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Abstract. In recent years, researchers have increased their interest in
deep learning for data mining and pattern recognition applications. This
is mainly due to its high processing capability and good performance
in feature selection, prediction and classification tasks. In general, deep
learning algorithms have demonstrated their great potential in handling
large scale data sets in image recognition and natural language processing
applications, which are characterized by a very large number of samples
coupled with a high dimensionality. In this work, we aim at analyzing the
performance of deep neural networks for classification of gene-expression
microarrays, in which the number of genes is of the order of thousands
while the number of samples is typically less than a hundred. The exper-
imental results show that in some of these challenging situations, the use
of deep neural networks and traditional machine learning algorithms does
not always lead to high performance results. This finding suggests that
deep learning needs a very large number of both samples and features to
achieve high performance.
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1 Introduction

Traditional neural networks generally consist of three layers: the first indicates
the data entries, the second is the hidden layer, and the third corresponds to the
output layer. When the architecture of the neural network has more than three
layers, it is commonly referred to as deep neural network. The most representa-
tive example of this architecture is the multi-layer perceptron with many hidden
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layers, where each layer trains a different set of features based on the output of
the previous layer [1,2].

Deep learning algorithms have usually been applied to problems whose com-
plexity is high due to the amount of data stored, that is, there is a large number
of features and samples. They have been used extensively in various scientific
areas to tackle very different problems [3,4]. The main advantages of this type
of neural networks are three-fold: high performance, robustness to overfitting,
and high processing capability.

In this work, we analyze the performance of several deep neural networks and
other machine learning models in the classification of gene-expression microar-
rays, which are characterized by a very large number of features coupled with a
small number of samples. This could represent a challenging situation because
typical applications with deep neural networks refer to problems in which both
the dimensionality and the number of samples are high. Therefore, the purpose
of this paper is to investigate the efficiency of deep learning algorithms when
applied to data sets with those especial characteristics, thus checking whether
or not they perform as good as in those applications where they have demon-
strated to behave significantly better than state-of-the-art algorithms.

2 Related Works

Nowadays, the use of deep learning to solve a variety of real-life problems has
attracted the interest of many researchers because these algorithms allow to
obtain generally better results than traditional machine learning methods [5].
As already mentioned, deep neural networks consist of a very large number of
hidden layers, which lead to high computational cost when processing data of
large size and high dimension.

The areas in which deep neural networks have been most applied are
image recognition and natural language processing. For instance, Cho et al. [6]
employed a recurrent neural network (RNN) encoder-decoder to detect semantic
and syntactic representations of language when translating from English into
French, thus obtaining a better translation in the analyzed sentences. The anal-
ysis of information to recognize translations, dialogues, text summaries and text
produced in social networks was studied using techniques such as the convolu-
tional neural network (CNN) and the RNN [7]. Nene [8] reviewed the develop-
ments and applications of deep neural networks in natural language processing.

In image processing, the use of deep neural networks makes tasks faster and
allows to obtain better results. Dong et al. [9] proposed a CNN approach to learn
an end-to-end mapping between low- and high-resolution images, performing
better than the state-of-the-art methods. On the other hand, Wen et al. [10]
combined a new loss function with the softmax loss to jointly supervise the
learning of a CNN for robust face recognition. Gatys et al. [11] showed how the
generic feature representations learned by high-performing CNNs can be used
to independently process and manipulate the content and the style of natural
images. A deep neural network based on bag-of-words for image retrieval tasks
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was proposed by Bai et al. [12]. A novel maximum margin multimodal deep
neural network was introduced to take advantage of the multiple local descriptors
of an image [13].

Apart from image and natural language processing, deep neural networks
have also been applied to some other practical domains. For instance, Langkvist
et al. [14] reviewed the use of deep learning for time-series modeling and predic-
tion. Hinton et al. [15] presented an overview of the application of deep neural
networks to acoustic modeling in speech recognition. Noda et al. [16] utilized a
deep denoising autoencoder for acquiring noise-robust audio features and a CNN
to extract visual features from raw mouth area images. Wang and Shang [17]
employed deep belief networks to extract features from raw physiological data.
Kraus and Feuerriegel [18] studied the use of deep neural networks for predict-
ing stock market movements subsequent to the disclosure of financial materials.
Heaton et al. [19] introduced an autoencoder-based hierarchical decision model
for problems in financial prediction and classification.

