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Preface

The 2018 Mexican Conference on Pattern Recognition (MCPR 2018) was the tenth
event in the series organized by the Computer Science Department of the National
Institute for Astrophysics Optics and Electronics (INAOE) of Mexico. This year the
conference was jointly organized with the University of Puebla, under the auspices of the
Mexican Association for Computer Vision, Neurocomputing and Robotics (MACVNR),
which is a member society of the International Association for Pattern Recognition
(IAPR). MCPR 2018 was held in Puebla, Mexico, during June 27–30, 2018.

This conference aims to provide a forum for the exchange of scientific results,
practice, and new knowledge, as well as promoting collaboration among research
groups in pattern recognition and related areas in Mexico and around the world.

In this special anniversary edition, as in previous years, MCPR 2018 attracted not
only Mexican researchers but it also included worldwide participation. We received
contributions from nine countries. In total, 44 manuscripts were submitted, out of
which 29 were accepted for publication in these proceedings and for presentation at the
conference. Each of these submissions was strictly peer-reviewed by at least two
members of the Program Committee, all of them experts in their respective fields of
pattern recognition, which resulted in these excellent conference proceedings.

Beside the presentation of the selected contributions, we were very honored to have
three outstanding invited speakers:

– Prof. Hamido Fujita, Faculty of Software and Information Science, Iwate Prefec-
tural University, Japan

– Prof. Ventzeslav Valev (IAPR invited speaker), Institute of Mathematics and
Informatics of the Bulgarian Academy of Sciences, Sofia, Bulgaria

– Prof. Julian Fierrez, School of Engineering, Universidad Autónoma de Madrid,
Spain

These distinguished researchers gave keynote addresses on various pattern recog-
nition topics and also presented enlightening tutorials during the conference. To all
of them, we express our appreciation for these presentations.

We would like to thank all the people who devoted so much time and effort to the
successful running of the conference. In particular, we extend our gratitude to all the
authors who contributed to the conference. We are also very grateful for the efforts and
the quality of the reviews of all Program Committee members and additional reviewers.
Their work allowed us to maintain the high-quality standard of the conference and
provided a conference program of high standard.

Finally, our thanks go to IAPR (International Association for Pattern Recognition)
for sponsoring one IAPR Invited Speaker at MCPR2018, and also to the National
Council of Science and Technology of Mexico (CONACYT) for providing key support
to this event through sponsorship 292930.



We are sure that MCPR 2018 provided a fruitful forum for the Mexican pattern
recognition researchers and the broader international pattern recognition community.

June 2018 José Francisco Martínez-Trinidad
Jesús Ariel Carrasco-Ochoa
José Arturo Olvera-López

Sudeep Sarkar
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Patterns of Go Gaming by Ising Model

Arturo Yee1(&) and Matías Alvarado2(&)
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Culiacán, Mexico
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Abstract. Go game gaming patterns are very hard to identify. The stochastic
interaction during a Go game makes highly difficult the pattern recognition in
Go gaming. We use the Ising model, a classic method in statistics physics, for
modeling the stochastic interaction among spins that result in well identified
patterns of phenomena in this discipline. An Ising energy function is defined;
this function allows the formal translation of Go game dynamics: the use of rules
and tactics to elaborate the complex Go strategies. The result of Go game
simulations shows a close fit with real game scores during the evolution of all
the game.

Keywords: Patterns of Go gaming � Ising model � Pattern stochastic formation

1 Introduction

Go is a two players, zero-sum and complete information game [1], that official board is
a 19 � 19 grid [2]. Each player places one black/white stone on an empty board
cross-point position, black plays first then white and so on. In Go gaming white stones
player receives a compensation komi by playing the second turn [3]. Same color stones
joined in horizontal or vertical line form up one indivisible compound stone. Con-
nection of ally stones is by placing one same color stone between them. Stone’s liberty
is a contiguous empty board cross-point in the vertical or horizontal direction. Any
stone on board is removed if is adversaries rounded losing all its liberties. For board
territory control the way is by means of tactics of invasion, reduction, nets, ladders and
connections. Stone allocation within an empty board neighborhood is an invasion, and
if the adversary places a stone close to invasion it is making a reduction. Same color
stones make a net over adversarial stones by surrounding them, and make a ladder by
surrounding them and leaving a sole liberty, called Atari condition. A stone is Go alive
if cannot be captured and is Go dead if cannot avoid be captured. Placement of stone
being directly captured is suicide that is not allowed. Go strategies are compositions of
tactics. The game ends when both players pass turn. The score is computed based on
both board territory occupied and the number of adversarial simple stones captured.
The usual criteria are that the winner has the largest territorial and number of captures.

A summary of computer Go concepts and definitions follow. A Go gaming state is
a configuration that combines black-white-empty board positions. The set of states is

© Springer International Publishing AG, part of Springer Nature 2018
J. F. Martínez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 3–11, 2018.
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the Go state space with cardinality 319�19 * 10172. The game tree records the different
paths between the successive states that correspond to the players’ decisions from the
start to the end so the sequence of moves in the game. Go game tree cardinality is by
10a, a = 10172, that quantifies the huge diversity of paths for Go gaming. As a result,
the automation of Go tactics and strategies to efficiently win a match is vastly complex.
In average, the branching factor for Go ranges from 200 to 300 possible moves at each
player’s turn, while 35–40 moves for Chess, which cardinality of state space and game
tree is 1050 and by 10123 [4].

The very difficult task for Go automation is the evaluation of positions for estimating
the potential of occupied territory [3, 5, 6]. The challenge is to deal with the huge
number of Go gaming patterns in the board, which must be classified prior to deciding
on the next advantageous Go move. Advances on computer Go gaming for pattern
recognition of Go tactics (eye, ladder, nets) have used Neural Networks, and the Monte
Carlo tree search algorithms (MCTS) [7]. The MCTS algorithms ponder an eventual
next Go move on the base of the average values from thousands of possibilities since the
current state to the game end. Main weakness of the MCTS methods is its extremely
high computational cost [8]. AlphaGo is the current top Go player [9]. It uses machine
learning and MCTS combined with extensive training, from both human and computer
play records. Actually, AlphaGo uses deep neural network (DNN) methodology as a
milestone for its meaningful power in complex Go gaming patterns recognition. DNN is
a bio-inspired formal abstraction from visual cortex of felines and eagles characterized
by an acute vision system [9]; DNN embraces dozens of layers each with a long (deep)
number of neurons. The intense correlation and composition, like in visual cortex
process, makes DNN a powerful tool for recognition in complex scenarios. DNN uses
convolution integral functions for neurons activation.

MCTS lacks an adequate model to represent Go gaming patterns which can be easy
used in game heuristic function. Deep neural networks in AlphaGo is truly efficient for
pattern recognition but not for a comprehension of the Go game phenomenology.

In this work, for modeling Go gaming, we propose an analytical method based on
the Ising model and Hamiltonian, the classics for modeling complex interaction in
electromagnetism and thermodynamic phenomena [10]. In the struggling for board area
control in Go, the Ising model is relevant for modeling the dynamics of complex
interaction, henceforth for designing algorithms to quantify the synergy among allied
stones as well as the tension against the adversary ones. Definition of energy function
stands back algorithms to compute the power of stones patterns during the successive
Go states, so account the each state dominance. Sometimes a phase-transition-like
process happens in Go gaming: when after a movement the black - white force equi-
librium is broken and emerges pre-eminence of blacks over white or conversely. This
Go-game-phase-transition is fine described by the adapted Go Ising energy function.

The rest of this paper is organized as follows: In Sect. 2 the Ising-model-based
method to estimate the energy value of Go stones configurations during a match is
introduced. Section 3 presents experiments and the analytical description of results.
Section 4 is the Discussion, followed by the conclusions.

4 A. Yee and M. Alvarado



2 Ising Model for Go Stochastic Interaction

In the 2D Ising model, the energy spin interactions are described by the Hamiltonian in
Eq. (1):

H ¼ �
X

ij

wijxixj � l
X

i

hixi ð1Þ

wij sets for interaction between spin i and j, l the magnitude of an external magnetic
field, and hi the magnetic field contribution at site i; for a homogeneous external field,
hi ¼ 1.

2.1 The Go Energy Function

We use 2-dimensional Ising model for displaying the black – white stones interactions
in Go gaming. Our definition of energy function stands back the algorithms to compute
the power of the adversary groups of stones in a Go state, so account board dominance.
The energy function lets quantify the strength of interaction among allied stone, versus
adversaries, and the impact of the involved liberties. Associated to Ising Hamiltonian in
Eq. (1), the Go energy function – via the CFG representation of states [17] – embraces
the mentioned parameters in the next (1) and (2) that result in tactics (3)–(5):

(1) The numbers of single (atomic) stones in a compound (molecular) stone.
(2) The number of eyes a compound stone has.
(3) The tactic pattern the stone is involved and making.
(4) The synergy strength the ally stones are making among.
(5) The strength of adversary stones that fight against.

The quantitative description of stone i is by means of the elements involved in
Eq. (2):

xi ¼ ci ni þ rkieye
� �

: ð2Þ

ni sets the number of single stones, reye is the constant to represent the occurrence of
an eye, reye [ 1, or reye ¼ 0 if no eye; ki is the number of eyes in stone i, and ci is the
stone color, 1 for white, and −1 for black. Hence, rkieye quantifies the eyes’ power inside
i. If no eye xi just indicates the i size and color. Observe that ki � 2 guaranties these
liberties to i, so it cannot be captured.

In Hamiltonian of Eq. (1) for Go, wij should quantify the ratio of synergy or tension
between single or compound stones i; j. So, wij should encompass the i� j synergy
regarding the presence and strength of adversary stones that try to inhibit this synergy.
As well, wij should encompass the presence of allied stones enforcing the mutual
strengthen. Hence, up to tactics in Go gaming the interaction among stones is weighed
by the next Eq. (3):

Patterns of Go Gaming by Ising Model 5



wij ¼
X

s
rtx

ijð Þ
s ð3Þ

x ijð Þ
s formula describes each stone s lying between i and j, that in turns, is making a

Go tactic with allies and against adversaries.
Parameter rt quantifies the a-priori known power of tactic t: eye reye

� �
, net rnetð Þ,

ladder rladð Þ, invasion rinvð Þ, reduction rredð Þ. Tactic parameters fit a total order >
induced by the a-priori knowledge of Go tactics power learned from high ranked Go
players, and, the proposed definition of the energy function as follows:
reye [ rnet [ rlad [ rinv [ rred [ rsl. The single liberty parameter value is rsl ¼ 1. We
remark that reye [ rnet, because, given the energy function parameterization, the
quantity of stones and the each stone’ size seize the influence of each stone in a net. As
the usual occurrence, three or more stones are making a net and at least one of large
size. So, net power is well pondered. In addition, one compound stone has one or two
internal eyes and rarely more. Regarding these facts the influence of net with respect to
eyes in the Go Hamiltonian is well tuned. The whole field impact value is l ¼ 1 in this
proposal for simplicity; and, the specific impact hi from field to stone i is the number of
liberties i has.

In the Go game Hamiltonian in Eq. (1) the first term accounts the interaction of
collaboration among same color stones, and, the fight against adversaries. In the second
term the stone’s force from its liberties. Henceforth, given any Go state, by definitions
in Eqs. (2) and (3) used in Eq. (1) the Go Hamiltonian quantify the interaction strength
among ally and/or against adversarial stones on the base of the each stone’s power, that
in turns depends on the each other relative position: that’s the contribution of each eye,
ladder or net pattern; or from invasion, reduction or connection tactics.

Like with changes of matter by heat or pressure transmission in nature phenomena,
the evolution leading to territory control it can result a phase transition in Go gaming.
The sequentially heated stones placed as a Go move it eventually change the board
state abruptly in the evolution of games, similar to matter changes. This sequence of
moves yields to a Go phase-transition process that brings sudden board area domi-
nance. In Fig. 3, the sequential placement of red-black-flag stones makes the override
over white in this board area, alike local phase transition. Because Go is a zero-sum
game where victory for one means defeat for the other, the Go game thermodynamics
may be seen as out of the equilibrium.

3 Experiments and Results

AlphaGo machine [9] is the current top Go player and one of the biggest triumphs of
Artificial Intelligence. For testing the proposed model both Go games comparisons are
made: human vs human players, and AlphaGo vs humans. Scores from the simulations
using as input the logged games files, they close fit with the real games’ scores.

6 A. Yee and M. Alvarado



3.1 Human Go Games

As a first tough test we simulate classic Go games that have been broadly analyzed.
The strength of stones in the successive states and the final result are shown in Figs. 1
and 2. The board in the figure is the game final state. In the following figures blue line
is for blacks and red line is for whites.

3.2 AlphaGo Versus Lee Sedol Games

Lee Sedol is one top Go player since he was 12 years old. AlphaGo – Lee Sedol
encounter was a five-game match gamed by March 2016 in Seoul, Korea. Lee Sedol
played blacks the odd games and whites the pair games. AlphaGo won the first, second,
third and fifth game and Lee Sedol the fourth, so 4/5 games won AlphaGo, being the

Fig. 1. The winner S. Masao played black versus Fujisawa playing white. From moves 50 to
160 the strength of the groups is quite separated, in move 166–170 the separation is reduced but,
from then until game end black is ever strengthen. No phase transition happens. (Color figure
online)

Patterns of Go Gaming by Ising Model 7



first time a computer defeat a top master. Figure 3 shows the graphs of each of the five
games: G1, G2, G4 and G5, each score similar to the official result. In G3 there is a
small difference between the official result and the obtained from simulation.

Results shows how the measure of the potential of a stone or army of stones for
controlling territory on the board is up to the own stones board position and the made
synergy from interaction. Go gaming fix on long-term influence moves that strong
affect the outcome of later moves, so the relevance on the early correct decision making
for playing Go. We showed that Go (stochastic-like) gaming is straightforward treated
by Ising model and Hamiltonian, so fair to estimate the each player’s board area control
and the dominion status at any stage of game evolution. The Ising model for launching
interaction of spins in a two-state space is relevant used to define an energy function for
accurate Go gaming model.

Fig. 2. Yi Se Sol plays black against the Hong’s white. Until move 40 the stones’ strength is tie;
then white improves but late both converge to equilibrium. In move 95, 150, 162 and 171 phase
transitions happen with white – black - white – black – white better strength. The successive
scores are similar to the ones in the official tournament and white triumph. (Color figure online)

8 A. Yee and M. Alvarado



4 Discussion

The stones in a Go board are organized into distinct groups or clusters, usually sparsely
scattered about or somewhat intermingled. Grouping is regularly the result of proximity
of stones of the same color or the predominance of stones of one color in an area
making synergy throughout the whole board regarding Go rules. The area subtended by
the board is divided into black and white territories, “spheres of influence”. Since the
interaction rules in the Ising model are very general and simple [10], the model has

Fig. 3. Lee Sedol vs AlphaGo https://deepmind.com/research/alphago/match-archive/alphago-
games-english/. (Color figure online)

Patterns of Go Gaming by Ising Model 9
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been relevant applied to describe the emergence of convergence patterns in numerous
systems in Physics, Biology, Chemistry [11–13], Sociology and technology applica-
tions [14–16], that may be assumed as constituted by discrete variables arranged in
lattices and subject to extended Ising-like interacting rules. This parallel by Ising
modeling the millenary human Go game on strategic thinking for territory preeminence
is remarkable impressive. Newly the Go gaming formalization by Ising model has been
applied for modeling the complex dynamics of cancer metastasis [17]. Alongside,
AlphaGo Go gaming automation using DNN is impressive for recognition in complex
scenarios. But it lacks on proper Go gaming understanding. This understanding is
better approached by means of the proposed Ising model based method.

5 Conclusions

Phenomenology of Go gaming as dichotomy variables interaction process is clarified
by Ising model. Experimental computer simulations allow conclusions that black –

white stones’ interaction during Go gaming is traced by means of the proposed Ising
model energy function. Strength of any Go stones pattern is precisely calculated as a
result of the relative positions among ally stones as well as with respect to adversaries
that dynamically change during the match evolving. Evolution in Go gaming patterns
eventually yields to phase-transition-like phenomena occurring when one stone
placement strength territory control at some board area that overrides adversaries.
During a Go match any stone at board is affected from the global board state, which
effect may be seen as the external field in the Ising model.

Acknowledgment. To Carlos Villarreal from Instituto de Física, Universidad Nacional
Autónoma de México, who advised us on apply Ising model for displaying stochastic processes
in physics. Arturo Yee’ special thank to PROFAPI Programa de Fomento y Apoyo a Proyectos
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Abstract. The amount of data available in any field is permanently
increasing, including high dimensionalities in the datasets that describe
them. This high dimensionality makes the treatment of a dataset more
complicated since algorithms require complex internal processes. To
address the problem of dimensionality reduction, multiple Feature Selec-
tion techniques have been developed. However, most of these techniques
just offer as result an ordered list of features according to their relevance
(ranking), but they do not indicate which one is the optimal feature
subset for representing the data. Therefore, it is necessary to design
additional strategies for finding this best feature subset. This paper pro-
poses a novel criterion based on sequential search methods to choose
feature subsets automatically, without having to exhaustively evaluate
rankings derived from filter selectors. The experimental results on 27 real
datasets, applying eight selectors and six classifiers for evaluating their
results, show that the best feature subset are reached.

Keywords: Feature selection · Filter · Ranking · Evaluation criterion

1 Introduction

Nowadays, large amount of data from different environments are generated and
stored. In some cases, high dimensionality for representing the data can be pre-
sented and this supposes diverse problems for processing them, i.e. slowness in
the process or complexity in the interpretation of results. To minimize these
aspects, a reduction of the feature subset can be done using Feature Selection
(FS) techniques, to obtain optimal feature subset.

In literature, there are two kinds of FS approaches, called Filter and Wrapper.
Basically, the difference between them consists in the inclusion of a classification
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 12–22, 2018.
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algorithm in the evaluation process. In the case of Filters, commonly they process
the features one by one and get an ordered list of the features or variables,
which is known as ranking and represents a descending order depending on the
importance of the features; whereas Wrappers process feature subsets evaluating
them with a classifier, the best subset according this algorithm is returned.

Since filters only produce a ranking, the owner of the data have to manually
choose the feature subset that adequately represents the problem. Therefore,
several methods have been developed for automatically obtaining the optimal
feature subset for the dataset. In the literature has reported works that propose
different alternatives. Among the most common are (i) use the first k-features in
the ranking [1], or (ii) choose those that reach a previously defined threshold [2].

Choosing the first k-features does not necessarily ensures that such selection
represents the optimal subset. On the other hand, establishing the threshold
value requires knowing the instances nature under study on the other hand, if
mathematical tools are used, the complexity of the method is increased. There-
fore, if a criterion for choosing features is not used, it is necessary to exhaustively
evaluate all the possible subsets that can be derived from that ranking, in order
to find the optimal one.

Considering the disadvantages of the alternatives mentioned, it is proposed
a criterion for evaluating a feature filter ranking, which do not evaluate it in an
exhaustive way.

This article includes a section referring to the description of Filter methods
for FS, then the proposed ranking evaluation criterion is presented, as well as the
obtained experimental results. Finally, conclusions and future work are shown.

2 Filter Methods for FS

One of the objectives pursued by the FS algorithms is to determine the impor-
tance of the existing features in a dataset whose classification is previously
known. Frequently, this is achieved by identifying the relevance and redundancy
of the features, allowing the factibility to eliminate some of them without affect-
ing the definition and classification rates of the dataset under study.

Filter algorithms can be classified as Univariate or Multivariate depending
on the quantity of features studied at the same time, in the first case the features
are studied one by one and in the second, subsets of them are included. This
work considers only univariate algorithms, where the output produced by them
is a features list, ordered by their relevance.

From a given ranking, it is possible to determine which features can be elim-
inated from the original data set. However, in order to carry out this process,
the criterion of an expert person in the scope of the problem context is often
required, so as to determine which features are considered useful and which are
not.

This way of choosing features is not the most adequate because (i) there is not
always an expert knowledge in the domain of the data, (ii) human participation
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can include errors or deviations that affect the validity of the results, causing
subjectivity and (iii) manual processing is slower.

When an expert in the subject domain is not available, it can be performed
an exhaustive evaluation of the ranking. In the literature, it is common to eval-
uate feature subsets by a classification algorithm, considering its precision to
determine which subset is the one that best represents the data. However, this
exhaustiveness entails a high computational cost.

There are some algorithms for automate the search process based on sequen-
tial methods. Greedy stepwise is one that is implemented on Weka platform [3].
However other authors have reported that this search method presents some
problems produced by noise in local data, in consequence global maxima is not
reached [4]. This algorithm can be configured with the features quantity to select,
so the human intervention is required.

For the above reasons, it is useful to have a procedure to choose a feature
subset automatically, this situation justify the development of new methods.

3 Proposed Criterion for Evaluating Rankings

The proposed algorithm has the fundamental purpose of determining a feature
subset by means of a ranking evaluation derived from a filter type selector based
on the classifier performance, so it takes as input a features ranking generated
by an univariate filter algorithm. Then a search method is used in order to
evaluate the classifier behavior, finally, a feature subset that satisfied a criterion
for detention of evaluation is produced.

This work uses the search method Sequential Forward Search (SFS) [5], which
evaluates first the most important feature, using a classification method, i.e. SFS
applies the classifier considering the objects description of a set using only that
feature. Subsequently, it is added the next most important feature and evaluates
in the same way. This process is repeated until all the features are included in
the evaluation.

SFS evaluates the features one by one, however not all them must be eval-
uated since, at any time during the evaluation process, the proposed criterion
can identify a feature subset that produces the best performance for a given
classifier. When the whole feature subset has been evaluated, it is said that an
exhaustive search has been carried out.

In order to avoid exhaustive searches, the criterion uses a parameter called
window (w), whose purpose is to define the tests quantity that have to be per-
formed consecutively so as to identify a decreasing behavior in the classifier
performance. When this behavior is identified, the criterion returns the selected
features subset up to that moment.

The identification of the positive or negative trend in the behavior of a clas-
sifier, is reflected in obtaining consecutive values, either ascending or descending
respectively. As it is presented in Sect. 4, considering a percentage of tests based
on the included features quantity in a dataset, it is possible to determine the
optimal subset.
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This criterion considers to find that negative trend in the precision rate of
the classifier that evaluates the possible feature subsets. Analyzing the exhaus-
tive results from a ranking, it was observed that if the classifier performance
decreases, there is a strong chance to continue with this behavior. The experi-
mental design is focused on identifying the tests quantity that effectively indi-
cates the negative tendency of classifier. This amount of tests is indicated by the
parameter w.

Figure 1 presents the algorithm of the proposed criterion to choose the fea-
tures subset that best represents a dataset. The process begins with a ranking
where the features will be processed using a SFS strategy, some control param-
eters are initialized with value 0, among them there is one that will assume the
count of the selected features and one more to store the iterations number. In
another hand, the w parameter is initialized with a percentage of all features
of whole dataset. Later, an iterative process evaluates the classifier accuracy
registering the best value. If a maximum value is identified, from this moment
the times quantity where the precision does not increase is counted while this

Fig. 1. Process performs by the proposed criterion
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number does not exceed w value. The process ends when a maximum value
was found or when the ranking was fully evaluated, thus the feature subset is
established.

4 Experimental Results

Several filter algorithms were used in order to show the efficiency of the proposed
criterion: Chi Squared (CS) [6], Gain Ratio (GR) [7], Info Gain (IG) [8], Lapla-
cian Score (LS) [9], One R (O) [10], Relief (R) [11], SVM [12] and Symmetrical
Uncertainty (Sy) [13]. These algorithms were selected because they are the most
used in the literature, due to their strengths.

In addition to these FS algorithms, to validate the ranking lists of features
issued by them, several methods of supervised classification were used, in order
to verify the relevance of the criterion use with different algorithms.

The used classifiers to evaluate the feature subsets are: SMO (Sequential Min-
imal Optimization) [14], Naive Bayes [15], two neighborhood-based algorithms
[16,17], C4.5 supported by graphs [18] and an algorithm created over instance
filter combination - classifier [3]. All the methods, both of FS and the supervised
classification have been applied through the Weka platform [3].

The used datasets to perform the experiments are described in Table 1, where
it can seen that the examples were chosen with different characteristics. Some of
them include numeric, nominal or mixed features. In addition, properties such
as the total of features, instances and classes were considered, even there is one
case with balanced class (Iris dataset).

According to all of datasets, FS and classification algorithms, the number
of experiments performed were 1272, although only 1123 results were obtained
because the selector SVM could not be applied in 16 of the 27 datasets and
Laplacian Score in 9 of them.

For study convenience, the features nomenclature was changed in all cases by
X = {x1, x2, x3, x4, . . . , xn, class}, where n corresponds to the quantity of them
in each dataset.

To show the detailed procedure that was applied to the datasets, it is used
the Messidor set. Table 2 shows the resulting features ranking from each FS
algorithm. As can be seen, not all the rankings are the same and it is precisely this
difference that suggests their evaluation to determine the best features subset
that represent the data.

Table 3 presents the obtained results through an exhaustive SFS search pro-
cess to obtain the accuracy of the six classifiers included in the study. To show
the proposed criterion application, the results are displayed using the ranking
generated by the FS algorithm One R.

In Table 3, the highest precision value for each classifier is highlighted. In
addition, the criterion results are observed, defining the size of w with a corre-
sponding value to 20% of features quantity, in the case of Messidor there are 19
features, therefore the rounding parameter acquires a value of w equal to 4. The
subsets are evaluated adding one by one the features, until in the iteration “i” a
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Table 1. Description of used datasets

Datasets Instances Features Classes

1 Abalone 4,177 8 28

2 Adults 48,842 14 2

3 Cylinder bands 539 39 2

4 Breast cancer 286 9 2

5 Car evolution 1,728 6 4

6 Chess 3,196 36 2

7 Congressional voting records 435 16 2

8 Dermatology 366 34 6

9 Ecoli 336 7 8

10 Geographical music chromatic 1,059 116 33

11 Geographical music simple 1,059 68 33

12 German credit 1,000 20 2

13 Glass 214 9 6

14 Hepatitis 155 19 2

15 Horse colic 300 27 2

16 Iris 150 4 3

17 Lymphography 148 18 4

18 Madelon 2,000 500 2

19 Messidor features 1151 19 2

20 Mushroom 8,124 22 2

21 Nursery 12,960 8 5

22 Primary tumor 339 17 21

23 Sensorless 58,509 48 11

24 Statlog - Australian credit 690 15 2

25 Tic tac toe 958 9 2

26 Wisconsin breast cancer 699 10 2

27 Zoo 101 17 7

decreasing performance in the classifier accuracy is identified. Once this behavior
is detected, the precision value of iteration “i− 1” is stored to be compared with
the obtained precision values in the next w iterations. If the consecutive itera-
tions quantity (equal to the size of w) presents a lower performance than the
stored precision, the criterion stops and the feature subset of iteration “i− 1”
are returned as the best subset.

Similarly, the process was applied in each dataset. Figure 2 shows the results
of the criterion application with the dataset Adults described by 14 features,
using the ranking given by the Info Gain selector. In this figure, the criterion
application is shown with a box, for the NB results, observing that with w = 3,



18 L. Vargas-Rúız et al.

Table 2. Ranking for Messidor dataset, obtained from the FS algorithms

CS GR IG LS O R SVM Sy

x3 x15 x3 x1 x3 x3 x3 x15

x15 x16 x16 x2 x15 x4 x7 x16

x16 x1 x15 x19 x4 x19 x4 x14

x4 x14 x4 x14 x5 x9 x9 x3

x14 x3 x14 x15 x16 x5 x15 x4

x5 x13 x5 x6 x6 x6 x10 x5

x6 x4 x6 x5 x14 x10 x8 x6

x9 x5 x9 x7 x13 x15 x16 x13

x13 x6 x13 x4 x8 x7 x6 x7

x7 x7 x7 x13 x9 x8 x13 x9

x8 x9 x8 x3 x7 x11 x5 x8

x2 x8 x2 x16 x1 x12 x2 x1

x1 x12 x1 x8 x2 x16 x14 x2

x19 x2 x19 x12 x12 x14 x11 x19

x12 x19 x12 x11 x17 x2 x18 x12

x18 x18 x18 x9 x19 x13 x1 x18

x17 x17 x17 x10 x11 x18 x12 x17

x11 x11 x11 x17 x10 x1 x17 x11

x10 x10 x10 x18 x18 x17 x19 x10

Table 3. Precision of classifiers through SFS with the ranking One R, dataset Messidor

Iteration Features SMO Naive
Bayes

Lazy
KStar

J48
Graft

Lazy
Ibk

Meta
filtered

1 None 53.084 53.084 53.084 53.084 53.084 53.084

2 x3 59.253 59.166 56.212 60.990 59.687 59.687

3 x15 60.122 57.255 61.772 61.685 58.384 62.554

4 x4 59.861 60.209 62.207 60.556 66.116 62.815

5 x5 60.817 61.946 63.944 62.815 68.810 62.989

6 x16 60.817 57.863 63.510 63.076 68.897 63.076

7 x6 63.162 58.818 64.639 63.597 67.420 62.815

8 x14 63.510 56.820 64.987 63.336 66.811 62.815

9 x13 63.597 56.038 64.553 63.076 66.030 62.815

10 x8 64.639 56.038 63.510 63.510 65.943 62.902

11 x9 65.248 56.038 64.553 63.858 66.203 63.249

12 x7 65.074 56.299 63.944 63.076 66.03 63.249

13 x1 65.421 56.299 64.031 63.076 66.116 63.249

14 x2 67.246 56.386 64.466 64.205 65.508 63.249

15 x12 67.420 56.646 64.031 63.423 66.116 63.249

16 x17 66.638 56.646 62.641 63.597 63.684 63.249

17 x19 66.551 56.646 62.815 64.466 62.815 63.249

18 x11 67.333 56.820 63.423 64.379 62.902 63.249

19 x10 67.941 56.820 61.338 65.074 61.685 63.249

20 x18 67.593 56.820 61.251 64.639 61.338 63.249
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Fig. 2. Precision of classifiers through SFS with the ranking Info Gain, dataset Adults

which corresponds to rounding the 20% of features, it is possible to identify the
features subset that produces the best behavior, in this case, it is integrated by
nine features {x8, x6, x11, x1, x4, x5, x7, x13, x12}, according to the established
order by the ranking.

4.1 The w Parameter

In order to identify the appropriate value of the w parameter for the criterion
operation, several experiments were carried out using four alternatives: 10%,
20%, 30% and 50% of the features number in the corresponding dataset.

The obtained results during the experiment are shown in Table 4, where the
percentage indicates in how many of the 1123 experiments, the criterion chooses
the features subset that achieve the best classification performance, with the
respective w size. As it is observed, a w equivalent to 20% produces the best
result. This comment responds to the fact that with this value it is found a

Table 4. Efficiency of the proposed criterion according to the w size.

w Percentage of success cases

Individual Accumulated

10% 8.01% 8.01%

20% 65.09% 73.10%

30% 7.46% 80.56%

50% 12.56% 93.12%

100% 6.88% 100%
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Table 5. FS algorithms where maximum performance was obtained by classifier.

BD SMO NB KStar J48 Graft Ibk Filtered Total
cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig,

1 ls,o,r,sy ls,o,r,sy ls,o,r,sy ls,o,r,sy o,r,sy o,r,sy 40

gr,ig,o, cs,gr,ig, cs,gr,ig, cs,ig,o, cs,ig,o,
2 sy o,sy o,sy r,sy r,sy gr,o,r,sy 30

3 gr cs,ig o gr,o,r,sy cs,ig,r,sy gr,o,r,sy 16
gr,ig,ls, cs,gr,ig, cs,gr,ig, cs,gr,ig,

4 o sy o,sy cs,gr,o r,sy gr,o 23

cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig,
5 r,sy r,sy r,sy r,sy r,Sy r,sy 30

cs,gr,ig, cs,gr,ig cs,ig,ls, cs,ig,ls,
6 ls,r ls,o,r,sy ls,r ls,r,sy sy r,sy 26

cs,gr,ig, cs,gr,ig, cs,gr,ig,
7 o,r,svm,sy o,r,svm,sy svm o,r,svm,sy svm 23

cs,gr,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ls, cs,gr,ig,ls,
8 o,svm,sy o,r,svm,sy o,r,svm,sy o,r,sy o,r,svm,sy ls,o,sy 39

cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls,
9 o,r,sy o,r,svm,sy o,r,sy o,r,svm,sy o,r,svm,sy o,r,sy 45

cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls,
10 ls,o,r,sy o,r,sy ls,o,r,sy o,r,sy o,r,sy o,r,sy 32

cs,gr,ig,ls, cs,gr,ig, ig,ls,o,r, cs,gr,ig,ls,
11 o,r,sy ls,sy o,r sy o,r,sy o,r 28

cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls,
12 r,sy o,r r,sy r,sy cs,ig,r,sy cs,ig,r,sy 28

cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls,
13 o,r,svm,sy o,r,svm,sy o,r,sy o,r,svm,sy o,r,sy o,r,sy 45

cs,gr,ig,o, cs,gr,ig,o, cs,ig,o,r,
14 cs,ig,r,svm cs,ig,r,sy svm,sy r,svm svm 25

cs,gr,ig,o, cs,gr,ig,r, cs,gr,ig,o, cs,gr,ig,
15 r,svm,sy svm,sy cs,gr,ig,sy r,svm,sy svm,sy 29

cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls, cs,gr,ig,ls,
16 o,r,svm,sy o,r,svm,sy o,r,svm,sy o,r,svm,sy o,r,svm,sy o,r,svm,sy 48

17 gr,ls gr,ig o,r ls,r gr,sy ig,o,r 13
cs,ig,ls,o, cs,gr,ig,ls, gr,ls,o,r, cs,gr,ig,ls,

18 o,r,svm r,svm,sy o,r,svm,sy svm,sy ls,o,r,svm r,svm,sy 35

cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o,
19 r,sy r,sy r,sy r,sy r,sy r,sy 36

cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o,
19 r,sy r,sy r,sy r,sy r,sy r,sy 36

cs,gr,ig,r, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,r, cs,gr,ig,o, cs,gr,ig,r,
21 sy r,sy r,sy sy sy sy 32

cs,gr,ig,o, cs,ig,o,r, cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,o,
22 r,sy sy sy r,sy r,sy r,sy 30

cs,gr,ig,ls, cs,gr,ig,ls,
23 ls,svm o,svm,sy o,r,svm,sy cs,ig,svm,sy ls 22

cs,gr,ig,ls, cs,gr,ig,ls,
24 o,r,svm,sy ls,o,r,svm ls,r,svm ls,r,svm o,r,svm,sy 26

cs,gr,ig,o, cs,gr,ig,o, cs,gr,ig,ls, cs,gr,ig,o, gr,ls,o,r, cs,gr,ig,ls,
25 r r,svm o,r,sy r,svm,sy svm o,r,svm,sy 38

cs,gr,ls,o,
26 ls,o,r cs,ig,sy gr,ls,o gr,ls,o,r gr,ls,o r,sy 22

27
cs,gr,ig, cs,gr,ig, cs,gr,ig, cs,gr,ig,

24
o,r,sy o,r,sy o,r,sy o,r,sy

Total : 821
Total of successful applications of the criterion (w = 20%) : 73.10%
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balance between the iterations number that have to be performed by the criterion
and the search of the best feature subset.

According to the obtained results on 27 real datasets, the criterion shows a
good performance, recognizing 821 of the 1123 performed experiments, what is
equivalent to 73.10% with the maximum performance of the all used classifiers
and considering w as the 20% of the features. The details of these experiments
are presented in Table 5, where for each dataset is shown the FS algorithms that
reach the best accuracy results according to the classifier methods.

With other values of w parameter, the criterion effectiveness increases, but
the required tests quantity is greater and the difference does not justify the
necessary processing time, the best results were obtained with w = 20%. The
experiments show that in several cases where w = 30% the tests quantity was
approaching to the exhaustiveness. So, the larger the w value, the more tests are
performed because the process requires more tests to determine if the behavior
is decreasing for real.

5 Conclusions

The proposed selection criterion uses a sequential search method, where the w
parameter helps to define the iterations quantity needed for finding a decreasing
behavior of the classifier performance used to validate the ranking. With w =
20%, it is possible identifying the feature subset that obtains the best classifica-
tion performance, without evaluating exhaustively all feature subsets. If the w
value increases, more success results could be recognized. This would imply mak-
ing more iterations, however the difference is not as significant in the resulting
precision.

Throughout the experimentation, it was found that the proposed criterion is
able to reduce 58.67% of features, regardless of the characteristics of the included
datasets.

The obtained results demonstrate that the application of the proposed cri-
terion can process the derived ranking from any filter feature selection method
and, based on that list, it can find the feature subset that produces the best
classification performance, The criterion can be applied to the ranking derived
from any filter feature selection method and combine it with either classification
algorithm.
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3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutmann, P., Witten, I.: The
WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009).
http://www.cs.waikato.ac.nz/ml/weka/

4. Sadeghi, R., Zarkami, R., Sabetraftar, K., Van Damme, P.: Application of genetic
algorithm and greedy stepwise to select input variables in classification tree models
for the prediction of habitat requirements of Azolla filiculoides (Lam) in Anzali
wetland, Iran. Ecol. Model. 215, 44–53 (2013)

5. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection.
Pattern Recognit. Lett. 15, 1119–1125 (1994)

6. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Com-
put. Linguist. 19, 61–74 (1993)

7. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

8. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
9. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in

Neural Information Processing Systems, vol. 18, pp. 507–514. MIT Press, Cam-
bridge (2005)

10. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Mach. Learn. 11, 63–91 (1993)

11. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a
new algorithm. In: Tenth National Conference on Artificial Intelligence, pp. 129–
134. MIT Press, San Jose (1992)

12. Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method.
Autom. Remote Control 24, 774–780 (1963)

13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C. Press Syndicate of the University of Cambridge, Cambridge (1988)

14. Singh, R., Kumar, H., Singla, R.K.: Analysis of feature selection techniques for
network traffic dataset. In: IEEE (eds.) International Conference on Machine Intel-
ligence and Research Advancement, pp. 42–46, Katra, India (2013)

15. Platt, J.C.: Sequential minimal optimization: a fast algorithm for training support
vector machines. Technical report. Microsoft Co. (1998)

16. Titterington, D.M., Murray, G.D., Murray, L.S., Spiegelhalter, D.J., Skene, A.M.,
Habbema, J.D.F., Gelpke, G.J.: Comparison of discrimination techniques applied
to a complex dataset of head injured. J. Roy. Stat. Soc. Ser. A 144, 145–175 (1981)

17. Fix, E., Hodges Jr., J.L.: Discriminatory analysis nonparametric discrimination
consistency properties, Project number 21-49-004. University of California, Berke-
ley (1951)

18. Cleary, J.G., Trigg, L.E.: K*: an instance-based learner using an entropic distance
measure. In: 12th International Conference on Machine Learning, pp. 108–114.
University of Waikato, New Zealand (1995)

http://www.cs.waikato.ac.nz/ml/weka/


Class-Specific Reducts vs. Classic Reducts
in a Rule-Based Classifier: A Case Study

Manuel S. Lazo-Cortés(B), José Fco. Mart́ınez-Trinidad,
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Abstract. In Rough Set Theory, reducts are minimal subsets of
attributes that retain the ability of the whole set of attributes to discern
objects belonging to different classes. On the other hand, class-specific
reducts allow discerning objects belonging to a specific class from all
other classes. This latest type of reduct has been little studied. Here
we show, through a case study, some advantages of using class-specific
reducts instead of classic ones in a rule-based classifier. Our results show
that it is worthwhile to deepen in the study of this issue.

1 Introduction

In many data analysis applications, information and knowledge are stored and
represented as a decision table which provides a convenient way to describe a
finite set of objects within a universe through a finite set of attributes. In a
decision table, rows represent objects, columns are attributes and each cell is
the value of an object on an attribute. A decision table is a special data table
such that the set of attributes is the union of a set of condition attributes and a
decision attribute.

The notion of reduct plays a fundamental role in rough set analysis. Pawlak
[11] defined a reduct of a decision table as a minimal subset of condition
attributes that has the same discernibiliy ability as the entire set of condition
attributes with respect to the decision attribute. Following this approach, most
studies have been focused on the classification-based definition of reduct. As
examples, see references [6–8,18,20,22].

In Rough Set Theory (RST)[10], the core idea is the so-called closed world
assumption. According to this maxim any two objects described by two identical
vectors of parameter values must be treated as equal in all subsequent analyses.
Formally, the main tool that ensures this property in data analysis is the relation
of indiscernibility between objects.

In some classification problems, it may be natural to consider different subsets
of attributes to differentiate objects, depending on the class they belong to. In
contrast to traditional feature selection methods where a single feature subset is
selected for all classes, class-specific methods choose a possibly different feature
subset for each class. In the literature, class-specific feature selection has received
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 23–30, 2018.
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some attention [2,12,19,21,23], but it has not been not enough. That is why in
this paper we focus on class-specific reducts.

The underlying idea of class-specific reducts is related to the widely used
strategy of one-versus-rest that transforms a k-class classification problem into
k two-class classification problems.

In RST, reducts are commonly used for building rule based classifiers. In this
paper we study the effect of using class-specific reducts instead of classic ones
for generating rules in a rule-based classifier.

The rest of the document is organized as follows. Section 2 provides the basic
concepts. Section 3 presents and discusses the experimental results obtained in
a comparison of the application of two variants of a rule-based classifiers over
the same data set, considering in one case the rules generated from the classic
reducts and, in the other case, the rules generated from class-specific reducts for
every class. Finally Sect. 4 concludes this paper.

2 Basic Concepts

The type of datasets considered in this paper is a decision table, which is formally
defined as

Definition 1 (decision table). A decision table is a pair S = (U,At = A∗
t ∪{d})

where U is a finite set of objects, At is a set of attributes. A∗
t is a finite set

of conditional attributes and d is a decision attribute indicating the decision
class for each object in the universe. Each a ∈ At corresponds to the function
Ia : U → Va called evaluation function, where Va is called the value set of
a. The decision attribute allows partitioning the universe into blocks (classes)
determined by all possible decision values.

Sometimes we will use D for denoting {d}, i.e. ({d} = D).
A decision table can be implemented as a two-dimensional array (matrix), in

which one usually associates rows to objects, columns to attributes and cells to
values of objects on attributes.

It is important to introduce the definition of the indiscernibility relation.

Definition 2 (indiscernibility relation). Given a subset of conditional attributes
A ⊆ A∗

t , the indiscernibility relation is defined as
IND(A|D) = {(u, v) ∈ U × U : [Id(u) = Id(v)] ∨ ∀a ∈ A, [Ia(u) = Ia(v)]}.
We can find several formal definitions of reduct (see for example, [9]), nev-

ertheless, according to the aim of this paper, we refer to reducts assuming the
classical definition of discerning decision reduct as follows.

Definition 3 (reduct for a decision table). Given a decision table S, an attribute
subset R ⊆ A∗

t is a reduct, if R satisfies the following two conditions:

(i) IND(R|D) = IND(A∗
t |D);

(ii) For any a ∈ R, IND((R − {a})|D) �= IND(A∗
t |D).
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This definition ensures that a reduct has the same ability to distinguish
objects belonging to different classes as the whole set of attributes, being minimal
with regard to inclusion, i.e. a reduct does not contain redundant attributes or,
equivalently, a reduct does not include other reducts. The original idea of reduct
is based on inter-class discernment.

We will denote the set of all reducts of a decision table S as RED(S).
Notice that, when defining a reduct, all classes ar collectively considered. As a

result, although a reduct is a minimal set for the entire inter-class differentiation,
it may not be minimal for each pairwise inter-class differentiation. Looking at a
specific class independently from the other classes, we can review the notion of
class-specific reduct, but first let us re-visit the indiscernibility relation.

Definition 4 (indiscernibility relation with respect to a specific class). Given a
decision table S, partitioned into c classes K1,K2, ...,Kc and a subset of con-
ditional attributes A ⊆ A∗

t , the indiscernibility relation with respect to the class
Ki is defined as

IND(A|Ki) = {(u, v) ∈ U ×U : [Id(u) = Id(v) = Ki]∨ [Id(u) �= Ki ∧ Id(v) �=
Ki] ∨ ∀a ∈ A, [Ia(u) = Ia(v)]}.

Taking into account this indiscernibility relation, a class-specific reduct can
be formally defined as follows.

Definition 5 (class-specific reduct for a decision table). Given a decision table
S, partitioned into c classes K1,K2, ...,Kc, an attribute subset R ⊆ A∗

t is a
class-specific reduct of S with respect to the class Ki, if R satisfies the following
two conditions:

(i) IND(R|Ki) = IND(A∗
t |Ki);

(ii) For any a ∈ R, IND((R − {a})|Ki) �= IND(A∗
t |Ki).

We will denote the set of all class-specific reducts of a decision table S with
respect to the class Ki as RED(S|Ki

).
When considering this class-specific reduct definition, the focus is on a par-

ticular class considering all the remaining classes as if they were just one class.
Following this line of thought it is easy to see that class-specific reducts can
be computed as classic reducts but considering several two class decision tables
instead of the original decision table for the c classes, i.e., if S is a decision table
partitioned into c classes K1,K2, ...,Kc, and S|Ki the decision table that results
from considering in S only two classes, Ki and its complement U −Ki, we have
that:

Proposition 1. RED(S|Ki)=RED(S|Ki
).

This proposition [21] is very important and has consequences, for exam-
ple from the algorithmic point of view. Since class-specific reducts are classic
reducts of a modified decision table, no new algorithms for computing class-
specific reducts are needed. It is enough modifying the original decision table
and then applying any available algorithm for classic reduct computation.
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As a classic reduct is a subset of attributes jointly sufficient and individually
necessary to discern between any pair of objects belonging to different classes; we
can assure that if R ⊆ A∗

t is a classic reduct of a decision table, i. e. R ∈ RED(S),
then R satisfies condition (i) in Definition 5 with respect to every class Ki. As
a consequence we have the following result.

Proposition 2 [21]. For any classic reduct R ∈ RED(S) and for any class Ki

in S there exists a class-specific reduct R′ ∈ RED(S|Ki
) such that R′ ⊆ R.

From this property we can arrive at an interesting result, related to the length
of the shortest reducts and it is the following.

Corollary 1. Let S be a decision table, and let m be the length of the shortest
classic reducts related to S. Let mi be the length of the shortest class-specific
reducts of S with respect to the class Ki. Then for every class Ki it follows that
mi ≤ m.

In this paper, we will use a set of reducts as a support for creating decision
rules. So, Corollary 1 allows us to affirm that decision rules based on class-specific
reducts are usually shorter than those rules based on classic reducts.

Let us take a look about how to obtain a set of decision rules supported on a
set of reducts for classifying unseen objects. We will use the procedures included
in the software tool RSES ver. 2.2.2, which has been widely used in the literature
[3,14,15].

In RSES, once the reducts of a decision table have been computed, each
object in the training sample is matched against each reduct. This matching
gives as result a rule having in its conditional part, the attributes of the reduct,
each one associated with the values of the currently considered object, and in
its decision part it has the class for this training object.

When we attempt to classify an unseen object using the generated rule set, it
may happen that several rules suggest different decision values. In such conflict
situations a strategy to reach a final result (decision) is needed. RSES provides
a conflict resolution strategy based on voting. In this method, each rule that
its antecedent matches the object under consideration casts a vote in favor of
the decision value of its consequent. Votes are counted and the decision value
reaching the majority of the votes is chosen as the class for the object.

This simple method may be extended by assigning weights to rules. In RSES
this method (also known as Standard Voting) assigns as weight for a rule the
number of training objects supported by this rule. Then, each rule votes with
its weight and the decision value reaching the highest weight sum is considered
as the class for the object.

3 Experimental Results

In this section, through a case study, we will show how the use of class-specific
reducts can improve a rule-based classifier. We will consider the lymphogra-
phy dataset, taken from the UCI Machine Learning Repository [1]. In fact, we
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consider the original lymphography dataset and four datasets generated by the
one-versus-the-rest approach. We randomly generate two folds in order to per-
form two-fold cross validation. Characteristics of the lymphography dataset and
the folds can be seen in Table 1.

The computation of reducts and rules were performed by using RSES [16].

Table 1. Characteristics of the lymphography dataset

Attributes Classes Objects Objects per class

K1 K2 K3 K4

18 4 148 2 81 61 4

Fold 1 74 1 40 31 2

Fold 2 74 1 41 30 2

First, for each fold, we calculate classic reducts and class-specific reducts for
each class. Table 2 shows the number of reducts calculated for each fold.

Table 2. Number of classic and class-specific reducts for the lymphography dataset
(two folds)

Fold Classic Class-specific

K1 K2 K3 K4

1 530 42 457 494 206

2 317 46 307 317 143

As a corroboration of Corollary 1, with respect to the length of classic and
class-specific reducts, in Table 3, it can be seen, for both folds, that the short-
est classic reducts have length 5 while class-specific reducts get shorter lengths
(lengths 1 and 2 for classes K1 and K4, respectively, in fold 1, and length 1 for
classes K1 and K4 in fold 2).

Likewise, with respect to the maximum length, for classic reducts it is 10 for
the first fold and 9 for the second one, however when calculating class-specific
reducts, for the classes K1 and K4, shorter lengths are obtained (lengths 4 and
6 for classes K1 and K4, respectively, in the first fold, and length 5 for classes
K1 and K4 in the second one).

Later, we generate a set of reduct-based rules for the set of classic reducts,
then we apply, over the two folds, the RSES rule based classifier Standard Voting
and compute the average of the classification accuracy obtained in each fold.

Table 4 shows, in the first row, the results obtained in terms of accuracy
for each fold and in average when classic reducts were used in the rule based
classifier Standard Voting. Additionally, in the remaining rows of Table 4, we
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Table 3. Length of classic and class-specific reducts for the lymphography dataset

Fold Length Classic Class-specific

K1 K2 K3 K4

1 Minimum 5 1 5 5 2

Maximum 10 4 10 9 6

2 Minimum 5 1 5 5 1

Maximum 9 5 9 9 5

show the accuracy obtained by the rule based classifier Standard Voting in the
respective class. On average, the rule based classifier Standard Voting obtained
an accuracy of 0.73.

Table 4. Accuracy of the rule based classifier Standard Voting for the lymphography
dataset using classic reducts

Class Fold 1 Fold 2 Average

All 0.70 0.76 0.73

K1 0.00 0.00 0.00

K2 0.68 0.85 0.77

K3 0.80 0.71 0.75

K4 0.00 0.00 0.00

We performed another experiment by gathering all class-specific reducts com-
puted in each class, and we calculated the set of rules based on this new set of
reducts, then we performed the classification of the two folds and obtained the
results that appear in Table 5.

Table 5. Accuracy of the rule based classifier Standard Voting for the lymphography
dataset using all the class specific reducts gathered from each class

Class Fold 1 Fold 2 Average

All 0.78 0.84 0.81

K1 1.00 1.00 1.00

K2 0.76 0.93 0.84

K3 0.83 0.71 0.77

K4 0.5 1.00 0.75

As we can see from Table 5, when considering rules generated from joining
all class-specific reducts instead of all classic reducts, the classification accu-
racy heightened for every class. Therefore, global accuracy, considering rules
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generated from joining all class-specific reducts, was 0.81 in contrast with 0.73
when classic reducts were used.

Finally, taking into account that we are evaluating the practical utility of
using class-specific reducts for a rule-based classifier, we wanted to compare the
results obtained to those obtained with other well-known rule-based classifiers
widely used in the literature. We select C4.5 [13], RIPPER [4] and SLIPPER
[5]. These classifiers were run using the KEEL Software Suite [17].

Table 6 shows the results obtained by each compared classifier in ascending
order. As we can see class-specific reduct based classifier got the best result.

Table 6. Accuracy of five rule-based classifiers for the lymphography dataset

Algorithm Accuracy

RIPPER 0.69

Classic-reducts 0.73

SLIPPER 0.76

C4.5 0.78

Class-specific reducts 0.81

4 Conclusions

The main purpose of the research reported in this paper has been to dis-
cuss through a case study the possible advantages that we can obtain when
using class-specific reducts instead of classic reducts, particularly when we
use attribute subsets for generating rule-based classifiers. Experimental results
allows concluding that class-specific reducts can generate shorter rules and, what
is more important, they can improve classification accuracy.

The results achieved in this case study motivate to delve into the advantages
of using class-specific reducts instead of classic ones, especially it may be inter-
esting to study the effect of some reduct selection methods to generate the rules
instead of considering the rules generated by the whole set of reducts.
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2 Escuela de Música del Estado de Tlaxcala,

Av. Fernando Solana s/n, 90401 Apizaco, Mexico

Abstract. Polyphonic music involves the manipulation of harmonic
principles to get that several melodies concur gracefully. This paper
describes a specific algebraic structure to compose tonal polyphonic
music. The model has been carefully designed according to music theory
principles for tonal composition. And, it consists of considering operands
to the two-notes chords; and operators to the techniques of melodic
conduction. The algebraic paradigm introduced in this paper produces
chord progressions in accord with reconfigurable constrains which allow
to drive the structural coherence of automatic compositions. As illus-
trative results, instances of polyphonic phrases have been designed by
means of this algebraic model.

Keywords: Group theory · Music composition
Structural patterns modelling

1 Introduction

The automatic composition research is widely dominated by stochastic
approaches which naturally focus on the problem of chords-transition [9]. Other
authors concentrate on the structure and coherence that music has to keep, and
tackle this problem by evolutionary algorithms [7], generative grammars [16]
or the simple study of finite-state machines supported by artificial intelligence
methods [3,11]. Some other approaches may be considered as improved deriva-
tions of these.

This paper introduces a new perspective based on an algebraic structure
called magma which, by definition, requires two factors [2]:

1. A set M : For this case, represented by a set of two-voices chords and some
directions.

We would like to thank Evelyn Groesch, principal of the EMET, for all the given
facilities.
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2. A function F such that maps M2 into M , useful to describe composition
laws.

In this context, thematic successions of chords are constructed gradually
based on some initial chords and their harmonic relations; factor which is easily
modelled by a family of functions. On the one hand, each part of the model has
been carefully designed according to music theory laws. On the other, however,
music composition is a huge field, specially the polyphony; reason why this first
attempt is restricted to the most basic form of academic polyphony, named,
first specie counterpoint. For not musicians, this term, first specie stands for
a two-voices composition such that both melodies got the same rhythm. The last
description and the word basic do not have to discredit this approach; because,
against common sense, some rules get relaxed or lifted for counterpoint with
more than two-voices [5].

In the next section the set for representing chords is induced and formally
defined. The third section describes a family of functions which lets model, by
a rule-based way, the relations between two chords. And, the last section shows
how to use the chords and operators to produce polyphonic phrases; some of
them are analysed through a musical perspective.

2 Numerical Model

2.1 Pitch Representation

Pitch is the quality of a sound governed by the rate of produced vibrations in
the environment [4]. These vibrations are measured in Hertz, unit of frequency,
defined as Hz = vibrations/s. The most of musical instruments are designed to
emit a standard range of frequencies; these are divisible into discrete units called
semitones. Hence, the relation between a given semitone p ∈ Z and its frequency
Hz is stated as:

Hz = 440 12
√

2p−9 (1)

Regard that p = 0 is equivalent to the piano middle C. Thus, forwards p = 1
stands for C#, p = 2 for D, . . . ; and, backwards p = −1 stands for B, and so
on. This equivalence is illustrated in Fig. 1.

Fig. 1. A partial chromatic scale, the corresponding value of p is above

Musical instruments have got a finite range of frequencies limited by their
physical characteristics and the human ear capability to perceive sounds. There-
fore, let replace the infinite set of integers Z by a subset P ⊂ Z. For subsequent
practical implementations in this paper, this set is defined as

P = [−17,+17] ∩ Z (2)
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2.2 Tonality Limits

The set P contains all the possibles semitones that a certain instrument be
able to emit. However, the most of western music avoids developing a melody
with semitones lacking of relation to the first semitone of the melody. This first
semitone is called tonic and determines which other semitones are proper or
lacking for belonging to the melody. The sorted collection of proper semitones
constitutes the called diatonic scale. The two most important distributions of
proper semitones for a given tonic are the major and minor modes.

Both modes are easy to identify in a piano keyboard for specific cases. The
semitones corresponding to white keys of piano belong to the major mode of C
(p = 0), and simultaneously, belong to the minor mode of A (p = 9). Hence, it
is possible to model the distribution of proper semitones by means of relative
distances from each white key to their corresponding tonics.

The Fig. 2 shows the relative differences for both modes. Regard that the key-
board pattern is periodic each 12 semitones. Thus, the subset P+ of proper semi-
tones for the major mode with tonic p = 0 is formally defined by P+ ⊂ P|∀p ∈
P+∃s ∈ S+ : [12|p − s]1, where S+ = {−10,−8,−7 − 5,−3, 0, 2, 4, 5, 7, 9, 11}
(Observe the Fig. 2). The subset P− of proper semitones for the minor mode
with tonic p = 0 is given by an analogous expression, replacing S+ by S− =
{−10,−9, 7,−5,−4 − 2, 0, 2, 3, 5, 7, 8, 10}.

Fig. 2. Relative distances of diatonic scale for both modes major (C, p = 0) and minor
(A, p = 9)

2.3 Harmonic Space

Counterpoint is the technique of setting two melodies simultaneously. As a con-
sequence, two different semitones (px, py) ∈ P

2 are played simultaneously. In
music theory, harmony is the field which states the proper semitone-distances
between px and py.

In order to introduce some important concepts, the Fig. 3 shows three plots.
The initial pair of plotted frequencies corresponds to two semitones px and py,
respectively, such that (px, py) ∈ P

2 and for this particular example px−py = 12.
The third plot is the addition of the two last plots and corresponds to the same
pair (px, py) played simultaneously. Regard that the frequency of px is periodic

1 Inside brackets, [a|b] means a divides b.
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each line, the frequency of py is periodic each two lines (dotted lines). Then,
the addition of the two last frequencies is also periodic each two lines. Hence,
it is possible to state that (px, py) sounds like py. In musical terms, the pair
of semitones (px, py) is called consonant; and py (the resulting semitone) is
called fundamental [1]. A pair (px, py) is dissonant if the addition of their
frequencies does not correspond to any other pitch p ∈ P. For each pair of
consonant pitches, an unique fundamental pitch exists; so the fundamental of a
consonant pair can always be represented by a function g. For the last example
of Fig. 3: g(px, py) = py.

Fig. 3. Illustrative frequencies of two independent semitones px (a) and py (b). The
third plot(c) is the addition of the two last plots and corresponds to the same pair
(px, py) played together

The last plotting technique can be used to find a set D ⊂ P such that every
d ∈ D creates consonant pairs (p + d, p)∀p ∈ P. This subject is exposed in deep
by Schoenberg [14] and Rameau [12] treatises on Harmony. The theoreticians of
music have identified the following set:

D = {. . . ,−7,−5,−4,−3, 0, 3, 4, 5, 7, 8, 9, 12, 15, 16, . . . }, (3)

and an important periodicity property (d mod 12) ∈ D
∗ ∀d ∈ D, where D

∗ =
{0, 3, 4, 5, 7, 8, 9}.

The set D also originates the distribution of semitones in the diatonic scale.
This affair is widely discussed in the first book of the treatise on harmony by
Rameau [12].

Hence regard that there are two important restrictions to create a set H

containing pleasant pairs of semitones:

1. The tonality, which is represented by limiting the original set of semitones P

to P+ or P−.
2. The harmony (consonances), which limits the Cartesian product P+

2 = P+ ×
P+ to H+ ⊂ P+

2|∀h = (p+x, p+y) ∈ H+∃d∗ ∈ D
∗ : [abs(p+x −p+y) mod 12] =

d∗. And analogously for H− ⊂ P−2.

The Fig. 4 shows the items of H− and H+ like points. Both axis represents
the set P . This illustration lets us observe the relation between the pitch and the
harmony. Hence, a tonal two voices counterpoint melody may be represented as
a variable h ∈ H+(or H−) which takes different values in n discrete time units
[h1, h2, . . . , hn ∈ H+]. Naturally, attentive readers guess a Markov model; an
approach that is useful to create a trainable model. However, for this paper, the
approach is to create music by means of rules belonging to music theory.

In the next section, we describe a basic algebra to compose melodies.
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Fig. 4. Harmonic sets H− (minor) and H+ (major) respectively

3 Functional Space

Hereafter, H stands for whichever selected set H− (minor mode) or H+ (major
mode); and h ∈ H be called chord according to Rimsky-Korsakov’s defini-
tion [13].

3.1 A Family of Functions F : M2 → M

Let F be a family of functions which describes the relation between a given
pair (hx, hy) ∈ H

2 according to several composition principles. The collection of
possible relations is:

1. YES: It is agreeable to emit hy after hx during a melody.
2. NO: It is not agreeable to emit hy after hx during a melody; or well, it is

forbidden.
3. A value hz ∈ H: It is agreeable to emit the following sequence: hx, hz, hy.

In order to reduce this scheme to a set, let define M = {Y ES,NO}∪H. Over
this set, two operators are defined in the Table 1. The set M and both operators
constitute an algebraic structure called magma [10].

