant difference in the sequence of load applying was observed in
the tests. Theoretical results obtained by numerical method by Wagner et al. (2017)
(L/R � 3.0, R/h � 330) are shown by diamonds. Empty symbols correspond to
local and filled diamonds to global buckling of the structure.

Equations (3.20) and (3.21) can be simplified assuming that the load combination
is reached at moderate deflection amplitude w0/h ∼ 1. Neglecting small terms we
obtain
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Fig. 6 Experimental and
theoretical buckling load
combinations

0.57η2 − 0.7w0N � 0, (4.1)

Q � 0.19η3 + 0.522
√
w0 − 1.4w0N . (4.2)

Finally we have very simple formula for buckling load combination

Q � 0.128/N
0.75

, 0.3 ≤ N ≤ 0.6. (4.3)

The formula is represented by curve 1′ in Fig. 6. One can see that it is in good
agreement with experimental data in the range 0.3 ≤ N ≤ 0.6 and yields slightly
more conservative result with respect to numerical solution. The formula can be
efficiently used for preliminary estimation of structure stability in the mentioned
above compressive load range, which is the most important from practical point of
view.

Let us compare buckling lateral perturbation load with main axial compressive
one considering the ratio

Q

N
� 0.128h

2π RN
1.75

√
3(

1 − ν2
) . (4.4)

Perturbation load is extremely small compared to the main load. For example,
if ν � 0.3, N � 0.5 we have Q/N � 0.12h/R. For R/h � 480 we obtain
Q � 0.00025N . If we take realistic load value of a large scale missile N=1000kN ,
we have corresponding buckling lateral force Q=0.25kN. This load can be applied
just by kicking the structure by boots. In addition, if compressive load is greater than
upper local buckling load, the structures can completely lose its capacity with severe
consequences. Therefore knockdown factor should be significantly less than 0.5 for
this shell.

We considered inward lateral force as a local perturbation. There could be another
so called kinematic perturbation type when the deflection is given. In the exper-
iments by Krasovky [25], Evkin et al. [24] these perturbations were realized by
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Fig. 7 Compressive load
parameter versus normalized
deflection amplitude
(L/R � 2.0, R/h � 150)

loading screw with one side constraint on the shell surface. The buckling occurred
at deflection amplitude w0 when reaction from the shell was equal to zero (Q � 0),
therefore it corresponded to intermediate equilibrium state of the structure without
perturbations. Corresponding compressive load deflection diagrams are shown in
Fig. 7 in normalized form. Curves 1 and 1′ represent result of calculations based on
our model. Curves 2 and 2′ were obtained by Marchenko [26] by numerical method.
Dashed lines 1′ and 2′ correspond to classical loading type when compressive normal
stresses are uniformly distributed in the circumferential direction at the shell edge
even in post-buckling stage. Tomodel this case we neglected membrane energyUc in
our calculations. There is no minimum in the diagrams corresponding to lower local
buckling loads in this type of loading. Therefore minimum can occur only if there is
a reinforcement at the shell edge causing some not homogeneous stress distribution
in circumferential direction in post-buckling shell equilibrium state with localized
bending deformation of the shell.

Experimental results obtained by Krasovsky [25] are shown by triangle symbols.
Shells of good quality were tested: buckling load of specimens without external
perturbations exceeded 80% of classical buckling load. Two ways of loading were
examined in the test with different sequence of loading bymain compressive load and
external kinematic perturbation.Nodifference in buckling combinationwas observed
in the experiment. Empty triangles correspond to the case when only one dimple was
realized after buckling. Filled triangles represent global shell buckling when almost
all shell surface was bended in the final post-buckling stage. The boundary between
these types of buckling is separated by upper local buckling load. The dimple-like
equilibrium state of the shell became unstable at compressive load greater than upper
local buckling load and any local perturbations lead to global shell buckling with
loss of load-carrying capacity. From practical point of view, it is very important
to study both lower and upper local buckling loads and conditions when the snap
through to local buckling form can be realized. Unfortunately, our model does not
allow obtaining solution for upper local buckling load, because this is a much more
complicated problem, but it yields good results for lower local buckling load.
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Fig. 8 Local buckling loads
depending on Batdorf
parameter

The result of our calculationsmatches experimental data in Fig. 7 except zonewith
high compressive load (N ≤ 0.75) with corresponding small deflection amplitude.
But it is slightly lower compared to the numerical solution, because in our model, as
well as in the experiment, weaker boundary conditions in circumferential direction
were considered.

4.2 Lower and Upper Local Buckling Loads

As we mentioned above, Batdorf parameter Z is the main one of the system. Curves
1 and 1′ in Fig. 8 represent result of our calculations of lower local buckling load.
Curve 1 was obtained with fixed ratio R/h � 210 and therefore ratio L/R was
changed, curve 1′ was obtained with fixed ratio L/R � 2. The same approach was
used byMarchenko [26] in numerical analysis. The result is shown by curves 2 and 2′′
respectively. Experimental data are shown by circles [25] and rectangles [1]). Empty
symbols correspond to lower local buckling load, filled – to upper local buckling load.
In Vladimirov’s experiment [1] only ratio R/h was changed and clamped shells were
tested. In Krasovsky’s experiment [25] shorter specimens with different ratio L/R
were tested but with weaker boundary conditions. Our result matches experimental
data well in the most practically important range 100 ≤ Z ≤ 1600. For greater
values of Batdorf parameter it yields lower bound estimation if the shell is clamped.

Lower local buckling load depends on the number of buckles n. This dependence
is illustrated in the Table 1 by parameter N

−
e for shells (L/R � 1.76, R/h � 280),

which were tested in Mossakovskii et al. [5]. Result of our calculations is noted by
N

−
. It is limited by buckle number n � 1, 2 because of restriction (y/R)2 << 1

for loading type condition 1, 2 with free rotation of rigid elements.
In the experiment Evkin et al. [27] (L/R � 1.4, R/h � 370) lateral forces

were applied periodically in the circumferential direction, therefore loading type
condition 3 can be considered in this case. We put k � 1 in our calculations and
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Table 1 Upper and lower local buckling loads depending on number n of buckles (loading type
condition 1, L/R � 1.76, R/h � 280)

n 1 2 3 4 5 6

N
−
e 0.413 0.360 0.328 0.309 0.303 0.296

N
−

0.404 0.38 ---- ---- ---- ----

U (%) 0.6 1.6 ---- ---- ---- ----

Table 2 Upper and lower local buckling loads depending on number n of buckles (loading type
condition 3, L/R � 1.4, R/h � 370)

n 2 3 4 6 8 12 16

N
+
e 0.533 0.505 0.469 0.429 0.403 0.397 0.472

N
−
e 0.445 0.438 0.418 0.403 0.387 0.363 0.444

N
−

0.423 0.416 0.411 0.397 0.380 --. --.

U (%) 0.95 1.5 2.1 3.7 6.2 --. --.

Table 3 Upper and lower local buckling loads for different types of load conditions (L/R �
2.0, R/h � 150)

k 3 2 1 0

N
+
c 0.555 0.560 0.616 0.623

N
−
c 0.487 0.498 0.510 0.520

N
−

0.420 0.428 0.438 0.447

U (%) 0.8 0.76 0.68 0.62

obtained result noted in Table 2 as N
−
. Experimental data corresponding to lower

N
−
e and upper N

+
e local buckling loads are shown in the Table 2 as well. There is

good agreement between theoretical and experimental data. Both upper and lower
local buckling loads reached minimum because buckles were stiffened by each other
when their number increased enough. We did not study this effect in our model.

In the Table 3 our calculation result for lower local buckling load parameter N
−

is compared with the result of numerical analysis by Marchenko [26]. Numerically
obtained upper local buckling load parameter is noted as N

+
c here. Both methods

yield slight dependence of buckling loads on loading type conditions.
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Fig. 9 Theoretical and
experimental estimation of
energy barrier depending on
load parameter
(L/R � 2.0, R/h � 210)

4.3 Energy Barrier and Design Buckling Load

One can see from Table 3 that relative energy barrier U does not depend much on
loading type conditions remaining very small compared to deformation energy of the
structure in initial equilibrium state. But the barrier increases fast with the number
of buckles (Tables 1 and 2). In the Tables the energy barrier is calculated at the
compressive load, which is equal to lower local buckling one. Diagram of the energy
barrier depending on the compressive load level is shown in Fig. 9. Here our result is
comparedwith experimental data obtained byKrasovsky (L/R � 2.0, R/h � 210).
Author used static loading by lateral force, obtained a diagram similar to that in Fig. 5
and then calculated corresponding area. There is excellent agreement between theory
and experiment.

The following formula is suggested by NASA (1968) [7] for knockdown factor
for axially compressed cylindrical shells

ρ � 1 − 0.902

(
1 − e

−
(

1
16

√
R
h

))
. (4.5)

The approach has two disadvantages: it yields overly conservative estimation of
design buckling load for thin shells and it does not depend on the shell length. The
classical buckling load value does not depend on shell length, but from local per-
turbation concept this dependence is very important. The formula is represented in
Fig. 10 for the case when ratio L/R � 2.0. Formula for knockdown factor sug-
gested by Wagner and Hühne [17] included dependence from shell length. It has the
following form

ρ � �T H (R/h)−ηT H , (4.6)

�T H � −0.0196(L/R)2 − 0.0635(L/R) + 1.3212, (4.7)

ηT H � −0.0113(L/R)2 + 0.061(L/R) + 0.08. (4.8)
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Fig. 10 Knockdown factor
depending on Batdorf
parameter

Table 4 Relative energy barrier at lower local buckling load versus Batdorf parameter

Z 100 400 900 2500 6400

U (%) 1.26 0.73 0.53 0.35 0.24

The formulae were derived taking into account geometric and loading imperfec-
tions as perturbations at the same time.

We calculated knockdown factor ρ following these formulae in two ways: fix-
ing ratio L/R � 2.0 first and changing another geometrical parameter R/h (solid
lane in Fig. 10), and then fixing R/h � 210 and changing relative length of the
shell L/R(dashed line in Fig. 10). There is no difference in the results if they are
represented as load dependence from Batdorf parameter. Therefore two geometri-
cal parameters R/h and L/R can be reduced to just one Batdorf parameter Z . We
derived the same conclusion above from analysis of our model.

We suggest lower local buckling load as a design buckling one. The correspond-
ing curve 1 in Fig. 10 is the result of calculations based on our model. The loading
type 4 is considered, which corresponds to loading type in the research of Wagner
and Hühne [17]. In this case k � 0 and the system (according to our model) exactly

depends only onBatdorf parameter. The curve ρ � N
−(√

Z
)
repeats result obtained

by Wagner and Hühne, but yields about 15% smaller knockdown factor. The differ-
ence can be considered as additional safety factor or result of boundary condition
imperfections, because in our model we considered weaker connection of the shell
edges to the loading plates. The energy barrier analysis shows that extremely small
perturbations are enough for shell buckling at lower local buckling load. The energy
barrier is decreasing with the increase of Batdorf parameter and can be about 1% of
deformation energy of the structure in initial pre-buckling equilibrium state or even
significantly less. The energy barrier calculated at lower local buckling load is shown
in the Table 4.

We also compared our solutions with result obtained by Horak et al. [13]. As
we mentioned above, authors proved that minimum energy barrier corresponds to
potential of dimple-like equilibrium state of the shell. In addition, one can conclude
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Table 5 Comparison of lower local buckling load with Horak’s result noted as N
−
H

a 50 100 200

N
−
H 0.345 0.297 0.256

N
−

0.355 0.293 0.243

from Fig. 4.3 (left) of the cited paper that the obtained solution depends only on
domain (−a, a)of longitudinal variable x . Shell parametera is proportional to square
root of Batdorf parameter a � 4

√
192

√
Z/π , therefore Batdorf parameter is the main

structure characteristic if buckling of the structure is localized in circumferential
direction. It is also interesting that Horak et al. [13] obtained formula (5.1) for
relative full potential energy, which can be represented in the form

U � b V
(
N

)
8π

√
3ZN

2 . (4.9)

It is similar to our Eq. (3.17).
In the Table 5we compare result of our calculation (k � 0) of lower local buckling

load with corresponding data from Horak et al. [13] by reading results represented
in Fig. 4.3 (left) of the paper. There is good agreement between data in Table 5.
However, energy barrier values obtained in the cited paper are approximately two
times greater than that obtained in our calculations and experiments.

The energy criterion for design buckling load estimation has obvious advantages.
The energy is the most general measure in mechanics and therefore can accumulate
impacts of any perturbations including external ones and geometrical imperfections.
We believe that there is a correlation between geometrical and external perturbations
(see Evkin and Lykhachova [12]). In addition, the energy barrier concept allows
estimating sensitivity of the structure to the perturbations, but it does not require
information about initial structure imperfections, which are hard to control in prac-
tice.

We observed that if we take any pair
√
Z1 and

√
Z2 such that

√
Z1/

√
Z2 � 2 the

ratio N
−(√

Z2
)
/N

−(√
Z1

) � 1.21 will be almost constant, therefore the obtained

dependence ρ � N
−(√

Z
)
(plotted in Fig. 10) can be approximated with good

accuracy as the following simple formula

ρ � 1.07Z−0.138, 50 ≤ Z ≤ 7000. (4.10)

It is not shown in the Fig. 10 because corresponding curve almost coincides with

the plotted curve ρ � N
−(√

Z
)
. We suggest (4.10) as a formula for knockdown

factor of design buckling load Ndes � ρNcl . Dependence obtained by Wagner and
Hühne [17] yields result which is about 15% greater. With good accuracy it can be
approximated as

https://doi.org/10.1007/978-3-319-92234-8_4
https://doi.org/10.1007/978-3-319-92234-8_4
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ρ � 1.23Z−0.138. (4.11)

Another candidate for design buckling load, which discussed in literature, is upper
local buckling load. It can exceed the lower local buckling load by about 20%, but
the difference is decreasing for thinner shells (see experimental results in Fig. 8).
Energy barrier at upper local buckling load is extremely small fraction of the shell
deformation energy at initial equilibrium state. Certainly, nowadays it is possible to
manufacture and test small specimens in the lab and obtain high values of buckling
load, but in reality external perturbations and initial geometrical imperfections always
exist and will make buckling of large scale structures almost inevitable at upper local
buckling load, therefore this load cannot be considered as a lower bound estimation
for design buckling load. Comparison with experimental data shows that selecting
upper local buckling load as design buckling load can overestimate empirical data
substantially (see for exampleWagner et al. [16]). In addition, buckling at upper local
buckling load will cause global shell buckling with loss of load-carrying capacity.
This can lead to catastrophic consequences and therefore it should be compensated by
additional safety factor. Our approach suggests somewhat conservative lower bound
estimation of design buckling load.

5 Conclusion

Suggested simple analytical model based on Pogorelov’s geometrical method is
developed and validated by experimental results and numerical simulations. The
model revealed and explained important buckling features of compressed thin cylin-
drical shells. In particular, introduced parameter normalization shows that theBatdorf
parameter is the most important one describing behavior of the system.

Obtained simple formulae can be useful in engineering practice for stability esti-
mation of compressed elastic cylindrical shells subject to possible external local
perturbations. The perturbation approach and energy barrier concept allowed to con-
clude that the so called lower local buckling load can be suggested as a lower bound
estimation of the design buckling load of the structure.

We also provided some experimental data, which were published only in Russian
or they are difficult to find because most experiments were performed in 1970s.
Recently this topic became very popular in the shell buckling theory. Latest research
concerning the subject can be found in the reference lists of papers [10, 14, 16, 17].
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Stretching of Reinforced
Orthotropic Plate

S. Koblik

Abstract The stress-strain state of an orthotropic plate reinforced by a doubly peri-
odic system of inextensible one-dimensional inclusions and subjected to loading
simulating uniaxial tension in the direction of the inclusions is studied. Using the
asymptotic method, developed for the case of the strong anisotropy, using the theory
of Weierstrass elliptic functions, the theory of boundary value problems of analytic
functions, and the Keldysh-Sedov formula an approximate closed solution of the
problem is obtained. A comparison with the exact solution, which is known for the
case of one inclusion in the plane, shows that the error of the asymptotic solution
does not exceed 9% at case of an isotropic plate. This case is the worst one from the
point of view of the method. The approximate solution obtained is used to calculate
the effective modulus of elasticity in the direction of the inclusions. The dependence
of this modulus on the size of the periodicity cell and the mutual arrangement of the
inclusions is demonstrated.

1 Introduction

The problem of extension of an elastic plate with a thin inextensible or elastic inclu-
sion was studied in the number of papers [1–5]. The purpose of these articles was
analysis of the stress-strain state near the inclusion. The related problems of stress-
strain state of plates with doubly-periodic structure was studied in [6–8]. Effective
elastic characteristics of such solids have also been identified. However, the case of
reinforcement of an elastic plane by a doubly-periodic system of one-dimensional
elastic or inextensible inclusions was not considered. In present paper the effective
stiffness of reinforced plane is estimated, based on the approximate asymptotic solu-
tion of the problem of stretching elastic plane reinforced by the doubly-periodic
lattice of inextensible one-dimensional inclusions.
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A similar problem of determining the effective shear modules of elasticity in
case of antiplane loading orthotropic solid, weakened by doubly periodic crack sys-
tem, discussed in [9], where effective moduli are found using the exact solution of
antiplane problem for rectangular cells, that obtained using the conformal mapping
the half of the cell onto the upper half-plane.

Unlike work [9], in which the exact solution of harmonic problem is found, the
exact solution of the biharmonic problemof stretching of reinforced plate is unknown.
To get an approximate solution of the problem, the asymptotic method, proposed in
[10] and described in detail in [11, 12], is used. According to this method the solution
is represented as an asymptotic expansion on parameter ε � G2

/
B1B2. Since this

approach is little known, its application will be illustrated on the example of the
stretching of orthotropic plane with one inextensible one-dimensional inclusion.

Let us consider the plane stress-strain state of an orthotropic plate for which the
principal lines of orthotropy are coincide with the coordinate axes. The solution of
boundary value problems for such a plate can be reduced to solution of the equations
of equilibrium of the planar orthotropic media in displacements

B1
∂2u

∂x2
+ G

∂2u

∂y2
+ Ge

∂2v

∂x∂y
� 0,

G
∂2v

∂x2
+ B2

∂2v

∂y2
+ Ge

∂2u

∂x∂y
� 0, (1)

under given boundary conditions.
Here

Bj � E j

1 − ν12ν21
, j � 1, 2; G � G12; e � 1 + ν21

B1

G
� 1 + ν12

B2

G
, (2)

E1, E2 and G are elasticmoduli in the directions x, y and shearmodulus;ν12 and ν21
are Poisson’s ratios, where ν12E2 � ν21E1. The tensile and shear stresses in the plane
are determined by the expressions

σx � B1
∂u

∂x
+ G(e − 1)

∂v

∂y
,

σy � B2
∂v

∂y
+ G(e − 1)

∂u

∂x
,

τxy � G

(
∂u

∂y
+

∂v

∂x

)
. (3)

In order to pose the corresponding boundary value problem for Eq. (1), the boundary
conditions have to be added and, in the case of the mixed boundary problem for
the orthotropic strip (0 ≤ y ≤ H, |x | < ∞), they have to be formulated as follows:
the boundary of the strip

(
L � L ′ + L ′′) is separated into the parts with different

boundary conditions, e.g.
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σx � F(x), τxy � P(x),
(
x ∈ L ′),

u � u∗(x), v � v∗(x),
(
x ∈ L ′′). (4)

Let us suppose case of strong anisotropy B1 ∼ B2 	 G. Then the quantity ε �
G2

/
B1B2 may considered as a small parameter. This condition explicitly defines

the essential anisotropy of the medium in the considered problem—for isotropic
medium the Young’s modulus and the shear modulus should be of the same order.

Let us introduce the affine transformation

x � ε−1/ 4q−1/ 4x1, y � y1, u � U (1), v � ε3/ 4q−1/ 4V (1), (5)

x � ε1/ 4q−1/ 4x2, y � y2, u � εq1/ 4U (2), v � ε1/ 4V (2), (6)

where q � B1
/
B2 ∼ 1.

Substitution of the transformations (5) and then (6) into Eq. (1) leads to systems
(7) and (8) respectively

U 1
,xx +U 1

,yy + εeV 1
,xy � 0,

V (1)
,yy + eU (1)

,xy + εV (1)
,xx � 0. (7)

U (2)
,xx + eV (2)

,xy + εU (2)
,yy � 0,

V (1)
,xx + V (2)

,yy + εeU (2)
,xy � 0. (8)

Here and below the following notations are accepted for brevity:

∂ϕ(i)

∂xi
� ϕ(i)

,x ,
∂ϕ(i)

∂yi
� ϕ(i)

,y .

The solution of the system (7) varies along x-axis more slow than the similar solution
of system (8).

(In the former case ∂
∂x � ε1/ 4q1/ 4 ∂

∂x1
, in the latter ∂

∂x � ε−1/ 4q1/ 4 ∂
∂x2

.)
The components of the displacement vector are presented by superposition of the

solutions of both types

u � u1 + u2 , v � v1 + v2. (9)

We will look for the functions U (n), V (n) (n � 1, 2) as series in small parameter
ε1/ 4:

U (n) �
∞∑

m�0

3∑

j�0

εm+ j/ 4Un,4m+ j ,

V (n) �
∞∑

m�0

3∑

j�0

εm+ j/ 4V n,4m+ j . (10)
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It is convenient to introduce additional transformations of the coordinates

ξ1 � x1
∞∑

m�0
αmεm, η1 � y1, (11)

ξ2 � x2
∞∑

m�0
βmεm, η2 � y2. (12)

Here the coefficients α0, β0 are equal to unity, because the equations of the zeroes
approximation have to coincide with the limiting systems which can be obtained
from Eqs. (7) and (8) if ε → 0. The coefficients αm , βm (m=1, 2,…) are calculated
from the recursion formulas [11, p.77], [12, p.274] and are used for simplification
of the equations for higher approximations. By substitution of series (10) and (11)
into the system (7) and by splitting the obtained expressions by parameter ε1/ 4 we
obtain for the stress state of the first type:

U 1,4m+ j
,ξξ c0 +U 1,4m+ j

,ηη � −
m−1∑

ν�0

(
U 1,4ν+ j

,ξξ cm−ν + eV 1,4ν+ j
,ξη αm−ν−1

)
, (13)

V 1,4m+ j
,ηη � −eU 1,4m+ j

,ξη α0 −
m−1∑

ν�0

(
eU 1,4ν+ j

,ξη αm−ν + V 1,4ν+ j
,ξξ cm−ν−1

)
, (14)

where cp �
p∑

s�0
αsαp−s .

Similarly, after substitution of the series (10) and (12) (for n � 2) into system (8)
one can find for the stress state of the second type:

U 2,4m+ j
,ξξ � −eV 2,4m+ j

,ξη β0 −U 2,4(m−1)+ j
,ηη −

m−1∑

ν�0

(
U 2,4ν+ j

,ξξ dm−ν + eV 2,4ν+ j
,ξη βm−ν

)
,

(15)

V 2,4m+ j
,ξξ d0 + V 2,4m+ j

,ηη � −
m−1∑

ν�0

(
V 2,4ν+ j

,ξξ dm−ν + eU 2,4ν+ j
,ξη βm−ν

)
, (16)

where dp �
p∑

s�0
βsβp−s .

As it is shown in [11, 12], the coefficientsαm, βm (m�1, 2,…) can be determined
in a way that Eqs. (13)–(16) will be written as follows

U 1,4m+ j
,ξξ +U 1,4m+ j

,ηη � 0, (17)

V 1,4m+ j
,ηη � −eU 1,4m+ j

,ξη −
m−1∑

ν�0

(
eU 1,4ν+ j

,ξη αm−ν + V 1,4ν+ j
,ξξ cm−ν−1

)
, (18)
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U 2,4m+ j
,ξξ � −eV 2,4m+ j

,ξη −U 2,4(m−1)+ j
,ηη −

m−1∑

ν�0

(
U 2,4ν+ j

,ξξ dm−ν + eV 2,4ν+ j
,ξη βm−ν

)
, (19)

V 2,4m+ j
,ξξ + V 2,4m+ j

,ηη � 0. (20)

If in Eqs. (18) and (19) the upper limit of a sum is less than its lower limit, then the
sum equals to zero. Similarly, if the second upper index of a function Un,k or V n,k

is negative, then this function equals to zero.
By substituting the sums (9) and corresponding transformations (10)–(12) into

expressions for the displacements u, v and stresses (3) we obtain

u � U (1) + εq1/ 4U (2) �
∞∑

m�0

3∑

l�0
εm+ j/ 4

(
U 1,4m+ j + εq1/ 4U 2,4m+ j

)
,

v � ε3/ 4q−1/ 4V (1) + ε1/ 4V (2) �
∞∑

m�0

3∑

l�0
εm+ j+1

4
(
V 2,4m+ j + ε1/ 2q−1/ 4V 1,4m+ j

)
.

(21)

In similar way the stresses are represented as expansions

σx � B1
(
u,x + ν21v,y

)

� B1ε
1/ 4q1/ 4

∞∑

m�0

3∑

j�0

εm+ j
/
4

[ m∑

ν�0

U1,4ν+ j
,ξ αm−ν

+ε1/ 2 q1/ 4
( m∑

ν�0

U2,4ν+ j
,ξ βm−ν + (e − 1)V 2,4m+ j

,η

)

+ ε(e − 1)V 1,4m+ j
,η

]

(22)

σy � B2
(
v,y + ν12u,x

)

� B2ε
1/ 4

∞∑

m�0

3∑

j�0

εm+ j
/
4
[
V 2,4m+ j

,η

+ε1/ 2q−1/ 4
(

V 1,4m+ j
,η + (e − 1)

m∑

ν�0

U1,4ν+ j
,ξ αm−ν

)

+ ε(e − 1)
m∑

ν�0

U2,4ν+ j
,ξ βm−ν

]

, (23)

Txy � G
(
u,y + v,x

)

� G
∞∑

m�0

3∑

j�0

εm+ j/4
[
U1,4m+ j

,η

+q1/4
m∑

v�0

V 2,4v+ j
,ξ βm−v + ε

(

q1/4U2,4m+ j
,η +

m∑

v�0

V 1,4v+ j
,ξ αm−v

)]

. (24)

The substitution of series (21)–(24) into boundary conditions and the following
splitting by parameter ε1/ 4 allows one to find the boundary conditions corresponding
to the boundary value problems for the functions U 1,4m+ j , V 2,4m+ j . The functions
V 1,4m+ j and U 2,4m+ j are calculated by simple integration of the expressions (14) and
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(15). One can see from (17)–(24) that the stress-strain states of both types are coupled
only via the boundary conditions.

The displacement u has the dominant effect on the stress-strain state of the first
type as well as on a corresponding stress σx and component of the shear stress τxy
depending on u.

As for the dominant components of the second stress-strain state, they are dis-
placement v, stress σy and component of the shear stress τxy depending on v.

So, for m � 0 and j � 0 one obtains

U 1,4m+ j
,ξξ +U 1,4m+ j

,ηη � 0,

V 1,4m+ j
,ηη � −eU 1,4m+ j

,ξη , (25)

u1.0 � U 1.0, (26)

σ1,0
x � B1ε

1/ 4q1/ 4U 1,0
,ξ (27)

for the state of the first type and

U 2,4m+ j
,ξξ � −eV 2,4m+ j

,ξη ,

V 2,4m+ j
,ξξ + V 2,4m+ j

,ηη � 0, (28)

v2,0 � ε1/ 4V 2,0, (29)

σ2,0
y � B2ε

1/ 4V 2,0
,η (30)

for the state of the second type.
The shear stress depends on both states

τ 0
xy � τ 1,0

xy + τ 2,0
xy � G

(
U 1,0

,η + q1/ 4V 2,0
,ξ

)
. (31)

Let us demonstrate the method efficiency on the model problem about stretching
elastic plane with inextensible one-dimensional inclusion that is oriented along the
x-axis. The plane is loaded by applied at infinity stress σ∞

x . This problem has the
exact solution that allows estimate the accuracy of the method.

Let us place the origin of the frame of reference in the middle of inclusion. Then
inclusion is located in segment (|x | ≤ a, y � 0), and, by the virtue of symmetry,
displacement u and stresses σx , σy are even functions of y, while v and shear stress
τxy are odd functions ofy. It follows that the offset v vanish in the x-axis and hence

∂v
/

∂x � 0 (−∞ < x < ∞, y � 0), (32)

while the shear stresses on the sides of the inclusion, as antisymmetric, satisfy equality

τ+
xy � −τ−

xy, (33)
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where τ+
xy � lim

y→+0
τxy, τ−

xy � lim
y→−0

τxy (|x | < a).