The biomedical domain is another scientific area where the use of deep learn-
ing is gaining much attention in last years. For instance, Maqlin et al. [20]
proposed the application of the deep belief neural network to determine the
nuclear pleomorphism score of breast cancer tissues. Danaee [21] used a stacked
denoising autoencoder for the identification of genes critical for the diagnosis
of breast cancer. Abdel-Zaher and Eldeib [22] presented an automatic diagnosis
system for detecting breast cancer based on deep belief network unsupervised
pre-training phase followed by a supervised back-propagation neural network
phase. Hanson et al. [23] implemented deep bidirectional long short-term mem-
ory recurrent neural networks for protein intrinsic disorder prediction. Salaken
et al. [24] designed an autoencoder for the classification of pathological types of
lung cancers. Geman et al. [25] proposed the application of deep neural networks
for the analysis of large amounts of data produced by the human microbiome.
Chen et al. [26] developed an incremental RNN to discriminate between benign
and malignant breast cancers.

3 Deep Learning Methods

In this section, the deep neural networks that will be further used in the exper-
iments are briefly described.

3.1 Multilayer Perceptron

The multilayer perceptron (MLP) constitutes the most conventional neural net-
work architectures. These are commonly based on three layers: input, output,
and one hidden layer. Nevertheless, the MLPs can also be translated into deep
neural networks by incorporating more than two hidden layers in its architecture;
this allows to reduce the number of nodes per layer and use less parameters, but
in turn this leads to a more complex optimization problem [1,25].
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In deep MLP networks, each layer trains with a different set of features, which
are based on the output of the previous layer. It is possible to select features in
a first layer and the outputs of this will be used in the training of the next layer.

3.2 Recurrent Neural Network

Recurrent neural networks are a type of network for sequential data processing,
allowing to scale very long and variable length sequences [1]. In this type of
network, a neuron is connected to the neurons of the next layer, to those of the
previous layer and to it by means of the weights, values that change in each time
step.

The recurrent neural networks can adopt different forms depending on the
particular design:

– Networks that produce an output in each time step with recurring connections
between the hidden units.

– Networks that produce an output and have recurring connections only from
the output to the hidden unit of the next step.

– Networks with recurring connections between hidden units that read the com-
plete sequence of data and produce a simple output.

A design that improves the use of recurrent neural networks is based on
LSTM units, thus giving solution to the problem of the vanishing gradient that
occurs in a conventional recurrent network. This means that the gradient changes
the weights with respect to the change of the error. If the gradient is not known,
then it is not possible to adjust the weights in the direction of decreasing the
error, which causes the network to stop learning; this happens because the pro-
cessed data go through many stages of multiplication.

Figure 1 shows the structure of the recurrent neural network working with
LSTM cells, where x are the inputs, y are the outputs, and s consists of the values
that the cells take. Unlike the bidirectional recurrent neural network, which
works with both forward and backward propagation (see Fig. 2), the recurrent
neural network works only with forward propagation.

x0 x1 x2 ... xi

LSTM LSTM LSTM LSTMs0 si

y0 y1 y2 yi

Fig. 1. Recurrent neural network with LSTM

An LSTM contains information in a closed cell independent of the flow of
the neural network. This information can be stored, written or read, which helps
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to preserve the error that can be propagated back to the passage of the layers.
If the error remains constant, this allows the network to continue learning over
time. The cell of the LSTM decides when to store, write or erase by means of
gates that open and close analogically, which act by signals; this allows to adjust
the weights by decreasing the gradient or to propagate the error again [27].

The basic idea of the LSTM is very simple: some of the units are called
constant error carousels, which are used as an activation function (an identity
function) and have a connection to itself with a fixed weight of 1.0 [2].

3.3 Bidirectional Recurrent Neural Network

Bidirectional recurrent neural networks are a type of network where a recurrent
network is used with forward propagation and another with backward propaga-
tion. This type of network is used for input data sequences where it is known
its beginning and end (e.g., spoken sentences and protein structures). To know
the past and future of each sequence element, a recurrent network processes the
sequence of data from the beginning to the end, and another processes backing
up from the end to the beginning [2].

x0 x1 x2 ... xi

LSTM LSTM LSTM LSTMs0 si

LSTM’ LSTM’ LSTM’ LSTM’s′
i s′

0

y0 y1 y2 yi

Fig. 2. Bidirectional recurrent neural network with LSTM

3.4 Autoencoder

An autoencoder is a type of neural network that copies the input to the output.
It consists of an encoder that does the training task and a decoder that obtains
the same inputs as outputs. In general, it can be used for feature selection,
dimensionality reduction and classification [1].