Table 1. Definition of two magma operators over M

ma mb ma ∨ mb ma ∧ mb ma mb ma ∨ mb ma ∧ mb ma mb ma ∨ mb ma ∧ mb

YES YES YES YES NO YES YES NO ha YES YES ha

YES NO YES NO NO NO NO NO ha NO ha NO

YES hb YES YES NO hb hb NO ha hb ha ha

3.2 Conduction Rules

The harmonic conduction of voices identifies three basic motions [17]. To define
them, let (ha, hb) ∈ H

2 be two chords consecutively emitted; for practicality
ha = (px, py) and hb = (qx, qy). Then, the motion is classified as [18]:
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1. Motus obliquus, if (qx − px)(qy − py) = 0.
2. Motus contrarius, if (qx − px)(qy − py) < 0.
3. Motus rectus, if (qx − px)(qy − py) > 0.

Exposed the last definitions, it is possible to introduce two basic conduction
rules as functions:

– Motus obliquus is pleasant f1: If (ha, hb) are obliquus, then f1(ha, hb) =
Y ES. Otherwise, f1(ha, hb) = NO.

– For some cases motus rectus is forbidden f2: If (ha, hb) are rectus and
[abs(qy−qx) mod 12] ∈ {0, 7}, then f2(ha, hb) = NO. Otherwise, f2(ha, hb) =
Y ES.

These conduction functions map only to two values Y ES,NO. The next class
of functions, called bridge functions map to values of the set H.

3.3 Bridge Function

A bridge function f ∗(ha, hb) returns, if it is possible, an optimal h∗ to be emitted
within the sequence {ha, h

∗, hb}. The optimal criterion c is given by the musical
principle of the shortest motion of voices [14], or well, the minimal Manhattan
distance in the corresponding plane of the Fig. 4.

Formally, a bridge function f∗ is a derivation of an original function f such
that f, f∗ ∈ F. In order to define f∗ on basis of f , firstly consider the following
auxiliary set H

′:
For a given pair of values (ha,hb), let H

′(ha, hb) be the collection of chords
H

′(ha, hb) ⊂ H|f(ha, h) 
= NO, f(h, hb) 
= NO ∀h ∈ H
′(ha, hb).

Then, with the corresponding set H
′ for each possible pair, f∗ is defined as:

– f∗(ha, hb) = NO, if H′(ha, hb) = ∅
– f∗(ha, hb) = h∗ ∈ H

′(ha, hb)|c(ha, h
∗, hb) ≤ c(ha, h, hb)∀h ∈ H

′(ha, hb),
where:

• c((xa, ya), (x, y), (xb, yb)) = [abs(xa − x) + abs(ya − y) + abs(xb − x) +
abs(yb − y)].

3.4 Absolute Function

A function f ∈ F is an absolute function if f(k) ∈ H∀k ∈ H
2. This behaviour

defines a magma over H. In the next section, an absolute function is used as an
operator for composing music. In order to find the absolute, let continue with
the definitions of functions:

– Limited bridge function: f3 = f∗
1 ∧ f2

– Several motions function: f4 = f1 ∨ f3
– Absolute function: f5 = f∗

4 .
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The conveniently reduced set H has been explored (means of brute force) by
the operator (◦ = f5). The results let conclude that for all possible given chords
(X,Y ), there is a way to connect them by a middle chord h ∈ H. Therefore, the
operator (◦) may be considered as a magma over H. Another interesting point
is that (∗ = f4) helps to identify the middle conduction from X to Y (Details in
the following section).

4 Pseudorandom Music Generation

4.1 Theme Creation

A musical theme is the chief idea of a piece. During the piece, the theme is
repeated several times as originally and latter with some variations.

In order to produce example themes structurally proper, it is necessary to:

1. Start and finish a theme with a random-selected tonic chord (Δ), defined as
Δ = h ∈ H|g(h) mod 12 = 0. Remember that g determines the fundamental.

2. Use a random-selected subdominant chord (∇), defined ∇ = h ∈ H|g(h) mod
12 = 5, as the penultimate chord of the theme.

3. Conduct properly the middle chords, fact ensured by (◦) and (∗).

The Algorithm 1 produces a phrase composed by a theme, two variations and
a modulation (process to change the tonic).

Algorithm 1. Example of pseudocode for composing a musical phrase.
For two random-selected chords (X, Y ) = (ha, hb) ∈ H

2

1. T = Δ
2. S = ∇
3. A = T ◦ X
4. B = X ◦ Y
5. C = Y ◦ S
6. Theme = {T, T ∗ A, A, A ∗ X, X, X ∗ B, B, B ∗ Y, Y, Y ∗ C, C, C ∗ S, S, T}
7. ThemeV ariationI = {T, A, X, B, Y, C, T, A, X, B, Y, C, S, T}
8. ThemeV ariationII = {T, C, Y, B, X, A, T, C, Y, B, X, A, S, T}
9. Modulation = {T, A, X, B, Y, C, S, T, S}

10. Phrase = {Theme, ThemeV ariationI, ThemeV ariationII, Modulation}
11. EMIT (t = 0, Phrase)
12. EMIT (t = 5, Phrase)

In the Algorithm 1, the variable A is equivalent to a chord within a succession
from T to X. The magma property ensures that for any pair (T,X), A = T ◦ X
exists. However, the operator (∗ = f4) does not have this property; this means
that some pairs (X,Y ) ∈ H

2 cannot be successfully connected. The operator
(∗) always depends on a result from (◦). For instance, A = T ◦ X ensures that
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A can appear after T , so the operator (∗) just determinate whether is a direct
connection or it depends on a auxiliary middle chord (aux) such that (T, aux,A)
be a good succession. If the connection is not directed T ∗A returns the auxiliary
chord; otherwise a empty value.

The phrase involves a modulation; what implies that the phrase have to be
emitted for the first time with t = 0 as tonic, and then with t = 5. Regard that
a tonic t 
= 0 affects each harmony belonging to the phrase: Let (px, py) be the
corresponding pitches for each chord h ∈ H of the phrase, then the modified
pitches to emit are (t + px, t + py).

The Algorithm 1 just describes one of many possibilities of phrase-structure.
The Figs. 5 and 6 show examples of phrases produced by that algorithm. In the
next subsection, the aesthetic and musical aspects of these results are analysed.

Fig. 5. Example of a C major phrase generated automatically

Fig. 6. Example of a A minor phrase generated automatically

4.2 Discussion

From a musical perspective, the harmony and counterpoint are technologies
which set formal principles on how to utilize tones simultaneously and succes-
sively in a composition. The counterpoint student learns structures (chords) and
ornaments in order to create a successful conduction of the concurring melodies.
Directions just avoid known ways to get a displeasant-conduction, reducing the
set of possible options for continuing a melody; but naturally, directions do not
ensure beauty. All the grace in music comes from the design of motifs, tiny parts
of melody, which may be repeated, altered and easily remembered. The design
of motifs originates the identity of a melody.
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The exposed approach is absolutely and exclusively based on harmonic and
polyphonic rules. The most criticizable aesthetic point is that the creation of
motifs seems to be an accidental result, which comes from the conduction rules
that have set up. This problem is shared by the most of automatic composition
systems; except for them which tackle the affaire directly and as a priority. The
most of the literature which deals the motifs construction and analysis is based
in grammars, for example [6,8].

Looking back on the got instances of phrases, Figs. 5 and 6, the melodies have
got a good level of independence; however, the melodic sense may be broken by
long jumps. And, another important aesthetic factor is the iteration of the same
pair of voices, or well, the same two-voices chord structure in succession; situation
that is not usual in first specie counterpoint.

Although these problems, the model originates acceptable short phrases. In
addition, it lets select and handle the tonality and even the degrees of the scale
to visit (For last subsection examples, these parameters have been randomly
selected). According to Schubart and Schubart [15], the control over just these
two factors is sufficient to create a clear emotional conduction. Thus, the model
can be extended by the taste of the user creating algorithmic-like schemes which
describe properties relatives to tonality and rhythm; just like the Algorithm1.

4.3 Future Work

The paradigm introduced in this paper opens a perspective to produce music
automatically according to configurable constrains. Some of the branches to
continue the present field of research are:

1. Introducing more operators, with special attention to operators for producing
musical ornaments. These additions will let produce other forms of academic
counterpoint (still limited to species).

2. Extending the model for producing counterpoint with more than two-voices;
taken also basis from the geometrical Tymoczko’s theory [18].

3. Developing a programming language to code this specific class of algorithms
(phrase-structures) as input for producing music sheets as output.

Finally, the authors would have to declare that it is absolutely necessary
continuing with elementary tests of species in order to introduce properly more
complex forms of counterpoint. Although this, they consider that this paper
settles basis for the subsequent research.
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Sociedad Matemática Mexicana (2009)

11. Oliwa, T., Wagner, M.: Composing music with neural networks and probabilistic
finite-state machines. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS,
vol. 4974, pp. 503–508. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78761-7 55

12. Rameau, J.: Treatise on Harmony. Dover Books on Music. Dover Publications,
Mineola (2012)

13. Rimsky-Korsakov, N., Achron, J., Hopkins, N.: Practical Manual of Harmony. Carl
Fischer, New York (2005)

14. Schoenberg, A.: Theory of Harmony. California Library Reprint Series. University
of California Press, Berkeley (1983)

15. Schubart, C., Schubart, L.: C. F. D. Schubart’s Ideen zu einer Aesthetik der
Tonkunst. C. F. D. Schubart’s, des Patrioten, gesammelte Schriften und Schicksale,
Scheible (1839)

16. Smaill, A.: Music informatics. School of Informatics, The University of Edinburg,
Lecture, January 2018

17. Tchaikovsky, P.: Guide to the Practical Study of Harmony. Dover Books on Music.
Dover Publications, Mineola (2013)

18. Tymoczko, D.: A Geometry of Music: Harmony and Counterpoint in the Extended
Common Practice. Oxford University Press, Oxford (2011)

https://books.google.com.mx/books?id=mA5EDwAAQBAJ
https://doi.org/10.1007/978-3-540-78761-7_55
https://doi.org/10.1007/978-3-540-78761-7_55


The Impact of Basic Matrix Dimension
on the Performance of Algorithms
for Computing Typical Testors
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Abstract. Within Testor Theory, typical testors are irreducible subsets
of attributes preserving the object discernibility ability of the original
set of attributes. Computing all typical testors from a dataset has expo-
nential complexity regarding its number of attributes, however there are
other properties of a dataset that have some influence on the perfor-
mance of different algorithms. Previous studies have determined that a
significant runtime reduction can be obtained from selecting the appro-
priate algorithm for a given dataset. In this work, we present an experi-
mental study evaluating the effect of basic matrix dimensionality on the
performance of the algorithms for typical testor computation. Our exper-
iments are carried out over synthetic and real–world datasets. Finally,
some guidelines obtained from the experiments, for helping to select the
best algorithm for a given dataset, are summarised.

Keywords: Typical testor · Reduct · Basic matrix

1 Introduction

Testors were originally created by Cheguis and Yablonskii [3] as a tool for analysis
of problems connected with control and diagnosis of faults in electronic circuits.
Within Testor Theory, typical testors are irreducible subsets of attributes pre-
serving the object discernibility ability of the original set of attributes. Thus,
typical testors have been used for feature selection as shown in [5,16]. Typical
testors are needed for solving some real–world applications. For instance, in [23]
the informational weight is used to identify risk factors on transfusion, related
to acute lung injury; and to establish an assessment for each attribute.

Unfortunately, computing all typical testors from a dataset has exponential
complexity regarding its number of attributes. Thus, the development of fast
algorithms for typical testor computation have been an active research topic
for more than three decades. One of the first algorithms for finding all typical
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testors, was proposed in [17] and modified in [20]. This algorithm, called BT,
codifies a subset of attributes as a binary word, and evaluates candidate subsets
in the natural ascending order induced by the binary numbers. In [18] the REC
algorithm was presented. REC works directly over the dataset, handling a huge
amount of superfluous information. Then, the CER algorithm [1], overcomes this
drawback and uses a different traversing order. Later, a new algorithm called
LEX [22] was introduced. The key point of LEX was its new traversing order of
candidates that resembles the lexicographical order in which character strings
are compared. This traversing order was also followed by the subsequent reported
algorithms: CT EXT [19] and BR [9]. The most recent algorithms reported for
typical testor computation are the newest versions of these two algorithms: fast–
CT EXT [21] and fast–BR [10].

Recently, reducts from the Rough Set Theory (RST) have been related to
typical testors [4]. RST was proposed by Pawlak in 1981 [11] as a mathematical
theory to deal with imperfect knowledge, in particular with vague concepts.
In [8], it was proven that algorithms for reduct computation can be applied to
typical testor computation, since these two concepts are equivalent for consistent
datasets. In [14], the GCreduct algorithm for reduct computation was presented
and it was evaluated against fast–CT EXT and fast–BR. In this work, it was
concluded that GCreduct outperforms fast–CT EXT in all cases.

It is a well known fact that there is not one unique algorithm for computing
typical testors having the best performance for every given problem. Most algo-
rithms for computing typical testors operate over the basic matrix. The basic
matrix is a reduced binary matrix representing the discernibility information of
the dataset. Former studies [10,15], have performed experiments by categoriz-
ing the basic matrices according to their density of 1’s; i.e. the number of ones
divided by the total number of cells of the matrix. In [6] it was concluded that
the performance of the algorithms for computing typical testors is related to the
number of rows, the density of 1’s and the number of typical testors of the basic
matrix. In [13] it was detailed a procedure for evaluating these algorithms over a
synthetic sample of basic matrices with the same dimension and different density
of 1’s. This procedure was also followed in [14]. As a next step, in this work, we
present an experimental study on the effects of the basic matrix dimensions on
the performance of the algorithms for typical testor computation. For our exper-
iments we have selected fast–BR and GCreduct, since these algorithms are the
most recent and fastest algorithms reported for typical testor (reduct) computa-
tion. The selected algorithms are first executed over a sample of synthetic basic
matrices, and the conclusions drawn from this experiment are corroborated over
real–world datasets taken from the UCI machine learning repository [2].

The rest of this paper is structured in the following way. In Sect. 2, some
basic concepts from Testor Theory are introduced and the pruning properties for
typical testor computation are presented. In Sect. 3, we describe both algorithms:
GCreduct and fast–BR. Then, in Sect. 4, we present our experimental study and
we discuss the results. Finally, our conclusions appear in Sect. 5.
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2 Theoretical Background

In this section, we introduce the main concepts of Testor Theory, as well as the
definitions and propositions supporting the pruning strategies used in GCreduct
and fast–BR.

2.1 Basic Concepts

Let DS be a dataset with k objects described by n attributes and grouped into
r classes. Every attribute in the set of attributes R = {x1, ..., xn}, has a prede-
fined Boolean comparison criterion. Let DM be the binary comparison matrix
obtained from comparing every pair of objects in DS belonging to different
classes. Every comparison of a pair of objects adds a row to DM with 0 = equal,
1 = different in the corresponding attribute position (column). DM has m rows
and n columns. Comparisons generating a row with only 0’s, hereinafter referred
to as empty row, imply that two objects from different classes are equal according
to their attribute values.

Definition 1. Let T ⊆ R be a subset of attributes from DS. T is a testor of
DS (or DM) if in the sub-matrix of DM formed by the columns corresponding to
attributes in T, there is not any empty row.

Usually the number of rows in DM (m) is large. In [7] a reduction of DM
without loss of relevant information was proposed, and in [12] it was proved that
this reduced matrix, called basic matrix (BM), and DM ; have the same set of
testors. Then, we can substitute DM by BM in the Definition 1 without any
loss of generality.

Definition 2. A subset of attributes T ⊆ R is a typical testor in BM iff T is a
testor and ∀xi ∈ T, T \ xi is not a testor.

2.2 Pruning Properties for Typical Testor Computation

The concept of contribution presented in Definition 3 is a key aspect for both
algorithms: GCreduct and fast–BR.

Definition 3. Given T ⊆ R and xi ∈ R such that xi /∈ T . xi contributes to T
iff the sub-matrix of BM formed with only those attributes in T has more empty
rows than that matrix formed with attributes in T ∪ {xi}.

First introduced for the CT EXT algorithm, Proposition 1 was stated and
proved in [21].

Proposition 1. Given T ⊆ R and xi ∈ R such that xi /∈ T . If xi does not
contribute to T, then T ∪ {xi} cannot be a subset of any typical testor.

The following propositions are stated and proved in [10].



44 V. Rodŕıguez-Diez et al.

Definition 4. Given T ⊆ R. The compatibility mask of T , denoted as cmT , is
the binary word in which the jth bit is 1 if the jth row of BM has a 1 in only
one of the columns corresponding to attributes in T , and otherwise it is 0.

Proposition 2. Given T ⊆ R and xi ∈ R such that xi /∈ T . We denote as cxk

to the binary word in which the jth bit is 1 if the jth row of BM has a 1 in the
column corresponding to xk. If ∃xk ∈ T such that cmT∪{xi} ∧ cxk

= (0, ..., 0),
then, T ∪ {xi} cannot be a subset of any typical testor, and we will say that xi

is exclusionary with T .

Proposition 3. Given T ⊆ R and xi ∈ R such that xi /∈ T . The subset T ∪{xi}
is a typical testor iff it is a testor and xi is not exclusionary with T .

We will refer to Proposition 2 as exclusion evaluation. Proposition 3 expresses
how to apply the exclusion evaluation for determining whether or not a subset
T of attributes is a typical testor.

The propositions presented in this section constitute the basis for under-
standing the differences between fast–BR and GCreduct.

3 Fast-BR and GCreduct Algorithms

In this section, we present a comparison of the candidate evaluation process of
fast–BR and GCreduct. We aim to provide enough elements to understand the
different performance of these two algorithms for a given dataset. It is important
to highlight that both algorithms operate over the basic matrix. Thus, when
referring to characteristics of the basic matrix, we are indeed referring also to
characteristics of the dataset from which the basic matrix was computed.

In GCreduct, a new candidate is generated by including a new attribute
to the previous candidate. First, this new attribute is tested for contribution
by using Definition 3. This process has a time complexity Θ(m), where m is
the number of rows in the basic matrix. By Proposition 1, if the new attribute
does not contribute to the candidate, this attribute is rejected. Otherwise, the
candidate is evaluated for the testor condition by using Definition 1. This oper-
ation has also a time complexity Θ(m) as it was stated in [14]. Then, for those
candidates satisfying the testor condition, the exclusion evaluation is performed
to determine whether or not they are typical testors. This final verification is
accomplished by means of Proposition 3, and its time complexity is Θ(mn);
where n is the number of columns in the basic matrix.

In fast–BR, a new candidate is also generated by including a new attribute
to the previous candidate. In the same way, the first evaluation step for the
candidate is the test for contribution of the new attribute, which has a time
complexity Θ(m). However, for contributing candidates, the next step is the
exclusion evaluation. This process is accomplished by means of Proposition 2
and it has a time complexity Θ(mn). If the new attribute is exclusionary with
the previous candidate, the attribute is rejected. Otherwise, the testor condition
is verified by using Definition 1. This final process has a time complexity Θ(m).



The Impact of Basic Matrix Dimension on the Performance of Algorithms 45

Those candidates evaluated as testors, in this candidate evaluation process, are
also typical testors because of the order followed in this algorithm.

In both algorithms, the candidate evaluation has a time complexity Θ(mn).
Also, the total number of evaluated candidates has an exponential relation to the
number of attributes in the dataset, for both algorithms. Thus, for both algo-
rithms, the time complexity for typical testor computation is exponential. How-
ever, there are significant differences in the runtime of fast–BR and GCreduct
for a given dataset.

The exclusion evaluation is the step with the highest time complexity in the
candidate evaluation process for both algorithms. In GCreduct, this step is only
executed for those candidates satisfying the testor condition, which are usually a
small fraction of the total contributing candidates. In fast-BR, the exclusion eval-
uation is performed for every contributing candidate, which makes its candidate
evaluation process more computationally expensive than GCreduct’s. However,
fast-BR takes advantage of this costly evaluation by discarding all the supersets
of an exclusionary candidate by applying Proposition 2. This advantage is more
effective for basic matrices with a higher density of 1’s, as it was shown in [14].

4 Experimental Study

In [14], GCreduct was evaluated against fast–BR over a set of 500 randomly
generated basic matrices with 2000 rows and 30 columns. The basic matrices were
generated with densities of 1’s uniformly distributed in the range (0.20–0.80).
From this experiment it is followed that for matrices with density under 0.36
the fastest algorithm was GCreduct, fast–BR was the fastest for matrices with
density between 0.36 and 0.66, and both algorithms showed similar performance
for matrices with density above 0.66. However, in [14], it is concluded that the
density of 1’s is not the only factor affecting the performance of these algorithms,
and they proposed a wider study of other factors as future work.

In this paper, we propose the exploration of the influence of basic matrix
dimension on the performance of GCreduct and fast–BR. For this purpose, we
present two experiments over synthetic datasets controlling both the density of
the matrices as well as their size in rows and columns. In the first experiment,
the number of rows of the basic matrices is varied while keeping constant the
number of columns. In the second experiment, the number of columns of the
basic matrices is varied while keeping constant the number of rows. In a last
experiment, we corroborate the results obtained in the first experiments, over
10 real–world datasets taken from the UCI machine learning repository [2].

For our experiments we used a Java implementation of both algorithms. All
experiments were run on a Celeron G1620 Intel processor at 2.70 GHz, with
4 GB in RAM, running GNU/Linux. The source code for the algorithms as well
as all the datasets taken from UCI and synthetic basic matrices used in these
experiments, can be downloaded from http://ccc.inaoep.mx/∼ariel/Dimensions.

For the first experiment, we present 4 sets of 500 synthetic basic matrices
each. All the basic matrices have 30 columns and their number of rows is 250

http://ccc.inaoep.mx/~ariel/Dimensions
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Fig. 1. Average runtime vs. density of 1’s for GCreduct and fastBR. The number of
columns of the basic matrices is 30, while the number of rows in each set is: (a) 250,
(b) 375, (c) 1000 and (d) 2000.

for the first set, 375 for the second one, 1000 for the third one, and 2000 for
the last one. The number of columns and the maximum number of rows in
this experiment were selected to keep the algorithm’s runtime within reasonable
boundaries. The basic matrices in each set were generated with densities of 1’s
uniformly distributed in the range (0.20–0.80) using a step of 0.04.

The runtime for the execution of GCreduct and fast–BR over each set of
basic matrices is shown in Fig. 1, as a function of the density of 1’s. For clarity
purposes, the 500 matrices in each set were split into 15 bins by discretizing the
range of densities. Each bin has approximately 33 basic matrices. In Fig. 1 each
vertical bar shows the standard deviation of each bin.

From Figs. 1–a to d, we noticed that there is a density value delimiting the
basic matrices for which each algorithm is faster. This boundary value of density
increases from 0.25 in Fig. 1–a to 0.32 in Fig. 1–d. It is important to notice that
the time complexity of the candidate evaluation process of both algorithms is
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Fig. 2. Average runtime vs. density of 1’s for GCreduct and fastBR. The number of
rows of basic matrices is 2000, while the number of columns in each set is: (a) 24, (b)
26, (c) 28 and (d) 30.

proportional to the number of rows. Fast–BR takes advantage of making a costly
candidate evaluation to evaluate a lower number of candidates in relation to
GCreduct. From this experiment, we can infer that the increase in the number of
rows of the basic matrix, makes the candidate evaluation process more significant
regarding the number of evaluated candidates. Thus, a higher number of rows
in the basic matrix is convenient for GCreduct.

For our second experiment, we used 4 sets of 500 synthetic basic matrices
with 2000 rows and their number of columns is 24 for the first set, 26 for the
second one, 28 for the third one, and 30 for the last one. The number of rows
and the maximum number of columns in this experiment were selected to keep
the algorithm’s runtime within reasonable boundaries. The basic matrices in
each set were generated with densities of 1’s uniformly distributed in the range
(0.20–0.80) again. The results from this experiment are shown in Fig. 2.
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It can be seen in Figs. 2–a to d, that there is a density value delimiting the
basic matrices for which each algorithm is faster. This boundary value of den-
sity decreases from 0.41 in Fig. 2–a to 0.32 in Fig. 1–d, for basic matrices with
2000 rows. This trend reveals that fast–BR, using a costly candidate evalua-
tion process, can make a significant reduction in the total number of candidates
evaluated. Indeed, when an exclusionary attribute is found, the number of can-
didates that can be avoided in fast–BR is exponentially related to the number
of attributes in the dataset.

For our third experiment, 10 datasets were selected from the UCI repository.
The name and dimensions of each dataset, as well as the number of rows in their
basic matrix and the runtime of both algorithms are shown in Table 1. We have
selected five of these datasets such that their runtime behavior can be explained
using the rule exposed in [14]. However, the five datasets highlighted in bold in
Table 1, were intensionally selected as exceptions of that rule.

Table 1. Datasets taken from UCI. Sorted by the density of their basic matrix.

Dataset Atts Instances Density Rows fast–BR GCreduct

Soybean 36 683 0.21 33 256ms 697ms

Credit-g 21 1000 0.35 223 81 ms 32ms

Flags 30 194 0.35 390 1633 ms 1098ms

Sponge 46 76 0.39 109 359ms 59902ms

Lung cancer 57 32 0.47 327 7342ms 133434ms

Heart-c 14 303 0.49 58 15 ms 2ms

Cardiotocography 21 2126 0.49 81 24 ms 18ms

Cylinder-bands 40 512 0.53 2062 533ms 4594ms

Chronic kidney disease 25 400 0.54 187 38 ms 11ms

Colic 23 368 0.61 562 72 ms 37ms

According to [14], GCreduct should be the fastest for basic matrices with den-
sity under 0.36, and fast–BR should be the fastest otherwise, for the datasets
shown in Table 1. Soybean, which have a density of 0.21, is a clear exception of
the results shown in [14]. However, under the new results obtained in this paper,
we can infer that the density frontier for 36 attributes should be drastically below
0.36. Another contradiction with [14] is observed for Heart-c, Cardiotocog-
raphy, Chronic Kidney Disease and Colic. For these datasets, the reduced
number of columns of their basic matrix produces an increment in the boundary
density value, as it was concluded from Fig. 2.

5 Conclusions

In this paper, we have explored the relation between the dimensions of the basic
matrix associated to a dataset and the performance of fast-BR and GCreduct.
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These are the most recent and fastest algorithms reported for typical testor
(reduct) computation. Previous studies found that the density of 1’s in the basic
matrix can be used to determine a priori the fastest algorithm for a given dataset.
In addition, we have found in this work, that basic matrices with a high number
of rows are favorable for GCreduct, in the same manner that a high number
of attributes makes a dataset better suited for fast–BR. Thus, the boundary
density dividing the datasets for which each algorithm has the best performance
should be computed taking into account the basic matrix dimensions.

Finally, we corroborated our results obtained from synthetic datasets over
a set of real–world datasets taken from the UCI machine learning repository.
These results allowed explaining the behavior of the two algorithms better than
just using the density of 1’s in the basic matrix.

For future work, we propose performing a deeper and wider experimentation
in order to define a rule to determine which algorithm would be the best for a
specific dataset.
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Abstract. Advances in sensors and cameras allow current research in
convex hull algorithms to focus on defining methods capable of pro-
cessing a big set of points. Typically, in most of these algorithms, the
orientation function needs around five sums and two multiplications. In
this paper, we propose SymmetricHull, a novel algorithm that, unlike
the related ones, only performs two comparisons per point, discarding
points with a low probability of belonging to the convex hull. Our algo-
rithm takes advantage of the symmetric geometry of convex hulls in 2D
spaces and relies on the convexity principle to get convex hulls, without
needing further calculations. Our experiments show that SymmetricHull
achieves good results, in terms of time and number of necessary opera-
tions, resulting especially efficient with sets of points between 104 and
107. Given that our datasets are organized by quadrants, the features
of our algorithm can be summarized as follows: (1) a fast point discard
based on known points with a good chance to be part of the convex hull,
(2) a lexicographic sort of points with a high probability of belonging to
the convex hull, and (3) a simple slope analysis to verify whether a point
is within the convex hull or not.

Keywords: Convex hull · Point cloud · 2D spaces · Symmetry · Slope

1 Introduction

The convex hull problem consists in calculating, given a set D of points, the
smallest convex set that contains D [5]. Since the convex hull problem has reper-
cussions in many fields, there are different ways to solve it. Many solutions based
on sorting algorithms have been proposed, from the former approach by Chand
and Kapur with O(n2) complexity [4] to other classic approaches with O(nlogn)
complexity, such as Graham’s Scan [6], Monotone Chain [1], Ultimate Planar
Convex Hull [7], QuickHull [2], and Chan’s algorithm [3].

As convex hull algorithms represent a tool for other research areas, they
might not be a final process, and other processes would need to be executed
at the same time. Hence, new algorithms have been proposed, such as Liu and
Chen’s algorithm [8] that takes advantage of the geometry of every quadrant
c© Springer International Publishing AG, part of Springer Nature 2018
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in 2D spaces, or QuiGran [10] that combines two popular techniques, Graham’s
Scan and QuickHull, to get better results than those obtained from these two
algorithms separately. The hardware capacity for processing points continues
increasing [12], that is why research in convex hull goes on, focusing on finding
how to efficiently compute a big quantity of points.

A low cost optimization over many convex hull algorithms is the maximum
inscribed parallelogram, usually represented by four extreme points: top (the
maximum ordinate), bottom (the minimum ordinate), leftmost (the minimum
abscissa), and rightmost (the maximum abscissa) [8]. This optimization is useful,
since all points inside the maximum inscribed parallelogram are not part of the
convex hull, so it is possible to eliminate a big quantity of them. In this paper,
we take the results of this optimization process to get convex hulls in 2D spaces,
without needing other calculations.

Our main contribution is a novel algorithm, called SymmetricHull, which can
be viewed as an improvement of Monotone Chain [1] that follows a geometrical
approach similar to Liu & Chen’s algorithm [8]. Our approach takes advantage
of the geometric features (symmetry and convexity) of every quadrant, so the
convex hull can be found by just performing one comparison per point, decreasing
the computational cost of our algorithm dramatically.

The rest of this paper is organized as follows. In Sect. 2, we define the proper-
ties of the four quadrants in 2D spaces. In Sect. 3, we describe the SymmetricHull
algorithm, using the lemmas presented in the previous section. Experimental
results and comparisons between our proposal and the main related algorithms
are shown in Sect. 4. Finally, conclusions and future work are discussed in Sect. 5.

2 Geometric Context

It is usual to try eliminating many points before applying a convex hull algo-
rithm. One of the simplest ideas is the maximum inscribed parallelogram, so it is
necessary to identify the four extreme points in the four main directions of the
2D space.

Let D denote the dataset of points, and U be a point of D. Let PTop, PBottom,
PMostRight, and PMostLeft denote points in D, and R be the maximum inscribed
parallelogram, whose extreme points in the four main directions of the 2D space
are described by such points (see Fig. 1). Thus, if U is inside R, then no further
check is necessary to assess that U does not belong to the convex hull of D [5].

Many algorithms allow determining whether a point U is into R. However,
we select a method based on the slope of the extreme points, which is explained
by two lemmas:

Lemma 1. Let CHS be an array, sorted by the Y coordinate, of all points in
the convex hull, and P , PA, and PB denote points in CHS. Let ya, y, and yb
be the Y coordinate value, and xa, x, and xb denote the X coordinate value for
PA, P , and PB , respectively. If ya ≤ y ≤ yb, and P , PA, and PB are in the same
quadrant, then P can only exist into the rectangle described by PA and PB .
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Fig. 1. Dataset partition by extreme points (red points), where continuous blue lines
represent the maximum inscribed parallelogram (Color figure online)

This lemma means that the following rules apply for every quadrant: (1) Q1:
xb ≤ x ≤ xa and ya ≤ y ≤ yb, (2) Q2: xa ≤ x ≤ xb and ya ≤ y ≤ yb, (3) Q3:
xb ≤ x ≤ xa and ya ≤ y ≤ yb, and (4) Q4: xa ≤ x ≤ xb and ya ≤ y ≤ yb.

Proof. There are two facts for this demonstration: (1) a curve is convex if and
only if every point in the curve is convex with respect to any other points in such
a curve; and (2) there are four points that are unequivocally part of the convex
hull: PTop, PBottom, PMostRight, PMostLeft. Using these two facts, we can proof
the rules for every quadrant:

Quadrant Q1. There are neither points, whose Y coordinate is less than the
one of PMostRight nor points, whose Y coordinate is bigger than the one of PTop.
Moreover, there are neither points, whose X coordinate is less than the one of
PTop nor points, whose X coordinate is bigger than the one of PMostRight. The
point PB needs to be to the left of PA, or they can have the same X coordinate
when PA, PB , and PTop are aligned by the X coordinate. In fact, PB can never
be to the right of PA, such as P1 in Fig. 2(a), because PA, P1, and PMostRight

form a concave curve, breaking Fact 1. In the same way, the point P cannot
be to the right of PA, since it is limited by the line L1. The point P can only
be to the right of PB , or they can have the same X coordinate, in case P , PB,
and PTop are aligned by the X coordinate. If P were to the left of PB , as P2

in Fig. 2(a), these two points would form a concave curve with PMostRight, also
breaking Fact 1. In this case, P is limited by the line L2. Finally, since CHS is
sorted by the Y coordinate, and P is between PA and PB , P is limited by the
lines L3 and L4, so P achieves xb ≤ x ≤ xa and ya ≤ y ≤ yb.
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Quadrant Q2. There are neither points, whose Y or X coordinates are less than
the corresponding ones of PMostLeft nor points, whose X or Y coordinates are
bigger than the respective ones of PTop. The point PB needs to be to the right
of PA, or they can have the same X coordinate, when PA, PB and PTop are
aligned by the X coordinate. However, PB can never be to the left of PA, like
P1 in Fig. 2(b), because PA, P1, and PMostLeft form a concave curve, breaking
Fact 1. Likewise, the point P cannot be to the left of PA, since it is limited by
the line L1. The point P can only be to the left of PB, or they can have the
same X coordinate, in case P , PB, and PTop are aligned by the X coordinate. If
P were to the right of PB , such as P2 in Fig. 2(b), these two points would form
a concave curve with the point PMostLeft, also disregarding Fact 1. In this case,
P is limited by the line L2. Finally, as CHS is sorted by the Y coordinate, and
P is between PA and PB, P is limited by the lines L3 and L4, and P fulfills
xa ≤ x ≤ xb and ya ≤ y ≤ yb.

Fig. 2. Rectangles for every quadrant that can contain the points of a convex hull

Quadrant Q3. There are neither points, whose Y coordinate is less than the one
of PBottom nor points, whose Y coordinate is bigger than the one of PMostLeft.
Moreover, there are neither points, whose X coordinate is less than the one of
PMostLeft nor points, whose X coordinate is bigger than the one of PBottom. The
point PB needs to be to the left of PA, or they can have the same X coordinate,
when PA, PB , and PMostLeft are aligned by their X coordinate. Nevertheless,
PB can never be to the right of PA, such as P1 in Fig. 2(c), because PA, P1 and
PMostLeft form a concave curve, going against Fact 1. In a similar way, the point
P cannot be to the right of PA, as it is limited by the line L1. The point P can
only be to the right of PB , or they can have the same X coordinate in case P ,
PB , and PMostLeft are aligned by the X coordinate. If P were to the left of PB ,
such as P2 in Fig. 2(c), these two points would form a concave curve with the
point PMostLeft, also infringing Fact 1. In this case, P is limited by the line L2.
Finally, since CHS is sorted by the Y coordinate, and P is between PA and
PB , P is limited by the lines L3 and L4, and P accomplishes xb ≤ x ≤ xa and
ya ≤ y ≤ yb.

Quadrant Q4. There are neither points, whose Y or X coordinates are less
than the correponding ones of PBottom nor points, whose X or Y coordinates
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are bigger than the respective ones of PMostRight. The point PB needs to be
to the right of PA, or they can have the same X coordinate when PA, PB and
PMostRight are aligned by the X coordinate. However, PB can never be to the
left of PA, like P1 in Fig. 2(d), because PA, P1 and PMostRight form a concave
curve, failing to observe Fact 1. Likewise, the point P cannot be to the left of
PA, as it is limited by the line L1. The point P can only be to the left of PB,
or to have the same X coordinate, in case P , PB and PMostRight are aligned by
the X coordinate. If P were to the right of PB , like P2 in Fig. 2(d), these two
points would form a concave curve with the point PMostRight, also disobeying
Fact 1. In this case, P is limited by the line L2. Finally, as CHS is sorted by
the Y coordinate, and P is between PA and PB , P is limited by the lines L3 and
L4, and P satisfies xa ≤ x ≤ xb and ya ≤ y ≤ yb.

Fig. 3. Slope rotation of the lines L0 and L1 in every quadrant

Lemma 2. Let x and y denote the X and Y coordinates of the point P ∈ CHS
and s represent the slope between P and the previous point in CHS in the same
quadrant. Let ya and yb be the Y coordinates of the points PA and PB ∈ CHS,
respectively, and s and sb denote the slopes of P and PB , respectively. If ya ≤
y ≤ yb, and the points PA, P , and PB are in the same quadrant, the following
rules apply for two points P and PB in the same quadrant: (1) Q1: sb ≥ s,
(2) Q2: sb ≤ s, (3) Q3: sb ≤ s, and (4) Q4: sb ≥ s.

Proof. We know that the general slope behavior consists in decreasing its value
in clockwise and increasing its value in counterclockwise. Thus, taking into
account two lines formed by three points: L0 (described by PA and P ) and
L1 (described by P and PB), we can demonstrate for each quadrant the afore-
mentioned inequations as follows:

Quadrant Q1. We know by Lemma 1 that P is to the left of PA, and PB is to
the left of P , as shown in Fig. 3(a). If PB were to the right of L0, then PA, P and
PB would form a concave curve. Hence, the only two possibilities are: (1) PB is
on the line L0, so the slopes s and sb are the same, and (2) PB is to the left of
L0, so PA, P , and PB would form a convex curve, and the rotation of L0 and
L1 is counterclockwise; in this case sb > s. Then, by joining both possibilities,
we have that sb ≥ s is satisfied.
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Quadrant Q2. By Lemma 1, we know that P is to the right of PA, and PB is
to the right of P , as shown in Fig. 3(b). If PB were to the left of L0, then PA,
P and PB would form a concave curve. Hence, there are just two possibilities:
(1) PB is on the line L0, thus the slopes s and sb are equal, and (2) PB is to the
right of L0, so PA, P , and PB would form a convex curve, and the rotation of
L0 and L1 is clockwise; in this case sb < s. Thus, both possibilities fulfill sb ≤ s.

Quadrant Q3. We know by Lemma 1 that P is to the left of PA, and PB is to
the left of P , as shown in Fig. 3(c). If PB were to the left of L0, then PA, P and
PB would form a concave curve. Consequently, the only two possibilities are:
(1) PB is on the line L0, so the slopes s and sb are the same, and (2) PB is to the
right of L0, then PA, P and PB would form a convex curve, and the rotation of
L0 and L1 is clockwise; in this case sb < s. By joining both possibilities, sb ≤ s
is achieved.

Quadrant Q4. By Lemma 1, we know that P is to the right of PA, and PB is to
the right of P , as illustrated in Fig. 3(d). If PB were to the right of L0, then PA,
P and PB would form a concave curve. Thus, there are just two possibilities:
(1) PB is on the line L0, thus the slopes s and sb are equal, and (2) PB is to
the left of L0, so PA, P and PB would form a convex curve, and the rotation of
L0 and L1 is counterclockwise; in this case sb > s. Therefore, both possibilities
accomplish sb ≥ s.

3 SymmetricHull Algorithm

The proposed algorithm aims at reducing, around one hundred, the number
of algebraic operations. To achieve this goal, it is necessary to have a good
knowledge about the slope behavior in every quadrant and to substitute the
basic operations in the Monotone Chain algorithm [1] for operations based on
the slope between consecutive points.

Monotone Chain uses, as a basic operation, the orientation function, which is
useful to determine whether a point is part or not of the convex hull. Monotone
Chain works under the premise that all points take part of the convex hull
and uses this function to discard those points that do not follow a convex way.
This function requires five subtractions and two multiplications for each point
of the dataset; these operations can be used many times to eliminate many non-
convex points. Thus, a lot of both algebraic and stack operations are performed,
increasing the algorithm runtime.

An alternative to the orientation function is the slope, but it is often discarded
because it is necessary to calculate two slopes and compare their results. Hence,
four subtractions and two divisions are required, besides a control to avoid zeros
in the denominator. Moreover, the logic of Monotone Chain still applies this
comparison to every point in the dataset. Thus, the times used by the orientation
function and the slope comparison are very close. To improve the algorithm
runtime, it is necessary to algebraically operate over a little set of points that
has a high probability of being part of the convex hull, and to add only a part of
this set to the stack, to decrease the number of stack operations. To reduce both
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algebraic and stack operations, we propose a change in the point description.
Usually, a point is described by its (x, y) coordinates, but in our proposal,
points are described by (x, y, s), where s is the the slope between the current
point and the previous one in the stack of the convex hull candidates.

Algorithms, like Monotone Chain, usually are divided in two parts, sorting
and search, taking into account that sorting is needed to begin the search process.
Many algorithms sort the complete dataset or discard points by methods, such as
the maximum inscribed parallelogram or the maximum inscribed circle. However,
to discard points, a lot of operations need to be performed, e.g., those needed
by the orientation function. At this point, two important questions arise: Is it
possible to sort just a subset of the points? Is there a method that uses few simple
operations to determine whether a point is part of the convex hull? For both
questions, the answer is affirmative, so we need to use the convexity principle
(see Lemmas 1 and 2).

According to Lemma 1, a point can be excluded from the convex hull, given
certain rules for every quadrant. We can deduce the points having a good chance
of being part of the convex hull, by correctly choosing the relation operators for
every quadrant.

Let DS be a dataset sorted by the Y coordinate (considering descending order
for quadrants Q1 and Q2, and ascending order for quadrants Q3 and Q4) and
PI represent a two-dimensional point, such that PI ∈ DS, whose X coordinate
is denoted by xi. Given the convexity property and the fact that DS is sorted,
we can determine whether a point has a good probability of belonging to the
convex hull, reducing Lemma 1 to the rules:

Q1 and Q4 : xi−1 ≤ xi ≤ xi+1, Q2 and Q3 : xi+1 ≤ xi ≤ xi−1 (1)

However, the dataset is not sorted, so it is necessary to sort it lexicograph-
ically, although the time will not be improved. To solve this question, we can
construct, for every quadrant, a double linked list, which only contains the highly
probable candidate points to be part of the convex hull, following a lexicographic
order. These double linked lists are initialized with the extreme points for every
quadrant, considering a descending order for quadrants Q1 and Q2 (SSL1 and
SSL2 ), and an ascending order for quadrants Q3 and Q4 (SSL3 and SSL4 ):

SSL1 = PTop, PMostRight, SSL2 = PTop, PMostLeft

SSL3 = PBottom, PMostLeft, SSL4 = PBottom, PMostRight

(2)

We are sure that any point in the convex hull does not have coordinates that
exceed the extremes of its respective quadrant. Then, the SSL lists are sorted by
the Y coordinate, and we can proceed to iterate over the D unsorted dataset,
where we decide the corresponding quadrant for every point (i.e., we know the
four extremes, so we only need to compare the coordinates of a point with the
ones of the extremes). Thus, we find the position of the point PI , given its Y
coordinate, in the respective SSL list, and we insert such a point in the correct
position, always preserving a sorting based on the Y coordinate. The point is
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inserted only if Inequation 1 has a positive result, and we then eliminate the
points that do not belong to the convex hull, with the following cycle:

Q1:while(xi+1>xi) : delete(SSL1i+1), Q2 : while(xi+1<xi) : delete(SSL2i+1)
Q3:while(xi+1<xi) : delete(SSL3i+1), Q4 : while(xi+1>xi) : delete(SSL4i+1)

(3)
where a delete operation only consists in changing the reference between the
previous point and the next one.

The saved time is owing to the lists, since the insertion and deletion oper-
ations consume O(1) time. However, we have another problem concerning the
search of the correct position of a point into the respective list. We can carry
out a binary search or some similar technique since a dynamic list does not have
an index. In fact we can put an index, but it is then necessary to refresh all
the indexes in every push and pop movement. This situation is undesirable and
would probably take more time than a normal sort process. To avoid this situa-
tion, we can define an auxiliary array for every SSL list (SSLA1, SSLA2, SSLA3,
SSLA4 ) that stores references to points in the SSL lists, every N points, where
N is a number defined by m/log(m), and m is the number of points in the D
dataset. Thus, every certain number of processed points (N would be a good
number), we refresh the auxiliary array by going through the list and taking
references to every N − th point. In this way, we have a list of addresses of every
N − th point in the SSL lists. Using this auxiliary array, we can first find a good
approach to the final location of a point that will be sorted by a binary search
or a similar technique, and we can then go through the array to find the final
location of such a point.

This process would seem to require many operations, but the SSL lists do
not work over a m size, but over a h size, where h is the number of points in
the convex hull. In a real scene, this process results in a big saving in time and
operations.

At this point, we have a sort list for every quadrant (SSL lists). These lists
only contain the points having high probabilities of belonging to the convex
hull, and every point in the SSL lists satisfies Lemma 1. The next part of the
SymmetricHull algorithm consists in discarding all the points that do not take
part of such a convex hull. There are some points that satisfy Lemma 1 but do
not belong to the convex hull. To determine whether a point is or not part of
the convex hull, we need to operate on every point in the SSL lists, in order to
calcuate the corresponding slope. Recalling Lemma 2, we can discard a point,
according to its slope, by means of different rules for every quadrant. However,
to apply Lemma 2, it is necessary to know the adjacent lower point, so an
ordered dataset is required. Once this condition has been satisfied, we apply
Lemma 2 recursively to discard the points that do not take part of the convex
hull, by calculating the slope of every point in the SSL lists as the slope between
the current point and the immediately preceding point. Let si denote the slope
between the point PI and the point PI−1, then the discard process is carried out
in the following way (see Eq. 4):
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Q1 : while(si < si−1) : delete(SSL1i−1, RefreshSlope(si)
Q2 : while(si > si−1) : delete(SSL2i−1, RefreshSlope(si)
Q3 : while(si > si−1) : delete(SSL3i−1, RefreshSlope(si)
Q4 : while(si < si−1) : delete(SSL4i−1, RefreshSlope(si)

(4)

To avoid the overflow of the SSL lists, due to the cycles in Eq. 4, we initialize
the slope value for the first element of every SSL list with a value that never
satisfies the cycle conditions of Eq. 4. These values are:

SSL1 : s0 = −∞, SSL2 : s0 = ∞, SSL3 : s0 = ∞, SSL4 : s0 = −∞ (5)

This means that the SymmmetryHull algorithm needs to calculate the slope
one time per point on the SSL lists and refresh it for every deleted point. This
algorithm just implies two subtractions and one division for each point in such
lists, and the same calculation for every deleted point. On the contrary, applying
the orientation function, such as Monotone Chain, it is required five subtractions
and two multiplication per point and the same calculation for every deleted point.
In addition, in the search phase, Monotone Chain (like many other algorithms)
operates over the whole dataset, while our algorithm only operates over a dataset
of h length approximately, where h is the number of points in the convex hull.

After performing the cycles of Eq. 4, we have four lists that just contain the
points being part of the convex hull, and we only need to connect the lists (with
a O(1) cost) in order to create a unique list with all points of the convex hull.

4 Experimental Results

To test our algorithm, we compare our results with the ones of popular algo-
rithms, such as Scan [6], Monotone Chain [1], and QuickHull [2]. We use the
datasets proposed by Liu et al. [9] and Changyuan et al. [11], which include the
following distributions generated in Matlab 8.4: mu = [2 3], SIGMA = [1 0.5;
0.5 10], D1 = mvnrnd (mu, SIGMA, N), D2 = unifrnd (0, 1, N, 2), D3 = exprnd
(5, N, 2), D4 = evrnd (1, 2, N, 2), D5 = lognrnd (3, 2, N, 2), and D6 = johnsrnd
([−1.7 −.5.5 1.7], N, 2), where N represents the amount of points in the dataset.

By the characteristics of SymmetricHull, we suspect that its performance
might be less, when using a set of points that falls in the perimeter of the convex
hull than when using a set of points distributed in a space. Hence, we have
generated three datasets, in order to test the algorithms in extreme conditions.
These datasets are: D7 = circle (1, N), D8 = circlePerimeter (1, N), and D9 =
rectangularPerimeter (1, 1, N), where the circle (1, N) function generates random
points in a circle of radius 1; the circlePerimeter (1, N) function produces random
points that fall into the boundary of a circle of radius 1; and rectangularPerimeter
(1, 1, N) has the same function but takes into account a rectangle described by
the given width and height.

Table 1 shows the average time of the Scan, Monotone Chain, QuickHull, and
SymmetricHull algorithms after 100 executions for different amounts of points.
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Table 1. Average time in milliseconds of convex hull algorithms after 100 executions.

Amount

of points

Algorithm D1 D2 D3 D4 D5 D6 Circle Circle

perimeter

Rectangular

perimeter

104 Scan 1 2 1 2 1 2 0.9 2 1

Monotone chain 3 3 3 2 3 3 3 3 3

QuickHull 0.3 0.01 1 0.3 0.3 0.3 0.01 0.01 0.3

SymmetricHull 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01

105 Scan 10 8 8 8 7 8 8 8 8

Monotone chain 12 12 13 13 12 12 12 12 13

QuickHull 5 3 3 3 2 2 3 2 3

SymmetricHull 0.8 1 1 0.9 1 0.9 1 0.9 1

106 Scan 79 79 81 79 79 82 80 80 79

Monotone chain 112 111 109 112 111 114 112 111 113

QuickHull 30 29 32 29 79 29 29 29 29

SymmetricHull 14 14 11 14 14 9 14 14 12

107 Scan 789 705 771 788 702 821 732 760 778

Monotone chain 801 1275 1050 1175 1046 1164 1085 1016 1038

QuickHull 256 252 268 288 256 289 277 310 262

SymmetricHull 142 164 164 153 142 161 151 149 141

These times were obtained from optimal implementations of the algorithms in
C++, using a computer Intel i7 3.4 GHz with 8 GB of RAM and Windows 8.1.

As we can see, in all the cases, our algorithm has a good performance using
sets of points between 104 and 105 points, specially in the 104 case, where the
difference is about three hundred times with respect to Monotone Chain, and
thirty times with respect to QuickHull. However, the difference is less in the
datasets of 106 and 107 points, where in general the time of SymmetricHull is
half the time of QuickHull. This fact is attributed to the management of big
auxiliary lists (SSLA). SymmetricHull has not been tested using small sets of
points since, in those cases, we expect a bad performance due to the need of
creating auxiliary lists.

5 Conclusion and Future Work

We have proposed a new algorithm, called SymmetricHull, which is able to deter-
minate the convex hull of a dataset of points in 2D spaces. Based on the convex
principle, the geometry of every quadrant, and the slope behavior in an unsorted
set of points, our algorithm is capable of optimizing its performance, while dis-
carding and sorting points. By making simple decisions about the coordinates
of a point and the ones of neighbor points, SymmetricHull can easily deduce
whether a point has a chance to be part of the convex hull and, by relying on
the convex principle to compare their slopes, it can determine whether such a
point actually belongs to the convex hull. In this way, the proposed algorithm
saves a lot of complex operations and easily discards many points. Moreover,
the use of the two-dimensional points represented by the triplet (x, y, s) allows
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SymmetricHull to compare the slopes among three points but only calculating
half the operations required by the orientation function.

Our proposal showed good results in datasets, whose size varies from 104 to
107. In this range, we obtained the best comparative results. However, it is clear
that SymmetricHull and QuickHull tend to converge. The good performance of
our algorithm has a price: the use of the SSL lists and auxiliary SSL lists since
they consume an important space in memory. The SSL lists are only composed
of pointers to the points in the original dataset, preserving their size as small as
the size in memory of said dataset.

Although the results of SymmetricHull are good, we found that the main
operation and time expense concerns the search process for every point position
even with the proposed optimizations. Then, as part of the improvements of
our algorithm, we plan to create new methods to determine the position of a
particular point in the SSL lists.
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Abstract. The knapsack problem is a fundamental problem that has
been extensively studied in combinatorial optimization. The reason is
that such a problem has many practical applications. Several solution
techniques have been proposed in the past, but their performance is usu-
ally limited by the complexity of the problem. Hence, this paper studies
a novel hyper-heuristic approach based on the ant colony optimization
algorithm to solve the knapsack problem. The hyper-heuristic is used
to produce rules that decide which heuristic to apply given the current
problem state of the instance being solved. We test the hyper-heuristic
model on sets with a variety of knapsack problem instances. Our resulting
data seems promising.

1 Introduction

Imagine you are given a bag in a store. The owner says you are free to grab as
many items as you wish, as long as they all fit together in the bag. Each product
in the store has a specific value and weight. But, the bag has limited capacity
(represented by the maximum total weight it can hold). Obviously, you would
want to pack the products that maximize the overall monetary value. How would
you decide such a combination of items? This is a very simple example of what
the literature refers to as the knapsack problem.

The knapsack problem is nothing but a simplification of more complicated
real-life optimization problems. But, they all have a distinctive feature: Select
an item subset that maximizes the total profit. Of course, there is an imposed
constraint on the items that can be selected. Also, each item within the set has
an associated weight and profit.

Given a set of n items, 2n possible subsets can be formed. Therefore, an
enumerating approach is unpractical for most cases. In fact, this is one of the
features that make the knapsack problem a well known NP-complete problem.
This means that no exact solving method has been found that runs in polynomial
time. Moreover, should one ever be found, it could also be used to solve any other
NP problem [1,2]. Hence, its importance.
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Exact methods guarantee finding the optimal solution. But, they require that
a solution exists and that enough run time is given. Dynamic programming and
branch and bound are included in this category. Unfortunately, these methods
can only solve small instances because of the exponential growth in the solution
space.

Aside from exact methods, literature also describes approximated ones. These
are known as heuristics. With them, finding the optimal solution is not guaran-
teed. But, it is feasible to find one acceptable enough, according to some specific
performance metric. Heuristics select the next item to pack following the best
evaluation of one or more criterion. Despite their success, some major draw-
backs prevent heuristics from becoming the definite solver. First, they behave
inconsistently across a wide range of instances. Thus, a heuristic that performs
exceptionally well on some instances can be easily outperformed by others on
different ones. Hence, the performance of heuristics changes from instance to
instance. Because of that, there is no single heuristic that best solves all instances
of the knapsack problem.

A potential solution to this problem is to try and learn the patterns that
characterize specific ‘classes’ of instances. This knowledge can then be applied
for automatically switching heuristics as the search progresses, attempting to
improve the solution process. Such an approach is known as a hyper-heuristic.
The idea is to find a set of rules for deciding when to apply each particular heuris-
tic. Hence, they are usually referred to as “heuristics to choose heuristics” [3].
In this work, we propose using the ant colony optimization (ACO) algorithm
to search the space of heuristics. We strive to find a combination that remains
steadily competent on a wider range of instances.

The remainder of this document is organized as follows. Section 2 presents
a review of some important concepts related to this work. The solution model
proposed herein is described in Sect. 3. Section 4 presents the experiments we
conducted, their results and analysis. Finally, Sect. 5 presents the conclusion
and future work derived from this investigation.

2 Background and Related Work

In this work, we aim at exploring how ACO can be used to produce hyper-
heuristics for solving the knapsack problem. The ACO algorithm is a meta-
heuristic based on swarm intelligence. Such swarm intelligence relates to the
fact that there is no centralized control of the search. Instead, the algorithm
discovers the best solutions in a way similar to ants finding the most convenient
paths to food sources in nature [4]. In the past, ACO has been already used to
solve the knapsack problem in its different variants [1,5–9]. Some works have
even combined ACO with other techniques, such as fuzzy logic [10].

Regarding hyper-heuristics, ACO was used as a hyper-heuristic on the travel-
ing salesman problem (TSP) and compared against other seven meta-heuristics
that operated at the problem level [11]. The results presented in that work
show that ACO, when used within a hyper-heuristic, generally achieves a bet-
ter performance than isolated heuristics. Other problem domains where ACO
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has been used with a hyper-heuristic include the traveling tournament problem
(TTP) [12], the set covering problem (SCP) [13] and the 2D bin packing problem
(2DBPP) [14]. In all the cases, these hyper-heuristics have obtained competent
results.

2.1 Heuristics for the Knapsack Problem

In this work, we have taken four commonly used heuristic from literature. Each
one of them selects an item following a particular criterion, whilst only three
focus on a greedy strategy. They can be briefly described as:

Default (DF). Items are packed in the same order they are initially presented
in the problem.

Maximum profit (MP). Items are sorted decreasingly by their profit. After-
wards, MP begins packing objects in this order as long as there is space for
them. This strategy attempts to gain as much profit as possible and as quickly
as it can, by going for the most valuable elements first.

Minimum weight (MW). Items are sorted increasingly by their weight. Then,
items are selected one by one until filling the knapsack. The rationale behind
this heuristic is that taking more items results in higher profits.

Maximum profit per weight (MPW). Items are sorted decreasingly by the
quotient of profit over weight.

3 Solution Model

In this section, we proceed to explain our solution. First, we present how we
defined a suitable representation for the problem state, which makes it possible to
extract knowledge about the best heuristics for a particular instance. Afterwards,
we describe the ACO algorithm that we applied for the generation of hyper-
heuristics in the form of state-action rules.

3.1 Problem Representation

We closely followed the selection of features used in [15], due to the similarity
of the problems. Our representation describes the state of the items available to
pick from, as well as the state of the knapsack, since some problems may share
the same set of items and only differ in their knapsacks. The representation we
define also takes into account the progress of a solution.

In this way, the eight features considered for our proposal are the following:
normalized median weight of the objects (w̃/max wi), normalized mean weight
of the objects (w̄/max wi), normalized standard deviation of the weight of the
objects (σw/max wi), normalized median profit of the objects (p̃/max pi), nor-
malized mean profit of the objects (p̄/max pi), normalized standard deviation
of the profit of the objects (σp/max pi), normalized pearson correlation between
the profit and the weight of the objects (corr(w, p)/2 + 0.5) and normalized
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remaining capacity of the knapsack (C−∑
wixi

C ), where w̃, w̄, p̃ and p̄ denote
the mean weight, median weight, mean profit and median profit, respectively.
All features were normalized to the interval [0, 1] to set a uniform scale for the
training phase.

3.2 The Hyper-heuristic Generation Algorithm

The solution we developed is based on the original ACO algorithm [4]. The
general idea is to gradually build a population of candidate hyper-heuristics
(the ‘solutions’ found by the ants) and select the best among them. At the
beginning of each iteration, each ant is assigned a problem instance from the
training set. Then, each ant selects one of the available heuristics and applies
such a heuristic to solve its respective problem instance, which results in a new
point in the problem space according to our representation (defined by the eight
features described in Sect. 3.1). Each iteration ends when all of the ants have
finished solving their respective problem instances. When one iteration ends, the
pheromone trace is updated, proportional to the quality of the solution found
by each ant. In this way, each ant constructs a set of state-heuristic pairs by the
end of each iteration. Such set of rules constitutes a potential hyper-heuristic.
Thus, the result of the process, when the termination criterion is met, is the
hyper-heuristic that performed the best across all the iterations, among all ants.
This hyper-heuristic can then be applied to both seen and unseen instances.

The complete hyper-heuristic generation algorithm is shown in Fig. 1. It
should be noted that the sampling of problems for initializing the ants is done
with repetition and that we discretized the problem space through multiply-
ing every feature by 10 and dropping the fractional part. In order to measure
the quality of the solutions obtained by the ants, we employed the normal-
ized profit of the knapsack, relative to the original total profit of the items:
P̂ =

∑
pixi/

∑
pi.

Regarding the specific parameters for the ACO algorithm, we can mention
the following. The probability of selecting a heuristic H to apply in state s is
given by Eq. 1.

p(s,H) =
(τs,H)α(ηs,H)β

∑
h(τs,h)α(ηs,h)β

(1)

where τs,h is the pheromone level of the edge (s, h), and ηs,h is the attractiveness
of this edge, that corresponds to applying heuristic h to the problem at state s.
The attractiveness is a user defined function, which in our case was chosen to
be the same as the solution evaluation, i.e. the normalized profit that we would
obtain if the problem was solved by only using h to solve it from state s onward.
If the result returned by some heuristic at a given state is that no object can be
packed, then we set ηs,h = 0, which gives zero probability of selecting it.

For parameters α and β, which balance the importance given to exploration
and exploitation of solutions, we tried several different values but the ones sug-
gested in literature provided the best results [16,17]. We also found Q = 10
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repeat
Randomly assign a problem from the training set to k ants
i ← 0
while some ant can pack more items do

for all ants do
si ← state representation of the problem
Solve the problem with each heuristic and compute ηsi,H

Compute p(si, H) for all heuristics
h∗ ← heuristic with the highest probability p(si, H)
Add the edge (si, h∗) to the ant’s path and apply h∗ to the problem

end for
end while
i ← i + 1
Update pheromone levels of all edges (s, h) accordingly
Save the hyper-heuristic (path) with the highest profit

until a termination criterion is met
return the best hyper-heuristic (best path)

Fig. 1. Hyper-heuristic generation process through ACO.

and τs,h(0) = 1 to be suitable values for the purpose of generating a hyper-
heuristic with the desired features. The number of ants was selected as to have
a probability of selecting a problem for solution construction equal to 80%.

