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Foreword

For more than a century, researchers in mathematics education have had an interna-
tional dimension to their work. They have attempted to study how mathematics is 
taught and learned both within and across countries. When, for example, the 
Commission Internationale de l’Enseignement Mathématique (reincarnated later as 
the International Commission on Mathematical Instruction) was established in 
1908, its first project was to invite reports on the state of mathematics teaching in its 
member countries. The resulting surveys were used to make cross-country compari-
sons and stimulate within-country reforms.

During the last half century, international studies of the teaching and learning of 
mathematics in various countries have grown enormously in scope, number, and 
quality. Researchers have collected vast amounts of data on course syllabi and text-
books, students’ attitudes and performance on mathematics problems, and record-
ings of instruction in representative samples of mathematics classrooms across 
multiple countries.

The twenty-first century has seen researchers’ attention move beyond the teach-
ing and learning of school mathematics to consider the teachers of that mathemat-
ics—what they know and believe about the subject and its teaching as well as how 
they learn to teach. The Teacher Education and Development Study in Mathematics 
(TEDS-M) is the largest and best known international study of mathematics teacher 
preparation. The present book contains reports of exploratory analyses of the 
TEDS-M data that were primarily produced as the result of a series of workshops to 
acquaint scholars—especially beginning mathematics education researchers—with 
the study and the data.

The first section of the book looks at programs to prepare teachers to teach math-
ematics in primary and lower secondary school. The researchers found considerable 
variation in programs across and within countries as well as in the backgrounds and 
preparation of the teacher educators staffing those programs. The TEDS-M data 
clearly offer a rich selection of program characteristics, and the chapters in the first 
section only begin to explore the ways in which those characteristics might be 
related.
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The second section focuses on the prospective teachers in the various programs—
their knowledge, beliefs, and other characteristics. Again, the researchers found 
variety across programs and countries, and they were able to discern some provoca-
tive patterns connecting what the prospective teachers had learned and what their 
program had offered them. The cross-sectional nature of the TEDS-M data limited 
the attention that could be paid to change, but the researchers were nonetheless able 
to draw some provocative inferences about program outcomes.

The third section addresses methodological issues raised by TEDS-M that con-
cern sampling, instrument development, and validation. The statistical sampling, 
which involved institutions and populations of prospective teachers and teacher 
educators in multiple countries, was highly complex, as was the instrument devel-
opment process. Sophisticated procedures connected to the development of anchor 
points and to the use of tests of differential item functioning were used to explore 
how the various assessment instruments were working. Further, the validity of the 
TEDS-M knowledge assessment was studied through expert judgments of item con-
tent against specifications for teacher knowledge. Clearly, this groundbreaking 
study has made important inroads in the investigation of international 
comparisons.

In the past few decades, it has become increasingly difficult to recruit partici-
pants for empirical studies in education. A researcher in mathematics education, 
acting alone, cannot hope to acquire a large, let alone a representative, sample of 
new teachers or of teacher educators from a given country. Studies of representative 
samples of such groups from more than one country demand the support of interna-
tional organizations and of national research centers. The TEDS-M data set, there-
fore, provides a unique resource for researchers in mathematics education. Although 
the chapters in the present book demonstrate vividly the potential of that resource, 
they are far from exhausting it. TEDS-M is a gift to you the readers of this book that 
deserves to be carried forward in the research you will do.

Athens, Georgia Jeremy Kilpatrick

Foreword
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Preface

In this book, we continue to explore the data collected by the Teacher Education and 
Development Study in Mathematics (TEDS-M) in 2008, and made publicly avail-
able in 2012. TEDS-M is the first and only study to date that has been carried out at 
an international level to explore the outcomes of mathematics teacher education 
with nationally representative samples of preservice teacher education programs, 
their educators, and their future teachers at the primary and secondary levels in 17 
countries. The study researchers focused on understanding the depth and breadth of 
mathematics knowledge that future teachers acquire at the end of their preservice 
programs, essentially making TEDS-M a study of the outcomes of higher educa-
tion. TEDS-M is the first and only rigorous study where researchers have sought to 
test a series of hypotheses about what constitutes effective teacher education for 
future mathematics teachers that had emerged after years of continuous, albeit 
small-scale, studies of teacher learning. The TEDS-M researchers used a survey 
methodology to design a comprehensive evaluative research study that could reflect 
the complexity of the endeavor.

The study was innovative in that  the research team developed assessments of 
future teachers’ mathematics content and pedagogical knowledge, among other 
measures, while collecting and documenting evidence of validity and reliability. 
This task was only possible with the collaboration of mathematics teacher educators 
and their students as part of an international and interdisciplinary team of mathema-
ticians, psychometricians, survey and sampling experts, and policy analysts. The 
TEDS-M International Center received funding from the U.S.  National Science 
Foundation to develop and coordinate the study. Participating countries sought their 
own funding, and the International Association for the Evaluation of Educational 
Achievement (IEA) sponsored the study and contributed logistical support.1 The 
IEA’s network of collaborators, originally founded in 1958, has marked 60 years of 

1 Maria Teresa Tatto then at Michigan State University directed the study. Other organizations 
involved in the TEDS-M study included ACER, the IEA Secretariat, the IEA-DPC, and Statistics 
Canada.
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exploring different, innovative and rigorous approaches to evaluating educational 
effectiveness2 of which this study is an example.

The TEDS-M study was not without challenges. Many factors mediate the ulti-
mate outcomes of teacher education programs. The knowledge that future teachers 
are able to demonstrate at the end of their preparation in preservice university-based 
programs is dependent on their previous learning in their primary and secondary 
schooling, and importantly through their passage in higher education institutions 
through consecutive or concurrent teacher preparation programs. Further practical 
experiences in schools through internships or field experiences create yet another 
level of learning. Evaluating one’s own program using an international and com-
parative assessment creates important opportunities to learn from what other sys-
tems are doing and important opportunities for change. As Arthur W.  Foshay 
remarked in the report of the first IEA study (“Educational Achievements of 
Thirteen-Year-Olds in Twelve Countries”; retrieved from http://www.iea.nl/
brief-history-iea):

If custom and law define what is educationally allowable within a nation, the educational 
systems beyond one’s national boundaries suggest what is educationally possible.

The comparative study of teacher education across different countries also 
reflects important societal values including conceptions of the knowledge that is 
important for societies to have, how it is to be acquired, and from whom. Indeed, we 
believe that the direction a society elects to follow can be identified by the manner 
in which it treats its teachers and their students.

Although change is typically slow in teacher education, currently we have a 
combination of stability and fast-paced change resulting from the introduction of 
alternative routes to preparing teachers, in what seems to be a global movement. It 
is in this fast-paced environment, where much of the change is driven by market 
forces rather than by research evidence, that the TEDS-M study provides an impor-
tant contribution to the field.

The publication of this book serves to celebrate TEDS-M’s research findings and 
methodological advances, to remind us of what is possible and effective in tradi-
tional teacher education programs, and to model research that can inform future 
policy and scholarship. Whereas the critical reader may question the relevance of 
data that was collected a decade ago, recent research continues to uncover the same 
problems that TEDS-M highlighted, and the importance of continuing to do the 
kind of research we undertook.3 In some cases, the problems have been exacerbated 
by the proliferation of alternative routes and redefinitions of what counts as a quali-
fied teacher, to the point that scholars have remarked that the project of education in 

2 IEA’s work originated in 1958 when a group of scholars, educational psychologists, sociologists, 
and psychometricians met at the UNESCO Institute for Education (UIE) to discuss problems asso-
ciated with evaluating school effectiveness and student learning. See http://www.iea.nl/
brief-history-iea
3 See for instance Tatto, M.T., Burn, K., Menter, I., Mutton, T., & Thompson, I. (2018). Learning 
to teach in England and the United States: The evolution of policy and practice. Abingdon, 
England: Routledge.

Preface

http://www.iea.nl/brief-history-iea
http://www.iea.nl/brief-history-iea
http://www.iea.nl/brief-history-iea
http://www.iea.nl/brief-history-iea
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universities is in jeopardy.4 Driven both by teacher shortages and political consider-
ations, popular movements away from formal teacher preparation reveal assump-
tions about the skills and knowledge necessary to teach effectively; we reject those 
assumptions and find teaching to be an incredibly complex and difficult art. The 
lack of a vigorous response from teacher educators to defend the worth of their 
programs continues to leave the field vulnerable to ideological attacks. We hope that 
the TEDS-M research will serve as a model to create a basis for inquiry-based learn-
ing in teacher education programs.

The purpose of this book, then, goes beyond adding to the key research reports 
produced by the study,5 and the already rich research literature based on the TEDS-M 
data since it was published in 2012, and which can be found in numerous research 
journals and reports, in books, and elsewhere. We began this book with three pur-
poses in mind. First, we wanted to honor our commitment to the U.S.  National 
Science Foundation to not only make the data publicly available but to enable dis-
semination of the research, and provide access to our complex database, with a 
focus on junior scholars and advanced doctoral students. After an initial meeting at 
Michigan State University, U.S., at the end of 2012, we issued a call for proposals 
to the national and international mathematics research community. We funded a 
series of meetings and data analysis workshops for these scholars in exchange for 
the production of high quality publishable articles and chapters. The call resulted in 
a number of proposals. These were reviewed by our internal team, during a meeting 
at Michigan State University, in 2013 and those with the highest quality were 
selected. We held two meetings with these colleagues in July 2014  in Limerick, 
Ireland, sponsored by the National Centre for Excellence in Mathematics and 
Science Teaching and Learning (NCE-MSTL), and in July 2016 at the University of 
Minnesota, U.S. These week-long meetings resulted in the development of 20 paper 
proposals, which we organized into four symposia proposals for the American 
Educational Research Association (AERA), Association of Mathematics Teacher 
Educators (AMTE), the National Council of Teachers of Mathematics (NCTM), 
and the Comparative International Education Societies Annual Meetings (held in 
2015–2016). The symposia were accepted for presentation, and we experienced 
positive receptions in these conferences. In addition to continue to give visibility to 
the study, these conferences helped us to advance the work on the papers. We held 

4 See Furlong, J. (2013). Education  – An Anatomy of the Discipline: Rescuing the University 
Project? London: Routledge.
5 See for instance: Tatto. M.T. (ed.) (2013). The Teacher Education and Development Study in 
Mathematics (TEDS-M). Policy, Practice, and Readiness to Teach Primary and Secondary 
Mathematics in 17 Countries: Technical Report. Amsterdam: International Association for the 
Evaluation of Student Achievement. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, 
G., Peck, R., Bankov, K., Rodriguez, M. & Reckase, M. (2012). Policy, Practice, and Readiness to 
Teach Primary and Secondary Mathematics in 17 Countries. Findings from the IEA Teacher 
Education and Development Study in Mathematics (TEDS-M). Amsterdam: International 
Association for the Evaluation of Student Achievement. Brese, F., & Tatto, M.T. (Eds.) (2012). 
User guide for the TEDS-M international database. Amsterdam, The Netherlands: International 
Association for the Evaluation of Educational Achievement (IEA).
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a working meeting in January 2017 to check on the progress of our efforts and to 
finalize plans for publication. We finished writing the book in March 2017. Once the 
chapters were written, they were reviewed by the book editors, then by expert stat-
isticians in addition to our own, and once approved, the chapters went through three 
external editors to ensure clarity and meaning. Once submitted to Springer in mid- 
2017, the book was reviewed anonymously by six peers following Springer’s rigor-
ous review process, and finally approved for publication in early 2018. Second, we 
wanted the book authors to explore not only issues that have not yet been studied 
using the TEDS-M database, but also to provide more exploration into aspects of 
the study that had not been published before, such as the curriculum analysis and the 
level of belief alignment between future teachers and their educators. Third, we 
wanted to dedicate a section of the book to discuss in more depth the most important 
methodological advances achieved by the TEDS-M researchers, such as the sam-
pling strategies and the creation of anchor points to give contextual meaning to the 
assessments results.

Ultimately, the goal of the book is to inform audiences about how use of 
the TEDS-M study and data: (a) helps to strengthen the knowledge base to address 
current national priorities such as increasing the number of fully competent mathe-
matics teachers; (b) helps to understand the nature and contributions of preservice 
teacher education, as a way to inform policies for selection, preparation, induction, 
and professional development of mathematics teachers; (c) serves as an example of 
a scientific approach to the study of teacher education and teacher learning in math-
ematics; and (d) provides concepts, definitions, measurement strategies, indicators 
and instrumentation to strengthen the research in this field, and the knowledge base 
of teacher education effectiveness. We offer this book in the hopes that it will con-
tribute to new studies, and more rigorous scholarship in teacher education, and more 
generally, in higher education.

July 2018 Maria Teresa Tatto 

Preface
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Abstract How does teacher education contribute to the learning outcomes of future 
teachers? Are there programs that are more successful than others in helping teach-
ers learn to teach? How do local and national policy environments contribute to 
teacher education outcomes? This chapter introduces the book to readers and invites 
them to explore these questions across a large number of settings. The chapter illus-
trates why investigating the impact of pre-service teacher education on teachers’ 
learning outcomes is a necessary component to understanding variation in the qual-
ity of teachers who enter the field. The chapter also provides an overview of the 
Teacher Education and Development Study in Mathematics (TEDS-M) a cross- 
national study of primary and secondary mathematics teacher education sponsored 
by the International Association for the Evaluation of Educational Achievement 
(IEA), and funded by the U.S. National Science Foundation and participating coun-
tries. The book includes original work that explores new facets of the TEDS-M 
methodology and data, along with results and policy implications; and illustrates the 
challenges and possibilities in engaging in systematic research on teacher educa-
tion. Because we lack models to frame research on teacher education processes and 
outcomes, the book seeks to provide guidance to future research in this area by 
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outlining the methodology followed by the TEDS-M study as well as findings from 
secondary analyses of the rich TEDS-M database.

Introduction

How does teacher education contribute to the learning outcomes of future teachers? 
Are there programs that are more successful than others in helping teachers learn to 
teach? How do local and national policy environments contribute to teacher educa-
tion outcomes? This book invites readers to explore these questions across a large 
number of settings. Although these questions seem simple, authoritative answers 
are hard to find. Recent work in the United States, for example, has tended to focus 
more on the learning outcomes of pupils of program graduates rather than the learn-
ing outcomes of the prospective teachers themselves (e.g., Boyd, Grossman, 
Lankford, Loeb, & Wyckoff, 2009; Goldhaber, Liddle, & Theobald, 2013; Koedel, 
Parsons, Podgursky, & Ehlert, 2015). Yet important research has been done docu-
menting that teachers’ knowledge and beliefs are key to pupils’ achievement and 
that teachers’ previous preparation should be considered an important policy prior-
ity (Campbell et al., 2014; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; 
Hill, Rowan, & Ball, 2005; Metzler & Woessmann, 2012; Wilkins, 2008). Thus, 
investigating the impact of pre-service teacher education on teachers’ learning out-
comes is a necessary component to understanding variation in the quality of teach-
ers who enter the field.

This book uses the data collected by the Teacher Education and Development 
Study in Mathematics (TEDS-M) in 2008. The TEDS-M study is a cross-national 
study of primary and secondary mathematics teacher education sponsored by 
the International Association for the Evaluation of Educational Achievement 
(IEA) and funded by the National Science Foundation and participating coun-
tries. TEDS-M focuses on how teachers are prepared to teach mathematics in 
primary and lower secondary school. Consequently, TEDS-M is a study of the 
variation in the nature and impact of teacher education programs within and 
across countries.

The purpose of this book is twofold: first, to describe the different phases of the 
TEDS-M study and showcase original work that explores new facets of the TEDS-M 
database, along with results and policy implications; and second, to illustrate the 
challenges and possibilities in engaging in systematic research on teacher educa-
tion. Because we lack good models to frame research on teacher education pro-
cesses and outcomes, the book seeks to provide guidance to future research in this 
area by outlining the methodology followed by the TEDS-M study as well as find-
ings from secondary analyses of the rich TEDS-M database.

The book is organized around the TEDS-M conceptual framework and research 
questions, and has three parts. Part I includes chapters that explore the characteris-
tics of the teacher education programs studied, including the curriculum, the strate-
gies and guidelines that programs use to prepare highly knowledgeable teachers, 
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and the preparation of teachers to meet the needs of diverse learners. This part also 
includes a study focusing on teacher educators, particularly examining the degree of 
alignment between the beliefs of teacher educators and future teachers. Part II 
moves to the study of future teachers’ beliefs, knowledge, and opportunities to 
learn. Part III includes chapters that address some important methodological issues 
that arose in TEDS-M and that have not been discussed in depth elsewhere. In 
 particular, chapters in Part III discuss the challenges of creating a common language 
across settings and countries before undertaking the research; developing rigorous 
instruments with validity evidence that produce reliable scores, as well as a sam-
pling frame across countries that is sensitive to within-country variation, culture, 
and norms; and the development of anchor points to convey contextual meaning to 
the study findings. The last two chapters use TEDS-M data to examine differential 
item functioning, and to provide validity evidence to support the use and interpreta-
tion of TEDS-M assessment results against the expectations included in the CBMS 
report: The Mathematical Education of Teachers (MET II).1

 The TEDS-M Framework

The impetus for TEDS-M, conducted in 17 countries, was recognition that teaching 
in general, and specifically in the so-called STEM subjects, has become more chal-
lenging worldwide, as growth in knowledge demands frequent curricular change, 
and as large numbers of teachers reach retirement age. It also has become increas-
ingly clear that effectively responding to demands for teacher preparation reform 
will remain difficult while there is lack of consensus on what such reform should 
encompass. In the absence of empirical data, efforts to reform and improve educa-
tional provision in the highly contested STEM arena continue to be undermined by 
traditional and implicit assumptions. TEDS-M accordingly focused on collecting, 
from the varied national and cultural settings represented by the participating coun-
tries, empirical data that could inform policy and practice related to recruiting and 
preparing a new generation of teachers capable of teaching increasingly demanding 
mathematics curricula.

Although future teachers and school systems must place their trust in the numer-
ous and diverse teacher education programs across the world, no comprehensive, 
authoritative study of the outcomes of teacher education had been carried out at the 
time that the TEDS-M study took place, and none has been done since. The lack of 
work in this area made it essential to do a comprehensive study of teacher educa-
tion’s immediate outcomes to identify what knowledge, skills and, dispositions 
future teachers have close to graduation and when they are declared ready to teach. 
An important assumption of the TEDS-M study is that the education of teachers is 

1 http://www.cbmsweb.org/the-mathematical-education-of-teachers/

1 Introduction: Exploring the Mathematical Education of Teachers Using TEDS-M Data

http://www.cbmsweb.org/the-mathematical-education-of-teachers


4

not generic, and that learning to teach occurs within subject contexts. Consequently, 
TEDS-M is subject-specific and focuses on mathematics teacher education as an 
area to study.

Two particular purposes underpinned TEDS-M. The first was to identify how the 
countries participating in TEDS-M prepare teachers to teach mathematics in  primary 
and lower-secondary schools. The second was to study variation in the nature and 
impact of teacher education programs on future teacher knowledge and beliefs 
within and across the participating countries. The information collected came from 
representative samples (within the participating countries) of preservice teacher 
education programs, their future primary and lower-secondary school teachers, and 
their teacher educators.

The 17 countries that participated in TEDS-M were Botswana, Canada (four 
provinces), Chile, Chinese Taipei, Georgia, Germany, Malaysia, Norway, Oman 
(lower-secondary teacher education only), the Philippines, Poland, the Russian 
Federation, Singapore, Spain (primary teacher education only), Switzerland 
(German-speaking cantons), Thailand, and the United States (public institutions 
only). Across the 17 participating countries, approximately 22,000 future teachers 
from 751 programs were surveyed and tested. Teaching staff within these programs 
were also surveyed—close to 5,000 mathematicians, mathematics educators, and 
general pedagogy educators.

The overall TEDS-M study has three overlapping components:

• Studies of teacher education policy, schooling, and social contexts at the national 
level;

• Studies of primary and lower secondary mathematics teacher education pro-
grams, standards, and expectations for teacher learning; and

• Studies of the mathematics and related teaching knowledge of future primary 
and lower secondary mathematics teachers.

TEDS-M explored the associations among these components, such as associations 
among teacher education policies, program practices, and future teacher outcomes 
as shown in the TEDS-M Conceptual Framework in Fig. 1.1.

Specifically, TEDS-M investigated the following research questions:

 1. What are the policies that support primary and secondary teachers’ achieved 
level and depth of mathematics and related teaching knowledge?

 2. What learning opportunities, available to prospective primary and secondary 
mathematics teachers, allow them to attain such knowledge?

 3. What level and depth of mathematics and related teaching knowledge have pro-
spective primary and secondary teachers attained by the end of their preservice 
teacher education?

A common question across these three areas of inquiry concerned cross-national 
and intra-national variation—specifically, to what extent do teacher education pol-
icy, opportunities to learn, and future teachers’ mathematics subject and pedagogy 
knowledge vary across and within countries?

M. T. Tatto
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 Studying Mathematics Teacher Education: TEDS-M Findings 
to Date

The main TEDS-M findings are well-documented, both in reports which can be 
found on the IEA website under the association’s complete list of publications avail-
able online in the ILSA Gateway (http://www.ilsa-gateway.org/ and search by study 
‘TEDS-M’), in the ERIC system and in various several articles and special issues.

Although the TEDS-M study has provided and continues to provide new insights 
into the nature of mathematics teacher education across the participating countries, 
one of the most important findings for the field of mathematics teacher education, 
and comparative education more broadly, is the high degree of variation and com-
plexity encountered in the 17 participating teacher education systems. This organi-
zational complexity proved to be more challenging than that encountered in 
comparative studies of K-12 education within individual countries. Awareness of 
this complexity led to an understanding that country-by-country comparisons, as 
done in most international and comparative studies, could be carried out only after 
efforts to ensure that similar types of teacher education programs were being com-
pared. We discuss these efforts below.

Characteristics 
of Future 
Teachers

Characteristics 
of Teacher 
Educators

Characteristics 
of Teacher 
Education 
Programs

Teacher 
Knowledge 
and Beliefs

National and Local Contexts

Fig. 1.1 TEDS-M Conceptual Framework
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 Variation in and Across Countries

The TEDS-M study  team did not select countries for participation in the study; 
rather, countries throughout the world were invited to participate in TEDS-M. The 
17 countries that agreed to participate in the study differed with respect to many 
important geographic, demographic, economic, and educational characteristics. The 
TEDS-M sample includes very large countries such as the United States of America 
(U.S.) and the Russian Federation, as well as small countries such as Singapore. 
These countries vary greatly in financial resources, as measured by per capita 
income, and in the aggregate size of their economies. In addition, a few have high 
fertility rates, which lead to rapidly increasing school enrollment, whereas other 
countries have fertility rates below replacement levels, which could lead to declin-
ing school enrollment. Most of the TEDS-M countries have a relatively favorable 
combination of these interacting characteristics, whereas just a few face serious 
funding challenges due to growing enrollments. This latter situation is, unfortu-
nately, very widespread outside of the TEDS-M participating countries. TEDS-M is 
not representative of the world’s countries. Instead, it comprises a relatively advan-
taged, but still diverse subsample from which much can be learned.

 Program Variation

The countries that participated in TEDS-M vary in terms of selectivity and status of 
teachers, and the degree to which teaching mathematics is conceived as needing 
general or special mathematics preparation. These conceptions of mathematics 
teaching are reflected in the selectivity of teacher education programs, which is 
closely related to the supply of beginning teachers: a shortage of candidates who 
want to be teachers may result in lowering standards of admission and selectivity 
during and at the end of the programs (as in the United States). In contrast, an over-
supply of applicants (as in Chinese Taipei), may lead to tighter admission and more 
stringent selectivity policy and practices.

TEDS-M provides valuable evidence of diversity in the number, size, and nature 
of teacher education institutions across the world. The TEDS-M study team sur-
veyed 349 programs that prepare future teachers to teach primary pupils exclu-
sively, 226 programs that prepare future teachers to teach secondary pupils 
exclusively, and 176 programs that prepare future teachers to teach primary and 
secondary pupils. The number of institutions that housed these teacher education 
programs across participating countries ranged from one institution in Singapore 
that had multiple programs preparing future primary and secondary teachers, to 
78  in Poland. The nature of these institutions differs widely within and between 
countries. Some are Institutes of Higher Education (IHE) such as universities or 
colleges outside universities; some offer programs only in education; some are com-
prehensive in the fields of study offered; some offer university degrees; some of 
these institutions are public and some are private.

M. T. Tatto
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The usual way to categorize teacher education programs is according to the 
design of their opportunities to learn: whether they prepare teachers for primary or 
secondary schools. However, for TEDS-M, this turned out to be an oversimplifica-
tion. The terms primary and secondary do not mean the same thing from country to 
country. There is no universal agreement on when primary grades end and second-
ary grades begin. Therefore, instead of relying on an assumed primary-secondary 
dividing line, TEDS-M constructed a more refined categorization based on a fine- 
grained analysis of the programs. To ensure that programs with similar purposes and 
characteristics were being compared across countries, TEDS-M used two organiza-
tional variables: grade span (the range of school grades for which teachers in that 
program were being prepared to teach) and teacher specialization (whether the pro-
gram was preparing specialist mathematics teachers or generalist teachers). 
Programs were classified into program-types within countries based on the grade 
spans for which they prepared teachers, and according to whether they prepared 
generalist teachers or specialist teachers of mathematics.

 Variation in Opportunities to Learn in Teacher Education 
Programs

One reason for our effort to classify programs in terms of grade span and specializa-
tion is that the resulting groups are likely to have different opportunities to learn 
(OTL), and the OTL in turn are likely to lead to different knowledge results. 
TEDS-M found OTL for mathematics, mathematics pedagogy, and general peda-
gogy depended on the grade level and the curriculum future teachers were expected 
to teach. For example, programs for future primary teachers gave more coverage to 
the basic concepts of numbers, measurement, and geometry and less coverage to 
functions, probability and statistics, calculus, and structure than did programs for 
lower secondary teachers.

Analogous patterns were also observed among secondary-level teachers. 
Programs that were intended to prepare teachers to teach higher grades tended to 
provide, on average, more OTL mathematics than the programs that prepared teach-
ers for the early grades. The findings of this study thus reflect what seems in some 
countries to be a cultural norm—namely, that teachers who are expected to teach in 
primary, and especially early primary grades, do not need much mathematics content 
beyond that included in the primary and secondary school curricula. The pattern 
among future secondary teachers is generally characterized by more and deeper cov-
erage of mathematics content; however, there was more variability in OTL among 
those being prepared for the early secondary grades (known in some countries as 
“middle school”) than among those being prepared to teach Grade 11 and above.

Not surprisingly, the countries with programs that provided the most specialized 
opportunities to learn challenging mathematics had higher scores in the TEDS-M 
knowledge assessments. In TEDS-M, future primary-level and secondary-level 
 specialists were found in high-achieving countries such as Chinese Taipei, 
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Singapore, and the Russian Federation; these teachers had significantly more OTL 
university- and school-level mathematics than primary and secondary teachers in 
others countries. Opportunities to learn more and deeper mathematics seemed to be 
related to cultural notions of the knowledge needed to teach mathematics in pri-
mary and secondary schools. Yet the question of how much content knowledge 
teachers need to teach effectively is still an issue of much debate.

TEDS-M offers an opportunity to examine how these distinct assumptions play 
out in practice. If relatively little content knowledge is needed for the early grades, 
then less emphasis on mathematics preparation and non-specialization can be justi-
fied. The key question is whether teachers prepared in this fashion can teach math-
ematics as effectively as teachers with more extensive and deeper knowledge, such 
as that more often possessed by specialist teachers. Although TEDS-M does not 
provide definitive conclusions in this regard (this question requires the study of 
beginning teachers and their impact on pupils), it is important to confirm that 
TEDS-M future teachers who will be mathematics specialists in primary schools 
have higher knowledge scores on average than their generalist counterparts in the 
same countries.

 Variation Among Teacher Educators

To complement its emphasis on the nature and extent of mathematics content and 
pedagogy offered to future teachers, TEDS-M surveys included questions for 
teacher educators about themselves, their students, and their programs. Demographic 
data on teacher educators at the level collected by TEDS-M fills a gap in the litera-
ture and is an important contribution of the study. The TEDS-M data on teacher 
educators provides insight into the variability of teacher educators across the coun-
tries studied in a number of other areas. Among the close to 5000 teacher educators 
surveyed for TEDS-M, the percentage with doctoral degrees in mathematics ranged 
from 7% in the Philippines to over 60% in Georgia, Chinese Taipei, Poland, and 
Oman; the percentage with doctoral degrees in mathematics pedagogy ranged from 
about 7% in the Philippines to 40% in Georgia. Among these teacher educators, the 
percentage who reported having experience teaching primary or secondary school 
ranged from about 20% in Oman to 90% in Georgia. All the teacher educators were 
asked if they considered themselves mathematics specialists. Their responses varied 
according to whether the respondent was a mathematician teaching mathematics 
content to future teachers, a mathematics educator teaching mathematics pedagogy, 
or a teacher educator teaching general pedagogy. Nevertheless, a surprising number 
among those teaching mathematics content or mathematics pedagogy described 
themselves as not being specialists: close to 40% in Chile and the Russian Federation, 
and close to 50% in Chinese Taipei, Malaysia, and the Philippines. In contrast, close 
to 90% of those educators in Germany, and Oman declared mathematics as their 
“main specialty,” whereas those in Botswana, Georgia, Poland, Singapore, 
Switzerland, and Thailand ranged from 70% (in Thailand) to 85% (in Georgia).

M. T. Tatto
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 Variation Among Future Teachers

As with programs and teacher educators, TEDS-M provided important information 
on the variability in teachers’ demographic characteristics within and across coun-
tries. Future teachers being prepared to teach at the primary and secondary school 
levels in the TEDS-M samples were predominantly female, although there were 
more males at the higher levels and in particular countries. Most of the future teach-
ers that participated in TEDS-M come from well-resourced homes, leaving low- 
income families underrepresented in every country in one of the largest occupations 
that has also historically offered an accessible avenue of social mobility. Many 
reported having access to such possessions as calculators, dictionaries, and DVD 
players, but not personal computers—now widely considered essential for profes-
sional use—especially teachers in less affluent countries such as Georgia, the 
Philippines, Botswana, and Thailand. A relatively small proportion of the sample of 
future teachers who answered the test did not speak the official language of their 
country (which was used in the TEDS-M surveys and tests) at home, indicating that 
linguistic minorities may be underrepresented in some countries.

In other respects, the self-reports of future teachers were encouraging. Most future 
teachers described themselves as above average or near the top of their year in aca-
demic achievement at the end of upper secondary school. Among the reasons given 
by future teachers for wishing to become teachers, liking to work with young people 
and wanting to influence the next generation were particularly important. Many 
believed that although teaching is a challenging job, they had an aptitude for it.

 Variation in the Outcomes of Teacher Education Programs

Whereas diverse approaches are embodied in each of the programs studied in 
TEDS-M, it could be argued that they represent variations in the search for the opti-
mal balance among plausible OTL the knowledge needed in mathematics teaching 
(Ball & Bass, 2000; Shulman, 1987). As suggested in initial reports, there is impor-
tant variation within and across countries in the outcomes measures used by 
TEDS-M, namely in the assessments of Mathematics and Mathematics Pedagogy 
Content Knowledge. We summarize these briefly below.

 Mathematics and Mathematics Pedagogy Content Knowledge

There is a clear and unmistakable finding regarding the TEDS-M research question 
about the knowledge attained by future primary and secondary teachers at the end-
point of teacher education: knowledge for teaching mathematics varies consider-
ably among individuals within every country and between countries. The difference 
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in mean mathematics content knowledge (MCK) scores between the highest- and 
lowest-achieving country in each primary and secondary program group was 
between 100 and 200 points—one and two standard deviations. This is a substantial 
difference, comparable to the difference between the 50th to the 96th percentile in 
the whole group. Differences in mean achievement between countries in the same 
program group on mathematics pedagogical content  knowledge (MPCK) were 
somewhat smaller, ranging from about 100 to 150 points. So, within each program 
group, at the end of their teacher preparation programs, future teachers in some 
countries have substantially greater MCK and MPCK than others.

For each participating country, the results of TEDS-M serve as a baseline for 
further investigation. For example, content experts may look at the descriptions of 
the kinds of mathematics and mathematics pedagogy knowledge attained in each 
program or country and study how changes in OTL may correlate with improved 
performance. Policymakers may want to investigate ways to encourage more tal-
ented secondary school graduates to select teaching as a career, or investigate how 
teacher preparation programs of the same duration can lead to higher scores on 
MCK and MPCK. One conclusion that can be drawn from TEDS-M is that goals for 
improving MCK and MPCK among future teachers should be both ambitious and 
achievable.

Beliefs

Teachers’ actions in the classroom are guided by their beliefs about the nature of 
teaching and learning, and about the subjects and students they teach. Acknowledging 
this, the TEDS-M study team gathered data on beliefs from future teachers of math-
ematics and from the educators charged with the responsibility of preparing them to 
be teachers. The survey included measures of beliefs about the nature of mathemat-
ics (e.g., Mathematics is a set of rules and procedures, Mathematics is a process of 
inquiry), beliefs about learning mathematics (e.g., by following teacher direction or 
through student activity), and beliefs about mathematics achievement (e.g., mathe-
matics as a fixed ability). The belief that mathematics is a set of rules and proce-
dures and that it is best learned by following teacher direction have been characterized 
in the literature as calculational and direct- transmission (Philipp, 2007; Staub & 
Stern, 2002). The belief that mathematics is a process of inquiry and that it is best 
learned by active student involvement is consistent with those described in the same 
literature as conceptual and cognitive-constructionist.

Data on beliefs from three groups (future primary teachers, future secondary 
teachers, and teacher educators) were compared, and, in contrast with the knowl-
edge scales, the differences of substance were not among program groups, but rather 
among countries. Consequently, the analysis was based on comparisons by country 
in a way that was not feasible with the knowledge scales. In general, the pattern of 
beliefs described as a conceptual or cognitive-constructionist orientation is endorsed 
by teacher educators and future teachers in all countries, although somewhat more 
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weakly in Georgia. The pattern of beliefs described as computational or direct- 
transmission was endorsed by teacher educators and future teachers in Botswana, 
Georgia, Malaysia, Oman, the Philippines, and Thailand, but not by teacher educa-
tors and future teachers in Germany, Norway, and Switzerland. Patterns of responses 
from several countries (Chile, Chinese Taipei, Poland, the Russian Federation, 
Singapore, and Spain) were generally consistent with the conceptual orientation, 
and emphasized the belief that mathematics cannot only be learned by memorizing 
a series of rules and procedures (Mathematics as a Set of Rules and Procedures). 
The view of Mathematics as a Fixed Ability carries with it the implication that math-
ematics is not for all, that some children cannot and will not succeed in mathemat-
ics. This view may have implications for how children are grouped and how they are 
taught. It is a minority view in all countries surveyed, but still a matter of concern in 
that it stands in opposition to the apparent international consensus on the need for 
all children to learn mathematics at a higher level than has generally been the case. 
This opposition view was supported by future teachers and teacher educators in 
Botswana, Thailand, Georgia, Malaysia and the Philippines, and rejected in 
Germany, Switzerland, the United States, and Norway.

There are substantial between-country differences in the extent to which beliefs 
are held in association with other tendencies. For instance, the program groups 
within countries endorsing beliefs consistent with a computational orientation are 
generally among those with lower mean scores on the knowledge tests. However, it 
would be unwise to generalize from this, for two reasons. First, the sample of coun-
tries is quite small. Second, the countries differ greatly from one another both cul-
turally and historically, in ways that may influence both beliefs and knowledge in 
unknown ways. In some countries scoring high on the MCK and MPCK tests, future 
teachers endorsed both belief in mathematics as a set of rules and procedures and as 
a process of inquiry. The TEDS-M findings show that both conceptions, computa-
tional and constructivist, are endorsed in mathematics teacher education, and what 
is at issue is the appropriate use and balance of each.

 Variations in Context and Policy

TEDS-M has shown teachers’ careers and working conditions range from those 
where teachers are carefully selected, well-compensated, and highly regarded to 
those where there is less selectivity, low salaries, and low status. These careers and 
conditions are shaped by the two major systems of teacher employment (career- 
based and position-based) found in the world’s public schools, together with various 
mixed or hybrid models.

Career-based refers to systems where teachers are recruited at a relatively young 
age to remain in one coherent, clearly organized, public or civil service system 
throughout their working lives. Teacher education is facilitated by the predictability 
and stability of careers in these systems. Promotion follows a well-defined path of 
seniority and other requirements, and teaching assignments follow bureaucratic 

1 Introduction: Exploring the Mathematical Education of Teachers Using TEDS-M Data
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deployment principles and procedures. Countries able to afford career-based staff-
ing can generally avoid major teacher supply problems and have an advantage in 
recruiting higher-ability applicants.

Position-based systems take a very different approach to teacher employment. 
Teachers are not hired into the national civil service or a separate national teacher 
service. Rather, they are hired into specific teaching positions within an unpredict-
able career-long progression of assignments. As a result, access is more readily 
open to applicants of diverse ages and atypical career backgrounds. Movement in 
and out of teaching to raise children or pursue other opportunities is possible. In 
these systems, it may be difficult to recruit and retain sufficient numbers of teachers, 
especially in areas like science and mathematics, where there are attractive opportu-
nities in other occupations.

In short, this distinction between career- and position-based systems has a major 
impact on teacher education. Since appointment in a career-based system involves a 
commitment to lifelong employment, such systems are more justified in investing in 
initial teacher preparation, knowing that the educational system will likely realize 
the return on this investment throughout the teacher’s working life. Often this com-
mitment is made even before the beginner receives any teacher training. In contrast, 
in position-based systems, such an investment in initial preparation is less justifi-
able, since the system is based on the assumption that individuals may move in and 
out of teaching on a relatively short-term basis, and often the graduates of teacher 
education in such a system never occupy any teaching position at all.

One long-term policy that has increasingly influenced teacher education in a 
large number of countries worldwide, including those participating in TEDS-M, is 
to require teachers to have university degrees. Obtaining an all-graduate teaching 
force, all of whom have higher education degrees (not just diplomas) has been one 
of the main goals of teacher education policy in many countries over the years and 
has affected teacher recruitment and the subsequent experience of these teachers 
once they are employed.

The TEDS-M study team also sought to examine the range of policies affecting 
teacher education programs, especially those related to accountability concerns, 
finding great variation in approaches, including the existence of criteria to insure the 
quality of entrants to teacher education programs, criteria to assess the quality of 
graduates before they can gain entry to the teaching profession, and accreditation 
reviews to insure programs’ accreditation.

Overall, TEDS-M researchers have found a positive association between the 
strength of accountability strategies and arrangements and country mean scores in 
the TEDS-M tests of MCK and MPCK; countries with strong arrangements, such as 
Chinese Taipei and Singapore, scored highest on these measures. Countries with 
weaker arrangements, such as Georgia and Chile, tended to score lower on the two 
measures of future teacher knowledge.

These findings have implications for policymakers concerned with promoting 
teacher quality. Policies can be designed to cover the full spectrum, from policies 
designed to make teaching an attractive career to policies for assuring that entrants 
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to the profession have attained high standards of performance. TEDS-M research-
ers point to the importance of ensuring that policies designed to promote teacher 
quality are coordinated and mutually supportive. Specifically, TEDS-M provides 
evidence that countries such as Chinese Taipei and Singapore, that do well on inter-
national tests of student achievement such as TIMSS, employ a full range of strate-
gies. They not only ensure high quality of entrants to teacher education, but also 
have strong systems for reviewing, assessing, and accrediting teacher education 
providers. They also have strong mechanisms for ensuring that graduates meet high 
standards of performance before gaining certification and full entry to the 
profession.

Reform that recognizes these findings is critical. The TEDS-M study team found 
that  all participating teacher education systems were implementing reforms in 
teacher education, attempting to change their education systems in order to increase 
the mathematics achievement levels of their students. In the European countries in 
TEDS-M, changes to entire university systems are underway as a result of the 
Bologna accord for the creation of a European Higher Education Area. In other 
countries, such as Malaysia, changes in teacher education toward more advanced 
levels of education for teachers were precipitated by concerns about the limitations 
and weaknesses of current mathematics, science, and technology education. 
Although reform is virtually ubiquitous in the TEDS-M countries, it is important to 
keep in mind that, as in any cross-sectional study, TEDS-M provides only a snap-
shot of mathematics teacher preparation in the year 2008–2009, when the data were 
collected.

 TEDS-M’s Contribution to the Study of Mathematics Teacher 
Education

TEDS-M is not only the first large scale comparative international study of teacher 
education outcomes with representative samples, but in higher education as a whole. 
Moreover, the surveys were completed with high response rates and coverage of the 
target populations, in most cases meeting the very high IEA standards for sampling 
and response rates. In the instances where the IEA standards were not met, the 
response rates still compared favorably with general experience in higher education 
surveys, especially surveys in which the targeted participants are all volunteers.

TEDS-M thus lays the foundation for future rigorous national and cross-national 
research in teacher education, making available a common terminology, sampling 
methods tailored to teacher education, instruments, and analyses that can be adapted 
and improved for use in subsequent teacher-education studies, whether they be in 
mathematics or in other areas. TEDS-M has also served to develop strong research 
capability within the countries that participated in this study. Finally, the TEDS-M 
database has continued to contribute to this new line of research by enabling sec-
ondary analyses by researchers around the world.

1 Introduction: Exploring the Mathematical Education of Teachers Using TEDS-M Data
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chapter explores the characteristics of the curriculum of mathematics teacher educa-
tion in programs preparing primary and secondary teachers in the U.S. The penulti-
mate chapter looks at the extent to which teacher education programs are designed 
to educate diverse populations, and what opportunities are provided to future teach-
ers to learn how to effectively teach diverse groups of students. The last chapter of 
Part I investigates the views of teacher educators about mathematics teaching and 
how these are reflected in the views of their future teachers.

 Characteristics of Teacher Education Programs

In the first part of the book, we focus on examining the characteristics of teacher 
education programs. Within TEDS-M, a key priority was to understand the charac-
teristics of the teacher education programs where future teachers are prepared. In 
the first  four chapters we explore different aspects of the participating programs. 
Chapter 3 authors look at what types of strategies are used in the pursuit of program 
quality and their relationship with programs’ outcomes. Chapter 4 authors explore 
the characteristics of the curriculum of mathematics teacher education in programs 
preparing primary and secondary teachers in the U.S. The Chapter 5 author looks at 
the extent to which teacher programs are designed to educate diverse populations, 
and what opportunities are provided to future teachers to learn how to effectively 
teach diverse groups of students. The last chapter of Part I, Chap. 6, investigates the 
views of teacher educators about mathematics teaching and learning and how these 
compare to the views of their student teachers.

In this introduction to Part I, we provide a brief overview of the teacher education 
programs and the teacher educators within them, the methods of data collection, and 
the challenges we encountered when collecting program-level data.

 Data on Teacher Education Programs

Table 2.1 lists the program-types included in the TEDS-M target population and 
shows how they differ within and between countries. Although the names of the 
program-types vary from country to country, the characteristics and purpose of 
program- types in different countries are often similar: They aim to adequately pre-
pare future teachers to teach the official school curriculum (Tatto et  al., 2012, 
pp. 28–32). Whether and how this is accomplished is the subject of the different 
chapters in this section.

To understand programs’ characteristics, institutional data were collected via the 
Institutional Program Questionnaire (IPQ) from 751 programs in the 17 TEDS-M 
countries, including 349 programs that prepare future teachers to teach exclusively 
at the primary school level, 226 programs that prepare future teachers to teach at the 
lower secondary school level, and 176 programs that prepare future teachers to 
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teach at either the primary or the lower-secondary levels (Brese & Tatto, 2012; 
Tatto, 2013).

Before the data were collected, much collaboration went into developing work-
able definitions across the countries in the study. For instance, a teacher education 
institution was defined as a “secondary or post-secondary school, college, or univer-
sity that offered a program or programs focusing in teacher preparation on a regular 
and frequent basis” (Tatto et al., 2012, p. 95). A program was defined as a “specific 
pathway within an institution that required students to undertake a set of courses 
and experiences that led to the award of a teaching credential or degree upon suc-
cessful completion” (Tatto et al., 2012, p. 95).

After creating and arriving at agreements around definitions, the next task was to 
create the questionnaire. The IPQ included multiple sections to collect data about 
teacher preparation programs.1 First, the questionnaire included questions about the 
organization and structure of the program(s) at the institution: How many different 
program types; concurrent vs. consecutive program(s); duration of program(s); 
grade level span(s) included; subject-matter specialization; number of future teach-
ers in different program types; duration and nature of field experiences (both intro-
ductory and extended); and locus of control for teacher preparation programs. In 
most countries, guidelines and standards for teacher preparation were set at the 
state, provincial, or national level.

Program types were classified as either concurrent or consecutive. Concurrent 
program-types included studies in subject-matter content, pedagogy, and other 
courses in education, which were completed within the first phase of post- secondary 
education and resulted in one credential (e.g., bachelor of arts). Consecutive teacher 
education program-types consisted of two phases of post-secondary education: an 
initial university degree in a first phase followed by a second phase focused on peda-
gogy and the field experience, which result in a second credential (Tatto et al., 2012, 
p.  33). A large number of programs in the TEDS-M sample were concurrent 
programs.

Another important distinction in characterizing program types is the difference 
between preparing future teachers as generalists and as mathematics specialists. 
The data show that most future teachers planning to work in primary schools are 
prepared as generalists, although there is some variation in this across countries. In 
some countries, generalist teachers are expected to teach both primary and lower- 
secondary grades. In contrast, most future teachers of mathematics at the upper- 
secondary level are prepared as mathematics specialists and are expected to teach 
up to Grade 11 and above; some are expected to teach the earlier grades as well, up 
to Grade 10. The three most common program groupings in the participating coun-
ties were primary generalist (for teaching up to Grade 6 maximum), lower- secondary 
specialist (for teaching up to Grade 10 maximum), and secondary specialists (for 
teaching up to Grade 11 and above) (Tatto et al., 2012, p. 96).

The IPQ also included questions about program entry requirements and the pos-
sible outcomes of these requirements: to what extent future teachers’ prior 

1 See Brese and Tatto (2012) for more details about the IPQ.
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 achievement in mathematics is a selection criterion; and how future teachers’ pri-
mary and secondary achievement compared with achievement of peers in other 
college-level programs. Further, the TEDS-M researchers sought to capture the cur-
riculum content of teacher preparation programs by asking about the number of 
hours allocated to field experiences and to required courses in areas such as the 
liberal arts, academic and school mathematics, mathematics pedagogy and peda-
gogy, and foundations.

Finally, programs reported quality assurance information. Entry requirements 
varied widely, with several countries requiring degrees in mathematics or accept-
able scores on examinations as a condition for entry, and others countries allowing 
entry without a set mathematics standard. All programs participating in the study 
reported that student teachers were required to have passing grades and to have 
demonstrated competence in all courses and in their field experience to graduate. A 
comprehensive examination was another common requirement across institutions. 
The completion of a thesis was not a common requirement at the primary level, but 
was common at the secondary level (Tatto et al., 2012, p. 109).

 Data on Teacher Educators

Although it could be argued that the teacher educators are the primary shapers of 
teacher education programs and are in a sense “street level bureaucrats” (Weatherley 
& Lipsky, 1977), research on teacher educators is rare. Recognizing the influence that 
teacher educators have over program design and outcomes, the TEDS-M study team 
decided to develop instruments to measure some dimensions of teacher educator 
backgrounds, and beliefs, and the kinds of opportunities to learn they provide to future 
teachers. This part of the study was primarily designed following Tatto’s earlier work 
(1996, 1998, 1999).

Though limited, there are other examples of empirical studies of teacher educa-
tors, often discussing teacher educators’ roles in modelling effective practices for 
future teachers (Lampert et al., 2013; Lunenberg, Korthagen, & Swennen, 2007). 
However, there is a dearth of research on the characteristics of teacher educators and 
their impact on future teachers, which demands further research.

For the TEDS-M study, teacher educators were defined as “persons with regular, 
repeated responsibility for teaching future teachers within a teacher-preparation 
program” (Tatto et al., 2012, p. 111). Teacher educators were classified into three 
groups: mathematics and mathematics pedagogy educators; general pedagogy edu-
cators; and educators belonging to both groups. Lack of universal agreement as to 
what constituted these different types of educators made it necessary for the research 
team to create common definitions (see Tatto et al., 2012, p. 84):

Educators of mathematics and mathematics pedagogy: Persons responsible for 
teaching one or more of the program’s required courses in mathematics or 
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 mathematics pedagogy during the study’s data-collection year at any stage of the 
institution’s teacher preparation program.

General pedagogy educators: Persons responsible for teaching one or more of the 
program’s required courses in foundations or general pedagogy (other than a 
mathematics or mathematics pedagogy course) during the study’s data- collection 
year at any stage of the institution’s teacher preparation program.

Educators belonging to both Groups 1 and 2 as described above: Persons respon-
sible for teaching one or more of the program’s required courses in mathematics 
and/or mathematics pedagogy and/or general pedagogy during the study’s data- 
collection year at any stage of the institution’s teacher preparation program.

We considered the teacher educators to be key “individuals through whom the 
intended teacher education curriculum becomes the implemented curriculum” 
(Tatto, 2013, p. 59). For that reason, the TEDS-M researchers developed a number 
of survey items to better understand educators’ general background; their teaching, 
professional, and research experiences; and the opportunities to learn that they pro-
vide future teachers in their courses. The survey also included questions parallel to 
those asked of future teachers about their beliefs about teaching and learning math-
ematics, so that the responses of teacher educators and future teachers could be 
compared (see Brese & Tatto, 2012; Tatto et al., 2012, pp. 111–116).

The extent of teacher educators’ backgrounds in mathematics, mathematics edu-
cation, and education generally varied considerably across countries. In some coun-
tries, most teacher educators in mathematics content and pedagogy courses had 
doctoral degrees in mathematics, whereas in other countries this was rare. Common 
across all countries was the finding that few educators held doctorates in mathemat-
ics education. In the United States, a doctorate of some kind was customary, whereas 
in others a master’s degree was far more common for teacher educators.

Overall, mathematics and mathematics pedagogy teacher educators considered 
mathematics to be their area of expertise, whereas teacher educators who were 
teaching general pedagogy reported mathematics not being their area of expertise 
(Tatto et al., 2012, p. 115).

Finally, teacher educators were asked whether they currently held or ever had 
held a certification or license to teach in K-12. Responses varied, with over 80% of 
teacher educators in some countries having teaching licenses, and less than 30% in 
other countries (Tatto et al., 2012, p. 116).

 Chapters in Part I

Chapter 3, “Preparing High Quality Mathematics Primary Teachers: Exploring 
Program Strategies and Standards in the United States, Russia, Poland, and Chinese 
Taipei” by Peralta and Tatto, presents an investigation of the association between 
program outcomes, such as mathematics content knowledge and mathematics 
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pedagogy knowledge, and program quality strategies as reported by program admin-
istrators. The authors use factor analyses to create indices of quality strategies and 
program standards. Linear regression models were estimated for four countries, 
including the United States, Russia, Poland, and Chinese Taipei. Findings show that 
program selectivity is the most important strategy related to program outcomes in 
the Russian and U.S. programs. In addition to entry and exit criteria regulations, 
standards regulating opportunities to learn while in the program and during field 
experiences were related to program outcomes in Chinese Taipei and Poland.

Chapter 4, “The Intended, Implemented, and Achieved Curriculum of 
Mathematics Teacher Education in the United States,” by Tatto and Bankov, uses the 
United States as a case study. After describing the development of a systematic 
model for the comparative study of the curriculum of teacher education programs, 
the authors present the results of the curriculum analysis for programs preparing 
future primary and secondary teachers and the curriculum’s association with future 
teachers’ perception of their opportunities to learn and their knowledge at gradua-
tion in the United States. This study has important implications for the future study 
of the teacher education curriculum in an era of increased accountability.

Chapter 5, “Developing Diverse Teachers: Analyzing Primary Mathematics 
Teacher Education Programs Prioritizing Selection of Diverse Future Teachers,” by 
Pippin, looks at issues of diversity related to teacher preparation programs. 
Education researchers indicate that diverse teachers can improve the achievement 
and school experiences of marginalized students, and that, in many countries, policy 
has been created to recruit and prepare more diverse teachers. Research that explores 
programs that prepare future primary mathematics teachers from underrepresented 
populations in less developed or non-Western countries, however, is lacking. In this 
chapter, Pippin describes important variation in the selection policies and goals of 
these programs, as well as future teachers’ reported opportunities to learn to teach 
diverse students in the United States and three other countries.

Chapter 6, “A Comparative International Study of Differences in Beliefs between 
Future Teachers and Their Educators,” by Rodriguez, Tatto, Palma, and Nickodem, 
investigates the extent to which differences exist in beliefs about teaching and learn-
ing mathematics between future teachers and their educators for five countries, 
including Chinese Taipei, Poland, the Russian Federation, Singapore, and the 
United States. The analysis is based on the methods of meta-analysis to estimate 
program effects within institutions and across institutions within a country. The 
findings show significant differences between future teachers and their educators on 
a number of beliefs about teaching and learning mathematics within and across 
programs. Variation in discrepancies between teacher educators’ and future teach-
ers’ beliefs is explained by future teachers’ opportunities to learn in the areas of 
mathematics pedagogy, general pedagogy, and field experiences provided by their 
teacher preparation programs. In addition, program coherence and mathematics 
content knowledge and mathematics pedagogical content knowledge moderated the 
magnitude of differences in beliefs between future teachers and their educators. The 
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authors discuss implications for the design of the curriculum and experiences pro-
vided by teacher education programs.
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Abstract Preparing high-quality mathematics primary teachers is a priority of 
teacher education programs as they seek to fulfill professional standards. Programs 
have used a number of strategies to achieve these goals including developing criteria 
for program admission and graduation, and regulating future teachers’ opportunities 
to learn during their program and field experiences as they prepare to enter the class-
room. Using data from the Teacher Education and Development Study in 
Mathematics (TEDS-M), this chapter presents an investigation of the relationship 
between program outcomes as indicated by an assessment of mathematics content 
knowledge and mathematics pedagogy knowledge, and program standards as 
reported by program administrators. Factor analyses were used to create indices of 
program standards in key areas of emphasis. Linear regression models were esti-
mated for four countries, including the United States, Russia, Poland, and Chinese 
Taipei. Our findings show that program selectivity is the most important strategy 
related to program outcomes in the Russian and U.S. programs. In addition to entry 
and exit criteria regulations, standards regulating opportunities to learn while in the 
program and during field experiences were related to program outcomes in Chinese 
Taipei and Poland.
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 Introduction

In the past decade, policies to regulate teacher education have intensified (Tatto, 
2007). Whereas accreditation systems have existed in some countries since the mid- 
1950s—for example, in the United States, the National Council for Accreditation of 
Teacher Education (NCATE) was created as the mechanism to accredit teacher edu-
cation institutions at the time—accreditation was seen more as a desirable rather than 
a necessary condition. This did not necessarily mean that programs were not monitor-
ing their own quality all along, but engaging in accountability activities was seen as a 
low priority among the heavy demands of running a teacher education program.

In 1996, the publication of results from the IEA’s TIMSS (Trends in International 
Mathematics and Science Study) created great concern across many nations, as 
comparisons indicated that a large number of children were not learning as expected; 
such results were later reinforced by the OECD’s PISA (Programme for International 
Student Assessment) studies. The TIMSS studies, in particular, have focused on the 
school curriculum as the basis for their assessment frameworks. Whether pupils 
have had the opportunity to learn the content assessed has been a key question in 
efforts to use the IEA studies to inform education policy. Opportunity to learn has 
been seen primarily as dependent on how much and how well pupils and their teach-
ers are able to cover the curriculum content. While a number of explanations exist 
regarding curriculum coverage, ranging from pupils’ background characteristics to 
school resources, the notion that curriculum coverage is dependent on whether 
teachers have the knowledge needed to teach it has particularly captured the imagi-
nation of policy analysts and reformers alike. Consequently, great emphasis is 
placed on teacher education as a basis for teachers having the knowledge they need 
to teach effectively. Yet, analysts have found great variation in the content and out-
comes of teacher education (Tatto & Hordern, 2017; Tatto et al., 2012).

The notion that teachers are exposed to highly variable opportunities to learn to 
teach, with highly variable results in their learning, has opened the door to the 
development of reforms directed at regulating teacher education. The Bologna 
agreement in the European Union gave rise to the first large-scale reform of higher 
education across the participating countries and was the first systemwide attempt at 
regulating teacher education through external means (see Council of the European 
Union, 2007, p. C300/7). As the “new accountability movement” began to dominate 
the global education discourse (Tatto, 2007), regulations and standard setting 
became the strategies of choice for improving educational quality—including 
teacher education—since the mid-2000s.

While there is a variety of standards across the world that seek to regulate the 
teaching profession and, as a consequence, teacher education programs, these seem 
to have developed around common themes (National Research Council, 2001). 
Teacher education program standards are typically directed at ensuring that future 
teachers acquire the abilities and develop the tools that will enable them to:

• understand and address their pupils’ development and learning needs,
• know their subjects and how to teach them,
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• manage their classrooms to create environments conducive to learning,
• be reflective about their practice and learn from their experiences and that of 

their pupils to improve their practice, and
• participate and become part of professional and local learning communities.

In the United States for instance, these standards align with those set by the 
National Board for Professional Teaching Standards (2016), with the Interstate New 
Teacher Assessment and Support Consortium (INTASC),1 and with the Council for 
the Accreditation of Educator Preparation (CAEP),2 all focused on current concep-
tions of teacher quality. These standards also resonated with the countries that par-
ticipated in the Teacher Education and Development Study in Mathematics 
(TEDS-M).

 Research Questions

Using data from the TEDS-M Institutional Program Questionnaire (IPQ) our inten-
tion in this chapter is to answer three questions directed at exploring the strategies 
that programs use to make sure that future primary teachers possess the knowledge 
and skills envisioned by their programs:

 1. Do program standards directed at regulating admission and graduation require-
ments in teacher education programs result in more knowledgeable teachers?

 2. Do other key standards that set priorities for the knowledge that is emphasized in 
the professional curriculum, and for the content and delivery of field experi-
ences, result in more knowledgeable teachers?

 3. Do these standards vary across countries?

The analysis in this chapter uses the information provided by administrators of 
primary programs in four of the 17 countries included in the TEDS-M study: the 
United States, Russia, Poland, and Chinese Taipei. These four countries were cho-
sen because they were either actively developing and/or implementing standard- 
based reforms close to the time of the study. In the case of Russia and Poland, we 
were interested in knowing how these reforms played out in these two countries 
with a shared history in the development of their educational systems but also a 
departure after the dissolution of the Soviet Union. In the case of the United States 
and Chinese Taipei, there is some similarity in their systems, with Chinese Taipei 
adapting some reforms and curriculum models developed in the United States, but 
with higher levels of centralization, selectivity and rigor. In addition, future teachers 
in these four countries, had scores above the international mean of 500 (s.d. 100)3 

1 http://www.ccsso.org/Documents/2011/InTASC_Model_Core_Teaching_Standards_2011.pdf
2 http://caepnet.org/standards/introduction
3 With the exception of Poland for those teachers prepared to teach the early grades. The difference 
in scores between generalists and specialists in Poland provides important data concerning the 
relationship between standards and levels of knowledge attained by future primary teachers. 
Especially because those who are prepared as specialists in Poland attained very high scores com-
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thus providing the opportunity to focus on what could be considered “best case” 
scenarios.

 Insights from the Research Literature

A number of studies have suggested that the development of effective mathematics 
teachers depends on rigorous recruitment and selection strategies, and on teacher 
education programs’ ability to design coherently organized theoretical and practical 
opportunities to learn (Akiba, LeTendre, & Scribner, 2007; Feuer, Floden, 
Chudowsky, & Ahn, 2013; Grossman, Hammerness, & McDonald, 2009; Wang, 
Coleman, Coley, & Phelps, 2003). Increasingly, accreditation reviews of teacher 
education programs focus on the use of standards as a way to regulate admission 
and graduation requirements as well as program offerings (Eurydice, 2006; Tatto & 
Pippin, 2017). A comprehensive review of policies directed at improving teacher 
quality revealed that teacher education programs have established criteria for pro-
gram admission to ensure that candidates have the required knowledge of the sub-
ject or subjects they are expected to teach and that the rigor of these policies seem 
to be characteristic of “top performing” countries (Barber & Mourshed, 2007). 
Indeed, because previous attainment is an important predictor of future attainment 
(Ingersoll, 2007), those programs in countries that emphasize a minimum standard 
of mathematics knowledge as a condition for program admission may be able to 
better prepare their future teachers than those that have no such requirement. Yet the 
few studies testing this notion in the United States have proven inconclusive (Casey 
& Childs, 2011; Levine, 2006; Mikitovics & Crehan, 2002), likely because of the 
variation in the criteria used or the degree to which this criterion is rigorously 
implemented.

The analysis of recruitment, selection, certification and accreditation policies 
carried out as part of the larger TEDS-M study is revealing. For instance, the analy-
sis found that countries vary as to the level of mathematics required for program 
admission (Tatto et al., 2012). For instance, only in Chinese Taipei do regulations 
require that in addition to graduating from secondary school, candidates have one 
year of tertiary-level studies, plus a national examination in order to enter a teacher 
education program with mathematics as a required subject. Standards in Botswana, 
Poland (only for upper primary teachers), the Russian Federation, and Singapore 
require graduation from secondary school with a specific mathematics requirement. 
Graduation from secondary school, with no specific mathematics requirement, is 

parable to future primary teachers in Chinese Taipei, the highest scoring country. The mathemati-
cal content knowledge assessment (MCK) and the mathematical pedagogical content assessment 
(MPCK) scores for future primary teachers are as follows: (a) lower primary up to grade 4 maxi-
mum in Poland (456.2/425), in the Russian Federation (535.5/511.9); (b) primary up to grade 6 
maximum in Chinese Taipei (623.2/592.3), in the United States (517.5/543.6); (c) as primary spe-
cialists in Poland (614.2/574.8), in the United States (520/544.5) (Tatto et al., 2012).
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the only requirement in Chile, Germany, Malaysia, the Philippines, Spain, 
Switzerland, Thailand, and the United States. The extent to which education policy 
can help improve the quality of those who will teach mathematics at the primary 
level, including programs’ selection policies and monitoring, is an area that deserves 
much attention.

The TEDS-M study also found that standards for admission and graduation are 
typically complemented by standards that regulate teacher education curricular offer-
ings and field experiences (typically via accreditation guidelines). The TEDS-M 
study supports findings from other studies that have found wide variation within and 
across countries, not only in terms of the standards used, but also in terms of the con-
tent and length of such experiences (Feuer et al., 2013; Grossman et al., 2009; Tatto 
& Hordern, 2017; Tatto & Pippin, 2017 ; Tatto et al., 2012; Youngs & Grogan, 2013). 
This is in spite of studies showing that coherence between a program’s philosophy 
and a program’s curricular offerings contributes to important cognitive gains (see, 
e.g., Tatto, 1996). Recent work on teacher education outcomes, including that done in 
TEDS-M, reveals that coherent programs that align their offerings with standards as 
part of accountability demands, such as accreditation exercises, may be better able to 
produce highly qualified teachers (Ingvarson et al., 2013; Tatto et al., 2012).

In this chapter, we examine the relationship between attained knowledge of 
mathematics and mathematics pedagogy at the end of teacher education and the role 
of standards regulating program admission, graduation, content, and practical expe-
riences for future primary teachers.

 Methods

 Data Source and Instruments

The TEDS-M study Institutional Program Questionnaire (IPQ) asked program 
administrators questions related to the following:

• the extent to which the program had standards that regulated entry and exit 
requirements;

• the extent to which the program is required to comply with external regulations 
concerning who is admitted to the program;

• program standards that show how much emphasis is given to understanding how 
pupils learn and think in mathematics;

• program standards that show how much emphasis is given to the management of 
diversity in the classroom as a key ability needed to become an effective teacher; 
and

• program standards that show the degree to which the program emphasizes key 
field experiences such as learning to work with pupils, and doing research on 
one’s own practice, and learning how to plan, reflect and instruct from mentors 
or supervisors, to equip them to deal with the realities of the classroom.
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These questions served as the basis for the analyses presented in the second part 
of this chapter. The measures that are the foundation for the statistical analyses in 
the current study were created using these questions and are described below.

Program Selectivity and Monitoring Data from the IPQ provided two key indi-
cators of programs’ attempts at regulating program admission and graduation.

Entry Criteria Program administrators were asked whether the program “required 
a ‘demonstrated high level of achievement in mathematics’ as a characteristic or 
source of information that is used in selecting entering future teachers for the pro-
gram” (Brese & Tatto, 2012b, p. 19). The questionnaire also asked “with reference 
to national norms, how do future teachers entering the program rate with respect to 
their prior academic achievement” with possible responses ranging from “generally 
very high achievers” (e.g. the top 10% of their age group) to “generally far below- 
average achievers” (for their age group) (Brese & Tatto, 2012b, p. 20).

Exit Criteria Administrators were asked whether future primary teachers were 
required to “write and defend a thesis” as part of the institutional requirements 
needed to successfully complete the program, and whether there was “a document 
that prescribed competencies or performance standards that the graduates of the 
program were expected to meet” (Brese & Tatto, 2012b, p. 28).

Although these questions seemed straightforward to answer, they were not in 
many cases. For instance, in Chinese Taipei, programs did not need to use admission 
criteria because the university and other external authority had done that already, as 
the international report explains: “In Chinese Taipei, students must be enrolled in 
their second or higher year of university (including masters and doctoral levels) 
before they can be admitted to a teacher education program. Although there is no 
specific secondary school mathematics requirement, students must pass the national 
university entrance examination, which has mathematics as a required test subject” 
(Tatto et al., 2012, pp. 44–45). Thus, while “no” would technically be the correct 
answer to our questions, there were de-facto entry requirements that assured high 
levels of mathematics competence among future primary teachers.

External/Internal Regulation for Program Admission Accountability policies 
are driven by the assumption that regulation is key to maintaining quality teacher- 
education programs. While this view has gained support increasingly in the policy 
area worldwide, others argue that teacher education programs should maintain 
autonomy. One of the most important decisions in this regard has to do with who 
sets the policies that govern which applicants are admitted to the program. The IPQ 
asked whether the policies that govern which applicants are admitted to the program 
are set by “each institution without reference to any outside requirements”; “regional 
or national authorities”; or “each institution, within guidelines set by regional or 
national authorities”; or, instead, “there is no selection and all applicants are admit-
ted” (Brese & Tatto, 2012b, p. 19). In addition to indicating autonomy, this question 
also indicates the degree to which the institution is selective.
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Program Content Standards There is extensive research on what makes a good 
teacher (e.g., Brophy & Good, 1986; Hammerness et  al., 2005; Kennedy, 1999; 
Windschitl, Thompson, & Braaten, 2011). Some believe that good teachers are 
those who can successfully manage a classroom. Another view is that knowing how 
to tailor instruction according to the learning needs of students is more important 
than learning to manage students. Yet others view classroom management as essen-
tial in the creation of a productive learning environment. Others believe that deep 
knowledge of the subject—in this case mathematics—is the most important capac-
ity characterizing effective teachers. Yet others argue that learning how to be a 
reflective practitioner is key to developing an effective practice. More recently, there 
has been a turn to practice as some argue that learning to teach is better done on the 
job (Zeichner, 2012).

As explained in the introduction, current standards bring together these views 
into a more holistic image of an effective teacher. Yet the data from the TEDS-M 
IPQ shows that there is variability within and across countries in the degree to which 
programs emphasize these standards.

Standards Emphasizing Mathematical Pedagogical Content Knowledge About 
Pupil Learning In the institutional questionnaire, in the section on pedagogical 
content knowledge, program administrators were asked,

In the program requirements, guidelines and other documentation, how much weight is 
given to each of these goals?

• Knowledge about pupil learning in mathematics,
• knowing common pupil misunderstandings in mathematics,
• knowing how to build on pupils’ prior knowledge in mathematics (Brese & Tatto, 

2012b, p. 26).

Standards Emphasizing General Pedagogical Knowledge About Managing, 
Teaching, and Assessing Learning, of Diverse Students In the institutional ques-
tionnaire, in the sections on general pedagogy/assessing learning/diversity, program 
administrators were asked,

In the program requirements, guidelines and other documentation, how much weight is 
given to each of these goals?

• Managing disruptive pupils;
• specific strategies for teaching pupils with behavioral and emotional problems;
• specific strategies and curriculum for teaching pupils with learning disabilities;
• specific strategies and curriculum for teaching gifted pupils;
• specific strategies and curriculum for teaching pupils from diverse cultural backgrounds; 

accommodating the needs of pupils with physical disabilities in your classroom;
• working with children from poor or disadvantaged backgrounds;
• conducting fair and valid summative assessments of pupil learning (Brese & Tatto, 

2012b, pp. 26–27).

The data analyzed shows that, across the board, teacher education programs rarely 
provide opportunities to learn in these areas.
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Program Field Experience Standards Program standards are also expressed in 
the extent to which they regulate opportunities to learn during field experiences. The 
field experience in pre-service teacher education programs is seen as a key part of 
learning to teach and is expected to bring future teachers in touch with pupils to help 
them understand how they learn, and to learn to research and reflect on their own 
practice.

Standards Emphasizing Working with Pupils The questionnaire asked

How often were the following activities assigned as part of the introductory field experi-
ences in this program?

• tutoring individual pupils,
• working with small groups of pupils.

Standards Emphasizing Doing Research on and in Practice The questionnaire 
asked

How often were the following activities assigned as part of the introductory field experi-
ences in this program?

• collecting data for research projects (Brese & Tatto, 2012b, p. 31).

Standards Regulating the Role of Mentors/Supervisors During the Field 
Experience A key element of a well-designed field experience is the quality of the 
supervision future teachers receive. Teacher education programs typically rely on 
supervisors for a high-quality school experience.

Supervising/Modeling Instruction Of interest was whether and how supervisors 
provided support in mathematics instruction (content and pedagogy) as part of 
future teachers’ extended practice. The following questions were part of the 
questionnaire:

Please indicate whether supervisors/instructors/mentors in the extended teaching practice 
are likely to assume each of the following responsibilities.

Responsibilities for helping future teachers to plan:

• the mathematics content of a lesson;
• the mathematics pedagogy of a lesson;
• how to deal with pupils with learning problems;
• how to deal with pupils with behavior problems.

Responsibilities for giving oral feedback and fostering reflection:

• giving future teachers oral feedback on the adequacy of the mathematics content in their 
teaching;

• giving future teachers oral feedback on their pedagogical approach to teaching 
mathematics.

Supervising, Instructing, Modeling, Coaching When Working with Students Of 
interest was whether and how supervisors provided support to future teachers’ when 
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working with students as part of future teachers’ extended practice. The following 
questions were part of the questionnaire:

Please indicate whether supervisors/instructors/mentors in the extended teaching practice 
are likely to assume each of the following responsibilities.

Responsibilities for instructing, modeling, coaching, etc.

• teaching a lesson to primary or secondary school pupils that a future teacher is expected 
to observe;

• taking charge of a class of primary or secondary school pupils to help a future teacher 
who has run into difficulties with the class (Brese & Tatto, 2012b, p. 33).

Together, these areas provide a comprehensive view of programs’ standards, in the 
pursuit of quality. These will be used to investigate their relation with program out-
comes for future primary teachers. In the next sections, we describe our methods 
and analysis.

 Dependent Variables

Two program outcomes were considered for this analysis: mathematical content 
knowledge (MCK) and mathematical pedagogical content knowledge (MPCK). 
Both variables are IRT (item response theory) scales with mean of 500 and standard 
deviation of 100 available in the TEDS-M database (Brese & Tatto, 2012a).

 Independent Variables

Variables derived from the IPQ described in the previous section were used for the 
analyses in this study. Factor analysis and principal components techniques were 
used to compute the derived variables. The final teacher-education programs unit 
weights were considered for the estimation in order to have design-unbiased derived 
variables as suggested by the TEDS-M User’s Manual (Brese & Tatto, 2012a). 
Composite scores and factor variables were created as indicators of the degree to 
which standards (or norms) regulated program selectivity and monitoring, internal /
external regulation for program admission, program content, and initial and 
extended field experiences. The derived measures are defined in Table  3.1. The 
source variables used to create the composite scores and factor analytic scales are 
presented in the Appendix.

Two factors were created to indicate the use of standards in program selectivity 
and monitoring: Entry_criteria and Exit_criteria. Both are factor analytic scales 
where zero is located at the central position, with higher values corresponding to 
more stringent requirements for program entry and exit/graduation.

SelfGov is a dichotomous variable regarding program’s degree of internal or 
external regulation concerning admission standards. It is equal to one if the policies 
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that govern who is admitted to the program are set by each program without refer-
ence to any outside requirements, or simply all applicants are admitted. If SelfGov 
takes the value of zero, then regional or national guidelines are considered in the 
admission process. Because of the way we coded this variable, positive coefficients 
in our models (in our models below) represent program’s self-governance and nega-
tive coefficients represent external regulations.

Table 3.1 Definition of variables and description of their computation

Variable Definition Computation description

Program outcomes
MCK Mathematics content knowledge IRT scores with mean of 

500 and standard 
deviation of 100

MPCK Mathematics pedagogy content knowledge IRT scores with mean of 
500 and standard 
deviation of 100

Program selectivity and monitoring
Entry_criteria Admission requirements to enter the program Factor analytic scale, 

standardized scores
Exit_criteria Graduation requirements to exit the program Factor analytic scale, 

standardized scores
Governance
SelfGov Indicator of whether or not the admission norms 

are set by the program
Item MIC001 recoded 
(1 = self governance, 
0 = external governance)

Content standards
MPCK_
StudLearning

Emphasis given to knowledge about pupil 
learning in mathematics related aspects in the 
program requirements

Factor analytic scale, 
standardized scores

Managing_
StudDiversity

Emphasis given to knowledge about student 
diversity in the program requirements

Factor analytic scale, 
standardized scores

Program field experiences
WorkPupils Frequency with which tutoring individual pupils 

or working with small groups activities are 
assigned as part of the introductory field 
experiences in the program

Total score of items 
MIE003C and MIE003D

DataColl Frequency with which data for research projects 
activities are assigned as part of the introductory 
field experiences in the program

Item MIE003I

Program supervisors
SuppInstruction Extent to which supervisors assume 

responsibilities related to mathematics 
instruction (content and pedagogy related)

Factor analytic scale, 
standardized scores

SuppWork_
Students

Extent to which supervisors assume 
responsibilities related to modeling when 
working with students

Factor analytic scale, 
standardized scores
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Two factor analytic scales where zero is located at the central position were cre-
ated to measure program content standards. MPCK_StudLearning indicates how 
much emphasis is given by the program to future teachers acquiring knowledge 
about how pupils learn mathematics in the program requirements, guidelines, and 
other documentation. Similarly, Managing_StudDiversity represents the emphasis 
given by the program on future teachers learning how to manage students’ diversity 
(which included classroom management, fair assessment, and cultural and eco-
nomic diversity as well as diversity represented by students with special needs) in 
the program guidelines. Higher values in these two scales mean higher emphasis 
given to each aspect in the program standards.

Regarding program introductory field experiences standards, two aspects were 
salient. WorkPupils represents the weight given by the program to future teachers 
working with pupils such as tutoring individual pupils or working with small groups 
on specific school-related activities as part of the introductory field experiences. 
This variable represents the total score of two items in the IPQ. Higher values mean 
that activities related to working with pupils were assigned high priority in program 
standards. Program standards related to the weight given to experiences related to 
doing research projects such as data collection as part of the introductory field expe-
riences are represented by the variable DataColl, and is generated solely by one 
item in the IPQ, with higher values meaning a high priority in program standards.

Regarding program extended teaching practice and standards for supervisors or 
mentor teachers, two aspects were key. These indicate standards regarding the 
responsibilities that program supervisors, instructors or mentor teachers are expected 
to assume in the extended teaching practice. SuppInstruction represents the extent 
to which supervisors are expected to help future teachers plan the content, the peda-
gogy of a lesson anticipating how to address learning and behavioral problems in 
pupils, and to provide feedback regarding the adequacy of the content and of the 
pedagogical approach to teaching mathematics. SuppWork_Students represents the 
extent to which the program expects supervisors, instructors or mentor teachers to 
assume responsibilities for modeling teaching, and helping future teachers when 
they encounter difficulties with the class. Higher values of the two factors mean 
higher expectations by the program that supervisors, instructors or mentors take 
responsibility for instructing, modeling or coaching future teachers as they observe 
them teaching lessons, and as they take charge of a class.

 Models

Six linear regression models were examined. Models 1–6 defined below were esti-
mated considering MCK and MPCK as outcome variables for the four different 
countries: the United States, Russia, Poland, and Chinese Taipei. Model 1 solely 
includes the program selectivity and monitoring measures (Entry_criteria and Exit_
criteria); Models 2 through 5 factor in other key program strategies or (a) standards 
to ensure a high quality graduate including whether the program self- regulates or 
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whether it is subject to external regulation as far as admission criteria is concerned, 
(b) standards that regulate program content and field experience, and (c) program 
standards for supervisors during field experiences. Model 6 considers all of these 
variables simultaneously.

Model estimation was performed using the svyglm function of the survey R pack-
age (Lumley, 2004) in order to reflect the complex sample design of TEDS-M.

Model 1

 Y Entry criteria Exit criteriai i i i= + + +β β β ε0 1 2_ _  

Model 2

 Y Entry criteria Exit criteria SelfGovi i i i i= + + + +β β β β ε0 1 2 3_ _  

Model 3

 

Y Entry criteria Exit criteria MPCK StudLearnii i i= + + +β β β β0 1 2 3_ _ _ nng

Managing StudDiversity
i

i i+ +β ε4 _  

Model 4

 Y Entry criteria Exit criteria WorkPupils Di i i i= + + + +β β β β β0 1 2 3 4_ _ aataColli i+ε  

Model 5

 

Y Entry criteria Exit criteria SuppInstructioni i i= + + +β β β β0 1 2 3_ _ ii

i iSuppWork Students+ +β ε4 _  

Model 6

 

Yi Entry criteriai Exit criteriai SelfGovi MPCK= + + + +β β β β β0 1 2 3 4_ _ __

_

StudLearningi
Managing StudDiversityi WorkPupilsi+ + +β β β5 6 7DDataColli
SuppInstructioni SuppWork Studentsi i+ + +β β ε8 9 _

 

 Results

Descriptive statistics are shown in Tables 3.2, 3.3, 3.4, 3.5, and 3.6. Table 3.2 pres-
ents the weighted mean and standard deviation for the variables included in this 
study. Tables 3.3, 3.4, 3.5 and 3.6 are the unweighted variance-covariance matrices 
for each country showing the patterns of association for all the variables considered 
for the regression analyses.
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Estimation results of Models 1–6 for both MCK and MPCK as outcome vari-
ables are shown in Tables 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14. In order to 
make fair comparisons among Models 1–6, the analytic sample of each country 
contained only those observations that had information for all variables considered 
in the analyses. The bottom of Tables 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14 
show the sample size (N) for each country. The analytic sample represents 60% of 
the total data for the United States, 79% for Russia, 53% for Poland, and 78% for 
Chinese Taipei. Thus, the data should be interpreted with caution; however, the 
complete data can be assumed to come from programs that have complete informa-
tion, and these may be assumed to represent the “best case” scenarios (Patton, 
1990).

We used the Akaike’s Information Criteria (AIC) and deviance for model selec-
tion. AIC is a measure of the relative quality of a model, while deviance is a good-
ness of fit measure. Both statistics allow comparisons of non-nested models, and 
smaller values are preferred (Howell, 2013; McCullagh & Nelder, 1989). Notice 
that Model 6 is the best-fitting model according to both statistics, AIC and deviance, 
for both outcome variables (MCK and MPCK) in the four countries. Hence, we 
focus on describing the estimation results for Model 6.

Table 3.2 Weighted means and standard errors by country

Variable U.S. Russia Poland Chinese Taipei

MCK 517.150 528.420 490.700 622.770
(4.146) (11.072) (3.113) (3.152)

MPCK 543.740 506.640 473.080 592.440
(2.519) (10.455) (2.100) (2.221)

Entry_criteria 0.001 0.175 −0.637 −0.242
(0.063) (0.074) (0.003) (0.000)

Exit_criteria −0.178 0.558 0.404 −0.728
(0.045) (0.000) (0.002) (0.000)

SelfGov .334 .066 .363 .156
(.061) (.019) (.003) (.000)

MPCK_StudLearning −0.172 0.623 −0.726 −1.085
(0.168) (0.071) (0.008) (0.000)

Managing_StudDiversity −0.109 0.566 −0.067 −0.797
(0.149) (0.151) (0.005) (0.000)

WorkPupils 6.808 5.845 5.173 5.667
(0.204) (0.454) (0.007) (0.000)

DataColl 2.159 3.262 2.427 2.731
(0.176) (0.187) (0.006) (0.000)

SuppInstruction −0.035 0.408 −0.431 −0.683
(0.155) (0.059) (0.005) (0.000)

SuppWork_Students 0.232 −0.265 −0.091 0.227
(0.118) (0.137) (0.006) (0.000)

Note. Standard errors are reported in parentheses
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 United States

For the United States, programs whose future primary teachers obtained high scores 
in the MCK assessment also reported having standards that set requirements for 
program admission (Entry_criteria) as indicated by a significant positive relation-
ship. Conversely, programs that had standards emphasizing opportunities to learn to 
manage students’ diversity (Managing_StudDiversity) show a significant and nega-
tive association with the MCK scores likely meaning that the most knowledgeable 
future primary teachers were not in programs that emphasized the need to learn how 
to address the needs of diverse students including those with special needs, and 
diverse cultural and social backgrounds (see Table 3.7).

Table 3.8 shows results for the MPCK assessment. Those programs whose future 
teachers had high MPCK scores reported having standards that regulated admission 
and graduation requirements (Entry_criteria and Exit_criteria). These programs 
also have standards that included initial field experiences emphasizing tutoring indi-
vidual pupils or working with small groups (WorkPupils), and research 
projects(DataColl) as indicated by a significant and positive relationship. Programs 
whose future teachers had high scores in the MPCK assessment did not emphasize 
content standards about learning to manage and teach diverse students (Managing_
StudDiversity) as indicated by a significant and negative parameter estimate.

 Russian Federation

For the Russian Federation, programs whose future teachers obtained high scores in 
the MCK and MPCK assessments reported having standards that set requirements 
for admission to the program (Entry_criteria) with a positive and significant asso-
ciation (see Tables 3.9 and 3.10). In Russia admission policies are set by regional or 
national guidelines a regulation that shows a significant and positive association 
with high scores in the MCK assessment (note that our recoding assigns a value of 
“1” to program self-governance and a value of “zero” to programs’ standards regu-
lated by external guidelines for admission thus showing a negative estimation coef-
ficient) (SelfGov) (see Table  3.9). For the Russian Federation, notice that the 
Exit_criteria variable was omitted for the analyses (see Tables 3.9 and 3.10). This 
was done because there was no variability in the data, i.e., all Russian institutions 
provided the same answers to the items that were considered for the creation of this 
factor scale. That is, all Russian institutions require students to write and defend a 
thesis in order to successfully complete the program, and they have a document that 
prescribes competences or performance standards that graduates are expected to 
meet.

While no significant, all the other standards show a positive relationship with 
higher scores in both assessments, with the exception of programs’ lack of emphasis 
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on learning to teach diverse students and on working with individual or small groups 
of pupils in the initial field experience.

 Poland

In the case of Poland, as indicated by a significant positive relationship (see 
Table 3.11), programs whose future teachers scored high in the MCK assessment 
reported having standards that set requirements for admission to the program 

Table 3.8 Estimation results for MPCK as outcome variable in models 1–6 for U.S.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Program selectivity and monitoring
Entry_criteria 13.764* 13.769* 16.303** 11.772* 15.247* 15.443**

(6.953) (7.055) (6.998) (6.772) (7.974) (6.642)
Exit_criteria 14.817 14.791 17.901 14.244 16.329 20.329**

(13.055) (12.744) (12.348) (12.221) (11.846) (9.114)
Governance
SelfGov −0.427 −5.084

(4.639) (4.731)
Content standards
MPCK_StudLearning −1.771 −0.267

(2.572) (2.863)
Managing_StudDiversity −6.747** −10.970***

(3.135) (2.917)
Program field experience standards
WorkPupils 1.650 2.578*

(1.825) (1.335)
DataColl 3.741 5.966*

(3.664) (3.128)
Program supervisors standards
SuppInstruction −2.113 0.833

(3.800) (3.883)
SuppWork_Students −0.265 −4.987

(3.791) (3.976)
(Intercept) 546.379 546.517 545.890 526.966 546.635 518.577

(3.641) (4.217) (3.957) (15.898) (3.443) (11.956)
Log likelihood −5127 −5127 −5124 −5125 −5127 −5118
Deviance 4448 4448 4414 4425 4446 4361
AIC 10261 10263 10258 10261 10265 10257
d.f. 20 19 18 18 18 13

Note. *p < .05; **p < .01; ***p < .001; N = 896
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Table 3.11 Estimation results for MCK as outcome variable in models 1–6 for Poland

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Program selectivity and monitoring
Entry_criteria 94.811*** 95.926*** 85.362*** 94.651*** 94.985*** 90.651***

(6.967) (6.692) (7.948) (7.298) (6.798) (8.061)
Exit_criteria −36.924*** −38.346*** −22.585*** −35.047*** −37.883*** −26.909***

(4.851) (4.771) (5.378) (5.505) (6.850) (7.045)
Governance
SelfGov 8.966 7.719*

(5.410) (4.210)
Content standards
MPCK_
StudLearning

6.385** 4.347

(2.735) (3.243)
Managing_
StudDiversity

−39.187*** −44.288***

(2.663) (2.761)
Program field experience standards
WorkPupils −1.255 −3.660*

(2.056) (1.984)
DataColl 1.017 9.035***

(2.495) (2.659)
Program supervisors standards
SuppInstruction 0.122 −4.828*

(2.785) (2.684)
SuppWork_
Students

0.894 16.140***

(3.891) (4.043)
(Intercept) 566.004 564.038 556.205 569.168 566.635 553.084

(5.328) (5.770) (5.148) (13.158) (6.186) (12.048)
Log likelihood −6665 −6663 −6590 −6664 −6665 −6574
Deviance 7901 7883 6909 7897 7901 6713
AIC 13336 13335 13191 13339 13340 13169
d.f. 29 28 27 27 27 22

Note. *p < .05; **p < .01; ***p < .001; N = 1111

(Entry_criteria), and these programs also exert self-governance concerning admis-
sion program policies (SelfGov). These programs also have standards emphasizing 
the need for future teachers to know how students learn and think about mathemat-
ics (MPCK_StudLearning), the need for introductory field experiences requiring 
research projects (DataColl), and the need for supervisors to allow future teachers 
to observe them when teaching a lesson, and to support them when taking charge of 
a class (SuppWork_Students). These high scoring programs, however, did not have 
requirements for graduation (Exit_criteria), and did not emphasize opportunities to 
learn about students’ diversity (Managing_StudDiversity), working with individual 

Y. Peralta and M. T. Tatto



57

students in the initial field experience (WorkPupils), or expectations for supervisors’ 
support with planning and mathematics instruction (SuppInstruction) as indicated 
by negative parameter estimates (see Table 3.11).

Table 3.12 shows that programs where future teachers scored high in the MPCK 
assessment had standards that regulated admission requirements to enter the pro-
gram (Entry_criteria), and these programs had a system of self-governance in set-
ting admission policies (SelfGov). Programs where future teachers were more 
knowledgeable in MPCK had standards that emphasized the need to acquire knowl-
edge about student learning in mathematics (MPCK_StudLearning), and engage-
ment in data collection for research projects in the introductory field experiences 

Table 3.12 Estimation results for MPCK as outcome variable in models 1–6 for Poland

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Program selectivity and monitoring
Entry_criteria 74.767*** 77.008*** 62.237*** 73.229*** 74.618*** 65.964***

(6.215) (6.489) (6.397) (5.997) (6.881) (6.681)
Exit_criteria −35.704*** −38.558*** −30.658*** −31.974*** −33.586*** −28.351***

(5.827) (6.254) (6.594) (7.442) (6.452) (7.142)
Governance
SelfGov 18.006** 19.453**

(7.290) (7.294)
Content standards
MPCK_
StudLearning

11.780*** 10.008**

(3.774) (4.149)
Managing_
StudDiversity

−27.182*** −30.129***

(3.231) (3.252)
Program field experience standards
WorkPupils −2.110 −4.099

(2.406) (2.694)
DataColl 5.199 7.911***

(3.351) (2.720)
Program supervisors standards
SuppInstruction −0.708 −2.552

(3.596) (3.169)
SuppWork_
Students

−1.725 5.539

(2.725) (3.304)
(Intercept) 535.128 531.180 531.839 530.938 533.717 526.151

(4.666) (4.588) (5.201) (11.571) (5.048) (12.546)
Log likelihood −6737 −6733 −6710 −6735 −6737 −6698
Deviance 9004 8932 8565 8969 9001 8390
AIC 13481 13474 13430 13481 13485 13417
d.f. 29 28 27 27 27 22

Note. *p < 0.05; **p < 0.01; ***p < 0.001; N = 1111
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(DataColl) as indicated by positive parameter estimates (see Table 3.12). These pro-
grams did not have standards that regulated requirements for program graduation 
(Exit_criteria), standards emphasizing opportunities to learn to manage students’ 
diversity (Managing_StudDiversity), or program standards emphasizing field expe-
riences that include working with pupils (WorkPupils) as indicated by a negative 
relationship with MPCK (see Table 3.12).

 Chinese Taipei

For Chinese Taipei,4 standards for admission and graduation are very high albeit 
implemented at the university level. Programs whose future teachers obtained high 
scores in MCK also had standards that placed emphasis in acquiring knowledge 
about pupils’ learning in mathematics (MPCK_StudLearning) and on supervisors 
instructing, modeling and coaching future teachers when teaching a class 
(SuppWork_Students) as indicated by a positive and significant relationship. Because 
teacher education programs rely on university standards for program admission (as 
indicated by a negative relationship with SelfGov) that are stringent, the programs 
themselves do not have additional entry requirements. These programs also do not 
emphasize research projects as part of initial field experiences (DataColl) as indi-
cated by a negative association with MCK (see Table 3.13). As shown in Table 3.14, 
programs whose future teachers had high scores in the MPCK assessment reported 
having no additional standards that regulated admission to the program (Entry_cri-
teria), as indicated by a negative significant parameter estimate. However, as dis-
cussed before for MCK, this does not mean that there are no admission standards; 
rather, this indicates that the program itself does not set admission policies, and 
instead these are set by the institution (university) and in accordance with regional 
or national authorities (as expressed by the negative estimate in SelfGov). There was 
a positive and significant association between high scores in MPCK and standards 
that mandate that supervisors instruct, model and coach future teachers when teach-
ing a class (SuppWork_Students). As was the case for MCK above, programs whose 
future teachers had high scores in MPCK do not emphasize research projects as part 
of initial field experiences (DataColl) as indicated by a negative association with 
MPCK scores.

The negative association of the requirements to enter the program with outcome 
variables must be taken with caution, and it is applicable to the situation within 
Chinese Taipei, which has very high standards to enter a program in the first place 
but set by authorities external to the programs themselves. As Tatto et al. (2012) 
noted, “students must be enrolled in their second or higher year of university 
(including master’s and doctoral levels) before they can be admitted to a teacher 

4 Notice that the variable SuppInstruction was omitted from the estimation of Model 6  in both 
tables because when included in the model, some cell combinations for this variable and two other 
of variables in the model were empty, which was a problem for model convergence.
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education program. Although there is no specific secondary school mathematics 
requirement, students must pass the national university entrance examination, which 
has mathematics as a required test subject” (pp.  44–45). Therefore, the negative 
association between requirements to enter the program (Entry_criteria) and pro-
gram outcomes (MCK and MPCK) comes from administrators correctly answering 
“no” to the question of teacher education entry requirement as these rules are set by 
the university, not by the program, but the readers must keep in mind that the stan-
dards to enter teacher education in Chinese Taipei are extremely high. Hence, pro-
gram admission requirements are unique in comparison with the other three 
countries presented in this analysis.

Table 3.14 Estimation results for MPCK as outcome variable in models 1–6 for Chinese Taipei

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Program selectivity and monitoring
Entry_criteria −16.937*** −22.560*** −19.159*** −26.106*** −17.251** −77.769***

(5.450) (5.289) (6.048) (4.762) (7.136) (19.626)
Exit_criteria 12.333** 16.956*** 19.688** 7.655 17.180*** −6.090

(4.934) (5.236) (7.122) (5.808) (5.752) (7.999)
Governance
SelfGov −11.231 −43.790*

(11.545) (22.518)
Content standards
MPCK_StudLearning 9.175* 4.952

(5.140) (9.323)
Managing_
StudDiversity

−5.570 2.532

(4.209) (5.747)
Program field experience standards
WorkPupils −5.118** −0.128

(1.948) (3.884)
DataColl −7.816* −31.841**

(4.538) (11.666)
Program supervisors standards
SuppInstruction −2.519

(5.022)
SuppWork_Students −3.059 26.986**

(5.236) (10.296)
(Intercept) 597.331 601.096 607.664 642.049 599.761 664.985

(5.031) (5.808) (8.720) (9.051) (7.106) (19.670)
Log likelihood −4094 −4094 −4092 −4087 −4094 −4086
Deviance 4757 4751 4732 4667 4753 4648
AIC 8195 8196 8195 8185 8198 8190
d.f. 29 28 27 27 27 23

Note. *p < .05; **p < .01; ***p < .001; N = 721
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 Conclusion

This analysis allows us to better understand the role that admission and graduation 
requirements play in the outcomes of teacher education for different countries. 
While there is important variability, a general pattern shows that programs where 
future primary mathematics teachers obtained high scores in the knowledge assess-
ments (MCK and MPCK) have standards that establish as a requirement for admis-
sion a demonstrated high level of mathematics knowledge and seem to be able to 
recruit individuals who are in general high achievers according to national norms. 
Even when programs do not set these admission standards, as in Chinese Taipei, the 
role of external standards as set by universities, or by regional or national agencies 
is important. In Chinese Taipei for instance, both admission and graduation stan-
dards are rigorous. Admission standards require a strong knowledge of the disci-
plines (e.g., candidates need to be enrolled in at least their second year of higher 
education or graduate studies to be accepted in a program), and for graduation 
future teachers are expected to write and defend a thesis in order to successfully 
complete the program. In Poland, future primary teachers who scored high in the 
knowledge assessments were in programs with rigorous admission requirements 
(e.g., all institutions require applicants to have upper-secondary school qualifica-
tions in mathematics) albeit with no graduation requirements. Having no graduation 
requirements may imply that the program sets formative standards and other strate-
gies to regulate the content that is to be learned and the practical experiences that 
would ensure knowledgeable graduates. Similarly, program admission requirements 
were associated with high knowledge scores in the United States, and graduation 
requirements had a positive and significant correlation with mathematical pedagogi-
cal content knowledge. Russia also has rigorous admission and graduation require-
ments with the latter implemented uniformly across all programs requiring future 
teachers to write and defend a thesis in order to successfully complete the program. 
For most countries programs set and enforce admission and graduation standards, 
with the exception of Chinese Taipei, and in most countries, these standards are also 
regulated externally (at the university, local or national levels), with the exception of 
Poland.

Overall, programs whose future primary teachers scored high in MCK and 
MPCK do not emphasize learning how to manage student’s diversity including stu-
dents with special needs, but rather the emphasis in the programs is on providing 
future teachers with knowledge about how pupils learn mathematics and on build-
ing upon their prior knowledge.

With the exception of programs in Chinese Taipei, programs whose future pri-
mary teachers scored high in MCK and MPCK have standards that emphasize learn-
ing to do research and collect data in their initial/short field experiences over 
learning to work individually or in small groups with pupils.

With the exception of programs in Russia, where emphasis in the extended field 
experience is for supervisors’ support with instructional planning and with feedback 
on teaching, programs whose future teachers scored high in the knowledge assess-
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ments had extended field experiences that required supervisors, instructors and 
mentor teachers to place a heavy emphasis on modeling how to teach lessons and on 
coaching future teachers when running into difficulties when taking charge of a 
class and teaching a lesson.

Thus, while programs emphasize standards regulating content and field experi-
ences in different degrees, the most consistent factor related to highly knowledge-
able teachers as they near the end of their programs are admission and graduation 
standards. Regardless of who regulates admission and graduation standards, the 
presence of such standards shows in every instance an important and significant 
relationship with higher mathematical and mathematical pedagogical content 
knowledge for future primary teachers as expressed by the scores obtained in the 
TEDS-M knowledge assessment. In fact, requiring a good level of mathematical 
knowledge prior to entering the program seems essential for future mathematics 
teachers’ acquisition of the expected mathematical pedagogical content knowledge 
they will need to teach.

 Appendix

 Program Selectivity and Monitoring

Variable name: Entry_criteria
Description: Admission criteria to regulate entry into the program
Procedure: Factor analytic scale, standardized scores
Explained 
variance:

18.22%

Source: MIC002E Demonstrated high level of achievement in mathematics as a 
characteristic or source of information that is used in selecting 
entering <future teachers> for this teacher preparation program

MIC004 With reference to national norms, how do <future teachers> 
entering this program rate with respect to their prior academic 
achievement?

Variable name: Exit_criteria
Description: Graduation criteria to exit the program
Procedure: Factor analytic scale, standardized scores 
Explained 
variance:

17.09%

Source: MID012H Write a defend a thesis as part of the institutional requirements that 
<future teachers> have to meet to successfully complete this 
program

MID013A Is there a document that prescribes competencies or performance 
standards that the graduates of this program are expected to meet?
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 Governance

Original variable: MIC001 Created variable: 
SelfGov

Options: Values:
The policies are set by each institution without reference to any outside 
requirements.

1

The policies are set by regional or national authorities. 0
The policies are set by each institution, within guidelines set by regional 
or national authorities.

0

There is no selection for this phase; all applicants are admitted. 1

 Program Content Standards

Variable name: MPCK_StudLearning
Description: Emphasis given to student learning as part of the goals of program 

requirements
Procedure: Factor analytic scale, standardized scores 
Explained 
variance:

78.09%

Source: In the program requirements, guidelines and other documentation, how much 
weight is given to each of the goals listed below?
MID011F Knowledge about pupil learning in mathematics
MID011G Knowing common pupil misunderstandings in mathematics
MID011H Knowing how to build on pupils’ prior knowledge in 

mathematics

Variable name: Managing_StudDiversity
Description: Emphasis given to student diversity as part of the goals of program 

requirements
Procedure: Factor analytic scale, standardized scores 
Explained 
variance:

47.79%

Source: In the program requirements, guidelines and other documentation, how much 
weight is given to each of the goals listed below?
MID011J Managing disruptive pupils
MID011N Conducting fair and valid summative assessments of pupil 

learning
MID011Q Specific strategies for teaching pupils with behavioral and 

emotional problems
MID011R Specific strategies and curriculum for teaching pupils with 

learning disabilities
MID011S Specific strategies and curriculum for teaching gifted pupils
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MID011T Specific strategies and curriculum for teaching pupils from 
diverse cultural backgrounds

MID011U Accommodating the needs of pupils with physical disabilities 
in your classroom

MID011V Working with children from poor or disadvantaged 
backgrounds

 Program Field Experiences

Variable name: WorkPupils
Description: Tutoring individual pupils or working with small groups as part of the 

introductory field experience
Procedure: Total score
Source: How often are the following activities assigned as part of the introductory field 

experiences in this program?
MIE003C Tutor individual pupils
MIE003D Work with small groups of 

pupils

Variable name: DataColl
Description: Collect data for research projects as part of the introductory field experience
Procedure: –
Source: How often are the following activities assigned as part of the introductory field 

experiences in this program?
MIE003I Collect data for research projects

 Program Supervisors

Variable name: SuppInstruction
Description: Supervisors support in mathematics instruction (content and pedagogy)
Procedure: Factor analytic scale, standardized scores 
Explained 
variance:

65.78%

Source: Please indicate whether  in the extended teaching practice are likely to assume 
each of the following responsibilities
MIE009A The mathematics content of a lesson
MIE009B The mathematics  of a lesson
MIE009J Giving <future teachers> oral feedback on the 

adequacy of the mathematics content in their 
teaching

MIE009K Giving <future teachers> oral feedback on their  
approach to teaching mathematics
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Variable name: SuppWork_Students
Description: Supervisors support in working with students
Procedure: Factor analytic scale, standardized scores 
Explained 
variance:

53.46%

Source: Please indicate whether  in the extended teaching practice are likely to assume 
each of the following responsibilities
MIE009C How to deal with pupils with learning 

problems
MIE009D How to deal with pupils with behavior 

problems
MIE009G Teaching a lesson to  or  school pupils that a 

<future teacher> is expected to observe
MIE009H Taking charge of a class of  or  school pupils to 

help a <future teacher> who has run into 
difficulties with the class
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Abstract The first part of this chapter describes the development of a systematic 
model for the comparative study of the curriculum of teacher education programs 
used in the Teacher Education and Development Study in Mathematics (TEDS-M). 
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 Introduction

While the notion of what should be taught to whom, when, and how has been a 
subject of concern, discussion, and contestation in schools and universities since at 
least the 1600s, it was not until the mid-1900s when formal school curriculum 
became a subject of systematic study within and across nations (Husen, 1967a, 
1967b). The shift came after scholars affirmed that the curriculum can only have an 
impact on learning if students had the opportunity to learn it. While scholars had 
simply defined opportunity to learn (OTL) as “time allowed for learning” (e.g., 
Carroll, 1963), Husen was the first to define and use this term to explain the quality 
and depth of student learning. The concept has expanded to explore the links 
between the curriculum and OTL and teachers’ perceptions of students’ OTL, which 
have been found to correlate highly with student scores in mathematics test items 
(Mullis et al., 2007). The reframing of school learning as dependent upon access to 
opportunities to study assigned content of adequate quality and with sufficient depth 
not only revealed new paths to examining education access, equity, and social jus-
tice (McDonnell, 1995), but also brought to the forefront the importance of consid-
ering the connections between the intended, implemented, and achieved curriculum 
as a comprehensive measure of school efficiency.

Many studies have explored the influence of opportunities to learn the school 
curriculum on students’ learning, and many of these studies have considered teach-
ing quality an important mediating factor in school learning. Fewer studies exist that 
have explored the influence of the teacher education curriculum on teacher educa-
tion students’ OTL. Even fewer studies have examined the link between opportuni-
ties to learn and what is learned in teacher education, or how what teachers know is 
used when they interpret and convey curriculum intent in classroom situations. For 
a long time, educators assumed that future teachers learned the intended content and 
that passage through teacher education properly equipped them to be effective 
teachers. These assumptions have been brought into question (Levine, 2006). While 
critics of teacher education have always existed, future and current teachers seem to 
be the most severe critics (Kennedy, 2015), likely because they do not feel fully 
prepared upon graduation. This is an important issue as research has shown that the 
time a teacher dedicates to teaching different subjects in the primary curriculum—i.e., 
curriculum coverage—is correlated with how comfortable that teacher feels with 
the content with the implication that they sometimes neglect to teach what they 
haven’t been effectively taught (Buchmann & Schmidt, 1981). While secondary 
teachers are presumed to be subject specialists and thus have a better knowledge of 
their subject, some seem to lack knowledge conveying conceptual understandings 
and abstract reasoning to pupils (Tatto et al., 2012). Thus, the study of teacher edu-
cation OTL and their impact on future teachers’ knowledge is important in helping 
clarify the factors that contribute to teaching quality and ultimately pupil learning.

This chapter presents the results of a study of the opportunities to learn contained 
in the teacher education curriculum in mathematics using the Teacher Education 
and Development Study in Mathematics (TEDS-M) data in the United States. 
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We seek to answer the following research questions for programs preparing future 
primary1 and secondary teachers:

 (a) What is the content of the curriculum as intended by teacher education pro-
grams as measured by the analysis of teacher education programs’ syllabi?

 (b) What is the implemented curriculum as measured by the number of clock hours 
dedicated to different domains as reported by program administrators, and by 
opportunities to learn as reported by future teachers?

 (c) What is the achieved curriculum as measured by the scores attained by future 
teachers in mathematical and mathematical pedagogy knowledge 
assessments?

While cross-national analysis of the curriculum of teacher education using the 
TEDS-M data has been published elsewhere (Tatto & Hordern, 2017), in this chap-
ter we chose to focus on the U.S. as a case to explore in more depth the connections 
between the intended, implemented, and achieved curriculum of mathematics 
teacher education than that allowed in previous publications.

The U.S. provides a unique best case scenario (Patton, 2002) to study curriculum 
alignment after decades of sustained efforts to develop standards for high-quality 
teaching and teacher education in mathematics. Since 1920 when the National 
Council of Teachers of Mathematics (NCTM) was founded, there has been sus-
tained work on the development of standards to procure high-quality mathematics 
teaching and learning for each and every student. Later in 1991 the Association of 
Mathematics Teacher Educators (AMTE) was founded, to share ideas on effective 
ways of promoting the NCTM Standards, NCSM (the National Council of 
Supervisors of Mathematics), and MAA (Mathematical Association of America) 
recommendations on teaching school mathematics and developing programs to 
improve the mathematics education of practicing and future teachers. More recently 
in 2017, the AMTE released the Standards for Preparing Teachers of Mathematics 
whose designers see as:

aspirational, advocating for practices that support candidates in becoming effective teachers 
of mathematics who guide student learning […] these standards will guide the improve-
ment of individual teacher preparation programs and promote national dialogue and action 
related to the preparation of teachers of mathematics. (Association of Mathematics Teacher 
Educators, 2017, p. xi)

Thus, mathematics teachers and teacher educators have worked very hard in the 
creation and development of a coherent field.

Concerning the mathematics school curriculum, while standards existed since the 
early 1990s, individual and joint efforts to develop state curriculum standards inten-
sified in the early 2000s when each state in the U.S. had developed their own learn-

1 Note that in the U.S. ‘primary’ usually refers to grades K-3, while ‘elementary’ is used for grades 
K-5 or K-6. In this chapter we use the term elementary as used in TEDS-M (see Tatto et al., 2012, 
pp. 29–32 for specific definitions within countries as to what grades are included as primary or 
secondary).
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ing standards. These efforts were followed in 2009 by the creation and implementation 
of the Common Core State Standards (CCSS) for Mathematics as an attempt at 
creating a more coherent school mathematics curriculum across the U.S. states.

Together these efforts signal a clear and sustained networked agenda that should 
result in strong curricular alignments. Our intention in this chapter is to explore this 
assumption in light of our research questions while providing an information-rich 
case intended to achieve depth of understanding (Patton, 2002). We hope that this 
work can serve as a template for future within-country analysis of the teacher edu-
cation curriculum.

 Literature Overview

Educational researchers have long pondered how to improve school learning, with 
most studies investigating the relationships between teaching and pupil learning out-
comes. In a comprehensive review of the literature, Darling-Hammond, Holtzman, 
Gatlin, and Heilig (2005) showed that the research considered how a range of teach-
ers’ characteristics, such as degree, gender, and age, correlated with pupils’ learning 
as measured by assessments. In most of these early studies, teacher preparation was 
understood to be represented by whether teachers had received a credential or whether 
they had higher levels of study, such as master’s degrees, the assumption that teacher 
education provided the knowledge needed for teaching was rarely questioned.

The most significant research advances documenting how teachers learn to teach 
occurred in primary mathematics teaching. The work of Lampert, Ball, and their 
collaborators has moved the field forward in significant ways (Lampert & Ball, 
1998; Lampert et al., 2013). Their work is distinctive in the in-depth exploration on 
how teachers learn key mathematics concepts and how they manage to teach them 
to diverse populations.

In 1991, Tatto et  al. published the results of a comprehensive study of three 
approaches to teacher education in Sri Lanka. This was the first study that explored 
the links between programs’ characteristics (such as the program’s curriculum and 
OTL), and the outcomes of teacher preparation—for instance, links between gradu-
ates’ knowledge of mathematics and mother tongue, teaching practices, and pupils’ 
learning. The study showed that programs’ selectivity, future teachers’ previous 
knowledge of the subject, and the opportunities to learn designed by the programs 
were important influences on teachers’ subsequent knowledge for teaching.

Calls for the careful study of curriculum variation cross-nationally intensified in 
the mid-1990s. A particularly important contribution was made by a literature 
review titled “Considerations of content and the circumstances of secondary school 
teaching,” authored by Grossman and Stodolsky (1994a, 1994b). After providing a 
framework for understanding how a variety of contexts (schools, departments, pro-
fessional communities, disciplines, and students) interact in forming the content and 
circumstances of secondary schooling, the authors call for research on teacher edu-
cation, including systematic investigations of the formation of beliefs of prospective 
teachers, disciplinary socialization (both in liberal arts coursework and subject- 
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specific methods courses), and differences in teaching across subjects both at the 
elementary and secondary levels. In addition, the authors suggest the need for fur-
ther cross-national research to gain a better understanding of curriculum variation 
across similar contexts in different countries.

In the early 2000s, in an international review of the literature commissioned by 
the National Academy of Science, Tatto (2000) argued that the established method 
to evaluate the influence of teacher education on teacher quality and pupils' learning 
using credentials and years of study as independent variables in regression equations 
was problematic as these  represent highly varied opportunities to learn to teach, 
likely as varied as those already understood from pupils, and that to fully understand 
what teachers knew as a result of teacher education, it was necessary to assess such 
knowledge against the curriculum studied. The result of this exploration was the 
development of the first cross-national large-scale study that assessed future teach-
ers’ knowledge as an outcome of teacher education looking at the OTL provided by 
programs (see Tatto et  al., 2012). Researchers who participated in the TEDS-M 
study have used the TEDS-M database to investigate the relationships among oppor-
tunity to learn mathematics content and teaching methods among future teachers. 
Researchers also found that while there was a great deal of homogeneity in the top-
ics that programs in different countries considered “basic” in the curriculum, there 
was significant heterogeneity within and among the 17 participating country-sys-
tems concerning more advanced topics (Blömeke, 2012). Other studies have 
explored the relationships between OTL and performance in the TEDS-M assess-
ment as concerns Mathematics Content Knowledge (MCK) and Mathematical 
Pedagogical Content Knowledge (MPCK); see Tatto and Senk (2011).

Separately, researchers have examined how the kind of content courses taken 
(calculus, geometry, etc.) by teachers correlated with pupil learning. While many 
studies have used the so-called value-added approach, questions about the curricu-
lum of teacher education continue to emerge. For instance, Boyd, Grossman, 
Lankford, Loeb, and Wyckoff (2009) used survey data on teachers’ experiences 
across 31 programs in 18 institutions in New York, as well as multiple New York 
administrative data sets that included demographic data for students, teachers, and 
schools for each year from 2000–2001 through 2005–2006 to analyze the impact of 
teacher education on student achievement. The authors found significant variation 
across programs and institutions in the average effectiveness of their graduates, 
defined by value-added to student achievement in math and English Language Arts 
(ELA). Controlling for teacher background, two types of program characteristics 
were found to be significant predictors of effectiveness: program experiences that 
linked preparation to practice (e.g., student-teaching, capstone project, studying 
curricula, listening to a child read, planning a reading lesson, analyzing student 
math work) and subject content requirements. In a different but related study, Boyd 
et  al. (2008) used multiple data sources (program documents, interviews, and 
 surveys) to describe the pre-service training experiences and programs for elemen-
tary teachers of New York City public schools. The authors described the types of 
programs, the characteristics of teachers who entered the programs, the characteris-
tics of teacher educators, and the curriculum. Although there were a large number 
of programs and program types in the area, the authors found programs to be more 
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similar to one another than they were different. Boyd et al. did find some programs 
placing greater emphasis on mathematics, however, while others placed more 
emphasis on classroom management and working with families. They argued that 
these differences were minimal overall. The little between-program variation, at 
least in this narrow geographic setting, suggests that greater variation within pro-
grams may exist regarding individuals’ opportunity to learn.

Researchers also have explored the relationship of the curriculum found in differ-
ent routes into teaching and effectiveness with mixed results. For instance, 
Constantine et al. (2009) undertook an evaluation of teachers trained through differ-
ent routes to certification. They used a purposive sample of 87 matched pairs of 
teachers who had certificates from traditional and alternative programs and ran-
domly assigned them to pupils to analyze the impact of teacher education character-
istics. Overall, neither the amount, the timing, nor the content of coursework in 
alternative or traditional teacher preparation were associated with teacher effective-
ness as measured by pupil achievement of their respective students. Subgroup analy-
sis revealed that traditionally certified teachers were more effective than alternatively 
certified with respect to mathematics outcomes. Traditionally certified teachers with 
three to four years of experience and reduced coursework in their preparation were 
more effective in mathematics than their alternatively trained counterparts.