From Eqs. (31)–(33) it follows that on the sides of inclusion

U 1,0
,η (ξ1,+0) � −U 1,0

,η (ξ1,−0). (34)

Because the inclusion is inextensible, the strain

U 1,0
,ξ � 0 for(|ξ1| ≤ a1, η1 � 0). (35)

Thus for the zeroes approximation the following equations and boundary condi-
tions are obtained:

U 1,0
,ξξ +U 1,0

,ηη � 0, (36)

U 1,0
,ξ (ξ1, 0) � 0 |ξ1| ≤ a1,

U 1,0
,η (ξ1,+0) � −U 1,0

,η (ξ1,−0) |ξ1| ≤ a1,

lim
|ξ1|→∞

σ1,0
x � lim

|ξ1|→∞
B1ε

1/ 4q1/ 4U 1,0
,ξ � σ∞

x

(37)

for the state of the first type and

V 2,0
,ξξ + V 2,0

,ηη � 0, (38)

V 2,0
,ξ � 0 (|ξ2| ≤ ∞, η2 � 0),

V 2,0
,η (ξ2,+0) � V 2,0

,η (ξ2,−0) (|ξ2| ≤ ∞),

lim|η2|→∞
σ1,0
y � lim|η2|→∞

B2ε
1/ 4V 2,0

,η � 0

(39)

for the state of the second type.
To solve the boundary value problems (36), (37) and (38), (39), let us introduce

the holomorphic functions of complex variables

�1,0(ζ1) � U 1,0
,ξ − iU 1,0

,η , where ζ1 � ξ1 + iη1, (40)

�2,0(ζ1) � U 2,0
,ξ − iU 2,0

,η , where ζ2 � ξ2 + iη2. (41)

Then, due to the boundary condition (37) and (39), the problem is reduced to two
Riemann-Hilbert problems:

�1,0+(ξ1) � −�1,0−(ξ1), (−a1 ≤ ξ1 ≤ a1),

lim
ζ1→∞

�1,0(ζ1) � σ∞
x
B1

ε−1/ 4q−1/ 4.
(42)
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�2,0+(ξ2) � �2,0−(ξ2), (−∞ ≤ ξ2 ≤ ∞),

lim
ζ2→∞

�2,0(ζ2) � 0. (43)

The problems have solutions

�1,0(ζ1) � σ∞
x

B1
ε−1/ 4q−1/ 4 ζ1√

ζ21 − a21

, (44)

�2,0(ζ2) � 0. (45)

The shear stresses on the top side of inclusion are

τ+xy � GU1.0+
,η � −GIm

(
�+(ξ1)

) � G
σ∞
x
B1

ε−1/4q−1/4 ξ1√
ξ21 − a21

� σ∞
x ε1/4q1/4

x
√
x2 − a2

. (46)

For isotropic plane q � 1,

ε1/ 4 �
√

(1 − ν)
/
2 for plane strain,

and ε1/ 4 � 1
/√

2(1 + ν) for generalized plane stress.
The exact solution of the problem for isotropic plane is [13]:

τ+
xy � σ∞

x

8

(1 + κ)2

κ

x√
x2 − a2

, (47)

where κ � 3 − 4ν for plane strain and κ � 3−ν
1+ν

for generalized plane stress.
Expressions (46) and (47) differs only in coefficients; a comparison between the

exact solution (47) and the approximate one (46) in the worst, from the point of view
of the described asymptotic method, case of isotropic plane shows that the difference
is less than 9% for both plane strain and generalized plane stress.

2 Statement of the Problem and Solution

Orthotropic plane with principal axes, which coincide with the axes of frame of
reference, is reinforced by doubly periodic lattice of one-dimensional inextensible
inclusions, oriented along the x-axis. The plane is stretched in x-axis direction. The
challenge is to define the stress-strain state and evaluate effective stiffness of the
reinforced plane in the x-axis direction (Fig. 1).

Here 2l is the length of cell of a doubly-periodic lattice, 2h is the height of the
cell.
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Fig. 1 Doubly-periodic lattice of inclusions

All inclusions have length 2a (0 < a < l) and located on segments:

b − a + 2kl ≤ x ≤ b + a + 2kl, y � 2mh, k � 0,±1,±2, . . . ,

−b − a + 2kl ≤ x ≤ −b + a + 2kl, y � (2m + 1)h, m � 0,±1,±2, . . .
(48)

To determine the effective tensile modulus, let us consider such load of the plane,
which simulates the uniaxial tension and the doubly periodicity is not violated,
although the shape of the cell may changes. We assume that the straight lines
where inclusions are located remain straight and parallel to the x-axis and displace-
ments u and v are symmetric and antisymmetric respectively about the straight lines
y � mh, m � 0,±1,±2, . . . Thus derivative ∂u

/
∂y and the shear stresses τxy will

be antisymmetric about the same straight lines, while derivative ∂v
/

∂y and the ten-
sile stresses σx , σy are symmetric about those lines. It follows that in the sides of
the inclusions

∂u

∂y

+

� −∂u

∂y

−
and

∂v

∂y

+

� ∂v

∂y

−
.

Since the inclusions are inextensible, the tensile strain vanishes
(
∂u

/
∂x � 0

)
at

the points adjacent to the inclusions. It is obvious, that outside of inclusions the
displacements and its derivatives are continuous, and because the displacement v is
antisymmetric about lines, which hosts inclusions, v vanishes there as well as the
shear stresses τxy vanish in the continuation of inclusions (see Fig. 2).
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Fig. 2 The boundary conditions

Thus in any line y � mh, m � 0,±1,±2, . . . we have v(x, y) �
0 and ∂v(x, y)

∂x � 0. Therefore, from τxy(x, y) � 0 it follows that ∂u/∂y � 0
in the continuation of inclusions.

Because the doubly-periodicity is not violated we can consider the only cell.
In this case we define the average linear strain as

εav � 1

�

∫ ∫

�

εxd� � 1

2h

h∫

−h

⎛

⎝ 1

2l

l∫

−l

εxdx

⎞

⎠dy, (49)

and define the average tensile stress as

σav � Px
2h

� 1

2h

⎡

⎣
h∫

−h

σx |x�x̃ dy + Tx (x̃)

⎤

⎦ (50)

where
Px is the total extending force applied to the cell in direction of x-axis,
Tx (x̃) is the stretching load in the inclusion at the point x̃, which is selected in a

such way, that straight line x � x̃ crosses only the inclusion located in x-axis in the
cell, or it does not intersect any inclusion at all, hence

Tx (x̃) � −(H(x̃ − (b − a)) − H(x̃ − (b + a)))

x̃∫

b−a

(
τ+
xy − τ−

xy

)
dx, (51)

H(x) is the Heaviside step function,
−τ+

xy and −τ−
xy are shear stresses applied to the upper and lower side of inclusion.

Hence, the effective stiffness in x-axis direction is

Bef f � σav

εav
�

⎡

⎣
h∫

−h

σx |x�x̃ dy + Tx (x̃)

⎤

⎦/
1

2l

h∫

−h

⎛

⎝
l∫

−l

εxdx

⎞

⎠dy. (52)

It is obvious, that σx and εx are symmetric functions about x-axis, while τxy is
an antisymmetric function about the same axis. Hence, formulas (49)–(52) could be
rewritten
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εav � 1

h

h∫

0

⎛

⎝ 1

2l

l∫

−l

εxdx

⎞

⎠dy, (53)

σav � 1

h

⎡

⎣
h∫

0

σx |x�x̃ dy +
1

2
Tx (x̃)

⎤

⎦, (54)

Tx (x̃) � −2(H(x̃ − (b − a)) − H(x̃ − (b + a)))

x̃∫

b−a

τ+
xydx, (55)

Bef f � σav

εav
�

⎡

⎣
h∫

0

σx |x�x̃ dy + Tx (x̃)

⎤

⎦/
1

2l

h∫

0

⎛

⎝
l∫

−l

εxdx

⎞

⎠dy. (56)

To find the effective stiffness we need to solve equations of the plane theory of
orthotropic elasticity (1)

with following boundary conditions:

∂u

∂x
� 0 in each inclusion, τxy � 0 in continuations of inclusions. (57)

We need also take into account the condition of equilibrium of cell

2

h∫

0

σx |x�x̃ dy+Tx (x̃) � Px , (58)

and the condition of equilibrium of inclusion

b+a∫

b−a

τ+
xy

∣∣
y�0

dx � 0. (59)

To get an approximate solution of the problem, the aforementioned asymptotic
method is used.

The first term of the main part of asymptotic expansion is found from equation

U 1,0
,ξξ +U 1,0

,ηη � 0 (60)

with boundary conditions:

U 1,0
,ξ � 0 in each inclusion; U 1,0

,η � 0 in continuations of the inclusions. (61)
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Condition of equilibrium of cell is

2
h∫

0
σx |x�x̃ dy + Tx (x̃)

� 2B1ε1/ 4q1/ 4
[
h 1∫

0
U1,0

,ξ dη1 −
(
H

(
ξ̃1 − (b1 − a1)

)
− H

(
ξ̃1 − (b1 + a1)

)) x̃1∫

b1−a1

U1,0
,η dξ1

]

� Px .

(62)

Condition of equilibrium of inclusion is

b1+a1∫

b1−a1

U 1,0
η dξ1 � 0. (63)

The load in the inclusion is defined by formula

Tx � −2
(
H

(
ξ̃1 − (b1 − a1)

)
− H

(
ξ̃1 − (b1 + a1)

))
B1ε

1/ 4q1/ 4
ξ̃1∫

b1−a1

U 1,0
,η dξ1.

(64)

Let us introduce the analytic function �1,0(ζ1) � U 1,0
,ξ − iU 1,0

,η of complex vari-
able ζ1 � ξ1 + iη1. Then we have to find a doubly-periodic function �1,0(ζ1) that
satisfies to conditions: Re

(
�1,0(ζ1)

) � 0 in each inclusion and Im
(
�1,0(ζ1)

) � 0 in
continuations of inclusions.

This problem is solved by Keldysh-Sedov formula [14]

�1,0(ζ1) � A
σ(ζ1 − c1)σ3(ζ1 + c1)√

σ(ζ1 − (b1 − a1))σ(ζ1 − (b1 + a1))σ3(ζ1 + (b1 − a1))σ3(ζ1 + (b1 + a1))
, (65)

where σ(ζ1) andσ3(ζ1) are the Weierstrass sigma functions.
Since functions σ(z1) andσ3(z1) are antisymmetric ones about the origin, it is

obvious that σ(ζ1 − c1) andσ3(ζ1 + c1) change sign and vanish at points ζ1 � c1 and
ζ1 � −c1 + ih1 accordingly.

In contrast to the approach taken in article [9], which uses the conformal
mapping, the usage of Keldysh-Sedov formula allows to solve the problem
(60)–(63), without the knowledge of boundary conditions at the vertical boundaries
(|ξ1| � ±l1, |η1| ≤ h1) of cell of periodicity, which gives the opportunity to explore
the unsymmetrical, regarding those boundaries, stress-strain state.

Formula (65) contains two unknown parameters: A and c1. The latter can be

defined by using condition of equilibrium of inclusion
b1+a1∫

b1−a1

Im
(
Φ1,0(ξ1 + i0)

)
dξ1 �

0, while to find A we must use the equilibrium of the cell
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Fig. 3 Integration line of the curvilinear integral

2B1ε1
/
4q1

/
4

⎡

⎢⎢
⎣

h1∫

0

Re
(
Φ1,0

(
ξ̃1 + iη1

))
dη1 +

(
H

(
ξ̃1 − (

b1 − a1
)) − H

(
ξ̃1 − (

b1 + a1
)))

x̃1∫

b1−a1

Im
(
Φ1,0(

ξ1 + i0
))
dξ1

⎤

⎥⎥
⎦ � Px .

Because σ(ζ1) and σ3(ζ1) are the entire functions, �1,0(ζ1) is an analytic function
everywhere in the cell of periodicity, except points b1 − a1, b1 + a1, −b1 − a1 +
ih1, −b1 + a1 + ih1. In accordance to Cauchy’s theorem the curvilinear integral
alone a path Q (located in the upper half of the cell) vanishes (Fig. 3).

∫

Q

�1,0(ζ1)dζ1 �
l1∫

−l1

�1,0(ζ1)dζ1 +

l1+ih1∫

l1

�1,0(ζ1)dζ1 +

−l1+ih1∫

l1+ih1

�1,0(ζ1)dζ1 +

−l1∫

−l1+ih1

�1,0(ζ1)dζ1 � 0. (66)

By the virtue of periodicity �1,0(−l1 + iη1) � �1,0(l1 + iη1), thus

l1+ih1∫

l1

�1,0 (ζ1)dζ1 �
ih1∫

0

�1,0 (l1 + iη1)idη1

�
ih1∫

0

�1,0 (−l1 + iη1)idη1

� −
0∫

ih

�1,0 (−l1 + iη1)idη1

� −
−l1∫

−l1+ih1

�1,0 (ζ1)dζ1.
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Hence the Eq. (66) takes the form

l1∫

−l1

�1,0(ζ1)dζ1 +

−l1+ih1∫

l1+ih1

�1,0(ζ1)dζ1 � 0 or

l1∫

−l1

�1,0(ζ1)dζ1 �
l1+ih1∫

−l1+ih1

�1,0(ζ1)dζ1

In the same way one obtains

l1∫

−l1

�1,0(ζ1)dζ1 �
l1+ỹ∫

−l1+ỹ

�1,0(ζ1)dζ1 f or any 0<η1 <h1. (67)

By taking into account that �1,0(ζ1) � U 1,0
,ξ − iU 1,0

,η and separating the real and
imaginary parts in (67) one obtains

l1+η̃1∫

−l1+η̃1

Re
(
�1,0(ζ1)

)
dζ1 �

l1∫

−l1

Re
(
�1,0(ξ1 + i η̃1)

)
dζ1 �

l1∫

−l1

U1,0
,ξ dξ1 � U1,0

∣
∣
∣
l1

−l1
� const.

That means the elongation of any segment, which length equals to the length of
cell and that is parallel to x-axis, is the same. Thus formula (53) is simplified

εav � 1

2l

l∫

−l

εxdx � 1

2l

l1∫

−l1

Re
(
�1,0(ζ1)

)
dξ1. (68)

And eventually one obtains

Bef f � B1ε
1/ 4q1/ 4

2l

h

h1∫

0
Re

(
�1,0(ζ1)

)
dη1 +

(
H

(
ξ̃1 − (b1 − a1)

)
− H

(
ξ̃1 − (b1 + a1)

)) ξ̃1∫

b1−a1

Im
(
�1,0(ζ1)

)
dξ1

l1∫

−l1

Re
(
�1,0(ζ1)

)
dξ1

.

(69)

The dependency of point c1 on offset of the middle of inclusions b1 is shown
below.

From the Fig. 4 one can see, that point c, where the shear stress on the inclusion
changes sign, matches the middle point of inclusion b when b � 0 or b � l/2. For
other values of b, point c and b vary, and this difference is growing, when height of
the cell of double-periodicity is decreasing.

The layouts of inclusions for b � 0 and b � l/2 are symmetrical ones and shown
below (Fig. 5).

The shear stress at adjacent to the top side of inclusion points of the plain is given
by formula
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Fig. 4 Dependence of point c1 on offset of the middle of inclusions b1

Fig. 5 Inclusions layout for two symmetrical cases

τ1.0+xy � −GIm

(
Aσ(ξ1 − c1)σ3(ξ1 + c1)√

σ(ξ1 − (b1 − a1))σ(ξ1 − (b1 + a1))σ3(ξ1 + (b1 − a1))σ3(ξ1 + (b1 + a1))

)
,

(70)

where b1 − a1 ≤ ξ1 ≤ b1 + a1.
Distribution of shear stresses and loads on the left half of the inclusion for these

two cases with different values of a
/
l and h

/
l are shown below.

The distribution of dimensionless shear stress τ+
xy

/
σav along the left-hand side of

inclusion is shown on Fig. 6, while the distribution of dimensionless loads Tx
/
Px

is shown on Fig. 7. The left-hand graphs are built for short inclusions
(
a
/
l � 0.2

)
,

which are small compared to the length of the cell. Themiddle graphs are depicted for
a
/
l � 0.5, and right-hand graphs are built for a

/
l � 0.8. In case of short inclusions,

one can see that for relatively high cell
(
h
/
l � 0.5

)
shear stresses and loads do not

dependon the position of inclusions in the cell.Graphs forb
/
l � 0 andb

/
l � 0.5 are

virtually identical: the interaction of elements of doubly-periodic lattice is negligible.
However, for h

/
l � 0.1 this dependence is obvious: load in the middle of inclusion

for b
/
l � 0.5 is about 30% more than the corresponding loads for b

/
l � 0. That
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Fig. 6 Distribution of shear stresses on the left half of the inclusion

Fig. 7 Distribution of loads on the left half of the inclusion

is due to fact that the distance between the inclusions in a column in the first case is
twice as large as in the second one.

If the length of the inclusion is the half of cell’s length, the difference between
curves b/ l � 0 and b/ l � 0.5 is large enough for all values of the parameter h/ l.
If b/ l � 0, Tx/Px reaches half of the load applied to the cell in a considerable part
of inclusion. While for b/ l � 0.5, load in inclusion Tx/Px reaches almost to 0.9 of
such load, although only in central part of inclusion.

When a/ l � 0.8 (right-hand graphs) shear stresses are very small almost every-
where at the central part of inclusion. An exception is the case h/ l � 0.1,b/ l � 0.5,
where shear stresses are large. The difference is due to the fact that for low cell and
long inclusions the strong interaction appears between inclusions of neighboring
“columns”, and, as a consequence, there are additional shear stresses. The load in
this case grows until almost the middle of inclusion. The greatest value of the loads
is lesser, then for a/ l � 0.5 because the distance (along the y - axis) between the
inclusions of neighboring columns is half the distance between the elements in the
same column. For other cases loads are basically no different from the middle graph.

Thus, in the case of b/ l � 0.5 the reinforcing elements are loaded more than in
case b/ l � 0. This suggests that effective stiffness for b/ l � 0.5 is more than for
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Fig. 8 Dependence of Bef f /B1 on h/ l and a/ l

b/ l � 0. This expectation is confirmed by the results of the calculation by formula
(69). The effective stiffness for these two cases was computed for isotropic material
with Poisson’s ratio equals 0.3.

One can see from Fig. 8 that for b/ l � 0.5 the stiffness is about 4 times greater
than for b/ l � 0.

The reason is that for b/ l � 0 there are vertical “columns” in the plane which do
not contain any inclusion, and where almost all deformation occurs. On the contrary
for b/ l � 0.5 such “columns” do not exist (for a/ l > 0.5) and instead of stretching
deformation the shear strain occurs between the closely spaced inclusions.

3 Conclusion

The problem of extension of an elastic orthotropic plane enforced by a doubly peri-
odic lattice of one-dimensional inextensible inclusions is investigated. An approx-
imate solution to the problem is obtained by employing the asymptotic method,
specially tailored for orthotropic plane, Weierstrass elliptic functions and Keldysh-
Sedov formula to solve boundary value problem for analytic functions.

The closed form formulae for the shear stresses and the effective tensile modulus
of the reinforced plane are presented. It is shown that the error of an approximate
solution does not exceed 9% in the worst, from the point of view of method, case
of isotropy. The use a Keldysh-Sedov formula provided the solution of the problem
without assumptions about the behavior of solutions at the vertical boundaries of cell.
In addition, let us mention, that the solution is suitable not only for the rectangular
cell of periodicity, but for the cell having the form of a parallelogram as well.
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Features of Deformation of Smooth
and Stringer Cylindrical Shells at Axial
Compression and Statistical Properties
of Their Critical Loads

Vasiliy L. Krasovsky

Abstract Three sets of thin cylindrical shells have been tested: smooth cylinders
and shells stiffened by outside and inside stringers. All specimens were of rela-
tively high quality and manufactured with using identical technologies. Statistical
properties of the obtained experimental critical loads have been analyzed. Buckling
loads of smooth cylinders had significantly higher dispersion compared to reinforced
shells. The important role of nonlinear pre-buckling deformation and local shell skin
buckling between stringers was observed in the experiment.

1 Introduction and Statement of the Problem

It is known that experimental data on load-carrying capacity of axially compressed
smooth isotropic circular thin-walled cylinders are characterized by significant dis-
persion and uncertainty. It is due to extremely high sensitivity of buckling parameters
of such shells to intensity of various, as a rule, revolting technological factors and,
first of all, to small initial geometrical imperfections of the shell middle surface.
Usually, the initial imperfections are randomly and non-uniformly distributed across
the shell surface and hardly controllable. It is obvious that there is a necessity of
studying statistical properties of shell buckling loads at the analysis of experimental
data and estimation of design buckling loads.

Researches in this direction for smooth cylinders were carried out since setting the
problem (see, e.g., review by Grigolyuk and Kabanov [2]) and were being conducted
with various intensity (in the process of accumulation of experimental data) until
present time. Essential results have been obtained in the sixtieth-seventieth years
of the last century when there were conditions and opportunities of carrying out
massive experiments [8, 11]. Several hundred specimens of smooth thin cylindrical
shells with different nominal sizes were tested by Manevitch and Prokopalo [8].
Statistical analysis of the obtained results has been performed, with emphasis on the
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effect of radius to shell thickness ratio. We believe that the obtained results are still
valuable for practical engineering design of the structures.

At the same time, for the stiffened shells, despite their wider practical applica-
tions, statistical properties of buckling loads are studied much less [1]. It was caused
not only by higher complexity and cost of the experimental research, but also due
to essential increase of number of geometrical and stiffness structure parameters
which can affect disorder in experimental data analysis. Nevertheless, it is consid-
ered conventionally, that the dispersion of buckling loads of the stiffened shells is
less, than that of smooth ones. In addition, there are various design features of stiff-
ened cylinders that, basically, are not casual and give the possibility to be controlled.
Unfortunately, till now there are not enough experimental buckling load data of
homogeneous samples with the same nominal parameters of stiffened shells even for
certain limited classes. Lack of experimental data leads to necessity to unite results
of diverse tests in one general set [7] in the analysis. Thus some design features,
in particular, omitted in the analysis, can cause wrongfully wide scatter of buckling
load values of the stiffened cylinders [7].

Let us note one more important feature of the stiffened shells, connected with the
statistical analysis of buckling loads. Presence of reinforcements essentially compli-
cates the behavior of shells at loading and buckling process. Thus, smooth cylinder
buckling load is associated usually with its load-carrying ability which in diverse
tests is determined simply enough. However, in case of the stiffened shells there
are several critical points and, in particular, the general buckling load can differ
from limit one [9]. It leads to ambiguity in choosing of buckling criteria in various
experiments. Besides, in connection with various practical operational requirements,
statistical properties of not only load-carrying ability of a shell are of interest, but
also properties of loads corresponding to other critical conditions, for example, to
local buckling of a shell skin between stringers. It specifies necessity of our research
of the shell behavior at all stages of its deformation down to destruction, at carrying
out of the statistical analysis of critical loads.

In the present chapter results of experimental study of behavior and buckling fea-
tures are brought and discussed, as well as statistical analysis of buckling loads of
axially-stiffened and unstiffened circular cylindrical shells subject to axial compres-
sion is provided. Researches were carried out on small-size specimens. The specifics
of the experiments are in the following: (1) all shells (stiffened and unstiffened) had
the identical nominal sizes (radius, length and thickness); (2) they were made of
the same material using uniform technology; and (3) they were tested in laboratory
conditions (there were no external influences) using uniform technique and require-
ments to supervision and measurements. It allowed leading the comparative analysis
of statistical characteristics of critical loads of the smooth and stiffened cylinders
which dispersion has been caused, as a matter of fact, only by casual technological
factors, basically, by initial geometrical imperfections.
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2 Specimens and Technique of the Experiment

The specimens were grouped in three sets: Set 1—smooth cylinders (10 samples),
Sets 2 and 3—shells with inside and outside reinforcement by stringers, accordingly
(five identical samples in each set). Samples had the following dimensions: internal
diameter—2R � 171.6 mm, thickness—h � 0.19 mm, length—L � 172 mm (R/h
� 450, L/R � 2). Each stiffened shell was equipped with 24 identical equidistant
thin-walled stringers of angular profile with dimensions: 4.0×4.3×0.34 mm.

Shells were made from sheet of cold-rolled stainless steel X18H9n (the elastic-
ity modulus—E � 191 GPa, conditional yield stress—σ02 � 800 MPa, Poisson’s
ratio—ν � 0.3) by spot welding with one longitudinal lapped seam (with two weld-
ing rows). The width of the lapped seam was 2% of the shell perimeter. The high
value of conditional yield stress of the material eliminated the plasticity effects not
only at pre-buckling stages, but also at the stage of initial post-buckling deformation.
Stringers were made from preliminary cut strips of the same steel sheet (thick-
ness—0.34 mm) by rolling on multilane rolling appliance and welded to a shell by
one row spots (welding on the narrow side of the stringer).

Before installation to the testing machine, the shells were equipped with special
face test adaptations consisting of flat rigid discs, carrying out the transfer of the
load from compression machine to the end faces of the sample, and directing disks
which aligned a specimen in adaptations and retained circular form at the shell edges.
Directing disks for testing of unstiffened shells had conic surface with the maximal
diameter corresponding to internal diameter of the shell. Disks with special cuttings
for internal stringers (in the form of a cogwheel) [9] were used while testing stiffened
shells. Diameter of these disks was a little bit less than that of the disk for smooth
cylinders. The disks had identical thickness equal to 8 mm.

Preliminary, to maintain identical boundary conditions (close to free support) at
different types of reinforcements, edges of walls of the stringers of all shells were
cut under corner of 12°–15° to plane of the end face [9]. For elimination of the
load eccentricity with respect to a “neutral” surface (various at internal and external
reinforcements), compensating basic overlays were welded to the shell skin at the
stringer side. First, intermediate overlays were installed on the shell skin between
stringers (see Fig. 1.) They had the following dimensions: length 17 mm, width
8 mm, and thickness 0.34 mm. Edges of these overlays coincided with the shell
edges. Then through intermediate overlays and shelves of the stringers basic overlays
(length 20 mm, width 10 mm, and thickness 0.49 mm) were welded. They acted on
1.0–1.5 mm above the plane of shell face section.

Uniformity of the load distribution on perimeter was reached by careful grinding
in of shell edges (all over again smooth, and then equipped by overlays) using abrasive
plates. After grinding in, the overlays edges were sharpened up to a level of 0.35 mm
on thickness (Fig. 1). In this case load transfer to the shells through the overlays
provided practically identical loading conditions of the samples with internal and
external stringers. Centering steel balls between test adaptations and compression
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Fig. 1 The scheme of loading transfer on the stringer shell

machine plates were used for elimination of loading eccentricity with respect to the
shell axis (Fig. 1).

The compressing forcewas created by the universal testingmachine ofmechanical
type with rigidity of 66.2 kN/mm. The machine allowed to carry out kinematic load-
ing (displacementwas set)with various constant speeds.All samples have been tested
at speed of 0.05 mm/min. During loading, the diagram “load (N)—displacement of
press plates (ΔL)” was registered for all shells. Radial displacements of three shells
of each set (at all stages of deformation, down to destruction) weremeasured in zones
of maximal initial deflections.

The accepted manufacturing technique of smooth shells and technique of their
preparation for testing provided:

(1) deviation of internal diameter within shell thickness h;
(2) deviation of the shell thickness from nominal not more than 0.02 h;
(3) deviation of a surface of end faces from a plane no more than 10 microns (the

maximal amplitudes corresponded to the 2–4 t harmonics of decomposition of
deviation function in a trigonometric series);

(4) non-perpendicularity of end face planes with respect to shell axis not more
than 1°;

(5) non-parallelism of these planes did not exceed 2°.

Deviations of middle surface of the smooth shells from a perfect cylinder (were
determined after assembly of the shells with face adaptations) were as follows:

(1) conicity (no more 0.5°);
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(2) local (in the area of a welded seam) and the general (ovalization) deviations of
the cylinder from a circular one (no more 2.0 h);

(3) casual local dents and bulges (curvature in longitudinal direction and cross-
section curvature change).

The maximal amplitude of last kind of imperfection was marked in a zone of
welding lapped seam and was up to 2.0 h. As a rule, first harmonic prevailed in
decomposition of the deviation function in trigonometric series. The imperfection
amplitude on another part of surface of the shells did not exceed 0.5 h.

Equipment of shells by stringers and overlays led to change of a picture of ini-
tial deflections. In circumferential direction, the initial deflection harmonic corre-
sponding to number of stringers was observed at all samples. In a stringer zone the
deflection has been directed inside of the shell, in the middle part of the panel - out-
side. The amplitude of this harmonic is insignificant—up to (0.15–0.2) h, however
large deflection amplitude values were observed on the shells with internal stringers.
Casual deviations from the circular shape were characterized by small change in cir-
cumferential direction with rather essential amplitudes—(2, 3) h. In the longitudinal
direction, practically on all shells, deflections (directed to the center of curvature
and almost asymmetrical) were marked at the edge of the structure. They connected,
apparently, with presence of regional overlays. These longitudinal curvature changes
have caused deflections in the majority of shell cross sections. These deflections can
be precisely expressed by harmonics with three half waves on the shell length. Cor-
responding maximal deflection amplitude of some samples reached thickness of a
shell. Other initial deflection components, specific for all or majority of the shells
were not revealed. On the most part of a shell surface casual, local dents and gouges
with themaximal depthwhich is not exceeded (0.7–0.9) h in themiddle part of panels
and with depth about (0.5–0.7) h near stringers were marked. In zones of welding
lapped seam, similar to smooth shells, the initial deflection amplitude increased up
to 2 h (corresponding, as a rule, to the first and third harmonics). Typical diagrams
of initial deflections of stiffened shells are shown in Fig. 2. Initial deflections (w0)
toward the center of shell curvature are accepted as negative.

Samples which quality did not satisfy the conditions above were rejected. In total,
it has been rejected three smooth samples and one shell with an external reinforce-
ment. Presence of a large dent (with one half wave in the longitudinal direction) in
a zone of welding lapped seam was a main cause of the rejection in all cases.