There are different types of autoencoders, which can make different tasks
depending on the structure of them:

– Incomplete autoencoder: wait for the results of the training, from where it
takes useful features that result from restricting h less to x, where h are the
nodes of the encoder and x are the inputs.

– Regularized autoencoder: this type uses a loss function that allows to have
other properties in addition to copying the input to the output.
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– Dispersed autoencoder: a training dispersion penalty is applied; it is used to
learn functions used in classification tasks.

– Autoencoder for elimination of noise: it obtains useful characteristics minimiz-
ing the reconstruction error, this receives a damaged data set and is trained
to predict the original data set not damaged as an output.

4 Experimental Set-Up

The purpose of the experiments in this work is to compare some state-of-the-art
machine learning algorithms with deep learning for the classification of gene-
expression microarrays. To this end, a collection of publicly available microarray
cancer data sets taken from the Kent Ridge Biomedical Data Set Repository
(http://datam.i2r.a-star.edu.sg/datasets/krbd) were used (see Table 1).

Table 1. Description of the data sets. The imbalance ratio (IR), which corresponds
to the ratio of the majority class size to the minority class size is reported in the last
column

Database Features Samples Class 1 Class 2 IR

Lung-Michigan 7129 96 86 Tumor Normal 10 8.60

Lung-Ontario 12533 182 150 ADCA Mesothelioma 31 4.84

Ovarian 15154 253 162 Cancer Normal 91 1.78

DLBCL 4026 47 24 Germinal Activated 23 1.04

Colon 2000 62 22 Positive Negative 40 1.82

Prostate 12600 136 77 Tumor Normal 59 1.31

CNS 7129 60 21 Class1 Class0 39 1.86

Breast 24481 97 46 Class1 Class0 51 1.11

For the experimental design, we adopted the holdout method 10 times was
adopted, with 70% of the samples for training and 30% for testing. The tradi-
tional machine learning methods used in these experiments were the radial basis
function (RBF) neural network, the random forest (RNDF), the nearest neighbor
(1NN) rule, the C4.5 decision tree, and a support vector machine (SVM) using a
linear kernel function with the soft-margin constant C = 1.0 and a tolerance of
0.001. The deep learning models analyzed in this work were recurrent neural net-
work (RNN), bidirectional recurrent neural network (BRNN) and autoencoder
(AE). In addition, we included two versions of MLP: one with two hidden layers
(MLP2) and one with three hidden layers (MLP3). The main parameters of the
deep neural networks are listed in Table 2.

The state-of-the-art machine learning methods were applied using the default
parameters as defined in the WEKA data mining toolkit [28].

http://datam.i2r.a-star.edu.sg/datasets/krbd
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Table 2. Parameters of the deep neural networks

Method Parameters

MLP2 Sigmoidal activation function; learning rate= 0.3;
Adam optimizer; hidden layers= 2

MLP3 Rectified linear unit (ReLU) activation function;
learning rate = 0.1; Adagrad optimizer; hidden
layers = 3

RNN Hyperbolic tangent (tanh) activation function;
learning rate = 0.1; gradient descendent
optimizer; hidden layers= 1

BRNN tanh activation function; learning rate = 0.1;
gradient descendent optimizer; hidden layers= 1

AE Autoencoders = 2; hidden size = 10; weight
regularization = 0.1; sparsity proportion= 0.05;
linear decoder transfer function; cross entropy
loss function; softmax activation function; hidden
layers = 1

5 Results

Table 3 reports the accuracy results and standard deviations for each classi-
fier and each database. In addition, the Friedman’s average rankings are also
included. Bold values indicate the best model for each data set.

From the Friedman’s rankings, one can see that the best algorithms were
MLP2 and AE followed by the classical random forest, whereas the two versions
of recurrent neural networks (RNN and BRNN) performed the worst in average.
When focusing on the accuracy results on each particular database, it was found
that the autoencoder was the best method in four out of the eight problems
(Lung-Michigan, Lung-Ontario, Ovarian, and Colon), and the MLP2 model was
the best performing algorithm in two cases (Prostate and Breast).

It is worth noting that Lung-Michigan, Lung-Ontario and Ovarian, which
correspond to three of the databases where the AE method performed the best,
are the cases with the highest imbalance ratio as reported in Table 1. On the
other hand, the only problem where a state-of-the-art machine learning method
achieved the best accuracy was CNS, which is one of the databases with the
smallest number of samples and features.