While this does not represent a systematic review of the literature, it signals the 
direction of teacher education research in the United States, which has moved from 
the study of teachers’ understandings of mathematical concepts (Clark & Peterson, 
1986) to studies of the value-added of teacher education as indicated by pupils’ 
learning (Boyd et  al., 2009). The use of value-added methods illuminates some 
important aspects of the relationship between teaching and learning, but it does not 
help explain the how and why of the results obtained, and, specifically, does not 
assess the actual knowledge attained by teachers who engaged with the teacher 
preparation curriculum in a variety of programs.

This chapter’s research questions are based on the notion that to understand the 
relationship between teacher education and teacher learning, it is important to 
explore in detail what the curriculum of teacher education is like within teacher 
education programs, paying particular attention to the intended, implemented, and 
achieved curriculum and its relationship with the knowledge to teach mathematics 
that future teachers attain before they begin to teach. The TEDS-M study provides 
the necessary data to explore these questions.

 The TEDS-M Study of the Teacher Education Curriculum: 
Methods and Rationale

To collect data on the teacher education curriculum, the TEDS-M study used a four- 
fold strategy. To obtain indicators of the intended curriculum, country teams exam-
ined representative samples of syllabi in the programs selected for study and coded 
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the topics as represented in these documents using a coding system similar to that 
used to analyze the school curriculum by McKnight and collaborators (1987) and 
by Valverde, Bianchi, Wolfe, Schmidt, and Houang (2002). A questionnaire asking 
future teachers what OTL they experienced as a result of moving through the pro-
gram gave us indicators of the implemented/experienced curriculum. Another ques-
tionnaire, which asked administrators to report the number of contact hours 
dedicated to different domains during the teacher education program, gave us addi-
tional indicators of the implemented curriculum. A fourth source of data came from 
the results of the assessment of the mathematics content and mathematics pedagogi-
cal content knowledge of future teachers at the end of their program, providing us 
with indicators of the achieved curriculum. In TEDS-M, we added an external “rel-
evance/alignment” dimension to the curriculum study by analyzing the degree to 
which the intended teacher education curriculum reflected the intended school cur-
riculum as reflected in mathematics curricula at the country level.

An important step was to develop a codebook to analyze the syllabi. The study 
team developed a comprehensive typology of topics that emerged from a pilot study 
of the teacher education curriculum across the 17 countries that participated in 
TEDS-M. These topics were then used to code the syllabi and to map the intended, 
implemented, and achieved curriculum of teacher education, including such areas as 
(a) university- or tertiary-level mathematics; (b) school-level mathematics; (c) 
mathematics education/pedagogy; (d) education /pedagogy; (e) accommodating 
classroom diversity and reflection on practice; and (f) learning from school experi-
ence and the practicum.

 The Intended Curriculum of Schools and Teacher Education 
Programs

Primary- and secondary-school curriculum standards are assumed to be an impor-
tant influence on teacher education, as educators may decide to emphasize these 
standards, to varying degrees, in their program’s own curriculum. Accordingly, 
TEDS-M explored the correspondence between mathematics school curricula and 
the teacher education mathematics curriculum.

 The Mathematics Curriculum of Schools

TEDS-M analyzed the official school mathematics curricula from the participating 
countries using a revised curriculum analysis method from TIMSS 1996 
(U.S.  Department of Education, National Center for Education Statistics, 1997; 
Valverde et  al., 2002). Curriculum analysis is a systematic method for obtaining 
comprehensive information from curricular documentation and materials. In the 
case of TEDS-M, the curriculum analysis examined the current primary- and 
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secondary- school curriculum or standards in mathematics for each of the primary, 
middle school, and high school grades in each of the TEDS-M participating coun-
tries.2 For countries with national or centralized education systems, the analysis of 
the school curriculum relied on national-level documents; for countries with a 
decentralized system, the analysis relied on the curriculum and /or standards used 
by the majority of the country’s schools.

The analysis of the primary- and secondary-school mathematics curriculum and 
standards can be compared with the analysis of the teacher preparation curriculum 
to uncover  the degree of alignment of teacher preparation programs with what 
teachers will eventually teach in schools.

 The Teacher Education Curriculum

Building upon previous work analyzing primary and secondary curricula (Valverde 
et al., 2002), the TEDS-M research team developed a framework and a methodology 
for analyzing the curriculum of teacher education. This methodology allowed the 
exploration of the content associated with actual routes and programs, as well as the 
possible influence of this content on the professional knowledge of future teachers.

While there is usually ample documentation of school curricula, we found the 
same does not apply to curricula for teacher preparation programs. For instance, 
many countries that have national standards or syllabi for school subjects do not 
have national standards for teacher education. In teacher education, many courses 
either do not use detailed written syllabi, or the syllabus used differs from educator 
to educator and/or from institution to institution. In addition, if there are documents 
describing the expected or anticipated learning outcomes of the practicum, their 
analysis may prove challenging.

The initial phase of the study of the teacher preparation curricula therefore exam-
ined documents prescribing or describing the national curriculum of teacher 
 education in countries where these existed, or an aggregated analysis of the local or 
institutional curricula when no documents at the national level were available.

The second phase in the analysis of the curricula of mathematics teacher educa-
tion was at the institutional program level. For this, a protocol was developed to 
analyze curriculum documents from the teacher education mathematics curricula in 
the selected routes and programs in each participating country. The protocol exam-
ined the content covered by courses in the mathematics teacher education curricu-
lum as an indicator of performance expectations for teacher certification or licensing. 

2 The TEDS-M Study Reports use the terms “primary generalist” to refer to future teachers pre-
pared to teach all grades and subjects of primary schooling, “primary specialist” to refer to future 
teachers prepared to teach the primary grades with a mathematics specialization, “lower second-
ary” to refer to future teachers prepared to teach up to Grade 10 maximum, and “lower and upper 
secondary” high school to refer to programs that prepare teachers to teach up to Grades 11 and 
above. In this chapter, we retain the use of primary generalist and primary specialist, but use the 
United States’ terms middle school and high school instead of lower and upper secondary, since 
we are using the U.S. data as our core example throughout this chapter.
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These analyses produced an initial profile of the intended curriculum in mathemat-
ics teacher education in terms of the knowledge, pedagogy, and dispositions future 
teachers are exposed to as they get ready to teach.

There were two options for the selection of the syllabi:

 (a) Census of all relevant syllabi in all institutions of teacher education in TEDS-M 
sample. This option was comprehensive and required collection and coding of 
all relevant syllabi from all institutions.

 (b) Census of all relevant syllabi in all institutions in a purposeful sample of institu-
tions in the TEDS-M sample. The institutions could be selected because they 
train the most teachers, are the most influential, have the broadest subject matter 
coverage, or are seen as flagship institutions (e.g., those seen as providing 
exemplary practice).

Table 4.1 shows the guidelines for selection of syllabi from institutions.
All TEDS-M countries that completed the syllabi analysis tasks undertook a cen-

sus of all relevant syllabi in all institutions of teacher education in the TEDS-M 
sample (aforementioned option “a”). Table  4.2 shows the average percentage of 
analyzed syllabi for the countries that completed the syllabi analysis tasks. Our data 
revealed some variability across institutions within and across countries. In some 
countries, it is possible to see that not all institutions had syllabi available for the 
courses they teach. This is often the case in general pedagogy and mathematics 
courses (often mathematics classes are not taught as part of the teacher education 
program, but as part of the mathematics department within the same institution, or 
in a different institution, as is the case in Singapore; thus, the syllabi may not be 
accessible to the teacher education institution). In some cases, the curriculum is 
assumed to be the same across institutions, especially in institutions in centralized 
countries and, in some cases, the mathematics pedagogy content and the mathemat-
ics content are integrated in the same syllabus.

Table 4.1 Guidelines for syllabi selectiona

Academic courses syllabi (mathematics, mathematics, 
pedagogy and general pedagogy only)

Field experience/teaching 
practice syllabi

Type of course Data-gathering methodology

Required courses with 
one instructor

Obtain all syllabi

Required courses with 
multiple sections and/
or multiple instructors

All, but for courses with multiple 
sections taught by multiple 
instructors, randomly select syllabi 
from two instructors only

Get syllabi or practicum report 
or contract or any other 
institutional document related to 
the practice

Elective courses Select those courses that are taken 
by most (at least 50%) of future 
teachers, if there are anyb

aSource: TEDS-M Manual for Syllabi Analysis at the Institutional Program Level
bInstitutions may decide to use 2 steps: (1) compile a list of the elective courses across the program 
most frequently chosen by, for example, the last three cohorts of future teachers; (2) from that list 
select the 5–10 most highly ranked across the three cohorts
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The third phase consisted of assigning codes to the selected syllabi. For this pur-
pose, each syllabus was divided into smaller pieces called units and blocks. Units 
are large sections in the document describing the different types of knowledge that 
the program provides. In most cases, a typical unit is a course, which is represented 
by a syllabus. However, if a single course consists of two parts, e.g., classroom 
activities (lectures and discussions) and a field experience (future teachers’ practice 
teaching in schools), then the course may be divided into two units. Another exam-
ple of a course divided into separate units is when the course consists of some parts 
related to mathematics pedagogy and other parts that are mathematics content 
related to the school curriculum. In such cases, the course may be divided into two 
corresponding units: one for the parts that are mathematics-pedagogy related and 
the other for the rest of the course.

After identifying units, we engaged in the next task in the syllabi analysis process, 
that of identifying blocks. A block is a portion of a unit containing information about 
the specific topics that are covered by the particular class or course. Depending on the 
number of topics in the unit, the unit may be divided into many blocks, few blocks, or 
only one block. The aim of such partition of the syllabi is to analyze the units and the 
blocks in order to produce information about the content that is covered by each course.

Syllabi Analysis Framework The syllabi analysis framework describes the topics 
and the performance expectations that may be stated in each syllabus and provides 
corresponding numerical codes. The TEDS-M syllabi analysis framework includes 
three content topics areas: mathematics, mathematics pedagogy, and pedagogy. 
The framework also includes performance expectations to examine what future 
teachers are expected to do with the content. Performance expectations might 
include, for example, cognitive requirements in a syllabus or requirements for 
active participation during class, writing tests or papers, or field-based activities. In 
this section, we only focus on the content topic areas and do not consider perfor-
mance expectations.

The structure of the coding framework is hierarchical, with unique codes for top-
ics at each level: for example, 1.1.3 Geometry and 1.1.3.2 Euclidean Geometry. 
Topics with fewer numbers are in a higher level of the hierarchy (more general), 
while those with more numbers are in a lower level (more precise). Each block in a 
syllabus must be assigned one or more codes from the framework. The coders may 
use either the low-level topics (i.e., 1.1.3.2 Euclidean Geometry), or higher level 
(i.e., 1.1.3 Geometry). The goal, however, was to use the lowest possible code level 
to obtain the most concrete information about the content of the block.

 Limitations

Analyzing documents is a complex task. While there were strict guidelines and 
detailed procedures to be followed, each country organized the coding of its own 
syllabi using local experts. The TEDS-M study organized several workshops to train 
each country’s experts in this process. The purpose was not only to explain the 
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procedure, but also to ensure a uniform understanding of partitioning the syllabi 
into units and blocks and assigning the codes. This was a way to diminish the sub-
jectivity in the coding process. Local experts did not translate syllabi into other 
languages, but instead coded the syllabi in the language in which they were written. 
Translating all syllabi into English, besides being very resource-intensive, would 
also have created further opportunities for errors.

Some limitations still existed. For instance, in the selection of the curriculum docu-
ments, it became clear that syllabi falling within the same subject categories were 
highly variable (e.g., by format, structure, and content). In some institutions, the syllabi 
were short and general, giving just broad information about the courses. Other syllabi 
presented detailed descriptions of the topics that were covered by the programs. For 
some institutions, the syllabi were available on the program’s website. In other cases, 
they had to be requested by contacting the appropriate person(s) at the institution. In 
the latter cases, it was sometimes not possible for all syllabi to be collected.

Even though the document analysis consists of low-inference methods, one should 
nevertheless consider that the coding process is subjective. Because of the variability 
in the syllabi, there is not a universal way to partition the documents into units and 
blocks and assign the codes. Since these steps were completed by a country’s experts, 
it involved much of the experts’ interpretation of the text in the document.

 The Implemented Curriculum of Teacher Education Programs

 Opportunities to Learn As Reported by Programs and Experienced 
by Future Teachers

The TEDS-M study included a survey of programs where questions about the clock 
hours dedicated to different domains were asked as an indicator of OTL provided to 
future teachers (see Table 4.18 for the definitions of these domains). The intent was to 
enable exploration of whether future primary teachers prepared as generalists had dif-
ferent times allocated to curriculum areas than those prepared as specialists. Similarly, 
these questions addressed an interest in the time allocation for future middle and high 
school teachers. These survey questions allowed us to have a measure of the OTL 
given to future teachers according to different approaches to teacher education.

In addition, the TEDS-M study included a number of questions addressed to 
future teachers to allow exploration of the OTL that future mathematics teachers 
report having across countries. These questions were used to develop five OTL 
scales to numerically represent aggregated future teachers’ responses to the ques-
tions, and to make it possible to statistically analyze the data. We next explore these 
five OTL areas.

Opportunity to Learn University-Level Mathematics The scales in this area 
enabled exploration of whether future teachers have studied key mathematics topics 
(e.g., geometry-related topics, algebra, number theory, calculus, functions). Because 
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OTL in this area often occur before future teachers enter teacher preparation, these 
questions asked future teachers whether they had ever studied such topics.

Opportunity to Learn School-Level Mathematics These scales included ques-
tions that allow exploration of the interaction between mathematics topics studied 
by future teachers in their teacher preparation program and the school mathematics 
curriculum. In addition, this section included questions on the emphasis given to 
learning mathematics in more depth.

Opportunity to Learn Mathematics Education/Pedagogy These scales included 
questions that allow exploration of the interaction between mathematics content and 
pedagogy. Additional scales included questions about the use of learning strategies 
in mathematics. Future teachers were asked to indicate whether they had studied 
each topic as part of their teacher preparation program. Other questions asked how 
often future teachers engaged in a number of activities and learning strategies in 
mathematics in their teacher preparation program.

Opportunity to Learn General Knowledge for Teaching These scales included 
questions about topics considered relevant for all teachers to understand, such as 
educational theory, general principles of instruction, classroom management, and 
curriculum theory. As with the questions in the previous knowledge areas, these 
questions asked future teachers whether they studied such topics as part of their 
teacher preparation program.

Opportunity to Engage in School Experiences and in a Practicum These ques-
tions asked future teachers whether they spent time in the classroom in a primary or 
secondary school and, if so, how long; whether they had a school supervisor 
assigned to them; whether they engaged in particular activities and at what levels; 
and whether they found the school experience helpful. An additional set of ques-
tions asked about diverse characteristics of the practicum (e.g., the role of the men-
tor, feedback received, standards, methods used, and level of mathematics knowledge 
and pedagogy of the classroom teacher or mentor).

 The Achieved Curriculum of Teacher Education Programs: 
Assessment of Mathematical Content and Mathematical 
Pedagogical Content Knowledge

The TEDS-M study included two assessments to measure future teachers’ 
Mathematical Knowledge for Teaching (MKT), consisting of two constructs: math-
ematics content knowledge and mathematics pedagogical content knowledge. (For 
the theoretical origins of these constructs, consult Tatto et al., 2008.) The mathemat-
ics content knowledge framework included measures of knowledge for the domains 
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of number, geometry, algebra, and data, and measures for cognitive domains, 
including application, knowing, and reasoning (Mullis et al., 2007).

The mathematics pedagogical content knowledge framework included measures 
of mathematics curricular knowledge, knowledge of planning for mathematics 
teaching and learning, and enactment of mathematics for teaching and learning. The 
frameworks are presented in detail in Tatto et al. (2012) and are included in Appendix 
4.1, Tables 4.15, 4.16, and 4.17 of this chapter.

 Findings: The Intended, Implemented, and Achieved 
Curriculum

In this section, we report the intended curriculum of schools and teacher education 
programs, and the implemented and achieved curriculum of teacher education at the 
primary and secondary levels in the United States. We begin with an examination of 
the school curriculum expectations for teachers.

 The Intended Curriculum of Schools

The data below come from the analysis of the school curriculum guidelines or stan-
dards in the United States at the time of the study. The intended curriculum of 
schools was considered an important input for the TEDS-M study, as it greatly influ-
ences what is studied in teacher education programs.

Table 4.3 represents the information for the school mathematics curriculum in 
grades 1 to 8 in the United States at the time of the study. Each bullet shows the grade 
at which the corresponding topic is to be taught. For example, congruence and simi-
larity is intended at Grades 4, 7, and 8; patterns, relations, and functions is intended 
for Grades 1 to 8; and vector geometry is not intended to be taught in Grades 1 to 8.

Table 4.3 shows that the mathematics  school curriculum in the United States 
focuses on four main domains: number, geometry, algebra, and data. As could be 
expected, the study of numbers begins in Grade 1. Fractions and decimals are also 
introduced in Grade 1. In the United States, there is a relatively high emphasis on 
the estimation and number sense concepts topics. The geometry part of the U.S. 
curriculum gives a rich opportunity for students to study Euclidean,  transformational, 
and 3D geometry. As expected, given the curriculum reforms implemented during 
the time of the analysis, algebraic and data ideas are included in the early grades 
curriculum (Grades 1 and 2). Vector and analytic geometry, trigonometry, and ele-
mentary analysis are not part of the intended mathematics curriculum for Grades 1 
to 8 in the United States.
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 The Intended Curriculum of Teacher Education Programs

The data that emerged from the analysis of the syllabi of teacher education pro-
grams is included below and reflects the key content areas commonly covered: 
school mathematics (i.e., the mathematics covered in the school curriculum), aca-
demic or university mathematics, mathematics pedagogy, general pedagogy, and the 
activities that shape the field experience in schools.

Table 4.3 The grades in which mathematics topics are studied according to the analysis of the 
school curriculum

Domains Topics Grade

Number 1 2 3 4 5 6 7 8
Whole numbers ● ● ● ● ● ●
Fractions and decimals ● ● ● ● ● ● ● ●
Integer, rational and real 
numbers

● ●

Other numbers and number 
concepts

● ● ● ● ●

Estimation and number 
sense concepts

● ● ● ● ● ● ●

Ratio and proportionality ● ●
Geometry Measurement units ● ● ● ● ● ● ● ●

Computations and properties 
of length, perimeter, area 
and volume

● ● ● ● ● ●

Estimation and error ● ● ● ● ● ●
1-D and 2-D coordinate 
geometry

● ● ● ● ● ●

Euclidean geometry ● ● ● ● ● ● ● ●
Transformational geometry ● ● ● ● ● ● ● ●
Congruence and similarity ● ● ●
Constructions with 
straightedge and compass
3-D geometry ● ● ● ● ● ● ● ●
Trigonometry and analytic 
geometry
Vector geometry
Simple topology

Algebra Patterns, relations, and 
functions

● ● ● ● ● ● ● ●

Equations and formulas ● ● ● ● ● ● ●
Elementary analysis

Data Data representation and 
analysis

● ● ● ● ● ● ● ●

Uncertainty and probability ● ● ● ● ● ● ●
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 School Mathematics Content

Table 4.4 displays the school curriculum topics covered across the different pro-
gram types in the United States, which include programs preparing primary gener-
alists (Grade 6 maximum), primary mathematics specialists, middle school (Grade 
10 maximum), and high school (to Grade 11 and above) corresponding to the head-
ings US2, US4, US5, and US6 respectively. The Table 4.4 shows that no topics were 

Table 4.4 Percentage of teacher education institutions that taught each of the mathematics school 
curriculum topics according to the summary from the syllabi analysis

School mathematics topics
Percent of institutions/TPU 
cover the topic
US2a US4b US5c US6d

N = 63 N = 17 N = 19 N = 59

Whole numbers 35 29 42 10
Fractions and decimals 46 41 47 15
Integer, rational and real numbers 40 35 42 19
Other numbers and number concepts and number theory 37 29 32 20
Estimation and number sense concepts 33 24 32 12
Ratio and proportionality 30 29 37 5
Measurement units 14 12 16 3
Computations and properties of length, perimeter, area and 
volume

0 0 0 0

Estimation and error in measurement 10 18 16 8
1-D and 2-D coordinate geometry 21 18 16 8
Euclidean geometry 16 24 32 22
Transformational geometry 27 24 37 19
Congruence and similarity 25 24 32 19
Constructions with straightedge and compass 21 29 32 15
3-D geometry 14 18 32 8
Vector geometry 3 6 5 5
Simple topology 2 0 0 0
Patterns, relations and functions 29 24 26 17
Equations and formulas 11 18 21 10
Trigonometry and analytic geometry 6 12 16 20
Data representation and analysis 30 29 32 20
Uncertainty and probability 24 41 53 29
Elementary analysis 5 12 16 19
Validation and structure 17 18 11 20
Other school mathematics topics 13 24 16 14

Note 2: A topic is considered “taught in the program” if at least one of the subtopics is taught in 
the program
aPrograms preparing primary generalists (Grade 6 maximum)
bPrograms preparing primary mathematics specialists
cPrograms preparing middle school (Grade 10 maximum) teachers
dPrograms preparing high school (to Grade 11 and above) teachers
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covered in more than 53% of institutions in any program type, and only one was 
covered by more than 50% of institutions (uncertainty & probability). Six topics 
were covered in the syllabi of between one quarter and less than half of the pro-
grams that prepare future primary and middle school teachers (first three columns 
of data or US2, US4 and US5). These are (1) whole numbers; (2) fractions and deci-
mals; (3) integer, rational, and real numbers; (4) other numbers, number concepts, 
and number theory; (5) ratio and proportionality; and (6) data representation and 
analysis. Eight additional topics were uniformly covered in the syllabi of fewer than 
25% of the institutions across primary-middle school program types: (1) measure-
ment units; (2) estimation and error in measurement; (3) 1-D and 2-D coordinate 
geometry; (4) vector geometry; (5) equations and formulas; (6) trigonometry and 
analytic geometry; (7) elementary analysis; (8) and validation and structure. 
Estimation and number sense concepts are seen as relatively important topics to 
master for the primary generalists and middle school future teachers, but receive 
less emphasis in the syllabi of institutions that prepare mathematics specialists for 
primary and high school grades. The topic uncertainty and probability received 
more attention in programs preparing middle school teachers, but also in those pre-
paring primary specialists and high school teachers. Computations and properties of 
length, perimeter, area and volume were marked as not covered in the syllabi of the 
institutions of any program. Most of the topics were covered in the syllabi of close 
to 25% of the programs preparing high school teachers.

While the topics in Tables 4.3 and 4.4 are not identical, they are close enough to 
make comparisons between the intended mathematics school curriculum and that of 
teacher preparation programs in the United States. The number domain is well cov-
ered in the intended curriculum of teacher preparation programs, which maps well to 
the number coverage in the school mathematics curriculum. This is not the case for 
Euclidean, transformational, and 3D geometry. Not many institutions that prepare 
primary teachers cover these topics, though they are included in the school curricula 
in Grades 1–8. The same is true for algebraic topics (patterns, relations and functions), 
except for programs that prepare primary generalists and middle school teachers. The 
data domain is emphasized in both school and teacher preparation curricula.

 Academic/University Mathematics Content

Table 4.5 shows that few topics were covered in more than 75% of institutions in 
US2 program type, while a larger percentage of programs preparing future second-
ary teachers include university mathematics topics in their curriculum. Topics that 
were covered with the lowest frequency across program types were differential 
geometry, set theory, and topology (only in US1 and US4 program types). Topics 
covered with low frequency in programs preparing primary teachers, but with higher 
frequency in programs preparing high school teachers, were: axiomatic geometry, 
analytic/coordinate geometry, linear algebra, abstract algebra, number theory, 
beginning calculus, multivariate calculus, discrete mathematics, probability, theo-
retical and applied statistics, and other mathematics topics. The topics that appear 
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with the greatest frequency in the syllabi are: axiomatic geometry, analytic geome-
try, non-Euclidean geometry, linear algebra, calculus, probability, and theoretical 
and applied statistics.

 Mathematical Pedagogy Content

Table 4.6 shows the percentage of programs covering different topics in mathemat-
ics pedagogy, which is relatively high for all programs. It is not surprising that 
“mathematics instruction” is taught in all programs. A high percentage of programs 

Table 4.5 Percentage of teacher education institutions that taught each of the university 
mathematics topics according to the summary from the syllabi analysis

University mathematics topics
Percent of institutions/TPU cover 
the topic
US2a US4b US5c US6d

N = 63 N = 17 N = 19 N = 59

Axiomatic geometry (including Euclidean axioms) 11 35 37 54
Analytic/coordinate geometry 13 35 47 54
Non-Euclidean geometry (e.g. geometry on a sphere) 6 29 37 44
Differential geometry 2 6 5 5
Topology 2 0 0 3
Linear algebra 8 35 37 78
Set theory 8 18 21 12
Abstract algebra (e.g., group theory, field theory, ring 
theory, ideals)

2 18 16 69

Number theory 24 18 37 51
Beginning calculus topics (e.g., limits, series, sequences) 10 29 42 76
Calculus (e.g., derivatives and integrals) 11 53 47 81
Multivariate calculus (e.g., partial derivatives, multiple 
integrals)

5 18 16 69

Advanced calculus or real analysis or measure theory 0 6 0 36
Differential equations 2 6 5 34
Functional analysis, theory of complex functions 3 18 16 37
Discrete mathematics, graph theory, game theory, 
combinatorics

11 47 42 58

Probability 11 47 58 75
Theoretical or applied statistics 22 47 53 69
Mathematical logic 11 18 32 47
Other mathematics topics 14 47 47 66

Note 2: A topic is considered “taught in the program” if at least one of the subtopics is taught in 
the program
aPrograms preparing primary generalists (Grade 6 maximum)
bPrograms preparing primary mathematics specialists
cPrograms preparing middle school (Grade 10 maximum) teachers
dPrograms preparing high school (to Grade 11 and above) teachers
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covered “aspects of mathematical ability and thinking,” “mathematical problems 
and solutions,” “developing of mathematics teaching plans,” “analyzing/observing/
reflecting on mathematics teaching,” “knowledge of mathematics standards and 
curriculum,” and “methods of presenting main mathematics concepts.” Fewer pro-
grams reported including “affective issues” and “theories/models of mathematics 
ability and thinking” in their syllabi.

 General Pedagogy Content

The percentage of programs covering General Pedagogy Topics (Table 4.7) is rela-
tively high for all programs. The only topic that is covered by fewer than 20% of the 
programs is “counseling, advising students, and pastoral care.” “Methods of educa-
tional research” is more frequently found in syllabi of programs preparing general-
ists than in programs that teach more specialized mathematics.

Table 4.6 Percentage of teacher education institutions that taught each of the mathematics 
pedagogy topics according to the summary from the syllabi analysis

Mathematical pedagogical topics
Percent of institutions/TPU cover 
the topic
US2a US4b US5c US6d

N = 63 N = 17 N = 19 N = 59

Theories/models of mathematics ability and thinking 27 18 21 8
Nature and development of mathematics ability and 
thinking

43 47 37 27

Aspects of mathematical ability and thinking 73 71 68 64
Mathematical problems and solutions 73 76 74 61
Mathematics instruction 89 76 84 78
Developing of mathematics teaching plans 70 47 58 56
Analyzing/observing/reflecting on mathematics teaching 59 59 53 54
Knowledge of mathematics standards and curriculum 81 65 63 69
Studying and selecting textbooks and instructional 
materials

30 35 42 19

Methods of presenting main mathematics concepts 57 71 79 53
Foundations of mathematics 25 24 32 61
Context of mathematics education 37 41 47 36
Affective Issues (beliefs, attitudes, anxiety, etc.) 21 6 5 8

Note 2: A topic is considered “taught in the program” if at least one of the subtopics is taught in 
the program
aPrograms preparing primary generalists (Grade 6 maximum)
bPrograms preparing primary mathematics specialists
cPrograms preparing middle school (Grade 10 maximum) teachers
dPrograms preparing high school (to Grade 11 and above) teachers
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 Field Experience in Schools

Syllabi were analyzed to explore what topics were covered in field experiences. The 
results are displayed in Table  4.8. The most common and uniform expectations 
across the syllabi were to observe a teacher, to write a report of the observation, and 
to meet with a supervisor to discuss practicum matters. The expectation that future 
teachers oversee a class as a teacher was found in fewer than 25% of the institutions. 
The following topics were covered in fewer than 25% of programs: supervise or 
organize social activities, participate in school level administration, design and 
carry out an action research project, and attend professional conferences. The topic 
“deliver instruction other than mathematics” was found frequently in the syllabi of 
institutions preparing primary generalists, presumably because these teachers are 
expected to teach other subjects in addition to mathematics.

 Discussion of the Intended Curriculum of Teacher Education Programs

As seen in the data above, the degree to which school mathematics topics are cov-
ered in the syllabi of U.S. teacher education programs varys widely across pro-
grams. Number topics; transformation geometry; congruence and similarity; and 
data, uncertainty, and probability receive more attention in the programs. The 

Table 4.7 Percentage of teacher education institutions that taught each of the general pedagogy 
topics according to the summary from the syllabi analysis

General pedagogy topics Percent of institutions/TPU cover the topic
US2a US4b US5c US6d

N = 63 N = 17 N = 19 N = 59

History of education and educational systems 68 71 74 69
Educational psychology 98 100 100 90
Philosophy of education 87 71 74 78
Sociology of education 98 94 100 93
Introduction to education or theories of schools 98 94 95 93
Principles of instruction 97 88 95 86
Methods of educational research 52 35 32 42
Classroom management 95 88 95 85
Assessment and measurement theory 59 41 63 58
Counseling, advising students, and pastoral care 10 18 16 12
Instructional media and operation 87 71 74 81
Practical knowledge of teaching 98 94 100 92

Note 2: A topic is considered “taught in the program” if at least one of the subtopics is taught in 
the program
aPrograms preparing primary generalists (Grade 6 maximum)
bPrograms preparing primary mathematics specialists
cPrograms preparing middle school (Grade 10 maximum) teachers
dPrograms preparing high school (to Grade 11 and above) teachers
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syllabi of the programs preparing high school teachers include fewer school math-
ematics topics and more university mathematics topics. Programs preparing pri-
mary generalists give less emphasis to including university mathematics in their 
curriculum. As could be expected, the university mathematics topics that appear 
with more frequency in the syllabi overall are axiomatic and analytic geometry, 
linear algebra, calculus, and probability and statistics. Relatively high percentages 
of institutions across all U.S. programs include most of the mathematics pedagogy 
topics. Less attention is paid to theories of mathematics ability and thinking, select-
ing textbooks, and affective issues. General pedagogy topics are present in the syl-
labi of almost all institutions. The only exceptions are topics having to do with 
counseling, advising students, and pastoral care. For field experiences, the more 
frequent topics are those connected with the observation of teachers, writing reports 
on the observations, and meeting with supervisors. Very few syllabi include topics 
related to participation in school-level administration. Based on the analysis of the 
data, future mathematics teachers in the United States, whether at the primary or 

Table 4.8 Percentage of teacher education institutions that taught each of the field experience 
topics according to the summary from the syllabi analysis

Field experience topics
Percent of institutions/TPU cover the 
topic
US2a US4b US5c US6d

N = 63 N = 17 N = 19 N = 59

Observe a teacher 79 47 47 66
Serve as a teacher 13 12 11 14
Design instruction in mathematics 34 16 19 37
Design instruction other than mathematics 40 29 32 15
Deliver mathematics instruction 31 18 18 31
Deliver instruction other than mathematics 62 35 32 19
Supervise non-mathematics instruction 29 12 16 14
Assess students (full responsibility) 46 18 32 36
Supervise or organize social activities 13 0 0 19
Work with parents 38 18 26 37
Participate in formal school meetings of teachers 29 24 21 37
Participate in school level administration 5 0 0 2
Design and carry out an action research project 21 6 5 19
Discuss practicum experience with peers 46 12 26 44
Write report of observing teaching 63 35 47 56
Meet with supervisor to discuss practicum 63 47 47 56
Attend professional conferences 16 12 11 15
Other 6 6 5 3

Note 2: A topic is considered “taught in the program” if at least one of the subtopics is taught in 
the program
aPrograms preparing primary generalists (Grade 6 maximum)
bPrograms preparing primary mathematics specialists
cPrograms preparing middle school (Grade 10 maximum) teachers
dPrograms preparing high school (to Grade 11 and above) teachers
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secondary levels, spend a large proportion of their preparation time program exposed 
to OTL mathematics pedagogy and general pedagogy, and less time studying math-
ematics content, presumably under the assumption that such knowledge has been 
acquired elsewhere.

When comparing the expected curriculum of teacher education with the expected 
curriculum to be taught in schools (Tables 4.3 and 4.4), we found strong correspon-
dence in the domains of number and data and weaker correspondence in the domains 
of geometry and algebra; teacher education programs, especially those preparing 
primary teachers, do not consistently cover topics in the geometry and algebra 
domains.

 The Implemented Curriculum of Teacher Education 
As Reported by Programs

To create a robust indicator of the implemented curriculum, TEDS-M developed the 
institutional/program questionnaire (Tatto 2013, p. 59, 64–69 ), which, among other 
questions, asked programs officials to report how many contact hours were allo-
cated to different domains (liberal arts, academic mathematics, school mathematics, 
mathematics pedagogy, professional foundations and theories, and general peda-
gogy) during the duration of the program.3 The assumption in TEDS-M was that 
contact hours are important indicators of OTL and help to understand programs’ 
approaches to learning to teach. While the number of contact hours is not a perfect 
indicator, by combining contact hours with other indicators, such as the OTL 
reported by future teachers and the knowledge levels attained by future teachers as 
indicated by our assessments, we can obtain a more holistic picture of the influence 
of teacher education on the processes and outcomes involved in learning to teach 
mathematics.

The program questionnaire also asked program officials about the frequency 
with which future teachers engaged in different activities during their field experi-
ences. These included the opportunities to plan lessons, teach individual lessons to 
the whole class, tutor individual pupils, work with small groups of pupils, assist 
teachers in other ways, assist in school activities outside classroom, carry out case 
studies of selected pupils, carry out classroom observation, collect data for research 
projects, visit families in their homes, interview teachers and/or principals, and 
observe and/or participate in meetings.

3 Teaching contact hours included lectures, class meetings, tutorial classes, and any other required 
meetings that bring future teachers together to meet as a group with staff of the teacher preparation 
program. If the courses were online, participants were asked to estimate the number of hours future 
teachers were required to interact with the instructor and the material. For simplicity, we call these 
“experiences,” although participants were asked to insert the term that best fit the context (see 
Table 4.18 in Appendix 4.1 for a detailed definition of courses).
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Because pre-service teachers in the United States are prepared in either concur-
rent or consecutive programs, we present our findings according to these catego-
ries.4 We present the result in graphs, as it is easier to appreciate the contrasts 
between concurrent and consecutive routes, within the two key program modalities, 
i.e., for future primary teachers (generalists and specialists) and secondary teachers 
(middle and high school). The corresponding tables are in Appendix 4.2 and 4.3, 
Tables 4.19, 4.20, 4.21, and 4.22, and 4.23 through 4.42.

 Contact Hours per Domain and Routes into Teaching

Future Primary Teachers Table 4.9 shows that institutions preparing primary 
generalist teachers (Grade 6 maximum) report on average about two times more 
contact hours in “liberal arts” than the institutions preparing primary mathematics 
specialists at the 25th and 75th percentiles. This difference is not as large at the 
median.

Based on reports of program officials, the contact hours dedicated to courses in 
“academic mathematics” is higher at each percentile for institutions preparing pri-
mary mathematics specialists in the consecutive routes than for primary specialists 
in concurrent routes. There are more hours dedicated to school mathematics in the 
concurrent routes for both generalists and specialists except at the 25th percentile 
for specialists; programs preparing specialists in consecutive routes reported slightly 
more contact hours in mathematics pedagogy. Institutions preparing primary gener-
alists allocate on average about twice as many contact hours to the areas of profes-
sional foundations and general pedagogy than institutions preparing primary 
mathematics specialists.

Future Secondary Teachers Table 4.10 shows that there is wide variability in the 
amount of contact hours spent in liberal arts courses (see the 25th and 75th percen-
tiles) among institutions preparing middle and high school teachers. This difference 
is not as large at the median. Consecutive route institutions reported, on average, 
very few contact hours in liberal arts. The percentiles of contact hours in academic 
mathematics is higher for institutions preparing future high school teachers; this is 
especially true for those in concurrent route programs. Programs preparing future 
high school teachers in concurrent routes allocate more time to school mathematics 

4 Concurrent Routes: The route is concurrent if its first phase consists of a single program that 
includes studies in the subject(s) future teachers will be teaching (academic studies), studies of 
pedagogy and education (professional studies), and practical experience in the classroom. 
Consecutive Routes: The route is consecutive if it consists of a first phase for academic studies 
(leading to a degree or diploma), followed by a second phase of professional studies and practical 
experience (leading to a separate credential/qualification). Thus, no route can be considered con-
secutive if the institution or government authorities do not award a degree, diploma, or official 
certificate at the end of the first phase. Moreover, it may be customary or required for future teach-
ers to do the first and second phases in different institutions (Tatto et al., 2008, pp. 23–24).
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and mathematics pedagogy, but there were not important differences between the 
program types in consecutive routes in the percentiles of contact hours dedicated to 
these subjects (school mathematics and mathematics pedagogy). The same pattern 
can be found in general pedagogy across the programs and routes. Program officials 
reported that programs preparing future high school teachers allocate more hours to 
the study of professional foundations and theories than those preparing future mid-
dle school teachers.

 Contact Hours Allocated to Field Experiences

Future Primary Teachers According to the data from the institutional question-
naire (Table 4.11) for both programs preparing primary teachers, the reported per-
centiles of hours for extended teaching practice are higher for the concurrent route. 
For the consecutive route, these percentiles are higher for the primary programs 

Table 4.9 Weighted percentiles of hours per domain for the programs preparing primary generalist 
teachers and specialist teachers by routes

Generalists
Domains Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Liberal arts 366 240 495 768 336 240 518 816 30 0a 0a 0a

Academic mathematics 364 45 90 144 334 45 96 144 30 0a 0a 5
School mathematics 367 45 75 96 315 64 75 96 52 0a 0a 45
Mathematics pedagogy 447 45 48 75 364 45 48 75 83 15 37 45
Professional foundations 
and theories

461 90 144 240 378 90 144 210 83 105 262 330

General pedagogy 455 90 420 525 364 105 440 576 92 90 420 420
Specialists
Domains Routes

All programs Concurrent route Consecutive route
 N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Liberal arts 79 45 450 480 79 45 450 480 0a

Academic mathematics 94 45 45 270 79 38 45 120 15 45 45 345
School mathematics 60 0 38 90 55 0a 45 90 4 37 37 37
Mathematics pedagogy 98 45 45 45 79 38 45 45 20 45 45 105
Professional foundations 
and theories

98 45 45 150 79 45 45 150 20 45 45 45

General pedagogy 98 45 64 285 79 45 64 285 20 45 112 315

Source: TEDS-M Institutional Program Questionnaire, Questions 3, 4, 5, 6, 7, and 8, Part D
aA zero indicates that the program did not have available information
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preparing mathematics specialists and lower for these that prepare primary general-
ist teachers. The reported percentiles of hours for the introductory field experiences 
are similar for the concurrent routes of both programs and the consecutive routes of 
the generalist programs, but they are much lower for the consecutive routes pro-
grams preparing mathematics specialists.

Field Experience Activities According to the data from the program questionnaire, 
for the programs preparing primary teachers, the least common activity in field 
experiences for both routes and programs is visiting families in their homes 
(Fig. 4.1). As could be expected, the activities connected with teaching are more 
common. Specialists in the consecutive routes have more opportunities to teach 
individual lessons to the whole class and opportunities to plan lessons. In contrast, 
program officials reported that future teachers from the programs preparing primary 
specialists have fewer opportunities than their generalists’ counterparts to observe 

Table 4.10 Weighted percentiles of hours per domain for the secondary programs preparing 
middle school teachers and high school teachers by routes

Middle school
Domains Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Liberal arts 79 45 450 480 79 45 450 480 0a

Academic mathematics 94 45 45 270 79 38 45 120 15 45 45 345
School mathematics 60 0a 38 90 55 0a 45 90 4 37 37 37
Mathematics pedagogy 98 45 45 45 79 38 45 45 20 45 45 105
Professional foundations 
and theories

98 45 45 150 79 45 45 150 20 45 45 45

General pedagogy 98 45 64 285 79 45 64 285 20 45 112 315
High school
Domains Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Liberal arts 301 336 585 768 265 448 615 768 36 0a 0a 0a

Academic mathematics 333 270 528 644 293 330 544 675 40 0a 168 225
School mathematics 239 0 45 90 193 0 45 98 46 0a 0a 45
Mathematics pedagogy 368 45 48 90 288 45 48 90 81 45 48 96
Professional foundations 
and theories

368 48 135 210 305 48 96 200 81 45 225 285

General pedagogy 358 64 120 195 277 64 120 195 81 60 105 285

Source: TEDS-M Institutional Program Questionnaire, Questions 3, 4, 5, 6, 7, and 8, Part D
aA zero indicates that the program did not have available information
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and participate in school meetings and to carry out case studies of selected pupils. 
In both modalities, future generalist and specialist teachers have limited opportuni-
ties to collect data for research projects, with the exception of specialists in the 
consecutive routes, who report occasional engagement. With few exceptions, the 
mean frequencies for consecutive routes are larger than those for the concurrent 
routes.

Future Secondary Teachers The data from the reports of the program officials for 
the programs preparing secondary teachers are presented in Table 4.12. For both 
programs, the reported percentiles of hours for extended teaching practice are higher 
for the concurrent route. For the consecutive routes, these percentiles are higher in 
the programs preparing future middle school teachers. The reported percentiles of 
hours for the introductory field experiences are higher for teachers prepared to teach 
in the middle school grades in the concurrent routes, and the opposite is true for 
those prepared to teach the high school grades.

Field Experience Activities According to the program officials’ reports, the least 
common activity in both routes for programs preparing middle and high school 
teachers is visiting families in their homes, followed by assisting in school activities 
outside of the classroom (shown in Fig. 4.2). Relatively few programs for future 
high school teachers reported engaging future teachers in collecting data for research 
projects—a finding that is consistent with the results from the syllabi analysis 
(Table 4.8, “Design and carry out an action research project…”).

Table 4.11 Weighted percentiles of hours of field experiences for the programs preparing primary 
generalist teachers and specialist teachers by routes

Generalists
Field experience Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Extended teaching practice 368 420 630 744 283 420 644 763 85 420 525 630
Introductory field experiences 387 70 110 150 295 70 120 170 92 90 90 120
Specialists
Field experience Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Extended teaching practice 67 620 640 800 47 640 800 830 20 620 620 640
Introductory field experiences 70 30 128 144 50 96 140 162 20 0a 30 30

Source: TEDS-M Program Institutional Questionnaire, Question 2, Part E
aA zero indicates that the program did not have available information
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According to the program questionnaire, future middle school teachers in con-
secutive routes rarely observe and/or participate in meetings. As could be expected, 
the activities connected with teaching were more common.

 Discussion of the Implemented Curriculum of Teacher Education 
As Reported by Programs

The program questionnaire data indicates that concurrent routes in all programs have 
the most contact hours dedicated to liberal arts curriculum, in accordance with a 
traditional higher education curriculum. Teacher education programs following a 
consecutive model reported low to no coverage of subjects in the liberal arts domain; 
this is not surprising since, in consecutive programs, teacher education occurs sepa-
rately from the typical undergraduate university curriculum. The second domain with 
high mean contact hours across all programs and both routes is general pedagogy. 
This is an indication that general pedagogy is an important domain in the intended 
curriculum for future mathematics teachers in the United States. Consistent with the 
understanding that high school teachers should know mathematics well, the 

Fig. 4.1 Weighted mean frequency of the activities in the field experience for the programs pre-
paring primary generalist and specialist teachers by routes. (Source: TEDS-M Institutional 
Program Questionnaire, Question 3, Part E. The scale is 0 = Not at all, 1 = Rarely, 2 = Sometimes, 
3 = Usually. Activities: Ability to plan lessons, teach individual lessons to whole class, tutor indi-
vidual pupils, work with small groups of pupils, assist teachers in other ways, assist in school 
activities outside classroom, carry out case studies of selected pupils, carry out classroom observa-
tion, collect data for research projects, visit families in their homes, interview teachers and/or 
principals, and observe and/or participate in meetings)
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Table 4.12 Weighted percentiles of hours of field experiences for the secondary programs 
preparing middle and high school teachers by routes

Middle school
Field experience Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Extended teaching practice 67 620 640 800 47 640 800 830 20 620 620 640
Introductory field experiences 70 30 128 144 50 96 140 162 20 0a 30 30
High school
Field experience Routes

All programs Concurrent route Consecutive route
N Percentiles N Percentiles N Percentiles

25 50 75 25 50 75 25 50 75

Extended teaching practice 321 490 550 640 249 490 560 640 72 420 525 608
Introductory field experiences 311 40 75 100 239 40 60 100 72 40 75 104

Source: TEDS-M Program Institutional Questionnaire, Question 2, Part E
aA zero indicates that the program did not have available information

Fig. 4.2 Weighted mean frequency of the activities in the field experience for the secondary pro-
grams preparing middle and high school teachers by routes. (Source: TEDS-M Institutional 
Program Questionnaire, Question 3, Part E. The scale is: 0 = Not at all, 1 = Rarely, 2 = Sometimes, 
3 = Usually. Activities: Ability to – plan lessons, Teach individual lessons to whole class, Tutor 
individual pupils, Work with small groups of pupils, Assist teachers in other ways, Assist in school 
activities outside classroom, Carry out case studies of selected pupils, Carry out classroom obser-
vation, Collect data for research projects, Visit families in their homes, Interview teachers and/or 
principals, and Observe and/or participate in meetings)
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programs preparing these teachers allocate more contact hours for academic mathe-
matics. This is especially true for concurrent route programs, since consecutive pro-
grams typically assume—and, for future high school teaching, require—previous 
coursework in mathematics. Contrary to our assumption, the mean value for the con-
tact hours dedicated to the study of school mathematics and mathematics pedagogy 
domains is small in both routes and all programs. These two domains are directly 
connected with the professional work of mathematics teachers; thus, one might 
assume that a large portion of contact hours should be dedicated to them, this finding 
is in contrast with what is indicated about the expected teacher preparation curricu-
lum in the United States. Based on the analysis of our data, the emphasis in preparing 
future mathematics teachers in the United States is placed on liberal arts and general 
pedagogy and less on mathematics pedagogy and academic mathematics, with the 
exception of future high school teachers studying in concurrent routes, who are 
expected to have good preparation in academic or university level mathematics.

 The Implemented Curriculum of Teacher Education 
As Reported by Future Teachers

In TEDS-M, future teachers’ reports of their OTL were used to arrive at a more 
complete understanding of the implemented curriculum; we were interested in learn-
ing more about the experienced curriculum from the viewpoint of future teachers.

 Opportunities to Learn School Mathematics

Among the programs preparing primary teachers, a high percentage of future teach-
ers, both generalists and specialists, reported studying numbers; measurement; 
geometry; functions, relations, and equations; and data representation, probability, 
and statistics (Fig. 4.3). In contrast, the mean percentage of future teachers who 
reported studying calculus and validation, structuring, and abstracting was low. 
There are only small differences between the two routes: (a) among programs pre-
paring primary generalists (Grade 6 maximum), future teachers in the consecutive 
routes study on average less geometry; functions, relations, and equations; and data 
representation, probability, and statistics; (b) among programs preparing primary 
mathematics specialists, future teachers in the consecutive routes report higher OTL 
than those in concurrent routes.

In both types of secondary programs (Fig. 4.4) a high percentage of future teachers 
reported studying numbers; measurement; geometry; functions, relations, and equa-
tions; and data representation, probability, and statistics (with the exception of the con-
secutive route for the programs preparing future middle school teachers). The mean 
percentage of future middle school teachers who reported studying calculus and valida-
tion, structuring, and abstracting was generally low. In contrast, high percentages of 
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Fig. 4.3 Weighted mean percent of future teachers reporting studying school mathematics topics 
in the programs preparing primary generalists (Grade 6 maximum) and specialists by routes. 
(Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 2, Part B)

Fig. 4.4 Weighted mean percent of future teachers reporting to study school mathematics topics 
in the programs preparing middle (Grade 10 maximum) and high (to Grade 11 and above) school 
teachers by routes. (Source: TEDS-M Future Teachers of Secondary Mathematics Questionnaire, 
Question 2, Part B)
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those in the programs preparing future high school teachers report having studied those 
topics. Overall, future high school teachers from concurrent routes study more school 
mathematics topics than their counterparts from the consecutive routes. This difference 
is larger for the programs preparing middle school teachers.

 Opportunities to Learn University Mathematics

In the programs preparing primary teachers, the highest mean percentages of future 
teachers reporting that they study university mathematics topics are in programs 
preparing mathematics specialists in consecutive routes, except for those who are 
prepared in concurrent routes who reported studying more topics on probability and 
number theory (Fig. 4.5). The future teachers in programs preparing primary gener-
alists reported studying less topology and multivariate and advanced calculus. The 
future teachers in programs preparing primary specialists from the consecutive 
routes reported studying more university mathematics topics than their counterparts 
from the concurrent routes.

In the programs preparing secondary teachers, the future teachers who reported 
studying more topics in university mathematics were those preparing to teach the high 
school grades (Fig. 4.6). Overall, future teachers in the concurrent routes reported 
receiving less OTL university mathematics with low means in topology, advanced 
calculus, and theory of functions. In the programs preparing middle school teachers, 
future teachers from the concurrent routes reported higher means than their counter-
parts from the consecutive routes (with some exceptions for instance in multivariate 

Fig. 4.5 Weighted mean percent of future teachers reporting to study university mathematics top-
ics in the programs preparing primary generalists (Grade 6 maximum) and primary specialists by 
routes. (Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 1, 
Part B)
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calculus). The relatively high mean percentages are on topics: analytic/coordinate 
geometry, axiomatic geometry, number theory, calculus, probability and statistics.

 Opportunities to Learn Mathematics Pedagogy

Among future teachers in primary programs, those who were prepared as specialists 
reported equal or more OTL in mathematics pedagogy domains  except in two 
areas—foundations of mathematics and context of mathematics education— 
while  those in the programs preparing primary generalists reported higher OTL 
(Fig. 4.7).

In the secondary programs, future teachers who were prepared to teach middle 
school grades reported more OTL than future teachers who were prepared to teach 
high school in all domains but foundations of mathematics and context of 
 mathematics education. For these topics, future middle school teachers in consecu-
tive routes programs reported lower OTL than their counterparts (see Fig. 4.8).

 Opportunities to Learn General Pedagogy

Among future primary teachers, we found some important differences in the mean 
percentage of general pedagogy topics reported across programs and routes. 
Future  primary teachers prepared as specialists in consecutive route programs 
reported very different opportunities to learn theories of schooling and history of 

Fig. 4.6 Weighted mean percent of future teachers reporting studying university mathematics top-
ics in the programs preparing middle (Grade 10 maximum) and high (to Grade 11 and above) 
school teachers by routes. (Source: TEDS-M Future Teachers of Secondary Mathematics 
Questionnaire, Question 1, Part B)
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education compared with their counterparts in concurrent programs or those pre-
pared as generalists. Opportunities to learn methods of educational research were 
also reported in lower percentages than other topics such as knowledge of teaching, 
educational psychology, and philosophy of education (see Fig. 4.9).

Among future middle school teachers, higher percentages reported having OTL 
in all the domains than those prepared for the high school grades, regardless of 
route. In general, future teachers from the concurrent routes reported more 
 opportunities to learn than their counterparts from the consecutive routes in all 
areas, with the exception of opportunities to learn assessment and measurement, 
which was higher for future middle school teachers on the consecutive route, and 
methods of educational research for both program types, which was higher for both 
future middle school and high school teachers on the consecutive routes (Fig. 4.10).

Fig. 4.7 Weighted mean percent of future teachers reporting studying mathematics pedagogy top-
ics in the programs preparing primary generalists (Grade 6 maximum) and primary specialists by 
routes. (Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 4, 
Part B)

Fig. 4.8 Weighted mean percent of future teachers reporting studying mathematics pedagogy top-
ics in the programs preparing middle (Grade 10 maximum) and high (to Grade 11 and above) 
school teachers by routes. (Source: TEDS-M Future Teachers of Secondary Mathematics 
Questionnaire, Question 4, Part B)
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 Opportunities to Learn from School Experiences

Among future primary teachers, the pattern of responses concerning opportunities 
to engage in school experience activities is similar for both routes across both types 
of programs (generalists and specialists). The only exception is in the topic “test out 
findings from educational research about pupils’ difficulties.” For the programs pre-
paring primary generalists, the mean for reported opportunities to learn this topic is 
higher for future teachers in the concurrent routes. For those preparing as primary 
mathematics specialists, the pattern is the opposite (Fig. 4.11).

Fig. 4.9 Weighted mean percent of future teachers reporting to study general pedagogy topics in 
the programs preparing primary generalists (Grade 6 maximum) and specialists by routes. (Source: 
TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 7, Part B)

Fig. 4.10 Weighted mean percent of future teachers reporting studying general pedagogy topics 
in the programs preparing middle (Grade 10 maximum) and high (to Grade 11 and above) school 
teachers by routes. (Source: TEDS-M Future Teachers of Secondary Mathematics Questionnaire, 
Question 7, Part B)
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Among secondary future teachers, the pattern of responses concerning opportu-
nities to engage in school experiences activities is similar for both routes across both 
program types. The only exception is “test out findings from educational research 
about pupils’ difficulties.” Future middle school teachers in concurrent routes pro-
grams report a higher mean percentage of this OTL, than their counterparts in the 
consecutive routes programs. For the programs preparing high school teachers, the 
pattern is the opposite (Fig. 4.12).

Fig. 4.11 Weighted mean frequency of school experience activities required in the programs pre-
paring primary generalists (Grade 6 maximum) and specialists by routes. (Source: TEDS-M Future 
Teachers of Primary Mathematics Questionnaire, Question 13, Part B. The scale is 0 = Never, 
1 = Rarely, 2 = Occasionally, 3 = Often)

Fig. 4.12 Weighted mean frequency of school experience activities required in the programs pre-
paring middle (Grade 10 maximum) and high school (to Grade 11 and above) teachers by routes. 
(Source: TEDS-M Future Teachers of Secondary Mathematics Questionnaire, Question 13, Part 
B. The scale is 0 = Never, 1 = Rarely, 2 = Occasionally, 3 = Often)
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 Discussion of the Implemented Curriculum of Teacher Education 
as Reported by Future Teachers

The mean percentage of future teachers who reported studying school mathematics 
topics is high, with the exceptions of calculus and validation, structuring, and abstract-
ing. As could be expected, a high percentage of high school future teachers reported 
studying university or academic  mathematics. Differences between the routes are 
more noticeable in the programs preparing primary specialists, as future teachers in 
consecutive routes reported studying more university mathematics than their counter-
parts in the concurrent routes. In the mathematics pedagogy area, fewer OTL overall 
are reported in the domains of foundations of mathematics and context of mathematics 
education. It is not surprising that the mean percentage of future teachers who reported 
studying general pedagogy is high for all topics. In the school experience activities, 
the least frequent activity was related to doing research about pupils’ difficulties.

 The Achieved Curriculum of Teacher Education

Based on the data from the assessments, TEDS-M produced two scales to describe 
and analyze future teachers’ mathematical content knowledge and mathematical 
pedagogical content knowledge as the outcomes (or the achieved curriculum) of 
teacher education. As described in the methods section of this chapter, the 
Mathematical Content Knowledge (MCK) and the Mathematical Pedagogical 
Content Knowledge (MPCK) were measured by assessments using frameworks that 
are presented in Appendix 4.1 of this chapter. The knowledge results were scaled 
using Item Response Theory (IRT) to have a mean of 500 and standard deviation of 
100. Future teachers also answered a questionnaire that included questions about 
OTL, among others (Tatto, 2013, pp. 49–55). The OTL results were scaled using 
IRT to have a mean of 10 (indicating a neutral position), and standard deviation of 
1. Tables 4.13 and 4.14 below show these scales for primary and secondary future 
teachers. The inclusion of the outcome scales and the OTL scales in the tables help 
us to explore the possible associations between future teachers’ reported experi-
ences and the achieved curriculum.5

 Primary Future Teachers

The MCK and the MPCK assessment results for future primary teachers are above 
the international mean (500) in both routes and all programs. This is especially 
clear for the MPCK scale. These results indicate a good level of knowledge among 
the U.S. future primary teachers in mathematics pedagogy. Although the sample 
size of the consecutive programs preparing primary mathematics specialists is 
relatively small, the mean scores of these specialist future teachers on both MCK 

5 For a multilevel analysis of the associations between the knowledge assessment results and the 
OTL for future primary and secondary teachers consult chapters 8 and 14 of this book.

M. T. Tatto and K. Bankov



Ta
bl

e 
4.

13
 

C
om

pa
ri

so
n 

of
 th

e 
w

ei
gh

te
d 

st
at

is
tic

s 
on

 O
T

L
 a

nd
 k

no
w

le
dg

e 
sc

al
es

 f
or

 f
ut

ur
e 

te
ac

he
rs

 in
 p

ri
m

ar
y 

pr
og

ra
m

s

Sc
al

es
Pr

og
ra

m
s 

an
d 

ro
ut

es
Pr

im
ar

y 
ge

ne
ra

lis
ts

 p
ro

gr
am

s
Pr

im
ar

y 
sp

ec
ia

lis
ts

 p
ro

gr
am

s
C

on
cu

rr
en

t r
ou

te
C

on
se

cu
tiv

e 
ro

ut
e

C
on

cu
rr

en
t r

ou
te

C
on

se
cu

tiv
e 

ro
ut

e
N

M
SD

N
M

SD
N

M
SD

N
M

SD

M
at

he
m

at
ic

al
 c

on
te

nt
 k

no
w

le
dg

ea
14

,9
26

51
8.

22
68

.7
6

12
33

50
9.

06
83

.2
4

23
56

51
9.

46
61

.4
8

77
53

6.
01

98
.4

4
M

at
he

m
at

ic
al

 p
ed

ag
og

ic
al

 c
on

te
nt

 k
no

w
le

dg
ea

14
,9

26
54

4.
06

66
.5

9
12

33
53

7.
68

78
.5

1
23

56
54

3.
08

70
.0

1
77

58
7.

79
12

1.
64

O
T

L
 –

 u
ni

ve
rs

ity
 le

ve
l m

at
h 

– 
ge

om
et

ry
b

20
,2

76
1.

82
1.

39
20

02
1.

31
1.

49
34

32
2.

15
1.

30
17

2
3.

15
1.

15
O

T
L

 –
 u

ni
ve

rs
ity

 le
ve

l m
at

h 
– 

di
sc

re
te

 s
tr

uc
tu

re
s 

an
d 

lo
gi

cc
20

,2
76

2.
77

1.
64

20
02

2.
47

1.
95

34
32

2.
88

1.
67

17
2

4.
44

1.
75

O
T

L
 –

 u
ni

ve
rs

ity
 le

ve
l m

at
h 

–c
on

tin
ui

ty
 a

nd
 f

un
ct

io
ns

d
20

,2
61

1.
24

1.
40

20
02

1.
66

1.
70

34
32

1.
47

1.
54

17
2

3.
78

1.
39

O
T

L
 –

 u
ni

ve
rs

ity
 le

ve
l m

at
h 

– 
pr

ob
ab

ili
ty

 a
nd

 s
ta

tis
tic

se
20

,2
61

1.
35

0.
67

20
01

1.
37

0.
72

34
32

1.
35

0.
66

17
2

1.
43

0.
86

O
T

L
 –

 s
ch

oo
l l

ev
el

 m
at

h 
– 

nu
m

be
rs

 m
ea

su
re

m
en

t g
eo

m
et

ry
f

20
,2

61
2.

81
0.

51
20

06
2.

53
0.

86
34

32
2.

85
0.

46
17

2
3.

00
0.

00
O

T
L

 –
 s

ch
oo

l l
ev

el
 m

at
h 

– 
fu

nc
tio

ns
 p

ro
ba

bi
lit

y 
ca

lc
ul

us
b

20
,2

61
2.

09
1.

06
20

06
1.

74
1.

35
34

32
2.

17
0.

98
17

2
2.

11
0.

61
O

T
L

 –
 m

at
h 

ed
uc

at
io

n 
pe

da
go

gy
 –

 in
st

ru
ct

io
nd

15
,9

89
4.

19
1.

13
14

07
4.

17
1.

12
26

55
4.

23
1.

07
16

1
4.

52
0.

50
O

T
L

 –
 m

at
h 

ed
 p

ed
ag

og
y 

– 
cl

as
s 

pa
rt

ic
ip

at
io

ng
15

,9
58

10
.9

5
1.

51
14

07
10

.7
8

1.
50

26
55

11
.0

2
1.

58
16

1
11

.8
5

2.
21

O
T

L
 –

 m
at

h 
ed

 p
ed

ag
og

y 
– 

so
lv

in
g 

pr
ob

le
m

sg
25

,9
27

10
.3

0
1.

43
14

07
9.

70
1.

33
26

55
9.

89
1.

64
16

1
11

.4
5

2.
15

O
T

L
 –

 m
at

h 
ed

 p
ed

ag
og

y 
– 

in
st

ru
ct

io
na

l p
ra

ct
ic

eg
15

,8
96

11
.8

3
1.

89
14

07
11

.3
0

1.
78

26
44

11
.4

1
1.

71
16

1
12

.7
6

2.
66

O
T

L
 –

 m
at

h 
ed

 p
ed

ag
og

y 
– 

as
se

ss
m

en
t u

se
sg

15
,8

88
11

.5
8

0.
08

14
07

10
.7

4
0.

09
26

44
11

.2
7

0.
28

16
1

11
.8

0
0.

63
O

T
L

 –
 m

at
h 

ed
 p

ed
ag

og
y 

– 
as

se
ss

m
en

t p
ra

ct
ic

eg
15

,9
27

12
.2

6
1.

94
14

07
11

.8
5

1.
98

16
44

12
.0

7
2.

03
16

1
12

.5
6

2.
91

a T
he

 in
te

rn
at

io
na

l m
ea

n 
fo

r 
M

C
K

 a
nd

 M
PC

K
 s

ca
le

s 
is

 5
00

; t
he

 s
ta

nd
ar

d 
de

vi
at

io
n 

is
 1

00
b T

he
 s

ca
le

 is
 b

as
ed

 o
n 

th
e 

fu
tu

re
 te

ac
he

rs
’ 

re
sp

on
se

s 
on

 4
 to

pi
cs

, a
sk

in
g 

w
he

th
er

 th
ey

 h
av

e 
ev

er
 s

tu
di

ed
 e

ac
h 

to
pi

c.
 T

he
 v

al
ue

s 
of

 0
, 1

, 2
, 3

, o
r 

4 
eq

ua
l t

he
 n

um
be

r 
of

 
to

pi
cs

 s
tu

di
ed

c T
he

 s
ca

le
 is

 b
as

ed
 o

n 
th

e 
fu

tu
re

 te
ac

he
rs

’ 
re

sp
on

se
s 

on
 6

 to
pi

cs
, a

sk
in

g 
w

he
th

er
 th

ey
 h

av
e 

ev
er

 s
tu

di
ed

 e
ac

h 
to

pi
c.

 T
he

 v
al

ue
s 

of
 0

, 1
, 2

, 3
, 4

, 5
 o

r 
6 

eq
ua

l t
he

 n
um

be
r 

of
 to

pi
cs

 s
tu

di
ed

d T
he

 s
ca

le
 is

 b
as

ed
 o

n 
th

e 
fu

tu
re

 te
ac

he
rs

’ 
re

sp
on

se
s 

on
 5

 to
pi

cs
, a

sk
in

g 
w

he
th

er
 th

ey
 h

av
e 

ev
er

 s
tu

di
ed

 e
ac

h 
to

pi
c.

 T
he

 v
al

ue
s 

of
 0

, 1
, 2

, 3
, 4

, o
r 

5 
eq

ua
l t

he
 n

um
be

r 
of

 to
pi

cs
 s

tu
di

ed
e T

he
 s

ca
le

 is
 b

as
ed

 o
n 

th
e 

fu
tu

re
 te

ac
he

rs
’ r

es
po

ns
es

 o
n 

2 
to

pi
cs

, a
sk

in
g 

w
he

th
er

 th
ey

 h
av

e 
ev

er
 s

tu
di

ed
 e

ac
h 

to
pi

c.
 T

he
 v

al
ue

s 
of

 0
, 1

, o
r 2

 e
qu

al
 th

e 
nu

m
be

r o
f t

op
ic

s 
st

ud
ie

d
f T

he
 s

ca
le

 is
 b

as
ed

 o
n 

th
e 

fu
tu

re
 te

ac
he

rs
’ r

es
po

ns
es

 o
n 

3 
to

pi
c,

 a
sk

in
gs

 w
he

th
er

 th
ey

 h
av

e 
ev

er
 s

tu
di

ed
 e

ac
h 

to
pi

c.
 T

he
 v

al
ue

s 
of

 0
, 1

, 2
, o

r 3
 e

qu
al

 th
e 

nu
m

be
r o

f t
op

ic
s 

st
ud

ie
d

g R
as

ch
 s

co
re

 s
ca

le
 w

he
re

 1
0 

is
 lo

ca
te

d 
at

 th
e 

ne
ut

ra
l p

os
iti

on
. N

um
be

rs
 g

re
at

er
 th

an
 1

0 
in

di
ca

te
 g

re
at

er
 th

an
 n

eu
tr

al
 O

T
L

; n
um

be
rs

 s
m

al
le

r t
ha

n 
10

 in
di

ca
te

 lo
w

er
 th

an
 

ne
ut

ra
l O

T
L

. S
m

al
le

r 
nu

m
be

rs
 in

di
ca

te
 le

ss
 O

T
L

, g
re

at
er

 n
um

be
rs

 in
di

ca
te

 m
or

e 
O

T
L



Ta
bl

e 
4.

14
 

C
om

pa
ri

so
n 

of
 th

e 
w

ei
gh

te
d 

st
at

is
tic

s 
on

 O
T

L
 a

nd
 k

no
w

le
dg

e 
sc

al
es

 f
or

 f
ut

ur
e 

te
ac

he
rs

 in
 s

ec
on

da
ry

 p
ro

gr
am

s

Sc
al

es
Pr

og
ra

m
s 

an
d 

ro
ut

es
M

id
dl

e 
sc

ho
ol

 (
gr

ad
e 

10
 m

ax
im

um
) 

pr
og

ra
m

s
H

ig
h 

sc
ho

ol
 (

to
 g

ra
de

 1
1 

an
d 

ab
ov

e)
 

pr
og

ra
m

s
C

on
cu

rr
en

t r
ou

te
C

on
se

cu
tiv

e 
ro

ut
e

C
on

cu
rr

en
t r

ou
te

C
on

se
cu

tiv
e 

ro
ut

e
N

M
SD

N
M

SD
N

M
SD

N
M

SD

M
at

he
m

at
ic

al
 c

on
te

nt
 k

no
w

le
dg

ea
27

02
46

8.
39

45
.9

7
14

7
45

5.
95

52
.7

3
18

64
55

2.
46

56
.1

7
39

2
55

4.
85

61
.3

9
M

at
he

m
at

ic
al

 p
ed

ag
og

ic
al

 c
on

te
nt

 k
no

w
le

dg
ea

27
02

47
0.

29
53

.0
4

14
7

47
8.

71
54

.3
9

18
64

54
3.

87
81

.6
0

39
2

53
4.

62
67

.6
3

O
T

L
 –

 u
ni

ve
rs

ity
 le

ve
l m

at
h 

– 
ge

om
et

ry
b

40
37

2.
01

0.
05

19
6

0.
95

0.
12

22
42

2.
84

0.
07

60
3

2.
57

0.
04

O
T

L
 –

 u
ni

ve
rs

ity
 le

ve
l m

at
h 

– 
di

sc
re

te
 s

tr
uc

tu
re

s 
an

d 
lo

gi
cc

40
37

2.
56

1.
62

19
6

2.
62

1.
24

22
42

4.
80

1.
27

60
3

4.
46

1.
45

O
T

L
 –

 u
ni

ve
rs

ity
 le

ve
l m

at
h 

–c
on

tin
ui

ty
 a

nd
 f

un
ct

io
ns

d
40

37
1.

36
0.

09
19

6
1.

82
0.

20
22

37
3.

85
0.

15
60

3
3.

87
0.

09
O

T
L

 –
 u

ni
ve

rs
ity

 le
ve

l m
at

h 
– 

pr
ob

ab
ili

ty
 a

nd
 s

ta
tis

tic
se

40
37

1.
29

0.
04

19
6

1.
12

0.
01

22
37

1.
71

0.
03

60
3

1.
66

0.
05

O
T

L
 –

 s
ch

oo
l l

ev
el

 m
at

h 
– 

nu
m

be
rs

 M
ea

su
re

m
en

t g
eo

m
et

ry
f

40
37

2.
89

0.
07

19
6

1.
99

0.
10

22
37

2.
60

0.
08

60
3

2.
22

0.
13

O
T

L
 –

 s
ch

oo
l l

ev
el

 m
at

h 
– 

Fu
nc

tio
ns

 P
ro

ba
bi

lit
y 

ca
lc

ul
us

b
40

37
2.

16
0.

05
19

6
0.

90
0.

27
22

37
3.

13
0.

05
60

3
2.

85
0.

14
O

T
L

 –
 M

at
h 

ed
uc

at
io

n 
pe

da
go

gy
 –

 in
st

ru
ct

io
nd

29
37

4.
34

0.
12

19
6

4.
38

0.
32

19
31

4.
03

0.
09

43
9

4.
04

0.
28

O
T

L
 –

 M
at

h 
E

d 
pe

da
go

gy
 –

 C
la

ss
 p

ar
tic

ip
at

io
ng

29
92

11
.4

5
0.

12
19

6
11

.8
4

0.
20

19
31

11
.0

6
0.

05
43

9
11

.5
4

0.
09

O
T

L
 –

 M
at

h 
E

d 
pe

da
go

gy
 –

 s
ol

vi
ng

 p
ro

bl
em

sg
29

92
9.

92
0.

06
19

6
9.

57
0.

32
19

31
11

.2
6

0.
09

43
9

10
.2

7
0.

20
O

T
L

 –
 M

at
h 

E
d 

pe
da

go
gy

 –
 I

ns
tr

uc
tio

na
l p

ra
ct

ic
eg

29
92

11
.6

4
0.

15
19

6
11

.5
6

0.
00

19
31

11
.5

7
0.

07
43

9
10

.8
2

0.
15

O
T

L
 –

 M
at

h 
E

d 
pe

da
go

gy
 –

 A
ss

es
sm

en
t u

se
sg

29
92

11
.4

3
0.

29
19

6
10

.0
7

0.
25

19
31

11
.2

2
0.

12
43

9
10

.7
2

0.
14

O
T

L
 –

 M
at

h 
E

d 
pe

da
go

gy
 –

 A
ss

es
sm

en
t p

ra
ct

ic
eg

29
92

11
.9

6
0.

27
19

6
12

.2
5

0.
26

19
31

11
.8

1
0.

05
43

9
11

.6
5

0.
21

a T
he

 in
te

rn
at

io
na

l m
ea

n 
fo

r 
M

C
K

 a
nd

 M
PC

K
 s

ca
le

s 
is

 5
00

; t
he

 s
ta

nd
ar

d 
de

vi
at

io
n 

is
 1

00
b T

he
 s

ca
le

 is
 b

as
ed

 o
n 

th
e 

fu
tu

re
 te

ac
he

rs
’ 

re
sp

on
se

s 
on

 4
 to

pi
cs

, a
sk

in
g 

w
he

th
er

 th
ey

 h
av

e 
ev

er
 s

tu
di

ed
 e

ac
h 

to
pi

c.
 T

he
 v

al
ue

s 
of

 0
, 1

, 2
, 3

, o
r 

4 
eq

ua
l t

he
 n

um
be

r 
of

 
to

pi
cs

 s
tu

di
ed

c T
he

 s
ca

le
 is

 b
as

ed
 o

n 
th

e 
fu

tu
re

 te
ac

he
rs

’ 
re

sp
on

se
s 

on
 6

 to
pi

cs
, a

sk
in

g 
w

he
th

er
 th

ey
 h

av
e 

ev
er

 s
tu

di
ed

 e
ac

h 
to

pi
c.

 T
he

 v
al

ue
s 

of
 0

, 1
, 2

, 3
, 4

, 5
 o

r 
6 

eq
ua

l t
he

 n
um

be
r 

of
 to

pi
cs

 s
tu

di
ed

d T
he

 s
ca

le
 is

 b
as

ed
 o

n 
th

e 
fu

tu
re

 te
ac

he
rs

’ 
re

sp
on

se
s 

on
 5

 to
pi

cs
, a

sk
in

g 
w

he
th

er
 th

ey
 h

av
e 

ev
er

 s
tu

di
ed

 e
ac

h 
to

pi
c.

 T
he

 v
al

ue
s 

of
 0

, 1
, 2

, 3
, 4

, o
r 

5 
eq

ua
l t

he
 n

um
be

r 
of

 to
pi

cs
 s

tu
di

ed
e T

he
 s

ca
le

 is
 b

as
ed

 o
n 

th
e 

fu
tu

re
 te

ac
he

rs
’ r

es
po

ns
es

 o
n 

2 
to

pi
cs

, a
sk

in
g 

w
he

th
er

 th
ey

 h
av

e 
ev

er
 s

tu
di

ed
 e

ac
h 

to
pi

c.
 T

he
 v

al
ue

s 
of

 0
, 1

, o
r 2

 e
qu

al
 th

e 
nu

m
be

r o
f t

op
ic

s 
st

ud
ie

d
f T

he
 s

ca
le

 is
 b

as
ed

 o
n 

th
e 

fu
tu

re
 te

ac
he

rs
’ r

es
po

ns
es

 o
n 

3 
to

pi
cs

, a
sk

in
g 

w
he

th
er

 th
ey

 h
av

e 
ev

er
 s

tu
di

ed
 e

ac
h 

to
pi

c.
 T

he
 v

al
ue

s 
of

 0
, 1

, 2
, o

r 3
 e

qu
al

 th
e 

nu
m

be
r o

f t
op

ic
s 

st
ud

ie
d

g R
as

ch
 s

co
re

 s
ca

le
 w

he
re

 1
0 

is
 lo

ca
te

d 
at

 th
e 

ne
ut

ra
l p

os
iti

on
. N

um
be

rs
 s

m
al

le
r 

th
an

 1
0 

in
di

ca
te

 le
ss

 O
T

L
, n

um
be

rs
 g

re
at

er
 th

an
 1

0 
in

di
ca

te
 m

or
e 

O
T

L



107

and MPCK scales is higher than for those in the concurrent routes. This result 
indicates that consecutive route programs preparing primary specialist teachers 
may be able to recruit individuals with a high level of mathematics knowledge, 
while also providing OTL that support future teachers in learning not only math-
ematics content, but also pedagogical content. Thus, a question worth exploring is 
whether consecutive route programs do a better job of preparing primary mathe-
matics specialist teachers than those in the concurrent routes, and whether these 
results are due to the ability to control the quality of their recruits. No such differ-
ences were found between the two routes for the programs preparing primary 
generalists.

A closer examination of the OTL results is suggestive. The higher means in 
OTL (except for OTL – school level math – functions, probability, and calculus) 
are in the consecutive route of the programs preparing primary mathematics spe-
cialists (Table 4.13). At the same time, looking at the concurrent route programs 
for primary mathematics specialists, we can see that the means on the OTL scales 
are generally higher than those in the programs preparing primary generalists. 
This is consistent with the expectation that programs preparing mathematics spe-
cialists provide more OTL mathematics than the programs preparing generalist 
teachers.

The means of the last three OTL scales (instructional practice, assessment issues, 
and assessment practice) are above neutral, indicating that future primary teachers 
in the United States have high levels of OTL on these topics. A finding that may 
indicate increased concern with accountability demands introduced in 2001 as a 
result of the federal law known as the No Child Left Behind Act. 

Surprisingly, given teacher education reforms that have followed an inquiry 
approach to teaching in the United States, the means of the OTL ‘math education 
pedagogy – solving problems’ scale for consecutive programs preparing primary 
generalists and for concurrent programs preparing primary mathematics special-
ists are below the neutral point. This finding indicates that the future teachers 
prepared in these routes have less OTL to learn to solve problems and to learn to 
reason around mathematics concepts (this is a finding evident in other chapters 
in this book). This finding may indicate a new orientation of the teacher educa-
tion curriculum to accommodate competing demands as noted in the previous 
paragraph.

In sum, the data in Table 4.13 indicate that the MPCK of future primary teach-
ers in the United States is above the international average in both routes and all 
programs. For the programs preparing primary generalists in both routes, a num-
ber of OTL scales show a mean above the midpoint (neutral point). These are in 
mathematics at the university level: probability & statistics; and in mathematics 
at the school level: numbers measurement geometry. In the area of mathematics 
education pedagogy these included: class participation; instruction and instruc-
tional practice; assessment uses; and assessment practice. For the programs pre-
paring primary  specialists via consecutive routes, all OTL scales received an 
above average score. For the concurrent routes, the picture is similar to that for 

4 The Intended, Implemented, and Achieved Curriculum of Mathematics Teacher…
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the programs preparing primary generalists, with the exception of mathematics 
at the school level: functions, probability, and calculus where more topics were 
reported as studied. Concerning school level mathematics, all future teachers 
reported having the opportunity to learn the three topics included in the scale 
(e.g., numbers, measurement, and geometry).

 Secondary Future Teachers

For future secondary teachers, the means for MCK and MPCK are above the inter-
national means in both routes for programs that prepare  teachers to teach high 
school mathematics (Table 4.14). This result may indicate a rigorous selection strat-
egy for these individuals. There are no differences in the achievement results for the 
different routes. The situation is not the same for teachers prepared to teach middle 
school mathematics, in both routes with means for both MCK and MPCK below the 
international mean.

Looking at the OTL scales, the means for university- and school-level mathemat-
ics are, in general, higher for the programs preparing future teachers to teach high 
school than for those preparing them to teach middle school. The larger means in 
the OTL scales (with few exceptions) are in the programs preparing high school 
teachers. This is consistent with the intended curriculum in these programs, where 
the institutions, on average, dedicated more contact hours to academic mathematics 
than other programs and routes (see Table 4.5).

The means for OTL mathematics education pedagogy (e.g., solving problems) 
are, in general, higher for teachers in programs preparing high school teachers than 
for those preparing middle school teachers. On the other hand, the means for math 
education pedagogy OTL are, in general, higher for future teachers in programs 
preparing middle school teachers.

Of interest are the relatively lower means for OTL school-level mathematics in 
programs preparing middle school teachers in consecutive routes. A possible expla-
nation is that consecutive programs pay more attention to professional studies and 
practical experience and less to school mathematics, assuming that the future teach-
ers have already studied school mathematics during the first phase of their educa-
tion, or even during their school years.

The means of the last five scales indicating OTL mathematics education 
pedagogy (e.g., class participation, instructional practice, assessment uses, and 
assessment practice), are above the neutral point. These results indicate that the 
future secondary teachers in the United States have greater OTL on these 
topics.

In sum, the data in Table 4.14 indicate that the MPCK of future teachers in the 
programs preparing high school teachers in the United States is above the interna-
tional average. In contrast, it is below the international average for programs prepar-
ing middle school teachers. A number of OTL scales have a mean above the midpoint 
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(neutral point) indicating higher than average opportunities to learn among future 
middle school teachers. This is the case for OTL mathematics at the university level: 
probability & statistics; and at the school level: numbers, measurement, and geom-
etry, functions, probability, and calculus (concurrent route only). In regards to math-
ematics education pedagogy future middle school teachers reported higher than 
average OTL on class participation, instruction and instructional practice, assess-
ment uses, and assessment practice.

 Discussion of the Achieved Curriculum in the Context 
of Programs’ Opportunities to Learn

Future teachers in the United States reported high OTL when asked if they had 
studied school mathematics topics, while the data from the intended curriculum 
of the programs do not show particularly high expectations in this domain. This 
finding may indicate a disconnect between the intended and the implemented cur-
riculum, as teacher educators may plan to dedicate more time to mathematics 
pedagogy assuming that future teachers know already the mathematics of the 
school curriculum. Yet as they encounter their students and understand their 
knowledge limitations, educators may find themselves struggling to teach the 
mathematics of the school curriculum at the same time that they teach mathemat-
ics pedagogy.

The future middle school and primary teachers’ reports are consistent with the 
information from the syllabi analysis  concerning university mathematics topics. 
Future teachers’ responses on OTL topics are also consistent with the findings from 
the analysis of the intended curriculum in the domain of general pedagogy; that is, 
future teachers reported high OTL when asked if they had studied general pedagogy 
topics. Future teachers’ responses about school experience activities are in agree-
ment with the syllabi analysis information as well. Future teachers reported study-
ing most of the topics in the mathematics pedagogy domain (except for foundations 
of mathematics and context of mathematics education), a finding consistent with 
program expectations in this domain (see Table 4.6).

Overall, the finding, based on the syllabi analysis information, that U.S. 
future teachers are expected to be well prepared in mathematics pedagogy and 
general pedagogy was consistent with future teachers’ responses to the OTL 
questions.

It can be expected that the mean percent of OTL for university mathematics var-
ies among programs and routes. Not surprisingly, future teachers prepared to teach 
as primary specialists (especially in consecutive routes) and those prepared to teach 
high school grades reported more OTL in this area than their counterparts prepared 
as primary generalists and middle school teachers. Similarly, in the area of school 
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mathematics, future teachers prepared to teach high school grades also reported a 
high mean percentage of OTL about almost all topics. The future teachers in the 
other three program types reported high OTL on number; measurement; geometry; 
functions, relations, and equations; and data representation, probability and statis-
tics (except in middle school consecutive route programs). The future teachers’ 
responses about OTL from school experiences are relatively uniform, with medium 
to high mean frequencies in the list of these particular OTLs.

Throughout this chapter, we have explored the intended, implemented and 
achieved curriculum of teacher education in the United States seeking evidence of 
alignment. Our findings indicate that opportunities to learn as measured through the 
intended and the implemented curriculum differ across program types reflecting 
some alignment with the knowledge that is expected at these different levels. That 
is, generally (i) programs preparing primary specialists offer more OTL on mathe-
matics and mathematics pedagogy domains than programs preparing primary gen-
eralists; and (ii) programs preparing high school teachers offer more OTL in the 
mathematics and mathematics pedagogy domains than programs preparing middle 
school teachers. Table 4.13 above gives information about the validity of statement 
(i). For the concurrent routes, the means of the OTL scales in the programs prepar-
ing primary specialists are higher than for those preparing primary generalists. For 
the consecutive route, this difference is even greater. Table  4.14 above provides 
information about the validity of statement (ii). For most of the OTL scales, the 
means in the programs preparing high school teachers are higher than for those 
preparing middle school teachers.

Our findings indicate that opportunities to learn are correlated with the achieved 
curriculum (MCK and MPCK), which we see as another indication of alignment. 
The data in Table 4.13 supports the hypothesis that OTL has a positive correlation 
with MCK and MPCK: the highest MCK and MPCK means are for the future teach-
ers in primary specialists programs of the consecutive route, where the means of 
most of the OTL scales are also the highest. Table 4.14 shows that the MCK and 
MPCK means for the programs and routes preparing high school teachers are higher 
than for those preparing middle school teachers. This supports the hypothesis that 
OTL has a positive correlation with MPCK. These hypotheses are further explored 
using multilevel analysis in chapters 8 (for future primary teachers), and 14 (for 
future secondary teachers) of this book.

 Conclusion

The main goal of teacher preparation programs and institutions is to prepare highly 
qualified teachers who can face the challenges of school teaching. To meet this goal, 
institutions organize their courses by taking into account the general requirements for 
teacher preparation, the needs of their students, and the needs of the school system. In 
this chapter, we used the data from the TEDS-M study to explore the curriculum of 
mathematics teacher preparation, focusing on the United States. We studied the intended 
curriculum by examining teacher education syllabi, the implemented curriculum as it is 
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described by future teachers’ OTL, and by program administrators, and the achieved 
curriculum as indicated by future teachers’ responses to our assessments. We focused 
on five aspects of the curriculum, namely school mathematics, university mathematics, 
mathematics pedagogy, general pedagogy, and school experience.

Teacher preparation institutions follow different routes into teaching and, accordingly, 
design courses to prepare mathematics teachers for different school levels and contexts. 
The different opportunities to learn also reflect differences in performance. What we 
have found is that mathematics teacher preparation programs offer all five aspects of the 
curriculum mentioned above, following what seems to be a universal norm (Tatto & 
Hordern, 2017). But we also found variability in the amount and character of the OTL as 
implemented across programs. This variation in the breadth and depth of OTL can be 
seen as important evidence for the need for program alignment across domains as pro-
grams seek to improve the quality of the preparation of future mathematics teachers.

The data shows that there is overall consistency across the intended, implemented, 
and achieved curriculum for teacher preparation. We found, however, that the corre-
spondence between the mathematics curriculum of schools and the intended curriculum 
of the teacher preparation institutions is mixed. The correspondence is more evident in 
the domains of number and data; it is less so in the algebra and geometry domains.

The analysis of the intended teacher education curriculum shows relatively 
strong emphasis in the areas of mathematics pedagogy and general pedagogy and 
less in mathematics knowledge, particularly among primary generalists and middle 
school future teachers. Yet there is much variability within and across institutions, 
as shown in the analysis of the time allocated to the different domains, and which 
corresponds to variation in TEDS-M assessment results.

According to the data, there is important variation between different programs 
and routes and different institutions in the attention that is paid to different mathe-
matics topics. International comparisons in the knowledge assessments (Tatto et al., 
2012)6 show that the performance of U.S. future mathematics teachers on the 
knowledge scales is above the international mean, except for future teachers in the 
programs that prepare middle school mathematics teachers. This indicates that, in 
general, middle school teachers are not as well prepared to teach the middle school 
mathematics curriculum as their high school counterparts.

The findings from the U.S. curriculum study have implications for the future of 
mathematics teacher education in an era of increased accountability and increased 
diversity in the student population. There has been legislation proposed at the fed-
eral level concerning the introduction of regulations into teacher education closely 
linked to the Council for the Accreditation of Educator Preparation (CAEP) stan-
dards.7 While this legislation was rescinded in early 2017 under a new  administration, 
the accreditation of teacher preparation is still subject to the CAEP standards, which 
are likely to promote greater uniformity in the organization and curriculum of 

6 For the primary level both generalists and specialists are below yet very close to the international 
mean, in the mathematics and mathematics pedagogy scales (see Tatto et al., 2012, pp. 140 and 
144). For the secondary level, middle school future teachers scores are below the international 
mean, whereas for high school future teachers the scores are above the international mean, in the 
mathematics and in the mathematics pedagogy scales (see Tatto et al., 2012, pp. 148 and 150).
7 http://caepnet.org/standards/
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teacher education. Thus, although controversial, many in the United States may 
continue to argue for more regulation of teacher education programs in light of the 
great variability in OTL that exists across teacher education programs and the rela-
tively modest levels of knowledge of mathematics that some teachers, especially 
primary and middle school teachers, possess.

Calls for more rigorous graduation criteria, including knowledge assessments for 
program graduates, may lead to changes in the teacher education curriculum within 
states or across states. However, it will not be an easy task to change the teacher 
education curriculum to be more rigorous, as this change may have important impli-
cations, including requiring changes in recruitment and selection procedures across 
institutions. The findings presented in this chapter about the United States may help 
inform those searching to design a more effective and consistent curriculum for 
mathematics teacher education for primary and secondary teachers.

 A. Appendices

 Appendix 4.1

Table 4.15 Mathematics 
framework: content 
knowledge domains

Number Whole numbersps

Fractions and decimalsps

Number sentencesps

Patterns and relationshipsps

Integersps

Ratios, proportions, and percentps

Irrational numbersps

Number theoryps

Geometry Geometric shapesps

Geometric measurementps

Location and movementps

Algebra Patternsps

Algebraic expressionsps

Equations/formulas and functionsps

Calculus and analysiss

Linear algebra and abstract algebras

Data Data organization and representationps

Data reading and interpretationps

Chanceps

Source: TEDS-M Framework 2008; TIMSS 2007 
content domain assessment framework (Mullis et al., 
2007); TIMSS 2008 advanced assessment frame-
works (Garden et al., 2006)
Note: pprimary level; ssecondary level
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Table 4.16 Mathematics framework: cognitive domains

Knowing
Recall Recall definitions; terminology; number properties; geometric properties; 

notation.
Recognize Recognize mathematical objects, shapes, numbers and expressions; recognize 

mathematical entities that are mathematically equivalent.
Compute Carry out algorithmic procedures for addition, multiplication, division, 

subtraction with whole numbers, fractions, decimals, and integers; approximate 
numbers to estimate computations; carry out routine algebraic procedures.

Retrieve Retrieve information from graphs, tables, or other sources; read simple scales.
Measure Use measuring instruments; use units of measurement appropriately; estimate 

measures.
Classify/order Classify/group objects, shapes, numbers, and expressions according to common 

properties; make correct decisions about class membership; order numbers and 
objects by attributes.

Applying
Select Select an efficient/appropriate operation, method, or strategy for solving 

problems where there is a known algorithm or method of solution.
Represent Display mathematical information and data in diagrams, tables, charts, or 

graphs; generate equivalent representations for a given mathematical entity or 
relationship.

Model Generate an appropriate model, such as an equation or diagram, for solving a 
routine problem.

Implement Follow and execute a set of mathematical instructions; draw figures and shapes 
according to given specifications.

Solve routine 
problems

Solve routine or familiar types of problems (e.g., use geometric properties to 
solve problems); compare and match different representations of data; use data 
from charts, tables, graphs, and maps to solve routine problems.

Reasoning
Analyze Determine and describe or use relationships between variables or objects in 

mathematical situations; use proportional reasoning; decompose geometric 
figures to simplify solving a problem; draw the net of a given unfamiliar solid; 
visualize transformations of three-dimensional figures; compare and match 
different representations of the same data; make valid inferences from given 
information.

Generalize Extend the domain to which the result of mathematical thinking and problem 
solving is applicable by restating results in more general and more widely 
applicable terms.

Synthesize/
integrate

Combine (various) mathematical procedures to establish results, and combine 
results to produce a further result; make connections between different elements 
of knowledge and related representations, and make linkages between related 
mathematical ideas.

Justify Provide a justification for the truth or falsity of a statement by reference to 
mathematical results or properties.

Solve 
non-routine 
problems

Solve problems set in mathematical or real-life contexts where future teachers 
are unlikely to have encountered closely similar items, and apply mathematical 
procedures in unfamiliar or complex contexts; use geometric properties to solve 
non-routine problems.

Source: TIMSS 2007 cognitive domain assessment framework (Mullis et al., 2007)
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Table 4.17 Mathematical Pedagogical Content Knowledge (MPCK) frameworka

Mathematical curricular knowledge Establishing appropriate learning goals
Knowing different assessment formats
Selecting possible pathways and seeing 
connections within the curriculum
Identifying the key ideas in learning programs
Knowledge of mathematics curriculum

Knowledge of planning for mathematics 
teaching and learning [pre-active]

Planning or selecting appropriate activities
Choosing assessment formats
Predictingb typical students’ responses, 
including misconceptions
Planning appropriate methods for representing 
mathematical ideas
Linking the didactical methods and the 
instructional designs
Identifying different approaches for solving 
mathematical problems
Planning mathematical lessons

Enacting mathematics for teaching and 
learning [interactive]

Analyzing or evaluating students’ mathematical 
solutions or arguments
Analyzing the content of students’ questions
Diagnosing typical students’ responses, 
including misconceptions
Explaining or representing mathematical 
concepts or procedures
Generating fruitful questions
Responding to unexpected mathematical issues
Providing appropriate feedback

aThis framework paid attention to the temporal dimension of teacher knowledge as well as the way 
in which mathematical categories refer to different types of knowledge
bAttention to choice of verbs may prove useful in distinguishing between pre-active and interactive 
dimensions of the categories

M. T. Tatto and K. Bankov



115

Table 4.18 Teaching contact hours: definition of courses

Courses Definition

Liberal arts (except 
mathematics)

These are experiences of a general or theoretical nature designed to 
develop judgment and understanding about human beings’ relationship to 
the social, cultural, and natural environment (e.g., natural and social 
sciences, languages, drama, music, art, philosophy, and religion).

Academic 
mathematics

These experiences aim to provide mathematics knowledge to a more 
general population of university students, that may or may not include 
future teachers, and are designed to treat content beyond the mathematics 
learned at the secondary school level, that is, mathematics at the university 
level (e.g., “Abstract Algebra”, “Functional Analysis”, “Differential 
Equations”, etc.).

Mathematics 
content related to 
the school 
mathematics 
curriculum

These are experiences dealing mainly with the structure, sequence, 
content, and level of competence required from pupils to successfully 
learn from the school mathematics curriculum (primary or secondary 
levels). Examples of such courses are “Structure and Content of the Lower 
Secondary Mathematics Curriculum”, “Development and Understanding 
of the School Mathematics Curriculum”, etc.

Mathematics 
pedagogy

Courses dealing with the methods of teaching and learning mathematics 
(e.g., mathematics pedagogy, didactics of mathematics). These courses 
could include treatment of pupils’ cognition (e.g., how one learns 
mathematics) or pupils’ thinking in relation to mathematics concepts. 
Examples of such types of units are courses like “Learner Diversity and 
the Teaching of Subject Matter: Mathematics,” “Primary and Middle 
School Mathematics: Teaching Developmentally”, etc.

Professional 
foundations and 
theories

Courses on the study of education utilizing such disciplines as history, 
philosophy, sociology, psychology, social psychology, anthropology, 
economics, and political science, or such interdisciplinary fields as 
comparative and international education, multicultural education, 
community and adult education, and many others. All such study stresses 
diverse perspectives in understanding, analyzing, and implementing 
educational theory and practice.

General pedagogy 
(not mathematics)

Courses on the “art or science of teaching” providing instruction on the 
correct use of teaching strategies. In addition, these courses include the 
study of the correlation of those teaching strategies with the instructor’s 
own philosophical beliefs of teaching and pupils’ background knowledge 
and experiences, personal situations, social and classroom environment, as 
well as setting learning goals.
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 Appendix 4.2: Institutional/Program Questionnaire: Analysis of 
Field Experience Activities

Table 4.19 Weighted mean frequency for field experience activities in the programs preparing 
future primary generalists (Grade 6 maximum)

Activities Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Plan lessons 461 2.06 1.19 378 1.96 1.23 83 2.49 0.89
Teach individual lessons to whole class 461 1.60 1.18 378 1.49 1.19 83 2.09 0.98
Tutor individual pupils 461 2.19 0.89 378 2.08 0.93 83 2.69 0.47
Work with small groups of pupils 461 2.29 0.88 378 2.20 0.93 83 2.69 0.47
Assist teachers in other ways 461 2.72 0.47 378 2.71 0.48 83 2.78 0.42
Assist in school activities outside classroom 458 1.27 0.81 375 1.36 0.84 83 0.89 0.53
Carry out case studies of selected pupils 457 1.85 0.96 378 1.72 0.96 79 2.49 0.71
Carry out classroom observation 461 2.93 0.25 378 2.94 0.25 83 2.92 0.27
Collect data for research projects 458 1.35 1.03 375 1.37 1.10 83 1.23 0.59
Visit families in their homes 458 0.13 0.41 375 0.13 0.42 83 0.13 0.34
Interview teachers and/or principals 457 2.15 0.83 378 2.23 0.83 79 1.79 0.74
Observe and/or participate in meetings 461 1.64 0.79 378 1.69 0.80 83 1.42 0.71

Source: TEDS-M Institutional Program Questionnaire, Question 3, Part E. The scale is: 0 = Not at 
all, 1 = Rarely, 2 = Sometimes, 3 = Usually

Table 4.20 Weighted mean frequency for field experience activities in the programs preparing 
future primary mathematics specialists

Activities Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Plan lessons 92 2.44 0.82 79 2.34 0.85 13 3.00 0.00
Teach individual lessons to whole class 92 2.19 1.06 79 2.05 1.09 13 3.00 0.00
Tutor individual pupils 92 2.87 0.33 79 2.91 0.29 13 2.66 0.49
Work with small groups of pupils 92 2.81 0.39 79 2.78 0.41 13 3.00 0.00
Assist teachers in other ways 92 3.00 0.00 79 3.00 0.00 13 3.00 0.00
Assist in school activities outside classroom 92 0.73 1.08 79 0.85 1.13 13 0.00 0.00
Carry out case studies of selected pupils 92 1.69 0.67 79 1.75 0.59 13 1.32 0.99
Carry out classroom observation 92 2.85 0.36 79 2.88 0.32 13 2.66 0.49
Collect data for research projects 92 1.37 0.87 79 1.26 0.89 13 2.00 0.00
Visit families in their homes 92 0.13 0.33 79 0.15 0.36 13 0.00 0.00
Interview teachers and/or principals 92 2.13 0.33 79 2.15 0.36 13 2.00 0.00
Observe and/or participate in meetings 92 1.45 0.98 79 1.58 0.98 13 0.66 0.49

Source: TEDS-M Institutional Program Questionnaire, Question 3, Part E. The scale is: 0 = Not at 
all, 1 = Rarely, 2 = Sometimes, 3 = Usually
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Table 4.21 Weighted mean frequency for field experience activities in the programs preparing 
future middle school (Grade 10 maximum) teachers

Activities Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Plan lessons 92 2.44 0.82 79 2.34 0.86 13 3.00 0.00
Teach individual lessons to whole class 92 2.19 1.06 79 2.05 1.09 13 3.00 0.00
Tutor individual pupils 92 2.87 0.33 79 2.91 0.29 13 2.66 0.49
Work with small groups of pupils 92 2.81 0.39 79 2.78 0.41 13 3.00 0.00
Assist teachers in other ways 92 3.00 0.00 79 3.00 0.00 13 3.00 0.00
Assist in school activities outside classroom 92 0.73 1.08 79 0.85 1.13 13 0.00 0.00
Carry out case studies of selected pupils 92 1.69 0.67 79 1.75 0.59 13 1.32 0.99
Carry out classroom observation 92 2.85 0.36 79 2.88 0.32 13 2.66 0.49
Collect data for research projects 92 1.37 0.87 79 1.26 0.89 13 2.00 0.00
Visit families in their homes 92 0.13 0.34 79 0.15 0.36 13 0.00 0.00
Interview teachers and/or principals 92 2.13 0.34 79 2.15 0.36 13 2.00 0.00
Observe and/or participate in meetings 92 1.45 0.98 79 1.58 0.98 13 0.66 0.49

Source: TEDS-M Institutional Program Questionnaire, Question 3, Part E. The scale is: 0 = Not at 
all, 1 = Rarely, 2 = Sometimes, 3 = Usually

Table 4.22 Weighted mean frequency for field experience activities in the programs preparing 
future high school (to Grade 11 and above) teachers

Activities Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Plan lessons 346 2.19 1.00 265 2.09 1.06 81 2.51 0.71
Teach individual lessons to whole class 346 1.73 1.03 265 1.66 1.02 81 1.95 1.02
Tutor individual pupils 346 2.59 0.56 265 2.57 0.59 81 2.65 0.48
Work with small groups of pupils 346 2.46 0.64 265 2.49 0.68 81 2.35 0.48
Assist teachers in other ways 346 2.71 0.57 265 2.70 0.60 81 2.72 0.45
Assist in school activities outside classroom 346 1.23 0.86 265 1.27 0.85 81 1.09 0.90
Carry out case studies of selected pupils 339 1.41 0.90 259 1.48 0.94 81 1.19 1.04
Carry out classroom observation 346 2.97 0.16 265 2.97 0.18 81 3.00 0.00
Collect data for research projects 346 0.74 0.82 265 0.76 0.75 81 0.70 1.01
Visit families in their homes 346 0.25 0.48 265 0.23 0.47 81 0.34 0.48
Interview teachers and/or principals 346 1.82 0.86 265 1.85 0.84 81 1.74 0.95
Observe and/or participate in meetings 346 1.68 0.79 265 1.64 0.84 81 1.81 0.62

Source: TEDS-M Institutional Program Questionnaire, Question 3, Part E. The scale is: 0 = Not at 
all, 1 = Rarely, 2 = Sometimes, 3 = Usually
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 Appendix 4.3: Analysis of the TEDS-M Future Teachers’ 
Questionnaire Responses of OTL Topics

School Mathematics

Table 4.23 Weighted mean percent of future teachers reporting to study school mathematics 
topics in the programs preparing future primary generalists (Grade 6 maximum)

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Numbers 22,268 98 14.0 20,261 99 11.4 2006 91 28.2
Measurement 22,268 96 18.7 20,261 97 17.2 2006 91 29.1
Geometry 22,268 84 36.4 20,261 86 35.2 2006 71 45.5
Functions, relations, and equations 22,249 75 43.4 20,250 77 42.3 1999 56 49.6
Data representation, probability, and 
statistics

22,250 86 35.0 20,244 87 33.8 2006 74 44.0

Calculus 22,237 22 41.2 20,230 22 41.2 2006 22 41.3
Validation, structuring, and abstracting 22,268 24 42.6 20,261 24 42.7 2006 22 41.7

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 2, Part B

Table 4.24 Weighted mean percent of future teachers reporting to study school mathematics 
topics in the programs preparing future primary mathematics specialists

Topics Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Numbers 3604 99 11.0 3432 99 11.3 172 100 0.0
Measurement 3597 97 18.1 3426 96 18.6 172 100 0.0
Geometry 3604 91 28.7 3432 90 29.4 172 100 0.0
Functions, relations, and equations 3604 81 39.2 3432 80 39.7 172 92 27.3
Data representation, probability, and 
statistics

3604 90 30.3 3432 90 30.1 172 86 34.8

Calculus 3604 25 43.3 3432 25 43.1 172 33 47.1
Validation, Structuring, and abstracting 3604 21 40.6 3432 22 41.3 172 0 0.0

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 2, Part B
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Table 4.25 Weighted mean percent of future teachers reporting to study school mathematics 
topics in the programs preparing future middle school (Grade 10 maximum) teachers

Topics Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Numbers 4233 99 7.7 4037 99 7.9 196 100 0.0
Measurement 4233 97 17.0 4037 98 13.7 196 75 43.5
Geometry 4233 89 31.7 4037 92 27.5 196 24 43.0
Functions, relations, and equations 4233 87 34.2 4037 90 30.6 196 24 43.0
Data representation, probability, and 
statistics

4233 89 31.6 4037 91 28.9 196 46 49.9

Calculus 4233 20 40.0 4037 20 40.1 196 16 37.0
Validation, structuring, and abstracting 4233 15 35.9 4037 16 36.4 196 4 19.7

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 2, Part B

Table 4.26 Weighted mean percent of future teachers reporting to study school mathematics 
topics in the programs preparing future high school (to Grade 11 and above) teachers

Topics Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Numbers 2840 87 33.8 2237 89 30.9 603 78 41.6
Measurement 2840 76 42.6 2237 79 41.0 603 67 46.9
Geometry 2840 89 31.9 2237 92 27.6 603 77 42.2
Functions, relations, and equations 2840 84 36.4 2237 86 34.2 603 76 42.6
Data representation, probability, and statistics 2840 89 31.5 2237 91 28.4 603 80 39.8
Calculus 2840 75 43.4 2237 76 42.9 603 71 45.3
Validation, structuring, and abstracting 2840 59 49.2 2237 59 49.2 603 57 49.6

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 2, Part B
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University Mathematics

Table 4.27 Weighted mean percent of future teachers reporting to study university mathematics 
topics in the programs preparing future primary generalists (Grade 6 maximum)

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Axiomatic geometry 22,267 46 49.8 20,265 47 49.9 2002 34 47.2
Coordinate geometry 22,278 60 49.0 20,276 62 48.5 2002 42 49.4
Non-Euclidean geometry 22,261 42 49.4 20,259 43 49.6 2002 30 45.7
Differential geometry 22,233 29 45.6 20,231 30 45.7 2002 26 43.6
Topology 22,171 13 33.1 20,197 12 32.7 1974 16 36.9
Linear algebra 22,200 51 50.0 20,226 53 49.9 1974 38 48.4
Set theory 22,219 39 48.7 20,217 40 49.0 2002 27 44.2
Abstract algebra 22,258 22 41.7 20,261 22 41.2 1997 31 46.2
Number theory 22,262 85 35.5 20,260 87 34.0 2002 70 46.0
Beginning calculus 22,263 50 50.0 20,261 50 50.0 2002 50 50.0
Calculus 22,263 30 45.9 20,261 29 45.4 2002 41 49.2
Multivariate calculus 22,257 15 35.2 20,255 13 34.1 2002 25 43.5
Advanced calculus 22,263 6 24.5 20,261 6 23.2 2002 13 33.8
Differential equations 22,201 27 44.5 20,199 26 44.1 2002 37 48.2
Theory of functions 22,216 26 43.7 20,214 25 43.5 2002 30 45.9
Discrete mathematics 22,178 27 44.6 20,181 27 44.4 1997 31 46.5
Probability 22,263 86 34.4 20,261 87 33.8 2002 81 39.1
Theoretical or applied statistics 22,247 49 50.0 20,245 48 50.0 2002 56 49.6
Mathematical logic 22,263 50 50.0 20,261 49 50.0 2002 52 50.0

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 1, Part B
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Table 4.28 Weighted mean percent of future teachers reporting to study university mathematics 
topics in the programs preparing future primary mathematics specialists

Topics Routes
All programs Concurrent route Consecutive route
N M SD N M SD N M SD

Axiomatic geometry 3604 59 49.2 3432 59 49.2 172 69 46.2
Coordinate geometry 3604 75 43.3 3432 74 43.6 172 86 34.8
Non-Euclidean geometry 3604 49 50.0 3432 47 49.9 172 86 34.8
Differential Geometry 3604 37 48.2 3432 35 47.6 172 74 44.0
Topology 3604 15 36.1 3432 12 33.1 172 74 44.0
Linear algebra 3604 62 48.6 3432 60 49.0 172 94 23.7
Set theory 3557 42 49.4 3385 42 49.3 172 55 49.9
Abstract algebra 3604 22 41.6 3432 21 40.4 172 55 49.9
Number theory 3604 90 30.1 3432 90 29.8 172 86 34.8
Beginning calculus 3604 55 49.7 3432 53 49.9 172 100 0.0
Calculus 3604 37 48.4 3432 34 47.5 172 100 0.0
Multivariate calculus 3604 20 40.2 3432 18 38.6 172 61 48.9
Advanced calculus 3604 11 31.4 3432 9 28.5 172 55 49.9
Differential equations 3604 34 47.4 3432 33 46.9 172 61 48.9
Theory of functions 3604 32 46.6 3432 31 46.1 172 55 49.9
Discrete mathematics 3604 31 46.2 3432 29 45.5 172 61 48.9
Probability 3604 88 32.6 3432 89 31.9 172 75 43.2
Theoretical or applied statistics 3604 47 49.9 3432 46 49.9 172 67 47.1
Mathematical logic 3604 49 50.0 3432 47 49.9 172 92 27.3

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 1, Part B
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Table 4.29 Weighted mean percent of future teachers reporting to study university mathematics 
topics in the programs preparing future middle school (Grade 10 maximum) teachers

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Axiomatic geometry 4216 49 50.0 4037 50 50.0 180 36 48.2
Coordinate geometry 4233 69 46.4 4037 70 46.0 196 50 50.1
Non-Euclidean geometry 4233 49 50.0 4037 51 50.0 196 8 27.3
Differential geometry 4233 30 45.7 4037 31 46.2 196 4 19.7
Topology 4233 11 31.7 4037 12 32.3 196 0 0.0
Linear algebra 4233 54 49.8 4037 55 49.8 196 50 50.1
Set theory 4233 37 48.3 4037 36 48.0 196 58 49.4
Abstract algebra 4233 16 36.4 4037 16 36.7 196 8 27.3
Number theory 4233 89 30.9 4037 89 31.1 196 92 27.3
Beginning calculus 4233 55 49.8 4037 55 49.8 196 50 50.1
Calculus 4233 36 48.0 4037 35 47.8 196 50 50.1
Multivariate calculus 4177 10 29.4 3981 8 27.1 196 41 49.4
Advanced calculus 4233 7 25.3 4037 7 25.5 196 4 19.7
Differential equations 4233 31 46.3 4037 31 46.1 196 37 48.5
Theory of functions 4233 19 38.9 4037 19 39.3 196 8 27.6
Discrete mathematics 4233 18 38.6 4037 18 38.7 196 16 37.0
Probability 4233 88 32.6 4037 90 30.1 196 46 49.9
Theoretical or applied statistics 4233 41 49.1 4037 39 48.8 196 67 47.2
Mathematical logic 4233 42 49.3 4037 42 49.4 196 37 48.5

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 1, Part B
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Table 4.30 Weighted mean percent of future teachers reporting to study university mathematics 
topics in the programs preparing future high school (to Grade 11 and above) teachers

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Axiomatic geometry 2836 89 31.1 2233 92 27.1 603 79 41.0
Coordinate geometry 2845 82 38.0 2242 82 38.1 603 83 37.7
Non-Euclidean geometry 2845 76 42.5 2242 80 40.3 603 64 48.0
Differential geometry 2837 30 46.0 2234 30 45.9 603 31 46.2
Topology 2840 15 36.0 2237 14 35.2 603 18 38.8
Linear algebra 2845 93 26.1 2242 93 24.7 603 89 30.7
Set theory 2840 68 46.6 2237 71 45.2 603 56 49.7
Abstract algebra 2845 75 43.2 2242 78 41.7 603 66 47.4
Number theory 2845 85 35.8 2242 85 36.1 603 86 34.6
Beginning calculus 2840 96 19.2 2237 96 19.8 603 97 16.9
Calculus 2832 95 20.8 2237 95 22.2 596 98 14.0
Multivariate calculus 2831 84 36.3 2228 85 35.2 603 80 39.8
Advanced calculus 2823 47 49.9 2232 46 49.9 591 50 50.0
Differential equations 2840 64 48.1 2237 63 48.2 603 65 47.9
Theory of functions 2837 35 47.6 2234 32 46.7 603 44 49.7
Discrete mathematics 2834 72 45.1 2231 73 44.3 603 65 47.6
Probability 2834 94 23.2 2231 95 21.6 603 91 28.1
Theoretical or applied statistics 2840 76 42.7 2237 76 42.4 603 74 43.7
Mathematical logic 2840 81 39.0 2237 81 39.3 603 83 37.9

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 1, Part B
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Mathematics Pedagogy

Table 4.31 Weighted mean percent of future teachers reporting to study mathematics pedagogy 
topics in the programs preparing future primary generalists (Grade 6 maximum)

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Foundations of mathematics 22,628 38 48.4 20,597 38 48.6 2031 32 46.5
Context of mathematics education 22,628 40 48.9 20,597 39 48.9 2031 43 49.5
Development of mathematics ability and 
thinking

22,628 60 49.0 20,597 61 48.8 2031 48 50.0

Mathematics instruction 22,628 72 45.0 20,597 72 44.7 2031 66 47.6
Developing teaching plans 22,628 61 48.7 20,597 62 48.6 2031 55 49.7
Mathematics teaching 22,628 66 47.3 20,597 67 47.0 2031 59 49.2
Mathematics standards and curriculum 22,628 71 45.6 20,597 71 45.3 2031 64 47.9
Affective issues in mathematics 22,628 52 49.9 20,597 53 49.9 2031 45 49.7

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 4, Part B

Table 4.32 Weighted mean percent of future teachers reporting to study mathematics pedagogy 
topics in the programs preparing future primary mathematics specialists

Topics Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Foundations of mathematics 2816 48 50.0 2655 50 50.0 161 15 35.7
Context of mathematics education 2816 53 49.9 2655 54 49.8 161 26 44.1
Development of mathematics ability and 
thinking

2816 76 42.7 2655 77 42.3 161 67 47.0

Mathematics instruction 2816 91 28.9 2655 90 29.6 161 100 0.0
Developing teaching plans 2816 86 34.9 2655 87 34.1 161 74 44.1
Mathematics teaching 2816 88 32.2 2655 88 33.0 161 100 0.0
Mathematics standards and curriculum 2816 95 21.4 2655 95 22.0 161 100 0.0
Affective issues in mathematics 2816 64 47.9 2655 63 48.2 161 79 41.0

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 4, Part B
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Table 4.33 Weighted mean percent of future teachers reporting to study mathematics pedagogy 
topics in the programs preparing future middle school (Grade 10 maximum) teachers

Topics Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Foundations of mathematics 3133 53 49.9 2937 56 49.7 196 16 37.0
Context of mathematics education 3133 50 50.0 2937 52 50.0 196 33 47.2
Development of mathematics ability and 
thinking

3133 83 37.8 2937 82 38.7 196 100 0.0

Mathematics instruction 3133 93 25.8 2937 93 25.6 196 92 27.6
Developing teaching plans 3133 92 27.4 2937 92 26.9 196 88 32.9
Mathematics teaching 3133 92 27.7 2937 91 28.5 196 100 0.0
Mathematics standards and curriculum 3133 97 18.3 2937 96 18.9 196 100 0.0
Affective issues in mathematics 3133 61 48.7 2937 61 48.7 196 58 49.4

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 4, Part B

Table 4.34 Weighted mean percent of future teachers reporting to study mathematics pedagogy 
topics in the programs preparing future high school (to Grade 11 and above) teachers

Topics Routes

All programs
Concurrent 
route

Consecutive 
route

N M SD N M SD N M SD

Foundations of mathematics 2367 65 47.7 1928 68 46.7 439 53 50.0
Context of mathematics education 2370 39 48.8 1931 38 48.5 439 46 49.9
Development of mathematics ability and 
thinking

2370 71 45.4 1931 73 44.4 439 62 48.7

Mathematics instruction 2370 88 32.6 1931 88 32.0 439 85 35.3
Developing teaching plans 2370 79 40.4 1931 79 40.5 439 80 40.0
Mathematics teaching 2355 91 28.7 1915 91 28.4 439 90 30.2
Mathematics standards and curriculum 2370 91 28.7 1931 91 29.2 439 93 26.3
Affective issues in mathematics 2370 54 49.8 1931 54 49.8 439 56 49.7

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 4, Part B
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General Pedagogy

Table 4.35 Weighted mean percent of future teachers reporting to study general pedagogy topics 
in the programs preparing future primary generalists (Grade 6 maximum)

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

History of education 17,254 63 48.2 15,846 64 48.1 1407 60 49.0
Philosophy of education 17,234 91 27.9 15,826 91 28.1 1407 93 25.3
Sociology of education 17,234 83 37.8 15,826 83 37.9 1407 84 37.1
Educational psychology 17,254 95 21.0 15,846 96 20.5 1407 93 25.9
Theories of schooling 17,241 87 34.1 15,833 87 33.7 1407 83 37.9
Methods of educational research 17,254 74 43.6 15,846 74 44.0 1407 83 37.2
Assessment and measurement 17,228 86 34.8 15,820 86 34.8 1407 85 35.7
Knowledge of teaching 17,234 95 22.6 15,826 94 22.9 1407 97 17.6

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 7, Part B

Table 4.36 Weighted mean of percent future teachers reporting to study general pedagogy topics 
in the programs preparing future primary mathematics specialists

Topics Routes
All programs Concurrent route Consecutive route
N M SD N M SD N M SD

History of education 2816 61 48.8 2655 62 48.6 161 41 49.4
Philosophy of education 2797 94 24.6 2636 93 25.3 161 100 0.0
Sociology of education 2812 83 37.8 2651 82 38.3 161 94 24.4
Educational psychology 2812 94 24.1 2651 93 24.8 161 100 0.0
Theories of schooling 2816 82 38.7 2655 85 36.1 161 33 47.0
Methods of educational research 2816 76 42.9 2655 75 43.3 161 85 35.7
Assessment and measurement 2812 90 29.7 2651 90 29.8 161 91 28.1
Knowledge of teaching 2812 95 21.7 2651 95 21.2 161 91 28.1

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 7, Part B
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Table 4.37 Weighted mean percent of future teachers reporting to study general pedagogy topics 
in the programs preparing future middle school (Grade 10 maximum) teachers

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

History of education 3151 70 45.7 2955 71 45.4 196 63 48.5
Philosophy of education 3151 96 20.0 2955 96 19.4 196 92 27.6
Sociology of education 3151 86 34.2 2955 88 32.4 196 63 48.5
Educational psychology 3151 100 6.4 2955 100 6.6 196 100 0.0
Theories of schooling 3151 90 29.5 2955 92 26.8 196 63 48.5
Methods of educational research 3151 75 43.3 2955 74 43.8 196 88 32.9
Assessment and measurement 3151 83 37.2 2955 82 38.2 196 100 0.0
Knowledge of teaching 3151 97 18.0 2955 97 17.1 196 92 27.6

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 7, Part B

Table 4.38 Weighted mean percent of future teachers reporting to study general pedagogy topics 
in the programs preparing future high school (to Grade 11 and above) teachers

Topics Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

History of education 2366 61 48.7 1927 62 48.7 439 60 49.1
Philosophy of education 2366 92 27.4 1927 93 24.9 439 85 35.6
Sociology of education 2366 81 39.5 1927 82 38.4 439 74 43.8
Educational psychology 2366 94 24.6 1927 93 24.7 439 94 24.2
Theories of schooling 2366 76 42.5 1927 79 40.9 439 66 47.5
Methods of educational research 2366 58 49.4 1927 56 49.7 439 66 47.6
Assessment and measurement 2345 72 45.1 1906 73 44.6 439 67 46.9
Knowledge of teaching 2362 88 32.0 1927 91 29.2 435 79 40.8

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 7, Part B
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School Experience Activities

Table 4.39 Weighted mean frequency future teachers reported for school experience activities 
required in the programs preparing future primary generalists (Grade 6 maximum)

Activities Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Observe models of the teaching 
strategies

16,906 2.29 0.77 15,539 2.31 0.77 1367 2.11 0.82

Practice theories for teaching 
mathematics

16,906 2.09 0.88 15,539 2.11 0.87 1367 1.88 0.96

Complete assessment tasks that 
asked you to show how you were 
applying ideas you were learning in 
your courses

16,871 2.17 0.84 15,512 2.18 0.84 1359 2.06 0.93

Receive feedback about your 
teaching strategies

16,835 2.44 0.75 15,481 2.45 0.74 1355 2.27 0.85

Collect and analyze evidence about 
pupils’ learning

16,843 2.28 0.80 15,488 2.30 0.79 1355 2.05 0.89

Test out findings from educational 
research about pupils’ difficulties

16,786 1.49 0.96 15,464 1.51 0.95 1322 1.28 0.99

Develop strategies to reflect upon 
your professional knowledge

16,776 2.24 0.82 15,449 2.26 0.82 1327 2.08 0.86

Demonstrate that you could apply 
the teaching methods

16,721 2.49 0.71 15,394 2.51 0.69 1327 2.31 0.80

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 13, Part 
B. The scale is 0 = Never, 1 = Rarely, 2 = Occasionally, 3 = Often
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Table 4.40 Weighted mean frequency future teachers reported for school experience activities 
required in the programs preparing future primary mathematics specialists

Activities Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Observe models of the teaching 
strategies

2735 2.12 0.87 2573 2.11 0.87 161 2.31 0.88

Practice theories for teaching 
mathematics

2691 2.20 0.90 2572 2.20 0.90 119 2.18 0.82

Complete assessment tasks that asked 
you to show how you were applying 
ideas you were learning in your courses

2714 2.31 0.82 2553 2.32 0.81 161 2.11 0.96

Receive feedback about your teaching 
strategies

2714 2.38 0.77 2553 2.38 0.77 161 2.35 0.87

Collect and analyze evidence about 
pupils’ learning

2714 2.44 0.73 2553 2.44 0.74 161 2.46 0.61

Test out findings from educational 
research about pupils’ difficulties

2714 1.62 0.97 2553 1.60 0.95 161 1.99 1.09

Develop strategies to reflect upon your 
professional knowledge

2701 2.26 0.85 2553 2.28 0.80 148 1.86 1.41

Demonstrate that you could apply the 
teaching methods

2701 2.53 0.71 2553 2.55 0.68 148 2.15 1.06

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 13, Part 
B. The scale is 0 = Never, 1 = Rarely, 2 = Occasionally, 3 = Often
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Table 4.41 Weighted mean frequency future teachers reported for school experience activities 
required in the programs preparing future middle school (Grade 10 maximum) teachers

Activities Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Observe models of the teaching 
strategies

3144 1.25 0.70 2947 2.29 0.69 196 1.66 1.03

Practice theories for teaching 
mathematics

3137 1.30 0.70 2941 2.31 0.73 196 2.17 0.80

Complete assessment tasks that asked 
you to show how you were applying 
ideas you were learning in your courses

3137 2.25 0.73 2941 2.27 0.86 196 2.13 0.83

Receive feedback about your teaching 
strategies

3137 2.30 0.73 2941 2.46 0.70 196 1.66 0.74

Collect and analyze evidence about 
pupils’ learning

3137 2.26 0.86 2941 2.51 0.69 196 2.46 0.70

Test out findings from educational 
research about pupils’ difficulties

3137 2.41 0.73 2941 1.76 0.97 196 1.00 0.82

Develop strategies to reflect upon your 
professional knowledge

3152 2.50 0.69 2956 2.50 0.66 196 2.29 0.94

Demonstrate that you could apply the 
teaching methods

3152 1.71 0.98 2956 2.66 0.61 196 2.29 0.94

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 13, Part 
B. The scale is 0 = Never, 1 = Rarely, 2 = Occasionally, 3 = Often
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Table 4.42 Weighted mean frequency future teachers reported for school experience activities 
required in the programs preparing future high school (to Grade 11 and above) teachers

Activities Routes

All programs Concurrent route
Consecutive 
route

N M SD N M SD N M SD

Observe models of the teaching 
strategies

2241 1.91 0.89 1831 1.89 0.90 410 1.98 0.83

Practice theories for teaching 
mathematics

2241 1.99 0.93 1831 1.97 0.93 410 2.06 0.95

Complete assessment tasks that asked 
you to show how you were applying 
ideas you were learning in your courses

2235 1.98 0.96 1824 1.96 0.964 410 2.05 0.94

Receive feedback about your teaching 
strategies

2221 2.33 0.81 1810 2.36 0.81 410 2.18 0.82

Collect and analyze evidence about 
pupils’ learning

2235 2.10 0.88 1824 2.14 0.86 410 1.91 0.92

Test out findings from educational 
research about pupils’ difficulties

2233 1.24 0.88 1822 1.21 0.85 410 1.36 1.00

Develop strategies to reflect upon your 
professional knowledge

2228 2.14 0.87 1822 2.17 0.84 405 1.97 0.98

Demonstrate that you could apply the 
teaching methods

2228 2.35 0.80 1822 2.36 0.80 405 2.30 0.84

Source: TEDS-M Future Teachers of Primary Mathematics Questionnaire, Question 13, Part 
B. The scale is 0 = Never, 1 = Rarely, 2 = Occasionally, 3 = Often
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Chapter 5
Developing Diverse Teachers: Analyzing 
Primary Mathematics Teacher Education 
Programs Prioritizing Selection of Diverse 
Future Teachers

James Pippin

Abstract Education research indicates that the academic achievement and school 
experiences of marginalized students improve when they have diverse teachers. 
Therefore, many national and state governments have implemented policies to 
recruit and prepare a more diverse group of teachers. However, little research has 
explored programs that prepare future primary mathematics teachers from margin-
alized populations in less developed or non-Western countries. This chapter 
describes variation in the selection policies and goals of these programs, as well as 
future teachers’ reported opportunities to learn to teach diverse students in the 
United States, Chinese Taipei,  Philippines, and Thailand. Results indicate some 
diversity among future teachers and alignment between program goals and teacher- 
reported opportunities to learn to teach diverse students.