3 Test Results

3.1 Smooth Shells

During the pre-buckling deformation of smooth shells, the development of initial
imperfections, which played a main role at definition of critical conditions, was
observed. Load-carrying capacity of these shells was determined by loads corre-
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Fig. 2 Imperfections in longitudinal direction in stiffened shells (w0 � w0/h)

Table 1 Smooth shell test
results (Set 1)

No. Ncr (kN) σ cr (MPa) σ cr

1 15.4 148 0.578

2 13.8 133 0.52

3 17.4 167 0.652

4 18.1 174 0.68

5 12.0/13.3 115/128 0.449/0.500

6 14.4 138 0.539

7 16 154 0.602

8 13.0/13.2 125/127 0.488/0,496

9 15.6 150 0.586

10 14.9 143 0.559

sponding to general loss of stability, which occurred, basically, in two ways [3, 4].
The first way was realized in the form of continuous process of the general wave
formation during fraction of a second, accompanied by a sharp clap and significant
reduction of carrying ability of a shell. Thus the surface of the cylinder became
covered by characteristic diamond-like dents located in two-three rows, covering
(60–80)% of its perimeter (see a photo in Fig. 5a). The amount of dents (at the rate
of their formations on all perimeter) was 8–10. The described process of the general
buckling has been recorded at tests of 8 samples. Buckling of two shells occurred
stage by stage as transition through stable post-buckling configuration with just one
local dent. On both shells post-buckling dent was formed by a soft clap as a result of
development of initial deflection in the field of a welding lapped seam. The further
loading of these shells led to the general buckling which occurred at so called max-
imal local critical load [10]. Values of critical loads (Ncr) of the shells of a series 1
are resulted in Table 1.
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In the same row of the table corresponding values of absolute (σ cr ) and relative
(σ cr ) critical stresses are presented. Here σ cr � σ cr/σ cl , σ cl is classical value of
critical stress of thin isotropic elastic cylinder at axial compression

σ cl � Eh

R
√
3
(
1 − ν2

) , at ν � 0.3, σ cl � 0.605
Eh

R

For shells with number 5 and 8 critical parameters resulted in the numerator
correspond to local and in the denominator to the general buckling. Note that tested
smooth shells are the structures of average quality according to the classification of
shell quality [5].

3.2 Stringer-Stiffened Shells

The behavior of the stiffened shells was determined, basically, by character of an
arrangement of stringers, their stiffness parameters and intensity of initial imper-
fections. Typical deformation diagrams “N − ΔL” of these shells are presented in
Fig. 3.

On the diagrams some characteristic points, and also number of the formed dents
of the general loss of stability (nr) are specified. A concentrated force at the center
of the top end plate was applied by testing machine by means of loading screw and
a ball bearing in a hemispherical cup seated on top plate. Diagrams were plotted by
points with step of moving plates, equaled to 0.025 mm. Load change within each
step was accepted as linear on the diagram. We have to mention, that ΔL represents
relative displacement of press plates of the test machine, instead of displacement of
end plates which value will be a little bit less, because of presence of elastic elements
(aligning spherical balls and loading adaptations) in the loading chain.

Dependence “N − ΔL” was strictly linear at the initial stage of loading. On sam-
ples with an identical arrangement of shell edges, intensity of relative shortening of
shells ΔL/L was practically identical, and at an external reinforcement it was greater
about (13–15)%, than that at internal one. During this part of loading, the first dents
of local buckling between stringers are formed (as a rule, by a soft clap). Corre-
sponding load values (Nm1), depend on character and intensity of initial deflections
and essentially differed for various shells. We have to note that formation of the first
local dents did not influence the slope of a straight line of the diagram “N − ΔL”.

At the certain level of load, the process of intensive local wave formation began
whichwas reflected in the diagramof deformation in the formof a break (see diagrams
in Fig. 3). These loads were accepted as loads of skin buckling between stringers
(Nm). Values Nm1 and Nm, corresponding average critical stress (σm1 and σm) as
well as ratios σm1 � σm1/σ cl and σm � σm/σ cl for shells with internal and external
reinforcement, are resulted in Tables 2 and 3.
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(a)

(c) (d)

(b)

Fig. 3 Deformation diagrams of stiffened shells (a, b - internal; c, d - external stringers)

Formation of dents (skin buckling) occurred by claps at load value Nm. It was
marked insignificant (0.1–0.3 kN) decrease in load (in case of continuous record of
the diagram “N − ΔL” this part of it would represent “serrati form” dependence).
During the further loading the dependences “N − ΔL” remained practically linear
and characteristics of longitudinal deformation EΔL/σL of shells with internal and
external reinforcement were equalized. As a result of the process of “rough” wave
formation of the shell skin, the local post-buckling configurationwith an arrangement
of dents in the “chess” order was formed. The number of dents along the length of
the panel (3, 4) of shells with external stringers, as a rule, was more, than that of
samples with an internal reinforcement (2, 3).
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Table 2 Shells with internal reinforcement test results

No. 1 2 3 4 5

Nm1 (kN) 11.4 07.8 09.5 17.8 12.0

σm1 (MPa) 66.4 45.4 55.3 104 67.8

σm1 0.259 0.177 0.216 0.406 0.265

Nm (kN) 20.8 22.5 21.5 23.2 22.5

σm (MPa) 121 131 125 135 131

σm 0.473 0.512 0.488 0.528 0.512

Nre (kN) 29.5 32.5 31.5 32.5 31.5

σ re (MPa) 172 189 183 189 183

σ re 0.673 0.738 0.715 0.738 0.715

Ncr (kN) 37.8 36.7 37.4 39.0 37.1

σ cr (MPa) 220 214 218 227 216

σ cr 0.859 0.836 0.852 0.887 0.844

Table 3 Shells with external reinforcement test results

No 1 2 3 4 5

Nm1 (kN) 8.4 12.2 11.9 14.0 07.5

σm1 (MPa) 48.9 71.0 69.3 81.5 43.7

σm1 0.191 0.278 0.270 0.320 0.172

Nm (kN) 17.0 19.2 17.0 18.1 18.7

σm (MPa) 99 112 99 105 109

σm 0.387 0.438 0.387 0.410 0.425

Nt (kN) 42.5 38.5 37.5 38.5 41.5

σ t (MPa) 248 224 218 224 242

σ t 0.969 0.875 0.852 0.875 0.945

Ncr (kN) 50.0 48.6 50.6 51.8 47.4

σ cr (MPa) 291 283 295 302 276

σ cr 1.137 1.105 1.152 1.180 1.078

The shape of the panel at local skin buckling with external stringers (on distance
of 3 mm from a stringer) is resulted in Fig. 4 (left). From the figure it is visible
that amplitude of internal deflections considerably (6–7 times) exceeds amplitude
of external deflections. Character of local post-buckling waves practically was not
connectedwith the initial deflections. Local dents intensively developed at increasing
load. In Fig. 4 (right) load-deflection dependence at the center of a local dent located
at 3 mm from a stringer is resulted.

At certain load in shells with internal reinforcement a reorganization of the local
form was marked (for three shells). It occurred dynamically at certain value Nre by
one clap with increase in number of dents at panels from two to three.
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Fig. 4 The form and development of local configurations

This reorganization led to a new break in the diagram “N − ΔL” (Fig. 3a). On
two shells approximately at the same load, regular local post-buckling configurations
were finally issued, which also was reflected by a break on “N − ΔL” diagram
(Fig. 3b).Reorganizationof a local post-buckling configurationof shellswith external
reinforcement has been noted only for one specimen (the pattern with 3 dents was
replaced by a pattern with 4 dents). It was happened at the load value close to the limit
one (Fig. 3d). At the same time for shells with external reinforcement, development
of the local shape led to clear twisting of stringers. The beginning of development of
this process coincided with formation of regular local post-buckling configurations
and also was reflected at the diagram “N − ΔL” by a break (Fig. 3c, d).

After formation of regular local post-buckling configurations and beginning of the
process of stringer twisting, the load-displacement dependence became nonlinear.
Character of this dependence essentially depends on arrangement of the reinforce-
ment.On shellswith external stringers at the load about (98–99)%of general buckling
critical load (Ncr), dents started increasing sharply. That was visually observed as a
turn (skew) of their horizontal diagonals (Fig. 3c). The general loss of stability of
shells with an external reinforcement was accompanied by sharp clap and “folding”
of walls of stringers [9]. Thus there were formed 3–4 large global dents (with one
half wave on shell length), each of which in the circumferential direction involved
four stringers (see Fig. 5d). The load during this clap sharply decreased. The further
loading of the shells led to development of global dents and smooth decrease of
the load caused by plastic deformations. Let us note that the shell capacity level in
post-buckling stages (Nz), depended on number of formed dents, and their concrete
number were rather stable (at nr � 3 and 4 accordingly Nz �27.5 and 20.5 kN)
(Fig. 3c, d).

The clap has been poorly expressed at loss of stability of the shells with internal
stringers. The beginning of the general wave formation (bifurcation) of two shells
did not coincide with a maximum load (Fig. 3a). Two and four waves covering 3–4
stringers were softly formed. The load decreased by (4–6) %. Dents developed at
further loading, and their amplitude was defined, basically, by level of applied load
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Fig. 5 Buckling forms of smooth (a) and stiffened shells (b—internal; c, d—external stringers)

and did not depend on the limit one (Ncr). Loss of load-carrying capacity of these
shells occurred smoothly during development and formation of new dents and the
beginning of plastic deformation. Values of maximum load were close to bifurcation
one (difference did not exceed 2%). Maximum loads for three shells coincided with
their bifurcation loads (Fig. 3b). Initial post-buckling deformation of these samples
did not differ from that described earlier. The form of the general loss of stability is
resulted in Fig. 5b.

Values of the general buckling load for the stiffened shells (for two samples with
internal stringers) are presented in Tables 2 and 3 (maximum load values (Ncr ,
Fig. 3a), average stresses (σ cr ), and also relative stresses σ cr ). In Table 2 the buck-
ling parameters corresponding to reorganization or formation of regular local post-
buckling configurations (Nre, σ re, σ re) are given. In addition, in Table 3 values cor-
responding to twisting of stringers (Nt , σ t , σ t ) are represented.

4 Discussion of the Results

One can see from Tables 1, 2, 3, that buckling of all the shells occurred in elastic
stage of deformation, because membrane stresses, corresponding to maximum loads,
for smooth samples did not exceed 23% and for stiffened shells—38% of the value
of the elastic limit of the shell material.

For all considered above shells the statistical characteristics of relative critical
parameters are resulted in the Table 4: average values (σ*), root-mean-square devi-
ations (S) and variation factors (V=3S/σ* × 100%), defining confidence interval of
parameters with probability confidence level 0.997. For smooth shells (Set 1) data
concerning buckling (general or local) had been incorporated by the parameter σ̄ cr ,
parameter σ̄ lim corresponds to data concerning load-carrying capacity of the shells.

Let us lead the analysis of the obtained data without considering comparison of
experimental and theoretical results. First of all, we shall note that stringer equipment
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Table 4 Statistical properties
of critical loads

Sets Parameters σ* S V (%)

Set 1 σ cr 0.556 0.0702 37.2

σ lim 0.572 0.0604 31.7

Set 2 σm1 0.265 0.0867 98.1

σm 0.503 0.0217 13.0

σ re 0.716 0.0269 11.2

σ cr 0.856 0.0202 7.08

Set 3 σm1 0.426 0.0624 76.1

σm 0.401 0.0227 16.7

σ t 0.903 0.0396 13.2

σ cr 1.130 0.0399 10.6

of the shells and regional overlays has led to significant growth (compared to smooth
shells) of the stresses corresponding to maximum loads, and also to the essential
statistical stabilization of buckling load values. Indeed, average values σ cr at internal
reinforcement have increased by 1.5 times, at external—by 2.3 times. Carrying load-
capacity of shells has increased accordingly by 2.47 and 3.26 times. Exclusively small
variation of maximum loads of shells with an internal reinforcement (V � 7.08%)
is observed. The variation of carrying load-capacity at the external reinforcement
has appeared a little bit greater (V � 10.6%), however, in comparison with smooth
shells (V � 31.7%), it is possible to consider it much less significant. High enough
stability is a characteristic also for the parameters corresponding to critical points
which were reflected in diagrams “N − ΔL” in form of breaks or changes in its
character (σm, σ re, σ t ). At the same time extremely wide scatter of values was noted
for stress σm1 (for shells with internal reinforcement V � 98.1%, with external
V � 76.1%).

Let us notice that this fact is rather indicative. The integrated characteristic of ini-
tial imperfection intensity which can be indirectly estimated by parameter EΔL/σL,
was approximately identical for all samples of each shell set (at much higher level
of geometrical imperfection intensity of stiffened shells). At the same time at any
distribution of initial geometrical imperfection on a surface of a shell its local char-
acteristics on various shells of one set can significantly differ. It is obvious, that local
imperfection fluctuations are capable to change essentially the local critical param-
eters (for example, critical stress σm1). However, much less significant influence on
integrated critical characteristics was observed. First of all, it is related to stresses of
general buckling, and also to stresses corresponding to critical points which change
character of dependence “N − ΔL”. In this connection the wide scatter of values
σ lim is an evidence that the process of the general smooth shell buckling has the local
nature [3].

Let us consider the influence of some design shell features on its critical param-
eters. First, the effect of stringer eccentricity sign was statistically confirmed for the
tested samples. The influence of arrangement of stringers on behavior of shells and
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value σ cr is well studied, and data obtained in this work concerning σ cr do not contra-
dict with obtained before results. Rather significant difference between σm for shells
with external and internal stringers can be explained by character of pre-buckling
behavior of these shells [6] and also by technology of their manufacturing.

Increase in capability of stiffened shells is caused not only by longitudinal rein-
forcement, but also by the boundary constraint on longitudinal displacement and on
turn angle at shell edges (due to the end plates). Test results for three pairs of shells
(with an internal and external reinforcement) which differed from samples of Sets
2 and 3, as a matter of fact, only by absence of additional boundary restrictions are
resulted by Manevich et al. [9]. Behavior character and destruction of these shells
practically did not differ from considered above, except for one feature connected
with general buckling of samples with an internal reinforcement: maximum loads at
these shells exceeded (8% in average) load values of the general buckling. Variation
factors of capability and bifurcation loads at an external and internal reinforcement
were approximately identical and made of (20–25)%. Average values σ cr were less,
than that of shells with our boundary conditions, by about 17% in case of internal
reinforcement and 14% in case of external one.

Basing on the provided comparison, it is possible to assume, that the additional
controllable design features influencing the pre-bucking deformation and the value
of general buckling load promote, as a rule, statistical stabilization of shell capa-
bility. This can be explained by the following. The influence of controllable shell
inhomogeneity caused by reinforcement, usually dominate over uncontrolled tech-
nological imperfections. It leads to decrease of the role of uncontrolled factors in the
mechanism of buckling and as a consequence, reduces dispersion of critical loads of
stringer shells.
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Discontinuities in Viscoelastic
Timoshenko Beam Under Moving
Concentrated Loads

Arkadiy I. Manevich

Abstract Direct determination of jumps in internal forces and bending moments
in elastic and viscoelastic Timoshenko beams under action of moving concentrated
forces and moments is presented. Some “paradoxical“ changes in the internal forces
jumps in elastic beams at transitions through critical velocities are revealed, and an
explanation to them is given. There is shown that the account of viscous internal
friction is of principal importance for the dynamical Timoshenko beam model.

1 Introduction

At analysis of stress-strain state in beams undermoving loads the question arises: how
the velocity of a load affects discontinuities in internal forces and bending moments
at points of the load application? The answer to this question depends on the beam
model employed. If the classical Euler–Bernoulli (E-B) model is used for an elastic
beam, there are no reasons for differences between static and dynamic jumps in
the internal forces. However, at employing more exact and complicated models for
beam and material, e.g., Timoshenko beam (TB) made of the elastic or viscoelastic
material, the picture becomes more complicated and needs careful highlighting. As
has been shown by Achenbach and Sun [1], if a concentrated force moves along an
elastic Timoshenko beam on elastic or viscoelastic foundation, velocity of the force
affects the discontinuity magnitude in the first derivative of the total displacement
and therefore changes discontinuity in the shear force. Any physical explanation of
this fact has not been proposed. To our knowledge, the question was not discussed
in literature later.

The correct description of jumps in the internal force factors at the point of appli-
cation of the moving concentrated load is of principal interest at solving dynamics
problems with the use of conjunction conditions for two parts of beam –ahead of and
behind the load. In particular, this approach was used for description of the steady-
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Fig. 1 a An infinite Timoshenko beam on elastic foundation; b The beam element containing the
traveling force P and moment M0

state running waves in infinite beams on elastic foundation, either within framework
of the E-B theory (Kenney [6], see also Panovko and Gubanova [9], Fryba [2],
Grigoluk and Selezov [3]), or using the TB model (Gulyaev et al. [4] and others).

In thisworkwegive the direct derivation of expressions for jumps in internal forces
and bending moments in elastic and viscoelastic Timoshenko beams under moving
concentrated forces and bending moments (without solving concrete dynamic prob-
lems). It is shown that in elastic TBs some “paradoxical“ changes in the internal
forces jumps appear at transitions through critical velocities, but these jumps become
independent on force velocity in viscoelastic beams. So accounting internal viscous
friction is of principal importance for the dynamical TB model.

2 Governing Equations

We consider, for definiteness and simplicity, stationary running waves in an infinite
viscoelastic Timoshenko beam under a concentrated force P and a moment M0

movingwith velocity v (Fig. 1a). The beam lies on the elastic foundationwith stiffness
factor w f . The material of the beam is assumed to obey the Voigt law.

Deformations of the Timoshenko beam are described by two independent func-
tions – the total transverse deflection y(x, t) and the angle of cross section rotation
ψ . The total slope of the bent axis is ∂y/∂x � ψ + γ , where γ is the shear angle
(here both angles ψ and γ are counted off in one direction). Constitutive relations
are assumed according to the Voigt law for normal stresses σx as well as for shear
stresses τ in the form

σx � Eεx + k1
∂εx

∂ t
� E

(
1 + μ1

∂

∂t

)
εx τ � Gγ + k2

∂γ

∂t
� G

(
1 + μ2

∂

∂t

)
γ, (1)

(k1,2 and μ1 � k1/E , μ2 � k2/G are the viscosity parameters, E and G are the
elasticity modulus in tension and shear, respectively). The bending moment and the



Discontinuities in Viscoelastic Timoshenko Beam Under Moving Concentrated Loads 427

transverse shear force in the cross section are specified by expressions (see, e.g., A.
Manevich and Kolakowsky [7])

M � −E J

(
1 + μ1

∂

∂t

)
∂ψ

∂x
, Q � k ′A τ � k ′AG

(
1 + μ2

∂

∂t

)(
∂y

∂x
− ψ

)
(2)

(k ′ is the shear coefficient, which depends upon the cross section shape, A and J are
the cross section area and moment of inertia).

Let us consider the beam element dx containing the force P and moment M0

(Fig. 1b). In the coordinate system x1 � x − v t , y1 � y, moving with the load
at velocity v, the force and the moment are applied at the origin O. Note that for
stationary waves y(x1) � y(x − v t) derivatives in time t are expressed through
derivatives in x:

∂y

∂t
� −v

∂y

∂x1
,

∂2y

∂t2
� v2

∂2y

∂x21
(3)

(similar relations hold also for angle ψ).
Equations of the forces balance for this element with account of inertia forces,

their moment and the distributive reactive force from the foundation q f � −w f y
are as follows

Q+ − Q− − ρA
∂2y

∂t2
dx − w f ydx + P � 0, (4)

−ρ J
∂2ψ

∂ t2
d x + (Q+ + Q−) d x − (M+ − M−) + M0 � 0 (5)

(lower indexes “−” and “+” relate to quantities at the left and right edges of the
element). Accordingly to (3) one has

∂2y

∂t2
dx � v2

∂2y

∂x21
dx � v2

[(
∂y

∂x1

)
+

−
(

∂y

∂x1

)
−

]
� v2

(
∂y

∂x1

)+

−
, (6)

∂2ψ

∂ t2
d x � v2

∂2ψ

∂ x21
d x � v2

(
∂ ψ

∂ x1

)+

−

(here notation (. . .)+− � (. . .)+ − (. . .)− is introduced). Expressions (2) are similarly
reduced to

M � −E J

(
1 − μ1v

d

dx1

)
dψ

dx1
, Q � k ′AG

(
1 − μ2v

d

dx1

)(
dy

dx1
− ψ

)
(7)
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After substitution of (6) and (7) into (4) and (5) we obtain

k′AG
(
1 − μ2v

d

dx1

)(
dy

dx1
− ψ

)+
−

− ρAv2
(

dy

dx1

)+
−

− w f ydx + P � 0, (8)

−ρ Jv2
(

dψ

dx1

)+
−

+ k′AG
(
1 − μ2v

d

dx1

)[(
dy

dx1
− ψ

)
+
+

(
dy

dx1
− ψ

)
−

]
dx + E J

(
1 − μ1v

d

dx1

)(
dψ

dx1

)+
−

+ M0 � 0 (9)

The deflection y and angle ψ cannot have discontinuities: y+ � y−, ψ+ � ψ−. All
terms with factor dx should be disregarded for the infinitesimal element, therefore
Eqs. (8) and (9) result in conditions

(
1 − ρv2

k ′G
− μ2v

d

dx1

)(
dy

dx1

)+

−
+

P

k ′AG
� 0, (10)

(
1 − ρ v2

E
− μ1v

d

d x1

)(
d ψ

d x1

)+

−
+

M0

E J
� 0 (11)

Relationships (10) and (11) determine jumps in derivatives and corresponding jumps
in internal force factors M and Q (2) at transition through the point of applying the
concentrated load. Let us rewrite these expressions in dimensionless variables and
parameters [7, 8]

z � x1
r0

, Y � y

r0
, τ � c

r0
t, χ � E

k′G
, μ∗ � c

r0
μ, v∗ � v

c
, P∗ � P

E A
, Q∗ � Q

EA
, M∗ � Mr0

E J
(12)

(r0 � √
J/A is the cross section radius of inertia, c � √

E/ρ is the sound velocity
in the beammaterial, χ is the shear deformability parameter,μ∗ is the dimensionless
viscous parameter; for classical Euler–Bernoulli and Rayleigh models χ � 0). In
these variables and parameters physical relationships (7) take the form

M∗ � −
(
1 − μ∗

1v
∗ d

d z

)
d ψ

d z
, Q∗ � 1

χ

(
1 − μ∗

2v
∗ d

d z

)(
d Y

d z
− ψ

)
, (13)

Expressions for the jumps (10), (11) transform into

(
1 − χv∗2)(d Y

d z

)+

−
− μ∗

2v
∗
(
d2Y

d z2

)+

−
+ P∗χ � 0 (14)

(
1 − v∗2)(d ψ

d z

)+

−
− μ∗

1v
∗
(
d2ψ

d z2

)+

−
+ M∗

0 � 0. (15)

3 Elastic Timoshenko Beam

Consider the case of elastic beam μ1 � μ2 � 0 first. Then expressions (14), (15)
yield to following jumps in the first derivatives:
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(
d Y

d z

)+

−
� − P∗χ

1 − χv∗2 ,

(
d ψ

d z

)+

−
� − M∗

0

1 − v∗2 (16)

Corresponding jumps in dimensionless internal force factors Q∗ and M∗ accord-
ingly to (13) are as follows:

Q∗
+ − Q∗

− � − P∗

1 − χv∗2 , M∗
+ − M∗

− � M∗
0

1 − v∗2 (17)

The first formula (17) coincides with the expression obtained by Achenbach and
Sun [1] for the case of a concentrated force (formula (85), in other notations); the
case of a concentrated moment was not considered there. In our opinion, the way the
formula has been derived in that article, is not enough transparent and is essentially
based on the traveling wave solution obtained there.

The most interesting question is: what physical reason leads to dependence of the
jumps on the velocity of concentrated loads in elastic beams. As has been shown
above, this dependence is due to the way the inertia forces are distributed in the
neighborhood of the cross section where the concentrated force and/or moment are
applied. An inevitable jump in the shear force yields in the TB model to a jump
in the first derivative of the displacement (expression (2) for Q). As can be seen
from expressions (6), the moving jump in the first derivative inevitably results in a
concentrated inertia force in this cross-section. Similarly, the moving concentrated
moment, causing the jump in the derivative of the angle of cross section rotation (2),
generates the concentrated moment of inertia forces.

From this explanation it is clear now, why an elastic foundation does not influence
the considered peculiarity – a reactive force from the foundation depends on the total
displacement and, as a continuous function, is not able to produce any concentrated
effect (as well as distributed forces of viscous friction in a viscoelastic foundation).

Evidently, in the E-B model with jumps only in the second and third derivatives
of the displacement (caused by the force P and the moment of forces M0) the con-
centrated inertia forces and their moment do not appear. That is why the motion of
concentrated loads in E-B model does not affect jumps in the internal forces.

Even without complete solution of a dynamical problem, expressions (17) enable
us to make conclusions on the “critical velocities” at moving load for the elastic TB.
The jumps in the shear force and bending moment become indefinitely large when
the velocities are equal to the following values, respectively:

v∗
1 � 1√

χ
, v∗

2 � 1 (18)

(in the original dimensional variables these velocities v∗
1 and v

∗
2 correspond, accord-

ingly to (13), to values v1 � c/
√

χ �
√
k ′G

/
ρ, v2 � c �

√
E

/
ρ, which are the

velocity of shear waves and the longitudinal waves, respectively (the latter equals to
the speed of perturbation propagation in the bending moment).
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Fig. 2 Stationary running waves in TB on the viscoelastic foundation (χ � 3, w � 0.005; β �
0.02) for two velocities: a v∗ � 0.3 (pre-critical velocity interval);b v∗ � 0.58 (the first supercritical
interval)

Hence, at these two velocities of motion for the force and moment, steady-state
running waves do not exist (in elastic TB). However, such waves exist at bigger
velocities – in supercritical intervals v1 < v < v2 and v > v2 (i.e. v∗ > 1).

At these velocities of a concentrated load “paradoxical” transitions take place in
elastic TB. When the speed falls in interval v1 < v < v2, the jumps in the total slope
of the bent axis and in the shear force change their signs. At transition to supercritical
interval v > v2, the jumps in the derivative for both the cross section angle of rotation
and bending moment experience the same inversion.

The profiles of the stationary running waves in an elastic TB (χ � 3, v∗
1 �

0.57735) on a viscoelastic foundation with dimensionless stiffness parameter w �
w f r20/E A � 0.005 are shown in Fig. 2 for two values of dimensionless velocity:
v∗ � 0.3 (pre-critical interval, plot a) and v∗ � 0.58 (the first supercritical interval,
plot b).

Details of the solution are given in A. Manevich [8] (note that viscosity parameter
of the foundation β does not affect the jumps). In the moving coordinate system the
force is applied at the origin (z � x/r0 � 0) and is directed vertically downwards.
We see that in case v∗ � 0.58 the beam deflection at point of the force application
is directed oppositely to the force direction. This inversion is due to the fact that the
jump in the inertia force caused by the running fissure of the bent axis in Timoshenko
model become prevailing – it exceeds the magnitude of force P.

4 Viscoelastic Timoshenko Beam

Let us now return to the general case of viscoelastic TB. It follows from (14), (15)
that a concentrated force or a moment lead to a jump in the corresponding second
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derivatives, but the first derivatives are smooth (otherwise the second derivatives
would be infinite). The jumps in the second derivatives are

(
d2Y

d z2

)+

−
� P∗χ

μ∗
2v

∗ ,

(
d2ψ

d z2

)+

−
� M∗

0

μ∗
1v

∗ (19)

But then it follows from (13) with account of continuity of the first derivatives
((dY/d z)+− � 0 and (d ψ/d z)+− � 0) that corresponding jumps in dimensionless
internal force factors Q∗ and M∗ are

Q∗
+ − Q∗

− � −P∗, M∗
+ − M∗

− � M∗
0 (20)

So these jumps become independent on the velocity. The account of the internal
viscous friction eliminates the moving fissure of the bent axis in Timoshenko model,
and associated with it concentrated inertia forces disappear. So the jumps in the
internal force factors remain the same as in statics.

We come to conclusion that the Timoshenko model for elastic beams in dynam-
ical problems can result in some effects that disappear at employing more physical
viscoelastic Timoshenko beam model.

5 Conclusions

Jumps in internal forces in elastic and viscoelastic Timoshenko beams under action of
moving concentrated forces and moments can be determined directly from equations
of the force balance for the beam element containing the force and the moment and
moving with the load velocity. For the elastic TB at supercritical velocities of loads
the force jumps can change their signs, as well as corresponding deformations. We
give an explanation to the revealed differences between static and dynamic jumps in
forces and moments caused by the moving fissure of the bent axis in the elastic TB
model yielding to concentrated inertia forces and moments. These effects disappear
in the viscoelastic TB model, so account of internal viscous friction is of principal
importance for the dynamical TB model.
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Analytical Study of a Nonlinear Beam
Including a Piezoelectric Patch

V. Guillot, A. Ture Savadkoohi and C.-H. Lamarque

Abstract The chapter presents modal responses and nonlinear interactions of a
multi-physics nonlinear beam. It is composed of a piezoelectric material which is
patched on a two-dimensional nonlinear Euler–Bernoulli beam. The spatio-temporal
variables of governing equations of the composite beam are separated. Traced fre-
quencies and mode shapes of the overall beam show modifications of its modal
response due to the piezoelectric patch and its position on the beam. Studying the sys-
tem in time domain via a multiple scale technique, leads to detection of its responses
as function of frequency of excitation which present strongly nonlinear response due
to nonlinearity of the beam and also presence of the piezoelectric patch.

1 Introduction

Piezoelectric systems are used widely for control [1, 2] and vibratory energy har-
vesting [3, 4]. To this end, they are patched to main structural systems such as
beams for controlling or harvesting their vibratory energies. Proper modelling and
treatments of these composite structures are essential steps for the design of piezo-
electricmaterials.Modelling and detection of nonlinear responses of Euler–Bernoulli
beam elements are quite mature. As some few representations of extensive works in
this domain we can mention followings: Ref. [5] developed nonlinear equations of a
beamwhich relate different internal actions such as torsion and bendings to deformed
variables. As an example they derived governing equations of a rotating cantilever
beam that undergoes coupled axial deflection and flap (out-of-plane) bending. Ref-
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erences [6, 7] developed nonlinear governing differential equations of an extensible
Euler–Bernoulli beam experiencing flexure along two principal directions and tor-
sion. They studied responses of such beamswith some different boundary conditions,
eg. clamped-pined, clamped-clamped, under distributed periodic excitation being in
resonance with one of the modes. References [8–10] developed nonlinear differ-
ential equations of Euler–Bernoulli inextensible beams. They studied some special
cases such as flap-wise and chord-wise excitations for systems with internal reso-
nances. There are some research works for modelling and treating composite beams,
i.e. a homogeneous beam and piezoelectric patches which we summarize some of
recent works here: Refs. [11–13] studied the energy harvesting problem of a two-
dimensional model of a parametrically excited two-layered cantilever beam, i.e. a
layer of a homogeneous beam and a piezoelectric one, with a tip mass. Reference
[14] studied a parametrically excited two-dimensional cantilevered beam with two
patches of a piezoelectric material with given length and given position at either sides
of the beam.