The pheromone for the next iteration is updated with the expression: τs,h(i+
1) = ρτs,h(i) + Δτs,h, where Δτs,h is the total amount of pheromone left by all
ants that walked over edge (s, h). The pheromone update of ant k is obtained
from a pheromone supply Q and the normalized profit P̂ according to Eq. 2

Δτk
s,h =

{
P̂Q (s, h) is in the ant’s path
0 otherwise

(2)

4 Experiments and Results

In order to evaluate the performance of our proposed strategies, we have classified
a total of 1000 problem instances under four different instance sets. The sets
S1 and S2 correspond to synthetic instances, while problems in P20 and P50
correspond to a subset of hard instances described by Pisinger [18]. S1, S2 and
P50 contain instances with 50 items, while P20 contains instances with 20 items.
The knapsack capacity for sets S1 and S2 is fixed to 50, while in P20 and P50 the
capacity varies from instance to instance. In the case of synthetic problems —S1
and S2—, the sets were assembled in such a way that they contained a balanced
number of favorable instances for each individual heuristic. Therefore, DF was
the best performer on 22.25% of the instances; MP, on 25%; MPW, on 28.5%,
and MW, on 25.25%.
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For training, we designed two different schemes. In the first of them, we
used set S1 as training set for the hyper-heuristics. On the second scheme, we
also wanted to evaluate the effect of extending training with instances from
other sources. Therefore, we added 60% of P20 and of P50 to the training set.
In both schemes, the test set was composed by S2 and the remaining 40% of
P20 and P50. Thus, two hyper-heuristics were produced and tested: ACO-HHS
and ACO-HHSP (hyper-heuristics trained with the first and the second scheme,
respectively).

Since the ACO-based hyper-heuristic incorporates stochastic components in
the decision phase, we averaged the profits of the model over various runs.
Because the number of different outcomes was finite and small, with little vari-
ance among the respective profits, we used 10 repetitions of the testing phase
to provide an adequate trade off between uncertainty and calculation time. In
the following section, we only report the results that correspond to the best
performing ACO-HH and ACO-HHSP out of the five trained for each training
scheme.

4.1 Analysis of Hyper-heuristics

The first part of our analysis involves the evaluation of the quality of the solutions
obtained by all the methods considered for this investigation. To compare the
methods, we define four metrics. The first two metrics are related to the profit
error (the difference between the method’s profit and a profit reference value).
We used two different reference values to obtain the first two metrics: (1) EB ,
the difference between the solution of the method and the best known solution
from any of the methods under study (four heuristics and two hyper-heuristics)
and EO, (2) the difference between the solution of the method and the optimal
solution (obtained in this case by using dynamic programming). The third and
fourth metrics, the success rates, are defined as the percentage of instances where
each method obtains a profit error equal to zero. Following the rationale behind
the first two metrics, two versions are also obtained for the success rate: (1) SRB,
the percentage of instances where the method is as good as the best known
solution from any of the methods under study and SRO, (2) the percentage
of instances where the method finds the optimal solution. The results of this
comparison are shown in Table 1.

Based on the results from Table 1 we can observe that the individual results
of the heuristics degrade due to the results obtained by the hyper-heuristics. We
also observe that ACO-HHSP obtains better success rates than any heuristic.
Regarding the learning strategies, we can state two important claims. First,
training with a mixture of instances improves the performance of ACO-based
hyper-heuristics, as we can observe in Table 1.

4.2 Selection of Heuristics Throughout the Search

Aiming at a better understanding of the behavior of the ACO-based hyper-
heuristics proposed, we analyzed the frequency of use of each particular heuristic
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Table 1. Analysis of heuristics and hyper-heuristics with respect to the optimal and
best solutions. Best results for each set and metric are highlighted in bold.

Set Method SRB (%) ĒB SRO (%) ĒO

S2 DF 19.25 593.41 5.75 598.81

MP 24.75 336.44 22.25 341.84

MPW 27.75 28.25 19.75 33.65

MW 25.00 255.75 12.50 261.15

ACO-HHS 18.25 59.05 11.25 64.45

ACO-HHSP 34.50 111.92 28.25 117.32

P20 DF 16.66 333.60 2.50 424.45

MP 27.08 536.28 14.16 627.13

MPW 36.25 158.64 12.50 249.49

MW 15.00 420.85 3.33 511.70

ACO-HHS 26.25 196.49 9.58 287.34

ACO-HHSP 35.00 157.19 12.08 248.04

P50 DF 9.58 803.95 1.66 913.96

MP 18.75 1658.30 9.58 1768.32

MPW 49.16 108.98 22.08 219.00

MW 16.66 574.68 2.08 684.69

ACO-HHS 26.25 430.20 15.41 540.21

ACO-HHSP 51.25 108.24 20.00 218.25

Fig. 2. Average heuristic selection through the different stages of solutions for set S2.
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Fig. 3. Average heuristic selection through the different stages of solutions for set P20.

Fig. 4. Average heuristic selection through the different stages of solutions for set P50.

across different stages of the solution process. This information is shown in
Figs. 2, 3 and 4. Based on these results, we can explain why ACO-HHS behaved
so poorly in comparison to ACO-HHSP. In the three sets, it indistinctly selected
MPW, with a slight preference for MP. ACO-HHSP shows a peculiar behavior.
In set S2, it starts using MPW most of the times and it progressively moves
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towards using MP on a regular basis. Then, ACO-HHSP is greedy on the profit
only at the end of the search. Interestingly, this strategy changed for sets P20
anf P50. In these sets, ACO-HHSP was very consistent through different stages,
by selecting MPW for packing most of the items. From the analysis of individual
heuristics we observed that MPW outperforms the other three heuristics by a
large margin, especially in set P50. There is, however, a noticeable change in the
strategy of ACO-HHSP in the last steps of the search, since it applies DF with
more frequency than in previous stages. This is something that really amazes us,
since we have already stated how näıvely DF behaves. Nonetheless, it appears
that this sudden variety introduced by ACO-HHSP helped it become the overall
best strategy for set P50.

5 Conclusion and Future Work

Throughout this work we used the Ant Colony Optimization (ACO) algorithm to
propose a hyper-heuristic model that overcomes the drawbacks of using a single
heuristic. By analyzing its performance on the knapsack problem, we found it
to be a good approach. The main reason for its effectiveness comes from the
varied performance of heuristics. The behavior of heuristics is linked to specific
classes of instances, defined by the problem inherent features. By deriving a state
representation of the problem, we were able to identify distinctive features of the
problem. This allowed the hyper-heuristic to discern between different states of
a problem, so that it selected the method that best suited the current problem.
Hence, an ACO-trained hyper-heuristic generalizes better than simple heuristics.
Even so, the MPW heuristic is very difficult to outperform since it yields near
optimal results. But, there are some instances where it fails. Our data show that
using hyper-heuristics is still better than using MPW. This is specially true for
the ACO-trained hyper-heuristic, since it is fairly stable, and performs equally,
or even better, than the heuristics.

There still remains paths to explore. For example, ACO tends to mimic
MPW and does not tend to explore. Moreover, we consider that a more careful
choice of features could yield better state representations. Such idea could be
explored through statistical analysis. It would also be interesting to explore dif-
ferent hyper-heuristic models. Finally, the sensitivity of ACO parameters should
also be analyzed.
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Abstract. Although the satisfiability problem for two Conjunctive Nor-
mal Form formulas (2SAT) is polynomial time solvable, it is well known
that #2SAT, the counting version of 2SAT is #P-Complete. However,
it has been shown that for certain classes of formulas, #2SAT can be
computed in polynomial time. In this paper we show another class of
formulas for which #2SAT can also be computed in lineal time, the so
called outerplanar formulas, e.g. formulas whose signed primal graph is
outerplanar. Our algorithm’s time complexity is given by O(n+m) where
n is the number of variables and m the number of clauses of the formula.

1 Introduction

#SAT (the problem of counting models for a Boolean formula) is of special
concern to Artificial Intelligence (AI), and it has a direct relationship to Auto-
mated Theorem Proving, as well as to approximate reasoning [1–3]. #SAT can
be reduced to several different problems in approximate reasoning. For exam-
ple, in the cases of: estimating the degree of belief in propositional theories,
the generation of explanations to propositional queries, repairing inconsistent
databases, in Bayesian inference, in a truth maintenance systems [2–4]. The
previous problems come from several AI applications such as planning, expert
systems, approximate reasoning, etc.

#SAT is #P-complete, even for formulas in two conjunctive normal form, so
for complete methods, only exponential-time algorithms are known. The exact
algorithm with the best bound until now was presented by Wahlström [5], who
provides an O(1.2377n)-time algorithm, where n is the number of variables of the
formula. There are also randomized algorithms, in this direction, the algorithm
of Dantsin and Wolpert [6] has the best bound O(1.3238n). #SAT appears to be
harder than SAT since 2SAT is polynomial time solvable while #2SAT is #P-
complete. However, it has been shown that for some classes of formulas, #2SAT
can be computed in polynomial time [1]. The most relevant cases are monotone
formulas and cactus formulas [7].

In this paper we present a new class of formulas for which #2SAT can be
computed in polynomial time. We call these formulas outerplanar since their
c© Springer International Publishing AG, part of Springer Nature 2018
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representation via primal graphs provide outerplanar graphs. A graph is out-
erplanar if it has a crossing-free embedding in the plane such that all vertices
are on the same face. The outerplanar graphs contain as subsets to the cactus
graphs which are used in the theory of condensation in statistical mechanics and
as simplified models of real lattices. Cactus graphs have also found applications
in the theory of electrical and communication networks [7,8].

Another special class of graphs contained into outerplanar graphs is the class
of polygonal array graphs that has been widely used in mathematical chemistry,
since they are molecular graphs used to represent the structural formula of chem-
ical compounds. In particular, hexagonal arrays are the graph representations of
an important subclass of benzenoid molecules, unbranched catacondensed ben-
zenoid molecules, which play a distinguished role in the theoretical chemistry of
benzenoid hydrocarbons [9,10].

In our case, we are more interested in the application of counting models on
conjunctive normal form formulas as a medium to develop methods for approxi-
mate reasoning. For example, for computing the degree of belief on propositional
formulas, or for building Bayesian models. It is relevant to know how many
models are maintained while input conjunctive normal form formulas are being
updating [2,4,6].

Our method firstly decompose the input conjunctive normal form formula to
its signed primal graph, secondly a treewidth decomposition of the graph is com-
puted, outerplanar graphs have treewidth at most 2 so a linear time algorithm
can be used. Finally, a procedure that uses macros (cumulative basic operations)
is applied on the nodes of the treewidth.

The paper is organized as follows, in Sect. 2 the preliminaries are established.
In Sect. 3 a treewidth decomposition of outerplanar formulas is presented. In
Sect. 4, our main procedure is presented and finally, the Conclusion.

2 Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal is either a variable
xi or a negated variable xi. As usual, for each xi ∈ X, we write x0

i = xi and
x1

i = xi. A clause is a disjunction of different literals (sometimes, we also consider
a clause as a set of literals). For k ∈ N , a k-clause is a clause consisting of exactly
k literals and, a (≤k)-clause is a clause with at most k literals. A variable x ∈ X
appears in a clause c if either the literal x1 or x0 is an element of c.

A Conjunctive Normal Form (CNF) F is a conjunction of clauses (we also
call F a Conjunctive Form). A k-CNF is a CNF containing clauses with at most
k literals.

We use ν(Y ) to express the set of variables involved in the object Y , where Y
could be a literal, a clause or a Boolean formula. Lit(F ) is the set of literals which
appear in a CNF F , i.e. if X = ν(F ), then Lit(F ) = X∪X = {x1

1, x
0
1, . . . , x

1
n, x0

n}.
We also denote {1, 2, . . . , n} by [[n]].

An assignment s for F is a Boolean function s : ν(F ) → {0, 1}. An assignment
can be also considered as a set which does not contain complementary literals.
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If xε ∈ s, being s an assignment, then s turns xε true and x1−ε false, ε ∈ {0, 1}.
Considering a clause c and assignment s as a set of literals, c is satisfied by s if
and only if c ∩ s �= ∅, and if for all xε ∈ c, x1−ε ∈ s then s falsifies c.

If F1 ⊂ F is a formula consisting of some clauses of F , then ν(F1) ⊂ ν(F ),
and an assignment over ν(F1) is a partial assignment over ν(F ).

Let F be a Boolean formula in CNF, F is satisfied by an assignment s if
each clause in F is satisfied by s. F is contradicted by s if any clause in F is
contradicted by s. A model of F is an assignment for ν(F ) that satisfies F . We
will denote as SAT (F ) the set of models for the formula F .

Given a CNF F , the SAT problem consists on determining if F has a model.
The #SAT problem consists of counting the number of models of F defined over
ν(F ). #2-SAT denotes #SAT for formulas in 2-CNF.

2.1 The Signed Primal Graph of a 2-CF

There are some graphical representations of a CNF (see e.g. [11]), we use here
the signed primal graph of a two conjunctive normal form.

Let F be a 2-CNF, its signed primal graph (constraint graph) is denoted by
GF = (V (F ), E(F )), with V (F ) = ν(F ) and E(F ) = {{ν(x), ν(y)} : {x, y} ∈
F}, that is, the vertices of GF are the variables of F , and for each clause {x, y}
in F there is an edge {ν(x), ν(y)} ∈ E(F ). For x ∈ V (F ), δ(x) denotes its
degree, i.e. the number of incident edges to x. Each edge c = {ν(x), ν(y)} ∈ E
is associated with an ordered pair (s1, s2) of signs, assigned as labels of the edge
connecting the literals appearing in the clause. The signs s1 and s2 are related to
the literals xε and yδ, respectively. For example, the clause {x0, y1} determines
the labelled edge: “x−+y” which is equivalent to the edge “y+−x”.

Formally, let S = {+,−} be a set of signs. A graph with labelled edges
on a set S is a pair (G,ψ), where G = (V,E) is a graph, and ψ is a function
with domain E and range S. ψ(e) is called the label of the edge e ∈ E. Let
G = (V,E, ψ) be a signed primal graph with labelled edges on SxS. Let x and
y be vertices in V , if e = {x, y} is an edge and ψ(e) = (s, s′), then s(resp.s′) is
called the adjacent sign to x(resp.y). We say that a 2-CNF F is a path, cycle,
a tree, or an outerplanar graph, if its signed constraint graph GF represents a
path, cycle, a tree, an outerplanar graph, respectively. We will omit the signs on
the graph if all of them are +.

Notice that a signed primal graph of a 2-CNF can be a multigraph since two
fixed variables can be involved in more than one clause of the formula forming so
parallel edges. Furthermore, a unitary clause is represented by a loop (an edge
to join a vertex to itself). A polynomial time algorithm to process parallel edges
and loops to solve #SAT has been shown in [1].

Let ρ : 2-CNF → GF be the function whose domain is the space of Boolean
formulas in 2-CNF and codomain the set of multi-graphs, ρ is a bijection. So
any 2-CNF formula has a unique signed constraint graph associated via ρ and
viceversa, any signed constraint graph GF has a unique formula associated.
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3 Outerplanar 2-CNF Formulas

An outerplanar 2-CNF formula is one whose signed primal graph is outerplanar
e.g the graph has a planar drawing for which all vertices belong to the outer
face of the drawing. Outerplanar graphs may be characterized (analogously to
Wagner’s theorem for planar graphs) by the two forbidden minors K4 and K2,3,
or by their Colin de Verdière graph invariants. They have Hamiltonian cycles if
and only if they are biconnected, in which case the outer face forms the unique
Hamiltonian cycle. Every outerplanar graph is 3-colorable, and has degeneracy
and treewidth at most 2 [12]. The outerplanar graphs are a subset of the planar
graphs, of the serial-parallel graphs, and of the circle graphs.

3.1 Tree Decomposition

Many hard problems can even be solved efficiently on graphs that might not be
trees, but are in some sense still sufficiently treelike. A formal parameter that is
widely accepted to measure this likeliness is the treewidth of a graph [13].

Treewidth is one of the most basic parameters in graph algorithms. There is
a well established theory on the design of polynomial (or even linear) time algo-
rithms for many intractable problems where their input is restricted to graphs
of bounded treewidth. More importantly, there are problems on graphs with n
vertices and treewidth at most k that can be solved in time O(ck · nO(1)), where
c is a problem dependent constant [14].

For example, a maximum independent set (a MIS) of a graph can be found
in time O(2k · n), given a tree decomposition of width at most k. Therefore,
a quite natural approach to compute i(G) would be to find a treewidth TG of
G, and to determine how to join the partial results on the nodes of TG. How-
ever, for any general graph G, finding its minimum treewidth is a NP-complete
problem.

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T =
(I, F )) with {Xi | i ∈ I} a collection of subsets of V , called bags, and T = (I, F )
a tree, such that for all v ∈ V there exists an i ∈ I with v ∈ Xi, for all
{v, w} ∈ E there exists and i ∈ I with v, w ∈ Xi, and for all v ∈ V , the set
Iv = {i ∈ I | v ∈ Xi} forms a connected subgraph (subtree of T).

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is defined as
maxi∈I |Xi| − 1. The treewidth of a graph G is the minimum width of a tree
decomposition of G. It is NP-complete to decide whether the treewidth of a
graph is at most k (if k is part of the input) [15]. But, for every fixed k, there is
a linear-time algorithm deciding whether the treewidth is at most k, and when
that is the case, producing a corresponding tree decomposition [12]. Algorithm 1
computes the 2-treewidth decomposition of an outerplanar graph [16].

Algorithm 1 keeps the structure of a tree, and then, we can combine the
algorithms to be presented in the following section, in order to compute i(T ).
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Algorithm 1. Procedure that computes the treewidth decomposition ({Xi | i ∈
I∗}, T ∗) of and outerplanar graph G = (V,E).
1: procedure Treewidth(G)
2: if |V | <= 3 then
3: Xi = G
4: I={i}
5: return ({Xi}, T = (I, ∅))
6: else
7: let (v ∈ V such that δ(v) = 2 or δ(v) = 1)
8: ({Xi}, T = (I, F ))=Treewidth((V − {v}, (E − {(v, w), (v, x)}) ∪ {(w, x)})
9: let (i ∈ I with w ∈ Xi ∧ x ∈ Xi for some bag Xi)

10: let (i∗ �∈ I)
11: I∗ = I ∪ {i∗}
12: Xi∗ = {v, w, x}
13: T ∗ = (I∗, F ∪ {(i, i∗)})
14: return ({Xi | i ∈ I∗}, T ∗)
15: end if

4 Computing #2SAT on Outerplanar 2-CNF Formulas

If F consists of disconnected sub-formulas then #2SAT (F ) =
∏k

i=1 #2SAT (Fi)
where Fi, i = 1, . . . , k, are the disconnected sub-formulas of F [3]. The time
complexity for computing #2SAT (F ), denoted as T (#2SAT (F )), is given by the
rule T (#2SAT (F )) = max{T (#2SAT (Fi)) : Fi is a disconnected subformula
of F}. Thus, a first decomposition of the formula is done via its connected
components, and from here on, we consider only outerplanar connected formulas.

Our algorithm is based on the following Theorem.

Theorem 1. If the treewidth of a graph G is of size k, G has a tree decomposi-
tion where each bag is of size at most k + 1 [17].

Due to the fact that the treewidth of outerplanar graphs is 2, there is a
tree decomposition of outerplanar graphs where each bag has at most 3 vertices
forming so trees, simple cycles or disconnected components. Additionally each
node (bag) is connected to its descedents or ancestor via a common edge or
vertices.

We built a pair of linear equations whose solution represents the values (α, β)
on each node of the tree decomposition.

Let B1 and B2 be two nodes in the tree decomposition of an outerplanar
graph. Assume that B2 is a child of B1 in the tree decomposition. By definition
of a tree decomposition, B1 and B2 share: a common edge or, a common vertex
or, two non-adjacent vertices (either connected by a path or disconnected).

We present a procedure for computing #2SAT (F ) traversing in postorder
by the nodes Bi 1 ≤ i ≤ j of the tree decomposition. We begin computing the
values (α, β) on the leaves, and later on, for interior nodes and finally, for the
root node.
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Fig. 1. On the left a constrained graph representing the Formula {{x1, x2}, {x1, x3},
{x2, x4}, {x2, x3}, {x3, x4}}. On the right, its tree decomposition.

The computation of #2SAT (Bj) when Bj is a leaf node can be done accord-
ing to the procedures presented at [7], since it contains a path, a tree, a simple
cycle or disconnected subgraphs. In case that a node contains disconnected sub-
graphs, the number of models is the product of the models of each subgraph.

The pair (α, β) for each leaf node is not represented by single numbers,
instead this pair is represented by a pair of linear equations. Hence, the order
of the computation is important since the pair of linear equations has to be
associated to the vertex or edge that is joined to its father’s node.

Let us show an example, consider the formula F ={{x1, x2}, {x1, x3}, {x2, x4},
{x2, x3}, {x3, x4}} whose signed primal graph is shown on the left of Fig. 1. A
tree decomposition is shown on the right of Fig. 1.

The leaf node B2 contains a cycle, so according to the procedure presented
at [7] two computing threads have to be computed. Since the edge (x2, x3) is
the joint to its father’s node. The computation should begins at one joint ver-
tex and ends on the other. Lets us assume the computation begins at x2. The
two computing threads: Lp, Lc, and its associated pairs are expressed as basic
operations between the symbolic variables: α and β, in the following way:

x2 x1 x3 x3 → x2

Lp : (α, β) → (α+β, α) → (2α + β, α + β) ⇒ (2α + β, α + β)
Lc : (0, β) → (β, 0) → (β, β) ⇒ - (0, β)

——————-
(2α + β, α)

(1)

The symbol ⇒ is used to establish that the first component of Lc is set to 0
since we are counting the assignments were both x0

2 and x0
3 do not appear.

Instead of evaluating the pair to get the models of B2 we will associate to the
edge (x2, x3) the pair of linear equations (2α+β, α) which we call, the macro M1.

A relevant property of a macro, as defined in this paper, is the possibility to
represent cumulative operations via symbolic variables, making macros indistin-
guishable from individual operators. If subsequences of operators are repeated, a
hierarchy of macros can represent a more compactly plan than a simple operator
sequence, replacing each occurrence of a repeating subsequence with a macro [18].

When the computation of #2SAT (B1) starts, for example at vertex x4, two
new threads are created (since the bag contains a simple cycle too) LP = (α, β)
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and Lc = (0, β). When the vertex x3 is reached, LP = (α+β, α) and Lc = (β, 0).
When (x2, x3) is visited, it implies the substitution of α and β in the macro M1

by the values given at LP , and Lc pairwise. In our example LP = (2(α + β) +
α, α + β) = (3α + 2β, α + β) and Lc = (2β, β). The simple cycle is then closed
so the last pair of equation is (3α + 2β, α + β) − (0, β) = (3α + 2β, α). Finally
#2SAT (F ) = 3α + 2β + α. With the initial values α = β = 1 we have that
#2SAT (F ) = 6.

M1 indicates that it does not matter the values for α and β, the values for
those variables can be substituted by a current pair of values in order to obtain
a final pair of linear equations and such that in those new equations, the value
for #2SAT (B2) has been considered as part of its cumulative operations.

In our case, the expansion of a macro consists in the substitution of the
symbolic variables α and β, appearing in its pair of equations, by the current
values already computed when the common edge is reached. This process of
expansion is well-defined since no macro appears in its own expansion.

The correctness of our method is based in the following Theorem.

Theorem 2. Let F1 and F2 be two formulas in 2-CNF. If F1 ∩ F2 = {xε
1, x

δ
2},

e.g. a single clause then

#2SAT (F1 ∪ F2) = #2SAT (F1 |{xε
1,xδ

2}⊆s) × #2SAT (F2 |{xε
1,xδ

2}⊆s)

+ #2SAT (F1 |{xε
1,xδ−1

2 }⊆s) × #2SAT (F2 |{xε
1,xδ−1

2 }⊆s)

+ #2SAT (F1 |{xε−1
1 ,xδ

2}⊆s) × #2SAT (F2 |{xε−1
1 ,xδ

2}⊆s)

Proof. In order to satisfy F1 ∪ F2 the clause {xε
1, x

δ
2} has to be satisfied, so

either {xε
1, x

δ
2} ⊆ s or {xε

1, x
δ−1
2 } ⊆ s or {xε−1

1 , xδ
2} ⊆ s. The computation of the

satisfying assignments of F1 ∪ F2 is given by

#2SAT (F1 ∪ F2) = #2SAT (F1 ∪ F2 |{xε
1,xδ

2}⊆s)

+ #2SAT (F1 ∪ F2 |{xε
1,xδ−1

2 }⊆s)

+ #2SAT (F1 ∪ F2 |{xε−1
1 ,xδ

2}⊆s)

Assigning truth values to the variables x1 and x2 to satisfy {xε
1, x

δ
2} in F1∪F2

gives two disconnected formula, by the hypothesis that F1 ∩ F2 = {xε
1, x

δ
2}, so

the conclusion holds. �
The previous theorem states that if we know the models of F1 where the

truth values of the variables x1 and x2 which joint F1 to another formula F2 via
a clause {xε

1, x
δ
2} are known, then we can substitute the models where xε

1 and xδ
2

appears in F1 into those of F2 considering the truth values of x1 and x2 in F2.
Algorithm 2 presents the computation of #2SAT (F ) when F is an outerpla-

nar formula.
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Algorithm 2. Procedure that computes a pair of linear equations (Aα,Bβ)
such that when substituting α = β = 1 gives #2SAT (F ) = A+B. F is an outer
planar formula based whose tree decomposition is denoted by T computed by
its signed constrained graph G.
1: procedure #2SAT(T )
2: if T = NULL then
3: return
4: end if
5: for each child C of T do
6: #2SAT(C){Postorder traversal of T}
7: end for
8: if T is a leaf then
9: switch (in case the joint of T and its fathers is)

10: (a vertex x): compute the pairs of T using x as the root node{e.g leaving the
pair (αx, βx) as a partial result}

11: (an edge: (x, y)) compute the macro M of T using either x as the root vertex{e.g
leaving the macro M as a partial result on x, y}

12: end switch
13: end if
14: if T is an interior node then
15: let ((αi, βi) the pair associated to each child of T ){A macro or a pair (α, β)}
16: switch (in case the joint of T and its fathers is)
17: (a vertex x): Traverse the vertices of T in postorder using as root the vertex x
18: (an edge: (x, y)) compute the macro M of T using either x or y as the root

node{e.g leaving the macro M as a partial result}
19: end switch
20: Substitute M or (αi, βi) when the child of T is reached in the traversal {according

to the procedures of [1]}
21: end if
22: if T is the root then
23: let ((αi, βi) the pair associated to each child of T ) {A macro M or a pair (α, β)}
24: Choose a vertex x of T as the root node
25: Traverse the vertices of T in postorder
26: Substitute M or (αi, βi) when the child of T is reached in the traversal

{According to the procedures of Section [1]}
27: end if
28: return (αx, βx).

5 Results

We implement our proposal and compare its runtime against sharpSAT which to
the best of our knowledge is the leading sequential implementation. Our outer-
planar formulas represent polygonal chain graphs where each polygon has three
or four sides. Table 1 shows the running time of our proposal against sharpSAT.
It is work to said that both implementations are sound and complete hence the
exact number of models is computed in both of them.
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Table 1. Formulas whose signed constraint graphs is outerplanar.

Time in seconds

Instance Variables Clauses markSAT sharpSAT

1 102 201 0.002 0.028

2 202 401 0.005 0.035

3 502 1001 0.021 0.083

4 1002 2001 0.076 0.230

5 2,002 4,001 0.295 0.822

6 3,002 6,001 0.649 1.792

7 4,002 8,001 1.134 3.176

8 5,002 10,001 1.726 4.898

9 10,002 20,001 6.927 19.335

10 15,002 30,001 21.821 43.411

11 20,002 40,001 47.379 77.283

12 25,002 50,001 83.371 121.271

13 30,002 60,001 129.012 174.213

14 35,002 70,001 186.094 237.553

15 40,002 80,001 249.291 310.091

6 Conclusion

We present a new class of conjunctive form formulas where counting their num-
ber of models can be computed in linear time. These formulas are the logical
expressions of outerplanar graphs via two conjunctive normal forms.

Our procedure requires the construction of the tree decomposition of the
outerplanar graphs, which in this case it is done in time O(n) on the number
of vertices of the input formula. Once a tree decomposition has been built a
postorder traversal of both the tree and their bags is done in time complexity
O(m), where m is the number of edges in the graph.
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2 Departamento de Informática, Universidad Nacional de San Luis, San Luis,

Argentina
nreyes@unsl.edu.ar

Abstract. The similarity search is a central problem to many applica-
tions, such as multimedia databases and repositories containing complex
non-structured objects. The metric space model is very useful in these
scenarios, because metric indexes support efficient similarity search but
most of them are designed for main memory. In this article we introduce
an improved version of the List of Clustered Permutations (iLCP), a
competitive index for approximate similarity search. Our proposal is spe-
cially adapted for secondary memory and performs well in several scenar-
ios, especially on spaces of medium and high dimensionality. We assessed
this new structure with several real-life metric spaces from SISAP, the
results show that this new version keeps the rewarding characteristics of
LCP, while obtaining a very good performance in terms of number of
pages read per search.

1 Introduction

Similarity approaching is needed in several modern applications such as pattern
recognition and multimedia retrieval, to mention a few [15]. In this scenario, the
goal is to retrieve the most similar objects to a given query object. This problem
can be mapped into a metric space in this way.

A metric space is defined as a tuple (X, d), where X is the universe of objects
and d the metric distance between each element in X; that is d : X×X �−→ R

+.
The metric d must satisfy the following properties for x, y, z ∈ X: positiveness
(d(x, y) ≥ 0), d(x, x) = 0, symmetry (d(x, y) = d(y, x)), and triangle inequality
(d(x, y) ≤ d(x, z)+d(z, y)). Given a dataset U ⊂ X, with |U| = n, the basic kind
of queries that can be required are:

c© Springer International Publishing AG, part of Springer Nature 2018
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– range query : given q ∈ X and r ∈ R
+, a range query in defined as R(q, r) =

{u, u ∈ U ∧ d(u, q) ≤ r}.
– k-Nearest Neighbor query : given q ∈ X and k ∈ N, the k-nearest neighbor
query retrieves the k closest elements to q from the database U. Formally,
k − NN(q) = A ⊆ U such that |A| = k and ∀x ∈ A ∧ ∀y ∈ U − A, d(q, x) ≤
d(q, y).

It is important to highlight that the distance function is the only way to compare
similarity between objects and is usually expensive to compute.

Clearly, any query can be solved by comparing the query object q with each
element x ∈ U. However, as n grows it may be extremely expensive to solve
a query this way would require n distance evaluations, therefore, we need to
use a proximity index avoiding many distance computations. Nowadays, huge
databases are common, so primary memory may not be enough to store the
index, the database or both. Hence, an alternative is to use the following level in
the memory hierarchy; that is secondary memory. However, if we consider using
secondary memory to store the index, searches will involve not only distance
computations but also I/O operations on disk. In this case, in order to solve
queries efficiently we need to consider how to save both distance computations
and I/O operations.

There are several indexes for general metric spaces, that allow reducing the
cost of searching [13,15]. Most of them are only aimed to reduce the number
of distance computations. Only few indexes are specially designed for secondary
memory, where the I/O operations are very significant in the search cost [8,11].
Some might think that a good design for secondary-memory indexes is not needed
because of the great capacity increase of main memory, however the volume of
data grows even faster [9].

In high dimensional metric spaces, where queries are intrinsically hard, even
with a good secondary-memory index the number of distance evaluations and
I/O operations may be too high to be useful for most applications where real-time
queries must be answered over large databases. In this case different strategies
to reduce search costs have to be considered. A good strategy in this situation
consists in accepting that queries can be answered faster at the cost of los-
ing accuracy in the responses. This approach is used in the Permutation Based
Algorithm (PBA) [4], and particularly in the LCP [6], and (LCP*) [12] where it
was implemented for secondary memory. Hence, we want to answer approximate
similarity queries on large volumes of data, working in secondary memory.

In this article, we introduce an improvement to the List of Clustered Permu-
tations (iLCP) with a way to implement it on disk efficiently while keeping its
good characteristics of its main-memory version. The rest of paper is organized
as follow: In Sect. 2 we explain the previous work in this topic, then, in Sect. 3 we
give details about our proposed technique to improve LCP. We show evidence
of the improvement achieved in Sect. 4. Finally, conclusions and future work are
given in Sect. 5.
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2 Previous Work

There are several techniques for solving proximity queries using metric spaces
either exactly or approximately. An exact answer to a query contains all the
objects that satisfy the query, but exact query answers can be very expensive
to compute [2]. An alternative is using approximate proximity searching, which
consists of finding most of the objects that satisfies the proximity query with
high probability, this is known as the approximate answer to a proximity query.
For exact proximity searching the family of the so called partition-based algo-
rithms work very well in low dimensions, see [3,14]. For approximate proximity
searching in high dimensions the permutation-based algorithms [4] have the best
performance. An important survey can be found in [13].

The partition-based algorithms [3,14] perform well for medium intrinsical
dimensions. Particularly, the List of Clusters (LC) [3] is a very good represen-
tative of this family and it was shown that it is very competitive. Moreover,
the best search performance on high dimensional metric spaces is obtained with
the permutation-based algorithms [4], which are used for approximate similar-
ity searching. The LCP [6] is a method that combines partition-based algo-
rithms with permutation-based algorithms keeping the best of two worlds. We
will briefly describe these two kinds of algorithms, then we will explain LC, and
LCP indexes.

2.1 Partitions-Based Algorithms

This kind of algorithms divide the space in zones as compact as possible, this
division is usually made in a recursive way. For each zone, a representative object
(a center) ci is stored along with some extra data that allows to quickly discard
the whole zone at querying time. The general idea is to have coherent clusters of
objects. During search, entire zones can be discarded depending on the distance
from their cluster center ci to the query q.

Two criteria can be used to delimit a zone. The first one discards objects by
using the Dirichlet Domains, where a collection of centers are selected to arrange
the objects in the database assigning them to the closest center. Each pair of
centers is divided by an hyperplane and the intersection of all those hyperplanes
is the cell of all the objects in the database closer to the respective center. Hence,
the cells are delimited by hyperplanes and the zones are analogous to Voronoi
regions in vector spaces. If {c1, . . . , cm} is the set of centers, at query time
we evaluate (d(q, c1), . . . , d(q, cm)), then we can choose the closest center c and
discard every zone whose center ci satisfies d(q, ci) > d(q, c)+2r, as its Dirichlet
Domain cannot intersect with the query ball centered at q with radius r. Centers
are usually selected in a random way. The second criterion is the covering radius
cr(ci), which is the maximum distance between ci and an element belonging to
its zone. In this case, if we search R(q, r) it is not necessary to consider the zone
of the center ci If d(q, ci)−r > cr(ci), because this zone will not contain relevant
elements to this query.
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2.2 Permutation-Based Algorithms

In [4] the authors introduced a permutation-based algorithm. First, a set of
permutants P = {p1, . . . , ps} ⊂ U are chosen from the database. Then, ∀u ∈ {U−
P} the distance to P are computed and sorted by proximity increasingly (i.e. from
the closest to the farthest permutant). For each u the order of the permutants
with respect to their distance to u, which is one of all the possible permutations
of the permutants, and referred to as Πu has to be stored, in fact the set of
Πu for all u conform the index. The authors compare permutations using the
well-known metric Spearman footrule which computes how many positions apart
each permutant is in one permutation with respect to the other permutation.

SF (Πu,Πq) =
s∑

i=1

|Π−1
u (i) − Π−1

q (i)| (1)

where Π−1(i) denotes the position of permutant i. For example, in Πu =
(2, 1, 4, 3, 5), permutant p1 is in position 2, and in Πq = (1, 2, 3, 4, 5) permu-
tant p1 is in position 1, so the difference is |1 − 2|. The Spearman footrule
computes the sum of the differences of the positions for all the permutants so
SF (Πu,Πq) = |1 − 2| + |2 − 1| + |3 − 4| + |4 − 3| + |5 − 5| = 4. In [1,5] authors
used the same idea of PeBA but they sacrificed precision with a small part of
the permutation.

2.3 List of Clusters

An efficient way to organize a dataset is using a partition-based algorithm. In
[3] an economical index called List of Clusters (LC) was introduced, it uses
O(n) space and has a competitive performance in high dimensions. However,
its construction needs O(n2) distance evaluations, which means, this index is
expensive to build. For LC the clusters are compact zones with respect to a
center, and there are two ways to define the zones. Let c be a center, a zone can
be determined with fixed radius r∗ or with bounded number of elements b. In
the first case each element at a distance from c less or equal to r∗ will belong
to its zone. In the other case, only the b-closest elements to c will belong to its
zone. For this work we use the option of having clusters with fixed number of b
of elements, so b is the only parameter of this index.

The build process of LC is as follows: first, a center c ∈ U is randomly
selected. The center c selects its b-closest elements from the dataset and forms
the set I. So, the first cluster of the list is a tuple (c, I, crd), where I contains the
b-nearest neighbors of c, and crd is the covering radius of c. The covering radius
crd = maxu∈I{d(c, u)}; that is, the distance between c and its farthest neighbor
in I. The process continues recursively with the rest of the non-clustered elements
E, i.e. E = U − ({c} ∪ I).

It is important to mention that there are no intersections between clusters,
and they are visited in the same order in which the index was built. Therefore,
when a query R(q, r) is given, q is compared with the first center c1 of the list.
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Let be dist = d(q, c1) , if dist < r then c1 is reported to the answer. Then
if dist − r ≤ crd it is necessary to search exhaustively in I. Next, we have to
consider the rest of the list, but it has to be revised only if dist + r > crd.
The search process continues recursively until we find a center ci that satisfies
d(q, ci) + r > crd, since then the following clusters will not contain any relevant
element, or we reached the last cluster in the list.

2.4 List of Clustered Permutations

In [6] the authors introduced a smart combination of List of Clusters and
a permutation-based algorithm. This new data structure is called as List of
Clustered Permutations. Basically, they proposed choosing a set of centers
P = {c1, c2, . . . , cs} ⊂ U and compute the permutations of every element u
(Πu) in the database U. Then, they clustered the elements in zones centered at
each permutation Πci , they selected the b most similar objects (excluding cluster
centers, so that no center would be inside the bucket of another one). By using
the Spearman footrule metric to estimate similarity, the elements in the cluster
of a center ci can be considered elements that have similar permutations to Πci .
However, it is important to mention that each cluster is also a tuple (c,Πc, I, crd),
where crd is the covering radius as in LC, that is crd = maxu∈I{d(c, u)}. Ele-
ments in the cluster are grouped by similarity of the permutations but the cover-
ing radius of the cluster is kept using the distance between elements. Therefore,
all permutations calculated for the elements of the same cluster are discarded
when the cluster is already determined because in the cluster the real objects
are stored. The process is iterative the first cluster is built for Πc1 , then for Πc2 ,
and so on. Hence, it can be noticed that b have to be |U|−|P|

|P| = n
|P| − 1.

During the search of R(q, r), q is compared with all the centers to obtain
Πq. Every center that is at distance less or equal than r from q is reported.
Then, they decided by two criteria if a cluster will be revised using the distance
d(q, c) and the crd as the original technique; and the second criterion is using a
computingShift proposal, which computes just the shift of some permutants at
the center’s permutation.

In [12] authors implemented LCP in secondary memory, they called LCP*.
Basically they stored each cluster in the same (or contiguous) disk-page and,
during the query time, they sorted the non-discarted clusters and just review a
fraction f of them.

2.5 Secondary Memory

Since the index will be stored in secondary memory, we took into account that
each I/O operation on disk will consume: access time and transfer time. Access
time is the time between a request of an I/O operation and the moment the
transference of data begins; that is the time needed to move the arm (that sup-
ports the read/write heads) to the corresponding track plus the time of rotational
delay to wait for the requested sector in this track. A disk page is a fixed-size
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portion of data on the disk that can be transferred in a single access, usually is
considered the amount of data that fits in a sector of a disk cylinder.

For simplicity, we considered the I/O time as the number of disk pages read
and/or written. We call B the size of the disk page in bytes. Given a dataset
of |U| = n objects of N bytes and a disk page size B, queries can be trivially
answered by performing n distance evaluations and N/B I/Os. Therefore, the
main goal of a secondary-memory index is to preprocess the dataset so as to
answer queries with as few distance evaluations and I/Os as possible.

In order to take advantage of each I/O operation, we must manage that all
the recovered data in the reading of a disk page are really useful. We also have
to consider that the access time is more relevant when we read/write random
pages on disk, but it is less significative when sequential pages are read/written.
Besides, the access time for any page of a file is lower, even making random
access, if this file is located over as few disk cylinders as possible; Access time
in a smaller file is lower than within a larger file.

3 Our Proposal

In a similar way as described in [6] for LCP, the build process begins selecting
the centers P = {c1, c2, . . . , cs} ⊂ U, that will also act as permutants. Then, we
compute permutation Πu for each element u in the database U, with respect to
the centers. As we mentioned previously, it is convenient that similar objects in
a cluster are stored in the same disk page in order to minimize the number of
I/O operations. Besides, to exploit the use of all data retrieved/stored in each
read/write operation, it is important to take advantage of all available space in
a disk page. Therefore, parameter b must be chosen according to the size of a
disk page; (i. e. we select b as the maximum number of elements that can fit in
a disk page, excluding the necessary space for other information maintained in
a cluster). Hence, the number of centers s can not be some arbitrary number, it
has to be s = � n

b+1.
After we have all permutations we may start building the clusters. This

building process is similar to original LCP. For a cluster with center ci, we
select the b-nearest neighbors ci. We compute the Spearman footrule between
the permutation of each database element and Πci and store SF between Πci

and the most dissimilar permutation of an element in that cluster as its covering
radius (crSF

). It should be noticed that the original LCP maintains the covering
radius by using the real distance d. Our iLCP version for disk stores the covering
radius using the Spearman footrule metric between permutations (crSF

). Hence,
for each cluster we have a tuple that is stored in a disk page (c,Πc, I, crSF

).
Therefore, only s write operations on disk are needed to store all the list of
clusters. Algorithm 1 illustrates a simplified version of the building process of
our improved version of LCP for disk (build-iLCP). It should be noticed that in
line 4, when we set B as a leaf, this implies a write operation of this cluster on
a disk page. As it may be seen, each node of the list have two pointers: child1
links the real cluster and child2 links the following node into the list. Besides,
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at line 9, when set Ot selects the most similar objects according to SF , we have
to register the distance to the farthest element included as its covering radius
crSF

.

Algorithm 1. build-iLCP(node, Centers, O)
1: Let O the set of objects
2: if |O| ≤bucketSize then
3: createBucket B with the set O
4: node.leaf ← B
5: else
6: Let c be a center picked from the set Centers
7: ∀ u ∈ O, we compute SF (Πu, Πc)
8: sort by SF value
9: Let Ot the most similar objects according to SF

10: node.child1 ← build(list, Centers, Ot )
11: node.child2 ← build(list, Centers, O − Ot )
12: end if
13: return node

Since the list will be allocated on disk and as we know, retrieving any infor-
mation from disk is costly, we decided to maintain some basic information from
the list of clusters in main memory. In this way, we will not have to read a clus-
ter from disk unless it is unavailable in memory. We maintain for each cluster
(c,Πc, crSF

,#P ), where c is the cluster center, Πc is its permutation, cr is its
covering radius using Spearman footrule, and #P is the page number where this
cluster is stored on disk. Therefore, we need to store s tuples in main memory
containing each one an object and s + 2 integer numbers; that is O(s2) space in
main memory, plus s disk pages.

For a search, first we compare q with all the centers in main memory to
determine Πq and report as part of the answer each center ci whose distance
d(q, ci) ≤ r. Then, with the information available in main memory, we tra-
verse the list and when we consider a tuple (ci,Πci , crSF

,#P ), if it is true that
SF (Πq,Πci) ≤ α ≤ crSF

, where α is a parameter, we read the cluster from disk
(located on disk page #P ). Once we read the disk page of a relevant cluster,
we exhaustively search on it to determine the elements to report. Hence, at line
2 we report the elements whose distance from q is ≤ r. A simplified version of
range search process is shown in Algorithm 2.

We may improve the search cost of Algorithm 2 if instead of reading each
cluster directly at line 2, we include this cluster in a set of candidate clusters
that have to be read from disk. Then, we sort all candidate clusters (belonging
to this set) by their disk page number before starting reading them one by one.
Finally, we perform a sequential pass on the disk when reading the candidate
clusters, and we reduce access time avoiding unnecessary seeks.
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Algorithm 2. Search(node t, q, r, α)
1: if t is a leaf then
2: load a disk page, and compare all elements against q
3: else
4: let ct be the center of node t and crSF its covering radius
5: let dp = SF (Πq, Πct)
6: if dp − α ≤ crSF then
7: return Search(t.child1, q, r, α)
8: end if
9: if dp + α ≥ rcSF then

10: return Search(t.child2, q, r, α)
11: end if
12: end if

4 Experimental Results

In this section we evaluate and compare the performance of our technique for
different metric spaces. For lack of space, we only show the results obtained
with three real world datasets (English dictionary, Colors Database, and NASA
Database). All this datasets are available from the SISAP project’s metric space
benchmark set [7]. The experiments were run on an Intel Xeon workstation
with 2.4 GHz CPU and 32 GB of RAM with Centos Linux distribution, running
kernel 2.6.18-419. We evaluated our proposal both in distance evaluations and
in number of pages read when the new parameter α is changing.

Colors Database. This real-life database has 112,682 objects, which are color his-
tograms, represented as 112-dimensional feature vectors, we used the Euclidean
distance. From the database, we selected 500 histograms randomly as test set,
obviously this subset was not indexed. In this space we used range searches with
a radii that retrieves 0.01%, 0.1%, and 1% of the database. Figure 1 illustrates
the average of search performance among all elements searched. Notice that lines
in horizontal is the original LC (just in a comparative way) because it does not
have α parameter. Our results show that our iLCP just need to review less than
10% of pages to retrieve the 100% of the answers.

NASA Database. This database is from NASA, it contains 40,150 objects. Again,
we randomly chose 500 vectors and searched for k-nearest neighbors using k =
1, 2, 4, and 8. Figure 2 shows the performance of our proposal. In this case, notice
that we need to read just 1% of pages to retrieve all answers. The original LC
needs to read almost 8% of disk pages and LCP* needs almost 7% to retrieve
100% of nearest neighbor.

English Dictionary. Finally, the last real-life database is an English Dictionary
with 69,069 words. Once again, 500 strings were chosen as test set. In this case
we searched the k-nearest neighbors for k = 1, 2, 4, and 8. Figure 3 depicts our
results. As the other results, in this dataset we need to review just almost 0.2%
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to retrieve at least the 100%. In this case, retrieval is more than 100% because
there are more objects at the same distance.

5 Conclusions and Future Work

We have shown a new secondary-memory version of a competitive in-memory
index for approximate similarity iLCP. This new proposal offers a good balance
between construction and search time. Besides, it supports approximate searches
by calculating few distances and reading very few disk pages. We transformed
LCP into a more practical index that keeps its rewarding characteristics, but now
it can be applied on massive datasets that require secondary-memory storage.

For future work we will analyze how the disk page size affects the search
performance and validate our results over huge databases. We will also study
the way how new elements may be inserted in an already built index without
degrading searching performance. Also we will evaluate the benefit of storing
short permutations of objects in the clusters, in order to filter out elements that
are not relevant, avoiding unnecessary calculations of distances, in this case,
we hope to trade off space for time. Finally, we will use the same strategy of
LCP*, that is, sorting the promissory clusters. Besides, we will also analyze the
application of “cut-regions” [10] to LCP, in order to improve its filtering capacity.
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Abstract. A novel method to model the 3-coloring on polygonal tree
graphs is presented. This proposal is based on the logical specification
of the constraints generated for a valid 3-coloring on polygonal graphs.
In order to maintain a polynomial time procedure, the logical constraints
are formed in a dinaymic way. At the same time, the graph is traversing
in postorder, resulting in a polynomial time instance of the incremen-
tal satisfiability problem. This proposal can be extended for considering
other polynomial time instances of the 3-coloring problem.

Keywords: Incremental satisfiability problem · Graph coloring
Polygonal tree graphs · 3-coloring

1 Introduction

The graph vertex coloring problem consists of coloring the vertices of the graph
with the smallest possible number of colors, so that two adjacent vertices can
not receive the same color. If such a coloring with k colors exists, the graph is
k-colorable. The chromatic number of a graph G, denoted as χ(G), represents
the minimum number of colors for proper coloring G. The k-colorability problem
consists of determining whether an input graph is k-colorable.

The inherent computational complexity, associated with solving NP-hard
problems, has motivated the search for alternative methods, which allow in poly-
nomial time the solution of special instances of NP-hard problems. For example,
in the case of the vertex coloring problem, 2-coloring is solvable in polynomial
time. Also, in polynomial time has been solved the 3-colorability for some graph’s
topologies, such as: AT-free graphs and perfect graphs, as well as to determine
χ(G) for some classes of graphs such as: interval graphs, chordal graphs, and
comparability graphs [7]. In all those cases, special structures (patterns) have
been found to characterize the classes of graphs that are colorable in polynomial
time complexity.

Graph vertex coloring is an active field of research with many interesting
subproblems. The graph coloring problem has many applications in areas such
as: scheduling problems, frequency allocation, planning, etc. [1,4,5].

In particular, hexagonal chains are the graph representations of an impor-
tant subclass of benzenoid molecules, unbranched catacondensed benzenoid
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molecules, which play a distinguished role in the theoretical chemistry of ben-
zenoid hydrocarbons [8]. The propensity of carbon atoms to form compounds,
made of hexagonal arrays fused along the edges, motivated the study of chemical
properties of hydrocarbons via hexagonal chains. Those graphs have been widely
investigated and represent a relevant area of interest in mathematical chemistry,
since they are used for quantifying relevant details of the molecular structure of
the benzenoid hydrocarbons [3,8,9].

If the array of polygons follows the structure of a tree where instead of nodes
we have polygons, and any two consecutive polygons share exactly one edge, then
we called that graph a polygonal tree [2]. We consider here a logical procedure
to color a polygonal tree. Polygonal tree graphs have been widely investigated,
and they represent a relevant area of interest in mathematical chemistry, since
they are molecular graphs used to represent the structural formula of chemical
compound. We show in this article, the relevance to recognize structural patterns
on graphs, that allows to design efficient algorithms for coloring those patterns.

On the other hand, the satisfiability propositional problem (SAT) is an impor-
tant theoretical problem representing the computational difficulty of the NP-
complete class. Despite the theoretical hardness of SAT, current state-of-the-art
decision procedures, known as SAT solvers, have become surprisingly efficient.
Subsequently, these solvers have been used for industrial applications. These
applications are rarely limited to solving just one decision problem, instead, an
application typically solves a sequence of related problems. Modern SAT solvers
handle such problem sequences as an instance of the incremental satisfiability
problem (ISAT) [10].

The ISAT problem is considered a dynamic incremental satisfiability prob-
lem, starting with an initial satisfiable formula F0, and adding later on, new
set of clauses: F1, . . . , Fn. Each Fi results from a change in the preceding Fi−1

imposed by the ‘outside world’. Although the change can be a restriction (add
clauses) or a relaxation (remove clauses), we will focus in the restriction case.
The process of adding new clauses is finished when Fi is unsatisfiable or there
are no more clauses to be added.

ISAT is of interest to a large variety of applications that need to be processed
in an evolutive environment, such as: applications in reactive scheduling and
planning, dynamic combinatorial optimization, reviewing faults in combinatorial
circuits, designing algorithms to coloring graphs, dynamic constraint satisfaction,
and machine learning in dynamic environments [6].

Both, SAT and 3-coloring have been shown to be hard problems (NP-
complete problems). We propose a novel greedy algorithm for the 3-coloring
on polygonal tree graphs. Our proposal is based on the logical specification of
the constraints given by a 3-coloring of an polygonal array, forming in this way,
a polynomial time instance of the incremental satisfiability problem.

2 Preliminaries

Let G = (V,E) be an undirected simple graph (i.e. finite, loop-less and without
multiple edges) with vertex set V (or V (G)) and set of edges E (or E(G)).
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Two vertices v and w are called adjacent, if there is an edge {v, w} ∈ E joining
them. The Neighborhood of x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E} and its closed
neighborhood is N(x) ∪ {x}, which is denoted by N [x]. Note that v is not in
N(v), but it is in N [v]. We denote the cardinality of a set A by |A|. The degree
of a vertex x ∈ V , denoted by δ(x), is |N(x)|. The maximum degree of G, or
just the degree of G, is Δ(G) = max{δ(x) : x ∈ V }.

A path from a vertex v to w is a sequence of edges: v0v1, v1v2, . . . , vn−1vn
such that v = v0, vn = w, vk is adjacent to vk+1 and the length of the path is n.
A simple path is a path such that v0, v1, . . . , vn−1, vn are all different. A cycle
is just a nonempty path in which the first and last vertices are identical; and a
simple cycle is a cycle in which no vertex is repeated, except the first and last
vertices. A k-cycle is a cycle of length k (it has k edges). A cycle of odd length is
called an odd cycle, while a cycle of even length is called an even cycle. A graph
without cycles is called acyclic.

Given a subset of vertices S ⊆ V , the subgraph of G where S is the set of
vertices and the set of edges is {{u, v} ∈ E : u, v ∈ S}, is called the subgraph of
G induced by S and it is denoted by G|S. G − S denotes the graph G|(V − S).
The subgraph induced by N(v) is denoted as H(v) = G|N(v), which contains
all the nodes of N(v) and all the edges that connect them.

A connected component of G is a maximal induced subgraph of G, that is,
a connected subgraph which is not a proper subgraph of any other connected
subgraph of G. Note that, in a connected component, for every pair of vertices
x, y, there is a path from x to y. If an acyclic graph is also connected, then it
is called a tree. When a vertex is identified as the root of the tree, it is called a
rooted tree.

The coloring of a graph G = (V,E) is an assignment of colors to its vertices.
The coloring is proper if adjacent vertices always have different colors. A k-
coloring of G is a mapping from V into the set {1, 2, . . . , k} of k “colors”. The
k-colorability problem consists of deciding whether an input graph is k-colorable.
The chromatic number of G denoted by χ(G) is the minimum value k such that
G has a proper k-coloring. If χ(G) = k, then G is said to be k-chromatic or
k-colorable. When k = 2, it is polynomially solvable to determine if a graph is
k-colorable. However, for k > 2 the problem is NP-complete, even for graphs G
with degree Δ(G) ≥ 3.

Let G = (V,E) be a graph. G is a bipartite graph if V can be partitioned
into two subsets U1 and U2, called partite sets, such that every edge of G joins
a vertex of U1 to a vertex of U2. If G = (V,E) is a k-chromatic graph, then
it is possible to partition V into k independent sets V1, V2, . . . , Vk, called color
classes, but it is not possible to partition V into k − 1 independent sets.

3 Polygonal Tree Graphs

Given an undirected simple connected graph G = (V,E), applying a depth-first
search on G produces a tree graph TG, where V (TG) = V (G). The edges in TG

are called tree edges, whereas the edges in E(G)\E(TG) are called frond edges.
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Let e ∈ E(G)\E(TG) be a given frond edge. The union of the path in TG,
between the endpoints of e with the edge e itself, forms a simple cycle, such
cycle is called a basic (or fundamental) cycle of G with respect to TG. Each
frond edge holds the maximum path contained in the basic cycle, which is part
of. We define the end-points of a cycle as the vertices that are part of the frond
edge of the cycle.

Let C = {C1, C2, . . . , Ck} be the set of fundamental cycles found during the
depth-first search on G. Given any pair of basic cycles Ci and Cj from C, if Ci

and Cj share any edges, then they are called intersected cycles, otherwise they
are called independent cycles. In particular, if two cycles share just one edge,
they are called adjacent.

For two intersected cycles Ci and Cj , the new cycle formed by the symmetric
difference between its set of edges (denoted as Cij = Ci�Cj) is a composed cycle
of G and Ci and Cj are called the component cycles of Cij . A form to compute
the composed cycle Cij is Cij = (E(Ci)∪E(Cj))− (E(Ci)∩E(Cj)). Notice that
the set E(Cij) is independent of the order of edges considered in its component
cycles, since the common edges between Ci and Cj are always the same.

Let Ck be a simple cycle graph of size k. Ck is also called a polygon of size
k. A polygonal chain Pk,t is a graph obtained by identifying a finite number of
t polygons of size at least k, such that each polygon, except the first and the
last one, is adjacent to exactly two polygons. When each polygon in Pk,t has the
same number of k vertices, then Pk,t is a linear array of t k-gons, denoted as Pt.

The way that two adjacent polygons are joined, via a common vertex or a
common edge, defines different classes of graphs, that are knowing as molecular
graphs [8]. Let G = (V,E) be a molecular graph, which is a representation of
the structural formula of a chemical compound in tems of graph theory. Let
Pt = h1h2 · · · ht be a polygonal chain with t polygons, where each hi and hi+1

have exactly one common edge ei, i = 1, 2, . . . , t − 1. A polygonal chain with at
least two polygons has two end-polygons: h1 and ht. Meanwhile h2, . . . , ht−1 are
the internal polygons of the chain. In a polygonal chain, each vertex has degree
either 2 or 3. The vertices of degree 3 are exactly the end points of the common
edges between two consecutive polygons.

The recognition of repetitive structures ‘patterns’ in graphs is essential for
the design of efficient combinatorial algorithms. For example, the basic patterns
of the graphs to be studied here are polygons following a tree structure.

Many hard problems can be solved efficiently on graphs that might not be
trees, but they are in some sense still sufficiently treelike. Since the graphs to
be considered have a tree topology, it allows the design of an efficient algorithm
for its 3-coloring vertices. For this, we extend the definition of polygonal trees
introduced in [2] with the following characterization of a polygonal tree GT =
(V,E), see e.g. Figure 1.

Characterization of Polygonal Trees

i. All acyclic component in GT is left outside of the internal faces of the
polygons.
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ii. Two polygons are adjacents if they share a common edge, a common vertex,
or they are joined by just one edge linking a vertex of each polygon.

iii. Any chain of adjacent polygons does not form a cycle of polygons. It means
that the way of adjacent polygons follows the structure of a tree where a
polygon could sustitute a single vertex of the tree.
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Fig. 1. A polygonal tree graph

The fact that a polygonal tree has a characterization, allow us to propose
an efficient algorithm for recognizing the graph, as well as to propose an order
on the vertices for their 3-coloring. We show in the following chapter how to
build, in polynomial time on the size of the input graph, a valid 3-coloring for
polygonal trees.

4 Coloring a Polygonal Tree

Let K be a conjunctive normal form (CNF) and l be a literal, the reduction of K
by l, denoted by K[l], is the formula generated by removing the clauses contain-
ing l from K (subsumption), and by removing l from the remaining clauses (unit
resolution). The reduction K[s], where s is set of literals s = {l1, l2, . . . , lk}, is
defined by successively applying K[li], li, i = 1, . . . , k. The reduction of K by l1
gives the formula K[l1], following a reduction of K[l1] by l2, gives the result of
K[l1, l2], and so on. The process continues until K[s] = K[l1, . . . , lk] is reached.
In case that s = ∅, then K[s] = K.

Let K be a CNF and s a partial assignment of K. If a pair of contradictory
unitary clauses is obtained, while K[s] is being computed, then K is falsified
by the assignment s. Furthermore, during the computation of K[s], new unitary
clauses can be generated. Thus, the partial assignment s is extended by adding
the already found unitary clauses, that is, s = s ∪ {u} where {u} is a unitary
clause. So, K[s] can be again reduced using the new unitary clauses. The above
iterative process is called Unit Propagation(K, s). For simplicity we abbreviate
Unit Propagation(K, s) as UP (K, s).
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Applying UP (K, s) generates a new assignment s′ that extends to s, and a
new subformula K ′ formed by the clauses from K that are not satisfied by s′.
We denote the previous formula as K ′ = UP (K, s). Notice that if s falsifies K,
then K ′ contains the null clause and s′ could have complementary literals. And
when s satisfies K, then K ′ is empty.

We present the codification of the 3-coloring of a graph as a satisfiability
problem by considering the classic polynomial reduction from 3-coloring to a
3-SAT instance.

Lemma 1. 3-Coloring is polynomial reducible to SAT(K ∧φ), K a 2-CNF, φ a
3-CNF.

Proof. Let G = (V,E) be a graph where n = |V |, m = |E|. We define the
logical variables xv,c meaning that the vertex v ∈ V has assigned the color
c ∈ {1, 2, 3}. For each vertex v ∈ V , 3 logical variables xv,1, xv,2, xv,3 are created.
Therefore, there are 3 ∗ n Boolean variables in (K ∧ φ). We define first the
constraints forming K. For every edge e = {u, v} ∈ E, u and v must be colored
differently. This restriction is modeled by 3 binary clauses, in the following way:
(xu,1 ∨xv,1)∧ (xu,2 ∨xv,2)∧ (xu,3 ∨xv,3). There are 3 ∗ |E| binary clauses of this
class.

The other class of binary constraints allows to define the restriction that
every vertex must not have more than one color. This restriction is modeled by
3 binary clauses in the following way. For each vertex v ∈ V : (xv,1 ∨ xv,2) ∧
(xv,2 ∨ xv,3) ∧ (xv,3 ∨ xv,1). There are 3 ∗ |V | binary clauses for this class. Both
sets of 3 ∗ (|V | + |E|) binary clauses form the 2-CNF K.

