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Abstract. This paper presents a fast algorithm for camera selection
in a robotic multi-camera localization system. The scenario we study is
that where a robot is navigating in an indoor environment using a four-
camera vision system to localize itself inside the world. In this context,
when something occludes the current camera used for localization, the
system has to switch to one of the other three available cameras to remain
localized. In this context, the question that arises is that of “what camera
should be selected?”. We address this by proposing an approach that
aims at selecting the next best view to carry on the localization. For
that, the number of static features at each direction is estimated using
the optical flow. In order to validate our approach, experiments in a real
scenario with a mobile robot system are presented.

Keywords: Multi-camera navigation · Multi-camera localization
Guidance

1 Introduction

Nowadays, by using conventional cameras it is possible to obtain a set of images,
which can be processed in order to obtain the estimated position of the robot
in real time [7]. However, multi-camera approaches have also been proposed as
having more than one camera observing different parts of the scene and consti-
tute an attractive approach that can be helpful when autonomous navigation is
performed. One application of these multi-camera approaches can be found in
[15], where more than two cameras are used for eliminating motion ambiguity
problems in a visual odometry system.

Motivated by the advantages of using multi-camera systems capable of cap-
turing an approximate 360◦ field of view, in this work we explore the scenario
of when the localization system is partially or totally occluded in the current
active view, this is, in one of the cameras that is currently being used for feature
tracking and localization. In this scenario, one of the available cameras has to
be selected to avoid tracking loss. Motivated by this, we propose an efficient
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method for camera selection aiming at maintaining localization in the event of
camera occlusion.

Our approach is based under the assumption that only one view is used for
localization while the rest of the cameras are used for relocalization in case an
obstruction in the main view is presented. Therefore, the contribution of this
work is two fold: (i) a methodology based on the optical flow exhibited by the
scene structure w.r.t. is presented in order to estimate the velocity of the visual
texture observed by the camera and use it to distinguish motion from steadiness;
and (ii) we present a histogram-based approach in order to quantify the evolution
of the texture’s motion frame by frame. This evolution is assessed in terms of
how steady or unsteady scenes are along the time.

In order to present our contribution, this paper is organized as follows: Sect. 2
presents the related work; Sect. 3 provides a description of our system. In Sect. 4
the proposed algorithm is described while in Sect. 5 experiments are conducted
in order to make clear the idea of this paper. Finally, in Sect. 6 conclusion and
future work are included.

2 Related Work

Arguably, a multi-camera rig sensor may arises as a better choice than using an
omni-directional camera [18] to address different problems, i.e. the localization
[14]. The latter is due to the fact that several conventional cameras mounted in a
rig can be set up to obtain a wider field of view. In contrast, an omni-directional
system may have a superior field of view but at the expense of exhibiting a strong
distortion, where calibration and measurement process are not straightforward.

In [15] the authors use a multi-camera stereo rig to solve motion ambiguity
problems in their visual odometry process. In [12], a framework is described for
6D absolute scale motion and structure estimation for a stereo multi-camera
system with non-overlapping fields of view in indoor environments. In [2] the
authors introduces a testbed for sensor and robot network systems composed
of 10 cameras and 5 mobile robots for self-localization and obstacle avoidance
using machine vision and wireless communication. In [10] the authors present
an extension of the monocular ORB-SLAM for multiple cameras alongside an
inertial measurement unit (IMU) and a multi-camera SLAM is proposed in [11]
based on a probabilistic approach for data association, that takes into account
that features can also move between cameras under robot motion.

Several visual SLAM algorithms use keyframes to reduce the computational
cost for developing online optimization. Entropy handling in the keyframes inser-
tion improves significantly the system’s ability to localize. This approach is
recently presented by [5] and is implemented within the omni-directional multi-
camera parallel tracking and mapping framework. Another interesting recent
work is proposed by Harmat et al. [9]. They addressed the pose problem for
UAV’s using Multiple fish-eye cameras for tracking and mapping a small UAV
in unstructured environment systems. Their approach improves the PTAM [13]
pose estimation with the multi-camera rig.
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Besides of localization, a multi-camera stereo rig may be used to address
another kind of problems, like in the work proposed by Akash et al. [1], where a
method for performing a fast 6-DOF head pose tracking using a cluster of rolling
shutter cameras is proposed in order to deal with end-to-end latency challenge
in Augmented Reality/Virtual Reality (AR/VR) applications.