In this chapter, we are interested to analyse spatio-temporal responses of a two-
dimensional cantilever beam with a patch of piezoelectric material on the beam. The
chapter is structured as it follows: developments of governing equations of a two-
dimensional nonlinear composite beam are presented in Sect. 2. In Sect. 3, spatio-
temporal variables of system are separated and space and time variables are treated
via an adapted method. In Sect. 4, an example of modal responses of a composite
beam is illustrated. Finally, the chapter is concluded in Sect. 5.

2 Beam and Piezoelectric Material Model

2.1 Beam Model

Let us consider the deformation of a beam from an inertial coordinate system
(
−→e x ,

−→e y,
−→e z) to a rotational coordinate system (

−→e η,
−→e ζ ,

−→e ξ ), see Fig. 1. We

Fig. 1 Deformation of the
beam from the inertial
coordinate system
(
−→e x ,

−→e y,
−→e z) to the

rotational coordinate system
(
−→e η,

−→e ζ ,
−→e ξ ) [15]
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Fig. 2 Deformation u v and w of the neutral axis of the beam in inertial coordinates

use the Euler–Bernoulli beam theory for modeling the system. We assume that the
Poisson coefficient can be neglected and we set Eb and G to be the Young and shear
moduli of the beam, respectively. We also assume that the section of the beam is not
deformed, this way we are only interested in the deformation of the neutral axis, as
despicted in Fig. 2. We suppose a displacement (u, v,w) in the inertial coordinate,
i.e. (−→e x ,

−→e y,
−→e z). The beam is assumed to be inextensible, thus we use a Lagrange

multiplier λ in the equations. The translational kinetic energy reads as:

T = 1

2
mb

∫ L

0
(u̇2 + v̇2 + ẇ2)ds (1)

mb is the linear density of the mass, ′ ′̇ stands for the time derivative of a variable and
L is the length of the beam. We neglect the rotational kinetic energy, assuming that
the principal moments of inertia can be omitted. The potential energy V is written
as:

V =
∫

ϑ

(σ : ε) dϑ (2)

σ and ε are the tensors of stress and strain, respectively. V can be rewritten as:

V = 1

2

∫ L

0
(Dξ ρ

2
ξ + Dηρ

2
η + Dζ ρ

2
ζ )ds (3)

where,



438 V. Guillot et al.

Beam
Piezoeletricpatch

hp

hb

x2
L

b

0

Fig. 3 Schema of the beam with the piezoelectric material

Dξ = G
∫
A
(η2 + ζ 2) d A (4)

Dη = Eb

∫
A
ζ 2 d A (5)

Dζ = Eb

∫
A
η2 d A (6)

whenρξ ,ρη,ρζ are the curvatures in the rotational coordinate system (
−→e η,

−→e ζ ,
−→e ξ ),

[15].

2.2 Modelling of the Piezoelectric Material

The goal is to model the multi-physics beam which is illustrated in Fig. 3. The first
step with a piezoelectric material is to define its free density energy H that depends
on the strain tensor ε written in a vectorial maner and the electric field E . We suppose
that the piezoelectric material is polarized in the direction −→e y , i.e. Ex � 0 � Ez ,
see Fig. 3. Since the piezoelectric patch is going to be on the beam, we can assume
that it has the same displacement as the beam. In this case, they share the same strain
tensor. Thus, the free density energy H reads:

H(ρη, ρξ , ρζ , Ey) = An1Eyρη + Ae1Eyρξ + Ac1Eyρζ + Tnoρ2
η + Tcoρ2

ζ

+Teoρ2
ξ + 1

2ξ33E
2
y + G(Ey, ρη, ρζ , ρξ )

(7)

with G(Ey, ρη, ρζ , ρξ ) a function of higher order terms in Ey, ρη, ρζ , ρξ and An1,
Ae1, Ac1, Tno, Tco, Teo and ξ33 are constants of the piezoelectric material [12]. From
this constitutive law, we can define the potential energy of the piezoelectric material
Vpiezo:

Vpiezo =
∫

ϑ

H(ρη, ρξ , ρζ , Ey)dϑ (8)
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The kinetic translational energy Tpiezo yields to:

Tpiezo = 1

2
mp

∫ x2

x1

(u̇2 + v̇2 + ẇ2)ds (9)

with mp being the linear density of the piezoelectric material, and x1, x2 are the
coordinates representing the position of the piezolectric materials in the x direction.
u, v, w are displacements of the pieozelectric material in the inertial coordinates
(
−→e x ,

−→e y,
−→e z). There is also an electrical equation, deduced from the electrical

circuit linked to the piezoelectric material and also from its constitutive law. In fact,
J the electrical intensity in the circuit [16] reads:

J = −
∫ ∫

y=h

∂

∂t
(
∂H(ρη, ρξ , ρζ , Ey)

∂Ey
)d A (10)

The integration on the section of the piezoelectric material is carried out in y = h,
where h is the distance between the neutral axis and the electrode on the piezoelectric
material.

2.3 Governing Equations of the Multi-physics Beam

Let us consider a two-dimensional non-linear beammodel, with a piezoelectric mate-
rial on it. The piezoelectric material is patched at the beginning of the beam until
s = x2, as depicted in Fig. 3. As the kinetic and potential energies of each part of
the multi-physics beam have been clarified already, we can define the Lagrangian l
of the system as:

l = T (s) − V (s) + Tpiezo(s) − Vpiezo(s) − H(s − x2)
(
Tpiezo(s) − Vpiezo(s)

)
(11)

where H(s − x2) stands for the Heaviside function. The Hamilton’s principle
imposes:

∫ t2

t1

(δl + δWnc)dt = 0 (12)

where Wnc is the non conservative work.
We reduce the dimension of the system to two-dimensional by setting w = 0.

We obtain three equations, two electro-mechanical ones corresponding to the three
generalised coordinate of the problem [15] and an electrical equation. Supposing the
piezoelectric material has a electrical circuit with a resistor R:

m(s)ü = [λ(1 + u′)]′ + N1(Ey, u, v, γ ) (13)
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m(s)v̈ = [E Iv(s)v
′′]′′ + N2(Ey, u, v, γ ) (14)

ξ33 Ėy + Ey

R
+ N3(Ey, u, v, γ ) = 0 (15)

where “ ′ ” stands for the space derivative of a variable and the N j , j = 1, 2, 3 are
nonlinear functions of Ey , u, v, γ with higher order terms in those variables, with γ

being the real twist angle [15]. We define:

m(s) =
{
mb + mp, if s ≤ x2
mb, if s > x2

(16)

E Iv(s) =
{
E I1 = Dη + Tno, if s ≤ x2
E I2 = Dη, if s > x2

(17)

We take the equation obtain from inextensibility condition, i.e.:

(1 + u′)2 = 1 − v′2 (18)

and the Eq. (13) to deduce λ [15] and we replace them in the Eq. (14).

3 Treatments of System Equations

We suppose the following separation of variables for the displacement v(s, t) as:

v(s, t) = φ(s)g(t) (19)

we inject it in Eq. (14). In this case we can obtain two sets of equations, as functions
of time and space.

3.1 The Problem in Space

Thus, we can define a problem in space only by keeping the linear part in g(t) of the
equation:

g̈(t)

g(t)
= − 1

φ(s)m(s)

∂2

∂s2

(
φ(s)′′E Iv(s)

)
= ω2

v (20)

where ωv is a constant.
In order to treat the spatial equations of system (20) that are with variable coeffi-

cients, we define:
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φ(s) = φ0(s) + H(s − x2)(φ1 − φ0) (21)

Thus, two equations arises on [0, x2] and [x2, L] as:

∂4φ0

∂s4
= (mb + mp)

E I1
φ0 (22)

∂4φ1

∂s4
= (mb)

E I2
φ1 (23)

And, the continuity and boundary conditions read:

φ0(0) = 0 (24)

φ′
0(0) = 0 (25)

φ′′
1 (L) = 0 (26)

φ′′′
1 (L) = 0 (27)

φ0(x2) − φ1(x2) = 0 (28)

φ′
0(x2) − φ′

1(x2) = 0 (29)

E I1φ
′′
0 (x2) − E I2φ

′′
1 (x2) = 0 (30)

E I1φ
′′′
0 (x2) − E I2φ

′′′
1 (x2) = 0 (31)

Thus, for the nth mode of the beam we can write:

φ0n = A1n cos(K1ns) + B1n sin(K1ns) + C1n sinh(K1ns) + D1n cosh(K1ns) (32)

φ1n = A2n cos(K2ns) + B2n sin(K2ns) + C2n sinh(K2ns) + D2n cosh(K2ns) (33)

A1n , A2n , B1n , B2n , C1n , C2n , D1n and D2n are constants to be determined thanks to
the boundary and continuity conditions, we have:

K 4
1n = (mb + mp)

E I1
ω2
vn (34)

K 4
2n = mb

E I2
ω2
vn (35)

Due to the bounadry and continuity conditions which are described Eqs. (24–31),
one can obtain:

U8×1 = GX8×1 (36)

with:

U8×1 = [φ0(0) φ′
0(0) ... E I1φ

′′′
0 (x2) − E I2φ

′′′
1 (x2)]T (37)

X8×1 = [A1n B1n C1n D1n A2n B2n C2n D2n]T (38)
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For having non zero solution, determinant of theGmatrix is set to be zerowhich leads
to detection of system frequencies ωvn . All constants of Eq. (33) can be expressed as
functions of A1. Then the nth mode function can be normalized to find A1.

3.2 The Problem in Time

Let us suppose that the system is under base excitation. The modified version of
Eq. (20) reads:

m(s)v̈ + cvv̇ − Qv =
(

− Dζ (s)(v′′′ − v′v′′2)

+(1 − H(s − x2))
( − Tco(s)[v′′′ + v′v′′2] + 6Vcv′′v′′′) + λv′

)′ (39)

where cv and Qv stand for damping and external excitation respectively. Vc is a
piezoelectric constant. Let us project the system (39) on its nth mode, i.e. φn . It reads
as:

Mg̈ + Cv ġ − Qvp = Tvg + Tvvvg
3 + Tvv2g

¨︷︸︸︷
(g2) +Tvv1g

˙︷︸︸︷
g2 +Tvvpg

2 (40)

with M , Cv, Tv, Tvvv, Tvv2, Tvv1 and Tvvp are constants.
¨︷︸︸︷ and

˙︷︸︸︷ represent the
second and first derivatives of the argument with respect to the time. We set Qv as:

Qvp = −mb f cos(�t)
∫ L

0
φn(s)ds (41)

with � being the frequency of the external force, we are interested to study system
behaviours around a 1:1 resonance, we set:

� = ωvn + σε2 (42)

with σ being the detuning parameter.
We use a multiple scale method to treat the problem by applying a very small

bookkeeping parameter ε. We suppose the constants of the piezoelectric material are
of order ε.

Different scales of time and its derivatives read ( j = 1, 2 . . .):

Tj = ε j t (43)

Dj = ∂

∂Tj
(44)
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And we set v(s, t) in the form of series as:

v(s, t) = φ(s)(εg1(t) + ε2g2(t) + · · · ) (45)

We suppose:

Cv = O(ε2) (46)

Qv = O(ε3) (47)

At O(ε) we have :

MD2
0g1 = Tvg1 (48)

Thus:

g1 = Cv exp(iωvT0) + Cv exp(−iωvT0) (49)

where Cv is the complex amplitude of g1, Cv stands for its conjugates and:

ωv = −
√

Tv
M

(50)

At O(ε2) :
MD2

0g2 + 2MD0D1g1 = Tvg2 + Tvvpg21 (51)

Here, we use the Fredholm’s alternative to impose the solvability condition, thus :

g2 = P exp(2iωvT0) + P exp(−2iωvT0) + N + N (52)

D1Cv = 0 (53)

where P and N are complex constants and P , N their complex conjugates. AtO(ε3)

system equations yields to:

MD2
0g3 + 2MD0D2g1 = Tvg3 + Tvvvg31 + Tvv2g1D2

0g
2
1 + Tvv1g1D0g21+2Tvvpg1g2 + Qvp − CvD0g1

(54)

where Tv, Tvvv, Tvv2, Tvv1, Tvvp and Cv are defined in Appendix 1. We again use the
alternative of Fredholm to have the equation of the solvability condition, and we
suppose:

Qvp = mbω
2
vn f cos(ωvnT0 + σT2)

∫ L

0
φn(s)ds (55)
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Table 1 Characteristics of the multi-physics system

Ep(GPa) Eb(GPa) L(m) b(m) hb(m) h p(m) m(kg m3) mp(kg m3)

33 109 0.222 0.04 0.0064 0.005 9000 7800

0 0.05 0.1 0.15 0.2
x
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0.5

1

1.5

2

2.5

3

(x
)

Multiphysic beam
Homogenous beam

Fig. 4 First mode function for ωv1 = 607Hz: the blue line stands for the response of the homoge-
neous beam, the red line represents the overall mode of the multi-physics system

In Eq. (54), we suppose that Cv = a

2
exp(i(σT2 − γ )). We separate real and imagi-

nary parts of the equation, then the following equation of order six in a is obtained.

α1a
6 + α2a

4 + α3a
2 + α4 = 0 (56)

where α1, α2, α3 and α4 are some constants defined in Appendix2.

4 Numerical Results

Let us consider the piezoelectric material placed on a beam as shown in Fig. 3.
Characteristics of the system are summarized in Table1.We trace the two first modes
of the multi-physic beam : ωv1 = 607Hz and ωv2 = 3350Hz. Corresponding modal
responses are illustrated in Figs. 4 and 5. It is seen that the piezoelectric patchmodifies
the mode of the overall system.

For the problem in time, we treat the Eq. (56) in a by doing a change of variable
Z = a2 and solving the equation of the order three with the Cardano method. The
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0 0.05 0.1 0.15 0.2
x

-3

-2

-1

0

1

2

3
(x

)

Multiphysic beam
Homogenous beam

Fig. 5 Second mode function for ωv2 = 3350Hz: the blue line stands for the response of a homo-
geneous beam, the red line represents the overall mode of the multi-physics system

Fig. 6 Amplitude of the response of the displacement v around thefirst frequency, for f = 2 × 10−3

(see Eqs. (55) and (56)). The blue line corresponds to a homogenous beam, the red line corresponds
to the multi-physic beam

results are illustrated in Fig. 6. We can see that the non-linear coefficient Vc coming
from the piezoelectric material has a great influence on the non-linear behaviour of
the beam with the piezoelectric patch.
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5 Conclusion

Governing equations of a two-dimensional non-linearmulti-physics beamarederived.
The multi-physics system is composed of a homogeneous cantilever beam and
a piezoelectric patch placed on the beam next to its clamped part. The spatio-
temporal system variables are separated and modal responses of the overall system
are obtained.

To treat temporal system variables, a multiple scale method in time is endowed,
considering that a special mode of the system to be around the 1:1 resonance with the
external base excitation. Then the global spatio-temporal system responses are traced.
The main ideas of using piezoelectric patch on the beam are: (i) to change spatio-
temporal responses of the beam, and (ii) to control/harvest its vibratory responses
under externally induced excitations.
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Appendix 1

M =
∫ L

0
m(s)φn(s)

2 ds (57)

Cv =
∫ L

0
cvφn(s)

2 ds (58)

Tv =
∫ L

0
−E I (s)φiv

n (s)φn(s) ds (59)

Tvvv =
∫ L

0
−E I (s)[φ′

n(s)φ
′′2
n (s) − φ′2

n (s)φ′′′
n (s)]′φn(s) ds (60)

Tvv1 =
∫ L

0
[−φ′

n(s)
∫ L

0

cu
2

∫ s

0
φ′2
n (s) ds ds]′φn(s) ds (61)

Tvv2 =
∫ L

0
[−φ′

n(s)
∫ L

0

−m(s)

2

∫ s

0
φ′2
n (s) ds ds]′φn(s) ds (62)

Tvvp =
∫ L

0
6Vc[φ′′

n (s)φ
′′′
n (s)]′φn(s) ds (63)
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Appendix 2

α1 =
(
wvn

2
Tvv2 − 3

8
Tvvv − Tvvp

4

(
2

Tv
+ Tvvp

Tv − 4Mw2
vn

))2

(64)

α2 = 2Mwvnσ
√

α1 (65)

α3 = (Mwvnσ)2 + w2
vnC2

v

4
(66)

α4 =
(
mbωvn f

2

)2

(67)
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On Higher Order Effective Boundary
Conditions for a Coated Elastic
Half-Space

Julius Kaplunov, Danila Prikazchikov and Leyla Sultanova

Abstract Higher order effective boundary conditions are derived for a coated half-
space. Comparison with the long wavelength expansion of the exact solution of a
plane time-harmonic problem for the coating demonstrates the validity of the pro-
posed formulation. At the same time the corrections to the simplest leading order
effective conditions, earlier obtained in thewidely cited paper (Bövik (1996). J. Appl.
Mech. 63(1), 162–167.) [1], are proven to be asymptotically inconsistent.

1 Introduction

Thin films and coatings find numerous applications, including in particular, engi-
neering and biological sciences, see e.g. [2–5]. The effect of a thin coating is often
modeled by imposing the so-called effective boundary conditions along the surface
of a substrate. These conditions first were derived in [6] using adhoc assumptions
originating from the classical theory of plate extensions. Later on, it was suggested
in [1] that the results of [6] are not consistent, and refined boundary conditions
were proposed starting from rather heuristic arguments. The asymptotic procedure
exposed in [7] justifies at leading order the consistency of the effective boundary
conditions in [6] and also reveals that the extra terms in [1] are in fact of a higher
order. Moreover, as it was briefly mentioned in [7], the development in [1] is not
asymptotically consistent at the next order as well.
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Fig. 1 A coated half-space

It is remarkable that the boundary conditions in [1] were exploited not only before
but also after the publication of the critical comments in [7], e.g. see [8–10] along
with [11–13]. This is partly an inspiration for revisiting the original problem for a
coated elastic half-space aiming at establishing higher order effective conditions.

As in [7],we adapt the asymptoticmethodologywell established for the thin elastic
structures, e.g. see [14, 15] and references therein. At leading order, we validate again
the results in [6]. At next order, we arrive at refined effective conditions. They are
tested by comparisonwith the exact solution of a plane strain time-harmonic problem.
As it might be expected, the comparison demonstrates that the boundary conditions
in [1] are not consistent at a higher order.

2 Statement of the Problem

We consider a linearly elastic isotropic layer of thickness h occupying the area 0 ≤
x3 ≤ h, lying on an elastic half-space x3 ≥ h. The prescribed vertical force P =
P(x1, x2, t) is acting on the free surface of the layer, see Fig. 1.

The 3D equations in linear elasticity can be written as

∂σi i

∂xi
+ ∂σi j

∂x j
+ ∂σi3

∂x3
= ρ

∂2ui
∂t2

,

∂σi3

∂xi
+ ∂σ j3

∂x j
+ ∂σ33

∂x3
= ρ

∂2u3
∂t2

.

(1)

Here and below i �= j = 1, 2 and n = 1, 2, 3, un are the displacements, σin,σ3n are
stresses, and ρ is the volume density. The constitutive relations are

σi j = μ

(
∂ui
∂x j

+ ∂u j

∂xi

)
, σi i = (λ + 2μ)

∂ui
∂xi

+ λ

(
∂u j

∂x j
+ ∂u3

∂x3

)
,

σi3 = σ3i = μ

(
∂ui
∂x3

+ ∂u3
∂xi

)
, σ33 = λ

(
∂ui
∂xi

+ ∂u j

∂x j

)
+ (λ + 2μ)

∂u3
∂x3

,

(2)
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where λ and μ are the Lamé parameters. In addition, the wave speeds are given by

c1 =
√

λ + 2μ

ρ
, c2 =

√
μ

ρ
. (3)

In case of the coating, below we supply with suffix 0 the parameters in the Eqs. (1)–
(3), using the notations ρ0, λ0, μ0, c10 and c20.

We impose the boundary conditions

σ33 = −P and σi3 = 0 (4)

at the surface of the coating x3 = 0 and also assume continuity of the displacements
un and stresses σn3 along the interface x3 = h.

The leading order effective boundary conditions on the surface of the substrate,
modelling the effect of the coating, can be written as, see (3.18) in [7],

σ33 = ρ0h
∂2u3
∂t2

− P,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1 − κ−2
0 )

∂2ui
∂x2i

+ (3 − 4κ−2
0 )

∂2u j

∂xi∂x j

)]
,

(5)

where κ0 = c10/c20. In absence of surface loading (P = 0) these conditions coincide
with those in [6] derived starting from the 2D theory of plate extension. More recent
developments in [1], see also [9] treating a similar anisotropic problem, claim that
the effective conditions (5) ignore several essential h-terms. The formulae (35) and
(36) in [1] rewritten in the notation specified in this section, similarly to [7], can be
presented as

σ33 = ρ0h
∂2u3
∂t2

− h

(
∂σi3

∂xi
+ ∂σ j3

∂x j

)
,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1 − κ−2
0 )

∂2ui
∂x2i

+(3 − 4κ−2
0 )

∂2u j

∂xi∂x j

)]
− h(1 − 2κ−2

0 )
∂σ33

∂xi
.

(6)

The underlined terms in formulae (6) do not appear in the effective conditions (5).
The former may be also transformed to
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Fig. 2 Boundary value
problem for a thin coating

σ33 = ρ0h
∂2u3
∂t2

− ρ0h2
[

∂3ui
∂t2∂xi

+ ∂3u j

∂t2∂x j
− c220

(
∂3ui

∂xi∂x2j
+ ∂3u j

∂x2i ∂x j

+4(1 − κ−2
0 )

[
∂3ui
∂x3i

+ ∂3u j

∂x3j

]
+ (3 − 4κ−2

0 )

[
∂3u j

∂x2i ∂x j
+ ∂3ui

∂xi∂x2j

])]

+h2(1 − 2κ−2
0 )

(
∂2σ33

∂x2i
+ ∂2σ33

∂x2j

)
,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1 − κ−2
0 )

∂2ui
∂x2i

+ (3 − 4κ−2
0 )

∂2u j

∂xi∂x j

)]

−h2(1 − 2κ−2
0 )

(
ρ0

∂3u3
∂t2∂xi

−
[
∂2σi3

∂x2i
+ ∂2σ j3

∂xi∂x j

])
.

(7)

It is already pretty clear at this stage that all extra h2-terms in (7) can be neglected at
leading order. In what follows, this observation is asymptotically justified. We also
show below that h2-terms in (7) are not identical to a proper asymptotic correction
to (5).

3 Asymptotic Analysis

The aim of the paper is to determine an asymptotic correction to the leading order
effective boundary conditions (5), in order to address consistency of (6), or equiva-
lently, (7). Here we implement an asymptotic procedure similar to [7], modifying it
slightly according to amore recent treatment in [16]. As usual, we study the boundary
value problem for an elastic coating with the Dirichlet boundary conditions

un = vn (8)

at the interface x3 = h, where vn = vn(x1, x2, t) denote prescribed displacements,
see Fig. 2.

We assume that the thickness of the coating h is small compared to typical wave
length L , therefore, we introduce a geometric parameter given by
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ε = h

L
� 1. (9)

We also specify dimensionless variables

ξi = xi
L

, η = x3
h

, τ = tc20
L

. (10)

According to the conventional asymptotic procedure, e.g. [7, 14], and ref. therein,
we adopt the scaling

un = Lu∗
n, vn = Lv∗

n , P = μ0εp∗

σi i = μ0σ
∗
i i , σi j = μ0σ

∗
i j , σn3 = μ0εσ

∗
n3,

(11)

where all quantities with the asterisk are assumed to be of the same asymptotic order.
The Eq. (1) and the constitutive relations (2) rewritten in dimensionless form,

become

∂σ∗
i i

∂ξi
+ ∂σ∗

i j

∂ξ j
+ ∂σ∗

i3

∂η
= ∂2u∗

i

∂τ 2
, (12)

∂σ∗
33

∂η
+ ε

(
∂σ∗

i3

∂ξi
+ ∂σ∗

j3

∂ξ j

)
= ∂2u∗

3

∂τ 2
, (13)

and

σ∗
i j = ∂u∗

i

∂ξ j
+ ∂u∗

j

∂ξi
, (14)

εσ∗
i i = (κ2

0 − 2)
∂u∗

3

∂η
+ ε

(
κ2
0
∂u∗

i

∂ξi
+ (κ2

0 − 2)
∂u∗

j

∂ξ j

)
, (15)

ε2σ∗
i3 = ∂u∗

i

∂η
+ ε

∂u∗
3

∂ξi
, (16)

ε2σ∗
33 = κ2

0
∂u∗

3

∂η
+ ε(κ2

0 − 2)

(
∂u∗

i

∂ξi
+ ∂u∗

j

∂ξ j

)
, (17)

with the transformed boundary conditions

σ∗
33 = −p∗ and σ∗

i3 = 0, η = 0,
and

u∗
n = v∗

n , η = 1.
(18)

First, expressing
∂u∗

3

∂η
from (17) and substituting the result into (15), we obtain
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σ∗
i i = 4(1 − κ−2

0 )
∂u∗

i

∂ξi
+ 2(1 − 2κ−2

0 )
∂u∗

j

∂ξ j
+ (1 − 2κ−2

0 )εσ∗
33. (19)

Next, we expand the displacements and stresses as

⎛
⎜⎜⎜⎜⎜⎜⎝

u∗
n

σ∗
i i

σ∗
i j

σ∗
3i

σ∗
33

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u(0)
n

σ(0)
i i

σ(0)
i j

σ(0)
3i

σ(0)
33

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ε

⎛
⎜⎜⎜⎜⎜⎜⎝

u(1)
n

σ(1)
i i

σ(1)
i j

σ(1)
3i

σ(1)
33

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ε2

⎛
⎜⎜⎜⎜⎜⎜⎝

u(2)
n

σ(2)
i i

σ(2)
i j

σ(2)
3i

σ(2)
33

⎞
⎟⎟⎟⎟⎟⎟⎠

+ · · · (20)

On substituting the latter into the Eqs. (12)–(17) and (19), we have at leading order

∂σ(0)
i i

∂ξi
+ ∂σ(0)

i j

∂ξ j
+ ∂σ(0)

i3

∂η
= ∂2u(0)

i

∂τ 2
,

∂σ(0)
33

∂η
= ∂2u(0)

3

∂τ 2
,

σ(0)
i j = ∂u(0)

i

∂ξ j
+ ∂u(0)

j

∂ξi
,

∂u(0)
n

∂η
= 0,

σ(0)
i i = 4(1 − κ−2

0 )
∂u(0)

i

∂ξi
+ 2(1 − 2κ−2

0 )
∂u(0)

j

∂ξ j
,

(21)

with the boundary conditions

σ(0)
33 = −p∗ and σ(0)

i3 = 0, η = 0,
and

u(0)
n = v∗

n , η = 1.
(22)

Integrating the leading order Eq. (21) together with the boundary conditions (22),
gives

u(0)
n = v∗

n , (23)

σ(0)
33 = η

∂2v∗
3

∂τ 2
− p∗, (24)

σ(0)
i i = 4(1 − κ−2

0 )
∂v∗

i

∂ξi
+ 2(1 − 2κ−2

0 )
∂v∗

j

∂ξ j
, (25)

σ(0)
i3 = η

[
∂2v∗

i

∂τ 2
− ∂2v∗

i

∂ξ2j
− 4(1 − κ−2

0 )
∂2v∗

i

∂ξ2i
− (3 − 4κ−2

0 )
∂2v∗

j

∂ξiξ j

]
. (26)
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At next asymptotic order, the governing equations take the form

∂σ(1)
i i

∂ξi
+ ∂σ(1)

i j

∂ξ j
+ ∂σ(1)

i3

∂η
= ∂2u(1)

i

∂τ 2
, (27)

∂σ(1)
33

∂η
+ ∂σ(0)

i3

∂ξi
+ ∂σ(0)

j3

∂ξ j
= ∂2u(1)

3

∂τ 2
, (28)

σ(1)
i j = ∂u(1)

i

∂ξ j
+ ∂u(1)

j

∂ξi
, (29)

σ(0)
i i = (κ2

0 − 2)
∂u(1)

3

∂η
+ κ2

0
∂u(0)

i

∂ξi
+ (κ2

0 − 2)
∂u(0)

j

∂ξ j
, (30)

∂u(1)
i

∂η
+ ∂u(0)

3

∂ξi
= 0, (31)

κ2
0
∂u(1)

3

∂η
+ (κ2

0 − 2)

(
∂u(0)

i

∂ξi
+ ∂u(0)

j

∂ξ j

)
= 0, (32)

σ(1)
i i = 4(1 − κ−2

0 )
∂u(1)

i

∂ξi
+ (1 − 2κ−2

0 )

(
2
∂u(1)

j

∂ξ j
+ σ(0)

33

)
, (33)

with the boundary conditions

σ(1)
n3 = 0, η = 0, (34)

and
u(1)
n = 0, η = 1. (35)

First, we obtain from (31) and (32), respectively, satisfying (35)

u(1)
i = (1 − η)

∂v∗
3

∂ξi
,

and

u(1)
3 = (1 − 2κ−2

0 )(1 − η)

(
∂v∗

i

∂ξi
+ ∂v∗

j

∂ξ j

)
.