Notice that in this case, SAT(K) is not enough to determine a 3-coloring of
G, since although K would be satisfiable, there is not a 3-coloring deducible from
SAT(K). In order to build such 3-coloring instance, a 3-CNF φ has to be formed
by the clauses that model the restriction that every vertex must be assigned at
least one color. Then, for each vertex v ∈ V the following clause is generated:
(xv,1 ∨ xv,2 ∨ xv,3). φ has |V | 3-clauses. Furthermore, each of the 3 ∗ n variables
of v(K) has only one occurrence in φ.

This reduction can be performed in polynomial time on the size n = |V |
and m = |E(G)|, since it consists of creating 3 ∗ (n + m) binary clauses and (n)
3-clauses for φ. We also have that G has a 3-Coloring if and only if (K ∧ φ) is
satisfiable.

Given the set of contraints (K ∧ φ), any 3-SAT solver needs (until now),
an exponential time on the size |K ∪ φ| to determine a 3-coloring of G. The
non-deterministic character in the process of assigning a color to each vertex of
G is reflected in the exponential time requested to solve its respective 3-SAT
instance. However, for special graph topologies, as it is the case of outerplanar
graphs and polygonal trees, new constraints added to (K∧φ) are helpful to solve
the new incremental satisfiable instance in polynomial time.

Let us assume as an input, a connected graph G = (V,E), with n = |V |
and m = |E|. We fix a unique depth-first search on G, starting the search with
a vertex v ∈ V of minimum degree and visiting the vertex of lowest degree
whenever there are multiple possible vertices to visit. We denote this depth first
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search as dfs(G). Let G′ = dfs(G) be the new graph generated by the depth-first
search. dfs allows us to detect if G has cycles or not, and whether these cycles
are even or odd in time O(m · n).

Given G′ = dfs(G), let TG be the spanning tree of G′. Notice that V (TG) =
V (G). Let C = {C1, C2, . . . , Ck} be the set of fundamental cycles found during
the dfs(G). If G is an acyclic graph, then TG = G′ and C = ∅.

Lemma 2. If G′ = dfs(G) is acyclic or G′ is bipartite, then G′ is 2-colorable.

Proof. If G′ is acyclic or it contains only even fundamental cycles (G is bipartite),
then G′ is proper colorable with only two basic colors, because the vertices in
G′ can be colored by levels. This means that all nodes in the same level have
the same color, and the nodes of two sequential levels are colored with two
alternating colors.

Let us consider now a polygonal tree graph GP whose specification for any
3-coloring has been codified by φ0 = (K ∧ φ), a 3-CNF. We present an order
to perform the 3-coloring of the vertices of GP . This is strategic to find a valid
3-coloring. Let Fr be the set of strategic vertices to be colored first. Fr is formed
in the following way:

1. All end-points from the common edges between adjacents polygons must be
in Fr.

2. Also, the common vertices between adjacent polygons joined by one vertex
are aggregated to Fr.

3. And, the end-points that are the bridges between two adjacent polygons are
aggregated to Fr.

4. Finally, all element in Fr is sorted in such way to form maximal paths among
vertices in Fr.

Let xv,c be the logical variable that denotes that the vertex v has the color
c ∈ {1, 2, 3}. Let Three = {1, 2, 3} be the set containing the three possible colors.
To each vertex v ∈ V (GP ) a set Taboo(v) is associated. Taboo(v) indicates
the prohibited colors for the vertex v. In fact, Taboo(v) contains the variables
associated to the vertex v that has a false value, i.e. Taboo(v) = {c : (xu,c =
True), and {u, v} ∈ E(G)}. Notice that |Taboo(v)| < 2,∀v ∈ V , because when
|Taboo(v)| = 2 the clause (xv,1 ∨ xv,2 ∨ xv,3) assigns a color to the vertex v.

From Fr, new unitary clauses will be added to (K∧φ). These unitary clauses
fix a color for the vertices of GP . The elements in Fr are sorted in order to form
maximal paths. We show now the process for assigning a color to the current
element of Fr of the Fig. 1 (see Figs. 2, 3 and 4).

Fr = {{14, 13}, {12, 13}, {7, 8}, {18}, {3, 11}}
Sorting the vertices in Fr in order to form maximal paths:
13 − 18 − 12 − 13 − 14 − 11 − 3, 7 − 8
{13, 18} → (x13,1), (x18,2) → (x12,1), (x12,2), (x14,1), (x15,1) → (x12,3) →

(x11,3)
{18, 12} → ∅
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Algorithm 1. 3-coloring(TG)
Remove any vertex of degree at most two, as well as any acyclic subgraph from G
{these subgraphs can be colored at the end of the process}
while ((Fr �= ∅)and(Φ0 �= ∅)) do

Let e = push(Fr);
e = u OR e = {u, v}
if u (and v when e == {u, v}) has already been colored then

Continue {consider next element of Fr}
else

if e = {u} then
for v ∈ N(x) and a ∈ Taboo(v) − Taboo(u) do

s = {(xu,a)}
end for

else
if u has already been colored then

b = min{Tres − Taboo(v)}
end if

else
if v has already been colored then

a = min{Tres − Taboo(u)}
end if

else
if (Taboo(v) == Taboo(u)) == ∅ then

a = 1; b = 2;
end if

else
if Taboo(u) �= ∅ then

a = min{Tres − Taboo(u)}; Taboo(v) = Taboo(v) ∪ {a};
end if

else
if Taboo(v) �= ∅ then

b = min{Tres − Taboo(v)}; Taboo(u) = Taboo(u) ∪ {b}; a = min{Tres −
Taboo(u)}

end if
end if

end if
Let s = {(xu,a), (xv,b)} be an assignment that determines color to u, v
Apply Φ0 = UP (Φ0, s)

end while
Go back vertices removed in step 1;
Apply 2-coloring assigning them a different color to that of their neighbours

{12, 13} → ∅
{13, 14} → (x14,2) → (x11,2), (x15,2) → (x11,1), (x15,3) → (x3,1)
{14, 11} → ∅
{11, 3} → (x3,2)
{7, 8} → (x7,1), (x8,2) → (x6,1), (x6,2) → (x6,3), (x9,3)
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(Color figure online)

The correctness of our proposal is supported by the following Lemmas.

Lemma 3. A triangular array is 3-colorable.

Proof. Given two triangles ti, tj joined by a common edge e = {i, j}, the satisfia-
bility of the contraints: (xi,1∨xi,2∨xi,3), (xj,1∨xj,2∨xj,3), (xi,1∨xi,2), (xi,3∨xi,2),
(xi,1 ∨xi,3), (xj,1 ∨xj,2), (xj,3 ∨xj,2), (xj,1 ∨xj,3), and s = {(xi,1), (xj,2)} deter-
mines a 3-coloring.

Lemma 4. Every polygonal array where the polygons has more than 4 sides, is
3-colorable.

Proof. If we delete all 2-degree vertex from the array, then we obtain the edges
of Fr. The previous algorithm determines a 3-coloring to all vertex involved in
the set Fr. After that, the 2-degree vertices removed are come back, and they
are 3-colorable since their nighborhoods vertices have used just two colors.

Lemma 5. Every polygonal array where the polygons have an even number of
sides is 3-colorable.

Proof. The procedure is based on Lemma 2, since the subgraph formed by con-
secutive even polygons is bipartite.

Thus, for any pattern used to join polygons in a polygonal tree, our proposal
give us a polynomial time procedure for 3-coloring such polygonal tree.

5 Conclusions

We propose a novel method to model the problem of 3-coloring on polygonal tree
graphs. Our proposal is based on the specification of the logical constraints gener-
ated for a greedy 3-coloring on basic patterns: polygons and subtrees that appear
in the polygonal tree graph. It results in a polynomial time algorithm that solves
specific instances of the incremental satisfiability problem. Our method can be
extended to 3-color graphs containing more patterns subgraphs, for example,
polygons and outerplanar subgraphs.
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Abstract. In recent years, researchers have increased their interest in
deep learning for data mining and pattern recognition applications. This
is mainly due to its high processing capability and good performance
in feature selection, prediction and classification tasks. In general, deep
learning algorithms have demonstrated their great potential in handling
large scale data sets in image recognition and natural language processing
applications, which are characterized by a very large number of samples
coupled with a high dimensionality. In this work, we aim at analyzing the
performance of deep neural networks for classification of gene-expression
microarrays, in which the number of genes is of the order of thousands
while the number of samples is typically less than a hundred. The exper-
imental results show that in some of these challenging situations, the use
of deep neural networks and traditional machine learning algorithms does
not always lead to high performance results. This finding suggests that
deep learning needs a very large number of both samples and features to
achieve high performance.

Keywords: Deep learning · Gene-expression microarray
Curse of dimensionality

1 Introduction

Traditional neural networks generally consist of three layers: the first indicates
the data entries, the second is the hidden layer, and the third corresponds to the
output layer. When the architecture of the neural network has more than three
layers, it is commonly referred to as deep neural network. The most representa-
tive example of this architecture is the multi-layer perceptron with many hidden
c© Springer International Publishing AG, part of Springer Nature 2018
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layers, where each layer trains a different set of features based on the output of
the previous layer [1,2].

Deep learning algorithms have usually been applied to problems whose com-
plexity is high due to the amount of data stored, that is, there is a large number
of features and samples. They have been used extensively in various scientific
areas to tackle very different problems [3,4]. The main advantages of this type
of neural networks are three-fold: high performance, robustness to overfitting,
and high processing capability.

In this work, we analyze the performance of several deep neural networks and
other machine learning models in the classification of gene-expression microar-
rays, which are characterized by a very large number of features coupled with a
small number of samples. This could represent a challenging situation because
typical applications with deep neural networks refer to problems in which both
the dimensionality and the number of samples are high. Therefore, the purpose
of this paper is to investigate the efficiency of deep learning algorithms when
applied to data sets with those especial characteristics, thus checking whether
or not they perform as good as in those applications where they have demon-
strated to behave significantly better than state-of-the-art algorithms.

2 Related Works

Nowadays, the use of deep learning to solve a variety of real-life problems has
attracted the interest of many researchers because these algorithms allow to
obtain generally better results than traditional machine learning methods [5].
As already mentioned, deep neural networks consist of a very large number of
hidden layers, which lead to high computational cost when processing data of
large size and high dimension.

The areas in which deep neural networks have been most applied are
image recognition and natural language processing. For instance, Cho et al. [6]
employed a recurrent neural network (RNN) encoder-decoder to detect semantic
and syntactic representations of language when translating from English into
French, thus obtaining a better translation in the analyzed sentences. The anal-
ysis of information to recognize translations, dialogues, text summaries and text
produced in social networks was studied using techniques such as the convolu-
tional neural network (CNN) and the RNN [7]. Nene [8] reviewed the develop-
ments and applications of deep neural networks in natural language processing.

In image processing, the use of deep neural networks makes tasks faster and
allows to obtain better results. Dong et al. [9] proposed a CNN approach to learn
an end-to-end mapping between low- and high-resolution images, performing
better than the state-of-the-art methods. On the other hand, Wen et al. [10]
combined a new loss function with the softmax loss to jointly supervise the
learning of a CNN for robust face recognition. Gatys et al. [11] showed how the
generic feature representations learned by high-performing CNNs can be used
to independently process and manipulate the content and the style of natural
images. A deep neural network based on bag-of-words for image retrieval tasks
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was proposed by Bai et al. [12]. A novel maximum margin multimodal deep
neural network was introduced to take advantage of the multiple local descriptors
of an image [13].

Apart from image and natural language processing, deep neural networks
have also been applied to some other practical domains. For instance, Langkvist
et al. [14] reviewed the use of deep learning for time-series modeling and predic-
tion. Hinton et al. [15] presented an overview of the application of deep neural
networks to acoustic modeling in speech recognition. Noda et al. [16] utilized a
deep denoising autoencoder for acquiring noise-robust audio features and a CNN
to extract visual features from raw mouth area images. Wang and Shang [17]
employed deep belief networks to extract features from raw physiological data.
Kraus and Feuerriegel [18] studied the use of deep neural networks for predict-
ing stock market movements subsequent to the disclosure of financial materials.
Heaton et al. [19] introduced an autoencoder-based hierarchical decision model
for problems in financial prediction and classification.

The biomedical domain is another scientific area where the use of deep learn-
ing is gaining much attention in last years. For instance, Maqlin et al. [20]
proposed the application of the deep belief neural network to determine the
nuclear pleomorphism score of breast cancer tissues. Danaee [21] used a stacked
denoising autoencoder for the identification of genes critical for the diagnosis
of breast cancer. Abdel-Zaher and Eldeib [22] presented an automatic diagnosis
system for detecting breast cancer based on deep belief network unsupervised
pre-training phase followed by a supervised back-propagation neural network
phase. Hanson et al. [23] implemented deep bidirectional long short-term mem-
ory recurrent neural networks for protein intrinsic disorder prediction. Salaken
et al. [24] designed an autoencoder for the classification of pathological types of
lung cancers. Geman et al. [25] proposed the application of deep neural networks
for the analysis of large amounts of data produced by the human microbiome.
Chen et al. [26] developed an incremental RNN to discriminate between benign
and malignant breast cancers.

3 Deep Learning Methods

In this section, the deep neural networks that will be further used in the exper-
iments are briefly described.

3.1 Multilayer Perceptron

The multilayer perceptron (MLP) constitutes the most conventional neural net-
work architectures. These are commonly based on three layers: input, output,
and one hidden layer. Nevertheless, the MLPs can also be translated into deep
neural networks by incorporating more than two hidden layers in its architecture;
this allows to reduce the number of nodes per layer and use less parameters, but
in turn this leads to a more complex optimization problem [1,25].
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In deep MLP networks, each layer trains with a different set of features, which
are based on the output of the previous layer. It is possible to select features in
a first layer and the outputs of this will be used in the training of the next layer.

3.2 Recurrent Neural Network

Recurrent neural networks are a type of network for sequential data processing,
allowing to scale very long and variable length sequences [1]. In this type of
network, a neuron is connected to the neurons of the next layer, to those of the
previous layer and to it by means of the weights, values that change in each time
step.

The recurrent neural networks can adopt different forms depending on the
particular design:

– Networks that produce an output in each time step with recurring connections
between the hidden units.

– Networks that produce an output and have recurring connections only from
the output to the hidden unit of the next step.

– Networks with recurring connections between hidden units that read the com-
plete sequence of data and produce a simple output.

A design that improves the use of recurrent neural networks is based on
LSTM units, thus giving solution to the problem of the vanishing gradient that
occurs in a conventional recurrent network. This means that the gradient changes
the weights with respect to the change of the error. If the gradient is not known,
then it is not possible to adjust the weights in the direction of decreasing the
error, which causes the network to stop learning; this happens because the pro-
cessed data go through many stages of multiplication.

Figure 1 shows the structure of the recurrent neural network working with
LSTM cells, where x are the inputs, y are the outputs, and s consists of the values
that the cells take. Unlike the bidirectional recurrent neural network, which
works with both forward and backward propagation (see Fig. 2), the recurrent
neural network works only with forward propagation.

x0 x1 x2 ... xi

LSTM LSTM LSTM LSTMs0 si

y0 y1 y2 yi

Fig. 1. Recurrent neural network with LSTM

An LSTM contains information in a closed cell independent of the flow of
the neural network. This information can be stored, written or read, which helps
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to preserve the error that can be propagated back to the passage of the layers.
If the error remains constant, this allows the network to continue learning over
time. The cell of the LSTM decides when to store, write or erase by means of
gates that open and close analogically, which act by signals; this allows to adjust
the weights by decreasing the gradient or to propagate the error again [27].

The basic idea of the LSTM is very simple: some of the units are called
constant error carousels, which are used as an activation function (an identity
function) and have a connection to itself with a fixed weight of 1.0 [2].

3.3 Bidirectional Recurrent Neural Network

Bidirectional recurrent neural networks are a type of network where a recurrent
network is used with forward propagation and another with backward propaga-
tion. This type of network is used for input data sequences where it is known
its beginning and end (e.g., spoken sentences and protein structures). To know
the past and future of each sequence element, a recurrent network processes the
sequence of data from the beginning to the end, and another processes backing
up from the end to the beginning [2].

x0 x1 x2 ... xi

LSTM LSTM LSTM LSTMs0 si

LSTM’ LSTM’ LSTM’ LSTM’s′
i s′

0

y0 y1 y2 yi

Fig. 2. Bidirectional recurrent neural network with LSTM

3.4 Autoencoder

An autoencoder is a type of neural network that copies the input to the output.
It consists of an encoder that does the training task and a decoder that obtains
the same inputs as outputs. In general, it can be used for feature selection,
dimensionality reduction and classification [1].

There are different types of autoencoders, which can make different tasks
depending on the structure of them:

– Incomplete autoencoder: wait for the results of the training, from where it
takes useful features that result from restricting h less to x, where h are the
nodes of the encoder and x are the inputs.

– Regularized autoencoder: this type uses a loss function that allows to have
other properties in addition to copying the input to the output.
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– Dispersed autoencoder: a training dispersion penalty is applied; it is used to
learn functions used in classification tasks.

– Autoencoder for elimination of noise: it obtains useful characteristics minimiz-
ing the reconstruction error, this receives a damaged data set and is trained
to predict the original data set not damaged as an output.

4 Experimental Set-Up

The purpose of the experiments in this work is to compare some state-of-the-art
machine learning algorithms with deep learning for the classification of gene-
expression microarrays. To this end, a collection of publicly available microarray
cancer data sets taken from the Kent Ridge Biomedical Data Set Repository
(http://datam.i2r.a-star.edu.sg/datasets/krbd) were used (see Table 1).

Table 1. Description of the data sets. The imbalance ratio (IR), which corresponds
to the ratio of the majority class size to the minority class size is reported in the last
column

Database Features Samples Class 1 Class 2 IR

Lung-Michigan 7129 96 86 Tumor Normal 10 8.60

Lung-Ontario 12533 182 150 ADCA Mesothelioma 31 4.84

Ovarian 15154 253 162 Cancer Normal 91 1.78

DLBCL 4026 47 24 Germinal Activated 23 1.04

Colon 2000 62 22 Positive Negative 40 1.82

Prostate 12600 136 77 Tumor Normal 59 1.31

CNS 7129 60 21 Class1 Class0 39 1.86

Breast 24481 97 46 Class1 Class0 51 1.11

For the experimental design, we adopted the holdout method 10 times was
adopted, with 70% of the samples for training and 30% for testing. The tradi-
tional machine learning methods used in these experiments were the radial basis
function (RBF) neural network, the random forest (RNDF), the nearest neighbor
(1NN) rule, the C4.5 decision tree, and a support vector machine (SVM) using a
linear kernel function with the soft-margin constant C = 1.0 and a tolerance of
0.001. The deep learning models analyzed in this work were recurrent neural net-
work (RNN), bidirectional recurrent neural network (BRNN) and autoencoder
(AE). In addition, we included two versions of MLP: one with two hidden layers
(MLP2) and one with three hidden layers (MLP3). The main parameters of the
deep neural networks are listed in Table 2.

The state-of-the-art machine learning methods were applied using the default
parameters as defined in the WEKA data mining toolkit [28].

http://datam.i2r.a-star.edu.sg/datasets/krbd
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Table 2. Parameters of the deep neural networks

Method Parameters

MLP2 Sigmoidal activation function; learning rate= 0.3;
Adam optimizer; hidden layers= 2

MLP3 Rectified linear unit (ReLU) activation function;
learning rate = 0.1; Adagrad optimizer; hidden
layers = 3

RNN Hyperbolic tangent (tanh) activation function;
learning rate = 0.1; gradient descendent
optimizer; hidden layers= 1

BRNN tanh activation function; learning rate = 0.1;
gradient descendent optimizer; hidden layers= 1

AE Autoencoders = 2; hidden size = 10; weight
regularization = 0.1; sparsity proportion= 0.05;
linear decoder transfer function; cross entropy
loss function; softmax activation function; hidden
layers = 1

5 Results

Table 3 reports the accuracy results and standard deviations for each classi-
fier and each database. In addition, the Friedman’s average rankings are also
included. Bold values indicate the best model for each data set.

From the Friedman’s rankings, one can see that the best algorithms were
MLP2 and AE followed by the classical random forest, whereas the two versions
of recurrent neural networks (RNN and BRNN) performed the worst in average.
When focusing on the accuracy results on each particular database, it was found
that the autoencoder was the best method in four out of the eight problems
(Lung-Michigan, Lung-Ontario, Ovarian, and Colon), and the MLP2 model was
the best performing algorithm in two cases (Prostate and Breast).

It is worth noting that Lung-Michigan, Lung-Ontario and Ovarian, which
correspond to three of the databases where the AE method performed the best,
are the cases with the highest imbalance ratio as reported in Table 1. On the
other hand, the only problem where a state-of-the-art machine learning method
achieved the best accuracy was CNS, which is one of the databases with the
smallest number of samples and features.

To check the results of the classifiers and to determine whether or not there
exist significant differences between each pair of algorithms, the Wilcoxon’s
paired signed-rank test at a significance level of α = 0.05 was employed. This
statistic ranks the differences in performance of two algorithms for each data
set, ignoring the signs, and compares the ranks for the positive and the nega-
tive differences. In Table 4, one can see the results of this test where the symbol
“•” represents that the classifier in the column was significantly better than the
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Table 3. Accuracy results (and standard deviation) for the classifiers

MLP2 AE RNDF C4.5 1NN MLP3 RBF SVM RNN BRNN

Lung-
Michigan

0.990 0.997 0.931 0.993 0.993 0.972 0.914 0.883 0.852 0.841

(0.01) (0.01) (0.06) (0.01) (0.01) (0.04) (0.05) (0.04) (0.03) (0.05)

Lung-
Ontario

0.993 0.998 0.969 0.931 0.935 0.947 0.976 0.838 0.810 0.790

(0.01) (0.005) (0.03) (0.02) (0.02) (0.08) (0.02) (0.03) (0.16) (0.15)

Ovarian 0.970 0.987 0.949 0.952 0.941 0.632 0.859 0.775 0.543 0.564

(0.02) (0.01) (0.02) (0.02) (0.03) (0.03) (0.05) (0.08) (0.07) (0.08)

DLBCL 0.859 0.886 0.819 0.684 0.725 0.899 0.772 0.812 0.696 0.784

(0.09) (0.10) (0.10) (0.12) (0.06) (0.09) (0.14) (0.06) (0.17) (0.10)

Colon 0.821 0.832 0.779 0.790 0.753 0.779 0.737 0.668 0.616 0.537

(0.06) (0.06) (0.08) (0.05) (0.08) (0.05) (0.07) (0.07) (0.14) (0.13)

Prostate 0.885 0.871 0.849 0.837 0.763 0.744 0.622 0.529 0.603 0.591

(0.05) (0.06) (0.06) (0.05) (0.07) (0.11) (0.07) (0.05) (0.05) (0.04)

CNS 0.650 0.567 0.589 0.578 0.600 0.517 0.628 0.667 0.639 0.620

(0.07) (0.08) (0.06) (0.16) (0.08) (0.12) (0.07) (0.07) (0.03) (0.12)

Breast 0.578 0.570 0.647 0.577 0.557 0.547 0.517 0.490 0.426 0.410

(0.08) (0.11) (0.08) (0.06) (0.05) (0.09) (0.07) (0.06) (0.07) (0.07)

Average 0.843 0.838 0.816 0.793 0.783 0.755 0.753 0.708 0.648 0.642

Rank 2.250 2.625 4.187 5.062 5.437 5.687 6.000 6.875 8.250 8.625

Table 4. Wilcoxon’s paired signed-rank test (α = 0.05)

MLP3 MLP2 RNN BRNN AE RBF RNDF 1NN C4.5 SVM

MLP3 - • ◦ • • ◦ ◦ ◦ ◦ ◦
MLP2 - • • ◦ • ◦ • • •
RNN - ◦ • • • • • ◦
BRNN - • • • • • •
AE - • ◦ • ◦ •
RBF - ◦ ◦ ◦ ◦
RNDF - ◦ ◦ •
1NN - ◦ ◦
C4.5 - ◦
SVM -
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classifier in the row, whereas the symbol “◦” indicates that the classifier in the
row performed significantly better than the classifier in the column.

6 Conclusions

In this paper, we have carried out an empirical comparison between several
deep neural networks and some traditional machine learning methods for the
classification of gene-expression microarray data, which characterize by a large
number of samples and a very small number of features. While deep learning
has demonstrated to be a powerful tool in applications with a huge amount of
both samples and features, there is no study in problems that suffer from the
“curse of dimensionality” phenomenon, such as is the case of gene-expression
microarray analysis.

The experimental results have shown that the autoencoder and an MLP
with two hidden layers were the best performing deep neural networks. On the
other hand, it has also observed that there is no single method with the highest
accuracy on all databases, and even the SVM (a traditional machine learning
algorithm) was superior to the remaining models on one problem. Another inter-
esting finding is that the recurrent neural networks were the worst techniques in
average.
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of Education and Science and the Generalitat Valenciana under grants TIN2009–14205
and PROMETEO/2010/028, respectively.

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
4. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep

neural network architectures and their applications. Neurocomputing 234, 11–26
(2017)

5. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for
visual understanding: a review. Neurocomputing 187, 27–48 (2016)

6. Cho, K., Merrienboer, B.V., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR abs/1406.1078 (2014)

7. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. CoRR abs/1708.02709 (2017)

8. Nene, S.: Deep learning for natural language processing. Int. Res. J. Eng. Technol.
4, 930–933 (2017)

9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10593-2 13

https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-10593-2_13


114 A. Reyes-Nava et al.

10. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach
for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46478-7 31

11. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neu-
ral networks. In: IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, pp. 2414–2423 (2016)

12. Bai, Y., Yu, W., Xiao, T., Xu, C., Yang, K., Ma, W.Y., Zhao, T.: Bag-of-words
based deep neural network for image retrieval. In: 22nd ACM International Con-
ference on Multimedia, Orlando, FL, pp. 229–232 (2014)

13. Ren, Z., Deng, Y., Dai, Q.: Local visual feature fusion via maximum margin mul-
timodal deep neural network. Neurocomputing 175, 427–432 (2016)

14. Langkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning
and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

15. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for
acoustic modeling in speech recognition: the shared views of four research groups.
IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

16. Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G., Ogata, T.: Audio-visual
speech recognition using deep learning. Appl. Intell. 42(4), 722–737 (2015)

17. Wang, D., Shang, Y.: Modeling physiological data with deep belief networks. Int.
J. Inf. Educ. Technol. 3(5), 505–511 (2013)

18. Kraus, M., Feuerriegel, S.: Decision support from financial disclosures with deep
neural networks and transfer learning. Decis. Support Syst. 104, 38–48 (2017)

19. Heaton, J.B., Polson, N.G., Witte, J.H.: Deep learning for finance: deep portfolios.
Appl. Stochast. Models Bus. Ind. 33(1), 3–12 (2017)

20. Maqlin, P., Thamburaj, R., Mammen, J.J., Manipadam, M.T.: Automated nuclear
pleomorphism scoring in breast cancer histopathology images using deep neural
networks. In: Prasath, R., Vuppala, A.K., Kathirvalavakumar, T. (eds.) MIKE
2015. LNCS (LNAI), vol. 9468, pp. 269–276. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26832-3 26

21. Danaee, P., Reza, G., Hendrix, D.A.: A deep learning approach for cancer detec-
tion and relevant gene identification. In: Pacific Symposium on Biocomputing,
Honolulu, HI, pp. 219–229 (2016)

22. Abdel-Zaher, A.M., Eldeib, A.M.: Breast cancer classification using deep belief
networks. Expert Syst. Appl. 46, 139–144 (2016)

23. Hanson, J., Yang, Y., Paliwal, K., Zhou, Y.: Improving protein disorder prediction
by deep bidirectional long short-term memory recurrent neural networks. Bioinfor-
matics 33, 685–692 (2016)

24. Salaken, S.M., Khosravi, A., Khatami, A., Nahavandi, S., Hosen, M.A.: Lung
cancer classification using deep learned features on low population dataset. In:
IEEE 30th Canadian Conference on Electrical and Computer Engineering, Wind-
sor, Canada, pp. 1–5 (2017)

25. Geman, O., Chiuchisan, I., Covasa, M., Doloc, C., Milici, M.-R., Milici, L.-D.: Deep
learning tools for human microbiome big data. In: Balas, V.E., Jain, L.C., Balas,
M.M. (eds.) SOFA 2016. AISC, vol. 633, pp. 265–275. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-62521-8 21

26. Chen, D., Qian, G., Shi, C., Pan, Q.: Breast cancer malignancy prediction using
incremental combination of multiple recurrent neural networks. In: Liu, D., Xie, S.,
Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 43–52.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0 5

https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1007/978-3-319-26832-3_26
https://doi.org/10.1007/978-3-319-26832-3_26
https://doi.org/10.1007/978-3-319-62521-8_21
https://doi.org/10.1007/978-3-319-70096-0_5


Performance Analysis of Deep Neural Networks 115
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Abstract. This paper presents a new algorithm to find several types of
extreme points of higher dimensional lattice polytopes enclosing a given
finite set as derived from the canonical min/max lattice autoassociative
memories. The algorithm first computes the basic extreme points that
include the corners of the hyperbox containing the data together with
the translated min/max points. Then, the algorithm computes additional
extreme points such as entry or exit line points from the basic ones.
Using convex geometry and lattice algebra, we discuss the rationale of
the proposed technique with simple illustrative examples.

1 Introduction

Various concepts of convex analysis and lattice neural networks are being
employed in such diverse fields as pattern recognition, optimization theory, image
analysis, computational geometry, and general data analysis. Here, we combine
elements of convex geometry [1–4] and lattice algebra [5,6] to find other extreme
points in lattice polytopes generated from the min and max lattice autoassocia-
tive memories. Thus, our purpose is to enrich the lattice computing approach
towards new ways of solving real-world problems [7–9]. Section 2 provides basic
material on convex geometry concepts and Sect. 3 gives the mathematical back-
ground on lattice polytopes. Section 4 presents the main discussion concerning
extreme points of lattice polytopes including a new algorithm to find them.
Numerical examples are provided to illustrate our technique.

2 Convex Hulls and Extremal Points

Data sets as commonly used in computer science are finite subsets of Euclidean
spaces and, therefore, not convex sets. One strategy is to consider the small-
est convex set containing the data and extrapolating unknown values from the

G. Urcid thanks SNI-CONACYT for partial financial support, grant # 22036.

c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 116–125, 2018.
https://doi.org/10.1007/978-3-319-92198-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92198-3_12&domain=pdf


Extreme Points of Convex Polytopes Derived from LAAMs 117

data. Recall that a subset X of IRn is convex if x,y ∈ X ⇒ 〈x,y〉 ⊂ X
where 〈x,y〉 denotes the line segment joining x with y. We write Nk for the
index set of integers {1, . . . , k} and from now on X will stand for a finite real-
valued subset with k > 1 elements. Using induction, one can verify that if X
is convex and {x1, . . . ,xk} ⊂ X, then given x ∈ R

n with x =
∑k

i=1 λix
i

and
∑k

i=1 λi = 1 where λi ≥ 0 ∀i ∈ Nk, it follows that x ∈ X. Let
K = {C ⊂ IRn : C is convex and X ⊂ C}, then the convex hull of X defined
as ch(X) =

⋂
C∈K C means that ch(X) is the smallest convex set containing

X. Next, consider the two sets, X (finite) and X = {x ∈ IRn : x =
∑k

i=1 λix
i

and
∑k

i=1 λi = 1 where λi ≥ 0 ∀i ∈ Nk}. Using the corresponding definitions of
convexity it is not difficult to prove that ch(X) = X and this finitely generated
convex hull is a polytope. The notion of corner or vertex points (vertices) asso-
ciated with polytopes can be defined in terms of extreme points. A point z in
a convex set C ⊂ IRn is called an extreme point if and only if z ∈ 〈x,y〉 ⊂ C
implies that z = x or z = y. The set of extreme points of C will be denoted
by ext(C). Furthermore, ch(X) = ch(ext(ch(X))), and it is possible that there
exists a strict subset Y of X such that ch(Y ) = ch(X). However, in most appli-
cations of convex analysis, the case ext(ch(X)) 	= X rules and the determination
of extremal points of the polytope ch(X) is generally very laborious.

3 Lattice Polytopes

A lattice polytope is a polytope that is also a complete lattice. In this paper we
are interested in finding the smallest lattice polytope containing a given data set
X. The hyperbox, [v,u] = {x ∈ IRn : vi ≤ xi ≤ ui, i ∈ Nn} with v < u is the
smallest interval with the property X ⊂ [v,u]and is the simplest n-dimensional
lattice polytope with 2n vertices (corner points) since |ext([v,u])| = 2n. Given
X, the minimum and maximum (corner) points v and u, respectively, can be
computed using the formulae

v =
k∧

j=1

xj and u =
k∨

j=1

xj . (1)

The j-th coordinates of v and u will be denoted by vj and uj . The transpose
of vector x will be denoted by xt. Let S(X) be the linear minimax span of X
defined by

x =
∨

k∈K

∧

j∈J

(ajkj
+ xj), (2)

where xj ∈ X and K is a finite set of indices with kj denoting that the index
depends on the value j ∈ J . Since X ⊂ [v,u] and X ⊂ S(X), where the polytope
P(X) defined by P(X) = [v,u]∩S(X) has the property that X ⊂ ch(X) ⊂ P(X)
[6,8]. Furthermore, since both [v,u] and S(X) are convex, P(X) is also convex.
Moreover, P(X) is a polytope as well as the smallest complete lattice containing
X with universal bounds v and u.
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Hyperplanes, intersections of hyperplanes, and lines are affine subspaces of
IRn that play a vital role in describing the shape of S(X). For points x ∈ IRn,
the lines defined by, L(x) = {y ∈ IRn : y = λ + x, λ ∈ IR}, are of particular
interest in studying the geometry of S(X). The connection between L(x) and
S(X) is due to the fact if x ∈ S(X), then λ + x ∈ S(X) for any λ. Therefore,
L(x) ⊂ S(X). Another set of affine subspaces associated with S(X) consists
of specific types of hyperplanes. A hyperplane E in IRn is defined as the set of
all points x ∈ IRn satisfying the equation,

∑n
i=1 aix = b, where the ai’s and

b are constants. It follows that E is an (n − 1)-dimensional affine subspace of
IRn. Any hyperplane E separates IRn into two open half-spaces E+ and E−

whose common boundary is E which is also expressed in terms of the function
f(x) =

∑n
i=1 aix − b = 0. We follow the convention of identifying the half-

spaces E+ and E− with {x ∈ IRn : f(x) > 0} and {x ∈ IRn : f(x) < 0},
respectively. The closure of E+ is the convex set Ē+ = {x ∈ IRn : f(x) ≥ 0}.
Similarly, Ē− = {x ∈ IRn : f(x) ≤ 0}. Suppose X is a subset of IRn and E is a
hyperplane, then E is called a support hyperplane of X if and only if the following
two conditions are satisfied: (a) either X ⊂ Ē+ or X ⊂ Ē− and (b) ∃x ∈ E
such that x ∈ ∂X (boundary of X). A nonempty subset K ⊂ IRn is called a
polyhedron if it is the intersection of a finite number of closed half-spaces. Thus,
if E1, . . . , Ek are the hyperplanes of K, then K =

⋂k
i=1 Ē±

i . If K is bounded
set, then K is a polytope. If {e1, . . . ,en} is the standard basis of IRn let the
scalars ε =‖ ∑n

j=1 e
j ‖ and δij =‖ ei − ej ‖ stand for the Euclidean norm use

to define two directional vectors pertinent to our discussion, i.e., e =
∑n

j=1 e
j/ε

and dij = (ei − ej)/δij where i < j, 1 ≤ i < n, and 1 < j ≤ n. An oriented
hyperplane E with orientation d, denoted by E(d), is a hyperplane with an
associated directional unit vector d that is perpendicular to E. For a given
point y ∈ IRn, there are n(n − 1)/2 distinct hyperplanes with orientation dij

containing the point y. Since Ey (dij) = {x ∈ IRn : xi − xj = yi − yj}, each of
the hyperplanes contains the line L(y) and the equality

⋂
i<j Ey (dij) = L(y)

holds in general.
Our current focus will be on finite subsets of IRn with the property that if

X ⊂ IRn and x ∈ X, then xi ≥ 0 for i ∈ Nn. We recall that the canonical lattice
autoassociative memory matrices, W = (wij) and M = (mij) obtained from X,
as well as their corresponding W = (wj) and M = (mj) translate matrices are
defined by [5,9],

wij =
k∧

ξ=1

(xξ
i − xξ

j) and wj = uj + wj , (3)

mij =
k∨

ξ=1

(xξ
i − xξ

j) and mj = vj + mj . (4)

In (3) and (4), vectors wj and mj are just translates of the respective basis
vectors wj and mj in the direction e so that, L(wj) = L(wj) and L(mj) =
L(mj). Notice that the number of columns of W and M may be less than n
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since it is possible that wj = w� or mj = m� with j 	= �. The sets of columns
{wj} and {mj} (possible reduced) will be denoted by W and M . We end this
section with a list of various theoretical propositions relevant in the analysis of
the lattice polytope P(X) and its extreme points. Detailed proofs of the given
results can be found elsewhere [6,8].

(a) - u =
∨n

j=1 w
j and v =

∧n
j=1 m

j .
(b) - L(w�) = L(wj) ⇔ w� = wj , and L(m�) = L(mj) ⇔ m� = mj .
(c) - W ∪ M ⊂ ∂[v,u] ∩ ⋃n

i=1

[
L(wi) ∪ L(mi)

]
.

(d) - For i ∈ Nn, Ew i(ei) ∩ Em i(ei) = ∅ ⇔ vi < ui.
(e) - For i, j ∈ Nn with i 	= j, mj ∈ Ew i(ei) ⇔ mj

i = ui and wi
j = vj .

(f) - mj ∈ Ew i(ei) ⇔ 〈mj ,wi〉 ⊂ Em j (ej) ∩ Ew i(ei).
(g) - Ew j (dij) = Ew i(dij) ⇔ wj

i = p + mj
i where p = uj − vj .

(h) - S(X) =
⋂n−1

i=1

⋂n
j=i+1[Ē

+
mi(dij) ∩ Ē−

wi(dij)].

Proposition (b) plays a role in data reduction. Any two equal column vectors
are just duplicates of the same information and it makes sense to discard one of
them. It may happen that [v,u] ⊂ IRn, but dim[v,u] < n. For instance, if ui = vi

for some i ∈ Nn, then [v,u] ⊂ Ex(ei) ∀x ∈ [v,u], and the dimension of [v,u] is
reduced accordingly. Proposition (e) implies that if mj ∈ Ew i(ei), then 〈mj ,wi〉
is an edge of P(X) with wi,mj ∈ ext(P(X)) as will be seen in Figs. 2 and 3.
Proposition (g) shares some similarities with Proposition (e). A consequence of
both (e) and (g) is that if uj = vj and wj

i = mj
i , then Ew j (ej) = Em j (ej) and

Ew j (dij) = Ew i(dij). Also, since [v,u] is the intersection of half-spaces, i.e.,
[v,u] =

⋂n
i=1[Ē

+
v (ei) ∩ Ē−

u (ei)], then Ev (ei) = Em i(ei) and Eu (ei) = Ew i(ei)
with Em i(ei) ‖ Ew i(ei).

4 The Geometry of P(X)

The geometry of the lattice polytope P(X) is determined by ext(P(X)) since
ch(ext(P(X))) = P(X). It follows from the definitions of extreme point and
polytope P(X) that the elements of the set V = W ∪ M ∪ {v,u} are vertices of
P(X). More explicitly, since

L(w�) =

⎧
⎪⎨

⎪⎩

∂S(X) ∩ ⋂n
j=2 Ew1(d1j) if � = 1

∂S(X) ∩ ( ⋂�−1
i=1 Ew �(di�)

) ∩ ( ⋂n
j=�+1 Ew �(d�j)

)
if 1 < � < n

∂S(X) ∩ ⋂n−1
i=1 Ewn(din) if � = n,

(5)

then L(w�) is an edge of S(X). Furthermore w�
� = u� so that {w�} = L(w�) ∩

Eu (e�). Thus, the edge L(w�) of S(X) is being cut by Eu(e�) at the edge point
w� of S(X). A similar argument applies to {m�} = L(m�) ∩ Ev (e�) and it can
be verified that w� and m� are vertex points of P(X). Finally, since v and u
are vertices of the hyperbox [v,u] and since v,u ∈ S(X), they are also vertices
of P(X). Therefore, V ⊂ ext(P(X)) and ch(V ) ⊂ P(X).
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Example 1. Let X = {x1, . . . ,x12} ⊂ IR2 be given as the data matrix (xj) for
j ∈ N12 where point xj is the j-th column of X. Thus, from (1)

X =
(

2.5 2 2.5 4 5 4.5 4 4.5 3.5 3.5 4 2.5
3.5 2 1 2 4 5 3 3.5 2 3.5 2.5 2.5

)

⇒ v =
(

2
1

)

, u =
(

5
5

)

.

Equations (3) and (4) yield the following matrices,

W =
(

0 −1
−2 0

)

, M =
(

0 2
1 0

)

, W =
(

5 4
3 5

)

, M =
(

2 3
3 1

)

.

Fig. 1. (a) Data set X, the associated half-spaces Ē−
w1(d12), Ē+

w2(d12), and the dark

shaded set S(X) = Ē−
w1(d12)∩ Ē+

w2(d12). The base points w1,w2,m1,m2 are shown as
open circles on the x1,x2 axes. In (b), the dark shaded region represents the lattice
polytope P(X) and the extremal points in V . The dotted lines form ∂ ch(X).

Figure 1 illustrates the subset relationship X ⊂ ch(X) ⊂ P(X). If X ⊂ IR2 is
as in Example 1 then V = ext(P(X)) so that ch(V ) = P(X). The next example
answers the question as to wether or not the equality V = ext(P(X)) holds for
n > 2.

Example 2. Let X ⊂ IR3 be given as the data matrix (xj) for j ∈ N3. Then,
applying (1) to (4), we first get the minimum and maximum vectors,

X =

⎛

⎝
6 1 5
1 6 5
14 14 20

⎞

⎠ ⇒ v =

⎛

⎝
1
1
14

⎞

⎠ , u =

⎛

⎝
6
6
20

⎞

⎠ .
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The base and translate matrices W and W, respectively, M and M,

W =

⎛
⎝

0 −5 −15
−5 0 −15
8 8 0

⎞
⎠ ,W =

⎛
⎝

6 1 5
1 6 5

14 14 20

⎞
⎠ ,M =

⎛
⎝

0 5 −8
5 0 −8

15 15 0

⎞
⎠ ,M =

⎛
⎝

1 6 6
6 1 6

16 16 14

⎞
⎠ .

Fig. 2. In (a), the shaded region illustrates the polyhedron ch(V ), (b) shows [v,u] ∩
S(X). The red lines indicate the intersections of Ew 1(d13) and Ew 3(d13) with the cube
[v,u], the blue lines correspond to the intersections of Ew 1(d12) and Ew 2(d12) with
the cube, and the green lines mark the intersections of Ew 2(d23) and Ew 3(d23) with
[v,u]. Here, ext(P(X)) = V ∪ {s1, s2,p3} and P(X) �= ch(V ). (Color figure online)

Note that in set V = W ∪ M ∪ {v,u}, W = X. However, the polyhedron
P(X) shown in Fig. 2 illustrates the fact that in dimensions n > 2 the equation
V = ext(P(X)) is not true in general. Clearly, V 	= ext(P(X)) since the extreme
points s1, s2, and p3 of P(X) are not elements of V . Note that |ext(P(X))| =
11 > 8 = |V |. Furthermore, ch(ext(P(X))) = P(X). Thus, for a given data set
X ⊂ IRn, the geometry of P(X) is completely dependent on the set ext(P(X)).
It is therefore imperative to establish a procedure able to produce additional
extreme points of the lattice polytope P(X). To establish this goal we begin by
examining Fig. 2(b) as it gives an example of a 3-dimensional lattice polytope.
In constructing the polytope P(X) the three computed sets W , M , and {v,u}
make up the basic extreme points, used in deriving the additional extreme points
s1, s2, and p3. The basic extreme points are those used in finding the boundary
pieces of S(X) ∩ [v,u]. The corner point s1 of P(X) is due to the intersection
of Ew3(d13) with the line Ew2(e2) ∩ Ew3(e3). Similarly, {s2} = Ew3(d23) ∩
(Ew1(e1) ∩ Ew3(e2)), and {p3} = Em 2(d23) ∩ (Em 1(e1) ∩ Em 2(e2)). What can
also be deduced from the drawing is that s1 = w2 ∨ w3, s2 = w1 ∨ w3, and
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p3 = m1 ∧ m2, where s1 = (5, 6, 20)t, s2 = (6, 5, 20)t, and p3 = (1, 1, 16)t.
Another pertinent observation is that p3 ∈ Em 1(d13) ∩ Em 2(d23) = L(w3) and
p3 = a + w3, where a = −4 so that p3 < w3. It follows that 〈p3,w3〉 ⊂ L(w3)
is an edge of P(X) with endpoints {p3,w3} = L(w3) ∩ ∂[v,u].

More generally, suppose X is a finite n-dimensional data set. If w ∈ IRn and
L(w)∩ int[v,u] 	= ∅, then |L(w)∩∂[v,u]| = 2. Thus, if {p, q} = L(w)∩∂[v,u],
then since p, q ∈ L(w), either p < q or q < p. The lesser point is called the
entry point of L(w) and the larger point is called the exit point of the line L(w)
with respect to the hyperbox [v,u]. Assuming that L(wi)∩ int[v,u] 	= ∅, then
since {wi} = Eu (ei) ∩ L(wi) and ∀x ∈ [v,u] ∩ L(wi) with x 	= wi, x < wi, it
follows that wi is the exit point of L(wi). Henceforth we will denote the entry
point of L(wi) by pi. Similarly, if L(mj)∩ int[v,u] 	= ∅, then mj is an entry
point of L(mj) into [v,u] and its exit point is denoted by qj .

Example 3. Let X ⊂ IR3 be given by the data matrix (xj) for j ∈ N6. Again,
using (1) to (4), we have

X =

⎛

⎝
10 8 9 1 2 1
7 12 8 3 1 2
10 9 10 1 1 2

⎞

⎠ ⇒ v =

⎛

⎝
1
1
1

⎞

⎠ , u =

⎛

⎝
10
12
10

⎞

⎠ .

The corresponding base and translate matrices are given by

W =

⎛

⎝
0 −4 −1

−3 0 −3
−1 −3 0

⎞

⎠ ,W =

⎛

⎝
10 8 9
7 12 7
9 9 10

⎞

⎠ ,M =

⎛

⎝
0 3 1
4 0 3
1 3 0

⎞

⎠ ,M =

⎛

⎝
1 4 2
5 1 4
2 4 1

⎞

⎠ .

Following the rationale in Example 2 to find other extreme points not in V , we
note that since mi ∈ Em i(ei) = Ev (ei) and mj ∈ Em j (ej) = Ev (ej), it follows
that mi ∧ mj ∈ Ev (ei) ∩ Ev (ej). Thus, mi ∧ mj is always an edge point of
the hyperbox [v,u] denoted by r� = mi ∧ mj and reminding that i 	= � 	= j.
Similarly, s� = wi ∨ wj ∈ Eu (ei) ∩ Eu (ej). However, an edge point of [v,u] is
not necessarily an extremal point of P(X). That the points wi∨wj and mi∧mj

are indeed extremal points of P(X) is a consequence of the following equations:

s1 = w2 ∨ w3 =
(
Eu (e2) ∩ Eu (e3)

) ∩ Ew3(d13) (6)

s2 = w1 ∨ w3 =
(
Eu (e1) ∩ Eu (e3)

) ∩ (
Ew1(d12) ∩ Ew3(d23)

)
(7)

s3 = w1 ∨ w2 =
(
Eu (e1) ∩ Eu (e2)

) ∩ (
Ew1(d13) ∩ Ew2(d23)

)
(8)

r1 = m2 ∧ m3 =
(
Ev (e2) ∩ Ev (e3)

) ∩ Em 3(d13). (9)

r2 = m1 ∧ m3 =
(
Ev (e1) ∩ Ev (e3)

) ∩ Em 3(d23) (10)

r3 = m1 ∧ m2 =
(
Ev (e1) ∩ Ev (e2)

) ∩ Em 1(d13) (11)

We collect in set S the column vectors sj and in set R the vectors rj both for
j = 1, 2, 3. Here the resulting sets are given by,

S =

⎧
⎨

⎩

9 10 10
12 7 12
10 10 9

⎫
⎬

⎭
and R =

⎧
⎨

⎩

2 1 1
1 4 1
1 1 2

⎫
⎬

⎭
.
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Accordingly, we now have a set V ∪S∪R of 14 easily computable extreme points
of P(X). Other points in ext(P(X)) such as the entry and exit points generated
by the lines L(wi) and L(mj) must also be computed. Note that (7) and (8)
represent the intersection of two lines while equations (6) and (9) through (11)
represent the intersection of a line with a plane. Also, since

L(m2) = Ew1(d12) ∩ Ew3(d23) = Em 2(d12) ∩ Em 2(d23),
L(m3) = Ew1(d13) ∩ Ew2(d23) = Em 3(d13) ∩ Em 3(d23),

Fig. 3. The set P(X) ⊂ [v,u] and its extreme points.

it follows that s3 = a+m3 and s2 = b+m2 with a = 8 and b = 6. Since the two
points s3 and s2 are just translates of m3 and m2, they correspond to the exit
points q3 = 8+m3 and q2 = 6+m2. We also have L(m1)∩∂[v,u] = {m1,w2}
since 7+m1 = w2 so that q1 = w2 and p2 = m1. This holds whenever L(mi) =
L(wj). We now know the extreme points generated by L(mi) for i = 1, 2, 3 and
also L(w2). For the line L(w1) one tries to find the shortest distance from w1

(along L(w1)) to the set of planes Ev (ei) for i = 1, 2, 3. This can be achieved by
setting a =

∨3
i=1(vi−w1

i ) and computing a+w1. In this case one obtains a = −6
and p1 = −6 + w1 = (4, 1, 3)t; similarly, p3 = −6 + w3 = (3, 1, 4)t. This shows
that ext(P(X)) = V ∪ R ∪ {s1,p1,p3, q2, q3} so that |ext(P(X))| = 16. The
region delimited by the solid and short dashed lines in Fig. 3 is the graph of the
polyhedron P(X) together with the locations of its extreme points. The proposed
method to determine additional extremal points of P(X) is given in Algorithm 1
using mathematical pseudocode. Assuming k � n for most applications where
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n satisfies 1 < n ≤ 100, average computational complexity is n2O(log k) =
O(log k) since step S2 dominates the overall calculation effort.

Algorithm 1. [Extreme points of the lattice polytope P(X)]

S0. input X = {x1, . . . ,xk} ⊂ IRn

S1. for i ∈ Nn

let ui ← ∨k
j=1 xj

i and vi ← ∧k
j=1 xj

i

S2. for i ∈ Nn

for j ∈ Nn

let wij ← ∧k
ξ=1(x

ξ
i − xξ

j) and mij ← ∨k
ξ=1(x

ξ
i − xξ

j)
S3. for j ∈ Nn

let wj ← uj + wj and mj ← vj + mj

S4. let V ← W ∪ M ∪ {v,u} and reduce V
S5. for j ∈ Nn

let aj ← ∨n
i=1(vi − wj

i ) and bj ← ∧n
i=1(ui − mj

i )
let pj ← aj + wj and qj ← bj + mj

S6. let P ← {pj}, Q ← {qj} and U ← (P ∪ Q) \ V
S7. for i ∈ Nn

for j ∈ Nn

let rj ← ∧
i�=j m

i and sj ← ∨
i�=j w

i

S8. let R ← {rj}, S ← {sj} and T ← (R ∪ S) \ (V ∪ U)
S9. output V ∪ U ∪ T

The points pj and qj generated in S5 are the entry points and exit points of
the lines L(wj) and L(mj), respectively. The exit point of the line L(wj) is wj

while the entry point of L(mj) is mj . If n = 2, then only S0 to S4 are necessary
and V = ext(P(X)). Furthermore, if n ≥ 2, then S4 of the algorithm can result
in a maximum of 2n + 2 vectors. If n ≥ 3, S5 as well as S7 may each produce an
additional 2n distinct extremal points. Thus the maximum number of extreme
points (basic and additional) is 2(3n+1). The elements of T represent the points
where the hyperplanes Ew i(dij) or Em i(dij) cuts an edge of [v,u]. These points
could also be exit or entry points of a line L(wi) or L(mi), while the elements
of the set U obtained from S5 are all entry and/or exit points. Note that if for
some j, aj = 0 (or bj = 0), then pj = wj (or qj = mj). However, these points
will not be members of U or T since by definition of U and T we have that
V ∩ U = T ∩ V = T ∩ U = T ∩ (V ∪ U) = ∅.

5 Conclusions

We give an algorithm to find several kinds of extremal points in any n-
dimensional lattice polytope derived from the application of the min/max lattice
autoassociative memories to a finite subset X of IRn. Our rationale establishes
a theoretical advancement concerning the geometrical structure of the linear
minimax span S(X). We sum up our findings in relation to Algorithm 1: (a)
V = ext(P(X)) if n = 2, (b) V ∪ T ∪ U = ext(P(X)) if n = 3, and (c)
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V ∪ T ∪ U ⊂ ext(P(X)) if n > 3. In words, Algorithm 1 finds a large number
of extreme points of P(X) for any n but not necessarily all of them for n > 3.
However, the enlarged set of extremal points gives us the possibility of building
adequate subsets whose points are affinely independent, which are fundamental
to pursue new ways of processing multivariate data such as, for example, segmen-
tation of color images [10] or endmember extraction in hyperspectral imagery
[11,12].
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Abstract. This study aims to compare classical and Deep Neural Net-
works (DNN) algorithms for the recognition of Motor Imagery (MI)
tasks from electroencephalographic (EEG) signals. Four Artificial Neu-
ral Networks (ANNs) architectures were implemented and assessed to
classify EEG motor imagery signals: (i) Single-Layer Perceptron (SLP),
(ii) Fully connected Deep Neural Network (DNN), (iii) Deep Neural
Network with Dropout (DNN+dropout) and (iv) Convolutional Neu-
ral Network (CNN). Real EEG signals recorded in a MI-based BCI
experiment were used to evaluate the performance of the proposed algo-
rithms in the classification of three classes (relax, left MI and right MI )
using power spectral based features extracted from the EEG signals.
The results of a systematic performance evaluation revealed not sig-
nificant classification accuracies with SLP (averaged of 33.9%± 0.0%),
whereas DNN (59.7%± 16.3%), DNN+dropout (58.4%± 14.9%) and
CNN (62.1%± 15.2%) provided significant classification accuracies above
chance level. The highest performances were obtained with DNN and
CNN. This study indicates potential application of DNNs for the devel-
opment of BCI systems in daily live activities with real users.

Keywords: Brain-computer interfaces · Motor imagery
Electroencephalogram · Deep neural networks
Convolutional neural networks

1 Introduction

Recognition of motor imagery (MI) mental tasks is an essential part of
Brain-Computer Interfaces (BCI) based on non-invasive electroencephalographic
(EEG) signals. The conventional way to classify such EEG signals is to employ
classical supervised classifiers such as Linear Discriminant Analysis and Support
Vector Machines or SVM [1]. This has provided satisfactory results in laboratory
based settings. However, EEG-based BCIs require to give a step forward towards
applications in real and daily live activities, which requires to detect with higher
accuracy the MI mental tasks carried out by the user. To do so, it is necessary
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to explore novel classification models as those based on deep learning. Poten-
tially, this could improve robustness and performance. Deep Neural Networks are
a sort of machine learning algorithms that use multiples computational models
with many processing layers to achieve learning representation of data [2]. DNNs
have particularly strong power of discrimination and flexibility to represent data
through multiple levels of abstraction [3]. Recently, Deep Learning approaches
have been applied in BCI studies with satisfactory results [4]. Nevertheless, the
number of studies in BCI with these algorithms is still reduced [5].

This work evaluates the performance of four ANNs: (i) Single-Layer Percep-
tron (SLP), (ii) Fully connected Deep Neural Network (DNN), (iii) Deep Neural
Network with Dropout (DNN+dropout) and (iv) Convolutional Neural Network
(CNN) in a three-class classification scenario using power spectral (PSD) based
features extracted from the EEG signals during motor imagery mental tasks
and presents a comparison of their performance. The results showed that DNN
(59.7% ± 16.3%), DNN+dropout (58.4% ± 14.9%) and CNN (62.1% ± 15.2%)
obtained significant classification accuracies above chance level (33.60%). For
SLP results, the accuracies were below chance level. This work shows that con-
volutional Neural Network can be an effective classification model to obtain
highest confident classification accuracy in three different movements states of
upper limbs. The rest of this paper is organized as follows. Section 2 describes
details about how dataset was recorded and prepared, how attributes are calcu-
lated to extract relevant information from the EEG signals, the different ANNs
architectures used and the performance evaluation process. Section 3 describes
the results obtained for PSD analysis and the accuracies obtained to a three-class
classification scenario.

2 Dataset Recording and Preparation

2.1 Data Recording

Eight healthy subjects voluntarily participated in this study. The experiment was
conducted in accordance to the Helsinki declaration. All participants were duly
informed about the goals of the research. During the execution of the experiment,
EEG signals were recorded from 15 scalp locations according to the international
10/20 system (FC3, FC1, FCZ, FC2, FC4, C3, C1, CZ, C2, C4, CP3, CP1,
CPZ, CP2 and CP4) using a g.USBamp with active electrodes (g.tec medical
engineering GmbH, Austria). The reference and ground electrode were placed
over left earlobe and AFZ, respectively. The EEG signals were acquired at a
sampling frequency of 256 Hz and not filtering was applied.

2.2 Experiment Design

The experimental task consisted of many trials of imaging the movement of left
or right hands. This was guided by visual cues presented on the screen (see
Fig. 1a). A trial consisted of three visual cues (see Fig. 1b). The first cue was
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an image with the text “Relax” and the subjects were instructed to relax the
body without performing any voluntary movement (relax phase). The second
cue was an image with of an arrow pointing to the left or to the right and
instructed to imagine the movement of the corresponding hand during three
seconds (movement imagination phase). The last cue was an image with the
text “rest” and indicated to rest, move voluntary or blink during three seconds
(rest phase). 280 trials were recorded per participant, 140 trials for each condition
(left or right hand).

Fig. 1. (a) snapshot of the experimental setup and (b) time sequence of a trial during
the execution of experiment.

2.3 Data Preprocessing

EEG signals were low-pass filtered at a cutoff frequency of 45 Hz using a 2nd-
order Chebychev-type filter and then common average referenced (CAR). After-
wards, EEG signals were segmented in trials starting from the first visual cue
and up to the second visual cue. For this research the time interval correspond-
ing to third cue (rest phase) were not contemplated. Therefore, resulted trials
had length of six seconds. The zero time reference was aligned with starting of
second visual clue. Thus, the time intervals [−3, 0) s and [0, 3] s are rest and
motor imagery, respectively. Finally, all the conditions were organized according
to the experimental condition (relax, left MI, right MI ) to construct the dataset.

2.4 Attributes

Power Spectral Density (PSD) of the EEG signals were used as feature to dis-
criminate between three classes: Relax, left MI and right MI. The PSD is the
Fourier Transform of the autocorrelation function of a signal and estimates how
the average power is distributed as a function of frequency [6]. PSD is highly
used in BCI due to the high correlation between the MI tasks and the spectral
power changes [7]. In the case of brain activities related to MI, the spectral
power changes are found over sensory-motor cortex areas in frequencies between
[8–30] Hz, also known as α and β brain rhythms. For this reason, for each elec-
trode, it was selected the frequency range between 8 and 27 Hz at a steps of 1 Hz
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to compute the PSD. Thus, the number of the PSD features for each electrode
is 20. This yield to the dataset {Xi,yi}Ni=1, where Xi ∈ R

300×1 or Xi ∈ R
15×20,

yi were labeled as {rest, left MI, right MI } and N = 560.

2.5 Deep Neural Networks (DNNs)

In this research, 4 DNNs architectures were implemented and assessed to clas-
sify EEG motor imagery signals: (i) single layer perceptron (SLP), (ii) fully
connected deep neural network (DNN), (iii) deep neural network with dropout
(DNN+drop) and (iv) convolutional neural network (CNN). All of them were
implemented with Tensorflow Library [8] and executed in a Geforce GTX Titan
Xp GPU (Nvidia, USA).

Single Layer Perceptron (SLP). The single layer perceptron is the simplest
model of neural network and consist of a single neuron with adaptable weights
and bias. The importance of SLP lies in its ability to classify patterns there are
linearly separable. This characteristic was demonstrated by Rosenblatt [9]. The
perceptron model is described as:

yk = ϕ

⎛
⎝

p∑
j=1

wkjxj − θk

⎞
⎠ (1)

where wkj is the k synaptic weight of the neuron, x is attribute j, θk is the bias
and ϕ(·) is an activation function. For this research, SLP was implemented with
300 adjustable weights and as activation function was used soft-mask unit.