Introduction

Due to greater access to education, international migration, and demographic shifts, 
teachers in many countries are working in schools with increasingly diverse popula-
tions of students (OECD, 2010; UNESCO, 2014). In many of these contexts, 
achievement gaps persist between traditionally marginalized students and their 
more advantaged classmates (Clark, 2014). Facing challenges to educational access, 
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marginalized children often are unable to enroll in or complete primary school 
(Sabates, Akyeampong, Westbrook, & Hunt, 2010).

While any approach to minimizing or eliminating student achievement gaps and 
drop-out rates must be multipronged, one strategy is to develop a diverse teacher labor 
force that includes more teachers from marginalized populations (Villegas & Davis, 
2007, 2008; Villegas & Irvine, 2010). Given the different regions and countries included 
in this study, it is important to note here that the term “diverse” or “marginalized” can 
be understood differently within and across cultures and countries. For example, schol-
ars from the United States often highlight differences or diversity in teachers’ racial, 
ethnic, or linguistic backgrounds or characteristics while those in countries with more 
homogeneous populations might focus more on differences in socioeconomic status. 
Clearly there are other important indicators of diversity as well, including age, gender, 
sexual orientation, disability, location, religion, and refugee status, to name a few. In 
this chapter, I generally use the terms “diverse” or “diversity” to refer to these charac-
teristics and “marginalized” to refer to individuals or groups who traditionally experi-
ence disadvantages related to these characteristics.

A growing body of literature suggests that teachers from marginalized popula-
tions can serve as role models for marginalized students (Dee, 2005; Faez, 2012; 
Klopfenstein, 2005; Miller & Endo, 2005), are best positioned to understand and 
teach these students (Achinstein & Ogawa, 2011; Milner, 2006; Santoro & Reid, 
2006) and often agree to teach and remain in “hard-to-staff” districts or schools 
(Achinstein, Ogawa, Sexton, & Freitas, 2010; Santoro & Reid, 2006). Perhaps most 
importantly, their presence can improve the achievement and school experiences of 
marginalized students (Dee 2004; Egalite, Kisida, & Winters, 2015).

Despite the advantages just cited, teachers from marginalized populations are 
underrepresented in schools in the United States (Boser, 2014; Ingersoll & May, 2011; 
Villegas, Strom, & Lucas, 2012) and abroad (OECD, 2010; Yen, 2009). In the United 
States, teachers from marginalized populations are also underrepresented in content 
areas (e.g. bilingual, mathematics, and science education) that are considered critical 
to the academic success of marginalized students (Flores, Clark, Claeys, & Villarreal, 
2007). Given the benefits to these students of learning from qualified teachers from 
diverse populations and the importance of addressing achievement gaps in key content 
areas at the primary level, recruiting and preparing knowledgeable and diverse pri-
mary teachers is an important task for policymakers and educators globally.

In an effort to increase the number, quality, and diversity of teachers in America, 
the U.S.  Department of Education (2010) recently launched a national teacher 
recruitment campaign. At least 31 states in the United States have also implemented 
a range of policies and programs to recruit and prepare teacher candidates from 
marginalized populations (Villegas et  al., 2012). Governments in other countries 
also acknowledge the need to implement policies and programs that prepare greater 
numbers of teachers from marginalized populations. For example, Australia 
(Commonwealth of Australia, 2003), Canada (Ryan, Pollack, & Antonelli, 2009), 
the Netherlands (Wolff, Severiens, & Meeuwisse, 2010), and New Zealand (Howard, 
2010) have implemented such policies. Yet countries with these policies and pro-
grams are typically highly-developed and/or Western countries. Little is known 
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about programs which select and prepare future teachers from marginalized popula-
tions in less-developed countries or in other regions of the world.

One region that has been largely unexamined is Asia. Although numerous news 
reports inform readers of the superior test scores demonstrated by students in China 
(Shanghai), South Korea, Japan, Singapore, and Chinese Taipei on international 
standardized tests (e.g. Coughlin, 2015), there is considerable variation in the edu-
cation systems, student populations, and preparation of teachers throughout the 
region. Therefore, in addition to the United States, which has a history of 
 implementing diversity oriented policies, this study analyzes data from—Chinese 
Taipei, Philippines, and Thailand—which represent this variation across the region.

In addition to a lack of literature regarding programs that prepare teachers from 
marginalized populations in Asia, it is unclear whether and how these programs 
meet their goals in terms of preparing future primary teachers who have opportuni-
ties to learn about, and are prepared to teach, marginalized students.

This chapter draws upon the literature regarding teacher diversity and teacher 
education for marginalized populations to consider the following research 
questions:

 1. What are the selection criteria and program goals of teacher preparation pro-
grams that emphasize the selection of future primary mathematics teachers from 
marginalized populations in the United States, Chinese Taipei, Philippines, and 
Thailand?

 2. Do these programs meet their selection and program goals regarding future pri-
mary mathematics teachers’ opportunities to learn about, and preparedness to 
teach, marginalized children?

To answer these questions, I analyze nationally representative data from the 
Teacher Education Development Study in Mathematics (TEDS-M), a large- 
scale cross-national study of teacher preparation programs and future mathematics 
teachers. I hypothesize that future primary teachers in programs that emphasize the 
selection of candidates from marginalized populations will report more opportuni-
ties to teach students from disadvantaged backgrounds, as well as those with behav-
ioral or emotional problems and learning disabilities. These future teachers will 
likely have fewer opportunities to learn to teach gifted students and those with phys-
ical disabilities.

 Literature Review

Education researchers identify two primary reasons for increasing the diversity of 
the teacher workforce: demographic and democratic imperatives (Achinstein & 
Ogawa, 2011). The demographic imperative arises from the persistent gap between 
the backgrounds of students and their teachers. For example, in the United States, 
students of color make up 45% of the student population, while teachers of color 
only make up 17% of the teacher work force (Boser, 2011). In fact, the same report 
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notes that every state in the United States has a teacher diversity gap (i.e., difference 
between the percentage of students of color and teachers of color). Internationally, 
similar teacher diversity gaps are increasing throughout countries in the Organization 
for Economic Cooperation and Development (OECD). In Australia, for instance, 
23% of school children speak a language other than English and 4% of children are 
from Indigenous populations; however, only 13% of teachers are from non-English 
speaking backgrounds and less than 1% are from Indigenous populations 
(Cruickshank, 2004; Santoro, 2015). Policymakers in these countries recognize a 
need for coherent policies and plans to attract, develop, and retain teachers from 
marginalized populations (Keane & Heinz, 2016; OECD 2010), highlighting the 
democratic imperative to improve educational experiences and outcomes (e.g., 
achievement and drop-out rates) of marginalized students (Achinstein & Ogawa, 
2011).

Within the past 15 years, several studies have found evidence that teachers from 
marginalized populations are instrumental in addressing this democratic imperative. 
First, teachers from marginalized populations often serve as role models for margin-
alized students. In fact, studies of pre-service and in-service teachers of color indi-
cate that these teachers entered the profession with the intent to serve as role models 
for students of color (Villegas et al., 2012). The intentions of teachers of color to be 
role models for their students seem to have the intended outcomes. For example, 
Miller and Endo (2005) conducted a qualitative study of eight students of color 
(three of the participants identified as Asian, two as African-American, and three as 
Latin American) enrolled in a teacher education program at a large Midwestern 
university in the United States. The authors found that participants were strongly 
influenced to become teachers by their own family members who were teachers and 
by the teachers of color they had in school. Teachers in these studies support the 
idea that increasing the proportion of teachers from marginalized populations in 
schools can have a positive influence on students by more accurately representing 
the population, demonstrating a more equitable distribution of power in society, and 
presenting possibilities of a different future. Scholars in other countries have found 
similar results. For example, Santoro and Reid (2006) conducted 3-year longitudi-
nal case studies of 25 newly graduated teachers from Indigenous populations and 
found that these teachers were effective cultural experts (e.g., facilitating students’ 
understanding of Indigenous content), cultural bridges between Indigenous and 
non-Indigenous students and colleagues, and role models for students from 
Indigenous populations.

Teachers from marginalized populations may also be best positioned to under-
stand and teach marginalized students (Achinstein & Ogawa, 2011). Drawing on the 
work of scholars like Ladson-Billings (1994) and Gay and Kirkland (2003) in a 
qualitative study of educational researchers, Milner (2006) highlights the culturally 
informed relationships often cultivated between students and teachers of color in the 
United States. These relationships develop because of teachers’ insider awareness 
and understanding of students’ lived experiences in and outside the classroom. 
Relationships with students enable teachers to engage more meaningfully with par-
ents as well, which in turn reinforces success with students. Faez (2012) found simi-
lar results in Canada; in a mixed-methods study of 25 culturally and linguistically 
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diverse teaching candidates from Ontario University, the author found evidence that 
compared to their classmates, these candidates tended to be more empathetic 
towards English language learners. As a result of their own personal and profes-
sional experiences learning the language, they were able to better understand and 
meet the needs of their English language learners.

The intention to serve as role models and engage in culturally informed relation-
ships seems to encourage teachers from marginalized populations to agree to teach 
and remain in hard-to-staff districts or schools (Achinstein et al., 2010). In fact, a 
recent analysis of data from the Schools and Staffing Survey found that U.S. teach-
ers from marginalized populations are two to three times more likely than other 
teachers to work in schools in urban communities and schools characterized by high 
poverty and large numbers of minority students (Ingersoll, Merrill, & Stuckey, 
2014). Similarly, Santoro and Reid (2006) noted that due to cultural norms of com-
munity, Australian teachers from Indigenous populations may be more likely than 
non-Indigenous teachers to remain in teaching positions located in schools near 
their ancestral lands.

Perhaps most importantly, recent studies indicate that teachers from marginal-
ized populations can improve the achievement and school experiences of marginal-
ized students. For example, Dee (2004) analyzed data from Tennessee’s Project 
STAR large-scale randomized experiment, which randomly assigned both students 
and teachers to small class sizes, regular class sizes, and regular class sizes where 
the teacher had the help of an aide. The random assignment of teachers and students 
offered a unique opportunity to examine educational outcomes of students paired 
with a teacher from their own race. Findings indicated that exposure to a teacher 
from the same race resulted in significant achievement gains for Black and White 
students (Dee, 2004).

Klopfenstein (2005) analyzed the Texas Schools Microdata Panel (TSMP) data, 
which includes a sample of 20,091 Black high school geometry students (9,120 
males, 10,971 females) in grades 9–11 who attended Texas high schools between 
1997 and 1998, to determine the likelihood that a Black math student would choose 
to enroll in a rigorous math class the following year if he/she had a Black teacher. 
The author found that as the proportion of female Black math teachers increased by 
one standard deviation above the mean, the probability of male Black students 
enrolling in subsequent rigorous math classes increased by 9.6%. Additionally, 
increasing the proportion of male Black math teachers by one standard deviation 
above the mean increased the probability that female Black students enrolled in 
rigorous math classes by 6.2%.

Finally, Egalite et al. (2015) analyzed student data from the universe of public 
school students taking the Florida Comprehensive Assessment Test (FCAT) in 
grades 3–10 between the years of 2001 and 2009. More than 2.9 million students 
linked to 92,000 teachers are included in the dataset. The authors found significant 
positive impacts of a race match between students and teachers in reading (0.005 
SD) and math (0.013 SD) in the primary grades. The impact was higher for Black 
students (0.019 SD in math and 0.004 SD in reading). The authors noted that while 
these numbers may seem small, they represent achievement from just one year.
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It is important to recognize that these studies do not imply that teachers from 
majority populations cannot be effective teachers of diverse students or that teachers 
of color are necessarily effective with students of color (Achinstein et al., 2010). 
Many have argued that all teachers should experience preparation programs that 
provide opportunities to learn knowledge and practices that enable them to 
 effectively teach marginalized students (e.g., Gay, 2002; Ladson-Billings, 2000). 
International scholars have drawn similar conclusions; for example, in Canada 
(Faez, 2012), results indicated that high levels of empathy for English language 
learners found among linguistically and culturally diverse teachers were not neces-
sarily associated with high levels of inclusive pedagogies or ideology. Similarly, in 
Australia (Santoro & Reid, 2006), teachers from Indigenous populations expressed 
frustration with their perpetual status as cultural representatives in schools and 
argued that all teachers should be prepared to teach marginalized students. Scholars 
and policymakers alike have worked to set standards for teacher preparation pro-
grams that would accomplish this task.

In the past two decades, numerous education organizations in the United States 
have sought to define the standards and characteristics of exemplary teacher prepa-
ration programs (e.g., Council for the Accreditation of Educator Preparation, 2015; 
National Commission on Teaching and America’s Future, 1996; National Council 
on Teacher Quality, 2015; Teacher Education Accreditation Council, 2009). During 
this time, education scholars have also conducted a host of studies on teacher prepa-
ration programs (see Cochran-Smith & Villegas, 2015 and Cochran-Smith et al., 
2015 for extensive reviews). Through these efforts, several characteristics of exem-
plary teacher preparation programs—those that produce teachers who are prepared 
to teach in ways that are learner-centered and learning-centered (Darling-Hammond, 
2000)—have emerged.

Teachers educated in exemplary programs are prepared to teach students from a 
range of backgrounds, needs, and interests in ways that support deep thinking and 
learning that is demonstrated in content proficiency. Research indicates that pro-
grams producing teachers with such skills tend to have some features in common: 
They (a) carefully oversee student teaching experiences, (b) match the student 
teaching experiences with their likely teaching assignments, (c) require substantial 
coursework in reading and mathematics, (d) provide opportunities to learn specific 
practices that are then used in student teaching, (e) provide opportunities to learn 
about the local curriculum, (f) require a capstone project, and (g) have a significant 
number of tenured faculty (Darling-Hammond, 2010).

Villegas and Irvine (2010) helpfully identified five practices of effective teachers 
of students of color: having high expectations of students, using culturally relevant 
teaching, developing caring and trusting relationships with students, confronting 
issues of racism through teaching, and serving as advocates and cultural brokers. 
Other studies found that engaging preservice teachers in sustained reflection about 
diversity and social justice and providing field experiences in which they learn and 
build on cultural and linguistic strengths of students can prove helpful in limiting 
discrimination (Sleeter & Owuor, 2011).

Akiba (2011), analyzing pre and post surveys of 243 pre-service teachers enrolled 
in diversity courses and accompanying field experience, found three characteristics 
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of teacher preparation programs that were related to positive changes in future 
teachers’ beliefs about diversity in personal and professional contexts: a focus on 
the classroom as a learning community, instructors who modeled constructivist and 
culturally-responsive teaching, and field experiences with opportunities for learning 
about and understanding diverse students.

Finally, focusing on a new teacher education project in the highly diverse city of 
Auckland, New Zealand, Cochran-Smith et al. (2016) argued that there are six prac-
tices teacher education programs can adopt to put equity at the center. These prac-
tices include (a) selecting content that is worthwhile and then organizing 
opportunities to learn that are aligned with content and outcomes; (b) connecting 
content to students’ lives and backgrounds; (c) facilitating supportive learning- 
centered environments; (d) supporting teaching and learning with evidence; (e) pro-
viding professional engagement opportunities and an inquiry stance; (f) and 
recognizing that various classroom, school, and societal challenges contribute to 
inequality.

These studies beg the question of whether equity-focused teacher preparation 
programs have similar goals across regions and if future teachers in these programs 
recognize and reach these goals.

 Methods

To answer the research questions, I use descriptive statistics and tests of mean dif-
ferences to analyze data from the International Association for the Evaluation of 
Educational Achievement’s (IEA) Teacher Education and Development Study in 
Mathematics (TEDS-M). TEDS-M is a 17-country international comparative study 
of how primary and secondary future teachers are prepared to teach mathematics, 
the mathematical and pedagogical knowledge gained in their preparation programs, 
the programs in which they learn to teach, and the policies, practices, and contexts 
that influence their development (Tatto et al., 2009). TEDS-M includes nationally 
representative cross-sectional data from nearly 25,000 future teachers of mathemat-
ics (more than 15,000 future primary teachers and over 9,000 future secondary 
teachers) and nearly 5,000 teacher educators working in 500 teacher preparation 
institutions (with 451 preparing primary teachers and 339 preparing secondary 
teachers) (Tatto, 2013).

 Sampling Procedures

TEDS-M used a stratified multi-stage probability sampling design for surveys of the 
two groups studied here: (a) future primary school teachers of mathematics in their 
last year of teacher preparation and (b) the institutions in which these teachers received 
their preparation (Dumais, Meinck, Tatto, Schwille, & Ingvarson, 2013). TEDS-M 
researchers first randomly selected teacher preparation institutions in each country 
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and then randomly selected future teachers from a list of appropriate future teachers 
(e.g., primary level, last year of preparation program, etc.) within each institution. The 
target population of teacher preparation institutions was defined as the “set of second-
ary or post-secondary schools, colleges, or universities offering structured opportuni-
ties to learn (i.e., a program or programs) on a regular and frequent basis to future 
teachers of mathematics within a teacher preparation route” (Dumais et al., 2013, 84). 
The target population of future teachers included those future teachers in their last 
year of preparation who were “enrolled in an institution offering formal opportunities 
to learn to teach mathematics, and explicitly intended to prepare individuals qualified 
to teach mathematics in any of Grades 1–8” (Dumais et al., 2013, 84).

 Sample

TEDS-M researchers set the minimum required sample sizes for each participating 
country at 50 teacher preparation institutions per level and 400 future teachers per 
level (Dumais & Meinck, 2013). To address the research questions for this study, I 
focus on the United States, Chinese Taipei, Philippines, and Thailand. To serve the 
purposes of this study, I narrowed the sample to the institutions that had an equity 
focus, identifying institutions that reported that selecting future primary teacher 
candidates from groups underrepresented in the teaching profession was somewhat 
important or very important (item MIC002G on the Institutional Program 
Questionnaire). Table 5.1 describes the final sample sizes for each country in this 
study.

Because of the complexity of the sampling design, estimation weights were 
developed for the surveys of teacher preparation institutions and future primary 
teachers of mathematics. All analyses in this study used the appropriate institu-
tional- and teacher-level weights.

 Measures

Institutional and future primary teacher data in TEDS-M were collected through the 
Institutional Program Questionnaire (IPQ) and the Future Teachers’ Questionnaire 
(FTQ). These instruments were developed through a collaboration among the 
International Study Center at Michigan State University (MSU), the Australian 

Table 5.1 Final sample sizes 
for preparation programs and 
future primary mathematics 
teachers (weighted)

Country/Region Institutions Future Primary Teachers

Chinese Taipei 8 1,619
Philippines 31 1,177
Thailand 30 753
United States 173 6,481
Total 242 10,030
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Council for Educational Research (ACER), and the national research coordinators 
(NRCs) in each country. The instruments were extensively tested in both a pilot 
study in 2005 and a field trial in 2006 and were designed to use parallel questioning 
where appropriate to facilitate comparison of constructs (Tatto, Rodriguez, 
Ingvarson, et al., 2013). While all TEDS-M instruments were developed in English, 
researchers in the 17 national centers followed rigorous and extensive translation 
and translation verification processes to ensure the highest quality translation and 
cultural adaptations, while maintaining international comparability (Malak- 
Minkiewicz & Berzina-Pitcher, 2013).

The Institutional Program Questionnaire is comprised of questions in nine catego-
ries: program description, future teacher background, selection policies, program con-
tent, field experience, program accountability and standards, staffing, program 
resources, and reflections on the program (Tatto, Rodriguez, Ingvarson, et al., 2013). Of 
particular interest to this study were the selection policies and the program goals. More 
specifically, this study is concerned with the consideration that institutions gave to vari-
ous future teacher characteristics when selecting program candidates. In addition, the 
study examines the program goals regarding preparing future teachers with knowledge 
of pupils and diversity. Table 5.2 outlines the variables of interest and how they were 
measured. Because no program-level scales were developed, I analyze individual items.

The Future Teacher Questionnaire (FTQ) includes questions on future teachers’ 
general background, program learning opportunities, and beliefs about teaching and 
learning mathematics. With respect to teachers’ background, the FTQ gathers infor-
mation on age, gender, socioeconomic status, diversity, educational attainment, aca-
demic achievement, reasons for becoming a teacher, and future in teaching. Program 
learning opportunities included future teachers’ reporting on opportunities to learn 
a range of mathematics topics, mathematics education, education pedagogy, teach-
ing for diversity, school and practicum experience, and coherence of teacher prepa-
ration program. Finally, the FTQ asked future teachers to report their beliefs about 
the nature of mathematics, learning mathematics, mathematics achievement, their 
own preparedness for teaching mathematics, and program effectiveness.

This study is concerned with future teachers’ demographic characteristics and 
opportunities to learn how to teach diverse students. Table 5.3 outlines the FTQ 
items and measures for examined constructs.

 Survey Administration

In each participating country/region, a national research coordinator (NRC) directed 
the implementation of TEDS-M. The NRCs were aided by instructions from a nine- 
unit series of administration manuals explaining procedures for (a) conducting the 
field test, (b) contacting institutions, (c) verifying instrument translation, (d) pro-
ducing, assembling, and laying out the instrument, (e) listing and sampling within 
the institution, (f) administering the survey, (g) scoring constructed –response items, 
(h) analyzing syllabi, and (i) creating data files (Brese, Becker, Berzina-Pitcher, 
Tatto, & Carstens, 2013).
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 Analysis

To describe and compare the selection criteria of these equity-focused preparation 
programs, I tested mean differences between countries regarding the emphasis 
placed on the selection of future teachers from underrepresented populations and 
the emphasis placed on other selection criteria, including gender, age, region, over-
all achievement, demonstrated achievement, national exam scores, institutional 
exam scores, and interviews. To describe program goals, I generated descriptive 
statistics of the variables MID011A-AB.  These 28 items (i.e., variables 
MID011A-AB) asked respondents to characterize the weight (e.g., little or no 
weight, some weight, moderate weight, or major weight) given to a series of pro-
gram goals as identified in the teacher preparation program requirements, 

Table 5.2 Institutional program questionnaire: constructs and measures of interest

Content Construct Measure

Selection policiesa Educational 
attainment

Overall level of attainment (grades) in final 
year of secondary school

Educational 
performance

Performance on national or state exam at end 
of final year of secondary school
Performance on institutional exam for 
admission

Suitability for 
teaching

Including personal qualities, experience, and 
motivation (assessed through interviews or 
application)

Math achievement Demonstrated math achievement
Gender Male/Female
Under-represented 
groups

Belonging to groups under-represented in the 
teaching profession

Order of application Order in which candidates apply
Location Region of residence
Age In years

Program goals: 
knowledge of pupils and 
diversityb

Child development Studying child development
Behavioral or 
emotional problems

Specific strategies for teaching pupils with 
behavior or emotional problems

Learning disabilities Specific strategies and curriculum for teaching 
pupils with learning disabilities

Gifted pupils Specific strategies and curriculum for teaching 
gifted pupils

Diverse backgrounds Specific strategies and curriculum for teaching 
pupils from diverse cultural backgrounds

Physical disabilities Accommodating the needs of pupils with 
physical disabilities

Disadvantaged pupils Working with children from poor or 
disadvantaged backgrounds

aResponse options: Not considered, Not very important, Somewhat important, or Very important
bResponse options: Little or no weight, Some weight, Moderate weight, or Major weight
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guidelines, or other documentation. I paid special attention to seven items 
(MID011P-V) of the 28 which asked specifically about “Knowledge of Pupils and 
Diversity.” For example, one item asked respondents to characterize the weight that 
the program gave to teaching future teachers to develop specific strategies and cur-
riculum for teaching students from diverse cultural backgrounds.

Next, to determine if these equity-focused programs are meeting their selection 
and program goals, I used descriptive statistics and tests of mean differences to 
analyze the reports of future primary mathematics teachers in these programs 
regarding their demographics and opportunities to learn about, and preparedness to 
teach, marginalized children. Demographic characteristics used included language, 
gender, age, socioeconomic status, parents’ education, secondary school grades, 
reason for becoming a teacher, future in teaching, and program effectiveness. I also 
present descriptive statistics on future primary teachers’ reports on the extent to 

Table 5.3 Future teacher questionnaire: constructs and measures of interest

Content Construct Measure

General 
background

Age In years
Gender Male/female
Socioeconomic status Number of books in future teachers’ home, ranging 

from “0-10” to “more than 200 books”
Possession of specific items, including eight 
common items (e.g., computer)
Highest educational attainment of mother
Highest educational attainment of father

Diversity Frequency of speaking the language of the test at 
home, ranging from “always” to “never”

Academic 
achievement

Highest year or grade of mathematics studied

Most advanced mathematics course studied
Grades received in secondary school

Reason for becoming 
a teacher

Included nine possible choices rated by significance

Future in teaching Included five choices
Opportunities to 
learna

Teaching diverse 
students

Develop strategies for teaching students with 
behavior and emotional problems
Develop specific strategies and curriculum for 
teaching pupils with learning disabilities
Develop specific strategies and curriculum for 
teaching gifted pupils
Develop specific strategies and curriculum for 
teaching pupils from diverse backgrounds
Accommodate the needs of pupils with physical 
disabilities
Work with children from poor or disadvantaged 
backgrounds

aResponse options: Never, Rarely, Occasionally, or Often
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which they had opportunities to learn about teaching students with behavioral or 
emotional problems, learning disabilities, physical disabilities, and those who are 
gifted, disadvantaged, or have diverse cultural backgrounds.

In all analyses, I used the International Association for the Evaluation of 
Educational Achievement’s (IEA) IDB Analyzer, a program designed by the IEA 
Data Processing and Research Center that allows researchers to use SPSS software 
to analyze IEA datasets without writing computer code. Importantly, the IDB 
Analyzer automatically accounts for the nested structure of the TEDS-M dataset 
when computing statistics and standard errors. For program-level analyses, I used 
institutional weights and the TARGETP (i.e., target primary) variable to limit analy-
sis to programs preparing primary teachers (see Table 5.1 for final institution and 
future teacher sample sizes). For teacher-level analyses, I used teacher weights and 
the TARGETP variable. The mean differences were tested for significance based on 
t-tests using the pooled standard errors estimated with the IDB Analyzer, and using 
an Excel macro developed by the IEA to compute the standard error of the differ-
ence (Gonzalez, 2010) using formulas commonly found in standard statistics 
textbooks.

 Country/Region Backgrounds

Before describing the results of the analysis, it is important to provide brief back-
ground summaries of each country/region’s population and economy, as well as 
statistics regarding their education systems and teachers working within those 
systems.

 Chinese Taipei

From Table 5.4, it is clear that Chinese Taipei has a small and relatively homogeneous 
population that enjoys a high-income level and a fairly equitable distribution of that 
income (a Gini coefficient of 34.2, ranking 94th out of 141 countries with respect to 
income inequality; CIA World Factbook, 2014). In fact, very few people in Chinese 
Taipei live below the poverty line (1.5%). While educational statistics for Chinese 
Taipei are few, it is clear that people enjoy a fairly high level of literacy (96.1%).

In spite of its wealth and relative homogeneity, there is still a need for a more 
diverse teacher labor force. For example, Liu and Tsung (2007) focus on the aborig-
inal population and cite a number of challenges for providing equitable educational 
opportunities to marginalized children in Indigenous communities: low household 
income, few educational programs in mountainous regions, and barriers for teach-
ers gaining access to professional development. The authors argue that teacher edu-
cation programs should recruit more aborigine teachers, encourage all teacher 
candidates to work with aboriginal communities, and provide future teachers with 
the development opportunities necessary to effectively teach the students in these 
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Table 5.4 Country/Region background summaries, including population, economy, education, 
and teachers

Chinese Taipei Philippines Thailand United States

Populationa size (in 
millions)

23.3 107.7 67.7 318.9

Ethnic groups Taiwanese 
(including 
Hakka) 84%

Tagalog 28.1% Thai 95.9% White 72.4%
Cebuano 13.1% Burmese 2% Black 12.6%

Mainland 
Chinese 14%

Ilocano 9% Other 1.3% Asian 4.8%
Bisaya/Binisaya 
7.6%

Unspecified 
0.9%

Amerindian and 
Alaska native 0.9%Indigenous 2%

Hiligaynon Ilonggo 
7.5%

Native Hawaiian 
and other Pacific 
islander 0.2%

Bikol 6% Two or more races 
2.9%Waray 3.4%

Other 25.3%
  % Below 

poverty line
1.5 26.5 13.2 15.1

  % Urban n/a 48.8 34.1 82.4
Economya, b

  Gross domestic 
product (PPP)

$39,600 $4,700 $9,900 $52,800

  Income level2 High Lower middle Upper middle High
  Gini coefficient 34.2 44.8 39.4 45.0
Educationc

  Expenditures, % 
GDP

n/a  2.7  5.8  5.4

  % Literate 96.11 95.4 93.5 99.0
  % Net primary 

enrollment, male
n/a 87.9 90.0 95.4

  % Net primary 
enrollment, 
female

n/a 89.5 89.4 96.1

  % Net 
secondary 
enrollment, male

n/a 56.4 69.9 88.8

  % Net 
secondary 
enrollment, 
female

n/a 66.9 78.4 90.2

Teachersd

  % Female, 
primary

n/a 89.7 59.7 87.2

  % Female, 
secondary

n/a 76.4 51.4 62.0

(continued)
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communities. It appears that the Ministry of Education would agree with this assess-
ment; in its Objectives for 2015, the ministry states that it seeks to “intensify the 
education and training of highly-skilled Indigenous people and increase the number 
of qualified Indigenous teachers” (Republic of China Ministry of Education, 2015, 
paragraph 8).

The Teacher Education Act of 1994 outlines the basic admissions criteria set by 
the Ministry of Education for teacher education programs in Chinese Taipei. Hsieh, 
Lin, Chao, and Wang (2013) note, for instance, that students must be in their second 
(or higher) year of university before they can apply to a teacher preparation pro-
gram. However, the authors note that individual universities can set their own selec-
tion processes, which may include test scores of knowledge, language, and attitudes, 
or evaluations of character and extracurricular activities.

 Philippines

In contrast to Chinese Taipei, the Philippines has a large, mostly rural population 
that is highly diverse in terms of race/ethnicity. Filipinos have the lowest income 
among the four countries in this study, and a relatively unequal distribution of that 
income (Gini coefficient of 44.8, ranking 42nd out of 141 countries; CIA World 
Factbook, 2014). Indeed, more than one-fourth of Filipinos live below the poverty 
line. Although Filipinos place a high value on educational attainment, the govern-
ment spends just 2.7% of Gross Domestic Product (GDP) on education. Literacy 
rates are high, but net primary and secondary enrollments are the lowest in the 
sample. Nearly 90% of primary teachers and more than 75% of secondary teachers 
are female, and class sizes (based on headcount) are the largest in the countries for 
which data is available.

Scant literature exists on teacher diversity in the Philippines, but existing reports 
indicate large disparities in the distribution of educational opportunities for students 
within and across regions of the country (Mesa, 2007). The clear diversity of the 
country’s population also suggests that a more diverse teacher labor force may ben-
efit marginalized students across the country.

Table 5.4 (continued)

Chinese Taipei Philippines Thailand United States

  Pupil teacher 
ratio, primary

n/a 31.4 16.3 14.4

  Pupil teacher 
ratio, secondary

n/a 34.8 19.9 14.7

aCIA World Factbook – https://www.cia.gov/library/publications/the-world-factbook/
bWorld Bank – http://data.worldbank.org/country/
cUNICEF – http://www.unicef.org/infobycountry/
dUNESCO Institute for Statistics (UIS) – http://data.uis.unesco.org/
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In recent years, teacher education students in the Philippines have come from 
economically disadvantaged families. Ogena, Brawner, and Ibe (2013) note that this 
phenomenon is due to the historically low entrance standards and low tuition that 
have made teaching a popular field of choice among many Filipinos. Efforts to 
screen candidates through examinations and increase standards have largely failed, 
and requirements to enter education programs remain lower than the requirements 
to enter most other university programs (Ogena et al., 2013).

 Thailand

Thailand has a smaller and more homogeneous population than the Philippines. As 
of 2008, roughly 142,000 Burmese refugees lived in nine camps along the Thailand- 
Burma border (Oh & van der Stouwe, 2008), but most of the country’s population 
are Thai. Like the Philippines, Thailand is largely a rural society with low levels of 
income with average distribution compared to other countries (Gini coefficient of 
39.4, ranking 64th out of 141 countries; CIA World Factbook, 2014); nevertheless, 
more than 13% of the population lives below the poverty line. Of the countries in 
this sample, Thailand reports the largest proportion of Gross Domestic Product 
(GDP) spending on education, and net primary and secondary enrollment rates are 
higher than in the Philippines. However, literacy rates in Thailand are the lowest of 
the four countries sampled. Just over half of primary and secondary teachers are 
female, and class sizes (based on headcounts) appear to be quite small.

Because of the relatively homogeneous population of Thailand, policymakers are 
more concerned with the changing nature of the economy from an agriculture-based 
one to a service-oriented one; clearly, this change requires changes to the education 
of the country’s workforce (Dechsri & Pativisan, 2013). Dechsri and Pativisian note 
that to achieve this goal, primary education in Thailand focuses on giving children 
the knowledge and skills to negotiate social change and live a peaceful life, while 
secondary education seeks to help students explore their abilities, aptitudes, and 
interests and prepares students for new jobs and further study.

Preparing students for Thailand’s social and economic future presents teachers 
with numerous challenges, including transitioning to child-centered instruction, 
helping students develop critical thinking skills, and increasing time spent on math 
and science curricula (Dechsri & Pativisan, 2013). Thailand’s increasingly market- 
based economy is also associated with growing income inequality.

 United States

The United States has the largest population in the sample, and it is moderately 
diverse in terms of race/ethnicity compared to the other three countries. Most 
Americans live in urban areas and enjoy the highest level of income of the countries 
in this study. However, compared to the other countries, income in the United States 
is the most unequally distributed (Gini coefficient of 45.0, ranking 41st out of 141 
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countries; CIA World Factbook, 2014), and more than 15% of the population lives 
below the poverty line. Literacy rates and net primary and secondary enrollment 
rates are the highest in this sample, and large proportions of teachers at all levels are 
female. Finally, class sizes in the United States (based on headcounts) are the lowest 
in the sample.

Policymakers in the United States have expressed a need for a more diverse 
teacher labor force. For example, Education Secretary Arne Duncan developed an 
initiative in 2010 to recruit and develop teachers from marginalized populations 
(Bireda & Chait, 2013). Furthermore, American scholars have conducted extensive 
research on the diversification of the teacher labor force (e.g., Achinstein et al., 2010).

 Results

The first research question of this study seeks to investigate the selection criteria and 
program goals of teacher preparation programs that emphasize the selection of 
future primary mathematics teachers from marginalized populations. Table  5.5 
presents descriptive statistics for the importance that equity-focused teacher prepa-
ration programs placed on each source of information used to select future primary 
teachers. 

Table 5.5 Importance of information used by equity-focused programs to select future primary 
teacher

Chinese Taipei Philippines Thailand United States
M SE(M) M SE(M) M SE(M) M SE(M)

Gender 1.60 (0.27) 2.16 (0.49) 1.45TU (0.12) 1.07 (0.04)
Age 1.27CP (0.32) 2.28PU (0.20) 2.00TU (0.18) 1.00 (0.00)
Region 1.13CP (0.16) 2.16PT,PU (0.18) 1.55 (0.14) 1.37 (0.17)
Overall 
achievement

1.40CP,CT (0.49) 3.70PU (0.20) 3.14TU (0.12) 2.36 (0.24)

Demonstrated 
achievement

1.40CP,CT,CU (0.35) 3.85PT,PU (0.13) 2.97 (0.16) 2.70 (0.14)

National exam 1.40CP (0.49) 3.79PT,PU (0.17) 2.67 (0.20) 2.45 (0.23)
Institutional exam 1.40CP,CT (0.49) 3.72 (0.20) 3.19 (0.17) 2.81 (0.41)
Interviews 4.00CT,CU (0.00) 3.93PT (0.09) 3.48 (0.09) 3.49 (0.17)

Note. Response options for each selection criteria: 1 = not considered, 2 = not very important, 3 = 
somewhat important, and 4 = very important. Statistically significant differences (p < .01) between 
countries/regions identified by superscript, where CP indicates a significant difference between 
Chinese Taipei and Philippines, CT indicates a significant difference between Chinese Taipei and 
Thailand, CU indicates a significant difference between Chinese Taipei and the United States, PT 
indicates a significant difference between Philippines and Thailand, PU indicates a significant dif-
ference between the Philippines and United States, and TU indicates a significant difference 
between Thailand and the United States
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In Chinese Taipei, equity-focused teacher preparation programs placed relatively 
little importance on any of these sources of information except for the interviews. 
Here, interviews refer to information gathered about the candidate’s suitability for 
teaching and may include items such as the person’s experience and personal quali-
ties. Notwithstanding the low emphasis placed on other sources of information, 
Chinese Taipei showed greater variation than other countries in the importance 
placed on candidates’ scores on exams and their overall achievement. In the 
Philippines, programs placed the greatest importance on interviews, but also con-
sidered achievement and exam scores to be quite important in the selection process. 
Programs in Thailand also placed the greatest importance on interviews, with insti-
tutional exams and overall achievement second. These programs appeared to be less 
interested in candidate scores on the national exam than the institutional exam. 
Programs in the United States also focused on the interview as the most important 
source of information, with achievement and exam scores trailing. The United 
States is the only country in which age and gender were not considered.

Looking across the four countries, the general pattern is that interviews of candi-
dates were, by far, the most important source of information for choosing future 
primary teacher candidates in equity-focused programs. Compared with other coun-
tries, interviews were especially important in Chinese Taipei, where results indicate 
statistically significant differences from Thailand and the United States. Gender, 
age, and region appear to matter little to these programs, except in the Philippines 
where they were significantly more important than the other countries/regions. A 
focus on gender, age, and region in the Philippines could indicate that teacher prepa-
ration programs are trying to recruit more male future teachers (89.7% of primary 
teachers are female) and future teachers from regions populated by minority groups. 
From these data, the rationale for selecting future teachers based on age is unclear. 
There was considerable variation across countries/regions in terms of the impor-
tance placed on achievement and examinations. Perhaps most notable was the little 
importance placed on these sources of information in Chinese Taipei.

Providing some insight into the information that is most important to equity- 
focused programs when selecting primary future teacher candidates, Table 5.6 high-
lights the weight that programs gave to seven aspects of knowledge of pupils and 
diversity: child development, children with behavioral or emotional challenges, 
children with learning disabilities, gifted pupils, pupils from different cultural back-
grounds, children with physical disabilities, and children from disadvantaged 
backgrounds.

In Chinese Taipei, equity-focused programs gave the most weight to ensuring that 
future teachers study child development in general and moderate weight to teaching 
children with behavioral and emotional problems and those from disadvantaged 
backgrounds. Programs in the Philippines also gave the most weight to child devel-
opment, but appear to give considerable weight to nearly all aspects of preparing 
teachers to teach diverse students. There also appears to be minimal variation across 
programs in terms of the weight given to these aspects of knowledge of diverse stu-
dents in the Philippines. Programs in Thailand gave the most weight to child devel-
opment, with behavioral and emotional challenges and learning disabilities 
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following. In the United States, child development, learning disabilities, and differ-
ent cultural backgrounds were quite similar in terms of their weight within pro-
grams. Learning to teach gifted pupils received the least weight in the United States.

Across all four countries, programs gave the least weight to teaching students 
with physical disabilities and gifted pupils. However, among countries/regions there 
were few statistically significant differences in program weight given to each item. 
Compared to the United States, equity-focused programs in Thailand placed greater 
emphasis on child development and programs in the Philippines concentrated more 
on gifted pupils. Programs in the Philippines also differed from those in Thailand in 
that they placed more weight on preparing future teachers to teach students with 
physical disabilities and disadvantaged backgrounds.

 Demographics of Future Primary Mathematics Teachers 
in Equity-Focused Preparation Programs

The second research question in this study investigates whether equity-focused 
teacher preparation programs met their selection and program goals regarding 
future primary mathematics teachers’ opportunities to learn about, and prepared-
ness to teach, marginalized children.

Table 5.7 presents demographic data of the future primary teachers in equity- 
focused programs in the four countries in this study. TEDS-M did not gather infor-
mation on future teacher ethnicity, but did ask respondents to indicate the frequency 
with which they speak the language of the test at home. Since the instruments were 

Table 5.6 Program weight given to each item within program goal: knowledge of pupils and 
diversity

Chinese Taipei Philippines Thailand United States
M SE(M) M SE(M) M SE(M) M SE(M)

Child development 3.47 (0.40) 3.59 (0.25) 3.53TU (0.10) 2.96 (0.17)
Behavioral/emotional 2.87 (0.23) 3.39 (0.28) 3.18 (0.14) 2.75 (0.16)
Learning disabilities 2.27 (0.38) 3.39 (0.28) 2.82 (0.16) 3.01 (0.24)
Gifted pupils 2.13 (0.37) 2.94PU (0.07) 2.68 (0.16) 2.38 (0.12)
Diff. cultural backgrounds 2.27 (0.32) 2.94 (0.07) 2.68 (0.18) 2.92 (0.18)
Physical disabilities 2.13 (0.37) 2.94PT (0.07) 2.46 (0.16) 2.57 (0.15)
Disadvantaged backgrounds 2.60 (0.42) 3.38PT (0.25) 2.55 (0.16) 2.78 (0.14)

Note. Response options for each item: 1 = little or no weight, 2 = some weight, 3 = moderate 
weight, and 4 = major weight. Statistically significant differences (p < .01) between countries 
identified by superscript, where CP indicates a significant difference between Chinese Taipei and 
Philippines, CT indicates a significant difference between Chinese Taipei and Thailand, CU indi-
cates a significant difference between Chinese Taipei and the United States, PT indicates a signifi-
cant difference between Philippines and Thailand, PU indicates a significant difference between 
the Philippines and United States, and TU indicates a significant difference between Thailand and 
the United States
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translated into the official or primary language of each country/region, one can 
assume that future teachers who speak a different language are more likely to be 
members of a marginalized population. Other variables indicating diversity are gen-
der, age, and number of books at home (an indicator of socioeconomic status).

In Chinese Taipei, future primary mathematics teachers in equity-focused prepa-
ration programs almost always spoke the language of the test at home, although 
respondents’ responses indicate that at least some future teachers sometimes spoke 
a different language at home. Twenty-six percent of future primary teachers in 
Chinese Taipei were male, the average age was 23 years, and they had on average at 
least one bookcase at home. More future primary teachers in the Philippines spoke 
a language different from the test language. Fourteen percent of these future teach-
ers were male, average age was 21 years, and they had an average of one shelf of 
books at home. Future teachers in Thailand tended to speak the language of the test 
most of the time. Twenty-seven percent of Thai primary future teachers were male, 
averaged 22 years, and had an average of one shelf of books. Finally, future teachers 
in the United States overwhelmingly reported always speaking the language of the 
test at home. Just 10 % were male, the average age was 24 years, and they averaged 
two bookcases at home.

Across the four countries/regions, most future primary teachers spoke the language 
of the test at home. However, future teachers in equity-focused preparation programs 
in the United States were the least diverse in terms of language; nearly all reported 
speaking the language of the test at all times. Future teachers in the Philippines were 
the most diverse in terms of language. In Chinese Taipei and Thailand, more than one-
fourth of teachers were male, proportions that are significantly different from 14% in 

Table 5.7 Demographic characteristics of future primary mathematics teachers in equity-focused 
preparation programs

Chinese Taipei Philippines Thailand United States
M SE(M) M SE(M) M SE(M) M SE(M)

Speak test 
language at 
homea

2.13CP,CT,CU (0.03) 2.94PT,PU (0.02) 1.95TU (0.04) 1.06 (0.02)

Genderb .26CP,CU (.02) .14PT (.01) .27TU (.01) .10 (.02)
Age in years 23.29CP,CT (0.20) 20.69PT,PU (0.17) 22.30TU (0.03) 24.47 (0.67)
Number of 
books at homec

3.54CP,CT,CU (0.07) 2.05PT.PU (0.04) 2.74TU (0.06) 4.02 (0.07)

Note. Statistically significant differences (p < .01) between countries/regions identified by super-
script, where CP indicates a significant difference between Chinese Taipei and Philippines, CT 
indicates a significant difference between Chinese Taipei and Thailand, CU indicates a significant 
difference between Chinese Taipei and the United States, PT indicates a significant difference 
between Philippines and Thailand, PU indicates a significant difference between the Philippines 
and United States, and TU indicates a significant difference between Thailand and the United 
States
aResponse options: 1 = Always, 2 = Almost Always, 3 = Sometimes, and 4 = Never
b0 = Female and 1 = Male, so mean can be interpreted as proportion male
cResponse options: 1 = none or few, 2 = one shelf, 3 = one bookcase, 4 = two bookcases, 5 = three 
or more bookcases
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the Philippines and 10% in the United States. Future teachers across the four countries 
were in their early twenties on average; yet future teachers in the United States and 
Chinese Taipei were significantly older than future teachers in other countries. Finally, 
in terms of socioeconomic status (as measured by number of books at home), there 
were significant differences between future teachers in Chinese Taipei and the United 
States, who reported having significantly more books at home (at least one bookcase 
full) than future teachers in the Philippines and Thailand.

 Opportunities to Learn about Pupil Diversity as Reported 
by Future Primary Mathematics Teachers in Equity-Focused 
Preparation Programs

Addressing programs’ ability to ensure that all teachers learn strategies to effec-
tively teach diverse students, the second research question investigates future pri-
mary teachers’ reports of their opportunities to learn content related to program 
goals for teaching diverse students. Here, aspects of student diversity considered 
include opportunities to learn to teach children with behavioral or emotional behav-
ioral challenges, students with disabilities, gifted pupils, those from different cul-
tural backgrounds, those who have physical disabilities, and those who come from 
disadvantaged backgrounds. Table  5.8 presents this data from future teachers in 

Table 5.8 Opportunities to learn to teach for diversity reported by future primary mathematics 
teachers in equity-focused preparation programs

Chinese Taipei Philippines Thailand United States
M SE(M) M SE(M) M SE(M) M SE(M)

Compositea 9.52CP,CT,CU (0.09) 11.85PT (0.10) 10.11TU (0.10) 11.35 (0.22)
Behavioral/emotionalb 2.60CP,CU (0.05) 3.39PT,PU (0.02) 2.67TU (0.05) 3.07 (0.10)
Learning disabilitiesb 2.45CP,CU (0.05) 3.17PT (0.07) 2.61TU (0.05) 3.15 (0.10)
Gifted pupilsb 1.81CP,CT,CU (0.05) 3.01PT (0.05) 2.45TU (0.05) 2.77 (0.11)
Diff. cultural 
backgroundsb

2.33CP,CU (0.04) 3.03PT (0.06) 2.27TU (0.05) 3.14 (0.07)

Physical disabilitiesb 1.93CP,CT,CU (0.06) 3.30PT,PU (0.05) 2.35TU (0.06) 2.73 (0.10)
Disadvantaged 
backgroundsb

2.71CP,CT,CU (0.06) 3.42PT (0.04) 2.90TU (0.04) 3.27 (0.10)

Note. Statistically significant differences (p < .01) between countries/regions identified by super-
script, where CP indicates a significant difference between Chinese Taipei and Philippines, CT 
indicates a significant difference between Chinese Taipei and Thailand, CU indicates a significant 
difference between Chinese Taipei and the United States, PT indicates a significant difference 
between Philippines and Thailand, PU indicates a significant difference between the Philippines 
and United States, and TU indicates a significant difference between Thailand and the United 
States
aRasch score scale where 10 is located at the neutral position
bResponse options: 1 = Never, 2 = Rarely, 3 = Occasionally, 4 = Often
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equity-focused programs in the  United States, Chinese Taipei, Philippines, and 
Thailand. This data includes teacher scores on a composite Rasch model scale (the 
row labeled “Composite” in Table 5.8) of these aspects of diversity, where 10 is 
located in the neutral position (Tatto, Rodriguez, Reckase, Rowley, & Lu, 2013).

In Chinese Taipei, the composite score for future teachers’ opportunities to learn 
to teach diverse students fell near the neutral location of 10. Future teachers in 
Chinese Taipei reported that they had the most opportunities to learn to teach stu-
dents from disadvantaged backgrounds, those who have behavioral or emotional 
problems, and those with learning disabilities. Yet, on average, they experienced 
these opportunities only occasionally. Future teachers in Chinese Taipei enjoyed 
fewer opportunities to learn to teach gifted pupils and student with physical disabili-
ties. In the Philippines, the composite score for learning to teach diverse students 
was nearly 12, indicating that future primary teachers in equity-focused programs 
had greater than average opportunities learn to teach diverse students. Filipino 
future teachers reported opportunities to learn about each type of diverse student at 
least occasionally, with the greatest frequencies for students from disadvantaged 
backgrounds, those who have behavioral or emotional problems, and those with 
physical disabilities. Thailand’s future teachers’ composite score was very close to 
neutral. Thai future teachers reported the most opportunities to learn to teach stu-
dents from disadvantaged backgrounds, those who have behavioral or emotional 
problems, and those with learning disabilities. Future teachers in Thailand had 
fewer opportunities to learn to teach students with different cultural backgrounds. In 
the United States, future primary teachers’ composite score of 11.35 indicated 
greater than average opportunities to learn to teach diverse students overall. 
American future teachers in equity-focused programs had the most frequent oppor-
tunities to teach students from disadvantaged backgrounds, those with learning dis-
abilities, and those with different cultural backgrounds. They had less frequent 
opportunities to teach students with physical disabilities.

Across the United States, Chinese Taipei, Philippines, and Thailand, future 
teachers reported the most opportunities to learn to teach students from disadvan-
taged backgrounds, those who have behavioral or emotional problems, and those 
with learning disabilities. Teaching gifted students and students with physical dis-
abilities were generally addressed less often in equity-focused programs. Future 
teachers in Chinese Taipei and Thailand reported the fewest opportunities to learn 
to teach diverse students. Looking at the composite Rasch score and individual 
items it is clear that future teachers in equity-focused programs in Chinese Taipei 
had the fewest opportunities to learn to teach diverse students.

 Discussion

The purpose of this study was to first describe the selection criteria and program 
goals of teacher preparation programs that emphasize the selection of future primary 
mathematics teachers from marginalized populations in the United States, Chinese 
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Taipei, Philippines, and Thailand. Furthermore, I sought to determine whether these 
programs met their selection and program goals in providing future teachers oppor-
tunities to learn about teaching diverse students. As noted earlier in the chapter, 
given the different regions and countries included in this study, it is important to note 
that the term “diversity” can be understood differently among and within cultures. 
The questionnaire items analyzed in this study include several indicators of the 
diversity of future teachers (language, age, gender, and socioeconomic status) and 
the students they are prepared to teach (behavioral and emotional challenges, learn-
ing disabilities, physical disabilities, giftedness, cultural background, and socioeco-
nomic status). Yet these indicators clearly do not cover all forms of diversity; others 
might include factors like parent education levels, distance to school, religion, and 
refugee status. Therefore, in the following sections I strive to pay careful attention to 
individual contexts when interpreting results across countries/regions.

 Chinese Taipei

Chinese Taipei is a developed society that does not have a very diverse population. 
It seems reasonable, then, that the demographic profile of future primary mathemat-
ics teachers indicates that on average candidates have relatively high socioeconomic 
status and almost always speak the language of the test at home. Yet the presence of 
an Indigenous population warrants attention to the educational opportunities that 
Indigenous students have to succeed. In fact, the Ministry of Education has declared 
its intent to intensify the education of Indigenous peoples and increase the number 
of qualified Indigenous teachers (Republic of China Ministry of Education, 2015). 
In addition, the government is moving to use the education system to “revitalize” 
the language and traditions of the Hakka, a “sub-group” of Han Chinese that com-
prises 20% of the population (Taiwan Today, 2015). The children of increasing 
numbers of migrants and foreign spouses, though still relatively few, also challenge 
future and in-service teachers to learn to teach a diverse student population. As a 
result, more teacher education programs are including multicultural education 
coursework, and the government encourages in-service teachers to also update their 
skills through such courses (Liu & Lin, 2011).

Given the efforts of policymakers and education scholars identified above, it 
seems appropriate that teacher preparation programs would attempt to teach all 
future teacher candidates how to teach diverse students. Even if proportions of 
diverse populations remain relatively small, educational research from the United 
States suggests that exposure to teachers from marginalized populations and multi-
cultural education practices supports the learning and social development of all 
students (Achinstein & Ogawa, 2011). The goals of equity-focused teacher prepara-
tion programs in Chinese Taipei appear to align with this research. As in  the 
Philippines and Thailand, programs in Chinese Taipei gave the most weight to the 
goal of overall child development for diverse students, as seen in Table  5.6. 
Additional goals included teaching students with behavioral or emotional problems, 
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those from disadvantaged backgrounds, and those with different cultural 
backgrounds.

When comparing future teachers’ reported opportunities to learn how to teach 
diverse students in Chinese Taipei, there was fairly close alignment with the program 
goals reported in Table 5.6. Future teachers reported the most opportunities to learn 
how to teach disadvantaged students, those with behavioral or emotional problems, 
those with learning disabilities, and those with different cultural backgrounds.

 Philippines

The Philippines is the poorest and most diverse of the countries/regions studied. Future 
teachers in the Philippines also had the lowest socioeconomic status of the countries/
regions studied and spoke a language other than that used in the test more often. Given 
the diversity of the population and disparities in educational opportunities across the 
country (Mesa, 2007), one would expect that equity-focused teacher preparation pro-
grams would seek to help future teachers learn to teach all types of students.

The results indicate that this was, indeed, the case in the Philippines at the time 
of the TEDS-M data collection. The top goals of the sampled teacher preparation 
programs were to prepare future teachers to teach students with behavioral or emo-
tional problems, learning disabilities, and students from disadvantaged back-
grounds. Future teachers in these programs reported fairly frequent opportunities to 
learn to teach each type of student, with the most frequent being students from dis-
advantaged backgrounds, those who have behavioral or emotional problems, and 
students with physical disabilities.

While these results indicate a bit of a mismatch between program goals and 
teachers’ reported opportunities to learn (e.g. future teachers reported opportunities 
to learn about disadvantaged students most frequently, when this appears to be 
somewhat lower in the ranking of program goals), this may be mitigated by the fact 
that future teachers reported relatively high frequencies of opportunities to learn 
about all types of students.

 Thailand

Like the Philippines, Thailand is a relatively poor country, but with a more homoge-
neous population. Future teachers in equity-focused preparation programs reported 
almost always speaking the language of the test at home and also reported having 
relatively few books in their homes. Literature from Thailand (e.g. Dechsri & 
Pativisan, 2013) suggests that learning to teach students from different cultures may 
not be high on the list of goals for teacher preparation programs. This may be 
because teachers need to be prepared to help their students gain skills that will sup-
port them in a society transitioning to a market orientation.
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In some ways, a lack of emphasis on learning to teach students from other cul-
tures seems evident in the goals of the programs sampled in Thailand. For example, 
equity-focused programs in Thailand placed the most weight on teaching students 
with behavioral or emotional problems, those with learning disabilities, and those 
from different cultures (as well as gifted pupils). However, future teachers reported 
the most frequent opportunities to learn to teach disadvantaged students, those with 
behavioral or emotional problems, and those with learning disabilities. Interestingly, 
although it appears to be given some weight within program goals, future teachers 
reported the fewest opportunities to learn about students with different cultural 
backgrounds. In fact, overall, the average of future teachers’ reports on opportuni-
ties to learn about diverse students was closest to rarely.

 United States

Although the United States has a fairly diverse population, its future teachers were 
the least diverse (in terms of language) of the studied countries/regions and had the 
highest socioeconomic status. It is important to note here that in the United States, 
alternative teacher programs such as Teach for America tend to attract and train 
more diverse teachers than traditional preparation programs (Boser, 2011, 2014). 
This study did not capture such programs, but rather traditional teacher preparation 
programs that emphasize selecting future teachers from marginalized populations.

In terms of the goals of equity-focused preparation programs, in the United 
States programs gave the most weight to learning to teach children with learning 
disabilities, overall child development, students with different cultural backgrounds, 
and those from disadvantaged backgrounds. Yet, as in the Philippines, future teach-
ers in these programs reported the most frequent opportunities to learn to teach 
students from disadvantaged backgrounds, even though this was given less weight 
in the program goals than other goals. Following disadvantaged backgrounds, future 
teachers reported learning to teach students with learning disabilities, those from 
different cultural backgrounds, and those with behavioral or emotional problems.

 Across Countries/Regions

When looking at the results across the countries/regions studied, it appears that, for 
the most part, the goals of equity-focused programs and future teachers’ reported 
opportunities to learn to teach diverse students were similar. Furthermore, these 
goals appeared to align with the demographic and economic conditions in each 
country. There were also considerable differences across countries/regions in terms 
of the frequency of future teachers’ opportunities to learn. For example, as noted 
above, future teachers in Thailand and Chinese Taipei rarely reported having rela-
tively limited opportunities to learn about teaching diverse students.
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These findings in Thailand and Chinese Taipei may be due to the prevalence of 
the concept of horizontal equity or the equal treatment of equals in these countries 
(Brown, 2006). Many countries and states strive to provide all children with equal 
access to schooling with similar levels of funding, teachers with similar credentials, 
and so on. An assumption often underlying these efforts is that if students have 
equal educational opportunities, then their educational outcomes can be attributed 
to their own effort or merit. This assumption would explain the fact that preparation 
programs in Chinese Taipei place major weight on the goal of overall child develop-
ment and far less weight on aspects of student diversity.

Despite the prevailing concept of horizontal equity, gaps in the educational out-
comes of various student populations persist. Brown (2006) argued that in societies 
in which populations have been systematically disadvantaged, the equal treatment 
of equals is unlikely to result in educational equity. Instead, vertical equity, or the 
“unequal, but equitable, treatment of unequals” may hold more promise. This 
approach to equity acknowledges that different groups of students have different 
starting locations, which necessitates different kinds of teaching or support to reach 
similar educational outcomes.

 Conclusion

Education research indicates that teachers from marginalized populations can 
improve the educational experiences and outcomes of marginalized students. Given 
the lack of diversity in the teacher labor force in many countries, scholars argue that 
there are demographic and democratic imperatives for increasing the number of 
teachers from marginalized populations. Many teacher preparation programs across 
the United States strive to do just that. Yet little is known about similar efforts of 
programs in other countries. This study analyzed TEDS-M data on programs pre-
paring future primary mathematics teachers and emphasizing the selection of candi-
dates from underrepresented populations in the United States,  Chinese Taipei, 
Philippines, and Thailand. I found some evidence of diversity among future teach-
ers in equity-focused preparation programs and general alignment between program 
goals for teaching about diverse students and future teachers’ reported opportunities 
to learn to teach diverse students.

Future research should investigate whether or not the selection criteria, program 
goals, and future teachers’ opportunities to learn to teach diverse students in equity- 
focused preparation programs are significantly different from traditional programs 
in the same countries. Future research should also determine differences in the qual-
ity of future teachers prepared through equity-focused programs and traditional pro-
grams in terms of their mathematical knowledge, mathematical pedagogical 
knowledge, and beliefs about mathematics.
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Chapter 6
A Comparative International Study 
of Differences in Beliefs Between Future 
Teachers and Their Educators
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Abstract In this study we investigate the extent to which differences exist in beliefs 
about teaching and learning mathematics between future teachers and their teacher 
educators/professors across five countries, including Chinese Taipei, Poland, 
Russian Federation, Singapore, and the United States. The analyses include teacher 
educators and future primary and secondary teachers grouped within institutions 
within countries and is based on meta-analytic methods to estimate effects within 
institutions and synthesize them across institutions within a country. We found sig-
nificant differences in a number of beliefs about teaching and learning mathematics, 
and for some countries, the differences between future teachers and their educators 
vary across institutions. In a number of important and somewhat consistent ways, 
variation in differences in beliefs is explained by future teachers’ opportunities to 
learn in the areas of mathematics pedagogy, general pedagogy, and field experiences 
provided by their teacher preparation programs. In addition, program coherence, 
mathematical content knowledge, and mathematical pedagogical knowledge also 
moderate the magnitude of differences in beliefs between future teachers and their 
educators. We discuss the implications of our findings for the design of the curricu-
lum and experiences provided by teacher education programs.
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 Introduction

Although there is wide agreement that beliefs are an important influence on teach-
ing, there is no compelling evidence that beliefs can be effectively influenced by 
teacher preparation or that holding a particular belief is an intrinsic characteristic of 
those individuals who become good teachers (Tatto & Coupland, 2003; Tatto et al., 
2012). Yet teacher education programs do allocate a portion of their curriculum to 
addressing beliefs as part of future teachers’ cognitive processes (Calderhead, 1996; 
Clark & Peterson, 1986; Shavelson, 1981). The key assumption is that there are 
close connections among knowledge, beliefs, and action (American Mathematical 
Society, 2012). In spite of the attention this assumption has received among teacher 
educators, the field suffers from lack of agreement concerning definitions and best 
practices (Kane, Sandretto, & Heath, 2002).

In a review of the literature, Tatto and Coupland (2003) discussed the wide range 
of definitions for belief and recognized the lack of clarity about what Pajares (1992) 
once referred to as a messy construct. They found that beliefs about subject matter 
content and pedagogy were the focus of a significant number of studies, with less 
attention given to other areas, such as beliefs about technology and about diverse 
students, among others.

Some researchers have investigated the interaction between teacher educators’ 
pedagogy and future teachers’ learning with mixed results. Lunenberg, Korthagen, 
and Swennen (2007) focused on a set of prospective teachers and teacher educators 
in the Netherlands to investigate the prevalence of modelling by teacher educators. 
They found that few of the ten teacher educators in the study recognized modelling 
of effective practice as a part of the training they offered their prospective teachers 
and lamented the lack of a body of knowledge about teacher educators’ roles.

Using TEDS-M data, Hsieh, Law, and Shy (2011) compared prospective teach-
ers’ and teacher educators’ beliefs about the effectiveness and quality of their 
teacher education programs. Through descriptive statistics, they showed notable 
differences between prospective teachers’ and teacher educators’ reports. Most 
importantly, they found that teacher educators tended to rate their programs’ effec-
tiveness far higher than the prospective teachers themselves. They speculated that 
this could lower teacher educators’ motivation to evaluate and improve their 
programs.

Although some researchers have investigated the connection of teacher beliefs 
with program activities, fewer have explored the association between teacher educa-
tors’ and future teachers’ beliefs. In three studies, Tatto explored this question in 
samples of U.S. teacher education programs using entry and exit level data in three 
areas: beliefs about teaching diverse students; beliefs about instructional choice; 
and beliefs about purposes of education, teachers’ roles, and practices (Tatto, 1996, 
1998, 1999). In these studies, a consistent finding was that programs with teacher 
educators who more consistently conceive of learning mathematics as a process of 
inquiry saw important and positive changes in their student teachers’ views at the 
end of their programs.
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In sum, future teachers’ beliefs are considered an important teacher education 
outcome, and teacher educators are key to understanding the kinds of beliefs teacher 
education programs value and whether the opportunities to learn (OTL) provided by 
these programs influence these beliefs, including mathematics content knowledge 
and the pedagogy for teaching mathematics. Here, we are able to investigate the 
differences in beliefs between future teachers and their educators, given future 
teacher performance on the assessment of mathematical content knowledge (MCK) 
and mathematical pedagogical content knowledge (MPCK).

 Research Questions

We address the following questions:

 (a) How are the beliefs about teaching and learning mathematics held by future 
teachers similar to or different from those held by educators in their institutions 
by the end of the teacher preparation program?

 (b) To what extent are OTL, MCK, and MPCK associated with differences between 
beliefs of future teachers and beliefs of their educators across institutions?

 (c) Do differences between teacher educator and future teacher beliefs and the 
effects of OTL vary across countries?

We investigated these questions using data collected in the TEDS-M study from 
teacher educators and their future teachers in primary and secondary programs in 
five countries: Chinese Taipei, Poland, Russia, Singapore, and the United States of 
America. These countries obtained high or very high scores in our assessments of 
MCK and MPCK (see Tatto et  al., 2012), thus representing systems producing 
future teachers with firm knowledge of the subject. Studying the U.S. is of particular 
interest in light of the efforts that have reformed mathematics teacher education 
since at least the 1990s and the strong research base that has in many cases influ-
enced reforms in several other countries as well, including Chinese Taipei and 
Singapore.

To measure beliefs, we relied on the work of scholars engaged in international 
comparative research (Deng, 1995; Grigutsch, Raatz, & Törner, 1998; Ingvarson, 
Beavis, & Kleinhenz, 2007; Muis, 2004; Tatto, 1996, 1998, 1999; Tatto & Coupland, 
2003). Because the central goal of this study was to investigate the outcomes of 
teacher education, we focused on those areas of beliefs judged to influence (or be 
influenced by) the process of learning to teach mathematics. This includes beliefs 
about the nature of mathematics (e.g., Can mathematics be considered as the appli-
cation of a set of rules and procedures to be memorized and mastered, or is it more 
a process of inquiry or problem solving?), beliefs about learning mathematics (e.g., 
Is mathematics better learned via teacher direction or through active learning?), 
beliefs about mathematics achievement (e.g., Is one naturally good at mathematics 
or can one become good at mathematics?), and beliefs about the effectiveness of the 
teacher preparation program as a whole.
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In addition, because our intention was to investigate the association between 
beliefs and future teachers’ OTL in their programs, we included measures of OTL 
that future teachers had in their mathematics pedagogy courses (foundations, 
instruction, participation and reading in classes; solving problems; instructional 
planning and practice; and learning about standards and assessments); in their peda-
gogy courses (e.g., in the areas of the social sciences, in learning to teach diverse 
students and to reflect on and improve practice); and from school experience (e.g., 
learning how to connect classroom learning in the university to school practice, and 
how to learn from supervisors). We also asked about the degree to which the pro-
gram experienced by future teachers seemed coherent. We used the assessment 
results indicating future teachers’ MCK and MPCK both as control variables and to 
note associations of interest where they appeared. We develop these concepts below 
(for more detail regarding each measure, see Tatto et al., 2008 and Tatto, 2013).

 Defining and Measuring Beliefs

A belief is a cognitive act or condition where a proposition (in measurement terms, 
a statement indicating a belief) is taken to be true (Egan, 1986). In psychological 
theory, there are a number of types of beliefs, including propositional attitudes, 
subjective probabilities, inferences, and associations (Egan, 1986). The specific 
nature or structure of the belief is of less interest to us here; rather, we are interested 
in beliefs as cognitive states regarding the teaching and learning of mathematics that 
future teachers and their educators hold to be true. Beliefs are a cognitive basis for 
values and behaviors (Ajzen & Fishbein, 1977), a connection with evidence in 
teaching practice (Aguirre & Speer, 1999) (more on this below). We investigated 
five teacher-relevant beliefs as measured in TEDS-M.

Beliefs About the Nature of Mathematics Information about this area was col-
lected from questions that explored how future teachers perceive mathematics as a 
subject—for example, as formal, structural, procedural, or applied (Grigutsch et al., 
1998; Ingvarson et  al., 2007). We examined two related beliefs in this area: (a) 
mathematics as the application of a set of rules and procedures and (b) mathematics 
as a process of inquiry.

Beliefs About Learning Mathematics This area included questions about the 
appropriateness of particular instructional activities, questions about students’ cog-
nition processes, and questions about the purposes of mathematics as a school sub-
ject. We included two related beliefs: (c) learning mathematics through teacher 
direction and (d) learning mathematics through active learning.

Beliefs About Mathematics Achievement This area comprised future teachers’ 
beliefs about various teaching strategies used to facilitate the learning of mathemat-
ics and about how mathematics learning may take place. It also included questions 
exploring the application of attribution theory to teaching and learning interactions 
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(e.g., innate ability for learning mathematics). We included one specific belief about 
mathematics achievement: (e) mathematics achievement is a fixed ability.

Beliefs About Preparedness for Teaching Mathematics The fourth area of 
beliefs concerned the extent to which future teachers perceived their teacher 
 preparation as having given them the capacity to carry out the central tasks of teach-
ing and to meet the demands of their first year of practice. The questions asked 
about (f) preparedness to teach mathematics (in areas such as assessment, manage-
ment of learning environments, and practices for engaging students in effective 
learning) and the extent to which teachers become active members of their profes-
sional community (Ingvarson et al., 2007).

 Defining and Measuring OTL

TEDS-M investigators used the concept of OTL as central to explaining the impact 
of teacher preparation on teacher learning. Torstén Husén first defined and used this 
term to explain student learning in IEA’s First International Study of Achievement in 
Mathematics (FIMS). Husén (1967) defined OTL as the extent to which students had 
the opportunity to study particular topics or learn problem solving techniques rele-
vant to a test. If students have not had such opportunities, they might generalize skills 
and abilities from related topics or problem solving techniques, but the chance of 
answering unique test items correctly is diminished (as described in Burstein, 1993).

TEDS-M investigators explored OTL in teacher preparation. Inclusion of OTL in 
the study served several purposes: as an explanation of differences in levels of 
knowledge; as an indicator of curricular variation among countries; as an aspect of 
fairness (e.g., appropriateness of language of test items); and as a representation of 
the diversity of content, both overall and for distinct groups of teachers (Floden, 
2002).

The TEDS-M survey included multiple scales to allow exploration of the various 
OTL that future mathematics teachers have across countries. These included OTL in 
the following areas: (a) university- or tertiary-level mathematics, (b) school-level 
mathematics, (c) mathematics education/pedagogy, and (d) general education/peda-
gogy. They also included (e) how to accommodate classroom diversity and to reflect 
on practice, (f) how to learn from school experience and the practicum, and (g) the 
extent to which a teacher education program had OTL that were considered as 
coherent.

In this chapter we focus on the OTL involving mathematics education pedagogy, 
general education pedagogy, teaching for diversity, reflecting on practice in schools 
and through practicum experiences, and OTL in a coherent teacher education 
program.

OTL Mathematics Education/Pedagogy This area included (a) the foundations 
of mathematics education, (b) mathematics instruction, (c) participation in mathe-
matics education courses, (d) doing readings in mathematics education courses, 
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(e)  solving problems in class, (f) studying instructional practice, (g) studying 
instructional planning, and (h) studying the uses of assessment and (i) assessment 
practices.

OTL General Knowledge for Teaching This area included (j) the social science 
of education, (k) general educational applications, (l) teaching for diversity, (m) 
teaching for reflection on practice, and (n) teaching for improving practice.

OTL in Schools and Through the Practicum A far more extensive section asked 
more in-depth questions regarding in-school experience. This area included (o) con-
necting classroom learning to practice, (p) the reinforcement of teacher preparation 
program goals in the school setting, and (q) the quality of supervising- teacher 
feedback.

OTL in a Coherent Teacher Education Program The (r) coherence area included 
items exploring program consistency across courses and experiences offered to 
future teachers, and whether there are explicit standards with expectations for what 
future teachers should learn from their respective programs.

 Mathematical Content and Mathematical Pedagogical Content 
Knowledge

MCK and MPCK as measured in TEDS-M for future primary and secondary teach-
ers is described in detail in Tatto et al. (2008), Tatto et al. (2012), and Tatto (2013). 
MCK was defined and assessed in four content domains to be consistent with the 
school curriculum across the globe and with TIMSS frameworks (Mullis et  al., 
2007). It included number, algebra, geometry, and data, across the three cognitive 
domains of application, knowledge, and reasoning. The MPCK assessment was 
developed by the TEDS-M researchers and measured two sub-domains: mathemati-
cal curricular knowledge and knowledge of planning for mathematics teaching and 
learning (Tatto et al., 2008, pp. 37–38). In this study, we used scales developed from 
these measures as control variables (for more detail on how TEDS-M scales were 
constructed, see Tatto, 2013).

 Methods

Here we investigate similarities and differences when comparing beliefs of future 
teachers and their educators about teaching and learning mathematics. Educators’ 
views are considered program expectations conveyed to future teachers. Thus, for 
programs to be effective, the expectation would be that, at the end of the program, 
future teachers’ views would be closely aligned to those of their educators. Yet these 
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expectations are mediated by other factors in complex ways. The diverse OTL made 
available to future teachers are important mediators, as is the content knowledge 
they possess. It is possible that those who are more mathematically knowledgeable 
have fixed ideas about how they themselves learned mathematics and that these 
views may go untouched by program efforts.

To explore these propositions, our analyses grouped educators, future primary 
teachers (FPT), and future secondary teachers (FST) within institutions within each 
of five countries, including Chinese Taipei, Poland, the Russian Federation, 
Singapore, and the U.S. The approach taken is one based on the methods of meta- 
analysis (see Cooper, Hedges, & Valentine, 2009), estimating effects within institu-
tions and synthesizing them across institutions within country. We carefully describe 
the steps followed for conducting the analyses.

 Data Source

Data were obtained from the TEDS-M study, including future teachers and their 
teacher educators from Chinese Taipei, Poland, the Russian Federation, Singapore, 
and the U.S. The models used to address the research questions included two beliefs 
about the nature of mathematics: (a) mathematics is a set of rules and procedures 
and (b) mathematics is a process of inquiry; two beliefs about learning mathematics: 
(c) mathematics is learned through teacher direction and (d) mathematics is learned 
through active learning; beliefs about math achievement: (e) mathematics is a fixed 
ability; and beliefs about the teacher preparation program as a whole: (f) percep-
tions of preparedness for teaching mathematics.

Measures of OTL in mathematics education pedagogy included the degree to 
which future teachers learned about (a) the foundations of education pedagogy and 
(b) mathematics instruction; experienced opportunities for (c) class participation, 
(d) class readings, and (e) solving problems during their mathematics education 
pedagogy courses; and had opportunities to explore and experience (f) instructional 
practice, (g) instructional planning, (h) assessment uses, and (i) assessment 
practice.

Measures of OTL in general education pedagogy included the degree to which 
future teachers learned about (j) the social sciences relevant to education pedagogy, 
(k) the application of education pedagogy, (l) teaching for diversity, (m) teaching 
for reflection on practice, and (n) teaching for improving practice.

Measures of OTL in school experience or practicum included the degree to 
which future teachers had the opportunities to experience (o) connecting classroom 
learning to practice and (p) supervising teacher reinforcement of university goals 
for practicum; and future teacher perceptions of (q) supervising teacher feedback 
quality. Finally we include (r) a measure of overall program coherence.

Measures of both MCK and MPCK were used as control variables, primarily to 
control for differences in mathematics knowledge, skills, and abilities across insti-
tutions. We report the effects of these control variables when they were notable.
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The mean of each belief variable was computed for future teachers and educators 
separately within each institution, and the mean of each OTL variable was com-
puted for future teachers within each institution. TEDS-M sampling weights for 
future teachers and educators were used when computing each institution’s mean in 
all countries, with one exception. The U.S. educator sample was not a representative 
sample, so educator weights were not used to compute the belief means within each 
institution.

 Analysis

The analysis procedures are presented in two sections below. The first section 
describes the data preparation process and computation of standardized mean dif-
ferences in beliefs between educators and future teachers. The second section speci-
fies the regressions used to model standardized mean differences in beliefs as a 
function of OTL variables.

Standardized Mean Differences Analysis The approach to evaluate the differ-
ences between future teachers and educators across institutions was based on meta- 
analytic methods. Future teachers cannot be associated with educators in a 
one-to-one manner, since future teachers have multiple educators, and not all educa-
tors have contact with each future teacher. However, future teachers and educators 
do exist within a common institution. Each institution is considered a study, within 
which we can estimate the difference in beliefs between future teachers and educa-
tors. The difference is estimated as Cohen’s d, the standardized mean difference 
(Borenstein, 2009). Because each difference (effect) is estimated with different lev-
els of precision, largely based on sample size, a weighted-least-squares (WLS) 
analysis is required. Weights are estimated based on the sampling variance of d 
(essentially, the sampling error). The weighted average difference is estimated and 
a test of homogeneity (Q) of these effects is conducted, answering the question of 
whether there is a common effect (difference in beliefs) across institutions. The 
Q-test is reported to indicate whether effects vary significantly within a country or, 
instead, the mean effect (mean difference in beliefs) can adequately represent all 
institutions in the country. In the case where these differences vary significantly, that 
variation is modeled, and such models are explored in the second section. The IDB 
Analyzer (IEA, 2015) was used to compute the means for future teachers and educa-
tors, and the R statistical package (R Core Team, 2015) was used to complete the 
remaining analyses. In each of the following steps, statistics were computed within 
country.

Step 1. Compute effect sizes d
x x

sjk
jk

k

=
-( )FT E

, where djk is the standardized mean 

difference (i.e., Cohen’s d) for belief k in institution j; x x
jkFT E-( ) is the 
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 difference between the mean of future teachers (FT) and the mean of educators 
(E) within institution j for belief k; and sk is the future teacher population weighted 
standard deviation for belief k from the international sample (see Table  6.1). 
Using sk provides for the same reference standard deviation (scaling factor) for 
all countries.

Step 2. Compute variance components v
n n

n n

d

n n
jk

jk jk

jk jk

jk

jk jk

=
+

+
+( )

FT E

FT E FT E

2

2
 (Borenstein, 

2009), where nFTjk is the sample size for future teachers within institution j for 
belief k and nEjk is the sample size for educators within institution j for belief k. 
These may vary slightly across beliefs based on the number of participants 
receiving scores on a given belief k. The maximum nFTjk, nEjk, and j for each coun-
try are listed in Table 6.2. These variance components are also referred to as 
sampling error variances, which serve as the basis for weights in WLS 
analyses.

Step 3. Compute effect size weights w
vjk
jk

=
1

 for belief k in institution j. This is 

used to compute the weighted average difference across institutions and in the 
WLS regression analyses below.

Step 4. Compute weighted average effect size d
w d

wk
jk jk

jk
• =

å

å
 for belief k across 

institutions. This average d• is computed for each country.

Table 6.1 International 
standard deviations for 
beliefs of future primary and 
secondary level teachers

Belief Primary SD Secondary SD

Process of inquiry 1.57 1.57
Rules and procedures 1.24 1.36
Teacher-directed 0.86 0.95
Active learning 1.33 1.43
Fixed ability 1.04 1.05
Preparedness 1.93 1.79

Table 6.2 Number of primary and secondary level future teachers, educators, and institutions

Primary Secondary
FT Ed Inst FT Ed Inst

Chinese Taipei 923 115 11 273 80 8
Poland 1,833 676 70 268 362 21
Russian Federation 2,219 1,086 49 2,093 1,158 48
Singapore 378 74 1 393 74 1
United States 1,081 726 47 463 681 43

Note: FT future teachers, Ed educators, Inst Institutions
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Step 5. Compute the standard error of the average effect size SE d
wk

jk
•( ) =

å
1

 for 

belief k. This is computed for each country.

Step 6. Compute z
d

SE dk
k

k

=
( )
•

•

, which allows for statistical testing of whether the 

country mean difference for belief k is different from zero.

Step 7. Compute the Q-statistic Q
d d

vk

jk k

jk

= å
-( )•

2

. The Q-statistic follows a 

Chi- Square distribution with j-1 degrees of freedom, where j is the number of 
effects (institutions). This is a homogeneity test statistic where the null hypoth-
esis (H0) states that for belief k, the djk share a common population effect size; it 
is a test of the homogeneity of djk across institutions.

Regression Analysis The regression model for the effect size as a function of p 
OTL predictor variables was specified as follows. This regression was estimated as 
a WLS regression, employing the weights wjk. When the typical ordinary-least 
squares (OLS) regression is used, we assume homoscedasticity, an assumption of 
constant variance across the regression variables. When effect-size statistics  are 
used in regression, we know that they are estimated with different levels of preci-
sion, thus reflecting heteroscedasticity. This can be controlled in the regression by 
modeling the variation in the precision of each estimated effect size, by weighting 
each effect size by a function of its precision. Thus, the following WLS regression 
is used: djk = β0 + β1(OTL1)jk + β2(OTL2)jk + … + βp(OTLp)jk + ejk .

For each belief k, initial models were fitted by regressing differences (djk) on all 
p OTL variables. The backward elimination procedure using the step function in the 
R software was used to simplify each model. The step function looks to minimize 
the Akaike Information Criterion (AIC), an information-based model fit criterion 
that identified variables as contributing to the model. Because the AIC is a measure 
of relative quality of a given model compared to others, it was used here for evaluat-
ing model fit and comparisons across models. The tables of regression results 
include those variables that remained in each model based on the AIC criterion, and 
indicate each coefficient statistical significance. Separate models are reported for 
each country.

To support interpretation across OTL measures, the scores were standardized 
within each country. The regression coefficients are interpreted  such that one 
standard- deviation change in the OTL predictor is associated with a change of mag-
nitude, given the associated coefficient, in the average standardized mean difference 
(d•) between future teachers and their educators.
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 Results

 Exploring Differences in Beliefs

As described in the methods section, our primary outcome for this study is the stan-
dardized mean difference in beliefs between future teachers and their educators, 
which is a common effect size that expresses the difference in means in terms of 
standard deviations. For each institution, we estimated the standardized mean dif-
ference between future teachers and their educators for a given belief (future teacher 
belief mean score minus educator belief mean score). These differences are sum-
marized in an effect size for each institution, d, the standardized mean difference.

The d for a particular institution and the average d• for a given country indicate 
the magnitude of differences in beliefs between future teachers and their educators. 
If future teachers held the same beliefs as their educators, these effects would be 
zero.

As the ds were estimated based on the mean score of future teachers minus the 
mean score of educators, x x

jkFT E-( ) ,  when d is positive, future teachers have 

higher scores on the particular belief than do educators (that is, they are more likely 
to agree with specific items comprising the belief than are their educators). In addi-
tion, the standard deviation of effects within a country provides an indication of 
whether a common effect or common difference in beliefs is held across institu-
tions. A large standard deviation indicates that the average d• for a country might not 
be a meaningful value because of the variability across institutions within a coun-
try—that is, in some institutions, the differences in beliefs may be very small and in 
others may be very large. We explore inter-institutional variability through a series 
of regression models, using OTL indices as explanatory variables in the next sec-
tion. The average d• and associated standard errors for each belief per country are 
represented visually in Fig. 6.1.

In general, across beliefs and across countries, the differences observed were 
larger for FPTs than for FSTs. One notable exception is in Singapore, where the 
observed differences were larger for FSTs across most beliefs. Additionally, for 
most beliefs and countries there tended to be more variability in the effect sizes 
between institutions for FPTs than between institutions for FSTs. That is, institution- 
level differences in beliefs seemed to vary more for FPTs than FSTs. This may be 
because secondary teachers are prepared as mathematics specialists; thus, mathe-
matics’ stronger grammar (Bernstein, 1999) may result in stronger norms within 
these programs across institutions and more coherence in views among future 
teaches and their educators (Tatto 1996, 1998, 1999).

For each country, the average standardized mean difference (d•) between future 
teachers’ and educators’ beliefs, the standard error of d•, and the standard deviation 
of institution-based ds across institutions are reported in Tables 6.3 to 6.8.
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Beliefs About the Nature of Mathematics With the exception of FPTs in 
Singapore and FSTs in Chinese Taipei, future teachers were less likely to believe 
that mathematics is a process of inquiry than their educators (as indicated by the 
statistically significant negative d• in Table 6.3); that is, educators generally view 
mathematics as a process of inquiry to a higher degree than do future teachers. 
Conversely, future teachers were more likely than their educators to believe that 
mathematics involves the remembering and application of definitions, formulas, 
mathematical facts and procedures and applying a set of rules and procedures that 
prescribe how to solve a problem (Table 6.4). In most countries, the standardized 
mean differences between future teachers and educators were stable across institu-
tions. However, for FPTs in Poland, there was significant heterogeneity in effect size 
between institutions on the view that mathematics is a process of inquiry, where 
Q(69)  =  89.40 (p  =  .05), and of mathematics as applying rules and procedures, 
where Q(69) = 96.46 (p = .02). Recall that the Q-statistic conveys information about 

Fig. 6.1 Standardized mean differences between educators and future teachers on beliefs about 
teaching and learning mathematics with 95% confidence intervals

Table 6.3 Mean differences, standard errors, and standard deviations for process of inquiry

Primary Secondary
d• SE(d•) SD(djk) Min Max d• SE(d•) SD(djk) Min Max

Chinese Taipei −0.28* 0.10 0.32 −1.14 0.48 −0.08 0.13 0.35 −1.06 0.41
Poland −0.63* 0.05 0.50† −2.17 0.38 −0.57* 0.09 0.44 −1.65 0.10
Russian 
Federation

−0.42* 0.04 0.29 −1.24 0.26 −0.27* 0.04 0.30 −1.25 0.72

Singapore −0.19 0.13 −0.34* 0.13
United States −0.59* 0.05 0.45† −1.91 0.75 −0.29* 0.07 0.36 −1.57 0.87

Note. The djk statistic is the standardized mean difference between future teachers and their educa-
tors for institution j for belief k; d• is the average d within country
*d• is significantly different than zero at p < .05; †Q-test of homogeneity is significant at p < .05
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the variability of effects (differences in beliefs) within country—that is, the extent to 
which the mean effect adequately represents a common difference across  institutions 
within the country. Here we find significant variability in differences, meaning that 
there is significant variability in the magnitude of differences across institutions. For 
example, because the Q-statistic is significant in Poland (see the flag associated with 
the SD in Table 6.3), we know that the mean effect does not adequately describe the 
differences in beliefs in Poland. That is, there is much variation in the mean (average 
effect) across institutions likely due to the fact that some institutions prepare spe-
cialist and others generalist teachers, so the mean in this case does not describe the 
differences in beliefs for many institutions—simply because there is significant 
variation. This significant variation in differences in beliefs across institutions is 
investigated through regression analyses in the next section of this chapter.

Beliefs About Learning Mathematics FPTs and FSTs in the U.S. (FPT: 
d• = −0.09, z = −1.71; FST: d• = −0.05, z = −0.79) and Singapore (FPT: d• = −0.10, 
z = −0.81; FST: d• = −0.25, z = −1.95) did not differ on average from their educators 
on the belief that mathematics should be learned through active and independent 
learning, investigations and discussion; whereas in Chinese Taipei (FPTs only), 
Poland, and the Russian Federation, FPTs and FSTs belief scores on active learning 
were significantly lower (i.e., less likely to believe that mathematics should be 
learned through active learning) than their educators, likely signaling strong cultural 
beliefs and a reaction against inquiry-based learning (see Table  6.5). Significant 
variability in effect sizes across institutions was seen for FPTs in Chinese Taipei 
(Q[10] = 21.57, p = .017) and Poland (Q[69] = 124.64, p < .001) and FSTs in the 
Russian Federation (Q[47]  =  107.84, p  <  .001). Again, this variation in future 
teacher and educator differences across institutions is investigated through regres-
sion analyses in the next section of this chapter.

With the exception of FSTs in Chinese Taipei (d• = 0.10, z = 0.74), FPTs and 
FSTs had significantly higher scores than their educators on the belief that learning 
mathematics should be teacher-directed and based on attending to teachers’ expla-
nations and learning how to solve problems quickly and correctly (Table  6.6). 
Whereas the effect size estimates were homogeneous for FSTs in most countries, 

Table 6.4 Mean differences, standard errors, and standard deviations for rules and procedures

Primary Secondary
d• SE(d•) SD(djk) Min Max d• SE(d•) SD(djk) Min Max

Chinese Taipei 0.35* 0.10 0.21 0.08 1.04 0.18 0.13 0.30 −0.50 0.55
Poland 0.45* 0.05 0.52† −0.97 3.05 0.31* 0.08 0.33 −0.18 0.91
Russian 
Federation

0.36* 0.04 0.38† −0.74 1.49 0.17* 0.04 0.23 −0.45 0.65

Singapore 0.68* 0.13 0.52* 0.13
United States 0.81* 0.05 0.38 0.11 1.52 0.62* 0.07 0.39 −0.15 1.89

Note. The djk statistic is the standardized mean difference between future teachers and their educa-
tors for institution j for belief k; d• is the average d within country
*d• is significantly different than zero at p < .05; †Q-test of homogeneity is significant at p < .05
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there was significant variability for FPTs in Chinese Taipei (Q[10]  =  34.62, 
p < .001), Poland (Q[69] = 136.70, p < .001), the Russian Federation (Q[48] = 95.85, 
p < .001), and the U.S. (Q[46] = 76.20, p = .003).

Beliefs About the Ability to Learn Mathematics With the exception of Singapore, 
FPTs were more likely than their educators to believe that mathematics achievement 
is due to a natural ability to do well at mathematics and that this ability is fixed (i.e., 
some people are good at mathematics and some are not) (see Table 6.7). For FSTs, 
this trend was only found in the Russian Federation (d• = 0.25, z = 6.57) and the U.S. 
(d• = 0.48, z = 7.24). Furthermore, the U.S. was the only country to show variability 
in effect size between institutions, both for FPTs (Q[46] = 105.21, p < .001) and for 
FSTs (Q[42] = 75.85, p =  .001) and their educators—again, indicating significant 
variation in the differences in beliefs across institutions. This signals a great degree of 
heterogeneity in differences in beliefs across teacher education institutions in the U.S.

Perceptions of Preparedness for Teaching Mathematics The most country-to- 
country variation was seen in the views held by future teachers and their educators 
concerning preparedness for teaching mathematics (see Table 6.8). Whereas FPTs 
and FSTs in Chinese Taipei (FPT: d• = −0.59, z = −5.84; FST: d• = −0.60, z = −4.49) 
and Poland (FPT: d• = −0.33, z = −6.24.; FST: d• = −0.21, z = −2.53) report that 

Table 6.5 Mean differences, standard errors, and standard deviations for active learning

Primary Secondary
d• SE(d•) SD(djk) Min Max d• SE(d•) SD(djk) Min Max

Chinese Taipei −0.42* 0.10 0.47† −1.25 0.52 −0.12 0.13 0.22 −0.63 0.32
Poland −0.48* 0.05 0.59† −3.01 0.92 −0.45* 0.08 0.43 −1.91 0.25
Russian 
Federation

−0.39* 0.04 0.31 −0.90 0.55 −0.27* 0.04 0.39† −1.02 0.87

Singapore −0.10 0.13 −0.25 0.13
United States −0.09 0.05 0.38 −0.89 0.67 −0.05 0.07 0.38 −1.03 2.39

Note. The djk statistic is the standardized mean difference between future teachers and their educa-
tors for institution j for belief k; d• is the average d within country
*d• is significantly different than zero at p < .05; †Q-test of homogeneity is significant at p < .05

Table 6.6 Mean differences, standard errors, and standard deviations for teacher directed learning

Primary Secondary
d• SE(d•) SD(djk) Min Max d• SE(d•) SD(djk) Min Max

Chinese Taipei 0.45* 0.10 0.60† −0.18 2.77 0.10 0.13 0.31 −0.54 0.81
Poland 0.50* 0.05 0.62† −0.84 3.70 0.44* 0.09 0.48† −0.51 2.81
Russian 
Federation

0.63* 0.04 0.39† −0.65 1.36 0.40* 0.04 0.23 −0.16 1.11

Singapore 0.31* 0.13 0.50* 0.13
United States 0.71* 0.05 0.45† −0.32 1.84 0.56* 0.07 0.39 −0.53 1.48

Note. The djk statistic is the standardized mean difference between future teachers and their educa-
tors for institution j for belief k; d• is the average d within country
*d• is significantly different than zero at p < .05; †Q-test of homogeneity is significant at p < .05
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they are prepared for teaching by their institutions at a lower level than their educa-
tors report, FPTs and FSTs in the Russian Federation (FPT: d• = 0.18, z = 4.66; FST: 
d• = 0.14, z = 3.64) and the U.S. (FPT: d• = 0.34, z = 3.64; FST: d• = 0.18, z = 2.60) 
report being much more prepared for teaching than did their educators. Furthermore, 
for FPTs and FSTs, there is significant variability in effect sizes between institutions 
in the Russian Federation (FPT: Q[48]  =  68.23, p  =  .029; FST: Q[47]  =  77.00, 
p = .004) and the U.S. (FPT: Q[46] = 70.37, p = .012; FST: Q[42] = 74.98, p = .001), 
whereas Chinese Taipei and Poland had similar effect sizes across institutions. This 
denotes a larger degree of heterogeneity across these institutions in the U.S. and the 
Russian Federation.

 Modeling Variability Through Regression

A series of regressions were completed to model the variability in effect sizes across 
institutions—testing whether differences in beliefs across institutions could be 
explained as a function of OTL. Similar regressions were run for each country. The 

Table 6.7 Mean differences, standard errors, and standard deviations for mathematics as a fixed 
ability

Primary Secondary
d• SE(d•) SD(djk) Min Max d• SE(d•) SD(djk) Min Max

Chinese Taipei 0.21* 0.10 0.27 −0.29 0.93 0.20 0.13 0.32 −0.47 0.88
Poland 0.18* 0.05 0.45 −0.85 1.47 −0.09 0.08 0.26 −0.72 0.31
Russian 
Federation

0.34* 0.04 0.25 −0.63 0.98 0.25* 0.04 0.19 −0.56 0.62

Singapore −0.03 0.13 0.20 0.13
United States 0.63* 0.05 0.53† −0.57 1.67 0.48* 0.07 0.58† −0.77 1.66

Note. The djk statistic is the standardized mean difference between future teachers and their educa-
tors for institution j for belief k; d• is the average d within country
*d• is significantly different than zero at p < .05; †Q-test of homogeneity is significant at p < .05

Table 6.8 Mean differences, standard errors, and standard deviations for preparedness for 
teaching

Primary Secondary
d• SE(d•) SD(djk) Min Max d• SE(d•) SD(djk) Min Max

Chinese Taipei −0.59* 0.10 0.40 −1.57 0.08 −0.60* 0.13 0.32 −1.65 −0.13
Poland −0.33* 0.05 0.47 −1.37 1.69 −0.21* 0.08 0.45 −1.03 0.69
Russian 
Federation

0.18* 0.04 0.32† −1.28 0.88 0.14* 0.04 0.33† −0.68 1.03

Singapore −0.02 0.14 −0.25 0.14
United States 0.34* 0.05 0.44† −0.49 1.40 0.18* 0.07 0.59† −1.22 1.42

Note. The djk statistic is the standardized mean difference between future teachers and their educa-
tors for institution j for belief k; d• is the average d within country
*d• is significantly different than zero at p < .05; †Q-test of homogeneity is significant at p < .05
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WLS regressions revealed few consistencies in OTLs predicting the difference 
between future teacher and educator beliefs across countries (see  Tables 6.9 to 
6.14). Note that for all of the regressions, a positive intercept indicates that, on aver-
age, when all other variables are held constant, future teachers had higher scores on 
the given belief (that is, they were more likely to agree with the statements compris-
ing the belief) than their educators. Therefore, an OTL with a significant positive 
coefficient suggests that a one standard-deviation increase in the OTL will increase 
the difference in belief positively, potentially widening the gap in the level of belief 
between future teachers and their educators. Conversely, if an OTL has a negative 
coefficient, every one standard-deviation increase in the OTL will shift the differ-
ence in belief between future teachers and their educators negatively.

For instance, in Table 6.12 the intercept for FPTs in the U.S. regarding teaching 
as active learning is −0.12, meaning that, for institutions with average OTL, 
 educators are more likely to believe in teaching as active learning than their FPTs 
do. The coefficient for OTL to apply mathematics to real-world problems and to 
distinguish between procedural and conceptual mathematics when teaching (instruc-
tional practice) is 0.40, indicating that a 1.0 standard deviation (SD) increase in the 
OTL from instructional practices is associated with a shift in that difference of 0.40 
(−0.12 + 0.40 = 0.28, essentially reversing the difference). Because of the complex-
ity in interpretation of coefficients, we focus on the extent to which OTL predicts 
variability in differences in beliefs, finding overall that future teachers and their 
educators hold different beliefs, and this appears to vary, in some cases, as a func-
tion of OTL. To support interpretations of the regression coefficients, we mention 
the statistically significant effects and note that when the coefficient is the same sign 
as the intercept, that effectively increases the difference in beliefs estimated by the 
intercept; when the coefficient is the opposite sign as the intercept, that effectively 
reverses the difference, or at least reduces the difference to a point where additional 
OTL may actually reverse the difference.

We completed regressions for three countries with sufficient numbers of institu-
tions: Poland, the Russian Federation, and the U.S. We found that some OTL vari-
ables, MCK, and MPCK were often significant predictors of belief differences 
between educators and future teachers. Conversely, other types of OTL were rarely, 
if ever, significant predictors of the difference in beliefs between future teachers and 
their educators. We examine these below.

Mathematics as a Process of Inquiry Across each country (the three with suffi-
cient numbers of institutions to support regression), for primary and secondary pro-
grams, educators were more likely to agree that mathematics learning is a process 
of inquiry than future teachers (see the negative intercepts in Table 6.9 and negative 
averages in Fig.  6.1), with the WLS regression models explaining 43% (Poland 
FPTs and FSTs) to 55% (Russian Federation FSTs) of the variance across institu-
tions in differences between future teachers and educators. OTL about national or 
state standards and assessments as related to pupils’ learning (assessment practice), 
was shown to reduce and reverse the difference in this belief for FSTs in Poland as 
well as for FPTs and FSTs in the Russian Federation (with more OTL assessment 
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practice, future teachers approach agreeing with their educators, reversing the dif-
ferences). Similarly, OTL from school experiences, such as observing and practic-
ing teaching, and collecting and analyzing evidence about pupil learning as a result 
of their teaching methods (classroom learning to practice), also reduced the differ-
ence for FPTs in Poland and the Russian Federation, and for FSTs in the U.S. The 
associations between the measures of knowledge and beliefs in this case were not 
consistent across countries and levels of teacher preparation programs. Overall, 
OTL explained about half of the variation in differences in beliefs.

Mathematics as a Set of Rules and Procedures In all cases, the future teachers 
who participated in our study were more likely to agree that mathematics consists 
of the application of a set of rules and procedures (consistent with their lower scores 
on beliefs regarding mathematics as a process of inquiry) relative to their educators 
(see the positive intercepts in Table 6.10 and positive averages in Table 6.4). The 

Table 6.9 WLS regression results for future primary and secondary teachers on mathematics 
learning as a process of inquiry

Predictors
Primary Secondary
POL RUS U.S. POL RUS U.S.

R2 .43 .46 .53 .43 .55 .44
Intercept −0.68 −0.43 −0.65 −0.59 −0.29 −0.31
OTL variables

Foundations 0.05 −0.13
Instruction
Class participation 0.18*

Class reading 0.08 −0.08
Solving problems −0.15 −0.10 −0.15 −0.15* 0.09
Instructional practice 0.12 0.23* 0.24*

Instructional planning −0.15 −0.19 −0.21* 0.40*

Assessment uses −0.15 −0.15 −0.31*

Assessment practice 0.20* 0.29* 0.41*

Social Science 0.06
Application −0.29* −0.20* −0.24*

Teach for diversity 0.34* −0.10 −0.09
Teach for reflection
Teach for improving −0.51*

Classroom learning to practice 0.16* 0.23* 0.13 0.25*

Reinforcement of goals −0.11* 0.19*

Feedback quality −0.09 −0.13
Program coherence 0.15 0.11 −0.32*

Knowledge variables

Mathematical content 0.28* −0.07 −0.43*

Mathematical pedagogical content 0.38* −0.18 0.34*

Note: POL Poland, RUS Russian Federation, U.S. United States of America
*p < .05
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WLS regression models explained 23% (Poland primary) to 78% (Poland second-
ary) of the variance in differences between future teachers and educators. Future 
teachers’ opportunity to ask questions, participate in discussion, and to teach a class 
during their program (class participation) tends to reverse the difference in beliefs 
in the Russian Federation primary programs, but increase the differences for FSTs 
in all three countries. Similarly, having opportunities to develop instructional plans 
to accommodate pupils’ diverse learning needs significantly increased the differ-
ences in views between teacher educators and their FPTs and FSTs in Poland and 
FSTs in the Russian Federation, an outcome that may occur because instructional 
plans are more attuned to school norms than to program norms, and, in some cases, 
these norms differ. In most cases, institutions where future teachers had higher lev-
els of MCK also had views that were more closely aligned with those of their educa-
tors (that is, they were more likely to reject the view that learning mathematics for 
the most part means memorizing and applying a set of rules and procedures).

Table 6.10 WLS regression results for future primary and secondary teachers on mathematics 
learning as a set of rules and procedures

Predictors
Primary Secondary
POL RUS U.S. POL RUS U.S.

R2 .23 .54 .42 .78 .50 .47
Intercept 0.50 0.35 0.81 0.29 0.18 0.62
OTL variables

Foundations 0.12* 0.09
Instruction −0.45*

Class participation −0.23* 0.09 0.38* 0.09* 0.14*

Class reading 0.13*

Solving problems
Instructional practice 0.31*

Instructional planning 0.18* −0.23 0.31* 0.16*

Assessment uses 0.18*

Assessment practice −0.17* −0.17
Social Science −0.10 −0.09 0.07
Application
Teach for diversity −0.24* −0.15 −0.37*

Teach for reflection 0.18 −0.11
Teach for improving 0.26*

Classroom learning to practice 0.38*

Reinforcement of goals −0.13 −0.14 0.12*

Feedback quality −0.10 0.15* −0.29*

Program coherence 0.20*

Knowledge variables

Mathematical content −0.35* −0.34* −0.13* −0.36* −0.17* 0.21
Mathematical pedagogical content 0.23 0.40* 0.12 −0.44*

Note: POL Poland, RUS Russian Federation, U.S. United States of America
*p < .05
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Teacher-Directed Mathematics Learning In all cases, future teachers were more 
likely to believe that mathematics instruction should be teacher-directed relative to 
their educators (see the positive intercepts  in Table 6.11 and positive averages in 
Table 6.6). Regarding variation in these differences, the models resulted in R2 values 
ranging from .39 (Russian Federation secondary) to .55 (Russian Federation pri-
mary), with very few consistent predictors across countries and teacher level. None 
of the OTL measures were significant predictors for more than two of the six teacher 
types by country combinations. Even then, the direction of the impact varied across 
country and teacher level. In two cases for MCK and in three cases for MPCK, 
institutions with future teachers with higher knowledge scores were less likely to 
believe that mathematics instruction should be teacher-directed, toward a view gen-
erally more common among their educators. Overall, OTL appears to explain about 
half of the variation in differences in this belief, although there is variation across 
countries.