(36)

Then, using (29), we have

σ(1)
i j = 2(1 − η)

∂2v∗
3

∂ξi∂ξ j
. (37)

Next, we deduce from (28) and (34)
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σ(1)
33 = η

κ2
0

(
(η − 2 + κ2

0 − ηκ2
0)

[
∂3v∗

i

∂ξi∂τ 2
+ ∂3v∗

j

∂ξ j∂τ 2

]

+2η(κ2
0 − 1)

[
∂3v∗

i

∂ξi∂ξ2j
+ ∂3v∗

j

∂ξ2i ∂ξ j
+ ∂3v∗

i

∂ξ3i
+ ∂3v∗

j

∂ξ3j

])
.

(38)

As a result, (33) becomes

σ(1)
i i = 2(η − 1)

[
2(κ−2

0 − 1)
∂2v∗

3

∂ξ2i
− (1 − 2κ−2

0 )
∂2v∗

3

∂ξ2j

]

+(1 − 2κ−2
0 )

[
η
∂2v∗

3

∂τ 2
− p∗

]
.

(39)

Therefore, (27) implies

σ(1)
i3 = −η

[
(η − 1 − ηκ−2

0 )
∂3v∗

3

∂ξi∂τ 2
+ 2(κ−2

0 − 1)(η − 2)
(

∂3v∗
3

∂ξi∂ξ2j
+ ∂3v∗

3

∂ξ3i

)
− (1 − 2κ−2

0 )
∂ p∗

∂ξi

]
.

(40)

Finally, substituting the leading order formulae (24) and (26) and O(ε) corrections
(38) and (40) into the expansions (20), we arrive at

σ∗
33 = η

∂2v∗
3

∂τ 2
− p∗ + ε

η

κ2
0

[
(η − 2 + κ2

0 − ηκ2
0)

(
∂3v∗

i

∂ξi∂τ 2
+ ∂3v∗

j

∂ξ j∂τ 2

)

+2η(κ2
0 − 1)

(
∂3v∗

i

∂ξi∂ξ2j
+ ∂3v∗

j

∂ξ2i ∂ξ j
+ ∂3v∗

i

∂ξ3i
+ ∂3v∗

j

∂ξ3j

)]
+ ...,

σ∗
i3 = η

[
∂2v∗

i

∂τ 2
− ∂2v∗

i

∂ξ2j
− 4(1 − κ−2

0 )
∂2v∗

i

∂ξ2i
− (3 − 4κ−2

0 )
∂2v∗

j

∂ξiξ j

]

−εη

[
(η − 1 − ηκ−2

0 )
∂3v∗

3

∂ξi∂τ 2
+ 2(κ−2

0 − 1)(η − 2)
(

∂3v∗
3

∂ξi∂ξ2j
+ ∂3v∗

3

∂ξ3i

)
− (1 − 2κ−2

0 )
∂ p∗

∂ξi

]
+ ....

(41)

The continuity of the displacements, see (8), and stresses at the interface x3 = h
readily results in refined effective boundary conditions for the substrate x3 ≥ h. In
the original variables they take the form
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σ33 = ρ0h
∂2u3
∂t2

− P + ρ0h2

κ2
0

[
2c22(κ

2
0 − 1)

(
∂3ui

∂xi∂x2j
+ ∂3u j

∂x2i ∂x j

+∂3ui
∂x3i

+ ∂3u j

∂x3j

)
−

(
∂3ui

∂xi∂t2
+ ∂3u j

∂x j∂t2

)]
,

σi3 = ρ0h

[
∂2ui
∂t2

− c220

(
∂2ui
∂x2j

+ 4(1−κ−2
0 )

∂2ui
∂x2i

+ (3− 4κ−2
0 )

∂2u j

∂xi∂x j

)]

+ρ0h2

κ2
0

[
∂3u3

∂xi∂t2
+ 2c22(1 − κ2

0)

(
∂3u3

∂xi∂x2j
+ ∂3u3

∂x3i

)]
+ h

κ2
0 − 2

κ2
0

∂P

∂xi
.

(42)

Comparing these formulae at P = 0 with (7) we may expect that higher order
h2-terms will not coincide.

4 Comparison with the Exact Solution of a Plane Strain
Problem

In order to validate the asymptotic results obtained in the previous section, let us
consider a time-harmonic plane strain problem for the coating over the plane Ox1x3.
In this case the displacements can be taken as

u1 = ∂ϕ

∂x1
+ ∂ψ

∂x3
, u3 = ∂ϕ

∂x3
− ∂ψ

∂x1
, (43)

where ϕ and ψ are Lamé elastic potentials. The wave equations of motion become

Δϕ − 1

c210

∂2ϕ

∂t2
= 0, Δψ − 1

c220

∂2ψ

∂t2
= 0, (44)

where Δ = ∂2

∂x21
+ ∂2

∂x23
. The solutions of (44) are sought for in the form

ϕ = f (x3)e
ik(x1−ct), ψ = g(x3)e

ik(x1−ct). (45)

Substituting the latter into (44), we deduce

f (x3) = A1e
kx3α + A2e

−kx3α and g(x3) = A3e
kx3β + A4e

−kx3β, (46)

where Am , m = 1, 2, 3, 4, are arbitrary constants, and α =
√
1 − c2

c210
and β =

√
1 − c2

c220
.
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We consider a traction free upper face (P = 0), i.e. at x3 = 0

σk3 = 0, k = 1, 3, (47)

imposing the boundary conditions (8) at the lower face x3 = h with

vk = hBke
ik(x1−ct), (48)

where Bk are certain prescribed values.
On satisfying the boundary conditions, we have

⎛
⎜⎜⎝

iα −iα γ2 γ2

γ2 γ2 −iβ iβ
ikekhα ike−khα βkekhβ −βke−khβ

αkekhα −αke−khα −ikekhβ −ike−khβ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

hB1

hB3

⎞
⎟⎟⎠ (49)

where γ =
√
1 − 1

2

c2

c220
, and coefficients Am expressed through the given constants

Bk are presented in Appendix.
Then, substituting (45) and (46) into (43), we get

u1 = k
[
β(A3e2kx3β − A4)e−kx3β + i(A1e2kx3α + A2)e−kx3α

]
,

u3 = k
[
α(A1e2kx3α − A2)e−kx3α − i(A3e2kx3β + A4)e−kx3β

]
.

(50)

Here and below the factor eik(x1−ct) is omitted. Next, using the expressions above and
the constitutive relations (2), we have for the stresses at x3 = h

σ33 = 2μ0k2
[
γ2(A1e2khα + A2)e−khα − iβ(A3e2khβ − A4)e−khβ

]
,

σ13 = 2μ0k2
[
γ2(A3e2khβ + A4)e−khβ + iα(A1e2khα − A2)e−khα

]
.

(51)

The last expressions can be expanded into asymptotic series in the small parameter
ε = kh � 1

(
L = k−1 in (9)

)
to get

σ33

ε2μ0
= −B3ζ

2 − i B1
[
2 − κ−2

0 (2 + ζ2)
]
ε + · · · ,

σ13

ε2μ0
= B1

[
4(1 − κ−2

0 ) − ζ2
] + i B3

[
2 − κ−2

0 (2 + ζ2)
]
ε

− B1

3

[
20 + ζ2(ζ2 − 8) + κ−2

0 (6ζ2 − 44) + 4κ−4
0 (ζ2 + 6)

]
ε2 + · · · ,

(52)
where the dimensionless velocity is
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ζ = c

c20
. (53)

The asymptotic effective conditions (42) for the same displacements (48) pre-
scribed at the lower face, become

σ33 = k2h2ρ0
[−B3c2 − i B1kh

[
2c220 − κ−2

0 (2c220 + c2)
]]

,

σ13 = k2h2ρ0
[
B1

[
4c220(1 − κ−2

0 ) − c2
] + i B3kh

[
2c220 − κ−2

0 (2c220 + c2)
]]

,

(54)
or, rewritten in terms of ε and ζ,

σ33

ε2μ0
= −B3ζ

2 − i B1
[
2 − κ−2

0 (2 + ζ2)
]
ε,

σ13

ε2μ0
= B1

[
4(1 − κ−2

0 ) − ζ2
] + i B3

[
2 − κ−2

0 (2 + ζ2)
]
ε.

(55)

These formulae coincide with the two-term expansion of the exact solution (52).
Thus, the validity of the asymptotic results in Sect. 3 is confirmed.

Let us now test the conditions in [1] in a similar manner. In case of the displace-
ments (48) the relation (6) takes the form

σ33 = −h2ρ0
[
i B1k3h(4c220 − c2) + B3c2k2

]
1 + k2h2(1 − 2κ−2

0 )
,

σ13 = h2ρ0
[
B1k2(4c220(1 − κ2

0) − c2) + i B3kh(1 − 2κ−2
0 )

]
1 + k2h2(1 − 2κ−2

0 )
,

(56)

or, expanding the latter in ε,

σ33

ε2μ0
= −B3ζ

2 − i B1
[
4(1 − κ−2

0 ) − ζ2
]
ε + B3ζ

2(1 − 2κ−2
0 )ε2 + · · · ,

σ13

ε2μ0
= B1

[
4(1 − κ−2

0 ) − ζ2
] + i B3ζ

2(1 − 2κ−2
0 )ε

+B1(1 − 2κ−2
0 )

[
4(κ−2

0 − 1) + ζ2
]
ε2 + · · · .

(57)

These conditions coincide with the asymptotic expansion of the exact solution (52)
only at leading order. This means that the effect of the underlined terms in (6) appears
only at next order; in doing so, it is different from O(ε) correction in the asymptotic
expansion (52). As an illustration, in Fig. 3 for ν = 0.3 we plot the normalized
coefficients χE

k3 and χB
k3, k = 1, 3, at ε-terms in (52) and (57). They are
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Fig. 3 Comparison of coefficients at ε-terms

χE
33 = 2 − κ−2

0 (2 + ζ2), χB
33 = 4(1 − κ−2

0 ) − ζ2,

χE
13 = 2 − κ−2

0 (2 + ζ2), χB
13 = ζ2(1 − 2κ−2

0 ).
(58)

5 Conclusion

In this paper, we derive an asymptotic correction to the leading order effective bound-
ary conditions for a coated elastic half-space. The derived conditions are tested by
comparison with the exact solution of a plane time-harmonic problem. As a result,
the formulation in [6] is validated at leading order, whereas its corrections proposed
in [1] appears to be asymptotically inconsistent. The obtained conditions are of gen-
eral interest for elastodynamics, e.g. for developing refined asymptotic models for
surface waves, see [17, 18]. The latter provide a useful framework for modelling
coated solids subject to high-speed moving loads, see [19, 20].
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for L. Sultanova is also gratefully acknowledged.

Appendix

The constants in (49) are

A1 = h
N1

D
, A2 = ekhαh

N2

D
, A3 = −h

N3

D
, A4 = −ekhβh

N4

D
, (59)

where
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N1 = i B1
(
ekhα(D1αβ + D2γ

4) − 2ekhβαβγ2
)

−B3β
(
ekhα(D2αβ + D1γ

4) − 2ekhβγ2
)
,

N2 = i B1
(
D1αβ − 2ekh(α+β)αβγ2 − γ4D2

)
+B3β

(
D1γ

4 − D2αβ − 2ekh(α+β)γ2
)
,

N3 = i B3
(
ekhβ(D3αβ + D4γ

4) − 2ekhααβγ2
)

+B1α
(
ekhβ(D4αβ + D3γ

4) − 2ekhαγ2
)
,

N4 = i B3
(
D3αβ − 2ekh(α+β)αβγ2 − γ4D4

)
−B1α

(
D3γ

4 − D4αβ − 2ekh(α+β)γ2
)
,

and
D = k

[
8ekh(α+β)αβγ2 + D2D4(α

2β2 + γ4) − D1D3αβ(1 + γ4)
]
,

(60)

with

D1 = 1 + e2khβ, D2 = 1 − e2khβ, D3 = 1 + e2khα, D4 = 1 − e2khα. (61)

References

1. Bövik, P.: A comparison between the Tiersten model and O(h) boundary conditions for elastic
surface waves guided by thin layers. J. Appl. Mech. 63(1), 162–167 (1996)

2. Chattopadhyay, D.K., Raju, K.: Structural engineering of polyurethane coatings for high per-
formance applications. Prog. Polym. Sci. 32(3), 352–418 (2007)

3. Hauert, R.: A review of modified DLC coatings for biological applications. Diam. Relat. Mater.
12(3–7), 583–589 (2003)

4. Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applica-
tions. Science 296(5566), 280–284 (2002)

5. Veprek, S., Veprek-Heijman, M.J.: Industrial applications of superhard nanocomposite coat-
ings. Surf. Coat. Technol. 202(21), 5063–5073 (2008)

6. Tiersten, H.: Elastic surface waves guided by thin films. J. Appl. Phys. 40(2), 770–789 (1969)
7. Dai, H.H., Kaplunov, J., Prikazchikov, D.: A long-wave model for the surface elastic wave in

a coated half-space. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466, 3097–3116 (2010). The
Royal Society

8. Malischewsky, P.G., Scherbaum, F.: Love’s formula and H/V-ratio (ellipticity) of Rayleigh
waves. Wave Motion 40(1), 57–67 (2004)

9. Niklasson, A.J., Datta, S.K., Dunn, M.L.: On approximating guided waves in plates with thin
anisotropic coatings by means of effective boundary conditions. J. Acoust. Soc. Am. 108(3),
924–933 (2000)

10. Wang, J., Du, J., Lu, W., Mao, H.: Exact and approximate analysis of surface acoustic waves
in an infinite elastic plate with a thin metal layer. Ultrasonics 44, e941–e945 (2006)

11. Godoy, E., Durán, M., Nédélec, J.C.: On the existence of surface waves in an elastic half-space
with impedance boundary conditions. Wave Motion 49(6), 585–594 (2012)

12. Pham, C.V., Vu, A.: Effective boundary condition method and approximate secular equations
of Rayleigh waves in orthotropic half-spaces coated by a thin layer. J. Mech. Mater. Struct.
11(3), 259–277 (2016)

13. Vinh, P.C., Xuan, N.Q.: Rayleigh waves with impedance boundary condition: formula for the
velocity, existence and uniqueness. Eur. J. Mech.-A/Solids 61, 180–185 (2017)

14. Aghalovyan, L.: Asymptotic Theory of Anisotropic Plates and Shells. World Scientific (2015)
15. Andrianov, I.V., Awrejcewicz, J., Manevitch, L.I.: Asymptotical Mechanics of Thin-Walled

Structures. Springer Science and Business Media (2013)



462 J. Kaplunov et al.

16. Chebakov, R., Kaplunov, J., Rogerson, G.: Refined boundary conditions on the free surface of
an elastic half-space taking into account non-local effects. Proc. R. Soc. Lond. A Math. Phys.
Eng. Sci. 472, 20150800 (2016). The Royal Society

17. Kaplunov, J., Prikazchikov, D.: Explicit models for surface, interfacial and edge waves. In:
Craster, R., Kaplunov, J. (eds.) Dynamic Localization Phenomena in Elasticity, Acoustics and
Electromagnetism, vol. 547, pp. 73–114. Springer, Berlin (2013)

18. Kaplunov, J., Prikazchikov, D.A.: Asymptotic theory for Rayleigh and Rayleigh-type waves.
Adv. Appl. Mech. 50, 1–106 (2017)
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Abstract An electrically insulated inclusion at the interface of two piezoelectric
semi-infinite spaces under the action of antiplane mechanical and in-plane electric
loadings is analyzed. One zone of the inclusion is absolutely rigid while the other
part is mechanically soft. This problem is important for practical applications, but
it has not been solved earlier at least in an analytical way. The presentations of all
electro-mechanical quantities via sectionally-analytic vector-functions are obtained.
With use of these presentations, the combined Dirichlet-Riemann boundary value
problem is formulated and an exact analytical solution of this problem is found.
On the base of this solution, the closed form analytical expressions for the required
electro-mechanical quantities along the interface are derived. Particularly the stress
jump along the mechanically rigid part of the inclusion is found and additionally
the variation of this stress along its upper face is also given. The values of elec-
tromechanical quantities along the corresponding parts of the material interface are
presented graphically. Singular points of the shear stress, strain and also the electric
displacement and field are found and the corresponding intensity factors are deter-
mined. The dependence of the stress intensity factor on the intensity of the electric
displacement and the relation of the rigid and soft zone lengths is investigated.
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1 Introduction

Piezoelectric materials exhibit practically useful phenomenon because they produce
an electric field when being deformed and undergo deformation when subjected to
an electric field. Due to this intrinsic electro-mechanical coupling behaviour, piezo-
electric materials have been widely used in modern technologies as sensors and
actuators, being often adhered to substrates or embedded in polymer matrices. It is
well known that piezoelectric ceramics are very brittle and susceptible to fracture.
Although certain critical conditions might lead to the crack growth and propagation
into the matrix, in many cases because of interface defects, e.g. interface inclusions,
the fracture appear and grow from these defects leading to a progressive debonding.
This important phenomenon has attracted certain attention in the scientific literature.

A conducting rigid line inclusion at the interface of two bonded piezoelectric
materials was considered by Deng and Meguid [1]. Combining the analytic function
theory and Stroh formalism the closed-form expressions for the field variables were
found. The generalized two-dimensional problem of a dielectric rigid line inclusion,
at the interface between two dissimilar piezoelectric media subjected to piecewise
uniform loads at infinity, is studied by means of the Stroh theory by Gao and Fan
[3]. The problem was reduced to the Hilbert problem and the closed-form expres-
sions were obtained. The mixed boundary value problem for a debonded electrically
conducting rigid line inclusion situated at the interface of two piezoelectric half
planes was considered analytically by Wang and Shen [12] with use of the Stroh
formalism. The model based on the assumption that all of the physical variables, i.e.,
tractions, displacements, normal component of electric displacements and electric
potential, are discontinuous across the interface defect was analyzed in this work.
An axisymmetric contact problem of a rigid inclusion embedded in the piezoelectric
bimaterial frictionless interface under the action of far-field compression and electric
displacement was studied by Eskandari et al. [2]. An arc-shaped conducting rigid line
inclusion situated between a circular piezoelectric inhomogeneity and an unbounded
piezoelectric matrix subjected to the uniform anti-plane shear stresses and in-plane
electric fields at the infinity was considered by Wang and Schiavone [11].

It is worth to be noted that the mentioned results concerning the rigid inclusions
at the interface between piezoelectric materials are obtained under the assumption
that the inclusion is rigid along all it length. However in some cases important
for practical applications the inclusion’s rigidity can change from one its part to
another. The mathematical model in such case becomes much more complicated,
therefore, the associated analytical solutions has not been obtained yet to the authors
knowledge. This important case of interface inclusion is studied in present paper and
exact analytical solution for this case is obtained.
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2 Basic Equations for a Piezoelectric Material Under
Out-of-Plane Mechanical Loading and In-Plane Electric
Loading

Constitutive relations for a linear piezoelectric material in the absence of body forces
and free charges can be presented in the form by Pak [10]:

�i J � Ei J Kl VK ,l , (1)

�i J, i � 0, (2)

where

VK �
{
uk, K � 1, 2, 3,

ϕ, K � 4,
(3)

�i J �
{

σi j , i, J � 1, 2, 3,

Di , i � 1, 2, 3; J � 4,
(4)

Ei J Kl �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci jkl , J, K � 1, 2, 3,

eli j , J � 1, 2, 3; K � 4,

eikl , K � 1, 2, 3; J � 4,

−εil , J � K � 4,

(5)

and uk, ϕ, σi j , Di are the elastic displacements, electric potential, stresses and elec-
tric displacements, respectively. Furthermore, ci jkl, eli j and εi j are the elastic, piezo-
electric and dielectric constants, respectively. Small subscripts in (1)–(5) and after-
wards are always running from 1 to 3, capital subscripts are ranging from 1 to 4 and
Einstein’s summation convention is used in (1), (2).

For the out-of-plane mechanical loading and in-plane electric loading assuming
the material is transversely isotropic with the poling direction parallel to the x3-axis
one has

u1 � u2 � 0, u3 � u3(x1, x2), ϕ � ϕ(x1, x2).

Then using the contracted notation, whereby a pair of indices is changed into
a single index according to the rule: 11→1, 22→2, 33→3, 23 or 32→4, 13 or
31→5, 12 or 21→6, the constitutive relations take the form:{

σi3

Di

}
� R

{
u3,i
ϕ,i

}
, (6)

where i � 1, 2 and R �
[
c44 e15
e15 −α11

]
.
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Introducing the vectors

u � [u3, ϕ]
T , t � [σ23, D2]

T , (7)

one can write

t � Ru,2. (8)

Because u3 and ϕ satisfy the equations�u3 � 0, �ϕ � 0, i.e. they are harmonic,
the vector u can be presented in the form

u � 2Re�(z) � �(z) + �(z̄), (9)

where �(z) � [�1(z), �2(z)]T is an arbitrary analytic function of the complex
variable z � x1 + i x2.

Substituting (9) in (8) and using the designationQ � iR, we arrive to the equations

t � Q�′(z) +Q�
′
(z̄). (10)

Transform further the presentations (9) and (10). Taking into account that

u′ � �′(z) + �
′
(z̄)

and introducing the vectors

v′ � [σ32,−E1]
T , P � [

u′
3, D2

]T
, (11)

one arrives to the following relations

v′ � A�′(z) + A�
′
(z̄), (12)

P � B�′(z) + B�
′
(z̄), (13)

where E1 � ∂ϕ/∂x1 is the electric field in the direction x1 and the matrixes A and
B have the form

B �
[

1 0
Q21 Q22

]
, A �

[
Q11 Q12

0 1

]
.

3 Bimaterial Case

Suppose that the plane (x1, x2) is composed of two half-planes x2 > 0 and x2 < 0.
The presentation (12), (13) can be written for regions x2 > 0 and x2 < 0 in the form
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v(m) � A(m)�(m)(z) + A
(m)

�
(m)

(z̄), P (m) � B(m)�′(m)(z) + B
(m)

�
′(m)

(z̄), (14)

where m � 1 for the region 1 and m � 2 for the region 2; A(m) and B(m) are the
matrices A and B for the regions 1 and 2, respectively; �(m)(z) are arbitrary vector-
functions, analytic in the regions 1 and 2, respectively.

Next we require that the equality P (1) � P (2) holds true on the entire axis x1.Then
it follows from (14)

B(1)�′(1)(x1 + i0) + B
(1)

�
′(1)

(x1 − i0) � B(2)�′(2)(x1 − i0) + B
(2)

�
′(2)

(x1 + i0).
(15)

Here and thereafter a designation F(x1 ± i0) means the limit value of a function
F(z) at y → 0 from above or below of the x1-axis, respectively. The Eq. (15) can be
written as

B(1)�′(1)(x1 + i0) − B
(2)

�′(2)(x1 + i0) � B(2)�′(2)(x1 − i0) − B
(1)

�′(1)(x1 − i0).

The left and right sides of the last equation can be considered as the boundary
values of the functions

B(1)�′(1)(z) − B
(2)

�′(2)(z) and B(2)�′(2)(z) − B
(1)

�′(1)(z). (16)

Due to last functions are analytic in the upper and lower planes, respectively, and
using Liouville’s theorem we find that each of these functions is equal to 0 for any z
from the corresponding half-plane. Hence, we obtain

�
′(2)

(z) �
(
B
(2)
)−1

B(1)�′(1)(z) for x2 > 0, (17)

�
′(1)

(z) �
(
B
(1)
)−1

B(2)�′(2)(z) for x2 < 0. (18)

Further, we find the jump of the vector-function

〈
v′(x1)

〉 � v′(1)(x1 + i0) − v′(2)(x1 − i0), (19)

when passing through the interface. Determining from the first formula (14)

v′(m)(z) � A(m)�′(m)(z) + A
(m)

�
′(m)

(z̄)

or

v′(m)(x1 ± i0) � A(m)�′(m)(x1 ± i0) + A
(m)

�
′(m)

(x1 ∓ i0), (20)

and substituting in (19), one gets〈
v′(x1)

〉 � A(1)�′(1)(x1 + i0) + A
(1)

�′(1)(x1 − i0) − A(2)�′(2)(x1 − i0) − A
(2)

�′(2)(x1 + i0).
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Finding further �′(2)(x1 − i0) � (
B(2)

)−1
B
(1)

�
′(1)

(x1 − i0) from (18) and sub-
stituting this expression together with (17) at x2 → +0 in the latest formula, leads
to

〈
v′(x1)

〉 � D�′(1)(x1 + i0) + D�
′(1)

(x1 − i0),

where D � A(1) − A
(2)
(
B
(2)
)−1

B(1).

Introducing a new vector-function, the last relation can be written as

〈
v′(x1)

〉 � W+(x1) − W−(x1), (21)

where

W (z) �
⎧⎨
⎩D�′(1)(z), x2 > 0,

−D�
′(1)

(z), x2 < 0.
(22)

The second relations (14) gives

P (1)(x1, 0) � B(1)�′(1)(x1 + i0) + B
(1)

�
′(1)

(x1 − i0). (23)

Determining further �′(1)(x1 + i0) and �
′(1)

(x1 − i0) from (22) and substituting the
obtained relations into (23), leads to

P (1)(x1, 0) � SW+(x1) − SW−(x1), (24)

where

S � B(1)D−1 �
[
A(1)

(
B(1)

)−1 − A
(2)
(
B
(2)
)−1

]−1

. (25)

It is found out that for the considered class of piezoelectric materials the matrix
S has the following structure

S �
[
is11 s12
s21 is22

]
, (26)

where all skl (k, l � 1, 2) are real.
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4 Formulation of the Problem for an Electrically Insulated
Inclusion with Stepwise Changing Rigidity

Consider and electrically insulated inclusion c ≤ x1 ≤ b at the interface x2 � 0. It
is assumed that this inclusion is absolutely rigid for c ≤ x1 ≤ a and is mechanically
“soft” at a < x1 < b (a < b). Such situation can take place e.g. for thinmechanically
“soft” interface layer adjacent with much more rigid inclusion which both have
infinite lengths in the direction x3 and the properties of electrical insulator (Fig. 1).

Then the boundary conditions at the interface are of the form

ε
(1)
13 � ε

(2)
13 � 0, D(1)

2 � D(2)
2 � 0 for c < x1 < a, (27)

D(1)
2 � D(2)

2 � 0, 〈σ23〉 � 0 〈ε13〉 � 0 for a < x1 < b, (28)

〈σ23〉 � 0, 〈D2〉 � 0, 〈ε31〉 � 0, 〈E1〉 � 0 for x1 /∈ (c, b). (29)

We also assume that a vector P∞ � [
ε∞
13, D

∞
2

]T
is prescribed at infinity.

Consider (24) in the following expanded form

ε
(1)
13 (x1, 0) � is11W

+
1 (x1) + s12W

+
2 (x1) + is11W

−
1 (x1) − s12W

−
2 (x1),

D(1)
2 (x1, 0) � s21W

+
1 (x1) + is22W

+
2 (x1) − s21W

−
1 (x1) + is22W

−
2 (x1), (30)

in which (26) was taken into account. Combining the Eq. (30) one arrives at the
presentations

a bc

2D∞

13ε ∞

1x

2x

2D∞

( ) ( ) ( )1 1 1
44 15 11, , C e α

( ) ( ) ( )2 2 2
44 15 11, , C e α

13ε ∞

Fig. 1 An electrically insulated inclusion with stepwise changing rigidity



470 V. V. Loboda et al.

ε
(1)
13 (x1, 0) − im j D

(1)
2 (x1, 0) � t j

[
F+
j (x1) + γ j F

−
j (x1)

]
, (31)

where

Fj (z) � W2(z) + is jW1(z), (32)

and t j � s12 − m js22, γ j � −(s12 + m js22
)
/t j , s j � (s11 + m js21)/t j , m1,2 �

∓
√

− s11s12
s21s22

.

It follows from the last equations that s1,2 � −m1,2, γ2 � 1/γ1, and the values
m1,2 are real.

Because according to (32) F+
j (x1) − F−

j (x1) � W +
2 (x1) − W−

2 (x1) +
is j
[
W +

1 (x1) − W−
1 (x1)

]
, then with use of (21) one gets

〈−E1(x1, 0)〉 + is j 〈σ23(x1, 0)〉 � F+
j (x1) − F−

j (x1). (33)

It is sufficient to apply the relations (31), (33) in the following analysis only for
j � 1, therefore, assuming j � 1, the Eqs. (31) and (33) can be presented in the
form

ε
(1)
13 (x1, 0) − im1D

(1)
2 (x1, 0) � t1

[
F+
1 (x1) + γ1F

−
1 (x1)

]
, (34)

〈−E1(x1, 0)〉 + is1〈σ23(x1, 0)〉 � F+
1 (x1) − F−

1 (x1), (35)

where m1 � −
√

− s11s12
s21s22

, s1 � −m1.

Taking into account that for x1 /∈ (c, b) the relationships F+
1 (x1) � F−

1 (x1) �
F1(x1) are valid, it follows from Eq. (34)

(1 + γ1)t1F1(x1) � ε
(1)
13 (x1, 0) − im1D

(1)
2 (x1, 0) for x1 → ∞.

Using the fact that the function F1(z) is analytic in the whole plane cut along (c, b)
and applying the conditions at infinity, one gets from the last equation

F1(z)|z→∞ � ε̃13 − i D̃2, (36)

where ε̃13 � ε∞
13
r1

, D̃2 � m1D∞
2

r1
, r1 � (1 + γ1)t1.

5 Absolutely Rigid Inclusion Along All Its Length

Consider now the case of an absolutely rigid inclusion along all its length. In this case
a � b and the interface conditions (27) and (29) should only be satisfied. Satisfying
conditions (27) and (29) with use of (34) leads to the following equation
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F+
1 (x1) + γ1F

−
1 (x1) � 0 for c < x1 < a. (37)

The solution of this equation under the condition at infinity (36) was found with
use of [8] in the form

F1(z) � (
ε̃13 − i D̃2

) z − (a + c)/2 − iεl√
(z − c)(z − a)

(
z − c

z − a

)iε

, (38)

where ε � 1
2π ln γ1, l � b − c.