Fully Connected Deep Neural Network (DNN). DNN (also known as
Multi-layer Perceptron) consists of a three-layer architecture: (i) an input layer
that functions as an information receiver and has multiple sensory units, (ii) one
o more hidden layers that makes a non-linear transformation of the input space
into a high dimensional space and (iii) an output layer that gives the network
response through an activation function. The aim of DNNs is to solve problems
that cannot be separated linearly. This type of network is trained with the back-
propagation learning algorithm [10]. In this research was employed a DNN with
input layer of 300 nodes, 4 hidden layers, each one with 200, 100, 60, 30 nodes,
respectively. For last, soft-mask unit was used as activation function.

Deep Neural Network with Dropout (DNN+dropout). One of the main
problems in the previous DNN model is overfitting. To prevent this, it is used a
technique called dropout. This technique allows to constrain the amount of nodes
in a hidden layer without losing learning performance [11]. To identify which
nodes must removed is random (all the dropped nodes has a fixed probability
p independent of other units, where p can be chosen using a validation set or
can simply be set at 0.5). Thus, the algorithm makes a lot of iterations trying to
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find the iteration with better accuracy during a validation phase. In this work,
dropout technique was implemented for the DNN model above described with
dropout rate was 10% of nodes.

100 feature maps

1st convolu on layer 1st Max-pooling layer 2nd convolu on layer 2nd max-pooling layer Feed forward ANN 

20

15 15

20
10

8

10

8
4

5

Input layer

50 feature maps
50 feature maps 100 feature maps 2000
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100

3
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Fig. 2. Illustration of the CNN algorithm used in this work, which consisted of two
pairs of convolution and pooling layers followed by a feed forward ANN.

Convolutional Neural Network (CNN). CNN is a sort of supervised deep
learning algorithm [2,3] that have demonstrated notable results in the classifica-
tion of data with grid-like topology [12]. CNN architecture is composed of: (i) a
stack of building blocks with convolution kernels and pooling operators and (ii)
a feed forward Artificial Neural Network (ANN). Each building block extracts
relevant information from input map to its own significant feature maps. Finally,
the feature maps feed the ANN to compute each class probabilities (using soft-
mask function). The equation that describes the convolutional operation is:

S(i, j) = (I × K)(i, j) =
∑
m

∑
n

I(i + m, j + n) · K(m,n) + b (2)

A building block consists of (i) a kernel K of size m × n, which are convoluted
(slided over the input map spatially) with input map to construct output feature
map S(i, j), (ii) an activation function that applied to each convoluted output
feature map, (iii) a pooling layer that reduces the dimension of the convoluted
maps trough operations as average or maximum. In a CNN, the number of
building blocks, kernels, kernel’s size, pooling’s size and the structure of the
feed forward ANN are adjustable hyperparameters, while the weights and bias
in the kernels and in the feed forward ANN are parameters that are learned
from a training set. Learning is typically carried out by the gradient descent
method through the backpropagation algorithm [13]. The architecture of the
CNN employed in this work is illustrated in Fig. 2. It consists of two pairs of
building blocks followed by a feed forward ANN with a hidden layer. The first
block consisted of 50 kernels of size 4 × 4, the rectified linear unit as activation
function and maximum pooling with non-overlapping regions of size 2 × 2. This
resulted in 50 feature maps of size 4× 5. The second block consisted of K = 100
kernels of size 4 × 4 with the same characteristics of first convolution-pooling
block. This resulted in 100 feature maps of size 2 × 3. The feed forward ANN
consisted of 600 input neurons, one hidden layer with 100 neurons and 3 neurons
in the output layer. The activation function in the hidden layer is the sigmoid
while in the output layer is the soft-max.
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Performance Evaluation. The total data was splitted in two mutually exclu-
sive sets. The training set consisted of 80% of the data and the rest 20% of
the data as evaluation set. The classifiers are trained using the training set and
final classification is performed on the evaluation set. In training, the algorithms
were trained in 400 steps. In each step, a batch data is sampled from training
data (20% of training data) with which classification model is fed and at final of
the training steps the model for evaluation is obtained. Performance metric was
classification accuracy which was computed as:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP is the true positive rate, TN is the true negative rate, FP is the
false positive rate and FN is the false negative rate. This procedure is repeated
100 times and the distribution and mean ± std of the accuracy metric were
computed. The significant classification accuracy chance level was the computed
with the binomial distribution [14]. The significant classification accuracy chance
level is accuracychance = 33.60%. To examine significant differences between
distribution of accuracy and accuracychance the Wilcoxon signed-rank test was
applied, while to examine significant differences between three distributions of
accuracy the Wilcoxon rank-sum test was applied.
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Fig. 3. (a), (b) and (c) shows a representation of average of all PSD values obtained
participant 3 in the three studied classes: (a) corresponds to relax, (b) to left MI and
(c) to right MI.

3 Experiments and Results

Figure 3a, b and c shows PSD averaged across all trials for participant 3 in the
three studied classes: relax, left MI and right MI respectively. It is observed
that in the three classes, the PSD values changes in the range of 8–13 Hz for all
electrodes except for FCZ, C1 and C2. This frequency range corresponds of μ
brain rhythms, where decreasing of PSD values are associated with activation
of motor imagery processes [15]. To find μ rhythms differences between classes,
PSD averaged values in electrodes of different brain locations were examined. For
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Fig. 4. Distribution of classification accuracy achieved with SLP, DNN, DNN+drop
and CNN for each participant (P1 to P8)%. The horizontal dotted black line represents
the significant chance level or accuracychance.

Table 1. Summary of classification accuracy results for each participant (P1 to P7)
achieved with the SLP, DNN, DNN+drop and CNN. The lower row shows the grand-
average across-all-participants.

% Mean ± std

Participant SLP DNN DNN+drop CNN

P1 33.9± 0.0 62.5± 2.1 66.6± 2.6 61.3± 3.5

P2 33.9± 0.0 34.4± 2.8 34.3± 2.6 49.4± 3.4

P3 33.9± 0.0 65.4± 2.4 58.3± 12.4 85.1± 1.8

P4 33.9± 0.0 64.4± 4.9 59.2± 11.7 65.4± 2.7

P5 33.9± 0.0 37.7± 4.8 41.3± 4.7 35.8± 1.3

P6 33.9± 0.0 57.8± 6.1 56.0± 4.3 56.4± 3.4

P7 33.9± 0.0 80.3± 2.6 78.5± 2.4 72.0± 4.0

P8 33.9± 0.0 75.0± 1.6 72.9± 1.8 72.0± 4.0

Average 33.9± 0.0 59.7± 16.3 58.4± 14.9 62.1± 15.2

C4, CP4 and CP2 electrodes (placed above right side of brain) PSD averaged
values of left MI are smaller than relax and right MI. PSD values decreasing
in this electrodes are related to activation of motor imagery processes during a
left-side limb movement [16]. For C3, CP3, CP1 electrodes (placed above left
side of brain) PSD values are smaller in right MI class than relax and classes.
This decreasing is associated to right-side limb movement. The four proposed
architectures were evaluated in the three-class classification of relax versus left
MI versus right MI. Figure 4 shows the distributions of accuracies computed for
each participant and under every classification model. For all participants, the
median of their distributions of accuracy are higher and significantly different
than the accuracychance(p < 0.05) except to SLP classification scenarios and



A Comparison of Deep Neural Network Algorithms 133

DNN and DNN+drop scenarios for participant 2. Participants 3, 7 and 8 shows
the highest distributions of accuracy in range (70–90)% and participants 2 and
3 shows the lowest distributions of accuracy. Table 1 presents the summary of
average accuracy for all participants. Also, the mean across all participants in
each classification models are presented. Participant 3 in CNN scenario shows
the highest mean value (85.1 ± 1.8)%. In the case of SLP, all the participants
shows the lowest mean value (33.9 ± 0.0)%. For the average across all partic-
ipants, CNN shows the highest average with (62.1 ± 15.2)% followed by DNN
with (59.7 ± 16.3)%, DNN+drop (58.4 ± 14.9)% and last, SLP with (33.9± 0)%.

4 Conclusions

In this work, the performance of four Neural Networks was evaluated in a three-
class classification scenario using of EEG motor imagery signals. For that, EEG
signals were recorded during motor imagery mental task over eight healthy par-
ticipants. On the one hand, power spectral were calculated for the three classes:
relax, left MI and right MI and PSD values were used as attributes. The most
PSD differences was observed in the motor-related μ frequency band. For left
MI, the most PSD differences was observed in the electrodes around the right
motor cortex and for right MI PSD differences was observed in the electrodes
around the left motor cortex. On the other hand, for the classification and per-
formance evaluation, a three-class classification scenario was followed to asses
the classification accuracy with four different Network techniques. The results
showed that the accuracy average obtain to CNN technique provides a classi-
fication accuracy superior than the other techniques implemented. The better
results can be observed for participants 3 (85.1% ± 1.8%), 7 (72.0% ± 4.0%) and
9 (72.0% ± 4.0%). In addition, other notable result found is that DNN provides
better results than DNN+drop. A possible reason could be that the dropout
rate is high for the models. Note that Dropout rate is a adjustable hyperparam-
eter. However, these results cannot be compared against the related state of the
art due to there are several differences with others works [4,5], as experimental
setup (execution of different movements), different state of participants (with
some motor injury) and different attributes to classify (temporal features).

This work shows how the classification technique CNN allows to obtain a
confident classification accuracy in three different movements states of upper
limbs, particularly the accurate recognition for motor imagery task can be used in
BCI area to control neurorehabilitation devices. This work can be a starting point
in two ways; (i) to evaluate diverse CNN architectures that allow to improve the
MI classification (ii) to explore the classification of motor imagery task using
the CNN models in others classification contexts, such as on-line classification
scenario or experiment execution with participants with neuromotor injuries
to test the feasibility of CNN technique in a realistic neurorehabilitation BCI
system.
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Abstract. In recent years, sentence modeling using dense vector repre-
sentations has been a central concern in Natural Language Processing
research. While many efforts are essentially focused on the quality of the
embeddings in downstream classification tasks, our contribution focuses
on the understanding of new forms of computing word representations
using generative architectures based on 2D Convolutional Neural Net-
works. We treat a sentence as a n × m input image, such that it can
be processed using 2D convolutional operations. In contrast to similar
current approaches, where the input image remains untouched along the
whole learning process, our contribution proposes the use of the learned
2D convolutional filters for modifying the input arrays in order to com-
pute the corresponding word and sentence vector representations at once.
We also propose to compute word dictionaries for local contexts and a
global dictionary to fuse every word local meaning in a single representa-
tion. We call this proposed model a Word Embedding Generative Convo-
lutional Network (WEGCN). Our experiments show that our method is
capable of jointly estimating consistent word and sentence embeddings,
thus opening pathways for future research in this vein.

Keywords: Generative models · Convolutional neural networks
Word embeddings · Rhetorical status classification

1 Introduction

In the last few years, research in Natural Language Processing (NLP) has focused
on computing continuous vector representations of text, popularly known as
word embeddings [1,2]. Recently, the development of methods for computing
dense vector representations of sentences has gained momentum [3,4]. Indeed,
sentence modeling is at the core of many NLP tasks, where it is used to represent
semantic content with purposes of discrimination or generation. However, the
debate about what is the best approach for sentences modeling is primarily
driven by the application.
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We propose a method for computing vector representations of
words and sentences in order to classify sentences on the basis of
their rhetorical status. Concretely, this work introduces a Generative Convo-
lutional Neural Network (GCN) trained to jointly: (a) estimate word and sen-
tence embeddings; and (b) map such embeddings onto categorical labels, which
reflect the rhetorical status of a sentence, as proposed by a method conceived
for text summarization called “Argumentative Zoning” (AZ) [5]. We treat a sen-
tence as a n × m input image as other related works have also proposed [3],
such that it can be processed using convolutional operations. However, such and
similar applications rely mostly on the use of 1D Convolutional Neural Networks
(CNN), or the input image remains untouched along the whole learning process.
In contrast, our contribution proposes the use of the learned 2D convolutional
filters for modifying the input arrays in order to compute the corresponding
word and sentence vector representations at once, and this for each class of
rhetorical function. We also propose to compute word dictionaries, one local
dictionary for each rhetorical class and one common corpus-wide dictio-
nary that computes a single representation for all (rhetorical) meanings of each
word. We call this proposed model a Word Embedding Generative Convolutional
Network (WEGCN).

1.1 Related Work

A central class of sentence models are those related to neural networks. The para-
graph vector model [6] is an adaptation of the word2vec method [2], to address
sentence modeling and text classification by introducing a distributed sentence
indicator as part of a neural language model. Nevertheless, this approach suffers
of the inability to generalize sub-words, e.g., suffixes, but most importantly, it
requires an inference stage to compute a vector for newly unseen paragraphs,
which limits its generalization potential in classification tasks [7]. Although there
exist works that have attempted to overcome these limitations [4,8], they suffer
from the need to manually estimate skipgrams at character level [4], and require
intermediate manual computations of word embeddings plus a later aggregation
of them into a sentence representation before performing the actual classifica-
tion task [8]. Here, we avoid both replacing them by the end-to-end automatic
computation of embedding via the use of a GCN.

Recently, Recurrent Neural Networks (RNN’s) and the Long Short-Term
Memory (LSTM) have overtaken as the neural architectures best suited address-
ing sentence modeling tasks [9–11], achieving state-of-the-art results in text
classification and language translation, mainly due to its cyclic feeding process
between hidden layers specifically devised for sequential data [12]. However, only
a few attempts have been made on the computation of word embeddings [13].
Furthermore, its is unclear how to extract embeddings for single tokens (i.e.,
words) from the output of a RNN which includes sequential data [14].

The extraction of word embeddings, however, seems more natural from
Convolutional Neural Networks (CNNs) [15] that, even though exploit spa-
tial relation between individual tokens, produce outputs that can be split into
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components, i.e., matrices into vectors. In view of this, CNNs have been used for
text classification [3], translation [9], and sentence modeling [3,16], where embed-
dings are either represented via transfer learning with word2vec or neglected by
directly processing the raw text as binary information [17].

Furthermore, the inclusion of generative models into deep learning architec-
tures has successfully addressed problems like feature representation [18] and
style transfer [19]. Therefore, it seems plausible to pair a generative estimator
with a CNN for the purpose of jointly learning to classify sentences while estimat-
ing embeddings for their words. While those and similar approaches [7,20] are
essentially focused on the quality of the embeddings in downstream classification
tasks, our contribution focuses on the understanding of new forms of computing
word representations using generative architectures based on 2D CNN.

The paper is organized as follows. In Sect. 2 we frame our proposal in the
context of current CNN architectures. Section 3 describes the method proposed
herein. Section 4 introduces the two datasets used for the validation of the
method and the architecture utilized for the experiments. Experimental results
are presented and discussed in Sect. 5. Conclusions are derived in Sect. 6.

2 Background

Convolutional Neural Networks. The base architecture of CNNs for image
classification, commonly contains three types of layers: convolutional, fully con-
nected, and softmax. The former type are usually the initial 3 to 5 layers, and
they serve the purposes of down-sampling the size of the input image, while
passing it through several convolutional kernels that filter out irrelevant infor-
mation. Fully connected layers aggregate local information resulting from the
several convolutional filters into a global representation, and weight its compo-
nents to facilitate the target goal, e.g., classification. Finally, the softmax layer
computes the probability that this global vector matches a target representation
of the class corresponding to the image. Figure 1 shows the common architecture
of a CNN used for classifying into five classes.

Fig. 1. The CGN used in this work, consisting of six layers: input, one embedding
generator, two convolutional-pooling, one fully-connected, and one softmax.
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Argumentative Zoning. “Argumentative Zoning” (AZ) [5] aimed at replac-
ing manual summaries of texts by automatic, dynamic and flexible abstracts. It
generates summaries by extracting sentences relevant to the searching needs of a
user, as formulated by a query. For these purposes, rhetorical information, addi-
tional to the sentences extracted, is added manually in the form of fixed labels.
The purpose of these labels is to represent the discourse function of a sentence
or phrase, with respect to the overall rhetorical structure of the document.

3 Learning Word Embeddings for Sentences

We introduce now the proposed Word Embedding Generative Convolutional Net-
work (WEGCN). Each sentence in natural language is a sequence w1, w2, · · · , wT

of words wi ∈ V , where the vocabulary V is an arbitrarily large but finite set.
We represent word wi with a feature vector xi ∈ R

m, randomly initialized.
In our model, every sentence is represented as a matrix S, where the rows

of the matrix represent words and columns represent features for each word. As
sentences have a variable number of terms, we propose to build a matrix S as a
concatenation of feature vectors xi and padding vectors pj .

A sentence therefore would look like a vertical concatenation of X and P :

S =
[
X
P

]
,

where X is a feature vector matrix of shape [T × m], P is a padding matrix of
shape [(n − T ) × m], and m is the dimensionality of the feature space.

Therefore, matrix S is of size n × m, both being hyper-parameters of the
model. The number of rows n may be fixed for all sentences based on criteria
such as the maximum or average length of sentences in the corpus, and the size
of the feature vector m may be equal to n so a to have a squared matrix.

Hence, for a sentence of T terms, the matrix S is required to be filled with
n − T padding vectors (pj), which could contain any constant d ∈ R:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1,1 x1,2 · · · x1,m w1

x2,1 x2,2 · · · x2,m w2

...
... · · · ...

...
xT,1 xT,2 · · · xT,m wT

d d · · · d p1
...

...
...

... p2
d d · · · d pn−T

(1)

The goal of the model is to compute a mapping which represents the word
embeddings that encode the rhetorical function of sentence S. With this goal in
mind, the idea is to process S as if it was a n × m image.

In typical applications of Convolutional Neural Networks, the input image
remains untouched along the whole learning process. However, in our case, we
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aim at modifying the input array (Eq. (1)) in order to compute the corresponding
word vector representations of each sentence, and this for each class of rhetorical
function. In this way, the CNN becomes a generative network.

To this end, we need a mapping St+1 = f(St, Γ+), where Γ+ are the mask
weights updated within the back-propagation process, in order to modify the
input “image” with new feature values. These new feature vectors would then
account for the error between the predicted output and the actual rhetorical
function class as given by the AZ labels. We propose to use the convolution
operator to obtain this mapping:

St+1 = St − St ∗ ηeΓ
+, (2)

where, ηe is a learning rate hyper-parameter that controls how much the train-
ing embeddings S are updated at each batch, and ∗ represents a convolutional
operator. Note that this learning rate is additional to the standard one used to
update the parameters Γ of the network.

In some possible interpretation of this model, one could think about k-means
or Expectation Maximization (EM), where the characteristics of the data are
estimated through an iterative process.

3.1 Word Embeddings Dictionaries

A key aspect of the model is the creation of dictionaries to store word embed-
dings, which are to be updated through the training process. In a first approach
each class possesses its own dictionary. While this might seem counter-intuitive
at a first glance, it is important to bear in mind that a same word might have
different meanings in different contexts. It seems therefore reasonable to use one
dictionary per class. Even if a same word would appear in the same class in dif-
ferent contexts, we expect that the word embedding would capture the essential
information in order to make the sentence representation convey the meaning of
its corresponding class.

Nevertheless, when a new sentence (never seen before) would have to be
classified, it would be very difficult to decide from which class to assign a vector
representation for each of its words. Hence, we propose a common (corpus-wide)
dictionary. To this end, an aggregation of embeddings is computed as:

xg
i =

∑
c

λcxc
i , (3)

where, xg
i is the global embedding for the i-th word (wi), xc

i is the local embed-
ding for the same word in the c-th class, and λc is a parameter weighting the
contribution of the c-th class in this aggregation, given by:

λc =
|wi|c∑
c |wi|c , (4)

where, |wi|c denotes the cardinality of wi in class c.
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4 Experimental Setup

We designed two different scenarios to evaluate the capacity of our method
for generating word embeddings from initial random representations. Namely, a
proof-of-concept and a sentence-based scenario.

Proof-of-Concept. For this scenario we defined 5 categorical classes. For each
class, we created 250 sentences, every one containing 100 words, each of them
modeled by a vector of 100 random numbers1. All word vector representations
were initialized at random following a uniform distribution. Therefore, each sen-
tence is represented by a matrix S of shape [100 × 100] of real values.

In order to build the corpus of sentences, the following procedure was under-
taken. For every class, a dictionary of 100 word entries is built: (w1, · · · , w100).
These entries work as row indices of matrix S. The association of dictionary
entries and row indices is arbitrarily set at the beginning and remains fixed
along the experiment. For instance, the first row may be indexed by entry w1,
and thus in every sentence, entry w1 will always index row 1. However, in order
to have multiple sentences (“expressing” different things about its corresponding
class) every word entry in the dictionary has associated 10 different realizations,
that represent a sort of synonyms. Therefore, the total vocabulary was 1000
words. In this way, for every word entry one of these 10 distinct realizations is
chosen at random when building a sentence S.

It is important to bear in mind that for this scenario, sentences are meaning-
less in a natural language sense: they are but matrices of random numbers, where
each row works as a placeholder indexed by a dictionary entry, and sentences
are different insofar as placeholders are occupied by different word realizations.

Sentence-Based. This dataset is formed by 7 classes corresponding to the
rhetorical labels of AZ [5]. The sentences in this scenario were obtained from
scientific articles2, and all seven classes were balanced by randomly choosing only
200 sentences for each of them. Moreover, selected sentences contain between 7
and 50 words, with neither numerical characters nor references. Since in this
scenario matrices correspond to actual phrases in natural language, the same
word might occur several times within a sentence, and in other sentences at
different locations.

As before, a dictionary is created for each class. Every dictionary associates a
word of the vocabulary to a 100-dimensional vector of random numbers. There-
fore, a sentence in this case is represented by a matrix S of shape [50 × 100].
However, contrary to the previous scenario, some sentences might need to be
filled with padding vectors (see Eq. (1)).

The key difference between both scenarios is that, in the first one sentences
are artificially created, the rows of a sentence are indexed by dictionary entries

1 The number 100 is arbitrary. The reader must bear in mind that this number would
correspond to the size of a sentence (number of words) or of the portion of the text
to be represented.

2 www.cl.cam.ac.uk/∼sht25/AZ corpus.html.

www.cl.cam.ac.uk/~sht25/AZ_corpus.html
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and work as placeholders for different embeddings; in the second scenario, every
row is indexed by the position of the corresponding word in the natural lan-
guage sentence and is filled with the corresponding embedding to which it was
associated to in the dictionary.

4.1 Network Architecture

Our implementation of WEGCN consists of the following functional layers: one
embedding generator, two convolutional-pooling, one fully-connected, and one
softmax. Overall, this architecture contains six layers, including the input layer.

Embedding Generator Layer. The input layer in our network is a single
convolutional filter that serves two purposes: (1) during the forward pass it
maps the inputs onto an initial feature space; and (2) during the backward pass
it generates the embedded representations by updating S accordingly to Eq. (2).
Indeed, it is in this layer that the generative process for the estimation of the
embeddings is computed. The weights of this filter are learned during the training
of the WECGN. In all of our experiments we used a single filter of size 5 × 5.
This filter uses a ReLU activation function.

Convolutional-Pooling Layers. These are two layers, consisting of 16 and 32
convolutional filters of size 5 × 5, respectively. They are regular convolutional
layers that processes image sections, and yield local image descriptors. All filters
in these layers implement a ReLU activation function, and use stride = 1 and
zero-padding. They also rely on a max-pooling step to down-size their outputs in
half (i.e., masksize = 2 × 2), while retaining the most salient features.

Fully-Connected Layer. Following the standard CNN architecture, at the top
of the convolutional layers, data is processed by a fully-connected layer of 1024
ReLU units that aggregates the local image descriptors into a single vector, and
weights its components accordingly for the goal of classification.

Softmax Layer. The final layer is a standard softmax normalization operator
that computes a probability distribution of the possible classes in the dataset.
Here, classes are defined by the labels of the images or the AZ method [5].

Figure 1 shows a visual representation of this architecture. We used cross-
entropy as loss function, and the Adam optimizer for training.

5 Experimental Results and Discussion

Figure 2 shows 2-D projections of the 100-D representations for the word embed-
dings in the proof-of-concept scenario. Contrary to the chaos exhibited by the
initial random representations, once trained, the proposed WEGCN yields word
embeddings that are consistent within each class, yet with the intra-class varia-
tion required to allow each class to span sections of the feature space and thus
represent diverse concepts. This suggests that the proposed method adequately
computes word embeddings from random initializations.



142 E. Vargas-Ocampo et al.

(a) Initial random representations. (b) Final estimated embeddings.

Fig. 2. 2-D projection of the word embeddings of the five classes in the proof-of-
concept scenario. (a) Initial random representation. (b) Embeddings after training the
WEGCN. Each color represents a class. (Color figure online)

(a) One dictionary per class. (b) Unique dictionary for all classes.

Fig. 3. Classification performance (y-axis) and training epochs (x-axis) on the sentence-
based scenario, obtained using: (a) one dictionary per class; and (b) a unique dictionary
common to all classes. Blue and green curves represent the training and test perfor-
mance, respectively. (Color figure online)

Moreover, the classification of complete sentences exhibits very high perfor-
mance on this scenario, which improves from random values (i.e., 0.22 ± 0.09)
to almost perfect classification (i.e., 0.99 ± 0.01) in only 6 epochs of training.

Likewise, the evaluation on the sentence-based scenario demonstrates that
the proposed approach correctly estimates word and sentence embeddings that
are suitable for classification of sentences. Figure 3 shows the classification per-
formance obtained in this scenario using different dictionaries in each class, and
using a common single dictionary for all classes estimated as explained in Sect. 3.
As shown by Fig. 3a, the method generalizes well for the test dataset when dic-
tionaries are estimated independently for each class, as the curve on the test set
is just below the curve of the training set. However, the generalization perfor-
mance drops when using a unified dictionary for all classes, as it becomes harder
to estimate word embeddings that are simultaneously common and discrimina-
tive. Notwithstanding the apparent low generalization performance when using a
unified dictionary, this score is as three times as high than random performance
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(i.e., one on seven). Furthermore, note that only a few training epochs suffice to
reach a plateau on the classification accuracy curve.

Figure 4 shows some of the filters obtained after training. These filters resem-
ble visual patterns at different granularities, which might suggest that the
WEGCN correctly captures semantic knowledge from the training instances.

(a) Embedding. (b) Conv1. (c) Conv2.

Fig. 4. Trained filters of the WEGCN. (a) Embedding layer; (b) 12 filters from the
first conv layer; and (c) 25 filters from the second conv layer.

6 Conclusions

The method we propose in this work is a combination of CNNs and Genera-
tive Models, trained jointly to classify its input, as well as to learn to generate
word embeddings in the process. Indeed, these word embeddings are both robust
enough for classification of sentences, and consistent with semantic NLP defi-
nitions. Note that although we are not addressing the problem of generating
synthetic data samples, our method could be used to explore this vein.

Our work constitutes a proof-of-concept and continues in progress. We stress
that our aim was to explore the potential capability of CNNs for transforming
a totally random input into a meaningful dense vector and matrix representa-
tion of words and sentences at once. In these respects, the results obtained in
our experiments essentially show three things: the proposed network approach
exploits spatial relationships between words within a sentence, thus providing
structure to the embeddings; high classification rates are obtained when using
one dictionary per class, yet the challenge remains in estimating a single dic-
tionary common to the whole dataset; it seems plausible to design generative
networks capable to operate in a single pipeline, in contrast to current simi-
lar approaches such as GAN’s, which are based on parallel architectures and
trickling exemplars.
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Abstract. The inclusion of visually impaired people to daily life is a
challenging and active area of research. This work studies how to bring
information about the surroundings to people delivered as verbal descrip-
tions in Spanish using wearable devices. We use a neural network (Dense-
Cap) for both identifying objects and generating phrases about them.
DenseCap is running on a server to describe an image fed from a smart-
phone application, and its output is the text which a smartphone ver-
balizes. Our implementation achieves a mean Average Precision (mAP)
of 5.0 in object recognition and quality of captions and takes an aver-
age of 7.5 s from the moment one grabs a picture until one receives the
verbalization in Spanish.

Keywords: Computer vision · Deep learning · Image captioning
Spanish language

1 Introduction

Visual impairment makes it difficult for about 253 million people world-
wide (grossly 36 million blind and 217 million with moderate to severe
vision impairment) [31] to acquire information which potentially will facil-
itate them to navigate between places without colliding, access writ-
ten information in their surroundings, and improve their social interac-
tion. According to a report from the World Health Organization (WHO),
in the region of the Americas (represented by ten countries), 0.35% of
the population is blind and another 2.56% has low vision [30]. In the
case of México [11], 10.84% of the population report visual impairment
(nearly 13.5 million persons), including people using glasses and people with
disabilities.

In general, visual impairment is a problem that tends to affect elderly, rural,
ill and poor people. Creating equal conditions for everybody is a multidimen-
sional problem where limited monetary resources, safety standards, and even
aesthetic appearances collide to derive in what is accepted to be the best solu-
tion. In some contexts, guiding dogs, white canes, Braille signs, and sighted peo-
ple contribute to providing visually impaired people with the support they need.
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 145–154, 2018.
https://doi.org/10.1007/978-3-319-92198-3_15
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In some others, researchers have explored the creation of technology to assist
in way-finding, obstacle avoidance, object recognition and description of scenes.
The reliable and efficient recognition of objects can help to visually impaired
people to access by themselves unfamiliar environments and avoid risks [20,27].
In this document, we introduce a smartphone application which provides a verbal
description of the scene in Spanish.

Fig. 1. System Architecture. Dense captioning of a scene in Spanish. A walking
person obtains images using a smartphone equipped with a camera. In our design,
the smartphone sends the images via a wi-fi connection to a server running a dense
captioning system. The visual interpretation is sent back to the smartphone for it to
verbalize it using Text-to-Speech (TTS) technology.

Assistive technology for visually impaired people tends to be bulky, makes the
user seem weird, and it is difficult to use. Our approach aims to develop an easy to
use, friendly-designed, and lightweight interface, making use of recent advances
in voice recognition, speech synthesis, and wearable cameras (See Fig. 1). We
use a smartphone to capture images of the surroundings via tapping commands.
Afterward, the image is sent to a server for its analysis. The server returns to the
smartphone a description of the scene as text, which is verbalized to the user.

Our contributions include: (i) a training dataset in Spanish for a dense cap-
tioning system, (ii) an application pipeline for the mobile use of a captioning
system and (iii) insights obtained from experimental results of the usage of the
application by users.

The visual description of a scene is a complex and challenging problem. Dif-
ferent people can describe the same image with different words, phrases, and
stories [14,28]. Phrasing Eco [4], an image is a text from which we can say
almost anything. In what follows, we describe in detail our system. Section 2
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reviews the related literature. Then, in Sect. 3, we present a mobile image cap-
tioning system to verbally describe visual scenes in Spanish. Next, in Sect. 4, we
show some experimental results we obtain when testing the system with normal
sight users. Finally, we summarize our work, present our conclusion, and describe
some lines for future research.

2 Related Work

In this section, we review topics related to the main components of our system,
including image captioning, languages used for captioning, and scene description.

Image Captioning. Image captioning is the problem of assigning a caption
to describe the content of an image. Yao et al. [32] generated captions for video
using manual features operating over formal languages. Because of its lack of
expressiveness, other efforts focused on reliable mechanisms, like object detec-
tion, and the use of templates of captions [7,22], or graphs to represent inference
or syntactic analysis [17]. More recent approaches use a scheme encoder-decoder
that encodes an image using a Convolutional Neural Network (CNN) and trans-
forms the representation in a caption using a Recurrent Neural Network (RNN).
While some authors consider as input to the RNN the features extracted just
before the classification layer of the CNN [12,15,28], others take the features
of the CNN and convert them to a hidden state of the RNN [23]. In the RNN,
the next word is predicted using the previous words and the features of the
CNN. A special case of Image Captioning is the concept of Dense Captioning by
Johnson et al. [12], generating a phrase for each object that is recognized. This
work relates the learning of visual features with the phrases associated with each
object. With that, we have an object recognizer and a text associated [12,19,28]
that requires some post-processing to generate plausible sentences. However, as
it is the case for different people describing an image, the generation of descrip-
tive text from a set of phrases may not be sufficient to explain an image properly
[14].

Languages for Captioning. Jonhson et al. [12] constructed the first dense
captioning system, and they did it in English. The main difficulty to extend it
to other languages seems to be the considerable amount of work needed to asso-
ciate reliable descriptions with objects in images. Some approaches to solving
this problem include the use of machine translation from the English captions
[9,10,18], the incremental semantical mapping of the labels from a base con-
structed manually and its expansion regarding context [29], and the generation
of captions from scratch with crowd-sourcing [24,33]. Researchers face some
difficulties including the asymmetry in the syntax of the languages and their
different expressiveness, and the reduced number of images with captions or
the reduced number of captions per image in datasets such as MS-COCO, and
Flicker. Currently, we have been able to locate captioning systems in English
[12,14,15,23,28], Japanese [24,33] Chinese [18,29], German [9,10] and French [9].
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Scene Description. The human perception of a scene is highly structured,
and its description has the same decomposition process. In the past, researchers
approached the object recognition problem using handcrafted features, graphs
of objects and attributes. Deep learning brought new techniques for image clas-
sification where each pixel is semantically segmented [5,8,21] and also the image
captioning. This new line of research integrates vision, knowledge and natural
language. However, the lack of common sense knowledge makes difficult to obtain
a proper level of precision in the problem. Because one could extract knowledge
from general texts, the major issues are now at the intersection of computer
vision and natural language processing [1,13]. A long-term goal is to see as
humans do, which implies the immediate comprehension of the scene meaning,
including its global structure.

3 Automatic Description of Scenes

Johnson et al. [12] showed the feasibility to describe visual scenarios using dense
captioning. We aim to develop a Spanish version of it for visually impaired peo-
ple. The major issues we address include the creation of an appropriate descrip-
tion of the scenes in Spanish and the development of an application for a wearable
device.

3.1 Dense Captioning in Spanish

The core of the system is its ability to recognize objects in the surroundings
and to generate descriptions about them. We use DenseCap as our core dense
captioning engine and make it operate on the Spanish translation of Visual
Genome.

Fig. 2. DenseCap scheme architecture. With four principal components: A partial
CNN generating convolutional features, a localization layer identifying and evaluating
proposed regions, a recognition network classifying objects and a network of LSTM
cells generating the phrases associated with each proposed region. Based on an image
from [12].
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On one hand, DenseCap [12] is a neural network architecture that gener-
ates phrases for objects in an image. Figure 2 shows a scheme of DenseCap. Its
architecture includes a CNN for detection of objects and a RNN for their text
description. The CNN includes a section for localization followed by a section for
recognition. DenseCap takes as input images of 720× 720 pixels (larger images
are scaled down). The core of the recognition in DenseCap is VGG-16 [26], which
is capable of recognizing 1,000 object categories (corresponding to the ImageNet
challenge). On the other hand, Visual Genome [16] is an image database with
annotations that associates each phrase with a Region of Interest (ROI). On
average, an image has 50 ROIs, and there is one phrase for each ROI. We used
the version of June 2016 with 108,077 images and 5,408,689 ROIs and asso-
ciated phrases. We translate each phrase of Visual Genome into Spanish. For
the translation, we used tools like Google Translate (a free web service) and
aspell [2] (a GNU/Linux desktop dictionary). Even then, the data may still have
mistranslated and misspelled words. Therefore, we apply the program aspell to
detect these words and in subsequent cycles to detect phrases not in Spanish.
We did not translate some terms, e.g., proper names, established brands, origin
denominations or iconic sites. Nonetheless, a variety of expressions from Google
Translate appears like regionalisms of several Latin-American countries, so we
changed those phrases to Mexican Spanish. The dataset is available at https://
github.com/agomezgaray/spanish captions.

3.2 System Architecture

Using our system, a person can query for verbal descriptions using pictures
of their surroundings taken with the smartphone’s camera. We developed an
Android application to establish a dialogue-like process with the server. We
require this distributed architecture in order to take advantage of the full com-
putational power of the GPU on the server and thus to guarantee a near real-time
response for the user.

Server Application. The application running on the server receives as input
an image from the smartphone’s camera, stores it and processes it using the
DenseCap architecture to generate the scene description in Spanish which it
sends back to the smartphone.

We use some directions of the RESTful web services, for stateless operations.
The pipeline for the server includes the following steps. The image is sent in a
compressed format using the HTTP POST protocol. Upon reception, the server
assigns it a 16 digits URI, copies the image to disk and outputs the URI to the
output folder. In case of success, the server generates an empty JSON file in the
URI and sends to the smartphone a 302 HTTP code of redirection. The Android
application downloads the empty JSON file and waits until the file changes as
the server can take time to resolve the previous requests. Also, the JSON file is
parsed to eliminate repeated phrases. Finally, the server returns the JSON file
in the URI for verbalization in the smartphone.

https://github.com/agomezgaray/spanish_captions
https://github.com/agomezgaray/spanish_captions
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System’s Interface. We use an Android application for the communication
with the server. Once the server makes available the file containing the text
description, the smartphone downloads it, and verbalizes the phrases employing
Text-To-Speech (TTS). The application has the following pipeline. It starts by
tapping the smartphone’s touchscreen (one touch verbalizes the message, two
touches grab a picture). The picture is stored in the user space in the smartphone
and then sent to the server. Upon processing it, the server returns a JSON file
with a list with a maximum of 30 phrases sorted according to their relevance. The
verbalization can take up to a minute, depending on its length. The application
includes Network Connection (3G or Wi-Fi), Camera, Store File, and Talkback.
We program this application for Android version 2.1 or later.

System Performance . To evaluate our system, we use a combination of
Meteor, the Intersection over Union (IoU) and the mean Average Precision
(mAP) to assess the relevance of the phrases regarding the objects identified
in the ROI. Researchers designed the Meteor metric to assessing the automatic
translation of texts, evaluating how similar are translations made by two enti-
ties, according to weights established by expert translators [3]. The IoU metric
assesses to what extent a region covers another [6]. It is calculated as the ratio
of the intersection area of two regions divided by their union. Meteor and IoU
metrics are expressed in the interval between zero and one, inclusive. The mAP
metric is used to assess the occurrence of objects in an image related to some
thresholds. To consider the contribution of a phrase and a ROI, we had to modify
the original metric [6]. To define precision, we consider a positive when the IoU
and the Meteor metrics are both above a certain threshold. With the true and
false positives, we calculated the precision for each ROI. Then, we compute the
maximum precision for each combination of IoU and Meteor thresholds. Finally,
we estimate the mAP by averaging over all the maximum precisions.

4 Experiment

We used an Exxact workstation with 128 GB RAM, 12 cores and 4 Titan X GPUs
with CUDA 7.5 for training the neural network and a GNU/Linux Ubuntu server
with 32 GB RAM, eight cores and a Tesla K40 GPU with CUDA 7.5 for dense
captioning. For the Android application, we used an LG G3 smartphone with a
camera of 2048× 1536 pixels.

4.1 Training

We develop an Extract, Transform, Load (ETL) process [25] on the Visual
Genome data, eliminating UTF-8 characters with no use in Spanish. For train-
ing, we used 108,077 images, from which we extract 5.4 million ROIs and its 5.4
million associated phrases. We have created two files: a HDF5 file with images,
ROIs, and phrases and a JSON file with a dictionary of words (and their relation
to numbers). Also, we modify the programs to make it possible to include the ñ
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character. The final HDF5 file weights 128 GB and the JSON file 4.5 MB with
15,027 different words.

To train the network architecture, we use the Torch framework, version 7.
Some parameters in the process include the minimum number of instances for
the inclusion of a word (ten, below this number the words are substituted with
the <UNK> word); a maximum generated phrase length (15); and the maximum
number of generated phrases (299). We split the data into sets of 77,398 images
for training, 5,000 for validation and 5,000 for testing (26,679 images are not
used because they are considered as not representative of object distribution).
The learning rate starts at 0.0001 and drops uniformly until 0.000001 during the
5 million iterations (corresponding to 64.6 epochs) of the training process. To
compute the mAP, we considered five thresholds for the IoU (from 0.3 to 0.7
with increments of 0.1) and six thresholds for the Meteor (from −1 to 0.25 with
increments of 0.25) and iterated over each pair of values. At the end, we obtain a
mAP of 5.0 (versus a mAP of 5.7 for DenseCap [12])) and a loss of 19.25. During
training, the processing of each epoch takes about 15 h. Meanwhile the Meteor
evaluation over the validation set takes about 3 h.

Fig. 3. Visual Captioning in Spanish. The dense captioning web server generates
dozens of captions in each image, but in the figure, we show only the first five captions
and their bounding boxes. Figure best seen in color. (Color figure online)
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4.2 Performance Evaluation

We provided this system to a person with normal sight who took pictures while
walking the streets of the city of Querétaro’s downtown and the installations of
our university. The 317 pictures included 219 outdoors and 98 indoors, taken at
different times of the day, and under different illumination conditions. Figure 3
shows three examples of these test images with only the first five captions.

Using 103 images out of these 317 pictures, we found that the neural network
uses an average of 0.96 s for the description of an image. Then, we evaluated the
response time of the smartphone application. For that, we use 32 pictures out
of the 103 images. For an LG G3 smartphone quad-core 2.5 GHz, 2 GB internal
memory, the performance is about 7.5 s, split into taking the picture (1.6 s),
sending it to the server (2.4 s), downloading the description (2.5 s) and starting
its verbalization (1.1 s).

For the 103 images, the system generated captions which contained 8,693
phrases and 47,061 words (838 of them unique). Furthermore, the captions
included 44 words corresponding to the <UNK> symbol, 26 mistranslated
English words, 23,296 stop words, and the others representing adjectives,
attributes, and objects.

From a qualitative point of view, the system described some images of parked
cars correctly, but the colonial architecture in the streets and the objects and
colors in the phrases it generates are not precise.

Conclusion

In this work, we introduced a system to generate and verbalize descriptions
of an image in Spanish. Our system provides a description based on a set of
almost 5.5 million phrases. The user interface is intuitive and user-friendly. Initial
tests showed its usability and potential to provide support to visually impaired
persons in order to improve their quality of life and reduce their dependence on
caretakers. Still, object recognition may need to improve and latency times may
need to be reduced.

In future work, we will focus our research on constructing context-aware
methods, which may take advantage of the previously acquired information to
provide more pertinent support to the visually impaired person. We are in the
process to enhance our interface with the use of smart glasses activated by
voice. We are convinced that they should provide a much better experience
than the smartphone for visually impaired people since they basically resemble
the appearance of the normal accessories.
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Abstract. The analysis of natural images has been the topic of research
in uncountable articles in computer vision and pattern recognition (e.g.,
natural images has been used as benchmarks for object recognition and
image retrieval). However, despite the research progress in such field,
there is a gap in the analysis of certain type of natural images, for
instance, those in the context of animal behavior. In fact, biologists per-
form the analysis of natural images manually without the aid of tech-
niques that were supposedly developed for this purpose. In this context,
this paper presents a study on automated methods for the analysis of
natural images of hummingbirds with the goal to assist biologists in
the study of animal behavior. The automated analysis of hummingbird
behavior is challenging mainly because of (1) the speed at which these
birds move and interact; (2) the unpredictability of their trajectories;
and (3) its camouflage skills. We report a comparative study of two deep
learning approaches for the detection of hummingbirds in their nest. Two
variants of transfer learning from convolutional neural networks (CNNs)
are evaluated in real imagery for hummingbird behavior analysis. Trans-
fer learning is adopted because not enough images are available for train-
ing a CNN from scratch, besides, transfer learning is less time consuming.
Experimental results are encouraging, as acceptable classification perfor-
mance is achieved with CNN-based features. Interestingly, a pretrained
CNN without fine tunning and a standard classifier performed better in
the considered data set.

Keywords: Image classification · Convolutional neural network
Transfer learning · Animal behavior analysis · Hummingbird detection
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1 Introduction

The analysis of natural images, and more specifically, of images depicting ani-
mals, has served as motivation and justification for many landmark papers in
computer vision and pattern recognition, see e.g. [1–6], contributing to the
development and establishment of fields such as image categorization, image
retrieval and even object recognition. For instance, reference benchmarks depict-
ing animals include: ImageNet [7]1, Caltech-1012, VOC3, Mammal animals [8],
SAIAPRTC12 [9], among others. However, it is remarkable that related fields
needing this sort of methods have not been benefited that much from this
progress. This is the case of animal behavior analysis, in which biologist must be
carefully trained and later manually analyze large amounts of images and videos
in order to draw conclusions about the behavioral patterns of living organisms.

Among birds, the nesting behavior is complicated to analyze. Specially hum-
mingbirds are difficult to analyze during nesting period because of their high
speed movements, cryptic colors, and the trouble of accessing to the places
where they build their nests. The aim of this paper is to develop tools that
facilitate the analysis of hummingbirds nesting behavior. Specifically, the study
focuses on methods for detecting the presence of hummingbirds in nests recorded
in videos. Knowing the time spent in nests is important for studying maternal
care and investment, and making accurate descriptions about breeding strategies
and the relationship between mother and offspring. Additionally, this is the first
time that image analysis methods are applied for the analysis of hummingbirds
behavior.

The problem of detecting objects in images has been studied since the begin-
ning of computer vision. Thanks to the achievements in this field, and those
in related fields like machine learning, nowadays there are available methods
that show outstanding performance in a number of tasks focusing on image and
video analysis (e.g., face verification [10]). In recent years, these methods are
converging to a single modeling methodology: deep learning [11]. Convolutional
neural networks have rapidly established as reference methods in the analysis of
spatio-temporal data. However, the success of this model depends on a number
of aspects, most importantly the amount of data available for training the mod-
els: large amounts of labeled data are required for learning the huge number of
parameters (commonly on the order of hundreds of millions).

For the problem approached in this paper, labeled data is scarce and difficult
to obtain. In this scenario, transfer learning is a strategy that aims at alleviating
the scarcity of data. Transfer learning aims to tailor models learned for related
tasks to solve the problem at hand. In this regard, several variants have been
proposed. In this paper, two transfer learning strategies are adopted for learn-
ing representations directly from raw pixels. We perform a comparative study
between both methods using real imagery collected by biologists. Experimental

1 http://www.image-net.org/.
2 http://www.vision.caltech.edu/Image Datasets/Caltech101/.
3 http://host.robots.ox.ac.uk/pascal/VOC/.

http://www.image-net.org/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://host.robots.ox.ac.uk/pascal/VOC/
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results reveal that a straightforward pretraining formulation, results in a better
performance when compared to another popular and more promising strategy.

The contributions of this paper can be summarized as follows:

– A comparative study between two transfer learning methodologies for image
classification of natural images.

– The application of the considered methodologies for the detection of hum-
mingbirds in videos with the goal of supporting animal behavior research,
where one of the evaluated methods obtained acceptable performance in a
real data set.

– Experimental results evidencing the usefulness of deep learning methods for
approaching real problems in animal behavior analysis.

The remainder of this paper is organized as follows. In the next section we
present background information on the application domain and on convolutional
neural networks. In Sect. 3 we describe in detail the methodology followed in the
development of our research. In Sect. 4 we present the performed experiments
and the results we obtained. Finally, in Sect. 5 the conclusions and future work
are presented.

2 Background and Related Work

In this section, we provide some background information about the analysis of
hummingbird behavior and about convolutional neural networks and transfer
learning.

2.1 Hummingbird Behavior Analysis

The hummingbirds (Aves: Trochilidae) are endemic to the American continent,
there are 330 different species. Their distribution range is wide from sea level
to 4500 m above sea level. These small birds, just weight from 2 to 22 grams,
are responsible of pollinating more than 1300 different plants [12], they are the
only birds that can fly sideways and backwards, flapping up to 60 wingbeats per
second, this is the reason why they have the highest in-flight metabolism of any
bird species. They eat principally nectar but, during breeding season, they also
eat arthropods and small insects [13,14]. Males are polygynous, therefore, after
mating they usually search for other females to mate [15]. The females build
small nests in hidden places and care the nestlings until they fledge [16].

Although reproduction is a very important period for hummingbird survival,
little is known about it [13,17–22]. Generating information about breeding sites
preferences, reproductive success and maternal investment for incubation and
fledged is important for describing the natural history of these animals and
promote their conservation. However, studying this period is quite complicated
because it is difficult to find the nest, to get visual access and avoid to be
detected by the bird, additionally it implies very long observation periods. Such
difficulties could be overcome using breakthrough technology for visual analysis.
This paper presents a study in such direction.
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2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special type of artificial neural
network that are characterized, among other things, by applying convolutional
operations. Unlike standard neural networks, CNNs retrieve input data in the
form of a n-dimensional tensor (typically 2-dimensional) to which a set of convo-
lutional operators is applied, also called kernels. Each kernel operates throughout
the whole tensor and generates as a result a smaller tensor called feature map.
For instance in Fig. 1, six different kernels are applied to the input matrix which
generate six feature maps which are sub-sampled to create even smaller feature
maps. Each set of kernels that share the same input data constitute a convo-
lutional layer, and each step where tensors are sub-sampled is called a pooling
layer.

In addition to the convolutional and pooling layers, usually one might incor-
porate to a CNN non-linear activation functions in order to transform the feature
maps, e.g. the ReLU function [23]. Similarly, it is a common practice to attach
at the end of a CNN a fully connected neural network to represent the network’s
output in the form of a vector of real values, such as softmax [24]. The output
is a vector constituted by n elements, each of them represents the probability
that the input belongs to the ith class.

Fig. 1. General architecture of a CNN constituted by convolution, sampling and fully
connected layers.

As previously mentioned, the performance of CNNs depends on the availabil-
ity of a large enough data set from which CNNs’ parameters can be adjusted.
However, in many scenarios, including ours, labeled data is scarce and difficult
to obtain. Hence, additional tricks or procedures must be performed to make
CNNs work. In this context, a methodology that has been increasingly applied
along with convolutional models is transfer learning, which was already being
developed before CNN became a trend, for example, see [25–28]. In broad terms,
transfer learning aims at approaching a target task A, by using as basis a model
learned for task B that is often adjusted/modified to solve A. In the context of
CNNs, transfer learning is a very popular solution for effectively using CNNs in
tasks for which not enough labeled data is available.
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3 Transfer Learning in CNNs for Detection of
Hummingbirds in Images

In our study, labeled data is scarce: there are not enough labeled images depict-
ing hummingbirds in nests, hence training a CNN from scratch is not an option.
This particularity of the problem and the proved success of transfer learning in
the context of CNNs inspired us for relying on transfer learning mechanisms for
detecting hummingbirds in images with CNNs. In the remainder of this section
we present fundamentals of CNNs, as well as on the two transfer learning meth-
ods compared in this paper: feature extraction with a pretrained CNN and fine
tuning. Afterwards, we described the methodology followed in this research for
the specific task we considered.

3.1 Transfer Learning Strategies

As previously mentioned, according to [27], transfer learning attempts to improve
the learning of an objective function fA that operates over a domain DA, by using
knowledge of another domain DB , where DA �= DB . What and how to transfer
knowledge between different domains are the main research questions in its field,
however, in the case of CNNs there are two transfer learning methods that have
reported good results on image recognition tasks [29], features extraction along
with a classifier and fine-tuning. Both strategies are considered in our study and
described below.

Features Extraction from a Pretrained CNN
Usually, a CNN is constituted by several convolutional layers and their respec-

tive pooling layers, and at its end a fully connected neural network (see Fig. 1).
This transfer learning approach uses the representation that a CNN, previously
trained with millions of examples, generates for the instances retrieved in the
input layer. The main idea behind this approach is to interpret the representa-
tions generated by the CNN as feature vectors, and use them to train a classifier,
e.g. in [30] they show how effective this method can be. In Fig. 2 one may observe
how the blue square encloses the CNN’s layer from which the generated repre-
sentation is taken and used for the classifier’s training.

Fine-Tuning
We have previously mentioned the outstanding ability CNNs have in terms of

large scale image classification. However, there are some tasks that do not require
the recognition of a large amount of classes as in the ILSVRC challenge [6], and
instead, few classes and a few number of training images are available. For this
kind of smaller problems, the fine-tuning method is a good alternative. Fine-
tuning is a form of transfer learning consisting of using a sub-set of parameters
from a CNN that has already been trained over a general dataset, and compute
the rest of the parameters by means of back propagation, training on a more
specialized dataset, thus, the network will adjust itself to perform efficiently over
the specialized task for which it was trained. The main advantage of using fine-
tuning is that, unlike training a CNN from scratch, the training time decreases
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Fig. 2. The two transfer learning methods applied with CNNs: features extraction
(blue) and fine-tuning (red). Figure from [31]. (Color figure online)

significantly and enables the usage of CNNs on problems with small datasets.
In Fig. 2, the red square represents the section of layers that is re-trained using
fine-tuning.

3.2 Detecting Hummingbirds with Transfered Learning from CNNs

The main goal of this paper is to determine the effectiveness of feature extraction
and fine-tuning approaches along with an CNN, when applied to the task of
detecting the presence of a hummingbird in an image. Our main motivation is to
provide support tools for biologists that must manually analyze large amounts
of videos. Implicitly, our aim is two-fold, (i) to prove the effectiveness of modern
image classification algorithms in a real-world challenging domain and (ii) to
verify whether either of the two transfer learning methods is significantly more
effective than the other one on this specific problem. In the following we describe
the considered data set and the adopted evaluation framework.

Data Collection and Division: The data set used in the development of our
research was captured as follows. The videos were recorded in several places
in Ecuador and Arizona, USA. The species recorded were Aglaiocercus coelestis,
Doryfera johannae, Heliangelus strophianus, Selaspherus platycercus and Topaza
pyra. First, the nest was located and then, videos were manually recorded with
a camera for 45 min on average, making several recordings per day in the same
nest.

The original data set is made up of 18 videos, this set was separated into
5 subsets, each formed by videos obtained from the same scene. One of these
subsets was discarded due to its poor resolution and a lack of certainty when we
manually attempted to label it. Figure 3 shows positive (hummingbird in nest)
and negative (hummingbird not in nest) frames extracted form the four subsets
retained; whereas Fig. 4 shows frames from the removed subset (for this subset
it was not possible to determine the presence of the hummingbird for manual
annotators).

From each subset of videos we extracted a set of frames using a sample rate
that allowed us to gather at least 1000 positive and 1000 negative examples (that
later were manually labeled), from which a frame centered on the hummingbird’s
nest was extracted and these frames were resized to 299 × 299 pixels. Finally,
in order to label the adjusted frames, we applied to each of them the following
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Fig. 3. The images in the upper row belong to the positive class and the ones in the
lower row belong to the negative class. The columns, from left to right, correspond to
the subsets A, B, C and D.

Fig. 4. Frames from the subset of videos that were omitted due to their poor resolution.

criterion: there were only two possible classes to be assigned, positive and neg-
ative classes. For a frame to be labeled as positive, a hummingbird should be
in its nest. Otherwise, in order to label a frame as negative, no hummingbird
nor any partial view of it should be captured within the image. As result, each
set of frames was downsized due to those frames which did not satisfy any of
the conditions previously described. To evaluate the classification performance
of the models, the F1-Score was chosen.

Experimental Design: Being the main objective of this research to compare
the performance of the features extraction method along with a classifier, and
the fine-tuning method in the classification of images containing a hummingbird,
we used TensorFlow’s [32] implementation of the Inception V3 CNN [33]. For
the feature extraction approach, we opted for a SVM classifier and performed
preliminary tests with several kernels, at the end we selected the linear kernel
which was the one that reported the best results. On the other hand, with the
fine-tuning approach, preliminary tests were carried out with different configura-
tions in learning rate values and number of epochs to determine the appropriate
parameters, the learning rate that reported better results was 0.01 and this was
established as constant for the rest of the tests, while the optimal number of
epochs ranged from 200 to 3000.
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4 Experiments and Results

To compare both transfer learning methods, 14 tests have been defined, each
one consisting of a combination of the four subsets of data, which we called A,
B, C and D. In this way, the training and testing sets are not only disjoint, but
also they come from different scenes making it more challenging. Each test is
configured by the subsets used for training and those designated for evaluating
the trained model, i.e. the test subsets. The number of training samples in every
test was defined as 300, where of them 150 were positive and 150 of them were
negative instances, randomly selected. Regarding the test samples, 1000 positive
and 1000 negative samples were randomly selected for each test subset. Positive
and negative examples of each of the subsets of images can be seen in Fig. 3.
One of the main reasons of why we decided to gather only 1000 examples from
each class is that in consecutive frames, even after sampling, the images have
little noticeable differences, at least for the human eye.

The number of training samples for our models was determined experimen-
tally after several preliminary tests, where the number of training samples was
varied in each test. We observed that, with both approaches, for a number of
examples greater than 400 the precision was high but with a low recall, and for
less than 200 they had high recall but a very poor precision.

Table 1 shows the F1-Score obtained by the two evaluated methods. To com-
pare the performance of the classifiers, the statistical Wilcoxon signed-rank test
has been selected [34]. In order to apply this statistical test, we first defined
the null hypothesis, h0 = In the task of classifying hummingbird images, the
performance of the features extraction method with SVM and the Fine-tuning
method are not significantly distinct. Then, the absolute values of the F1-Score
difference in each test were assigned a range, starting with the lowest value with
range 1, up to the largest of the differences with range 14. These values are used
by the Wilcoxon test to calculate a sum for each classifier. In this case, the sums
of the ranks of each classifier were RSVM = 88 y RFineTuning = 16. Checking
Wilcoxon’s table of critical values for a confidence of α = 0.05 and N = 14
tests, the difference between the classifiers is significant if the lesser of the sums
is less than or equal to 21. This last condition is met by RFineTuning � 21,
therefore, we reject the null hypothesis h0 and we can affirm that the features
extraction approach with SVM is significantly better than fine-tuning to classify
hummingbird images when there are few sets of images. In addition, the average
of the F1-Score of SVM (≈0.6837) is superior that fine-tuning (≈0.6384) with a
difference of ≈0.0453.

The best result obtained by the fine-tuning method is experiment 11, which
was trained with sets B, C, D and tested in set A. However, the best result was
obtained by the SVM approach in the experiment 14, where the training was
carried out with the sets A, B, C and tested in D, in Fig. 5 examples of frames
for this configuration are shown.
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Table 1. Performance of both classifiers

ID Training
subsets

Testing
subsets

# of test
examples

F1-Score F1-Score
abs. diff.Feat. ext.

+ SVM
Fine
tuning

1 A B, C, D 6,000 0.6549 0.6358 0.0191

2 B A, C, D 6,000 0.6913 0.6744 0.0169

3 C A, B, D 6,000 0.7339 0.6494 0.0845

4 D A, B, C 6,000 0.6667 0.6667 0.0

5 A, B C, D 4,000 0.6667 0.6665 0.0002

6 A, C B, D 4,000 0.6453 0.5687 0.0766

7 A, D B, C 4,000 0.6026 0.5235 0.0791

8 B, C A, D 4,000 0.6715 0.6921 0.0206

9 B, D A, C 4,000 0.6897 0.7246 0.0349

10 C, D A, B 4,000 0.6841 0.6690 0.0151

11 B, C, D A 2,000 0.7502 0.7281 0.0221

12 A, C, D B 2,000 0.6560 0.3653 0.2907

13 A, B, D C 2,000 0.6682 0.6675 0.0007

14 A, B, C D 2,000 0.7903 0.7062 0.0841

Avg. 0.6837 0.6384 0.0453

Fig. 5. Sample positive instances from the experiment 14.

5 Conclusions and Future Work

We presented a methodology for detecting hummingbirds in images. The goal of
the study is to provide biologists with support tools that can help them to ana-
lyze animal behavior and make new discoveries. The problem was approached as
one of classification and a real data set was considered for experimentation. Since
the number of distinctive available images is scare for the considered domain, we
relied on transfer learning techniques. We presented a comparative analysis on
two image classification methods based on transfer learning in CNNs: features
extraction along with a SVM and fine tuning. Given the nature of our data,
which was a scenario with few and high-dimensional data, we observed a better
performance from the SVM approach and noticed that the fine tuning approach
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requires a more variated set of training examples in order to increase its precision
when classifying new unseen instances. We think F1-score values obtained from
the SVM approach are acceptable considering the low variance within the train-
ing example sets. Moreover, we performed other tests where the training and
test example were extracted from the same sub-set, the f1-score values obtained
from the fine tuning approach vary over the range of 0.8654 to 1, while the SVM
approach obtained values ranging from 0.7263 up to 0.9823, which indicate the
great precision CNNs can achieve when they are trained under scenarios that
are not as restricted as the ones designed in our analysis. It is worth mentioning
that we started training a standard CNN (Alexnet [35]) from scratch to have a
reference performance. However, we confirmed this procedure was too computa-
tionally expensive when compared to transfer learning (1 epoch for Alexnet took
25 min, while 1000 epochs for the transfer learning configuration lasted 86 s).
This is in addition to the expected low performance of the network. As future
work, we plan to train CNNs from scratch with data augmentation mechanisms,
also, we will explore the use of methods that provide localization, in addition to
recognition, of objects in images.
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12. del Coro Arizmendi, M., Rodŕıguez-Flores, C.I.: How many plant species do hum-

mingbirds visit? Ornitol. Neotrop. 23, 71–75 (2012)
13. Elliott, A., del Hoyo, J., Sargatal, J.: Handbook of the Birds of the World, Volume

5, Barn-Owls to Hummingbirds, pp. 388–435. Lynx Edicions, Barcelona (1999)
14. Colwell, R.K.: Rensch’s rule crosses the line: convergent allometry of sexual size

dimorphism in hummingbirds and flower mites. Am. Nat. 156(5), 495–510 (2000)
15. Bleiweiss, R.: Phylogeny, body mass, and genetic cponsequences of lek-mating

behavior in hummingbirds (1998)
16. Johnsgard, P.A.: The Hummingbirds of North America. Smithsonian Institution,

Washington (2016)
17. Vleck, C.M.: Hummingbird incubation: female attentiveness and egg temperature.