Table 6.11 WLS regression results for future primary and secondary teachers on mathematics 
teaching as teacher directed

Predictors
Primary Secondary
POL RUS U.S. POL RUS U.S.

R2 .54 .55 .41 .43 .39 .50
Intercept 0.55 0.63 0.73 0.44 0.40 0.53
OTL variables

Foundations −0.21* 0.18* 0.07 −0.13
Instruction −0.12 −0.35 0.08
Class participation −0.16* 0.06
Class reading 0.09
Solving problems 0.24* −0.15
Instructional practice 0.28* 0.12 0.21
Instructional planning 0.38* −0.27* −0.15 0.27 −0.21
Assessment uses 0.34* −0.21*

Assessment practice −0.27
Social science 0.12
Application 0.27* −0.16
Teach for diversity −0.53* 0.21* −0.16
Teach for reflection 0.23*

Teach for improving −0.30* 0.36 −0.28* 0.33*

Classroom learning to practice −0.23* 0.19
Reinforcement of goals −0.16
Feedback quality 0.16* −0.10 0.07
Program coherence 0.22*

Knowledge variables

Mathematical content −0.16* −0.15* 0.16
Mathematical pedagogical content −0.61* −0.21* −0.30*

Note: POL Poland, RUS Russian Federation, U.S. United States of America
*p < .05
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Active Learning of Mathematics In all cases, and relative to their educators, 
future teachers were less likely to believe that mathematics instruction should allow 
time for investigations and discussion so that pupils can figure out their own solu-
tions to mathematical problems and to understand why an answer is correct (math-
ematics as active learning; see the negative intercepts in Table 6.12). The model 
only explained 10% of the variation in the gap in this belief between educators and 
their FPTs in the Russian Federation, but explained 83% of the variation for FSTs 
in Poland. There was little consistency in the predictors for FPTs; however, in all 
three countries, higher quality of feedback provided by the supervising teacher 
(supervising teacher feedback quality) uniformly increased the differences between 
FSTs and their educators regarding the notion that mathematics learning can be 
inquiry-based. In addition, having more OTL about standards and assessments, 
including the analysis of assessment results in relation to pupils’ learning (assess-
ment practice), increased the difference in views among educators and their FPTs in 

Table 6.12 WLS regression results for future primary and secondary teachers on mathematics 
teaching as active learning

Predictors
Primary Secondary
POL RUS U.S. POL RUS U.S.

R2 .23 .10 .48 .83 .40 .21
Intercept −0.52 −0.39 −0.12 −0.58* −0.26 −0.08
OTL variables

Foundations −0.20 −0.18* −0.13
Instruction 0.25*

Class participation −0.10 0.88*

Class reading 0.17*

Solving problems
Instructional practice 0.40*

Instructional planning
Assessment uses
Assessment practice −0.25* −0.30*

Social Science
Application −0.08
Teach for diversity −0.74* −0.23*

Teach for reflection 0.11* 0.12 0.48*

Teach for improving
Classroom learning to practice 0.28* 0.63* 0.22
Reinforcement of goals
Feedback quality −0.23* −0.22* −0.17*

Program coherence −0.14* −0.36* 0.25*

Knowledge variables

Mathematical content 0.15* −1.47*

Mathematical pedagogical content 0.33* 1.74* 0.13*

Note: POL Poland, RUS Russian Federation, U.S. United States of America
*p < .05
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Poland and the U.S. For FSTs, learning how to address the learning needs of diverse 
students (teaching for diversity) increased the difference in views among educators 
and future teachers in Poland and the Russian Federation. Finally, higher levels of 
program coherence were related to larger differences between future teachers and 
their educators concerning the notion that mathematics learning can be inquiry- 
based; this was true for FPTs in the U.S. and for FSTs in Poland, but this difference 
was reversed for the Russian Federation’s FSTs (e.g., 1 SD increase in program 
coherence reversed the difference in beliefs about active learning, 
−0.26 + 0.25 = −0.01). MCK did not have a consistent effect on differences in this 
belief, but MPCK had significant effects in Poland on primary and secondary pro-
grams: Greater MPCK tended to reverse differences.

Mathematics as Fixed Ability In all cases except one (Poland’s secondary pro-
grams), future teachers were more likely to believe that mathematics learning is a 

Table 6.13 WLS regression results for future primary and secondary teachers on mathematics 
learning as a fixed ability

Predictors
Primary Secondary
POL RUS U.S. POL RUS U.S.

R2 .58 .48 .38 .94 .21 .55
Intercept 0.23 0.34 0.64 −0.17 0.25 0.43
OTL variables

Foundations 0.10* −0.24*

Instruction −0.06 −0.67*

Class participation −0.10* 0.30* −0.28*

Class reading 0.16*

Solving problems 0.18* −0.20
Instructional practice
Instructional planning −0.08 −0.30* 0.66* −0.37*

Assessment uses 0.42*

Assessment practice −0.37*

Social Science 0.14 0.31*

Application 0.14* −0.53*

Teach for diversity −0.13 0.19
Teach for reflection 0.10 0.25*

Teach for improving −0.16 0.54*

Classroom learning to practice −0.12 0.56* 0.09
Reinforcement of goals 0.14*

Feedback quality −0.07 −0.46* −0.09 0.40*

Program coherence 0.06 −0.18* 0.41*

Knowledge variables

Mathematical content −0.11 −0.80* −0.12* 0.19
Mathematical pedagogical content −0.17* −0.12 0.65* 0.13*

Note: POL Poland, RUS Russian Federation, U.S. United States of America
*p < .05
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function of fixed ability than their teacher educators (see the positive intercepts in 
Table 6.13). The WLS models explained 21% (Russian Federation secondary) to 
94% (Poland secondary) of the variation in the differences of belief that doing well 
in mathematics can be explained by a natural and fixed ability, with little consis-
tency in the significance of OTL predictors in the models between country and 
teacher level. Class participation and instructional planning significantly reversed 
the difference in this belief between FPTs and their educators in the Russian 
Federation and FSTs and their educators in the U.S. Although the opposite effect 
was found for FSTs in Poland, opportunities to participate in discussions and teach 
a class (class participation) and to develop instructional plans (instructional plan-
ning) also reversed the difference, so that future teachers were relatively more likely 
than their educators to believe that mathematics learning is a function of fixed abil-
ity, a finding that is consistent with the average differences (given intercepts) of 
other countries and teacher levels.

To help clarify the overall effects in these models, consider the R2 value of .94 in 
Table 6.13 for Poland’s FSTs, regarding the belief that doing well in mathematics 
can be explained by a natural ability or a mathematical mind (mathematics as fixed 
ability). An R2 equal to .94 tells us that the OTL variables explained nearly all of the 
variation in differences across institutions. On average, Poland’s FSTs believe 
mathematics learning is a fixed ability just slightly less than their educators, whereas 
future teachers in most other countries had strong beliefs supporting the fixed abil-
ity notion relative to their educators (with essentially no difference in Singapore 
elementary programs). However, these differences in future teacher and educator 
beliefs about the extent to which mathematics learning can be the result of natural 
ability toward mathematics vary across institutions (in some institutions, the differ-
ences are very small, in others they are large). For Poland’s secondary programs, the 
OTL variables explain much of this variation in differences. Another way of saying 
this, in regression-based language, is that differences in beliefs between future 
teachers and educators begin to look more similar (less variable) across institutions 
by accounting for variation in OTL and conditioning on MCK and MPCK as well.

Preparedness for Teaching In Poland, in both primary and secondary programs, 
future teachers were less likely to believe than their educators that they were well 
prepared for teaching; in contrast, in both program levels in the Russian Federation 
and the U.S., future teachers were more likely to believe than their educators that 
they were well prepared (see negative intercepts for Poland in Table 6.14). The WLS 
models produced R2 values ranging from .22 (Poland primary) to .99 (Poland sec-
ondary) for differences in this belief. Programs offering OTL to teach diverse stu-
dents, however, significantly increased differences in the perceptions of preparedness 
to teach among FPTs and FSTs in Poland. Learning in a coherent program signifi-
cantly increased differences in the perceptions of preparedness among educators 
and their FSTs in Poland and the U.S.—that is, in more coherent programs, future 
teachers felt even less prepared in Poland and more prepared in the U.S. to teach 
relative to the views of their educators. In institutions where future teachers demon-
strated higher levels of MCK in Poland primary and secondary programs, differ-
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ences in perceptions about preparedness were increased; whereas greater MPCK 
reversed the difference in Poland secondary programs. In the U.S., regarding differ-
ences in perceptions of preparedness (future teachers having more positive percep-
tions of preparedness than their educators), greater MCK increased these differences; 
however, greater MPCK reversed these differences.

 Discussion

The TEDS-M conceptual framework included beliefs as an important outcome of 
teacher education and preparation. It is assumed that teachers’ beliefs about teach-
ing and learning mathematics influence their attitudes, dispositions, and practices, 
which in turn influence pupils’ beliefs and behaviors. We investigated the extent to 

Table 6.14 WLS regression results for future primary and secondary teachers on preparedness for 
teaching

Predictors
Primary Secondary
POL RUS U.S. POL RUS U.S.

R2 .22 .43 .62 .99 .61 .43
Intercept −0.35 0.20 0.33 −0.18 0.17 0.11
OTL variables

Foundations 0.11* 0.25*

Instruction 0.19* 0.19* 0.21
Class participation 0.12* 0.10*

Class reading −0.08 −0.09
Solving problems −0.11 −0.11
Instructional practice −0.20*

Instructional planning 0.20* −0.18 0.17*

Assessment uses 0.18* 0.95*

Assessment practice 0.28* −0.41*

Social Science −0.09
Application
Teach for diversity −0.29* −0.13* −0.85* −0.09
Teach for reflection 0.23*

Teach for improving −0.20 0.10 0.77*

Classroom learning to practice −0.63* 0.15
Reinforcement of goals −0.16* 0.52*

Feedback quality 0.11 0.29* −0.12 0.23
Program coherence 0.14* −0.34* 0.31*

Knowledge variables

Mathematical content −0.19* −0.37* −0.14* 0.24
Mathematical pedagogical content 0.46* −0.23

Note: POL Poland, RUS Russian Federation, U.S. United States of America
*p < .05
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which differences in beliefs exist between future teachers and their educators in 
their teacher preparation programs in five countries. Because there is not a one-to- 
one correspondence between future teachers and educators (not all students have the 
same instructors, and not all instructors teach all students), we used the group of 
future teachers (separately for primary and secondary education programs) and the 
group of educators involved in teacher preparation at the institution as the relevant 
levels of comparison. We then looked across institutions within a country to see if 
the differences in beliefs varied. We found significant variation in future teacher and 
teacher educator differences for most beliefs in most countries. We also found that 
this variation can be explained significantly by OTL in various components of their 
education programs, including mathematics pedagogy. That is, the differences in 
beliefs between future teachers and educators are a function of the teacher educa-
tion curriculum and experiences, and, in some cases, of future teachers’ MCK and 
MPCK.

Interestingly, differences between future teachers and educators averaged across 
institutions within a country are remarkably similar across countries. That is, when, 
on average, future teachers are less likely to agree with their educators on a given 
belief in one country, we find similar patterns in the other countries, possibly indi-
cating a universal norm. For example, regarding the belief that learning mathemat-
ics is a process of inquiry, FPTs and FSTs were less likely to agree with this belief 
(i.e., they had lower scores on this belief) than their educators, on average, across all 
five countries. This was also true for believing that mathematics teaching should 
involve active learning (future teachers were less likely to agree with this belief than 
their educators). In contrast, there were beliefs future teachers were more likely to 
agree with than their educators, including the beliefs that mathematics is a set of 
rules and procedures, that learning mathematics should be teacher-directed, and that 
mathematics ability is fixed (though with no real differences evident in Singapore’s 
elementary and Poland’s secondary programs). These are the trends we find in dif-
ferences in beliefs on average across institutions; however, there is variation in these 
differences across institutions.

Finally, as expected, differences between future teachers and their educators on 
perceptions of being prepared for teaching varied across countries, but not between 
primary and secondary programs within a country. FPTs and FSTs perceived them-
selves to be less prepared for teaching than did their educators in Chinese Taipei and 
Poland (all significant differences). FPTs and FSTs perceived themselves to be 
more prepared for teaching than did their educators in the Russian Federation and 
the U.S. (all significant differences). These differences were not significant in 
Singapore, where, on average, future teachers and their educators perceived teacher 
candidates to be equally well prepared for teaching.

We also noted that in some cases, there was significant variation in these differ-
ences across institutions within a country. We observed significant variation across 
institutions preparing FPTs in Poland and the U.S. on the belief about mathematics 
learning as a process of inquiry; the same was true in institutions preparing FPTs in 
Poland and the Russian Federation with respect to the belief that mathematics learn-
ing consists of memorizing a set of rules and procedures. Regarding the belief that 
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mathematics learning should be teacher-directed, significant variation in institu-
tional differences from educators was found for FPTs in all five countries and for 
FSTs in Poland. Regarding mathematics as a fixed ability, only in the U.S. did we 
see significant variation across institutions. Finally, regarding being prepared for 
teaching, significant variation across institutions was seen in both the Russian 
Federation and the U.S.

Even though the variation across institutions may not have been at a statistically 
significant level, some variation was observed in all cases. We chose to use regres-
sion to evaluate the extent to which variation in differences in beliefs was a function 
of the OTL in education and mathematics pedagogy curriculum and experiences 
across institutions. The primary message from these regressions is that, for many 
countries, as much as one-half or more of the variation across institutions was 
accounted for by OTL. This indicates that the extent to which future teachers hold 
levels of beliefs different from their educators is a function of teacher education 
curriculum and experiences, controlling for MCK and MPCK. This suggests that 
future teacher beliefs may be malleable, but such an inference can only be suggested 
preliminarily. The design of the TEDS-M study was correlational and not causal. 
Unfortunately, a national longitudinal or experimental study is logistically and 
financially prohibitive to investigate this particular question in a direct and rigorous 
way. Nevertheless, the evidence presented here, with replication across multiple 
institutions and countries, provides relevant information regarding the association 
of common elements of teacher education curriculum and experiences with differ-
ences between future teacher and educator beliefs.

Looking globally across the 19 OTL measures, there are a few notable effects. 
First, OTL had a relatively consistent level of effects overall on institutional varia-
tion in beliefs differences. For instance, the OTL measures resulted in 19 (out of 108 
estimated coefficients) significant effects explaining variation in differences for 
beliefs that mathematics learning should be teacher-directed and 23 significant 
effects explaining variation in differences for beliefs that mathematics skill is a 
function of a natural and fixed ability. We also see OTL resulting in 25 significant 
effects for differences in perceptions about being prepared for teaching.

Looking at individual OTL measures also indicates a few common effects. The 
measure of program coherence had the most number of significant effects on differ-
ences in beliefs between future teachers and their educators (11 significant effects), 
followed by OTL for mathematics education foundations, participating in class, 
instructional practice and assessment practice, mathematics instructional planning, 
teaching for diversity, and in-school experiences that promote connecting classroom 
learning to practice and the quality of the in-school supervising teacher (all with 
nine or ten significant effects). OTL areas that had less effect included OTL in the 
social sciences of education (one significant effect) and to solve problems in math-
ematics education courses (three significant effects). The other OTL areas had five 
to seven significant effects across belief areas, teacher levels, and countries (out of 
36 possible coefficients).

Also note that we included MCK and MPCK in the regression equations, primar-
ily to control for differences in mathematics knowledge, skills, and abilities. We 

6 A Comparative International Study of Differences in Beliefs Between Future…



190

found that these control variables were significant in 17 cases for MCK and 14 cases 
for MPCK—more often than any of the OTL variables. The most consistent effect 
in this regard was the effect of MCK on the differences in beliefs regarding mathe-
matics learning as memorizing a set of rules and procedures (five significant effects 
out of six possible combinations of countries and teacher levels). When looking at 
differences in beliefs regarding mathematics as a set of rules and procedures, future 
teachers are more likely to hold this belief than their educators in all three countries 
(positive mean differences in Table 6.4). In each case, with the exception of FSTs in 
the U.S., in institutions with higher average MCK, these differences were signifi-
cantly smaller—that is, in institutions where future teachers had higher levels of 
MCK, they were less likely to view mathematics learning as memorizing a set of 
rules and procedures relative to their educators (see the negative coefficients for 
MCK in Table 6.10).

There is one limitation worth mentioning at this point. Here we investigated dif-
ferences in beliefs between future teachers and their educators. We did not attend to 
the overall level of beliefs (strong agreement versus weak agreement with beliefs). 
If program faculty are clear and consistent about their beliefs regarding the teaching 
and learning of mathematics, they may hope to impart those beliefs through the cur-
riculum, instruction, and experiences provided to their future teachers. It is also 
likely that most programs have not articulated a consistent or coherent set of beliefs 
or that teacher preparation educators are intentional in imparting beliefs regarding 
mathematics teaching and learning. That was not directly evaluated here, and we 
note that there is substantial variability in beliefs within institutions. Our focus was 
on variation in the differences at the institutional level and across these institutions 
within countries. This allowed us to evaluate the extent to which these differences 
in beliefs were significant, whether they varied across institutions, and the extent to 
which that institutional variability was a function of curriculum and experiences. 
Thus, OTL, as expressed in the teacher education curriculum, the experiences in the 
program, and the experiences in the field, and teacher educators’ own views about 
teaching and learning to teach, are the potential levers that teacher preparation pro-
grams can control.
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Abstract This chapter provides an introduction to Part II of the book, which 
focuses on the future teachers that participated in the Teacher Education and 
Development Study in Mathematics (TEDS-M), a cross-national study of teacher 
education programs that prepare future primary and secondary mathematics teach-
ers. The study collected data from 13,871 future primary teachers and 8,207 future 
secondary teachers through a novice teacher questionnaire (NTQ), and from assess-
ments of mathematics knowledge (MCK) and mathematics pedagogical content 
knowledge (MPCK). The chapter includes a brief overview of the characteristics of 
the future teachers, the methods of data collection, and the challenges encountered 
when administering the questionnaire and the assessments. The data on background 
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characteristics includes age, gender, previous career, highest level of education 
reached before teacher education, and highest level of mathematics reached before 
teacher education. The assessments measured future teachers’ abilities to demon-
strate key learning outcomes of teacher education programs, including their knowl-
edge (mathematical content knowledge and mathematical pedagogical content 
knowledge) and beliefs (about the nature of mathematics, the nature of teaching 
mathematics, the nature of learning mathematics, self-efficacy, and preparedness to 
teach). Standing between the characteristics of future teachers and their learning 
outcomes are the characteristics of teacher education programs, which include the 
opportunities to learn that they afford future teachers. The chapters explore how key 
opportunities to learn offered by teacher education programs influence future teach-
ers’ knowledge and beliefs. The first six chapters focus on future primary teachers, 
whereas the last two chapters include the study of future secondary teachers.

 Future Teachers

In Part II of the book, authors focus on the future teachers themselves. The study of 
future teachers included the exploration of their background characteristics such as 
age, gender, previous career, highest level of education reached before teacher edu-
cation, and highest level of mathematics reached before teacher education. In addi-
tion, the TEDS-M team studied the future teachers’ abilities to demonstrate the key 
learning outcomes of teacher education programs, including their knowledge (math-
ematical content knowledge and mathematical pedagogical content knowledge) and 
beliefs (about the nature of mathematics, the nature of teaching mathematics, the 
nature of learning mathematics, self-efficacy, and preparedness to teach). Standing 
between the characteristics of future teachers and their learning outcomes are the 
characteristics of teacher education programs, which include the opportunities to 
learn that they afford future teachers.

Through the chapters in Part II of the book, various authors explore how teacher 
education influences future teachers’ knowledge and beliefs. In the first six chap-
ters, authors focus on future primary teachers, whereas in the last two chapters, 
authors address future secondary teachers.

In this introduction, we provide a brief overview of the characteristics of the 
future teachers, the methods of data collection, and the challenges encountered 
when collecting data.

 Summary of Future Teacher Characteristics

Future teachers were defined as “students enrolled in teacher education programs 
designed to prepare them to teach mathematics at the primary or secondary levels” 
(Tatto et al., 2012, p. 116). In total, data were obtained from 13,871 future primary 
teachers and 8,207 future secondary teachers. Data about the future teachers were 
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collected through both a novice teacher questionnaire (NTQ), which covered back-
ground characteristics, beliefs, and opportunities to learn (OTL), and assessments of 
mathematics knowledge (MCK) and mathematics pedagogical content knowledge 
(MPCK).

The study team found that, overall, future teachers tended to be young. Across 
programs, the mean age of the future teachers in their last year of teacher prepara-
tion ranged from about 21–29 years. Future secondary teachers tended to be slightly 
older, on average, than primary future teachers. Teachers at both levels tended to be 
female across countries (Tatto et al., 2012).

As a proxy for prior achievement, the NTQ included questions for future teach-
ers to rate the usual level of marks or grades received in secondary school. It was not 
possible for TEDS-M to collect pre/post data on future teachers due to the large 
variance in when and how future teachers enter their teacher preparation programs. 
Because programs varied in duration from 1 to 5 years, and teachers sometimes 
changed courses of study in college; no common baseline data could be collected on 
an international scale. Overall, most future teachers reported being “usually near the 
top of my year level,” or “generally above average for my year level” before enter-
ing the teacher education program. However, in some countries and more often at 
the primary levels, the more common answer was a step below. Across countries, it 
was consistently found that the teachers trained for teaching at higher levels had 
higher prior achievement levels (Tatto et al., 2012). Though these are self-reports, it 
is important to note that they are a strong predictor of both MCK and MPCK (e.g., 
Qian & Youngs, 2015).

The NTQ included questions for future teachers about their socio-economic sta-
tus, using the following indicators: number of books in the homes of the students’ 
parents or guardians, the availability of a variety of educational resources in those 
homes, and the highest level of education completed by their male and female par-
ents or guardians, all commonly used proxies for socio-economic status in the 
literature.

Researchers show that family education level varied considerably by country, 
with some countries (typically those less wealthy) having many future teachers 
report primary school as their parents’ highest level of education attainment, and 
other countries having more than 20% of future teachers report that their parents 
attained advanced degrees (Tatto et al., 2012).

The NTQ also included questions for future teachers on whether the language 
they spoke at home was the same as the language of the questionnaire, and whether 
the future teachers were natural citizens or immigrants in the country in which they 
were becoming a teacher. Although most future teachers in most countries reported 
speaking the language of the assessment at home, significant proportions in some 
countries1 reported that they sometimes or never spoke the language of the assess-
ment at home (Tatto et al., 2012, p. 122).

1 These included including Botswana (90%), Chinese Taipei (about 30%), Malaysia (about 87%), 
Oman (about 28%), the Philippines (about 95%), Singapore (about 43%), and Thailand (about 
39%).
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Future teachers were also asked about previous careers and their commitment to 
being a teacher in the future. The proportion of future teachers reporting a prior 
career varied across countries, but it tended to be less than one-third of respondents. 
Regarding the reasons for choosing teaching, the most common response across 
program-types that teachers gave was “like working with young people.” Other rea-
sons varied across program-types; for example, more secondary than primary teach-
ers selected “I love mathematics.” The least frequently chosen responses were 
“good student in school,” “availability of teaching positions,” and “I am attracted by 
teacher salaries” (Tatto et al., 2012, pp. 122–126).

 Summary of Future Teacher Beliefs and Opportunities 
to Learn

Beliefs held by teachers and students are an important influence on teaching and 
learning (Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Peterson, Fennema, 
Carpenter, & Loef 1989; Wilkins, 2008). However, there is little conclusive evi-
dence that beliefs can be effectively influenced by teacher preparation (Tatto, 
1999; Tatto & Coupland, 2003).

For this reason, the TEDS-M study team collected data about three aspects of 
future teachers’ mathematics-related beliefs to allow researchers to investigate the 
assocations between teacher education and the beliefs of future teachers:

 1. beliefs about the nature of mathematics;
 2. beliefs about learning mathematics; and
 3. beliefs about mathematics achievement.

The development of the TEDS-M questionnaire scales was informed in part by 
work done in the participating countries and by the Teaching and Learning to Teach 
Study at Michigan State University (Deng, 1995; Ingvarson, Beavis, Danielson, 
Ellis, & Elliott, 2005; Ingvarson, Beavis, & Kleinhenz 2007; Tatto 1996, 1998, 
2003); the questionnaire ultimately contained five belief scales covering the three 
areas above.

Among the future teachers who answered the questionnaires, items expressing 
beliefs most consistent with cognitive-constructivist views of mathematics learning 
(e.g., mathematics is a process of inquiry; learning mathematics requires active 
involvement) attracted much greater support than the items expressing beliefs most 
consistent with the procedural-rules-guided views of mathematics learning (e.g., 
mathematics is a set of rules and procedures; learning mathematics requires 
 following teacher direction). This pattern was common across countries, but not 
universal. The latter two beliefs were more prevalent than the former two in Georgia 
(the country where the range of beliefs across programs was also greatest), the 
Philippines, Malaysia, and, to some extent, in Botswana and Thailand. Differences 
between patterns of response for the future primary teachers and for the future 
lower-secondary teachers were relatively small.
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 Summary of Future Teachers’ Knowledge Outcomes: MCK 
and MPCK

Studying the knowledge that future teachers have at the end of their formal teacher 
education is important for two main reasons. First, teachers’ knowledge influences 
the mathematics achievement of their students (Baumert et al., 2010; Hill, Rowan, 
& Ball, 2005). Second, studying knowledge as a key outcome of teacher education 
in combination with rich information about the teacher education experience and 
important control variables can shed light on the influence that teacher education 
may have had on future teachers’ knowledge.

Knowledge for teaching requires both content knowledge and pedagogical con-
tent knowledge (National Research Council, 2010; Shulman, 1987). The TEDS-M 
research team drew on prior work in this area to design the instruments used to 
measure the mathematics content knowledge (MCK) and the mathematics 
 pedagogical content knowledge (MPCK) of future teachers at the end of their pro-
grams. The subdomains of each are presented below in Tables 7.1, 7.2, and 7.3.

For a more detailed description of the development of the MCK and MPCK 
assessments, see Chapter 3 of the conceptual framework (Tatto, Schwille, Senk, 
Ingvarson, Peck, & Rowley, 2008), the TEDS-M international report (Tatto et al., 
2012), and the TEDS-M technical report (Tatto, 2013).

The tables containing the results of the MCK and MPCK assessment and the 
answers to beliefs and opportunities to learn questions are extensive. We advise 
the reader to consult the TEDS-M International Report (Tatto et al., 2012), and 

Table 7.1 Mathematics content knowledge framework, by content subdomain

Subdomain Sample topics

Number and operations Whole numbers, fractions, and decimals
Number sentences
Patterns and relationships
Integers
Ratios, proportions, and percentages
Irrational numbers
Number theory

Geometry and measurement Geometric shapes
Geometric measurement
Location and movement

Algebra and functions Patterns
Algebraic expressions
Equations/formulas and functions
Calculus and analysisa

Linear algebra and abstract algebraa

Data and chance Data organization and representation
Data reading and interpretation
Chance

Source. Tatto et al., (2012, p. 130)
aLower-secondary level only
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specifically Chapter 5, “The Mathematics Content Knowledge and Mathematics 
Pedagogical Content Knowledge of Future Primary and Lower Secondary 
Teachers” (pp. 129–151), Chapter 6, “Beliefs about Mathematics and Mathematics 
Learning” (pp. 153–173), and Chapter 7, “Opportunity to Learn” (pp. 175–197).

A final observation should be made about the quality of the data collected and 
used for this book. The data collection and the study as a whole were done following 
the strict guidelines that the IEA (International Association for the Evaluation of 
Educational Achievement) sets for all its studies. The field trial, which was intended 

Table 7.2 Mathematics content knowledge framework, by cognitive domain

Subdomain Sample behaviors

Knowing Recall, recognize, compute, retrieve, measure, 
classify/order

Applying Select, represent, model, implement, solve routine 
problems

Reasoning Analyze, generalize, synthesize/integrate, justify, 
solve non-routine problems

Source. Tatto et al., (2012, p. 130)

Table 7.3 Mathematics pedagogical content knowledge (MPCK) framework

Subdomain Sample topics

Mathematics curricular knowledge Knowing the school mathematics curriculum
Establishing appropriate learning goals
Identifying key ideas in learning programs
Selecting possible pathways and seeing 
connections within the curriculum
Knowing different assessment formats and 
purposes

Knowledge of planning for mathematics 
teaching and learning

Selecting appropriate activities
Predicting typical students’ responses, including 
misconceptions
Planning appropriate methods for representing 
mathematical ideas
Linking didactical methods and instructional 
designs
Identifying different approaches for solving 
mathematical problems
Choosing assessment formats and items

Enacting mathematics for teaching and 
learning

Explaining or representing mathematical concepts 
or procedures
Generating fruitful questions
Diagnosing students’ responses, including 
misconceptions
Analyzing or evaluating students’ mathematical 
solutions or arguments
Analyzing the content of students’ questions
Responding to unexpected mathematical issues
Providing appropriate feedback

Source. Tatto et al., (2012, p. 131)
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to be a test of all procedures and instruments with a reduced sample, revealed the 
challenging nature of the study, with issues ranging from the inaccuracy of future 
teachers’ data as kept by programs (with implications for sampling and response 
rates) to refusals to answer, to problems of measurement fit for some items. The 
knowledge acquired in the field trial supported a strong and rigorous study as the 
TEDS-M team developed methods and procedures to find the target population, 
obtained the IEA response rates required for reporting (85–100%), and fine-tuned 
study instruments to secure measures with validity evidence and reliable scores. 
Thus, the surveys were completed with high response rates and coverage of the 
target populations, in most cases meeting the very high IEA standards for sampling 
and response rates. There were, however, limited instances in which the IEA stan-
dards were not met, yet the response rates still compared favorably with general 
experience in higher education surveys, especially in those cases in which the tar-
geted participants are all volunteers. TEDS-M thus lays the foundation for future 
rigorous cross-national research in teacher education, and allows for the exploration 
of the TEDS-M database to conduct secondary analysis.

 Overview of Chapters in This Section

This section features eight chapters exploring the association between individual 
and program characteristics and teacher education outcomes. As the main TEDS-M 
findings are reported elsewhere (Tatto et al., 2012; Ingvarson et al., 2013), these 
chapters take a closer look at the associations among variables of interest.

One of the groundbreaking aspects of TEDS-M was the information collected 
about future teachers’ opportunities to learn a variety of mathematical and peda-
gogical skills. The chapters of this section focus on subsets of these measures of 
OTL, and the associations with other future teacher outcomes. We recognize that 
future teachers’ self-reported OTL may not align completely with the OTL teacher 
educators believe their programs offer, but they have been shown to be fairly well 
aligned with future teachers’ knowledge and skills. The OTL items on the NTQ 
encompass both mathematical content and pedagogical strategies. Authors explore 
these questions across the next eight chapters.

First, in Chap. 8, “The Mathematical Education of Primary Teachers,” and later 
in  Chap. 14, “The Mathematical Education of Secondary Teachers,” Tatto uses 
 multivariate analyses to explore the association between future teachers’ individual 
characteristics (e.g., levels of achievement in previous schooling), program charac-
teristics (e.g., programs’ selection policies and opportunities to learn the content 
and the pedagogy of the mathematics school curriculum), future teachers’ beliefs, 
and future teachers’ knowledge of mathematics and mathematics pedagogy. Results 
support the use of teacher education policies directed at raising the level of subject 
knowledge required for program selection/graduation and increasing the level of 
cognitive demand of the mathematics and mathematics pedagogy opportunities to 
learn offered to future primary and secondary mathematics teachers.
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In Chap. 9, “How Primary Future Teachers’ Knowledge Is Shaped by Teacher 
Preparation,” Qian and Youngs take a closer look at the associations between ele-
mentary future teachers’ opportunities to learn in mathematics courses and mathe-
matics methods courses and their mathematics content knowledge and mathematics 
pedagogical content knowledge in Chinese Taipei, Singapore, and the United States. 
The authors found evidence that elementary future teachers’ knowledge is affected 
by the content of mathematics courses taken and by the number of topics addressed 
in mathematics methods courses.

In Chap. 10, “Opportunities to Learn Mathematics Pedagogy  and Connect 
Classroom Learning to Practice: A Study of Future Teachers in the United States 
and Singapore,” Kutaka, Smith, and Males explore future mathematics specialists’ 
opportunities to learn how to teach mathematics using latent class analysis to dif-
ferentiate among groups of prospective mathematics specialists with potentially dif-
ferent opportunities to learn mathematics pedagogy within the United States and 
Singapore. After identifying different learning and practicum experiences in univer-
sity and in the field experience for each country, the authors discuss implications for 
teacher-preparation programs.

In Chap. 11, “Preparing Primary Mathematics Teachers to Learn to Work with 
Students from Diverse Backgrounds,” and Chap. 15, “An International Study of the 
Relationship between Learning to Teach Students from Diverse Backgrounds and 
Mathematical Knowledge for Teaching in Future Secondary Mathematics Teachers,” 
Dyer analyzes the associations between future  primary and secondary teachers’ 
opportunities to learn to teach students from diverse backgrounds, and their mathe-
matical knowledge for teaching. Using multilevel modeling, Dyer creates separate 
models for primary and secondary future teachers. In Chap. 11, Dyer found that 
primary mathematics specialist teachers with more opportunities to learn to teach 
students from diverse backgrounds had lower levels of mathematical knowledge for 
teaching (as measured by MCK and MPCK). Primary generalist teachers do not 
consistently show the same results across all countries, with some showing higher 
and others showing lower levels of mathematical knowledge for teaching associated 
with greater opportunities to learn to teach students from diverse backgrounds. The 
results suggest teachers who are better prepared for the mathematical aspects of 
teaching tend to be less prepared for addressing the needs of diverse learners. In the 
Chapter focusing on secondary teachers, Dyer found a negative association within 
teacher preparation programs; teachers with more opportunities to address the learn-
ing needs of students from diverse backgrounds have lower levels of  mathematical 
knowledge for teaching. These results suggest that teachers with tools for addressing 
the learning needs of students from diverse backgrounds may lack adequate mathe-
matical preparation.

Chapter 12, “Differences in Beliefs and Knowledge for Teaching Mathematics: 
An International Study of Future Teachers,” by Kutaka, Smith, and Albano, uses 
multi- level modeling to examine the associations between mathematics content 
knowledge (MCK) and prospective primary teachers’ beliefs about the nature of 
mathematics and about learning mathematics, across 15 countries. A series of mul-
tilevel models were fit to four program groups (lower-primary, primary, primary/
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secondary, and primary mathematics specialists) with future teachers nested within 
institutions. Future teachers in the same country preparing to teach at different grade 
levels do not endorse the same kinds of beliefs across programs, nor did they observe 
consistent patterns of associations between belief types and MCK within programs. 
Across programs, endorsing the belief mathematics is a process of inquiry was asso-
ciated with higher MCK, whereas endorsing the belief mathematics is a set of rules 
and procedures was associated with lower MCK. There was a less consistent pattern 
of associations between belief in mathematics as a fixed ability and MCK.  The 
chapter concludes with possible explanations for programmatic differences between 
and within countries, grounded in a discussion of program features such as entry 
requirements, program types and credentials, as well as school curriculum organiza-
tion and content.

Chapter 13, “Future Teachers’ and Teacher Educators’ Perceptions of Learning 
Mathematics Instruction and Relationships to Knowledge,” by Ayieko, examines 
associations between opportunities to learn mathematics instruction for conceptual 
understanding and elementary future teachers’ knowledge for teaching mathematics 
in three countries: Poland, Russia, and the United States. The perception of the 
opportunities to learn mathematics instruction among future teachers did not match 
those of their teacher educators. A comparison of the teacher educators’ and future 
teachers’ responses suggest that the future teachers in the three countries had fewer 
opportunities to learn mathematics instruction for conceptual understanding than 
was intended by the teacher educators. The pattern of associations from a multilevel 
regression analysis in each of the selected countries show variations across contexts 
and categories of knowledge. In particular, opportunities to learn how to make dis-
tinctions between procedural and conceptual knowledge, and how to show why a 
procedure works, were significantly related to future teachers’ knowledge for teach-
ing mathematics between programs in the different countries.
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Chapter 8
The Mathematical Education of Primary 
Teachers

Maria Teresa Tatto 

Abstract This chapter reports the results of a cross-national study designed to 
examine the mathematics knowledge and the mathematical pedagogical content 
knowledge attained by prospective primary teachers at the end of their formal prep-
aration and before they begin to teach. The study used survey methods to collect 
data from nationally representative samples of pre-service university-based teacher 
education programs and their future teachers in Botswana, Chile, Chinese Taipei, 
Germany, Malaysia, the Philippines, Poland, Russia, Singapore, Spain, Switzerland, 
Thailand, and the United States. Descriptive and multivariate analyses show that 
future teachers’ individual characteristics, such as levels of achievement in previous 
schooling, programs’ selection policies, and opportunities to learn the content and 
the pedagogy of the mathematics school curriculum, were associated with higher 
levels of knowledge and dispositions toward teaching and learning mathematics. 
Results support teacher education policies directed at (a) raising the level of subject 
knowledge required for program selection and graduation and (b) increasing the 
level of complexity and cognitive demand of the opportunities to learn mathematics 
and mathematics pedagogy offered to future primary mathematics teachers.

Introduction

Teachers’ knowledge of mathematics alone does not guarantee high- quality teach-
ing. However, this knowledge is seen as a prerequisite to teach mathematics effec-
tively (Akiba, LeTendre, & Scribner, 2007; National Science Board, 2004; Staub & 
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Stern, 2002; Van Dooren, Verschaffel, & Onghena, 2002). For years, scholars have 
argued that other kinds of knowledge—of teaching, of learning, of students and 
their context, of the curriculum—are just as important (see Ball, 1991; Ball & Bass, 
2000; Hill & Ball, 2009; Shulman, 1987). While there is disagreement concerning 
the balance of what and how much future teachers need to know to be successful, 
there is agreement that teachers are a key element in improving the overall level of 
mathematical proficiency among growingly diverse societies, and that good teacher 
preparation is essential (Conference Board of the Mathematical Sciences [CBMS], 
2012; NRC, 2010). Accordingly, much emphasis has been placed on understanding 
what knowledge counts for effective teacher preparation, a question that has been 
the focus of sustained research across the globe for the last 17 years (see Ball, 2003; 
CBMS, 2012; Kilpatrick & Swafford, 2002; National Commission on Mathematics 
and Science Teaching for the 21st Century, 2000).

As curricula become more complex and demanding, and as nations across the 
world call for access to high-quality teachers for all children (UNESCO, 2014, 
2016), it is important to have a better understanding of how this complex balance of 
what teachers need to know is managed in settings where teachers are known to be 
knowledgeable and effective. Cross-national studies are particularly useful in pro-
viding a comparative empirical basis to assess the effectiveness of different 
approaches to teacher education.

This chapter contributes to the literature on the effectiveness of mathematics 
teacher education by exploring the degree to which future teachers’ individual char-
acteristics and program policies and opportunities to learn (OTLs) contribute to the 
development of knowledgeable mathematics primary teachers.1 This study uses data 
from the Teacher Education and Development Study in Mathematics (TEDS-M), 
the first large-scale cross-national study collaboratively designed and implemented 
by mathematicians, mathematics teacher educators, and local researchers in the par-
ticipating countries.

 Studying the Effectiveness of Pre-service Teacher Education 
Programs

The late 1990s saw an increased urgency in universal calls to improve learning in 
schools and to focus on teachers as part of both the problem and the solution (see 
the Delors Report, 1996, and the World Education Report on Teachers and Teaching, 
1998, both published by UNESCO). Increased interest in teachers resulted in stud-
ies examining teaching and learning in classrooms, especially in countries where 
pupils had high scores in international mathematics and science tests (Hiebert et al., 

1 ‘Note that in the U.S. ‘primary’ usually refers to grade K-3, while ‘elementary’ is used for grades 
K-5 or K-6. In this chapter the term elementary is used as was used in TEDS-M (see Tatto et al., 
2012 pp. 29–32 for specific definitions within countries as to what grades are included as primary 
or secondary).’
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2003; Stigler & Hiebert, 1997; Stigler, Gallimore, & Hiebert, 2000). These studies 
helped the field to move beyond the examination of teacher characteristics, to 
searching for evidence related to teachers’ cognition as an explanation for good 
teaching, concluding that effective teachers seem to possess a special kind of teach-
ing knowledge, or what education experts in Europe call didactique (Develay, 1998) 
and elsewhere pedagogical content knowledge (Shulman, 1987). Such knowledge 
can theoretically be learned through deliberately organized experiences such as pre- 
service teacher education (for calls to expand this research to reflect the practice of 
teaching, see Grossman & McDonald, 2008). More recent developments, supported 
by alternative theories characterized by an emphasis on school-based learning, have 
resulted in the creation of alternative routes into teaching.

Policy-relevant research on the most effective approaches to becoming a teacher 
has developed slowly, in contrast with the rapidity of policy-driven change. Yet a 
number of studies have contributed important insights calling for the need to con-
sider teacher education as one of the most important policy levers for increasing 
teaching quality (in the United States, see Cochran-Smith & Zeichner, 2015; 
Darling-Hammond, 2006; Mewborn & Stinson, 2007; in Singapore, Ginsburg, 
Anstrom, & Pollock, 2005; in Sri Lanka, Tatto, Nielsen, Cummings, Kularatna & 
Dharmadasa, 1993; Tatto & Kularatna 1993; and in the field of comparative studies, 
Comiti & Ball, 1996; Tatto, 2008, 2017).

Research from the mathematics education community has provided strong evi-
dence that teacher education has an important influence on teachers’ knowledge and 
effective practice (in the United States, see Ball, 2003; Even & Ball, 2009; Even & 
Tirosh, 2002; Hill, 2007; in Mexico, Luschei, 2011; Santibañez, 2002; Tatto 1999a, 
1999b; in other countries, Baumert et al., 2010; Schmidt, Blomeke, & Tatto, 2011).

In spite of these advances, the field lacks examples of authoritative self- evaluation 
studies of teacher education programs. The TEDS-M study is the first large-scale 
cross-national study of the outcomes of teacher education, and it provides the most 
rigorous publicly available database to date to explore the outcomes of mathematics 
pre-service teacher education.

 Research Questions

Using the TEDS-M database, this chapter explores the following questions about 
future primary teachers at the end of their pre-service university-based teacher 
education:

 1. What is the level and depth of the mathematical and mathematical pedagogical 
content knowledge future teachers attain? Is this knowledge similar or different 
across countries?

 2. How are specific characteristics of future teachers (such as socioeconomic status 
(SES), age, gender, prior attainment, beliefs) associated with their attained levels 
of knowledge?
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 3. What are some of the key learning opportunities available to future teachers in 
their teacher education programs, and how are these associated with their attained 
levels of knowledge?

 Previous Research

This section includes an abridged review of studies that inform and support the 
research questions that guide this study. These studies have to do with research on 
program characteristics such as structure, selectivity, and content, including OTLs; 
research on future teachers’ characteristics such as background (SES, age, gender, 
and prior attainment) and beliefs; and research on mathematical and mathematical 
pedagogical knowledge needed for teaching.

 Program Characteristics

Teacher education programs are usually described by their general or structural 
characteristics such as duration; route, which can be either traditional (typically 
linked with higher education institutions such as universities) or alternative (ranging 
widely and having a strong practical school-based component); and credentials 
granted. Less common are program descriptions based on their specific or content 
characteristics such as their curriculum, the opportunities to learn they make avail-
able to future teachers (type and content of courses and school experiences they 
offer), and whether these curricular offerings and experiences are internally coher-
ent (see Chapter 4 of this book and Tatto & Hordern, 2017 for examples using the 
TEDS-M syllabus analysis data).

Education scholars such as Darling-Hammond (2006), Kennedy (2016), and 
Zeichner and Conklin (2005) have pointed out that it is precisely the latter program 
features that tend to have more impact on future teachers’ knowledge. However, 
structural and content factors interact in complex ways.

A review of research by Coggshall, Bivona, and Reschly (2012, p. 6) found that 
research studies (such as those by Boyd, Grossman, Lankford, Loeb, & Wyckoff, 
2009; Boyd et al., 2008; and National Center for Analysis of Longitudinal Data in 
Education Research, 2012) suggest that indeed program content (i.e., what is taught) 
is important for program effectiveness, but so are other aspects of programs, such as 
program selectivity and program structure, which may be seen as determining the 
types of OTLs provided (i.e., five-year programs make it possible for candidates to 
have access to one full year of clinical experiences and obtain a graduate 
credential).

The importance of program selectivity and OTLs is supported in the United 
States by studies such as the NYC Pathways (Boyd et  al., 2009, 2008), and the 
Mathematica study (Constantine et  al., 2009). Both studies found that the most 
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meaningful features of program effectiveness are whether the program is selective 
and the depth and breadth of the OTLs they provide.

The research of Schmidt, Blomeke and Tatto (2011), and Blomeke, Suhl, Kaiser, 
and Dohrmann, (2012) on programs’ OTL for future teachers supports the relation-
ship of certain key characteristics of program structure with both OTL (such as 
subject and pedagogy content and professional preparation) and teachers’ knowl-
edge. These two studies conclude that key program structure features that influence 
OTL have to do with a program’s selectivity, the target grades for which teachers are 
being prepared, whether teachers are prepared as generalists or specialists, and 
whether the program has a field experience component.

 Opportunities to Learn

An OTL is an experience with an anticipated or intended learning outcome. OTLs 
have been seen as central to explaining mathematics learning since the concept was 
introduced in the late 1960s (Husen, 1967) and explained as that pupils who were 
not exposed to mathematical concepts and experiences in school would find it dif-
ficult to demonstrate such knowledge in achievement tests. According to McDonnell 
(1995), the concept of OTL “has changed how researchers, educators, and policy-
makers think about the determinants of student learning” (p. 317). More recently, 
OTL has been used to explore determinants of teacher learning (Blomeke et  al., 
2012; Tatto et al., 2012).

Indeed, teacher education programs’ OTLs can be considered one of the most 
important program characteristics that can contribute to future primary teachers’ 
knowledge and skills. Based on an extensive review of the literature, Floden (2002) 
explained that inclusion of OTL in education studies serves a number of purposes: 
as an explanation of differences in levels of knowledge; as an indicator of curricular 
variation among entities; as an aspect of fairness (e.g., appropriateness of language 
of test items); and as a representation of the diversity of content, both overall and for 
distinct groups. In spite of the recognized need for more research on the influence 
of the teacher education curriculum as expressed, for instance in the variety of 
courses offered by teacher education programs (Wayne & Youngs, 2003; Tatto & 
Hordern, 2017), these studies are rare.

The degree to which these OTLs are consistent across courses and experiences 
offered to future teachers, and whether there are explicit standards with expectations 
for what future teachers should learn from their respective programs, served to 
define a program’s coherence. Thus, program effectiveness depends on the degree 
of curriculum coherence, as more coherent programs are better able to influence 
future teachers’ cognition about teaching and learning mathematics (Tatto, 1996, 
1998, 1999a, 1999b).
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 Future Teacher Characteristics

Background Much research in the past has focused on the characteristics of teach-
ers as a way to explain good teaching (Greenwald, Hedges, & Laine, 1996); yet 
teachers’ characteristics, while important moderating factors, may not be the best 
predictors of teaching effectiveness. Wayne and Youngs’ (2003) examination of the 
literature spanning more than 25 years (from 1975–2002) yielded 21 studies that 
failed to establish a definitive link between teacher characteristics (defined as rat-
ings of teachers’ colleges, teachers’ test scores, teachers’ degrees and coursework, 
and teachers’ certification status) and effectiveness. While some studies find corre-
lations between mathematics content knowledge and attributes such as SES, gender, 
and age, more informative studies found significant relationships between measures 
of ability (such as previous school performance or test scores) and effective teach-
ing (Darling-Hammond, 2000; Monk, 1994; Mullens, Murnane, & Willett, 1996).

Importantly, Henry, Bastian, and Smith (2012) found that individual academic 
attainment prior to entering a teacher education program was correlated with teach-
ing effectiveness; thus, while teacher background characteristics are important indi-
cators of factors that may moderate program effectiveness, measures of knowledge 
and ability seem to better account for program outcomes (Ball, 1990a, 1990b).

Beliefs Teachers’ beliefs have been considered an essential component of what 
makes a teacher effective and thus have been an important feature of teacher educa-
tion. Researchers such as Fennema and Franke (1992) have argued since the early 
1990s that teacher beliefs cannot be separated from teacher knowledge, a conclu-
sion also supported by Grouws (1992) and by the work of DeCorte, Op’t Eynde, and 
Verschaffel (2002). While this might lead one to conclude that teachers’ beliefs can 
be altered as they develop knowledge of teaching and learning, there is no conclu-
sive evidence that beliefs can be effectively influenced by teacher preparation (Tatto 
& Coupland, 2003). Yet there are a number of small course evaluation studies that 
provide evidence of the influence of primary teacher preparation courses on teach-
ers’ beliefs (see for instance Wilkins & Brand, 2004). Previous work done in this 
area on a larger scale by the Teaching and Learning to Teach Study (National Center 
for Research on Teacher Learning) helped distinguish among sets of beliefs relevant 
to mathematics teaching and the role of program norms in influencing views about 
teaching and learning (Deng, 1995; Tatto, 1996, 1998, 1999a, 1999b). In these stud-
ies, a questionnaire was developed to measure program influence by asking teacher 
educators and future teachers about their beliefs in aspects considered central to 
teaching (such as views about learning to teach diverse students) at the beginning 
and end of their programs. The analysis examined the aggregated views of future 
teachers and their educators and concluded that in programs with strong norms 
about inquiry-based teaching and learning, graduates’ views had changed to fit pro-
gram’s norms (as expressed by teacher educators’ views); while in programs with 
weak norms, graduates’ views remained unchanged.

M. T. Tatto



211

Of special importance for future mathematics teachers, of course, are beliefs 
about the nature of mathematics and beliefs about learning mathematics. How 
future teachers perceive the nature of mathematics as a subject (e.g., mathematics as 
formal, structural, procedural, or applied) can reflect how they have experienced 
learning mathematics themselves and how they are likely to approach teaching 
mathematics (Grigutsch, Raatz, & Törner, 1998; Ingvarson, Beavis, Danielson, 
Ellis, & Elliott, 2005; Ingvarson, Beavis, & Kleinhenz, 2007). Beliefs about math-
ematics learning have consequences for how teachers ultimately plan and deliver 
instruction and such beliefs include notions about the appropriateness of particular 
instructional activities, about students’ cognition processes, and about the purposes 
of mathematics as a school subject. If it is indeed a goal of teacher education to 
challenge naïve views acquired via the apprenticeship of observation (Lortie, 1975; 
Mewborn & Tyminski, 2006), then exploring graduates’ views across nations could 
provide important insights for, and about the nature of, teacher education.

 Mathematics and Mathematics Knowledge Needed for Teaching

Teachers’ professional knowledge has been conceptualized in a variety of ways 
throughout the years, but probably the most significant work came in the 1980s with 
the re-conceptualization of the complex kinds of knowledge that teachers need to be 
able to teach well, and the focus on what it means to know it. In 1987, Shulman 
argued that there was a knowledge base for teaching that could be understood as a 
“combination of content knowledge, pedagogical content knowledge, general peda-
gogical knowledge, curriculum knowledge, knowledge of learners, knowledge of 
educational contexts, and knowledge of educational ends, purposes, and values” 
(p. 8). Two of these concepts find global resonance in the international literature 
(Delaney, Ball, Hill, Schilling, & Zopf, 2008; Tatto et al., 2012) and have provided 
a common framework to study teacher education: (a) content knowledge (CK), is 
defined as the set of accumulated “knowledge, skills and dispositions that are to be 
learned by school children” (pp. 8–9), but which also has a base in the disciplines 
and ideas about what it means to know in those content areas; and (b) pedagogical 
content knowledge (PCK), which includes a “blending of content and pedagogy into 
an understanding of how particular topics, problems, or issues are organized, repre-
sented and adapted to the diverse interests and abilities of learners, and presented 
for instruction” (p. 8).

In subsequent decades, mathematics education scholars have produced a large 
body of work on prospective elementary teachers’ knowledge of both different 
aspects of mathematics—such as division (Ball, 1990a, 1990b), proportional rea-
soning (Simon & Blume, 1994), fundamental knowledge of elementary mathemat-
ics operations (Ma, 1999)—and mathematical knowledge for teaching (An, Kulm, 
& Wu, 2004; Even & Ball, 2009; Hill, Rowan, & Ball, 2005; Hill, Sleep, Lewis, & 
Ball, 2007). These and other studies have been developing consensus as to the 
knowledge base for mathematics teaching in a field once seen by some as highly 
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incoherent (see Begle, 1979; but also Ball, 1991), and have developed the theoreti-
cal basis to understand how content knowledge and pedagogical content knowledge 
contribute to the knowledge that is needed for teaching mathematics (Hill et  al., 
2005) and the extent to which teacher education provides future teachers with the 
opportunities to learn such knowledge (Boero, Dapueto, & Parenti 1996; Hill, 
Sleep, Lewis, & Ball, 2007).

The greatest challenge, however, has been in operationalizing what it means to 
possess this knowledge and in the development of valid and reliable measures of 
knowledge for teaching (Delaney et  al., 2008). Early in the 2000s, education 
researchers (Ball, Lubienski, & Mewborn, 2001; Hammer & Elby, 2002) questioned 
whether knowledge for teaching can be measured only at a theoretical level and 
without consideration of “situated knowledge” (e.g., whether and how teachers are 
able to use mathematical knowledge in the course of their work). Indeed, a major 
issue evident in the research on teacher education is how to develop valid and reli-
able measures of teacher knowledge, and, in this era of accountability, the extent to 
which programs must demonstrate future teachers’ levels of attained theoretical and 
practical knowledge.

 Framework

The question in this study is the extent to which the ability of teacher education 
programs to produce mathematically knowledgeable future primary teachers (i.e., 
as indicated by mathematics and mathematics pedagogical content knowledge) is 
dependent on the following: the selectivity and the type of program preparing future 
primary teachers (e.g., for mathematics specialists or subject generalists, or for dif-
ferent grade levels)2; the background that future teachers bring with them as they 
enter the program (i.e., individual characteristics such as having an adequate level 
of mathematics knowledge at program entry); the breadth, depth, and coherence of 
the OTLs provided by the teacher education program; and the beliefs about mathe-
matics and mathematics teaching held by future teachers (see Fig. 8.1).

2 One of the unique contributions of TEDS-M was arriving at common definitions of terms to sup-
port measurement across the participating countries. One such term is “program type,” used to 
refer to the variety of programs that prepare future primary teachers across the participating coun-
tries. Program type refers to clusters of programs that share similar purposes and structural fea-
tures—such as the credential earned, the range of school grade levels for which teachers are 
prepared, and the degree of subject-matter specialization for which future in teachers are pre-
pared—that correspond to distinct pathways to becoming qualified to teach (Tatto et  al., 2012, 
pp. 27–28).
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 Methods

 Participants

The data come from the TEDS-M study, which collected data in 2008 and 2009 
from nationally representative samples of institutions, and these institutions’ future 
primary teachers in the last year of their teacher preparation. Using a stratified mul-
tistage probability sampling design, the study surveyed a sample of 15,163 future 
primary teachers in programs in 451 institutions across the participating countries. 
The data analysis takes into account the sampling weights for programs and future 
teachers, which also provide for a non-response adjustment factor for all the esti-
mates as recommended in the TEDS-M Technical Report (Tatto, 2013). This chap-
ter uses data from 13 countries that meet the representativeness criteria and had 
acceptable response rates. These include Botswana, Chile, Chinese Taipei, Germany, 
Malaysia, the Philippines, Poland, Russia, Singapore, Spain, Switzerland (German- 
speaking cantons only), Thailand, and the United States. Table 8.1 shows the num-
ber of future teachers (sample size, valid data, and percent missing) by country and 

Fig. 8.1 Analytical Framework
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program group (according to grades future teachers are prepared to teach); Tables 
8.4, 8.5 and 8.6 in the Appendix show in detail the definition of variables, and 
the descriptive statistics for the programs, and for the future teachers included in 
this study.

 Data Sources

The data for this study come from the TEDS-M teacher program survey and the 
primary future teacher survey. The teacher program survey is a questionnaire asking 
program administrators for information about the organization, the policies, and the 
curriculum of the programs included in the sample. The primary future teacher sur-
vey consisted of a questionnaire and an assessment of mathematics knowledge and 
mathematics pedagogy content knowledge; future teachers were asked to spend 90 
minutes answering the survey with one hour dedicated to the assessment. The 
TEDS-M instruments were developed in collaboration with the research team in the 
participating countries using rigorous standards for the development of survey and 
assessment instruments (see Tatto 2013).

Data from the Program Survey A program was defined as a specific pathway that 
exists within an institution requiring students to undertake a set of subjects and 
experiences and leads to the award of a common credential(s) on completion. The 
program data come from questions about program characteristics including pro-
gram entry requirements and program type (e.g., whether the goal of the program is 
to prepare future primary teachers as subject specialists or as generalists to teach the 
earlier or upper grades of primary school). Program type determines in great part 
future teachers’ opportunities to learn. The TEDS-M study used UNESCO’s (2007) 
International Standard Classification of Education (ISCED) to facilitate compari-
sons of grade levels across countries. The grade levels at which future primary 
teachers are prepared to teach was information collected via the program survey and 
is reported in the first column of Table 8.1.

Data from the Future Teachers’ Survey Future teachers were defined as persons 
enrolled in a teacher preparation program that is explicitly intended to prepare 
teachers qualified to teach mathematics in any of the grades at the primary school 
level and who were in the last year of their teacher preparation program. The data 
were collected via a questionnaire and knowledge assessments. The questionnaire 
asked future teachers for their background information, the types of OTL provided 
by the program, and their beliefs.

Background Future teachers’ background was considered a potential moderator of 
level of attainment at the end of the program. The data on background come from 
questions about the background of respondents, such as their SES (also aggregated 
in this study at the program level to obtain an indicator of how SES as a program 

8 The Mathematical Education of Primary Teachers



218

characteristic affects future teachers’ attained knowledge), age, gender, and prior 
attainment. While desirable, no pre-test measure of knowledge was used in TEDS-M 
because across countries it was not possible to find a clear and comparable entry 
point to teacher education, and there were no existing valid and reliable indicators 
of prior attainment that could be used comparatively across countries; instead, 
respondents were asked to report previous performance to use as a proxy for prior 
attainment. The strong positive correlations between the previous performance 
(prior attainment) indicator and the assessment results in this study confirm the reli-
ability of future teachers’ self-report.

Opportunities to Learn What respondents report about their OTL is important 
because, in theory, what future teachers come to know may be in part determined by 
what they learn in their programs and in part by what they bring with them when 
they enroll. That is, what future teachers come to know at the end of their programs 
is moderated by the program’s entry requirements (e.g., it is possible that programs’ 
lack of emphasis on academic and school mathematics may be compensated by a 
mathematics requirement as a condition for admittance into teacher education) and 
by the actual learning experiences that a program provides. This study, explores the 
extent to which future teachers have opportunities to learn mathematics (e.g., 
university- level mathematics and mathematics of the school curriculum) and math-
ematics content pedagogy including the extent to which they have been given 
opportunities to read research on teaching and mathematics; and the extent to which 
these experiences are coherent.

This study uses the OTL indices developed by the TEDS-M study team and 
released in the public database and scaled using the Rasch model (De Ayala, 2009; 
Wu, Adams, Wilson, & Haldane, 2007) centered at the point on the scale that is 
associated with the middle of the rating scale (i.e., the neutral position) and given a 
value of 10.

Opportunities to Learn Mathematics and Mathematics Pedagogy Included in the 
analysis are geometry topics (GEOM), as important indicators of mathematics top-
ics studied including foundations of geometry or axiomatic geometry, analytic/
coordinate geometry, non-Euclidean geometry, and differential geometry; and 
school-level mathematics topics including topics related to functions (SLMF) such 
as relations, equations, data representation, probability, statistics, calculus, and vali-
dation, structuring, and abstracting. In addition the analysis included scales 
that serve as indicators of opportunities to learn key pedagogical knowledge such as 
opportunities to engage in readings on mathematics education and pedagogy 
(READ), including readings about research on mathematics, on mathematics edu-
cation, and on teaching and learning mathematics, including analysis of teaching 
examples.3

3 The final composition of the OTL indicators was done based on the logical organization of courses 
as judged by experts, after repeated piloting of the questions ultimately used to develop them. The 
Comparative Fit Index, or CFI, was used to test the degree to which the indicators were internally 
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Coherence The degree to which programs structured OTL in a coherent manner 
(COH) was considered an important characteristic with the potential to create con-
ducive learning environments for future teachers (i.e., whether the courses seem to 
follow a logical sequence of development in terms of content, whether topics are 
built on what was taught in earlier courses, and whether each of the courses is 
clearly designed to prepare future teachers to meet a common set of explicit stan-
dard expectations), (Tatto, 1996, 1998, 1999a, 1999b).

Beliefs The data on beliefs come from questions that ask whether future teachers 
view mathematics as a formal, structural, procedural (RULE), or an applied subject 
(ACTV), views that are seen as influential in regulating the learning and teaching of 
mathematics (Grigutsch et al,. 1998; Op ‘T Eynde, De Corte, & Verschaffel, 2002). 
The belief questions originally used a 6-point scale (i.e., strongly agree to strongly 
disagree) and were scaled using the Rasch model (De Ayala, 2009) centered at the 
point on the scale that is associated with the middle of the rating scale (i.e., the 
neutral position) and given a value of 10.4 The beliefs responses from future teach-
ers are aggregated in this study at the program level to obtain an indicator of how 
beliefs as a program characteristic affect future teachers’ attained knowledge.

Knowledge The data on future teachers’ knowledge comes from two distinct 
assessments. The TEDS-M assessment of Mathematics Content Knowledge (MCK) 
consists of four domains: number and operations, algebra and functions, geometry 
and measurement, and data and chance; and three subdomains: knowing (e.g., 

consistent; the CFI depends in large part on the average size of the correlations in the data, where 
an acceptable model is indicated by a CFI larger than .93, but .85 is acceptable (see Bollen, 1989). 
Another approximation is the Tucker Lewis index (TLI), which is relatively independent of sample 
size (Marsh, Balla, McDonald, 1988), where values over .90 or.95 are considered acceptable (e.g., 
Hu & Bentler, 1999). The Root Mean Square Error of Approximation, or RMSEA, is another test 
of model fit; good models are considered to have a RMSEA of .05 or less, while models whose 
RMSEA is .1 or more have a poor fit. Fit Indices provided evidence that the groupings that formed 
the opportunity to learn indicators make sense (i.e., tertiary level mathematics CFI .911, TLI .954, 
RMSEA .044, school-level mathematics CFI .97, TLI .973, RMSEA .057). The reliabilities for the 
OTL scales were unweighted and were estimated using jMetrik 2.1 (Meyer, 2011). The reliability 
estimates were based on the congeneric measurement model, which allows each item to load on the 
common factor at different levels, and allows item error variances to vary freely (each item can be 
measured with a different level of precision). This was considered by the TEDS-M study research 
team to be the most flexible measurement model and the most appropriate for measures with few 
items. The reliabilities for the opportunity to do class reading on research on mathematics teaching 
and learning for the primary sample is .85; for the opportunity to learn in a coherent program, the 
reliability is .96.
4 The reliabilities for the beliefs scales were unweighted and were estimated using jMetrik 2.1 
(Meyer, 2011). The reliability estimates were based on the congeneric measurement model, which 
allows each item to load on the common factor at different levels, and allows item error variances 
to vary freely (each item can be measured with a different level of precision) as described in foot-
note 3 for the OTL scales. For the international sample, the reliability for the beliefs scale “math-
ematics as a set of rules and procedures” for future primary teachers is .94 and .92 for “learning 
mathematics through active involvement.”
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recall, recognize, compute, retrieve, measure, classify, and order), applying (e.g., 
select, represent, model, implement, and solve routine problems), and reasoning 
(e.g., analyze, generalize, synthesize, integrate, justify, and solve non-routine prob-
lems). These domains reflect the consensus among the participating countries 
regarding the knowledge that is essential for teachers to know to effectively teach 
the primary-level curriculum. These domains align with the TEDS-M analysis of 
the school curriculum and of the syllabi of the teacher education programs in the 
participating countries (see Chapter 4 in this book, and Tatto & Hordern, 2017), and 
with similar analysis of TIMSS data (Mullis, Martin, Foy, & Arora, 2012). The 
TEDS-M assessment of Mathematics Pedagogical Content Knowledge (MPCK) 
measures pedagogical knowledge in the same four domains of number and opera-
tions, algebra and functions, geometry and measurement, and data and chance, and 
in three subdomains specific to pedagogical concerns: curricular knowledge, knowl-
edge of planning for mathematics teaching and learning (pre-active), and knowl-
edge for enacting mathematics for teaching and learning (interactive). The 
description of the domains for the two MCK and MPCK assessments can be found 
in the TEDS-M Conceptual Framework (Tatto et al., 2008, pp. 37–39). Thus, the 
mathematics and mathematics pedagogy assessments developed by the TEDS-M 
team required future teachers to demonstrate knowledge beyond the mastering of 
rules and procedures and toward a more inquiry-based approach. The assessments 
used a block design and included 70 items distributed across five blocks, with about 
two-thirds of the items measuring MCK and one-third measuring MPCK; the ques-
tion types included multiple choice, complex multiple choice, and constructed 
response. Both assessments benefitted from previous work done by mathematics 
education scholars (Ball & Bass, 2000; Clements, Bishop, Keitel, Kilpatrick, 
& Leung, 2013; Hill et al., 2007; Kilpatrick, Swafford, & Findell, 2001; Lappan, 
2000). The analysis in this chapter uses the MCK and MPCK scales, which were 
developed from the assessment results using IRT (De Ayala, 2009) by the TEDS-M 
study research group. The two scales were calibrated for cross-country comparison 
to have a mean of 500 and a standard deviation of 100.5

Relevance and Validity To achieve relevance and validity the TEDS-M assessments 
were developed according to established standards for educational and psychologi-
cal testing (AERA, APA, & NCME, 2014). Extensive consultation with policy mak-
ers, mathematicians, mathematics teacher educators, and future teachers occurred 
prior to, during, and after the study. Each country’s national team was asked to 
describe in their context the mathematical work entailed in teaching to inform 
instrument development. In addition, as mentioned in the previous paragraph, the 

5 For the international sample, the reliabilities for the mathematics content knowledge and the 
mathematics pedagogical content knowledge scores were .83 and .76, respectively. Reliabilities 
tend to be high if there is a great deal of variation in the sample relative to the size of the standard 
error. The reliability will be low if one of the following occurs: there is a small standard deviation 
in the sample, or there is a large standard error (e.g., the test was too easy for a particular sample; 
this was the case for Chinese Taipei and Singapore).
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national teams engaged in the analysis of the national school curriculum and stan-
dards, as well as in the analysis of the teacher education program curriculum and 
standards. The curriculum analysis helped verify the content domains of the MCK 
and MCPK assessments and was useful in collecting content-related 
validity evidence.

The TEDS-M items were validated in a manner consistent with current notions 
of validity, which is seen as a process that validates the use of items for a particular 
purpose (e.g., Reckase, McCrory, Floden, Ferrini-Mundy, & Senk, 2015). Prior to 
designing the instruments, the TEDS-M International Study Center (ISC) solicited 
items from all the participating countries.6 Items that had been developed by other 
studies and additional items developed by the ISC were mapped onto the domains 
of knowledge described above—that is, those deemed necessary for future primary 
teachers to have at the end of their teacher education to teach a demanding curricu-
lum across the participating countries. Throughout the assessment development 
process, items were translated from the local languages to English and from English 
to the local languages and back translated to confirm accuracy and consistency. The 
items were piloted with a small sample from the intended population and were 
examined for their performance, congruence with participants’ knowledge, and 
familiarity with respect to format; the codebooks were developed at this stage, and 
extensive scoring training was carried out. Analysis by psychometricians deter-
mined which items were included in the assessment and which were discarded at 
this stage. The selected items were carefully placed in five blocks with link items 
and piloted with a sample from the intended population. Codebooks were revised, 
and once again extensive scoring training was carried out. The resulting data were 
analyzed looking for item fit (see footnote 3), and this analysis determined items 
that were included in the final assessments and those that were discarded. The 
results were analyzed according to the internal structure of the test by the ISC and 
by all the country teams before the instruments were declared final; items that did 
not measure well in any given country were eliminated. All throughout the instru-
ment development-phase, factor analysis was used to obtain construct-related valid-
ity evidence; curriculum analysis and expert review was used to obtain content-related 
validity evidence. The final assessments were assembled in collaboration with psy-
chometricians from the ISC, the national centers, and the International Association 
for the Evaluation of Educational Achievement (IEA) Data Processing Center. In 
sum, the TEDS-M study followed the IEA’s standards to ensure validity and reli-
ability in international comparative studies (see Martin & Mullis, 2008).

6 Several TEDS-M items were provided by other studies, including Study of Instructional 
Improvement (SII) Learning Mathematics for Teaching/Consortium for Policy Research in 
Education (CPRE), University of Michigan, School of Education, Ann Arbor, MI, supported by 
NSF grants REC-9979873, REC- 0207649, EHR-0233456 & EHR 0335411. Developing Subject 
Matter Knowledge in Math Middle School Teachers (P-TEDS), Michigan State University, sup-
ported by NSF Grant REC-0231886. Knowing Mathematics for Teacher Algebra (KAT), Michigan 
State University, supported by NSF Grant REC-0337595 (TEDS-M received 2006 publication 
copyright for those items).
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 Limitations

Because TEDS-M was designed to examine the knowledge outcomes of teacher 
education close to graduation, the study did not assess whether future primary 
teachers who are knowledgeable in the MCK and MPCK assessments are also able 
to teach mathematics effectively to pupils. Since then, however, a number of valida-
tion studies have included items similar to those used by the TEDS-M study, and 
report that measures of Mathematics Knowledge for Teaching (MKT) a composite 
of MCK and MPCK using these items are strongly related to the mathematical qual-
ity of instruction (Delaney, 2012; Delaney et al., 2008; Schilling & Hill, 2007). A 
new study is using items from TEDS-M to measure novice teachers’ knowledge and 
practices, taking into account previous education and/or preparation (Tatto, 
Rodriguez, Smith, Reckase, & Pippin, forthcoming). We will have to wait until the 
study results are available to ascertain whether the most knowledgeable teachers 
according to TEDS-M assessments are also the most effective.

 Analytic Methods

This chapter uses the results of the assessments and anchor points descriptions to 
analyze the breadth and depth of the mathematical knowledge and mathematical 
pedagogical content knowledge reached by future primary teachers across programs 
in the participating countries. Descriptive statistics and HLM and OLS analysis 
were used to explore the research questions (Appendix Table  8.4 and Appendix 
Tables 8.5 and 8.6 provide for each analysis a brief description of the variables used 
in the analysis along with descriptive statistics).

Because this study is based on the hypothesis of a multilevel structure, in which 
the effects of teacher background may differ according to the programs future teach-
ers  are in, a multilevel statistical analysis such as hierarchical linear modeling 
(HLM7) is the optimal approach to investigating the relationship between teacher 
education program characteristics and mathematics knowledge for teaching (MCK 
and MPCK). HLM was generally used for countries with large program samples. 
The number of programs preparing future primary teachers varied widely across 
countries, with the most extreme cases being Botswana and Singapore, with four 

7 Hierarchical Linear Modeling or HLM (Raudenbush & Bryk, 2002; Raudenbush, Bryk, & 
Congdon, 2004) is a statistical method that helps compute regressions at multiple levels, estimat-
ing a regression within each program and combining them to see if there is a common regression 
across programs within a given country. If regression slopes vary across programs, it is possible to 
examine program-level characteristics that may explain such variation, and to explore the program 
factors that may show a relationship with future teachers’ outcomes. The analysis was done using 
a two-level HLM model in which future teachers were nested within their teacher education pro-
grams within countries. The descriptive statistics for the institutions and future teachers are in 
Appendix Table 8.4.
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and one program respectively, and Poland and the United States with 125 and 78 
programs respectively, see Appendix Tables 8.5 and 8.6. However, it was necessary 
to use Ordinary Least Squares (OLS8) for some countries because their programs 
were less likely to differ. In part, this happened for a small sample of programs with 
a very similar structure—including Singapore, with one institution, Botswana with 
four, Chinese Taipei with 11, and Germany and Switzerland with 14 each—and, in 
part, because countries have a strict centralized system (e.g., in Malaysia, although 
there were 23 programs in the sample, the program data is the same for all pro-
grams, as the Ministry of Education requires that all programs operate in the same 
way effectively reducing the program information to an n  =  1). Because of the 
smaller number of institutions and/or because of institutional isomorphism within 
these countries, variance between institutions is not reliably estimated, so that vari-
ance (if it exists systematically in the population) is part of the individual future- 
teacher variability and not partitioned separately. To proceed with the analysis of the 
association between teacher background and knowledge, program-level characteris-
tics have been added as additional explanatory variables in OLS models.

The analyses used standardized coefficients to explore individual- and program- 
level features associated with MCK and MPCK as teacher education outcomes, 
using the same HLM or OLS model across all countries, but analyzing each country 
separately.

All participating countries with acceptable response rates on the assessments 
were included. Each country’s data was analyzed across the same variables follow-
ing the theoretical framework. Variables across countries were examined for miss-
ing values across variables of interest, and collinearity; this examination resulted in 
a number of variables (and programs) being excluded from the analysis. Other vari-
ables were excluded because they lacked variability (e.g., all programs reported 
offering field experiences).

 Findings

 The Characteristics of Teacher Education Programs

Table 8.1 shows the types of programs that prepare future primary teachers in this 
study. There are four major categories of programs (see program type column) that 
prepare future teachers to teach mathematics: (a) early primary, including grades up 
to Grade 4 (found in Germany, Poland, the Russian Federation, and Switzerland); 
(b) primary grades up to Grade 6 (found in Chinese Taipei, the Philippines, 

8 Regression analysis (ordinary least squares or OLS) is a method that helps to explore the relation-
ship between a dependent variable, in this case mathematics knowledge for teaching (defined as 
MCK and MPCK), and one or more explanatory variables, in this case individual and program 
variables. The descriptive statistics for the institutions and future teachers are in Appendix Tables 
8.5 and 8.6.
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Singapore, Spain, Switzerland, and the United States); (c) primary and lower sec-
ondary combined, with an expectation that teachers will be able to teach up to Grade 
10 (found in Botswana and Chile); (d) primary mathematics specialists (who are 
expected to teach mostly mathematics and who received training as mathematics 
specialists to teach from Grade 1 to Grade 12 depending on the country expectations).9 
These programs are found in Germany, Malaysia, Poland, Singapore, Thailand, and 
the United States. Note that a number of countries—notably, Germany, Poland, 
Singapore, and the United States—have two types of programs that prepare future 
primary teachers either as generalists or specialists.

Programs vary on the degree to which they require a credential or some mathe-
matics knowledge at the time of entry into teacher education. Countries that stipu-
late a mathematics requirement as a condition for entry into teacher education 
programs are indicated in Table 8.1 by the superscript g and include in group 1, the 
Russian Federation; in group 2, Chinese Taipei, and Singapore; in group 3, 
Botswana; and, in group 4, Poland and Singapore.

Table 8.1 also includes the results of MCK and MPCK assessments used in the 
study. These results are explained below.

 The Level and Depth of the Mathematics and Mathematics 
Teaching Knowledge Attained by Prospective Primary Teachers

The results of the MCK and MPCK assessments across the different countries and 
programs preparing primary teachers are shown in scaled score means (SSM) in the 
column labeled MCK and MPCK in Table  8.1. Note that Germany, Poland, 
Switzerland, Singapore, and the United States are countries that have two program 
types with different approaches to preparing primary teachers to teach the early and 
upper grades. The scores of the future teachers in each of these two different 
approaches reflect access to different OTL. For instance, Germany has two different 
program types; future teachers in program type 1 are prepared to teach Early Primary 
up to Grade 4, while future teachers in program type 4 are prepared to teach primary 
as mathematics specialists. German future teachers in program type 1 had an MCK 
score of 501, in contrast with those in program type 4 who had an MCK score of 
555; similarly, for MPCK, future teachers in program type 1 had a score of 491, 
while those in program type 4 had a score of 552 (this means that future primary 
teachers in program type 4 obtained 54 and 61 more points in the assessments than 

9 The definition of primary grades is “the first stage of basic education which starts normally 
between the ages of 5–7,” according to UNESCO’s International Standard Classification of 
Education (UNESCO-UIS, 2006). Since the age of children enrolled in primary education varies, 
as does the grade span for which teachers are prepared to teach, countries were asked to define the 
grade range. For TEDS-M, the grade span for which teachers are prepared to teach in the different 
countries is included in Table 8.1 and ranges from Grades 1 to 10 for generalists and Grades 1 to 
12 for mathematics specialists.

M. T. Tatto



225

their counterparts in program type 1). A similar pattern is found in Poland (with MCK 
scores 456 and 614, and MPCK scores 452 and 575), in Switzerland (MCK 512 and 
548, and MPCK 519 and 539), and in Singapore (MCK 586 and 600, and MPCK 
588 and 604). Future primary teachers in the rest of these countries showed a similar 
pattern, with the exception of the United States where there was no discernible dif-
ference in the scores obtained by future primary teachers in these two program types 
(the scores for each generalist and specialist program types were respectively in 
MCK 518 and 520, and in MPCK 544 and 545). In short, future teachers expected 
to teach the upper grades of primary school (program type 2) generally had signifi-
cantly higher scores in the assessments than those expected to teach in the earlier 
primary grades.

Among the countries that rely on one program type to prepare future primary 
teachers, the higher mean scores in MCK and in MPCK, respectively, were in 
Chinese Taipei, (623 and 592), the Russian Federation (536 and 512), and Thailand 
(527 and 507). Lower average scores in MCK and in MPCK were observed in Spain 
(480 and 492), Malaysia (489 and 503), Botswana (448 and 463), the Philippines 
(442 and 463), and Chile (414 and 424). Note that the difference in performance 
between the Chinese Taipei future primary  teachers and the Chilean future pri-
mary teachers was more than 2 standard deviations (or more than 200 points) in the 
MCK assessment and more than 150 points in the MPCK assessment. When com-
pared with future primary teachers in Chinese Taipei, the United States’ future 
teachers scored more than 100 points lower in the MCK assessment and close to 50 
points lower in the MPCK assessment.

Anchor Points as Indicators of What Teachers Know Table 8.1 columns labeled 
MCK, MCK-AP1, MCK-AP2, and MPCK,  MPCK-AP contain the scale score 
means for the respective assessments as well as the percentage of future primary 
teachers who reached the anchor points in each assessment. Anchor points (AP) are 
reference points on the scales defined by the item response theory analysis of the 
MCK and MPCK assessments. These APs were selected so that there would be suf-
ficient items measuring skills and abilities for future teachers estimated to be at 
those points so that good descriptions of the skills and abilities could be developed. 
The AP descriptions were developed by the TEDS-M study psychometric team and 
a panel of mathematicians and mathematics educators who analyzed the items that 
measured well at these APs and who formulated empirically based descriptions of 
the knowledge that future teachers demonstrated at each AP (see Chapter 19 of this 
book for a detailed account on how these Anchor Points were developed).

The AP descriptions complement the quantitative information provided by the 
knowledge assessments. Items used to describe performance at the APs were deter-
mined by the probability that a person with a score at that point would get the rele-
vant item correct or incorrect. For MCK, two APs were identified that would have 
sufficient items to yield good descriptions. For MCK Anchor Point 1 (MCK-AP1) 
“can do” items had a .70 or greater probability of a correct response among future 
teachers estimated to be near the AP and “cannot do” items had less than a .50 prob-
ability of a correct response at the same point. The contrasting information from the 
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“can do” and “cannot do” items were used to develop the description of skills and 
knowledge at the AP. The items related to MCK Anchor Point 2 (MCK-AP2) were 
selected to have the same probability characteristics. MCK-AP1 indicated a lower 
level of performance (with a scale score mean of 431, or 69 points below the inter-
national mean which has a scale score of 500), and MCK-AP2 indicated a higher 
level of performance (with a scale score mean of 516, or 16 points above the inter-
national mean).

For instance, those future primary teachers who reached MCK-AP1 were able to 
successfully solve basic computations with whole numbers, identify the properties 
of operations with whole numbers, and demonstrate adequate reasoning about odd 
or even numbers. Also, they were able to solve straightforward problems using sim-
ple fractions, visualize and interpret standard two-dimensional and three- 
dimensional geometric figures, and solve routine problems about perimeter. In 
addition, they demonstrated straightforward uses of variables and equivalence of 
expressions, and solved problems involving simple equations. However, these same 
teachers had difficulties answering items that included abstract problems and prob-
lems requiring multiple steps, proportionality, multiplicative reasoning, and least 
common multiples. They also had difficulties solving problems that involved coor-
dinates, or problems about relations between geometric figures, finding the area of 
a triangle drawn on a grid, and identifying an algebraic representation of three con-
secutive even numbers. In addition, they had trouble demonstrating their reasoning 
about multiple statements and about relationships among several mathematical con-
cepts (such as understanding that there is an infinite number of rational numbers 
between two given numbers) (Tatto et al., 2012, p. 136-140).

Those future primary teachers who reached MCK-AP2 were able to demonstrate 
the knowledge to reach MCK-AP1 and, in addition, were able to use fractions to 
solve story problems, recognize examples of rational and irrational numbers, find 
the least common multiple of two numbers in a familiar context, and recognize that 
some arguments about whole numbers are logically weak. They were also able to 
determine the areas and perimeters of simple figures, and had a notion of class 
inclusion among polygons. They demonstrated familiarity with linear expressions 
and functions and were able to do problems involving proportional reasoning. Even 
at this level, however, many future primary teachers had trouble reasoning about 
factors, multiples, and percentages, demonstrating applications of quadratic or 
exponential functions or applying algebra to geometric situations (such as writing 
an expression for the reflection image of the point with coordinates (a, b) over the 
x-axis). They also had difficulty identifying a set of geometric statements that 
uniquely define a square, and describing properties of a linear function (Tatto et al., 
2012, p. 136-140).

For MPCK, one anchor point (MPCK-AP) was identified10 indicating a profi-
cient level (with a scale score mean of 544, or 44 points above the international 
mean). Those future primary teachers who reached MPCK-AP were able to recog-

10 Anchor points are dependent on the number of items included in a particular measure. In the 
assessment 2/3 of the items measured MCK while 1/3 measured MPCK, therefore for MPCK only 
one anchor point was defined at the proficient level.
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nize whether a teaching strategy was correct for a particular concrete example, 
evaluate students’ work when the content was conventional or typical of the primary 
grades, and identify the arithmetic elements of single-step story problems that influ-
ence the difficulty of these problems. However, they had difficulty interpreting 
 students’ work, using concrete representations to support students’ learning and 
recognizing how students’ thinking relate to a particular algebraic representation. 
They had trouble understanding measurement or probability concepts needed to 
reword or design a task, knowing why a particular teaching strategy made sense and 
if it would always work, and knowing whether a strategy could be generalized to a 
larger class of problems. They were unaware of common misconceptions and found 
it difficult to conceive useful representations of numerical concepts  (Tatto et  al., 
2012, p. 140-142).

Future primary teachers at MCK-AP2 and at MPCK-AP have reached high lev-
els of performance according to the TEDS-M assessments. Examples of items used 
to describe these anchor points follow.

Example of an MCK Complex Multiple-Choice Item Used to Define 
MCK-AP1 Figure 8.2 shows an example of a complex multiple-choice item mea-
suring MCK in the algebra domain, and it illustrates MCK-AP1. On average, the 
proportion of future teachers in the international sample who answered the item 
correctly was very high for “A,” “B,” and “C” (ranging from 81 to 92% across coun-
tries), but lower for “D” (64%). Thus, future teachers with scores at or above 
MCK-AP1 were likely to answer parts A, B, and C correctly, while those with 
scores at MCK-AP1 were not likely to answer part D correctly.  Teachers at 
MCK-AP2, however, are more likely to answer item D successfully).

ID:
MFC202ABCD

MS Booklet:
PM1, PM2

MS Block:
B2PM

Item Format:
CMC

Max Points:
4

Outcome:
MCK

Domain:
Algebra

Sub-domain:
Knowing

Key (international average): A. 81 % (NT), B. 86% (NT), C. 92% (T), D. 64% (NT) 

Fig. 8.2 Example of a primary complex multiple choice MCK algebra item. Source: Tatto et al., 
2012, p. 137
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Example of an MCK Multiple-Choice Item Used to Define MCK-AP2 Figure 8.3 
shows an example of a multiple-choice item in the MCK assessment in the geome-
try domain. On average, across countries, 60% of teachers in the international sam-
ple answered this item correctly—accordingly, future teachers with scores at AP1 
were not likely to answer this item correctly, but those scoring at or above AP2 were 
more likely to answer this item correctly.

Example of an MPCK Constructed Response Item Used to Define the 
MPCK-AP Figure 8.4 shows an example of a constructed response item in the 
MPCK assessment in the enacting teaching of number domain. On average, the 
proportion of future primary teachers in the international sample who answered this 
item correctly was quite low. Only 20% received full credit and 12% received partial 
credit in the part “a” of the item. Concerning part “b” of the item, only 16% received 
full credit and 16% partial credit.

A summary of what answers count as correct, partially correct, and incorrect 
taken from the User Guide for the International Database (Brese & Tatto, 2012) is 
included here to provide an illustration. The codebook stipulated that correct 
responses for “(a) what is [Jeremy’s] most likely misconception?” must suggest that 

ID:
MFC408

MS Booklet:
PM3, PM4

MS Block:
B4PM

Item Format:
MC

Max Points:
1

Outcome:
MCK

Domain:
Geometry

Sub-domain:
Applying

Key (international average): 60% (A).

Fig. 8.3 Example of a primary multiple choice MCK geometry item. Source: Tatto et al., 2012,  
p. 138
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“the misconception is that multiplication always gives a larger answer and that divi-
sion always gives a smaller answer” (i.e., “he thinks that when you multiply the 
answer should be larger and when you divide the answer should be smaller”). For a 
response to be considered partially correct, it must either suggest that “the miscon-
ception is that multiplication always gives a larger answer or that division always 
gives a smaller answer but not both” (i.e., “he thinks that when you multiply, the 
answer should be larger than either/both numbers”) or suggest that “Jeremy consid-
ers 0.2 as a whole number” (i.e., “he thinks he is multiplying and dividing by 2 
rather than by 0.2”). The codebook stipulated that correct responses for “(b) Draw a 
visual representation that the teacher could use to model 0.2 × 6 to help [Jeremy] 
understand WHY the answer is what it is” must include a “suitable visual represen-
tation that clearly shows why 0.2 × 6 is 1.2.” Area models to represent two-tenths of 
six are included in the User Guide for the International Database (Brese & Tatto, 
2012, Supplement 4, pp. 14–16) as well but space limitations preclude inclusion 
here.

 Significant Gaps in Mathematics Knowledge Were Found 
Across Countries

The comparative importance of the AP definitions can be seen when we turn back to 
Table 8.1. Table 8.1 column MCK-AP1 shows the proportion of teachers who scored 
at or above that AP (at or above the scale score mean of 431), and in column 
MCK-AP2 the proportion of teachers who scored at or above that AP (at or above 
the scale score mean of 516). Among the programs preparing teachers to teach the 

ID:
MFC208A

MS Booklet:
PM1, PM2

MS Block:
B2PM

Item Format:
CR

Max Points:
2

Outcome:
MPCK

Domain:
Number

Sub-domain:
Enacting

Key (international average): (a) full credit 20%, partial credit 12%; (b) full credit 16%, partial credit 16%

Fig. 8.4 Example of a primary constructed response on enacting teaching of number MPCK Item. 
Source: Tatto et al., 2012, p. 141
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upper-primary grades as generalists (program type 2), over 90% of future primary 
teachers in Chinese Taipei reached Anchor Point 2, but only 50% of those in the 
United States did. While the scores among the primary mathematics specialists 
(program type 4) were higher for most countries, in the United States the proportion 
reaching MCK-AP2 remained the same. Table 8.1 column MPCK-AP shows the 
proportion of teachers who scored at or above the MPCK anchor point (scale score 
mean of 544). Overall, these items were more challenging for all future primary 
teachers, especially for those preparing to teach in the earlier grades. Among those 
in programs preparing teachers to teach the upper-primary grades as generalists 
(program type 2), a larger proportion reached the MPCK-AP in Chinese Taipei and 
Singapore, than in the United States. In program type 4, corresponding to teachers 
prepared as specialists, about 80% reached the MPCK-AP in Singapore, and close 
to 70% in Poland compared to about 40% in the United States.

Significant gaps concerning future primary teachers’ MCK had to do with their 
ability to answer correctly abstract, complex, and multiple-steps problems, or to 
demonstrate relationships among several mathematical concepts. Algebra and 
geometry problems seemed particularly challenging, while problems that required 
basic computations, operations with whole numbers, simple figures, and linear 
expressions were less challenging. Concerning MPCK, future primary teachers had 
difficulty interpreting students’ work, especially in the context of the mathematics 
they found challenging, such as algebraic representations, and, in general, they had 
problems supporting students’ learning, as they were unable to recognize common 
misconceptions or conceive of useful representations. The relatively low level of 
knowledge demonstrated by the more than 50% of U.S. future teachers who were 
unable to reach the MCK-AP2 level and the MPCK-AP in the assessments suggests 
the difficulty these teachers will encounter when addressing what U.S. researchers 
consider essential in mathematics instruction, namely, conceptual understanding, 
procedural skills and fluency, and application11 (Hiebert & Grouws, 2007; National 
Mathematics Advisory Panel, 2008). Furthermore, the results of this study fall far 
short of the aims stated in documents such as Principles to Actions (NCTM, 2014) 
and raise concerns about future teachers’ ability to establish goals to focus learning; 
implement tasks that promote reasoning and problem solving; use mathematical 
representations; facilitate meaningful discourse; build conceptual understanding 

11 According to the Common Core State Standards, “To help students meet the standards, educators 
will need to pursue, with equal intensity, three aspects of rigor in the major work of each grade: 
conceptual understanding, procedural skills and fluency, and application. Conceptual understand-
ing: The standards call for conceptual understanding of key concepts, such as place value and 
ratios. Students must be able to access concepts from a number of perspectives in order to see math 
as more than a set of mnemonics or discrete procedures. Procedural skills and fluency: The stan-
dards call for speed and accuracy in calculation. Students must practice core functions, such as 
single-digit multiplication, in order to have access to more complex concepts and procedures. 
Fluency must be addressed in the classroom or through supporting materials, as some students 
might require more practice than others. Application: The standards call for students to use math 
in situations that require mathematical knowledge. Correctly applying mathematical knowledge 
depends on students having a solid conceptual understanding and procedural fluency” (CCSS, 
2016).
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and procedural fluency; and elicit and use evidence of student thinking (NCTM, 
2014, p. 3).

An examination of the programs’ features that correlate with respondents’ levels 
of knowledge is provided below.

 Examining Relationships Among the Variables

The analysis considers MCK and MPCK measured by the TEDS-M assessments as 
the key outcomes of teacher education programs and explores the association of 
individual-level (background) variables and program-level variables with these out-
comes. Below is the HLM model used for the analysis for countries with large 
program samples. Table 8.2 shows the results.

 HLM Model for Countries with Large Program Samples

STEP 1

Full Unconditional Model (Level 1 & 2)

 

Y u r u rij j ij j ij        
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for p = 1 to 4 for the four level-1 predictors (which are fixed). 
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The coefficients in the model (which were standardized within each country and 
expressed in standardized betas, or β) were helpful in explaining variation in the 
knowledge assessments. For example, for Poland under the MCK column, there was 
a β equal to 0.33, meaning that a change of one standard deviation in the predictor 
variable (in this case, the opportunity to learn functions, probability, and calculus) 
was significantly associated (p < .001) with a 0.33 standard deviation change (gain) 
in the outcome variable (mathematics content knowledge or MCK after controlling 
for background variables). The ICCs (at the bottom of the tables) indicate the vari-
ance in MCK and MCPK attributable to differences between programs in each 
country; for the mathematics content assessment (MCK), the higher ICCs were in 
Poland, Russia, Thailand, Chile, and the United States (with 59%, 46%, 31%, 21%, 
and 17%, respectively). For the mathematics pedagogy assessment (MPCK), the 
higher ICCs were in Russia, Poland, and Thailand (with 38%, 37%, and 22%, 
respectively). With the exception of Poland for MCK, the proportion of variance 
explained was higher within programs than between programs.12

Below we show the OLS model for future primary teachers and programs in 
countries with small program samples. The results in Table 8.3 are given in stan-
dardized beta coefficients, or β.

 OLS Model for Countries with Small Program Samples

The OLS estimation employs the repeated replicate weights to account for the sam-
ple complex design. Unlike HLM, OLS models do not include random coefficients 
between programs.

Partial Model
The model specification is similar from the one presented above (without random 
terms for the intercept). The model is expressed in the following single equation.

 Y ri i i i i i                 0 1 2 3 4001 002 009SES MFA MFA MFA
 

Full Model
The full model is expressed by the following single equation (again, random terms 
for the intercept are not considered; the beliefs variables are aggregated to the pro-
gram level).

12 The ICC reports the percent of variance between programs, where 100-ICC (100 minus the ICC) 
is the percent of variance within programs. This is always reported simply as the ICC for percent 
of variance between groups. The % of variance explained in the last two rows then simply states 
how much variance each model explains. In Table 8.2, in Poland, 59% of the variance in MCK 
performance is between programs, 41% is within programs. The model including all variables 
explains 5% of the variance within programs (i.e., student characteristics do not explain much of 
the variance in their performance within program); that is, the student characteristics explain 5% 
of the 41% variance within programs. The model also explains 85% of the variance between pro-
grams; that is, the program characteristics explain 85% of the 59% variance between programs.

8 The Mathematical Education of Primary Teachers
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For instance, in Table 8.3 it is possible to explore across countries the level of 
association between program coherence, MCK, and MPCK. In Malaysia, the coef-
ficients are 0.19 for MCK and 0.17 for MPCK, showing a moderate positive and 
significant association (p < .01) between program coherence and the scores in both 
assessments after controlling for background characteristics of future teachers.

While findings are only considered significant at the p ≤  .05, findings with p 
values >.05 and < .10 are identified by a “+” to make it possible to see whether the 
trends in the latter group are consistent with those found to be significant.

Future Primary Teachers’ Background was associated with MCK and 
MPCK scores. The results of the analysis for future primary teachers in countries 
with large and small program samples show that individual characteristics such as 
SES, age, gender, and previous attainment were associated with higher scores in the 
MCK and MPCK assessments. Table 8.2 shows a small positive association between 
higher SES levels and higher levels of performance in the mathematics content 
knowledge assessment (MCK) in Thailand and in the United States in the mathe-
matics pedagogical content knowledge assessment (MPCK). Regarding age, the 
analysis indicates that younger future teachers did better in the MCK assessments 
than their older counterparts in the Philippines, and better in the MCPK assessments 
in Poland and the United States. Similarly, males did significantly better than 
females in all countries in both assessments, with the exception of the Philippines 
and the Russian Federation (on the MPCK assessment). Attainment in school prior 
to entering the teacher education program had a significant and positive association 
with the scores obtained in both MCK and MPCK assessments across all countries, 
with the exception of the Philippines.

Table 8.3 shows the results of the analysis for future primary teachers in coun-
tries with small program samples. The association of SES with the level of MCK 
and MPCK is positive, but in general small and not significant. Across most of the 
countries, younger future teachers scored higher in the assessments; this association 
was significant but moderate in Botswana, Singapore, and Switzerland (for MPCK). 
Male future teachers did significantly better in the mathematics portion of the 
assessment (MCK) in Botswana, Chinese Taipei, Singapore, and Switzerland; only 
in Malaysia did females perform better than males. Females in Botswana, Chinese 
Taipei, and Germany did better on the mathematics pedagogy portion of the assess-
ment (MPCK), but this association is small and not significant; in Malaysia, females 
did significantly better than their male counterparts. Prior attainment played a posi-
tive and significant role on the MCK and MPCK assessments results across all 
countries, with the exception of Botswana for the MCK.
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Opportunities to learn university and school mathematics in coherent pro-
grams were associated with higher scores in the MCK and MPCK assessments. 
Tables 8.2 and 8.3 indicate that differences across programs in the emphasis placed 
on OTL have an important and significant association on future primary teachers’ 
performance on the TEDS-M assessments. For instance, in Poland, in type 4 pro-
grams where entry into teacher education was conditioned on specific mathematics 
requirements, and future primary teachers were given additional OTL university- 
level mathematics (geometry in particular), MCK and MPCK scores were about 
one-tenth of a standard deviation higher than in those programs that did not have 
those requirements and opportunities (β = 0.12, p < .05; β = 0.11, p < .05). Future 
primary teachers in programs that covered topics on school mathematics in the areas 
of functions, probability, and calculus also scored significantly higher on the MCK 
assessment in Thailand, Poland, and Russia (with up to one-third of a standard 
deviation higher in MCK in Poland and one-fourth in Russia). Having the opportu-
nity to read research connected with mathematics teaching and learning, on the 
other hand, had a non-significant association with future teachers’ performance on 
the assessments, with the exception of Thailand, where the association with both 
MCK and MCPK was negative and significant (meaning that those with high scores 
had  less opportunity to read mathematics or mathematics education related 
research). In the Russian Federation, there was a strong and positive association 
between the level of program coherence and high scores on both assessments, with 
programs judged coherent by future teachers showing scores of about one-third of a 
standard deviation higher in MCK and above one-fourth of a standard deviation 
higher in MPCK (β = 0.30, p < .001; β = 0.27, p < .01).

Among the countries in Table  8.3, the opportunity to learn mathematics, and 
specifically geometry at the university or tertiary level in Germany was associated 
with high scores on the MCK and MPCK assessments (β = 0.27, p < .01; β = 0.18, 
p < .10, n.s.); a more moderate but positive and significant association on the MCK 
score was seen in Malaysia (β = 0.13, p < .01), and Switzerland (β= 0.12, p < .01). 
A negative association between the MCK and the MPCK scores and opportunities 
to learn school-level mathematics existed in Malaysia, Singapore, and Switzerland, 
presumably because future primary teachers who had a firm knowledge of these 
domains did not engage in studying these areas during their teacher education 
program.

The level of program coherence was positively associated with higher scores in 
both assessments in Malaysia, and with high MCK scores in Switzerland. Future 
teachers with high MCK scores were also more likely to be in programs that did not 
provide opportunities to read research on mathematics and mathematics teaching 
and learning (with βs ranging from −0.14 to −0.09 in Malaysia and Switzerland, 
respectively).

The aggregated socioeconomic background of future teachers within pro-
grams was positively associated with higher scores for individual teachers in 
the MCK and MPCK assessments. Table 8.2 shows that overall, the aggregated 
socioeconomic background of future teachers within programs was positively and 
significantly associated with future teachers’ performance. This association was 
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significant in Spain for MCK (β = 0.15, p < .001), and in the United States concern-
ing MCK and MPCK performance in (β = 0.21, p < .001; β = 0.12, p < .001). In 
Table  8.3, programs’ aggregated socioeconomic background was significant in 
Germany, for both MCK and MPCK (β = 0.10, p < .05; β = 0.08, p < .05).

Beliefs about teaching and learning mathematics as a collection of rules and 
routines were associated with lower scores in the assessments. Table 8.2 shows 
a general negative association between performance in both assessments and the 
view that mathematics can be learned by mastering a collection of rules and proce-
dures; this association was significant for MCK and MPCK in Russia, Thailand, and 
the United States. There is a positive association between the scores in the assess-
ments and the view that mathematics can be better learned through active inquiry 
for MPCK in Chile and Poland, and for MCK in the United States. Countries in 
Table 8.3 show a similar trend, with significant negative associations between the 
assessment results and the view that mathematics can be learned by mastering a 
collection of rules and procedures in Germany for MCK and in Switzerland for 
MPCK. There was a negative and significant association between performance in 
the MCK and the MPCK assessment and the belief that mathematics is better 
learned through inquiry and active learning in Switzerland.

Implications of these findings for teacher education policy and practice are dis-
cussed below.

 Discussion and Conclusions

The research reported in this chapter confirms at a larger scale findings from other 
studies, highlights emphasis areas for mathematics teacher education, and lends 
support to a number of policy recommendations that have emerged from the sus-
tained research program maintained by the mathematics education community over 
the years (Ball, 2003; CBMS, 2012; Kilpatrick & Swafford, 2002; National 
Commission on Mathematics and Science Teaching for the 21st Century, 2000; 
NCTM, 2014; NRC, 2010).

The findings from this study highlight the need for teacher education programs 
to move beyond providing future teachers with the mathematics knowledge that 
supports their ability to engage with basic computations, operations with whole 
numbers, simple figures, and linear expressions, toward providing mathematics 
knowledge that supports teachers’ ability to engage with abstract, complex, and 
multiple-steps problems, and to understand mathematical concepts and how these 
relate to one another. This, however, may be difficult without raising entry-level 
standards to demonstrate mathematics competence. University-level knowledge of 
geometry and school-level knowledge of algebra (functions, probability, and calcu-
lus) were particularly strong among those who performed well in the assessments. 
These findings suggest that these subjects can be used as leverage to support the 
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mathematics knowledge needed to teach the primary school curriculum. This find-
ing is consistent with Baumert et al. (2010), who found that deficiencies in mathe-
matics content knowledge were reflected in weak mathematics pedagogical content 
knowledge, a situation that impeded future teachers’ ability to interpret students’ 
work and support students’ learning, because of their failure to recognize common 
misconceptions, or conceive of useful representations, especially in the context of 
the mathematics they found challenging, such as algebraic representations and 
geometry concepts and applications.

The inclusion in TEDS-M of countries that had two types of programs allowed 
the possibility of exploring different approaches to prepare future primary mathe-
matics teachers. Those future teachers in programs that targeted the upper-primary 
grades, those in specialist programs, and those that required mathematics knowl-
edge as a condition for entry had significantly better results in the TEDS-M assess-
ments. Thus, even within the same country, different curriculum emphases are 
associated with significant differences in performance on assessments (e.g., in 
Poland, 1.5 standard deviation difference in the MCK assessment and close to a 
1.25 standard deviation in the MPCK assessment).

Given the findings from this  study, teacher education programs that produce 
highly knowledgeable primary mathematics teachers can be characterized in the 
following ways:

• They require a specific level of mathematics knowledge as a condition to enter 
the teacher education program.

• They provide ambitious opportunities to learn over a significant time period of 
course work, including

 – mathematics topics (such as algebra and geometry) that serve to leverage 
other mathematics areas to support deep understandings of the mathematics 
needed to teach the primary school curriculum;

 – school mathematics topics that provide curricular knowledge as well as deeper 
understanding of the mathematics to enable teachers to address non-routine 
problems and to access higher levels of complexity and abstraction;

 – and mathematics pedagogy that allows teachers to understand student think-
ing, plan for instruction, and build fluency and conceptual understanding.

• They challenge future teachers’ naïve views about teaching and learning mathe-
matics, moving their understanding of mathematics learning  from mastering 
rules and procedures toward balancing the learning of procedures with ways to 
engage students with processes of inquiry.

These propositions are addressed briefly below. The conclusion addresses chal-
lenges for the future of mathematics teacher education and for the mathematics 
education research community in an era of increased accountability.
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 Mathematics Knowledge As a Condition to Enter Teacher 
Education

A key finding from this study is that future teachers who did well in their previous 
schooling performed better in the mathematics knowledge assessments than those 
who did not. Given that previous attainment is an important predictor of future 
attainment, programs that have less rigorous selection policies are evidently unable 
to compensate for poor preparation in mathematics; weak previous attainment, as 
we have seen, also results in inadequate preparation in mathematics pedagogy. 
Those programs in countries that emphasize a minimum standard of mathematics 
knowledge as a condition for program entry are better able to prepare their future 
teachers (as demonstrated by their performance in the assessments) than those pro-
grams that have no such requirement. For instance, in Chinese Taipei, candidates 
need to have one year of tertiary-level studies, plus passing scores in a national 
examination in order to enter a teacher education program with mathematics as a 
required subject. Other high performing countries such as Poland (for upper- primary 
teachers), the Russian Federation, and Singapore require a mathematics credential 
or equivalent upon graduation from upper-secondary school in order to enter a 
teacher education program in university. In contrast, graduation from upper- 
secondary school with no specific mathematics requirement was the only require-
ment to enter a teacher education program in Chile, Germany, Malaysia, the 
Philippines, Spain, Switzerland, Thailand, and the United States (Tatto et al., 2012, 
pp. 41–46). Based on these results, teacher education policy can help improve the 
quality of primary mathematics teachers by increasing the level of subject matter 
knowledge required to enter a teacher education program—for instance, by requir-
ing a minor in mathematics, by preparing mathematics specialists for primary 
schools (e.g., by requiring a mathematics major), or by including more mathematics 
courses within teacher education programs. Teacher education programs have the 
choice to increase entry standards or to adjust their programs to provide remedial 
courses for the weak mathematics preparation future primary teachers may bring 
with them to their programs; if the latter, knowledge exit requirements should be 
raised.

 Opportunities to Learn Ambitious Mathematics over a 
Significant Period of Coursework

Opportunity to learn university-level mathematics such as geometry, and school- 
level mathematics such as algebra (functions, probability and calculus) proved to be 
important to do well in both assessments. Yet most programs for future primary 
teachers provide extensive opportunities to learn school mathematics such as num-
ber and measurement at the expense of providing opportunities to learn mathemat-
ics for instance in the areas of function, probability, and calculus. A recommendation 
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for the teacher education community is that the preparation of future primary teach-
ers include the study of university-level mathematics that supports understanding of 
mathematics of the school curriculum such as geometry and algebra—that is, under-
standing that would raise teachers to MCK-AP2 according to the anchor point anal-
ysis presented in this chapter. Learning the mathematics of the school curriculum 
must include particular attention to reaching the cognitive levels that currently elude 
a large proportion of future primary teachers. Important areas for improving the 
mathematical and mathematical pedagogical content knowledge of future primary 
teachers can be identified in the AP descriptions (Tatto et al., 2012, pp. 135–142): 
for MCK, “reasoning about factors, multiples and percentages to describing proper-
ties of a linear function,” and for MPCK, “interpretation of students’ work,” the use 
of “concrete representations to support students’ learning,” “knowing why a par-
ticular teaching strategy made sense, if it would always work, or whether a strategy 
could be generalized to a larger class of problems.” These are knowledge and skills 
that can only be acquired through a sustained period of course work. An important 
observation is needed here. While the duration of teacher preparation does not nec-
essarily imply better preparation (see Tatto, 2008), becoming a highly knowledge-
able mathematics teacher does require extensive study. The countries that did well 
in the TEDS-M study (i.e., Chinese Taipei, Germany, Poland (for specialists), 
Russian Federation, Singapore, and the United States) had programs no shorter than 
4 years, with most lasting 5 years. In Germany, programs were even longer, from 5.5 
to 6.5 years (Tatto et al., 2012, pp. 29–32).

As presented in the results section, with some exceptions (in Chinese Taipei, the 
Russian Federation, and the United States), those teachers who had high scores in 
the mathematics content portion of the assessment also reported infrequently 
 engaging in courses that gave them OTL MPCK about research on mathematics and 
mathematics education, and on teaching and learning. While this finding merits 
exploration in future work (using the TEDS-M data collected from the teacher edu-
cation curriculum analysis), it raises the question of time allocation and balance of 
content in teacher education. This concern finds resonance with Ball, Lubienski, 
and Mewborn (2001), who argued that while knowledge of mathematics is essential 
it should not come at the expense of knowledge that may support thoughtful and 
insightful mathematics practices or opportunities to do systematic investigations on 
mathematics teaching and learning. This finding also relates to the question of pro-
gram coherence, defined as the degree to which programs succeed at providing an 
internally consistent, logical set of courses, and experiences as preparation to meet 
a common set of standards and expectations when beginning to teach. There is a 
positive relationship between coherence (especially as reflected in a consistent and 
sound curriculum and university-school collaboration) and knowledge outcomes—
notably, in Malaysia and the Russian Federation as well as Switzerland. This 
may suggest the need to construct teacher education practices around a core curricu-
lum, as occurs in Finland (see Sahlberg, 2007, 2010), Chinese Taipei, Russia, and 
other high-performing countries.
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 Challenging Future Teachers’ Beliefs About Teaching 
and Learning Mathematics

There was a significant association in some countries between future teachers’ 
beliefs and their demonstrated level of knowledge in both assessments. Specifically, 
lower levels of performance in the assessments were found in those programs in 
which future teachers, as a group, held the view that learning mathematics consists 
of memorizing a collection of rules and procedures that prescribe how to solve a 
problem, and the application of definitions, formulas, mathematical facts, and pro-
cedures. The finding that there were programs with very traditional views about the 
nature of mathematics at the expense of more balanced views (e.g., that learning 
facts and procedures and learning through active inquiry are equally important) 
needs more exploration—for instance, to understand whether these are views that 
the programs are especially promoting in an era of increased testing and account-
ability, against views that are more consistent with cognitive science research on 
mathematics learning (Boaler, 2016).

Because the TEDS-M study did not collect entry data, it is not possible to ascer-
tain whether teachers’ beliefs were the products of their programs alone. The tradi-
tional view that mathematics can be seen as a series of rules and procedures that 
need mastering, however, is widespread and may reflect how future teachers origi-
nally learned to approach mathematics. While it is possible to assume from 
these results that higher levels of MCK and MPCK contribute to the development of 
teachers’ deeper understandings of mathematics, and how these can be applied to 
teaching, more research needs to be done in this area to confirm such assumptions, 
and more importantly to explore the particular OTL more proficient teachers 
received  (see Chapter 6 of this book for an exploration of program influence on 
future teachers beliefs).

 Building the Research Basis for the Self-Study of Teacher 
Education Programs in an Era of Accountability

The research presented in this chapter contributes to the research evidence of teacher 
education program outcomes, work that is much needed in the new climate of 
accountability, and which requires from programs the development of self-study 
strategies in order to comply with high-stakes accreditation demands. To meet these 
demands, it is important to understand which of the many possible areas of study 
should be the focus of program self-study efforts, and what methods to use to collect 
valid and reliable information. Because the TEDS-M study makes the instruments, 
methods, and procedures, as well as the data, publicly available, teacher education 
programs can learn much from it about how to carry out rigorous studies of teacher 
education programs. Thus, this study contributes to building the research basis for 
the self-study of teacher education programs by and for teacher educators, and with 
usable results for the teacher education community.
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 Appendices

Table 8.4 Variables in the general models: future teacher characteristics and program 
characteristics

Future teachers characteristics
Socioeconomic status [SES]
A scale was derived from the TEDS-M data using principal components analysis as a composite 
of a home possessions index (derived using IRT), number of books at home, father’s highest 
level of education and mother’s highest level of education. The final SES measure was 
standardized to have a mean of 0 and a standard deviation of 1.
Age [MFA001] Mean of age as reported

Gender [MFA002] Mean of age as reported (1 = female, 0 = male)

Prior attainment [MFA009] Mean for level of grades in secondary school (1 = below average 
for year level; 5 = Always at top of year level)

Program characteristics
Opportunities to learn
Tertiary level mathematics – geometry [MFB1GEOM]
A. Foundations of geometry or axiomatic geometry (e.g., Euclidean axioms)
B. Analytic/coordinate geometry (e.g., equations of lines, curves, conic sections, rigid 
transformations or isometrics)
C. Non-Euclidean geometry (e.g., geometry on a sphere)
D. Differential geometry (e.g., sets that are manifolds, curvature of curves, and surfaces)
This variable represents counts of topics studied. For this study the variable was formed by 
calculating the mean value for each program aggregated at the program level (range 0–4).

School level mathematics - function probability calculus [MFB2SLMF]
D. Functions, relations, and equations (e.g., algebra, trigonometry, analytic geometry)
E. Data representation, probability, and statistics
F. Calculus (e.g., infinite processes, change, differentiation, integration)
G. Validation, structuring, and abstracting (e.g., Boolean algebra, mathematical induction, 
logical connectives, sets, groups, fields, linear space, isomorphism, homomorphism)
This variable represents counts of topics studied. For this study the variable was formed by 
calculating the mean value for each program aggregated at the program level (range 0–4).