3 System Overview

The architecture proposed in this paper counts of two parts (i) the Guidance
sensor (see Fig. 1(a)) and (ii) a service robot (see Fig. 1(b)). Technically, the
Guidance sensor is an upgraded version of Zhou et al.’s work [19] which is a visual
mapping solution based on four cameras and a single processing chip-Altera’s
SoC FPGA. In our case, the Guidance is a multi-camera rig that captures up to
5 stereo pairs with a depth image associated to each stereo pair at a frequency
of 18 fps.

(a) Guidance sensor. (b) Robot Sabina.

Fig. 1. (a) Guidance sensor: this image shows four of its five stereo+ultrasound cam-
eras, which return gray and depth images, the sensor can be used to observe the scene
in almost 360◦. (b) Robot Sabina with the Guidance sensor on the top of it.

The way camera units are located in the rig enables the observation of the
world in five directions (front, back, left, right and top). The SDK, made avail-
able by the manufacturer [8], enables acquiering up to 10 gray images (from
the 5 stereo pairs) simultaneously, with the caveat that only 2 depth images
can be accessed simultaneously at a frequency of 18 Hz. Considering that we
are interested in multi-camera localization within dynamic environments where
laser-odometry may not be sufficient, we test our algorithm using a service robot
based on a PatrolBot platform. The platform has a sonar ring, two wheels with
independent motors with encoders, a Laser SICK LMS200, a video camera Canon
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VCC5, speakers, and an integrated PC. The integration of this novel visual sens-
ing platform with our multi-threading probabilistic visual odometry framework
allows us to estimate the robot’s localization in a more accurate way.

4 Velocity Map for Camera Selection

The algorithm proposed in this work is based on the extraction of the velocity
map from each sensor unit through the optical flow computation [6]. For that,
only left cameras of each stereo pair are enabled (front, back, right, left) in order
to return grey images of the world in approximate 360◦. However, even though
we have four cameras observing the world at the same time, only one of these is
used for localization (main view) in order to reduce computational times. The
rest of the cameras are used as a backup in case the main view is obstructed.
Obstructions are detected by the algorithm proposed in Sect. 4.1 and the way
the next best view is selected is depicted in Sect. 4.2.

4.1 Camera-Blocking Detection

Let Ci ∈ [front, back, right, left] with i ∈ [1, 2, 3, 4] be the four different view
directions taken from Guidance. For each Ci the optical flow Oflow is computed
at every consecutive pair of frames fi and fi+1. After that, a set of ORB features
[17] are computed and filtered by a threshold Vmin (see Eq. 1). We choose ORB
features because these are basically a fusion of FAST keypoints detector [16] and
BRIEF descriptors [3] with several modifications to enhance the performance.

card(Fj)i =
∣
∣
∣x ∈ F j

i : ‖Oflow(x)‖ < Vmin

∣
∣
∣ (1)

In Eq. 1, card(·) represents the cardinality of the set Fj , F j is the set of all
features such that their velocity are less than the threshold Vmin (static features),
x is a feature computed by the ORB extractor, F j

i represents the set of features
computed in the jth frame of the ith camera, ||Oflow(x)|| is the magnitude of the
optical flow at x and Vmin represents the maximum velocity for which a feature
is considered static (see Fig. 2).

For every camera direction Ci a queue Qi is created and filled with the
number of static features of each frame (Fj

i ). If the size of the Qi queue is equal
to a given number of frames (NF) the older value of Qi is released for storing
a new one. The number NF is directly related with the time window to be
analyzed and the frequency of the video device. For instance, if the sensor have
a frequency of 18 fps and you want to store the last 2 s, then you have to set
NF = 36. In other words, NF = fps × (seconds to store).