Oecologia 51(2), 199–205 (1981)
18. Baltosser, W.H.: Nesting success and productivity of hummingbirds in Southwest-

ern New Mexico and Southeastern Arizona. Wilson Bull. 98(3), 353–367 (1986)
19. Brown, B.T.: Nesting chronology, density and habitat use of black-chinned hum-

mingbirds along the Colorado River Arizona. J. Field Ornithol. 63(4), 393–400
(1992)

20. Greeney, H.F., Hough, E.R., Hamilton, C.E., Wethington, S.M.: Nestling growth
and plumage development of the black-chinned hummingbird (Archilochus alexan-
dri) in Southeastern Arizona. Huitzil. Revista Mexicana de Ornitoloǵıa 9(2), 35–42
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Abstract. Nowadays, detection of learner’s affective state is required for
adaptive learning technologies that aim to support and regulate them, due
emotions are important during learning process. An affective tutoring system
(ATS) was developed, with capability to detect frustration and confusion
mainly, because they are associated with low and high learning outcomes. In
previous experiments with students while they were solving mathematics
exercises using ATS, almost all of them got a low score. Therefore, it seems to
be necessary to set up user profiles in order to improve learning, in those that
usually show poor motivation and engagement, to design better learning envi-
ronments and virtual helper assistant to attract and identify them for extra
activities. A cluster analysis was applied, and it found a correlation between
frustration, low scores and clicks on help. Then, a multilayer perceptron clas-
sified different examples getting a considerable percentage of accuracy.

Keywords: Affective tutoring system � Frustration � Patterns recognition

1 Introduction

Affective states are important during the learning process in students, some of them,
such as boredom, have been shown to be associated with poor learning outcomes,
mainly in science and mathematics. On the other side, concentration and even con-
fusion have a beneficial role. Studies have explored affective states that occur during
the complex learning, e.g. mathematics and science, identifying five: boredom,
concentration/flow, confusion, frustration, and a neutral state [1]. The ability to detect a
learner’s affective states, while they are interacting with learning environment, it is
required for adaptive learning technologies aim to support and regulate learners’ affect
in order to improve their learning engagement [2].

In general, students remain in a state of concentration/flow, while they are pursuing
a goal, and enter a state of boredom if they leave it. There is an intermediate emotion
from one affective state to another, and that is frustration, which plays an important
role, and its level of presence can lead to the success or failure in students learning
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engagement. Frustration, is accompanied by a persistent state of confusion, considered
as a negative affective state. However, also it has been shown that some episodes of
confusion, lead to students to experience a cognitive imbalance, which forces them to
reflect and solve the problem in course. Frustration, and even confusion, appears in
shorter periods than concentration or flow, and these tend to persist over time, and arise
when difficulties are encountered, which can lead to quit the goal. Therefore, to identify
frustration or confusion, it is necessary to offer help and guide them, e.g. to argue with
students, and take them from state of frustration or confusion, to concentration [3].

This research aims not just detect those negative affective states, but measuring
patterns in student’s activities to personalize the help in order to improve their
engagement. Therefore, an affective tutoring system (ATS) was developed. An ATS is
a kind of intelligent tutoring system (ITS), that enhance students into learning expe-
riences in mathematics and science, creating successful affective responses depending
of student’s emotion, in activities that require a big effort, to detect student affect and to
design appropriate responses to affect and motivate them [4]. An ITS is a friendly
environment for learning, but it is necessary to adapt to the affective states of the
learners too. Therefore, ATSs are ITSs with capability to adapt to the affective states of
the learner [5]. The ATS was named Tamaxtil, which means «teacher», in Nahualt
language, and it has the capability to detect frustration and confusion, mainly, because
they have negative and positive impact in students. It teaches Eulers and Runge-Kutta
Methods in an Spanish interface. A pilot experiment was made to test the ATS
detecting affective states in students while they are solving mathematic exercises in
order to regulate negative emotions. It was found that frustration was present in almost
all students, perhaps by the complexity of the exercises, and it is necessary to improve
the help assistant to avoid poor outcomes [6]. This document shows different cases of
students with low scores, in order to develop a tool that responds appropriately to the
negative affective states that a student goes through while they are stuck on a math-
ematical problem.

2 Methodology

The elements employed for this research consist of the ATS, for the exercises of Eulers
and Runge-Kutta methods, with the capability to detect of automatic recognition of
facial expressions in relation to affective states. It uses the open source software
development kit, Affectiva/Affdex SDK [7], for recognition of Action Units (AU),
which they are parts of the system for classifying human facial movements (FACS).
An AU is defined as a contraction or relaxation of one or more muscles of face, and
their combination can use to define human emotions [3].

The Fig. 1 shows the software detector for combinations of AUs, such as frustra-
tion defined by AU1+12 and AU2+12; and confusion by AU4+25 and AU4+26 [8].

The experiment was held in three days: day one, a human teacher mentions the
Eulers and Runge-Kutta methods to students and they solve a pre-test of these topics;
day two: students use Tamaxtil for practicing the methods, and at each five second
student’s faces were analyzed and saved into a database as AUs as it shows in Table 1,
for a time lapse of 40 min. Due student position, in front of the display/screen, while
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they are solving the exercises in a web browser, it was possible to analyze their faces
(see Fig. 1). Finally, day three: students solve a post-test, similar to the pre-test, but
with different exercises. The participants were 18 students of both genders, 19 years
average, undergraduate from the Institute of Technology of Teziutlan, Puebla, Mexico.
Tamaxtil has several exercises per each method, as well as a help assistant, that can be
use by the student at any time.

Then, both exams were evaluated in order to verify the learning engagement
progress. In this case, eleven examples got a low score, and seven examples, got high
score. Therefore, it is important to detect and help them. Previous analysis, the affective
state, frustration, got a correlation with those students that got a low score [6] and it
also could affect learner motivations [9]. On the other hand, confusion, and engaged
concentration persisted in both conditions «virtuous cycles» and «vicious cycles».

Tamaxtil, is an ATS that identifies negative affective states in students while they
are solving mathematical exercises, to approach improving learning engagement,
showing help in case of frustration or confusion, and congratulation messages per each
correct answer. It was designed to improve the learning efficiency, trying to regulate
negative emotions that present through the exercises, providing an accompaniment
during learning process [6]. Frustration lead to students to boredom, and therefore to
abandon the goal. To avoid this, it sends multiples messages to help them to move to
the frustration state and, even if confusion, to keep to the students in a state of
concentration/flow. Despite this, it offers help. As it notices, this did not work in all
students, then it will be necessary to guide them with personalized help and motivation
messages, that can lead them to abandon the frustration or confusion quickly and take
them to a state of concentration. Figure 2 shows the interface of ATS and affective state

Fig. 1. Facial analysis of action units using Affectiva/Affdex SDK, for tracking muscle of faces
for affective states recognition.
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detector. As it notices, webcam is not mirroring user face, like in Fig. 1; students just
can see an advertisement: “Do not close this window, Tamaxtil is making an analysis.
Thank you!”.

3 Results

ATS save into dataset the AUs combinations related to frustration and confusion and
clicks on help window. Table 1 shows the dataset for the experiment described above,
with pre and post-test score, and labeled as high and low, for poor and high learning
engagement. It is important to mention that during the tests there were problems with
the internet bandwidth during the interaction with the ATS, only the data shown in
Table 1 were collected, but it was enough for this early analysis.

The dataset was analyzed in order to patterns recognition on the statistical software
R version 3.3.2, with the cluster dendrogram technique. The Fig. 3 shows, five clusters
that allow identifying different user profiles, defined in relation to the number of clicks
by the students during the interaction with Tamaxtil, as well as AUs related to frus-
tration and confusion.

In Fig. 3, a tree diagram is shown to illustrate the arrangement groups, from left to
right, produced by hierarchical clustering by the different students profiles and how

Fig. 2. ATS Tamaxtil user interface.
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affect the student engagements from pre-test to post-test, . Cluster #1 has just one student
(student #10), it has the longest period of frustration, few times looking for help and low
score in pre-test and post-test, therefore it is necessary to detect early this kind of users
and help them to improve their learning engagement. On the other hand, the examples in
cluster #2, apparently shows the same problem described previously, but student #6 has
a high score in pre-test but low in post-test; both students had few times clicks on help; it
is necessary to avoid these cases when they get high score, they seem to feel frustrated

Table 1. Dataset for experiment of students using an ATS.

Student Pre-test Frustration_AU1
+12

Frustration_AU2
+12

Confusion_AU4
+25

Confusion_AU4
+26

Clicks_help Post-test

1 Low 0 0 0 0 0 Low

2 Low 0 0 0 0 0 Low

3 Low 0 0 0 0 17 Low

4 Low 2 24 1 0 0 Low

5 Low 0 0 0 0 4 High

6 High 0 25 0 0 4 Low

7 Low 0 0 0 0 0 High

8 Low 0 2 0 0 0 High

9 Low 0 0 0 0 0 High

10 Low 0 41 0 0 9 Low

11 Low 0 19 0 0 10 Low

12 Low 0 3 0 0 13 Low

13 Low 1 16 0 0 2 Low

14 Low 0 21 0 0 3 High

15 Low 0 6 0 0 6 High

16 Low 0 18 0 0 0 Low

17 Low 0 16 0 0 0 High

18 Low 0 10 0 0 0 Low
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Fig. 3. Cluster dendrogram for five group of students that have similar features.
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almost all the time while they were solving the exercises. The affective states detected
were both combinations of frustration, AU1+12 and AU2+12, it seems to be another
clue to detect this kind of users. For cluster #3, 50% of examples have a high score in
post-test, in spite of their low score at pre-test. But, they have a lot of periods of
frustration, specifically combination of AU2+12. In cluster #4, almost all students have
a high score in post-test and no clicks in help, nor frustration time intervals, in spite of
their low score in pre-test, they have been labeled as good students or high learning
engagement. Finally, in cluster #5, both examples have low score in post-test, besides a
lot of clicks on help, in spite of the lack of any combination of frustration.

Later, the dataset was analyzed on Weka, version 3.3.0, which is a collection of
machine learning algorithms for data mining tasks. A multilayer perceptron was
employed, as it shows in Fig. 4. This algorithm got 72.22%, and the confusion matrix
(see Table 2), shows that the algorithm classified nine examples correctly, and missed
twice, in «low score» examples; on the other side, it classified four examples correctly,
and missed in three of «high score». Therefore, it was better classifying «low
score» examples. The setup in this learning rate was equal to 0.3; momentum rate for
backpropagation algorithm of 2.0; 500 epochs for training, and 5 hidden layers; the
class label was «post-test»: High or Low score.

As it shows, 13 examples of 18 were correctly classified. Therefore, there is a
possibility to add a neural network to ATS, in order to detect students who likely will
get a low score in post-test.

With a seven cross-validation, the accuracy arises to 77.77% (see Fig. 5), still
modest, but it shows that it is possible to increase the accuracy, with more records. As
shown in Table 2, it is possible to add this kind of algorithms into the ATS in order to
detect students with patterns of frustration, sending different kind of messages offering
help, and consequently, avoid low scores in post-test.

Fig. 4. Weka multilayer Perceptron outcomes performed.
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4 Conclusions

Results show that it is possible to define user profiles, from this five clusters, there is a
chance to define user’s behaviors while they are solving exercises, to offer personalized
help. Previously, a lot of message were sent to the student with no positive impact on
them. Therefore, it is necessary to develop an ATS that identifies specific features of
learning engagement, that can lead from frustration to engagement, and to establish
personalized help in relation to behavior patterns, thus it hope to reduce the learning
curve that may block their school performance.

As it mentioned before, frustration has a negative correlation with student’s
learning engagement if is persists, however a few lapses of frustration can be addressed
through an accompaniment that allow to the student to leave the transitory state and
return to the confusion, an adequate stimuli of motivation can direct them to a state of
concentration. When a multilayer perceptron was used, it shows a high accuracy
detecting low score cases, so it is possible to detect this kind of students and to predict
when they feel frustrated and provide important information to an ATS when inter-
action was initiated. For example, an ATS uses this information to provide support who
is likely to quit, and do not disturb to engaged learners for discover new things without
interruption [10]. It is necessary to focus on to apply a machine learning techniques to
classify different learning models or students’ profiles, with out human teacher’s help,
frustration affect both genders equally [11].

Table 2. Confusion matrix of multilayer perceptron outcomes.

a b Classified as

9 2 a = Low
3 4 b = High

Fig. 5. Different accuracy of perceptron multilayer in Weka.
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This research is exploring a way to help students through the emotion detection and
how to provide help to improve their capabilities in mathematics. The identification of
affective states is often difficult and subjective because each human observer tends to
have his own judgment, that is why this research uses Affectiva/Affdex SDK, that even
has classifiers for determining gender and whether the person is wearing glasses, it
allows an easy integration with the ATS of mathematics. The capability of emotion
sensing software will have a significant impact on the design of connected devices and
interfaces, meanly in educational software. It is important to mention that, some stu-
dents still feel that it is an aggressive technique or disrupted privacy when camera led is
turning on in laptops and start to analyze their faces. So, in future version, students will
choose if they want to be analyzed by the emotional algorithm. As in other researches,
the goal is to build tools that can flag interaction sequences indicative of problems, so
that we can use these to assist students [12].

5 Future Work

It will be necessary to develop a mechanism to detect different kind of user profiles
where frustration is a persistent negative affective state, as mentioned above, as a
possibility to improve student’s engagement by showing personalized help according
to their pattern behavior. This based in clusters identified before, and using machine
learning techniques, such as an artificial neural network, like multilayer perceptron, or
Bayesian network, in order to predict behaviors while they are solving mathematics
methods.

Tamaxtil has an assistant helper, but it is necessary to improve it, to offer a better
learning environment interactions. This means a better user interface, to be more
attractive, maybe using multimedia content. In another experimental results with
learning tools, video-based multimedia material generated better learning performance
and more positive emotion by students [13]. This approach will be considered, plus the
model to identify low score students, in ATS next version. On the other side, it is
necessary to remark that not all students used to learn in the same way, and there are
different learning styles. Finally, it should be mentioned that ATS will be proposed as a
complement learning tool in universities of Mexico, due these methods are important
topics in engineering careers.
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Abstract. Structured data bases may include both numerical and non-numerical
attributes (categorical or CA). Databases which include CAs are called “mixed”
databases (MD). Metric clustering algorithms are ineffectual when presented with
MDs because, in such algorithms, the similarity between the objects is deter-
mined by measuring the differences between them, in accordance with some
predefined metric. Nevertheless, the information contained in the CAs of MDs is
fundamental to understand and identify the patterns therein. A practical alter-
native is to encode the instances of the CAs numerically. To do this we must
consider the fact that there is a limited subset of codes which will preserve the
patterns in the MD. To identify such pattern-preserving codes (PPC) we appeal to
a statistical methodology. It is possible to statistically identify a set of PPCs by
selectively sampling a bounded number of codes (corresponding to the different
instances of the CAs) and demanding the method to set the size of the sample
dynamically. Two issues have to be considered for this method to be defined in
practice: (a) How to set the size of the sample and (b) How to define the ade-
quateness of the codes. In this paper we discuss the method and present a case of
study wherein the appropriateness of the method is illustrated.

Keywords: Mixed databases � Experimental probability distributions
Non-linear regression

1 Introduction

Cluster Analysis is the name given to a diverse collection of techniques that can be
used to classify objects in a structured database. The classification will depend upon the
particular method used because it is possible to measure similarity and dissimilarity
(distance between the objects in the DB) in many ways. Once having selected the
distance measure we must choose the clustering algorithm. There are many methods
available. Five classical ones are (a) Average Linkage Clustering, (b) Complete
Linkage Clustering, (c) Single Linkage Clustering, (d) Within Groups Clustering,
(e) Ward’s Method [1]. Alternative methods, based on computational intelligence, are
(f) K-Means, (g) Fuzzy C-Means, (h) Self-Organizing Maps, (i) Fuzzy Learning Vector
Quantization [2]. All of these methods have been designed to tackle the analysis of
strictly numerical databases, i.e. those in which all the attributes are directly expressible
as numbers.

If any of the attributes is non-numerical (i.e. categorical) none of the methods in the
list is applicable. Clustering of categorical attributes (i.e., attributes whose domain is
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not numeric) is a difficult, yet important task: many fields, from statistics to psychology
deal with categorical data. In spite of its importance, the task of categorical clustering
has received relatively scant attention. Much of the published algorithms to cluster
categorical data rely on the usage of a distance metric that captures the separation
between two vectors of categorical attributes, such as the Jaccard coefficient [3]. An
interesting alternative is explored in [4] where COOLCAT, a method which uses the
notion of entropy to group records, is presented. It is based on information loss min-
imization. Another reason for the limited exploration of categorical clustering tech-
niques is its inherent difficulty.

In [5] a different approach is taken by (a) Preserving the patterns embedded in the
database and (b) Pinpointing the codes which preserve such patterns. These two steps
result in the correct identification of a set of PPCs. The resulting algorithm is called
CENG (Categorical Encoding with Neural Networks and Genetic Algorithms) and its
parallelized version ParCENG [6].

However, this approach is computationally very demanding and, to boost its effi-
ciency, it ought to be tackled in ensembles of multiple CPUs. Even so, when the
number of CAs and/or the number of category’s instances is large, execution time may
grow exponentially. A practical alternative to ParCENG is the main subject of this
paper.

Two notes are in order:

(a) As already pointed out, the execution time of CENG (and even ParCENG’s) may
grow exponentially.

(b) The PPCs are NOT to be assumed as an instance applicable to DBs other than the
original one. That is to say: a set of PPCs (say PPC1) obtained from a DB (say
DB1) is not applicable to a different DB (say DB2) even if DB1 and DB2 are
structurally identical. In other words, PPC1 6¼ PPC2 for the same DB when the
tuples of such DB are different,

The rest of the paper is organized as follows. In Sect. 2 we briefly describe
(a) Pseudo-binary encoding alternative to our approach and (b) The optimization
problem CENG solves. In Sect. 3 we present the statistical encoding methodology. In
Sect. 4 we present some experimental results and, finally, in Sect. 5 we present our
conclusions.

2 Encoding Mixed Databases

As stated in the introduction, the basic idea is to apply clustering algorithms designed
for strictly numerical databases (ND) to MDs by encoding the instances of categorical
variables with a number. This is by no means a new concept. MDs, however, offer a
particular challenge when clustering is attempted because it is, in principle, impossible
to impose a metric on CAs. There is no way in which numerical codes may be assigned
to the CAs in general.
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2.1 Pseudo-Binary Encoding

In what follows we denote the i instances of categorical variable c as ci; the number of
categorical variables with c; the number of all attributes by n.

A common choice is to replace every CA variable by a set of binary variables, each
corresponding to the cis. The CAs in the MD are replaced by numerical ones where
every categorical variable is replaced by a set of ci binary numerical codes. An MD will
be replaced by an ND with n−c + c∙ci variables. This approach suffers from the fol-
lowing limitations:

(a) The number of attributes of ND will be larger than that of MD. In many cases this
leads to unwieldy databases which are more difficult to store and handle.

(b) The type of coding system selected implies an a priori choice since all
pseudo-binary variables may be assigned any two values (typically “0” denotes
“absence”; “1” denotes “presence”). This choice is subjective. Any two different
values are possible. Nevertheless, the mathematical properties of ND will vary
with the different choices, thus leading to clusters which depend on the way in
which “presence” or “absence” is encoded.

(c) Finally, with this sort of scheme the pseudo-binary variables do no longer reflect
the essence of the idea conveyed by a category. A variable corresponding to the i-
th instance of the category reflects the way a tuple is “affected” by belonging to
the i-th categorical value, which is correct. But now the original issue “How does
the behavior of the individuals change according to the category?” is replaced by
“How does the behavior of the individuals change when the category’s value is
the i-th?” The two questions are not interchangeable.

2.2 Pattern Preserving Codes

An alternative goal is to assign codes (which we call Pattern Preserving Codes or
PPCs) to each and all the instances of every class (category) which will preserve the
patterns present for a given MD.

Consider a set of n-dimensional tuples (say U) whose cardinality is m. Assume
there are n unknown functions of n-1 variables each, which we denote with

fk v1; . . .; vk�1; vkþ 1; . . .; vnð Þ; k ¼ 1; . . .; n

Let us also assume that there is a method which allows us to approximate fk (from
the tuples) with Fk. Denote the resulting n functions of n-1independent variables with
Fi, thus

Fk � f v1; . . .; vk�1; vkþ 1; . . .; vnð Þ; k ¼ 1; . . .; n ð1Þ

The difference between fk and Fk will be denoted with ek such that, for attribute
k and the m tuples in the database
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ek ¼ max abs fki � Fkið Þ½ �; i ¼ 1; . . .;m ð2Þ

Our contention is that the PPCs are the ones which minimize ek for all k. This is so
because only those codes which retain the relationships between variable k and the
remaining n−1 variables AND do this for ALL variables in the ensemble will preserve
the whole set of relations (i.e. patterns) present in the data base, as in (3).

N ¼ min½max ðek; k ¼ 1; . . .; nÞ� ð3Þ

Notice that this is a multi-objective optimization problem because complying with
condition k in (2) for any given value of k may induce the non-compliance for a
different possible k. Using the min-max expression of (3) equates to selecting a par-
ticular point in the Pareto’s front [7].

To achieve the purported goal we must have a tool which is capable of identifying
the Fk’s in (1) and the codes which attain the minimization of (3). This is possible using
NNs and GAs. Theoretical considerations (see, for instance, [8–11]) ensure the
effectiveness of the method.

3 General Methodology

To avoid the high computational costs associated to CENG we designed a new algo-
rithm (called “CESAMO”: Categorical Encoding by Statistical Applied Modeling)
which relies on statistical and numerical considerations making the application of NNs
and GAs unnecessary, while achieving analogous results.

Here we denote the number of tuples in the DB by t and the number of categorical
attributes by c; the number of numerical attributes by n; the i-th categorical variable by
vi; the value obtained for variable i as a function of variable j by yi(j).

We will sample the codes yielding yi as a function of a sought for relationship. This
relationship and the model of the population it implies, will be selected so as to
preserve the behavioral patterns embedded in the DB.

Two issues are of primordial importance in the proposed methodology:

(a) How to define the function which will preserve the patterns.
(b) How to determine the number of codes to sample.

Regarding (a), we use a mathematical model considering high order relations, as
will be discussed below. Regarding (b), we know that, independently of the distribution
of the yi’s, the distribution of the means of the samples of yi (yiAVG) will become
Gaussian. Once the distribution of the yiAVG becomes Gaussian, we will have achieved
statistical stability, in the sense that further sampling of the yi’s will not significantly
modify the characterization of the population.

In essence, therefore, what we propose is to sample enough codes to guarantee the
statistical stability of the values calculated from yi ← f(vj). If f(vj) is adequately chosen
the codes corresponding to the best approximation will be those inserted in MD.
Furthermore, CESAMO relies on a double level sampling: only pairs of variables are
considered and every pair is, in itself, sampling the multivariate space. This avoids the
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need to explicitly solve the multi-objective optimization underlying problem. The
clustering problem may be, then, numerically tackled.

3.1 The CESAMO Algorithm

The general algorithm for CESAMO is as follows:

– Specify the mixed database MD.
– Specify the sample size (ss)
– MD is analyzed to determine n, t and ci(i) for i = 1,…,c.
– The numerical data are assumed to have been mapped into [0,1). Therefore, every ci

will be, likewise, in [0,1).

for i ← 1 to c 
Do until the distribution of yiAVG is Gaussian

Randomly select variable j (j ≠i)
Assign random values to all instances of vi. 
yiAVG ← 0
For k ←1 to ss

yi ←  f(vj)
yiAVG ← yiAVG+yi

endfor
yiAVG = yiAVG/ss

enddo
Select the codes corresponding to the best value of yi

endfor

Notice that vj may be, itself, categorical. In that cases every categorical instance of
vj is replaced by random codes so that we may calculate f(vj).

4 Experimental Results

We illustrate the method with a simple DB (MD1) (Fig. 1).

It consists of 9 variables. Two of them V005 and V009 are categorical. The rest are
numerical. V005 has 10 instances: AGUASCALIENTES, BAJA CALIFORNIA,
HIDALGO, JALISCO, MEXICO MORELOS, PUEBLA, QUERETARO, SAN LUIS,
ZACATECAS; V009 has 6 instances: A, B, C, D, E, F.

Fig. 1. Mixed data base 1 (MD1)
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4.1 First Order Relations (Pearson’s Correlation)

To illustrate, we select Pearson’s correlation coefficient as the approximation function
from which we select the best codes. 36 samples/mean are selected; the compliance to
Gaussian distribution is determined using the chi2 goodness-of-fit test where 10 classes
are defined. For this initial example we demand that maximum correlation is used as
the best coding criterion. This is illustrated in Fig. 2.

CESAMO is run. The codes of Fig. 3 are determined.

The resulting encoded DB (ND1, with numerical values) is illustrated in Fig. 4. In
this latter case, instead of calculating Pearson´s correlation coefficient, we approximate
variable yi as a function of variable of randomly selected independent variables using
the so-called Ascent Algorithm [12, 13]. This algorithm has several useful properties: it
allows us to determine the form of the approximant dynamically (that is, there is no
pre-determined model for the function which approximates the data) and it does not
need to store the whole data set in the computer’s memory. It works by minimizing the
L∞ norm rather than the more common L2. It is an exchange algorithm and requires a

Fig. 2. Using Pearson´s correlation

Fig. 3. Categorical codes for Pearson´s correlation
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minimum amount of storage. This characteristic is most important when the data sets
are large, as is often the case when mining DBs.

Pearson’s correlation matrix is calculated and is shown in Fig. 5.

From the table above we next obtain the table of relations, as shown in Fig. 6.
Those variables exhibiting a value above a predetermined threshold are marked.

As we can see, in ND1 variables V001, V002, V003 are “equivalent” with 90%
confidence if only first order relations are preserved. Likewise, V006 and V007 are
linearly equivalent.

4.2 Higher Order Relations (Functional Approximation)

Now we select an approximation function of 11th degree. In [14] it was shown that
continuous data may be thusly approximated and its main components retained.

Fig. 4. Numerically encoded data base ND1.

Fig. 5. Correlation matrix.

Fig. 6. First order dependencies
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The codes obtained from high degree approximation are shown in Fig. 7. Notice that
the codes do not seem to display any relation to the ones obtained from Pearsons´s
Correlation.

We, once again, calculate the correlation matrix as shown in Fig. 8.

And, as expected, the variables display the same level of first order relations.

However, for the relations of order 3 codes from a) Pearson’s and b) Functional
codes we find the next scenario (shown in Fig. 10). Pearson’s correlations miss third
degree functional relations for variables V003 and V004. Likewise, (as shown in
Fig. 11), 7th degree relations are hidden from Pearson’s encoding but not so for
Functional encoding. Note that in all the cases illustrated in Figs. 9, 10 and 11 func-
tional relations are restricted to those of degree 1, 3 and 7, respectively.

Fig. 7. Categorical codes for unbounded approximation

Fig. 8. Pearson´s correlation matrix for high order relation codes.

Fig. 9. First order dependencies
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However, when functional codes consider all combinations of the powers of the
function, we get the matrix illustrated in Fig. 12.

In this case the approximation is so accurate that all variables appear related
EXCEPT for a few, as shown in Fig. 13.

Fig. 10. Relations of degree 3 for (a) Pearson’s codes and (b) Functional codes.

Fig. 11. Relations of degree 7 for (a) Pearson´s codes and (b) Functional codes.

Fig. 12. Matrix of relations for full power combinations.

Fig. 13. Independent variables.
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It is the lack of simple relation of the variables remarked (with circles) which makes
this case more interesting. For what we may see is that V001 and V009 have no
detectable complex relations between them. That is the case for V003 and V009; V004
and V008 and so on. Notice also that this means that, for instance, V003 may not be
expressed as a function of V009 but V009 may indeed be expressed as a function of
V003. The preservation of these higher order relationships is what we mean by pre-
serving the patterns in the data.

5 Conclusions

When mining arbitrary data it is very important to preserve the relation between their
components. By approximating the elements in mixed DBs we have been able to do so.
Given this we may now confidently look for the potential groupings that depend on
functional dependencies.

The final goal of this methodology is to ensure that such hypothetical groups may
be efficiently searched for.

We have focused on illustrating the behavior of a simple mixed database. But the
algorithm behind this method is guaranteed to work smoothly even for very large data
sets.

The mathematical description of the way the functional relationships are found is
beyond the scope of this work. But we expect to report on this in a paper to appear soon.
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Abstract. Frequent approximate subgraph (FAS) mining and graph
clustering are important techniques in Data Mining with great prac-
tical relevance. In FAS mining, some approximations in data are allowed
for identifying graph patterns, which could be used for solving other
pattern recognition tasks like supervised classification and clustering. In
this paper, we explore the use of the patterns identified by a FAS mining
algorithm on a graph collection for image clustering. Some experiments
are performed on image databases for showing that by using the FASs
mined from a graph collection under the bag of features image approach,
it is possible to improve the clustering results reported by other state-
of-the-art methods.

Keywords: Approximate graph mining
Approximate graph matching · Graph clustering

1 Introduction

Frequent approximate subgraph (FAS) mining and graph clustering are impor-
tant techniques in Data Mining with a wide spectrum of applications, such as:
community detection, web image searching, and image categorization, among
others [1–8]. In FAS mining, some approximation in data are allowed for identi-
fying graph patterns which are missed when an exact graph matching is applied.
Then, knowing that, in real-world applications, commonly there are data varia-
tions due to noise or natural variation on the study objects, several algorithms for
mining FASs have been proposed [2,9–12]. These algorithms allow mining graph
patterns, which, when used on supervised classification tasks, allow obtaining
better results than using exact graph patterns [9,10,13,14]. However, the use of
FASs has been little explored as a mean for extracting information useful for data
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clustering. To the best of our knowledge, only the work proposed in [1] intro-
duces a method based on FAS mining for graph clustering. This method is based
on FASs mined independently over each single-graph. However, we consider that
FASs mined from a graph collection could provide more useful information for
graph clustering tasks. For this reason, in this paper, unlike [1], we explore the
use of the patterns identified by a FAS mining algorithm designed for mining
FAS from a graph collection for image clustering.

The organization of this paper is the following. In Sect. 2, the related work
is summarized. Our proposed method based on FAS mining for graph clustering
is introduced in Sect. 3. Our experimentation is presented in Sect. 4. Finally, our
conclusions and future work directions are discussed in Sect. 5.

2 Related Work

In the literature, some works have focused on graph clustering based on pattern
mining [1,15,16]. In [15,16], emerging patterns are used as features for clustering,
but only in [1], FAS mining has been used for graph clustering. In this later
work, the authors take advantage of approximate graph mining to obtain useful
patterns, which could be missed by using exact graph matching, and use this
patterns for graph clustering.

In [1], after representing images as graphs, the authors used MaxAFG [17]
for separately mining FASs from each single-graph of a collection. Later, joining
all mined FASs, a vector representation is built for each image by comparing its
representing graph to each FAS using a similarity function based on the graph
edit distance [18–20]. Thus, a traditional clustering algorithm can be applied.

The graph clustering approach proposed in [1] is based on algorithms for
mining FASs over a single-graph; allowing variations in vertex and edge labels,
as well as approximations in the graph structure. However, allowing all these
kinds of approximations highly increases the computational cost of the FASs
mining process, because allowing label substitutions and approximations in the
graph structure produces a combinatorial explosion of the number of candidate
subgraphs. On the other hand, despite mining FASs separately into every single
graphs has some advantages, it avoids detecting common parts among different
graphs that are not frequent inside any of them. Thus, in this paper, we propose
a FAS-based clustering method that uses FASs mined from graph collections,
in order to allow detecting regularities among different graphs of the collection.
Moreover, we propose using FAS mining algorithms where only approximations
in vertex and edge labels are allowed but preserving the graph structure; in order
to allow a faster mining process. However, only VEAM [13] allows mining this
kind of FASs, in the next section, the VEAM algorithm will be briefly described.

2.1 The VEAM Algorithm

The VEAM (Vertex and Edge Approximate graph Miner) algorithm [13] mines
all FASs in a graph collection allowing approximations in vertex and edge labels,
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keeping the graph structure. For allowing these approximations, VEAM uses
substitution matrices (one for edge labels ME and another one for vertex labels
MV ), which contain the probability of a label to be replaced by another one.
Based on these matrices, the similarity function between graphs used by VEAM
is defined as follows.

Definition 1 (Similarity function Θ(f,g) based on substitutionmatrices).
Let G1 and G2 be two graphs, and let MV and ME be two substitution matrices
in LV and LE , respectively. The similarity function is defined as:

Θ(f,g)(G1, G2) =
∏

v∈VG1

MVIG1 (v),IG2 (f(v))

MVIG1 (v),IG1 (v)
∗

∏

e∈EG1

MEJG1 (e),JG2 (g(e))

MEJG1 (e),JG1 (e)
(1)

where (f, g) is an isomorphism between G1 and G2, MVIG1 (v),IG2 (f(v))
and

MVIG1 (v),IG1 (v)
are the cells MVi,j and MVi,i respectively of the vertex sub-

stitution matrix with i = IG1(v) and j = IG2(f(v)), and MEJG1 (e),JG2 (g(e))

and MEJG1 (e),JG1 (e)
are the cells MEq,r and MEq,q respectively of the edge

substitution matrix with q = JG1(e) and r = JG2(g(e)). Notice that, as the
function Θ(f,g) is based on substitution matrices and these matrices could be
non-symmetric, then this similarity function also could be non-symmetric.

Based on Definition 1, VEAM computes and stores all the occurrences of
each subgraph candidate Pj in a graph collection D. Then, taking into account
the occurrences of Pj , only the subset of graphs Dj ⊆ D, where Pj has at least
one occurrence, is traversed for growing Pj . In this way, VEAM reduces the
search space to Dj ; speeding up the mining process.

VEAM uses adjacency matrices for representing each graph of a collection.
Then, in order to simplify the graph representation based on adjacency matrices,
VEAM uses the canonical adjacency matrix (CAM) code as a unique represen-
tation for isomorphic graphs [21,22].

The VEAM algorithm starts mining all frequent approximate single-vertex
subgraphs. Then, following a Depth-First Search (DFS) approach, each frequent
single-vertex G is extended by recursively adding a single-edge at a time; obtain-
ing all children of G.

In the recursive pattern-growth step of VEAM, all children of each FAS
G that satisfy the similarity constraint using Definition 1, are computed; each
child of G is a candidate graph. As the same subgraph can be obtained from
different candidate graphs, an isomorphism test over each computed candidate
should be performed for eliminating duplicate candidates. For speeding up these
isomorphism tests, each FAS is represented by its canonical form based on CAM.
By comparing the CAM codes of the subgraphs, the isomorphic candidates (i.e.,
duplicate candidates) and only one of them is extended for exploring the search
space. These comparisons between CAM codes allow us to eliminate duplicities
in the candidate set. Once the candidate set is computed, only those frequent
candidates that have not been not identified in previous steps, are stored as FASs
in the collection and recursively extended. The stop condition in the recursion is
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supported by the downward closure property, which ensures that a non-frequent
candidate cannot be extended to produce a FAS.

More details of VEAM can be found in [13].

3 Our Proposal

Our proposal for clustering images using FASs, mined from graph collections,
as attributes is as follows. First, given a collection of images, each image is
represented as a graph. Then, the VEAM algorithm [13] is applied over the
graph collection obtained from the image collection, in order to identify the set
of FASs. After, following the idea of the bag of features [23], the mined FASs
are used as attributes for building a vectorial representation of each image. For
an image, each element of its vectorial representation contains the similarity of
a FAS with the graph representing the image. The similarity between a FASs
and a graph is computed with the similarity function used in VEAM for the
approximate graph mining process. In Fig. 1, we illustrate how the FASs are
used for building the attribute vectors of the image collection.

image as a graph

FASs mined from

FAS1 FAS2 FAS3 FAS4 FAS5 FAS6 FAS7 FAS8 FAS9

1.0 1.0 0 0 0 1.0 0 0 0

1.0 0 0 0 1.0 0 1.0 0 0

0 0 0.8 1.0 0 0 0 0 0

1.0 0.7 1.0 0 0 0.7 0 1.0 0.7

0 0 0 1.0 0.5 0 0 0 0

1.0 0 1.0 1.0 0 0 0 1.0 0

1.0 1.0 0 0 1.0 0 1.0 0 0

1.0 0 0.4 0.9 0.4 0 0.7 0.8 0

1.0 0.4 0 0 0 0.4 0 0 0.4

Fig. 1. Example of how the FASs are used for building the vectorial representation of
the images.

Once the vectorial representation is built, a traditional clustering algorithm
is applied on it for clustering the images according to their similarities computed
on their FAS-based representation. A diagram of the workflow of our proposal
is shown in Fig. 2.
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Fig. 2. Workflow of our proposal for image clustering based on FAS mining.

4 Experiments

Following the clustering method described in Sect. 3, we perform some exper-
iments over three graph collections for showing the usefulness of using FASs
computed from a graph collection in a clustering task. All our experiments were
carried out on a personal computer with an Intel(R) Core(TM) i5-3317U CPU
@1.70 GHz with 8 GB of RAM. All the algorithms were implemented in ANSI-C
and executed on Microsoft Windows 10.

The three image collections used in our experiments are CoenenDB-200
and SkeletonDB used in [1], and CoenenDB-6000. Both CoenenDB-200 and
CoenenDB-6000 image collections were generated with the Random image gen-
erator of Coenen1. CoenenDB-200 is composed by 200 images with two classes
(100 images per class) and CoenenDB-6000 contains 6000 images also distributed
in two classes. For our experiments, the class was not used as attribute. For both
CoenenDB-200 and CoenenDB-6000, each image is represented as a graph fol-
lowing a quad-tree strategy of 4 and 3 levels respectively, using each quadrant as
a vertex with the most frequent color as label with edges connecting neighboring
vertices (vertices representing neighboring quadrants) using the angle respect to
the horizontal axe as the label for the edges. In Fig. 3, we show an example of
who an image of CoenenDB-200 is represented as a graph.

SkeletonDB is composed by 36 real-image silhouettes with nine classes (four
images per class). In SkeletonDB, each image is represented as a graph extracted
from its skeleton following [25], where the vertices are the junction and final
points of the skeleton, labeled as body parts, and edges represent branches of

1 www.csc.liv.ac.uk/∼frans/KDD/Software/ImageGenerator/imageGenerator.html.

www.csc.liv.ac.uk/{~}frans/KDD/Software/ImageGenerator/imageGenerator.html
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Fig. 3. Example, extracted from [24], of how an image of CoenenDB-200 and
CoenenDB-6000 is represented as a graph by using the quad-tree approach.

Fig. 4. Example, extracted from [24], of how some images of SkeletonDB are repre-
sented as graphs.

the skeleton, labeled with the length of the branch in pixels. In Fig. 4, we show
an example of who some images of SkeletonDB are represented as a graphs.

In Table 1, the description of the obtained graph collections is shown. The
first column shows the collection identifier. The other columns show the number
of graph in the collection, the average edges per graph, the average vertices per
graph, and the number of classes of each collection, respectively.

Table 1. Description of the graph collections used in our experiments.

Collection |D| Average edges
per graph

Average vertices
per graph

Number of
classes

CoenenDB-200 200 35 20 2

CoenenDB-6000 6000 12 8 2

SkeletonDB 36 6 7 9

In order to validate the clustering results, since we know the real classes of
the graph collections, we apply the well known rand index measure [26] (see
Definition 2), which is widely used in the literature as cluster quality index.
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Definition 2 (Rand Index). Given a set of elements S, and two clusterings
C and C ′, the rand index RI is defined as:

RI(C,C ′) =
a + b

a + b + c
(2)

where:

– a is the number of pairs of elements in S that are in the same cluster in C
and in the same cluster in C ′

– b is the number of pairs of elements in S that are in different cluster in C and
in different cluster in C ′

– c is the number of pairs of elements in S that are not in a or b.

For mining FASs over graph collections, in our experiments we used
VEAM [13] since this algorithm is the only one reported in the literature which
allows label approximations preserving the graphs structures. For clustering, we
used the well known k-means algorithm [27], specifically the WEKA implemen-
tation [28], where the value of k was fixed according to the number of classes in
the used datasets.

With the aim of showing the usefulness of the FASs mined from a graph
collection in an image clustering task, the results obtained by our method are
compared against those reported in [1], where the usefulness of FASs separately
mined from single-graphs was evaluated. We also compare our results against
those obtained by applying the method reported in [29], which is based on spatial
pyramid matching instead of FAS mining.

In Table 2, we show the clustering results obtained by our proposal, as well
as using an approach based on separately mining FASs from single graphs [1],
and the method proposed in [29]. In this table, the first column shows the graph
collection identifier; the second one shows the clustering results, in terms of Rand
Index, obtained by using the method proposed in [29]; the third column shows
the clustering results, in terms of Rand Index, obtained by using the method
proposed in [1]; and the last column shows the clustering results obtained by
applying our proposal. The cells with “–” means that the method proposed in
[1] cannot be applied since, due to the size of the collection, it was unable to
mine the FASs after a weak; while our proposal only used less of two hours
for processing this collection. In Table 2, the best results for each collection are
highlighted in bold.

As we can see in Table 2, the clustering results obtained by the methods
based on FASs are better than those obtained by the method proposed in [29] in
all cases. In this way, the usefulness of the use of FAS mining for clustering tasks
is shown. On the other hand, in CoenenDB-200 image collection, our proposal
outperforms the results obtained by the using single graph FASs, as proposed in
[1]. However, in the SkeletonDB image collection, the single graph FAS approach
obtained slightly better results than our proposal. This fact takes place because
the SkeletonDB image collection has very few graphs; thus, the graph collection
FAS approach gets less information than the single graph approach. Nevertheless,
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Table 2. Clustering results obtained by applying the k-means algorithm, evaluated
with the rand index measure. The symbol “–” means that the corresponding method
was unable to be applied.

Collection The method
proposed in [29]

The single graph [1] Our proposed
method

CoenenDB-200 0.657 0.768 0.805

SkeletonDB 0.652 0.981 0.978

CoenenDB-6000 0.705 – 0.948

as we can see in CoenenDB-6000 image collection, our proposal is able to process
larger graph collections, which cannot be processed by the FAS-based method
proposed in [1].

5 Conclusions

In this paper, we explore the usefulness of the FASs mined from a graph collection
for clustering by introducing a FAS-based image clustering method that uses
the mined FASs to represent images. Our proposal was tested over three image
collections, comparing the obtained results against the results of two state-of-
the-art clustering methods.

Based on our experiments, we conclude that FAS mining is useful for cluster-
ing tasks, outperforming the results obtained by a method based on spatial pyra-
mid matching [29]. In our experiments, we have shown that using FASs mined
from a graph collection as attributes, it is possible to obtain better results than
those obtained by using FASs mined separately from single graphs.

As future work, we will corroborate our conclusions with a deeper and wider
experimentation. Additionally, we plan to explore the usefulness of the FASs
mined from multi-graph collections, for image clustering.

Acknowledgment. This work was partly supported by the National Council of Sci-
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Abstract. Synonymy is a relation of equivalence between the meanings
of one or more words which allows the use of any word in an equiva-
lent way depending on the context. Given the difficulty of defining the
concordance between the meanings, the Natural Language Processing
has focused on researching computational techniques that allow defin-
ing pairs of synonyms automatically. In this paper, a method based on
lexico-syntactic patterns is proposed for the validation of semantic rela-
tions of synonymy between ontological concepts. An acronym will be
considered a type of synonym within our paper. The results obtained by
our proposed method were compared with the criterion of three experts,
resulting above 80% of accuracy in the concordances of opinion between
what is marked by the experts and the results of our proposed method.

Keywords: Patterns lexico-syntactic
Extraction of semantic relation · Synonymy

1 Introduction

The study of the meaning of words and how they are related is a task of the level-
semantic of Natural Language Processing (NLP), the intention of such study is
to discover the associations between words that allow defining whether a word
can contain an implicit meaning of other words or two words can share a certain
affinity that allows them to be used in the same context, these associations
between meanings are known as a semantic relation.

Considering the best-known semantic relations, we find the synonymy, it is
a relation of equivalence between the meaning of two or more words, Vidal [4]
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mentions that the synonymy is a relation of identity between meanings and have
two characteristics:

– The meaning is found in the same semantic field.
– The terms can be interchanged with each other, depending on the context.

To detect the synonymy between terms, the degree of agreement between
the meanings of each term is measured to determine the degree of equivalence
considering only the descriptive content of the meanings. An acronym will be
considered a type of synonym within our paper. Authors such as Garćıa [3]
remarks that given the nature of an acronym that is formed by the union of one
or more elements can be established a relation of equivalence between terms that
can be classified or signaling as synonymy.

Establishing the limits between the meaning of the concepts and considering
special cases such as acronyms cause that the synonimy validation be a complex
task for human experts because for define if exists a synonymy relation between
two or more concepts they should evaluate each meaning for find equivalence
between them for use a concept equally in a text without disrupting the main
idea.

For the above, Natural Language Processing (NLP) proposes techniques that
allow the automatic discovery and subsequent validation of the semantic relation
of synonymy between terms applied to domain ontologies. NLP has intervened
due to the difficulty that exists in the definition of limits that measure the
descriptive content of meaning between terms to perform an automatic detection
of synonymy between them and the treatment of particular cases of synonymy
that exists such as acronyms.

In this paper, we propose a method that uses lexico-syntactic patterns to
combine the extraction of acronyms with the validation of semantic relations of
synonymy between terms that come from a domain ontology. The main objective
is to create a method that is the independent semantic content of a concept and
it is based only on the placement of the concepts within the corpus, which will
allow migrating our system to other data sets.

The results of the proposed system were evaluated by comparison with
respect to the criteria of three human experts who determined the validity of
candidate semantic relations in terms of accuracy.

The content of the present paper is divided in the following way. In Sect. 2, the
state of the art about the task of extracting semantic relations is briefly discussed.
In Sect. 3 shows the approach addressed to the identification and validation of
semantic relations of synonymy into domain ontologies. In Sect. 4, the data set
considered, and the evaluation of the approach compared with the opinion of the
experts is presented. Finally, we show the obtained conclusions and we expose
the work in the future in Sect. 5.

2 Related Work

Natural Language Processing has been interested in searching for techniques for
the automatic extraction and validation of semantic relations, the approaches
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considered starting from the use of lexico-syntactic patterns until techniques
that involve supervised or unsupervised machine learning approaches.

Our analysis of the state of the art begins with Hearts [5], who makes an
extraction of semantic relations of hyponymy/hyponymy from texts using lexico-
syntactic patterns obtained by observation of the documents. Such research
results in a list of extraction patterns for the English language, however, the
technique used can be translated into other languages.

Ortega et al. [11] continues with the work of Hearts [5] by using patterns to
find pairs of hyperonyms but translates the research into web texts in Spanish.
Authors implement a method to assign a trust value to its patterns and thus
discard those that do not have a minimum, this value changes as the list of
patterns complements.

Simanovsky and Ulanov [12] keeps the pattern approach but translates it
into semantic relations of synonymy. The searching for candidate patterns is
done by extracting fragments of text about phrases that may contain references
to synonymy from Wikipedia texts, each candidate is evaluated to know the
value of trust and eliminate those that start with numbers or nouns.

On the other hand, Muller et al. [9] explores the identification of semantic
relations using graphs and measuring the distance between the nodes to deter-
mine whether there is a semantic relation. Graphs are constructed based on the
definitions of the words obtained from a dictionary.

Authors such as Lee et al. [8], use some machine learning approaches, specif-
ically, Convolutional Neural Networks (CNN) for the extraction of semantic
relations. CNNs are trained using characteristics such as position and a Part-
of-Speech (PoS) tagging. After the classification by the Convolutional Neural
Networks, the candidates are validated a second time using lexico-syntactic pat-
terns.

In addition, Tovar et al. [7,13–19] carried out the evaluation and validation
of semantic relations into ontologies, by pattern-based approaches or formal
concept analysis.

This paper addresses the validation of semantic relations such as synonymy
by a pattern-based approach. However, we consider acronyms as a special case of
synonymy, all of them applied to domain ontologies. The main aim of this paper
is to implement a system that is independent of the meaning words, which allows
portability to different datasets.

3 Proposed Approach

The proposed method for the validation of semantic relations of synonymy type
between ontological concepts is shown below:

1. Preprocessing.
(a) Ontology. The concepts and semantic relations of synonymy type are

extracted from a domain ontology using Jena1.
1 https://jena.apache.org.

https://jena.apache.org
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Table 1. Extraction of lexico-syntactic patterns of semantic relations of synonymy
between key phrases

1) Obtaining semantic
relations of synonymy
in the dataset

...
T19 Material 1281 1308 N-dodecylpyridinium bromide
T20 Material 1310 1314 DDPB
* Synonym-of T20 T19
...

Keyphrase Start End
N-dodecylpyridinium bromidr 1281 1308
DDPB 1310 1314

2) Mapping of key
phrases 1. Positions: [1281, 1308, 1310 1314 ]

Fragment of text to extract between the position 1281 - 1314
2. Text:

... [106]. A frequently employed surfactant was N-
dodecylpyridinium bromide (DDPB) [9,60,61,108,109]. Anionic...

3. The part extracted
N-dodecylpyridinium bromide (DDPB)

3) Obtaining the
lexico-syntactic pat-
tern 1. Extract of text

N-dodecylpyridinium bromide (DDPB)
2. Elimination of key phrases

N-dodecylpyridinium bromide (DDPB)
3. Pattern:

( )

Final pattern: S1 ( S2 ) Where S1 and S2 are key phrases identified

(b) Corpus. The domain corpus is split into sentences using the
sent tokenize2 function of the Python NLTK package. Then, the sen-
tences that have the two concepts that form the semantic relation of
synonymy are used to form a subcorpus.

2. Creation of a lexico-syntactic patterns list. In this phase, we used the
training dataset of Task 10, sub-task 3 of SemEval 2017 for the extraction of
lexico-syntactic patterns of semantic relations of synonymy between pairs of
key phrases. [2].
The pattern extraction process consists of the following phases:
(a) Obtaining semantic relations of synonymy in the dataset. From the train-

ing dataset, the start and end position of each pair of key phrases that
make up the semantic relation of synonymy definite is extracted, see
Table 1, row 1.

2 http://www.nltk.org/api/nltk.tokenize.html.

http://www.nltk.org/api/nltk.tokenize.html


Validation of Semantic Relation of Synonymy in Domain Ontologies 203

Table 2. List of patterns gathered (where S1 and S2 are ontological concepts)

Pattern Resource

S1 (S2)

S1 is often referred to as S2

S1 is referred to as S2

S1 alias S2

S1 aka S2

S1 as known as S2

S1 frequently abbreviated as S2

S1 usually called S2 [6]

S1 also called S2 [6]

S1 called as S2 [6]

S1 is called S2 [6]

S1 are called S2 [6]

S1 sometimes called S2 [1]

S1 known as S2 [10]

S1 also referred to as S2 [6]

S1 often described S2 [20]

S1 commonly known as S2 [6]

(b) Mapping of key phrases. The positions are ordered from lowest to highest
and the portion of text that is between the lowest value position and the
highest value is extracted (see Table 1, row 2).

(c) Obtaining the lexico-syntactic pattern. From the text extract obtained in
the previous step, the key phrases are removed to leave the text portion
between them (see Table 1, row 3).

Through this method of extraction, a total of 7 extracted patterns was
obtained, which were complemented with others from the literature, bring-
ing together a total of 17 lexico-syntactic patterns [1,6,10,20]. The patterns
obtained are shown in Table 2.

3. Obtaining a list of acronyms from the domain corpus. Since an
acronym can represent an equivalence relation, which is cataloged as syn-
onymy, we decided to implement the following algorithm to extract acronyms
in the domain corpus; as a complement to the extraction of semantic relations
of synonymy by lexico-syntactic patterns. The approach was applied directly
in the domain corpus and produced as output a list of acronyms. The process
is described below:
(a) The content of the document is split into sentences using regular expres-

sions to take as a separator a sequence of alphanumeric symbols in paren-
thesis.
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(b) For each sentence obtained, the sequence of alphanumeric symbols in
parentheses is separated from the rest of the sentence. After the text
obtained, the parentheses are removed to leave the internal content, which
will be the acronym. The rest of the sentence is separated using the func-
tion Word tokenize (see footnote 2). and the n terms are taken according
to the length of the acronym extracted, starting from the end of the set
of terms.

(c) The first letter of the terms extracted from the text is mapped to each
element that makes up the acronym. If all the letters coincide, it is deter-
mined that these terms correspond to the acronym and the semantic
relation of synonymy is established.

4. Evaluation of semantic relations. In this phase, for each semantic relation
of synonymy existing in the domain ontology, the following two procedures
are performed for its evaluation.
(a) Evaluation using lexico-syntactic patterns. In this phase, the con-

cepts C1 and C2 of the ontology and the lexico-syntactic patterns of
Table 2 are used to form regular expressions with the format C1 pattern
C2. They are used to look for them at the domain corpus. If the regu-
lar expression matches with some sentence in the corpus; the semantic
relation between the pair of concepts is considered synonymous and it is
evaluated as true.

(b) Evaluation using acronyms. If the pair of concepts C1 and C2 are in
the list of acronyms, it is determined that both form a semantic relation
of synonymy and is evaluated as true.

With the purpose of verifying the results, we use the knowledge of experts
for validating the semantic relations. In the next section, the results are pre-
sented.

4 Results and Discussion

The accuracy metric was used for the evaluation of the performance of the pro-
posed system. The equation of accuracy is shown in the Eq. 1.

Accuracy =
Quantity of correct cases

Total of cases
(1)

4.1 Dataset

The dataset consists of two ontologies, the first is in the domain of Artificial
Intelligence (AI), and the second in the domain of e-Learning standard SCORM
(SCORM) [21]. Each ontology contains a certain number of documents, tokens,
and vocabulary (see Table 3). In addition, Table 4 shows the data of the subcor-
pora of assessment created for each domain.

Table 5 shows the total number of concepts, total of non-taxonomic relations
and the total number of semantic relations of synonymy extracted from each
domain ontology.
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Table 3. Corpora of the domain

Domain Documents Tokens Vocabulary

AI 8 11,370 1,510

SCORM 36 34,497 1,325

Table 4. Subcorpora of the domain

Domain Sentences Tokens Vocabulary

AI 37 1,543 310

SCORM 39 1,680 325

Table 5. Elements extracted from the domain ontologies

Domain Concepts Non-taxonomic relations Semantic relations
of synonymy

AI 276 61 37

SCORM 1461 759 39

4.2 Experimental Results

Table 6 shows the results obtained from the approach using the accuracy mea-
sure. As can be seen, the system only considered as valid 22 of the 37 relations
for the AI ontology obtaining an accuracy of 0.59. In the case of the SCORM
ontology, only 13 of the 39 were obtained, achieving an accuracy of 0.33. Based
on these results, it was decided to validate the semantic relations of synonymy
by three experts.

Table 6. Experimental results obtained by the system

Ontology Semantic relations of synonymy Valid Accuracy

AI 37 22 0.59

SCORM 39 13 0.33

Each human expert was provided with the subcorpora of evaluation with one
or two samples of sentences, which contained the ontological concepts involved
in the semantic relation.

In Table 7, the results of the evaluation for each ontology are shown. In each
column, shows the number of relations that were classified as a synonym (column
Syn) and which were not considered as a synonym (column Not Syn) in accor-
dance with the experts (E1, E2, and E3) under the subcorpora of evaluation.

According to the obtained results, for the case of the IA ontology, the system
achieves an accuracy of 0.83 with the data recorded by the expert 1, 0.78 with
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Table 7. Validation results of the semantic relations of synonymy by experts.

Ontology System E1 E2 E3

AI Syn Not Syn Syn Not Syn Syn Not Syn Syn Not Syn

22 15 20 17 20 17 21 16

Matches 31 29 36

Accuracy 0.83 0.78 0.97

SCORM Syn Not Syn Syn Not Syn Syn Not Syn Syn Not Syn

13 26 13 26 13 26 13 26

Matches 33 33 31

Accuracy 0.85 0.85 0.80

the data of the expert 2 and 0.97 with the data of the expert 3. The system has
a greater coincidence with the expert 3 to achieve 36 results of 37, i.e., a 0.97
accuracy.

In the case of the SCORM ontology, it can be observed a behavior similar to
that presented with the AI ontology, according to the results of Table 7. Under
this ontology, the results of our system coincided with the first two experts
(E1, E2) and obtaining an accuracy of 0.85, while the matches were lower with
the third expert (E3) which penalized the accuracy down to 0.80.

According to the results obtained with the SCORM ontology is observed
abnormal behavior since the system and experts agree on 13 of the 26 relations
evaluated and are considered synonyms. However, to make the comparison of
results for the accuracy are observed different results.

According to the previous results, it can be concluded that the proposed
system works properly for the extraction and validation of semantic relations of
synonymy in the domain corpus. The system gives reliable results that coincide
with the opinion of experts, which indicates that the intention to create a system
that does a validation by patterns and consider the extraction of acronyms is reli-
able for the evaluation of semantic relations of synonymy in domain ontologies.

5 Conclusions

In this paper, a system is presented for the validation of semantic relations of
synonymy between concepts from domain ontologies. For this work, two ontolo-
gies were considered with its corresponding domain corpus, the first is over the
domain of Artificial Intelligence and the second in the domain of e-Learning
standard SCORM, each with semantic relations of synonymy.

The proposed approach makes a validation of relations using lexico- syntactic
patterns obtained from the dataset of the task 10 subtask 3 of SemEval 2017
and they are supplemented with other patterns obtained from the literature.
In addition, a special case of synonymy was identified called acronym, which,
according to some authors contains a degree of equivalence between terms that
can be classified as synonyms. The goal was to create a system that does not
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take external resources for the evaluation, resulting in a system that is portable
to other datasets.

The evaluation was carried out using the subcorpora created, however, the
evaluation resulted in a low accuracy. So, we recourse to the criterion of human
experts to validate manually relations and check whether the results obtained
were reliable. The subcorpora was provided to three experts who issued its eval-
uation, which was compared with the results obtained by the system.

The results show that the system gives reliable results that match the criteria
of experts, obtaining a 0.97 accuracy in the IA ontology and a 0.85 accuracy for
the SCORM ontology. The evaluation shows that the system under the subcor-
pora give competitive assessment results in the validation of semantic relation of
synonymy between concepts of domain ontologies and shows that the patterns-
based approach and extraction of acronyms gives satisfactory results regarding
the assessment issued by experts.

As a future scope of this work, it is planned to port the system to other
datasets to measure performance. In addition, to make a comparison of the sys-
tem against other approaches that use machine learning to make the detection of
semantic relations of synonymy between concepts coming from a domain ontol-
ogy.
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grado en Ciencia e Ingenieŕıa de la Computación (2013)

2. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: SemEval 2017
task 10: ScienceIE - extracting keyphrases and relations from scientific publica-
tions. In: Proceedings of the 11th International Workshop on Semantic Evaluation,
SemEval-2017, pp. 546–555. Association for Computational Linguistics, Vancou-
ver, August 2017. http://www.aclweb.org/anthology/S17-2091

3. Cardero, A.: Abreviaturas, acrónimos, iniciales, siglas y śımbolos en los vocabular-
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Abstract. The objective of text segmentation algorithms is a pixel-level
separation of characters from the image background. This task is difficult
due to several factors such as environmental aspects, image acquisition
problems, and complex textual content. Up to now, the MSER tech-
nique has been widely used to solve the problem due to its invariance
to geometric distortions, robustness to noise and illumination variations.
However, when pixels intensities are too low, the MSER method often
fails. In this paper, a new text segmentation method based on local phase
information is proposed. Phase-based stable regions are obtained while
the phase congruency values are used to select candidate regions. The
computer simulation results show the robustness of the proposed method
to different image degradations. Moreover, the method outperforms the
MSER technique in most of the cases.

Keywords: Text segmentation · MSER · Phase congruency
Shadow degradation · Nonuniform illumination
Scale-space monogenic signal

1 Introduction

Despite the image text segmentation seems to be a trivial task for human beings,
it is not such simple for computer vision systems. Besides, since the text segmen-
tation is one of the first stages of “end-to-end” text detection and recognition
applications, the segmentation accuracy plays an essential role in the overall per-
formance of a system. Documents classification, industrial automation, language
translator, traffic sign recognition, robotic navigation, multimedia retrieval, text
to voice converter, and augmented reality are some of the applications related
to text segmentation. Most of these applications utilize natural images with-
out any restrictions, compromising the text segmentation task by environment
aspects (nonuniform illumination, shadows, scene complexity), image acquisition
problems (low resolution, blurring, perspective distortion), and text content (ori-
entation, size, font style, texture, color) [1,2].

Until now, different techniques have been proposed for text segmentation such
as image binarization, edge extraction, color clustering, and Maximally Stable
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 211–220, 2018.
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Extremal Regions (MSER) extraction [1,2]. Nowadays, the MSER approach [3]
has become the most utilized method for text segmentation in imagery due
to its invariance to affine transformations and robustness to slight illumination
variations. Basically, the MSER method extracts the image regions that remain
stable under a certain number of thresholds. In particular, for text segmentation
task the MSER method considers candidate regions and then classifies them into
text or non-text components.