Mathematics education pedagogy - class reading [MFB5READ]
H. Read about research on mathematics
I. Read about research on mathematics education
J. Read about research on teaching and learning
K. Analyze examples of teaching (e.g., film, video, transcript of lesson)
This variable was formed by calculating the mean value for each program aggregated at the 
program level. This variable is a scaled score with mean = 10 and the standard deviation = 1, 
with 10 representing the neutral point in a Likert type scale (e.g., neither agree nor disagree).

Program coherence [MFB15COH]
A. Each stage of the program seemed to be planned to meet the main needs I had at that stage of 
my preparation.
B. Latter <courses> in the program built on what was taught in earlier <courses> in the program.
C. The program was organized in a way that covered what I needed to learn to become an 
effective teacher.

(continued)
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D. The <courses> seemed to follow a logical sequence of development in terms of content and 
topics.
E. Each of my <courses> was clearly designed to prepare me to meet a common set of explicit 
standard expectations for beginning teachers.
F. There were clear links between most of the <courses> in my teacher education program.
This variable was formed by calculating the mean value for each program aggregated at the 
program level. This variable is a scaled score with mean = 10 and the standard deviation = 1, 
with 10 representing the neutral point in a Likert type scale (e.g., neither agree nor disagree).

Program philosophy (views)
Rules and procedures [MFD1RULE]
1. Mathematics is a collection of rules and procedures that prescribe how to solve a problem.
2. Mathematics involves the remembering and application of definitions, formulas, mathematical 
facts and procedures.
3. When solving mathematical tasks you need to know the correct procedure else you would be 
lost.
4. Fundamental to mathematics is its logical rigor and preciseness.
5. To do mathematics requires much practice, correct application of routines, and problem 
solving strategies.
6. Mathematics means learning, remembering and applying.
This variable was formed by calculating the mean value for each program aggregated at the 
program level. This variable is a scaled score with mean = 10 and the standard deviation = 1, 
with 10 representing the neutral point in a Likert type scale (e.g., neither agree nor disagree).

Active learning [MFD2ACTV]
1. In addition to getting a right answer in mathematics, it is important to understand why the 
answer is correct.
2. Teachers should allow pupils to figure out their own ways to solve mathematical problems.
3. Time used to investigate why a solution to a mathematical problem works is time well spent.
4. Pupils can figure out a way to solve mathematical problems without a teacher’s help.
5. Teachers should encourage pupils to find their own solutions to mathematical problems even 
if they are inefficient.
6. It is helpful for pupils to discuss different ways to solve particular problems.
This variable was formed by calculating the mean value for each program aggregated at the 
program level. This variable is a scaled score with mean = 10 and the standard deviation = 1, 
with 10 representing the neutral point in a Likert type scale (e.g., neither agree nor disagree).

Program’s SES [SES]
This variable was formed by calculating the mean value for each program to get the SES 
measure aggregated at the program level.

Table 8.4 (continued)
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Chapter 9
How Primary Future Teachers’ Knowledge  
Is Shaped by Teacher Preparation

Hong Qian and Peter Youngs

Abstract This chapter uses data from the Teacher Education and Development 
Study in Mathematics (TEDS-M) to examine associations between primary future 
teachers opportunity to learn (OTL) in mathematics courses and mathematics meth-
ods courses in Chinese Taipei, Singapore, and the United States and their mathemat-
ics content knowledge and mathematics pedagogical content knowledge. The study 
found evidence that primary candidates’ knowledge seems to be affected by the 
content of mathematics courses taken and by the number of topics addressed and 
their OTL in mathematics methods courses.

Introduction

A robust body of evidence indicates that among various school-based factors, 
teacher quality has the strongest impact on student achievement (Rivkin, Hanushek, 
& Kain, 2005; Wayne & Youngs, 2003). In addition, several studies have found that 
teachers’ mathematical content knowledge (MCK) and mathematical pedagogical 
content knowledge (MPCK) are closely associated with students’ learning in math-
ematics (Baumert et al., 2010; Hill, Rowan, & Ball, 2005; Jacob, Kane, Rockoff, & 
Staiger, 2009). At the same time, prospective primary teachers vary significantly 
with regard to their MCK and MPCK both within and across countries. Further, 
there is less evidence in the research literature about how primary candidates’ expe-
riences in pre-service teacher education are associated with their knowledge levels.

H. Qian (*) 
National Council of State Boards of Nursing, Chicago, IL, USA 

P. Youngs 
University of Virginia, Charlottesville, VA, USA
e-mail: pay2n@eservices.virginia.edu

TEDS-M and the study contained in this chapter were supported by funding provided by a grant 
from the National Science Foundation Award No. REC – 0514431 (M.T. Tatto, PI). Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the author(s) 
and do not necessarily reflect the views of the National Science Foundation.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92144-0_9&domain=pdf
mailto:pay2n@eservices.virginia.edu


258

In this chapter, we draw on data from the Teacher Education and Development 
Study in Mathematics (TEDS-M) to examine how primary candidates’ preparation 
experiences in three countries are related to their levels of MCK and MPCK. TEDS-M 
is unique in that it was the first cross-national study of mathematics teacher prepara-
tion to feature large-scale samples of future teachers (FTs) (Tatto et al., 2012). In 
this analysis, we focus on primary candidates from Chinese Taipei, Singapore, and 
the United States because these countries are developed nations with relatively 
high-performing education systems. We concentrate on primary mathematics 
 teachers because they strongly affect students’ academic trajectories and life out-
comes (Chetty, Friedman, & Rockoff, 2011).

Our analyses indicated that the content of mathematics courses taken by primary 
FTs has a stronger effect on their MCK than the number of math courses that they 
take. In addition, our results indicate that candidates’ opportunity to learn topics 
related to mathematics instruction was associated with both MCK and MPCK.

In the first section of this chapter, we review the research literature on teacher 
preparation and teacher knowledge. The second section introduces our theoretical 
framework, which posits a number of associations between FTs’ preparation experi-
ences and their knowledge levels. The third section describes our research methods, 
including samples, instruments, measures, and analytical strategies. We present our 
results in the fourth section and the final section discusses our results in relation to 
other research and identifies some limitations of this analysis.

 Literature Review

In a review of research from the United States, Clift and Brady (2005) reported that 
primary FTs’ experiences in mathematics methods courses and student teaching 
experiences had indeterminate effects on their beliefs and practices. Some studies 
found that methods courses and field experiences seemed to affect candidates’ 
beliefs about teaching mathematics and the extent to which they incorporated con-
structivist principles in planning instruction (Langrall, Thornton, Jones, & Malone, 
1996; Kim & Sharp, 2000; Mewborn, 1999). At the same time, Vacc and Bright 
(1999) reported that prospective primary teachers were limited in their ability to 
employ knowledge of students’ mathematical thinking in their planning and instruc-
tion even when they believed that it was important to do so. According to Schmidt, 
Blömeke, & Tatto (2011), one reason for the inconsistent relationship between 
teacher education and FTs’ beliefs and practices was that opportunity to learn (OTL) 
in teacher preparation had been measured imprecisely in most studies. In other 
words, Schmidt, Blömeke, and Tatto, argued that the use of better measures of OTL 
could lead to the consistent identification of relationship between OTL and key 
outcomes for teacher candidates.

Recently, researchers have employed more precise measures that assess teacher 
education experiences in a low-inference way (Schmidt, Blömeke, & Tatto, 2011) to 
investigate how specific components of teacher preparation affect student achieve-
ment. For example, Boyd, Grossman, Lankford, Loeb, and Wyckoff (2009) reported 
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that several aspects of student teaching were associated with effectiveness (as mea-
sured by student achievement gains) among 1st-year primary teachers in New York 
City (NYC): experience with student teaching, having a supervisor who provided 
oversight of their student teaching, and close alignment between their current school 
context and the school context in which they completed student teaching. In a differ-
ent analysis using the same dataset, Ronfeldt (2012) found that teachers who com-
pleted student teaching in easier-to-staff schools were more likely to continue teaching 
in NYC schools and to have increased student scores on state standardized tests dur-
ing their first five years of teaching. Both of these studies used student achievement 
as a dependent variable; neither included measures of teacher knowledge.

Schmidt, Blömeke, and Tatto (2011) examined precursors to mathematics con-
tent knowledge and mathematics pedagogical content knowledge for lower second-
ary1 mathematics teachers in six countries. They reported that lower secondary 
candidates’ opportunities to study calculus and advanced mathematics were related 
to their knowledge of number, geometry, algebra, function, and data. They also 
found that MPCK was associated with three measures of practical experience: 
opportunity to engage in instructional interactions in mathematics, the number of 
different types of practical experiences, and the number of weeks during which they 
had primary responsibility for mathematics instruction during student teaching. In 
an analysis using TEDS-M data, Schmidt, Cogan, and Houang (2011) examined 
country-level correlations between primary and lower secondary mathematics can-
didates’ MCK and the average number of courses taken. They reported that primary 
candidates took a significantly higher number of mathematics courses in the coun-
tries with the highest scaled scores of MCK than in lower-performing countries. 
They also found that among lower secondary candidates, those in countries with the 
highest MCK scores took almost twice as many mathematics courses and signifi-
cantly more mathematics methods courses than their counterparts in lower- 
performing countries.

The findings from these two studies provide a foundation for the present study. 
For lower-secondary mathematics candidates, they indicate that the number and 
content of mathematics content courses taken are related to MCK, while MPCK is 
related to more practical experiences during teacher preparation. However Schmidt, 
Cogan, and Houang’s analysis considered primary candidates, focusing only on 
their MCK, while neither study investigated associations between primary candi-
dates’ preparation experiences and their MPCK.  The analysis presented in this 
chapter advances the work of Schmidt, Blömeke, Tatto (2011), and colleagues in 
three ways. First, our study explores how primary candidates’ MCK and MPCK are 
shaped by their teacher preparation experiences. Second, we focus opportunities to 
learn in mathematics education courses, general pedagogy courses. and student 
teaching; these measures were not included in the earlier studies. Third, we employ 
more precise variables to control for differences in candidates’ mathematics knowl-
edge prior to entering teacher preparation.

1 Lower Secondary level refers to middle school, usually serving students whose age are around 
11–14.
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 Theoretical Framework

It is important for FTs to possess and be able to use content knowledge and peda-
gogical content knowledge in their classroom teaching (Shulman, 1987). 
Mathematical content knowledge (MCK) is the knowledge of mathematics; MPCK 
is knowledge specific to teaching mathematics. Previous studies have found that 
MCK and MPCK are essential for future mathematics teachers to be effective (Hill, 
Ball, Goffney, & Rowan, 2008; Hill et al., 2005; Jacob et al., 2009). In the present 
study, we used measures of both MCK and MPCK as defined by the TEDS-M study 
(see Tatto, 2013, p. 32–36). 

TEDS-M defined opportunity to learn (OTL) as an experience with an antici-
pated or intended learning outcome, “OTL for teachers can occur at any point in the 
continuum of teacher learning, from the opportunities associated with schooling 
before entry into a formal teacher preparation program to the opportunities given to 
experienced teachers throughout their careers… TEDS-M concentrated on the 
opportunities that future teachers have to learn mathematics, mathematics peda-
gogy, and the general pedagogy provided by their pre-service preparation programs” 
(Tatto et al., 2008, p. 23). In the present study, our framework considers the associa-
tion of future teachers’ MCK and MPCK levels with their opportunity to learn in (a) 
mathematics courses, and (b) mathematics methods courses.

 Mathematics Courses

At the primary level, Hill (2010) reported that for a nationally representative sample 
of teachers in the United States taking additional coursework was associated with 
higher levels of mathematical knowledge for teaching (MKT). MKT includes both 
MCK and MPCK; it features the common mathematical knowledge that is held by 
a well-educated adult and the specialized mathematical knowledge that is only held 
by teachers (such as the ability to represent content in ways that are accessible to 
young learners and to anticipate student errors). Among Chinese primary candi-
dates, Youngs and Qian (2013) found that completion of courses in number theory 
and mathematical reasoning was associated with significantly higher levels of MKT 
in number and operations. As noted above, Schmidt, Blömeke, and Tatto 
(2011) reported that lower secondary mathematics candidates’ opportunity to study 
calculus and advanced mathematics was significantly related to their MCK in num-
ber, algebra, geometry, function, and data. At the same time, these learning oppor-
tunities did not influence their MPCK. The findings from these studies indicate a 
need to examine how the mathematics content courses taken by primary candidates 
in multiple countries are associated with their knowledge levels. Thus, in our study, 
we used TEDS-M data to test the following hypotheses:

Hypothesis 1A: The number of the university-level mathematics content courses 
taken by primary future teachers is positively related to their level of 
knowledge.
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Hypothesis 1B: The content of the university-level mathematics content courses 
taken by primary future teachers is positively related to their level of 
knowledge.

 Mathematics Methods Courses

In their 2013 study, Youngs and Qian found that Chinese primary candidates’ expo-
sure to certain topics and learning experiences in mathematics methods courses and 
general pedagogy courses was related to their MKT levels. As noted above, Schmidt, 
Blömeke, and Tatto (2011) reported lower secondary candidates’ MPCK was asso-
ciated with engaging in math instructional interactions, the number of different 
types of practical experiences they had, and the number of weeks during which they 
had primary responsibility for mathematics instruction during student teaching. 
Building on these findings, we used TEDS-M data to test the following 
hypotheses:

Hypothesis 2A: The number of topics addressed in mathematics methods courses 
taken by primary future teachers is positively related to their level of 
knowledge.

Hypothesis 2B: The opportunities to learn (OTL) in mathematics methods courses 
for primary future teachers are positively related to their level of knowledge.

In sum, our theoretical framework contends that primary FTs’ knowledge 
(including MCK and MPCK) will be associated with their opportunities to learn in 
mathematics courses and mathematics methods courses.

 Method

 Samples

TEDS-M study focused on primary and lower secondary mathematics teacher edu-
cation in 17 countries. The FTs who participated in the study were all in their final 
year of teacher preparation. The study presented in this chapter focuses on programs 
that prepared individuals to work as primary generalist teachers up through grade 6. 
Among the six countries in TEDS-M that prepared primary generalist teachers, we 
concentrate in this chapter on three: Chinese Taipei, Singapore, and the United 
States. The sample size for programs and future teachers for this group are in 
Table 9.1. The sampling plan in the TEDS-M study was designed to produce nation-
ally representative data for each of the participating countries. See Tatto et al. (2012) 
for more details on sampling.
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 Context

In this section, we provide some contextual information about the status of the 
teaching profession in each of the three countries. The status of teaching in a given 
country can affect FTs’ MCK and MPCK and impact their experiences in teacher 
preparation. The contextual information included below is based on Schwille, 
Ingvarson, and Holdgreve-Resendez (2013).

Chinese Taipei Teaching has traditionally been an attractive profession in China, 
characterized by high levels of status and prestige. Teacher salaries in Chinese 
Taipei are funded by the government and are stable and generous. During the work 
day, teachers are allocated time to plan instruction and collaborate with colleagues 
in addition to fulfilling their instructional duties. Since teaching is an attractive 
occupation, it is also quite competitive. During formal preparation, candidates must 
pass a series of rigorous examinations to obtain entry to a program, earn their teach-
ing licenses, and obtain employment. Guidelines are set by the government regard-
ing recruitment, pre-service preparation, licensure, and in-service professional 
development (Hsieh, Lin, Chao, & Wang, 2012).

Singapore As in China, teaching in Singapore has traditionally been an attractive 
profession. The nation recruits FTs from among the top one-third of each cohort by 
academic ability. The government funds teacher salaries, which are stable and com-
petitive with other professions. In Singapore, the National Institute of Education 
(NIE) maintains a high degree of control over teacher training and certification. The 
Ministry of Education recruits FTs and they are trained by the NIE.  When FTs 
graduate from the NIE, they are automatically qualified to teach in Singapore 
schools (Wong et al., 2012).

United States The United States has shifted toward centralization of teacher licen-
sure policy at the state and the national level. Yet there is still notable variation 
within and across states with regard to teacher education program-types and licen-
sure requirements for primary and lower secondary mathematics. Along with more 
traditional university-based preparation program types, alternative routes to licen-
sure have grown significantly in the United States. Compared to other professionals, 
teachers in the United States usually have lower status and are paid less and they 

Table 9.1 Sample sizes for 
preparation programs and 
future teachers in primary 
generalist program group

Country

Number of 
preparation 
programs

Number of  
future  
teachers

Chinese Taipei 11 923
Singapore 6 263
United states 71 1,310
Total 88 2,496
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generally express less satisfaction than other groups with respect to pay, benefits, 
and promotion opportunities. Primary FTs tend to have lower college aptitude test 
scores than the average college graduate (Youngs & Grogan, 2013).

 Instruments

Three main surveys were used in the TEDS-M study: questionnaires of future teach-
ers, educators, and institutional program representatives. The future teacher ques-
tionnaire had four parts: (a) general background, (b) opportunity to learn in teacher 
education, (c) MCK and MPCK, and (d) beliefs about teaching and mathematics. 
The time allotted for completing each is shown in Table 9.2. Parts A, B, and D fea-
tured rating-scale items while part C consisted of items that assessed participants’ 
knowledge. For part C, to measure breadth and depth of knowledge, the TEDS-M 
study used a rotated block design; each participant responded to questions in two 
blocks out of a total of five blocks.

Teacher educators who taught courses in (a) mathematics and mathematics peda-
gogy and (b) general pedagogy were asked to complete the educator questionnaire. 
This survey included questions about their academic and teaching backgrounds, 
their professional and research experiences, their participation in field-based 
instruction, and their own beliefs about mathematics. In addition, it included ques-
tions about the learning opportunities they provided in their courses for primary 
candidates. The institutional program questionnaire included questions about candi-
dates’ backgrounds, the admission process, course content, field placements, pro-
gram standards and accountability, and program resources.

 Measures

In this section, we describe the main variables used in our analyses. The indepen-
dent variables included (a) number and content of university-level mathematics 
content courses and (b) topics addressed and OTL in mathematics pedagogy courses; 
the dependent variables were MCK and MPCK scores; and the control variables 
included previous mathematics achievement and parents’ education).

Table 9.2 Composition of 
future teacher questionnaire Section Focus

Time 
(min)

A General background 5
B Opportunity to learn in teacher 

preparation program
15

C MCK and MPCK 60
D Beliefs about mathematics and teaching 10
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Number of Mathematics Content Topics We calculated the number of mathe-
matics content courses offered and taken at the institutional and individual levels. At 
the institutional level, this variable measures the number of university-level mathe-
matics content topics at the program level while at the individual level it reports the 
number of such topics taken. In particular, FTS were asked whether they had stud-
ied each of 19 distinct mathematics topics. Including this variable at both levels 
allowed us to examine the effects of institutional policies (i.e., some institutions 
require all students to take certain types of courses while others do not) as well as 
candidates’ choices (i.e., in some programs, some individual FTs elected to take 
certain types of topics  (Tatto et al., 2012).

Content of Mathematics Content Courses The 19 distinct mathematics topics 
included the following:

• foundations of geometry or axiomatic geometry
• analytic/coordinate geometry
• non-Euclidean geometry
• differential geometry
• topology
• linear algebra
• set theory
• abstract algebra
• number theory
• beginning calculus
• calculus
• multivariate calculus
• advanced calculus or real analysis or measure theory
• differential equations
• theory of real functions and theory of complex functions or functional analysis
• discrete mathematics
• graph theory, game theory, combinatorics, or Boolean algebra
• probability, theoretical or applied statistics
• mathematical logic

These 19 topics can be conceptually grouped into four broader categories represent-
ing university-level mathematics: geometry, discrete structure and logic, continuity 
and functions, and probability and statistics.

Topics Addressed in Mathematics Methods Courses This variable is also defined 
at the institutional and individual levels. The institutional program questionnaire 
asked about the number of mathematics pedagogy courses required for the program, 
while the future teacher questionnaire asked FTs if they had studied one or more of 
the following topics during teacher preparation:

• foundations of mathematics
• context of mathematics education
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• development of mathematics ability and thinking
• mathematics instruction
• developing lesson plans
• observation, analysis and reflection
• mathematics standards and curriculum
• affective issues in mathematics

For each candidate, we counted the number of different topics that had been 
addressed in their mathematics methods courses.

OTL in Mathematics Methods Courses Since measures of the number of courses 
taken cannot fully capture primary candidates’ experiences within courses, we use 
this group of variables to closely examine their experiences in mathematics meth-
ods courses. The future teacher questionnaire Items 5 and 6 asked candidates to 
indicate how frequently they engaged in a list of activities in mathematics pedagogy 
courses, such as using students’ misconceptions to plan instruction or analyzing 
examples of teaching (see Table 9.3 for the full list of activities). The response cat-
egories were coded as 1 (never), 2 (rarely), 3 (occasionally), and 4 (often). The 
TEDS-M study reported seven scaled scores for OTL in mathematics methods 
courses based on Items 5 and 6: class participation, class reading, solving problems, 
instructional practice, instructional planning, assessment uses and assessment 
practice. The activities used to construct each scaled score are listed in Table 9.3. 
The reliabilities for these seven scales are .85, .83, .78, .89, .90, .91, and .87, 
respectively.

Previous Mathematics Achievement This individual-level control was con-
structed based on responses to two questions on the future teacher questionnaire: (a) 
What was the highest grade level at which you studied mathematics in secondary 
school? And (b) In secondary school, what was the usual level of grades that you 
received?

Parents’ Education This control variable was also at the individual level; it was 
constructed based on responses to two questions on the future teacher question-
naire: (a) What is the highest level of education completed by your mother, and (b) 
What is the highest level of education completed by your father?

MCK Score Future teachers’ responses to the mathematics content knowledge 
assessment were used to construct one of the dependent variables, MCK score. 
This assessment was designed to measure advanced mathematics knowledge 
and  mathematics curricular knowledge related to primary-level school mathemat-
ics (Tatto et al., 2012). The MCK assessment consisted of 74 items across four 
content subdomains: number and operations, algebra and functions, geometry 
and measurement, and data and chance. Individual-scaled scores were created for 
each FTs using Rasch scaling. The international mean for the MCK scale was 
500, and the standard deviation was 100. The reliability for the MCK measure 
was .8.
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Table 9.3 Lists of items used to construct each OTL variable in mathematics education courses

OTL

In the mathematics education<pedagogy/teaching methods> courses that you 
have taken or are currently taking in your teacher preparation program, how 
frequently did you do any of the following? (Never, Rarely, Occasionally, Often)

Ask questions during class time
Participate in a whole class discussion
Make presentations to the rest of the class
Teach a class session using methods of my own choice
Teach a class session using methods demonstrated by the instructor

Class reading Read about research on mathematics
Read about research on mathematics education
Read about research on teaching and learning
Analyze examples of teaching (e.g., film, video, transcript of lesson)

Solving 
problems

Write mathematical proofs
Solve problems in applied mathematics
Solve a given mathematics problem using multiple strategies
Use computers or calculators to solve mathematics problems

Instructional 
practice

Explore how to apply mathematics to real-world problems
Explore mathematics as the source for real-world problems
Learn how to explore multiple solution strategies with pupils
Learn how to show why a mathematics procedure works
Make distinctions between procedural and conceptual knowledge when teaching 
mathematics concepts and operations to pupils
Integrate mathematical ideas from across areas of mathematics

Instructional 
planning

Accommodate a wide range of abilities in each lesson
Create learning experiences that make the central concepts of subject matter 
meaningful to pupils
Create projects that motivate all pupils to participate
Deal with learning difficulties so that specific pupil outcomes are accomplished
Develop games or puzzles that provide instructional activities at a high interest 
level
Develop instructional materials that build on pupils’ experiences, interests and 
abilities
Use pupils’ misconceptions to plan instruction

Assessment 
uses

Give useful and timely feedback to pupils about their learning
Help pupils learn how to assess their own learning
Use assessment to give effective feedback to parents or guardians
Use assessment to give feedback to pupils about their learning
Use classroom assessments to guide your decisions about what and how to teach

Assessment 
practice

Analyze and use national or state standards or frameworks for school 
mathematics
Analyze pupil assessment data to learn how to assess more effectively
Assess higher-level goals (e.g., problem-solving, critical thinking)
Assess low-level objectives (factual knowledge, routine procedures and so forth)
Build on pupils’ existing mathematics knowledge and thinking skills
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MPCK Score Primary candidates’ responses to the mathematics pedagogical con-
tent knowledge assessment were used to construct the other dependent variable, 
MPCK score. This assessment included 32 MPCK items across three subdomains: 
curricular knowledge, planning for teaching and learning, and enacting teaching 
and learning. The assessment items included three formats: multiple-choice (MC), 
complex multiple-choice (CMC), and constructed response (CR). Future teachers’ 
MPCK scores were reported in scaled scores generated through the use of item 
response theory, with a mean of 500 and standard deviation of 100. The reliability 
for the MPCK measure was .7 (Tatto et al., 2012).

 Analytical Strategies

Because FTs were nested within programs, we employed multilevel linear models 
to examine the effects of preparation programs on primary FTs’ knowledge. The 
independent variables were defined at both the individual and institutional levels 
while the dependent variables, MCK and MPCK, were defined at the individual 
level. Variables defined at the individual level of the analysis highlight the effects of 
individual differences or choices while variables defined at the institutional level 
reflect differences between institutions with regard to policies and practices (Tatto 
et al., 2012). A population model for MCK at the future teacher level is as follows:

MCK Parent education Previous mathematics ij j j ij j= + ( ) +b b b0 1 2 aachievement

independent variable

ij

j ij iju

( )
+ ( ) +b3

A population model for MCK at the program level is as follows:

 
b g g0 00 01 0j j jv= + ( ) +independent variable

 

in which MCKij represents the MCK score for FT i in program j; independent vari-
ableij represents an independent variable at the individual level, such as content of 
mathematics courses taken by FT i in program j; independent variable j represents 
an independent variable at the institutional level, such as the number of mathematics 
courses required by program j which may have an effect on the intercept for the 
first-level model.

Although these independent variables represent our central theoretical concerns, 
other factors could affect FTs’ MCK scores. Therefore, we include control variables 
for candidates’ previous mathematics achievement, parents’ levels of education, 
and the number of required mathematics courses. Controlling for these measures 
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helps us account for differences among FT’s  that were evident prior to their 
beginning teacher education programs. A similar model for MPCK at the FT level 
is as follows:

MCK Parent education Previous mathematics ij j j ij j= + ( ) +b b b0 1 2 aachievement

independent variable

ij

j ij iju

( )
+ ( ) +b3

A population model for MCK at the program level is as follows:

 
b g g0 00 01 0j j jv= + ( ) +independent variable

 

 Results

 Effect of Mathematics Content Topics

Table 9.4 reports the standardized coefficients from a multilevel linear regression 
model for Chinese Taipei, Singapore, and the United States. The independent vari-
ables are the number of mathematics content topics at the individual and institu-
tional levels. The number of mathematics content topics at the individual level refers 
to the number of mathematics content topics the FT has taken, we are defining these 
as  ‘courses’; while the number of mathematics content topics at the institutional 
level refers to the number of aggregated mathematics content topics at the program 
level, we are defining this as the ‘courses required’ by the institution. The dependent 
variable is FTs’ MCK scores. The model also included two control variables: FTs’ 
previous mathematics achievement and parents’ education.

The results in column 4 of Table 9.4 show that for Chinese Taipei, the coefficient 
for the number of mathematics content topics taken by FTs is positive and statisti-
cally significant, which indicates an association between the number of mathemat-
ics content topics taken by candidates and their MCK score even when controlling 
for the number of mathematics content courses required by the institution, FTs’ 

Table 9.4 Estimated effects of number of mathematics content courses on MCK score

Previous 
achievement

Parent 
education

Number of 
math topics

Number of topics aggregated  
at the program level/required

(FT) (institution)

Chinese 
Taipei

0.30*** 0.01 0.16*** −0.02

Singapore 0.22*** −0.01 0.10 0.15*
United 
States

0.22*** 0.21*** −0.04 −0.12*

*p < .05; **p < .01; ***p < .001
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previous mathematics achievement, and parents’ education. In other words, the 
more mathematics content courses a candidate in Chinese Taipei has taken, the 
higher their MCK score, assuming that the other three variables remain constant. 
But this is not the case in Singapore or the United States. In these two countries, the 
coefficient for the number of mathematics content courses taken by FTs is not sta-
tistically significant.

The average number of topics and standard deviation of mathematics content 
required by the institution in each country are as follows: Chinese Taipei: 3.24 
(standard deviation is 4.428); Singapore: 3.04 (5.228); and the United States: 2.61 
(2.985). The effect of the number of mathematics content courses required by the 
institution is mixed, as shown in Table 9.4 column 5. In Singapore, the coefficient 
for the number of mathematics content courses required by the institution is posi-
tive, which indicates that the greater the number of math content courses required 
by a given institution, the higher the MCK scores for candidates at that institution. 
However, in the United States, the coefficient is negative, which means that the 
greater the number of mathematics content courses an institution required, the 
lower the MCK scores for FTs, assuming the other three variables remain constant. 
One explanation is that when previous mathematics achievement for all candidates 
in an institution is generally low, the institution requires that they take a greater 
number of mathematics content courses (the negative correlation between the two 
from data confirmed this hypothesis). However, the additional required courses do 
not put these candidates on par with their peers in programs requiring fewer courses; 
even when controlling for their lower previous mathematics achievement, these stu-
dents’ MCK at the completion of the program is still lower than the MCK of stu-
dents in other institutions requiring a smaller number of required mathematics 
content courses.

Table 9.5 focuses on MPCK scores. As shown in column 4 of Table  9.5 for 
Chinese Taipei and Singapore, there is a positive association between the number of 
mathematics content courses taken by candidates and their MPCK scores, while in 
the United States, there is a negative association between these two variables. For 
the institution-level variable, in Singapore, the number of mathematics content 
courses required by the institution is positively associated with candidates’ MPCK 
scores.

The results for the control variables from Tables 9.4 and 9.5 are worth noting. 
FTs’ previous mathematics achievement (in column 2) has a significant association 

Table 9.5 Estimated effects of number of mathematics content courses on MPCK score

Previous 
achievement

Parent 
education

Number of math 
topics

Number of required 
courses

(candidate) (institution)

Chinese 
Taipei

0.25*** −0.03 0.11*** −0.05

Singapore 0.14** −0.01 0.12* 0.05*
United States 0.22*** 0.13*** −0.07* −0.05

*p < .05; **p < .01; ***p < .001

9 How Primary Future Teachers’ Knowledge Is Shaped by Teacher Preparation



270

with their MCK and MPCK across all countries. Therefore, it is important to include 
this variable to control for differences in candidates’ mathematics ability before 
they begin teacher preparation. When it comes to parents’ education (in column 3), 
there is no effect on candidates’ MCK or MPCK except in the United States, where 
there is a strong relationship between candidates’ parents’ education levels and both 
MCK and MPCK. For MCK, the effect size of parents’ education is as large as can-
didates’ previous mathematics achievement. This indicates that for U.S. candidates, 
MCK and MPCK are significantly associated with their parents’ education levels, 
which means that preparation programs are unlikely to eliminate the inequity pro-
duced by family background. This is not the case in the other two countries.

While the overall number of mathematics content courses did not have a consis-
tent impact on MCK score, we also examined whether taking particular mathemat-
ics content courses was consequential. As noted, the 19 distinct math content 
courses or topics in the TEDS-M study can be conceptually grouped into four 
broader categories geometry, discrete structure and logic, continuity and functions, 
and probability and statistics. Using the number of courses FTs took in each cate-
gory as an independent variable, we estimated the effects of each category on can-
didates’ MCK scores in a model that included each of the independent variables and 
control variables (previous mathematics achievement, parents’ education, number 
of mathematics content courses required by the institution). Table 9.6 reports the 
unstandardized coefficients for each of the four independent variables in three coun-
tries (the coefficients for the control variables are not reported).

The results in Table 9.6 column 2 show that, for FTs in Chinese Taipei, taking 
one more geometry course (range from 0 to 4), would increase their MCK score by 
5.85 points compared to candidates with the same previous mathematics achieve-
ment, the same level of parents’ education, and the same number of total math 
content courses required by their institution. Note that the international mean for 
MCK score is 500 and, thus, the effect is significant. However, for U.S. candidates, 
taking one more course in geometry would lower their MCK score – by 6.04 points 
compared to other candidates, when holding the other three variables remain con-
stant. This does not necessarily mean that the geometry course is harming them. It 
is possible that, when controlling for the number of mathematics content courses the 
institution requires, the candidates who chose to take more courses in geometry 
earned lower MCK scores for some reason related to their propensity to take geom-
etry. The effect of the number of mathematics content courses in discrete structure 
and logic, continuity and functions, and probability and statistics on MCK is more 

Table 9.6 Estimated effects of content of mathematics content courses on MCK score

Geometry
Discrete structures  
and logic

Continuity  
and functions

Probability 
and statistics

Chinese Taipei 5.85* 5.78** 14.22*** 12.55**
Singapore 2.36 3.70 5.31 7.83
United States −6.04*** −1.78 6.12*** −1.77

*p < .05; **p < .01; ***p < .001
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consistent (i.e., it is positively significant in at least one country). When the total 
number of mathematics content courses required by the institution is the same, it 
seems that taking a greater number of mathematics courses in continuity and func-
tions helps candidates acquire more knowledge. For Chinese Taipei candidates, tak-
ing one more course in continuity and functions (range from 0 to 6) would lead to 
an increase of 14.22 in their MCK score, while for FTs in the United States, the 
increase would be 6.12.

 Effect of Mathematics Education Courses

The results in column 4 of Table 9.7 show that for Chinese Taipei, the coefficient for 
the number of topics addressed in mathematics education courses (at the individual 
student level) is positive and statistically significant at the .05 level. This indicates 
an association between the number of topics addressed in these courses and FTs’ 
MCK score. Candidates in Chinese Taipei who addressed more of the eight topics 
in these courses were more likely to have higher levels of MCK. However, there is 
no positive effect for the number of mathematics education courses required by the 
institution. For MPCK, there are no significant associations between the dependent 
variable and two independent variables.

Paralleling our analysis of the content of mathematics content courses, we exam-
ined which topics addressed in mathematics education courses were most impor-
tant. In the TEDS-M study, the eight mathematics education topics can be 
conceptually grouped into two categories: instruction and foundations. Instruction 
includes five topics: mathematics instruction; developing lesson plans; observation, 
analysis and reflection; mathematics standards and curriculum; and affective issues 
in mathematics. Foundations include three topics: foundations of mathematics, con-
text of mathematics education, and development of mathematics ability and think-
ing. We counted the number of topics that candidates addressed in each category 
and used this as an independent variable for MCK and MPCK. All models included 
three control variables: previous mathematics achievement, parents’ education, and 
the number of mathematics education courses the institution required. Table  9.8 
reports the coefficients in four models for the three countries (the coefficients for the 
control variables are not reported).

Table 9.7 Estimated effects of number of topics addressed in mathematics education courses on 
MCK score

Previous 
achievement

Parent 
education

Number of  
math topics

Number of  
required courses

(candidate) (institution)

Chinese Taipei 0.32*** 0.01 0.06* −0.01
Singapore 0.27*** 0.01 −0.01 −0.04
United States 0.22*** 0.20*** −0.01 0.02

*p < .05; **p < .01; ***p < .001
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The results in Table 9.9 columns 2 and 3 show that the association of the number 
of topics addressed in foundations of mathematics with both MCK and MPCK is 
negative and statistically significant in Singapore. In other words, when the number 
of mathematics education courses required by the institution is the same, the candi-
date who chose to take more courses in foundations of mathematics had lower MCK 
and MPCK scores. On the other hand, the effect of the number of topics addressed 
in mathematics instruction is more consistent. There was a positive and statistically 
significant effect of the number of math instruction topics addressed in at least one 
country for both MCK and MPCK.

Since measures of the number of topics addressed cannot fully capture experi-
ences within mathematics education courses, we used OTL in mathematics educa-
tion courses to closely examine candidates’ experiences in these courses. The 
TEDS-M study reported seven scaled scores for OTL in mathematics methods:

• class participation
• class reading
• solving problems
• instructional practice
• instructional planning
• assessment uses
• assessment practice

We used the OTL variables as independent variables and put them into the model 
one at a time. The control variables for each model are: previous mathematics, par-
ents’ education, and the number of topics learned by the candidate. The dependent 
variable is MPCK. Table 9.10 reported the coefficient for each OTL variable in each 
country (the coefficients for the control variables are not reported).

Table 9.8 Estimated effects of number of topics addressed in mathematics education courses on 
MPCK score

Previous 
achievement

Parent 
education

Number of  
math topics

Number of  
required courses

(candidate) (institution)

Chinese Taipei 0.27*** −0.03 0.03 −0.05
Singapore 0.19*** 0.01 −0.01 −0.06
United States 0.21*** 0.13*** 0.03 −0.01

*p < .05; **p < .01; ***p < .001

Table 9.9 Estimated effects of content of mathematics education topics on MCK and MPCK 
scores

Foundation Instruction

MCK MPCK MCK MPCK
Chinese Taipei 2.25 −0.13 4.09* 2.29
Singapore −10.12* −9.79** 6.62* 6.30*
United States −2.20 −0.03 1.30 2.60

*p < .05; **p < .01; ***p < .001
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Chinese Taipei Singapore United States
Hypothesis Independent variable MCK MPCK MCK MPCK MCK MPCK
1A number of mathematics content courses F* F* I* F*/I* --- ---
1B Geometry * --- ---

discrete structure & logic * --- ---
continuity & functions * --- *
probability & statistics * --- ---

2A number of topics addressed in mathematics methods courses F* --- --- --- --- ---
Foundation --- --- --- --- --- ---
Instruction * --- * * --- ---

2B class participation * --- ---
class reading * --- ---
solving problems * --- ---
instructional practice * --- ---
instructional planning * --- ---
assessment uses --- ---
assessment practice * --- ---

Table 9.11 Summary of the statistically significant positive relationships of teacher preparation 
components to teacher knowledge

The results in Table 9.10 show that the coefficients for class participation, class 
reading, instructional practice, instructional planning and assessment practice are 
positive and statistically significant in Chinese Taipei, which indicates that candi-
dates who have more opportunities to engage in these activities in math methods 
courses are more likely to have higher MPCK scores even if they have studied the 
same number of topics in mathematics education courses. The coefficient for solv-
ing problems is also positive and statistically significant in Chinese Taipei, but in the 
United States, the coefficient for this variable is negative and statistically signifi-
cant. Chinese Taipei is the only country where candidates’ experiences in mathe-
matics methods classes (OTL) were positively associated with MPCK; we did not 
find the same effects in other countries.

 Summary of Main Findings

This study used data from TEDS-M to explore associations between primary FTs’ 
knowledge and their OTL in teacher preparation in Chinese Taipei, Singapore, and 
the United States. Previous research has found that primary teachers’ knowledge is 
associated with student learning in mathematics (Hill et  al., 2005; Jacob et  al., 
2009). But there is little understanding in the research literature of how primary 
candidates acquire MCK and MPCK in different countries. In this study, we hypoth-
esized that a number of aspects of teacher education might be relevant to the acqui-
sition of MCK and MPCK, such as the number and content of university-level 
mathematics content courses, exposure to topics in mathematics methods courses 
and opportunities to learn in coursework. In Table 9.11, we present a summary of 
the statistically significantly positive effects of these independent variables on MCK 
and/or MPCK. Hypotheses 1A, 1B, 2A, 2B are supported in at least one country in 
Table 9.11.
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Table 9.11 indicates that there are more significantly positive relationships 
between preparation components and candidates’ knowledge in some countries than 
in other countries.2 For example, in Chinese Taipei, the relationships between prep-
aration components and candidates’ knowledge are very persistent, while in the 
United States, there is only one significantly positive relationship between prepara-
tion components and candidates’ knowledge.

One possible explanation for these differences between countries is related to 
selection effects associated with entering teacher education programs. In some 
countries, such as Chinese Taipei, preparation programs are very selective, which 
means that candidates’ MCK and MPCK levels are uniformly high and less variable 
before they begin teacher education. In countries like the United States, though, 
programs are less selective, so candidates’ MCK and MPCK levels can vary to a 
large degree before they begin teacher education. While we included control vari-
ables in our models that could account for some of these differences, there may be 
other factors connecting program selectivity with candidates’ incoming capacity for 
learning that are not accounted for, which may make various teacher preparation 
components seem to be ineffective in some countries, where effects are confounded 
with program selectivity. Another possibility is that the reliability of the MCK and 
MPCK measures is higher in high-performance countries than in other countries, 
which could make it easier to observe a significant effect (Table 9.12).

 Discussion

Based on prior research (Goldhaber & Brewer, 1997; Monk & King, 1994), we 
expected that the number and content of the university-level mathematics content 
courses taken by primary FTs would influence their level of knowledge, especially 
their MCK. We found that the number of mathematics content courses taken does 
have an effect on candidates’ levels of MCK and MPCK in Chinese Taipei and 
Singapore. With regard to the content of mathematics courses, taking more courses 

2 In order to exclude the possibility that this may be related to the variance of MCK/MPCK in these 
countries, we have checked the relationships between the variance (standard deviation) of MCK/
MPCK and the number of significant associations between teacher preparation components and 
MCK/MPCK. We found that there is no relationship between them. Table 9.12 lists the result.

Table 9.12 Standard deviations of MCK and MPCK and the number of significantly positive 
relationships between teacher preparation components and knowledge for five countries

Country
MCK standard 
deviation

MPCK standard 
deviation

The number of 
relationships

Chinese Taipei 84.23 68.39 16
Singapore 72.39 73.32 14
United States 70.01 67.60 1

9 How Primary Future Teachers’ Knowledge Is Shaped by Teacher Preparation



276

in discrete structure and logic had an effect on MCK in Chinese Taipei, and taking 
more courses in continuity and functions had an effect on MCK in Chinese Taipei 
and the United States (See Table 9.11 for a summary of the statistically significantly 
positive effects of the independent variables on MCK and/or MPCK in 
the three countries.)

Our study found that in mathematics methods courses, primary candidates’ 
exposure to topics related to instruction (such as developing lesson plans) was asso-
ciated with MCK in Chinese Taipei and MPCK in Singapore. At the same time, the 
number of topics encountered in mathematics methods courses was only associated 
with MCK in Chinese Taipei and was not associated with MPCK in any country. 
Further, the number of opportunities to learn about several topics in mathematics 
methods courses were related to MPCK in Chinese Taipei.

For U.S. candidates, only the number of mathematics content courses in continu-
ity and function was associated with their MCK. Other proposed relationships – 
hypotheses that were supported for Chinese Taipei and Singapore – were not evident 
in the U.S. sample. One possible cause is the effects of the control variables. In 
particular, with regard to the effect of previous mathematics achievement, there is a 
statistically significant association between prior mathematics achievement and 
FTs’ MCK and MPCK across the three countries. It is not surprising that candi-
dates’ mathematics achievement before they begin teacher education influences 
their development of MCK and MPCK while they are in teacher preparation. This 
study provides strong evidence for this association.

The research presented in this chapter research can inform theory regarding 
opportunity to learn in teacher preparation and suggests that mathematics content 
and methods courses can influence primary FTs’ professional knowledge. Our find-
ings suggest that the content of mathematics courses taken has a stronger effect on 
candidates’ MCK than the number of math courses taken. In addition, our results 
indicate that candidates’ opportunity to learn topics related to mathematics instruc-
tion was associated with both MCK and MPCK. By helping to discern how prepara-
tion experiences can shape teachers’ knowledge, the findings presented in this 
chapter can inform theory as well as future research regarding ways to structure and 
improve primary mathematics teacher preparation.
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Chapter 10
Opportunities to Learn Mathematics 
Pedagogy and Connect Classroom Learning 
to Practice: A Study of Future Teachers 
in the United States and Singapore

Traci Shizu Kutaka, Wendy M. Smith , and Lorraine M. Males

Abstract In this study, we conducted secondary analyses using the TEDS-M data-
base to explore future mathematics specialists teachers’ opportunities to learn (OTL) 
how to teach mathematics. We applied latent class analysis techniques to differenti-
ate among groups of prospective mathematics specialists with potentially different 
OTL mathematics pedagogy within the United States and Singapore. Within the 
United States, three subgroups were identified: (a) Comprehensive OTL, (b) Limited 
OTL, and (c) OTL Mathematics Pedagogy. Within Singapore, four subgroups were 
identified: (a) Comprehensive OTL, (b) Limited Opportunities to Connect Classroom 
Learning with Practice, (c) OTL Mathematics Pedagogy, and (d) Basic OTL. 
Understanding the opportunities different prospective teachers had to learn from 
and their experiences with different components of instructional practice in univer-
sity and practicum settings has implications for teacher preparation programs.

 Introduction

Around the world, well-intentioned people disagree about how primary teachers 
should be prepared to teach mathematics effectively. Whereas the United Kingdom 
seems to be moving from university-based to school-based teacher preparation, 
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other countries, like the Philippines, have recently increased university-based 
requirements for teacher preparation. In the United States, some alternative teacher- 
preparation programs minimize preparation and believe teachers can learn what 
they need to know by teaching (e.g., Teach for America). Research suggests teacher 
preparation matters in two ways. First, preparation can enhance the initial effective-
ness of novice teachers who graduate from university-based undergraduate pro-
grams, particularly in comparison to teachers who come from alternative certification 
programs (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2006; 2007; 2009; 
Darling-Hammond, Chung, & Frelow, 2002; Darling-Hammond, Holtzman, Gatlin, 
& Heilig, 2005). Second, preparation reduces the well-documented attrition that 
occurs within the first five years of teaching (Henke, Chen, & Geis, 2000; National 
Commission on Teaching and America’s Future, 1996), increasing the likelihood of 
remaining in the profession long enough to become a more skilled professional—
particularly after the third year (Boyd, Lankford, Loeb, Rockoff, & Wyckoff, 2007; 
Clotfelter, Ladd, & Vigdor, 2007).

Documenting the types and quality of opportunities prospective teachers have to 
learn on the path to certification gives researchers the chance to study the extent to 
which programmatic visions of the knowledge and skills prospective teachers need 
to master classroom tasks are realized. Additionally, if the goal is to develop teach-
ers who are prepared to address the complexities inherent within the tasks of teach-
ing mathematics as well as increase the likelihood of retaining them, we need to 
determine which coursework and field experiences are central to cultivating pro-
spective teachers’ professional knowledge and skills for teaching mathematics. 
Some countries prepare mathematics teachers at all levels as mathematics special-
ists; others prepare mostly primary generalists and secondary specialists. In the 
United States, mathematics specialists have become more in demand in the past 
decade as states have created primary mathematics specialist licensure (Association 
of Mathematics Teacher Educators [AMTE], 2013). Although what is essential for 
teachers to learn and the optimal timing of these learning experiences is debatable, 
there is consensus regarding the importance of opportunities to learn the founda-
tions of mathematics pedagogy and instructional practice as well as to connect 
classroom learning to instructional practice. Indeed, prospective teachers with dif-
ferential learning opportunities exit preparation programs with disparate levels of 
knowledge and skills, which has enormous implications for student learning and 
achievement. Thus, in this study, we identify subgroups of future primary mathe-
matics specialists teachers  characterized by specific patterns of opportunities to 
learn mathematics pedagogy.

 The Teacher Education and Development Study 
in Mathematics (TEDS-M)

The data for this study come from the Teacher Education and Development Study in 
Mathematics (TEDS-M), an international comparative study of the preparation of 
primary and lower-secondary mathematics teachers. Data were collected from 
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institutions, teacher educators, and future teachers from 17 developed and develop-
ing countries. The conceptual framework, design, and methodology of this study are 
thoroughly documented in various other reports and can be found online: https://
www.ilsa-gateway.org/studies/factsheets/64.

 Theoretical Framework

We frame this study with both theories of cultural contexts and theories connecting 
child development to the psychology of caregivers. Super and Harkness’ (1986) 
developmental niche theory describes how cultural contexts shape child learning and 
development. The niche is composed of three subsystems: (a) the physical and social 
settings in which the child lives, (b) culturally regulated customs of child care and 
child rearing, and (c) the psychology of the caretakers and educators. For the purposes 
of this study, the latter subsystem, the psychology of the caregivers and educators, 
may prove to be instructive. Super and Harkness theorize the psychology of the care-
giver organizes child care strategies (pp. 556–557), while recognizing the influence of 
constraints within the physical environment, customs of child care, and the demands 
of caregiver activities. We extend this logic to teacher preparation: We believe the 
psychology of future teachers—composed of beliefs about mathematics teaching and 
learning as well as professional bodies of knowledge germane to the tasks of teach-
ing—serve as organizational influences that are related to future classroom practices.

Goodnow (2010) proposes four ways of specifying cultural contexts for empiri-
cal study: (a) multiplicity and context, (b) ideologies, values, and norms, (c) prac-
tices, activities, and routines, and (d) paths, routes, and opportunities. These 
approaches are not mutually exclusive of each other, but “paths, routes, and oppor-
tunities” (p. 10) are the lenses through which we study the intended and achieved 
outcomes of teacher preparation programs. “Paths,” in Goodnow’s view, refer to the 
stages or steps individuals are expected to follow as they move through social insti-
tutions. The concept of “paths/pathways” gives rise to questions regarding expected 
timetables (Neugarten, 1979), including the way one step is related to another, the 
skills needed for each step, and the flexibility afforded to those in need of alternative 
routes. Certainly, variability in path “access” and “availability,” or opportunities to 
learn, may in part account for heterogeneity in outcomes (Goodnow, 2005) within 
teacher preparation programs and is the focus of the current study.

Thus, taken together, we consider multiple influences on outcomes, including 
academic achievement. Teachers’ knowledge and beliefs about mathematics teach-
ing and learning frame their future classroom practices. Understanding teachers’ 
paths (opportunities to learn) in turn frame the development of their knowledge and 
beliefs, within the cultural contexts of their teacher preparation programs.
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 Review of Relevant Literature

 Professional Knowledge for Teaching

Understanding the knowledge used in teaching can help stakeholders in mathemat-
ics education to develop a sense of what it means to teach mathematics well and 
how to prepare prospective teachers. Teachers need to cultivate knowledge, compe-
tencies, and skills that will help them analyze and understand student thinking to 
provide the appropriate support and strategies for learning mathematics (Ball, 
Thames, & Phelps, 2008; Dalgarno & Colgan, 2007; Hill & Lubienski, 2007; Kelly, 
Luke, & Green, 2008). In fact, mathematics content knowledge is necessary but not 
sufficient – teachers need subject-matter expertise (Schwab, 1978; Warfield, 2001), 
as well as mathematics pedagogical content knowledge for teaching (Ball, 1993; 
Ball et al., 2008; Lampert, 1990, 2001). Mathematical pedagogical content knowl-
edge is a body of knowledge composed of what Ma (1999) refers to as “profound” 
mathematical knowledge that teachers draw upon as they calibrate what are appro-
priate learning goals, anticipate and analyze student misconceptions and errors, 
select and present representations of central mathematical concepts, and respond to 
student thinking and reasoning (Thames & Ball, 2010). Future teachers with a 
strong background in mathematics have a solid foundation to develop mathematics 
pedagogical content knowledge for teaching – if they are provided an appropriate 
set of preparation experiences.

 Mathematics Specialists

Primary mathematics specialists are “teachers, teacher leaders, or coaches who are 
responsible for supporting effective mathematics instruction and student learning at 
the classroom, school, district, or state levels” (AMTE, 2013, p.  1). Within the 
TEDS-M database, primary mathematics specialists are prepared to teach one or 
two subjects (including mathematics), whereas their primary generalist peers are 
prepared to teach three or more subjects (Tatto et al., 2012). In general, mathematics 
specialists are expected to take more mathematics content courses on the path to 
certification. In seeking to study the influence of teachers’ opportunities to learn on 
their mathematical pedagogical content knowledge, this study focuses on a group of 
teachers who, by virtue of their pathway to certification, had sufficient opportunities 
to learn mathematics. Thus, this paper focuses on primary mathematics specialists.

It is the norm in many East Asian countries that all students learn mathematics 
from mathematics specialists starting in first grade (e.g., China and Japan). 
Internationally, countries such as Singapore have a history of producing effective 
teachers and specialists, as evidenced by student performance on the Trends in 
International Mathematics and Science Study (TIMSS) of the International 
Association for the Evaluation of Educational Achievement (IEA) (Mullis, Martin, 
Foy, & Arora, 2012). Primary mathematics specialists are able to focus their  energies 
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on developing and teaching mathematics lessons, whereas primary generalists must 
also prepare many other lessons, including language arts, science, and social studies.

Within the United States, multiple stakeholders in mathematics education have 
released federal reports making the case that in-service primary teachers are not 
adequately prepared to meet the demands for increasing student achievement in 
mathematics (National Council of Teachers of Mathematics, 2000; National 
Mathematics Advisory Panel, 2008), given the poor mathematical preparation 
endemic to early childhood and primary educators (Graven, 2004; Grootenboer & 
Zevenbergen, 2008; Ginsburg, Lee, & Boyd, 2008; Hodgen & Askew, 2007; Lerman, 
2012). Primary mathematics specialists have been identified as a promising strategy 
for improving early childhood mathematics teaching and learning (Reys & Fennell, 
2003). Indeed, the AMTE (2013) and the Conference Board of Mathematical 
Sciences (CBMS, 2012) have each published position statements advocating for the 
establishment of a primary specialist license in the United States. There is growing 
evidence of the effectiveness of primary mathematics specialists for increasing stu-
dent mathematics achievement from the Vermont Mathematics Initiative (Meyers & 
Harris, 2008) as well as the states of Ohio and Virginia (Brosnan & Erchick, 2010; 
Campbell & Malkus, 2011; Campbell, Ellington, Haver, & Inge, 2013).

Theory, empirical studies, and wisdom of practice suggest mathematics content 
knowledge is necessary but not sufficient for high-quality mathematics teaching. 
Thus, mathematics specialists need more than just knowledge of mathematics con-
tent. Recently, Campbell et  al. (2013) released a handbook focusing on primary 
mathematics specialists, outlining requisite knowledge-based skills and abilities 
that included mathematical content knowledge and mathematical pedagogical con-
tent knowledge described earlier in this section. Campbell et al. (2013) also sug-
gested specialists need: coaching strategies and skills, knowledge of mathematics 
curricula, knowledge of special populations of students, knowledge of assessment, 
and knowledge of research and resources. The foundation for the development of 
the aforementioned skills can be laid down in preparation programs, but must be 
animated through field experiences. It may be the case that prospective mathematics 
specialists benefit from field experiences in school/classroom settings where they 
are given opportunities to observe and participate in the daily work of teaching, as 
well as encounter and attempt to make sense of student thinking and reasoning.

 Opportunities to Learn

The concept of opportunity to learn (OTL) was introduced by the IEA (e.g., the First 
and Second International Mathematics Studies) in the 1960s and was considered to 
be a technical concept conceived as a means to ensure the validity of cross-national 
comparisons in mathematics achievement. OTL captured curricular differences as 
“…a measure of whether or not students have had an opportunity to study a particu-
lar topic or learn to solve a particular type of problem presented by the test” (Husen 
as cited in Burnstein, 1993, p. xxxiii).

10 Opportunities to Learn Mathematics Pedagogy and Connect Classroom Learning…



284

McDonnell (1995) outlines the evolution of the use of the OTL as a technical con-
cept for research and its utility in policy debates in the 1990s. OTL entered policy 
debates under the premise that schools needed to provide students with “adequate” 
opportunities to learn before schools could be held accountable for meeting achieve-
ment standards. As a research tool, OTL was envisioned as an indicator that could help 
unpack the proverbial “black box” connecting school inputs and student outcomes.

Ingvarson, Beavis, & Kleinhenz (2007) approached the question of OTL in the 
context of teacher education in their attempt to identify the characteristics of effec-
tive teacher-preparation programs, as reported by novice teachers who had just com-
pleted their first year of teaching. The purpose of this study was to provide guidance 
for policymakers regarding the standards that might be appropriate for assessing and 
accrediting teacher education programs to ensure graduates were well prepared to 
meet the demands of classroom teaching. Ingvarson and colleagues postulated there 
were three main factors associated with novice teachers’ preparedness to teach: per-
sonal background characteristics, pre-service courses and coursework (OTL), and 
the characteristics of the school where graduates had their first teaching position.

To assess the extent to which novice teachers felt prepared to teach, Ingvarson 
et al. (2007) administered the Teacher Preparedness Survey to teachers beginning in 
their second year of teaching. In this study, OTL refers to both the form and sub-
stance of learning experiences in teacher preparation programs in four domains 
(pp. 357–359): (a) “opportunity to learn content knowledge and how it is taught,” (b) 
“opportunity to learn the practice of teaching,” (c) “opportunity to learn via feedback 
from university staff,” and (d) “opportunity to learn assessment and planning.” The 
OTL variables were regressed onto the Australian Council for Educational Research 
Teacher Preparedness Inventory (TPI). The TPI is composed of three factors (and 
their subscales): professional knowledge (professional knowledge and how to teach 
it and professional knowledge about students and how they learn); professional prac-
tice (professional practice to do with curriculum, professional practice to do with 
classroom management, and professional practice to do with assessment); and pro-
fessional engagement (reflection on teaching and work with parents and others).

Significant relationships were found between professional knowledge and the 
OTL domains of content knowledge and how it is taught and assessment and plan-
ning. The OTL via feedback from university staff was also significant, but these 
coefficients were smaller. When the outcome was defined as perceptions of pre-
paredness to teach, the OTL domain the practice of teaching had a strong effect, 
whereas the OTL domains content knowledge and how it is taught and assessment 
and planning had moderate effects. OTL variables, as defined in this study, had the 
strongest and most consistent effects on TPI scores and teacher perceptions of their 
preparedness to teach in their first year. The effects of this group of OTL variables 
were independent of the background characteristics of the teacher, the teacher’s 
 in- school experiences during pre-service courses, and the school in which the 
teacher worked during his or her first year as a teacher. All of this suggests that bet-
ter understanding of OTL can allow us to make practical policy recommendations 
for improving teacher education practices. Additionally, OTL in areas that can be 
considered connecting theory to practice seem to be particularly important for pre-
dicting teacher professional knowledge.
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 Opportunity to Connect Classroom Learning to Practice

The definition and conceptual argument regarding how theory relates to and can be 
used in practice have been topics of debate with respect to teacher preparation—
notably, in the United States (e.g., Shulman, 1998), the United Kingdom (e.g., Carr, 
1992, 1995, 2003), the Netherlands (e.g., Korthagen & Kessels, 1999), and Asian 
countries (e.g., Deng, 2004). Resolving this debate is outside the scope of this study. 
We thus subscribe to its most basic definition as described by the TEDS-M frame-
work (Tatto et al., 2008): theory is a body of empirical findings that can be used to 
anchor prospective teachers’ interpretation of classroom events as they arise, make 
instructional decisions specific to the context of their classrooms, and assess and 
evaluate the outcomes of those decisions.

The importance of the connection between pedagogical theory and practice can 
be understood through the lens of situated cognition theory, which suggests profes-
sional knowledge, competencies, and skills are situated in and inseparable from the 
activities, context, and culture in which they are constructed (Brown, Collins, & 
Duguid, 1989). Situated cognition is connected to Goodnow’s (2010) paths, as 
teachers reflect upon their opportunities to learn within their cultural contexts. 
Learning to teach, therefore, is a process of enculturation: prospective teachers are 
apprenticed into particular practices and modes of thinking (Lortie, 1975) aligned 
with local cultural contexts (Goodnow). Field experiences are a context where 
future teachers have opportunities to cultivate sound professional judgment stem-
ming from “…a coherent, enlightened, integrated body of knowledge that will 
inform, and in turn be informed by, classroom practice” (Calderhead & Robson, 
1991, p. 1). Indeed, field experiences are a context in which prospective teachers’ 
mathematical pedagogical content knowledge for teaching can develop.

Pedagogical content knowledge is composed of two key components (Shulman, 
1986): (a) knowledge of student thinking, understanding, and difficulties with particu-
lar topic strands and concepts and (b) knowledge of strengths and weaknesses of par-
ticular strategies and representations for teaching these topics. Crespo (2000) focuses 
on the first strand of pedagogical content knowledge by examining how prospective 
Canadian teachers in the middle of their two-year preparation programs interpreted 
fourth-grade students’ mathematical thinking and reasoning through a mathematics 
letter exchange program. Early analysis of the letters and interviews suggested pro-
spective teachers were fixated on whether students generated the correct answers and 
were quick to make inferences about students’ mathematics abilities and dispositions 
toward learning. However, after four or five rounds of correspondence, prospective 
teachers began to focus less on answers and more on students’ mathematical thinking. 
Moreover, prospective teachers began to question and revise claims about students’ 
mathematics abilities and attitudes, more skillfully distinguishing between describing 
and making inferences about student thinking. Crespo suggests the latter finding 
emerged in light of prospective teachers being faced with contradictory data gathered 
from letter correspondence coupled with meeting their letter partners and spending 
time in their classrooms. This study highlights how acquiring access to students’ 
mathematical thinking and reasoning, in coursework and in the field, can alter how 
prospective teachers see, talk, listen, and act toward their students.
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Although the theory underlying pedagogical content knowledge seems intri-
cately connected with practice, in actuality, teachers do not always have the neces-
sary OTL or time to connect theory to practice. Allen and Wright (2014) followed 
and interviewed one group of prospective teachers regarding the factors that enabled 
or hindered their abilities to integrate classroom theory and practice during a three- 
week field experience in the first year of their teaching programs in Australia. The 
authors report three central themes from semi-structured follow-up interviews with 
11 teachers. First, prospective teachers valued both theoretical and practical compo-
nents of their graduate-level preparation programs—not privileging one at the 
expense of the other (contrary to other empirical studies that find practice being 
privileged over theory—e.g., Allen, 2009; Hartocollis, 2005). Second, teachers’ 
opportunities to connect classroom learning to practice varied as a function of the 
clarity of stakeholders’ roles and responsibilities. Third, prospective teachers sup-
ported the notion of linking university coursework assessment to field experience as 
a means of bridging the gap between theory (the university classroom) and practice 
(field experience). Together, these themes reflect prospective teachers’ recognition 
that their competence as educators is in part reliant upon the development of what 
Cochran-Smith and Lytle (1999) refer to as the knowledge-for-practice (i.e., formal 
knowledge generated by university-based scholars for teachers to use in order to 
improve practice) and knowledge-in-practice (i.e., knowledge that is embedded 
within classroom practice and teacher reflection on practice).

Imre and Akkoç (2012) examine the link between professional knowledge and 
field experiences more directly. Their case study closely examines the development 
of pedagogical content knowledge for number patterns in three prospective teachers 
(in the last year of their four-year programs) through a school field experience 
course in Turkey. The authors used prospective teachers’ lesson plans, videos of 
micro-teaching lessons, and follow-up interviews to examine the extent to which 
prospective teachers took student understanding and difficulties during micro- 
teaching. Analysis suggested observations in real classroom settings and discus-
sions of those observations with university faculty and peers were responsible for 
improvement of prospective teachers’ pedagogical content knowledge. The authors 
further postulate that observing students in classrooms helped prospective teachers 
identify students’ understanding of patterns, the difficulties students encounter, and 
specific strategies mentors use in real time. Thus, field placements are where 
 prospective teachers have the opportunity to encounter, attend, and respond to stu-
dent thinking, fertilizing the ground in which pedagogical content knowledge grows.

 Latent Class Analysis

The extent to which individually varying patterns of university- and field-based OTL 
exist and contribute to differential levels of professional knowledge associated with 
high-quality teaching is unclear. However, within the framework for linear models, 
we are not able to observe whether some groups of prospective teachers have 
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different patterns of OTL. Indeed, it may be the case that knowledge does not vary as 
a function of greater or fewer opportunities to learn—it may be that some patterns of 
OTL are more consequential to the development of knowledge than others. If this is 
the case, latent class analysis may leverage our ability to investigate this hypothesis.

Latent class analysis (LCA)1 is a type of latent variable mixture modeling—a 
flexible, person-centered analytic tool focused on similarities and differences among 
individuals—standing in contrast to statistical modeling that focuses on relations 
among variables (Berlin, Williams, & Parra, 2013; Muthén & Muthén, 1998). The 
goal of LCA is to identify homogeneous subgroups of individuals who possess a 
unique set of characteristics that differentiates them from other subgroups. Thus, 
within the LCA framework, subgroup membership is inferred from, not observed 
in, the data. This method empirically subdivides individuals and places them in 
groups that are characterized by sharing similar “domains” of OTL. Here we use 
domains to refer to related sets of opportunities to learn (cf. Ingersoll, Merrill, & 
May, 2014). Thus, the latent class analysis looked for distinct patterns of OTL 
shared by subgroups of prospective teachers within each country.

 Research Questions

Is there a latent subgroup structure that adequately represents the heterogeneity of 
opportunities to learn among mathematics specialists across the United States and 
Singapore? If so, what are the types and their corresponding prevalence?

Hypotheses: We expect to find more latent subgroups within the United States, 
where there are multiple pathways to certification that have extremely different 
OTL about connecting theory and classroom practice, than in Singapore, which 
has only one centralized institution that prepares teachers.

 Method

The data used for this study were part of the larger TEDS-M study, in which  
22,078 future teachers from 17 countries are represented. However, for the purpose 
of the current study, we focus on the sub-sample of future primary mathematics 
specialists from two countries with complete data: the United States and Singapore. 
We restricted our sample to future primary  mathematics specialists because in 
studying the associations among OTL mathematics pedagogy domains, we know 
mathematics pedagogy is in some sense dependent on mathematical content 

1 Readers interested in more information about Latent Class Analysis may explore the extensive 
materials available from The Methodology Center at Pennsylvania State University’s College of 
Health and Human Development: https://methodology.psu.edu/ra/lca
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knowledge: teachers do not typically have strong pedagogy related to mathematics 
content they do not understand deeply. By focusing on mathematics specialists, we 
hoped the sample would contain teachers with adequate mathematical content 
knowledge, enabling us to focus on the OTL associations. We chose to include 
Singapore in the present analysis for two reasons. First, we wanted to choose a 
country with high mathematics content knowledge scores for primary math special-
ists, in order to clarify the how OTL mathematics pedagogy relate to each other. As 
can be observed in Table 10.1, both countries have mathematical content knowledge 
and pedagogical knowledge scores that are above the international mean of 500; 
Table  10.1 illustrates country means and standard deviations (in parentheses). 
Second, Singapore has different qualifications for entry into the teaching profession 
and routes to certification than the United States. Although the models we specify to 
answer our research question are not intended to be used for direct comparison 
across countries, interpreting findings descriptively can fortify our discussion with 
respect to how different “paths” and “routes” made accessible through OTL are 
associated with different preparation program outcomes.

 Measures

 Opportunity to Learn Latent Class Analysis Variables

We selected three types of OTL factors to test the existence of latent subgroups. Two 
of these factors, opportunity to learn instructional practice and opportunity to con-
nect classroom learning to practice, had categorical response formats, whereas 
opportunity to learn mathematics instruction had a binary response format. The item 
responses for the variables that composed the opportunity to learn instructional 
practice and opportunity to connect classroom learning to practice factors were 
recoded to binary responses, consistent with Blömeke (2012). We acknowledge that 
this recoding results in the loss of variability. Yet, this recoding makes it possible to 
distinguish more clearly between OTL profiles.2 In the TEDS-M survey, “opportu-
nity  to learn mathematics pedagogy” is a categorical variable where the response 
options were coded as 1 (never), 2 (rarely), 3 (occasionally), and 4 (often). Such 
response options focus on frequency of OTL; but by capturing mainly frequency, it is 

2 Although a Latent Profile approach would allow for a greater number of responses, results of such 
analyses are not easily interpretable.

Table 10.1 Mean professional knowledge scores by primary mathematics specialists by country

Professional knowledge
United States Singapore
(n = 191) (n = 117)

Mathematical content knowledge 555 (7) 600 (8)
Pedagogical content knowledge for teaching 
mathematics

534 (7) 604 (7)
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assumed all opportunities are of equivalent quality. We focus our attention on whether 
prospective teachers report having had any one particular learning opportunity.

 Opportunity to Learn Mathematics Instruction

This factor is composed of five binary response items with answers 1 (did not study) 
or 2 (did study), which were included in the LCA. Future mathematics specialists 
were asked to indicate whether they studied a particular topic as part of their teacher 
preparation program, such as:

• Mathematics instruction (e.g., representation of a mathematical concept);
• Developing teaching plans (e.g., selection and sequencing of mathematics 

content);
• Observation, analysis, and reflection;
• Mathematics standards and curriculum; or
• Affective issues in mathematics (e.g., anxiety).

 Opportunity to Learn Instructional Practice

This factor was composed of six items that used a 4-point ordinal response format, 
coded as 1 (never), 2 (rarely), 3 (occasionally), and 4 (often). Since LCA is based 
on categorical data, the ratings were transformed into binary codes with answers 1 
(never/rarely) or 2 (occasionally/often). Future mathematics specialists were asked 
to indicate how frequently they engaged in activities such as:

• Explore how to apply mathematics to real-world problems;
• Explore mathematics as the source for real-world problems;
• Learn how to explore multiple solution strategies with pupils;
• Learn how to show why a mathematics procedure works;
• Make distinctions between procedural and conceptual knowledge when teaching 

mathematics concepts and operations to pupils; or
• Integrate mathematical ideas from across areas of mathematics.

 Opportunity to Connect Classroom Learning to Practice

This factor is composed of eight items that used a 4-point ordinal response format 
coded as 1 (never), 2 (rarely), 3 (occasionally), and 4 (often). Again, the ratings 
were transformed into binary codes with answers 1 (never/rarely) or 2 (occasion-
ally/often). Future mathematics specialists were asked to indicate how frequently 
they engaged in activities such as:

• Observe models of teaching strategies you were learning in your courses;
• Practice theories for teaching mathematics that you were learning in your 

courses;
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• Receive feedback about how well you had implemented teaching strategies you 
were learning about in your courses;

• Collect and analyze evidence about pupil learning as a result of your teaching 
methods;

• Develop strategies to reflect upon your professional knowledge;
• Demonstrate that you would apply the teaching methods you were learning in 

your courses;
• Complete assessment tasks that asked you to show how you were applying ideas 

you were learning in your course; or
• Test out findings from educational research about difficulties pupils have in 

learning.

For more information, refer to the technical report by Tatto (2013), which is also 
available on the TEDS-M website.

 Covariates

Based on the TEDS-M results more generally (Tatto, Rodriguez, Reckase, Rowley, 
& Lu, 2013), we included the following variables as covariates: gender, the number 
of books in home (as a proxy for socioeconomic status), and grades in high school 
(as a proxy for prior achievement). Given the TEDS-M results for countries, it is 
reasonable to expect all of these variables to interact significantly with OTL, and 
thus we controlled for these in our analyses. By restricting our sample to prospec-
tive mathematics specialists, we thus did not control for mathematical content 
knowledge, since as a group, specialists have higher content knowledge.

 Analytical Method

We used latent class analysis (Hagenaars & McCutcheon, 2002; Lanza, Dziak, 
Huang, Wagner, & Collins, 2015; McCutcheon, 1987) in Mplus (Version 6.11, 
Muthèn and Muthèn 1998–2012) to identify subgroups of future teachers with spe-
cific patterns of opportunities to learn mathematics education pedagogy. This is a 
person-centered analytic approach focused on similarities and differences among 
individuals instead of relations among variables (Muthén & Muthén, 1998–2012). 
This particular person-centered approach has been used before on the TEDS-M 
database in Blömeke (2012; also Blömeke, Hsieh, Kaiser, & Schmidt, 2014). Not all 
items were used, as some items did not demonstrate any variability of OTL within 
subgroups. This is an acceptable practice within the LCA framework (e.g., Kim, 
Wang, Orozco-Lapray, Shen, & Murtuza, 2013; Weaver & Kim, 2008).

To determine the optimal number of latent subgroups, one would ideally apply a 
bootstrap as a dimension of fit criteria to consider. However, this option was not 
available to us if we wanted to include the TEDS-M sampling weights. We deter-
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mined that it was important to include the sampling weights because they enable us 
to make observations about the latent subgroup composition that are generalizable 
to prospective mathematics specialists who are prepared within the same country.

For each country, we specified alternative models ranging from two to five sub-
groups. Model assessment and selection were also based on a variety of other fit 
criteria, including the log likelihood, Akaike’s Information Criterion (AIC; Akaike, 
1974), Bayesian Information Criterion (BIC; Schwarz, 1978), sample-size adjusted 
BIC (SSBIC; Sclove, 1987), and entropy. Smaller AIC, BIC, and SSBIC values 
indicate better fit; BIC in particular is an optimal indicator for LCA classes.3 The 
entropy statistic ranges from 0 to 1 and is a standardized summary measure of the 
classification accuracy of placing respondents into subgroups based on their model- 
based posterior probabilities. Thus, entropy values closer to 1 reflect better classifi-
cation of individuals (Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993). Using 
a combination of model fit indices strengthens the reliability of latent subgroup 
enumeration (Muthén, 2003). Lanza, Collins, Lemmon, and Schafer (2007) also 
suggest model interpretability should be considered: each latent subgroup should be 
distinguishable from others based on item-response probabilities; latent subgroups 
should not be trivial in size (i.e., with a near-zero probability of membership); and 
it should be possible to assign a meaningful label to each subgroup.

 Results

 Latent Class Analysis

Tables 10.4 and 10.5 in the Appendix show the distribution of all variables used to 
select the base model for each country.

 Baseline Model Selection

For all selected optimal solutions derived from latent class analyses, the AIC and 
BIC were the lowest, or the decline between two sequential models leveled off. The 
optimal solutions for each country are presented in Tables 10.2 and 10.3. In the 
discussion that follows, the number of subgroup profiles are described and labeled.

Within each country, a latent subgroup profile was labeled according to how it 
compares with other subgroup profiles on the three dimensions of OTL  (mathematical 
instruction, instructional practice, and connecting classroom learning to practice). 
Figures 10.1, 10.2, 10.3, 10.4, 10.5 and 10.6 depict future mathematics specialists’ 

3 The Latent variable mixture modeling discussion group on the Mplus webpage devotes consider-
able discussion to this topic, and responses favoring BIC include some by Muthén, author of 
Mplus. For more information, see http://www.statmodel.com/discussion/messages/13/13.
html?1462022592
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opportunities to learn conditional on latent subgroup membership. Please note the 
items are discrete; the lines connecting one OTL variable to another are present to 
more easily see the differences between subgroups. We applied a probability of .75 to 
determine whether subgroups had OTL each item; groups reporting an average OTL 

Table 10.2 Goodness of fit criteria for various latent class models for United States (n = 191)

Number of classes # of parameters Log likelihood AIC BIC SSBIC Entropy

1 25 −1834 3715 3799 3720 –
2 42 −1136 2356 2481 2348 .878
3 65 −1076 2282 2475 2270 .901
4 82 −1045 2254 2498 2239 .916
5 111 −1021 2265 2596 2245 .893

Note: Dashes indicate criterion was not calculated for the model. Bold indicates the selected 
model.

Table 10.3 Goodness of fit criteria for various latent class models for Singapore (n = 117)

Number of classes # of parameters Log likelihood AIC BIC SSBIC Entropy

1 25 −1583 3215 3284 3205 –
2 42 −1074 2233 2349 2216 .852
3 62 −1034 2192 2363 2167 .904
4 88 −1004 2184 2427 2149 .930
5 102 −981 2167 2449 2126 .907

Note: Dashes indicate criterion was not calculated for the model. Bold indicates the selected model

Fig. 10.1 Opportunity to learn mathematics pedagogy in the United States
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Fig. 10.2 Opportunity to learn instructional practice in the United States

Fig. 10.3 Opportunity to connect classroom learning to instructional practice in the United States
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Fig. 10.4 Opportunity to learn mathematics pedagogy in Singapore

Fig. 10.5 Opportunity to learn instructional practice in Singapore
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of more than .75 were considered to have had sufficient opportunities to learn that 
particular domain. Tables 10.6 and 10.7 (in the Appendix) depict the parameter esti-
mates for the optimal latent subgroup solution for each country. We interpret the 
model parameters as the probability of any subgroup of prospective mathematics 
specialists reporting having had the OTL. For example, in the first row for Table 10.6, 
there is a 91% and 100% probability that prospective mathematics specialists in the 
Mathematics Pedagogy and Comprehensive OTL subgroups, respectively, report hav-
ing had OTL mathematics instruction. However, there is only 13% probability that 
prospective specialists in the Limited OTL would report having had the same OTL.

In the United States, three latent OTL subgroup profiles emerged. The first latent 
subgroup comprises 6% of prospective U.S. teachers and is depicted by blue lines 
in Figs. 10.1, 10.2 and 10.3. Members of this group, which we refer to as Limited 
OTL, report few opportunities to learn any of the mathematical pedagogical skills of 
interest. Whereas 6% may seem small, it represents a non-trivial proportion of a 
representative sample of pre-service teachers. Indeed, approximately one out of 20 
teachers report limited OTL across all three domains. The second subgroup com-
prises 42% of prospective teachers and is depicted by yellow lines. We characterize 
this group as having OTL mathematics pedagogy. This group had lower probabili-
ties of reporting OTL instructional practice. This group also had lower probabilities 
of reporting having opportunities to connect classroom learning to instructional 

Fig. 10.6 Opportunity to connect classroom learning to instructional practice in Singapore
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practice, with the exception of collecting and analyzing evidence of pupil learning 
as a result of their teaching methods; to demonstrate that they could apply the teach-
ing methods they were learning about in coursework; and to receive feedback about 
how well they had implemented teaching strategies they were learning about in 
coursework. The third subgroup comprises 52% of prospective teachers. Depicted 
by black lines, this subgroup is characterized as having comprehensive OTL, 
although members report lower probabilities of both covering affective issues in 
mathematics and testing out findings from educational research about difficulties 
pupils have in learning in their coursework.

Figures 10.1, 10.2 and 10.3 are radar graphs that depict the profiles of OTL 
among the three subgroups. The vertices of each figure represent items within one 
of the OTL domains. The lines within the shape depict probability levels for each 
item. For example, at the top of Fig. 10.1, the probability of subgroups reporting the 
OTL mathematics pedagogy is nearly 100% for Subgroups 2 (OTL Mathematics 
Pedagogy) and 3 (Comprehensive OTL), but 12% for Subgroup 1 (Limited OTL).

In Singapore, four latent OTL subgroup profiles emerged. The first latent sub-
group comprises 23% of prospective mathematics specialists and is depicted by 
orange lines in Figs. 10.4, 10.5 and 10.6. This subgroup can be characterized as 
having limited opportunities to connect classroom learning to instructional prac-
tice, although they do report being expected to demonstrate their ability to apply 
teaching methods they were learning about in coursework. Additionally, these pro-
spective specialists had relatively low probabilities of reporting opportunities to 
study affective issues in mathematics and opportunities to learn how to show why a 
procedure works. The second subgroup comprises 18% of prospective mathematics 
specialists and is depicted by yellow lines. This subgroup was characterized as hav-
ing OTL mathematics pedagogy but limited OTL instructional practice and OTL 
connecting classroom learning to instructional practice. The third subgroup com-
prises 13% of prospective specialists and is depicted by green lines. This subgroup 
was characterized as having basic OTL. Prospective teachers in this group reported 
experiencing what could be considered a fundamental set of opportunities to learn 
to teach mathematics from each of the three OTL domains, which included OTL 
math instruction exploring how to apply mathematics to real-world problems and 
seeing math as a source for real-world problems. They also reported some opportu-
nities to connect theory to instructional practice, including the opportunity to prac-
tice theories for teaching mathematics they were learning about in coursework, 
demonstrate that they could apply the teaching methods they were learning about in 
coursework, receive feedback about how well they implemented teaching strategies 
they were learning about in coursework, and develop reflection strategies. The 
fourth subgroup comprises 46% of prospective specialists and is depicted by black 
lines. This subgroup is characterized as having comprehensive OTL, although they 
did not report covering affective issues in mathematics, completing assessments 
tasks that required them to apply ideas they were learning about through course-
work, or testing out findings from educational research about difficulties pupils 
have in learning. Figures 10.4, 10.5 and 10.6 are radar graphs that depict the profiles 
of OTL between the four subgroups.
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 Discussion

The goal of this study was to identify distinct profiles of OTL within the United 
States and Singapore. Since the TEDS-M data encompasses weighted samples, the 
prospective math specialists included in this analysis can be considered to be repre-
sentative of mathematics specialists in their countries. Multiple profiles of OTL 
were found in each country, even after controlling for the effect of gender and prox-
ies for socioeconomic status and prior achievement. These subgroups can be labeled 
with respect to OTL mathematics instruction, instructional practice, and opportuni-
ties to connect classroom learning to practice. In the United States, three subgroups 
existed: Comprehensive OTL (52%), OTL Mathematics Pedagogy (42%), and 
Limited OTL (6%). These groups did not overlap much in their relative OTL the dif-
ferent domains of mathematics pedagogy. Relative to the Comprehensive OTL sub-
group, the OTL Mathematics Pedagogy subgroup has slightly fewer OTL 
mathematics pedagogy (specifically, affective issues and developing teaching 
plans), but distinctly fewer OTL connect classroom learning to practice and OTL 
instructional practice.

In Singapore, on the other hand, four subgroups existed. Unlike those in the 
United States, these subgroups varied in which one reported the fewest opportuni-
ties to learn the different mathematical pedagogical domains. The Singapore sub-
groups are Comprehensive OTL (46%), Limited Opportunities to Connect Classroom 
Learning to Instructional Practice (23%), Basic OTL (13%), and Limited OTL 
(18%). The Basic OTL group presents an interesting pattern, with respondents 
reporting adequate opportunities to learn foundational pedagogy and develop the 
skills to participate in the most “basic” parts of the teaching cycle, such as opportu-
nities to demonstrate their ability to enact teaching practices that are grounded in 
classroom theory, receive feedback on the quality of their implementation of teach-
ing methods, and develop the capacity to reflect upon how these experiences have 
shifted their professional knowledge and understanding of teaching and learning.

Our hypothesis that the United States, with more pathways (Goodnow, 2010) to 
certification, would have more subgroups, was not confirmed by the data. Prospective 
teachers in the United States have numerous options for becoming teachers and 
specialists, including public and private institutions, consecutive and concurrent 
routes, and widely varying course and field requirements. Teachers in the United 
States are prepared at more than 1300 institutions in all 50 states, and although the 
United States has moved toward more centralized certification policies at the state 
level (Ingvarson et  al., 2013), there is still great variation. We had thought that, 
given the singular teacher preparation institution in Singapore, prospective teachers 
there would be more uniform in their reported OTL. However, within the National 
Institute of Education in Singapore, there are 11 different teacher preparation pro-
grams. Primary math specialists can be trained via either a concurrent or consecu-
tive program. The TEDS-M Encyclopedia (Schwille, Ingvarson, & 
Holdgreve-Resendez, 2013) reports great variation in the qualifications of supervi-
sors in Singapore. There is also extensive variation in the required courses and dura-
tions of the different types of programs. Future research could look more closely at 
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the Singapore teacher variation in OTL and explore connections to specific prepara-
tion programs with the National Institute of Education. Although the purpose of this 
study is not to statistically compare differential OTL between future mathematics 
specialists in the United States and Singapore, our findings may be instructive for 
program and thought leaders concerned with the extent to which programmatic 
visions are being achieved.

Differential OTL naturally raises issues related to teaching quality and equity. 
Certainly, differential preparation of teachers has significant implications for stu-
dent access to highly qualified teachers. Within the United States, disadvantaged 
children living in urban or poor rural areas are disproportionally taught by teachers 
with lower qualifications: they have less teaching experience, fewer certifications 
and advanced degrees, and come from preparation institutions with lower levels of 
selectivity (e.g., Darling-Hammond, 2000; Jerald, 2002). International comparisons 
of programs (including descriptive, exploratory studies such as this one) enable 
reflection on other possibilities for a given country. What does Singapore—whose 
specialist programs contain greater variability than that of the United States and 
whose students have historically and presently done well in assessments such as the 
PISA and TIMSS—do to ensure equitable allocation of highly qualified teachers?

 Opportunities to Connect Classroom Learning to Practice

In both the United States and Singapore, approximately half of future mathematics 
specialists report comprehensive OTL (52% and 46%, respectively). However, the 
other half of future specialists in both countries report limited opportunities to con-
nect classroom learning to instructional practice. We wonder about what happens in 
the classrooms of novice teachers who have strong mathematical content knowl-
edge, but report limited opportunities to observe other teachers in action, to experi-
ment with and explore teaching methods in ways that serve to organize their 
professional bodies of knowledge and skills, or to encounter student thinking and 
reasoning from one moment to the next. This is particularly consequential for the 
United States, which is shifting toward developing mathematics specialists: Are 
future mathematics specialists really given the best possible professional start 
toward developing the skills to enact the tasks of teaching (Thames & Ball, 2010), 
including those outlined by Campbell et al. (2013), if nearly half of them report not 
having opportunities to translate classroom learning to instructional practice?

If we subscribe to situated learning theory (Brown et al., 1989) and recognize the 
power of learning in and from practice (Cochran-Smith & Lytle, 1999; Darling- 
Hammond, 1998; 2009), then, in order to address limited opportunity to translate 
theory to practice, preparatory institutions may need to re-examine specific intended 
and achieved programmatic inputs as they relate to bridging this gap. Alternatively, 
it may be the case that some prospective specialists have found it difficult to connect 
field experiences with course content, for a variety of possible reasons. For  example, 
there may have been a mismatch between course content and the field experiences 
being offered, or it may be that the connection between theory and practice was not 
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facilitated by the course instructor. It may simply be the case that some students did 
not self-advocate and request particular learning opportunities or simply overlooked 
them. Primary math specialists may enter preparation programs already trained as 
primary generalists, in which case, they may not have the same OTL in some areas, 
such as math pedagogy, insofar as programs would assume prospective specialists 
had already acquired some basic knowledge. Particularly for consecutive routes to 
specialist certification, programs may require a bachelor’s degree focused on pri-
mary mathematics, and thus would only include OTL in more specialized aspects of 
teaching mathematics. Nevertheless, field experiences are a place where the tension 
between classroom theory and practice can be made productive, particularly when 
questions about teaching and learning arise in the context of interacting with real 
students and work in progress. Indeed, well-designed clinical experiences are a set-
ting that can “…empower [future] teachers with greater understanding of complex 
situations rather than seek to control them with simplistic formulas or cookie cutter 
routines” (Darling-Hammond, 1998, p. 170).

 Limitations

The findings of this study need to be considered in light of the following limitations. 
First and foremost, selecting the optimal number of subgroups is not straightfor-
ward, as it requires the triangulation of fit statistics along with consideration of 
model interpretability. Further, whereas the fit indices for weighted and un-weighted 
samples both indicated the same number of latent classes, we could not perform 
LCA bootstrap on the weighted sample, because of limitations in statistical software 
packages. Consequently, the optimal number of latent subgroups present within the 
analyzed sample of each country is open to interpretation. Although our decisions 
align with our research question and related literature, others could make different 
decisions and also provide support for those decisions (e.g., to allow subgroups that 
capture smaller proportions of the sample, select a different subgroup solution). 
Additionally, model fit indices do not perform optimally with fewer than 100 obser-
vations, and a minimum of 200 observations is preferred (Nylund, Asparouhov, & 
Muthén, 2007). The standard, but not the preference, was met for both countries.

The latent subgroups are specific to those about to be certified as math specialists 
at the primary level. These participants are potentially different from those being 
certified as primary generalists. A future study should determine whether these 
same latent subgroups are present in other populations, including those from other 
countries and earning different types of certification. For our purposes, we were 
looking for associations among those with potentially high mathematical knowl-
edge, so the restriction to math specialists was reasonable.

Further, the data are self-reported. Participants were asked to complete a survey 
and report whether they had opportunities to learn each of 19 topics. Self-reports of 
opportunities to learn how to connect classroom learning and practice are not the 
same as direct observation of teachers connecting classroom learning to their prac-
tices, through classroom observations and interviews. Furthermore, knowing 
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whether participants had the opportunities to learn particular topics does not give us 
insight into the quality of these learning experiences. However, the novice teacher 
questionnaire utilized by TEDS-M does have good psychometric properties (Tatto 
et  al., 2013), and  research shows students’ perceptions of learning are related to 
their overall evaluation of courses and to “actual” learning (Centra & Gaubatz, 
2005).

Because of the differences in the items on the survey instrument, all participant 
responses were coded using a forced binary response. Whereas the LCA models 
binary responses, forcing 4-point scales into binary responses reduces the variabil-
ity of the data. Although Latent Profile Analysis can handle responses with more 
than two categories, results of such analyses are not easily interpretable. Thus, LCA 
with constrained binary responses was considered preferable, in order to interpret 
the results.

Despite these potential limitations, this study provides us with a way to describe 
potential differences in OTL. More research is needed to investigate OTL, particu-
larly examining the quantity and quality associated with different OTL. Coupling 
self-report data with additional measures such as document and observational data 
from programs would aid in producing a more robust description of OTL and its 
potential influences.

 Conclusions

This study utilized a person-centered approach to identify different subgroups of 
prospective teachers who share OTL. The findings highlight significant differences 
in patterns of OTL that would not have been identified using variable-centered 
methods. This approach allows for meaningful distinctions to be made among 
opportunities to learn common across teacher preparation programs.

The results of this study inform institutional policies by providing a more com-
plete and complex understanding of the reported OTL of prospective mathematics 
specialists. In both the United States and Singapore, distinct groups emerge with 
markedly different reported OTL mathematics pedagogy. Future studies can more 
closely examine the alignment between the OTL that pre-service teachers perceive 
and the OTL institutions see their preparation programs as encompassing. Further 
research can also examine the associations among OTL, mathematical content 
knowledge, and mathematical pedagogical content knowledge. Teacher preparation 
institutions can examine their curricula to determine whether the OTL they are pro-
viding for pre-service teachers are lacking in some of the key areas of mathematics 
pedagogy.
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 Appendix

Table 10.4 Frequency distributions for seventeen observed variables from the TEDS-M future 
teacher survey: Percent of future teachers who report opportunities to learn in the United States

% Studied

Opportunity to learn mathematics instruction
Mathematics instruction 90.9%
Develop teaching plans 85.6%
Observation, analysis, and reflection 89.4%
Mathematics standards and curriculum 93.2%
Affective issues in mathematics 62.1%
Opportunity to learn instructional practice
Explore how to apply mathematics to real-world problems 79.4%
Explore mathematics as the source of real-world problems 80.2%
Learn how to explore multiple solution strategies with pupils 78.6%
Learn how to show why a mathematics procedure works 72.5%
Make distinctions between procedural and conceptual knowledge when teaching 
mathematics concepts and operations to pupils

65.6%

Integrate mathematics ideas from across areas of mathematics 71.0%
Opportunity to connect classroom learning to practice
Observe models of teaching strategies you were learning in coursework 76.2%
Practice theories for teaching mathematics you were learning in coursework 77.0%
Receive feedback about how well you had implemented teaching strategies you 
were learning in coursework

91.2%

Collect and analyze evidence about pupil learning as a result of your teaching 
methods

86.4%

Develop strategies to reflect upon your professional knowledge 83.9%
Demonstrate that you could apply the teaching methods you were learning in 
coursework

93.5%

Complete assessment tasks that asked you to show how you were applying ideas 
you were learning in your courses

80.0%

Test out findings from educational research about difficulties pupils have in 
learning

48.0%

Note: All indicators were coded as 1 (Studied) = Occasionally/Often, 2 (Not Studied) = Never/
Rarely for OTL Instructional Practice and OTL Connect Classroom Learning to Practice
Note: Percentage Studied indicates the percentage of people who responded to an item who 
selected “studied.”
Note: Data missing for 44 future teachers for OTL Mathematics Instruction, 45 for OTL 
Instructional Practice, and ≥ 50 for OTL Connect Classroom Learning to Practice
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Table 10.5 Frequency distributions for seventeen observed variables from the TEDS-M future 
teacher survey: Percent of future teachers who report opportunities to learn in Singapore

% Studied

Opportunity to learn mathematics instruction
Mathematics instruction 95.7%
Develop teaching plans 76.1%
Observation, analysis, and reflection 82.8%
Mathematics standards and curriculum 92.3%
Affective issues in mathematics 42.2%
Opportunity to learn instructional practice
Explore how to apply mathematics to real-world problems 76.1%
Explore mathematics as the source of real-world problems 76.1%
Learn how to explore multiple solution strategies with pupils 76.1%
Learn how to show why a mathematics procedure works 66.7%
Make distinctions between procedural and conceptual knowledge when teaching 
mathematics concepts and operations to pupils

69.2%

Integrate mathematics ideas from across areas of mathematics 66.7%
Opportunity to connect classroom learning to practice
Observe models of teaching strategies you were learning in coursework 56.9%
Practice theories for teaching mathematics you were learning in coursework 75.9%
Receive feedback about how well you had implemented teaching strategies you 
were learning in coursework

85.3%

Collect and analyze evidence about pupil learning as a result of your teaching 
methods

56.0%

Develop strategies to reflect upon your professional knowledge 69.0%
Demonstrate that you could apply the teaching methods you were learning in 
coursework

93.1%

Complete assessment tasks that asked you to show how you were applying ideas 
you were learning in your courses

46.6%

Test out findings from educational research about difficulties pupils have in 
learning

25.9%

Note: All indicators were coded as 1 (Studied) = Occasionally/Often, 2 (Not Studied) = Never/
Rarely for Opportunities to Learn Instructional Practice and Opportunities to Connect Classroom 
Learning
Note: Percentage Studied indicates the percentage of people who responded to an item who 
selected “studied.”
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Table 10.6 Parameter estimates for model of three latent opportunities to learn and effect of latent 
subgroup membership on MPCK scores for mathematics specialists in the United States

Limited 
OTL (6%)

OTL mathematics 
pedagogy (42%)

Comprehensive 
OTL (52%)

OTL mathematics education - instruction
Math instruction .125 .906 1.000
Develop teaching plans .125 .820 .970
Observation, analysis, and reflection .000 .911 .956
Standards and curriculum .124 .969 .986
Affective issues .249 .575 .693
Opportunity to connect classroom learning to practice
Observe models of teaching strategies you 
learned in coursework

.500 .606 .924

Practice theories for teaching mathematics 
that you learned in coursework

.000 .662 .958

Complete assessment tasks that asked you 
to show how you were applying ideas you 
learned in coursework

.429 .610 .991

Receive feedback about how well you 
implemented teaching strategies you 
learned in coursework

.714 .792 1.000

Collect and analyze evidence of pupil 
learning as a result of your teaching 
methods

.714 .773 .960

Test out findings from educational research 
about difficulties pupils have in learning

.000 .256 .723

Develop strategies to reflect upon your 
professional knowledge

.714 .646 .983

Demonstrate that you could apply the 
teaching methods you were learning about 
in your coursework

.857 .837 1.000

OTL instructional practice
Explore how to apply mathematics to 
real-world problems

.000 .687 .974

Explore mathematics as the source for 
real-world problems

.000 .704 1.000

Learn how to explore multiple solution 
strategies with pupils

.625 .641 .946

Learn how to show why a mathematics 
procedure works

.124 .534 .958

Make distinctions between procedural and 
conceptual knowledge when teaching 
mathematics concepts and operations to 
pupils

.000 .504 .888

Integrate mathematical ideas from across 
areas of mathematics

.000 .552 .928
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Table 10.7 Parameter estimates for model of three latent opportunities to learn and effect of latent 
subgroup membership on MPCK scores for mathematics specialists in Singapore

Limited 
opportunities to 
connect classroom 
learning to practice 
(23.03%)

OTL 
mathematics 
pedagogy 
(17.62%)

Limited 
OTL 
(13.35%)

Comprehensive 
OTL (46%)

OTL mathematics education - instruction
Math instruction 1.000 1.000 .806 .962
Develop teaching plans .763 .930 .150 .866
Observation, analysis, and 
reflection

.886 1.000 .246 .898

Standards and curriculum 1.000 .956 .684 .943
Affective issues .549 .371 .000 .546
Opportunity to connect classroom learning to practice
Observe models of 
teaching strategies you 
learned in coursework

.192 .438 .539 .809

Practice theories for 
teaching mathematics that 
you learned in coursework

.508 .675 .800 .898

Complete assessment 
tasks that asked you to 
show how you were 
applying ideas you 
learned in coursework

.180 .189 .462 .721

Receive feedback about 
how well you 
implemented teaching 
strategies you learned in 
coursework

.619 .714 .932 1.000

Collect and analyze 
evidence of pupil learning 
as a result of your 
teaching methods

.271 .286 .627 .799

Test out findings from 
educational research 
about difficulties pupils 
have in learning

.000 .000 .000 .566

Develop strategies to 
reflect upon your 
professional knowledge

.325 .281 .810 1.000

Demonstrate that you 
could apply the teaching 
methods you were 
learning about in your 
coursework

.882 .809 1.000 .980

(continued)
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Chapter 11
Preparing Primary Mathematics Teachers 
to Learn to Work with Students from Diverse 
Backgrounds

Elizabeth B. Dyer

Abstract This study investigates how teacher education prepares primary teachers 
to teach mathematics to students from diverse backgrounds. Hierarchical linear 
modeling is used to investigate the relationship between opportunities to learn to 
teach students from diverse backgrounds during teacher preparation and teachers’ 
mathematical knowledge for teaching using the TEDS-M international dataset. In 
general, primary mathematics specialist teachers with more opportunities to learn to 
teach students from diverse backgrounds had lower levels of mathematical knowl-
edge for teaching. Primary generalist teachers do not consistently show the same 
results across all countries, with some showing higher and other showing lower 
levels of mathematical knowledge for teaching. These results suggest that teachers 
who are better prepared for the mathematical aspects of teaching tend to be less 
prepared for addressing the needs of diverse learners.

Introduction

Inequality in student educational outcomes by socioeconomic status and race, par-
ticularly in mathematics, is a great challenge to promoting equal opportunity world-
wide (Levin, 2007; Organisation for Economic Co-operation and Development, 
2014). Efforts to reduce inequities in educational systems typically focus on ways 
to improve and/or equalize students’ opportunities to learn in classrooms (Simon, 
Malgorzata, & Beatriz, 2007). As research begins to highlight the crucial role teach-
ers play in students’ opportunities to learn and resultant learning (Rivkin, Hanushek, 
& Kain, 2005), more international efforts have worked to provide access to and 
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support for teachers. In keeping with this movement, the Organisation for Economic 
Co-operation and Development recommends that access to high-quality teachers be 
provided equally to students in all locations (Simon et al., 2007). However, research 
has documented similar differences in access to high-quality teachers and student 
achievement by socioeconomic status (Akiba, LeTendre, & Scribner, 2007; Kang & 
Hong, 2008; Levin, 2007; Little & Bartlett, 2010; Luschei et al., 2013). Therefore, 
equity in access to high-quality teachers may help reduce inequalities in student 
learning by student background. This change would be particularly important for 
children in primary grades, as the strength of their educational preparation can have 
large consequences for future educational opportunities.

With this unequal distribution of teachers seen in many countries, it is unclear 
what role teacher preparation might play in this unequal distribution. In many ways, 
teacher preparation programs are an essential step in the process of creating greater 
equity in access to high-quality teachers. Many programs place teachers in particu-
lar types of schools or in particular locations, meaning an improvement in certain 
preparation programs could result in improving the quality of instruction for popu-
lations of interest. Additionally, teacher preparation programs can prepare teachers 
for the unique demands of teaching students from diverse backgrounds. At the same 
time, teacher preparation programs could instead exacerbate or have a neutral effect 
on existing inequality of teachers entering their programs, essentially contributing 
to inequity in access to high-quality teachers.

This study explores the role of teacher preparation in developing primary teach-
ers who are well prepared to engage in mathematics instruction for students from 
diverse backgrounds. In particular, the study examines the relationship between 
teachers’ opportunities to learn to teach students from diverse backgrounds and 
their mathematical knowledge for teaching. By examining this relationship, this 
study takes a first look at whether primary teachers are equally prepared for the 
mathematical aspects of teaching and for teaching students from diverse back-
grounds. Given the differences in student mathematics achievement based on racial, 
socioeconomic, and linguistic background, similar differences may exist in future 
teachers according to their background. If future teachers from diverse backgrounds, 
with lower mathematics achievement, are more likely to seek preparation to teach 
students from similar backgrounds, these differences could appear as a negative 
relationship between mathematical knowledge for teaching and opportunities to 
learn to teach students from diverse backgrounds. That is, the teachers most likely 
to be prepared to teach students from diverse backgrounds may be those with the 
weakest mathematical knowledge for teaching. However, teacher preparation pro-
grams may tend to be high quality (or low quality) in multiple aspects of prepara-
tion, leading teachers with more opportunities to learn to teach students from diverse 
backgrounds also having higher levels of mathematical knowledge for teaching. 
Additionally, opportunities to learn to teach students from diverse backgrounds 
could strengthen teachers’ mathematical knowledge for teaching, leading to a posi-
tive relationship between these two aspects of preparation. In short, there are argu-
ments to be made for expecting both positive and negative relationships, and not 
enough is known to favor one hypothesis over the other. Therefore, this study is 
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primarily exploratory in nature, examining whether any relationship exists between 
mathematical knowledge for teaching and opportunities to learn to teach students 
from diverse backgrounds, and what type of relationship it is.

This study makes use of the TEDS-M international dataset of mathematics 
teacher preparation to explore these associations. The data on future teachers of 
mathematics is nested within teacher preparation programs, within countries. The 
analysis uses hierarchical linear modeling to account for this nested nature of the 
data. Additionally, the within-group (i.e., within teacher preparation program) and 
between-group relationships are separated to reduce bias in the estimates. The 
results of this study can help determine whether a positive relationship, a negative 
relationship, or no relationship exists between mathematical knowledge for teach-
ing for teachers at the end of their teacher preparation programs. These findings 
could help inform teacher preparation programs in understanding how well they 
currently prepare teachers for teaching mathematics to students from diverse back-
grounds. Additionally, the findings could inform how programs determine emphasis 
on particular aspects of preparation, or suggest particular groups of teachers who 
may need additional preparation in certain areas.

 Theoretical Background

 Mathematical Knowledge for Teaching and Effective 
Mathematics Instruction

To teach mathematics effectively, teachers need to understand mathematics. 
However, exactly what mathematics teachers need to understand in order to teach 
mathematics effectively is still an open question. At the primary level, this issue is 
particularly important as many people who choose to become primary teachers do 
not have strong mathematical backgrounds, and may not be most interested in 
teaching the subject of math as part of their jobs (Conference Board of the 
Mathematical Sciences [CBMS], 2001, 2012; Tatto et al., 2008).

One theory suggests that teachers have a body of knowledge they draw on when 
teaching mathematics, which is referred to as mathematical knowledge for teaching 
(Ball, Thames, & Phelps, 2008; Hill, Sleep, Lewis, & Ball, 2007). This knowledge 
includes both knowledge that is mathematical in nature and knowledge that is peda-
gogical in nature. Mathematical knowledge includes mathematics commonly taught 
in schools, including math taught by teachers (common content knowledge), and 
math in levels beyond the grade taught by teachers (horizon content knowledge). In 
addition, there is specialized content knowledge, which is defined as the knowledge 
specific to the profession of teaching, which is mathematical in nature. Pedagogical 
content knowledge encompasses knowledge of how students think about mathemat-
ics (knowledge of content and students), how to support students in learning math-
ematics (knowledge of content and teaching), and what curriculum materials 
support student learning (knowledge of content and curriculum).
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Studies have shown that high levels of mathematical knowledge for teaching are 
related to more effective teaching and higher levels of students learning (Hill et al., 
2008; Hill, Rowan, & Ball, 2005; Hill, Umland, Litke, & Kapitula, 2012). While 
this aspect of teaching expertise explains a small part of the variation in the quality 
of mathematics teaching practice and student learning, it is one of the few teacher 
characteristics that have shown any relationship with student outcomes. Mathematical 
knowledge for teaching is a particularly important metric for the quality of teachers 
at the end of teacher preparation programs, as more direct measures of teacher qual-
ity such as observational measures of instructional practice and student learning 
gains are often impossible to measure before teachers start teaching. Additionally, 
more direct measures of teacher quality are highly variable across lessons and raters 
(Hill, Charalambous, et al., 2012).

 Teaching Students from Diverse Backgrounds

Across much of the world, there is strong evidence that students’ background is 
often predictive of their level of achievement in school. For example, students’ race 
and ethnicity, linguistic backgrounds, and socioeconomic status are associated with 
differences in achievement (Levin, 2007; Organisation for Economic Co-operation 
and Development, 2014). Typically, students from non-dominant backgrounds tend 
to have lower levels of achievement, which is typically interpreted as inequity in 
educational experiences. These findings have raised questions about whether all 
students have similar access to high-quality teachers, as differences in teacher qual-
ity may drive differences in student learning. However, this concern is often raised 
without considering that the quality of teachers may be relative to the types of stu-
dents they are teaching. In other words, if students from different populations ben-
efit from some types of teachers or some types of teaching more than others, access 
to high-quality teachers becomes a question of whether students and teachers are 
well matched, not just having access to the same types of teachers.

Research is beginning to suggest teachers from racial backgrounds similar to 
their students are more effective than teachers with different racial backgrounds 
(Dee, 2005; Villegas & Irvine, 2010). This result could be interpreted as suggesting 
that it is important for teachers to be able to understand the communities from which 
students come and how knowledge of students’ backgrounds could be useful in mak-
ing instructional decisions. This interpretation aligns well with research on effective 
teaching for students from diverse backgrounds, which suggests teachers need to 
leverage the resources (i.e., knowledge, skills, and experiences) students bring with 
them to the classroom to support student learning (Aguirre et al., 2012; Delpit, 1995; 
Hand, 2012; Irvine, 2003; Turner & Celedón-Pattichis, 2011). In this conception of 
teaching that promotes equity, teachers do not simply connect with students in a 
general way or act as a role model, but, instead, incorporate their understanding of 
students into the ways they teach specific subjects (González, Andrade, Civil, & 
Moll, 2001; González, Moll, & Amanti, 2005; Moll, Amanti, Neff, & González, 
1992). For example, a teacher could use young children’s experiences making small 
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purchases with coins at corner stores, a common practice among students with low 
socioeconomic status, to help students understand place value ideas (Taylor, 2009).

This view of effective teaching is not specific to teaching students from diverse 
backgrounds; it can be generalized, suggesting that effective teaching for any group 
of students needs to leverage student resources to support student learning 
(Robertson, Scherr, & Hammer, 2015). Therefore, if teachers are more effective in 
noticing and leveraging the resources that students from dominant or majority back-
grounds bring into the classroom (perhaps because this background matches their 
own), there will be fewer high-quality teachers available for students from non- 
dominant backgrounds. However, this conception of effective teaching suggests this 
skill can be learned by teachers, such that teacher preparation can help teachers 
learn how to teach students from backgrounds that are different from their own.

 Primary Mathematics Teacher Preparation

Programs that train and certify teachers are found around the world. While the 
length, structure, and focus of these programs differ by country, there is some over-
lap in their goals (Schwille, Ingvarson, & Holdgreve-Resendez, 2013). Often the 
goals of teacher preparation are to help teachers develop the pedagogical knowledge 
and skills to be effective teachers in the classroom.

Teacher preparation for the primary grades is often done in a way that prepares 
teachers to be generalists, or to teach multiple subjects. In addition to preparing 
generalist teachers, some countries provide specialist teacher preparation in math-
ematics at the primary grades, which prepares teachers only to teach mathematics. 
The push to train more primary mathematics specialists has been supported by the 
idea that teaching mathematics at the primary level requires a great deal of mathe-
matical knowledge that many primary teachers do currently not have (Gerretson, 
Bosnick, & Schofield, 2008; Reys & Fennell, 2003). The subject matter knowledge 
primary generalists need spans numerous subjects, including mathematics, which 
some scholars believe is unrealistic to expect of teachers (Reys & Fennell, 2003).

Because of the diversity of knowledge and skills teacher preparation must 
develop in teachers and the limited time available, programs vary considerably in 
their structure and the opportunities provided to teachers. Differences in the even-
tual teaching positions taken by participants in teacher preparation programs, 
including generalist and specialist positions, may dictate different programmatic 
structures and goals. This variation in programs leads to differences between pro-
grams in teachers’ opportunities to learn. Additionally, pre-service teachers may 
have flexibility in the courses they take or in the aspects of teaching they try to focus 
on, which leads to differences in teachers’ opportunities to learn within the same 
program. Therefore, different programmatic structure and teacher choice lead to 
different opportunities to learn, which result in different outcomes for teachers (i.e., 
levels of knowledge, skills, and beliefs).

In order to prepare mathematics teachers at the primary level, many teacher prepa-
ration programs focus on strengthening the mathematical knowledge of teachers, as 
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teachers in the primary grades often have weak mathematical knowledge (CBMS, 
2001, 2012; Swars, Hart, Smith, Smith, & Tolar, 2007; Tatto et al., 2008). Efforts also 
have been made to help teachers develop pedagogical knowledge and skills specific 
to teaching mathematics, not just general pedagogical knowledge (Ball, Lubienski, 
& Mewborn, 2001; Mewborn, 2001). Therefore, future teachers’ mathematical 
knowledge for teaching is a key outcome targeted by teacher preparation programs.

Teacher preparation programs often provide opportunities for teachers to learn 
other aspects of pedagogy, including pedagogy for teaching students from diverse 
backgrounds. Teachers’ opportunities to learn to teach students from diverse back-
grounds could depend on numerous factors. Teacher preparation programs may 
place little emphasis on how to teach students from diverse backgrounds if most of 
their teachers plan to work with students from dominant or privileged backgrounds. 
Alternatively, teacher preparation programs could specialize in preparing teachers 
in ways consistent with social justice methods or to teach students from non- 
dominant or less privileged backgrounds. Teachers also may have flexibility in the 
courses they take, which could allow some teachers to seek out opportunities to 
learn to teach students from diverse backgrounds beyond basic requirements.

Opportunities to learn to teach students from diverse backgrounds have shown a 
number of positive effects on teacher beliefs and quality of instruction, particularly 
at the primary level. Teacher preparation programs can shift teachers’ beliefs about 
students from diverse backgrounds away from deficit-oriented view, supporting 
more equitable teaching (Castro, 2010; Foote et al., 2013). Efforts to this end may 
include not only courses focused on teaching students from diverse backgrounds 
(Freedman & Appleman, 2009), but also cultural and community experiences with 
students from diverse backgrounds (Adams, Bondy, & Kuhel, 2005; Bartell et al., 
2010; Garmon, 2004, 2005; Whipp, 2013). Recently, new equity-oriented courses 
have been implemented to help teachers develop pedagogical skills and knowledge 
for teaching mathematics to students from diverse backgrounds. For example, 
opportunities to analyze mathematics classroom videos from an equity-oriented 
perspective (Aguirre et al., 2012; McDuffie, Foote, Bolson, et al., 2014; McDuffie, 
Foote, Drake, et al., 2014) and developing mathematics lesson plans accounting for 
students’ backgrounds (Aguirre et al., 2013) have been shown to lead teachers to 
consider the diversity of students in ways that inform mathematics teaching specifi-
cally. In all, this body of research shows opportunities to learn to teach students 
from diverse backgrounds during teacher preparation can lead teachers to be better 
prepared to teach students from diverse backgrounds in the classroom, including 
during mathematics lessons.

 Relationship Between Preparation in Mathematics 
and for Student Diversity

This study focuses on how teachers’ opportunities to learn to teach students from 
diverse backgrounds relate to their mathematical knowledge for teaching. Examining 
this relationship helps to investigate more broadly whether teachers who are better 
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prepared to teach students from diverse backgrounds show differences in their 
mathematical preparation. Conversely, this line of inquiry examines whether teach-
ers who are better prepared in the mathematical aspects of teaching show differ-
ences in their preparedness to teach students from diverse backgrounds. Therefore, 
this study sheds light on whether teachers are well prepared to teach mathematics in 
equitable ways based on their preparation to handle the mathematical demands and 
the demands of teaching students from diverse backgrounds.