Qi =
{

card(F0
i ), card(F1

i ), ..., card(FNF
i )

}

(2)

In order to perform the obstacle detection, a frequency analysis over each
Qi is done and a 1D histogram, Hi, is constructed with the values of each Qi
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Fig. 2. In this picture framej and framej+1 represent any consecutive pair of frames
used for computing the optical flow Oflow. Over the framej a set of ORB features
are extracted and its velocities are computed using Oflow in order to extract the num-
ber of static features in framej . Finally, the number of static features per frame,
card(framej), is stored in the queue of its respective camera.

once the size of Qi reaches NF . Once the queues are filled for first time, the
histograms computation is performed at each frame. The idea of using histograms
for counting the frequency of the values in the queue allows us to determine if an
obstacle is blocking temporally the main view or not. For instance, if a person
walks in front of the main camera and then stops so that the main view gets
blocked, then the number of static features will start to decrease at every frame
and hence the queue of the main camera’s view will start to have many values
near to 0. This situation produces a transformation in the histogram where the
first bin will become in the biggest bin within the histogram. However, when the
person starts to move far from the camera view, the number of static features per
frame will increase and consequently the queue values. This another situation
produces that the last histogram’s bins being the largest. Finally, a camera
change can be made at the moment in which all the values of the Qi are in the
first bin of the Hi.

4.2 Camera Selection

At this point of the algorithm, the main camera can be considered blocked and
the system has to evaluate the other views in order to select the best one of the
rest to continue localized inside the world. For this case, the best view is such
in which its Qi contains the largest amount of static features over a long period
of time [4].

As mentioned before in Sect. 4.1, if all values of the main view’s histogram are
in its first bin, then it is not longer convenient to keep viewing in that direction.
Following the proposed in [4] a new good view is such a view that conserves
more static features over a time interval. Therefore, the new best camera’s view
to stay localized is such that its histogram contains the highest statistical mode
(see Sect. 5.2).
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5 Experiments

The experiments presented in this section describe the relation between cameras
under specific situations as well as the frequency analysis of the static features
within the scenes. For the sake of a better understanding of this model we divide
the experimental section in static and dynamic testing.

5.1 Static Test

The goal in this experiment is to assess the performance of our camera selection
approach. For that, the number of bins per histograms is set empirically to 5,
NF = 36 and the upper left corner image in Fig. 3(a) is selected as main view.
As mentioned before, the number of static features is computed (points in blue)
over the four different directions in order to generate the queues and later the
histograms. Once the system is running, we proceed to block the main view as
is shown in Fig. 3(b) and the system is able to select the best of the remaining
views. In this case, if we look at the Fig. 3(b), we might realize that the next
best view will be the one at the bottom right because in that view the number
of static features is highest during a period of time.

(a) Camera initialization. (b) Camera blocking.

Fig. 3. (a) Initial state of the system and the main view is enclosed in a white rectangle.
(b) Static and non-static features represented in blue and red color respectively. (Best
seen in color)

As we have explained before in Sect. 4, our camera selection approach is
based on the frequency analysis of the static features behavior. For that, a 1D
histogram is built for each view and a continuously evaluation is performed in
order to see if the number of static features in the main view is lower than a
threshold; if this happens then the main view has been blocked. Figure 4 shows
the histogram behavior over the time for the four views. At the beginning, the
main view’s histogram (see Fig. 4(a)) has all its values in the last bin as well
as the other views, however, there is an instant marked with a red line where
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(a) Top left (b) Top right (c) Bottom left (d) Bottom right

Fig. 4. Histogram behavior over time. The red horizontal line represents the moment
in which a change of the main view has happened. The bar at the top of each histogram
is used to represent the frequency in the histogram, higher values are in red while lower
values appears in blue. The time sequence starts at the top. The bin number is shown
at the horizontal axis. (Best seen in color)