Recently, the use of all Extremal Regions (ER) was proposed [4,5]. Further-
more, since the MSER method works with any image that satisfies the totally
ordered set condition [3], then it can be also applied to multiple channels images
[6,7]. However, the use of all ER regions or multiple channels leads to appearance
of numerous repeated regions. Furthermore, since the MSER technique is based
on pixels intensities of the image, low contrast, shadows and high non-uniform
illumination variations decrease the method performance. So, rather than being
based on the local intensities variations, we propose a new text segmentation
method utilizing the local image phase spectrum. It is well known that image
phase contains most of the structural image information while it remains invari-
ant to intensity variations [8]. Thus, it is robust to low contrast, high brightness,
shadows, and illumination variations. The proposed phase-based segmentation
is designed by applying the MSER technique to the local phase image instead of
the intensity image. Additionally, the local phase congruency approach is used
to control the candidate region selection. Computer simulation shows a supe-
rior performance (up to 20%) of the proposed method comparing to that of
the MSER technique. Besides, the proposed method shows robustness to low
contrast, illumination variations, and shadow degradations.

This paper is organized as follows. In Sect. 2, the theoretical background
is presented. In Sect. 3, the proposed text segmentation method is described.
In Sect. 4, computer simulation results are presented and discussed. Section 5,
summarizes our conclusions.

2 Theoretical Background

For 1D signal, the local phase information is computed using the analytic signal
model; however, for 2D signals, the analytic signal is not defined. In the latter
case, 1D directional quadrature filters are usually used, but this approach is
computationally expensive. Felsberg and Sommer [9] proposed the scale-space
monogenic signal which can handle different structures of an image without
changing the image size.

2.1 Scale-Space Monogenic Signal and Phase Congruency Approach

Let be f(x, y) an image, and F (u, v) = F{f(t)} be its Fourier transform. The
scale-space monogenic signal representation is defined as [9],

FMbp(u, v) = Fbp(u, v) + iH · Fbp(u, v). (1)



Phase-Based Text Segmentation 213

where H = (H1,H2) is the transfer function of the first-order Riesz transform
in the frequency domain:

H1(u, v) = i
u√

u2 + v2
,H2(u, v) = i

v√
u2 + v2

, (2)

and Fbp(u, v) = Bs0,λ,k(u, v) ·F (u, v) represents the image F (u, v) filtered by the
band-pass filter

Bs0,λ,k(u, v) =
(
e−2πsoλk

√
u2+v2 − e−2πsoλk−1√

u2+v2
)

, (3)

where λ ∈ (0, 1) indicates the relative bandwidth, s0 indicates the coarsest scale,
and k ∈ N indicates the bandpass number.

The local amplitude A(x, y), local orientation θ(x, y), and local phase ϕ(x, y)1

can be computed as follows:

A =
√

(F−1{Fbp})2 + (F−1{H1 · Fbp})2 + (F−1{H2 · Fbp})2, (4)

θ = tan−1

(F−1{H2 · Fbp}
F−1{H1 · Fbp}

)
, (5)

ϕ = atan2

⎛
⎝

√
(F−1{H1 · Fbp})2 + (F−1{H2 · Fbp})2

F−1{Fbp}

⎞
⎠ . (6)

Figure 1 shows a block-diagram of the scale-space monogenic signal framework.
A local energy model was proposed [10]. This model argues that the biolog-

ical visual system locates features of interest by searching for maximum local
energy, and identifies the feature type (shadow, edge or line) by evaluating the
argument at that point. That is, edges, lines, and shadows can be detected at
such points where the Fourier components of the signal are maximum in the
phase distribution, called phase congruency. Continuing with this approach, a
dimensionless measure of phase congruency was proposed [11] as follows:

PC(x) = maxϕε[0,2π]

∑
n W (x)�An(x) [cos(ϕn(x) − ϕ(x))] − T �∑

n An(x) + ε
, (7)

where W (x) is a weight for the frequency spread; ε is a small constant to avoid
division by zero; T is a noise threshold parameter. The PC value indicates the
significance of the current feature: unity means the most significant feature and
zero indicates the lowest significance. We refer to the following papers [11,12]
for more details.

1 Note that the function atan2(|y|/x) = sign(y) · tan−1(|y|/x), where the factor
sign(y) indicates the direction of rotation.
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Fig. 1. Block-diagram of scale-space monogenic signal framework.

2.2 Maximally Stable External Regions

The MSER method was first introduced for grayscale images. Basically, the
MSER method extracts the image regions that remain stable under a certain
number of thresholds. Let Q1,Q2, . . . ,Qi−1,Qi, be a sequence of nested extremal
regions, i.e. Qi ⊂ Qi+1. The extremal region Qi∗ is maximally stable if only if
q(i) = |Qi+Δ�Qi−Δ|

|Qi| has a local minimum at i∗, with | · | denotes cardinality, and
Δ ∈ S is a parameter that considers the stability of the region under a certain
number of thresholds. For a formal explanation, we refer to [3] for more details.

3 Text Segmentation Method

In this section, the proposed phase-based text segmentation method is described.
Essentially, the phase-based regions are obtained by applying the MSER algo-
rithm to the local image phase spectrum rather than to intensity image. The local
phase congruency approach is used to control the candidate region selection.

As mentioned before, the local image phase ϕ(x, y) contains most of the
structural information of the image, while local amplitude gives an intensity
measure of the structure. Moreover, the local phase information allows us to
distinguish between edge, edge-line and line features [12].

A phase value of 0 indicates an upward going step, π/2 indicates a bright
line feature, π corresponds to a downward going step, and 3π/2 indicates a dark
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Fig. 2. Phase-based MSER regions filtered by different PC thresholds.

line feature. However, we are not interested to make a distinction between dark
or bright lines features, but we are interested in finding upward and downward
going step features for region detection. For this reason, we consider the range
from 0 to π, mapping the angles grater then π back into the range. The proposed
text segmentation method is explained below:

Step 1. Using the scale-space monogenic signal framework, the local phase
(Eq. 6) and local phase congruency (Eq. 7) are computed (see Fig. 1).
Step 2. Once the local phase image is obtained, the phase-based MSER regions
are formed by applying the MSER algorithm to the local image phase spec-
trum.
Step 3. The obtained phase regions are filtered by the mean phase congruency
value (PCmean) of the region contour (RC). The PCmean is computed as
follows:

PCmean(x, y) =
1
N

N∑
i=1

PC(x, y) · RC , (8)

where N = |RC |. If the PCmean(x, y) value is lower than a predefined threshold
(PCthreshold), the region is discarded as a possible candidate region. Figure 2
shows an example of the phase-based MSER image under different PCthreshold

values.
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4 Simulation Results

4.1 Experimental Setup

To analyze the tolerance of the proposed method to contrast and brightness
variations, shadows, and non-uniform illumination degradations, computer sim-
ulation was performed. Eight different images were selected from the ICDAR
2013 dataset2 (see Fig. 3). The selected images contain different symbols, font
types, sizes, orientations, and backgrounds. For noise and non-uniform illumi-
nation evaluation, each grayscale image was degraded by additive zero-mean
Gaussian noise with a Std. Dev. σ = (0, 30); and distorted by nonuniform illu-
mination using the Lambertian model defined as follows [13],

d(x, y) = cos
(

φ

2
− tan−1

(
ρ

cos(φ)
[
(sx − x)2 + (sy − y)2

]− 1
2

))
, (9)

where sx = ρ · tan(φ)cos(ψ) and sy = ρ · tan(φ)sin(ψ). The multiplicative
function d(x, y) depends on the parameter ρ that is the distance between a
point in the surface and the light source, and the parameters φ and ψ are tilt
and slang angles, respectively. In our experiments the following parameters were
used: φ = 45 and ψ = 90, varying the distance parameter ρ ∈ (2, 20). For
contrast and brightness evaluation, each image was degraded by low contrast
and high brightness simulated by the following equation:

f ′(x, y) = c · f(x, y) + b, (10)

where b ∈ (100, 200) and c ∈ (0, 1) represent the brightness and contrast param-
eters, respectively. Figure 4 shows examples of the synthetic degradations. To
evaluate the performance of the proposed method under shadow degradations,

Fig. 3. Images used for evaluation from ICDAR2013 dataset.

2 http://rrc.cvc.uab.es/.

http://rrc.cvc.uab.es/
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Fig. 4. Synthetic degradations. From up to down: low contrast, high brightness, nonuni-
form illumination, and additive noise. From left to right: degraded image, proposed
method result, and MSER method result.

eight different shadow templates were utilized. Degraded shadow images are
obtained by multiplying all the test images with shadow templates. Figure 5
shows an example of shadow degradations result.

4.2 Evaluation Protocol

The performance of the proposed text segmentation method is evaluated with
the character-level Recall rate [14] defined as the ratio between the total correctly
detected candidate regions and the ground truth characters. The recall measure
is computed using two different approaches for a fair comparison with other
methods. A region is considered as a character candidate: (1) if the bounding
box of the detected character matches at least 90% of the area of the ground
truth bounding box (R1), (2) if the similarity value is up to 50% (R2). The
similarity value is defined as follows [5]:

similarity(D,GT ) =
area(D) ∩ area(GT )
area(D) ∪ area(GT )

, (11)
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Fig. 5. Shadow degradations (I-VIII): (a) Original image, (b) image degraded by
shadow (V), (c) the proposed method result, (d) the MSER method result.

where D and GT represent detected and ground truth bounding box, respec-
tively. The similarity-Recall (R2) reflects the detected character equality better
than the R1 approach.

For the MSER algorithm, two evaluations were carried out. Using the
reported MSER parameter [15], that is, Δ = 4, maximum variation v = 0.5,
and minimum diversity d = 0.1 (denoted by param 1); and using the parameter
setting Δ = 5, maximum variation v = 0.25, and minimum diversity d = 0.2.
The parameter values in [5,14] are not presented.

4.3 Results

The simulation results of the proposed text segmentation method under additive
noise, low contrast, high brightness, non-uniform illumination variations, and
shadow degradations are shown in Fig. 6. The proposed method shows a bet-
ter performance up to 10% for low contrast and high brightness in most of the
images, and up to 20% for non-uniform illumination. For additive noise degra-
dations, the obtained results are similar, up to 90% in both cases. For shadow
degradations, the proposed method outperforms up to 20% of the MSER method
in most cases.

Finally, the proposed text segmentation method is compared with state-of-
the-art methods on the ICDAR 2013 dataset. Neumann and Matas [14] and Sung
et al. [5] methods are evaluated on ICDAR 2011 dataset (no longer available),
but the differences between both datasets, ICDAR 2011 and ICDAR2013, are
despicable. Comparison results are shown in Table 1 regarding character-level
Recall.
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Fig. 6. Simulation performance of the proposed method and the MSER technique
under high brightness, low contrast, non-uniform illumination, additive noise, and
shadow degradations.

Table 1. Character-level recall

Method R1 R2 # candidates

MSER (param 1) 0.82 0.78 12,359

Neumann [14] 0.85 - -

Saric [15] (param 2) 0.89 - 17,940

Sung et al. [5] 0.99 0.86 75,124

Proposed method (param 1) 0.89 0.88 16,956

Proposed method (param 2) 0.91 0.91 51,288

The proposed text segmentation method obtains the best result regarding
to the character-level similarity-Recall (R2) evaluation. Despite Sung method
achieves a better character-level Recall (R1), the similarity-Recall (R2) is lower
than that of the proposed method. This means that the detected regions by
the Sung method may not be completely correct and many detected regions
are contained within a larger ground truth region. Furthermore, the proposed
method obtains less candidate regions than that of the Sung method that means
that the proposed method is more accurate. These results show that the proposed
method yields more accurate segmentation performance than that of the tested
methods.
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5 Conclusion

In this paper, a text segmentation method is proposed. The method is based on
the local phase information of the image and the MSER method. The suggested
text segmentation method is robust to low contrast, high brightness, illumina-
tion changes, additive noise, and shadows degradations. Besides, the proposed
method obtains up to 20% improvement compared to the common MSER algo-
rithm under low contrast, non-uniform illumination, and shadows degradations.
As future work, we will further improve the text segmentation and character
recognition to design a reliable and accurate end-to-end scene text detection
and recognition system.
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Abstract. To build an Augmented Reality (AR) application it is neces-
sary to recognize a fiducial marker, then to calibrate the camera that is
viewing the 3D scene on the marker, and finally to draw a virtual object
over the image taken by the camera but in the virtual coordinate system
supposed also on the fiducial marker. The camera calibration step give
us the transformation matrix from 3D world to 2D on the screen, and the
pose of the marker with respect to the virtual coordinate system. An AR
application must run interactively with the user, and also in real time.
Performing all these calculations in a embedded device such as a Single
Board Computer (SBC), a tablet, or a smartphone, is a challenge because
a normal numerical analysis library is huge, and it is not designed for
such devices. In this article we present a lightweight numerical library,
it has been developed thinking in such computing restricted devices. We
show results on two AR applications developed for the Raspberry Pi
3 SBC.

Keywords: Augmented reality · Fiducial marker
Camera calibration · Homography estimation

1 Introduction

Augmented reality is a technology which superimposes computer generated
images on top of a user’s perception of the real world in real time [7]. AR has
important applications in fields such as videogamming, interactive marketing
and advertising, instructional aids and how-to for use, construction and mainte-
nance, and navigation [7].

Perhaps one of most successful application of AR could be in education [3].
As a new technology, AR could help to students to learn more effectively and
increase knowledge retention, relative to traditional 2D desktop interfaces. With
the aid of AR could be build the virtual interaction with complex phenomena
(showing the magnetic field, or the Earth layers, for example).
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In [4] authors analyze an AR application on sixty nine middle-school students.
Their results show an increase in student’s motivation, attention and motivation
factors or the learning environment based on augmented reality technology com-
pared with a more traditional learning environment. Authors also mention that
AR is not mature enough to be used massively in education.

Users in AR application need to learn how to build 3D scenes, how to draw
virtual objects, and how to manage, although amazing and exciting, a technology
that is complex.

OpenCV [2] is the open tool to learn Image Processing, Computer Vision, and
3D user interfaces. This is the facto standard in this field. This library has more
than 2500 optimized algorithms, which includes a comprehensive set of both
classic and state-of-the-art computer vision and machine learning algorithms.
But is the OpenCV library is far to be an easy tool, in its homepage there are
listed 52 books about how to learn it.

The idea of this paper is to offer a simpler way to process fiducial markers. In
Sect. 2 is presented the necessary components to build an AR application. Sect. 3
describes our proposed library that can be used in computationally restricted
devices. Sect. 4 shows an AR application build with our library and running on
the Raspberry Pi 3, a SBC that uses a 1.2 GHz 64-bits quad-core ARM Cortex-
A53 CPU and 1 GB of RAM. Finally, in Sect. 5, some conclusions are drawn.

2 Augmented Reality Application

The following steps are performed in a typical AR application: (1) An image
processing step to recognize a fiducial marker, (2) A computer vision step to
calibrate the camera, this is, to obtain the projection matrix that transforms
the 3D world viewing by the camera to a 2D plane that forms the viewed image;
this step also obtains the pose, this is, the rotation and translation of the marker
with to a virtual and global coordinate system. And finally, the step (3) that
draws a virtual object over the coordinate system fixed in the marker. The
augmented world is visualized only on the display, where it is possible to see the
projection of the virtual objects on the image generated by the camera.

Two very simple fiducial markers are shown in Fig. 1: one is a simple black
square, and the other is a pattern of two concentric circles [10]. The white area
in the background of both markers help them to be recognized by a computer: it
is a high contrast zone on the image. The black zone is supposed to be one of the
biggest black objects on the scene. Marker detection is performed with image
processing techniques: (1) a global threshold is applied to the input image which
produce a binary (blank and white) image, (2) some morphological erosion and
dilatation operations are applied to remove noise on the binarized image, and
a labeling of the all black components in the image is performed. These image
processing tasks were applied using library in [6].

Once we have the markers, the vertices positions must be calculated with
the marker in Fig. 1(a), and the points of each ellipse must the extracted from
marker in 1(b). With these data the homography can be estimated. Our library
helps to perform easily these steps. Now, these Computer Vision steps will be
described in detail.
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(a) A black square marker
(b) Two concentric circles marker

Fig. 1. Images of two very simple fiducial markers in use.

3 Description of the Lightweight Library

Homography calculation. To obtain a homography by the normalized DTL
algorithm [9] it is necessary to solve an overdetermined system of equations that
forms a matrix of size 2n × 8, where n is the number of point correspondences
between the marker model and an image of the same model. The easiest way to
solve this problem is using the QR decomposition computed with the modified
Gram?Schmidt algorithm [8]. In fact, this is the shortest code and easiest codifi-
cation to solve the QR decomposition. If the overdetermined system of equations
is expressed as Ah = b, h is found using normal equations doing:

QRh = b,

(QR)TQRh = (QR)Tb,

RTQTQRh = RTQTb,

Rh = QTb = c.

(1)

Here the system is already solved because matrix R is upper triangular and
h values are found by back-substitution, staring with hn−1 = can/rnn.

We use here a further way to compact the calculations, such as it was sug-
gested also by Golub and Van Loan [8]: the QR decomposition is calculated to
the extended matrix [A | b], of size 2n× 9, then one obtains Q[R |QTb], thus the
product QTb is obtained in the last column. Notice here that matrix Q is not
needed, thus the subroutine to solve the Ah = b is as (using the same notation
that in [8]):

A notice here that is important. The calculation of the homography is a very
well conditioned problem, then the use of the QR algorithm is justified. The only
way to get a pour conditioned problem is to use repeated points correspondences
to try to calculate the homography.

Eigendecomposition of a symmetric matrix of size 3 × 3. The eigende-
composition of a symmetric matrix A results in the matrices V D V T, where
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Algorithm 1. Solving Ah = b using QR decomposition
Require: Matrix A of size 2n × 8, vector b of size 2n
Ensure: Vector h
1: B = [A | b] � B has size 2n × 9
2: for k = 1 : 9 do
3: R(k, k) = ‖B(1 : 2n, k)‖2 � Norm of column vector k of B
4: v = B(1 : 2n, k)/R(k, k)
5: for j = k + 1 : 9 do
6: R(k, j) = vTB(1 : 2n, j)
7: B(1 : 2n, j) = B(1 : 2n, j) − vR(k, j)
8: end for
9: end for

10: � Back substitution stage:
11: h(8) = B(8, 9)/B(8, 8)
12: for i = 7 : 1 do
13: sum = 0
14: for j = i + 1 : 8 do
15: sum = sum + B(i, j)h(j)
16: end for
17: h(i) = (B(i, 9) − sum)/B(i, i)
18: end for

D is a diagonal matrix former with the eigenvalues of A, and V is a orthogonal
matrix where its columns are the eigenvectors corresponding to each eigenvalue
in D. This problem is simplified with matrices of size 3× 3 because is equivalent
to find the roots of a cubic equation [6,12].

SVD of a matrix of size 3 × 3. This problem is used to solve the orthogo-
nalization of a matrix, specifically when this matrix is a matrix obtained with
a linear method using a plane [13] or a circular marker [10]. The calibration of
a camera with both linear methods produces a rotation matrix R far of being
orthogonal, then to become orthogonal such matrix its Singular Value Decompo-
sition is applied: R = UD1V

T, and R′ = UV T is obtained, where R′ is already
orthogonal. In [13] it is demonstrated that the obtained R′ is the best orthogonal
matrix which minimizes the Frobenius norm of R′ − R.

Fitting an ellipse to a set of points. The fastest algorithm to fit a set of
point to an ellipse is by solving a least square problem that minimizes the sum
of squared algebraic distances [5]. Instead to solve this problem as an eigende-
composition of a 6 × 6 matrix, as it is in [5], this problem can be transformed
easily to solve three times a eigendecomposition of 3 × 3 matrices, or to find
three times the roots of three cubic equations [6].

Camera calibration using a marker of two concentric circles. This
marker is presented in [10]. First, it is necessary to recognize two ellipses. For
this task the previous method in the last paragraph can be used. With the two
recognized ellipses, the homography can be obtained directly as it is explained
in [10]. Here it is necessary to invert a 3× 3 matrix, thus its eigendecomposition
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can be used because the used matrices in this method are the representation of
a conic equation, which is symmetric and of 3 × 3 size.

4 Experiments and Results

To test our library against the results produced with a high level language, such
as Octave, to demonstrate the correctness of its calculations. We generate two
simulated images, each one from a square and two ellipses as the planar models
of the markers. From these models we use the pinhole camera model in (2) with
a known camera position to generate the two images shown in Fig. 2(b) and (c).
The used pinhole camera model is

λp = KR[I| − c]P, (2)

where p = [u, v, 1]T is a point over the image, P = [x, y, z, 1]T is a point in the
3D scene, c is the position of the camera, and R is a rotation matrix. Markers
are situated on the xy-plane, then P = [x, y, 0, 1]T and the camera model is
reduced as:

λp = KR[e1, e2, −c]P,

λp = K[r1, r2, −Rc]P,

λp = HP,

where I is the identity matrix I = [e1, e2, e3], and R = [r1, r2, r3], and we are
abusing the notation on P to still denote a homogeneous 2D point on the model
P = [x, y, 1]T. The used camera intrinsic parameters are in matrix K:

K =

⎡
⎣

1000 0 −300
0 1000 −200
0 0 −1

⎤
⎦ ,

to generate images of size 600 × 400 pixels, the principal point is situated in its
center at (300, 200).

Then we apply both codes, in C with out light library and with Octave, to
estimate both homographies H, and recover the rotation matrix and camera
position. Results are shown in Table 1.

Table 1. Results of camera calibration and pose estimation using the markers in Fig. 2

Language, marker f R = Rz(θ3)Ry(θ2)Rz(θ1)
(θ3, θ2, θ1)

Camera center

Ground truth 1000.0 (90.00, 57.69, -108.43) [20.00, −60.00, 40.00]T

Octave (square) 1043.1 (89.44, 58.44, -107.70) [19.97, −62.71, 40.45]T

C (square) 1043.1 (89.44, 58.44, -107.31) [19.74, −63.43, 40.44]T

Octave (circles) 1012.0 (89.95, 57.70, -114.19) [26.20, −58.40, 40.50]T

C (circles) 1005.5 (90.04, 57.67, -114.37) [26.27, −57.98, 40.30]T
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4 = [10 10]T

1 = [10 10]T

3 = [ 10 10]T

2 = [ 10 10]T

(a) The model of the square marker  0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600

(b) The projected square marker
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(d) The projected two concentric circles marker

Fig. 2. The square and two concentric circles markers and their projections used in the
experiment. Images in (b) and (d) are generated with the parameters detailed in text.

Details for this first experiment are as follows: The square model has vertices
{(10, 10), (−10, 10), (−10,−10), (10,−10)}. The two circles models have radius
10 and 5. Both markers are shown in Fig. 2(a) and (c), respectively. Both codes,
in C and Octave, for this experiment are available in http://cs.cinvestav.mx/
∼fraga/LightLib.tar.gz.

The results shown in Table 1 are not the best with respect to the ground
truth. This is because two reasons: (1) The marker images in Fig. 2(a) and (c)
where generated rounding the pixels locations to the nearest integers, and (2)
The pose calculated using the homography is based in a linear method which
is not the best solution. The solutions obtained and shown in Table 1 must be
refined with a non-linear method to improve their values. An alternative that
will be explored as future work is to use a PnP algorithm such as the one in
[11,14] to calculate the pose. The inconvenience of using a PnP algorithm is that
the camera must be calibrated in advance.

With the library were programmed two augmented reality applications shown
in Fig. 3. A virtual object is shown above the corresponding marker. It is possible
to move the marker in the real world, or to move, carefully, the camera. The
virtual object follows the marker on the monitor screen. We used images with a
resolution of 640×480 pixels, and then we obtained a processing frame rate of 30

http://cs.cinvestav.mx/~fraga/LightLib.tar.gz
http://cs.cinvestav.mx/~fraga/LightLib.tar.gz
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frames per second. The Raspberry Pi 3 camera has a buildin autofocus feature
[1], thus camera must be recalibrated at time to time. In our applications we
recalibrate the camera at every frame because it is possible that focus change due
this autofocus characteristic. In applications in Fig. 3 OpenGL 2.1 was used (this
is the version that supports the Raspberry Pi 3) using glut for input/output. The
glut function glutTimerFunc implements the timer that guide the main loop at
30 fps. Still could be possible to add a intelligent behavior to the application:
perhaps it is not necessary to recalibrate if the reprojection error of the marker
vertices is not to high. We are going to check this last possibility in the near
future.

Fig. 3. Two pictures from two applications of augmented reality working on the
Raspberry Pi 3

In OpenCV documentation in [2] it is available the SVD but not the QR
decomposition. It seems now that OpenCV uses its own SVD implementation.
In previous versions it used old Blas/Lapack numerical libraries (these libraries
are used also by Octave). These old numerical libraries are written in For-
tran language. We believe our small library uses memory more efficiently than
Blas/Lapack and because of this reason, it can run very fast.

5 Conclusions

We have developed a light numerical library which can be applied in augmented
reality application. We can calibrate a camera and calculate the pose for two
different markers.

This library is programmed in C language and is intended for computing
restricted devices such as smartphones, tablets and single board computers.

Results with our library are almost the same that the ones obtained with
Octave that is a high level numerical language.

We tested our library in the Raspberry Pi 3 SBC. A frame rate of 30 frames
per second with a camera resolution of 640 × 480 pixels was obtained.

As a future work we think it is necessary a function to calculate the marker
pose solving the PnP problem [14]. PnP problem solves the pose if camera intrin-
sic parameters are known. The method to obtain the pose based in the homog-
raphy, described in this article, is a linear method which has not the best results.
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Otherwise, it is necessary to refine the solution using a non-linear method, which
could be prohibitive in a real time application. It is necessary to investigate more
about this problem of pose detection.
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Abstract. The problem to find the matching of two set of points in
the plane is solved in this paper, using a combinatorial invariant from
Computational Geometry called Order Type. The problem is solved even
if one of the set points has a general projective transformation. We show
an application of this problem to recognize fiducial markers that can be
used in augmented reality.
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1 Introduction

The feature matching or feature correspondence is a very common subtask for
many tasks in Computer Vision. We find its application in camera calibration,
image aligning, image stitching, pattern recognition, 3D reconstruction, and aug-
mented reality. The task consists in characterizing and identifying points through
different images of a same scene or object from distinct points of views (with
difference of angles, distances, changes of illumination and projective transfor-
mations). In the last decade the problem has been widely studied and many
approaches have been developed [13]. The selection of the method depends on
the final application since the methods exploit different image aspects to solve
the problem. Two of the most popular and used methods [1,11] are SIFT [12]
and SURF [4] along with epipolar geometry constraints [9]. These methods are
based in the analysis of local regions (the analysis of the neighborhood pixels of
a given feature). These methods generate a descriptor for each salient feature on
images. The matching with these methods consists in propose a putative corre-
spondence between points of different images with the most similar descriptors.
Although SIFT and SURF are very popular and used, they are mainly suitable
to find matches between RGB images with high presence of textures.

In Computer Vision and Robotics, visual fiducials (artificial landmarks that
are easy to identify from images) are a very used tool to provide uncontrolled
scenarios of some reference to perform tasks as: automatic object identification,
SLAM [7,15], camera calibration [9], and camera pose estimation [9]. Visual
fiducials are commonly high reflectance (black and white) planar patterns that
encode a unique ID. Fiducials require of feature matching, specially to perform
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 229–237, 2018.
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camera pose estimation but they lack of complex textures to use methods like
SIFT of SURF. To perform the matching, some authors propose to exploit the
known characteristics (constant features) of the tags, e.g., border corners, feature
arrangements, distances, or colors.

When the two set of points are on planes, the translation, inplane rotation
and scale to match both sets, can be recovered in a close form [14]. With our
proposal it is possible to match the point sets even under a general rotation and
perspective transformations. Given the matching, then it is possible to calculate
the homography and from it to recover all the parameters for all the transfor-
mations [6,9].

This paper is structured as follows: in Sect. 2 we describe how Order Type
can be used to perform the point matching. In Sect. 3 we present an application
that validates our approach. Finally in Sect. 4 conclusions and future work are
drawn.

2 Order Type for Point Matching

Goodman and Pollack [8] first introduced Order Type (OT) as a method to
describe point sets in terms of the orientation of subsets of three points. OT can
be understood as a conceptual way for describing point sets in the space and it is
considered one of the most fundamental combinatorial descriptions of points on
the plane. It encodes for each triplet of points its orientation and thus reflects
most of the combinatorial properties of a given point set, avoiding the use of
metric information.

The number of OTs is finite. In recent years OT has been widely studied
and all existing OTs have been enumerated in the database provided in [2]. This
database provides an instance of each existing OTs with point set cardinality
up to eleven points (see Table 1). For simplicity, we denote as Ck the set with
point subsets of the same cardinality k, and each instance in Ck as Ck

l , where l

Table 1. Number of OTs by the point set cardinality.

Set |Ck| = Number of OTs

C3 1

C4 2

C5 3

C6 16

C7 135

C8 3 315

C9 158 817

C10 14 309 547

C11 2 334 512 907
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is the number of instance. OTs in Ck with k ≤ 8 are given in the database [2]
with a precision of 8 bits per point.

OT can be described using an Order Type Representation (OTR). OTRs can
be seen as data structures that quantify the triplets orientations. Many of them
have been proposed [3] but one of the most compact is the λ-matrix.

λ-matrix is an OTR originally proposed by Goodman and Pollack [8]. It is a
n × n matrix, for n points, in which each entry λ(i, j) represents the number of
points in the set that are on the left (positive) side of the oriented line through
points pi,pj , for i �= j. The orientation of a triplet of points (p1,p2,p3) can
be calculated by its signed area as the z value of the cross product of vectors
[p2 − p1, 0] and [p3 − p1, 0]. This cross product gives the double signed area of
the triangle formed by the triplet.

3

C4
2

C5
1

1

C4
1

2

3

4 2

1
2

3

4

5

1

4

Fig. 1. The two OTs with the set of four points and the first OT that can be formed
with five points.

In Fig. 1 it is shown the two OTs that can be obtained with four points, and
one instance of the first OT with n = 5. These sets have not the same point
positions that the sets in database in [2]. The lambda matrix for the labeling in
C1

4 shown in Fig. 1 is (do not care now about shown triangles, their utility will
be explained later): ⎡

⎢⎢⎣
− 2 1 0
0 − 2 1
1 0 − 2
2 1 0 −

⎤
⎥⎥⎦ (1)
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An important aspect to mention is that λ-matrix depends on points labeling.
Two different labelings of the same point set will correspond to two different
λ-matrices. Although λ-matrix is sensible to point set labeling, the OT is not [8].

If two point sets C1 and C2 have the same λ-matrix and thus the same OT, C1

and C2 will be combinatorially equivalent. Since there are n! possible labelings
in a point set, for each point set there will be n! associated λ-matrices. A naive
method to determine if two unlabeled point sets are combinatorially equivalent
is to fix a labeling in C1, compute its associated λ-matrix and compute the n!
λ-matrices of C2 until finding a coincidence of matrices.

A more efficient method is based in canonical order [8]. Canonical order is a
way to label elements in a point set in a counterclockwise way starting by those
points on the convex hull. All the three sets in Fig. 1 are labeled counterclockwise.

Since we can choose m = |convex hull(C)| different initial points, there will
also be m canonical orderings. The Graham’s algorithm [10] for convex hull
computation can be used to compute the canonical orderings. This algorithm
start by sorting points in counterclockwise order and later discards all points
that do not belong to the convex hull.

The method in [8] proposes to compute the λ-matrix associated to one canon-
ical order of C1, and test the λ-matrices of all canonical orderings of C2. With
this method the total number of λ-matrices comparisons is at most n in the case
when all points of C2 are on convex hull(C2). To fix one λ-matrix for both two
sets, we could choose the minimal lexicographical.

We analyze the OT database in [2] for C5, C6, C7, and C8 for checking
which instances are directly suitable for point matching. For each Ck

i instance we
count the number of canonical orderings with a λ−matrix equal to the minimal
lexicographical. We denote as Ek

i the instances with a unique minimal λ−matrix
that are directly suitable for point matching through OT. In Table 2 we show
the count for each Ek set with k = 5, . . . , 8.

Table 2. The number of OTs directly suitable for point matching.

Set |EK | =Number of OTs

E5 2

E6 11

E7 13

E8 3303

The two OTs in C4 and the first in set C5 (see Tables 1 and 2) are not
suitable for direct point matching purposes. These three OTs are shown in Fig.
1. If the triangles shown in the same Fig. 1 are also stored, then it is possible
to calculated similarly like λ-matrix but only checking of an edge exist between
each pair of points pi and pj , for i, j ∈ n and i �= j. The three possible labelings
and associated edge’s matrix for the set C4

2 are shown in Fig. 2. The second
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⎡
⎢⎢⎣
− 0 1 1
0 − 0 0
1 0 − 1
1 0 1 −

⎤
⎥⎥⎦

⎡
⎢⎢⎣
− 0 0 0
0 − 1 1
0 1 − 1
0 1 1 −

⎤
⎥⎥⎦

⎡
⎢⎢⎣
− 1 1 0
1 − 1 0
1 1 − 0
0 0 0 −

⎤
⎥⎥⎦

Fig. 2. The three possible canonical labelings for C4 and their associated edges matri-
ces. The second matrix is the minimal lexicographical, it corresponds to the invariant
labeling, and can be used for matching purposes.

edges matrix is the minimal lexicographical and can be used to match two sets
of points. The second labeling is invariant to geometrical transformations.

Pose Estimation. To perform the pose estimation between two set of points,
three main steps must be performed: (1) Point matching: it consists in identifying
each one of the points and their correspondences in image coordinates without
ambiguity. (2) Homography estimation: it consists in estimating the projective
transformation between the matched points on the model and the image. And
(3) Pose estimation: it is to obtain the relative rotation and translation between
two point sets through homography analysis. These three steps are described in
detail in subsequent paragraphs.

Given two point sets C (points on the model) and C ′ (points on the image)
we propose to perform the point to point matching using an invariant labeling.
Each λ–matrix or edge’s matrix has an associated point labeling. We propose
to use the point labeling associated to the minimal lexicographical λ–matrix (or
edge’s matrix) as the invariant labeling. The idea is to compute the invariant
labeling for the model point set L(C) and the invariant labeling for the point set
on the image L(C ′). With this approach, the solution is given by the association
(as matches) between the points in C with the same label in C ′, through L(C)
and L(C).

The process to choose the invariant labeling is illustrated in Fig. 3. In the
figure we show the 14-th point set in C6. We show the tree possible λ–matrices,
one for each canonical order (check out how the initial point is rotated in coun-
terclockwise direction), since there are three points on convex hull, only three
labelings are generated and three associated λ–matrices are obtained. In this
instance, the labeling in the middle is the one with the minimal lexicographical
λ–matrix, then the labeling in the middle is the invariant labeling that we use
for point matching purposes.
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⎡
⎢⎢⎢⎢⎢⎢⎣

− 4 3 2 1 0
0 − 2 3 1 4
1 2 − 3 2 2
2 1 1 − 3 3
3 3 2 1 − 1
4 0 2 1 3 −

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

− 4 3 2 1 0
0 − 1 2 3 4
1 3 − 1 3 2
2 2 3 − 2 1
3 1 1 2 − 3
4 0 2 3 1 0−

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

− 4 3 2 1 0
0 − 1 3 2 4
1 3 − 2 1 3
2 1 2 − 3 2
3 2 3 1 − 1
4 0 1 2 3 −

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 3. The 14-th point set in C6, its three canonical orderings, and their associated
λ–matrix. The λ–matrix in the middle is the minimal lexicographical, thus the labeling
in the middle is the invariant labeling.

Homography Estimation. To model the image generation process we use
the camera pinhole model [9]. Given a point set C, it is transformed to the
image coordinates by the expression: λC ′ = HC, where C ′ is the transformed
point set in image coordinates, H ∈ R

3×3 is an homography, i.e., a projective
transformation that maps points on a plane (points in C) to another (pixels
in the image), and λ is an unknown scale factor. H = K[r1r2, t] comprises
the camera characteristics and also contains information about the relative pose

between the camera and in our case the tag. K =

⎡
⎣

fx s u0

0 fy v0
0 0 1

⎤
⎦ , is known as

the camera matrix and comprises the focal distances fx, fy, obliqueness s, and
principal point [u0, v0]T. R = [r1, r3, r3] is a rotation matrix with ri ∈ R3×1

columns, and t ∈ R3×1 is a translation vector.
In this paper we estimate homography H through the normalized DTL algo-

rithm [9] using all the matches between C and C ′.
To obtain the pose between the camera and the tag, i.e., the rotation matrix

R and the translation vector t from the decomposition of the homography H.
We apply the Zhang’s method in [16] using the model and only one image. With
this method we obtain an approximation for the intrinsic parameters in matrix
K and also the R and t for the pose.

3 Application

To test the feature matching we implemented an Augmented Reality demo. We
take three feature suitable OT instances and we generate their respective fiducial
marker using triangle vertexes to identify the point positions.
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In our application we solve the feature matching using the procedure
described previously, then we estimated homography by DTL and point nor-
malization [9] using the seven vertexes inside data area, and finally we obtain
the pose to place virtual objects. In Fig. 4 we show the result for this experiment,
we observe the detected vertexes as green dots, tag axes: x (red), y (green), and
three virtual objects (three cubes rotating in their own vertical axis), one placed
at center of the tag and two other at two opposite corners.

Fig. 4. Augmented reality application. Six images rotating the marker. The pose is
fully obtained (check out how axes lines rotates with the marker).

Also, here we compare the pose estimated with two methods and four con-
ditions: (a) the pose estimated using the homography with the four vertices of
the square marker, (b) the pose estimated using the homography and the seven
points of our fiducial marker, (c) and (d) the same conditions that in (a) and
(b) but using the infinitesimal algorithm in [5]. Our fiducial marker at position
θ1 = 0 is shown in Fig. 5. We used the camera model λ1p = K[R|t]P, where
λ1 is an arbitrary scale factor, p a point on the image, K the matrix of camera
intrinsic parameters, R = Rz(θ3)Ry(θ2)Rz(θ1) a rotation matrix, and P a 3D
point.

We add Gaussian noise with zero mean and a standard deviation of 1 pixel
to each x and y point coordinate. The average of 30 estimations of the error in
θ1 angle, and the error in t position vector are shown in Fig. 6. The estimation
of using Zhang’s method described in Subsection 2 gives a lesser error using four
points because the square (see Fig. 5) is bigger than the seven points pattern.
The error is similar using the better, and refined, infinitesimal method (IPPE in
Fig. 6) in [5]. In Fig. 6 to the left, it is also shown that the estimation of θ1 only
cover a range of 90◦ (the error is around 90◦ and it is not show on the graph)
using four points; and this angle is fully recovered using the seven point of our
marker.
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Fig. 5. Our fiducial marker in perspective at position θ1 = 0.

Fig. 6. The average of 30 estimations of θ1 (to the left) and t (to the right).

4 Conclusion

In this work we study how Order Type can be used for point set matching. We
have been used very low number of points (less than nine). We show an appli-
cation in detection and pose estimation for a fiducial marker that can be used
in augmented reality.

As future work we aim to develop an strategy to support occlusion in the
markers, also to study OT behavior with more than eight points in real applica-
tions, and to investigate the use of OT to solve other Computer Vision tasks.
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Abstract. In the literature, all methods that represent Maya hiero-
glyphs compute local descriptors from the hieroglyph foreground. How-
ever, the background of a hieroglyph also contains information of its
shape. Therefore, in this paper, we propose a new Maya hieroglyph rep-
resentation that includes information from both, the foreground and the
background. Our experimental results show that our proposal for repre-
senting Maya hieroglyphs allows obtaining better retrieval results than
those previously reported in the state of the art.

Keywords: Hieroglyphs · Maya hieroglyphs
Hieroglyph representation · Foreground · Background

1 Introduction

Hieroglyph representation has emerged from the need of carrying out tasks
that support or facilitate the study of inscriptions containing ancient writing.
In the literature, Maya hieroglyph representation has been faced following two
approaches: The first one consists in representing each hieroglyph by means
of multiple local descriptors [1,2]. The second one combines the local descrip-
tors computed in the first approach with the Bag of Visual Words (BoVW)
model [3,4]. This last approach has reported the best results. In this approach,
the representation that reports the best results for image retrieval [3] starts
pre-processing the hieroglyph foreground by thinning it to one pixel with. The
foreground corresponds to all lines and strokes in the image. Then, a subset
of interest points is obtained from all points in the thinned foreground, and
for each interest point a HOOSC (Histogram of Orientation Shape-Context) [2]
local descriptor is computed. Finally, for each hieroglyph a vector-based repre-
sentation is obtained through these local descriptors under the BoVW model [5].
In the literature, several works [3,4,6,7] compute local descriptors from thinned
Maya hieroglyph images. In all these works only the foreground is used. However,
the background of a hieroglyph also contains information of its shape. For this
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 238–247, 2018.
https://doi.org/10.1007/978-3-319-92198-3_24
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reason, in this work, we propose a new hieroglyph representation which includes
foreground and background information. Our experiments show that our pro-
posal obtains better hieroglyph retrieval results than other works reported in
the state of the art.

This paper is organized as follows: In Sect. 2, we describe our proposal.
Section 3 shows our experimental results. Finally, conclusions and future work
are presented in Sect. 4.

2 Proposed Method

As we have already mentioned, the background of a hieroglyph also contains
useful information, which could be used for Maya hieroglyph representation.

For this reason, in this work we propose including into the most success-
ful Maya hieroglyph representation [3], information from the foreground and
the background of a hieroglyph. Our proposal starts by pre-processing each
hieroglyph by thinning separately its foreground and its background. The pre-
processing of the image is described in Sect. 2.1. Then, a subset (a percentage)
of interest points is randomly selected from the thinned foreground. After, from
each interest point a local descriptor is computed, but considering both, the
thinned foreground and the thinned background of the hieroglyph (Sect. 2.2).
Once the local descriptors have been computed, each hieroglyph is represented
following the BoVW model, in the same way as in [3] (Sect. 2.3).

2.1 Pre-processing a Maya Hieroglyph

Let H be the binary shape of a Maya hieroglyph, whose pixels can take 0 or
1 values. In this work, the foreground is the set of pixels with 1 value (white
pixels), and the background is the set of pixels with 0 value (black pixels).

We obtain the thinned foreground and the thinned background by using the
thinning process presented in [8]. To obtain the thinned foreground, we directly
apply [8] in H (see Fig. 1a and b). For computing the thinned background, the
complement of H is previously obtained (see Fig. 1c and d). The complement of

Fig. 1. Thinned foreground and background: (a) Original hieroglyph. (b) Thinned
foreground. (c) Complement of (a). (d) Thinned background. Edges coming from the
border are marked in red. (e) Final thinned background. (Color figure online)
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a binary image is obtained by reversing all pixels values, which means that zeros
become ones and viceversa. During the computation of the thinned background,
there arise some branches coming from border (see Fig. 1d). Since these branches
do not represent important details of the hieroglyphs, they are eliminated (see
Fig. 1e).

2.2 Computing Local Descriptors

Once the thinned foreground and the thinned background have been computed,
a set of local descriptors are computed as follows. Let P and Q be the sets
of points in the thinned foreground and the thinned background, respectively.
First, we compute a subset (i.e. a percentage) of interest points, denoted as P ′,
from the thinned foreground, by uniform random sampling [3]. Then, for each
point p′

i ∈ P ′ a local descriptor is computed but unlike [3] by using all points in
P ∪ Q (see Fig. 2).

Fig. 2. Computing local descriptors: (a) Interest points (red) from thinned foreground.
(b) Thinned foreground (black) and background (blue). (c) Local descriptor computed
from a interest point using the thinned foreground and the thinned background (Color
figure online)

2.3 Representing Maya Hieroglyphs

Once the local descriptors are computed for all the hieroglyphs in the training set,
these local descriptors are clustered and the centroid of each cluster is considered
a visual word in the visual vocabulary.

Then, each local descriptor in each hieroglyph is replaced by its closest visual
word in the visual vocabulary. Finally, each hieroglyph is represented as a vector
where the i−th entry will contain the frequency in the hieroglyph of the i−th
visual word in the visual vocabulary.

3 Experiments

In this section, we compare our proposal, which represents Maya hieroglyphs by
including foreground and background information, against the most successful



Including Foreground and Background Information 241

method for representing Maya hieroglyphs reported in the literature [3], which
only includes information from the foreground.

For our experiments, two Maya hieroglyph databases were used. The first
database [4], denoted as Maya-I, contains 240 instances distributed over 24 cat-
egories (10 Maya hieroglyphs per category). An example from each category is
shown in Fig. 3. The second database [3], denoted as Maya-II, contains 1043
instances distributed over 25 categories. A histogram with the number of hiero-
glyphs per category and an instance from each one, is shown in Fig. 4.

T1 T17 T23 T24 T25 T59 T61 T82

T92 T102 T103 T106 T110 T116 T117 T126

T136 T173 T178 T181 T229 T501 T534 T671

Fig. 3. Examples of hieroglyphs from the Maya-I database; an instance from each
category is shown.

T1 T17 T23 T24 T24 T59 T61

T82 T92 T102 T103 T106 T108 T110

T116 T117 T126 T136 T173 T178 T181

T229 T501 T534 T671

Fig. 4. Examples of hieroglyphs from the Maya-II database; an instance from each
category is shown. The histogram shows the number of instances per category.

Since Maya-I and Maya-II databases contain hieroglyphs with different sizes,
before pre-processing the hieroglyphs, all of them were resized to 256 × 256
pixels. n these databases, some hieroglyphs contain noisy regions (see Fig. 5),
which often arise from the digitalization process. If these regions are not removed
before the thinning process, many additional/unwanted branches that do not
represent useful image information and that negatively affect the hieroglyph
representation, can arise (see Fig. 6). In order to remove most of these noisy
regions, we apply the noise filter proposed in [9] (see Fig. 7).
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Fig. 5. Maya hieroglyphs with noisy regions, marked in red (Color figure online)

Fig. 6. Example of the thinned foreground and background of a hieroglyph, without
eliminating noisy regions. (a) Original image. (b) Thinned foreground. (c) Complement
of (a). (d) Thinned background. In both, (c) and (d), there are unwanted branches
coming from noisy regions.

Fig. 7. Example of the thinned foreground and background of the same hieroglyph
shown in Fig. 6, but after eliminating noisy regions. (a) Original image without noisy
regions. (b) Thinned foreground. (c) Complement of (a). (d) Thinned background. In
both cases, most of the unwanted branches were eliminated.

In our experiments, as well as in [3], we use 10% of the points in the thinned
foreground as interest points, and we also use HOOSC4 [3] as local descriptor.
We build a visual vocabulary with 1500 visual words by applying k-means, with
k = 1500.

As we mentioned before, for showing the advantages of our proposed repre-
sentation (denoted as “Foreground & Background”), we compare our proposal, in
the context of image retrieval, against the method presented in [3], which will be
denoted as “Foreground”. All experiments were conducted using five-fold cross-
validation. In each experiment, four folds (80% of Maya hieroglyphs from each
class) were used as training set, and one fold (20% of Maya hieroglyphs from each
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class) was used as query images. From the training set, the visual vocabulary
was computed. We run each experiment three times in each partition and the
average of the mean average precision (average mAP) for all queries is reported.
Table 1 shows the average mAP obtained for Maya-I and Maya-II databases,
using the compared Maya hieroglyph representations for image retrieval.

Table 1. Average mAP of our proposal (Foreground & Background) and the method
proposed in [3] (Foreground) for Maya-I and Maya-II

Method Database

Maya-I Maya-II

Foreground 0.2872 0.3131

Foreground & Background 0.3750 0.4564

As we can see in Table 1, in both databases, our proposal “Foreground &
Background” outperformed the retrieval results (in terms of average mAP)
obtained by “Foreground” [3].

In Fig. 8, we present graphs of the average of the average precision (average
AP) vs standard recall, for the Maya-I and Maya-II databases. Each graph
shows the results obtained by our proposal and the hieroglyph representation
presented in [3], both using 10% of interest points (which are obtained from the
thinned foreground) and HOOSC4 as local descriptor. These graphs correspond
to the results presented in Table 1. As it can be seen in Fig. 8, our method in all
intervals (standard recall), achieves the best average AP.

(a) Maya-I (b) Maya-II

Fig. 8. Average AP vs standar recall of “Foreground & Background” (our proposal)
and “Foreground” [3], using 10% of interest points and HOOSC4 local descriptors, for
(a) Maya-I and (b) Maya-II.

We carry out an additional experiment, where our proposal is evaluated by
using different local descriptors, including SC [10], HOOSC [2], HOOSC4 [3] and



244 L. A. Pinilla-Buitrago et al.

HOOSC128 [11]. We also show the results using different percentages of interest
points (5%, 10% and 20%). These results are shown in Tables 2 and 3 for Maya-I
and Maya-II, respectively.

Table 2. Average mAP of our proposal (Foreground & Background) and the method
proposed in [3] (Foreground) for Maya-I, using different local descriptors.

% Points Method Descriptor

SC HOOSC HOOSC4 HOOSC128

5% Foreground 0.1448 0.1775 0.2339 0.1864

Foreground & Background 0.1847 0.2228 0.2972 0.2424

10% Foreground 0.1905 0.1977 0.2872 0.2262

Foreground & Background 0.2425 0.2583 0.3750 0.2969

20% Foreground 0.2515 0.2393 0.3341 0.2833

Foreground & Background 0.2543 0.2871 0.4126 0.3245

Table 3. Average mAP of our proposal (Foreground & Background) and the method
proposed in [3] (Foreground) for Maya-II, using different local descriptors.

% Points Method Descriptor

SC HOOSC HOOSC4 HOOSC128

5% Foreground 0.1266 0.1759 0.2192 0.2460

Foreground & Background 0.1698 0.2975 0.3591 0.3319

10% Foreground 0.1797 0.2592 0.3131 0.3463

Foreground & Background 0.2472 0.3628 0.4564 0.4129

20% Foreground 0.2716 0.3275 0.3781 0.4045

Foreground & Background 0.2886 0.3969 0.4979 0.4513

In Tables 2 and 3, we can see that, regardless the local descriptor and the per-
centage of the interest points used, our proposal always obtains the best average
mAP results. This means that the background includes useful information for
hieroglyph representation, which helps to improve the quality of the retrieval.

Figures 9 and 10 show the average mAP results presented in Tables 2 and 3,
respectively. In these figures, we can clearly see that the average mAP increases
as the percentage of interest points increases. The retrieval results obtained by
our proposal outperforms in all cases the results obtained in [3].

In both databases, the best average mAP results were obtained with our
proposal by using 20% of interest points with HOOSC4 local descriptors. In
Fig. 11 we show these results for both databases, in terms of the average AP vs
standard recall. In this figure we can see that the average AP obtained by our
proposal outperforms, in all cases, the results obtained using only information
from the foreground as in [3].
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Fig. 9. Average mAP of our proposal (Foreground & Background) and the method
proposed in [3] (Foreground) for Maya-I, using different percentages of interest points
and different local descriptors.

Fig. 10. Average mAP of our proposal (Foreground & Background) and the method
proposed in [3] (Foreground) for Maya-II, using different percentages of interest points
and different local descriptors.

(a) Maya-I (b) Maya-II

Fig. 11. Average mAP of our proposal (Foreground & Background) and the method
proposed in [3] (Foreground) using 20% of interest points and HOOSC4 local descrip-
tors, for (a) Maya-I and (b) Maya-II.
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4 Conclusions

In this work, we proposed a Maya hieroglyph representation under the BoVW
model, which includes foreground and background information. From our experi-
ments, we can conclude that regardless the percentage of interest points and the
local descriptor used, our proposal for Maya hieroglyph representation allows
obtaining better retrieval results than those obtained by the most successful
method for representing Maya hieroglyphs reported in the literature.

As future work, we will explore annother thinning technique to look at for
improvements and see if there is an impact in the representation process. Fur-
thermore, we will explore different ways of taking into account information of
the background for building better hieroglyph representations.
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J.F., Rodŕıguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 145–
154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38989-4 15

5. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching
in videos. In: Proceedings of the International Conference on Computer Vision, vol.
2, pp. 1470–1477 (2003)

6. Roman-Rangel, E., Marchand-Maillet, S.: Shape-based detection of maya hiero-
glyphs using weighted bag representations. Pattern Recogn. 48(4), 1161–1173
(2015)

7. Seidl, M., Wieser, E., Alexander, C.: Automated classification of petroglyphs. Digit.
Appl. Archaeol. Cultural Heritage 2(2), 196–212 (2015). Digital imaging techniques
for the study of prehistoric rock art.

8. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns.
Commun. ACM 27(3), 236–239 (1984)

9. Vincent, L.: Morphological area openings and closings for grey-scale images. In:
O, Y.-L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Pic-
ture, pp. 197–208. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-662-
03039-4 13

https://doi.org/10.1007/978-3-642-38989-4_15
https://doi.org/10.1007/978-3-662-03039-4_13
https://doi.org/10.1007/978-3-662-03039-4_13


Including Foreground and Background Information 247

10. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape
matching and object recognition. In: NIPS, pp. 831–837 (2000)

11. Roman-Rangel, E., Marchand-Maillet, S.: HOOSC128: a more robust local shape
descriptor. In: Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-Lopez, J.A.,
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Abstract. This paper presents a fast algorithm for camera selection
in a robotic multi-camera localization system. The scenario we study is
that where a robot is navigating in an indoor environment using a four-
camera vision system to localize itself inside the world. In this context,
when something occludes the current camera used for localization, the
system has to switch to one of the other three available cameras to remain
localized. In this context, the question that arises is that of “what camera
should be selected?”. We address this by proposing an approach that
aims at selecting the next best view to carry on the localization. For
that, the number of static features at each direction is estimated using
the optical flow. In order to validate our approach, experiments in a real
scenario with a mobile robot system are presented.

Keywords: Multi-camera navigation · Multi-camera localization
Guidance

1 Introduction

Nowadays, by using conventional cameras it is possible to obtain a set of images,
which can be processed in order to obtain the estimated position of the robot
in real time [7]. However, multi-camera approaches have also been proposed as
having more than one camera observing different parts of the scene and consti-
tute an attractive approach that can be helpful when autonomous navigation is
performed. One application of these multi-camera approaches can be found in
[15], where more than two cameras are used for eliminating motion ambiguity
problems in a visual odometry system.

Motivated by the advantages of using multi-camera systems capable of cap-
turing an approximate 360◦ field of view, in this work we explore the scenario
of when the localization system is partially or totally occluded in the current
active view, this is, in one of the cameras that is currently being used for feature
tracking and localization. In this scenario, one of the available cameras has to
be selected to avoid tracking loss. Motivated by this, we propose an efficient
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 248–257, 2018.
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method for camera selection aiming at maintaining localization in the event of
camera occlusion.

Our approach is based under the assumption that only one view is used for
localization while the rest of the cameras are used for relocalization in case an
obstruction in the main view is presented. Therefore, the contribution of this
work is two fold: (i) a methodology based on the optical flow exhibited by the
scene structure w.r.t. is presented in order to estimate the velocity of the visual
texture observed by the camera and use it to distinguish motion from steadiness;
and (ii) we present a histogram-based approach in order to quantify the evolution
of the texture’s motion frame by frame. This evolution is assessed in terms of
how steady or unsteady scenes are along the time.

In order to present our contribution, this paper is organized as follows: Sect. 2
presents the related work; Sect. 3 provides a description of our system. In Sect. 4
the proposed algorithm is described while in Sect. 5 experiments are conducted
in order to make clear the idea of this paper. Finally, in Sect. 6 conclusion and
future work are included.

2 Related Work

Arguably, a multi-camera rig sensor may arises as a better choice than using an
omni-directional camera [18] to address different problems, i.e. the localization
[14]. The latter is due to the fact that several conventional cameras mounted in a
rig can be set up to obtain a wider field of view. In contrast, an omni-directional
system may have a superior field of view but at the expense of exhibiting a strong
distortion, where calibration and measurement process are not straightforward.

In [15] the authors use a multi-camera stereo rig to solve motion ambiguity
problems in their visual odometry process. In [12], a framework is described for
6D absolute scale motion and structure estimation for a stereo multi-camera
system with non-overlapping fields of view in indoor environments. In [2] the
authors introduces a testbed for sensor and robot network systems composed
of 10 cameras and 5 mobile robots for self-localization and obstacle avoidance
using machine vision and wireless communication. In [10] the authors present
an extension of the monocular ORB-SLAM for multiple cameras alongside an
inertial measurement unit (IMU) and a multi-camera SLAM is proposed in [11]
based on a probabilistic approach for data association, that takes into account
that features can also move between cameras under robot motion.

Several visual SLAM algorithms use keyframes to reduce the computational
cost for developing online optimization. Entropy handling in the keyframes inser-
tion improves significantly the system’s ability to localize. This approach is
recently presented by [5] and is implemented within the omni-directional multi-
camera parallel tracking and mapping framework. Another interesting recent
work is proposed by Harmat et al. [9]. They addressed the pose problem for
UAV’s using Multiple fish-eye cameras for tracking and mapping a small UAV
in unstructured environment systems. Their approach improves the PTAM [13]
pose estimation with the multi-camera rig.
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Besides of localization, a multi-camera stereo rig may be used to address
another kind of problems, like in the work proposed by Akash et al. [1], where a
method for performing a fast 6-DOF head pose tracking using a cluster of rolling
shutter cameras is proposed in order to deal with end-to-end latency challenge
in Augmented Reality/Virtual Reality (AR/VR) applications.

3 System Overview

The architecture proposed in this paper counts of two parts (i) the Guidance
sensor (see Fig. 1(a)) and (ii) a service robot (see Fig. 1(b)). Technically, the
Guidance sensor is an upgraded version of Zhou et al.’s work [19] which is a visual
mapping solution based on four cameras and a single processing chip-Altera’s
SoC FPGA. In our case, the Guidance is a multi-camera rig that captures up to
5 stereo pairs with a depth image associated to each stereo pair at a frequency
of 18 fps.

(a) Guidance sensor. (b) Robot Sabina.

Fig. 1. (a) Guidance sensor: this image shows four of its five stereo+ultrasound cam-
eras, which return gray and depth images, the sensor can be used to observe the scene
in almost 360◦. (b) Robot Sabina with the Guidance sensor on the top of it.

The way camera units are located in the rig enables the observation of the
world in five directions (front, back, left, right and top). The SDK, made avail-
able by the manufacturer [8], enables acquiering up to 10 gray images (from
the 5 stereo pairs) simultaneously, with the caveat that only 2 depth images
can be accessed simultaneously at a frequency of 18 Hz. Considering that we
are interested in multi-camera localization within dynamic environments where
laser-odometry may not be sufficient, we test our algorithm using a service robot
based on a PatrolBot platform. The platform has a sonar ring, two wheels with
independent motors with encoders, a Laser SICK LMS200, a video camera Canon
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VCC5, speakers, and an integrated PC. The integration of this novel visual sens-
ing platform with our multi-threading probabilistic visual odometry framework
allows us to estimate the robot’s localization in a more accurate way.

4 Velocity Map for Camera Selection

The algorithm proposed in this work is based on the extraction of the velocity
map from each sensor unit through the optical flow computation [6]. For that,
only left cameras of each stereo pair are enabled (front, back, right, left) in order
to return grey images of the world in approximate 360◦. However, even though
we have four cameras observing the world at the same time, only one of these is
used for localization (main view) in order to reduce computational times. The
rest of the cameras are used as a backup in case the main view is obstructed.
Obstructions are detected by the algorithm proposed in Sect. 4.1 and the way
the next best view is selected is depicted in Sect. 4.2.

4.1 Camera-Blocking Detection

Let Ci ∈ [front, back, right, left] with i ∈ [1, 2, 3, 4] be the four different view
directions taken from Guidance. For each Ci the optical flow Oflow is computed
at every consecutive pair of frames fi and fi+1. After that, a set of ORB features
[17] are computed and filtered by a threshold Vmin (see Eq. 1). We choose ORB
features because these are basically a fusion of FAST keypoints detector [16] and
BRIEF descriptors [3] with several modifications to enhance the performance.

card(Fj)i =
∣
∣
∣x ∈ F j

i : ‖Oflow(x)‖ < Vmin

∣
∣
∣ (1)

In Eq. 1, card(·) represents the cardinality of the set Fj , F j is the set of all
features such that their velocity are less than the threshold Vmin (static features),
x is a feature computed by the ORB extractor, F j

i represents the set of features
computed in the jth frame of the ith camera, ||Oflow(x)|| is the magnitude of the
optical flow at x and Vmin represents the maximum velocity for which a feature
is considered static (see Fig. 2).

For every camera direction Ci a queue Qi is created and filled with the
number of static features of each frame (Fj

i ). If the size of the Qi queue is equal
to a given number of frames (NF) the older value of Qi is released for storing
a new one. The number NF is directly related with the time window to be
analyzed and the frequency of the video device. For instance, if the sensor have
a frequency of 18 fps and you want to store the last 2 s, then you have to set
NF = 36. In other words, NF = fps × (seconds to store).