There are several reasons why a negative relationship might be expected—that is, 
why teachers with more opportunities to learn to teach students from diverse back-
grounds might have lower levels of mathematical knowledge for teaching. First, these 
teachers may differ in some way from teachers who have fewer opportunities to learn 
to teach students from diverse backgrounds. Even if all teachers learned the same 
amount of mathematical knowledge for teaching during teacher preparation, differ-
ences at the end of programs likely would be found that are due to differences existing 
at the beginning. Teachers with more opportunities to learn to teach students from 
diverse backgrounds may differ from other teachers in a number of ways, including 
lower levels of mathematical knowledge when starting teacher preparation, lower 
interest in mathematics, or less confidence in their mathematical abilities. Teachers 
who seek more opportunities to learn to teach students from diverse backgrounds 
could come from diverse backgrounds themselves, as teachers often choose to work 
in communities near where they grew up (Boyd, Lankford, Loeb, & Wyckoff, 2005; 
Reininger, 2012). Based on well-documented differences in achievement in K-12 
mathematics, these teachers will also have lower levels of mathematical knowledge at 
the beginning of teacher preparation on average. Thus, opportunities to learn to teach 
students from diverse backgrounds and mathematical knowledge for teaching may be 
associated with one another because of their connection to coming from a diverse 
background, that is associated with both. Background characteristics that could indi-
cate future teachers come from diverse or non-dominant backgrounds include socio-
economic status, racial or ethnic background, and being a language learner.

Alternatively, certain types of people may be more drawn to teaching students 
from diverse backgrounds—for instance, people who want to make a difference, in 
contrast to people who are drawn to teaching because of their passion for mathemat-
ics. Finally, teachers with more opportunities to learn to teach students from diverse 
backgrounds could have lower levels of mathematical knowledge for teaching 
because of differences in what occurs within programs. For example, those teachers 
could have fewer opportunities to learn mathematics because they spend more time 
learning how to teach students from diverse backgrounds during preparation, which 
could lead them to learn less mathematics.

A positive relationship could also be expected, where teachers with more oppor-
tunities to learn to teach students from diverse backgrounds have higher levels of 
mathematical knowledge for teaching. First, if program quality is typically high in 
all aspects of teacher preparation (i.e., some schools are generally more high qual-
ity than others), high levels in both aspects of teacher preparation would likely be 
found. Finally, if teacher preparation developed teachers’ mathematical knowledge 
for teaching during opportunities to learn to teach students from diverse 
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 backgrounds (Turner & Drake, 2016; Turner et al., 2012), increased opportunities 
also would lead to increased mathematical knowledge for teaching.

This study is not attempting to determine which explanation for any relationship 
found is most appropriate or supported by the data, particularly not in a causal way. 
Instead, this study is purely descriptive and attempts to uncover whether any rela-
tionship exists. Based on the arguments made above, it also explores whether there 
is evidence that the relationship could be driven by differences in teacher back-
ground characteristics or opportunities to learn mathematics. Therefore, this study 
may help future researchers identify factors that would be fruitful for investigations 
using research designs appropriate for causal inference or mediation models.

This study aims to answer the following main research question, along with three 
sub-questions that explore potential factors that could drive any relationship seen:

How are opportunities for primary pre-service mathematics teachers to learn to 
teach students from diverse backgrounds associated with mathematical knowledge 
for teaching?

 (a) Is this association found between teachers in the same program and between 
different teacher preparation programs?

 (b) Do teacher background characteristics or opportunities to learn mathematics 
partly account for any association found?

 (c) Does this association vary by country and between primary generalists and 
specialists?

 Methods

 Data

The data used in this study come from the TEDS-M international research study that 
collected data on mathematics teacher preparation (Tatto, 2013; Tatto et al., 2008). 
Fourteen countries preparing primary mathematics teachers are included in the 
study. Data were collected from pre-service primary teachers at the end of their 
teacher preparation programs, so these data are cross-sectional in nature.

Participants The TEDS-M project gathered data from nationally representative 
probability samples of future teachers of mathematics in the final year of their train-
ing in participating  countries. The sampling was done in accordance with the 
International Education Association’s quality standards (see Dumais & Meinck, 
2013; Dumais et al., 2013; IEA, 2007, for sampling details). The project used strati-
fied, multistage probability sampling. First, institutions containing teacher prepara-
tion programs were sampled from complete lists of institutions provided by each 
country. Each different program that prepared teachers in the institutions was included 
in the sample. Some institutions had multiple programs, including programs at the 
primary and secondary levels, while others only had one program. Additionally, pro-
grams varied in the number of teachers within them. The sampling of future teachers 
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aimed to include at least 30 teachers from each program. In small programs with 
fewer than 30 teachers all teachers were sampled. This variability in the number of 
teachers sampled from each program creates an unbalanced panel. Dumais and 
Meinck (2013) used balanced repeated replication based on the sampling design to 
create estimation weights. These sampling weights are used in the analyses in this 
study, which allows for making inferences about population estimates.

The data for primary future teachers include both primary generalists and spe-
cialists who are trained to teach mathematics. The 14 countries included in this 
study all had a response rate of at least 76% from future teachers. Four groups of 
teachers were identified: (a) generalist teachers being certified to teach Grade 4 or 
below (lower-primary generalists), (b) generalist teachers being certified to teach 
Grade 6 or below (primary generalists), (c) generalist teachers being certified to 
teach Grade 10 or below (primary/lower-secondary generalists), and (d) primary 
specialists. The three groups of primary generalist teachers and the group of pri-
mary specialist teachers make up the four distinct groups of pre-service teachers 
investigated in this study. Table 11.1 shows the different primary certification path-
ways for countries in the TEDS-M data.

As differences between types of primary teachers due to programmatic differ-
ences are likely, all analyses are completed separately for each of the four types. 
However, not all countries have programs in each of the groups. In fact, most coun-
tries have programs in only one or two of the groups. Therefore, generalizations 
about comparisons between these four groups should be interpreted with caution, as 
any differences could be due to differences among particular countries, rather than 
differences in the target certification. Numbers of participants and teacher prepara-
tion programs included in the analyses are shown in Table 11.2.

Table 11.1 Pathways for generalist and specialist primary mathematics teachers

Lower-primary 
generalist

Primary 
generalists

Primary/
lower-secondary 
generalists Primary specialists

Botswana X
Chile X
Chinese 
Taipei

X

Georgia X
Germany X X
Malaysia X
Philippines X
Poland X X
Russia X
Singapore X X
Spain X
Switzerland X X
Thailand X
United States X X
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Variables of Interest The TEDS-M study collected a variety of information about 
primary-pre-service mathematics teachers, including information on their back-
ground, opportunities to learn, beliefs about teaching and learning, and mathemati-
cal knowledge for teaching. Two main components of these data are used in the 
following analysis: assessments of mathematical knowledge for teaching and teach-
ers’ reported opportunities to learn to teach students from diverse backgrounds. 
Reliabilities for the scaled scores used in this study can be found in Table 11.3. 
Details about item development, assessment frameworks, and scaling can be found 
in Tatto et al. (2008, 2013).

Mathematical Knowledge for Teaching The TEDS-M study developed two sepa-
rate assessments one for primary teachers and one for secondary teachers. Two dif-
ferent domains of mathematical knowledge for teaching were assessed: mathematical 
content knowledge (MCK) and mathematical pedagogical content knowledge 
(MPCK). For the primary assessment,  the first domain, mathematical content 
knowledge, includes mathematical knowledge that would be taught in schools, 
including mathematics taught in primary grades, as well as university-level mathe-
matics. Mathematics pedagogical content knowledge includes both knowledge of 
content and students (considered pedagogical knowledge) and specialized content 
knowledge, or knowledge that is mathematical in nature that is specific to the pro-
fession of teaching. Both domains were assessed with separate assessments, and, as 
such, composite scores were developed for each. Tatto et al. (2013) created compos-
ite scores for each assessment using the standard Rasch model for dichotomous 
items and the partial credit model for polytomous items. The scores for each assess-
ment were set at a mean of 500 and standard deviation of 100. Using a congeneric 
measurement model, Tatto et al. (2013) found a reliability of .83 for MCK and .66 
for MPCK.

Table 11.2 Number of pre-service primary teachers and teacher preparation programs by type

Number of programs Number of teachers

Lower-primary generalist 171 5,640
Primary generalists 170 4,996
Primary/lower-secondary generalists 61 1,294
Primary mathematics specialists 143 1,941

Table 11.3 Reliabilities for scaled scores using congeneric measurement model

Scale Reliability

Mathematics Content Knowledge (MCK)a .83
Mathematics Pedagogical Content Knowledge (MPCK)a .66
Opportunity to learn to teach students from diverse backgroundsa .89
Teaching for impact and change .80

aTatto et al. (2013)
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Opportunities to Learn A main component of the TEDS-M data collection was 
about teachers’ reported opportunities to learn  (OTL) different topics in order to 
better understand teachers’ experiences during teacher preparation. This analysis 
focuses on the opportunities for teachers to learn to teach students from diverse 
backgrounds (OTL DIVERSITY). This opportunity was measured with six items 
focused on particular types of students (listed in Table 11.4). The response scale for 
these items had four options: never, rarely, occasionally, and often. Tatto et  al. 
(2013) used Rasch modeling to develop the composite score from these items, 
which are used in this study. This composite is centered at 10, which corresponds to 
the middle of the rating scale (i.e., between rarely and occasionally). Using a con-
generic measurement model, Tatto et al. (2013) calculated a reliability estimate of 
.90 for this composite.

In addition to opportunities to learn to teach students from diverse backgrounds, 
variables for opportunities to learn mathematics are included in the analysis. These 
opportunities were measured by sets of items asking whether teachers had opportu-
nities to learn a wide variety of mathematics, including mathematics from the grades 
teachers will be teaching as well as more advanced mathematics. These items had 
two response choices: studied or not studied. In this analysis, the two domains of 
school-level mathematics are used: functions, probability and calculus; and num-
bers, measurement, and geometry. A list of items for each domain is given in 
Table 11.5. These OTL domains were chosen because they are most aligned with the 
mathematics found on the assessments of mathematical knowledge for teaching. 
Composites for the two domains used in this study were created by Tatto et  al. 
(2013) by summing the number of topics marked as studied in each domain.

Teacher Background The TEDS-M data collected a wide variety of information on 
teachers’ backgrounds. This analysis uses the aspects of teachers’ backgrounds that 
may either help explain variation in teachers’ mathematical knowledge of teaching 
or help account for part of the relationship of interest. These variables include age, 
gender, self-reported typical level of grades obtained in secondary school, whether 
the language of the test was typically spoken in the respondent’s home, and moth-
er’s education. Although race and socioeconomic status are two teacher back-
ground characteristics related to math achievement (Barton & Coley, 2009, 2010; 

Table 11.4 Items in the opportunity to learn to teach students from diverse backgrounds scaled 
score

In your current teacher preparation program, how frequently did you engage in activities that 
gave you the opportunity to learn how to do the following?

  Develop specific strategies for teaching students with behavioral and emotional problems
  Develop specific strategies and curriculum for teaching pupils with learning disabilities
  Develop specific strategies and curriculum for teaching gifted pupils
  Develop specific strategies and curriculum for teaching pupils from diverse cultural 

backgrounds
  Accommodate the needs of pupils with physical disabilities in your classroom
  Work with children from poor or disadvantaged backgrounds
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Reardon, 2011; Reardon & Galindo, 2009; Reardon, Robinson-Cimpian, & 
Weathers, 2015) and could account for the relationship of interest, this information 
was not included in the TEDS-M dataset.

A variable for gender is included, as previous research has shown there is often 
an association between math achievement and gender (Robinson & Lubienski, 
2011). Teachers were asked to report being male or female, and an indicator vari-
able was created for selecting female.

Teachers older in age may have started teacher preparation later or taken longer 
than other teachers, which is likely to lead to reduced retention of knowledge. 
Therefore, teacher’s age is included in the analysis. Teachers wrote in their age on 
the survey, and this age is used directly in the variable AGE.

Being a non-native language speaker is likely to indicate teachers are from a non- 
dominant background, and is associated with differences in math achievement 
(Reardon & Galindo, 2009). As such, an indicator for non-native language status 
was created. Teachers were asked about the frequency with which they spoke the 
language of the test at home. Teachers who reported they spoke the language of the 
test sometimes or never were coded as 1, while responses of always or almost 
always were coded as 0.

Teachers were asked about their mother’s education level, which can be inter-
preted as a proxy for socioeconomic status. Two indicator variables were created for 
the highest level of education completed by teachers’ mothers: completing second-
ary school and completing a post-secondary degree.

Teachers’ previous achievement in mathematics is likely to impact their scores 
in mathematical knowledge for teaching at the end of their teacher preparation 

Table 11.5 Items in the opportunity to learn school-level mathematics composites

Consider the following list of mathematics topics that are often taught at the secondary school 
level. Please indicate whether you have studied each topic as part of your current teacher 
preparation program.

(options: studied, not studied)
Numbers, measurement, and geometry composite
  Numbers (e.g., whole numbers, fractions, decimals, integer, rational, and real numbers; 

number concepts; number theory; estimation; ratio and proportionality)
  Measurement (e.g., measurement units; computations and properties of length, perimeter, 

area, and volume; estimation and error)
  Geometry (e.g., 1-D and 2-D coordinate geometry, Euclidean geometry, transformational 

geometry, congruence and similarity, constructions with straightedge and compass, 3-D 
geometry, vector geometry)

Functions, probability and calculus composite
  Functions, relations, and equations (e.g., algebra, trigonometry, analytic geometry)
  Data representation, probability, and statistics
  Calculus (e.g., infinite processes, change, differentiation, integration)
  Validation, structuring, and abstracting (e.g., Boolean algebra, mathematical induction, 

logical connectives, sets, groups, fields, linear space, isomorphism, homomorphism)
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programs. While there is no direct measure of previous math achievement in the 
TEDS-M data, teachers were asked about their previous grades in secondary school. 
An indicator variable was created based on responses to this item. Teachers who 
reported that their grades were always or usually near the top of their year level 
were coded as 1, while those reporting their grades were generally above, about, or 
below average for their year level were coded as 0.

Finally, a new scaled score was created for the reasons the participants chose to 
become a teacher. Teachers’ reasons for becoming a teacher are likely to correlate 
with seeking opportunities to learn to teach students from diverse backgrounds. For 
example, teachers who become teachers to make an impact or bring about change 
could be more likely to want opportunities to learn to work with students from 
diverse backgrounds. Teachers were asked to rate the importance of several reasons 
for becoming a teacher on a scale with the options of not a reason, a minor reason, 
a significant reason, and a major reason. A composite variable for entering the 
teaching force in order to bring about impact and change was created for this study 
using Rasch modeling with a partial credit structure. This composite variable is not 
included in the released TEDS-M data. Because of limited items on teachers’ rea-
sons for choosing teaching, only three items make up this composite, and are given 
in Table 11.6. The scaled score has a reliability of .80 using a congeneric measure-
ment model with the jMetrik software.

 Analysis

To examine the relationship between mathematical knowledge for teaching and 
opportunities to learn to teach students from diverse backgrounds, two-level hierar-
chical linear modeling was used. Each country was run as a separate model because 
of the small sample of countries included in the dataset. Additionally, running sepa-
rate models avoids creating one estimate for the average value of the relationships 
across all countries. All analysis was completed using the HLM7 software with the 
full maximum likelihood estimation method. All relationships were modeled lin-
early because adding non-linear terms did not increase model fit and would make 
the interpretation of the results less straightforward. In the models, teachers were 

Table 11.6 Items in the 
teaching for impact scaled 
score

To what extent does each of the following 
identify your reasons for becoming a 
teacher?

(options: not a reason, a minor reason, a 
significant reason, a major reason)

  I believe that I have a talent for teaching.
  I like working with young people.
  I want to have an influence on the next 

generation.
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nested within teacher preparation programs, by country. Each type of program (i.e., 
lower-primary generalist, primary generalist, primary/lower secondary generalist, 
and specialist) was analyzed with a separate model. Additionally, the two assess-
ment scores of teacher knowledge, mathematical content knowledge and mathemat-
ical pedagogical content knowledge, were analyzed separately for each program 
type. Mathematical knowledge for teaching was modeled as the outcome, so results 
from the two different outcomes are presented separately (referred to as MKT when 
referring to both outcomes). Sampling weights from the TEDS-M data were used in 
all analyses.

The between-program and within-program relationships were disaggregated 
using the centered within context (i.e., a CWC(M)) approach, which was accom-
plished by including individual teacher variables at level 1 and introducing the mean 
of each of those variables for each program in the equation for the intercept at level 
2. At each of these levels, the variables were group-mean centered. This approach 
reduces bias in the estimation of the relationship (Enders & Tofighi, 2007; Preacher, 
Zyphur, & Zhang, 2010; Zhang, Zyphur, & Preacher, 2009). This separation is espe-
cially important because program admission policies and teacher preferences likely 
contribute a considerable amount of selection bias into different teacher preparation 
programs. This non-random selection can bias the estimates at the teacher-level. For 
this reason, the estimates of the relationship at the program level should be treated 
with caution.

Four different specifications were tested. The first specification was an uncondi-
tional model, which provides a baseline for understanding where variance in the 
outcome is concentrated. Next, the basic specification included the variable for 
opportunity to learn to teach students from diverse backgrounds (OTL DIVERSITY) 
as a covariate. The coefficients at level 1 are modeled as random effects. In the third 
and fourth specifications, additional covariates were added to the model at both the 
teacher level and the program level to control for teacher characteristics and oppor-
tunities to learn that might influence the main relationship. In the third specification, 
teacher background characteristics are added. In the fourth specification, variables 
for opportunities to learn mathematics are added. All coefficients for additional 
covariates were modeled as fixed effects at level 2.

These additional covariates were included in the model as control variables 
rather than as mediators for several reasons. First, this method simplifies the inter-
pretation of the coefficients in the model, which is particularly important for this 
type of exploratory analysis. Additionally, it would be misleading to interpret these 
coefficients as explaining how or why the main relationship was found. These 
covariates are not effects or events so much as they are variables that likely influ-
ence the main variables of interest or their relationship. The addition of the covari-
ates allows for investigating whether the simpler models suffer from omitted 
variables bias, as indicated if the coefficient for the main relationship changes. For 
these reasons, the covariates are included as control variables rather than using a 
mediation model.

The fourth and most comprehensive model is shown below. The subscripts ij 
denote the value for the ith teacher in the jth program in the country. Tij is used as a 
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vector of variables of teacher characteristics and Mij is used as a vector of variables 
of opportunity to learn school-level mathematics at the teacher level, and Tj  and 
Mj  are used at the program level.

 
Level1 0 1 2 3:MKT OTL DIVERSITY T M rij j j ij j ij j ij ij= + + + +b b b b

 

 
Level 2 0 00 01 02 03 0: b g g g gj j j j jOTL DIVERSITY T M u= + + + +

 

The single equation mixed model representation is given below:

MKT OTL DIVERSITY T M OTL DIVERSITYij j j j ij= + + + + +g g g g g g00 01 02 03 10 220
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T
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ij

ij j j ij ij+ + + +g

The model fit for each specification was investigated by calculating the Akaike 
information criterion (AIC) and the Bayesian information criterion (BIC) with simi-
lar three-level HLM. Combining the countries into one model allows for looking at 
model fit for all countries together to determine general trends in model fit. Results 
in Tables 11.7 and 11.8 show that the full model, or fourth specification, generally 
has the best fit. The purpose of this analysis is to examine the relationship between 
mathematical knowledge for teaching and opportunities to learn to teach students 
from diverse backgrounds. Because there were small differences in model fit 
between the third and fourth specification, only the results from the second (basic) 
and fourth (full) specifications are reported.

Table 11.7 Model fit statistics for 3-level models predicting mathematics content knowledge

Model 
specification

Lower-primary 
generalists

Primary 
generalists

Primary/lower- 
secondary generalists

Primary 
specialists

AIC 63,905.31 52,056.61 14,502.73 21,354.43
  Unconditional
  Basic 60,659.27 50,987.61 13,646.40 20,877.42
  Teacher 

Background
52,155.41 47,215.99 11,854.28 18,224.79

  Math 
Opportunity

51,870.82 47,184.64 11,857.90 18,130.38

BIC 63,931.83 52,082.37 14,523.39 21,376.59
  Unconditional
  Basic 60,744.80 51,071.08 13,712.73 20,949.14
  Teacher 

Background
52,328.97 47,387.42 11,988.42 18,370.24

  Math 
Opportunity

52,070.05 47,381.46 12,011.90 18,297.28

Note: Decreases in value between models indicate better fit.
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Because of small population sizes of teacher preparation programs in some 
countries, some modifications were made to specifications including teacher back-
ground characteristics. In countries where the number of programs was smaller than 
the number of variables included at level 2, the intercept equation at level 2 does not 
include any of the additional variables at the program level. This intercept equation 
only includes the variable for the mean opportunity to learn to teach students from 
diverse backgrounds. Therefore, the within and between relationships are still sepa-
rated. Although the between relationship is estimated in these cases, it is not reported 
because it is not comparable to the estimates for the other countries including addi-
tional covariates at level 2.

Results from Germany should be treated with caution as well, because the within 
and between relationships cannot be determined. Although several different teacher 
preparation programs were sampled as part of the data collection, data about the 
program each teacher was in was not included in the dataset. Therefore, results for 
Germany are only presented for the within-program columns in tables. Program 
assignment was used to develop sampling weights in Germany, so population esti-
mates can still be determined.

 Results

Across the different specifications, there is evidence of both positive and negative 
relationships between opportunity to learn to teach students from diverse back-
grounds and mathematical knowledge for teaching. Negative relationships indicate 
that teachers with more opportunities to learn to teach students from diverse back-
grounds tend to have lower levels of mathematical knowledge for teaching, while 

Table 11.8 Model fit statistics for 3-level models predicting mathematics pedagogical content 
knowledge

Model specification
Lower-primary 
generalists

Primary 
generalists

Primary/lower- 
secondary  
generalists

Primary 
specialists

Akaike information 
criterion (AIC)

65,149.22 52,071.85 14,930.09 21,345.88

  Unconditional
  Basic 61,841.73 51,007.29 14,062.27 20,848.61
  Teacher Background 53,073.17 47,327.69 12,261.59 18,271.79
  Math Opportunity 52,865.87 47,302.02 12,266.50 18,209.55
Bayesian information 
criterion (BIC)

65,175.74 52,097.62 14,950.74 21,368.04

  Unconditional
  Basic 61,927.26 51,090.76 14,128.60 20,920.33
  Teacher Background 53,246.73 47,499.12 12,395.72 18,417.25
  Math Opportunity 53,065.10 47,498.84 12,420.50 18,376.45

Note: Decreases in value between models indicate better fit.
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positive relationships indicate these teachers tend to have higher levels of mathe-
matical knowledge for teaching. There was not a consistent relationship found 
across all countries, although more negative relationships were found than positive 
relationships. The results for the mathematical content knowledge outcome are dis-
cussed first, followed by mathematical pedagogical content knowledge. Finally, 
results regarding the variation in observed relationships are presented.

 Mathematics Content Knowledge (MCK)

Evidence of a relationship between mathematical content knowledge and opportu-
nities to learn to teach students from diverse backgrounds was found in several 
countries. First, looking at the basic model (Table 11.9), there is evidence of a posi-
tive relationship for lower-primary generalist teachers in Georgia within programs 
(3.94) and for primary generalists in Chinese Taipei between programs (77.47). 
Similarly, there is a positive relationship within programs for primary specialists in 
the United States (6.56), but there is also a negative relationship found between 
programs (−16.49). In the latter case, programs that on average provide more oppor-
tunities to learn to teach students from diverse backgrounds tend to have teachers 
with lower levels of mathematical content knowledge. A negative relationship was 
found in Poland for lower-primary generalists within programs (−3.05) and primary 
specialists between programs (−17.65), and a negative relationship as was found 
both within and between programs in Thailand for primary specialists (−3.57 and 
−12.99, respectively).

When looking at the full model (see Table 11.10), many of the results change, 
suggesting that the results are generally not robust for mathematics content. Teacher 
background and opportunity to learn mathematics may account for some of the 
relationships previously seen. The results from the basic model found in Germany, 
Chinese Taipei, the United States and the between relationship in Thailand are no 
longer significant. In these cases, teacher background and opportunity to learn 
mathematics seem to account for the relationship seen between opportunities to 
learn to teach students from diverse backgrounds and mathematical content knowl-
edge. New statistically significant relationships also are found in the full model, 
including a negative relationship within programs for primary generalists in 
Malaysia (−3.83). Positive relationships between programs were found for primary 
generalists for both the Philippines and Spain (10.08 and 6.49).

 Mathematics Pedagogical Content Knowledge (MPCK)

In the basic specification (Table 11.11), the results show several negative relation-
ships between programs and a mix of negative and positive relationships within 
programs between mathematical pedagogical content knowledge and opportunities 
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to learn to teach students from diverse backgrounds. Lower-primary generalists in 
Poland, as well as primary specialists in Thailand and the United States show a 
negative relationship between programs (−16.74, −13.90 and−21.24, respectively). 
In fact, for these groups of teachers in Poland and Thailand there is also evidence of 
a negative relationship within teachers from the same program (−3.82 and−3.33, 
respectively). In addition to these negative relationships within programs, positive 
relationships within programs were found for lower-primary generalists in Georgia 
and Malaysia, along with primary/lower-secondary generalists in Botswana (7.83, 
4.82, and 8.8, respectively).

In the full specification (Table 11.12), many of the relationships remain statisti-
cally significant, and no new relationships are found. In particular, the positive rela-
tionship within programs for lower primary generalists in Poland, the negative 
relationship within programs for primary specialists in Thailand, and the negative 
relationship between programs in the United States for primary specialists are no 
longer statistically significant. In these cases, teacher background and opportunity 
to learn mathematics may account for the relationships found in the basic specifica-
tion. The remaining significant relationships found in the basic specification remain 
statistically significant and of the same sign.

 Variation in the Within-Program Relationship for Different 
Programs

There is evidence of variation in the within-program relationship between opportu-
nities to learn to teach students from diverse backgrounds and mathematical knowl-
edge for teaching for different programs in some countries. Looking at the Level 2 
OTL Diversity columns in Tables 11.13 and 11.14, there are several statistically 
significant variances found. For the relationship with mathematical content knowl-
edge in Table 11.13, the relationship was found to vary for different programs for 
primary/lower-secondary generalists in Chile, lower-primary generalists in Russia, 
and both lower-primary generalists and primary specialists in Poland. For the rela-
tionship with mathematical pedagogical content knowledge in Table 11.14, there is 
less evidence of variation of the relationship among programs. Statistically signifi-
cant variation was found for lower-primary generalists in Russia and primary spe-
cialists in the United States. These variances indicate that while the models estimated 
the average within-program relationship for these types of teachers in these coun-
tries, the within-program relationship may vary widely by program. In fact, some 
programs in these countries may see a positive relationship while other programs 
may see a negative relationship within teachers from the same program.
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 Discussion

The results presented show that primary teacher preparation in some countries does 
not develop teachers who are as well prepared for the mathematical aspects of 
teaching as they are to work with students from diverse backgrounds, while in other 
countries they are more equally prepared for both aspects of teaching. While it is 
difficult to generalize across the different program types, the highest proportion of 
negative relationships found was for primary mathematics specialists, while the 
other program types tended to show more mixed results. Also, in many cases, differ-
ent relationships were found by type of teacher preparation, such as generalists 
versus specialists, suggesting that there may be important differences between pro-
gram types in this relationship.

The concentration of negative relationships in programs for primary mathemat-
ics specialists suggests that programs that are more mathematically demanding may 
be less so in preparing future teachers for student diversity and for the mathematical 
aspects of teaching. Additionally, teachers may need to choose between programs 
that focus on teaching students from diverse backgrounds or concentrate on math-
ematics, which could create large differences between program type. Further 
research to better understand these types of programs and explore the reasons for 
seeing these differences in program type is warranted.

However, these tentative conclusions about program type should be taken with 
caution as there was wide variation among countries within each program type. For 
example, it may be wiser not to focus on the program type and instead focus on the 
individual countries making up the different types. The results showed wide differ-
ences between countries, even in groups that did not show a consistent trend in the 
relationship. This variation suggests any relationship seen may be as much an arti-
fact of the cultural context of particular countries, such as their conceptions of 
teaching, how teacher preparation is implemented, or even the role diversity in stu-
dent backgrounds plays in the educational system. With these varying results 
between countries, further work including case-study comparisons between coun-
tries is warranted.

There are several reasons why this analysis would find negative relationships, 
including differences in the types of teachers who attend programs and programs’ 
emphases on topics. Having different types of teachers who are more likely to 
attend programs with different opportunities to learn to teach students from diverse 
background could bring about the relationships seen. Although the analysis con-
trolled for teacher background characteristics, there may be other characteristics 
that are associated with mathematical knowledge for teaching and programs with 
different opportunities to learn to teach students from diverse backgrounds. Future 
work would benefit from including additional teacher background characteristics, 
especially teachers’ racial or ethnic background. Additionally, pre-test measures 
of teachers’ mathematical knowledge for teaching could help determine whether 
the differences exist in the teachers who chose to attend particular programs and/
or the differences increased or decreased by the end of program. While this type 

11 Preparing Primary Mathematics Teachers to Learn to Work with Students…



342

of study design is difficult to implement in pre-service programs because of the 
widely differing lengths of programs, and the different routes into teaching, even 
pre-post measures of outcomes during the final year of teacher preparation would 
be a substantial contribution to the field.

Beyond the context of teacher education, these results also speak to the equity in 
access to mathematics that future  teachers at the primary level  encounter. These 
results indicate that inequalities are apparent at the end of teacher preparation pro-
grams. Additionally, it is reasonable to assume that teachers who choose programs 
with greater opportunities to learn to teach students from diverse backgrounds 
would be more likely to actually teach these populations of students. It is puzzling 
however that these teachers seem to be less qualified in the mathematical aspects of 
teaching, a situation that may result in less effective teachers. However, making this 
claim would be much better supported by data looking at these teachers’ eventual 
effectiveness and instruction in the classroom. Additionally, it is not clear whether 
mathematical preparation or preparation for student diversity is most important for 
teacher effectiveness. As teacher preparation programs often have limited time and 
many goals to meet, particularly in programs that focus on more advanced mathe-
matics, these programs may be focusing on the aspects of teaching that will have the 
greatest impact on student learning when working with students from diverse back-
grounds. Future research in this area would be helpful for informing teacher prepa-
ration about where efforts are best spent.

 Conclusion

This study examined whether primary teachers are equally prepared for student 
diversity and the mathematical aspects of teaching from teacher preparation. The 
results found evidence that primary mathematics specialist programs tend not to 
prepare teachers equally well in these two areas. Therefore, the teachers with better 
mathematical knowledge for teaching tend to have less preparation in learning to 
teach students from diverse backgrounds and vice versa. As these teachers enter the 
teaching force, it is likely that these differences will lead to inequity in access to 
high-quality mathematics teachers. These results suggest that mathematically strong 
programs may wish to place more emphasis on preparing for student diversity, 
while programs with more emphasis on student diversity may benefit from addi-
tional mathematical preparation.

Although the cross-sectional nature of the TEDS-M data limits our ability to 
distinguish among the reasons behind the differences seen, there are still clear 
implications for teacher preparation programs. First, programs would benefit from 
examining whether their teachers have sufficient opportunities to learn both math-
ematical knowledge for teaching and how to teach students from diverse back-
grounds. Additionally, programs may wish to consider how well prepared their 
teachers are mathematically when entering the program and ways of increasing the 
mathematical background of teachers as necessary. Programs with strong emphasis 
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on teaching students from diverse backgrounds could consider integrating mathe-
matics into these courses. In other words, programs could provide opportunities for 
teachers to learn simultaneously to teach mathematics to students from diverse 
backgrounds, making some of these course elements specific to the subject of math-
ematics. Research on these integrated types of courses at the primary level show 
promise for developing mathematics teachers who are prepared to teach in ways 
that bring about more equitable student outcomes (Aguirre et al., 2013; Foote et al., 
2013; McDuffie, Foote, Bolson, et al., 2014).
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Chapter 12
Differences in Beliefs and Knowledge 
for Teaching Mathematics: An International 
Study of Future Teachers

Traci Shizu Kutaka, Wendy M. Smith , and Anthony D. Albano

Abstract Mathematical content knowledge and beliefs about teaching and learn-
ing interact in complex ways that, in turn, influence the quality of mathematics 
instruction and, therefore, are important teacher-preparation program outcomes. We 
used the Teacher Education Development Study in Mathematics (TEDS-M) data-
base to study the relationship between future primary teachers’ beliefs about the 
nature of mathematics, beliefs about learning mathematics, and mathematical con-
tent knowledge (MCK) within and between teacher preparation programs across 15 
countries. A series of multilevel models were fit to four program groups (lower 
primary, primary, primary/secondary, and primary mathematics specialists) with 
future teachers nested within institutions. Confirming our hypotheses, procedural 
beliefs were associated with lower MCK scores, and inquiry beliefs were associated 
with higher MCK scores. We hypothesized that  endorsing fixed-ability beliefs 
would be associated with lower MCK scores, but this was only confirmed in some 
countries and program-types. The chapter concludes with possible explanations for 
programmatic differences between and within countries, grounded in a discussion 
of program features such as entry requirements, program-types, and credentials, as 
well as curriculum organization and content.
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Introduction

Shulman (1986) identified subject-matter knowledge as one of three bodies of 
sophisticated, professional knowledge necessary to carry out the tasks of teaching. 
Mathematical content knowledge (MCK) is part of an instructional triangle, where 
the relationships between the teacher, the content, and the student interact in com-
plex ways (Hawkins, 1974; Lampert, 2001). Beliefs about the nature of mathemat-
ics, teaching, and learning are “predispositions to action” (Rokeach, 1968, p. 113), 
channeling how mathematical content knowledge is used in practice (Ambrose, 
2004; Weinstein, 1989). Indeed, deep mathematical content knowledge combined 
with productive beliefs about teaching and learning are important outcomes for 
teacher preparation programs. This study uses the IEA Teacher Education and 
Development Study in Mathematics (TEDS-M) database to explore the extent to 
which the belief patterns about teaching and learning endorsed by future primary 
teachers are related to different levels of mathematical content knowledge within 
and between preparation program-types across 15 developing and developed 
countries.

The first section of this chapter describes the purpose of the TEDS-M study and 
why studying cross-national teacher-preparation programs may be instructive. Next 
is a summary of the literature on the role of mathematical content knowledge in 
mathematics teaching, what is known about productive beliefs in mathematics 
teaching and learning, and, as theoretical context for this study, the significance of 
the relationship between knowledge and beliefs. The next section outlines the details 
of the design of the TEDS-M study, including our analytic strategy. The results are 
presented followed by a discussion of the findings. The chapter concludes with rec-
ommendations for teacher preparation programs and policymakers.

 The Teacher Education and Development Study 
in Mathematics (TEDS-M)

The purpose of the TEDS-M study was to collect cross-national data on the knowl-
edge that future primary and secondary teachers have acquired upon completing 
their mathematics teacher education programs. The TEDS-M database presents an 
opportunity to study the variation in the nature and impact of primary teacher edu-
cation programs within and between 15 countries/municipalities: Botswana, Chile, 
Chinese Taipei, Georgia, Germany, Malaysia, Norway, Philippines, Poland, Russia, 
Spain, Singapore, Switzerland, Thailand, and the United States. Data were collected 
in 2008 from representative samples of pre-service teacher education programs and 
from their teacher educators with the goal of informing policy and practice regard-
ing the professional preparation of teachers.

TEDS-M identified two types of teacher preparation routes across the participat-
ing countries: consecutive routes and concurrent routes. The consecutive route 
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includes two phases: academic study, with specialization in the subject matter to be 
taught, followed by pedagogy and practical/field experiences. The concurrent route 
is defined by the first and second phases representing a single program of study 
resulting in a single teaching credential. Occasionally, program-types would be cat-
egorized as mixed, with elements of both concurrent and consecutive routes. In the 
whole of the TEDS-M study, there are 22,078 future teachers from 504  institu-
tions and 775 programs in 17 countries across six types of teacher education pro-
grams (four types of primary programs and two secondary). The program types and 
the grades at which future primary-level teachers are qualified to teach are in 
Table 12.1; the number of candidates in each program group by country can be seen 
in Table 12.2 in the Methods section.

Table 12.1 Program-types represented in the TEDS-M database

Level Program-type Grades eligible

Primary Lower-Primary Generalists up to Grade 4
Primary Generalists up to Grade 6
Primary/secondary Generalists up to Grade 10
Mathematics specialist Specialists

Lower secondary Lower-Secondary Up to Grade 10
Lower & upper secondary To Grade 11 and above

Table 12.2 Primary program groups by country, represented in the TEDS-M database

Lower 
primary Primary

Primary/
secondary

Math 
specialist Total

Botswana 86 (4) 86 (4)
Chile 657 (31) 657 (31)
Chinese Taipei 923 (11) 923 (11)
Georgia 506 (10) 506 (10)
Germany 935 (19) 97 (8) 1,032 (27)
Malaysia 576 (12) 576 (12)
Norway 551 (32) 551 (32)
Philippines 592 (33) 592 (33)
Poland 1,812 (86) 300 (39) 2,112 (125)
Russian 
Federation

2,266 (45) 2,266 (45)

Singapore 263 (4) 117 (2) 380 (6)
Spain 1,093 (48) 1,093 (48)
Switzerland 121 (7) 815 (14) 936 (21)
Thailand 660 (51) 660 (51)
United States 1,310 (56) 191 (15) 1,501 (71)
Total 5,640 (167) 4,996 (166) 1,294 (67) 1,941 (127) 13,871 (527)

Note: Counts are the number of future teachers in a given program group, with the number of 
programs in parentheses
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The overarching TEDS-M research questions are in Tatto et  al. (2012), along 
with an in-depth description of the two-stage sampling design and procedures that 
resulted in a representative sample of future teachers and teacher educators. The 
conceptual framework, design, and methodology for the study have also been rigor-
ously documented in various reports (see Tatto et al., 2008; Tatto et al., 2012). Data 
were collected from four sources: (a) teacher institutions and programs, (b) teacher 
educators, (c) future primary teachers prepared to teach mathematics, and (d) future 
secondary teachers also prepared to teach mathematics.

 Why Use Internationally Comparable Data?

Data from IEA’s Trends in International Mathematics and Science Study (TIMSS, 
Gonzales et al., 2008) show considerable variation in fourth- and eighth-grade stu-
dents’ performance across 37 countries. In an effort to understand and give meaning 
to these findings, one possible path is to study factors that influence student perfor-
mance. Certainly, teachers and teaching influence student performance, but teachers 
differ in their professional knowledge and beliefs, competencies, and capacities. For 
this reason, one avenue of investigation is teacher education programs, where the 
recruitment and preparation of future teachers have been shown to vary in important 
ways (Organisation for Economic Co-operation and Development [OECD], 2005). 
The TEDS-M project database contains data concerning how 17 countries prepare 
future primary and secondary mathematics educators. This database also includes 
information on the types of programs, which consist of multiple pathways to 
certification.

Teacher certification has not been consistently linked to higher-quality instruc-
tion nor to improved student outcomes in the Western world, with a particular lack 
of connection in the United States (Boyd, Lankford, Loeb, Rockoff, & Wyckoff, 
2008; Darling-Hammond, Berry, & Thoreson, 2001; Guarino, Santibañez, & Daley, 
2006; Phillips, 2010). In fact, given the variation in program quality, certification 
alone may not be adequate as a single predictor. Programs that lead to different 
kinds of certification may attract different types of future teachers as well as have 
different compulsory coursework that reflects different ideas about what kinds and 
amount of knowledge are sufficient and/or necessary to engage in the work of teach-
ing. Tatto’s (1998) research using the Teacher Education and Learning to Teach 
Study from the National Center for Research on Teacher Education (1985–1990) 
showed teacher education programs do not have coherent or unified goals for teacher 
education. When programs send mixed messages to participants, it is no surprise 
that programs do not substantially change participants’ beliefs.

Therefore, examining who is qualified to teach and how they are prepared may 
facilitate an “understanding of how different ways of doing things may be used to 
accomplish similar goals, or how similar ways of doing things may serve different 
goals” (Rogoff, 2003, p. 34). Thus, the purpose of this study is to understand regu-
larities and patterns of variation across primary-teacher preparation programs in 
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multiple countries in (a) teaching-related beliefs, (b) mathematical content knowl-
edge, and (c) the relationship between teaching-related beliefs and mathematical 
content knowledge.

 Review of Relevant Literature

 Mathematical Content Knowledge

How best to identify and measure the characteristics of highly qualified teachers 
remain open questions. In the 1980s, Shulman provoked a national conversation in 
the United States around the kinds of professional knowledge necessary for the 
work of teaching. Importantly, Shulman (1986) also set the stage for discipline- 
based educational research by posing the missing paradigm question (p. 6): “How 
does the subject-matter knowledge of the teacher transform into the content of 
instruction?” This call was answered by theorists, most notable of which includes 
the work of Deborah Ball, Heather Hill, and colleagues in mathematics education 
research. Ball proposed and validated multidimensional domains of teacher knowl-
edge (Ball, Thames, & Phelps, 2008; Hill, Schilling, & Ball, 2004), arguing that 
there exists a specialized body of knowledge that is unique to teaching mathematics: 
pedagogical content knowledge for teaching. This knowledge domain has been 
linked to higher levels of instructional quality (Hill, Ball, Blunk, Goffney, & Rowan, 
2007; Learning Mathematics for Teaching Project, 2011) as well as greater gains in 
student achievement (Baumert et al. 2010; Hill, Rowan, & Ball, 2005; Hill et al., 
2007).

Mathematical content knowledge—or subject-matter knowledge—is the corner-
stone of pedagogical content knowledge for teaching. Subject-matter knowledge, or 
disciplinary content knowledge, is composed of substantive and syntactic knowl-
edge structures (Schwab, 1978). Substantive knowledge structures are defined by 
how basic concepts and principles are organized, including what ideas are central or 
peripheral. Syntactic knowledge structures are the set of ways that truths, false-
hoods, or invalidity are established. Before teachers are able to respond to errors in 
student thinking, anticipate misconceptions, and respond to student propositions 
and questions in ways that are generative of future learning, teachers themselves 
“need not only understand that something is so; the teacher must further understand 
why something is so; on the grounds its warrants can be asserted and under what 
circumstances our belief in its justification can be weakened and even denied” 
(Shulman, 1986, p. 9).

Ball (1990) used a longitudinal questionnaire and interview data to explore both 
primary and secondary mathematics pre-service teachers’ mathematical content 
knowledge and their perceptions of the role of content knowledge in the work of 
teaching. Careful analysis of future teacher knowledge of division with fractions 
indicated both groups of candidates had difficulty unpacking (Ma, 1999) the mean-
ing of dividing with fractions, as evidenced by the proportion of candidates who did 
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not have the ability to select or generate an appropriate representation for 1 ¾ ÷ ½. 
Moreover, three common assumptions about teaching primary and secondary math-
ematics emerged. First, candidates operated under the assumption that teaching 
school-level mathematics is not difficult: if one can do first-grade math topics, one 
can teach first-grade math topics. Second (and related to the first assumption), 
secondary- level mathematical education provides future teachers with sufficient 
levels of mathematical knowledge necessary for teaching. Third, majoring in math-
ematics ensures sufficient subject-matter knowledge for teaching. Contrary to these 
assumptions, Ball suggests the mathematical knowledge future teachers bring is 
inadequate for teaching mathematics for understanding.

This returns us to Shulman’s question concerning the transformation of subject 
matter knowledge into instructional content, which is elaborated upon by Barnes 
(1989, p. 20) in relation to the professional preparation of teachers: “How do nov-
ices come to understand teaching (both constraints and possibilities) and how do 
they acquire the dispositions and capacities needed for principled thought and 
action?” The principled thought and action to which Barnes refers is the employ-
ment of sound judgment of the teacher that is grounded in cycles of observation and 
reflection coupled with what Ma (1999) refers to as a profound mathematical 
knowledge that enables teachers to engage in the tasks of teaching mathematics 
outlined by Ball et al. (2008). How novice teachers achieve this—how they orga-
nize, justify, and use their mathematical knowledge to “create and accomplish their 
intentions for learners” (Barnes, 1989, p. 14)—is an important teacher-preparation 
program outcome.

 TEDS-M Findings

The TEDS-M framework for mathematical content knowledge was derived from 
IEA’s TIMSS. Four domains were used to assess the mathematics content knowl-
edge of future teachers: numbers and operations, geometry and measurement, alge-
bra and functions, and data and chance. Two anchor points that provide descriptions 
of the performance of future teachers at particular score values were generated from 
the data and can be found in Policy, Practice, and Readiness to Teach Primary and 
Secondary Mathematics in 17 Countries (Tatto et al., 2012). Two findings are rele-
vant for this study, which justify our interest in patterns of variability between 
program-types.

First, there is a wide range of achievement across program-types within each 
country. Even the highest achieving countries had some future teachers with rela-
tively low scores (below the first anchor point); conversely, even the lowest achiev-
ing countries had some future teachers with scores above the first anchor point 
(internationally scaled mean score  =  431). Second, for programs within each 
program- type, the difference between the highest and lowest scaled mean score is 
100 points, which is more than one standard deviation. This suggests that some 
teachers at the primary grade within the same programs graduate with considerably 
more mathematical content knowledge than others.
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 Teacher Beliefs

Researchers have reached a general consensus that beliefs are “psychologically held 
understandings, premises, or propositions about the world that are felt to be true” 
(Richardson, 1996, p.  103) and are distinct from attitudes (McLeod, 1992; 
Tourangeau, Rips, & Rasinski, 2000), values (Dewey, 1933; Pajares, 1992, 1996), 
and knowledge (Connelly & Clandinin, 1986; Nespor, 1987; Nisbett & Ross, 1980; 
Thompson, 1992). Mathematics beliefs are “personal judgments about mathematics 
formulated from experiences in mathematics, including beliefs about the nature of 
mathematics, learning mathematics, and teaching mathematics” (Raymond, 1997, 
p. 552). Consistent with Rokeach (1968), Raymond’s definition describes beliefs as 
having an organizational structure (similar to atoms), implying a systematic order of 
relationships between types of beliefs.

The beliefs of future teachers are influenced by their own experiences as learn-
ers. Following from Lortie’s (1975) theory of the apprenticeship of observation, 
candidates enter preparation programs with powerful images and ideas (usually 
implicit, unexamined, and unarticulated) about teaching and student learning. 
Similarly, Pajares (1992) states beliefs are “formed early and tend to self- perpetuate, 
persevering even in the face of contradictions caused by reason, time, schooling, 
and experience” (p. 324). Pajares goes further, describing future teachers as insiders 
in a strange land: school and classrooms are familiar environments and contain 
familiar actors. This familiarity, alongside deeply rooted memories as students, act 
as the filters through which new information and experiences offered in training 
programs are processed. However, these earlier beliefs and memories may be irrel-
evant or counterproductive to the development of professional judgment.

Research has documented consistencies (e.g., Peterson, Fennema, Carpenter, & 
Loef, 1989; Polly et al., 2013) and inconsistencies (e.g., Raymond, 1997; Thompson, 
1984) between beliefs and enacted instructional practices. Nevertheless, teacher 
beliefs that are productive (e.g., enable positive student outcomes; see Ambrose, 
2004 or National Council of Teachers of Mathematics, 2014) and resist simplistic 
representations of the work of teaching can help novice teachers navigate the reali-
ties of classroom teaching. This conclusion is consistent with the observations of 
one of Raymond’s (1997) case subjects, Joanna, who stated it would be helpful if 
preparation programs facilitated the examination and development of a personal 
belief system, or philosophy of teaching before the trials and errors encountered 
during her first years of teaching (p. 572). Raymond notes that the conflict Joanna 
describes is typical for novice teachers.

Our working definition of mathematics beliefs is consistent with the TEDS-M 
and TIMSS studies and is composed of lower-order beliefs about the nature of 
mathematics, beliefs about teaching mathematics, and beliefs about learning math-
ematics. These lower-order beliefs are related but have distinct features. We readily 
acknowledge there are many different ways to conceptualize and categorize beliefs 
about mathematics, teaching, learning and students. Since this study draws upon 
TEDS-M data, we take the belief scales from the TEDS-M questionnaires as our 
major belief categories.
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 Beliefs About the Nature of Mathematical Knowledge

Teacher beliefs about the nature of mathematics, or conceptions of the discipline of 
mathematics, are perhaps more clearly summarized by the question “What is math-
ematics?” Educated individuals hold different and varied answers to this question. 
Ball (1999) provides evidence that novice teachers hold unexamined, diminished 
views of mathematics. These views, in turn, are the basis for teachers’ views of the 
content of instruction, including how material is presented and the means necessary 
to learn and engage in mathematical tasks.

Thompson (1992) cites four definitive theories of the nature of mathematics, 
which are dichotomized into two types within the TEDS-M framework. The first 
type generally characterizes mathematical knowledge as a unified and immutable 
body of knowledge, the sum of which is contained in facts, rules, and procedures. In 
contrast, the second type generally characterizes mathematical knowledge as a 
human creation that is the product of inquiry and therefore open to revision. 
Although Thompson may have envisioned the belief categories as distinct, these 
belief categorizations are not opposite ends of a spectrum, but instead can be viewed 
as orthogonal. Teachers may well have strong beliefs about knowledge construction 
in mathematics, but also see mathematics as a collection of rules and procedures.

Teachers’ beliefs are a crucial filter through which teachers make instructional 
decisions, thus impacting the content and quality of instruction (Polly et al., 2013) 
and their use of curricula (Remillard, 2005; Remillard & Bryans, 2004). As teachers 
are learning to teach, “they apprehend and enact new instructional policies in light 
of inherited knowledge, belief, and practice” (Cohen & Ball, 1999, p. 335).

 Beliefs About Mathematics Achievement

Teachers’ beliefs about what it takes to learn mathematics also impact student learn-
ing. There is growing evidence that beliefs that foster student-centered pedagogies 
are associated with improved student learning outcomes (Dweck, 2000; Polly et al., 
2013). Teachers with student-centered beliefs take the stance that students can make 
sense of problems and participate actively in their own learning (Capraro, 2001; 
Şahin & Yılmaz, 2011). This contrasts with more teacher-centered beliefs in which 
teachers think they must tell students information in order for students to learn that 
information. However, as with beliefs about the nature of mathematics, student- 
centered and teacher-centered beliefs should also be viewed as orthogonal rather 
than opposite ends of a linear continuum (e.g., Blömeke, Hsieh, Kaiser, & Schmidt, 
2014). Teachers may respond positively to survey items about teacher-centered 
beliefs (such as the important of good explanations and telling students content) and 
about student-centered beliefs (such as the importance of students actively con-
structing knowledge and communicating their reasoning). This orthogonality is a 
reason both of these categories are scales on the TEDS-M questionnaire; were they 
opposites on a single continuum, one scale (with reverse coded items) would 
suffice.
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 TEDS-M Findings

Tatto et al. (2012, Chapter 6) performed descriptive analyses of the variation across 
and within countries of percentages of candidates who endorsed the procedural, 
inquiry, and fixed-ability beliefs. On a descriptive level, there are substantial sys-
tematic differences across countries, but generally much smaller differences among 
program groups within countries (e.g., lower primary versus primary within a coun-
try). However, we do not know how these beliefs are linked to other program 
outcomes.

Respondents in all countries generally endorsed the view that mathematics is a 
process of inquiry as well as a set of rules and procedures. The latter image of math-
ematics was most strongly endorsed in Botswana, Georgia, Malaysia, Oman, the 
Philippines, and Thailand, whereas the strongest rejections of this image came from 
Germany, Switzerland, and Norway. Teachers in Chilé, Chinese Taipei, Poland, the 
Russian Federation, Singapore, and Spain generally endorsed inquiry beliefs, but 
also strongly endorsed procedural beliefs. The latter finding is consistent with 
Blömeke et  al. (2014), who asserted procedural and inquiry beliefs were not 
inversely related, but orthogonal. This finding suggests endorsing both inquiry and 
procedural beliefs is not indicative of contradictory or internally inconsistent belief 
systems. Instead, teachers are inherently sensible beings (Leatham, 2006), who 
have internally consistent beliefs systems, although they may not appear so to out-
siders (Philipp, Clement, Thanheiser, Schappelle, & Sowder, 2003). Only a small 
number of countries saw the majority of respondents endorse the view that mathe-
matics was a fixed ability. This view of learning was most strongly endorsed in 
Botswana, Georgia, Malaysia, the Philippines, and Thailand, and most strongly 
rejected in Germany, Norway, Switzerland, and the United States.

 Why Productive Beliefs and Mathematical Content 
Knowledge Are Important Program Outcomes

Future teachers tend to underestimate the complexity of the tasks of teaching and 
the subject-matter knowledge they will need in order to be successful (Ball, 1990; 
Grossman, Wilson, & Shulman, 1989). Ambrose (2004) describes the findings from 
Children’s Mathematical Thinking Experience, where 15 future teachers were inter-
viewed after participating in an experimental pedagogy course paired with a math-
ematics course, and after four one-on-one sessions with 10-year-old children 
working with fractions. During these interviews, participants noted that doing math 
was distinct from teaching math, and conceptual understanding (operationalized in 
this study as multiple representations and solutions to problems) would be essential 
to their success as teachers. Ambrose suggests that one-on-one interactions with 
students helped this group of future teachers to realize teaching mathematics is 
more complex than they expected, highlighting the value of the material in the 
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mathematics content courses. This study also highlights a prominent theme in the 
work of previous scholars—specifically, Weinstein’s (1989) optimism bias, a dispo-
sition characterized by the novice teacher’s belief that teaching entails straightfor-
ward work, consisting primarily of offering clear explanations to children.

Knowledge and beliefs are distinct but interdependent psychological resources 
(Ernest, 2006; McLeod, 1992; Philipp, 2007) teachers draw upon when making 
pedagogical decisions from one moment to the next during instruction (Campbell 
et al., 2014; Holm & Kajander, 2012; Ma, 1999; Wilkins, 2008). There is evidence 
that teachers’ mathematical content knowledge has positive influences on the qual-
ity of mathematical instruction (Fennema & Franke, 1992; Lloyd & Wilson, 1998), 
but this does not guarantee that teachers with high levels of knowledge will teach in 
ways that facilitate understanding for all children (e.g., Ball, Lubienski, & Mewborn, 
2001). Such findings substantiate Ball’s (1990) claim that teachers with similar 
kinds and levels of mathematical knowledge may teach very differently from one 
another. One potential source of this variation is teacher beliefs about teaching and 
how learning is promoted. For example, different epistemic beliefs about the nature 
of mathematical knowledge and the depth of mathematical content knowledge lead 
to different instructional practices (e.g., Ma, 1999; McLeod & McLeod, 2002; 
Thompson, 1984, 1992).

Indeed, what novice teachers believe about what teaching entails and what they 
believe about the knowledge essential to engage in the tasks of teaching—such as 
those proposed by Raymond (1997) and Ball et al. (2008)—potentially influence 
the knowledge and skills teachers have upon completion of teacher preparation 
coursework. Hence, an understanding of what teachers believe about the nature of 
mathematics and learning in connection with levels of mathematical content knowl-
edge may be instructive for short- and long-term programmatic evaluation and ensu-
ing policy recommendations.

 Research Question

The research question motivating this investigation centers on the relationship 
between beliefs about the nature of mathematics, beliefs about mathematics ability, 
and mathematical content knowledge. To unpack this broad question, we delineate 
three sub-questions: Within and between teacher preparation programs in the 
TEDS-M study,

 1. To what extent do MCK scores vary as a function of pre-service teachers’ proce-
dural beliefs about mathematics in different teacher preparation programs in 
TEDS-M countries?

 2. To what extent do MCK scores vary as a function of pre-service teachers’ inquiry 
beliefs about mathematics in different teacher preparation programs in TEDS-M 
countries?
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 3. To what extent do MCK scores vary as a function of pre-service teachers’ fixed- 
ability beliefs about mathematics achievement in different teacher preparation 
programs in TEDS-M countries?

We offer three associated hypotheses. First, future teaches who endorse the belief 
that learning mathematics is a procedural process will have lower MCK scores rela-
tive to their peers who do not endorse procedural beliefs as strongly. Second, future 
teachers who endorse the belief that learning mathematics is a process of inquiry 
will have higher MCK scores relative to their peers who do not endorse inquiry 
beliefs as strongly. Finally, future teachers who endorse the belief that mathematics 
is a fixed ability will have lower MCK scores relative to their peers who do not 
endorse fixed-ability beliefs as strongly.

 Methods

 TEDS-M Data

In the TEDS-M study, teacher preparation programs were categorized into different 
groups based on similarities among the programs. The TEDS-M documentation 
defines a program as “a prescribed course of study leading to a teaching credential,” 
and a program-type as a group of programs sharing similar purposes and organiza-
tional features, such as the range of grade levels for which teachers are prepared, the 
duration and degree of specialization, and whether the program is concurrent or 
consecutive (see Schwille, Ingvarson, & Holdgreve-Resendez, 2013; Tatto et  al., 
2012, p. 20).

Programs were organized into six groups. At the primary level, these included: 
lower primary, teaching up to Grade 4; primary, teaching up to Grade 6; primary- 
lower secondary, teaching up to Grade 10; and primary mathematics specialist. At 
the secondary level, groups included: lower secondary, teaching up to Grade 10; and 
upper secondary, up to Grade 11 and above. This study focused only on primary 
programs. Table 12.2 contains the number of students in each program group and 
the number of programs (in parentheses) for each of the TEDS-M countries. A total 
of 13,907 future primary teachers participated across 15 countries and 525 pro-
grams. Complex sampling methods were used in data collection, and sampling 
weights are included in the TEDS-M datasets to adjust statistical estimates of popu-
lation effects.

At the end of their programs, future teachers completed a survey that assessed a 
variety of constructs, including mathematical content knowledge (MCK), mathe-
matical pedagogical content knowledge, opportunity to learn, and beliefs about 
mathematics (Tatto, 2013). This study utilized the MCK and beliefs measures. 
MCK was measured across the four content subdomains of number and operations, 
geometry and measurement, algebra and functions, and data and chance. These sub-
domains are labeled here as number, geometry, algebra, and data. Three item for-
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mats were used: complex multiple-choice, traditional multiple-choice, and 
constructed-response. Rasch item response theory models were used to scale and 
score the MCK measure across countries. The final MCK score distribution was 
rescaled to have a mean across participating countries of M = 500 with a standard 
deviation SD = 100. For additional details about study design, sampling, and model-
ing procedures, see Tatto, Rodriguez, Reckase, Rowley, and Lu (2013).

Future teacher beliefs about mathematics were measured across multiple 
domains, including beliefs about the nature of mathematics, beliefs about learning 
mathematics, beliefs about mathematics achievement, and beliefs about a teacher’s 
own mathematics program. These domains were further divided into scales; for 
details on the validation of these scales, see the TEDS-M technical report (Tatto 
et al., 2013). Based on the research literature and this study’s working hypotheses, 
this study utilized three of these TEDS-M scales: the nature of mathematics, with 
scales on rules and procedures (labeled as procedures); process of inquiry (labeled 
inquiry); and mathematics achievement as fixed ability (labeled fixed ability). Item 
response theory was again used for scoring, and measurement invariance was estab-
lished (Tatto et al., 2013). For each scale, the score of 10 was set to be neutral in 
terms of balancing the dichotomy being measured (Tatto et al., 2013). For example, 
scores above 10 on the procedures scale indicate a belief that mathematics is funda-
mentally procedural (e.g., “Mathematics is a collection of rules and procedures that 
prescribe how to solve a problem”); scores below 10 indicate teachers did not 
endorse this belief, and scores near 10 indicate teachers were neutral toward this 
belief. Scores above 10 on the inquiry scale represented a belief that inquiry is inte-
gral to mathematics (e.g., “Mathematics involves creativity and new ideas”). Finally, 
on the fixed-ability scale, scores above 10 indicated a belief that mathematics ability 
is fixed (e.g., “Some people are good at mathematics and some aren’t”).

 Analysis

Prior to modeling the relationships between MCK and the beliefs measures, descrip-
tive statistics and correlations among these variables were examined for the full 
primary-teacher data set and by program. Internal consistency reliability (coeffi-
cient alpha) for the three beliefs scales was also examined at the program level.

A series of multilevel models were fit to each of the four program group data 
sets, with future teachers nested within institutions. Some countries only had a sin-
gle teacher-preparation institution, so the model could not extend to nest institutions 
within countries. Thus, country was modeled as a fixed effect. Variables were 
entered sequentially in increasingly complex models, beginning with random effects 
for institutions in an unconditional base model, and then including main effects for 
country, and the beliefs scales inquiry, procedures, and fixed ability. Random effects 
for institutions provided an estimate of the variability in mean MCK by institution. 
Main effects then provided estimates of the mean MCK by country, and the pre-
dicted changes in MCK for one-point increases in beliefs. Two-way interactions 
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between country and the beliefs scales were included next, first for inquiry, then 
procedures, and then for fixed ability. These interactions estimated differences in 
the MCK-beliefs relationships by country. Finally, random effects for the beliefs 
scales were included at the institution level, which allowed for variability in the 
MCK-beliefs relationships by institution.

The multilevel model below demonstrates how MCK was modeled for the pri-
mary/secondary program group, with teachers (i) nested within institutions (j). This 
program group contained three countries: Botswana, Chile, and Norway. Botswana 
served as the reference group when estimating country effects; thus, indicator vari-
ables are only included for Chile and Norway.
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In this model, all effects besides the intercept β0j are fixed at level 2. The residual 
term at level 1 is rij (distributed normally with mean 0 and estimated variance), and 
the random intercept by institution at level 2 is u0j (also distributed normally with 
mean 0 and estimated variance). Chile and Norway are indicator variables for each 
country. As a result, the fixed main effects γ10 and γ20 estimate the mean MCK for 
Chile and Norway as a difference from the mean for Botswana, controlling for the 
remaining covariates. The fixed main effects for the three future teacher variables, 
γ30, γ40, and γ50, estimate the change in MCK for one-point changes in Procedures, 
Rules, and Fixed, respectively, for Botswana. The remaining interaction effects then 
estimate these same changes but for Chile and Norway, relative to the correspond-
ing interaction for Botswana. The other multilevel models for the other program- 
types followed this same structure, with the countries in each case included when 
they had data about a program-type.

Statistical significance for a given model term or set of terms was determined by 
comparing model fit based on AIC for models with and without that term or set of 
terms. Belief variables were included as individual terms, whereas country indica-
tors, and interactions between them and a given belief variable, were always 
included as sets of terms. For example, when testing for whether the relationship 
between procedures and MCK differed by country, fit for a model containing all 
procedures by country interactions was compared to fit for a model without those 
interactions; this would be considered a set of terms, as there were always multiple 
countries. When the addition of a term or set of terms resulted in a significant 
improvement in model fit, the term was retained in subsequent models; otherwise, 
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it was removed. Models were fit and compared using Mplus version 7.11 (Muthén 
& Muthén, 2013). TEDS-M sampling weights, referred to as final sampling weights 
in the TEDS-M documentation, were utilized at both the individual and institution 
levels. Model results can thus be interpreted as estimating population parameters by 
country.

 Results

Table 12.3 contains descriptive statistics for all groups combined and separate for 
each program group. The mean MCK for all groups combined was 505.8, just above 
the mean (500) across all teachers in the TEDS-M study. Mean MCK for lower- 
primary and primary-to-secondary groups were slightly lower, and means for pri-
mary and primary math specialists were slightly higher than the overall mean. 
Means on the belief scales were similar across program groups. For each belief 
scale, means were highest for primary math specialists. Note that none of the mean 
differences for program groups were tested for statistical significance. Instead, they 
were merely used descriptively to explore potential differences in performance by 
program group.

Reliabilities for the belief domains by program group tended to be at or just 
above .80 for all groups combined, lower primary groups, and primary groups. They 
were at or slightly below .80 for primary/secondary and slightly higher than .80 for 
primary math specialists.

Correlations among the MCK and belief measures, also contained in Table 12.3, 
differed somewhat across program groupings. MCK and inquiry showed a positive 
correlation for all groups and lower primary, but zero or nearly zero correlations for 
the other groups. MCK and procedures showed a negative correlation for all groups, 
a slightly smaller negative correlation for lower primary, and a stronger negative 
correlation for the remaining groups. MCK and fixed ability showed a similar nega-
tive correlation across all groups, except for primary math specialists, which showed 
a slightly more negative correlation than the other groups. Correlations among the 
belief scales were either near zero, for inquiry and fixed ability, or positive and 
moderately strong, for inquiry and procedures and procedures and fixed ability. 
None of the correlations were tested for statistical significance; rather, these were 
used to explore the potential relationships among variables by program group. The 
multilevel model results presented below were used to test for statistically signifi-
cant main effects and relationships within program groups. However, as recom-
mended in the TEDS-M documentation (Tatto et al., 2012), no statistical tests were 
performed to compare results across program groups.

Table 12.4 contains the fixed effect estimates from the final models selected for 
each program group. Main effects for country and each belief scale were all found 
to be statistically significant. Thus, within each program group, countries were 
found to differ from one another in their mean MCK performance, and changes in 
the beliefs scores were found to predict significant changes in MCK. In some cases, 
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interaction effects were also statistically significant, that is, for some program 
groups, the estimated change in MCK for an increase in beliefs scores was found to 
differ by country.

The Country column of Table 12.4 contains the mean MCK estimate for each 
country, by program group, at the mean score for each belief scale. Thus, in the 
lower-primary group, Switzerland was estimated to have the highest mean MCK at 
514.77. The remaining columns in the table contain a combination of main effects 
and interactions (when statistically significant) for each beliefs scale. A lack of sig-
nificant interaction effect for a given belief scale is indicated by a constant value 
across countries in the column for the given belief scale. For example, the change in 
MCK for an increase in the inquiry scale was not found to differ by country for any 
program group. Instead, MCK was estimated to increase by 6.13, 8.13, 5.15, and 
5.72 points in the four program groups, respectively, for a one-point increase on the 
inquiry scale (i.e., when there is an increase in the strength of the belief that math-
ematics are fundamentally procedural), and this relationship did not differ signifi-
cantly by country. The relationship between MCK and procedures was found to 
differ by country in all program groups, and all of these effects were negative, indi-
cating that MCK scores tended to decrease as belief about the procedural nature of 
math increased. Finally, the interaction for fixed ability and country was found to be 

Table 12.3 Descriptive statistics by program group

Correlation
M SD Reliability Inquiry Proc Fixed

All
Groups

MCK 505.8 97.0 .12 −.18 −.14
Inquiry 11.7 1.6 .83 .32 −.06
Proc 10.9 1.3 .80 .38
Fixed 9.8 1.0 .82

Lower
Primary

MCK 487.4 101.1 .18 −.13 −.15
Inquiry 11.0 1.4 .80 .30 .04
Proc 10.7 1.3 .80 .44
Fixed 10.0 0.9 .80

Primary MCK 528.3 90.2 .00 −.29 −.12
Inquiry 12.0 1.5 .80 .27 −.01
Proc 10.9 1.3 .80 .39
Fixed 9.5 1.0 .80

Primary/
Secondary

MCK 461.7 85.6 .00 −.33 −.13
Inquiry 12.2 1.6 .80 .14 −.15
Proc 10.6 1.2 .75 .28
Fixed 9.3 0.9 .72

Primary
Math Specialists

MCK 535.0 84.5 .04 −.26 −.24
Inquiry 12.4 1.6 .85 .46 .05
Proc 11.4 1.5 .83 .37
Fixed 10.1 1.0 .81

Notes: Proc stands for the procedures scale, M is the mean, SD is the standard deviation, Reliability 
is internal consistency estimated with coefficient alpha, and Correlation is the bivariate correlation
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statistically significant in the lower-primary and primary math specialist groups; 
some of these were negative (e.g., all lower-primary countries but Switzerland) and 
a few were positive. The relationship between MCK and fixed ability was not found 
to differ by country in the primary and primary/secondary program groups, with 
fixed slopes of −1.07 and 0.02 respectively.

The majority of the belief scale slopes represent small to medium changes in 
MCK for one-point increases in the corresponding belief measure. For example, the 
largest effect for the inquiry scale was 8.31 for future teachers in the primary group; 
this indicates that for a one-point increase in beliefs about the importance of inquiry 
in mathematics, MCK was estimated to increase by 8.31 points, or just under one 
tenth of a standard deviation (the standard deviation for MCK in the primary group 
was 90.2). The remaining inquiry slopes were all positive and above 5 points.

Whereas effects for the procedures scale were all negative, some of these nega-
tive effects were noticeably larger than the rest. For Norway, in the primary/second-
ary group, MCK was estimated to decrease by about 22 points for a one-point 
increase on the procedures scale, roughly one fourth of a standard deviation (the 
MCK standard deviation for primary/secondary was 85.6). For Germany, in the 
primary math specialist group, MCK was estimated to decrease by about 40 points, 
nearly one half a standard deviation (84.5 for primary math). Lower-primary teach-

Table 12.4 Fixed effect estimates by program group

Country Inquiry Procedures Fixed

Lower
Primary

Georgia 375.46 6.13 −1.01 −4.28
Germany 498.93 6.13 −5.32 −3.04
Poland 459.51 6.13 −9.19 −8.34
Russian Federation 522.59 6.13 −2.87 −11.77
Switzerland 514.77 6.13 −18.89 9.11

Primary Chinese Taipei 598.22 8.31 −8.35 −1.07
Philippines 431.05 8.31 −3.45 −1.07
Singapore 590.12 8.31 −10.04 −1.07
Spain 478.67 8.31 −11.02 −1.07
Switzerland 539.59 8.31 −13.47 −1.07
United States 517.48 8.31 −12.95 −1.07

Primary/
Secondary

Botswana 449.23 5.15 −5.98 0.02
Chile 420.27 5.15 −5.76 0.02
Norway 513.72 5.15 −21.89 0.02

Math
Specialist

Germany 498.61 5.72 −40.07 10.05
Malaysia 485.86 5.72 −7.35 −1.06
Poland 593.87 5.72 −24.24 10.63
Singapore 601.92 5.72 −10.21 7.17
Thailand 531.15 5.72 −2.73 −17.44
United States 525.73 5.72 −4.73 −4.47

Note: The first country listed in each program grouping served as the reference group. Estimates 
shown are all unstandardized
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ers in Switzerland and math specialist teachers in Poland also had large negative 
procedures effects.

Beliefs about the fixed nature of mathematics were estimated to have both posi-
tive and negative relationships with MCK in different countries, though the majority 
were negative. In the primary groups, a slight decrease of −1.07 was estimated 
across countries. In the primary/secondary group, the fixed slope across countries 
was close to zero at 0.02. In the lower-primary group, all countries but Switzerland 
were estimated to have negative fixed ability by MCK relationships. The negative 
effect of −11.77 for the Russian Federation was just over one tenth of a standard 
deviation. And in the primary math specialist group, the relationship was negative 
for three countries (Malaysia, Thailand, and the United States) and positive for the 
others (Germany, Poland, and Singapore), with the largest effect being −17.44, or 
.21 standard deviations, for Thailand.

Models including random slopes by institution did not fit significantly better than 
models without these terms. Thus, the beliefs scale slopes were not estimated to 
vary by institution. The models all included random intercepts by institution; how-
ever, all other effects were fixed.

 Discussion

We had the opportunity to use the TEDS-M database to examine the statistical rela-
tionships between candidate teachers’ mathematical content knowledge and beliefs, 
which varied between program preparation-types (lower primary, primary, lower 
primary/secondary, and math specialists). In the output from the four statistical 
models, we noticed five of the 17 countries within the TEDS-M database had mul-
tiple programs (Germany, Poland, Switzerland, Singapore, and the United States; 
e.g., Germany had a lower-primary and mathematics specialist program), present-
ing us with the opportunity to make descriptive observations within countries 
between program-types.

Overall, our three hypotheses were mostly confirmed. The following discussion 
highlights program features such as entry requirements, program-types, and creden-
tials, as well as curriculum organization, content, and assessment, within and 
between countries. This information serves to contextualize our findings and fortify 
our discussion regarding why patterns of beliefs are linked to higher and lower 
mathematical content knowledge scores.

The aforementioned program features that we will use to contextualize and inter-
pret the pattern of research findings are from the TEDS-M Encyclopedia: A Guide 
to Teacher Education, Context, Structure, and Quality Assurance in 17 Countries 
(Schwille et al., 2013). This document contains a discussion of the history, nature, 
philosophical underpinnings, and program characteristics of mathematics education 
of each country at the time of data collection. Importantly, these descriptions were 
authored by teams of researchers who are native members of each participating 
country.

12 Beliefs and Knowledge for Teaching Math



366

Recall that programs within countries were the unit of analysis and that our anal-
ysis does not permit causal explanation for findings. The following discussion is 
organized by program-type. Within each program-type, we briefly describe the rela-
tionship between MCK scores and belief-type. We report beliefs individually, work-
ing under the theoretical assumption that procedural and inquiry beliefs are roughly 
orthogonal (as opposed to inversely related; Blömeke et al., 2014) beliefs about the 
nature of mathematics, while mathematics as fixed ability is a type of belief about 
student learning.

It was not possible to find comparable “pre” measurement occasions across dif-
ferent teacher preparation program-types; data were collected at one point in time, 
in the last year of teacher candidates’ teacher preparation programs. Thus, we do not 
know about the extent or the direction of change in MCK scores and other related 
variables. A future study would be necessary to collect longitudinal data about the 
iterative changes of beliefs and MCK over time, to better examine the relationships 
among these variables.

 Between Program Differences

Table 12.5 shows overall summaries of the findings by program-type that we dis-
cuss in more detail in this section. Generally, our hypotheses about the relationships 
between belief-types and MCK were confirmed.

 Lower-Primary programs

Consistent with our first hypothesis, teacher candidates who endorsed procedural 
beliefs tended to have lower MCK scores. This effect seemed magnified for 
Switzerland. This effect was less pronounced for Germany, Poland, Georgia, and 
the Russian Federation.

Poland and the Russian Federation share historical contexts and teaching condi-
tions, including five-year programs where the graduation requirements for candi-
dates are similar to the standards held for majors in mathematics. This emphasis on 
mathematics during a two-cycle course of study may be associated with the rela-

Table 12.5 Summary of findings by program-type

Program-type Inquiry Procedures Fixed

Lower primary Positive for all 
program-types

Negative (some large) 
for all four 
program-types

Negative (mostly)
Primary Negative
Primary/secondary Zero
Math specialist Mixed
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tionship between endorsing procedural beliefs and MCK scores seen in Table 12.4. 
Yet future Russian teachers outperform their Polish counterparts on the measure of 
MCK.  Additionally, endorsing procedural beliefs seems to be associated with a 
slightly more negative influence on MCK scores for future Polish teachers.

In contrast, German and Swiss teaching programs presently share similar fea-
tures, but the relationship between procedural beliefs and MCK scores in Table 12.4 
are more dissimilar in magnitude (compared to Poland and the Russian Federation). 
German and Swiss teacher candidates come from programs that have no federal 
regulation; the 16 German federal states and many cantons in Switzerland fall under 
more localized ministry guidance. The most significant similarity between Swiss 
and German candidates are the relatively high entry requirements: although both 
countries have an open-entry policy to university (i.e., every student who has suc-
cessfully passed the high school final examination has the right to enroll at a univer-
sity), academic requirements within programs are relatively high. In fact, Blömeke, 
Suhl, Kaiser, and Döhrmann (2012) and Blömeke, Suhl, and Kaiser (2011) report 
candidate performance on the German secondary school exit examination is one of 
the most important predictors of success in the teacher education program.

Within the lower-primary programs, Georgia seems to be an exceptional case, as 
the relationship between procedural beliefs and MCK is near zero. In contrast to the 
features of other countries with lower-primary programs, the most significant differ-
ences are, first, the absence of math-specific content knowledge for matriculation 
into preparation programs, and second, the absence of field coursework and experi-
ences. Additionally, during the TEDS-M data collection period, Georgia was expe-
riencing active conflict with the Russian Federation, including both military and 
political battles. Given the very low scores, it is not completely clear the MCK 
measure is adequately discriminating the teachers’ mathematical content knowl-
edge. If this floor effect is present, one would expect anomalous correlations among 
MCK and other teacher variables. Taken together, these interrelated factors may 
account for Georgia’s pattern of results relative to lower-primary programs in other 
countries.

Consistent with our second hypothesis, teacher candidates who endorsed inquiry 
beliefs tended to have higher MCK scores. This finding aligns with Ambrose (2004), 
suggesting that we should expect teachers who endorse inquiry beliefs to have 
higher MCK scores. A deep knowledge of mathematics is necessary in order for 
teachers to successfully support student inquiry (e.g., Hill et al., 2005; Ma, 1999).

Also consistent with our hypotheses, teacher candidates who endorsed the belief 
that mathematics is a fixed ability tended to have lower MCK scores, with the 
exception of Switzerland. However, only 4.8% of the candidates endorsed fixed- 
ability beliefs, suggesting this small group of candidates had extreme scores and 
held views that did not mirror those of their peers. This effect was strongest for 
Poland and the Russian Federation and less pronounced for Georgia and Germany.

Overall, although there is no significant between-country variability for the rela-
tionship of inquiry beliefs with mathematical content knowledge, there is variability 
in the relationships among mathematical content knowledge and procedural and 
fixed beliefs for the lower-primary teacher candidates. Also worth noting is that 
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variability in the relationship between procedural beliefs and knowledge emerge 
even in the presence of: shared historical contexts and teaching conditions (Poland 
and the Russian Federation), similar program features (Germany and Switzerland), 
and countries with MCK scores above the international average (the Russian 
Federation and Switzerland).

 Primary Programs

Consistent with our first hypothesis, teacher candidates (up to Grade 6) who 
endorsed procedural beliefs about the nature of mathematics had lower MCK scores. 
This effect was strongest for the Switzerland, the United States, Spain, and Singapore 
and the weakest for the Philippines. Interestingly, secondary school graduates in the 
Philippines can be immediately certified to teach primary levels. This lack of formal 
teacher preparation may be related to this attenuated relationship. Without formal 
teacher preparation, future teachers’ beliefs are shaped by their own primary and 
secondary experiences, which may not include explicit opportunities to reflect on 
theories of teaching and learning. Additionally, since nearly all Filipino primary 
teachers endorsed procedural beliefs, although exhibiting variance in MCK, we 
would not expect to find a strong correlation between procedural beliefs and MCK.

Although the relationship between procedural beliefs and MCK scores varied by 
country, this was not the case for inquiry and fixed-ability beliefs. Consistent with 
our second and third hypotheses (respectively), endorsing inquiry beliefs was asso-
ciated with higher MCK scores, whereas endorsing fixed-ability beliefs was associ-
ated with lower MCK scores. Differences between countries were expected, but 
similarities between countries are especially interesting given the variability in 
routes to becoming a teacher in the United States and Switzerland relative to the 
more tightly controlled and more selective pathways of Chinese Taipei, Singapore, 
and Spain.

Both the United States and Switzerland have programs where multiple states and 
German-speaking cantons (respectively) have regulation and control over teacher 
licensure requirements (although there are still national guidelines in place). Chinese 
Taipei has a strong, centralized system, whereas Singapore has only one teacher 
education institution, resulting in rigorous and competitive programs. Spain also 
has a tightly controlled and selective pathway to the classroom. Although Spanish 
candidates come from public and private institutions that are fairly autonomous in 
their required programs of study, a teacher is considered to be a civil servant. Thus, 
candidates must complete a competitive civil servant exam after completing course-
work. Selectivity comes into play because there are a fixed number of vacancies for 
which candidates may be hired. Given these fairly different country contexts and 
MCK scores, the consistency of connections between fixed-ability and inquiry 
beliefs and MCK is surprising.
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 Primary/Secondary Programs

The pattern of relationships found for primary teacher candidates were also found 
for primary/lower secondary generalists (up to Grade 10), but with some differences 
in the directions of the effects. Consistent with our first hypotheses, endorsing pro-
cedural beliefs was associated with lower MCK scores. This effect was particularly 
strong for Norway, but less pronounced for Botswana and Chile. The relationship 
between inquiry and fixed-ability beliefs did not vary by country; however, endors-
ing fixed-ability beliefs did not seem to be strongly associated with MCK scores.

With the exception of procedural beliefs for Norwegian candidates, the relative 
homogeneity in the pattern of relationships between all belief-types and MCK 
scores is striking. Although these countries are located on different continents and 
are arguably at different stages of development according to the OECD, they share 
similar program features that may be associated with the pattern of findings. For 
example, programs are concurrent with internship and field experiences interspersed 
throughout the program, with the greatest time commitment and most teaching 
responsibilities occurring during the final semester.

These primary/lower-secondary programs produce generalists who are trained to 
teach a non-trivial range of students and mathematical content (up to Grades 7, 8, 
and 10 for Botswana, Chile, and Norway, respectively). It is counterintuitive to 
think preparing candidates to teach a wider range of grade levels results in similar 
ideas and images related to the kinds of professional knowledge and dispositions 
required to be effective. Then again, it may because programs recognize the com-
plexity inherent in teaching students that differ widely in age and experience that 
there is an explicit effort to articulate and share an image of the student as a learner 
in a way the transcends age. In other words, a shared image of the learner is what 
allows programs to prepare candidates to teach such a wide range of grade levels. 
Perhaps this same logic can be extended down to the primary level, where we 
observed the same pattern of findings.

Despite similarities in patterns of beliefs, one of the most striking differences 
among country profiles is who is attracted to the teaching profession. In Botswana, 
the procedure for program entry is competitive, attracting above-average students 
who, among other typical requirements, such as secondary school marks and course-
work completed, are assessed in a half-day interview. In contrast, as of 2006, more 
than half of Chile’s candidates graduate from private colleges of education and have 
been documented to score much lower on university entry exams relative to students 
who attend public universities. We note that, in part due to TEDS-M findings, in 
more recent years, Chile has initiated major changes to teacher preparation and 
certification (e.g., Tatto, 2015). Similar to Chile, Norwegian candidates are typically 
average or below average in secondary school records. Since 1982, the Norwegian 
Council of Mathematics has published reports on the average mathematics achieve-
ment scores of all secondary school graduates who will need to study mathematics 
during their time at university. In the 2009 report, the average mathematics achieve-
ment scores for teacher candidates relative to the sample was over 10% lower, sug-
gesting few prospective generalists had a particular interest in mathematics. Future 
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research on this topic might consider who is attracted to the teaching profession and 
their academic profiles in juxtaposition with the role of concurrent program timing 
of field experiences and the professional knowledge and dispositions thought neces-
sary to be successful at teaching a wide range of students and mathematics.

 Mathematics Specialists Programs

Consistent with our first hypothesis, mathematics specialist candidates who 
endorsed procedural beliefs tended to have lower MCK scores. This effect was par-
ticularly strong for German and Polish candidates. Consistent with our second 
hypothesis, endorsing inquiry beliefs was associated with higher MCK scores 
among mathematics specialists. This pattern of relationships was also found in 
lower primary, primary and primary/lower-secondary candidates.

Our third hypothesis was partially supported: endorsing the belief that math was 
a fixed ability was associated with lower MCK scores for Thailand, the United 
States, and Malaysia. Endorsing fixed-ability belief was associated with higher 
MCK scores in Germany, Poland, and Singapore. These three countries are particu-
larly interesting in that endorsing procedural beliefs was associated with strong 
negative impacts on MCK scores. It seems that future specialists in these countries 
view mathematics as a process of inquiry, but the extent to which any individual can 
effectively participate is based on their innate abilities. It may be the case that since 
mathematics specialist programs tend to have higher entry requirements for math-
ematical content knowledge than do other primary programs, candidates in these 
programs may have fewer opportunities to learn MCK from their specialist pro-
grams. These opportunities (or lack thereof) may in turn influence the degree to 
which MCK and beliefs (which may be nurtured by these programs) are correlated. 
Another possible explanation may be that future specialists were already more com-
petent and motivated to do well in math and they generally perceive these character-
istics to be stable aspects of individual personality and character, having had no 
reason to need or think about a growth mindset (Dweck, 2006a, 2008) in the context 
of their own learning experiences.

Thailand seems to represent an exceptional case with respect to the strength of 
the negative relationship between MCK and fixed-ability beliefs. At the time of the 
TEDS-M study, the organization of the Thai system was undergoing change. As of 
2004, candidates who wished to teach mathematics in Grades 1 through 12 needed 
to complete a five-year program that included coursework for a Bachelor of Science 
and one year of graduate study in education. The first cohort of students, all of 
whom were considered to be math specialists in the TEDS-M study, were in the 
fourth year of their programs and had yet to take their education coursework. Thus, 
the Thai pattern of findings may not represent final program outcomes.
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 Summary for Between Program Differences

We highlight three broad observations. First, the greatest range in the pattern of 
relationships was for lower-primary generalists (up to Grade 4) and for mathematics 
specialists. Second, there was significant variability in the effect endorsing proce-
dural beliefs had on MCK scores, but this effect was consistently negative. Third, 
endorsing inquiry beliefs was associated with higher MCK scores, regardless of 
program-type.

 Descriptive Differences in Multiple Programs Within Country

The relationships between MCK, beliefs, and their interaction were not statistically 
modeled. The observations in this section are descriptive and highlight interesting 
relationships.

 Lower-Primary and Math Specialist Programs: Poland and Germany

Mathematics specialists in Poland had higher average MCK scores relative to their 
peers preparing to teach at the lower-primary level. German lower-primary and 
math specialist candidates had similar MCK scores. Endorsing procedural beliefs 
was associated with lower MCK scores in Polish and German candidates (with the 
effect more pronounced for specialists), whereas endorsing inquiry beliefs was 
associated with higher MCK scores. Interestingly, in both countries, endorsing 
beliefs about mathematics as a fixed, or innate ability was associated with higher 
MCK scores in the specialists, but lower MCK scores for their lower-primary peers. 
The latter finding might be better understood in light of the content-knowledge 
preparation and field experiences of Polish candidates.

Polish teacher education is not an independent field of study; it is a field of study 
within other fields of study. In fact, teachers who teach at the lower-primary level 
(Grades 1 through 3) are trained for “integrated teaching,” and tend not to have 
content-specific training, as most of their coursework is centered on pedagogy. In 
contrast, candidates who teach Grades 4 and above are trained as math specialists 
and must meet mathematics requirements to complete the major while taking peda-
gogy courses that require a minimum amount of hours dedicated to teaching and 
field experiences that varies by institution. It may be the case that having less  contact 
with children accounts for fixed-ability beliefs, or that pre-existing beliefs are based 
on their own learning experiences. In line with this interpretation, the TEDS-M 
headquarters in Poland has stated Poland suffers from academic drift, suggesting an 
imbalanced emphasis on content knowledge relative to pedagogical knowledge and 
practice (Tatto et al., 2012).

What accounts for these findings in German candidates is less clear. Candidates 
go through two phases of preparation. The first phase is academic, which typically 
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takes 42 months to complete; the second phase is the field experience, which takes 
18–24 months to complete. During the second phase, candidates teach part-time 
while also continuing to attend courses that cover general and subject-specific peda-
gogy. Candidates who intend to teach at the upper-primary grades are considered 
math specialists. What accounts for the pattern of findings in Poland does not trans-
late over into Germany, which has the balanced program of study we infer to be 
partly responsible for candidates developing beliefs about the malleability of math-
ematical ability.

 Lower-Primary and Primary Programs: Switzerland

Swiss primary level teaching candidates had slightly higher MCK scores relative to 
their peers preparing to teach in the lower-primary levels. Endorsing procedural 
beliefs was strongly associated with lower MCK scores for both groups, whereas 
endorsing inquiry beliefs was associated with higher MCK scores. However, there 
were also some noteworthy differences between these groups of teaching candi-
dates. Endorsing fixed-ability beliefs was associated with higher MCK scores for 
lower-primary candidates, with the effect in the opposite direction for their primary 
peers.

Thinking about differences between these two Swiss programs is further compli-
cated by differences between cantons. Although only German-speaking cantons 
were part of the TEDS-M study, responsibility for governance of teacher education 
lies with individual cantonal parliaments, although teacher education institutions 
have gained greater autonomy and integration into higher education institutions. 
Future research could examine Swiss results by canton to better understand the 
relationships among beliefs and MCK, relative to canton educational policies and 
contexts.

 Primary and Math Specialist Programs: Singapore and the United States

In Singapore and the United States, math specialists had higher average MCK 
scores relative to their peers preparing to teach in primary schools. Endorsing 
inquiry beliefs was associated with higher MCK scores, whereas endorsing proce-
dural beliefs was associated with lower MCK scores for primary and math special-
ists in both Singapore and the United States. The only difference in the pattern of 
effects lies in fixed-ability beliefs: Endorsing fixed beliefs was associated with 
lower MCK scores for primary level candidates in Singapore and the United States, 
as well as specialists in the United States. However, the opposite is true for math 
specialists in Singapore. Wilkins (2008), who studied the mathematical content 
knowledge, attitudes, beliefs, and practices of nearly 500 primary teachers found 
“not only were beliefs found to have the strongest direct effect on instructional 
practice but they also played a role in mediating the effects of teachers’ knowledge 
and attitudes” (p.  156). It is possible that people who choose to become math 
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specialists in Singapore are those who believe themselves to be good at math (i.e., 
holding fixed beliefs about their own abilities) and thus see the same in children. 
Such a fixed mindset is quite prevalent among mathematics teachers in general 
(Boaler, 2013).

 Summary for Between-Program Descriptive Differences

Mathematics specialists generally had higher MCK scores relative to their peers 
preparing to teach at the lower-primary and primary level, with the exception of 
Germany. Additionally, candidates who were part of programs that would qualify 
them to teach at higher grade levels demonstrated increasingly higher average MCK 
scores. Mindset literature (Boaler, 2013; Dweck, 2006a, 2006b, 2008) suggests 
such fixed-ability beliefs are detrimental to achievement. Wilkins (2008) found 
beliefs are the strongest mediator for instructional practices, so it is worth under-
standing teachers’ beliefs and how congruent those are to cultural norms for teach-
ing. Mathematics specialists who endorsed fixed-ability beliefs had higher 
mathematics content knowledge compared to their counterparts who were preparing 
to teach at the lower-primary level in Singapore and Poland. This was not the case 
for the candidates who were preparing to teach at the primary level in the United 
States and Singapore.

 Conclusion

Teacher knowledge and beliefs about mathematics teaching and learning are impor-
tant teacher-preparation program outcomes. The TEDS-M database presented us 
with an opportunity to observe patterns among beliefs about the nature of mathe-
matics and learning and mathematical content knowledge for teachers preparing to 
teach at the lower-primary, primary, or primary/lower-secondary grade levels as 
generalists, or mathematics specialists. Beliefs are multi-faceted, and although cat-
egories like student-centered and teacher-centered seem to be opposites, they in fact 
act in a more orthogonal manner, with teachers potentially holding strong beliefs 
along multiple dimensions.

Our analysis paints a picture both of program outcome variability and homoge-
neity among 15 countries. It appears candidates preparing to specialize in teaching 
mathematics or teach at the lower-primary levels exit their programs with highly 
variable beliefs about the nature of mathematics and mathematics learning, which 
are associated with differential effects on mathematical content knowledge. This 
finding stands in contrast to the slightly more homogeneous relationships among 
beliefs and mathematical content knowledge found for their peers preparing to teach 
at upper-primary and primary/secondary grade levels. Additionally, across program- 
types, endorsing the belief that mathematics is a process of inquiry from which 
learners can construct meaning was associated with higher mathematical content 
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knowledge. However, the endorsement of the belief that mathematics is a fixed body 
of knowledge composed of sets of rules and procedures was associated with lower 
mathematical content knowledge. Although programs have varying traditions and 
cultural ideas about what teachers need to know and be able to do, the relationship 
between inquiry beliefs and program-types appear to be similar across programs- 
types and countries.

Since the TEDS-M data allow for correlational analyses but not causational, one 
policy recommendation we make is for programs to focus both on teaching MCK 
and on providing opportunities (both in coursework and field experiences) for par-
ticipants to develop beliefs that mathematics is a process of inquiry from which 
learners can construct meaning. Further research is needed to determine potential 
causality. Similar research in the United States (e.g., Fennema & Nelson, 1997) sug-
gests such causality may be different for different groups of teachers—for some, 
beliefs influence mathematical learning, whereas for others, their knowledge base in 
mathematics then influences their beliefs.

This chapter has described patterns of teacher beliefs across countries. When we 
made observations among different programs within a single country, we noticed 
candidates who were preparing to teach at higher grade levels or who were trained 
as specialists tended to have stronger mathematical content knowledge. The correla-
tions of endorsing procedural and inquiry beliefs on mathematical content knowl-
edge was consistent between programs within countries. However, endorsing 
mathematics as a fixed body of knowledge was a point of divergence.

These findings may provoke conversation about the extent to which preparation 
programs are achieving their intended goals. Future research is needed to connect 
preparation program outcomes to intended goals, with a focus on specific program 
inputs. Are programs surprised by the types of beliefs candidates endorsed? To what 
extent do these beliefs align with the intended images of teaching and learning 
structured by program experiences? Are these dispositions desirable and productive 
once candidates enter the profession?

Programs may also consider what other ideologies, practices, and strategies 
might spark innovation or revision to their national or local programs. For example, 
what kinds of benefits—material or in the form of social capital—need to be in 
place to attract candidates with strong backgrounds in mathematics or strong enough 
potential for learning enough mathematics to enter the classroom prepared to teach? 
Should there be multiple routes to certification? If so, how many is too many? Who 
are other stakeholders in teacher preparation programs who should be brought into 
the decision-making process on local and national levels?

This is intended to be neither a comprehensive nor exhaustive list of questions 
sparked by our analysis. It is not the intent of this paper to impose a single vision of 
a model preparation program. Ideas about the professional knowledge and disposi-
tions essential to prepare candidates for classrooms of children are deeply rooted in 
national frames of minds, or beliefs systems, and therefore not something to gloss 
over. Instead, we offer this cross-national comparison as an invitation to widen the 
lens of programs and their stakeholders. Teacher preparation programs benefit from 
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understanding their candidates’ beliefs, and the connections among those beliefs 
and mathematical content knowledge, as well as to program goals.
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Chapter 13
Future Teachers’ and Teacher Educators’ 
Perceptions of Learning Mathematics 
Instruction and Relationships to Knowledge

Rachel A. Ayieko

Abstract This study used the Teacher Education and Development Study in 
Mathematics (TEDS-M) to examine the relationships between opportunities to 
learn (OTL) mathematics instruction for conceptual understanding and primary 
future  teachers’ (PSTs) knowledge for teaching mathematics in three countries: 
Poland, Russia, and the United States. The frequencies of opportunities to learn 
(OTL) mathematics instruction for conceptual understanding varied between PSTs 
and teacher educators. A comparison of the teacher educators’ and PSTs’ responses 
suggests that the PSTs had fewer opportunities to learn mathematics instruction for 
conceptual understanding than were intended by the teacher educators at the pro-
gram level in the three countries. The patterns of relationships from a multilevel 
regression analysis in each of the selected countries show variations across contexts 
and categories of knowledge. In particular, the OTL how to (a) make distinctions 
between procedural and conceptual knowledge and (b) show why a procedure 
works, were significantly related to PSTs’ knowledge for teaching mathematics 
between programs in the United States and Russia, respectively. The OTL how to 
show why procedures work was significantly related to PSTs’ knowledge for teach-
ing mathematics within the programs in the three countries. Policy implications for 
mathematics teacher education are discussed.
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 Introduction

Reforms in mathematics education require teachers to use instructional approaches 
that many of them did not experience when learning mathematics in school or learn-
ing how to teach in their teacher preparation programs. The reform methods for 
teaching emphasize teaching mathematics for understanding rather than having stu-
dents memorize the rules or use prescribed procedures to solve given tasks. 
Additionally, these instructional methods stress the use of open-ended tasks and 
real-life situations, problem-solving, and collaboration (Boaler, 2002, 2008; 
Common Core State Standards [CCSS], 2010; National Council of Teachers of 
Mathematics [NCTM], 2000, 2014). The reform approaches for teaching mathe-
matics have been shown to improve student learning (e.g., Boaler, 2008). However, 
to be successful in implementing these instructional methods, teachers need certain 
knowledge for teaching mathematics.

Teacher educators have introduced strategies to expand on future  teachers’ 
(PSTs) knowledge for teaching mathematics, with notable success. Such opportuni-
ties include developing skills for providing explanations (e.g., Charalambous, Hill, 
& Ball, 2011), differentiating procedural and conceptual knowledge (e.g., Bartell, 
Webel, Bowen, & Dyson, 2012), and using multiple strategies to solve given tasks 
(e.g., Crespo, 2000; Ryken, 2009). Mathematics educators have found these oppor-
tunities to be successful in expanding PSTs’ knowledge for teaching. Most of the 
research, however, has consisted of small-scale studies of promising interventions 
in teacher preparation using varied instruments, analyses, and data sources. As a 
result, the insights gathered from these studies are limited in scope and are not gen-
eralizable to a wider population. A large-scale study can provide empirical evidence 
of generalizable relationships between these opportunities to learn mathematics for 
conceptual understanding and PSTs’ knowledge for teaching mathematics insofar 
as it (a) uses variables representing similar interventions across different contexts 
and (b) uses the same analytical approach.

In this study, I use the Teacher Education and Development Study in Mathematics 
(TEDS-M), which is a cross-national study of teacher preparation programs in 17 
countries. The purpose of TEDS-M was to investigate how primary and lower second-
ary teachers are prepared to teach mathematics and the influence of these opportuni-
ties on their knowledge development. This study presents a comparison of the intended 
and experienced opportunities to learn (OTL) mathematics instruction for conceptual 
understanding using teacher educators’ and future teachers’  perspectives, respec-
tively. Additionally, it examines the relationships between the experienced OTL math-
ematics instruction for conceptual understanding and PSTs’ mathematics knowledge 
for teaching in three countries: Poland, Russia, and the United States.

The three countries were selected based on the countries meeting at least two of 
the following criteria:

 1. PSTs’ high content knowledge and pedagogical content knowledge scores. Of 
the selected countries, Poland and Russia were identified as being among the top 
10% of teacher preparation programs based on PSTs’ mathematics content 
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knowledge scores, while the United States is among the top 10% in mathematics 
pedagogical content knowledge scores (Schmidt, Burroughs, & Cogan, 2013).

 2. Availability of more than one type of teacher preparation program within a coun-
try, to enable comparing the OTL between the generalist and specialist 
programs.

 3. Primary students’ performance in international assessments. Poland is also one 
of the countries identified as having shown a significant improvement in stu-
dents’ mathematics test scores on international assessments, such as the Program 
for International Student Assessment (Organization for Economic Co-operation 
and Development [OECD], 2011).

 4. Opportunity for comparison of different primary grade specializations offered in 
teacher preparation programs. The selection of Russia and the United States can 
provide information on the differences or similarities between lower primary 
(Grade 4 maximum and Grade 6 maximum) specializations.

 Theoretical Perspective

The question used to frame this study is “What knowledge do teachers need to teach 
mathematics for conceptual understanding, and how do teacher preparation programs 
support them to develop this specialized knowledge?” This study draws from the teacher 
knowledge and opportunities to learn frameworks. In the first theoretical section, I dis-
cuss the literature on the knowledge domains for teaching. In the second section, I pro-
vide different conceptualizations of opportunities to learn. I then discuss studies that 
have examined relationships of opportunities to learn and PSTs’ knowledge. A final 
section of the theoretical discussion examines earlier studies done using the TEDS-M 
data. Based on the literature presented, I discuss what is missing and how this study 
provides another lens for examining OTL, PSTs’ knowledge for teaching mathematics, 
and the relationships that exist between them using a large-scale data analysis.

 Knowledge for Teaching Mathematics

Teacher knowledge has been identified as one of the key factors for the improvement 
of students’ learning of mathematics. The interest in teacher knowledge has led 
scholars to propose categories of teacher knowledge and subsequent redefinitions of 
teacher knowledge. Shulman (1986, 1987) proposed a knowledge base for teaching 
composed of three domains: content knowledge, pedagogical content knowledge, 
and curriculum knowledge. Additionally, Shulman (1987) included knowledge of 
the learners and their characteristics, knowledge of the educational context, and 
knowledge of educational foundations as part of the knowledge base. Other scholars 
have reexamined and re-defined the knowledge for teaching mathematics (e.g., Ball, 
1993; Ball, Thames, & Phelps, 2008; Fan & Cheong, 2002; Grossman, 1990; Hill, 
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Rowan, & Ball, 2005; Ma, 1999). The suggested categories of knowledge for teach-
ing mathematics are briefly described in the following sections.

Content Knowledge Shulman (1986, 1987) defined content knowledge, using 
Schwab’s (1978) definition, as knowledge of the substantive and syntactic struc-
tures of subject matter. Substantive structures, on the one hand, are the “basic con-
cepts and principles organized to incorporate facts” (Shulman, 1987, p. 9). Syntactic 
structures, on the other hand, include the rules of the subject comprising the lan-
guage, symbols, and the axioms that ascertain the truisms and validity in the disci-
pline (Shulman, 1986, 1987). The procedural knowledge domain of knowledge, 
which Grossman (1990) and Carpenter (1986) defined as knowing how to perform 
procedures or follow predetermined steps to solve a problem, would also fall within 
the content knowledge domain.

Pedagogical Content Knowledge Pedagogical content knowledge comprises 
knowing the subject matter and how to teach it. Shulman described pedagogical 
content knowledge as including the representation of ideas and the use of meta-
phors, analogies, and strategies that teachers draw on to make learning accessible to 
students (1986, 1987). Additionally, pedagogical content knowledge includes the 
ability to anticipate students’ errors, conceptions, and misconceptions (Shulman, 
1986). Dewey (1902) used the term “psychologizing” the curriculum or transform-
ing it to suit the child’s level. In particular, it is changing the subject matter in a way 
that is familiar and appealing to the students (Dewey, 1902).

Curricular Knowledge Curricular knowledge is knowledge of the topics of a sub-
ject as well as the different curricula that are available (Shulman, 1986, 1987). 
Further, knowledge of the lateral as well as the vertical curriculum is included in 
this knowledge domain. Lateral curriculum knowledge is essential for knowing the 
connections of the topics in one lesson to those “lessons or topics or issues being 
discussed simultaneously in other classes” (Shulman, 1986, p. 10). Vertical curricu-
lum knowledge is necessary for teachers to know the relationships of future topics 
with those already taught (Shulman, 1986), as well as knowledge of the ever- 
changing curriculum materials (Shulman, 1987).

Other Conceptualizations of Knowledge for Teaching Mathematics Shulman’s 
knowledge domains have been critiqued, built upon, and redefined by other mathe-
matics education scholars. Ma (1999) associated knowledge for teaching mathemat-
ics with a profound understanding of fundamental mathematics. According to Ma, 
fundamental refers to foundations, and profound is the understanding of mathemat-
ics that is “deep, broad, and thorough” (p. 120). Ma’s definition of content knowl-
edge included the knowledge of multiple perspectives for solving mathematical 
tasks and the longitudinal coherence of the curriculum. Thus, Ma’s definition 
 combines two domains of knowledge that Shulman proposed: content knowledge 
and curricular knowledge.

Other scholars (e.g., Ball et al., 2008) have argued that Shulman’s knowledge 
domains are not well understood and need more development. They have suggested 
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common content knowledge and specialized content knowledge as subcategories of 
content knowledge. Common content knowledge is the “mathematical knowledge 
and skills used in settings other than teaching” (Ball et al., 2008, p. 399). Specialized 
content knowledge, on the other hand, is the unique knowledge and skill needed to 
teach mathematics effectively (Ball et  al., 2008). Additionally, Ball et  al. (2008) 
divided pedagogical content knowledge into two domains: (a) knowledge of content 
and students and (b) knowledge of content and teaching. The first domain—
“knowing about students and knowing about mathematics” (p. 401)—incorporates 
knowing students’ thought processes when learning mathematics and anticipating 
students’ errors, misconceptions, and difficulties with particular mathematical con-
cepts (Ball et al., 2008). The second domain, knowledge of content and teaching, 
combines knowing (a) how to select examples, (b) which representations to use, and 
(c) how to select students’ ideas that can be expanded (Ball, et al., 2008). These 
additional domains of pedagogical content knowledge give explicit attention to the 
distinct knowledge categories that underlie this knowledge dimension.

Fan and Cheong (2002) suggested other subcategories of pedagogical knowledge, 
including pedagogical curricular knowledge, knowledge of methods of instruction, 
and pedagogical content knowledge (as cited in Tatto et al., 2008). The pedagogical 
curriculum knowledge and pedagogical content knowledge domains are similar to 
those proposed by Shulman. However, knowledge of methods of instruction is added 
to the pedagogical knowledge categories and is similar to the specialized content 
knowledge domain proposed by Ball et al. (2008). The knowledge domains proposed 
by Ball et  al. (2008), Shulman (1986), Ma (1999), and Fan and Cheong (2002) 
framed the knowledge domains in the TEDS-M knowledge questionnaire.

 Opportunity to Learn

OTL is one of the five variables that Carroll (1963) proposed to explain the differ-
ences in students’ learning. Carroll classified OTL as an external condition that can 
be manipulated to increase students’ success. OTL can refer to the “school sched-
ule… the time allowed for learning” (p. 26). Scholars have reconceptualized the 
initial definition of OTL given by Carroll (1963). Schmidt et al. (2001), for exam-
ple, conceptualized OTL frameworks as the instructional time assigned for a topic, 
the time intended in national curriculum guides for teaching a subject, or the time 
teachers report they spend teaching a topic. Similarly, Floden (2002) stated that 
OTL is a measure of the relative emphasis of the topic in relation to other topics and 
can be inferred from reports about whether the topic has been taught or will be 
taught. In addition, Husén (1967) proposed understanding OTL as the relationship 
between what has been taught and what is assessed. Consequently, OTL can be 
assessed with respect to curriculum, teachers’ instructional time on content or sub-
jects (Floden, 2002; Schmidt et al., 2001; Törnroos, 2005), or coverage of topics 
assessed by various tests Husén, 1967). In all these definitions, the OTL focuses on 
what the student experiences and is a basis for creating equity in students’ 
learning.
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Opportunities to Learn Mathematics Instruction for Conceptual 
Understanding Teachers must negotiate, transform, and adapt their knowledge for 
teaching mathematics to align with reforms in methods of instruction. Specifically, 
teachers are expected to involve their students in problem-solving, encourage mul-
tiple strategies to solve tasks, support students’ reasoning and proof, and use appro-
priate representations to communicate their ideas (Conference Board of the 
Mathematical Sciences [CBMS], 2000, 2012; Common Core State Standards 
[CCSS], 2010; NCTM, 2000, 2014). To prepare PSTs to be able to teach effectively 
using these reform methods, OTL classroom instruction specific to learning school 
mathematics for conceptual understanding must be emphasized during their teacher 
preparation.

Some approaches used by teacher educators emphasize the ways PSTs learn to 
identify and teach for conceptual understanding, along with reasoning mathemati-
cally. The instructional approaches include providing opportunities to develop skills 
for providing explanations (Charalambous et al., 2011; Chick, 2003), ways of learn-
ing to differentiate procedural and conceptual knowledge (Bartell et  al., 2012; 
Chinnappan & Forrester, 2014), and approaches that emphasize the affordances of 
multiple strategies to solve problems (e.g., Crespo, 2000; Grant & Lo, 2009; Ryken, 
2009). Research on the use of these approaches indicated that PSTs were able to 
recognize conceptual understanding from students’ responses (Crespo, 2000) and to 
perceive teaching and learning mathematics as focused on reasoning about mathe-
matics (Bartell et  al., 2012; Chinnappan & Forrester, 2014). Furthermore, PSTs 
appreciated the influence of the problem context on students’ reasoning (Grant & 
Lo, 2009), were able to provide mathematical explanations (Charalambous et al., 
2011; Chick, 2003), could focus on student thinking, and could critically analyze 
different representations (Ryken, 2009). In some cases, at the beginning of the 
mathematics-related courses implementing these approaches, PSTs focused more 
on right and wrong answers and had a rule-bound perception of mathematics, but by 
the end of the courses, the PSTs were more critical in analyzing their students’ 
responses. PSTs’ focus also shifted toward some of the recommendations made by 
the CBMS (2000, 2012) and the National Standards for School Mathematics (CCSS, 
2010; NCTM, 2000, 2014). Together, these studies point out the positive influence 
of these interventions on different dimensions of PSTs’ knowledge for teaching 
mathematics.

These reports, however, were mostly small-scale interpretive case studies in 
which different analytical methods and data analyses were used. The current study’s 
purpose is to investigate these promising relationships on a large scale and to 
 provide empirical evidence of relationships between the interventions used in 
teacher preparation and the development of a broader knowledge base for teaching 
mathematics for understanding. Note that there are earlier studies on OTL and 
PSTs’ knowledge using the TEDS-M data. A consideration of these studies high-
lights how OTL has been conceptualized and how the conceptualizations relate to 
PSTs’ knowledge for teaching.
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 Initial Studies on OTL and Knowledge for Teaching 
Mathematics Using TEDS-M Data

Knowledge for Teaching Mathematics In the TEDS-M studies, knowledge for 
teaching is categorized into content knowledge (CK) and pedagogical content 
knowledge (PCK). PCK in the TEDS-M study is a composite of “curricular knowl-
edge, knowledge about the planning for teaching, and knowledge related to enacting 
teaching” (Tatto  et  al., 2012, p.  131). The TEDS-M categorizations of teacher 
knowledge borrow and modify Shulman’s (1986, 1987) knowledge domains and 
Fan and Cheong’s (2002) proposed knowledge for teaching dimensions. Initial stud-
ies using the TEDS-M data suggest there are significant differences in the knowl-
edge for teaching mathematics both within and among teacher education programs 
across the selected countries (e.g., Blömeke & Kaiser, 2014; Senk et al., 2012).

OTL to Teach Mathematics The earlier studies that used TEDS-M data mainly 
focused on time PSTs spent in teacher preparation, topics covered, practical experi-
ences, and instructional time. The researchers found differing emphases within 
teacher preparation programs across contexts, program types, and content areas. 
Notably, specialist programs covered more tertiary mathematics topics than gener-
alist programs (Blömeke & Kaiser, 2014; Tatto et al., 2012). The topical area most 
PSTs focused on was numbers, while calculus was the least studied (Blömeke & 
Kaiser, 2014). Additionally, the study of school mathematics and tertiary mathemat-
ics varied across the countries, but learning of teaching methods was found to be 
common (Blömeke & Kaiser, 2014). Further, the PSTs in the higher-achieving 
countries, such as Taiwan, took more formal mathematics courses. In sum, the focus 
of the research on OTL is on the patterns of course-taking at various levels of math-
ematics and using various mathematics methods. Missing from these studies is the 
extent of OTL mathematics teaching for conceptual understanding; an important 
component of teaching and learning mathematics in the twenty-first century.

Relationships Between OTL and Knowledge for Teaching Mathematics From 
the earlier studies on teacher preparation that used TEDS-M data, some significant 
findings on the relationships between OTL and teachers’ knowledge for teaching 
mathematics have been reported. The number of content courses taken and the level 
of focus on mathematics instruction were significantly related to PSTs’ CK and 
PCK (e.g., Blömeke & Kaiser, 2014; Wong, Boey, Lim-Teo, & Dindyal, 2012). 
Missing from these studies were discussions of specific OTL reform-oriented math-
ematics instruction or mathematics instruction for conceptual understanding. This 
study builds on these initial predictive findings from the TEDS-M data by focusing 
on particular OTL mathematics instruction that relates to learning to teach mathe-
matics for conceptual understanding at the primary level.

In sum, the studies about OTL that have discussed how to explore multiple solution 
strategies (Crespo, 2000; Grant & Lo, 2009; Ryken, 2009), how to distinguish between 
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procedural and conceptual knowledge (Bartell et al., 2012; Chinnappan & Forrester, 
2014), and how to show why a procedure works (Charalambous et al., 2011; Chick, 
2003) align with particular items in the TEDS-M data. These specific OTL, that have 
been shown to expand PSTs knowledge for teaching mathematics, form the basis of 
this study. Figure 13.1 is a diagrammatic representation of the hypothesized relation-
ships between (a) OTL and PSTs’ background and (b) PSTs’ knowledge for teaching 
mathematics as measured by variables examined in this study.

The questions guiding the study are as follows: (a) What are the differences in 
the OTL mathematics instruction for conceptual understanding in the intended and 
experienced curriculum in the teacher preparation programs in Poland, Russia, and 
the United States? (b) Are there significant differences in the OTL mathematics 
instruction and knowledge for teaching mathematics across the teacher programs in 
the three selected countries? (c) What are the relationships between the OTL math-
ematics instruction for conceptual understanding and PSTs’ knowledge for teaching 
mathematics within and among the teacher preparation programs in the three 
countries?

The following hypotheses were used to guide the study: (a) There are no signifi-
cant differences in the OTL and knowledge for teaching mathematics across the 
three selected countries. (b) There is a positive relationship between the OTL math-
ematics instruction for conceptual understanding and PSTs’ knowledge for teaching 
mathematics within and among the teacher preparation programs in the three 
selected countries.