To check the results of the classifiers and to determine whether or not there
exist significant differences between each pair of algorithms, the Wilcoxon’s
paired signed-rank test at a significance level of α = 0.05 was employed. This
statistic ranks the differences in performance of two algorithms for each data
set, ignoring the signs, and compares the ranks for the positive and the nega-
tive differences. In Table 4, one can see the results of this test where the symbol
“•” represents that the classifier in the column was significantly better than the
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Table 3. Accuracy results (and standard deviation) for the classifiers

MLP2 AE RNDF C4.5 1NN MLP3 RBF SVM RNN BRNN

Lung-
Michigan

0.990 0.997 0.931 0.993 0.993 0.972 0.914 0.883 0.852 0.841

(0.01) (0.01) (0.06) (0.01) (0.01) (0.04) (0.05) (0.04) (0.03) (0.05)

Lung-
Ontario

0.993 0.998 0.969 0.931 0.935 0.947 0.976 0.838 0.810 0.790

(0.01) (0.005) (0.03) (0.02) (0.02) (0.08) (0.02) (0.03) (0.16) (0.15)

Ovarian 0.970 0.987 0.949 0.952 0.941 0.632 0.859 0.775 0.543 0.564

(0.02) (0.01) (0.02) (0.02) (0.03) (0.03) (0.05) (0.08) (0.07) (0.08)

DLBCL 0.859 0.886 0.819 0.684 0.725 0.899 0.772 0.812 0.696 0.784

(0.09) (0.10) (0.10) (0.12) (0.06) (0.09) (0.14) (0.06) (0.17) (0.10)

Colon 0.821 0.832 0.779 0.790 0.753 0.779 0.737 0.668 0.616 0.537

(0.06) (0.06) (0.08) (0.05) (0.08) (0.05) (0.07) (0.07) (0.14) (0.13)

Prostate 0.885 0.871 0.849 0.837 0.763 0.744 0.622 0.529 0.603 0.591

(0.05) (0.06) (0.06) (0.05) (0.07) (0.11) (0.07) (0.05) (0.05) (0.04)

CNS 0.650 0.567 0.589 0.578 0.600 0.517 0.628 0.667 0.639 0.620

(0.07) (0.08) (0.06) (0.16) (0.08) (0.12) (0.07) (0.07) (0.03) (0.12)

Breast 0.578 0.570 0.647 0.577 0.557 0.547 0.517 0.490 0.426 0.410

(0.08) (0.11) (0.08) (0.06) (0.05) (0.09) (0.07) (0.06) (0.07) (0.07)

Average 0.843 0.838 0.816 0.793 0.783 0.755 0.753 0.708 0.648 0.642

Rank 2.250 2.625 4.187 5.062 5.437 5.687 6.000 6.875 8.250 8.625

Table 4. Wilcoxon’s paired signed-rank test (α = 0.05)

MLP3 MLP2 RNN BRNN AE RBF RNDF 1NN C4.5 SVM

MLP3 - • ◦ • • ◦ ◦ ◦ ◦ ◦
MLP2 - • • ◦ • ◦ • • •
RNN - ◦ • • • • • ◦
BRNN - • • • • • •
AE - • ◦ • ◦ •
RBF - ◦ ◦ ◦ ◦
RNDF - ◦ ◦ •
1NN - ◦ ◦
C4.5 - ◦
SVM -
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classifier in the row, whereas the symbol “◦” indicates that the classifier in the
row performed significantly better than the classifier in the column.

6 Conclusions

In this paper, we have carried out an empirical comparison between several
deep neural networks and some traditional machine learning methods for the
classification of gene-expression microarray data, which characterize by a large
number of samples and a very small number of features. While deep learning
has demonstrated to be a powerful tool in applications with a huge amount of
both samples and features, there is no study in problems that suffer from the
“curse of dimensionality” phenomenon, such as is the case of gene-expression
microarray analysis.

The experimental results have shown that the autoencoder and an MLP
with two hidden layers were the best performing deep neural networks. On the
other hand, it has also observed that there is no single method with the highest
accuracy on all databases, and even the SVM (a traditional machine learning
algorithm) was superior to the remaining models on one problem. Another inter-
esting finding is that the recurrent neural networks were the worst techniques in
average.

Acknowledgment. This work has partially been supported by the Spanish Ministry
of Education and Science and the Generalitat Valenciana under grants TIN2009–14205
and PROMETEO/2010/028, respectively.