The shear strain and electric displacement at the interface are obtained from (34)
as follows

ε
(1)
13 (x1, 0) − im1D

(1)
2 (x1, 0) � (

ε∞
13 − im1D

∞
2

) x1 − (a + c)/2 − iεl√
(x1 − c)(x1 − a)

(
x1 − c

x1 − a

)iε

for x1 > a

(39)

and the electric field and the shear stress jumps are found from the formula (35) in
the form

〈−E1(x1, 0)〉 + is1〈σ23(x1, 0)〉 � − ε∞
13 i + m1D

∞
2

t1
√

γ1

x1 − (a + c)/2 − iεl√
(x1 − c)(a − x1)

(
x1 − c

a − x1

)iε
for c < x1 < a.

(40)

Integrating the last relation, we obtain

〈ϕ(x1, 0)〉 + is1〈σ̃23(x1, 0)〉 � √
(x1 − c)(a − x1)

{
ε∞
13 i + m1D∞

2

t1
√

γ1

(
x1 − c

a − x1

)iε
}
for c < x1 < a,

where 〈σ̃23(x1, 0)〉 � ∫ 〈σ23(x1, 0)〉 dx1.
The jump of the electric potential over the inclusion can be easily found as real

part of the last equation. It follows fromEqs. (38)–(40) that the oscillating singularity
takes place at the crack tips in this case.

6 Solution of the Problem for an Electrically Insulated
Inclusion with Stepwise Changing Rigidity

Consider now the problem formulated at the beginning of Sect. 3 (Fig. 1). Relations
(21), (24) and, consequently, (34), (35) ensure satisfying equation P (1)(x1, 0) �
P (2)(x1, 0) for the whole interface and, accordingly, satisfying the second and third
interface conditions (29). Further satisfaction of first and forth conditions (29) pro-
vides the analyticity of the function F1(z) for the whole plane with a cut along the
segment (c, b) of the interface. Satisfying the remaining boundary conditions (27)
and (28) with use of (34) and (35), one gets the following equations

F+
1 (x1) + γ1F

−
1 (x1) � 0 for c < x1 < a, (41)
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Im
[
F+
1 (x1) + γ1F

−
1 (x1)

] � 0, Im
[
F+
1 (x1) − F−

1 (x1)
] � 0 for a < x1 < b.

The last two relations lead to the equation

Im F±
1 (x1) � 0 for a < x1 < b. (42)

Relations (41) and (42) present the combined Dirichlet-Riemann boundary value
problem. The solution of such problem was found and applied to the analysis of
a rigid stamp by Nahnein and Nuller [9]. Concerning the problem of an in-plane
interface crack, this solution has been developed by [7] and Kozinov et al. [5].
Using these results, an exact solution of the problem (41) and (42), satisfying the
condition at infinity (36) as well as the condition of the electric potential uniqueness
for overcoming the inclusion [4] and the requirement of its equilibrium, can bewritten
in the form

F1(z) � P(z)X1(z) + Q(z)X2(z), (43)

where

P(z) � C1z + C2, Q(z) � D1z + D2, X1(z) � ieiχ(z)/
√
(z − c)(z − b),

X2(z) � eiχ (z)/
√
(z − c)(z − a), χ (z) � 2ε ln

√
(b − a)(z − c)√

l(z − a) +
√
(a − c)(z − b)

,

C1 � −D̃2 cosβ − ε̃13 sin β, D1 � ε̃13 cosβ − D̃2 sin β,

C2 � −c + b

2
C1 − β1D1, D2 � β1C1 − c + a

2
D1

with

β � ε ln
1 − √

1 − λ

1 +
√
1 − λ

, β1 � ε
√

(a − c)(b − c), λ � b − a

l
.

Using the solution (43) together with formula (34), one gets

ε
(1)
13 (x1, 0) − im1D

(1)
2 (x1, 0) �

[
Q(x1)√
x1 − a

+
i P(x1)√
x1 − b

]
r1 exp[iχ(x1)]√

x1 − c
for x1 > b, (44)

ε
(1)
13 (x1, 0) � t1P(x1)√

(x1 − c)(b − x1)

[
(1 − γ1) cosh χ0(x1) + (1 + γ1) sinh χ0(x1)

]
+

t1Q(x1)√
(x1 − c)(x1 − a)

[
(1 + γ1) cosh χ0(x1) + (1 − γ1) sinh χ0(x1)

]
for a < x1 < b,

(45)

where χ0(x1) � 2ε tan−1
√

(a−c)(b−x1)
(b−c)(x1−a)

.
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Substituting the solution (43) into (35) gives the following formulas

−〈E1(x1, 0)〉 + is1〈σ23(x1, 0)〉 � 2
√

α

[
P(x1)√
b − x1

− i
Q(x1)√
a − x1

]
exp
[
iχ∗(x1)

]
√
x1 − c

for c < x1 < a,

(46)

−〈E1(x1, 0)〉 � 2√
x1 − c

[
P(x1)√
b − x1

cosh χ0(x1) +
Q(x1)√
x1 − a

sinh χ0(x1)

]
for a < x1 < b,

(47)

where χ∗(x1) � 2ε ln
√
(b−a)(x1−c)√

l(a−x1)+
√
(a−c)(b−x1)

, α � (γ1+1)2

4γ1
.

The analysis shows that the obtained solution has the oscillating singularity at the
left end of the inclusion, which is similar to derived in Sect. 5. However, it is very
important that this solution has the conventional square root singularity at the right
crack tip and, therefore, commonly used intensity factors can be introduced. Thus,
we introduce further the following mechanical strain and electrical displacement
intensity factors (IFs)

Kε � lim
x1→a+0

√
2π(x1 − a)ε

(1)
13 (x1, 0), KD � lim

x1→b+0

√
2π(x1 − b)D(1)

2 (x1, 0).

(48)

Using Eq. (45) and taking into account that χ0(a) � ln
√

γ1 one can find

Kε � r1Q(a)√
a − c

√
2π

α
. (49)

The intensity factor KD can be found from the formula (44) and can be written in
the form

KD � − r1
m1

√
2π

l
P(b). (50)

It follows from Eq. (44) that the strain ε
(1)
13 (x1, 0) in the right neighborhood of the

point b is finite, but Eq. (45) shows that in the left neighborhood of this point it is
singular and the corresponding IF

Kεb � lim
x1→b−0

√
2π(b − x1)ε

(1)
13 (x1, 0)

is equal to

Kεb � r1γ0

√
2π

l
P(b) � −m1γ0KD, (51)

where γ0 � 1−γ1
1+γ1

. Thus, we have only two independent IFs at the points a and b.
These IFs can be presented in the form
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Kε �
√

πl

2α

[√
1 − λ

(
ε∞
13 cosβ − m1D

∞
2 sin β

)− 2ε
(
ε∞
13 sin β + m1D

∞
2 cosβ

)]
,

(52)

KD � 1

m1

√
πl

2

[(
ε∞
13 sin β + m1D

∞
2 cosβ

)
+ 2ε

√
1 − λ

(
ε∞
13 cosβ − m1D

∞
2 sin β

)]
.

(53)

It is worth to be mentioned that the identity

αK 2
ε + m2

1K
2
D � πl

2

(1 − λ)(1 + 4ε2)2

1 + 4ε2 − λ

[(
ε∞
13

)2
+ m2

1

(
D∞

2

)2]
(54)

is valid.
Using of Eq. (36) for x1 → a − 0 permits to obtain the following expressions of

〈σ23(x1, 0)〉 via the stress intensity factor Kε:

〈σ23(x1, 0)〉 � − 2α

r1s1

Kε√
2π(a − x1)

for x1 → a − 0. (55)

7 Determination of the Stress and the Electric Fields
at the Interface

The solutions obtained in the previous sections give only the jumps of the stress σ23

and the electric field E1 over the material interface. It is clear that the actual values of
these functions on the upper and lower faces of the inclusion and at it continuations
is desirable to know. For this purpose in addition to the solution (43) the function
F2(z), which is the solution of the problem of linear relationship

F+
2 (x1) + γ2F

−
2 (x1) � 0 for c < x1 < a, (56)

Im F±
2 (x1) � 0 for a < x1 < b, (57)

with the condition at infinity

F2(z)|z→∞ � ε̂13 − i D
∧

2, (58)

should be used. The values ε̂13 and D
∧

2 are defined as ε̂13 � ε∞
13
r2
, D
∧

2 � m2D∞
2

r2
,

r2 � (1 + γ2)t2.
The solution of the problem (56)–(58) is very similar to (43), therefore, we will

not present it here and only consider the properties of this solution in the following
for each section of the interface.

Presenting (32) in the form



Electrically Plane and Mechanically Antiplane Problem … 475

F1(z) � W2(z) + is1W1(z), F2(z) � W2(z) + is2W1(z) (59)

and taking into account that s2 � −s1, one gets

W1(z) � −i
F1(z) − F2(z)

2s1
, W2(z) � F1(z) + F2(z)

2
. (60)

It follows from the Eq. (22)

�′(1)(z) � D−1W (z) for x2 > 0, �
′(1)

(z) � −D
−1
W (z) for x2 < 0.

Substituting these presentations into Eq. (20), one has

v′(1)(x1 + i0) � 2Re
[
A(1)D−1W+(x1)

]
. (61)

For the determination of (61) the expressions of F+
1 (x1) and F+

2 (x1) from (60) should
be known.

With use of (21) and (59) and also the identities γ2 � γ −1
1 , t2 � −γ1t1 one gets

for x1 ∈ (c, a)

F+
2 (x1) � γ −1

1 F+
1 (x1).

It means that the formula (61) for x1 ∈ (c, a) can be written in the form

{
σ23(x1, 0)

−E1(x1, 0)

}+

� 2Re

⎡
⎢⎣A(1)D−1

⎧⎪⎨
⎪⎩
is−1

1

(
γ −1
1 F+

1 (x1) − F+
1 (x1)

)
γ −1
1 F+

1 (x1) + F+
1 (x1)

⎫⎪⎬
⎪⎭
⎤
⎥⎦, (62)

where one can get from (43)

F+
1 (x1) � √

γ1

[
P(x1)√
b − x1

− i
Q(x1)√
a − x1

]
exp[iχ∗(x1)]√

x1 − c
for c < x1 < a. (63)

Taking into account the properties

X±
1 (x1) � ±e±χ0(x1)

√
(x1 − c)(b − x1)

, X±
2 (x1) � e±χ0(x1)

√
(x1 − c)(x1 − a)

for x1 ∈ (a, b),

one gets for this interval F+
2 (x1) � F−

1 (x1) and the formulas (60), (61) can be written
in the form

{
σ23(x1, 0)

−E1(x1, 0)

}+

� 2Re

⎡
⎣A(1)D−1

⎧⎨
⎩−is−1

1

(
F+
1 (x1) + F−

1 (x1)
)

F+
1 (x1) − F−

1 (x1)

⎫⎬
⎭
⎤
⎦ for x1 ∈ (a, b),

(64)
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where it follows from (43) that

F+
1 (x1){±}F−

1 (x1)

� 2√
x1 − c

[
P(x1)√
b − x1

{
sinh
cosh

}
χ0(x1) +

Q(x1)√
x1 − a

{
cosh
sinh

}
χ0(x1)

]
for x1 ∈ (a, b).

(65)

If x1 /∈ (c, b) then F+
1 (x1) � F−

1 (x1) � F1(x1). Analyzing (43) and the solution
of the problem (56)–(58) one gets F2(x1) � −F1(x1) and the formulas (60), (61)
attain the form

{
σ23(x1, 0)

−E1(x1, 0)

}
� 2Re

⎡
⎣A(1)D−1

⎧⎨
⎩−is−1

1

(
F1(x1) + F1(x1)

)
F1(x1) − F1(x1)

⎫⎬
⎭
⎤
⎦ for x1 /∈ (c, b).

(66)

Formula (43) for F1(x1) is valid, in which x1 instead of z should be taken.
Thus, the formulas (62), (64) and (66) define the shear stress and the electric

field at the upper face of the material interface. Their values at the lower face in the
intervals (c, a) and (a, b) can be found in a simple arithmetic way with use of the
jumps (46) and (47).

Introduce further the following stress and electrical field intensity factors at the
point a:

K23 � lim
x1→a−0

√
2π(a − x1)σ

(1)
23 (x1, 0), KE � lim

x1→a−0

√
2π(a − x1)E

(1)
1 (x1, 0).

Using the expressions (62), (63) one gets{
K23

KE

}+

� 2
√
2π

Q(a)√
γ1(a − c)

Re

[
A(1)D−1

{
−s−1

1 (1 + γ1)

i(1 − γ1)

}]
. (67)

8 Numerical Illustration

The materials with the characteristics [6] c(1)44 � 43.7 × 109 Pa, e(1)15 � 8.12C/m2,
α
(1)
11 � 7.86 × 10−9 C/V m, c(2)44 � 44.6 × 109Pa, e(2)15 � 3.48C/m2, α

(2)
11 �

3.42 × 10−9 C/V m were chosen and c � −10mm, b � 10 mm.
The results for the shear stress σ23(x1, 0) at ε∞

13 � 10−4, D∞
2 � 0.5 × 10−2 C/m2

are shown in Figs. 2 and 3 for the zones (c, a) and (a, b), respectively. Lines I , II
and III correspond to a = 8, 6 and 4 mm, respectively. It is worth to mention that
this stress has an oscillating square root singularity at the left tip of the inclusion and
conventional square root singularity at both sides of the point a.
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Fig. 2 Shear stress σ
(1)
23 (x1, 0) variation in the zone (c, a)

Fig. 3 Shear stress σ
(1)
23 (x1, 0) variation in the zone (a, b)

The results of the shear strain ε
(1)
13 (x1, 0) calculation for x1 ∈ (a, b) and x1 > b

for the same strain and electric displacement at infinity as in Figs. 2, 3 are shown in
Figs. 4, 5, respectively. The analysis showed that this strain is very large at the point
a and then decreases on the distance from this point and further through the point b.
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Fig. 4 Shear strain variation ε
(1)
13 (x1, 0) in the zone (a, b)

Fig. 5 Shear strain ε
(1)
13 (x1, 0) variation for x1 > b

Electric displacements D(1)
2 (x1, 0) for x1 > b at ε∞

1 � 10−6, a � 6 mm and
D∞

2 � 0.5 × 10−2 C/m2 (line I), 0.25 × 10−2 C/m2 (II) and 10−3 C/m2 (III) are
shown in Fig. 6. It is seen from this figure that the electric displacements growth
very fast at the inclusion tip because of singularity and tends to its nominal values
for x1  b.



Electrically Plane and Mechanically Antiplane Problem … 479

Fig. 6 Electric displacement variation D(1)
2 (x1, 0) for x1 > b and ε∞

1 � 10−6

Table 1 The variation of stress intensity factor K23 for ε∞
13 � 0.5× 10−6 and different λ and D∞

2

103D∞
2

[
C/m2

]
λ

0.4 0.5 0.6

1 4495.83 3261.15 1785.9

0.75 4260.24 2770.25 976.77

0.5 4024.65 2279.36 167.64

0.4482 3975.83 2177.65 ≈ 0

0 3553.47 1297.58 −1450.62

−0.6608 2930.76 ≈ 0 −3589.31

−3.7709 ≈ 0 −6106.84 −13655.2

The variation of stress intensity factor for the same bimaterial as above, ε∞
13 �

0.5×10−6, c � −10 mm, b � 10 mm and different λ and D∞
2 are shown in Table 1.

It can be seen from this results that the SIF K23 essentially depends both on the
position of the point a and on the electrical displacement value. Moreover for each
λ the magnitudes of D∞

2 are found for which K23 becomes equal to 0.

9 Conclusion

Two bonded piezoelectric semi-infinite spaces under the action of antiplane mechan-
ical and in-plane electric loadings with an electrically insulated inclusion at the
interface are analyzed. It is assumed that one zone of the inclusion is absolutely
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rigid while the other part is mechanically soft. The presentations (34), (35) of the
required electro-mechanical quantities via sectionally-analytic vector-functions are
obtained. Satisfying the boundary conditions at the material interface the combined
Dirichlet-Riemann boundary value problem (41), (42) is formulated and an exact
analytical solution of this problem is found. Using this solution the closed form ana-
lytical expressions for the required electro-mechanical quantities at the interface are
derived. Particularly the stress and the electric field jumps (46) along the mechan-
ically rigid part of the inclusion is found and additionally the variation (62) of this
functions along its upper face is also given.

The values of some electromechanical quantities along the corresponding parts of
the material interface are also presented graphically for certain bimaterial, mechani-
cally rigid and soft inclusion zone lengths. Singular points of the shear stress, strain
and also the electric displacement and field are found and the corresponding intensity
factors are determined. The dependence of the stress intensity factor on the inten-
sity of the electric displacement and the relation on the rigid and soft zone lengths
is investigated. It is particularly shown that the stress intensity factor of the shear
stress essentially depends both on the position of the point a and on the electrical
displacement value. Moreover, a suitable choice of the electric field permits to turn
out this intensity factor to zero.
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Thermomechanical Coupling and
Transient to Steady Global Dynamics
of Orthotropic Plates

Valeria Settimi and Giuseppe Rega

Abstract Different reduced order models of thermomechanically coupled von
Kármán shear indeformable plate with prescribed linear temperature along the thick-
ness are comparatively investigated in terms of local and global dynamics exhibited
in active thermal regime, under harmonic transverse and constant axial mechani-
cal excitations. Two-d.o.f. one-way coupled models are then used for “economical”
yet reliable numerical investigation of the nonlinear dynamic response in terms of
the mechanical variable and of the dominant (membrane or bending) thermal vari-
able, under the corresponding thermal excitations inducing variably rich scenarios of
buckled mechanical response. Attention is focused on the important role played by
global dynamics in unveiling the meaningful effects entailed on the structure steady
mechanical response by the variably slow thermal transients taken into account by
the thermomechanically coupled model.

1 Introduction

Thermomechanical coupling in laminated plates has been recently amatter of refined
modeling at both the continuum and discretized level [5, 7], with a view to highlight-
ing the relevant effects on the structure nonlinear dynamic response. Dealing with
a reduced order model (ROM) of von Kármán shear-indeformable plate with one
mechanical (mid-plane transverse displacement) and two thermal (membrane and
bending) variables, the effects of thermoelastic coupling on mechanical vibrations
in passive thermal conditions (i.e., with no thermal excitations) have shown to be
relatively minor [5, 10], although the thermal variables dragged into the structure
response by the directly excited mechanical variable exhibit distinct qualitative and

V. Settimi · G. Rega (B)
Department of Structural and Geotechnical Engineering, Sapienza University of Rome,
Rome, Italy
e-mail: giuseppe.rega@uniroma1.it

V. Settimi
e-mail: valeria.settimi@uniroma1.it

© Springer International Publishing AG, part of Springer Nature 2019
I. V. Andrianov et al. (eds.), Problems of Nonlinear Mechanics
and Physics of Materials, Advanced Structured Materials 94,
https://doi.org/10.1007/978-3-319-92234-8_27

483

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92234-8_27&domain=pdf


484 V. Settimi and G. Rega

quantitative features, with the relevant coupling terms affecting the displacement in a
different way [10]. The role of different variables/terms of coupling in themechanical
and thermal equations was also addressed [5], along with the possibility to refer to
variably simplified models for catching some main aspects of the thermally affected
mechanical response [6]. Based on preliminary results, no seemingly significant
effects of thermoelastic coupling on mechanical vibrations were detected, even in
the presence of a non-vanishing heat flow or of explicit thermal sources giving rise
to a condition of active thermal dynamics [5].

However, more extended analyses conducted in the regime of full thermomechan-
ical coupling have originated a meaningful set of outcomes where the much slower
time scale over which thermal phenomena develop with respect to mechanical ones
entails non-trivial steady effects on the structure overall response [11]. This influ-
ence has been highlighted by means of a systematic numerical investigation of the
structure global dynamics, pursued through properly selected two-dimensional (2D)
cross-sections of the actual 4D basins of attraction.

Global nonlinear dynamics plays a fundamental role in the analysis, control, and
design of all engineering systems, as recently highlighted for a variety of them both
with reference to specific mechanical/dynamical issues [2, 8, 9] and within a more
general perspective [3]. For the considered thermomechanically coupled plate, even
in passive thermal regime global analysis has allowed to detect and understand a
substantially different scenario of dynamic response occurring in specific mechani-
cal conditions (i.e., vanishing mechanical stiffness) between coupled and uncoupled
models, due to the meaningful role played in the former just by the slow transient
evolution of the system thermal dynamics [10]. When considering also thermal exci-
tations in addition to mechanical ones, these slow transient effects on the steady
structural response are seen to be more pervasive and systematic, as highlighted by
the comprehensive investigation in [11].

The present work aims at overviewing some main effects of thermomechanical
coupling in active thermal regime and in the presence of also a prescribed axial
mechanical excitation, whose possible buckling effects may combine with thermal
ones. Yet, for coupled systems, one main issue consists of preliminarily evaluating
the relative importance of the various terms and variables of coupling in the gov-
erning equations, to the aim of a satisfactory — and more or less comprehensive —
description of the system response. Dealing in particular with the thermomechani-
cal interaction, fully [14] or (to a different extent) partially [1, 4, 12, 13] coupled
analyses can indeed be pursued, with possibly different outcomes depending on the
specifically considered situation or with an incomplete description.

Accordingly, the first part of this work (Sect. 2) is devoted to comparatively inves-
tigating some main local and global dynamical aspects of the structure nonlinear
response as obtained with different ROMs ranging from the original, fully cou-
pled, one with three degrees-of-freedom (d.o.f.) down to the simplest uncoupled
mechanical model in which the presence of a coexisting active thermal environment
is accounted for by merely including its known steady effect in the relevant equation
of motion. This allows to properly identify the actual need and/or the possible added
value (if any) of all workablemodels and to select a suitable one to be used for reliable
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yet “economical” systematic investigations, based on the structural response aspects
which one is interested in. Section3 highlights the role played by global analysis in
unveiling the effects of thermal transient on the structure steady dynamics, by con-
sidering two different kinds of thermal excitation entailing variably rich scenarios of
buckled mechanical response.

2 Reduced Order Models and Their Comparative
Outcomes

The thermomechanically coupled, geometrically nonlinear model here considered
refers to a rectangular laminated plate in Fig. 1, of thickness h, and edge lengths
a and b in the x and y directions, respectively. The plate is subjected to uniform
compressive forces px and py on the plate edges, to distributed harmonic trans-
verse mechanical excitation, and to thermal loadings. The model is derived within
a unified modeling framework integrating mechanical and thermal aspects which is
presented in [5, 10], to be referred for the formulation details. By considering clas-
sical displacements with von Kármán nonlinearities, along with a correspondingly
consistent linear variation of the temperature along the thickness, and in the context
of a minimal Galerkin discretization in conditions of no internal resonance between
the transverse modes of the laminate, single-mode approximations are assumed for
the transverse displacement w and the temperatures T0 and T1, while the in-plane
displacement components are statically condensed. The subsequent nondimension-
alization allows to obtain three coupled nonlinear ordinary differential equations for
a simply supported orthotropic single-layer plate withmovable and isothermal edges:

Ẅ + ā12Ẇ + ā13W + ā14W 3 + ā15TR1 + ā16W · TR0 + ā17 cos (t) = 0 (1a)

ṪR0 + ā22α1T∞ + ā23TR0 + ā24Ẇ · W + ā25e0(t) = 0 (1b)

ṪR1 + ā32TR1 + ā33Ẇ + ā34e1(t) = 0 (1c)

in terms of the nondimensional reduced variables W (deflection of the center of the
plate), TR0 (membrane temperature) and TR1 (bending temperature). Coefficients āi j
are defined in [10, 11], while the thermal excitations are represented by the constant
thermal difference between plate and environment T∞, and by the membrane and
bending excitations e0 and e1 derived from body source thermal energies, whose
distribution along the plate thickness is reported in Fig. 1.

In passive thermal regime, under specific conditions, the mechanical activation of
thermal variables thanks to the coupling terms in the relevant equations may furnish
contributions back to the mechanical equation able to modify the basins of attraction
organization, highlighting the need to consider the two-waymodel to grasp the actual
mechanical dynamics [10]. In the active thermal regime considered here, there are
hints from [5] about the low role played in the mechanical response by both the non-
directly excited thermal variables/equations (which govern the number of essential
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Fig. 1 Laminated rectangular plate subjected to various mechanical loads, and contributions to the
overall thermal distribution along the plate thickness

thermal degrees of freedom) and the mechanical coupling terms in thermal equations
(which govern the two-way coupling). To deeper investigate this aspect, and in order
to detect the simplest model to be used to grasp the main thermomechanical features
of the system response, it is of interest to develop a critical analysis of the various
models derivable from the general system (1). To this aim, reference is made to
an epoxy/carbon fiber composite plate of dimensions a = b = 1m and h = 0.01m.
The relevant mechanical and thermal properties are reported in [11], and furnish the
following values of the equations coefficients

ā12 = 0.0592, ā13 = (1 − p), ā14 = 0.6827, ā15 = −0.3674, ā16 = −0.9658,

ā17 = − f, ā22 = −1.4507, ā23 = 9.1137 · 10−5, ā24 = 1.01 · 10−4,

ā25 = −0.997719, ā32 = 7.8735 · 10−4, ā33 = 8.8714 · 10−4, ā34 = −12

obtained in primary resonance conditions, which represents themost critical situation
for an externally forced system, as a function of the precompression p and of the
harmonic forcing amplitude f . With respect to the latter, preliminary analyses in
presence of the sole mechanical excitations [10] show the possibility to catch the
main dynamical aspects of the system response also for low values of the amplitude
f , which is therefore fixed to f = 1, and the ability of the precompression in inducing
post-buckling behaviors for values higher than p = 2.52. In order to critically discuss
the effects of the thermal excitations on the mechanical behavior of the plate, yet
dealing with parameter values corresponding to physically admissible quantities,
the precompression load is set to p = 2.51, i.e. a mechanical incipient but not yet
triggered buckling configuration.

With the same objective, the thermal excitation is selected to reproduce the con-
dition able to most affect the mechanical response of the system, i.e. to more quickly
provide its contribution into themechanical equation thanks to the coupling terms ā15
or ā16. Observing the linear thermal stiffnesses ā23 and ā32, it results that the mem-
brane temperature evolution is much slower than the bending one (ā23/ā32 ∼= 0.12),
thus slowing down the influence of the membrane excitations (T∞ and e0) on the
mechanical vibrations [11]. For these reasons, the model comparison is developed
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by considering the presence of a bending excitation e1 with a linear variation along
the thickness which reproduces a cooling of an external surface and an equivalent
warming of the other.

The definition of the various, gradually simplified, models to be compared moves
from the most general fully coupled, or in different words two-way (from thermal
to mechanical, and from mechanical to thermal) coupled, 3 d.o.f. system (1) (3-2
model), which is able to comprehensively describe the thermomechanical behav-
ior of the plate. Neglecting the mechanical contribution into the thermal equations,
i.e. setting ā24 = ā33 = 0, a 3 d.o.f. one-way (from thermal to mechanical) coupled
model can be obtained (3-1model), while considering only the active thermal equa-
tion, i.e. eliminating Eq. (1b) from system (1), a 2 d.o.f. two-way model is defined
(2-2 model). With further reductions, a 2 d.o.f. one-way model (2-1 model) can be
deduced from 2-2 when neglecting the coupling term ā33, up to the most simplified
system composed of the sole mechanical equation (1a) (1model) without membrane
contributions (ā16 = 0) and with the bending thermal excitation taken into account
by setting the TR1 value corresponding to the mean steady state response obtained
from linearization of Eq. (1c):

TR1 = −ā34e1/ā32 (2)

Local and global dynamics of the five above described models are compared in
terms of bifurcation diagrams, basins of attraction and temporal evolution of selected
trajectories, as shown in Figs. 2, 3, 4, 5, 6 and 7. The outcomes of the bifurcation
diagrams in terms of minimum and maximum value of the mechanical displace-
ment W , obtained with the fully coupled 3-2 model and reported in Fig. 2, show
that, starting from a pre-buckling scenario for e1 = 0 with the sole existing P1 (thin
black) cross-well solution, the addition of a positive/negative bending excitation

Fig. 2 Bifurcation diagrams
of the displacement variable
W as a function of thermal
excitation e1, for p = 2.51.
Circle: saddle-node
bifurcation; Diamond:
period-doubling bifurcation
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(a) (b)

Fig. 3 Bifurcation diagrams of the thermal variables TR1 and TR0 as a function of thermal excitation
e1. aBifurcation diagrams of the bending temperature TR1 furnished by the 3-2, 3-1, 2-2, 2-1models.
b Bifurcation diagrams of the membrane temperature TR0 furnished by the 3-2 and 3-1 models.
Circle: saddle-node bifurcation; Diamond: period-doubling bifurcation

(a) (b)

Fig. 4 Basins of attraction in the mechanical plane, for p = 2.51 and e1 = 3 × 10−4. a Planar
section of the basins of attraction for the 3-2, 3-1, 2-2, 2-1 models. b Basins of attraction for the
1 model. Light gray: basin of the low-amplitude buckled solution P1II; Gray: basin of the high-
amplitude buckled solution P1IV; Black: basin of the period-2 solution P2

e1 proves to be able to generate buckled responses, though confined around only
one positive/negative equilibrium (i.e., in one of the two potential wells, in global
dynamics terms), depending on the sign of e1. Moreover, consistent with the phys-
ically expected effect of changing the sign of e1, the overall scenario of the system
mechanical response is antisymmetric, with the two stable low-amplitude buckled
solutions (P1I thick/P1II thin light gray curves) existing in complementary ranges of
the excitation, and with the high-amplitude ones (P1III thick/P1IV thin gray curves)
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Fig. 5 Time histories of displacement and thermal variables, for p = 2.51, e1 = 3 × 10−4 and
trivial mechanical and thermal initial conditions. a Temporal evolution of the mechanical displace-
ment W for 3-2, 3-1, 2-2, 2-1, 1 models. b Temporal evolution of the bending temperature TR1
for 3-2, 3-1, 2-2, 2-1 models. c Temporal evolution of the membrane temperature TR0 for 3-2, 3-1
models. Gray: 3-2 model; Green: 3-1 model; Red: 2-2 model; Blue: 2-1 model; Cyan: 1 model

(a) (b) (c)

Fig. 6 Phase portraits and Poincaré maps in the mechanical and thermal planes, for p = 2.51, e1 =
3 × 10−4 and trivial mechanical and thermal initial conditions. a Phase portraits in the mechanical
plane (W, Ẇ ) for 3-2, 3-1, 2-2, 2-1, 1models. b Phase portraits in the thermal plane (TR1, ṪR1) for
3-2, 3-1, 2-2, 2-1 models. c Phase portraits in the thermal plane (TR0, ṪR0) for 3-2, 3-1 models
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Fig. 7 Transient dynamics
of the mechanical response,
for p = 2.51, e1 = 3 × 10−4

and trivial mechanical and
thermal initial conditions.
Gray: 3-2 model; Green: 3-1
model; Red: 2-2 model;
Blue: 2-1 model; Cyan: 1
model

being confined in closer complementary ranges. As a consequence, for sufficiently
high values of e1, the system displays period-1 buckled solutions oscillating around
one sole varied configuration, together with cross-well period-2 solutions P2 (thick
black curves) confined in limited ranges of the positive/negative excitation values,
thus highlighting the possibility to exploit the e1 excitation to force the mechanical
buckling around a selected equilibrium, according to its sign. The described behavior
is exactly reproduced by all the four simplified models 3-1, 2-2, 2-1, 1, pointing out
that the steady dynamics of the periodic responses, or in other words the system
attractors, is insensitive to both the possibly different thermomechanical transient
and coupling.