 Methods

This study used the TEDS-M country-level data. TEDS-M was supported by the 
International Association for the Evaluation of Educational Achievement (IEA) and 
the national centers of the participating countries. Russia, Poland, and the United 
States were the three countries selected for this investigation, which allowed for 

Fig. 13.1 Conceptual 
framework of OTL 
mathematics instruction 
and knowledge for 
teaching mathematics
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within-country comparisons between specialist and generalist programs (in the 
United States and Poland), and also provided the possibility for comparison between 
different grade specializations in the programs within the three countries—Poland 
and Russia compared to the United States. All the countries have concurrent pro-
grams, or programs that offer content-specific courses, pedagogy courses, and edu-
cation courses as a single requirement for the teaching credential, all taken during 
one course of study. Consecutive programs, in contrast, require candidates to have 
already received a specialization in the content they intend to teach before taking a 
second degree that is a teacher preparation course (Tatto et al., 2012). A summary 
describing the number of institutions and individual PSTs from the three countries 
is presented in Table 13.1.

The PSTs in the United States had a wider grade span for their grade specializa-
tion than the Polish and Russian teacher preparation programs. Additionally, two 
types of teacher preparation programs are available for full-time study in the United 
States and Poland, whereas all Russian primary PSTs are from generalist programs. 
Finally, there are few male PSTs in the teacher preparation programs in all three 
countries.

 Units of Analysis

The relationships between OTL to teach mathematics and PSTs’ knowledge for 
teaching mathematics within and among the teacher preparation programs in the 
three countries were examined. The units of analysis were the PSTs and teacher 
educators within and among the institutions.

 Variables

Independent Variables for PSTs’ OTL mathematics instruction for conceptual 
understanding are based on responses from teacher educators and PSTs in three 
OTL categories: (a) how to explore multiple solution strategies (Multiple strategies), 

Table 13.1 Description of PSTs and programs in the three countries

Country
Number of 
PSTs

Number of 
institutions

Number of 
teacher educators Program types

% 
Female

Grade- 
level

Poland 2,112 78 734 Specialist, 
generalist

94.8 1–4

Russia 2,266 49 1,212 Generalist 92.2 1–4
United 
States

1,501 51 665a Specialist, 
generalist

88.6 1–6

aThis is the number of teacher educators at the program level who participated in the study. The 
participation rate for teacher educators was below 60%
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(b) how to show why a mathematical procedure works (Why procedures work), and 
(c) how to make distinctions between procedural and conceptual knowledge when 
teaching mathematics concepts and operations to pupils (Make distinctions) (Brese 
& Tatto, 2012, p. 7). The responses for these items in the future teacher and teacher 
educator questionnaires were made on the following ordinal scale: (1) never, (2) 
rarely, (3) occasionally, or (4) often (Brese & Tatto, 2012).

Covariates The TEDS-M study used gender and socioeconomic status (SES) as 
the control variables that describe the characteristics of the PSTs, but these variables 
are not of interest in this study. The parental level of education and the number of 
books in the home have been identified in recent studies as providing an adequate 
measure of SES.  Carnoy (2015) referred to these variables as family academic 
resources.

Highest Level of Education in the Household The highest level of parental educa-
tion in the household was based on a categorical scale using the International 
Standard Classification of Education (ISCED). Using the UNESCO Institute of 
Statistics mapping, the parents’ educational level was recoded to give the cumula-
tive years of schooling of the parent with the highest level of education. This map-
ping was based on the 1997 ISCED because at the time the data was collected, the 
new 2011 ISCED had not been released.

Resources in the Home The number of books was selected to represent this mea-
sure. Across the countries, this variable showed variation across the PSTs. This 
variable was initially ordinal. However, in this study the variable was dichotomized 
such that 1 represented more than 100 books in the home and 0 represented 100 
books or fewer in the home. As stated by Cowan et al. (2012), family possessions 
may not be an accurate measure of SES.  Indeed, a descriptive analysis of the 
resources in the home, such as possession of a calculator, desk, DVD player, or 
computer, did not show a significant variation across all countries that participated 
in the study.

Dependent Variables The knowledge for teaching mathematics composed of 
mathematical content knowledge (MCK) and mathematical pedagogical content 
knowledge (MPCK) were the outcome variables. The mathematical content 
 knowledge domain comprised the following subdomains: numbers and operations, 
geometry and measurement, algebra and functions, and data and chance. The cogni-
tive domains of mathematical content knowledge items were knowing, applying, 
and reasoning (see Tatto, 2013). The mathematical pedagogical content knowledge 
included knowledge of planning for teaching and learning mathematics, knowledge 
of the curriculum, and knowledge of mathematics instruction. These variables were 
from questionnaires that included multiple-choice and constructed-response ques-
tions the PSTs responded to (Tatto et al., 2008).
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Weights The final future teacher weight variable was used in the descriptive and 
predictive analysis. This weight is a product of the “institutional weight, session 
group weight, PSTs’ base weight, non-response adjustment factor, and the PSTs’ 
level weight” (Tatto, 2013, p. 136). TEDS-M used a weighted sampling technique 
in order to better generalize from each country sample to the country’s population 
(Tatto, 2013).

 Analysis

Descriptive analysis was used to analyze the extent of the OTL mathematics instruc-
tion for conceptual understanding. The analysis provides information about the 
OTL intended by the teacher educators and the OTL experienced by the future 
teachers. The teacher educators and the PSTs were sampled separately; the PSTs are 
linked to the teacher educators through their common institutional affiliations.

Next, the models of the relationships between the extent of OTL mathematics 
instruction for conceptual understanding and the knowledge for teaching mathemat-
ics are reported at the country level. The models represent the variation of the rela-
tionships among the variables by institution within the three countries. A multilevel 
regression was used to examine the relationships between OTL to teach mathemat-
ics for conceptual understanding and PSTs’ knowledge for teaching mathematics. 
This model is suitable because it takes the cluster sampling of the PSTs within 
institutions into consideration and computes the correct standard errors, and because 
the software (HLM) allows sampling weights in the analysis.

The model equation is shown below (adapted from Lee & Bryk, 1989). Below is 
the representation of the future teacher level (within the institution).

 
MCK Gender Yearsof schooling Booksij j j ij j ij j= + ( ) + ( ) + ( )b b b b0 1 2 3 iij

j ij j+ -( ) + -( )b b4 5OTL Whyprocedureswork OTL Makedistinctions
iij

j ij ijr+ -( ) +b6 OTL Multiplestrategies
 

The equation is for the future teacher i in institution j. MCK and MPCK are ana-
lyzed separately. The average MCK or MPCK in institution j is represented by β0j, 
and the beta coefficients are the slopes of the equation that represent the change in 
MCK or MPCK for every unit change in the predictors. The model includes covari-
ates, including gender, years of schooling of the parent with the highest level of 
education, and whether there are over 100 books in the home. The OTL variables 
include how to explore multiple solution strategies, make distinctions between pro-
cedural and conceptual knowledge, and show why procedures work. The OTL vari-
ables are group-mean centered. The error of prediction in the equation is represented 
by rij.
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At the institution level:

 

b g g g0 00 01 02j j
= + -( ) + -OTL Whyprocedureswork OTL Makedistinctionss

OTL Multiplestrategies

( )
+ -( ) +

j

j jug 03 0  

The coefficients γ01 to γ03 provide information on the relationships between the 
given OTL mathematics instruction (as experienced by the PSTs at the institution 
level) and the institution-level means for the outcome variables MCK and 
MPCK. The level 2 variables are grand mean centered. In addition, γ00 is the value 
of the grand mean of MCK and MPCK considering all institutions in the country, 
and u0j is the random error or deviation of the group intercept from the grand mean. 
These relationships are compared for the three countries below.

 Results

The results for the first research question provide information about the role of OTL 
mathematics instruction for conceptual understanding in the intended and experi-
enced curriculum in the three countries. The differences between the intended and 
experienced curriculum can be seen in bar graphs representing PSTs’ and teacher 
educators’ responses about the extent of OTL mathematics instruction for concep-
tual understanding within programs. Figures 13.2 and 13.3 provide summaries of 
responses for each type of OTL in each of the three countries. The findings indicate 
the PSTs’ perceptions of the curriculum as they experience it are different from the 
teacher educators’ perceptions of the intended curriculum.

Russian and Polish Programs Across the two countries, the patterns of responses 
indicate that PSTs’ perceptions of their experiences were lower for OTL mathemat-
ics instruction for conceptual understanding than the teacher educators’ perceptions 
of the activities they provided or intended (see Fig. 10.2). Specifically, about 90% 
of the teacher educators at the program level in Russia reported having activities for 
OTL multiple strategies often, while only a quarter of the PSTs at the classroom 
level reported experiencing these opportunities often. About 64% of the teacher 
educators in the Polish specialist group reported having activities for OTL multiple 
strategies often at the program level, but about 29% of the PSTs at the classroom 
level reported experiencing these opportunities often. Similarly, about 55% of the 
teacher educators at the program level in the Polish generalist program reported 
participating in these activities often, but only about 20% of the PSTs at the class-
room level reported experiencing these OTL. These patterns of contrast between 
teacher educators’ perceptions at the program level PSTs’ perceptions at the class-
room level are also seen for the OTL how procedures work, as well as for OTL make 
distinctions. However, the percentage of teacher educators at the program level who 
reported having these two OTLs often was lower in both countries than the percent-
age that reported having OTL multiple strategies—that is, teacher educators in both 
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countries reported OTL multiple strategies as the most frequent OTL. Furthermore, 
when compared to the Polish programs, a considerably higher percentage of teacher 
educators at the program level in Russia reported having OTL make distinctions.

Notably, in comparison with Poland, PSTs at the classroom level in the Russian 
programs had higher percentages of reports that they experienced OTL mathematics 
instruction for conceptual understanding (across all three OTL types) frequently. 
Within Poland, PSTs at the classroom level in the Polish generalist programs had 
lower percentages of OTL mathematics instruction for conceptual understanding. 
Among the three types of OTL mathematics instruction for conceptual understanding, 
the PSTs’ reports indicate that the OTL multiple strategies was experienced often.

The United States The PSTs’ reports in the United States programs indicate the 
OTL mathematics instruction for conceptual understanding was frequently experi-
enced at the classroom level. In particular, a higher percentage of PSTs reported 
they experienced OTL multiple strategies and OTL making distinctions often when 

Fig. 13.2 A comparison of PSTs’ (N = 1,812; N = 191; N = 2,266 for Polish generalist, Polish 
specialist, and Russia, respectively) and mathematics teacher educators’ perspectives (N  =  87; 
N = 39; N = 49 for Polish generalist, Polish specialist, and Russia, respectively) on the extent of 
OTL mathematics instruction for conceptual understanding in the Polish and Russian programs
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Fig. 13.3 A comparison of the perspectives of generalist (N = 1,310) and specialist (N = 191) 
PSTs, and mathematics teacher educators (N = 414) in the United States on the extent of OTL 
mathematics instruction for conceptual understanding
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compared to experiencing OTL why procedures work in the specialist programs. In 
the generalist programs in the United States, the OTL to distinguish between proce-
dural and conceptual understanding was experienced less frequently when  compared 
to other OTL mathematics instruction for conceptual understanding. Taken together, 
about 60–70% (often and occasionally) of the PSTs in the teacher education pro-
grams in the United States had frequent OTL mathematics instruction for concep-
tual understanding.

Although the mathematics educators in the United States are not a representative 
sample, the reports of those who participated in the study indicate that they provided 
these OTLs more frequently than what the PSTs reported having experienced. This 
pattern of substantial differences between PSTs’ reports at the classroom level and 
teacher educators’ reports at the program level differing is consistent across the 
programs and countries selected in this study.

 Relationships Between OTL Mathematics Instruction 
and Knowledge for Teaching Mathematics

The second analysis examined the relationships between the OTL mathematics 
instruction and PSTs’ content knowledge and pedagogical content knowledge. A 
multilevel regression analysis was used to answer the second research question: 
What are the relationships between the OTL mathematics instruction for conceptual 
understanding and PSTs’ knowledge for teaching mathematics in the three coun-
tries? This section includes the results for the two-level hierarchical linear model of 
the relationships and a brief discussion. The results include the unconditional model, 
models of the relationships of OTL and MCK, and models of the relationships 
between OTL mathematics instruction for conceptual understanding and MPCK for 
the three countries.

The differences in PSTs’ knowledge for teaching at the country level and the 
grade specialization level were examined to justify the need for comparing the 
 relationships. The results show that there is a significant difference in PSTs’ MCK 
across the countries, F(2, 33,295) =579.89, p < .001, and a significant difference 
across the PSTs’ grade specializations, F(2, 33,295) = 486.51, p < .001. Similarly, 
there is a significant difference in PSTs’ MPCK across the countries, F(2, 
33,295) = 1,740.27, p <  .001 and a significant difference across the PSTs’ grade 
specializations, F(2, 33,295) = 2,046.45, p < .001. Additionally, post hoc tests con-
firm the differences are significant between the three countries and across the grade 
level specializations. The unconditional models, presented in Table 13.2, show the 
variation that exists within and between the teacher preparation programs in the 
three countries.

MCK The Polish specialist programs had the highest average MCK score (612.23), 
with 18.7% of the MCK variation occurring among institutions, and 81.3% of the 
variation occurring within institutions. In contrast, the average MCK score of the 
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PSTs in the Polish generalist program was the lowest (453.95), with 8.7% of the 
MCK variation occurring among institutions and 91.3% of the variation occurring 
within institutions. These results further confirm there is a difference between the 
Polish specialist and generalist programs PSTs’ MCK. Taken together, the PSTs in 
Russia had the largest variation in MCK among programs, while the Polish general-
ist programs had the lowest variation in MCK scores among programs. Considering 
the confidence intervals (CI) at 95% and 99% across the selected countries, the ICC 
values suggest conducting multilevel analyses is permissible with the MCK as the 
outcome variable based on the duality principle (Raykov & Marcoulides, 2012) of 
CI and hypothesis testing. However, ICC values at 95% and 99% CI for the United 
States specialist program MCK score indicate the multi-level analysis is not permis-
sible. The study, therefore, includes models of the OTL at level 1, but not at level 2 
for the United States specialist programs.

MPCK The PSTs in the Polish specialist programs had the highest average MPCK 
score (573.53), with 15.4% of the proportion of variance among the institutions and 
84.6% within the institutions. However, the PSTs in the Polish generalist programs 
had the lowest average MPCK score (453.95), with 11% of the MPCK variation 
among the institutions and 86.4% within the institutions. Notably, the PSTs in the 
Russian programs had the highest variation of MPCK scores among the institutions, 
whereas the PSTs in the United States generalist programs had the lowest MPCK 
variation among the institutions. Likewise, the CI of the MPCK ICCs at 95% and 
99% are large enough for justifying a multi-level modeling approach for the rela-
tional analyses. However, ICC values at 95% and 99% CI for the United States 
specialist program MPCK score again indicate the multi-level analysis is not per-
missible. The OTL at level 2 is therefore not included in the analysis for the United 
States specialist programs.

In the following section, the findings concerning the relationships between the 
OTL and knowledge for teaching mathematics are discussed within and among the 
institutions. The selected items representing the OTL mathematics instruction for 
conceptual understanding are, as before, showing why procedures work, making 
distinctions between procedural and conceptual knowledge, and exploring multiple 
solution strategies. Tables 13.3, 13.4, 13.5, and 13.6 present summaries of the model 
relationships of OTL and PSTs’ knowledge for teaching mathematics within and 
among the institutions. The three variables used are highly correlated and, therefore, 
each item is introduced in a separate model to show the unique relationships with 
the PSTs’ knowledge for teaching mathematics.

OTL Mathematics Instruction for Conceptual Understanding and PSTs’ 
MCK The relationships between the OTL mathematics instruction and PSTs’ 
MCK had differing patterns within the institutions in the three countries. There were 
a number of significant positive relationships between OTL and PSTs’ MCK within 
programs, as shown in Tables 13.3 and 13.4. The OTL why procedures work signifi-
cantly predicted higher PSTs’ MCK within the Russian program (β = 5.97, p < .05), 
the United States specialist program (β = 17.79, p < .05), and the Polish generalist 
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program (β = 6.89, p < .05). PSTs’ MCK also had a significant positive relationship 
with OTL make distinctions within the teacher preparation programs in Russia 
(β = 5.34, p < .05). Additionally, there was a significant positive relationship between 
OTL multiple strategies and PSTs’ MCK within the Russian and Polish generalist 
programs.

Similarly, the program-level relationship patterns of OTL and PSTs’ MCK dif-
fered among the institutions in the three countries. In the United States, the more 
frequently the programs provided OTL to show why a procedure works, the higher 
the average PSTs’ MCK (γ01 = 11.98, p < .05). The other two OTL relationships in 
programs in the United States were positive (ns), as were all relationships in the 
Russian programs were positive. In the Polish programs, in contrast, the relation-
ships among these variables were negative (ns).

Table 13.4 Multi-level models of relationships between OTL mathematics instruction and MCK 
(Poland)

Poland generalists Poland specialists
Variables Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Intercept 453.15*** 452.81*** 452.65*** 614.84*** 614.98*** 616.54***

(6.14) (6.35) (6.06) (10.14) (10.25) (9.78)
Level 1
Gender −17.29 −16.63 −17.77 −10.41 −6.52 −9.58

(10.84) (10.51) (11.00) (10.86) (11.19) (11.10)
Parental years of schooling 0.01 −0.005 −0.02 0.91 0.86 0.87

(0.30) (0.29) (0.30) (0.57) (0.55) (0.53)
More than 100 books in the 
home

12.72*** 14.02*** 13.16*** 20.90 21.98 20.85**

(2.64) (2.58) (2.71) (13.52) (13.47) (13.61)
Why procedures work 6.89** 5.47

(3.09) (5.64)
Make distinctions between 
procedural and conceptual 
knowledge

4.86 .77
(2.82) (4.23)

Multiple solution strategies 6.74** 4.60
(3.10) (5.58)

Level 2
Why procedures work −5.64 −4.69

(5.58) (11.48)
Make distinctions between 
procedural and conceptual 
knowledge

−1.21 −6.68
(2.17) (10.20)

Multiple solution strategies −2.50 −15.13
(6.99) (13.25)

Variance components
Level-2 between group SD 
(u0)

33.76 33.60 33.81 48.79 48.36 46.74

Level-1 within group SD (r) 71.03 71.39 71.08 77.70 78.05 77.81
**p < .05, ***p < .001
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Table 13.6 Multi-level models of relationships between OTL mathematics instruction and MPCK 
(Poland)

Poland generalists Poland specialists
Variables Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Intercept 449.90*** 449.55*** 448.77*** 573.95*** 573.34*** 574.96***

(7.67) (8.42) (7.97) (9.34) (8.90) (8.86)
Level 1
Gender −8.77 −8.71 −9.14 −0.19 2.12 3.16

(5.39) (5.12) (5.53) (7.16) (7.45) (6.88)
Parental years of schooling 0.04 0.06 0.02 0.64 0.61 0.61

(0.35) (0.34) (0.35) (0.32) (0.31) (0.31)
More than 100 books in the 
home

11.59*** 11.14*** 12.05*** 5.47 6.18 6.19
(2.88) (2.82) (2.92) (9.18) (9.26) (9.14)

Why procedures work 5.87** 3.03
(3.00) (2.96)

Make distinctions between 
procedural and conceptual 
knowledge

7.31*** .12
(1.99) (2.68)

Multiple solution strategies 5.53 −.91
(3.08) (2.07)

Level 2
Why procedures work −11.59 −4.79

(7.01) (8.87
Make distinctions between 
procedural and conceptual 
knowledge

−1.35 6.70
(3.03) (8.73)

Multiple solution strategies −7.64 −10.42
(8.36) (11.13)

Variance components
Level-2 between group SD (u0) 43.51 44.01 43.96 42.20 41.78 41.27
Level-1 within group SD (r) 88.21 87.69 88.29 64.90 65.04 65.01

**p < .05, ***p < .001

The relationships between the OTL make distinctions and PSTs’ MCK differed 
among institutions in the generalist programs in the three countries. Specifically, the 
higher the frequency of this OTL, the higher the average PSTs’ MCK across the 
United States and Russian generalist programs (ns). In contrast, the relationships in 
the Polish programs suggest the higher the frequency of this OTL, the lower the 
average PSTs’ MCK among the programs. The patterns of relationships between 
OTL how to make distinctions between procedural and conceptual knowledge and 
PSTs’ MCK suggest that the more the programs have these opportunities in Polish 
teacher preparation programs, the lower the average PSTs’ MCK.

Likewise, the patterns of the relationships between the OTL how to explore mul-
tiple solution strategies and PSTs’ average MCK differed in the three countries 
among the institutions. In particular, the relationships between this OTL and PSTs’ 
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average MCK were positive in the United States and Russia (ns), but negative in the 
Polish programs (ns). The results indicate the frequency of having this OTL influ-
ences PSTs’ MCK differently across the generalist programs.

OTL Mathematics Instruction for Conceptual Understanding and PSTs’ 
MPCK Within the programs, the relationships between the OTL and PSTs’ MPCK 
had different patterns across the selected contexts, as shown in Tables 13.5 and 13.6. 
Specifically, the more PSTs had the OTL how to show why procedures work, the 
higher their MPCK within the United States specialist program (β = 18.50, p < .05), 
the Russian program (β = 3.87, p < .05), and the Polish generalist program (β = 5.87, 
p < .05). Additionally, there was a significant positive relationship between the OTL 
how to make distinctions between procedural and conceptual knowledge and PSTs’ 
MPCK in the Russian program (β = 3.41, p < .05) and the Polish generalists pro-
gram (β = 7.31, p < .05). On the other hand, the relationships of OTL (a) how to 
make distinctions between procedural and conceptual knowledge and (b) exploring 
multiple solution strategies with PSTs’ MPCK within the United States generalist 
programs were negative (ns).

The relationship patterns of OTL and the average PSTs’ MPCK among the insti-
tutions were different across the three countries. Notably, the relationships between 
the OTL mathematics instructions for conceptual understanding and the average 
PSTs’ MPCK were similar in the United States and Russia, but different in the 
Polish teacher preparation programs. Specifically, the OTL why procedures work 
was positively related to PSTs’ average MPCK among the programs in the United 
States and Russia, but negative in the Polish programs (ns).

Additionally, there was a significant positive relationship between OTL how to 
make distinctions between procedural and conceptual knowledge and PSTs’ aver-
age MPCK across the programs in Russia (γ02 = 27.33, p <  .05). In contrast, the 
Polish programs had opposing patterns of relationships between this variable and 
average PSTs’ MPCK (ns). Specifically, the relationships were positive for the 
Polish generalist programs, but negative for the Polish specialist programs. However, 
in the United States, the relationships between the OTL how to make distinctions 
between procedural and conceptual knowledge and PSTs’ MPCK was positive, but 
not significant.

Finally, the relationships between the OTL how to explore multiple solution 
strategies and average PSTs’ MPCK between the programs also differed across the 
three countries. Notably, the relationships between this OTL and the average PSTs’ 
MPCK across the programs in the United States and Russia were positive (ns), 
whereas the relationships between this OTL and the average PSTs’ MPCK were 
negative for the Polish programs. A summary of the relationships between the OTL 
mathematics instruction for conceptual understanding and PSTs’ MPCK within and 
among the institutions is presented in Tables 13.5 and 13.6.
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 Discussion

The purpose of the larger TEDS-M study was to investigate how primary and lower 
secondary teachers are prepared to teach mathematics and assess the influence of 
the learning opportunities on future teachers’ knowledge development. This study 
focused on opportunities that primary teachers have to learn mathematics instruc-
tion for conceptual understanding using three variables: learning to show why a 
procedure works, learning how to explore multiple solution strategies, and learning 
how to distinguish between procedural and conceptual knowledge. First, this study 
examined the differences between the intended curriculum from the teacher educa-
tors’ perspectives and the experienced curriculum from the PSTs’ perspectives. 
Further, this study investigated the relationships between the experienced OTL 
mathematics instruction for conceptual understanding and primary PSTs’ knowl-
edge of teaching mathematics.

There were marked differences between the frequency of the OTL mathematics 
instruction for conceptual understanding as reported by PSTs with respect the expe-
rienced curriculum and by teacher educators with respect to the intended curricu-
lum. The PSTs’ reported experience of the OTL was less frequent than what teacher 
educators reported at the program level in all programs across the three selected 
countries. Hsieh et al. (2011) found that teacher educators rated themselves higher 
than PSTs on the extent of the OTL. These researchers suggested that the relatively 
high estimates of OTL among teacher educators could be due to their confidence in 
the goals set for courses and the intended curriculum.

Comparing the teacher educators’ and PSTs’ views of OTL mathematics instruc-
tion for conceptual understanding across the three countries reveals some notable 
differences. Specifically, the Polish programs had the lowest percentage of PSTs 
and teacher educators who reported they experienced or provided the OTL mathe-
matics instruction for conceptual understanding occasionally or often. Programs in 
the United States reported the highest frequency of OTL mathematics instruction 
for conceptual understanding among the three countries, with over 70% of PSTs 
and teacher educators indicating that they experienced or intended to offer each of 
the OTLs occasionally or often, respectively. Hsieh et al. (2011) found that the PSTs 
in programs in the United States reported that their instructors were effective and 
that the teaching was coherent. Although this finding did not focus on variables 
similar to the ones in this study, it parallels this study’s findings in that most of the 
PSTs’ perceptions of their experiences suggest they experienced what the programs 
or teacher educators intended, although to a lesser extent.

13 Perceptions of Learning Mathematics Instruction



402

 Does the OTL Mathematics Instruction for Conceptual 
Understanding Matter?

Some studies have shown that future teachers and in-service primary teachers have 
knowledge gaps in their mathematics content and pedagogical content knowledge 
(e.g., Ball, 1990; Ma, 1999). The knowledge teachers have for teaching influences 
their instruction and the lack of it can limit how they teach mathematics for under-
standing (Borko & Putnam, 1996). For this reason, providing opportunities for 
learning how to teach mathematics for conceptual understanding in teacher prepara-
tion programs and professional development forums can not only influence teachers 
knowledge and beliefs about teaching, but also support their teaching approaches in 
mathematics classrooms. Not only do these opportunities build on future teachers’ 
mathematics content knowledge; they also introduce them to new ways of teaching 
mathematics that they may not have experienced in their earlier mathematics 
learning.

The findings from this study suggest frequent experiences in learning mathemat-
ics for conceptual understanding through particular strategies is related to an 
increase in PSTs’ knowledge about teaching mathematics. In particular, more 
opportunities that allow PSTs to learn to show why a procedure works was signifi-
cantly related to the average PSTs’ increase in content knowledge among the teacher 
preparation programs in the United States. Similarly, within the Polish generalist, 
United States specialist, and Russian teacher preparation programs, the relation-
ships between the OTL to show why procedures work and PSTs’ knowledge for 
teaching were significant. If PSTs have opportunities to develop skills for providing 
explanations, the PSTs present appropriate explanations for given tasks 
(Charalambous et al., 2011). Similarly, PSTs with more opportunities to use repre-
sentations were more successful in explaining mathematics concepts that involved 
place value (Chick, 2003). Indeed, the reasoning and proof process standards require 
students to explain why procedures work (NCTM, 2000). Also, the recent Common 
Core practice standards and principles to actions emphasize problem solving, rea-
soning and engaging in mathematical argumentation in learning mathematics across 
multiple levels in school (CCSS, 2010; NCTM, 2014). Students can only attain 
these expected competencies if their teachers have the knowledge and strategies to 
support students engaging in reasoning.

Furthermore, the frequency of OTL how to make distinctions between proce-
dural and conceptual understanding was significantly related to an increase in 
 average PSTs’ MPCK in the Russian teacher preparation programs. Although the 
relationship patterns for the United States programs and Russia were all positive, 
they were not significant at the program level, but were significant within the 
Russian and the Polish generalist teacher preparation programs. The findings fur-
ther support the previous work done by Bartell et al. (2012), in which they noted 
growth in PSTs’ MPCK when the instructors provided opportunities for engaging in 
differentiating procedural and conceptual knowledge. Similarly, Crespo (2000) 
vfound that if PSTs have supportive contexts, they could identify conceptual under-
standing from students’ responses.
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All of these studies in mathematics teacher education also support the notion that 
providing opportunities that allow for PSTs to differentiate procedural and concep-
tual understanding of mathematics expands their knowledge of instruction. Hence, 
discussions on specific topics and opportunities that support PSTs to distinguish this 
procedural knowledge from conceptual knowledge is needed among the profes-
sional communities of practice in teacher preparation programs. This is an essential 
specialized knowledge that supports teaching for conceptual understanding of 
mathematics.

Although the OTL how to explore multiple solution strategies is part of the 
problem- solving process in teaching mathematics, at the program level it was not 
significantly related to the outcome variables of interest. However, within the pro-
grams in Russia and the Polish generalist programs, the relationships between this 
OTL and PSTs’ MCK were significant. As shown in Figs. 13.2 and 13.3, across the 
countries, it was the form of mathematics instruction that PSTs reported learning 
about most frequently when compared to the other two. Less variation could explain 
the non-significant results among the teacher preparation programs. However, the 
patterns of the relationships in the United States and Russia show support for the 
previous findings of smaller-scale studies (e.g., Crespo, 2000; Grant & Lo, 2009; 
Ryken, 2009).

In the Polish programs, most of the OTL mathematics instruction for conceptual 
understanding examined in this study had negative correlations with the PSTs’ aver-
age MCK and MPCK among the institutions. In contrast, for PSTs within the gen-
eralist programs, there were some significant relationships. Specifically, the OTL 
why procedures work (MCK and MPCK), multiple solution strategies (MCK), and 
the OTL how to make distinctions between conceptual and procedural knowledge 
(MPCK) had significant positive relationships. Although the negative relationships 
among the programs were not significant, some of the findings suggest there may be 
more emphasis on a particular form of knowledge within the programs by some 
instructors. Notably, the opportunities to distinguish between procedural and con-
ceptual knowledge were perhaps experienced minimally, as presented in the descrip-
tive findings. The generalist programs had the lowest scores for the knowledge for 
teaching mathematics scores, whereas the specialist programs had the highest 
scores.

An examination of the teacher educators’ responses in the Polish programs indi-
cates that the percentage of those who intended to provide OTL mathematics 
instruction for conceptual understanding more frequently were lower than for the 
teacher educators in the programs in Russia and the United States. Perhaps the doc-
umented significant improvements in the Polish students’ mathematics test scores 
could be a result of the restructuring of the schools (OECD, 2011) rather than the 
teacher preparation programs. Although the findings showed mixed patterns across 
contexts, they can be generalizable to a wider population within the countries, and 
theories can be formulated to explain the relationships between approaches to learn-
ing mathematics instruction for conceptual understanding and future  teachers’ 
knowledge for teaching mathematics.
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 Limitations of the Study

The analysis provided in the study involved some limitations. First, the study 
researchers were not able to find comparable measures of previous knowledge that 
were common across countries. For this reason, future teachers’ prior knowledge is 
not known; the study used as a proxy previous attainment as reported by future 
teachers. Second, the sampled teacher educators in the United States did not reach 
the minimum threshold for participation rate; therefore, the study is limited to infor-
mation provided by the teacher educators who participated in the study. Third, the 
structure of teacher education programs is different from that of schools, for that 
reason PST’s are not nested within classrooms with a single teacher educator 
as teacher educators teach across the program, thus future teachers are nested within 
programs. Both PSTs and educators are considered representatives of their institu-
tions—the commonality is that they come from the same institution. Although there 
were some limitations in the study, the rigorous data-collection processes and the 
analytical procedures conducted in this study enable significant findings that are 
relevant to teacher education policy.

 Significance of the Study

The use of a similar analytical process across the selected countries to examine the 
relationships between the mathematical practices for conceptual understanding and 
the PSTs’ knowledge is useful for the generalization of findings and confirmation of 
theories. From this study, it is safe to say that some of the results from previous, 
small-scale studies on opportunities to learn mathematics instruction for conceptual 
understanding through teacher preparation were supported by this study on a larger 
scale. The findings can inform teacher preparation programs on the opportunities 
that can be provided to expand PSTs’ knowledge for teaching mathematics for con-
ceptual understanding.

The evaluation of the knowledge for teaching mathematics that future teachers 
have at the end of their teacher preparation programs informs teacher education and 
policy-makers about the opportunities that teacher preparation programs need to 
offer their future teachers to learn to teach primary school mathematics. This infor-
mation is useful for professional development forums on the offerings that are 
needed to support in-service teachers to continue building on problem-solving strat-
egies. Finally, countries can evaluate where there is a lack of emphasis in their 
programs and investigate ways of covering the knowledge deficiencies through the 
adoption of appropriate curriculum guides.
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Chapter 14
The Mathematical Education  
of Secondary Teachers

Maria Teresa Tatto 

Abstract This chapter explores the influence of pre-service teacher education on 
future secondary teachers’ mathematical knowledge for teaching across several of the 
countries/regions that participated in the Teacher Education and Development Study 
in Mathematics (TEDS-M) including Chile, Chinese Taipei, Germany, Malaysia, the 
Philippines, Poland, the Russian Federation, Singapore, Switzerland, and Thailand, 
and paying particular attention to the situation in the United States of America. This 
chapter uses survey and knowledge assessment data collected by TEDS-M from rep-
resentative samples of teacher education programs and their future secondary teachers 
across these countries/regions. Multilevel analyses show wide variability in the knowl-
edge for teaching mathematics future secondary teachers attain. Previous mathematics 
knowledge as a requirement for entry into teacher education and mathematics-rich 
opportunities to learn were associated with higher and deeper levels of mathematical 
and mathematical pedagogical knowledge, after controlling for individual characteris-
tics. Beliefs espousing traditional orientations to learning mathematics were associ-
ated with lower levels of performance in the knowledge assessments. The discussion 
highlights the importance of self-study and self-regulation in teacher education.

 Introduction

Since as far back as 1997, the quality of teachers has been a central policy concern in the 
United States. That year, President Clinton issued a call to action prioritizing “improv-
ing the quality of teachers in every American classroom” (Lewis, Basmat, Carey, 
Bartfai, Farris, & Smerdon, 1999, p. iii). The National Center for Education Statistics 
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undertook the task of producing a report on the preparation and qualifications of public 
school teachers as a follow-up to this call (Teacher Quality: A Report on the Preparation 
and Qualifications of Public School Teachers) and argued that while teacher quality

…is a complex phenomenon, and there is little consensus on what it is or how to measure it 
[…there] are, however, two broad elements that most observers agree characterize teacher 
quality: (1) teacher preparation, and qualifications (e.g., pre-service and continued learn-
ing), and (2) teaching practices (e.g., actual behaviors and practices that teachers exhibit in 
their classrooms). (Lewis et al., 1999, p. iii)

While the No Child Left Behind Act (NCLB) of 2001 identified providing highly 
qualified teachers to schools as one of its key goals and resulted in the development 
of teacher-evaluation systems based on students’ test scores in every state, under the 
new law known as the Every Student Succeeds Act (ESSA) such a requirement is no 
longer in place. Instead, states must come up with ways to define quality in order to 
evaluate teachers. Under both NCLB and ESSA, teacher educators and teacher 
quality advocates have raised concerns about the lack of standards for teacher qual-
ity especially as little agreement exists regarding what constitutes quality teacher 
preparation and how it relates to quality teaching (Sawchuk, 2016; Zeichner & 
Conklin, 2005). Recent reviews of teacher education reveal the need for more sys-
tematic exploration of programs and their intended outcomes (Levine, 2006; 
National Council for Teacher Quality, 2013), and for rigorous research directed at 
producing system-level evidence of program effects (Darling-Hammond, 2013). 
Indeed, national-, state-, or even program-level evaluations of teacher education 
program effects are rare (Feuer, Floden, Chudowsky, & Ahn, 2013; Heafner, 
McIntyre, & Spooner, 2014). When they have been undertaken, evaluations have 
not shed much light on the acquisition of knowledge needed for teaching because 
they have not measured future teachers’ knowledge outcomes and have, for the most 
part, relied on responses to satisfaction surveys (Thomas & Loadman, 2001). 
Attempts at applying value-added models to the evaluation of teacher education 
programs by measuring teachers’ effects on their pupils’ achievement as an indica-
tor of teachers’ program effectiveness (Boyd, Grossman, Lankford, Loeb, & 
Wyckoff, 2009; Constantine et  al., 2009; Goldhaber, Liddle, & Theobald, 2013) 
have lacked validity (Floden, 2012). Many studies have been descriptive, small in 
scale, not specific to subject-matter, and rarely comparative (Crowe, 2010; Tatto, 
2011). The call by the U.S. Department of Education (DOE, 2014) to create account-
ability systems in teacher preparation had the potential to answer some of these 
questions; however, this proposal met with strong resistance and was rescinded in 
early 2017. Such criticism is understandable, because large-scale systemic efforts to 
evaluate teacher preparation are expensive and time-consuming, and the field lacks 
efficient models to guide such high-stakes measurement efforts.

One exception is the field of mathematics education. In response to calls from 
groups such as the National Commission on Mathematics and Science Teaching 
for the twenty-first century (2000) and the RAND Mathematics Study Panel 
(2003), the National Science Foundation funded a number of studies including, in 
2005, the first international and comparative large-scale study of the outcomes of 
teacher education. The study, known as the Teacher Education and Development 
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Study in Mathematics (TEDS-M), explored the influence of teacher education on 
the knowledge that is considered important for future mathematics teachers to 
master at the end of their pre-service teacher education programs. The study is 
distinctive in that it was a collaborative effort of mathematics teacher educators to 
evaluate the knowledge outcomes of their own teacher education programs. The 
TEDS-M study included a comparative element bringing together the effort of 
teacher educators to study their own preparation systems for future secondary 
teachers in 14 countries including the U.S. The study was authoritative because it 
endeavored to use representative samples of teacher education programs within 
each country/region and assessed the knowledge that their graduates attained at the 
end of their programs.

 Research Questions and Assumptions

While international studies of student achievement have helped to provide rigorous 
and comprehensive evaluations of schooling success within and across countries for 
several decades, the education of teachers has rarely been studied in such a manner. 
Thus, while much is known about the factors that seem to make a difference in 
improving students’ learning, including the quality of their teachers, we lack similar 
valid and generalizable outcome data for teacher education programs concerning 
the factors that make a difference on future teachers’ knowledge acquisition. Such 
data would help inform programs’ efforts to improve future teachers’ learning and 
the overall quality of teacher education.

This chapter uses the TEDS-M database to investigate the outcomes of second-
ary mathematics teacher education as indicated by future teachers’ knowledge at the 
end of their programs, using samples of pre-service programs and their future sec-
ondary mathematics teachers across a variety of countries/regions. The research 
questions are

 1. What is the level of the mathematical and mathematical pedagogical content 
knowledge future teachers attain?

 2. How are specific characteristics of future teachers (such as socioeconomic sta-
tus, age, gender, prior attainment, and beliefs) associated with their attained lev-
els of knowledge?

 3. What are some of the key learning opportunities available to future teachers in 
their teacher education programs, and how are these associated with their attained 
levels of knowledge?

This chapter’s central assumption is that mathematics teacher education is 
designed to enable future teachers to be ready to teach once they finish their teacher 
education. In order to do this, programs plan opportunities to learn (OTL) according 
to the individuals they recruit into teaching and according to the curricular demands 
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of the school systems where their teachers will be hired. The degree to which pro-
grams succeed in preparing knowledgeable teachers may depend on the degree to 
which they are able to recruit individuals with adequate content knowledge into 
teaching and to regulate the quality of their programs.

In the past, studies have included indicators of program effectiveness using prox-
ies such as teachers’ certification status, or performance on state certification tests 
(Clotfelter, Ladd, & Vigdor, 2007; Croninger, Rice, Rathbun, & Nishio 2007; 
Goldhaber & Brewer 2000). However, these studies do not tell us what teachers 
know, how they are able to use this knowledge in teaching situations, and how this 
knowledge is in turn, related to programs’ practices and OTL. To investigate these 
questions and assumptions, this chapter reports on the findings from Chile, Chinese 
Taipei, Germany, Malaysia, the Philippines, Poland, the Russian Federation, 
Singapore, Switzerland (German-speaking cantons only), Thailand, and the United 
States (public institutions only).1

 The Education of Future Secondary Teachers

The education of secondary mathematics teachers (i.e., individuals who may teach 
grades ranging from the upper grades of primary2 schooling to the upper grades of 
secondary schooling or children aged 11–18) has become an area of concern in the 
U.S. and elsewhere, in part as a result of findings from international assessments 
such as the TIMSS studies.

The latest TIMSS 20153 results show that while the performance level of U.S. 
eighth-graders in mathematics improved from 1995 to 2011 to 2015 (with mean 
scores of 492, 509, and 518 respectively), pupils in eight education systems scored 
significantly higher in 2015 than those in the U.S. system. These systems include 

1 TEDS-M was funded by the US National Science Foundation NSF REC 0514431. TEDS-M col-
lected data from 14 countries who volunteered to participate in the study of secondary teacher 
education. Three countries were excluded from the analysis for this chapter because the data col-
lected did not meet the coverage requirement to ascertain representativeness or because as it is 
often the case with surveys, there was a significant number of missing values in the variables 
included in the analysis. In addition, while the TEDS-M study endeavored to draw nationally rep-
resentative samples of teacher education programs in each participating country, the National 
Research Center (NRC) in the United States decided to collect nationally representative data from 
public institutions only as these provide most of the teachers in the country (about 80 percent). The 
NRC in Switzerland decided to collect representative data from German speaking areas to draw a 
comparison with the German system (France and Italy did not participate in TEDS-M thus, the 
NRC did not find a comparative group to justify inclusion). The samples are representative of the 
programs and populations the United States and Switzerland NRCs decided to survey.
2 Note that in the U.S. ‘primary’ usually refers to grade K-3, while ‘elementary’ is used for grades 
K-5 or K-6. In this chapter the term elementary is used as used in TEDS-M (see Tatto et al. 2012, 
pp. 29–32 for specific definitions within countries as to what grades are included as primary or 
secondary).
3 The TIMSS results are reported in simple descriptive statistics; the reference point is the interna-
tional mean which is centered at 500, with a standard deviation of 100.
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Canada (527), the Russian Federation (538), Quebec-CAN (543), Japan (586), 
Hong Kong-CHN (594), Chinese Taipei-CHN (599), the Republic of Korea (606), 
and Singapore (621). When looking at the domains measured (number, data, alge-
bra, and geometry), significant gains in scores occurred only in the domains of 
algebra (507, 512, and 525) and geometry (480, 485, and 500).

Further, only 10% of eighth-grade students in the United States reached the 
TIMSS 2015 advanced benchmark (mean score of 625), compared with 13% in 
Israel, 14% in the Russian Federation, 15% in Kazakistan, 34% in Japan, 37% in 
Hong Kong, 43% in the Republic of Korea, 44% in Chinese Taipei, and 54% in 
Singapore. Where are eighth-grade U.S. students failing? According to the descrip-
tion of the performance levels developed by TIMSS (Provasnik, Kastberg, Ferraro, 
Lemanski, Roey, and Jenkins, 2012), eighth-grade pupils at advanced levels should 
demonstrate the following abilities: reason with information, draw conclusions, 
make generalizations, and solve linear equations … solve a variety of fraction, pro-
portion, and percent problems and justify their conclusions … express generaliza-
tions algebraically and model situations … solve a variety of problems involving 
equations, formulas, and functions … reason with geometric figures to solve prob-
lems … reason with data from several sources or unfamiliar representations to solve 
multi-step problems (Provasnik et al. 2012, p. 19).

In the TIMSS 2015 Advanced, a study that measures the performance of students 
at the advanced level (12th-graders) implemented in a reduced number of countries, 
United States and Russian students had an average score of 485, scoring signifi-
cantly higher than those in Sweden, France, Italy, and Slovenia (whose scores 
ranged from 431 to 460), but significantly lower than students in Lebanon (with an 
average score of 532) and advanced students in the Russian Federation (with an 
average score of 540). According to the TIMSS Advanced international benchmark, 
at the advanced level students should be able to “demonstrate thorough understand-
ing of concepts, mastery of procedures and mathematical reasoning skills [and 
should be able to] solve problems in complex contexts in algebra, calculus, geom-
etry and trigonometry” (Carr 2016).

The TEDS-M study, which could be seen as the TIMSS equivalent for teachers, 
assessed the mathematical knowledge attained by future secondary teachers after 
completion of their pre-service program requirements, close to the time they would 
receive their teaching credential. The international comparison of the TEDS-M 
assessments parallel those reported by TIMSS for secondary pupils. TEDS-M 
described two international performance levels or benchmarks (anchor points) to 
give substantial meaning to the scale scores attained by future secondary teachers in 
the mathematical content assessment; one defines a basic level of performance, and 
the other an advanced level. For instance in the U.S. among lower secondary teachers 
expected to teach up to Grade 10 (i.e., middle school mathematics), only 34% reached 
a basic level of performance, while 2% reached an advanced level (corresponding to 
a scale score of 559, where the international mean is equal to 500 and the standard 
deviation is equal to 100). Future secondary teachers expected to teach up to Grade 
11 and above (i.e., high school mathematics) did better, with 87% reaching the basic, 
and 45% the advanced performance levels. These levels of performance, especially 
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at the advanced levels, are significantly lower than those of other systems, such as 
Chinese Taipei, Germany, Poland, the Russian Federation, Singapore, and 
Switzerland. More detail on these performance levels will be presented later in this 
chapter; for now, it is important to point out that the areas where U.S. future second-
ary teachers had more challenges in the TEDS-M knowledge assessment was in 
demonstrating acceptable levels of conceptual understanding, problem-solving and 
reasoning capacity in essential mathematics domains, and, more specifically, in 
geometry. These low levels of performance suggest that it will be challenging to 
implement the ambitious standards for learning to teach mathematics, such as the 
newly-issued Association of Mathematics Teacher Educators (AMTE, 2017) 
Standards for the Preparation of Teachers of Mathematics, the Principles to Actions 
guidelines (National Council of Teachers of Mathematics, 2014), and the Common 
Core State Standards for Mathematics (CCSS-M, Common Core State Standards 
Initiative, 2010).

The TEDS-M assessments, designed to parallel the cognitive domains measured 
by the TIMSS assessments for pupils, were developed independently of TIMSS and 
in collaboration with groups of mathematicians and mathematics teacher educators 
representing the countries that took part in the study. The similarity in the patterns 
of knowledge and cognitive performance between students and future teachers in 
the TIMSS and TEDS-M assessments in the countries/regions that participated in 
both studies, however, suggests the need to examine the preparation that future sec-
ondary teachers obtain in their pre-service teacher education, and how it may con-
tribute to future teachers’ knowledge.

 Previous Research

What teachers know and how they teach is seen as the most important school factor 
affecting student achievement (Goe, 2007; Hill, Rowan, & Ball, 2005; Kaplan & 
Owings, 2001). Because teachers are expected to teach the school curriculum, sub-
ject matter knowledge and subject matter pedagogy knowledge are seen as essential 
in their preparation. This has long been the consensus regarding mathematics 
(Baumert et al., 2010; Hill et al., 2005). But while teacher education is increasingly 
considered to be a key factor in teacher quality (Darling-Hammond, 2000; Darling- 
Hammond & Bransford, 2005; Levine, 2006), existing research is mixed regarding 
how mathematics teacher education may result in the kinds of high-quality teachers 
envisioned (Adler, 2017; Kilpatrick, Swafford, & Findell, 2001; Ball, 2003). While 
a number of studies have looked at the relationship between teachers’ mathematics 
knowledge and pupil achievement (see Hawkins, Stancavage, & Dossey, 1998; 
Monk, 1994; Monk & King, 1994), prior to TEDS-M, there have been no large- 
scale, representative international and comparative research studies linking teacher 
education programs’ practices (such as recruitment and selection strategies) and 
characteristics (such as coherent OTL) with teachers’ knowledge at program com-
pletion (for early single country studies, see Tatto & Kularatna, 1993; Tatto, Nielsen, 
Cummings, Kularatna, & Dharmadasa, 1993).
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 Characteristics of Programs

A number of studies suggest that preparing effective mathematics teachers depends 
on rigorous recruitment and selection strategies, as well as programs’ ability to 
provide OTL that integrate theoretical components and practical experiences suc-
cessfully, and, in designing these opportunities, to account for individual character-
istics of aspiring teachers (Grossman, Hammerness, & McDonald, 2009). Yet these 
studies have proven inconclusive (Casey & Childs, 2011; Levine, 2006; Mikitovicsa 
& Crehanb, 2002).

Scholars also have studied programs in a more holistic manner and found that the 
degree to which a program’s OTL are aligned with an inquiry based theory about 
learning to teach contributes to its effectiveness as measured by cognitive changes 
(e.g., Tatto, 1996, 1998, 1999). Recent work on teacher education quality assurance 
reveals that, in addition to rigorous entry and exit requirements, program alignment 
with accreditation demands may be better able to produce highly knowledgeable 
teachers (Tatto et al., 2012; Ingvarson et al., 2013).

 Characteristics of Future Teachers

Understanding how key individual characteristics such as socioeconomic status 
(SES), gender, age, and previous ability are related to future teachers’ learning may 
help to create more successful teacher preparation programs. As noted above, stud-
ies that relate teacher education outcomes to the individual characteristics of future 
teachers are rare. Most studies explore the relationship of individual characteristics 
and teaching effectiveness as measured by gains in student achievement, with older 
studies also including measures of teachers’ classroom performance. Darling- 
Hammond (2000) cites research studies as far back as the 1940s attempting to find 
relationships between teachers’ ability (IQ or other measures) and teaching perfor-
mance; she remarks that while the relationships were positive, they were rarely 
significant, likely due to the lack of variability among teachers in this measure. 
More informative studies have found that teachers’ verbal ability is related to stu-
dent achievement (Monk, 1994; Mullens, Murnane, & Willett, 1996) and that “this 
relationship may be differentially strong for teachers of different types of students 
[… and] may be a more sensitive measure of teachers’ abilities to convey ideas in 
clear and convincing ways” (Darling-Hammond, 2000, p. 3). A more recent review 
(Wayne & Youngs, 2003) examined the literature spanning more than 25  years 
(from 1975 to 2002) in search of studies exploring the relationship between teacher 
characteristics (defined as ratings of colleges teachers attended, teachers’ test scores, 
teachers’ degrees and coursework, and teachers’ certification status) and student 
achievement gains. While the search yielded only 21 studies, some with mixed 
results, the authors conclude that in the case of high school mathematics “students 
learn more from teachers with more mathematics-related coursework” (p. 103). Past 
research has established that knowledge of the subject before teacher education 
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(e.g., previous attainment) and after teacher education (e.g., knowledge and beliefs 
about teaching and learning) in mathematics seem to be importantly related to how 
much attention teachers give to the subject once in the classroom (Rowland, 2012; 
Schmidt & Buchmann, 1983) and to the beliefs they hold as they teach diverse 
learners (Tatto, 1996). The field has for the most part assumed that there is a link 
between future teachers’ characteristics and teacher education outcomes and has 
left unexplored the important question of what key features of teacher education 
seem to make a difference in the development of more knowledgeable teachers. 
Exploring OTL helps to answer this question.

 Opportunities to Learn

There are significant disagreements about what content knowledge is important for 
teachers to acquire, how it is to be acquired, and whether acquiring that knowledge 
enables future teachers to tackle challenging mathematics problems and enact that 
knowledge in pedagogical situations (Rowland & Turner, 2008). One position is 
that if teachers are intelligent and well prepared in mathematics, they can generally 
learn most of what they need to know about teaching informally on the job (e.g., 
through formal mentoring and apprenticeship relationships). Another position is 
that in addition to content knowledge, mathematics teachers need opportunities to 
learn pedagogical content knowledge. Yet another position emphasizes the impor-
tance of general pedagogical knowledge (almost exclusively or in addition to con-
tent knowledge and pedagogical content knowledge). Teacher education programs 
seem to vary in the degrees to which knowledge of mathematics, knowledge of the 
mathematics school curriculum, and knowledge of mathematics pedagogy are 
emphasized, and this very question has been the subject of much research (e.g., Ball 
& Bass, 2003; Ball, Thames, & Phelps, 2008; Speer & King, 2009). In general, the 
preparation of secondary teachers has been characterized by an emphasis on the 
disciplines that future teachers are expected to teach. In the case of future secondary 
mathematics teachers, the knowledge that is considered essential is the knowledge 
of mathematics needed at the upper levels of schooling.

A related focus of research is the degree of program coherence across opportuni-
ties to learn. Scholars have found that more effective mathematics [and writing] 
programs are those able to deliver more coherent experiences (Tatto, 1996, 1998, 
1999). Yet studies exploring the distinct impact of coherent course offerings are 
rare.

Mathematical Content Knowledge A number of research studies have explored 
the degree to which exposure to more mathematics courses contributes to teacher 
knowledge. While many research studies have also made important advances in 
exploring the knowledge needed for teaching primary mathematics (see Ball & 
Bass, 2000; Hill, Ball, & Schilling, 2009; Venkat & Spaull, 2015), equivalent work 
concerning secondary mathematics is still limited (Goldhaber & Brewer, 2000; 
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Krauss et al., 2008; Rowland, 2012; Speer & King, 2009). Overall, the evidence 
concerning the relationship between mathematics coursework and teacher knowl-
edge is mixed. One line of research has tended to indicate that completing the 
upper-division college mathematics courses required for the mathematics major 
does little to improve the conceptual understanding of prospective elementary and 
secondary mathematics teachers (Ball, 1991; Rowan, Correnti, & Miller, 2002).

U.S.-based scholars who have explored these issues in more depth find that the 
content of courses that prospective secondary school teachers take does not prepare 
them to understand key underlying concepts of basic mathematics, let alone more 
advanced mathematics such as algebra or geometry (Ferrini-Mundy & Findell, 
2000; Hill, Sleep, Lewis, & Ball, 2007). A general conclusion from a long chain of 
studies is that elementary and middle school teachers possess a limited knowledge 
of mathematics: “Teachers may know the facts and procedures that they teach but 
often have relatively weak understandings of the conceptual basis for that knowl-
edge [and…] have difficulty clarifying mathematical ideas or solving problems that 
involve more than routine calculations” (Ball, 1991). Researchers also have 
remarked that this knowledge is not only limited; it is also not the kind of mathemat-
ics knowledge that is likely to be useful in and for teaching (Ball & Bass, 2000; 
Graham, Portnoy, & Grundmeier, 2002; Usiskin, Peressini, Marchisotto, & Stanley, 
2003; Van Dooren, Verschaffel, & Onghena, 2002).

Mathematical Pedagogical Content Knowledge Scholars also have explored 
whether exposure to courses on the pedagogy of mathematics (commonly known as 
mathematical pedagogical content knowledge, or MPCK), have resulted in more 
knowledgeable teachers. Here again, the results are mixed. Ball, Thames, and 
Phelps (2008) have found that the knowledge that teachers need to effectively teach 
mathematics is “a kind of mathematical reasoning that most adults do not need to do 
on a regular basis” (p. 299); they found that this special kind of teaching knowledge 
cannot be acquired in mathematics courses alone and that adults, even if well- 
educated, do not necessarily possess this knowledge.

Unfolding what this special knowledge is has been a slow process. Building from 
the work of several scholars in the field, Ball and her colleagues suggest the helpful 
concept of mathematical knowledge for teaching an amalgam of mathematical con-
tent knowledge and mathematical pedagogical knowledge, which includes (a) 
knowing mathematics and being able to act on that knowledge (e.g., knowing con-
cepts and procedures in decompressed or unpacked form, being able to recast or 
organize mathematical ideas); (b) knowing and being able to use mathematical con-
cepts, processes and procedures of the school curriculum (e.g., knowing the math-
ematical precursors and trajectories of concepts and procedures, relating school 
mathematics to mathematicians’ mathematics); and (c) knowing and working with 
mathematical arguments (e.g., collectively finding the mathematical rationale of an 
algorithm, judging equivalence of arguments, and making a positive reading of stu-
dent thinking) (Ball & Bass, 2000). This framework has emerged from years of 

14 The Mathematical Education of Secondary Teachers



418

concentrated empirical study; however, it still requires validation at a large scale to 
be generalizable.

While teacher knowledge—both knowledge of content and knowledge of peda-
gogy for specific content—was and still is seen as critical to teachers developing 
deeper understandings for teaching, studies have found that in some cases mathe-
matics courses taken by pre-service teachers in the United States contain knowledge 
that has little relevance for teaching, and that methods courses often teach little 
mathematics content, spending time instead on giving teachers a generally applica-
ble “bag of tricks” (Floden, McDiarmid, & Jennings, 1996).

Other kinds of knowledge also are considered important for future teachers, 
including knowledge of students and knowledge of the curriculum. Studies have 
found that courses that teach this knowledge in the context of content-specific peda-
gogy seem to be more effective (Clift & Brady, 2005; Floden & Meniketti, 2005).

Espoused Beliefs

Teacher education programs dedicate a significant amount of time to addressing 
concerns related to future teachers’ beliefs. Empirical literature is well-established 
on teachers’ and student-teachers’ beliefs (see, e.g., De Corte, Op’t Eynde, & 
Verschaffel, 2002; Handal, 2003; McCleod, 1992; Staub & Stern, 2002) and how 
these are related to OTLs in methods courses. A number of studies have found that 
methods courses and field experiences seem to affect candidates’ beliefs about 
teaching mathematics and their ability to demonstrate knowledge of inquiry-ori-
ented principles when planning instruction (Beswick, 2007, 2009; Langrall & 
Mooney, 2002; Mewborn, 2000).

 Framework

Teacher education’s theory of action entails a complex combination of inputs and 
implementation processes. The most important input in teacher education is the 
characteristics of those who enroll (e.g., prospective teachers’ academic ability, and 
background such as SES, gender, and age). Teacher education’s most relevant indi-
cator of implementation processes is the provision of key coherent and relevant 
OTLs that are offered to future teachers, all of which is shaped by programs’ struc-
ture and accreditation guidelines and by curricular standards. While the ultimate 
outcome of teacher education’s theory of action is to positively impact pupils’ learn-
ing, its most immediate outcome is to positively influence future teachers’ learning 
(i.e., knowledge and beliefs). The argument in this chapter is that to understand 
teachers’ influence on pupil learning it is necessary to understand first how teachers’ 
knowledge is affected by their learning experiences in teacher education programs.

This chapter explores whether there are key common factors (future teachers’ 
characteristics, programs’ characteristics, etc.) associated with the successful prep-
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aration of future secondary teachers (with respect to their MCK and MPCK) at the 
country/regional level. The focus is on the United States in comparison with several 
countries/regions.

 Methods

The cross-national data were collected via surveys administered from 2008 to 2009 
to representative samples of programs and their future teachers who were in their 
last year of their teacher preparation. The data from programs were collected using 
a questionnaire, and the data from future secondary teachers were collected using 
background questionnaires and assessments of MCK and MPCK.4 This chapter, 
uses the data from the future secondary teacher survey.

 Participants

Future Secondary Teachers Future teachers in their last year of their teacher edu-
cation program were surveyed. A teacher education program was defined as a path-
way that exists within an institution that requires students to undertake a set of 
subjects and experiences, and leads to the award of a common credential on com-
pletion. Within the TEDS-M study, all teacher education programs were located 
within higher education institutions (HEI) or the equivalent. A future teacher was 
defined as a person enrolled in a teacher education program that is explicitly 
intended to prepare teachers qualified to teach mathematics at the secondary school 
level.

Sampling The study used a stratified multi-stage probability sampling design 
drawing representative samples of teacher education programs in the participating 
countries/regions. Programs were randomly selected from a national list of teacher 
education programs, and future teachers were randomly selected from a list of in- 
scope future teachers within each of the teacher preparation programs. In countries 
with few programs, all teacher preparation programs were selected to participate in 
the study.5 The data analysis takes into account the sampling weights for programs 
and future teachers, which also provide for a non-response adjustment factor for all 
the estimates (for a detailed description of the estimation of weights, participation 
rates, and sampling error, consult Tatto, 2013, chapter 10).

4 Human subject protection procedures were implemented in every country and monitored by 
Michigan State University, the principal investigator’s institution  at the time of the study. The 
methods are described in detail in Tatto (2013).
5 The minimum sample size was set at 50 institutions per level and an effective sample size of 400 
future teachers per level in a given country. “Effective sample size” means that the sample design 
must be as efficient (i.e., precise) as a simple random sample of 400 teachers from a (hypothetical) 
list of all eligible future teachers.
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The number of programs participating in the study by country/region and the 
number of participating future secondary teachers are shown in Table  14.1. All 
participating countries with response rates of 85% or more on the assessments were 
included. Country/region data were analyzed across the same variables.

 Procedures

Instruments The data reported in this chapter come from a one-time survey of 
future secondary teachers administered at program completion and before gradua-
tion. The survey included a questionnaire and an assessment of knowledge. 
Researchers from the different participating countries/regions were asked to con-
tribute questions for the questionnaire and items for the assessment. Several items 
were also provided by other studies, including the Study of Instructional 
Improvement (SII) Learning Mathematics for Teaching,6 the Developing Subject 
Matter Knowledge in Math Middle School Teachers,7 and Knowing Mathematics 

6 Consortium for Policy Research in Education (CPRE), University of Michigan, School of 
Education, Ann Arbor, MI (measures development supported by NSF grants REC-9979873, REC- 
0207649, EHR-0233456 & EHR 0335411).
7 Measures development for lower secondary teachers was supported by NSF Grant REC-0231886. 
Michigan State University, East Lansing, MI.

Table 14.1 Number of participating programs offering secondary teaching credential and future 
secondary teachers within countries in the TEDS-M Study

Country/
Region

Number of participating 
programs offering 
preparation to teach at the 
secondary level per 
country/region

Number of 
participating future 
secondary teachers 
(sample size)

Number of 
participating future 
secondary teachers 
(valid N)

Percent 
missing

Chile 37 746 648 13.1
Chinese 
Taipei

19 365 355 2.7

Germany 28 771 620 19.6
Malaysia 6 389 357 8.2
Philippines 48 733 668 8.9
Poland 35 298 247 17.1
Russian 
Federation

48 2141 1951 8.8

Singapore 4 393 371 5.6
Switzerland 
(German)

7 141 137 2.8

Thailand 53 652 614 5.8
United States 
(public only)

72 607 461 24.1

Source. Tatto (2013, pp. 214–251)
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for Teacher Algebra (KAT).8 The questions and items were piloted, and the instru-
ments were field-tested before the instruments were declared ready for the main 
study. The final TEDS-M instruments were rigorously developed in collaboration 
with psychometricians and translated from the English to the local languages and 
back-translated to confirm accuracy and consistency. Factor analysis provided 
construct- related validity evidence and curriculum analysis and expert review pro-
vided content-related validity evidence. Further details on the design of the study 
and the methods used, including the creation of the scales and fit and reliability 
indices, can be found in the TEDS-M Technical Report (Tatto, 2013).

The future secondary teacher survey was administered in one and a half hours 
and consisted of four parts (shown in Table 14.2), with questions about background 
characteristics (Part A), questions about the program’s OTLs (Part B), an assess-
ment of MCK and MPCK (Part C), and questions about beliefs about the nature of 
teaching and learning mathematics (Part D). While recognizing that there are many 
aspects of preparation of future teachers that could be considered, the areas explored 
in the survey were necessarily limited by the time available for instrument 
administration.

 Measures

While there is much information available for each of the countries studied, a num-
ber of factors limited the explanatory variables that could be considered in the anal-
ysis for this chapter. The goal of including as many countries as possible in the 
analysis limited the number of common variables. To avoid inflation of results, 
some variables were excluded based on results of collinearity tests9 (e.g., applying 
the variance inflation factor, or VIF, results in a variable reduction strategy). In addi-
tion and given VIF results, some variables were excluded because one single vari-

8 Measures development was supported by NSF Grant REC-0337595. Michigan State University, 
East Lansing, MI.
9 In statistics, collinearity is a phenomenon in which two or more predictor variables in a model are 
highly correlated meaning that one can be predicted from the others with a substantial degree of 
accuracy.

Table 14.2 Future teachers’ 
overall booklet structure and 
allocated times for 
administration

Future teacher questionnaire sections
Time 
(min)

Part A: General background 5
Part B: Opportunity to learn 15
Part C: Mathematics for teaching 
(MCK/MPCK)

60

Part D: Beliefs about mathematics 
and teaching

10

Source. Tatto et al., (2008, p. 33)

14 The Mathematical Education of Secondary Teachers
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able represented the best indicator of a domain (such as geometry, as an indicator of 
having the opportunity to learn university-level mathematics).

A detailed description of the variables is in the TEDS-M User Guide for the 
International Database (Brese & Tatto, 2012).

Future Teachers’ Knowledge for Teaching Secondary Level Mathematics Two 
assessments were developed to measure future teachers’ knowledge as indicators of 
teacher education outcomes. The Mathematical Content Knowledge (MCK) assess-
ment comprised two-thirds of the assessment and measured four domains: number and 
operations, algebra and functions, geometry and measurement, and data and chance. 
The Mathematical Pedagogical Content Knowledge (MPCK) assessment comprised 
one-third of the assessment and measured three domains: curricular knowledge, 
knowledge of planning for teaching, and knowledge for enacting  teaching. Three 
blocks of items were assembled for the secondary assessment, each with 12–15 ques-
tions. Each future teacher received a booklet with two of the blocks of items about 
knowledge for teaching mathematics. The assessment was designed to be answered in 
no more than 60 min under a controlled administration by trained researchers. To sam-
ple all the domains, the study used a matrix sampling design for the assessments 
(Mazzeo, Lazer, & Zieky, 2006). To obtain comparable estimates of performance, item 
response theory (IRT) was used (see, e.g., De Ayala, 2009). The final results were cali-
brated and used to estimate the location of the examinees on a common IRT scale with 
the international mean set at 500 on each of the MCK and MPCK scales, and the inter-
national standard deviation set at 100 (Wu, Adams, Wilson, & Haldane, 2007). For the 
international sample, the reliability for the mathematical content knowledge assess-
ment was .91, and for the mathematical pedagogical content knowledge assessment, it 
was .72. The assessment results are reported in score scales and performance levels.

Future Teachers’ Characteristics These included data on the background of 
respondents—specifically, information about individuals’ SES,10 age, gender, and 
prior attainment (in Tables 14.3 and 14.4). Future secondary teachers’ background 
reflects recruitment and selection policies as well as the social and economic level 
of those who are attracted into teaching. With the exceptions of the Russian 
Federation, the United States, Germany, and Switzerland, future secondary teachers 
come from low SES and are in their early to mid-twenties. Across countries, most 
are female. Their self-reported level of attainment as indicated by average grades in 
high school was above average.11

10 Using principal components analysis, a scale was created to obtain a proxy measure of socioeco-
nomic status, including variables such as the possessions in the parents or guardians home, and 
others such as father’s highest level of education and mother’s highest level of education. Its aggre-
gate within a program constitutes the variable program’s SES. A positive value signals greater 
SES.
11 5 While desirable, the TEDS-M research team was not able to administer a “pre-test” to future 
teachers or to obtain comparable measures of knowledge across countries. Instead, the study asked 
future teachers to report their levels of previous attainment. Given the results of the assessments 
and the high positive correlations with previous attainment, it is possible to confirm the reliability 
of their report.

M. T. Tatto
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Program Characteristics These variables were aggregated from the future sec-
ondary teachers’ answers to program-related questions. The future teacher question-
naire was designed so that it could be completed in 30  minutes and substantial 
information about the program was collected, yet, as explained previously, because 
of collinearity issues, not all program variables were fit to include in the analysis. For 
instance, among the OTL variables, and based on VIF analysis geometry was consid-
ered the best indicator of the university-level mathematics domain for future second-
ary teachers. The same rationale holds true for the other variables in the model.

Future Teachers’ Opportunities to Learn A number of indices were developed 
that were based on counts of topics studied. These included (a) university-level 
mathematics, using geometry as an indicator, including topics such as foundations 
of geometry or axiomatic geometry, analytic/coordinate geometry, non-Euclidean 
geometry, and differential geometry; and (b) upper-school level mathematics 
(within school-level mathematics), including functions, relations, equations, data 
representation, probability, statistics, calculus, and validation, structuring, and 
abstracting. Fit indices for these indicators are robust for university-level mathe-
matics (CFI = .969, TLI = .986, RMSEA = .032) and acceptable for school-level 
mathematics (CFI .892, TLI .846, RMSEA .085).12 Other OTL indices were based 
on a 4-point scale (e.g., expressing frequency such as never to often) and included 
questions on whether future teachers had the opportunity to learn topics in math-
ematical pedagogy, general education and pedagogy, accommodations to class-
room diversity and reflections on practice, and from school experience and the 
practicum. The reliabilities for these 4-point scale indices ranged from .83 to .97.13 
These were aggregated to constitute the different learning opportunities offered to 
future secondary teachers, such as university- and school-level mathematics, and 
the average frequency with which future teachers engaged in reading research on 
teaching and mathematics as shown across countries in Tables 14.3 and 14.4.

Program Coherence An index was developed from questions asking whether 
future secondary teachers had a coherent experience in their teacher education pro-
gram (e.g., whether each of the courses was clearly designed to prepare future 
teachers to meet a common set of explicit standard expectations for beginning 

12 Comparative Fit Index (CFI): The CFI depends in large part on the average size of the correla-
tions in the data. If the average correlation between variables is not high, then the CFI will not be 
very high. An acceptable model is indicated by a CFI larger than .93, but .85 is acceptable (Bollen, 
1989).The Tucker Lewis index (TLI) is relatively independent of sample size (Marsh, Balla, & 
McDonald, 1988). Values over .90 or .95 are considered acceptable (e.g., Hu & Bentler, 1999). 
Root Mean Square Error of Approximation (RMSEA): Another test of model fit, good models are 
considered to have a RMSEA of .05 or less. Models whose RMSEA is .1 or more have a poor fit.
13 The reliabilities for the OTL and beliefs scales are unweighted and were estimated using jMetrik 
2.1 (Meyer, 2011). The reliability estimates are based on the congeneric measurement model, 
which allows each item to load on the common factor at different levels and allows item error vari-
ances to vary freely (each item can be measured with a different level of precision). This is the most 
flexible measurement model and most appropriate for measures with few items.
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teachers, and whether there were clear links between most of the courses in the 
teacher education program and practicum experiences). Based on a series of confir-
matory factor analyses, these indices were scaled using the Rasch model and are 
based on a score scale where 10 is located at the neutral position where values lower 
than 10 indicate less coherence and values larger than 10 more coherence. The reli-
ability for this 4-point rating scale index is .97. Tables 14.3 and 14.4 show that, in 
general, future teachers judged their programs to be coherent with all means higher 
than the neutral point.

Programs’ Socioeconomic Status Socioeconomic status is an aggregated scale 
created by measures of future teachers’ home possessions, including number of 
books at home and parents’ levels of education.

Beliefs Future teachers were asked a number of questions to explore their beliefs 
about teaching and learning mathematics using 6-point rating scales (strongly agree 
to strongly disagree) in two key areas: (a) the “nature of mathematics” questions 
explored how future teachers perceive mathematics as a subject (e.g., mathematics 
as formal, structural, procedural, or applied); and (b) the “learning mathematics” 
questions explored ideas about the appropriateness of particular instructional activi-
ties, including questions about students’ cognition processes, and questions about 
the purposes of mathematics as a school subject. After factor analysis, these belief 
items were scaled using the Rasch model (based on a score of 10 located at the 
neutral position) to form two scales: the “mathematics as a set of rules and proce-
dures” scale (with a reliability of .93) and the “learning mathematics through active 
involvement” scale (with a reliability of .92).

On average, future secondary teachers show a tendency to agree with widely 
accepted beliefs on learner-centered teaching (e.g., “teachers must focus on what 
the learner is thinking when learning—and not solely on the subject/lesson to be 
taught”), and less with the notion that mathematics can be learned by mastering a 
collection of rules and procedures, a belief that, if upheld, would imply a more pro-
cedural view of mathematics and, if rejected, may indicate a philosophy more 
attuned to current and more progressive thinking in education (see Tables 14.3 and 
14.4). The next section presents the results of the analysis.
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 Knowledge for Teaching Secondary Level Mathematics 
and Teacher Education Characteristics: Analysis 
and Findings14

 Exploring Mathematical and Mathematical Pedagogical 
Content Knowledge

The mean scores and standard deviation of the MCK and MPCK assessments are 
reported in Tables 14.3 and 14.4. When looking at the tables, and taking into account 
that the international mean score was set at 500 with a standard deviation of 100, 
one can see the wide variation in the level of knowledge attained by future second-
ary teachers in the different participating countries. Table 14.3, for instance, shows 
the MCK score for the lowest scoring country (Chile) and the highest scoring coun-
try (Russia), and a simple comparison indicates more than two standard deviations 
difference in the scores (356 versus 593). To describe more concretely individuals’ 
levels of performance, anchor points (AP) or benchmarks, were identified based on 
future secondary teachers’ scores at specific points reached on the MCK and MPCK 
scales. The goal was to find out not only the scores the future teachers reached, but 
also the areas where they were successful (more knowledgeable) and the areas 
where they had difficulties (less knowledgeable). A panel of mathematicians and 
mathematics educators were asked to analyze the items classified at these APs and 
to formulate empirically based descriptions of the knowledge that future teachers 
demonstrated at each AP.  Items used to describe performance at the APs were 
selected based on the probability that a future teacher with a score at that point 
would get the relevant items right. Based on the number of items for each measure, 
two APs for MCK and one AP for MPCK were identified.

Mathematics Content Knowledge For MCK, the basic knowledge level anchor 
point (APbasic) corresponded to a scale score of 490 (just below the international 
mean of 500) and included items representing a .70 probability of answering the 
items correctly, while the higher knowledge level anchor point (APadvanced) corre-
sponded to a scale score of 559 and represented a .50 or less probability of answer-
ing the items correctly. For instance, future secondary teachers reaching on average 
a scale score of 490 or above were successful at demonstrating knowledge of con-
cepts related to whole numbers, integers, and rational numbers, and the associated 
computations; evaluating algebraic expressions correctly; solving simple linear and 
quadratic equations, particularly those that can be solved by substitution or trial and 
error; demonstrating knowledge of standard geometric figures in the plane and 

14 In this chapter, the concern is with exploring the relationships between knowledge for teaching 
(MCK and MPCK) and program characteristics for the United States and for the other countries 
included in  the  analysis. While noting between-country differences especially with  respect 
to  the knowledge assessments, the  concern is not with  statistically testing differences between 
countries. Care has been taken when discussing how variables play a role within a country and how 
this differs across countries. These kinds of observations do not require statistical hypothesis tests.
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space; identifying and applying simple relations in plane geometry; and interpreting 
and solving more complex problems about numbers, algebra, and geometry if the 
context or problem type was commonly taught in lower-secondary schools. 
However, these teachers had difficulty answering items that asked them to describe 
general patterns; to solve multi-step problems with complex linguistic or mathemat-
ical relations; to relate equivalent representations of concepts (with a tendency to 
overgeneralize concepts); and to reason mathematically, including recognizing 
faulty arguments and justifying or proving conclusions.

In contrast, future secondary teachers reaching on average a scale score of 559 
were likely to correctly do all the mathematics items reached by future secondary 
teachers at the basic level AP and, in addition, they were successful at demonstrat-
ing knowledge of functions (particularly linear, quadratic, and exponential); read-
ing, analyzing, and applying abstract definitions and notation; making and 
recognizing simple arguments; and demonstrating knowledge of some definitions 
and theorems typically taught in tertiary-level courses, such as calculus, abstract 
algebra, and college geometry, and then applying these in straightforward situa-
tions. But they still had difficulty solving problems stated in purely abstract terms; 
working competently on foundational material, such as axiomatic systems; reason-
ing logically (e.g., they failed to attend to all conditions of definitions or theorems 
and confused the truth of a statement with the validity of an argument); recognizing 
valid proofs of more complex statements; and constructing and completing mathe-
matical proofs.

Tables 14.3 and 14.4 show that the average MCK scores of future secondary 
teachers in the United States reached and surpassed the basic level AP of 490, but 
only future secondary teachers in Russia, Chinese Taipei, and Singapore reached 
and surpassed the higher-level AP (559).

Figure 14.1 below includes an example of a constructed response item measuring 
MCK basic and advanced levels, and the MPCK proficient AP. The first two items 
are designed to measure applied MCK in algebra and asked future teachers to solve 
two different word problems about linear relations. For item 1 (playing with mar-
bles), the international average percent correct was 72% indicating that close to 
three-fourths of the future secondary teachers in the international sample were able 
to answer that item correctly. For item 2 (about money) the international percent 
correct was 50% indicating that this was a more difficult item for half of the future 
secondary teachers in the international sample. The MPCK also in the algebra 
domain was designed to measure MPCK as enacted. The item asked future second-
ary teachers to analyze why one word problem is more difficult than another. In this 
case the international average percent correct was 39% revealing a higher level of 
difficulty as close to 60% of the international sample of future secondary teachers 
were unable to answer this item correctly.

Mathematical Pedagogical Content Knowledge For MPCK, only one anchor 
point (APproficient) was identified, representing a score of 509 on the scale. Overall, 
the MPCK items were more challenging for all future secondary teachers. For 
instance, those future secondary teachers at the AP were able to demonstrate knowl-
edge to support planning for instructional purposes (e.g., identifying prerequisites 
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for teaching a derivation of the quadratic formula, and determining consequences of 
moving the concept of square root from the lower-secondary to the upper-secondary 
school mathematics curriculum). They were able to demonstrate knowledge for 
enacting school mathematics teaching and to evaluate students’ mathematical work 
correctly in some situations (for instance, determining whether a student’s diagram 
satisfied certain given conditions in geometry, and recognizing a student’s correct 
argument about divisibility of whole numbers). They were able to analyze students’ 
errors when the students’ work involved a single step or short explanations (for 
example, identifying an error in a histogram). Yet they had difficulty with identify-
ing or analyzing errors in more complex mathematical situations (for instance, they 
could not consistently apply a rubric with descriptions of three performance levels 
to evaluate students’ solutions to a problem about linear and non-linear growth); 
understanding and interpreting students’ thinking or determining appropriate 
responses to students; and understanding the concept and meaning of a valid math-
ematical argument (for example, they were unable to evaluate an argument as invalid 
by recognizing that examples are not sufficient to constitute a proof).

The following problems appear in a mathematics textbook for <lower secondary school>.

(a)  Solve each problem.

1.  [Peter], [David], and [James] play a game with marbles. They have 198 marbles altogether.
     [Peter] has 6 times as many marbles as [David], and [James] has 2 times as many marbles
     as [David]. How many marbles does each boy have?

2.  Three children [Wendy], [Joyce] and [Gabriella] have 198 zeds altogether. [Wendy] has 6
     times as much money as [Joyce], and 3 times as much as [Gabriela]. How many zeds does
     each child have?

Solution to Problem 1:

Solution to Problem 2:

Typically, Problem 2 is more difficult than Problem 1 for <lower secondary> students. Give
one reason that might account for the difference in difficulty level.

Source: Brese and Tatto (2012, Supplement 4)

Fig. 14.1 Example of MCK and MPCK anchor point item
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Future secondary teachers in Poland, Russia, Singapore, Switzerland, and the 
United States reached and surpassed the MPCK anchor point (see Tables 14.3 and 
14.4).

 Exploring Relationships Between Knowledge for Teaching 
Secondary-Level Mathematics and Teacher Education 
Characteristics

To explore relationships between MCK and MPCK results and teacher education 
program characteristics, hierarchical linear modeling (HLM) and Ordinary Least 
Squares (OLS) were used for the analyses. Because of hypothesizing a multilevel 
structure, in which the influence of teachers’ background may differ according to 
the programs they are in, a multilevel statistical analysis such as HLM (Raudenbush 
Stephen, Bryk, Cheong, & Congdon, 2004) is the optimal approach to investigating 
the relationship between teacher education programs’ characteristics and mathe-
matical knowledge for teaching (MCK and MPCK). However, the number of pro-
grams preparing future secondary teachers varied widely across countries—with the 
extreme cases being Singapore, with four programs, and the United States, with 
72—with a consequent impact on future teachers’ sample sizes (see Table 14.1). 
Thus, while HLM was generally used for countries with large program samples, it 
was necessary to use Ordinary Least Squares (OLS) for some countries/regions. In 
some cases, OLS was necessary because a country/region had a small sample of 
programs with a very similar structure, including Singapore, with four programs, 
Malaysia with six, Switzerland with seven, Chinese Taipei with 19, and Germany 
with 28. In other cases, OLS was used because the country/region had a strict cen-
tralized system or norms. Because of the smaller numbers of programs and/or 
because of institutional isomorphism within these countries, variance between insti-
tutions is not reliably estimated, so that variance (if it exists systematically in the 
population) is part of the individual future-teacher variability and not partitioned 
separately. In order to proceed with the analysis of the association between teacher 
background and knowledge, program-level characteristics were added as additional 
explanatory variables in OLS models.

The analyses used standardized coefficients to explore individual- and program- 
level features associated with MCK and MPCK as teacher education outcomes, 
using the same HLM or OLS model within country/region groups, but analyzing 
each country/region separately.

All participating countries/regions with acceptable response rates on the assess-
ments were included. Each country/region’s data were analyzed across the same 
variables. Before inclusion in the model, variables across countries/regions were 
examined for missing values across variables of interest, and for collinearity; this 
resulted in a number of variables (and programs) being excluded from the analysis. 
Other variables were excluded because they lacked variability (e.g., all programs 
reported offering field experience).
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Analysis for Countries with Large Samples HLM was used to investigate the 
association between future secondary teachers’ mathematical knowledge for teach-
ing (defined for this study as MCK and MPCK) and teacher education features. As 
noted, the same model was used across all (equally weighted) countries, controlling 
for future teachers’ background variables. The analysis in this study uses a random 
intercept model in which future teachers are considered as nested within their 
teacher education programs (modeling the teachers’ response) within their coun-
tries. The model is detailed below.

STEP 1
Full Unconditional Model (Level 1 & 2)
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for p = 1 to 4 (the four level-1 predictors, which are fixed). 

The coefficients in the model (which have been standardized within each country) 
help explain variation in the outcome. For the United States, for example, the result-
ing coefficient, called a standardized beta or β, is 0.28 (see Table 14.5, United States 
MCK column and the row indicating “opportunity to learn university-level mathe-
matics,” in this case geometry), meaning that, after controlling for background char-
acteristics, a change of one SD in the opportunity to learn university-level geometry 
is associated with a 0.28 SD increase in the mathematics content knowledge score.

Table 14.5 shows the results for the HLM model for secondary teachers and pro-
grams. The ICCs from the unconditional model at the bottom of the table indicate 
the association between program features and the knowledge that future teachers 
attain at the end of their pre-service teacher education across countries. For the 
mathematics content assessment (MCK), the higher ICCs are in Russia (57%), the 
United States (43%), Poland (31%), and Thailand (35%), indicating that, with the 
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exception of Russia (where programs seem more differentiated), a larger proportion 
of the variance in the MCK assessment results occurs within programs. For the 
mathematical pedagogical knowledge assessment (MPCK), the higher ICCs are in 
Russia (32%), Poland (24%), the United States (21%), and Thailand (18%) indicat-
ing that a larger proportion of the variance in the assessment results occurs within 
programs as well.15 In all cases, the proportion of variance explained by the model 
is higher between programs than within programs, indicating the influence of pro-
gram standards or norms (e.g., selection criteria), as well as the influence of pro-
grams’ OTLs.

Analysis for Countries/Regions with Small Samples Regression analysis was 
done using the IEA’s IDB Analyzer, and it was used to explore the relationships 
between mathematical knowledge for teaching and program features in the coun-
tries with small samples. In regression analysis, the main objective is to explore the 
relationship between a dependent variable, in this case mathematical knowledge for 
teaching (defined in this study as MCK and MPCK), and one or more explanatory 
variables, controlling for the characteristics of individuals who enroll in these pro-
grams. The model is described below.

The OLS estimation considers the weights repeated replicates and thus accounts 
for the sample mean complex design. Unlike HLM, OLS models do not include 
random coefficients between programs.

 Partial Model

The model specification is similar from the one presented above (without random 
terms for the intercept). The partial model is expressed on the following single 
equation.

 
Y ri i i i i i= + ( ) + ( ) + ( ) + ( ) +b b b b b0 1 2 3 4001 002 009SES MFA MFA MFA

 

15 The ICC reports the percent of variance between programs, where 100-ICC is the percent of vari-
ance within programs. This is always reported simply as the ICC for percent of variance between 
groups. The % of variance explained in the last two rows then simply states how much variance 
each model explains. In Table 14.5, in Chile, 10% of the variance in MCK performance is between 
programs, 90% is within programs. The model including all variables explains 2% of the variance 
within programs (i.e., student characteristics do not explain much of the variance in their perfor-
mance within program); that is, the student characteristics explain 2% of the 90% within programs. 
The model also explains 30% of the variance between programs; that is, the program characteris-
tics explain 30% of the 10% between programs.
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 Full Model

The full model is expressed by the following single equation (again, random terms 
for the intercept are not considered; the beliefs variables are aggregated to the pro-
gram level).

 
Yi i i i i= + + + + +( ) ( ) ( ) ( )b b b b b b0 1 2 3 4 5001 002 009 1SES MFA MFA MFA MFB GEEOM

MFB SLMF MFB READ MFB COH MeanSE

( )
( ) ( ) ( )

+

+ + +
i

i i ib b b b6 7 8 92 5 15 SS

MFD RULE MFD ACTV TARGETs_g

( )
( ) ( ) ( )

+

+ + +
i

i i i rib b b10 11 121 2 10
 

The results are given in regression coefficients or unstandardized betas (B), as 
well as in standardized betas or β in Table 14.6. The unstandardized betas are useful 
in comparing each independent variable between the regressions. For instance, the 
prior attainment of future secondary teachers is positively and significantly related 
to performance in MCK across Chinese Taipei, Germany, Malaysia, Singapore, and 
Switzerland. The table also presents the standardized beta coefficients or β in paren-
thesis, which can be used to compare the importance of the independent variables 
included in the analysis within a country/region (Cohen, Cohen, West, & Aiken, 
2002; Nardi, 2006). For instance, within Germany a number of variables are posi-
tively associated with the MCK assessment score; the most important association 
after controlling for future teacher characteristics is having the opportunity to learn 
(OTL) “school-level mathematics—function, probability and calculus” with a β of 
0.37 showing a moderate to strong positive and significant association with high 
scores in the MCK assessment. In Chinese Taipei, however, the most important 
positive correlation with MCK and MPCK scores is the opportunity to learn 
“university- level mathematics” and more specifically “Geometry”.

 Relationships Between Future Teachers’ Background 
and Mathematical Knowledge for Teaching

Analysis for Countries with Large Samples In the countries with large samples 
in Table 14.5, higher levels of knowledge are related to higher socioeconomic levels 
(SES) in the case of MCK in Chile and in Thailand and in the case of MPCK in 
Chile and the Philippines. The age of future teachers across all countries (with the 
exception of Thailand) had a negative correlation with MCK and MPCK, meaning 
that younger future teachers scored higher in the study’s assessments; this relation-
ship was significant in the Philippines, Poland, and the United States. Higher levels 
of knowledge were more common among future secondary male teachers, and this 
relationship was significant for the MCK assessment in Chile, the Philippines, 
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Table 14.6 Unstandardized B and standardized B (in parenthesis) OLS regression coefficients for 
correlations between knowledge measures in each of the mathematics and mathematics pedagogy 
assessments (across top) and independent variables (left side) for future secondary teachers in the 
participating countries

Variable

C. Taipei Germany Malaysia
N = 355 N = 620 N = 357
MCK MPCK MCK MPCK MCK MPCK

Future teacher characteristics
SES 1.75

(0.02)
2.44

(0.02)
10.14*
(0.10)

5.88
(0.06)

5.20
(0.08)

4.23
(0.05)

Age −1.82
(−0.05)

−0.34
(−0.01)

2.09*
 (0.13)

0.72
(0.04)

0.14
(0.01)

−0.39
(−0.01)

Gender [1 = F; 
0 = M]

−27.65**
(−0.18)

−4.27
(−0.02)

−30.95**
(−0.15)

−15.20
(−0.07)

−11.75**
(−0.09)

−1.92
(−0.01)

Prior attainment 7.42*
(0.11)

3.17
(0.04)

23.49**
(0.24)

17.35**
(0.17)

7.76**
(0.15)

9.47**
(0.15)

Program characteristics
OTL: University 
level mathematics: 
Geometry

62.51**
(0.27)

87.23**
(0.30)

−7.03
(−0.04)

−4.28
(0.02)

79.66
(0.68)

46.20
(0.33)

OTL: School level 
mathematics: 
Function, 
probability and 
calculus

19.44*
(0.09)

−5.71
(−0.02)

54.29**
(0.37)

40.45*
(0.27)

−110.88
(−0.36)

−128.14
(−0.35)

OTL: Reading 
research on 
teaching and 
mathematics

−6.86*
(−0.08)

2.37
(0.02)

−12.23*
(−0.06)

−8.20
(−0.04)

182.40
(1.10)

146.67
(0.74)

Program 
coherence

1.66
(0.01)

−7.05
(−0.04)

−2.87
(−0.01)

−10.59
(−0.05)

−8.98
(−0.09)

11.55
(0.09)

Average SES for 
each program 
(aggregated from 
future teachers 
SES)

11.93
(0.03)

71.91**
(0.15)

0.23
(0.00)

2.75
(0.01)

−236.60
(−0.66)

−205.40
(−0.47)

Beliefs
Mathematics is a 
collection of rules 
and procedures

−21.25
(−0.06)

−33.30
(−0.07)

−107.75**
(−0.15)

−111.17**
(−0.15)

−82.69
(−0.33)

−112.54
(−0.37)

Mathematics is 
better learned 
through active 
learning

10.00
(0.03)

28.08
(0.08)

−5.46
(−0.03)

−18.24
(−0.09)

21.51
(0.09)

13.23
(0.05)

R2 .16 .12 .39 .18 .24 .13
F 5.93*** 4.25*** 35.33*** 12.13*** 9.90*** 4.68***

(continued)
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Poland, and the United States, and, for the MPCK assessment, for Poland and the 
United States. Only in the Russian Federation did females have significantly higher 
scores than males in the assessments. As expected, prior attainment levels were 
positively and strongly related to higher results in both assessments in all countries, 
with the exception of the Philippines and Poland in the MPCK assessment.

Analysis for Countries/Regions with Small Samples For the countries/regions 
with small samples in Table 14.6, the relationship of socioeconomic status with the 
level of mathematical knowledge for teaching demonstrated by future teachers was 
positive overall, as shown for MCK in Germany and Malaysia (β = 0.10, p < .05, 
β = 0.08, p < .10), and in Singapore in both assessments (with β = 0.22, p < .01; 
β  = 0.11, p  <  .05). In Chinese Taipei and in Singapore, younger future teachers 
scored higher in the study’s assessments, but this was not the case in Germany. Male 

Table 14.6 (continued)

Singapore Switzerland
N = 371 N = 137

Variable MCK MPCK MCK MPCK

Future teacher characteristics
SES 16.44**

(0.22)
11.63**
(0.11)

−6.89
(−0.13)

−22.51**
(−0.12)

Age −3.98**
(−0.26)

−3.74**
(−0.18)

−1.78
(−0.16)

−0.66
−0.04

Gender [1 = F; 0 = M] −22.86**
(−0.19)

−30.92**
(−0.18)

−9.12
(−0.09)

−21.70
(−0.15)

Prior attainment 8.70**
(0.14)

7.56*
(0.09)

13.00**
(0.24)

10.09**
(0.13)

Program characteristics
OTL: University level mathematics: 
Geometry

77.97
(0.52)

55.21
(0.27)

−32.85
(−0.28)

−38.40
(−0.23)

OTL: School level mathematics: 
Function, probability and calculus

−165.49
(−0.82)

−155.65
(−0.56)

22.03
(0.18)

44.13
(0.25)

OTL: Reading research on teaching 
and mathematics

183.05
(0.48)

168.27
(0.32)

−8.64
(−0.15)

−21.99
(−0.27)

Program coherence −16.63
(−0.05)

−11.07
(−0.02)

8.03
(0.15)

13.05
(0.17)

Average SES for each program 
(aggregated from future teachers SES)

−122.28
(−0.22)

−91.04
(−0.12)

8.19
(0.03)

66.49
(0.19)

Beliefs
Mathematics is a collection of rules 
and procedures

−17.82
(−0.02)

−31.12
(−0.02)

−96.74
(−0.53)

−78.83
(−0.30)

Mathematics is better learned through 
active learning

−55.01
(−0.13)

−34.15
(−0.06)

−35.09
(−0.29)

−12.26
(−0.07)

R2 .30 .10 .19 .16
F 13.98*** 3.62*** 2.66** 2.16*

OLS = ordinary least squares linear regression
*p < .05; **p < .01
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future teachers did significantly better in the mathematics portion of the assessment 
in Chinese Taipei, Germany, and Malaysia, while in Singapore and in Switzerland, 
they did well in both MCK and MPCK. Only in the Russian Federation did females 
perform better on both MCK and MPCK assessments. Prior attainment seems to 
play a significant role in mathematical knowledge across most countries (with βs 
ranging from β = 0.24 to β = 0.09).

The next sections describe the relationship between program characteristics and 
teacher education outcomes controlling for background characteristics.

 Relationships Between Learning Opportunities Available 
to Future Teachers in Their Teacher Education Programs 
and Mathematics Knowledge for Teaching

Analysis for Countries with Large Samples The type and number of topics stud-
ied in university-level geometry had a positive and significant correlation with the 
study’s MCK assessment scores in Chile, Poland, the Russian Federation, and the 
United States (β = 0.28, p < .001); and with the MPCK assessment in the Philippines, 
the Russian Federation, and the United States (β = 0.15, p < .05). The number of 
topics covered in school-level mathematics—specifically function, probability and 
calculus—had an overall positive and significant correlation with the MPCK scores 
demonstrated in the study’s assessments of future teachers’ in Thailand and in the 
United States (β  =  0.13, p  <  .05). Future secondary teachers in programs that 
 emphasized reading research connected with mathematics teaching and learning 
scored higher in the MCK and MPCK assessments in Russia, in the Philippines (in 
MPCK), and in Thailand (in MCK). Program coherence had a positive correlation 
with the assessment results in Chile (specifically in the MPCK assessment), and in 
the Philippines (in the MCK assessment).

Analysis for Countries/Regions with Small Samples Among the countries/
regions with small samples (in Table 14.6), in Chinese Taipei having the opportu-
nity to learn geometry at the university level was positively and significantly corre-
lated with high scores in the MCK and MPCK assessments (β  =  0.27, p  <  .01; 
β = 0.30, p < .01). Future secondary teachers who had higher scores in the assess-
ments were in programs that emphasized OTLs school mathematics topics such as 
functions, probability, and calculus; this is the case in Chinese Taipei (MCK with 
β = 0.09, p < .05) and in Germany (in both assessments, with β = 0.37, p < .01; and 
β = 0.27, p < .05). However, unlike the analysis for countries with large samples, 
higher scorers were not seen in programs that provided opportunities to read 
research on mathematics teaching and learning (showing small and negative corre-
lations, with β ranging from β = −0.06 to β = −0.08, p < .05).

M. T. Tatto



441

 Program’s Socioeconomic Status

Overall, and across all countries/regions with large and small samples, a program’s 
socioeconomic status had a positive correlation with the level of performance; these 
correlations were significant only in the Philippines, Thailand, and in Chinese 
Taipei.

 Beliefs

Analysis for Countries with Large Samples There was a general negative corre-
lation between performance in both assessments and the view that learning mathe-
matics consists in mastering rules and procedures. Table  14.5 shows that future 
secondary teachers who strongly believed that mathematics can be seen as a collec-
tion of rules and procedures scored significantly lower in the assessments in Chile 
(in MCK and MPCK), in Poland (in MPCK), in Russia (in MCK), in Thailand (in 
MPCK), and in the United States (in MCK β = −0.20, p < .001, and in MPCK with 
β = −0.24, p < .001). The view that mathematics is better learned through inquiry- 
oriented learning received a weak endorsement among future teachers in these 
secondary- level programs, with the exception of Chile, where future secondary 
teachers in programs espousing such a view scored close to 10 points higher in the 
MCK assessment.

Analysis for Countries with Small Samples Among the countries with small 
samples in Table  14.6, Germany shows a negative relationship between perfor-
mance in both assessments and the view that learning mathematics consists of mas-
tering rules and procedures in MCK and MPCK (both with β = −0.15, p < .01).

In sum, while variable, a number of program features and individual beliefs show 
an association with teacher education outcomes after controlling for future teachers’ 
background. These findings are discussed in the section below.

 Discussion

While much attention in the current policy environment is given to value-added 
models to evaluate teachers’ effectiveness using as key indicators their pupil’s 
achievement in tests, little attention has been given to the study of teacher education 
as a key factor in the development of knowledgeable and competent teachers. The 
process of learning to teach has been for the most part assumed, and the immediate 
outcomes of the programs on teachers’ knowledge ignored. Those who enroll in 
teacher education programs do so expecting to learn what they need to know to 
become effective teachers. Those who teach in these programs assume that their 
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future teachers will be prepared to teach after a series of courses and field experi-
ences. Yet we have lacked strong evidence to confirm or challenge programs’ “learn-
ing to teach theory”. This lack of evidence has made it difficult for teacher educators 
to defend their programs from their critics and makes clear that more needs to be 
learned about whether teacher education programs are accomplishing their goals 
and what factors seem to contribute to their success or failure.

The data presented in this chapter provides such rigorous evidence using an 
international and comparative framework. The most important finding is related to 
the levels of knowledge for teaching secondary-level mathematics that future teach-
ers have attained close to program completion (and are presumably considered 
ready to teach). The results show that while future secondary teachers do have (in 
different degrees) MCK and MPCK, many do not have the kind of knowledge that 
was expected in the participating countries/regions when the assessments were 
developed. The key question that guided the development of the TEDS-M items and 
the overall assessments for the mathematicians and mathematics teacher educators 
in the countries that participated in the study was a normative one: What kind of 
mathematical knowledge for teaching should future secondary teachers know and 
be able to demonstrate after completion of their teacher education program’s 
requirements and when they are ready to enter the profession? To answer this ques-
tion, the participants engaged in a rigorous analysis of the standards for teacher 
education programs and for the school curriculum in their countries and used those 
as the frame to develop an assessment of future teachers’ knowledge across differ-
ent countries (see Chap. 4 of this book for an example of the analysis in the U.S., 
and Tatto & Hordern, 2017). Future teachers were given the assessment prior to 
graduation and as close as possible to the time they would earn their teaching cre-
dential. Consequently, the assessments could be seen as a measurement of the 
knowledge that is expected future teachers would have attained after undergoing a 
teacher education program. As explained earlier, some, but not all future secondary 
teachers were able to reach the basic level of mathematical knowledge measured by 
the assessments and many failed to reach the more advanced level, with the excep-
tions being Russia, Chinese Taipei, and Singapore. U.S. teachers’ attained knowl-
edge lagged behind the advanced mathematical knowledge of future teachers in 
countries/regions such as Russia, Chinese Taipei, and Singapore, by 40–130 points, 
depending on the country/region of comparison.

Mathematics knowledge seems to go hand to hand with the demonstrated levels 
of mathematics pedagogical content knowledge, which is the exclusive domain of 
teacher education programs. For instance, U.S. future secondary teachers were able 
to successfully demonstrate a proficient level of mathematical pedagogical knowl-
edge that was similar to that demonstrated by Poland, yet close to 25 points below 
Germany and Singapore, and 118 and 40 points below Chinese Taipei and Russian 
future secondary teachers, respectively. Overall, U.S. future secondary teachers are 
well prepared to implement the school curriculum, to plan, to evaluate students’ 
work correctly, and to analyze simple students’ errors. However, some are chal-
lenged when addressing more complex mathematics learning, when attempting to 
understand or interpret students’ thinking, and when asked to engage with more 
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complex concepts and abstract reasoning of mathematical arguments. In sum, as 
concerns the United States, there is room for improvement in helping future teach-
ers reach advanced levels of mathematics and mathematical pedagogical knowledge 
(similar conclusions have been reached by Rowland, 2012).

The findings show that across countries/regions the background characteristics 
of future secondary teachers have an important influence on how knowledgeable 
they are at the end of their programs (as per the TEDS-M assessments). Two factors 
associated with high levels of mathematics attainment (as per the TEDS-M assess-
ments) are socioeconomic status and gender. In countries such as Chile, the 
Philippines, Thailand, Germany, and Singapore, for the most part wealthier indi-
viduals do better in the assessments and while not significant in all countries, and 
with the exceptions of future teachers in the Philippines, the Russian Federation, 
and Thailand, male future secondary teachers consistently outperform female future 
secondary teachers in one or both assessments. These findings continue to highlight 
a concern with social justice and equity frequently voiced by the mathematics edu-
cation community (see for instance Association of Mathematics Teacher Educators 
(AMTE), 2015; Bartell, 2013; Boaler, 2002; Lerman, 2000; NCSM and TODOS, 
n.d.; Turner et al., 2012).

It is clear that much work is needed in providing more equitable opportunities, 
with respect to gender and socioeconomic status, not only at the program level, but 
also throughout schooling. Recognizing that teachers are a product of the systems 
they are in, future work may explore how programs in countries where this pattern 
is not observed, such as Russia, prepare their future teachers, and how these in turn 
teach secondary-level pupils.

Not surprisingly, one of the most important factors correlated with high levels of 
knowledge is previous attainment in mathematics. This finding has important policy 
implications. In countries where there is a great supply of knowledgeable candi-
dates, it is possible to be highly selective, yet in other countries, where the teaching 
profession is not as highly regarded and the supply of high-quality candidates is 
limited, selectivity may not be possible. In situations such as this, teacher education 
opportunities to learn become more important, as these institutions and programs 
may be the only venue that can provide mathematics courses—in some cases, reme-
dial—to future teachers.

Data from TEDS-M (Tatto et al., 2012) allows us to document that quality assur-
ance in some countries/regions, such as Chinese Taipei, Russia, and Singapore, has 
resulted in rigorous selection and exit criteria based on proven knowledge of math-
ematics. However, in some countries where teacher education programs are less 
selective, programs play a key role in improving future teachers’ knowledge before 
they begin to teach. Shorter or more experiential and field-based modalities may not 
be able to compensate for the gaps in mathematics knowledge accumulated in previ-
ous schooling (including academic mathematics courses in university) as longer 
programs might. With respect to this study, it can be argued that in a number of the 
participating countries, pre-service teacher education programs seem uniquely posi-
tioned to provide the mathematical pedagogical content knowledge that can com-
plement teachers’ mathematical knowledge by nurturing the ability to develop 
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deeper understandings of mathematics and of how to teach it. This is a particularly 
important finding that underscores the need for more, not less, teacher education 
before future secondary teachers are declared as ready to teach and given a 
credential.

Understanding that teacher education quality is highly dependent on program’s 
selectivity provides information for future policy. An important question for teacher 
educators, however, is whether their programs contribute knowledge, skills, and 
dispositions beyond those that individuals bring with them when they enter a pro-
gram. After controlling for background characteristics, the analysis shows that, 
among those who did well in the assessments, some program features seemed to 
make a difference. Findings show that teachers benefit more from programs offering 
opportunities to learn mathematics (e.g., geometry) at the university level and 
opportunities to learn school-level mathematics such as functions, probability and 
calculus and, in the case of Russia, to study research on mathematics teaching and 
learning. These findings indicate the contributions of teacher education after con-
trolling for background characteristics.

In addition, strong program norms may be able to challenge naïve norms about 
how mathematics is better learned. Lower levels of knowledge in the assessments 
were observed among future secondary teachers who hold the general belief that 
mathematics learning consists of mastering a series of rules and procedures. Future 
teachers whose philosophy was critical of such beliefs did significantly better in the 
assessments. The finding that those who seem less knowledgeable espouse the 
beliefs that mathematics can be taught and learned as a set of rules and procedures 
represents a challenge to the teacher education community and requires critically 
considering whether secondary programs may be reinforcing or simply not chal-
lenging these beliefs. It is worth asking whether teachers with these beliefs may 
reproduce the same detrimental association among their students when (and if) they 
enact these beliefs in their teaching. A long period of study allowing for in-depth 
examination of alternative beliefs about teaching and learning mathematics beyond 
those acquired through the apprenticeship of observation is needed to provide future 
teachers with a framework that will enable them to adapt instruction to the various 
needs of a diverse student population.

This chapter based on the TEDS-M study data highlights the importance of 
developing rigorous evaluation studies to understand and improve the degree to 
which teacher education succeeds in helping teachers acquire important knowledge 
and abilities to teach secondary mathematics. The study described in this chapter 
presents an assessment model developed collaboratively by teacher educators, 
which can potentially be used to evaluate the outcomes of teacher education pro-
grams in systematic and useful ways.

The TEDS-M study was designed to measure the knowledge outcomes of teacher 
education and represents an important step in advancing our understanding of the 
association between high-quality teacher education and the knowledge needed for 
initial teaching practice.
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Chapter 15
An International Study of the Relationship 
Between Learning to Teach Students 
from Diverse Backgrounds and Mathematical 
Knowledge for Teaching in Future Secondary 
Mathematics Teachers

Elizabeth B. Dyer

Abstract This study examines the role teacher education plays in developing 
highly knowledgeable secondary mathematics teachers prepared to work with stu-
dents from diverse backgrounds. Hierarchical linear modeling is used to investigate 
the relationship between opportunities to learn to teach students from diverse back-
grounds during teacher preparation and teachers’ mathematical knowledge for 
teaching using the TEDS-M international dataset. In some countries, a negative 
relationship within teacher preparation programs was found: Teachers with more 
opportunities to address the learning needs of students from diverse backgrounds 
have lower levels of mathematical knowledge for teaching. These results suggest 
that teachers with tools for addressing the learning needs of students from diverse 
backgrounds may lack adequate mathematical preparation.

Introduction

The achievement gap in mathematics between students of differing socioeconomic 
status is well documented internationally and has been persistent over time 
(Organisation for Economic Co-operation and Development, 2013, 2014; Simon, 
Malgorzata, & Beatriz, 2007). While some countries see greater differences between 
these groups, this inequity presents a worldwide challenge to development and 
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quality of life. While there are numerous policy recommendations to help reduce 
inequities in student outcomes at multiple levels of the educational system, a main 
focus has been to provide equity in access to high-quality learning environments 
(Simon et al., 2007). As teachers have a strong influence on student learning (Rivkin, 
Hanushek, & Kain, 2005), equitable access to high-quality teachers is likely essen-
tial in reaching goals of equity in student achievement. Unfortunately, gaps in access 
to high-quality teachers are also prevalent in many countries (Akiba, LeTendre, & 
Scribner, 2007; Kang & Hong, 2008; Little & Bartlett, 2010; Luschei et al., 2013).

While the inequities are clear, it is unclear what role teacher preparation programs 
play in providing equitable access to high-quality teachers. This study begins to 
explore the role of teacher education in supporting equitable access to mathematics 
teachers. It examines how opportunities for future secondary mathematics teachers to 
learn about teaching students from diverse backgrounds are related to teachers’ math-
ematical knowledge for teaching at the end of their teacher preparation programs. 
Therefore, this study takes a first step at identifying whether teachers are prepared as 
well mathematically as they are for working with diverse student populations.

Reasons can be found for why teachers both could and could not be expected to 
be equally well-prepared in the mathematical aspects of teaching and in teachers’ 
preparedness to teach students from diverse backgrounds. First, if programs are of 
high quality in general, these programs would prepare teachers well in all aspects of 
teaching. However, because disparities in mathematics achievement between differ-
ent groups of students are long-standing, they would likely persist in teacher prepa-
ration programs, particularly if teachers with diverse backgrounds are more likely to 
go on to teach students from diverse backgrounds. This analysis of the relationship 
between teachers’ mathematical knowledge for teaching and opportunities to learn 
to teach students from diverse backgrounds is primarily exploratory in nature.

This study uses the TEDS-M international dataset of mathematics teacher prepa-
ration to investigate this relationship. As these data include teachers nested in prepa-
ration programs, the analysis uses hierarchical linear modeling, separating the 
relationship among teachers in the same program and between different programs, in 
order to reduce bias. Additionally, teacher background characteristics and opportuni-
ties to learn mathematics will be accounted for to investigate whether these factors 
drive any relationship found. The results of this analysis could help identify ways in 
which teacher preparation programs may wish to focus their efforts in attempting to 
prepare high-quality mathematics teachers for students from diverse backgrounds.

 Theoretical Background

 High-Quality Mathematics Teachers for Students with Diverse 
Backgrounds

While many domains of expertise in teaching have been proposed for high-quality 
mathematics teaching, mathematical knowledge for teaching (MKT) is perhaps the 
best-researched domain. A variety of knowledge related to mathematics, or 
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mathematical knowledge for teaching, is theorized to be used by mathematics teachers 
in their everyday practice (Ball, Thames, & Phelps, 2008; Hill, Sleep, Lewis, & Ball, 
2007). Two domains of knowledge have been shown to be related to student learning: 
common content knowledge and specialized content knowledge (Hill et al., 2008; Hill, 
Rowan, & Ball, 2005; Hill, Umland, Litke, & Kapitula, 2012). Common content 
knowledge includes knowledge that would normally be considered part of mathemat-
ics, and includes the mathematics that teachers might expect to teach to students. On 
the other hand, specialized content knowledge includes the mathematical knowledge 
that is particular to the domain of teaching. Knowledge of different solution strategies 
students use and their accuracy or of different ways of representing mathematical con-
cepts (e.g., different representations of ¼) are examples of this type of knowledge.

While research on mathematical knowledge for teaching has assumed its impor-
tance for teaching all types of students, research on effective teaching for students 
from diverse backgrounds has assumed teachers have special pedagogical knowl-
edge and skills for teaching different students. This idea is supported by research 
that begins to show that, depending on their backgrounds—including cultural, racial, 
socioeconomic, and linguistic background—students benefit more or less from 
teachers with particular backgrounds or particular styles of teaching (Dee, 2005; 
Villegas & Irvine, 2010). Generally, teaching that is considered more equitable 
incorporates understanding of students’ backgrounds, often through non-deficit ori-
entations, and works to understand and influence the role of culture, race, and power 
in the classroom (Delpit, 1995; Hand, 2012; Irvine, 2003). This work suggests that 
students from diverse backgrounds, particularly backgrounds seen as disadvantaged, 
have rich sources of knowledge that can be leveraged to support their interest, moti-
vation, and learning in the classroom (González, Andrade, Civil, & Moll, 2001; 
González, Moll, & Amanti, 2005; Moll, Amanti, Neff, & González, 1992).

Researchers have typically treated these two domains of teacher competence, 
mathematical knowledge for teaching and pedagogical knowledge for teaching stu-
dents from diverse backgrounds, as separate. Recently, Turner and Drake (2016) have 
suggested that teaching mathematics to students from diverse backgrounds requires 
knowledge at the intersection of these two domains, particularly students’ mathemati-
cal thinking and cultural funds of knowledge. In this case, teachers need a deep under-
standing of children’s multiple mathematical knowledge bases. Turner et al. (2012) 
suggest that effective teaching requires teachers to attend to and make use of the broad 
and often cultural resources that students bring with them into the classroom to sup-
port students’ mathematical learning in particular. However, in practice, teachers may 
be more skilled at noticing and leveraging the resources students from more privi-
leged backgrounds bring into the classroom (Battey & Franke, 2013; Valencia, 1997). 
Therefore, effective mathematics teaching for students from more disadvantaged or 
non-dominant backgrounds is supported by knowledge and skills around understand-
ing the resources those particular students bring for learning mathematics.

This study examines all three of these domains of teaching based on the assump-
tion that they are all important for equitable mathematics instruction. In particular, 
this vision of equitable mathematics teaching suggests that teacher effectiveness is 
specific to the subject being taught (i.e., mathematics) and the students in the class-
room (i.e., students from diverse backgrounds), as well as the intersection of the 
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two. Therefore, equal access to teachers who are either well prepared mathemati-
cally or well prepared for working with students from diverse backgrounds, but not 
both, may be insufficient for promoting equity. Instead, students need equal access 
to teachers who are effective mathematics teachers for students of their particular 
background. Furthermore, this idea of effective teaching suggests teachers need 
more comprehensive preparation for mathematics teaching.

 Teacher Preparation for Teaching Mathematics to Students 
from Diverse Backgrounds

While countries have different systems for preparing and developing teachers on 
different time frames, most countries emphasize formal teacher preparation 
(Schwille, Ingvarson, & Holdgreve-Resendez, 2013). In many cases, teacher prepa-
ration programs have limited time, but numerous goals, meaning programs must 
decide which aspects of teacher preparation are most important to develop before 
teachers are put in classrooms.