Qi =
{

card(F0
i ), card(F1

i ), ..., card(FNF
i )

}

(2)

In order to perform the obstacle detection, a frequency analysis over each
Qi is done and a 1D histogram, Hi, is constructed with the values of each Qi
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Fig. 2. In this picture framej and framej+1 represent any consecutive pair of frames
used for computing the optical flow Oflow. Over the framej a set of ORB features
are extracted and its velocities are computed using Oflow in order to extract the num-
ber of static features in framej . Finally, the number of static features per frame,
card(framej), is stored in the queue of its respective camera.

once the size of Qi reaches NF . Once the queues are filled for first time, the
histograms computation is performed at each frame. The idea of using histograms
for counting the frequency of the values in the queue allows us to determine if an
obstacle is blocking temporally the main view or not. For instance, if a person
walks in front of the main camera and then stops so that the main view gets
blocked, then the number of static features will start to decrease at every frame
and hence the queue of the main camera’s view will start to have many values
near to 0. This situation produces a transformation in the histogram where the
first bin will become in the biggest bin within the histogram. However, when the
person starts to move far from the camera view, the number of static features per
frame will increase and consequently the queue values. This another situation
produces that the last histogram’s bins being the largest. Finally, a camera
change can be made at the moment in which all the values of the Qi are in the
first bin of the Hi.

4.2 Camera Selection

At this point of the algorithm, the main camera can be considered blocked and
the system has to evaluate the other views in order to select the best one of the
rest to continue localized inside the world. For this case, the best view is such
in which its Qi contains the largest amount of static features over a long period
of time [4].

As mentioned before in Sect. 4.1, if all values of the main view’s histogram are
in its first bin, then it is not longer convenient to keep viewing in that direction.
Following the proposed in [4] a new good view is such a view that conserves
more static features over a time interval. Therefore, the new best camera’s view
to stay localized is such that its histogram contains the highest statistical mode
(see Sect. 5.2).
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5 Experiments

The experiments presented in this section describe the relation between cameras
under specific situations as well as the frequency analysis of the static features
within the scenes. For the sake of a better understanding of this model we divide
the experimental section in static and dynamic testing.

5.1 Static Test

The goal in this experiment is to assess the performance of our camera selection
approach. For that, the number of bins per histograms is set empirically to 5,
NF = 36 and the upper left corner image in Fig. 3(a) is selected as main view.
As mentioned before, the number of static features is computed (points in blue)
over the four different directions in order to generate the queues and later the
histograms. Once the system is running, we proceed to block the main view as
is shown in Fig. 3(b) and the system is able to select the best of the remaining
views. In this case, if we look at the Fig. 3(b), we might realize that the next
best view will be the one at the bottom right because in that view the number
of static features is highest during a period of time.

(a) Camera initialization. (b) Camera blocking.

Fig. 3. (a) Initial state of the system and the main view is enclosed in a white rectangle.
(b) Static and non-static features represented in blue and red color respectively. (Best
seen in color)

As we have explained before in Sect. 4, our camera selection approach is
based on the frequency analysis of the static features behavior. For that, a 1D
histogram is built for each view and a continuously evaluation is performed in
order to see if the number of static features in the main view is lower than a
threshold; if this happens then the main view has been blocked. Figure 4 shows
the histogram behavior over the time for the four views. At the beginning, the
main view’s histogram (see Fig. 4(a)) has all its values in the last bin as well
as the other views, however, there is an instant marked with a red line where
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(a) Top left (b) Top right (c) Bottom left (d) Bottom right

Fig. 4. Histogram behavior over time. The red horizontal line represents the moment
in which a change of the main view has happened. The bar at the top of each histogram
is used to represent the frequency in the histogram, higher values are in red while lower
values appears in blue. The time sequence starts at the top. The bin number is shown
at the horizontal axis. (Best seen in color)

Fig. 5. Histograms evolution near the switching point. H1 represents the main view’s
histogram while H2, H3 and H4 the rest. Histograms are shown at frames t (the switch-
ing point), t − 1 and t − 5. Note how the values in the histogram H1 move from the
last bin to the first one from t− 5 to t. For this case the selected camera is C4 because
numerically this histogram keep the highest mode during the last 2 s.

the histogram distribution starts to change, this is because the camera is being
blocked, and therefore, the first bin starts to grow. At this point the system
realizes that the camera was blocked and selects from the remaining views, the
best one to stay localized. Finally, the system selects the bottom right view
(see Fig. 3(b)) because as can be observed in Fig. 4(d), is the view where the
histogram have the larger statistical mode (darkest red color). See Fig. 5 for a
better understnding of the histogram behavior near the switching point.

In Fig. 4(d) after switching cameras (red line) appears a period of time with
no static features. This situation is presented because the camera was blocked
with a human hand which introduces a low motion over the sensor and hence a
perturbation in the optical flow.
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5.2 Dynamic Test

For this experiment, our robot system is navigating in an indoor scenario. The
robot is moving with the Guidance attached at the top of it (see Fig. 1(b)) and
the front camera is designated for staying localized by using ORB-SLAM. While
robot is navigating all features velocities are affected by the displacement vector.
There are always two views that are more affected than the others. The front and
back views are less affected because the motion is normal to both planes while
left and right views depend strictly on the displacement vector. For instance, if
the robot is moving forward, the velocities of each feature from the front and
back views will not be affected because the optical flow won’t be perturbed. On
the other hand, for lateral views, almost all the feature won’t be statics, this
effect is like if the robot was static and the world was in motion.

(a) Top left (b) Top right (c) Bottom left (d) Bottom right

Fig. 6. Histogram behavior over the time when the sensor is mounted on the robot.
The red horizontal line represents the moment in which a change of the main view has
happened. (Best seen in color)

As in the first experiment, in Fig. 6 we depict the histograms behavior over
the time. In this experiment the robot is initially static, hence, at the begging
the amount of static features is high in each view. Once the robot starts moving
the number of features starts to change. In this case it is more clear how the
number of features on the main view (see Fig. 6(a)) starts to decrease while the
robot is moving. Besides, in Fig. 6(c) it is possible to observe that the robot
motion does not have effected the number of static features for this view, as we
already mention above, this is because the motion is normal to this image plane.
Finally, due to this effect, this view is the one that was selected as the new main
view.

For lateral views (see Fig. 6(b) and (d)), we can distinguish a smooth tran-
sition in the last bin of the histograms which goes from orange to blue (above
to below). The above portion of the histograms, where the orange color remains
constant is because we started to acquire data with the robot in an static state.
In the histograms we can detect the starting robot motion when the orange color
starts to turn in blue. Color changes in histograms implies that, at this time,
the number of features with low velocities starts to decrease. This situation is
presented because static features are apparently moving in the opposite direction
that robot does.

The red line in Fig. 6 represents a stop in the robot motion produced by
an obstruction in the current main view. At this point, the robot remains static
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during 2 s (36 frames) for acquiring the temporal distribution of the static ORB-
features at each direction. With this tiny stop, the optical flow is finally stabilized
and hence the features velocities.

6 Conclusions

In this paper we have presented a simple and effective camera selection algorithm
for a multi-camera sensor systems when autonomous navigation is performed.
Our approach aims at exploiting the visual capabilities offered by multi-camera
sensors for visual-based localization, in scenarios where visual localization is
obstructed. Experiments were conducted in static and dynamic scenarios. For
the dynamic scenarios, we used a service robot platform (Robot Sabina). In both
cases, the results exhibit the same relation; the next best view is the one with
more static features during a period of time, according to [4]. In addition, the
proposed algorithm enables the system to maintain localization whilst keeping
a low computational cost.

As a future work we are interested in incorporating the estimated displace-
ment vector in order to reduce the perturbation at each view direction, specially
in lateral views. In order to do that, we can incorporate another inertial mea-
surement unit (IMU) and fuse its information with that of the robot odometry
in order to enhance the selection of the best next main view.
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Abstract. Breast cancer is a global health problem principally affect-
ing the female population. Digital mammograms are an effective way to
detect this disease. One of the main indicators of malignancy in a mam-
mogram is the presence of masses. However, their detection and diagnosis
remains a difficult task. In this study, the impact of the combination of
image descriptors and clinical data on the performance of conventional
and kernel methods is presented. These models are trained with a dataset
extracted from the public database BCDR-D01. The experimental results
have shown that the incorporation of clinical data to image descriptors
improves the performance of classifiers better than using the descriptors
alone. Likewise, this combination, but using a nonlinear kernel function,
improves the performance similar to those reported in the literature for
this dataset.

Keywords: Breast cancer · Clinical data · Mass classification
Kernel methods

1 Introduction

Breast cancer continues to be a growing health problem worldwide. It is consid-
ered to be the leading cause of death by malignancy in the female population
with nearly 500,000 deaths each year [1,2]. To reduce the incidence of new cases
due to this cancer, it must be detected and diagnosed at early stages. The use
of mammograms is considered to be an effective method for the detection in an
early stage [3,4]. The mammograms are analyzed by a radiologist who looks for
anomalies related to this cancer. Such anomalies can be masses and microcalci-
fications, the former being the most difficult to detect. A mass is defined as a
three-dimensional structure visible in two different projections [5], which can be
characterized with respect to their size, shape, margins and density.

Both detection and diagnosis of masses are difficult tasks to perform due to
the great variability of the characteristics they present. In addition, the success
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of both tasks largely depends on the training and experience of the radiolo-
gists. Several studies report that radiologists are 75% successful at performing
a mammographic analysis for cancer detection [4]. To aid in this process, detec-
tion and/or diagnosis systems have been developed (Computer Aided Detection,
CADe and/or Computer Aided Diagnosis, CADx), which report a successful
performance rate between 75% and 82% [3,6].

In the case of CADe or CAD systems, these are used to assist radiologists
in the detection of anomalies in mammograms, that is, these systems aim to
indicate the regions where a cancer-related lesion may possibly exist [7–9]. On
the other hand, CADx systems are used to support the diagnosis of lesions. This
task is more complex compared to the task carried out by a CAD system, as well
as indicating the location of a possible lesion, the lesions must be characterized
to determine the degree of malignancy or benignity [10–12].

Several works have addressed the problem of mass classification considering
different approaches. One approach is only using image descriptors as input
features for classifiers [3,11,13]. Other works combine each of the types of
image descriptors with clinical data [14,15]. However, few studies have explored
the combination between the best descriptors of intensity, shape and texture,
reported in the literature, and merge this combination with clinical data. That
is considering the three types of descriptors as a single set of characteristics and
merge it with clinical data. The objective of this work, at first stage, is to com-
pare the performance of the classifiers with the combination of image descriptors,
considered as a single set, taking into account the cases with and without clin-
ical data. As a second goal, we use a nonlinear kernel function implemented in
a support vector machine (SVM) in order to improve the performance results
compared to the obtained with a linear kernel.

This work is organized as follows. In Sect. 2, the image descriptors used to
characterize the masses are explained. Likewise, Sect. 3 presents a brief descrip-
tion of the classifiers used for the mass classification. Section 4 describes the
data set used, as well as the experimental results. Finally, Sect. 5 presents the
conclusions and future work.

2 Image Descriptors

Two-dimensional images are used in this study and the image descriptors consid-
ered are those related to intensity, shape and texture [3,16,17]. These were used
to characterize the masses and were chosen considering their high performance
results in related work [11,14].

The intensity characteristics consider the level of gray of each pixel in the
region and are the easiest to obtain. They are generally used to describe the mass
density. Six intensity characteristics were calculated, namely, mean, standard
deviation, asymmetry, kurtosis, and maximum and minimum gray level [3,11,14].

The shape, or morphological, characteristics are considered to be the most
important descriptors of a mass. To describe a region inscribed in an image,
two important properties must be considered, the first is through its external
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characteristics (its contour) and the second through its internal characteristics
(the pixels that comprise the region). The calculated shape characteristics are
divided into two subsets. The first set of characteristics obtained were: area,
perimeter, center of mass, circularity, elongation, form, solidity and extent [3,14].
The second subset of characteristics obtained is related to the histograms of
gradient divergence (HGD) [11]. When we talk about shape descriptors, we will
be referring to the first subset as F, while the second subset will be named as
an HGD descriptor.

Regarding texture characteristics, they describe the topology of an object
at local level. The calculated characteristics were those related to the gray-
level co-occurrence matrices (GLCM). The elements that make up the GLCM
matrix are defined as the joint probability that gray levels i and j occur in the
image, separated by a distance d and along a direction θ [3]. A total of thirteen
characteristics were obtained from the GLCM matrix, namely, energy, contrast,
correlation, homogeneity, entropy, sum of squares, sum average, sum entropy,
sum variance, difference variance, difference entropy, information measure of
correlation 1 and information measure of correlation 2.

3 Classifiers

In general, the objective of the classification stage is to detect or recognize
objects in an image in terms of their characteristics or properties [18]. Within
the framework of the classifiers, the most common in the literature are the sta-
tistical, neuronal and syntactic classifiers [3,19]. Regarding statistical classifiers,
the objective is to design classifiers that are able to classify an unknown pattern
in the most probable class [19].

The Bayesian (B) classifier is based on Bayes decision theory, and assumes
that there is a sufficiently large number of training samples, so that a good
estimate of the probability density function can be obtained. However, consid-
ering the dimension of the feature space, the data required for a good estimate
grows exponentially. To overcome this drawback, the Näıve Bayes (NB) classifier
considers that the individual characteristics are statistically independent, so the
number of data required is less than that required for the Bayesian one.

Another classifier is called the K-Nearest Neighbor (KNN), which is that
given to an unknown pattern, the k patterns (neighbors) closest to it are calcu-
lated, and the decision of the classification is made with respect to a majority
vote of the classes that correspond to the k neighbors.

The SVMs are characterized by mapping the input data points to a high-
dimensional feature space of by using functions such as kernels, so that a hyper-
plane is found that separates the classes [20]. Usually, there are four basic kernels
in the literature, these are linear, polynomial, radial basis function (RBF) and
sigmoid kernel. The RBF kernel maps non-linear examples in a high-dimensional
space, so it can handle the case when class labels and attributes do not have a
linear relationship [20,21].
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4 Results and Discussion

The set of mammography images used for this study was taken from the public
database BCDR-DO1 [14]. This database provides a total of 260 images of the
right and left breast of each patient, with craniocaudal (CC) and mediolateral
oblique (MLO) views, with the distribution presented in Table 1.

Table 1. Distribution of the images of the BCDR-D01 database.

View Left Right Total

CC 64 65 129

MLO 63 68 131

Total 127 133 260

The database is composed of 79 lesions verified by biopsies in 64 women.
These 79 lesions correspond to 79 masses, of which, 49 are benign and 30 are
malignant. The masses can be seen in both CC and MLO views, so there is a
total of 143 views of the 79 masses recorded by the radiologists. Table 2 shows
this distribution.

Table 2. Distribution of the CC and MLO views, regarding the classification of the
masses.

View Malign Benign Total

CC 28 38 66

MLO 29 48 77

Total 57 86 143

For each of the registered masses there is information about the patient
(clinical data), such as age at the time of the study, breast density presented,
classification based on the Breast Imaging Reporting and Data Systems (BI-
RADS) [22], as well as six binary variables that represent the presence or absence
of a mass, calcifications, microcalcifications, axillary adenopathy, architectural
distortion and stroma distortion.

In summary, the dataset considered has 143 instances related to the 79
masses, of which, 86 instances are related to the 49 benign masses, and 57
instances are related to the 30 malignant masses. Each mass is described by
44 image descriptors and 8 clinical data.

For computing the image descriptors, regions of interest (ROIs) were obtained
by extracting the part of the mammogram within the bounding box containing
a mass. The corresponding ROI coordinates are available and included in the
BCDR-D01 database. Figure 1 shows three examples of the obtained regions.
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(a) (b) (c)

Fig. 1. ROIs extracted from mammograms: (a) img 3 4 1 LCC, (b) img 3 4 1 LO and
(c) img 205 275 1 LO.

The methodology for mass classification used in this study is summarized
in Fig. 2. The image descriptors are obtained from the ROIs and, optionally, in
combination with the clinical data, they form the input of the classifier. Prior
to the classification stage, a data preprocessing stage is carried out. After the
classification, a evaluation stage is utilized to compute the performance of each
classifier, using different validation measures.

Fig. 2. Methodology for mass classification.

In the preprocessing stage, the first step was the elimination of instances
with missing values, corresponding to the breast density information. A total of
11 instances were eliminated, of which, 5 of them corresponded with malignant
masses while 6 with benign masses. After this step, the data set was reduced
to 132 instances. As a second step in this preprocessing stage, we proceeded to
normalize the data to transfer them to the interval [0, 1] by using the maximum
and minimum values of each of the descriptors.

In the case of the KNN classifier, the number of neighbors was taken in the
interval [5, 21], as suggested in [11], excluding cases for even numbers (since it
is a binary classification task). In the case of the SVMs, the first kernel used
was the linear kernel, and the value of the penalty parameter C, was searched
in the interval [10−2, 103]. The second kernel used was the RBF kernel. For
this case, two grid searches were performed for the parameters C and γ, as
suggested in [23]. The parameters were coarse searched in the intervals [2−5, 215]
and [2−15, 23], for C and γ respectively. Once the best region of the grid was
identified, a fine search of parameters was performed in the intervals [10−2, 103]
and [2−4, 23].
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For the validation of results stage, k-fold cross validation was used, with k =
5, so that each partition covered approximately 20% of the data set. Therefore,
80% of the data was used to train the classifier and the remaining 20% was
used for validation in each fold, as suggested in [14]. The assessment measures
that were used to calculate the performance of each of the classifiers presented
in Sect. 3, were accuracy (Accu), precision (Prec), sensitivity (Sen), specificity
(Spe), Matthews correlation coefficient (MCC), balanced error rate (BER), and
Area Under the ROC curve (AUROC).

Classifiers B, NB, KNN and SVM (with linear kernel) were tested considering
6 cases, these are:

1. Test 1: Intensity, Form, Texture (IFT)
2. Test 2: Intensity, Form, Texture, HGD (IFT-HGD)
3. Test 3: Intensity (I)
4. Test 4: Form (F)
5. Test 5: HGD
6. Test 6: Texture (T).

Each of these cases was tested with and without clinical data, which makes
a total of 12 tests.

Tables 3 and 4 show the best results obtained for each of the 12 tests above
mentioned. Considering the maximum AUROC value, they correspond respec-
tively to when clinical data is not used and when it is used. The last column
shows the used classifier by which these measures were obtained.

In general, the incorporation of clinical data improves the performance of
all classifiers, regardless of whether or not I, F, HGD or T image descriptors
are combined (see Table 4). When clinical data are not incorporated, the KNN
classifier, with k = 11, obtains the highest AUROC (0.89) using the combination
of the four types of descriptors. Likewise, with this combination of characteristics,
a sensitivity of 0.90 and a specificity of 0.89 is obtained. Although with the SVM,
using the first subset of shape characteristics (F), a greater specificity is achieved
compared with that obtained by KNN, the sensitivity recorded in this case is
0.75. When clinical data are incorporated, the highest AUROC result is 0.94
which is obtained using SVM with the combination of intensity, shape (F and
HGD), and texture descriptors. Moreover, a very good sensitivity (0.93) and
specificity (0.96) performance is obtained with this feature set.

From Table 4, it can be observed that the SVM-based classifier, with a linear
kernel, shows the best performance in almost all tried Tests indicated by the
corresponding assessment measures. In the case of the MCC, its value is in the
interval [0.68, 0.89], which indicates good classification results. Regarding the
BER reached by the SVM, this is in the interval [0.05, 0.21], which indicates
that the error per class was small, which leads to a good classification by class.
The highest sensitivity in this case was 0.93 showing that the SVM is acceptable
for the detection of features obtained from malignant tumours. Regarding the
registered specificity, this is in the interval [0.80, 0.99], that is, the SVM also
has a good performance to detect healthy individuals. All these measures sup-
port the highest results obtained for the accuracy (0.95), precision (0.98) and
AUROC (0.94).
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Table 3. The best AUROC results obtained with classifiers only using image
descriptors.

Feature MCC BER Sen Spe Accu Prec AUROC Classifier

IFT 0.7370 0.1337 0.8251 0.9075 0.8751 0.8523 0.8663 SVM

IFT-HGD 0.7798 0.1058 0.9010 0.8875 0.8928 0.8389 0.8942 KNN (11)

I 0.5070 0.2429 0.7547 0.7595 0.7576 0.6780 0.7571 KNN (11)

F 0.7150 0.1543 0.7547 0.9367 0.8636 0.8889 0.8457 SVM

HGD 0.3926 0.2999 0.7547 0.6456 0.6894 0.5882 0.7001 B

T 0.6091 0.1895 0.8868 0.7342 0.7955 0.6912 0.8105 NB

Table 4. The best AUROC results obtained with classifiers using image descriptors
and clinical data.

Feature MCC BER Sen Spe Accu Prec AUROC Classifier

IFT 0.8213 0.1006 0.8288 0.9700 0.9144 0.9473 0.8994 SVM

IFT-HGD 0.8865 0.0567 0.9303 0.9563 0.9462 0.9303 0.9433 SVM

I 0.6764 0.2075 0.5849 0.7955 0.8333 0.6870 0.7925 SVM

F 0.8008 0.1195 0.7736 0.9873 0.9015 0.9762 0.8805 SVM

HGD 0.6919 0.2 0.6 0.7546 0.845 0.8285 0.8 KNN (11)

T 0.7802 0.1228 0.7925 0.9620 0.8939 0.9333 0.8772 NB

Based on the previously obtained results for each of the 6 Tests, an SVM
with RBF kernel is used in particular with Tests 1 and 2, with and without
clinical data. Tables 5 and 6 show the corresponding results. The last column of
these tables shows the best values obtained for C and γ parameters.

From Tables 5 and 6 it can be observed that using a RBF kernel improves the
AUROC measure results, regardless of whether image descriptors were merged or
not with clinical data. Moreover, Test 2 (in both cases) obtained better AUROC
results compared with those obtained by Test 1, which suggests that both the
combination of intensity, shape, HGD and texture descriptors fused with clinical
data and the SVM with kernel RBF make a good combination for mass diagnosis.
This result is similar to that obtained in [14] but without using a majority vote
technique among several classifiers as logistic model trees, random forest and
linear SVM among others.

Table 5. The best AUROC results obtained for SVMs with RBF kernel using image
descriptors without clinical data.

Feature MCC BER Sen Spe Accu Prec AUROC (C, γ)

IFT 0.7926 0.1019 0.8875 0.9087 0.9004 0.8634 0.8981 (10, 1)

IFT-HGD 0.8131 0.0888 0.9217 0.9006 0.9089 0.8571 0.9112 (1, 1)
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Table 6. The best AUROC results obtained for SVMs with RBF kernel using image
descriptors with clinical data.

Feature MCC BER Sen Spe Accu Prec AUROC (C, γ)

IFT 0.9066 0.0439 0.9615 0.9506 0.9549 0.9268 0.9561 (10, 1)

IFT-HGD 0.9070 0.0413 0.9798 0.9375 0.9542 0.9106 0.9587 (10, 1)

5 Conclusions

The impact of the combination of image descriptors (considering three types
of descriptors as a single set of characteristics) fused with clinical data on the
performance of mass classification was presented in this work. The experimental
results have shown that linear SVM obtains the highest AUROC performance
for the analyzed dataset when clinical data is fused with image descriptors infor-
mation. Furthermore, the performance of the SVM is exceeded when the linear
kernel is replaced by the RBF kernel which helps to model the nonlinearity
relationship between class labels and input data.

As future work, motivated by the fact that the representation learning field
using deep neural networks can automatically obtain good representations of
image regions, a comparison of nonlinear kernel methods with deep learning
methods for mass classification is considered.
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Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS,
vol. 9116, pp. 292–301. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19264-2 28

16. Petrick, N., Chan, H.P., Sahiner, B., Helvie, M.A.: Combined adaptive enhance-
ment and region-growing segmentation of breast masses on digitized mammograms.
Med. Phys. 26(8), 1642–1654 (1999)

17. Christoyianni, I., Dermatas, E., Kokkinakis, G.: Fast detection of masses in
computer-aided mammography. IEEE Signal Process. Mag. 17(1), 54–64 (2000)

18. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience,
Hoboken (2001)

19. Bishop, C.M.: Pattern Recognition and Machine Learning, 1st edn. Springer, Hei-
delberg (2006)

20. Vapnik, V.N.: Statistical Learning Theory. Wiley, Hoboken (1998)
21. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data

Min. Knowl. Disc. 2(2), 121–167 (1998)
22. American College of Radiology (ACR): Breast Imaging Reporting and Data Sys-

tem. 4th edn. American College of Radiology, Reston (2003)
23. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifica-

tion. Technical report, Department of Computer Science, National Taiwan Univer-
sity, Taipei (2003)

https://doi.org/10.1007/978-3-319-13650-9_41
https://doi.org/10.1007/978-3-642-41822-8_41
https://doi.org/10.1007/978-3-642-41822-8_41
https://doi.org/10.1007/978-3-319-19264-2_28
https://doi.org/10.1007/978-3-319-19264-2_28


An Improved Stroke Width Transform
to Detect Race Bib Numbers

Wellington Moreira de Jesus1 and Dı́bio Leandro Borges2(B)

1 Department of Mechanical Engineering, University of Braśılia, Braśılia, DF, Brazil
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Abstract. We present modifications in a local operator known as stroke
width transform (SWT) in order to improve its performance to detect
Race Bib Numbers (RBNs) from natural images of running competitions.
The original SWT algorithm is a simple and yet one of the top competi-
tive algorithms for text detection. The proposal adds a Hue channel sim-
ilarity test in the neighborhoods of edge borders candidates, and it limits
the length of the stroke according to aimed characters at the images. We
tested the proposed, and the original approach, using a publicly available
database of 217 images in different conditions. The suggested approach
outperformed the original one, both in sizes of width maps, and on RBNs
detection. This research is not an end-to-end RBNs recognition system,
so we focused on the improvements of the SWT algorithm in order to
provide a more efficient method for future use in automated systems.

1 Introduction

In the sports world there is a variety of running competitions, across streets,
mountains, trails, and marathons and shorter distances ones, where each com-
petitor is identified by a numerical digit stripe, known as a Race Bib Num-
ber (RBN). These events are covered by professional photographers resulting
in many pictures taken aiming to share and sell among individuals and broad
media. It would be useful for these professionals to automatically identify the
region of the numerical stripe in the images, and consequently be able to identify
the runners.

The application of known techniques [1] for extracting text directly on these
images is challenging because of the variability of views, number fonts and colors,
occlusions, and lighting conditions besides the wiggling of the numbers in the
racers shirts. Consequently, numbers are partially detected, completely missed,
or very cluttered depending on the image. Figure 1 shows sample pictures of such
races belonging to three sets of images exemplifying different image resolutions
and RBNs formats with a ground truth target [2].

This paper investigates this issue and proposes to detect RBNs in running
competitions by changing the finding letters and the grouping stages of the orig-
inal Stroke Width Transform (SWT) [3] algorithm. This approach allows us to
c© Springer International Publishing AG, part of Springer Nature 2018
J. F. Mart́ınez-Trinidad et al. (Eds.): MCPR 2018, LNCS 10880, pp. 267–276, 2018.
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Fig. 1. Example images from different running competitions showing the RBNs to be
detected (database from [2]).

discard a large amount of areas in the image and to find the most probable areas
of numbers in it. This reduces the loss of numbers in the Connected Compo-
nents (CC) stage and it increases the RBNs detection in the end. We ran tests
on public images of running competitions in order to compare the results.

The rest of this article is organized as follows: in Sect. 2, we review works
related to the detection of texts and numbers; in Sect. 3, we explain the method-
ology used to direct the SWT to the more related RBNs areas of the image, and
then detect the RBNs; in Sect. 4, we present the results of the experiments; and
finally, in Sect. 5, we show our conclusions and future directions.

2 Related Works

Detection of texts in images has been researched for a long time, resulting in
several methods proposed. Many of these methods consist of four basic steps: (1)
Detecting text candidates, which means locating regions with possible texts; (2)
Reducing search area of regions, this means to extract the edges, for instance;
(3) Unifying candidate pixels in components with similar characteristics, and (4)
Eliminating non-text components.

In 2004, [4] Jung et al. carried out an extensive work on mapping techniques
for detecting and extracting text in images and videos. In general, the Text Infor-
mation Extraction (TIE) techniques are divided into three groups: texture-based
methods, region-based methods, and hybrid methods. Texture-based methods
scan texts in images for distinct properties, such as high border density, low
gradient variation above and below the text, high contrast between letters and
background, and so on.

Texture-based techniques scan the image several times by analyzing and clas-
sifying each pixel in function of its neighbors due to the characteristics listed
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generating a high computational cost. According to [4] Jung et al. region-based
methods are a combination of edge extraction and Connected Components (CC)
and their main assumption is that neighboring pixels show similarities in color,
luminance, and texture. Then grouping between these neighboring pixels in com-
ponents take place, followed by grouped components in regions, and later, regions
are grouped into texts. However, these methods have great difficulty in separat-
ing text regions from non-text regions due to heuristics used to group pixels,
and thus many image objects are similar to text. In terms of size and texture,
they end up being identified as text, when they are not. This generates a high
false positive rate.

2.1 Stroke Width Transform (SWT)

The Stroke Width Transformation technique was proposed by Epshtein et al.
[3] as a method that transforms the pixel original values into the most likely
stroke width they could belong to. In practice the SWT has two stages: (1)
finding candidate letters by computing rays from the edges borders and selecting
particular widths; (2) grouping letter candidates into text lines. In order to detect
text, the SWT main premise is that text in the images appears as fixed stroke
width. The SWT is a local operator that calculates from a pixel that is on the
edge of the filtered image with the Canny edge operator, the stroke width in
which the pixel is contained. For each pixel of the edge map, its direction is
calculated. It assumes that at some point a pixel will be found on the opposite
border edge with a similar gradient in the opposite direction.

Then the distance between them is attributed to these pixels, and, also to
all the pixels that are between them. After the SWT detection stage, the pixels
whose stroke width are similar, are then grouped into character candidates. First,
candidate characters are grouped into pairs. Then grouped into text regions
according to their color characteristics, stroke width, and distance from each
other. An advantage of this technique is to perform only a single image scan,
unlike texture-based techniques where it is necessary to convolve windows across
the image several times. The transform is able to detect text regardless of size,
direction, source or language. Their technique [3] is robust for detecting text in
natural images and with low computational cost, but it may fail to detect texts
that are not horizontal, such as texts written in arc form for example. Another
difficulty is the need to make many adjustments based on the heuristics needed
to cut non-text parts. The problem is that in many cases the filters also end up
cutting regions of texts detected by the stroke stage.

Several other researches have been developed using variations of a SWT. In
[5], Mosleh et al. changed the Canny edge detector by a bandlet-based detector
and proposed that a more refined border map helps the SWT stage. In the case
of RBNs it is crucial because the stripes with numbers change position at any
moment. Yao et al. in [6] proposed a SWT-based algorithm that is capable of
detecting texts in any language and in any direction using an extended set of
characteristics of the CC filtering stage after the SWT stage, combined with a
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classifier based on a Random Forest algorithm. Paul et al. [7] developed an adap-
tive Stroke Filter with the proposition that there are many losses of candidate
components when using a detector which stroke width is fixed, as it is the case
of the Epshtein algorithm [3].

2.2 RBNs Detection

Regarding the detection of RBNs, Ben-Ami et al. [2] proposed an algorithm
based on SWT that first seeks to reduce the area of search in the image by
first locating the runner’s face. Then from his/her face, a rectangular area is
calculated that covers the runner’s entire upper body where the stripe is possibly
found. Thereafter, the reduced image is processed by a SWT. The SWT had
been adjusted to set stroke width in proportion to the runners’ face sizes. This
facilitates the stroke detection of different sizes. After detection, the numbers
are segmented, and each digit processed separately and passed to recognition
through a Tesseract OCR algorithm. Two issues may arise from that technique:
(1) the entire process is dependent on the face detection, since it is only after
this that their system decides if it computes the SWT, and where based on
the face detector output bounding box; (2) the computational overload of the
face detection preprocessing, and the quality of its output since in many of those
images there are plenty of false positives and false negatives to be dealt with. Our
proposal here is to concentrate on improving the SWT only to provide it with
means to more rapidly and efficiently detect characters (in this case RBNs) on
natural images. Some preprocessing and postprocessing methods can be added
in the future, and most of the systems in the literature do that, but in this
presented research we aim to contribute to the SWT particularly.

3 Proposed SWT

Our working hypothesis here is that by having fewer rays in the image resulting
from the SWT stage, it is possible to adjust the CC and filter parameters more
accurately and improve the detection of numbers more evenly. In this sense, our
approach works by reducing the amount of rays produced by the SWT stage on
two fronts. First, a stroke when traversing a path from the pixel p, encounters
an opposite pixel q that may be in the same character, or another object. In
order to increase the chances that they may belong to the same character (i.e.
RBN) it is conducted a color check in the neighborhoods of pixels p and q, and if
the difference between their averages was greater than 50 degrees (using the Hue
scale) this ray should be discarded. Second, also it is observed in the images used
for tests that the number with the greater stroke width is around 37 pixels, then
we can set to limit the maximum length of the rays. With those modifications
we improve the SWT to provide less rays in the finding candidates stage, and
a cleaner SWT preserving the RBNs detected, and to further be recognized. A
comparison of the gains regarding this proposed SWT against the original SWT
of [3] is made and shown in our experiments. Figure 2 shows a scheme of the p
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Fig. 2. Proposed new stroke scheme computation.

Fig. 3. Flowchart of the proposed SWT here.

and q pixels traversals and the computation of the rays for our proposal, and
Fig. 3 gives a flowchart of the algorithm.

The HSV color space has less correlation between color and luminance chan-
nels [8], and because of this we transform the RGB image onto HSV and the
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Hue values of the 5× 5 neighborhoods of pixels p and q of the stroke (Fig. 2) are
averaged and stored for the comparison and RBNs detection as mentioned (see
Fig. 3).

4 Experiments

The images used in this work were obtained from public running competitions
available in [2] being 217 images. The images are divided into three sets mainly
because of image resolutions and sizes (set1 resolution from 342×512–480×720
with 92 images, set2 resolution from 800× 530–850× 1260 with 67 images, set3
resolution of 768×1024 with 58 images), and more differences in the RBNs colors
because of the variety of competitions. The experiments were carried out as
follows. First, we performed a manual count (i.e. ground truth) of each number
that composes the RBNs in focus and discernible in each image, having 1369
numbers. Second, we ran our implementation of the proposed SWT on all 217
images and annotated the hits, miss and the stroke width map sizes. Third, we
processed [3] Epshtein et al. original code without modifications and counted
the results for comparison. In order to evaluate the neighborhood window and
statistics we performed also variations for 5 × 5, 7 × 7, median and mean values
of the neighborhoods of Hue values. The best result was for mean H, and 5 × 5
neighborhoods for these experiments.

4.1 Results

Figure 4 shows examples of results for 3 images (one from each set) for the stroke
width maps computed both for the original SWT, and for our proposal. Table 1
gives the average amounts showing a size reduction of 45.8% in total. As it can
be seen from these results the improvement by reducing the number of rays
processed is large, and as it will be shown next the RBNs are detected in greater
quantity by the proposed approach.

Figure 5 shows results with final grouped candidates for RBNs for exam-
ple images from the three sets. In the original SWT only 9 of the expected 19
RBNs for the three images were recovered, in contrast with our proposed app-
roach that recovered all of 19 expected RBNs for these images. Table 2 gives the
final figures for all the images. Our proposed approach recovered 53% of all the
expected RBNs against the original SWT with 44%, with F-measures of 0.69
(ours) and 0.60 (original SWT), respectively. From the results we can notice
that the proposed approach reduces the amount of rays finally processed by the
SWT, and still keeps most of the relevant data for detecting the RBNs. From the
literature the original SWT [3] reported an F-measure of 0.66 considering text
detection in ICDAR 2005 competition. The RBNs detection can be considered a
particular case of text detection in natural images, but with context details far
apart because the RBNs are attached in runners shirts, and color numbering,
movements, occlusions, lighting conditions change from picture to picture fre-
quently. Our results here are competitive since the original SWT is a well known
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(a) Stroke width maps from original SWT

(b) Stroke width maps from proposed SWT

Fig. 4. Results for 3 images from the different sets showing the stroke width maps.
Notice the reduction on rays for proposed SWT: (a) original SWT, (b) proposed SWT.

Table 1. Average sizes of stroke width maps produced by both approaches.

Images Ours SWT [3] Reduction by ours

92 (set1) 4.07 MB 6.76 MB 39.7%

67 (set2) 3.83 MB 7.09 MB 45.9%

58 (set3) 5.46 MB 10.8 MB 49.4%

Total 45.8%
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(a) Grouped characters candidates from original SWT

(b) Grouped characters candidates from proposed SWT

Fig. 5. Results for 3 images from the different sets showing the final grouped candidate
characters for the RBNs: (a) original SWT, (b) proposed SWT.

and rated as a top efficient algorithm for text detection [3]. The improvements
we have proposed here have to be incorporated into a complete end-to-end sys-
tem for text and/or RBN recognition, with extra preprocessing for dealing with
other scales, image acquisition stability compensation, and a specialized Optical
Character Recognition (OCR) in the end. So far there are systems available with
high performance for particular domains in text recognition, and [2] is one good
example of it. However, our aim in this research is improving the SWT so it can
provide a basis for RBNs detection in particular for future systems.
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Table 2. Number of recovered RBNs for both approaches.

Images Digits Ours SWT [3]

Hit Missed F-measure Hit Missed F-measure

217 1369 732 637 0.69 600 769 0.60

5 Conclusions

In this paper, we proposed an improved stroke width transform (SWT) with the
aim to detect RBNs in images from running competitions. The modifications
were to reduce the number of rays computing to indicate the stroke width by
checking Hue color similarity between stroke ends neighborhoods, and also by
limiting the ray lengths. We have tested the approach with public available
images (217) from running competitions, and compared those results with the
original SWT. The proposed approach was superior by reducing the sizes of
width maps by around 45.8%, and by detecting final RBNs with an F-measure
of 0.69 against 0.60 from the original method. This research is not an end-to-end
system for RBNs recognition, so the comparison with systems at this level was
not made. Our research aimed to improve the SWT stage, and the results were
positive in this direction. Particular types of scenes were noticed to be more
difficult to deal with, especially those with many runners at large distances
from each other, side pictures of corridors where RBNs are very distorted, and
colors used in the RBNs that are more affected by sunlighting or even their sizes
compared to other objects in the scene. We plan to work on those matters in the
next steps and provide results with a database of a 1,000 images and to make
it freely available. This scenario is challenging and this research aims to add a
contribution in the use and performance of a modified SWT.
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Abstract. The Coordinated Clusters Representation (CCR) of images
is a statistical approach to texture description and analysis. In this work
a variation of the method, named the Scaled Coordinated Cluster Repre-
sentation (SCCR), is proposed as a descriptor for scale-invariant texture
classification. The proposed method includes two phases. First, elements
in the CCR histogram are scaled giving more importance to the mean-
ingful patterns of texture. Then, the histogram is filtered but preserving
the most representative patterns. The performance of the proposed algo-
rithm is evaluated in three experiments. In the first one, a correlation
metric is used to assess the similarity among histograms of texture at dif-
ferent scales and evaluate the class discernibility of the CCR and SCCR
descriptors. The other experiments are classification tests, using a min-
imum distance classifier. One test compares the classification accuracy
of both descriptors at different scales; the other one compares the per-
formance of the SCCR with the state-of-the-art methods, using images
of four well-known databases at different scale. The results show a high
performance of the SCCR in the scale-invariant texture classification.

Keywords: Texture classification · Scale invariance
Texture descriptor

1 Introduction

Texture analysis plays an important role in computer vision in areas such as pat-
tern classification, image segmentation, image recognition, among others. Tex-
ture classification, as a branch of texture analysis, refers to assigning a texture
image to one of the classes we are interested in, and it consists of feature extrac-
tion and image recognition. The first is the acquisition of texture information
on a feature vector, which has to be discriminant for different textures. The
recognition is the tagging of an input texture image to a class it matches best.
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Texture classification has several applications where textural appearance is
important such as industrial inspection to detect defects or aerial imagery to
detect landscapes. Despite texture classification encompasses a large variety of
algorithms, it remains one of the most challenging topics. The latter due to the
problems of scale, illumination, viewing angle and resolution, between others.
Variation of scale in images is a typical problem affecting classification because
of changes in the visual appearance of texture.

A number of methods to obtain robust scale-invariant descriptors have
been proposed. One of the commonly used methods is the wavelet transform
and improved variants. Greatly related to this transform are the filter banks
approaches, showing high performance but also high computational complexity.
On the contrary, low computational cost is the attractive feature of statistical
methods for obtaining efficient feature descriptors. A number of descriptors based
on the concept of histograms of equivalent patterns (HEP) that represent the
probability of occurrence of texture patterns, is given in [1]. Among them, the
Local Binary Pattern (LBP) [2] and the Coordinated Clusters Representation
(CCR) [3] are fundamental descriptors that have resulted in several variants.

A histogram-based approach frequently used to address the problem of scale
in texture classification is the variant of LBP proposed by Ojala and Pietikäinen
[4], which uses a combination of information obtained with circular LBP of
different radii. Also, a scale-adaptive texton was proposed in [5,6], using the
LBP as a descriptor. Qui et al. [7] suggested another variant of LBP, called
MCLBP, which uses the correlation among different scales and rotation-invariant
attributes. A different statistical approach was used in [8], adjusting the image
to an optimal scale and calculating the CCR histogram from it.

Despite a notable success in solving the problem of scale-invariant texture
classification, the approaches mentioned above cannot be considered as com-
pletely satisfactory or, as in the case of filtering methods, they are of significant
computer complexity and time-consuming. To overcome such limitations, we
propose a novel image representation for the scale-invariant texture classifica-
tion. This representation is obtained from the CCR histogram, which registers
the occurrence of binary patterns over an image. The feature vector is scaled
giving preference to the most characteristic textural patterns; that results in a
descriptor robust to scale changes.

The work is organized as follows. Section 2 describes the scaled CCR (SCCR)
descriptor and the classifier used for the evaluation of the method. Experimental
design is given in Sect. 3 followed by the results of experiments comparing the
SCCR with the state-of-the-art approaches. Conclusions are given in Sect. 4.

2 Scale Invariant Descriptor

The Coordinated Clusters Representation of images [3], is a mathematical trans-
form that extracts statistical information of binary images arranging it in a
histogram of occurrences of local pattern units. To perform the scale-invariant
texture classification, in this work the scaled CCR (SCCR) histogram is used
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as a feature vector. It is calculated according to the algorithm shown in Fig. 1.
First, we transform the gray-level or color input image into a binary image. Then,
the standard CCR histogram of the binary image is computed. Finally, the CCR
histogram is adjusted using a two-step procedure. A detailed description of these
steps is as follows.

Fig. 1. Algorithm for calculating the SCCR histogram.

2.1 Coordinated Clusters Representation

The CCR of an image is calculated through the associated binary image obtained
by the thresholding of the original image. The global thresholding of images
proposed by Otsu [9] is used in our experiments. In the CCR representation, the
histogram of occurrences of local patterns of a binary image is used as the feature
vector of the image. Following [10] we present the CCR of binary images in an
algorithmic way. Let X = {x(p, q)} be a matrix of binary image intensities which
elements x(p, q) take values (0, 1), where p = 1, 2, . . . , P and q = 1, 2, . . . , Q. In
order to calculate the CCR of a binary image X an inspection window W of size
I × J (I < P and J < Q) pixels is used, moving it pixel by pixel all over the
image X. As a custom the small 3×3 inspection window is used throughout this
work. A row-ordered string of binary values is obtained at every locus of window
W and that is transformed into a binary coded decimal (BCD). Then, this value
is recorded in the histogram of occurrences H(b) of 29 bins for the inspection
window of 3×3. Here b is the decimal code that varies through b = 0, 1, 2, . . . , 511.
After the scanning, the histogram H(b) is normalized accordingly to the total
number of occurrences A, obtaining a probability density function:

F (b) =
1
A

H(b) (1)

Analyzing the CCR histograms for an image in two different scales, we see
that both histograms are quite similar, except the bins of totally black b0 and
white b511 local patterns. Totally black or white local patterns cover larger
regions of a binary image when it is seen at higher scale. So, in calculating the
CCR feature vector this information, having relatively high weight, will decrease
the capacity to distinguish among different classes when the scale is varying. To
compensate this effect, we propose the adjusting of histograms in two steps: (i)
first we suppress bins of “black” and “white” patterns and scale the remaining
bins, then, (ii) we filter the obtained vector.
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2.2 Scaled CCR Histogram

As said before, adjusting of the CCR histogram is done in two steps. In the first
one, the content of bins b0 and b511 that represent the black and white patterns
are set to be zero in the histogram F (b), maintaining the bins between b1 to
b510 unchanged. Figure 2a and b depict the above procedure. The histogram
̂F (b) = F (b) obtained from the original one by setting F (0) = F (511) = 0 is
scaled as,

G(b) = r · ̂F (b) (2)

where r = 1/Vmax and Vmax is the maximum value of the histogram ̂F (b). This
way only the histogram is scaled (Fig. 2c), avoiding the scaling of the image itself
as in [8], thus reducing computational cost and processing power.

Scale changes on images may produce artifacts, mainly located on borders
between regions. Such noisy patterns, like jagged edges, unseen lines, corners or
blurred textures, usually show low occurrence and, hence, in the second step,
they are removed from the feature vector G(b). To filter them out, the bins with
content lower than a threshold TG (Fig. 2c) are set to be zero in the histogram
G(b). Different thresholds were tested, and the best result was obtained at TG =
μG + σG, where μG and σG are the mean and the standard deviation of the
histogram G(b). Removing low values we obtain the SCCR histogram, where
only the statistics of the most representative texture patterns are preserved
(Fig. 2d).

S(b) =
{

G(b) if G(b) ≥ TG

0 otherwise (3)

(a) (b)

(c) (d)

Fig. 2. Calculation of the SCCR for a texture image, D16 of the Brodatz album [11].

(a) The CCR histogram F (b); (b) ̂F (b), after the suppression of bins b0 and b511; (c)
the scaling of the remaining bins, in G(b); and, (d) the SCCR S(b) obtained by filtering
G(b).
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2.3 Classifier

A minimum distance classifier is used in testing. In the learning stage, a set of
Nc images of each texture class c (c = 1, 2, . . . , C) is taken, and each image of
the set is binarized to obtain its distribution function Fα,c(b) (α = 1, 2, . . . , Nc).
Then, for each texture class the prototype histogram Fc(b) is calculated as,

Fc(b) =
1

Nc

Nc
∑

α=1

Fα,c(b) (4)

and the latter is scaled in accordance to Sect. 2.2 to obtain Sc(b).
To calculate the distance between the two images Xα and Xβ we use the Man-

hattan distance between the associated SCCR histograms in the SCCR space:

d(Sα, Sβ) =
∑

b

|Sα(b) − Sβ(b)| (5)

In classification test the Manhattan distance is calculated between the test
image Xα with the scaled histogram Sα(b) and the prototype histogram of each
class Sc(b). The test image Xα will be assigned to class c∗, if and only if the
distance is minimum,

d(Sα, Sc∗) = min
c=1,2,...,C

{d(Sα, Sc)} (6)

3 Experimental Design and Results

Three experiments are used to verify and validate the scale invariance of the
SCCR descriptor in the classification of texture. In a first test, similarity matri-
ces of the CCR and SCCR histograms describing textures at different scales are
compared. The second test is a classification of scaled texture images using the
CCR and SCCR as texture descriptors. In the final experiment, the scale invari-
ance of the SCCR is compared with the state-of-the-art textural descriptors.

3.1 Experiment 1: Robustness of the SCCR to Scale Changes

A texture descriptor is said to be robust to scale changes if it remains almost
unchanged describing texture images at different scale. The higher is the similar-
ity between the feature vectors of a texture image at different scales, the better
is the descriptor. To measure the similarity of feature vectors, representing tex-
ture images at different scales, we use the cosine amplitude method, yielding
correlation values in the range [0, 1].

To evaluate the robustness of descriptors to scale variations, a set of C = 13
texture images suggested by Riaz et al. [12] was selected from the Brodatz
database [11], each image representing a particular class. These texture images
were scaled by different factors (×0.660, ×0.800, ×1.250 and ×1.500) using bilin-
ear interpolation, resulting in images at five different scales for each class.
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Table 1 shows the results for the intra- and inter-class similarities for the
whole dataset. Each value in Table 1 is the average of the 25 values of intra- or
inter-class similarity values. Elements in bold indicate possible confusion between
different classes; say, if the difference is less than 0.01. Although inter-class sim-
ilarity is lower in general, some samples of the category resulted in higher values
than the intra-class average. From Table 1, we see that the CCR descriptor shows
a high intra-class similarity and a high inter-class similarity. The latter can lead
to confusion between classes. Meanwhile the SCCR descriptor shows slightly
lower than the CCR intra-class similarity but substantially increased inter-class
discernibility. This means that the SCCR feature vectors exhibit a high similarity
rate among vectors of the same class at different scale, and an improvement for
distinguishing textures from different classes. The SCCR descriptor maintains a
high intra-class similarity, while maximizes the inter-class discernibility in the
feature space.

Table 1. Similarity matrices for the CCR and the SCCR including average values
for intra-class descriptors (along the diagonal) and inter-class descriptors (outside the
diagonal).

CCR SCCR

D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112 D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112

D9 0.99 0.94 0.96 0.95 0.96 0.85 0.93 0.94 0.89 0.95 0.98 0.89 0.89 D9 0.98 0.96 0.76 0.92 0.89 0.86 0.89 0.69 0.52 0.73 0.86 0.79 0.89
D12 0.94 1.00 0.96 0.90 0.88 0.69 0.99 0.90 0.97 0.89 0.94 0.99 0.78 D12 0.96 0.97 0.77 0.92 0.87 0.84 0.90 0.71 0.55 0.77 0.87 0.81 0.89
D15 0.96 0.96 0.99 0.93 0.90 0.75 0.96 0.90 0.92 0.91 0.95 0.93 0.81 D15 0.76 0.77 0.94 0.70 0.60 0.52 0.77 0.43 0.27 0.61 0.64 0.56 0.73
D16 0.95 0.90 0.93 0.94 0.90 0.80 0.91 0.90 0.86 0.91 0.94 0.86 0.82 D16 0.92 0.92 0.70 0.96 0.84 0.77 0.89 0.64 0.49 0.84 0.88 0.74 0.90
D19 0.96 0.88 0.90 0.90 1.00 0.92 0.85 0.91 0.78 0.98 0.98 0.80 0.97 D19 0.89 0.87 0.60 0.84 0.97 0.83 0.82 0.54 0.37 0.73 0.90 0.69 0.89
D24 0.85 0.69 0.75 0.80 0.92 0.96 0.66 0.84 0.59 0.89 0.86 0.59 0.93 D24 0.86 0.84 0.52 0.77 0.83 0.98 0.66 0.82 0.65 0.55 0.71 0.74 0.74
D29 0.93 0.99 0.96 0.91 0.85 0.66 0.99 0.88 0.97 0.86 0.92 0.98 0.74 D29 0.89 0.90 0.77 0.89 0.82 0.66 0.95 0.50 0.36 0.78 0.88 0.75 0.87
D38 0.94 0.90 0.90 0.90 0.91 0.84 0.88 0.97 0.88 0.90 0.92 0.86 0.84 D38 0.69 0.71 0.43 0.64 0.54 0.82 0.50 0.99 0.93 0.41 0.46 0.79 0.52
D68 0.89 0.97 0.92 0.86 0.78 0.59 0.97 0.88 1.00 0.80 0.86 0.99 0.66 D68 0.52 0.55 0.27 0.49 0.37 0.65 0.36 0.93 0.97 0.30 0.31 0.72 0.35
D84 0.95 0.89 0.91 0.91 0.98 0.89 0.86 0.90 0.80 0.99 0.97 0.82 0.95 D84 0.73 0.77 0.61 0.84 0.73 0.55 0.78 0.41 0.30 0.99 0.86 0.51 0.88
D92 0.98 0.94 0.95 0.94 0.98 0.86 0.92 0.92 0.86 0.97 0.99 0.88 0.92 D92 0.86 0.87 0.64 0.88 0.90 0.71 0.88 0.46 0.31 0.86 0.97 0.65 0.93
D94 0.89 0.99 0.93 0.86 0.80 0.59 0.98 0.86 0.99 0.82 0.88 1.00 0.69 D94 0.79 0.81 0.56 0.74 0.69 0.74 0.75 0.79 0.72 0.51 0.65 0.95 0.62
D112 0.89 0.78 0.81 0.82 0.97 0.93 0.74 0.84 0.66 0.95 0.92 0.69 1.00 D112 0.89 0.89 0.73 0.90 0.89 0.74 0.87 0.52 0.35 0.88 0.93 0.62 0.98

3.2 Experiment 2: Classification Accuracy of CCR and SCCR

In the second test, the minimum distance classifier described in Sect. 2.3 is used
in the CCR and SCCR feature spaces for the classification of scaled images.
Images of the same set of classes (C = 13) are scaled by ×0.660, ×0.800, ×1.250
and ×1.500 factors for classification tests. In the learning phase, for each texture
class only the original unscaled image of 337 × 337 pixels is used for generat-
ing randomly Nc = 10 sub-images of size 100 × 100 pixels, which are binarized
and used to calculate the prototype vector. In the recognition phase, a set of
Nc = 10 random sub-images of 100 × 100 pixels are taken from each scaled
image (×0.660, ×0.800, ×1.250 and ×1.500) corresponding to a class, getting
13 × 4 × 10 = 520 test images in total for classification. For each test image, the
feature vector is calculated and then the Manhattan distance to each texture pro-
totype vector is computed, assigning the test image to the nearest class. If a test
image from class c is assigned to class c it is considered a correct classification,
otherwise, it is a classification error. Finally, the precision (positive predictive
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value) of each class is calculated, as well as the accuracy ( TruePositive
TotalPopulation ) for the

testing set.
The results of classification of images at different scales using the CCR and

SCCR are shown in Table 2, those are classification rates in the thirteen classes
using a set of 520 test images. We see that the accuracy rate of the CCR based
classifier is 0.736, while the accuracy rate using SCCR is over 0.862, improving
the results in 12.6%. Using the SCCR the classification rate for each class is
also improved, except for the classes D12, D38 where the classification rate
decreases marginally. The D94 class represents a critical case because of the
loss of local structure after image binarization, showing predominant white and
black patches all over the texture. Despite this particular case, the improvement
of the classification accuracy suggests that the scaling of the CCR histogram
results in the SCCR descriptor robust to scale changes.

Table 2. Classification rates of the CCR and SCCR into the thirteen texture classes
at four different scales.

Method Image

D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112 Accuracy

CCR 0.673 0.855 0.689 0.508 0.499 0.649 0.496 0.955 0.938 0.932 0.486 0.917 0.973 0.736

SCCR 0.827 0.832 0.968 0.838 0.863 0.984 0.689 0.926 0.993 0.999 0.845 0.449 0.990 0.862

Classification tests are performed at scales half to twice the original scale, to
assess the robustness of the SCCR. Such tests compare the SCCR to standard
CCR and results also enable us to estimate the range in which the SCCR properly
handles the scale variation. Figure 3, shows classification rates for the SCCR and
CCR at 9 scales (×0.660, ×0.800, ×1.250, ×1.500 plus ×0.500, ×0.750, ×1.750,
×2.000). We see that the SCCR responds better when the scale textures are
highly unlike the original scale (at ×0.500 and in the range above ×1.250).
In the range [×0.660,×1.000], the CCR and SCCR show similar classification
rates, having CCR slightly better results. We conclude that the SCCR maintains
a better than CCR representation at large scale variations of texture images.

Fig. 3. Classification rates versus image scale using the CCR and SCCR descriptors.
Results are obtained on 13 classes from the Brodatz database.
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3.3 Experiment 3: Comparison with Other Approaches

In this experiment the SCCR method is compared with state-of-the-art textural
descriptors. The local binary pattern (LBP) [2], a reference algorithm in tex-
ture analysis, and the MCLBP algorithm [7], as a powerful LBP variant that
captures the correlation information between different scales. For this purpose,
the MCLBP/C is used with two multi-scale co-occurrences pairs (LBP(8, 1)
and LBP(8, 3); LBP(8, 1) and LBP(8, 4)). Also, as a part of our experiment, we
include Gabor filter descriptors of textural information, as the homogeneous tex-
ture (HT) [13]. Furthermore, Gabor-Riaz 2D-DFT [12] and Gabor-Riaz 1D-DFT
[14] are used in this comparison as efficient descriptors to deal with the invari-
ance of scale and rotation. For this comparison, the three descriptors of Gabor
filters were developed using the same filter design described in those references.

This experiment is performed on four well-known texture databases. Bro-
datz [11] - We select the same dataset used in [12], which includes 13 texture
images, scaled using bilinear interpolation. ALOT [15] - For scale-invariant pur-
poses, we only use the images in gray-scale that correspond to the camera 1
(c1) with 0 rotation degrees and the illumination condition I8; images are also
scaled using bilinear interpolation. Outex [16] - In this experiment, the test
suite TC 00011 (100 dpi and 120 dpi) was used, including resolutions of 300
dpi, 360 dpi, 500 dpi and 600 dpi for each texture. KTH TIPS2 b [17] - We
use the images that correspond to a frontal object position and ambient light-
ing condition, all of them at the 9 different scales from the sample a of the
database. Finally, training and testing datasets consist of 130 and 520 images
(Brodatz); 2, 500 and 10, 000 (ALOT); 240 and 1, 200 (Outex); and 110 and 880
(KTH TIPS2 b).

To have a fair comparison between descriptors, the classification test was per-
formed using the minimum distance classifier, leaving out the use of classifiers
that require the tuning of parameters specific to each descriptor. Each texture
descriptor was tested over each dataset described previously. Furthermore, the
reported results represent the mean accuracy over 30 test executions in order
to give them a statistical significance. The results obtained from the classifica-
tion test are presented in Table 3, where we observe that SCCR shows the best
performance for Brodatz and Outex dataset with 85.6% and 62.8% respectively,
while MCLBP shows the best performance for ALOT dataset with 25.7% and
the LBP descriptor for KTH TIPS2 b dataset with 68.9%. It is important to
mention that ALOT dataset presents low performances with all algorithms due
to the high amount of different classes (250 classes). According to the average
performance on all datasets tested, the SCCR is the descriptor with the best per-
formance. The high performance of the SCCR is similar to the state-of-the-art
algorithms being marginally higher than LBP and Gabor filters.

Note that in the comparison we have not optimized the frequency and posi-
tion parameters of filter banks, which can lead to better results with Gabor
filters, comparable with LBP performance [18]. However, in order to make a
fair comparison over all datasets, all descriptors were developed under the same
parameters that are mentioned in the respective references.
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Table 3. Classification accuracy for scale invariance on 4 different databases.

CCR SCCR LBP MCLBP Gabor-Riaz Gabor-Riaz Gabor-HT
1D-DFT 2D-DFT

Brodatz 0.734 0.856 0.613 0.628 0.603 0.596 0.817

ALOT 0.151 0.179 0.246 0.257 0.139 0.158 0.230

Outex 0.414 0.628 0.581 0.437 0.282 0.385 0.345

KTH TIPS2 b 0.552 0.575 0.689 0.612 0.554 0.534 0.644

Average 0.463 0.559 0.532 0.484 0.394 0.418 0.509

Run-Time Performance Analysis. To study the computational time of the
methods used in Experiment 3.3, the average run-time for feature extraction is
calculated using the full set of images in the corresponding database; the test was
carried out on an Intel Corel i7-4720HQ processor at 2.60 GHz. Not all methods
have been optimized, nonetheless, results lead to an idea of the computational
complexity of them. Taking into account that feature extraction is faster on the
KTH TIPS2 b dataset and slower on Outex, the range of average consuming
time on these datasets, given in seconds, are as follow: LBP, 0.006 to 0.054;
SCCR, 0.012 to 0.103; CCR 0.013 to 0.104; MCLBP, 0.108 to 0.552; and, finally,
the Gabor methods, 1.736 to 18.991. These results show that it is possible to get
a high performance with lower computational cost.

4 Conclusions

In this work, the Scaled Coordinated Cluster Representation (SCCR) of images
has been proposed as a descriptor for scale-invariant classification of visual tex-
ture. The method is a 2-step variation of the standard CCR. First, the CCR
representation of the texture image is obtained. Afterward, the bins that rep-
resent the totally black or white regions in the texture are suppressed in the
histogram and the remaining bins are scaled. Then, the low-occurrence patterns
are filtered out. This adjustment leads to a descriptor robust to scale changes.
Test series have been implemented to evaluate the performance of the proposed
descriptor. Comparing the SCCR to the standard CCR, the results show that
the SCCR provides a better representation, preserving a low intra-class variance
and improving the inter-class discernibility. These properties of the SCCR are
relevant when dealing with textures exhibiting large scale changes. The descrip-
tor has been evaluated using a minimum distance classifier and texture images
from four well-known databases. Compared with the standard CCR, the exper-
iments show that the classification accuracy is improved substantially when the
scale range is less than ×0.660 and higher than ×1.000. A comparison with the
state-of-the-art algorithms was done, showing a high performance with a sim-
pler representation than other scale invariant descriptors. This suggests that the
SCCR may be used in applications when the scale variance has to be compen-
sated and visual texture needs to be classified in a fast and accurate way, for
example, in industrial inspection or mobile applications.
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