Instead, differences among the models responses can be caught if looking at the
bifurcation diagrams in termsof the bending andmembrane thermal variables TR1 and
TR0, displayed in Fig. 3. In fact, while the response of the directly activated bending
variable TR1 (Fig. 3a) cannot be followed by the mechanical 1 model (though its
value, as known parameter, can be deduced fromEq. (2)), the behavior of the dragged
membrane temperature TR0 (Fig. 3b) can be described by the sole 3-2 and 3-1models
which include both the thermal variables. Moreover, with respect to the latter, the
fully coupled 3-2 model demonstrates to be the only one able to correctly grasp
its behavior, since the 3 d.o.f one-way model, although considering the membrane
variable, furnishes identically null solutions due to the non-activation of Eq. (1b),
which remains uncoupled andunforced. It isworth noting that the response in termsof
membrane temperature is not affected by the sign of the excitation, i.e. it is symmetric
with respect to the e1 = 0 line, coherently with TR0 describing the thermal behavior
in the plate mid-plane. Differently, the response of the bending thermal variable TR1

is organized along a straight line, due to the almost linear nature of the relevant
thermal equation.

When considering also possible variations of the mechanical initial conditions,
the comparison between coupled (i.e. 3-2, 3-1, 2-2, 2-1) and uncoupled 1 models
highlights meaningful discrepancies. Figure4 displays the basins of attraction (or
the relevant cross sections in the mechanical plane, depending on the system d.o.f.’s)
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realized, with trivial values of the thermal variables, after the application of a bending
excitation e1 = 3 · 10−4, corresponding to a power density linearly distributed along
the thickness z of 8687.3 · 103 · z kW/m3. The coupled models, whose outcomes
are coinciding and reported in Fig. 4a, provide discordant indications with respect
to those furnished by the bifurcation diagrams, with a monostable behavior char-
acterized by the sole (thin gray) high-amplitude buckled P1IV solution, without any
evidence of the expected basins of attraction of the thin light gray P1II and of the thick
black P2 responses. Conversely, the results obtained from the mechanical 1 model
coherently identify all the three different basins with dominance of the P1II response
and a markedly fractal organization.

The reasons of this disagreement have to be sought in the effect of the ther-
momechanical coupling together with the contemporary presence of slow and fast
dynamics. To better understand the behavior of the coupled systems, in fact, it is
worth noticing that the slowness of the bending thermal transient (which is taken
into account by all the four models due to the combined presence of Eq. (1c) and
term ā15) causes the contribution of the e1 excitation to be supplied gradually into
the mechanical equation by means of the coupling term related to TR1. On the other
hand, the mechanical vibration is much faster than the thermal one and its transient,
needed for reaching a stable solution, is very short. From a phenomenological view-
point, it appears possible to neglect the mechanical transient and to look only at the
attractor of the system, whose evolution with increasing values of the thermal bend-
ing excitation from zero to the selected value e1 = 3 · 10−4 can be followed in the
bifurcation diagram of Fig. 2. For low values of e1, where the thin black P1 attractor
is stable, the mechanical response is cross-well at least in its first initial steps, before
possibly jumping to the coexisting gray buckled solution P1IV upon its onset. But
when the bending excitation reaches a value (e1 ∼= ±5.6 · 10−5) providing a bending
thermal variable TR1 in the mechanical equation such to instabilize the P1 response
via period doubling bifurcation (see Fig. 2a), the mechanical trajectories are more
likely to swiftly jump onto the P1IV buckled response. Since this solution is stable
also after the arise of the further (thin light gray) buckled solution P1II, the system
response steadily remains on it in the whole considered cross-section of mechanical
initial conditions. In contrast, the thermal transient is totally ignored in model 1, in
which only the final value of the bending temperature evolution is added into the
mechanical equation, and the system is able to display the basins of all the three
solutions detected by the bifurcation diagram.

The effects of the various thermomechanical coupling terms can be further dis-
cussed by observing the temporal evolution of a single trajectory with fixed triv-
ial initial conditions (W = Ẇ = TR0 = TR1 = 0) followed by considering the five
proposed models. Looking at the mechanical response in Fig. 5a, the outcomes con-
firm the coinciding behavior of the four coupled models which reach the steady
high-amplitude gray P1IV solution, in contrast with the low-amplitude light gray
P1II oscillation detected by the uncoupled 1 system, due to the fact that the selected
mechanical initial condition belongs to different basins of attraction, as shown com-
paring the graphics of Fig. 4.
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The evolution of the directly activated bending variable displayed in Fig. 5b, pos-
sibly followed only by the four coupled models, allows to point out the role played
by the two-way coupling. In fact, despite the congruent steady value reached by all
models, the periodic motion can be grasped by the sole gray 3-2 and red 2-2 ones,
thanks to the oscillatory contribution provided by the mechanical response by means
of the coupling term related to ā33, while the one-way 3-1 and 2-1 models show a
stationary solution. Moreover, due to the coinciding outcomes of the 3 d.o.f. and of
the 2 d.o.f. (3-2 ≡ 2-2, 3-1 ≡ 2-1) models, it can be observed that the membrane
thermal variable does not affect the behavior of the bending temperature.

Finally, as previously stated (see Fig. 3b), the dynamics of the dragged membrane
temperature can be followed only if employing the fully coupled 3-2 model (see
Fig. 5c), which is able to originate a non-null response by means of the ā24 coupling
term, while the other model that also contemplates the presence of the TR0 variable,
i.e. the 3-1 model, provides null results due to the non-activation of Eq. (1b).

The characterization of the detected responses in the mechanical and thermal
planes is reported in Fig. 6 in terms of phase portraits and Poincaré maps; here,
the amplitude difference between the mechanical response identified by the coupled
models and that determined by the mechanical 1 system is highlighted (Fig. 6a), and
the very small amplitudes of the thermal variables are described (Fig. 6b, c).

In the light of the obtained results, and with the aim to focus the attention on
the mechanical behavior of the thermomechanical plate, it can be thus convenient
to work with the reduced 2 d.o.f. one-way 2-1 model, which is capable to correctly
describe the response in terms of both transversal displacement and stationary bend-
ing temperature, while requiring a minor computational effort and a dimensionally
lowered mathematical system with respect to the fully coupled one (1). Clearly, with
this model, information about the oscillatory nature of the bending temperature, as
well as any indication about the behavior of the membrane one, are neglected, which
have however proved to be negligible.

As a conclusive analysis, it is of interest to comparatively summarize the transient
dynamics of the mechanical response displayed by all the considered models, whose
outcomes are presented in Fig. 7, which underline the influence of the coupling
terms on the length of the non-stationary evolution. As shown, the shortest transient
is relevant to the mechanical cyan 1model, where the thermal contribution furnished
by the bending excitation is entirely provided into the mechanical equation at the
beginning of its time history. The two one-way models (green 3-1 and blue 2-1)
display the same transient duration, due to the fact that themembrane thermal variable
TR0, although considered in the 3-1model, is not activated by the excitation or by the
coupling term, therefore having no influence on the displacement evolution. Instead,
when the coupling terms are present also into the thermal equations, i.e., when
considering the two-way gray 3-2 and red 2-2 models, the non-stationary dynamics
lengthens, with the fully coupled 3-2 model which exhibits the longest transient
thanks to the very slow contribution supplied by also the dragged membrane variable
(whose slowness can be grasped by comparing the three graphics of Fig. 5).
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3 Transient and Steady Global Dynamics Under Thermal
Excitations

3.1 Bending

As shown in the previous section, the cross sections of the basins of attraction furnish,
for the coupled models, contrasting results with respect to the outcomes provided by
the bifurcation diagrams, due to the effect of the thermal transient into the evolution
of the mechanical displacement.

Referring to the reduced 2 d.o.f. one-way 2-1 model formerly introduced, the
matter can be better understood by also looking at different planar cross-sections of
the 3Dbasins of attraction. In fact, the basin considered in Fig. 4a for null values of the
thermal variable is certainly the reference natural one if thinking in purelymechanical
terms; however, a more comprehensive description of the basins organization in the
state space can only be obtained by considering planar cross-sections for also non-
trivial values of the thermal variables. This is necessary mostly if being interested in
grasping the final outcomes of the dynamics started with given initial conditions of
the variable specifically governing the system response, which is here the bending
temperature.

With application of the excitation value considered in Fig. 4, and looking at the
final outcomes of the dynamics started with given TR1 initial conditions, Fig. 8a
points out that relevant increasing values (Fig. 8b) succeed in catching the presence
of also other basins of attraction, up to reproducing the response of the mechanical
1 model when the initial condition is set to the relevant regime value, as highlighted
by the coincidence of results between Fig. 4b and the right panel of Fig. 8a. This
is due to the progressive shortening of the transient dynamics as the thermal initial
conditions become closer to the steady value to be attained, as shown in Fig. 8b,
which corresponds to reduce the gap that the bending thermal variable has to cover.

To summarize this behavior, a cross section of the basins of attraction in the
(TR1, Ẇ ) plane is presented in Fig. 8c, which is obtained by fixing the mechanical
initial condition to W = 1.75, within the buckled P1II light gray basin at TR1 = 3
(see the mid panel of Fig. 8a). For initial TR1 lower than 3, the response of the
coupled model always settles on the high-amplitude buckled P1IV gray basin, due
to the slow thermal contribution into the mechanical equation which is insufficient
to move the response towards the other, yet existing, P2 and P1IIattractors. For 3 <

TR1 < 5, the arise and enlargement of the low-amplitude P1II light gray basin is
highlighted, while for high TR1 initial conditions the latter becomes the only existing
solution for the system, according to the outcomes of the bifurcation diagrams of
Fig. 2 showing the P1IIresponse as the only possible one for high values of the
thermal excitation. In fact, setting a high TR1 initial condition corresponds to provide,
in the first step of the system dynamical evolution, a high contribution into the
mechanical equation bymeans of the coupling term related to ā15. As a consequence,
the displacement response is initially moved into the monostable range characterized
by the P1II solution, which therefore attracts all the trajectories regardless of the
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Fig. 8 a Cross sections of the basins of attraction of the thermomechanical model in the (W, Ẇ )
plane, with p = 2.51, e1 = 3 × 10−4, TR1 = 2.0, TR1 = 3.0 and TR1 = 4.57.b Detection of the
thermal initial conditions corresponding to the TR1 values in a, within the temporal evolution of the
bending temperature variable. cBasin of attraction cross section in the (TR1, Ẇ ) plane forW = 1.75.
Light gray: basin of the low-amplitude buckled solution P1II; Gray: basin of the high-amplitude
buckled solution P1IV; Black: basin of the period-2 solution P2

chosen initial velocity. Due to the fact that such solution is stable also when the
thermal variable lowers and stabilizes around its steady value, it represents the only
possible response of the system in the considered range.

3.2 Membrane

To critically discuss the effects of a membrane thermal excitation on the dynamical
behavior of the system, two different kinds of thermal forcing can be considered
according to the model, i.e. a time constant thermal difference T∞ between plate
and surrounding medium, which activates pure thermal convection on the external
surfaces and pure internal thermal conduction, or a time-independent thermal excita-
tion e0, constant along the thickness, which can be physically obtained by exploiting
the Joule effect due to the current passage in the plate (thanks, for example, to the
insertion of conductive metallic fibers or carbon nanotubes into epoxy matrix, aimed



Thermomechanical Coupling and Transient to Steady Global Dynamics… 495

at enhancing its electrical conductivity). From linearization of Eq. (1b), and the sub-
sequent substitution into Eq. (1a), a direct relation can be obtained among the two
thermal excitations and also the mechanical precompression p:

e0 = ā22 α1 T∞
ā25

= − ā23 TR0

ā25
= ā23 (p − 1)

ā16 ā25
(3)

It can be observed that e0 and T∞ produce the same effect on both the thermal
and the mechanical vibrations, and, due to the coupling into the mechanical equation
by means of a linear TR0 term, their action on the displacement variable corresponds
to that of the precompression p. Such correspondence is stressed in the bifurcation
diagram of the W displacement reported in Fig. 9a, obtained as a function of the
two different (thermal e0 and mechanical p) excitations, and, as done in the previous
sections, bymatching the zero of the thermal excitation with a p value corresponding
to the incipient buckling (p = 2.51).

The results show the ability of e0 in inducing a multistable post-buckling sce-
nario, with the passage from the sole pre-buckling thin black P1 solution to the con-
temporary presence of two couples of buckled responses oscillating around varied
positive/negative configurations of the plate, corresponding to low-amplitude buck-
led solutions (thick P1I/thin P1II light gray curves) and to high-amplitude solutions
(thick P1III/thin P1IV gray curves) coexisting in a relatively wide range of the control
parameters. The bifurcation diagram highlights also a globally symmetric behavior
of the solutions of each couple with respect to the trivial equilibrium, coherently with
the constant distribution of the membrane excitation along the plate thickness, and in
contrast with what obtained from the application of the bending excitation previously
described. Moreover, with respect to the results of Fig. 2, it is worth underlining that
in this case the pre-buckling solution P1 is stable also in the post-buckling regime,
where it becomes a high-amplitude cross-well solution oscillating around both the
varied plate equilibria.

In particular, when a positive thermal excitation of e0 = 10−4 is applied, the
system steady response is characterized by amultistable behavior including two pairs
of buckled solutions, P1III/P1IV and P1I/P1II, coexisting with the pre-buckling P1
response. However, the cross-section of the 3D basins of attraction with trivial values
of the thermal variables displays a completely different scenario, as shown in Fig. 9b,
in which the system behavior results to be monostable. The discrepancies between
expected and obtained behaviors of the model can be understood by considering
again the long thermal transient needed by the membrane temperature to attain its
final steady value.

In fact, it entails, in the mechanical equation, a slow thermal contribution to the
system overall stiffness up to reaching the value necessary to achieve the buckled
configuration. As a consequence, the mechanical response in the very first initial
steps of its temporal evolution falls onto the pre-buckling solution (black basin),
which represents the only stable response for the system when no thermal excitation
is applied, irrespective of the chosenmechanical initial conditions. Since it represents
a robust attractor in the whole range of parameters here considered, the trajectories
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(a) (b)

Fig. 9 a Bifurcation diagram of the W displacement as a function of the membrane excitation e0
and of the mechanical precompression p. b Cross section in the mechanical plane of the 3D basins
of attraction for p = 2.51 and e0 = 10−4. Black basin: pre-buckling solution P1

already settled on it do not modify their behavior also when other buckled responses
arise in the 3D state space.

Also in this case, as seen before, changing the thermal initial conditions causes the
arise and enlargement of the buckled P1III and P1IV basins of attraction (gray basins),
and the subsequent birth of the low-amplitude buckled P1I and P1II basins (light gray
basins), as shown in Fig. 10a for increasing values of TR0. This behavior is well repre-
sented in Fig. 10c, where the section in the (TR0-Ẇ ) plane is reported. The outcomes
confirm the dependency of the mechanical response on the thermal initial values,
and highlight a response similar to that obtained when analyzing the effects of the
bending excitation (see Fig. 8c). However, here three regions can be detected, corre-
sponding to qualitatively different responses of the system. For low values of TR0, the
mechanical displacement settles on the pre-buckling (black) P1 solution, while the
basins of the high-amplitude buckled solutions P1III and P1IV appear and enlarge their
compact part for 0.15 < TR0 < 1, anyway coexisting with the pre-buckling one and
showing a markedly fractal organization. For TR0 higher than 1, the low-amplitude
buckled responses P1I and P1II (light gray basins) also arise and widen, with evident
dominance of the one oscillating around the positive configuration, according to the
chosen positive mechanical fixed initial condition W = 2.0. The region of high TR0

values (i.e.,TR0 > 1.8) is finally governed by the sole P1II basin, confirming the out-
comes of the relevant bifurcation diagram of Fig. 9a which displays the presence of
the sole buckled P1I/P1IIcouple for high values of the thermal dynamics.

As a final comment, it is worth noting that the fractal arrangement of the basins
herein detected is not present in the previously analyzed bending forced case, due to
the different kind of mechanical buckling (symmetric versus antisymmetric) achiev-
able with the two thermal excitations. When the membrane variable is activated, in
fact, the coexistence of several buckled solutions possibly reachable by the trajecto-
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(a)

(b) (c)

Fig. 10 a Cross sections of the basins of attraction of the thermomechanical model in the (W, Ẇ )
plane, with p = 2.51, e0 = 10−4, TR0 = 0.2, TR0 = 0.6 and TR0 = 1.09475. b Detection of the
thermal initial conditions corresponding to the TR0 values in a, within the temporal evolution of
the membrane temperature variable. c Basin of attraction cross section in the (TR0, Ẇ ) plane for
W = 2.0. Light gray: basin of the low-amplitude buckled solutions P1II/P1I; Gray: basin of the
high-amplitude buckled solutions P1IV/P1III; Black: basin of the pre-buckling solution P1

ries causes the fractalization of the relevant basins, while the antisymmetric behavior
of the bending variable strongly reduces the multistability region and the basins are
organized in a more compact way.

4 Conclusions

Thermomechanical coupling of a reduced order model of von Kármán shear inde-
formable plate in active thermal regime and in the presence of an harmonic transverse
mechanical excitation and a constant axial excitation has been addressed, focusing
on both modeling aspects and phenomenological features of the transient and steady
nonlinear dynamic response.

The first part of the work has been devoted to comparatively investigating some
main local and global dynamical aspects of the response, as obtained with differ-
ent reduced order models ranging from the original, fully coupled, model with one
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mechanical (mid-plane transverse displacement) and two thermal (membrane and
bending) variables, down to the simplest uncoupled mechanical model in which the
presence of an active thermal environment is accounted for by merely including its
known steady effect in the relevant equation of motion. Both the two-way (from ther-
mal to mechanical, and from mechanical to thermal) and the one-way (from thermal
to mechanical) coupling have been considered, along with intermediate (two-d.o.f.)
models accounting for only the directly excited thermal equation/variable. This has
allowed to evaluate the relative importance of the various terms and variables of
coupling, in view of a satisfactory, and more or less comprehensive, description of
the system dynamics. Based on the considered (membrane or bending) thermal exci-
tation, the alternative two-d.o.f one-way coupled models obtained by skipping either
one (bending or membrane, respectively) of the two thermal equations/variables and
by neglecting themechanical contribution into the remaining (membrane or bending)
equation have been identified as the most “economical” ones to be used for a sys-
tematic numerical investigation aimed at reliably describing the response in terms
of mechanical variable and of the dominant (membrane or bending) thermal one,
although caught in its solely steady features.

In the second part of the work, the two alternative models have been used to inves-
tigate the plate dynamics under a bending or membrane thermal excitation, each one
of them inducing a variably rich scenario of buckledmechanical responses. Attention
has been focused on the important role played by global dynamics investigations in
unveiling the meaningful effects entailed on the plate steady mechanical response
by the variably slow thermal transients taken into account by the (though simplified)
thermomechanically coupled model. For each of the considered excitations, these
effects have been highlighted via a combined use of properly selected cross-sections
of the 4D basin of attraction and of the transient time history of the corresponding
thermal variable, by looking at the relevant outcomes against the local bifurcation
scenario of the mechanical displacement.
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State University (DSU) in 1954–1959. After graduating from the DSU, he worked
as an engineer and the head of theoretical group in the Design Bureau Yuzhnoye”
(1959–1964) and at the same time he studied in extramural postgraduate study in
DSU. He got the degree of Candidate of Sciences (PhD) for his thesis on stability of
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Scientific results obtained by Professor L.I. Manevitch (Manevich in some publi-
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I. Mechanics of Solids

Stability of Shells [1.1–1.18]

The first scientific works of L.I. Manevitch were devoted to structures stability
problems, mainly related to cylindrical shells. It was due to traditions of the
Dnepropetrovsk University scientific school (the direct teachers of L.I. were Prof.
Yu.A. Shevlyakov and Academician V.I. Mossakovskii), and to his work at the
Design Bureau “Yuzhnoye,” which set him and his colleagues complex applied
problems of design of reliable shell structures.

L.I. Manevitch’s researches on shell buckling included both theoretical and
experimental studies. The most important results obtained theoretically were con-
nected with stability of cylindrical shells under bending and non-uniform com-
pression in framework of the nonlinear theory [1.1–1.3]. In these papers, the lower
critical load of a cylindrical shell was determined for pure bending and for
non-uniform compression by applying the Rayleigh-Ritz method. It turned out that
the inhomogeneity of the pre-buckling stress state of the structure plays a different
role in shell bucking theory considering “small” or “large” perturbations. The
results of these solutions were used later in the well-known monographs of A.S.
Vol’mir, “Stability of Elastic Systems” (1963), “Stability of Deformable Systems”
(1967) and others.

Along with these researches, a number of studies were carried out on the stability
of smooth and reinforced shells (which had a predominantly applied orientation)
within framework of the linear theory [1.4–1.7, 1.15, 1.17]. E.g., the complicated
problem of buckling of the rocket structure consisting of a cylindrical tank with a
spherical bottom connected to the cylinder by a circular ring, subjected to internal
pressure, has been solved in [1.17]. At the same time, the analysis of the influence
of various factors (weakened boundary conditions, parameters of reinforcing ribs,
etc.) on the bearing capacity of the shells in the scope of various approximate
versions of the shell theory (“semi-momentless” theory, structurally-orthotropic
theory, certain simplified engineering schemes) served for L.I., perhaps, as the
impetus to comprehend the importance of “asymptotic thinking”, which allows to
understand the complex picture of “play of forces” in the shells.

At the same time, in the Research Laboratory of Structures Strength and
Reliability of the Dnepropetrovsk University, L.I. Manevitch, his colleagues and
disciples carried out a wide range of experimental studies, which made the
“Dnepropetrovsk school” known not only in the USSR but also abroad [1.8–1.13].

The extensive experiments made it possible to study the statistical properties of
buckling loads of compressed cylindrical shells, evaluate separately the influence of
various perturbing factors (initial imperfections, quality of the edges, etc.); to study
the effect of reinforcements, combined loading, and the rigidity of the testing
machine. The existence of different dimple-like local post-buckling equilib-
rium states of a compressed cylindrical shell has been experimentally revealed in
[1.11, 1.13]. In addition, the external perturbation energy, necessary to snap
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through from the initial shell state to a certain post-buckling one, has been deter-
mined [1.14, 1.16].

L.I. Manevitch’s researches on stability, carried out in 1960–70s, were related to
the most relevant directions and left a notable imprint in the shell buckling theory.
We note that he also applied to the problems of the shell stability in the subsequent
years [1.18].

Singular Asymptotics of Shells [1.19–1.30]

The first years of professional activity of L.M. were closely connected with the
theory of shells. At 1960s the triumphant procession of FEM in Mechanics of
Solids was just at the beginning, FEM codes (like ABAQUS, ANSYS) did not
exist, and the possibilities of computer technology were very limited. The analysis
of shells, especially ribbed ones, presented serious difficulties. Recall that the shell
theory can be interpreted as a part of the theory of elasticity for bodies, in which
two sizes significantly exceed the third one (thickness of the shell). As a result, a
natural small parameter appears in the equations, viz. the shell thickness to its radius
ratio h/R. Asymptotic methods in theory of shells are therefore quite adequate both
physically and mathematically. The asymptotic theory of isotropic shells was well
developed, but its generalization to reinforced shells was a non-trivial problem. L.
M. pointed out that some of the dimensionless parameters in the initial equations
(for example, the ratio of the flexural stiffness’ in different directions) are of the
order h/R. This fact made possible to obtain new non-trivial asymptotics of the
boundary value problems of ribbed shells [1.19]. A complete classification of
possible limit systems was obtained on the basis of the Newton polygon method
and its generalizations.

Asymptotic analysis for the most frequently used boundary conditions made it
possible to formulate simplified boundary value problems of order lower than the
original ones. Linear and nonlinear problems of statics, dynamics and stability were
considered. The main results were collected in [1.20].

V.V. Bolotin and, independently, Keller J.B. and Rubinow S.I. proposed an
effective asymptotic method for solving linear dynamical problems of the theory of
plates and shells with complicated boundary conditions (dynamic edge effect or
Keller-Rubinow wave method). L.M. by means of thin energetic estimates has
generalized the method to the nonlinear case [1.21]. Such a generalization, in
particular, allowed to take a fresh look at normal modes of nonlinear oscillations of
distributed systems and to obtain them analytically for complicated boundary
conditions [1.22–1.24].

After the appearance of powerful FEM codes, satisfying the demands of engi-
neering practice, interest to the theory of shells weakened significantly. The
nano-revolution revived the interest to nano-shells. Experiments showed an inter-
esting feature of nano-shells: they remain elastic at considerable deformations.
Thus, the main role in their description is played by geometric nonlinearity. Using
this observation L.M. and his coauthors have obtained interesting results
[1.25–1.30].
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Homogenization [1.31–1.35]

L.M.’s research in the field of homogenizationwas initiated by the problems of ribbed
shells analysis. The mathematical apparatus was based on asymptotic methods for
PDE with rapidly oscillating right-hand sides and boundary conditions. Note that the
works by N.S. Bakhvalov appearing at the same time were based on the so-called
Bakhvalov’s ansatz, and the works of the French school used the multi-scale
approach. The important features of L.M.’s work were the analytical solution of cell
problems and the analytical description of the boundary layers [1.31–1.35].

Composites [1.36–1.38]

After moving to Semenov Institute of Chemical Physics in Moscow (1976) L.M.
began activity in the theory of composite materials, which was new field for him.
A lot of his papers were devoted to the determination of the effective characteristics
of layered, fibrous and particle-filled composites for an elastic or elastoplastic
matrix with the complicated interface between the inclusions and the matrix [1.36,
1.34]. For densely packed, high-contrast composites the percolation theory was
used. Numerical results were compared with experimental data [1.37, 1.38].

Anisotropic Theory of Elasticity [1.39–1.45]

As shown by L.M., the boundary value problems of plane and spatial axisymmetric
elasticity theory in the case of strong anisotropy can be reduced asymptotically to
successively solved Laplace’s equations. For the plane problem, this gives possi-
bility to use complex analysis effectively, and for the spatial problem, the method of
integral transforms. There have been obtained approximate analytical solutions of
the contact problems with unknown boundary between the contact regions, prob-
lems of the transfer of static and dynamic loads by elastic elements to plane and
spatial elastic and viscoelastic orthotropic bodies [1.39–1.41], problems of the
adhesive strength and failure of fibrous composites [1.42–1.45].
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II. Nonlinear Normal Vibration Modes

The first work by L.I. Manevitch (with Yu.К. Privarnikov) on vibrations and sta-
bility of rods under dynamic loading was published in 1966 [2.1]. In this work the
essential role of inertial nonlinearity was highlighted, and it was sudden to that
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period. A necessity of effective calculation of fundamental frequencies and corre-
sponding normal vibration modes of a missile resulted to the idea of using geo-
metric symmetry in disposition of side units of the missile. Initially, the symmetry
group representations were used by L.I. Manevitch and S.A. Vladimirov in prob-
lems of linear elastic vibrations. Meanwhile, even elastic joints between the missile
units contain nonlinear elements, so, it prevents to use the symmetry group rep-
resentations. Therefore L.I. Manevitch and M.A. Pinsky proposed the approach
based on classification of subgroups of the discrete groups of symmetry. It permits
to determine nonlinear normal vibration modes which are invariant with respect to
the selected subgroups. Obtained results were presented, in particular, in [2.2], then
they were included to some books concerned with nonlinear vibration modes [2.9,
2.10].

In the middle of the 60th, after acquaintance with works by R.M. Rosenberg,
generalizing the concept of nonlinear normal modes (NNMs) to essential nonlinear
systems, co-publications by L.I. Manevitch and B.P. Cherevatzky, relating to this
topic, appeared. Here the traditional approach based on the classical small
parameter method was used to construct NNMs [2.3]. It was considered also
so-called “degenerative” two-DOF systems having strongly different inertial char-
acteristics. It permits to distinguish both non-local and localized vibration modes.
There was also carried out an investigation of resonance regimes in nonlinear
non-autonomous systems by using the concept of nonlinear normal vibration modes
[2.4].