Fig. 5. Histograms evolution near the switching point. H1 represents the main view’s
histogram while H2, H3 and H4 the rest. Histograms are shown at frames t (the switch-
ing point), t − 1 and t − 5. Note how the values in the histogram H1 move from the
last bin to the first one from t− 5 to t. For this case the selected camera is C4 because
numerically this histogram keep the highest mode during the last 2 s.

the histogram distribution starts to change, this is because the camera is being
blocked, and therefore, the first bin starts to grow. At this point the system
realizes that the camera was blocked and selects from the remaining views, the
best one to stay localized. Finally, the system selects the bottom right view
(see Fig. 3(b)) because as can be observed in Fig. 4(d), is the view where the
histogram have the larger statistical mode (darkest red color). See Fig. 5 for a
better understnding of the histogram behavior near the switching point.

In Fig. 4(d) after switching cameras (red line) appears a period of time with
no static features. This situation is presented because the camera was blocked
with a human hand which introduces a low motion over the sensor and hence a
perturbation in the optical flow.
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5.2 Dynamic Test

For this experiment, our robot system is navigating in an indoor scenario. The
robot is moving with the Guidance attached at the top of it (see Fig. 1(b)) and
the front camera is designated for staying localized by using ORB-SLAM. While
robot is navigating all features velocities are affected by the displacement vector.
There are always two views that are more affected than the others. The front and
back views are less affected because the motion is normal to both planes while
left and right views depend strictly on the displacement vector. For instance, if
the robot is moving forward, the velocities of each feature from the front and
back views will not be affected because the optical flow won’t be perturbed. On
the other hand, for lateral views, almost all the feature won’t be statics, this
effect is like if the robot was static and the world was in motion.

(a) Top left (b) Top right (c) Bottom left (d) Bottom right

Fig. 6. Histogram behavior over the time when the sensor is mounted on the robot.
The red horizontal line represents the moment in which a change of the main view has
happened. (Best seen in color)

As in the first experiment, in Fig. 6 we depict the histograms behavior over
the time. In this experiment the robot is initially static, hence, at the begging
the amount of static features is high in each view. Once the robot starts moving
the number of features starts to change. In this case it is more clear how the
number of features on the main view (see Fig. 6(a)) starts to decrease while the
robot is moving. Besides, in Fig. 6(c) it is possible to observe that the robot
motion does not have effected the number of static features for this view, as we
already mention above, this is because the motion is normal to this image plane.
Finally, due to this effect, this view is the one that was selected as the new main
view.

For lateral views (see Fig. 6(b) and (d)), we can distinguish a smooth tran-
sition in the last bin of the histograms which goes from orange to blue (above
to below). The above portion of the histograms, where the orange color remains
constant is because we started to acquire data with the robot in an static state.
In the histograms we can detect the starting robot motion when the orange color
starts to turn in blue. Color changes in histograms implies that, at this time,
the number of features with low velocities starts to decrease. This situation is
presented because static features are apparently moving in the opposite direction
that robot does.

The red line in Fig. 6 represents a stop in the robot motion produced by
an obstruction in the current main view. At this point, the robot remains static



256 R. O. Garćıa et al.

during 2 s (36 frames) for acquiring the temporal distribution of the static ORB-
features at each direction. With this tiny stop, the optical flow is finally stabilized
and hence the features velocities.

6 Conclusions

In this paper we have presented a simple and effective camera selection algorithm
for a multi-camera sensor systems when autonomous navigation is performed.
Our approach aims at exploiting the visual capabilities offered by multi-camera
sensors for visual-based localization, in scenarios where visual localization is
obstructed. Experiments were conducted in static and dynamic scenarios. For
the dynamic scenarios, we used a service robot platform (Robot Sabina). In both
cases, the results exhibit the same relation; the next best view is the one with
more static features during a period of time, according to [4]. In addition, the
proposed algorithm enables the system to maintain localization whilst keeping
a low computational cost.

As a future work we are interested in incorporating the estimated displace-
ment vector in order to reduce the perturbation at each view direction, specially
in lateral views. In order to do that, we can incorporate another inertial mea-
surement unit (IMU) and fuse its information with that of the robot odometry
in order to enhance the selection of the best next main view.
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