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
4. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep

neural network architectures and their applications. Neurocomputing 234, 11–26
(2017)

5. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for
visual understanding: a review. Neurocomputing 187, 27–48 (2016)

6. Cho, K., Merrienboer, B.V., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR abs/1406.1078 (2014)

7. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. CoRR abs/1708.02709 (2017)

8. Nene, S.: Deep learning for natural language processing. Int. Res. J. Eng. Technol.
4, 930–933 (2017)

9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10593-2 13

https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-10593-2_13


114 A. Reyes-Nava et al.

10. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach
for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46478-7 31

11. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neu-
ral networks. In: IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, pp. 2414–2423 (2016)

12. Bai, Y., Yu, W., Xiao, T., Xu, C., Yang, K., Ma, W.Y., Zhao, T.: Bag-of-words
based deep neural network for image retrieval. In: 22nd ACM International Con-
ference on Multimedia, Orlando, FL, pp. 229–232 (2014)

13. Ren, Z., Deng, Y., Dai, Q.: Local visual feature fusion via maximum margin mul-
timodal deep neural network. Neurocomputing 175, 427–432 (2016)

14. Langkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning
and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

15. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for
acoustic modeling in speech recognition: the shared views of four research groups.
IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

16. Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G., Ogata, T.: Audio-visual
speech recognition using deep learning. Appl. Intell. 42(4), 722–737 (2015)

17. Wang, D., Shang, Y.: Modeling physiological data with deep belief networks. Int.
J. Inf. Educ. Technol. 3(5), 505–511 (2013)

18. Kraus, M., Feuerriegel, S.: Decision support from financial disclosures with deep
neural networks and transfer learning. Decis. Support Syst. 104, 38–48 (2017)

19. Heaton, J.B., Polson, N.G., Witte, J.H.: Deep learning for finance: deep portfolios.
Appl. Stochast. Models Bus. Ind. 33(1), 3–12 (2017)

20. Maqlin, P., Thamburaj, R., Mammen, J.J., Manipadam, M.T.: Automated nuclear
pleomorphism scoring in breast cancer histopathology images using deep neural
networks. In: Prasath, R., Vuppala, A.K., Kathirvalavakumar, T. (eds.) MIKE
2015. LNCS (LNAI), vol. 9468, pp. 269–276. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26832-3 26

21. Danaee, P., Reza, G., Hendrix, D.A.: A deep learning approach for cancer detec-
tion and relevant gene identification. In: Pacific Symposium on Biocomputing,
Honolulu, HI, pp. 219–229 (2016)

22. Abdel-Zaher, A.M., Eldeib, A.M.: Breast cancer classification using deep belief
networks. Expert Syst. Appl. 46, 139–144 (2016)

23. Hanson, J., Yang, Y., Paliwal, K., Zhou, Y.: Improving protein disorder prediction
by deep bidirectional long short-term memory recurrent neural networks. Bioinfor-
matics 33, 685–692 (2016)

24. Salaken, S.M., Khosravi, A., Khatami, A., Nahavandi, S., Hosen, M.A.: Lung
cancer classification using deep learned features on low population dataset. In:
IEEE 30th Canadian Conference on Electrical and Computer Engineering, Wind-
sor, Canada, pp. 1–5 (2017)

25. Geman, O., Chiuchisan, I., Covasa, M., Doloc, C., Milici, M.-R., Milici, L.-D.: Deep
learning tools for human microbiome big data. In: Balas, V.E., Jain, L.C., Balas,
M.M. (eds.) SOFA 2016. AISC, vol. 633, pp. 265–275. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-62521-8 21

26. Chen, D., Qian, G., Shi, C., Pan, Q.: Breast cancer malignancy prediction using
incremental combination of multiple recurrent neural networks. In: Liu, D., Xie, S.,
Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 43–52.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0 5

https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1007/978-3-319-26832-3_26
https://doi.org/10.1007/978-3-319-26832-3_26
https://doi.org/10.1007/978-3-319-62521-8_21
https://doi.org/10.1007/978-3-319-70096-0_5


Performance Analysis of Deep Neural Networks 115

27. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10),
2222–2232 (2017)

28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)


	Performance Analysis of Deep Neural Networks for Classification of Gene-Expression Microarrays
	1 Introduction
	2 Related Works
	3 Deep Learning Methods
	3.1 Multilayer Perceptron
	3.2 Recurrent Neural Network
	3.3 Bidirectional Recurrent Neural Network
	3.4 Autoencoder

	4 Experimental Set-Up
	5 Results
	6 Conclusions
	References