Other direction in the theory of NNMs is relative to analysis of trajectories of
such solutions in the system configuration space. These investigations were begun
by L.I. Manevitch and Yu.V. Mikhlin. As a result, a new approach on construction
of these trajectories in conservative finite-DOF systems, closed to generating ones,
which permit normal vibrations with rectilinear trajectories, was proposed. Such
generating systems can be non-linearized ones, in particular, homogeneous systems
which potential is an even homogeneous function of positional coordinates. To
construct the weakly curvilinear trajectories, the double power series both by the
small parameter and by some selected generalized coordinate, were used [2.5].
Result of investigation was a direct generalization of classical results by A.M.
Lyapunov (concerned with quasilinear case) to essentially nonlinear systems.

Two different projects dealing with non-local dynamic effects were initiated by
L.I. Manevitch together with V.N. Pilipchuk in late 70th. The main question under
investigation was whether the concept of NNMs is actually applicable to vibrating
systems with multiple equilibrium positions and/or stiff barriers. Besides, both types
of systems were found to have some common basis due to the fact that impact
interactions with stiff barriers admit interpretation as transitions to new potential
wells after unfolding the configuration space in a specific mirror-like way. The
corresponding dynamics are of practical interest due to the possibility of
snap-through phenomena in shallow shells incorporated, for instance, in different
triggering devices. In this case, an adequate description was achieved using the
manifold of equilibrium positions of perfectly flexible degenerated structures as a
basis solution for some type of “global linearization” [2.6, 2.7]. Such manifolds are
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essentially curvilinear with asymptotically zero velocity of motions along them.
Further, let us note publication [2.8] as one of the first unless the very first work
introducing the NNMs for impact dynamics of multiple degrees-of-freedom sys-
tems. This work deals with the model of string with discrete massive attachments
moving between two stiff barriers. In particular, it was suggested to model the
impact interactions by means of high degree monomials in order to avoid diffi-
culties at numerical simulation. More importantly, unfolding the configuration
space revealed hidden spatial symmetries associated with nonlinear local modes.
Such “additional” local modes appear to co-exist with conventional NNMs dictated
by explicit spatial symmetries. Transition to infinite chains led to solutions
describing solitary waves (solitons) within the class of weakly modulated standing
waves. Energy localization effects were analyzed in survey [2.9], where the dif-
ference between nonlinear localization and stochastic Anderson’s localization was
analyzed.

Main aspects of the theory of nonlinear normal and local modes and their
stability have been summarized in monographs [2.6, 2.10]. Later, in the book [2.11]
interaction of NNMs under internal resonance conditions was studied in autono-
mous and non-autonomous discrete two-degree-of-freedom systems, infinite chains
of particles, and continuous systems, including circular rings and cylindrical shells.
Interaction of NNMs in the case of simultaneous internal and external resonances at
forced oscillations, bifurcations of the steady-state modes and their stability were
systematically studied in this book.
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string with concentrated masses on non-linearly supports, Applied
Mathematics and Mechanics (PMM USSR) 49 (2), 203–211 (1985).

2:9. Manevitch, L.I., Pilipchuk, V.N.: Localized vibrations in linear and
non-linear chains. Advances in Mechanics 13 (3/4), 107–134 (1990) (in
Russian).

2:10. Vakakis, A.V., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., Zevin, A.
A.: Normal Modes and Localization in Nonlinear systems. Wiley, New-York
(1996).
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III. Nonstationary Processes in Essentially
Nonlinear Systems

Major progress in theoretical study of energy transport in essentially nonlinear
systems has been achieved, since it was realized the most efficient transport usually
occurs in conditions of resonance. This observation allows one to treat the system in
the vicinity of the resonance manifold, and to restrict the consideration by averaged
equations of motion (sometimes referred to as slow-flow equations). This crucial
simplification often allows reduction of dimensionality and gives rise to conser-
vation laws absent in the complete system beyond the resonance manifold. In
particular case of conservative system with two degrees of freedom, the existence of
additional integral of motion in the approximation with isolated resonance implies
complete integrability. This classical result has been first formulated in quasilinear
setting and dates back to Birkhoff’s theory of normal forms.1 In papers2 the
aforementioned approach was used for exploration of beatings in a spring pendulum
in conditions of 1:2 resonance. Recent application3 addresses propagation of
asymmetric Gaussian beams in nonlinear waveguides.

The method of normal forms in its traditional setting requires from the system to
be quasilinear. However, it is common to use formally similar methods for
exploration of nonlinear systems far beyond the quasilinear regime. Harmonic
balance with slowly varying amplitudes4 is a profound example of such approach. It
lacks rigorous mathematical justification, but often provides reliable results and is
widely used in engineering. Mathematically equivalent approximations can be

1Birkhoff, G.: Dynamical Systems. AMS, Providence, p. 82 (1927), Moser, J.: Stable and random
motions in dynamical systems. Princeton UP (1973); Verhulst, F.: Phil. Trans. 290, 435–465
(1979).
2Augusteijn, M.F., Breitenberger, E.: J. Math. Phys. 21, 462—471 (1980), Breitenberger, E.,
Mueller, R.D.: J. Math. Phys. 22, 1196–1210 (1981).
3Ianetz, D., Schiff, J.: Chaos 28 (1), 013116 (2018).
4Hayashi, Ch.: Nonlinear Oscillations in Physical Systems. Princeton UP (2014).
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conveniently formulated in terms of complex variables. Early examples of this sort
are the models with self-trapping5 and rotating-wave approximation6 in the lattice
dynamics.

L.I. Manevitch, with multiple collaborators, substantially reformulated this
approach, expanded it and converted into a powerful tool for exploration of non-
stationary processes in a multitude of physical contexts. In recent papers, the
method is commonly referred to as complexification-averaging (CxA) [3.1–3.6].

The CxA approach comprises two main features:

Presentation of the slow-flow system in terms of complex variables. This feature
should be, first of all, viewed as mathematical convenience, since from fundamental
point of view the slow-flow equations are similar to those delivered by conventional
harmonic balance with slowly varied amplitudes. However, the simplification is
substantial and by no means occasional. Recently it was demonstrated that it is in
fact a particular case of canonical transformation to action-angle variables.7

Topology of special phase trajectories. The aforementioned integrability of the
slow flow of 2DOF Hamiltonian systems with isolated resonance allows consid-
ering the averaged problem on the phase plane. Commonly, the planar phase
portraits are characterized by their special invariant submanifolds, such as (in the
considered Hamiltonian case) fixed points and separatrices, that is,
homoclinic/heteroclinic orbits of the saddles. However, in order to consider the
non-stationary processes, one should look at other individual orbits on the resonant
manifold, that approximately conform to particular initial conditions for the original
problem. For particular case of initial excitation of a single element of the system,
L.I. Manevitch coined the term Limiting Phase Trajectory (LPT). The LPT
approximately describes the slow evolution of the selected phase trajectory.
Qualitative modification of the response for given initial conditions (for instance,
the transition from localization to beating) corresponds to passage of the LPT
through the saddle point. In other terms, for particular values of parameters that
correspond to the transition, the LPT coincides with a (part of) separatrix in the
system. From common viewpoint, such event is not classified as global bifurcation,
since for different initial conditions the transition will occur at different hypersur-
face in the space of parameters. In the same time, physical significance of such
transitions is apparent.

It should be mentioned, that the idea of complexification appeared first, and was
instrumental in exploration of targeted energy transfer in systems with nonlinear
energy sinks. The concept of LPT was used in diverse physical settings, including
small-size oscillatory systems [3.1, 3.2, 3.6, 3.7], systems with local and nonlocal
sonic vacuum [3.5, 3.9], one-dimensional and quasi-one-dimensional nonlinear
lattices [3.10, 3.11], systems with self-excitation [3.12, 3.13], auto-resonance

5Eilbeck, J.C., Lomdahl, P.C., Scott, A.C.: Physica D 16, 318–338 (1985).
6Flach, S., Gorbach, A.: Phys. Rep. 467, 1–116 (2008).
7Gendelman, O.V., Sapsis, T.P.: ASME J. Appl. Mech. 84, 011009, 1–9 (2017).
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[3.14, 3.15], system exhibiting Landau-Zener effect [3.16, 3.17]. More recent
achievements include dynamical transitions in strongly nonlinear forced pendula
[3.6, 3.18], Frenkel-Kontorova model [3.19] and nonlinear vibrations of carbon
nanotubes [3.20–3.22].

3:1. Manevitch, L.I.: The description of localized normal modes in a chain of
nonlinear coupled oscillators using complex variables. Nonlinear Dynamics,
25, 95–109 (2001).

3:2. Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear
oscillators, In: Uvarova, L., Arinstein, A.E., Latyshev, A.V. (eds.),
Mathematical Models of Non-Linear Excitations. Transfer, Dynamics, and
Control in Condensed Systems and Other Media, pp. 269–300. Springer,
New York (1999).

3:3. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear
oscillatory chains, Archive of Applied Mechanics, 77, 301–312 (2007).

3:4. Manevitch, L.I.: A concept of limiting phase trajectories and description of
highly non-stationary resonance processes, Applied Mathematical Sciences,
9, 4269–4289 (2014).

3:5. Manevitch, L.I., and Gendelman, O.V.: Tractable Models of Solid
Mechanics, Springer, Berlin (2011).

3:6. Manevitch, L.I., Kovaleva, A., Smirnov, V. and Starosvetsky, Y.: Nonstationary
Resonant Dynamics of Oscillatory Chains and Nanostructures, Springer,
Singapore (2018).

3:7. Manevitch, L.I. and Kovaleva, A.: Nonlinear energy transfer in classical and
quantum systems. Phys. Rev. E 87, 022904, 1–12 (2013).

3:8. Manevitch, L.I. and Musienko, A.I.: Limiting phase trajectories and energy
exchange between an anharmonic oscillator and external force. Nonlinear
Dynamics, 58, 633–642 (2009).

3:9. Manevitch, L.I. and Vakakis, A.F.: Nonlinear oscillatory acoustic vacuum.
SIAM J. Appl. Math. 74(6), 1742–1762 (2014).

3:10. Manevitch, L.I. and Smirnov, V.V.: Limiting phase trajectories and ther-
modynamics of molecular chains. Phys. Doklady 55, 324–328 (2010).

3:11. Manevitch, L.I. and Smirnov, V.V.: Limiting phase trajectories and the
origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82,
036602 (2010).

3:12. Kovaleva, M.A., Manevitch, L.I. and Pilipchuk, V.N.: New type of syn-
chronization for auto-generator with hard excitation. J. Exp. Theor. Phys.
116, 369–377 (2013).

3:13. Manevitch, L.I., Kovaleva, M.A. and Pilipchuk, V.N.: Non-conventional
synchronization of weakly coupled active oscillators, Europhysics Letters,
101, 50002, 1–5 (2013).

3:14. Kovaleva, A. and Manevitch, L.I.: Emergence and stability of autoresonance
in nonlinear oscillators. Cybern. Phys. 2, 25–30 (2013).

514 Appendix: Professional Life of Professor Leonid Isakovich Manevitch



3:15. Kovaleva, A. and Manevitch, L.I.: Limiting phase trajectories and emergence
of autoresonance in nonlinear oscillators. Phys. Rev. E88(1–6), 024901
(2013).

3:16. Kosevich, Y.A., Manevitch, L.I., and Manevitch, E.L.: Vibrational analogue
of nonadiabatic Landau– Zener tunneling and a possibility for the creation of
a new type of energy trap. Phys. Usp. 53, 1281–1286 (2010).

3:17. Manevitch, L.I., Kosevich, Y.A., Mane, M., Sigalov, G., Bergman, L.A. and
Vakakis, A.F.: Towards a new type of energy trap: classical analog of
quantum Landau-Zener tunneling. Int. J. Non-Linear Mech. 46, 247–252
(2011).

3:18. Manevitch, L.I., Smirnov, V.V. and Romeo, F.: Stationary and non-stationary
resonance dynamics of the finite chain of weakly coupled pendula. Cybern.
Phys. 5(4), 130–135 (2016).

3:19. Smirnov, V.V. and Manevitch, L.I.: Large-amplitude nonlinear normal modes
of the discrete sine lattices. Phys. Rev. E95, 022212 (2017).

3:20. Smirnov, V.V., Shepelev, D.S. and Manevitch, L.I.: Localization of low-
frequency oscillations in single-walled carbon nanotubes. Phys. Rev. Lett.
113, 135502 (2014).

3:21. Smirnov, V.V., Manevitch, L.I., Strozzi, M., Pellicano, F.: Nonlinear optical
vibrations of single-walled carbon nanotubes. 1. Energy exchange and
localization of low-frequency oscillations. Physica D 325, 113–125 (2016).

3:22. Manevitch, L.I., Smirnov, V.V., Strozzi, M. and Pellicano, F.: Nonlinear
optical vibrations of single-walled carbon nanotubes, International Journal of
Non-Linear Mechanics, 94, 351–361 (2017).

IV. Physics of Solid Polymers

Theoretical analysis of the molecular mechanisms of mobility of polymer crystals,
semicrystalline polymers and polymeric glasses, as well as of nano-objects (gra-
phene, nanotubes) and DNA-like biomolecules, carried out under supervision of L.
Manevitch at the N.N. Semenov Institute of Chemical Physics of the Russian
Academy of Sciences. This analysis was a development of preceding investigations
on nonlinear dynamics of finite-dimensional mechanical systems [4.1, 4.2]. The
development is based on the fact that a knowledge of the spectrum of nonlinear
excitations is a necessary condition for the adequate theoretical description of the
molecular mechanisms of the primary physical and chemical processes, such as
relaxation, melting, thermal conductivity, mechanodestruction, plastic deformation,
polarization, topochemical polymerization etc., in solid polymers and ordered
biomolecules. The main results are presented further.
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1. Dynamical models of localized nonlinear excitations and point topological
defects in polymer crystals and molecular chains [4.3–4.9].

An explicit representation of topological solitons and localized nonlinear excita-
tions (breathers) was first obtained in a molecular chain having the non-rectilinear
configuration, in the framework of realistic three-dimensional molecular dynamics
(MD) models. The velocity and temperature dependences of their parameters were
determined; the inter-soliton and soliton-phonon interactions were investigared; a
possibility of formation and propagation of bound states, so-called “soliton mole-
cules”, was predicted.

Some regularities in propagation of the soliton excitations in extended polymer
chains were revealed using the MD approach. The localized nonlinear excitations in
the inhomogeneous model of the double helix DNA molecule were simulated and a
possibility of formation and propagation of the topological solitons and breathers
mostly in one chain was shown.

2. Molecular mechanisms of physical processes in polymer crystals,
semicrystalline polymers, polymer glasses and molecular chains [4.10–4.16].

Based on the obtained information on the spectrum of nonlinear excitations, a
detailed study of the mobility of polymer chains in crystal together with the found
earlier temperature dependence of the mobility was made. Basing on the analysis of
experimental NMR data, a new molecular model describing both the diffusion of
chains between crystalline and amorphous phases, and the dielectric mechanical
relaxation in polyethylene and semicrystalline polymers was proposed. Besides, the
problem of structural transformations in premelting of crystalline polyethylene was
formulated and studied.

Along with the obtained analytical description of dislocations in polymer crys-
tals, the molecular dynamics simulation of both edge and screw dislocations in such
crystals was first carried out; a mobility of the dislocations was studied and the
corresponding yield strength was calculated. On the basis of the concept of such
modes responsible for the anomalies of the low-temperature properties of glasses a
continuum model of a low-frequency localized mode in polymer glasses was
developed; estimates of their yield strength were first obtained.

Taking into account the regularities of the propagation of solitons in extended
polymer chains, the possible molecular mechanisms of their mechanodeconstruc-
tion was revealed. Based on the obtained information on characteristics of nonlinear
localized excitations in DNA molecule, the energy comparison of possible mech-
anisms for openings of the DNA double helix was made.

3. Continuum models of a polymer crystal [4.17–4.19].

Applying the asymptotic method developed in monographs [4.20, 4.21] to highly
anisotropic media, on the basis of data on the structure of the polyethylene crystal
and on the interchain interaction potentials, it was first proposed equations of the
continuous media motion in which stiffness characteristics are expressed through
molecular parameters both in the long-wave, and short-wave regions of the
vibrational spectrum.
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4. Solitons in nondegenerate bistable systems [4.22–4.26].

A theory of topological solitons in molecular chains with a nondegenerate bistable
interaction potential was developed. The theory extends the soliton concept to
description of conformational transitions (in particular, in DNA) and to solid-phase
chemical reactions like to topochemical polymerization of crystalline diacetylene,
or like to solid-phase detonation. The fundamentally two-stage nature of the
propagation of the soliton excitation was revaled. In the first stage there is a
transformation of the system from the initial state to the region of attraction of the
final state with conservation of the Lagrange function. In the second stage, at a
sufficiently large distance from the front, the system transforms to the final state
(relaxation with the release of energy). Using the developed theory, it was shown
the molecular mechanisms of the above-mentioned physical and chemical
processes.

5. Localized excitations and physical processes in nanostructures [4.27–4.30].

The experience accumulated at the Institute of Chemical Physics on the investi-
gation of nonlinear dynamics and molecular mechanisms of physical and
mechanical processes in solid polymers led to the statement of a number of
problems that are fundamentally important for such nano-objects as the graphene
layer and the carbon nanotube. Localized excitations in these nanostructures were
first revealed. A process of thermal conductivity of nanotubes, which is a direct
development of the research on thermal conductivity of quasi-one-dimensional
lattices, was also modeled. The investigation confirms that in both the cases the
localized modes play a primary role in the molecular mechanism of the energy
transfer process. On the other hand, the analysis of nonlinear localized modes
allows to reveal a possible intercalation mechanism of anisometric silicate
nanoparticles in polymer nanocomposites.
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V. Nonlinear Chains
Quasi-One-Dimensional System

The problems dealing with the nonlinear dynamics of the oscillatory chains (the
nonlinear lattices), perhaps, are in the most priority of the L. Manevitch’s scientific
interests. Two reasons of this can be found. First of them is that such systems allow
us to understand many fundamental principles of the “nonlinear world”. The second
reason results from the wide variety of the quasi-one dimensional nonlinear models,
which arise as a consequence of the attempts to describe the polymeric systems in
solid state. Four main coupled directions in the L. Manevitch’s works can be
formulated as follows: (i) the linear and non-linear dynamics of the complex
structured chains; (ii) the dynamics of the bi-stable systems with the
non-degenerated states; (iii) the energy transfer and localization in the discrete
systems under conditions of the resonant interactions; (iv) the essentially nonlinear
one-dimensional chains with vibro-impact interactions.

Historically, the vibro-impact nonlinear chains have been the first objects in the
class of the one-dimensional discrete systems considered by Manevitch with
coauthors. Two types of the soliton-like solutions have been revealed. First of them
can be found if the continuum approximation is valid for the envelope of the NNM
with highest frequency [5.1, 5.2], and it is an extension of the envelope solitons in
the quasilinear chain (see, i.e., [5.3]) onto the strongly nonlinear case.

If the continuum approximation does not work even for the envelope of this
NNM the essentially discrete localized excitations (the discrete breathers), which
are often called as the Intrinsic Localized Modes (ILM) have been revealed for the
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first time. [5.1]. The further development may be found in [5.4] where the exact
solution for the linear chain vibrating between two rigid walls is presented.

The nonlinear lattices with a complex structure are in the focus of the
Manevitch’s interests for a long time. The one-dimensional chains with the identical
oscillators cannot demonstrate many peculiarities which are typical for the complex
structured systems like the polymeric molecules and crystals. The first reason is the
non-trivial geometry of the polymers, which is often specified by the zigzag or
spiral conformations. Even this peculiarity leads to the essential geometric non-
linearity in the respective dynamical models and its domination over the physical
nonlinearity leads to absence of the compression solitons in the zigzag chains.
Instead of the latter one can observe the tension solitons.

However, not only the complex geometry is the issue of the intricacy of the
polymer chain description. The macromolecular systems show the strong hierarchy
of the interactions from the hard covalence bonds up to the weak intermolecular
interactions. On the one hand this hierarchy allows us to consider the polymer
systems like one-dimensional, but on the other hand it leads to the many coupled
degrees of freedom. The development of the classical models of the intricate
molecular system needs in the separation of the various interactions taking into
account the differences between the potential forces. By this way, we should dis-
tinct the “valence angle” and “conformation angle” variables, the tension and twist
of the chain, the effective forces acting from the molecular environment, etc. Such
an approach is specific for the molecular dynamic simulations and it is a priori
suitable for the development of the analytical studying.

The nonlinear dynamical models of the polymer molecules and crystals have
been studied in the series of the papers of Manevitch with co-workers [5.6–5.8].
The first models of the vacancies and dislocations have been developed in these
works. The detailed investigations of the dynamics of the zigzag chain with and
without of the crystal environment were performed in coauthorship with A. Savin
[5.9]. The results obtained in the study of the polyethylene molecules were
expanded into the analogues of the PE molecule, but with more complicated spiral
structure, the polythetraftorethylene (PTFE). It was shown that the torsion solitons
are appended to the spectrum of the nonlinear localized excitations in the crystal of
PTFE. The breather-like excitations in the realistic models of the polymeric chains
of zigzag and spiral conformations have been described for the first time in [5.10,
5.11]. These breathers exist in the vicinity of the low-frequency edge of the
oscillation spectrum and correspond to the transversal optical-type vibrations of the
planar zigzag accompanied by the longitudinal ones.

The development of the theory of the plastic deformation and the phase tran-
sitions in the polymer crystals needs in the study of the elementary events of these
processes . Such events are the motion of the crystal defects—the point-like
vacancies and line dislocations [5.12, 5.13]. These defects can be described as the
soliton-like excitations in the polymer chain, but the influence of the molecular
surrounding should be taken into account [5.14–5.16]. The presence of the envi-
ronment effects not only on the characteristics of the soliton, but leads to some
qualitative changes. The requirement of keeping the crystalline order results in the
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soliton’s topological charge. The specific property of the topological soliton (like
the kinks in Frenkel-Kontorova model)) is the subsonic velocity of the propagation,
while the dynamic solitons (in the Fermi-Pasta-Ulam (FPU) or Toda lattices) move
with the supersonic velocities only. The weakness of the intermolecular forces in
the polymeric crystal sometimes does not suppress the supersonic velocities of the
solitons, but provides the non-zero topological charge [5.17, 5.18]. One should note
that it was very fruitful association of the analytical study and molecular dynamical
modelling for the study of the deformation of the polymeric solids. The majority of
the analytical findings mentioned above have been verified by the numerical
experiments [5.12, 5.14, 5.15, 5.17].

At the same time the dynamical linear theory of the polymer crystals was
developed in [5.20, 5.21]. The theory is based on the realistic molecular structure
and the potentials of the interaction between the macromolecules of the flexible
polymers in the crystalline states. The numerical simulations help to understand the
main peculiarities of the systems under consideration. The resulting theory takes
into account both the hierarchy of the interactions in the polymer crystal and the
specific internal degrees of freedom of the macromolecules. The asymptotic con-
tinuum description of the dynamics of polymer crystals contains the main elastic
characteristics expressed via the microscopic values which are the structural con-
stants and parameters of the interaction potentials.

Talking about the polymeric chains in the researches of Prof. Manevitch, one
should say about the works dealing the most intricate polymeric molecule - the
DNA. The dynamics of the double strand DNA in the framework of the FK model
has been proposed by L. Yakushevich. In the paper [5.22] much more detailed
analysis of the DNA dynamics was performed in the framework of the mentioned
model, but the further research allowed to extend the model essentially [5.23]. More
realistic model of the DNA has been developed, and such significant processes as
heat transfer and structural transitions have been investigated [5.26]. The model of
the DNA denaturation via the formation of the breather-like excitation has been
evolved [5.24]. These researches resulted in the construction of the coarse-grained
DNA model, which allows to study the structural transitions in the DNA more
effectively [5.25, 5.27].

The problem of the supersonic propagation of the chemical reactions in solid
media arises in the study of the solid explosives detonation, chemical transforma-
tion under high pressure in combination with shear deformation, some topochem-
ical reactions, etc. Main question was: why the propagation appears as a stationary
process in spite of the energy is released permanently? The detonation wave theory
has been developed by Ya. Zeldovich under assumption that the thermodynamical
equilibrium is achieved in the front due to the compression of the reagents by the
shock wave. However, the numerical simulations performed by M. Peyrard with co-
workers and L. Manevitch with co-workers show that no equilibrium in the reaction
front exists and the explosion energy is released at some distance after the front.
The difficulty of the problem consisted in that the transition occurs between two
stationary states with different energies. Such transitions do not described in the
framework of the dynamics of the conservative systems [5.28]. The solution of the
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problem has been found in the series of the papers [5.29 and references herein],
where it was shown that the process of the propagation of the exothermical tran-
sition is two – stage one. The first stage consists in the dynamical renormalization
of the states’ energies that the transition turns out to be possible. The intermediate
state is specified by the same value of the Lagrange function of the system as that in
the metastable state . It is important that the velocity of the front propagation turns
out to be supersonic and unique. The second stage is observed in the numerical
simulations as the instability of the intermediate state with the transformation of the
reaction energy into the kinetic energy of the reaction products. The close problem
arises in the model of the “one-dimensional” glass by Reichert and Schilling. Using
the approach mentioned above, Manevitch with co-workers studied the mechanism
of the transitions and revealed the elementary excitations which are responsible for
these processes [5.30].

However, the study of the martensite transitions and the processes of the collapse
of the carbon nanotubes shows that the exothermic transitions in the solids can
propagate with the subsonic velocities escorted by the “oscillating tail”, which starts
from the front immediately. It is notable, that the energy of the oscillations is not
equal to the energy, which is released in the front. It may be both smaller and
greater than the latter. This problem has been solved in the work [5.31], were the
inequality of the energies has been explained by a difference of the front velocities
and the group velocity of the oscillations.

It is necessary to single out the series of works dealing with new paradigm of the
non-stationary nonlinear dynamics—the Limiting Phase Trajectory (LPT) concept.
This paradigm issues from the well-known phenomenon—the beating in the system
of two weakly coupled identical oscillators. The idea by Manevitch consists in that
the beating represents the fundamental essentially non-stationary process, which is
responsible for the energy exchange between some clusters of the particles (co-
herent domains) [5.33]. The necessary condition for this is the resonance between
the Nonlinear Normal Modes (NNMs) which correspond to synchronized (coher-
ent) motions of the particles, i.e., a closeness of their frequencies. It means that
additional, slow time scale, depending on the difference of the NNMs frequencies,
appears alongside with fast time scale which is determined by the period of one of
the resonating NNMs. In this new time scale the NNMs can be considered as
stationary (quasi-equilibrium) states. Among all other non-stationary solutions, the
Limiting Phase Trajectory (LPT) describing the beating phenomenon, can be sin-
gled out. To clarify the fundamental role of LPTs in non- stationary resonance
dynamics it is important to remind that NNMs, which correspond to fundamental
stationary processes, do not take part in the energy exchange. Only a combination
of resonating (coherent) NNMs, which form a wave packet, can make this due to
periodic interference of the resonating NNMs on each cluster (a combination of two
resonating NNMs is the limit case of such wave packet). Thus, the beats and LPTs
which describe them turn out to be fundamental non-stationary processes whose
role in the strongly non-stationary resonance dynamics is similar to the role of
NNMs in the stationary or non-stationary but non-resonance dynamics. An
extension to multi-particle chains leads to notion of coherence domains (consisting
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of certain number of particles) the energy exchange between which is described by
LPTs. (In the two-particle model the coherence domains are the particles them-
selves). One should notice that the essential progress in the analysis of the resonant
dynamics turns out to be possible due to asymptotic approach, which is based on
the complex representation of the equations of motion [5.3] and multiple scale
asymptotic expansions in the framework of the LPT and coherence domains
concept.

The nonlinear dynamics of the various quasi-one-dimensional discrete systems
with using this concept has been studied for the quite number of the nonlinear
chains (the FPU, FK, Klein-Gordon, and sine-lattices, as well the system with the
“sonic vacuum”) and nanostructures [5.33–5.46]. It was shown that the evolution of
the LPT reflects the processes of the energy exchange and localization in the system
[5.32, 5.33]. If the LPT passes through both domain states, the energy exchange is
possible. However, the modulation instability of the zone-bounded normal mode
leads to the creation of the separatrix, which can coincide with the LPT at the
certain value of the oscillation amplitude. In further, the full energy exchange turns
out to be forbidden and the energy is localized in the one of the coherent domains.
Here one should notice two fundamental features of the LPT. First, the LPT is
responsible for the non-stationary (pulsing) localization of the oscillation energy,
while the normal modes correspond to the stationary one. It is important to note that
this phenomenon is a general one for the wide class of the nonlinear chains and
nanostructures (in particular, carbon nanotubes [5.38, 5.39]). The second peculiarity
is that the LPT like the normal modes can be an attractor, if a weak dissipation is
put in the system [5.45]. All advances in the non-stationary resonant dynamics of
the nonlinear systems are discussed in the recent monograph [5.46] in detail.
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VI. Methodology of Science

Any serious researcher tries to determine the place of his work in the general picture
of the world, within the framework of a certain metatheory. L.M. has a pronounced
desire for philosophy of science, that is why the interest of L.M. in asymptotology
(the term proposed by Kruskal, see WIKI) is not incidental. “Asymptotic descrip-
tion is not only a convenient tool in the mathematical analysis of nature, it has some
more fundamental significance” (K. Friedrichs). This point of view is popularized
in the books [6.1, 6.2] by L.M. with co-authors, based on the belief: “The book of
Nature is written in the language of asymptotology”.

However, the interests of L.M. in the field of methodology of science are not
limited to asymptotology. A number of published articles presented in the collection
[6.3] discuss the role of various number systems, nonlinear elementary excitations,
thermodynamic arrow of time, wave-particle duality, and quantum-classical
analogies in understanding and adequately describing physical reality. Situations
are considered where the interaction of physics and mathematics turned out to be of
fundamental importance, but its implementation or ignoring was determined by the
philosophical mentality of outstanding researchers or the scientific community as a
whole.
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