Mathematical development of teachers is a generally accepted focus for teacher 
preparation programs (Conference Board of the Mathematical Sciences [CBMS], 
2001, 2012; Tatto et al., 2008). This area is critically important for secondary math-
ematics teachers, as teachers entering into teacher preparation programs may have 
just learned the mathematics they plan to teach. Some experts have suggested teach-
ers need to learn an additional five years of mathematics beyond what they will be 
teaching (CBMS, 2012). Therefore, many secondary teacher preparation programs 
have a central goal of developing teachers’ mathematical content knowledge. 
Programs often accomplish this goal through mathematics content courses in 
university- level mathematics, most of which are not designed specifically for teach-
ers. Programs have started to recognize the importance of developing teachers’ spe-
cialized content knowledge in addition to more advanced common content 
knowledge (CBMS, 2001, 2012).

In addition to teachers’ mathematical preparation, teacher preparation programs 
focus on teachers’ pedagogical preparation. Several countries have recently been 
placing more emphasis on pedagogical preparation in learning to teach students 
from diverse backgrounds (Schwille, Ingvarson, & Holdgreve-Resendez, 2013). 
However, it is unclear whether this emphasis is widespread, particularly at the sec-
ondary level. In the area of learning to teach students from diverse backgrounds, 
programs have often focused on shifting teachers’ attitudes and beliefs with respect 
to students of diverse backgrounds, as many future teachers hold deficit-oriented 
views that are seen as unproductive for equitable teaching approaches (Castro, 
2010; Foote et al., 2013). Research has identified several types of experiences for 
future teachers that support developing productive beliefs and pedagogical skills, 
including cross-cultural experiences (Adams, Bondy, & Kuhel, 2005; Garmon, 
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2004, 2005; Whipp, 2013) and courses focused on culturally responsive teaching or 
teaching for social justice (Freedman & Appleman, 2009).

Although programs often include general pedagogical preparation for teaching 
students from diverse backgrounds, little research has looked at whether 
mathematics- specific approaches are widespread. Several promising new experi-
ences for future teachers have been developed and researched at the primary level 
that integrate mathematics with preparation for students from diverse backgrounds. 
For example, identifying mathematical practices and funds of knowledge through 
community engagement (Bartell et al., 2010), analyzing videos of students engag-
ing in mathematics with equity-oriented analytical lenses (Aguirre et  al., 2012; 
McDuffie, Foote, Bolson, et al., 2014; McDuffie, Foote, Drake, et al., 2014), and 
developing mathematics lesson plans (Aguirre et al., 2013) can all shift teachers’ 
focus to consider the broad resources students bring into the classroom in ways that 
inform mathematics teaching.

 Relationship Between Preparation in Mathematics 
and Preparation for Diversity

Given these different approaches to preparing teachers to teach mathematics to stu-
dents from diverse backgrounds, this study examines whether teachers are prepared 
equally in mathematical knowledge for teaching and teaching students from diverse 
backgrounds. The analysis accomplishes this aim by examining the relationship 
between future teachers’ mathematical knowledge for teaching at the end of their 
teacher preparation programs and their self-reported opportunities to learn to teach 
students from diverse backgrounds. This study answers the following research 
questions:

How are opportunities for secondary future  mathematics teachers to learn to 
teach students from diverse backgrounds associated with mathematical knowledge 
for teaching?

 1. Is this association found within teachers in the same program and between dif-
ferent teacher preparation programs?

 2. Does this association vary by teacher preparation program and by country?
 3. Do teacher background characteristics or opportunities to learn mathematics 

partly account for any association found?

There are several reasons why teachers with more opportunities to learn to teach 
students from diverse backgrounds might have lower levels of mathematical knowl-
edge for teaching. Teachers who hope to teach students from diverse backgrounds 
may begin teacher preparation with less strong mathematical backgrounds, inas-
much as these teachers may be drawn to teaching to bring about educational equity 
rather than for their love of mathematics. Teachers with this motivation to enter 
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teaching may have a less strong mathematics background and may seek out fewer 
opportunities to strengthen their mathematical background. Additionally, teachers 
often take jobs in the area where they grew up (Boyd, Lankford, Loeb, & Wyckoff, 
2005; Reininger, 2012), so teachers with more opportunities to learn to teach stu-
dents from diverse backgrounds may have diverse or non-dominant backgrounds 
themselves. In this way, the differences seen in student achievement would be rein-
forced by the teachers who take jobs in disadvantaged schools. Finally, teachers 
who have more opportunities to learn to teach students from diverse backgrounds 
may have fewer opportunities to learn mathematics simply because they use their 
time to pursue these pedagogical opportunities rather than opportunities to learn 
mathematics. These teachers would then end up learning less mathematical knowl-
edge for teaching by the end of their teacher preparation programs, leading to a 
negative relationship of mathematical knowledge for teaching with opportunities to 
learn to teach students from diverse backgrounds.

However, there are also reasons to expect a positive relationship between 
opportunities to learn to teach students from diverse backgrounds and mathemati-
cal knowledge for teaching. Programs may be higher quality overall, meaning 
that teachers generally have similar quality opportunities to learn in all areas of 
teacher preparation. Additionally, if teacher preparation programs develop teach-
ers’ abilities to teach students from diverse backgrounds in a way that is specific 
to mathematics teaching, teachers with more of those opportunities may increase 
their mathematical knowledge for teaching at the same time. In particular, devel-
oping an understanding of and skills associated with students’ multiple mathe-
matical knowledge bases is likely to develop teachers’ pedagogical content 
knowledge, as well as make teachers more effective when teaching students from 
diverse backgrounds.

The analysis in this study tests these varied explanations for the existence of both 
positive and negative relationships using different analytical models. Teacher back-
ground likely plays a role in determining teachers’ mathematical knowledge for 
teaching. These background characteristics include gender, age, native language, 
socioeconomic status, and racial or ethnic background. Other characteristics, such 
as reasons for entering teaching and previous educational achievement, could have 
an impact on any relationship between mathematical knowledge for teaching and 
opportunities to learn to teach students from diverse backgrounds. In addition to 
teacher characteristics, teachers’ experiences during teacher preparation likely will 
have an influence on any relationship seen. In particular, opportunities to learn 
mathematics could help explain any relationship found. For example, teachers could 
spend less time learning mathematics in order to have more opportunity to learn to 
teach students from diverse backgrounds, leading to lower mathematical knowledge 
for teaching. Because the theory presented suggests these teacher characteristics 
and opportunity to learn factors may account for the relationship in question, they 
are the variables tested.
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 Methods

 Data

The TEDS-M international dataset is used as the basis for this study. The TEDS-M 
project was a large-scale international data collection effort around mathematics 
teacher preparation programs in 15 countries. All countries had a response rate of at 
least 76 percent for future teachers. The study was conducted to investigate how 
policies and practices in teacher preparation programs influence what beginning 
mathematics teachers know and can do.

Populations and Samples The TEDS-M dataset consists of nationally representa-
tive probability samples of future teachers.1 All sampling was completed in accor-
dance with IEA’s quality standards (see IEA, 2007; Dumais, Meinck, Tatto, 
Schwille, & Ingvarson, 2013; Dumais & Meinck, 2013, for sampling details). It 
used a stratified multistage probability sampling design for secondary future teach-
ers in their last year of training. Institutions were first sampled from the list of all 
institutions that prepare future mathematics teachers, which was provided by each 
country. Within each institution selected, all programs that prepared teachers, or 
teacher preparation units, were included in the sample. Teachers within each of the 
programs were sampled to reach the TEDS-M precision requirements of at least 30 
teachers. In cases of programs with fewer than 30 teachers, all of the teachers were 
surveyed. Because of this variability in the number of teachers in each program in 
the data, some programs have fewer than 10 teachers, while others have up to 30, 
creating an unbalanced panel. In total, the sample includes 8,207 future secondary 
teachers and 381 teacher preparation programs. Individual country sample sizes are 
shown in Table 15.1. Dumais and Meinck (2013) used balanced repeated replication 
based on the sampling design and created the estimation weight. This study uses 
weights in all the analyses allowing for population estimates.

Measurement The TEDS-M study collected data about the future teachers’ gen-
eral background, opportunity to learn during their program, mathematics and math-
ematical pedagogical content knowledge for teaching, and beliefs about mathematics 
and teaching. In this study, three main variables are investigated: mathematical con-
tent knowledge (MCK), mathematics pedagogy content knowledge (MPCK), and 
opportunity to learn teaching for diversity (referred to as OTL DIVERSITY in this 
study). Additional variables, including teacher background characteristics and 
opportunity to learn mathematics, are used to test alternate hypotheses in the three 
sub-research questions. Reliabilities for the scaled scores used in this study can be 
found in Table 15.2. Details about item development, assessment frameworks, and 
scaling can be found in Tatto et al. (2008, 2013).

1 In the United States, the dataset contains a nationally representative sample of future teachers in 
public institutions only.
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Mathematical Knowledge for Teaching Teachers’ mathematical knowledge for 
teaching (MKT) was measured through assessments in two domains: mathematical 
content knowledge (MCK) and mathematical pedagogical content knowledge 
(MPCK). These instruments were based on previous instruments developed for 
MKT, including the instrument developed for the Mathematics Teaching in the 
21st Century study, Knowing Mathematics for Teaching Algebra Project, and the 
Learning Mathematics through Teaching Project. The MCK instrument is focused 
on common and horizon content knowledge (i.e., the mathematics taught in schools 
at or slightly above secondary grades). The MPCK instrument includes specialized 
content knowledge (i.e., mathematical knowledge specific to the profession of 
teaching), as well as knowledge of content and students (i.e., knowledge of how 
students think about mathematics). While these two domains do not provide a 

Table 15.1 Country by 
country program and future 
teacher sample size Country

Teacher 
preparation 
programs

Teacher 
participants

Botswana 3 53
Chile 37 746
Chinese Taipei 19 365
Georgia 7 78
Germany 28a 771
Malaysia 6 389
Oman 8 268
Philippines 48 733
Poland 35 298
Russia 48 2,141
Singapore 4 393
Switzerland 8 141
Thailand 53 652
United States 72 607
Total 381 8,207

Note: aAlthough 28 programs were sampled in 
Germany, programs were not identified for teachers 
in the sample from Germany. Programs were taken 
into account in determining sampling weights

Table 15.2 Reliabilities for scaled scores using congeneric measurement model

Scale Reliability

Mathematics Content Knowledge (MCK)a .91
Mathematics Pedagogical Content Knowledge (MPCK)a .72
Opportunity to learn to teach students from diverse backgroundsa .90
Teaching for impact and change .77

aTatto et al. (2013)
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 comprehensive measurement of teachers’ mathematical knowledge for teaching, 
they are two domains that have been shown to be associated with teaching quality, 
and both are main areas of focus for many teacher preparation programs (CBMS, 
2001, 2012). These two domains were measured through two separate assessments 
designed specifically for secondary mathematics teachers, which used a balanced- 
incomplete block design to reduce time required to complete the assessments. Tatto 
et  al. (2013) developed scaled scores for each assessment in consultation with 
ACER using the standard Rasch model for dichotomous items and the partial credit 
model for polytomous items. The scores were standardized to a mean score of 500 
and standard deviation of 100. Tatto et al. (2013) calculated the reliability estimate 
of .91 for MCK and .72 for MPCK using a congeneric measurement model.

Opportunity to Learn The TEDS-M study measured teachers’ opportunity to learn 
many topics in four broad areas: mathematics content, mathematics education peda-
gogy, general education pedagogy, and school-based experiences. The 24 
opportunity- to-learn subscales across the four domains were developed based on 
logical organization of the topics, according to concordance with curricular areas. 
Three opportunity-to-learn scales are used in this study.

Opportunities to learn to teach different populations of students with potentially 
different needs in the classroom is used to measure teachers’ opportunities to learn 
to teach students from diverse backgrounds. Tatto et al. (2013) created the compos-
ite score for teachers’ opportunities to learn to teach students from diverse back-
grounds that is used in this study based on six items (listed in Table 15.3) using 
Rasch modeling. These scales were centered on a value of 10, which corresponded 
to the middle of the response scale. These items had a four-option response scale of 
never, rarely, occasionally, and often. Tatto et al. (2013) calculated the reliability 
estimate of .90 for this scale using a congeneric measurement model.

Two composite scores for school-level mathematics (i.e., secondary mathemat-
ics) are used in this study: (a) functions, probability and calculus and (b) numbers, 
measurement, and geometry. The functions composite contains three items, while 
the numbers composite contains four items (a list of items can be found in 
Table 15.4). These items had two response choices: studied or not studied. Tatto 

Table 15.3 Items in the opportunity to learn to teach students from diverse backgrounds scaled 
score

In your current teacher preparation program, how frequently did you engage in activities that 
gave you the opportunity to learn how to do the following?

  Develop specific strategies for teaching students with behavioral and emotional problems
  Develop specific strategies and curriculum for teaching pupils with learning disabilities
  Develop specific strategies and curriculum for teaching gifted pupils
  Develop specific strategies and curriculum for teaching pupils from diverse cultural 

backgrounds
  Accommodate the needs of pupils with physical disabilities in your classroom
  Work with children from poor or disadvantaged backgrounds
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et al. (2013) created the composite scores used in this study by summing the number 
of topics marked as studied in each domain. The reliability of these two scales is not 
calculated because they are simple sums.

Teacher Background A variety of teacher background characteristics were mea-
sured through the TEDS-M study. The background characteristics that have been 
shown to have an influence on mathematics achievement are used in the analysis as 
control variables (see Barton & Coley, 2009; Reardon, 2011; Reardon & Galindo, 
2009; Reardon, Robinson-Cimpian, & Weathers, 2015; Robinson & Lubienski, 
2011). These variables include age, gender, self-reported typical level of grades 
obtained in secondary school, whether the language of the test was typically spoken 
in their home, and mother’s education:

Age. Age was measured through an item asking the teacher to write in her or his 
age, and the age written was used directly in the model.

Gender. Gender was measured through a question asking teachers to report being 
male or female, and an indicator variable for female was created for analysis.

Grades. An indicator variable was also created with an item asking about teachers’ 
grades in secondary school. Teachers who reported that their grades were always 
or usually near the top of their year level were coded as 1, while the other 
responses of generally above, about, or below average for their year level were 
coded as 0.

Non-native language speaker. An indicator variable for being a non-native lan-
guage speaker was created for the item asking about the frequency with which 
the teacher spoke the language of the test at home. Teachers reporting they spoke 
the language of the test sometimes or never were coded as 1, while responses of 
always or almost always were coded as 0.

Table 15.4 Items in the opportunity to learn school-level mathematics composites

Consider the following list of mathematics topics that are often taught at the secondary school 
level. Please indicate whether you have studied each topic as part of your current teacher 
preparation program. (options: studied, not studied)

Numbers, measurement, and geometry composite
  Numbers (e.g., whole numbers, fractions, decimals, integer, rational, and real numbers; 

number concepts; number theory; estimation; ratio and proportionality)
  Measurement (e.g., measurement units; computations and properties of length, perimeter, 

area, and volume; estimation and error)
  Geometry (e.g., 1-D and 2-D coordinate geometry, Euclidean geometry, transformational 

geometry, congruence and similarity, constructions with straightedge and compass, 3-D 
geometry, vector geometry)

Functions, probability and calculus composite
  Functions, Relations, and Equations (e.g., algebra, trigonometry, analytic geometry)
  Data Representation, Probability, and Statistics
  Calculus (e.g., infinite processes, change, differentiation, integration)
  Validation, Structuring, and Abstracting (e.g., Boolean algebra, mathematical induction, 

logical connectives, sets, groups, fields, linear space, isomorphism, homomorphism)
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Mother’s education. Although there is no measure of socioeconomic status in the 
TEDS-M data, mother’s education was measured, which can be used as a proxy 
for SES. Mother’s education was reported at a variety of levels, so indicator vari-
ables were created for obtaining at most secondary-level and at least tertiary- 
level education.

Teaching for impact. In addition to the variables found in the TEDS-M dataset, a 
composite variable about the reasons for becoming a teacher was created to help 
control for selection in the types of teachers who may seek out more opportuni-
ties to learn to teach students from diverse backgrounds. This score was based on 
three items asking teachers to rate three reasons for becoming a teacher—influ-
encing students, having talent for teaching, and working with young people—on 
a scale that included not a reason, a minor reason, a significant reason, and a 
major reason. The items can be found in Table  15.5. This composite score 
(TEACHING FOR IMPACT) was not originally created in the released TEDS-M 
dataset, but was calculated for this study using Rasch modeling with a partial 
credit structure. All teachers in the sample were scaled with the same model. 
Reliability was estimated to be .77 using a congeneric measurement model with 
the jMetrik software.

 Analysis

Hierarchical linear modeling was the primary analysis technique used. All analysis 
was completed using the HLM7 software with the full maximum likelihood estima-
tion method. To investigate relationships internationally, two-level HLM was used 
with teachers nested within teacher preparation programs. Separate models were 
run for each country because of the relatively small number of countries in the 
sample and to refrain from generating average effects internationally, which are dif-
ficult to interpret given the wide variability between countries. The relationship 
between mathematical knowledge for teaching and opportunity to learn to teach 
students from diverse backgrounds was the main focus. This was modeled with 
MKT as the outcome or dependent variable and OTL DIVERSITY as the independent 
variable. The relationship was modeled as a linear relationship because adding non- 
linear terms did not increase model fit and would make the interpretation of the 
results less straightforward. As two parts of MKT were measured in the data, MCK 
and MPCK, separate models were constructed for each outcome. In this study, the 

Table 15.5 Items in the teaching for impact scaled score

To what extent does each of the following identify your reasons for becoming a 
teacher?(options: not a reason, a minor reason, a significant reason, a major reason)

  I believe that I have a talent for teaching
  I like working with young people
  I want to have an influence on the next generation
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models are represented with MKT as the outcome variable. Sampling weights were 
used in all analyses.

Four different model specifications were tested. The first specification is the 
unconditional specification, which only includes the outcome variable in the model. 
This specification serves as a basis for the three primary specifications by showing 
the variation in the outcome variable at each level of the model (the between- 
program level and the within-program level). The additional three specifications 
serve two purposes: They allow us to examine the robustness to alternate specifica-
tion and to test hypotheses about factors that might account for any associations 
identified. The basic specification (two) only includes the relationship between OTL 
DIVERSITY and MKT. The third specification added teacher background character-
istics to the model, which allows us to examine whether teacher background char-
acteristics account for any relationship seen between opportunity to learn to teach 
students from diverse backgrounds and MKT. The fourth specification added oppor-
tunity to learn mathematics to the teacher background characteristics, which allows 
us to investigate whether any relationship seen between opportunity to learn to teach 
students from diverse backgrounds and MKT continues to exist when controlling 
for opportunity to learn mathematics. The additional variables in the third and fourth 
specifications primarily serve as control variables, although they also slightly 
increase the model fit.

In the second through fourth specifications, the between-program and within- 
program variation was separated using the centered within context, with reintroduc-
tion of the mean at level 2 approach (i.e., a CWC(M) approach). To isolate the 
within-program variation at level 1, the variables were all group mean centered. 
This centering reduces exogenous variation in the estimates of the coefficients at the 
teacher level by removing variation seen due to selection or sorting into different 
teacher preparation programs. As teachers are certainly not randomly assigned to 
different programs, and instead are admitted and/or choose particular programs, 
separating the within and between variation reduces bias in the level-1 coefficient 
estimates (Enders & Tofighi, 2007; Preacher, Zyphur, & Zhang, 2010; Zhang, 
Zyphur, & Preacher, 2009). In addition to isolating the within-program variation, 
the between-program variation was explored within countries. Variables for the 
mean of each of the teacher-level variables for all the teachers in the same program 
were included in the equation for the intercept at level 2. The same relationships 
examined within teachers can now be investigated between different programs in 
the same county with the addition of these mean values for the teachers in each 
program. In all of the analyses, the relationship within teacher preparation programs 
is always separated from the relationship between teacher preparation programs, 
and is always reported separately.

The parameters estimated for the opportunity to learn to teach students from 
diverse backgrounds were modeled as random effects in order to investigate the 
variation of this relationship in different teacher preparation programs. All param-
eters estimating the slope for the teacher background characteristics and opportu-
nity to learn mathematics were modeled as fixed effects. This final (or most 
comprehensive) estimated model is shown below for level 1, and for the equation 
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for the intercept at level 2. The subscripts ij denote the value for the ith teacher in 
the jth program. To simplify the presentation of the model, Tij is used as a vector of 
variables of teacher characteristics and Mij is used as a vector of variables of oppor-
tunity to learn school-level mathematics at the teacher level, and Tj  and Mj  are 
used at the program level.

 
Level 1 0 1 2 3: MKT OTL DIVERSITY T M rij j j ij j ij j ij= + + + +b b b b iij  

 
Level 2 0 00 01 02 03 0: b g g g gj j j j jOTL DIVERSITY M uT= + + + +

 

The single equation mixed model representation is given below:

 

MKT OTL DIVERSITY T M OTL DIVERSITYij j j j ij= + + + +

+

g g g g g

g
00 01 02 03 10

220 30 0 1T M u u OTL DIVERSITY rij ij j j ij ij+ + + +g
 

To test the model fit of each specification, three-level HLM was used in order to 
determine the model fit across all countries. Teachers were nested within programs, 
which were nested within countries. The model was equivalent to the two-level 
models for each country, and the slope of the coefficient on OTL DIVERSITY was 
modeled as a random effect at level 3 as well. In each specification, the model fit 
was calculated with the Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC). Results in Table 15.6 show that the full model, or fourth 
specification, generally has the lowest values for both criteria, and, therefore, has 
the best fit overall. In this study, the analysis is aimed at investigating the relation-
ship between mathematical knowledge for teaching and opportunities to learn to 
teach students from diverse backgrounds. As such, both the second (basic) and 
fourth (full) specifications are used in the results section and compared, not just the 
model with best fit. This comparison of specifications helps to examine whether 
controlling for additional covariates accounts for the main relationship seen.

Table 15.6 Model fit statistics for 3-level models

Model specification
Mathematics content 
knowledge

Mathematics pedagogical 
content knowledge

Akaike information criterion (AIC) 90,558.05 92,850.44
  Unconditional
  Basic 87,298.67 89,571.05
  Teacher Background 77,540.89 79,809.10
  Math Opportunity 77,235.68 79,606.96
Bayesian information criterion (BIC) 90,586.02 92,878.41
  Unconditional
  Basic 87,389.12 89,661.50
  Teacher Background 77,725.73 79,993.93
  Math Opportunity 77,447.84 79,819.11

Note: Decreases in value between models indicate better fit
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In the third (background) and fourth (full) model, including teacher background 
characteristics and opportunity to learn mathematics pose additional challenges at 
the program level (level 2). In many of the countries, the number of programs is 
smaller than the number of variables added to the model as controls. In these cases, 
the level 2 intercept equation does not include additional variables at the program 
level. The intercept equation still includes the variable for mean opportunity to learn 
to teach students from diverse backgrounds, such that the within and between rela-
tionships for this variable are separated. However, the between-program relation-
ship is not reported in the full model results because of the lack of control variables, 
making those results not comparable with the models including these control 
 variables. Results for the within-program relationship are still reported as the con-
trol variables are included at this level.

Finally, although future teachers from Germany were sampled within programs, 
and this information was used to determine sampling weights, these program assign-
ments were not included in the data. Therefore, all results presented from Germany 
combine the relationship within and between programs. These results are shown in 
the within-program columns in the tables, and no results are shown for between- 
program relationships. Because of this missing data, the results from Germany 
should be interpreted with caution, as any bias introduced from selection into pro-
grams is not accounted for in the estimates calculated.

 Results

Across the different specifications, there is some evidence of a negative relationship 
between opportunities to learn to teach students from diverse backgrounds and 
mathematical knowledge for teaching. This relationship is found both within teach-
ers from the same program and across programs. A negative relationship suggests 
that teachers or programs with more opportunities to learn to teach students from 
diverse backgrounds tend to have lower levels of mathematical knowledge for 
teaching. Evidence of a positive relationship was only found between different pro-
grams in one country. Teacher background characteristics and opportunity to learn 
mathematics seem to account for part of this relationship between programs, but do 
not play a significant role in the relationship within programs. Finally, countries 
tend to show different results, and many countries show variance in the relationship 
within different programs. The results for the basic specification are presented first 
followed by the full specification.

In the basic model results in Table 15.7, some countries show a negative relation-
ship between mathematical knowledge for teaching and opportunities to learn to 
teach students from diverse backgrounds. For mathematical content knowledge, there 
is a statistically significant negative relationship between programs in Thailand and 
the United States (−15.43 and −24.08, respectively). Germany is the only country to 
show a statistically significant relationship for mathematical content knowledge but 
this result should be treated with caution because the within and between relationship 
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cannot be separated because of the data missing about program assignment. For 
MPCK, there is a statistically significant negative relationship for the United States 
both within and between programs (−4.36 and −22.87, respectively). No countries 
show statistically significant evidence of a positive relationship for MPCK.

The full model, which accounts for teacher background characteristics and 
opportunity to learn school-level mathematics, yielded more statistically significant 
results, as shown in Table 15.8, but both positive and negative results are found. 
Looking at the results for MCK, there is a statistically significant negative relation-

Table 15.7 Two-level model results by country for the estimates of the association of mathematical 
knowledge for teaching with opportunity to learn to teach students from diverse backgrounds in the 
basic specification (β1j and γ01)

Mathematics content 
knowledge

Mathematics pedagogical 
content knowledge

Country
N 
(programs)

N 
(teachers)

Within 
program

Between 
programs

Within 
program

Between 
programs

Botswana 3 53 −5.80 
(16.96)

−19.83 
(3.67)

−1.55 
(6.33)

36.61 
(29.20)

Chile 37 746 1.53 
(2.20)

8.67 
(5.89)

3.90+ 
(1.96)

−4.82 
(5.35)

Chinese 
Taipei

19 365 1.01 
(2.46)

2.81 
(19.54)

−3.12 
(3.08)

4.41 
(19.80)

Georgia 7 78 −16.58+ 
(6.73)

3.64 
(9.93)

−7.28 
(5.85)

−10.28 
(8.97)

Germany 1 771 −4.30* 
(2.07)

−4.13 
(2.77)

Malaysia 6 389 −2.13 
(1.44)

14.87 
(34.37)

−3.26 
(3.18)

0.28 
(26.33)

Oman 8 268 1.68 
(1.72)

6.31 
(10.35)

−0.42 
(2.17)

−3.70 
(10.93)

Philippines 48 733 −2.27 
(2.27)

6.47 
(6.40)

0.51 
(2.31)

3.35 
(6.26)

Poland 35 298 −6.21+ 
(3.40)

−1.54 
(6.37)

−8.95+ 
(4.98)

1.62 
(6.40)

Russia 48 2141 0.36 
(0.94)

20.06 
(13.61)

0.62 
(1.33)

17.38+ 
(9.92)

Singapore 4 393 0.82 
(2.15)

86.38+ 
(27.94)

−2.48 
(3.14)

55.97 
(25.86)

Switzerland 8 141 −2.96 
(3.04)

14.95 
(9.13)

−1.63 
(4.45)

−7.15 
(13.07)

Thailand 53 652 −0.80 
(1.15)

−15.43** 
(5.45)

−1.19 
(1.06)

−8.21+ 
(4.86)

United 
States

71 606 −5.66 
(3.53)

−24.08*** 
(6.06)

−4.36* 
(1.84)

−22.87*** 
(4.87)

Note: Robust standard errors are reported in parentheses and clustered at the program level. Within 
and between relationships are separated in all countries except Germany where program assignment 
data was not available.
+p < .10; *p < .05; **p < .01; ***p < .001
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Table 15.8 Two-level model results by country for the estimates of the association of mathematical 
knowledge for teaching with opportunity to learn to teach students from diverse backgrounds in the 
full specification (β1j and γ01)

Mathematics content 
knowledge

Mathematics pedagogical 
content knowledge

Country
N 
(Programs)

N 
(Teachers)

Within 
program

Between 
programs

Within 
program

Between 
programs

Botswana 3 53 −4.59 
(4.62)

−21.44 
(24.27)

Chile 37 746 0.00 
(2.79)

9.88 
(6.22)

2.44 
(2.26)

−0.85 
(4.35)

Chinese 
Taipei

19 365 0.51 
(2.61)

17.41 
(15.07)

−2.54 
(3.48)

42.69+ 
(21.04)

Georgia 7 78 −24.05* 
(6.03)

−9.43 
(5.17)

Germany 1 771 −5.49** 
(2.12)

−5.37+ 
(2.91)

Malaysia 6 389 −1.55 
(1.50)

−5.19 
(4.35)

Oman 8 268 1.25 
(1.88)

−2.39 
(2.99)

Philippines 48 733 −0.70 
(2.14)

2.83 
(3.08)

1.32 
(1.52)

4.82 
(4.74)

Poland 35 298 −6.86+ 
(3.79)

−0.96 
(8.54)

−7.19 
(5.73)

−2.78 
(7.27)

Russia 48 2141 −0.59 
(1.17)

33.25*** 
(8.76)

0.31 
(1.61)

24.16*** 
(6.30)

Singapore 4 393 −0.59 
(2.12)

−2.88 
(3.78)

Switzerland 8 141 0.56 
(3.45)

−3.15 
(5.07)

Thailand 53 652 −1.25 
(1.16)

−7.82* 
(3.64)

−1.31 
(1.14)

−6.65 
(5.74)

United 
States

71 606 −4.54 
(3.09)

−6.75* 
(3.23)

−4.37* 
(1.89)

−13.97*** 
(4.02)

Note: Robust standard errors are reported in parentheses and clustered at the program level. All 
estimates are from regressions that control for variables at the teacher level and mean values of 
teacher variables at the program level. Countries without reported between relationship estimates 
did not include control variables at the program level due to small program sample size, but still 
separated the within and between relationships in the model. Controls include age; gender; self- 
reported typical level of grades obtained in secondary school; whether the language of the test was 
typically spoken in the respondent’s home; mother’s education; opportunity to learn functions, 
probability, and calculus; and opportunity to learn numbers, measurement, and geometry. Within 
and between relationships are separated in all countries except Germany, where program assign-
ment data was not available.
+p < .10; *p < .05; **p < .01; ***p < .001
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ship within programs in Germany (similar to the Basic model), and in Georgia. 
There is evidence of a negative relationship between programs in Thailand and the 
United States, similar to the Basic model. Additionally, there is evidence of a posi-
tive relationship between programs in Russia. For MPCK, there is still a statistically 
significant relationship within and between programs in the United States. Finally, 
there is evidence of a statistically significant positive relationship in Russia between 
programs.

Across the different specifications, there is evidence for robustness of the results 
within programs, but less evidence for the results between programs. All results that 
were statistically significant in the basic model stay statistically significant in the 
full model. In fact, new statistically significant relationships emerge when adding 
control variables. However, the estimates or the strength of the relationships between 
programs generally tend to decrease, suggesting the relationships at this level may 
suffer from omitted variables bias. Selection bias into teacher preparation programs 
could account for a large part of any association of MKT with opportunities to learn 
to teach students from diverse backgrounds between teacher preparation programs. 
If this were the case, programs with more opportunities for teachers to learn to teach 
students from diverse backgrounds on average would tend to have teachers with 
lower levels of MKT simply because different types of teachers attend these pro-
grams, rather than because of the program itself. However, the results within pro-
grams are relatively stable between the two models, suggesting that the results 
found are quite robust.

The variation of the association of mathematical knowledge for teaching with 
opportunities to learn to teach students from diverse backgrounds within teachers 
from the same program is examined by modeling this relationship as a random 
effect at level 2. This random effect allows the estimate of this within relationship to 
vary across different programs in each country, rather than requiring all programs’ 
estimates to be the same. In the random effects results shown in Table 15.9, there is 
evidence of variation in the estimate of the within relationship in many of the 
 countries, particularly in countries with large numbers of programs. The variance in 
the relationship is statistically significant (shown in the level 2 OTL DIVERSITY 
columns) in Chile, Poland, and the United States for both outcomes. The variance is 
statistically significant for MCK in the Philippines and for MPCK in Botswana, 
Malaysia, and Russia.

 Discussion

In the preceding section, a negative relationship was found between teachers’ math-
ematical knowledge for teaching and opportunities to learn to teach students from 
diverse backgrounds in some countries. This relationship suggests that teachers in 
some countries are not as prepared in the mathematical aspects of teaching as they 
are in learning to teach students from diverse backgrounds. Additionally, the rela-
tionship varied considerably between countries, with the United States being a 
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consistent outlier showing the strongest negative relationship both within teachers 
from the same program and between programs. Finally, the relationship found 
within teachers from the same preparation program varied across programs in dif-
ferent countries, which suggests that countries that did not show an average negative 
relationship are still likely to have programs with negative relationships, as well as 
programs with positive relationships.

Table 15.9 Two-level model results by country for the variance components and standard 
deviation of random effects in the full specification

Mathematics content knowledge
Mathematics pedagogical content 
knowledge

Country
Level 1 
Intercept

Level 2 
Intercept

Level 2 OTL 
DIVERSITY

Level 1 
Intercept

Level 2 
Intercept

Level 2 OTL 
DIVERSITY

Botswana 1029.40*** 
(32.08)

0.10 
(0.32)

0.04 
(0.20)

1655.39*** 
(40.69)

15.04 
(3.88)

1552.98*** 
(39.41)

Chile 5635.02*** 
(75.07)

408.84*** 
(20.22)

89.87*** 
(9.48)

6180.76*** 
(78.62)

12.94* 
(3.60)

38.42* 
(6.20)

Chinese 
Taipei

4356.88*** 
(66.01)

7.95** 
(2.82)

8.84 
(2.97)

7618.29*** 
(87.28)

92.66* 
(9.63)

16.79 
(4.10)

Georgia 3845.86*** 
(62.02)

152.03+ 
(12.33)

0.33 
(0.58)

2833.10*** 
(53.23)

1.60 
(1.26)

0.12 
(0.35)

Germany
Malaysia 1978.04*** 

(44.48)
755.12*** 
(27.48)

0.20 
(0.45)

3147.18*** 
(56.10)

397.78*** 
(19.94)

76.97** 
(8.77)

Oman 1509.29*** 
(38.85)

96.07* 
(9.80)

0.13 
(0.36)

3850.55*** 
(62.05)

0.36 
(0.60)

0.12 
(0.34)

Philippines 1848.38*** 
(42.99)

34.62* 
(5.88)

22.94* 
(4.79)

3182.55*** 
(56.41)

0.58 
(0.76)

0.23 
(0.48)

Poland 2407.08*** 
(49.06)

401.58*** 
(20.04)

232.87*** 
(15.26)

3887.22*** 
(62.35)

413.11*** 
(20.33)

484.39*** 
(22.01)

Russia 4027.46*** 
(63.46)

2570.37*** 
(50.70)

2.35 
(1.53)

6171.71*** 
(78.56)

1284.36*** 
(35.84)

13.06* 
(3.61)

Singapore 2679.30*** 
(51.76)

163.62*** 
(12.79)

0.58 
(0.76)

6199.71*** 
(78.74)

57.32* 
(7.57)

15.29 
(3.91)

Switzerland 2196.70*** 
(46.87)

6.27 
(2.50)

0.44 
(0.66)

4672.03*** 
(68.35)

27.78 
(5.27)

2.98 
(1.73)

Thailand 2167.76*** 
(46.56)

363.01*** 
(19.05)

1.30 
(1.14)

3300.75*** 
(57.45)

288.54*** 
(16.99)

1.51 
(1.23)

United 
States

1827.29*** 
(42.75)

104.59*** 
(10.23)

55.15** 
(7.43)

3624.40*** 
(60.20)

52.47 
(7.24)

5.81** 
(33.70)

Note: Standard deviations are reported in parentheses. All estimates are from regressions that con-
trol for variables at the teacher level and mean values of teacher variables at the program level. 
Countries with eight or less programs sampled did not include program level control variables. 
Controls include: age, gender, self-reported typical level of grades obtained in secondary school, 
whether the language of the test was typically spoken in their home, mother’s education, opportu-
nity to learn functions, probability and calculus, and opportunity to learn numbers, measurement, 
and geometry. Within and between relationships are separated in all countries except Germany 
where program assignment data was not available.
+p < .10; *p < .05; **p < .01; ***p < .001
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 Explanations of the Relationship Found

This negative relationship between opportunities to learn to teach students from 
diverse backgrounds and mathematical knowledge for teaching could exist for sev-
eral reasons. Selection likely drives the relationship found rather than direct or indi-
rect causal mechanisms. This study examined one indirect causal mechanism, less 
opportunity to learn mathematics, and did not find it accounted for the relationship. 
Additionally, no causal explanations were theorized for a negative relationship, so a 
selection explanation is more plausible.

Explanations based on selection mechanisms suggest that teachers who report 
increased opportunities to learn to teach students from diverse backgrounds are dif-
ferent in ways that contribute to lower levels of mathematical knowledge for teach-
ing at the end of teacher preparation. The previous analysis controls for some 
aspects of what might make these teachers different. However, the TEDS-M data 
does not include some background characteristics of teachers that likely contribute 
to the differences. For example, TEDS-M did not collect data on racial and ethnic 
background of teachers, which is likely associated with lower levels of mathemati-
cal content knowledge as well as teachers seeking more opportunities to learn to 
teach students from diverse backgrounds. Additionally, race may help explain why 
this study finds stronger relationships in the United States—that is, because of its 
high level of racial diversity and the history of differences in educational achieve-
ment by race. More exploratory work could identify additional factors that may 
account for the relationship seen.

In addition, more data on teacher background characteristics and longitudinal 
data collection on future teachers would help identify possible explanations for the 
relationship found. These data could help to distinguish between differences at the 
end of teacher preparation and changes in differences from the beginning to end of 
teacher preparation using a difference in difference approach. While these data 
would still not account for differences in teachers’ ability to learn, they would pro-
vide a first step toward identifying the unique influence of teacher preparation pro-
grams without random assignment.

The TEDS-M dataset only includes data about teachers at the very end of their 
program, meaning analysis cannot examine changes over time in any relationship 
found. In fact, the negative relationship identified may have diminished, widened, or 
stayed the same during teacher preparation. This type of pre-post data on teachers’ 
mathematical knowledge for teaching is essential in order to tease out the impact 
teacher preparation has on the differences seen. The relationship with mathematical 
pedagogical content knowledge may better measure the influence of teacher prepa-
ration programs than mathematical content knowledge, as teachers have little 
opportunity to develop knowledge about learning and teaching mathematics before 
teacher preparation. Given that this study did not find a clear trend of stronger or 
more frequent significant results for MCK than for MPCK, the relationship found 
may arise during teacher preparation programs. However, longitudinal data on 
teachers would provide much stronger evidence of the unique contribution of 
teacher preparation.
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Unfortunately, for several reasons, this type of pre-post data collection is particu-
larly complex in the case of international teacher preparation. First, programs in 
different countries have quite different lengths and identify future teachers are dif-
ferent times. Therefore, researchers have difficulty selecting comparable times to 
collect pre-data across different countries, and efforts of individual countries to 
design this type of data collection may be more successful than international efforts. 
Researchers could also collect data on future teachers longitudinally, perhaps at the 
end of each year of their teacher preparation programs. In this case, countries could 
have varying numbers of data collection points depending on the length of their 
programs. This design would allow for appropriate comparisons based on the num-
ber of years before the end of teacher preparation programs. With even larger data 
collection efforts, researchers could track future teachers starting in secondary 
school, similar to the longitudinal studies following secondary students through 
post-secondary education (e.g. the HSLS dataset). This type of longitudinal data 
would provide strong evidence for reproduction of differences in achievement in 
schooling and teacher preparation. Finally, study designs that collect data at the 
beginning and end of future teachers’ final year of teacher preparation programs 
may be most feasible. While teachers do not complete all relevant coursework in the 
final year, this data could still contribute to understanding the unique impact of 
teacher education programs.

 Implications for Research, Teacher Preparation,  
and Equitable Access to Math Teachers

The differences in hypothesized explanations for the relationship found suggest that 
further research in this area is greatly needed. Future research would benefit from 
additional  measures of teachers’ opportunities to learn to teach students from 
diverse backgrounds. The TEDS-M dataset includes six items asking about oppor-
tunities with different populations of students in general. Future data collection 
could focus on different practices or activities involved in teaching students from 
diverse backgrounds, such as incorporating students’ cultural funds of knowledge 
into teaching decisions, designing curriculum, or developing better understanding 
of student communities. Additionally, questionnaires could ask about experiences 
teachers have with students with different backgrounds in their teacher preparation 
programs, both in school settings and out of school settings. Research on develop-
ing equitable mathematics teachers suggests these experiences can be particularly 
helpful for future teachers (Adams et al., 2005; Garmon, 2004, 2005; Whipp, 2013).

In addition to more detailed data collection on teachers’ experiences in teacher 
preparation with respect to teaching students from diverse backgrounds, future 
research would benefit from continuing to follow teachers as they start their teach-
ing careers. These data would allow researchers to see whether the differences seen 
at the end of teacher preparation programs contribute to differences in teacher qual-
ity in teachers’ first year of teaching. Additionally, it would allow for an empirical 
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investigation of how different teacher preparation is associated with teachers work-
ing in different school and community contexts. Specifically, research could exam-
ine whether teachers with increased opportunities to learn to teach students from 
diverse backgrounds are more likely to teach successfully  students from diverse 
backgrounds in nationally representative samples.

This study has important implications regarding the overall quality of teachers’ 
preparation. Specifically, teachers are not equally prepared in mathematics and in 
learning to teach students from diverse backgrounds in some countries. Teachers 
tend to be better prepared in one area or the other, rather than being well prepared 
in both. In particular, teachers with strong mathematical preparation are less pre-
pared for the unique challenges of teaching students from diverse backgrounds, 
which could result in the larger proportion of teachers seen leaving the profession in 
schools that serve diverse student populations (Boyd et al., 2011; Boyd et al., 2005; 
Guarino, Santibañez, & Daley, 2006; Hanushek, Kain, & Rivkin, 2004; Ingersoll, 
2001; Smith & Ingersoll, 2004). Conversely, teachers who are better prepared to 
teach students from diverse backgrounds may be less effective teachers of mathe-
matics because of their lower levels of content knowledge. Combining the two ten-
dencies, the majority of teachers may not be adequately prepared to effectively 
teach mathematics to students from diverse backgrounds. However, preparation in 
some areas of teaching may be more important than others when working in specific 
contexts. Specifically, for teachers working in schools with students from diverse 
backgrounds, it may be more important to consider the unique aspects of teaching 
students from these populations than to better understand the mathematics they will 
be teaching. There is important research to be done in this area to better inform 
teacher preparation programs’ allocation of time to studying different topics (see 
Tatto & Hordern, 2017, and chapter 4 of this book).

 Conclusion

This study shows that future  secondary mathematics teachers in some countries 
may not be adequately prepared for the mathematical aspects of teaching as well as 
for  the pedagogical aspects of teaching students from diverse backgrounds. 
Specifically, the analysis finds a negative relationship between opportunities to 
learn to teach students from diverse backgrounds and mathematical knowledge for 
teaching in the United States, Thailand, Georgia, and Germany. Some of these 
results exist among teachers from the same preparation programs, suggesting selec-
tion into particular programs does not fully account for the relationships found.

Although the discussion of results has erred on the side of caution in the interpre-
tation, there are some clear implications for teacher preparation programs. First, 
programs would benefit from considering whether their future teachers have ample 
opportunities to learn both to teach students from diverse backgrounds and to learn 
mathematics, particularly if many teachers go on to teach in settings with diverse 
student populations. Additionally, teacher preparation programs may wish to con-
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sider developing teachers’ mathematical knowledge for teaching and pedagogical 
skills with students from diverse backgrounds at the same time. Such an approach 
may develop mathematical knowledge for teaching that is more applicable to con-
texts with students from diverse backgrounds. Current work on the preparation of 
elementary teachers in equitable mathematics teaching suggests these types of inte-
grated courses are particularly effective (Aguirre et al., 2013; Foote et al., 2013; 
McDuffie et al., 2014), but more research to understand the design of these courses 
and their effectiveness at the secondary level is needed.
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Chapter 16
Introduction: Methodological Challenges 
and Strategies in the TEDS-M Study

Maria Teresa Tatto  and Wendy M. Smith 

Abstract This chapter provides an introduction to Part III of the book which high-
lights specific methodological challenges and strategies in the Teacher Education 
and Development Study in Mathematics (TEDS-M), a cross-national study of 
teacher education programs that prepare future primary and secondary mathematics 
teachers. The TEDS-M Technical Report (Tatto MT, The Teacher Education and 
Development Study in Mathematics (TEDS-M). Policy, practice, and readiness to 
teach primary and secondary mathematics in 17 countries: technical report. 
International Association for the Evaluation of Student Achievement, Amsterdam, 
2013) provides the complete methodology and procedures. Chapters in this part 
discuss challenges with sampling, interpretation, and validation. The chapter on 
sampling introduces non-statisticians to the basic concepts of statistical sampling 
and its application in TEDS-M using examples and graphical illustrations. 
Instruments to capture the demographic and outcome variables of interest in 
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TEDS-M did not exist, much less for use internationally, so TEDS-M researchers 
had to create, validate, and interpret appropriate measurements for the target popu-
lations. Importantly, the TEDS-M study, at the request of the participating countries, 
included assessments of knowledge, an approach that had not been attempted at the 
time in any country, much less at an international scale. The chapter on anchor 
points explains the development of a method to help interpret the assessment 
results. While the TEDS-M Technical Report includes information on overall instru-
ment validation, the final two chapters in this Part III, look more closely at differen-
tial item functioning, and at the alignment of the teacher knowledge assessments to 
national expectations concerning mathematical knowledge for teaching using the 
United States case as an example.

 Key Methodological Issues

The work that went into developing, implementing and interpreting the TEDS-M 
study is very extensive, and we cannot do it justice in this short introduction or in 
this book. The reader is encouraged to consult the TEDS-M Technical Report (Tatto, 
2013) to gain a comprehensive understanding of the TEDS-M methods. Here we 
only highlight sampling, interpretation and validation challenges.

 Sampling, Instrument Development, and Validation

Conducting international studies is exceedingly difficult, particularly when one 
seeks to study nationally representative samples. The Teacher Education and 
Development Study in Mathematics (TEDS-M) was and is still the first large-scale 
assessment of the outcomes of teacher education that uses statistical sampling. 
Thus, no precedent existed when researchers began to design the sampling frame. 
The sampling design that was developed for the study allowed the computation of 
correct, precise, and unbiased population estimates for all characteristics investi-
gated in the survey. One goal of Chap. 17 is to introduce non-statisticians to the 
basic concepts of statistical sampling and its application in TEDS-M using exam-
ples and graphical illustrations.

Another challenge was the development of instruments. While TEDS-M was 
primarily a survey research project, no other available instruments both aligned with 
the research questions and were internationally validated. Thus, the TEDS-M 
researchers faced a number of key methodological issues in addition to the con-
struction of a framework to select nationally representative samples: those of creat-
ing, validating, and interpreting appropriate measurements for the target populations. 
Importantly, the TEDS-M study, at the request of the participating countries, 
included assessments of knowledge, an approach that had not been attempted at the 
time in any country, much less at an international scale. Not only did the instruments 
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have to be developed and field tested, but benchmarks for the knowledge levels that 
should be reached by future primary and secondary teachers were nonexistent.1 
Chapter 18 discusses issues of interpretation and reporting for the knowledge 
assessments.

The development of instruments in a rigorous study such as TEDS-M required 
multiple piloting and psychometric analyses to test the fit of items and questions to 
the study participants. These efforts are reported in detail in the technical report 
(Tatto, 2013). Further analyses, once the final data have been collected, are always 
recommended. The last two chapters in this part present post hoc analyses of 
TEDS-M results. Chapter 19 examines variability in item difficulty in mathematics 
performance that is accounted for by gender, and the extent to which gender dif-
ferential item functioning (DIF) is explained by person predictors (e.g., opportunity 
to learn) and item characteristics (e.g., item format). The last chapter (Chap. 20) 
reports the results of a post hoc validation study in which publicly released TEDS-M 
knowledge assessment items were validated against teacher knowledge expecta-
tions in the United States.

In this last section, we highlight key approaches that made the study both scien-
tific and rigorous, in the hopes that these reflections may inspire future rigorous, 
empirical work on teacher education. We first present an overview of definitions and 
an outline of the sampling procedure, which is followed by a brief summary of the 
development of the instruments to measure knowledge and opportunities to learn. 
References are made to other important publications for researchers and stakehold-
ers to examine when undertaking similar approaches in the future.

 Sampling

The population of interest in each country included “all institutions where future 
primary and secondary teachers were receiving their preparation to teach mathemat-
ics, the teacher educators who were preparing them in mathematics and 
mathematics pedagogy as well as in general pedagogy, and the future teachers in 

1 An effort of this magnitude was possible due to previous work in the area by the principal inves-
tigators and collaborators across the globe. For instance, questionnaire items were received from 
several sources, including study investigators, national research coordinators, and mathematics 
consultants. Several items were adapted from other studies, including the Study of Instructional 
Improvement (SII)/Learning Mathematics for Teaching/Consortium for Policy Research in 
Education (CPRE), University of Michigan, School of Education (measures development sup-
ported by NSF grants REC-9979873, REC- 0207649, EHR-0233456, & EHR 0335411); 
Developing Subject Matter Knowledge in Math Middle School Teachers (P-TEDS/MT-21), sup-
ported by NSF Grant to Michigan State University REC-0231886; and Knowing Mathematics for 
Teacher Algebra (KAT), supported by NSF Grant REC-0337595. The instruments and assessments 
developed by TEDS-M were the result of the collaborative efforts of the international centers at 
Michigan State University, the Australian Council for Educational Research, and the IEA under the 
direction of Professor Maria Teresa Tatto at Michigan State University with support from a grant 
from the National Science Foundation (Award No. REC-0514432).
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their last year of training” (Tatto et al., 2012, p. 259). In most countries, TEDS-M 
implemented a two-stage random sampling design. First, the sampling unit of the 
IEA Data Processing and Research Center (DPC) worked with each participating 
country’s national research center to select samples representative of the national 
population of teacher preparation (TP) institutions offering education to future 
teachers intending to teach mathematics at the primary and/or lower-secondary lev-
els. Second, once an institution had been selected, all programs within that institu-
tion offering mathematics preparation were identified including both concurrent and 
consecutive programs. Programs were sampled within countries, and then individu-
als were sampled from the programs. The international target population of TP insti-
tutions was defined as follows: The set of secondary or post-secondary schools, 
colleges, or universities that offer structured opportunities to learn (i.e., a program 
or programs) on a regular and frequent basis to future teachers within a route of 
teacher preparation.

The national research coordinators (NRCs) for each participating country were 
asked to list all routes where TP programs could be found and to indicate which 
were of principal interest to TEDS-M (i.e., a major route), and which were of mar-
ginal interest. Each NRC and the sampling team sought agreement as to which 
routes would constitute the national desired target population for the country of 
interest. Countries could also opt to exclude routes or institutions of very small size. 
The remaining populations are referred to, within the context of TEDS-M, as the 
national defined target populations, a customization of the defined international tar-
get population to recognize country-specific conditions. A TP institution did not 
have to be teaching mathematics content to be part of the target population. However, 
it was necessary for the institution to be teaching mathematics pedagogy (Tatto 
et al., 2012, p. 260).

If the findings from the TEDS-M study were to be meaningful to country stake-
holders, estimates needed to reflect inferences about the population rather than 
merely the sample, in which particular groups within each strata were guaranteed to 
be sampled, regardless of the size of the group. Thus, TEDS-M employed a complex 
weighting strategy (see Tatto et al., 2012, p. 267). In the countries that administered 
a census, it was sufficient to adjust the collected data for non-response to obtain 
unbiased estimates of the population parameters. When the sample design is com-
plex and involves stratification and unequal probabilities of selection, estimation 
weights are required to achieve unbiased estimates (Lohr, 1999). Estimation weights 
are the product of one or many design or base weights and one of many adjustment 
factors; the former are the inverse of the selection probability at each selection 
stage, and the latter compensate for non-response, again at each selection stage. 
These design weights and adjustment factors are specific to each stage of the sample 
design and to each strata. Because each country participating in TEDS-M had to 
adapt the general TEDS-M sample design to its own conditions, the estimation 
weights had to conform to the national adaptations. Usually, one set of estimation 
weights is produced for each participating country in a study. However, in the case 
of TEDS-M, four sets of estimation weights were required according to each of the 
surveys used by TEDS-M: the institutions, the teacher educators, the future teachers 
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of primary school mathematics, and the future teachers of lower-secondary school 
mathematics. All estimates computed for any one of the four TEDS-M surveys were 
produced using the appropriate estimation weight, as developed by Horwitz- 
Thompson (Lohr, 1999). Chapter 11 of the IEA technical report (Tatto, 2013) pro-
vides a detailed description of how TEDS-M calculated the different weight 
components and the resulting estimation weights for the four populations.

According to Tatto et al. (2012, p. 267), surveys with complex designs such as 
TEDS-M require special attention to estimation, especially estimation of the sam-
pling error. Both the survey design and the unequal weights need to be considered to 
obtain (approximately) design-unbiased estimates of sampling error. TEDS-M 
adopted the balanced repeated replication (BRR) technique (McCarthy, 1966) to esti-
mate sampling error. More specifically, TEDS-M used the variant of this technique 
known as Fay’s method (Fay, 1989). BRR is a well-established and well- documented 
technique that is used in other international educational studies—notably, the 
Programme for International Student Assessment (PISA) and the Teaching and 
Learning International Survey (TALIS), both conducted by the Organisation for 
Economic Co-operation and Development (OECD). Chapter 11 of the TEDS-M tech-
nical report (Tatto, 2013) describes how the replicates were created and how the BRR 
estimates of sampling error were computed for TEDS-M.  These estimates of the 
sampling error are another key element of the statistical quality of survey outcomes.

 Instruments

MCK and MPCK Assessments The TEDS-M tests of future teachers’ mathemat-
ics content knowledge (MCK) and mathematics pedagogical content knowledge 
(MPCK) used a balanced-incomplete block design so that the desired content would 
be appropriately covered while simultaneously allowing the test to be completed 
within a reasonable administration time. This meant that each future teacher was 
given only a portion of the full set of items. Because the set of items taken by each 
teacher was not comparable, summing the scores on the items taken by that person 
would not have yielded meaningful results. If summed scores were to be compara-
ble, all of the test booklets would have to be constructed to be equivalent in content 
and difficulty. This was not possible because of the complexity of the content 
domains and the short time allowed for the assessment. To obtain comparable esti-
mates of performance, TEDS-M used item response theory (IRT; De Ayala, 2009). 
IRT allows estimates of performance to be obtained on the same scale even when 
the set of items taken by each individual is different (Tatto et al., 2012, p. 273).

TEDS-M used item response models from the Rasch family to carry out calibra-
tion. The standard Rasch (1980) model was used for the dichotomous items, and the 
partial credit model (Masters, 1982) was used to fit the matrix of item scores for the 
polytomous items. Both item types were analyzed simultaneously using ACER 
Conquest software (Wu, Adams, Wilson, & Haldane, 2007).
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The calibration data were used to carry out standardization. TEDS-M standard-
ized the achievement estimates (in logits) to a mean of 500 and a standard deviation 
of 100, in line with the procedure followed in TIMSS, wherein all countries are 
weighted so that they contribute equally to the standardization sample. This process 
was repeated for each of the four key measures: MCK (primary), MCK (lower- 
secondary), MPCK (primary), and MPCK (lower-secondary). Once standardization 
was completed, scores were computed for all participants for whom MCK and 
MPCK estimates could be obtained. The mean of 500 and the standard deviation of 
100 thus apply to the calibration sample rather than to the complete set of scores 
(Tatto et al., 2012, p. 274).

The calibration results were also used to identify anchor points for the score scale. 
Anchor points are specific values on the score scale, each of which pertains to a 
description of what examinees at this point know and can do. TEDS-M identified 
two sets of test items to support development of the descriptions of the skills and 
knowledge at each anchor point. The first set of test items contained those items that 
a person at that anchor point on the scale score would, according to the IRT model, 
be able to answer correctly with a probability of .70 or greater. The second set of test 
items included those items that a person at that anchor point on the scale score would, 
based on the IRT model, have a probability of .50 or less of answering correctly. The 
anchor points identified were points at which there would be sufficient items of each 
type (between 10 and 12 items) to develop a description of the skills and knowledge 
that a person at that point would have. Given these requirements, two anchor points 
were identified for the MCK primary scale and two for the MCK lower-secondary 
scale: Anchor Point 1 represented a lower level of performance, and Anchor Point 2 
represented a higher level. Only one anchor point, representing an acceptable level 
of performance, was selected for the MPCK scales because  the MPCK assess-
ment had fewer items than MCK assessment did (Tatto et al., 2012, p. 274–275).

To develop descriptions of the capabilities of persons near each anchor point on 
the scales, committees of mathematicians and mathematics educators conducted 
detailed analyses of the sets of items for the respective anchor points. They did this 
work in workshops specifically set up for this purpose at the international research 
center at Michigan State University (MSU). The resulting anchor point descriptions 
give tangible meaning to points on the reporting score scales. They can be found in 
Tatto et al. (2012, Chap. 6); a more detailed description is included in the TEDS-M 
technical report (Tatto, 2013).

Opportunity to Learn Opportunity to learn (OTL) measures were based on scales 
and items developed in a variety of ways. Several were based on previous research 
conducted at MSU and elsewhere. Some were based on previous research conducted 
at the Australian Council for Educational Research (ACER), and some were devel-
oped specifically for TEDS-M, in collaborative workshops and meetings that 
included the researchers in the international research centers at MSU and ACER, 
and in the national research centers in the participating countries. After completing 
an extensive pilot of a larger set of items, TEDS-M researchers selected items that 
provided information on program, institution, and country variation. Items that sur-
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vived initial exploratory factor analyses were used in the operational forms for the 
main study.

The researchers then conducted a confirmatory factor analysis that was based on 
a conceptualization of OTL based on previous analysis of teacher education pro-
gram curriculum, encompassing four broad categories relating to mathematics con-
tent areas: tertiary and school-level mathematics, mathematics education pedagogy, 
general education pedagogy, and school-based experiences. The aim of the analysis 
was to assess the fit of each OTL index (measure) to the data and the index interrela-
tions. Each of the four broad categories contained several indices, which taken 
together across the categories resulted in 24 distinct OTL indices.

Using as their reference the best-fitting models, the researchers then created OTL 
index scores. The OTL indices for the areas of mathematics, mathematics pedagogy, 
and general pedagogy were derived from summing the number of topics studied in 
each area. Rasch logit scores were estimated for the OTL indices using rating scales 
(e.g., activities in which future teachers participated from never to often). These 
scores were centered at the point on the OTL scale that is associated with the middle 
of the rating scale (essentially, neutral). More precisely, this step involved using the 
test characteristic curve to identify the point on the θ-scale associated with the mid-
point on the summed score scale. The θ-value was then used to center the OTL scale 
so that it would be located at a scaled value of 10.

All OTL scales consisting of number of topics are interpretable using the mean 
proportions to report outcomes in terms of number of topics studied for each OTL 
index (for instance, a mean proportion of .52 would indicate that about half of the 
future teachers reported studying a given topic). All OTL scales based on Rasch 
logit scores can be interpreted given the location of the mid-point, where 10 is asso-
ciated with the neutral position with a standard deviation determined by the Rasch 
model (Tatto et al., 2012, p. 281).

 Chapters in This Part

In Chap. 17, “Sampling for TEDS-M,” Meinck and Dumais explain the sampling 
design of TEDS-M, the first large-scale assessment in teacher education using sta-
tistical sampling. The sampling design applied in the study allows the computation 
of correct, precise, and unbiased population estimates for all characteristics investi-
gated in the survey. This chapter introduces non-statisticians to the basic concepts 
of statistical sampling and its application in TEDS-M using examples and graphical 
illustrations. Readers will be made familiar with the features of complex samples in 
general and with the TEDS-M survey in particular. Implications for the conduct of 
statistical analysis of TEDS-M data and the interpretation of the results  are pre-
sented. TEDS-M comprises four target populations, namely, teacher preparation 
institutions, future primary/lower secondary mathematics teachers, and their educa-
tors, for which reliable estimates of main characteristics were required. The 
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demanding study goals, accounting for the complexity and differences of the teacher 
education systems in the 17 participating countries, on the other hand, posed par-
ticular challenges in the design of a multi-purpose international sampling plan. 
Experiences gained throughout the implementation of this study provide a valuable 
contribution to the specification of sampling designs for future studies in higher 
education.

In Chap. 18, “Developing Anchor Points to Enhance the Meaning of the 
Mathematical and Mathematical Pedagogy Score Scales from the TEDS-M Study,” 
Reckase explains the development of benchmarks or anchor points that were used 
to report the information about prospective teachers’ knowledge and skills in a way 
that is easy to understand by the numerous audiences for the results of the study. He 
explains that the numerical values that are typically used to report the results of an 
achievement test do not have any intrinsic meaning. Thus, to help with the interpre-
tation of the results of the TEDS-M study, work was done to give substantive mean-
ing to the scale used for reporting results so that those interested in the results could 
have a reasonable sense of what the numerical values meant in relation to teachers’ 
knowledge. Meaning was added to the reporting scales by attaching detailed sub-
stantive descriptors to selected points on the scale called anchor points. The purpose 
of this chapter is to share the logic and methodology used to add descriptions to the 
TEDS-M anchor points, and to discuss how the interpretations derived from these 
descriptions differ from those used with other assessments.

In Chap. 19, “Examining Sources of Gender DIF in Mathematics Knowledge of 
Future Teachers Using Cross-Classified IRT Models,” Cai and Albano use TEDS-M 
data to study differential item functioning (DIF). This chapter serves as a proof-of- 
concept for methodology to examine variability in item difficulty in mathematics 
performance that is accounted for by gender, referred to as “gender DIF,” and the 
extent to which gender DIF is explained by both person predictors (e.g., opportunity 
to learn) and item characteristics (e.g., item format). Cai and Albano use cross- 
classification multilevel IRT models to examine the relationships among item diffi-
culty, gender, OTL, and item format. The cross-classified multilevel model is a 
flexible tool to explain potential DIF sources related to item and person characteris-
tics. This approach results in more economical models where DIF can be detected 
within an omnibus test. This approach can be helpful in creating and adapting 
appropriate measurement tools when constructing or translating items. Moreover, in 
terms of person characteristics, researchers can take variables such as OTL into 
account, and thus improve DIF detection and estimation. Doing so can improve the 
validity of group comparisons.

In Chap. 20, “Standing the Test of Time: Validating the TEDS-M Knowledge 
Assessment Against MET II Expectations,” Silver and Mortimer present the results 
of a post hoc content validation study of the TEDS-M knowledge assessment. They 
used the publicly released TEDS-M knowledge assessment items, originally vali-
dated prior to the 2008 study, and compared them to the specifications for teacher 
knowledge found in the United States’ Mathematical Education of Teachers II 
report (MET II; CBMS, 2012). The validation was based on the expert judgments of 
two authors of the MET II report. The findings suggest strong content validity for 
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TEDS-M items. Validating the TEDS-M knowledge assessment against more recent 
standards serves to strengthen claims about future teacher knowledge based on this 
knowledge assessment.
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Chapter 17
Sampling for TEDS-M

Sabine Meinck and Jean Dumais

Abstract The Teacher Education and Development Study in Mathematics 
(TEDS-M) is the first large-scale assessment in teacher education using statistical 
sampling. The sampling design applied in the study allows the computation of cor-
rect, precise, and unbiased population estimates for all characteristics investigated 
in the survey. This chapter introduces non-statisticians to the basic concepts of sta-
tistical sampling and its application in TEDS-M using examples and graphical illus-
trations. Readers will be made familiar with the features of complex samples in 
general and with the TEDS-M survey in particular. Implications for the conduct of 
statistical analysis of TEDS-M data and the interpretation of the results will be pre-
sented. TEDS-M comprises four target populations, namely, teacher preparation 
institutions, future primary/lower secondary math teachers, and their educators, for 
whom reliable estimates of main characteristics were required. The demanding 
study goals—both combining four target populations into one survey and capturing 
the complexity and differences of the teacher education systems in the 17 participat-
ing countries—posed particular challenges in the design of a multi-purpose interna-
tional sampling plan. Experiences gained throughout the implementation of this 
study provide a valuable contribution to the specification of sampling designs for 
future studies in higher education.

Important note to reader: This chapter is in major parts a re-print of the following sources: Dumais, 
Meinck, Tatto, Schwille, and Ingvarson (2013), and Dumais and Meinck (2013). Text cited directly 
or indirectly from those sources will not be made recognizable.
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 Introduction

TEDS-M was the first large-scale international comparative study in higher educa-
tion, and is still the only one conducted so far. The study was supported by the 
U.S.  National Science Foundation  (NSF  REC 0514431) and the International 
Association for the Evaluation of Educational Achievement (IEA), and applied 
IEA’s rigorous standards for technical quality, which ensure the highest validity of 
the results (Gregory & Martin, 2001). The implementation of statistical sampling 
procedures is one of the measures ensuring international comparability of the stud-
ies’ outcomes. More specifically, the sampling design applied in TEDS-M allows 
the computation of correct, precise, and unbiased population estimates for all char-
acteristics investigated in the survey.

This chapter draws in broad terms from two sections of the technical report for 
the TEDS-M study (Dumais & Meinck, 2013; Dumais, Meinck, Tatto, Schwille, & 
Ingvarson, 2013), but aims to address a broader audience. It will introduce the basic 
concepts of statistical sampling and how they were applied in TEDS-M, using illu-
minating examples and graphical illustration accessible to non-statisticians. The 
consequences of the sampling design on the analysis of TEDS-M data and on the 
interpretation of the results arising from the complex sampling design will also be 
presented.

This chapter will start with a review of the target populations of the study, will 
continue with an illustration of the sampling strategies and weighting procedures, 
and, finally, will introduce the strategies for estimating population characteristics 
and their standard errors.

 Sampling Principles in International Large-Scale Assessments

All international large-scale assessments (ILSA) conducted by IEA or the 
Organisation for Economic Co-operation and Development (OECD)1, such as 
TIMSS, PIRLS, PISA, and TALIS, rely on statistical sampling of schools and 
people.

In those international studies, as well as in national assessments of educational 
achievement, statistical sampling is used because the number of schools, principals, 
teachers, and students is far too large to allow for enumerating and interviewing all 
members of the population; statistical sampling helps in reducing the workload 
while providing estimates that are close enough to values from a complete enumera-
tion to meet most purposes. The smaller countries, e.g., Iceland, Bahrein, Cyprus, 
Iceland, Malta, or Singapore, can afford to do a complete enumeration, but mid-size 
and large countries, e.g., Australia, Brazil, Denmark, England, or Japan, must resort 
to more economical means of accessing the information. Hence, a statistical 

1 https://www.oecd.org/
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 sampling strategy must be developed that will (a) be cheaper than a complete enu-
meration, (b) yield estimates that are close to what a complete enumeration would 
have given and precise enough for the intended purposes, (c) be useable in a variety 
of educational systems, and (d) allow for international comparisons of the national 
results. The expressions “design-unbiased” or “design-unbiasedness” and “sam-
pling precision” are often used to summarize those characteristics of a statistical 
sampling design.

Common features of samples for ILSAs are stratification, multiple sampling 
stages, cluster sampling, and unequal sampling probabilities. In most ILSAs, these 
methods are part of the international sampling design, are applied in most but not all 
countries, and can be mixed. Those design features are reviewed in the following 
sections. Typically, the international sampling design is optimized with respect to 
the specific circumstances of a particular country, while complying with the inter-
national objectives of design-unbiasedness and sampling precision.

Like any other statistical survey, ILSAs measure two values for each characteris-
tic of interest: an estimate of its level (e.g., the average age of teachers, the propor-
tion of students who have access to a home computer, or the average mathematics 
score of Grade 8 students) and an estimate of its precision (e.g., a margin of error 
for the estimated mathematics score of Grade 8 students).

Comprehensive introductions to the topic that are also accessible to a non- 
technical readership are given, for example, in “Survey Methods and Practices” 
(Statistics Canada, 2003) and Rust (2014).

 Stratification

Stratification is the division of the population into homogeneous groups from which 
samples are drawn. Stratification can be used to achieve higher-precision estimates 
(i.e., estimates with a narrower margin of error) with a fixed sample size. Stratification 
can also be used to guarantee a specific sample size for units from certain popula-
tion groups in order to obtain reliable estimates for each of the groups.

Strata are exhaustive and mutually exclusive groups of individuals or units. That 
is, each individual or unit is in one and only one stratum. The total sample is allo-
cated into the various strata. Strata must be created before the sample can be selected 
from the sampling frame2.

Stratification variables should be selected with care. The following guidelines 
help in the identification of useful stratification variables:

2 A sampling frame is a list that covers the units of interest to the survey that gives access to those 
units of interest; in ILSAs, the sampling frame is often the list of schools available from the min-
istry of education or statistical offices. If multiple stages of sampling are required, sampling frames 
are needed at each stage, e.g., after school sampling a list of students within each sampled school 
is needed.
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• Before it can be used for stratification, a variable must be available for every unit 
on the frame.

• A stratification variable should be related to the key characteristics of the study. 
Otherwise, no gains in precision can be expected.

• When several variables are used for stratification, they can be crossed (e.g. age 
group by gender), nested (e.g. school districts within provinces), or mixed (e.g. 
school size in urban areas, post code in rural areas) in all sorts of ways as long as 
each unit on the sampling frame is assigned to only one level or category of each 
stratification variable.

In the TEDS-M study, stratification was employed in several countries. For 
details on the specific sampling designs of each country, refer to Meinck and Dumais 
(2012).

 Cluster Sampling and Multiple Sampling Stages

In most ILSAs, the individuals of interest can be found within a hierarchical clus-
tered structure. For example, students are nested in classes, classes are nested in 
schools, and schools in regions within countries. In most studies, the relationships 
between and among the levels of the hierarchy are of interest to the researchers. This 
is one reason why whole classes or many students within a school are selected, 
rather than selecting individuals from one comprehensive list of individuals. This 
sampling procedure is referred to as cluster sampling.

However, there is another important reason for cluster sampling: Comprehensive 
lists of individuals are usually not available, at least not at reasonable costs. A list of 
schools (or of teacher preparation institutions, as in the case of TEDS-M), however, 
may be more readily available, and a list of classes or individuals within the sam-
pled institutions can usually be obtained at minimal additional cost.

Cluster sampling typically comes along with multiple-stage sampling in ILSAs. 
In a first stage, the selection of clusters is conducted. In a second stage, full classes, 
students, teachers, or other units are selected. More sampling stages may become 
necessary under specific circumstances, but may decrease the precision of the 
estimates.

In many countries participating in TEDS-M, all teacher preparation (TP) institu-
tions were asked to participate in the survey. Only a few of the participating coun-
tries had to implement multiple-stage cluster sampling. Depending on the number 
of TP institutions, courses and future teachers or educators, the following sampling 
stages were possible:

 1. TP institution
 2. Course
 3. Individual (educator, staff or future teacher)
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 Unequal Sampling Probabilities

ILSAs customarily aim for a so-called multi-stage self-weighted design. This is a 
sampling design that will have each respondent represent the same number of per-
sons in the population, regardless of the size of the institution where they are 
selected, or the number of classes available or the number of students comprising 
those classes. Self-weighted designs can be constructed by sampling institutions 
and courses with probabilities proportional to their size (PPS)—for instance, by first 
sampling institutions, with larger institutions more likely to be selected, and then 
sampling a fixed number classes within the selected institutions, again with proba-
bility proportional to their size, and finally by sampling a fixed number of students 
within each selected class. In this type of design, larger institutions and classes are 
more likely to be selected than the smaller institutions and classes; and so the indi-
viduals found in them should be more likely to be in the final sample. Conversely, 
smaller institutions and classes have a lesser chance of being selected and so the 
individuals they comprise should be less likely to be in the final sample. Through 
the interplay of the various selection probabilities and sample sizes at each stage, 
the varying selection probabilities even out.

However, selection probabilities vary among units at each stage, a fact that has to 
be accounted for when analyzing data arising from such survey designs. In the 
TEDS-M survey, because of various factors, the selection probabilities varied dras-
tically among participating individuals. For example, in countries with a census of 
all TP institutions, individuals in smaller TP institutions were selected with cer-
tainty, while individuals in large universities had rather small selection probabili-
ties. The principal way of accounting for this in analysis is by using sampling 
weights, a topic discussed in detail later in this article.

 International Sampling Plan for TEDS-M

Seventeen countries participated in the TEDS-M study. It is not difficult to imagine 
that very diverse systems of future teacher training can be found within and across 
all these countries. In order to help countries to identify the correct targets when 
preparing for and conducting sample selection, national research coordinators had 
to agree on common terms for key survey units. Furthermore, an international tem-
plate sampling design had to be developed that could be implemented in all coun-
tries, serving the international study goals while at the same time being flexible 
enough to fit national conditions.

The international sampling plan implemented in the TEDS-M survey is a strati-
fied multi-stage probability sampling design. This means that the targeted individu-
als (educators and future teachers) were randomly selected from a list of in-scope 
educators and future teachers for each of the randomly selected TP institutions.
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The universes of interest comprised institutions where future primary and sec-
ondary teachers receive mathematics preparation, the teacher educators teaching 
mathematics, mathematics pedagogy, and general pedagogy, and finally the future 
teachers in their last year of training, prepared to teach at primary school or lower 
secondary school.

Random samples were required for each population.

 Programs and Routes

Two concepts play a key role in the organization of teacher preparation: the program 
and the route. A program is a specific pathway that exists within an institution that 
requires students to undertake a set of subjects and experiences, and leads to the 
award of a common credential or credentials on completion. A route is a set of 
teacher education programs available in a given country. TP programs within a 
given route share a number of common features that distinguish them from TP pro-
grams in other routes and can be identified in similar ways in different participating 
countries. For the purposes of TEDS-M, two kinds of routes were defined (Tatto 
et al., 2008)3:

• Concurrent routes consist of a single program that includes studies in the sub-
jects future teachers will be teaching (academic studies), studies of pedagogy 
and education (professional studies) and practical experience in the classroom;

• Consecutive routes consist of a first phase for academic studies (leading to a 
degree or diploma), followed by a second phase of professional studies and prac-
tical experience (leading to a separate credential/qualification); the first and sec-
ond phases need not have been completed in the same institution. No route can 
be considered consecutive if the institution or the government authorities do not 
award a degree, diploma, or official certificate at the end of the first phase. 
Moreover, it may be customary or required for future teachers to complete the 
first and second phases in different institutions.

Moreover, sets of programs identified within a country sharing further common 
features (e.g., leading to a certain degree), are referred to as different program types. 
Table 17.1 lists the identified program types in participating countries and gives an 
overview of the structure of the teacher preparation systems. Program types and 
their sizes (estimated from the sample) are displayed along with the number of 
institutions that offer a specific program type. Note that the numbers of institutions 
do not necessarily add up to the total number of institutions in a country since some 
institutions offer more than one program type. This becomes most obvious when 
looking at the situation in Singapore: There is only one a university preparing future 

3 One participating country (USA) identified in addition an apprenticeship route (a route predomi-
nantly consisting of school-based experience with other institutions playing only a minor, mar-
ginal, supporting role), but this particular apprenticeship route was not included in the survey.
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Table 17.1 Structure of mathematics teacher preparation by participating country

Country Level1 Route Program type

No. of 
Institutions 
(sample 
estimate)

No. of future 
teachers(final 
year, sample 
estimate)

Botswana 1 Concurrent Diploma in Primary Education 4 100
2 Concurrent Bachelor of Secondary 

Education (Science), 
University of Botswana

1 25

2 Concurrent Diploma in Secondary 
Education, Colleges of 
Education

2 35

Chile 3 Concurrent Generalist   362   20182

2 Concurrent Generalist with further 
mathematics education

8 181

Chinese 
Taipei

1 Concurrent Elementary Teacher Education 18 3595
2 Concurrent Secondary Mathematics 

Teacher Education
19 375

Georgia 1 Concurrent Bachelor in Pedagogy (4 years) 9 636
1 Concurrent Bachelor in Pedagogy (5 years) 1 23
2 Concurrent Bachelor of Arts in 

Mathematics
5 99

2 Concurrent6 Master of Science in 
Mathematics

2 17

Germany3 1 Consecutive Teachers for Grades 1–4 with 
Mathematics as Teaching 
Subject (Type 1A)

7 1286

1 Consecutive Teachers for Grades 1–4 
without Mathematics as 
Teaching Subject (Type 1B)

4 1430

3 Consecutive Teachers of Grades 1–9/10 
with Mathematics as Teaching 
Subject (Type 2A)

7   10932

1 Consecutive Teachers for Grades 1–10 
without Mathematics as 
Teaching Subject (Type 2B)

7 2433

2 Consecutive Teachers for Grades 5/7–9/10 
with Mathematics as Teaching 
Subject (Type 3)

9 1162

2 Consecutive Teachers for Grades 5/7–12/13 
with Mathematics as a 
Teaching Subject (Type 4)

12 1200

(continued)

mathematics teacher; however, it offers ten different program types to master this 
education. To give another example, Botswana defined the program type “Diploma 
in Primary Education” as a concurrent route that is offered in four teacher education 
institutions.
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Table 17.1 (continued)

Country Level1 Route Program type

No. of 
Institutions 
(sample 
estimate)

No. of future 
teachers(final 
year, sample 
estimate)

Malaysia 1 Concurrent Malaysian Diploma of 
Teaching (Mathematics)

22 558

1 Concurrent Bachelor of Education, Primary 1 19
1 Concurrent Diploma of Education 

(Mathematics)
2 50

2 Concurrent Bachelor of Education 
(Mathematics), Secondary

1 82

2 Concurrent Bachelor of Science in 
Education (Mathematics), 
Secondary

6 521

1 Concurrent Bachelor of Education in 
Teaching of English as Second 
Language with minor in 
Mathematics

   14 No estimation 
possible due 
to low 
participation

2 Consecutive Post graduate Diploma of 
Education (Mathematics)

   54 No eligible 
future 
teachers at 
the time of 
testing

Norway 3 Concurrent General Teacher Education 
(ALU) without Mathematics 
Option5

  162 14292

3 Concurrent General Teacher Education 
(ALU) with Mathematics 
Option

  162 4332

2 Consecutive Teacher Education Program 
(PPU)

7 78

2 Concurrent Master of Science 5 6 28
Oman 2 Concurrent Bachelor of Education, 

University
1 36

2 Consecutive Educational Diploma after 
Bachelor of Science

1 17

2 Concurrent Bachelor of Education, 
Colleges of Education

6 235

(continued)
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Table 17.1 (continued)

Country Level1 Route Program type

No. of 
Institutions 
(sample 
estimate)

No. of future 
teachers(final 
year, sample 
estimate)

Philippines 1 Concurrent Bachelor in Elementary 
Education

171 2921

2 Concurrent Bachelor in Secondary 
Education

252 3135

Poland 3 Concurrent Bachelor of Arts in 
Mathematics, First Cycle 
(full-time teacher education 
programs); Years: 3

  162     4592

3 Concurrent Master of Arts in Mathematics, 
Long Cycle (full-time teacher 
education programs); Years: 5

  152     6962

3 Concurrent Bachelor of Arts in 
Mathematics, First Cycle 
(part-time teacher education 
programs); Years: 3

   42       672

3 Concurrent Master of Arts in Mathematics, 
Long Cycle (part-time teacher 
education programs); Years: 5

   42       912

1 Concurrent Bachelor of Pedagogy 
Integrated Teaching, First cycle 
(full-time programs); Years: 3

27 1206

1 Concurrent Master of Arts Integrated 
Teaching, Long Cycle 
(full-time programs); Years: 5

14 864

1 Concurrent Bachelor of Pedagogy 
Integrated Teaching, First cycle 
(part-time programs); Years: 3

37 2195

1 Concurrent Master of Arts Integrated 
Teaching, Long Cycle 
(part-time programs); Years: 5

10 566

Russian 
Federation

1 Concurrent Primary Teacher Education 161 8563
2 Concurrent Teacher of Mathematics 116 5915

(continued)
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Table 17.1 (continued)

Country Level1 Route Program type

No. of 
Institutions 
(sample 
estimate)

No. of future 
teachers(final 
year, sample 
estimate)

Singapore 1 Concurrent Diploma of Education, Primary 
Option A

1 53

1 Concurrent Diploma of Education, Primary 
Option C

1 119

1 Concurrent Bachelor of Arts in Education, 
Primary

1 33

1 Concurrent Bachelor of Science in 
Education, Primary

1 42

1 Consecutive Post-Graduate Diploma in 
Education, Primary Option A

1 75

1 Consecutive Post-Graduate Diploma in 
Education, Primary Option C

1 102

2 Consecutive Post-Graduate Diploma in 
Education, Secondary, January 
2007 intake

1 111

2 Consecutive Post-Graduate Diploma in 
Education, Lower Secondary, 
January 2007 intake

1 67

2 Consecutive Post-Graduate Diploma in 
Education, Secondary, July 
2007 intake

1 153

2 Consecutive Post-Graduate Diploma in 
Education, Lower Secondary, 
July 2007 intake

1 100

Spain 
(primary 
education 
only)

1 Concurrent Teacher of Primary Education 72 3845

Switzerland 
(German 
speaking 
parts)

1 Concurrent Teachers for Grades 1–2/3 
(Kindergarten and 1.-2. Grade)

5 106

1 Concurrent Teachers for Grades 1–2/3 
(Kindergarten and 1.-3. Grade)

2 54

1 Concurrent Teachers for Primary School 
(Grades 1–6) (Kindergarten 
and 1.-6. Grade)

2 304

1 Concurrent Teachers for Primary School 
(Grades 1–6)

12 745

1 Concurrent Teachers for Primary School 
(Grades 3–6)

2 43

2 Concurrent Teachers for Secondary School 
(Grades 7–9)

6 177

(continued)
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 Target Populations: International Requirements and National 
Implementation

TEDS-M covered all program types preparing future teachers for the teaching of 
mathematics at primary and lower secondary school levels. Both concurrent and 
consecutive program types were of interest.

The international target population of TP institutions was defined as the set of 
secondary or post-secondary schools, colleges, or universities that offer structured 
opportunities to learn (i.e., a program or programs) on a regular and frequent basis 
to future teachers within a route of teacher preparation (see the TEDS-M Conceptual 
Framework [Tatto et al., 2008] for key definitions).

National research coordinators were asked to list all TP program types within the 
defined routes and to indicate which were of principal interest to TEDS-M 
(Table 17.1). The institutions providing those program types are referred to as the 
national defined target population.

Table 17.1 (continued)

Country Level1 Route Program type

No. of 
Institutions 
(sample 
estimate)

No. of future 
teachers(final 
year, sample 
estimate)

Thailand 3 Concurrent Bachelor of Education 45  12402

3 Consecutive Graduate Diploma in Teaching 
Profession

9    1242

United 
States 
(public 
institutions)

1 Concurrent Primary Concurrent 382 20597
2 Concurrent Secondary Concurrent 303 2246
3 Concurrent Primary + Secondary 

Concurrent
   742  34722

1 Consecutive Primary Consecutive 81 2031
2 Consecutive Secondary Consecutive 85 620
3 Consecutive Primary + Secondary 

Consecutive
  202   1722

11 = primary; 2 = lower secondary; 3 = primary and lower secondary
2Estimate from sample of future teachers who took the primary test
3The administrative units of the 16 federal states are considered as being the institutions in the 
sense of the TEDS definition
4Estimate from sampling frame; could not be estimated from sample data
5Program was not considered as being part of the TEDS-M core target population. Further infor-
mation is given in the appendix
6According to information given by the national research coordinator after the survey administra-
tion, this program-type takes a consecutive structure within one of the two institutions. Note that 
both programs are labeled concurrent in the International Database
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Programs surveyed in TEDS-M did not necessarily offer mathematics classes, 
but always provided courses on the pedagogy of mathematics (IEA, 2007b).

The target population of educators was defined as all persons with regular, 
repeated responsibility for teaching future teachers of mathematics one of the com-
pulsory courses of their program in any year of the program. That target population 
could comprise up to three subpopulations:

• Educators in mathematics or mathematics pedagogy: persons responsible for 
teaching one or more of the program’s required courses in mathematics or math-
ematics pedagogy during the study’s data collection year at any stage of the 
institution’s TP program;

• Educators in general pedagogy: persons responsible for teaching one or more 
of the program’s required courses in foundations or general pedagogy (other than 
a mathematics or mathematics pedagogy course) during the study’s data collec-
tion year at any stage of the institution’s teacher preparation program;

• Educators belonging to both groups as described above: persons responsible 
for teaching one or more of the program’s required courses in mathematics or 
mathematics pedagogy and required courses of general pedagogy during the 
study’s data collection year at any stage of the institution’s teacher preparation 
program.

Finally, the target population of future teachers comprises all members of a route 
in their last year of training enrolled in an institution offering formal opportunities 
to learn to teach mathematics, with the explicit goal of preparing individuals to 
teach mathematics in any of Grades 1 to 8. TEDS-M distinguishes between two dif-
ferent groups of future teachers: future teachers who would be certified to teach to 
primary students and future teachers who would be certified to teach to lower sec-
ondary students. These two groups are referred to as two distinct levels. In some 
countries, the distinction between primary and lower secondary levels is not feasible 
within a program. For example, teachers may be prepared for both levels because 
they will be expected to teach at any level from Grade 1 to Grade 8 in the school 
where they will work.

Table 17.2 presents the size of the national target populations of TEDS-M. It 
should be noted that not all institutions listed offer education for both the primary 
and the secondary levels. Also, as can be seen in Table 17.2, the population sizes 
estimated by the national teams before sampling and data collection (in columns 
labeled “Sampling Frame”) deviate, sometimes considerably, from those esti-
mated from the surveyed sample (columns labeled “Sample Estimate” [sum of 
weights]). These deviations reflect the fact that, for some participating countries, 
the compilation of a reliable sampling frame with proper measures of the size of 
the institution was a task that could not be fulfilled. One of the typical conse-
quences of working with imperfect sampling frames (i.e. incomplete or out-of-
date information) is increased sampling errors (i.e., wider margins of error) for the 
survey estimates.
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 Sample Size Requirements and Implementation

Minimum sample sizes within countries were set to allow for reliable estimation 
and modelling, while also allowing for some amount of non-response: 50 institu-
tions per route and level, 30 mathematics and mathematics pedagogy educators and 
30 educators of general pedagogy per selected institution, and an effective sample 
size of 400 future teachers per route and level in a given country.

Table 17.2 Size of national defined target populations by participating country

Country Institutions
Future primary 
teachers

Future lower 
secondary teachers Educators

Sampling 
framea

Sample 
estimate 
(sum of 
weights)

Sampling 
framea

Sample 
estimate 
(sum of 
weights)

Sampling 
framea

Sample 
estimate 
(sum of 
weights)

Sample 
estimate 
(sum of 
weights)b

Botswana 7 7 91 100 56 60 44
Canada (4 
provinces)

30 30 Not 
available

728 Not 
available

686 282

Chile 50 40 2378 2018 2511 2242 729
Chinese 
Taipei

34 39 3589 3595 444 375 339

Georgia 10 10 697 659 113 116 64
Germany 16 16 8145 6242 3789 3383 3944
Malaysia 34 30 3110 627 845 603 457
Norway 45 45 1589 1862 1689 2092 Data not 

processed
Oman 7 7 No primary education 

at present
287 288 103

Philippines 417 289 4593 2921 3266 3135 2847
Poland 92 91 5800 6144 1308 1344 1181
Russian 
Federation

182 177 15618 8563 6872 5915 3135

Singapore 1 1 433 424 462 431 91
Spain 
(primary 
education 
only)

72 72 7028 3845 Not covered 770

Switzerland 
(German 
speaking 
parts)

16 16 1230 1252 175 177 416

Thailand 46 46 1354 1364 1354 1368 354
USA (Public 
institutions)

498 408 45482 26272 15160 7098 9500

aAfter institution level exclusions
bPopulation figures for educators were not available on the sampling frames
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The expression effective sample size means that the sample design must be as 
efficient (i.e., precise) as a simple random sample of 400 future teachers from a 
(hypothetical) list of all eligible future teachers that can be found in a level and 
route.

When a two-stage sample design was implemented, the sample size required for 
each level and route was larger than the nominal 400 because such designs are typi-
cally less precise than a simple random sample due to the clustering effect. The 
actual number of future teachers required for each level and route within the selected 
TP institutions and overall was dictated mainly by (a) the total number of institu-
tions in the country; (b) the various sizes of the institutions in the country; and (c) 
the sample selection method (e.g., simple random, cluster random sampling) used 
in the institutions.

TP institutions that offered education both to future primary and to lower second-
ary school teachers could be part of both samples. Similarly, TP institutions that 
offered more than one route to students could be part of more than one sample.

Among the 17 countries participating in TEDS-M, 12 identified fewer than the 
minimum of 50 (or only slightly more than 50) eligible institutions. These countries 
conducted a census of institutions. Therefore, in these countries, the sample design 
can no longer be described as a two-stage cluster design; the design has become a 
stratified simple random sample, which is more efficient than an un- stratified simple 
random sample. The high precision of the estimates for these samples illustrates this 
effect.

For operational purposes, each institution in the sample was divided into sub-
groups defined by the level × route × program type combinations. These subgroups 
were called Teacher Preparation Units (TPUs, see IEA, 2007a) and comprise the 
actual programs offered in a given institution. All programs within selected institu-
tions were automatically part of the sample.

For example, at the time of TEDS-M, the Philippines was offering only one 
teacher education route (concurrent) per education level (see Table 17.1), with one 
program type associated with each level: the Bachelor in Elementary Education and 
the Bachelor in Secondary Education. Hence, teacher preparation institutions in the 
Philippines had either one TPU, for either the primary or secondary level (not both), 
or two TPUs, for both the primary and secondary levels.

In Malaysia, at the time of TEDS-M, teacher preparation institutions were offer-
ing, collectively, four different program-types for future primary teachers and three 
different program-types for future lower-secondary teachers (see Table  17.1). 
Hence, in theory, there could be up to seven TPUs in one institution. However, in 
practice, institutions were usually offering, if not just one program-type, only a few 
of the possible program-types.

Every future teacher in-scope for TEDS-M had to be allocated to exactly one and 
only one TPU. The minimum sample size of future teachers within institutions was 
set to 30 future teachers per TPU, they were selected using stratified random sam-
pling with equal probabilities TPUs that had fewer than 30 future teachers in their 
final year, or where more than half of the future teachers would have been selected, 
were to be surveyed in full.

S. Meinck and J. Dumais
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In countries where the number of TP institutions in a participating country was 
small, or where the institutions themselves were small on average, it was necessary 
to select all eligible future teachers for the survey to reach the TEDS-M precision 
requirements.

 National Sampling Strategies

Participating countries could suggest variations or adaptations of the international 
sampling plan to better suit their national needs. All changes to the international 
sampling plan had to be reviewed and approved by the sampling team, the sampling 
referee and the international study center. Details of the national sampling plans are 
given in Meinck and Dumais (2012).

One important modification was the reduction of scope of the national imple-
mentation. Countries could choose to reduce their target populations for political, 
organizational, or operational reasons that would otherwise have made it extremely 
difficult for some national research coordinators to conduct the survey. This reduced 
coverage means that the survey results cannot be deemed representative of the entire 
national teacher education system in target of TEDS-M. The international reports 
reflect the reduced coverage of the national desired target populations using appro-
priate annotations. The national target population could be further reduced to avoid 
surveying very small institutions or programs of marginal importance. Where those 
exclusions have amounted to more than 5% of the national target population, tables 
and charts were annotated accordingly. The remaining population to be surveyed is 
called the national target population. Table 17.3 gives an overview of population 
coverage and exclusions.

 Sample Selection

Since TEDS-M targeted four different populations (institutions, educators, primary 
school and secondary school future teachers), four different sampling plans were 
designed and implemented. Exhibit 4 illustrates sampling units and stages for the 
different populations (Fig. 17.1).

 Sampling of Institutions

Participating countries were asked to provide the sampling team with a current and 
complete list of institutions, organized by route, level, and any classification vari-
able deemed relevant to national interests.
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Table 17.3 Coverage and exclusions

Country Exclusionsa Coverage

Botswana None 100% in all target populations
Chile 2% of institutions; 2% of educators; 

3.8% of future primary teachers; 
3.6% of future lower secondary 
teachers

100% in all target populations

Chinese Taipei 26.1% of institutions; <4% of 
educators; 4.5% of future primary 
teachers; 4.7% of future lower 
secondary teachers

100% in all target populations

Georgia 1.4% of future primary teachers; 
1.7% of future lower secondary 
teachers

100% in all target populations

Germany 6% of institutions offering primary 
education and 3.7% of future 
primary teachers; 7% of institutions 
offering lower secondary education 
and 5.6% of future lower secondary 
teachers

100% in all target populations

22% of institutions participating in 
the educator survey; <5% of 
educators

Malaysia None Due to low participation, program type 
‘Bachelor of Education in Teaching of 
English as Second Language with 
minor in mathematics’ not covered. 
(<5% of future primary teachers)

Norway None 100% in all target populations
Omanb None 100% in all target populations
Philippines 7.4% of institutions; <5% of 

educators; 2.1% of future primary 
teachers; 1.7% of future lower 
secondary teachers

100% in all target populations

Poland 3.8% of institutions; <5% of 
educators; 3.0% of future primary 
teachers; 0.4% of future lower 
secondary teachers

Institutions with consecutives 
programs only were not covered (8.5% 
of institutions; percentage of not 
covered educators unknown; 23.6% of 
future primary teachers; 29.0% of 
future lower secondary teachers)

Russian 
Federation

None Secondary Pedagogical Institutions 
(amount unknown)

Singapore None 100% in all target populations
Spain (primary 
education only)

None Only institutions offering education to 
future primary teachers covered

Switzerland 
(German speaking 
parts only)

None German speaking parts covered only

Thailand None 100% in all target populations
USA (public 
institutions)

None public institutions covered onlya

aRefer to appendix for reasons for exclusions and further information
bOman did not have any future primary education teachers during the data collection period
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Where required, samples of institutions were selected by systematic random 
sampling within strata, according to the national sampling plans. If reliable mea-
sures of size for the institutions were available, institutions were sampled with prob-
ability proportional to size (PPS). Otherwise, or if the institutions were so small that 
censuses of individuals within the institutions were expected, institutions were 
sampled with equal probabilities. In some circumstances, institutions were sorted 
by additional variables and a measure of size prior to sampling. This process is often 
referred to as implicit stratification and ensures an approximate proportional alloca-
tion of the sample to the implicit strata.

Figure 17.2 represents the process of systematic PPS sampling within a stratum. 
In this diagram, the units in the sampling frame are sorted in descending order by 
measures of size (here, number of students), and the height of the cells reflects this 
size measure. A random start selects the second unit in the list, and a constant sam-
pling interval determines the next sampled unit. In the figure, the sampling interval 
is represented by a fixed distance, where larger units are more likely to be selected 
because they span more vertical space. Sampled units are shaded.

Whenever possible, up to two replacement units were designated for each unit 
selected for the sample of the main survey; this was applicable solely for the sam-
ple of institutions. Institutions could be replaced if they refused to participate in the 
survey. Non-responding individuals, educators or future teachers could not be 
replaced.

The sample of institutions was also used as the first-stage sample for the educator 
and future teacher populations.

n selected
future teachers

OR session groups
in program 1

n selected
future teachers

OR session groups
in program 1

n selected
future teachers

OR session groups
in program 1

n selected
future teachers

OR session groups
in program 2

n selected mathematics and 
mathematics-pedagogy educators 

n selected educators teaching
both mathematics, mathematics-
pedagogy and general pedagogy

n selected general pedagogy educators

Programs preparing future teachers
to teach primary students

Primary level

Lower secondary level

Programs preparing future teachers for both:
primary and lower secondary students

Note: For operational purposes, during survey implementation programs were called Teacher Preparation Units (refer to section 7.4).

(split-half samples)

Programs preparing future teachers
to teach lower secondary students

Educators

Concurrent route institutions Consecutive route institutions

Institution x
Sample stage 1

Sample stage 2

Institution 1 Institution 2
Institution 3
(selected)

n selected
future teachers

OR session groups
in program 2

n selected
future teachers

OR session groups
in program 2

n selected
future teachers

OR session groups
in program x

n selected
future teachers

OR session groups
in program x

n selected
future teachers

OR session groups
in program x

Fig. 17.1 Sampling stages and units
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 Sampling Within Institutions – Educators

For each selected institution, a comprehensive list of eligible educators was com-
piled. Each educator had to be allocated to one of the educator groups described in 
Fig.  17.3 above. Then, using software provided by IEA DPC (WinW3S-Within 
Institution Sampling Software), a systematic random sample of at least 30 mathe-
matics or mathematics-pedagogy educators and a systematic random sample of 
30 general pedagogy educators were selected. In all participating countries, a cen-
sus of educators was conducted in institutions where fewer than 30 educators were 
found in a given group, which was the case in a vast majority of institutions in all 
countries.

Fig. 17.2 Visualization of PPS systematic sampling. (Source: Zuehlke, 2011)

Fig. 17.3 Three strata of educators

S. Meinck and J. Dumais
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 Sampling Within Institutions—Future Teachers

For the selection of future teachers within TPUs, two different procedures were 
implemented, using WinW3S:

 1. Selection of whole session groups
In some participating countries (e.g., Germany, Chinese Taipei, Russia), or in 
some selected institutions, future teachers were grouped together for organiza-
tional purposes (e.g., into tutorial groups or classroom-like groups). Such groups 
were called session groups in the TEDS-M survey. Particularly in very large 
institutions, it was sometimes operationally desirable and more convenient to 
select whole session groups instead of individual future teachers. When this 
approach was chosen, a comprehensive list of session groups was compiled. 
Each eligible future teacher in a TPU had to be allocated to one, and only one, 
session group. Then, predetermined numbers of session groups were randomly 
selected with equal probability. All future teachers within the selected session 
groups were asked to participate in the survey. The downside of this sampling 
approach is that the sampling design is expected to be less efficient because of 
clustering effects that might affect such groups. This was countered by apprais-
ing each situation and possibly increasing the within-institution sample sizes.

 2. Selection of individual future teachers
For each TPU, a comprehensive list of eligible future teachers was compiled. 
Then, at least 30 future teachers for that TPU were randomly selected (or all, in 
institutions where the random selection would be more than half the total and in 
institutions with fewer than 30 future teachers).

Again, because of small populations within the country or within the institution, 
all eligible future teachers were asked to participate in the survey in many instances.

Selected future teachers being prepared to teach to both levels were randomly 
divided into two groups, with one group being asked to answer for primary educa-
tion and the other group being asked to answer for lower secondary education.

All sampling procedures and processes were extensively documented either by 
the sampling team (institution samples) or automatically by WinW3S, so that every 
selection step remains reproducible at any time.

 Sampling for Field Trial

Prior to the main data collection, a field trial was conducted between January and 
April 2007  in Botswana, Chile, Chinese Taipei, Georgia, Germany, Oman, 
Philippines, Poland, Singapore, Spain, Switzerland, and Thailand. The other partici-
pants joined the study too late to participate in the field trial.

Convenience samples were selected for the field trial. Since, in almost all coun-
tries participating in the field trial, overlap of the field trial and main survey samples 
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could not be avoided, convenience selection for the field trial gave countries the 
possibility to purposively select institutions that would be willing to participate in 
both parts of the survey. In almost every country, a convenience sample of five insti-
tutions for each level and route was selected by the national study center.

The field trial helped to identify one big challenge of this survey: achieving high 
participation rates. Many national research coordinators reported difficulties with 
picking a convenience sample of institutions; also, the response rates within institu-
tions were often very low. Experiences from the field trial contributed in significant 
ways to developing strategies to enhance the willingness of all targeted populations 
to participate in this survey. In fact, out of ten countries participating in the field 
trial, nine were able to significantly increase the response rates of future primary 
teachers in the main survey (Table 17.4).

 Computing Sampling Weights for TEDS-M

Most of the statistics produced for TEDS-M are derived from data obtained through 
samples of institutions, educators, and future primary and secondary school teach-
ers. For these statistics to be meaningful for a country, they need to reflect the whole 
population from which they were drawn and not merely the sample used to collect 
them.

Each national sampling plan is unique, ranging from a stratified multi-stage 
probability sampling plan with unequal probabilities of selection to a simple and 
complete census of all units of interest. The unequal chances of institutions and 
individuals being part of the sample need to be considered for any analysis in order 
to obtain unbiased estimates of the population features (Lohr, 1999). This can be 

Table 17.4 Response rates within participating institutions—field trial and main survey

Countries

Response rate future primary teachers  
(%, over all participating institutions)

Increase (%)Field trial Main survey

Botswana 95 86 −9
Chile 66 79 13
Chinese Taipei 46 90 44
Georgia 55 77 22
Germany 77 82 5
Philippines 87 91 4
Poland 63 79 16
Singapore No calculation possible 90 n.a.
Spain 32 87 55
Switzerland  
(German speaking parts)

41 76 35

Thailand 91 99 8

S. Meinck and J. Dumais
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done by using so-called estimation (or final) weights. The TEDS-M databases pro-
vide estimation weights for each population. This chapter gives an overview of how 
these weights were computed. Works illustrating the principles of weighting in 
ILSAs include Statistics Canada (2003), Rust (2014), and Meinck (2015).

The estimation weight in complex sample surveys is computed as the product of 
several weighting and non-response adjustment factors reflecting the sampling 
probabilities and non-response patterns at each sampling stage and in each stratum. 
The estimation weight indicates how many population units a participating unit 
represents, taking all of these factors into consideration.

Clearly, since each country had to adapt the general sample design of TEDS-M 
to its own conditions, the estimation weights had to conform to the national adapta-
tions. In countries where censuses were conducted, it was sufficient to adjust the 
collected data for non-response4 in order to obtain unbiased estimates of the popula-
tion parameters.

In many ILSAs, one set of country-level estimation weights is produced for each 
participating country. However, in the case of TEDS-M, four sets of estimation 
weights are required to reflect the various surveys that comprise TEDS-M: the 
 institutions, the educators, and the future teachers of mathematics at primary and at 
lower secondary levels. While this chapter will only give a simplified introduction to 
the process of weighting, details can be obtained from Dumais and Meinck (2013).

 Institution Base Weight (Institution Design Weight)

The first stage of sampling in TEDS-M is the sampling of institutions. In many 
countries, or strata within a country, the sample of institutions is a census; in other 
countries, or strata within a country, the sample of institutions was drawn according 
to a systematic random sampling scheme with selection probabilities proportional 
to size. When a census sample of institutions was implemented in a country or in a 
stratum of a country, then the institution base weight is set to 1. The institution base 
weight is given by

 

WGTFAC M

n M
hi h

h hi

1

1

=
×









for censuses

for PPS random samples

 

for each institution i, and each stratum h with Mhi denoting the measure of size of a 
specific selected institution and Mh the cumulated measure of size in stratum h. For 
example, a country provided the total number of future teachers as size measure. 
Then, the institution base weight of an institution with 50 future teachers in a 

4 Under the hypothesis of non-informative response model, or that items are missing completely at 
random.
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stratum with a total of 1000 future teachers and the sample size n in that stratum 
being 2 institutions, would be 1000/(2 × 50) = 100.

The institution base weight was computed once and then fixed, irrespective of 
which of the subsequent four different target populations of TEDS-M was 
concerned.

It should be noted that the computation of any base weight follows the same 
rationale: It is computed within a given stratum, respecting the number of sampled 
units and their measure of size, if PPS sampling was adopted as shown in the for-
mula above. Design weights for simple random sampling (SRS) samples are even 
simpler to compute: The total number of units is divided by the number of units to 
sample. For example, when selecting four units out of ten, each sampled unit gets a 
design weight of 2.5 (=10/4), because the set of four sampled units represents the 
ten units on the sampling frame.

 Institution Non-response Adjustment Factor

In spite of all efforts to secure the full participation of all selected institutions and of 
their members, some were unable or unwilling to participate. Those institutions 
where the participation of individuals was below 50% are deemed to be non–partici-
pating for the respective population of interest. The institutions that the non- 
participating institutions would have represented must still be represented. 
Therefore, a non-response adjustment factor is required within each stratum. 
Because of the multiplicity of types of respondents in TEDS-M, multiple institution 
non-response adjustment factors are required: for the educators and the future teach-
ers of mathematics at primary and lower secondary levels.

For each stratum h if rh out of the nh selected institutions participated in TEDS-M, 
then the non-response adjustment factor is given by
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h
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for non-partiicipating institutions









 

acknowledging that, if the form is identical, the value of the adjustment factor may 
change with the population of interest.

Again, it should be noted that non-response adjustment factors are computed 
always applying the same rationale. In a first step, it is assumed that, within a stra-
tum, the non-respondents (or non-responding units) do not differ systematically 
from the responding ones. Then, the adjustment factor is computed such that the 
weight carried by the non-respondents gets evenly re-distributed among those par-
ticipating. Continuing with the example given in 4.1, if only 2 of the four sampled 
units agree to participate, the adjustment factor for each participating unit is 2 
(=4/2).
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 Final Institution Weight

The final institution weight is the product of the institution base weight and the 
institution non-response adjustment factor.

Because there are several populations of interest, the institution final weight was 
computed separately for each population of interest. This is reflected in the popula-
tion identifier (I = institution, E = educator, P = future primary teacher, S = future 
secondary teacher) attached to the name of each of the final institution weights in 
the respective file of the international database (INSWGTI, INSWGTE, INSWGTP, 
INSWGTS)5. All estimates pertaining to institution-specific features should use the 
appropriate final institution weight.

 TPU (Teacher Preparation Unit) Non-response Adjustment 
Factor

For operational purposes, each institution in the sample was divided into subgroups 
of future teachers that are defined by the combination of the level (primary, second-
ary), the route (concurrent, consecutive) and the specific program type. These sub-
groups are called Teacher Preparation Units (TPUs) or programs (refer also to 
section “Sample selection” in this chapter). Within each selected institution, all 
TPUs were automatically selected to participate in the survey. Hence, it was not 
necessary to apply a TPU base weight (it would always be equal to 1).

A selected institution was asked to complete one Institutional Program 
Questionnaire for each TPU. The data coming from these questionnaires are stored 
in the institution files (DIG files) of the International Data Base (IDB).6 Despite all 
efforts to gather all requested questionnaires in the participating institutions, the 
questionnaire was not completed for one or more TPUs in some institutions, in 
which case, a TPU non-response adjustment factor had to be calculated. This adjust-
ment was done within strata, across institutions but within the level-route combina-
tion. Thus, the estimation weight for, say, all concurrent primary TPUs within one 
stratum that responded to the institutional program questionnaire was adjusted to 
account for those that did not respond.

 Final TPU (Teacher Preparation Unit) Weight

The final TPU weight is the product of the institution base weight, the institution 
non-response adjustment factor, and the TPU non-response adjustment factor.

5 Refer to the TEDS-M IDB User Guide for further information (Brese & Tatto, 2012).
6 The TEDS-M IDB can be accessed through http://www.iea.nl/our-data.
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The final TPU weight can be found in the institution file (DIG) only. Any analy-
sis producing estimates based on data from the Institutional Program Questionnaires 
should use the final TPU weight.

 Session Group Base Weight

As explained earlier, within each TPU, it was possible to further divide future teach-
ers into subgroups, called session groups, for organizational purposes and (in rare 
instances) to select only some session groups from a list of session groups according 
to the national sampling plan. This selection step had to be taken into account when 
calculating the final future teacher weight. In many participating countries, how-
ever, it was decided not to select (some out of many) session groups but rather 
individual future teachers from an exhaustive list of all future teachers within one 
TPU. In this case, one single session group is created, and its base weight is set to 
1.

Because there are two populations of interest (future teachers of primary and 
lower secondary schools), the session group base weight is calculated separately for 
each target population. This is reflected in the population identifier attached to the 
name of the session group base weight in the respective file of the international 
database (WGTFAC2P and WGTFAC2S).

Admitting that session groups were often artificial groups of students brought 
together for test administration, no session group non-response adjustment factor 
was calculated. Instead, the non-response adjustment was calculated at the future 
teacher level (see section “Future teacher non-response adjustment factor” below).

 Future Teacher Base Weight

If no session group sampling was performed, systematic random samples of future 
teachers with equal probabilities were selected from each TPU (at least 30 future 
teachers by design). The future teacher base weight is computed as the inverse of the 
selection probability of a future teacher within a TPU.

In institutions where session group sampling was performed, all future teachers 
within a selected session group were automatically selected for the survey. In this 
case, the future teacher base weight is 1.

Because there are two populations of interest (future teachers of primary school 
and lower secondary school), the future teacher base weight is calculated separately 
for each target population. This is reflected in the population identifier attached to 
the name of future teacher base weight in the respective file of the international 
database (WGTFAC3P and WGTFAC3S).

S. Meinck and J. Dumais
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 Future Teacher Non-response Adjustment Factor

Unfortunately, not all selected future teachers were able or willing to participate in 
TEDS-M. The future teachers that were represented by the non-participating future 
teachers still need to be represented by the sample. This is why a non-response 
adjustment factor is introduced. The non-response adjustment was done within each 
TPU but across session groups. You may refer to Fig. 17.1 to visualize this process. 
The adjustment was done within the blue boxes. Let us imagine 30 future teachers 
were sampled within the unit represented by one of the blue boxes. Ten of them, 
however, did not participate. In this case, the remaining 20 received an adjustment 
factor of 30/20 = 1.5.

As already pointed out, because there are two populations of interest (future 
teachers of primary and lower secondary), the future teacher non-response adjust-
ment factor is calculated separately for both target populations. This fact will be 
reflected in the population identifier attached to the name of the future teacher non- 
response adjustment factor in the respective file of the international database 
(WGTADJ3P and WGTADJ3S).

 Future Teacher Level Weight

In some participating countries, future teachers would be certified to teach to pri-
mary and lower secondary students. Those future teachers are eligible for both tar-
get populations of the TEDS-M future teacher survey. However, it would have been 
very difficult to convince those future teachers to participate in both surveys, i.e., to 
complete both a primary and a lower secondary questionnaire. Thus, those future 
teachers were randomly assigned to one of the two surveys. The future teacher-level 
weight will adjust for this procedure, making sure the future teachers assigned to the 
respective other group are still represented by the sample.

 Final Future Teacher Weight

The final future teacher weight (estimation weight) is the product of the final institu-
tion weight, the session group base weight, the future teacher base weight, the future 
teacher non-response adjustment factor, and the future teacher level weight, calcu-
lated for the respective future teacher population (INSWGTP or INSWGTS). All 
estimates pertaining to the populations of future teachers should be computed by 
using the final future teacher weight.
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 Educator Base Weight

In each participating institution, up to three strata of educators could be created: that 
of mathematics and mathematics pedagogy educators (stratum 1), that of general 
pedagogy educators (stratum 2) and that of those educators teaching all topics (stra-
tum 3, Fig. 17.3).

Samples of 30 educators were required for each of the two groups of educators 
(mathematics and mathematics pedagogy, and general pedagogy). All educators 
were asked to complete specific parts in the (unique) educator questionnaire. While 
educators belonging to strata 1 and 2 had to complete only the parts that concerned 
their specific teaching responsibilities, educators belonging to stratum 3 were asked 
to complete the whole questionnaire.

For educators, systematic random samples with equal probabilities were selected 
from each stratum. The educator base weight is used to bring the individual educa-
tor’s information to the level of his or her institution. Generally, all  TEDS-M- eligible 
educators in an institution were selected. For those educators, the base weight is equal 
to 1, and each educator represents only him or herself within his or her institution.

 Educator Non-response Adjustment Factor

Not all selected educators were able or willing to participate in TEDS-M. The edu-
cators who were represented by the non-participating educators still need to be rep-
resented by the sample. Hence, an educator non-response adjustment factor is 
introduced within each institution. Again, one can refer to Fig. 17.1 for getting a 
clearer idea of this process: the adjustment was carried out within the unshaded 
boxes on the left-hand side, with the effect that, e.g., only general pedagogy educa-
tors who participated in the study would represent general pedagogy educators who 
refused participation.

In some cases, none of the selected educators in an educator group within an 
institution responded at all. Consequently, the non-response adjustment could not 
be calculated according to the standard procedures, since there were no respondents 
who could carry the weight of the non-respondents. In these situations, the non- 
response adjustment for educators in this educator group in the affected institution 
was done across institutions, but within stratum and within the educator group (i.e., 
mathematics and mathematics pedagogy, and general pedagogy).

 Final Educator Weight

The final educator weight is the product of the educator base weight, the educator 
non-response adjustment factor, and the final institution weight calculated for the 
educator population (INSWGTE). All estimates pertaining to the populations of 
educators should be computed using the final educator weight.
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 Importance of Using Sampling Weights for Data Analysis

Although the international sampling plan was prepared as a self-weighting design 
(i.e., aiming for equal final weights of respondents), the actual conditions in the field 
made that ideal plan impossible to be executed. Neglecting that the final weights are 
different among the responding elements of a given sample during data analysis will 
lead to biased results.

The following example, taken from the TEDS-M user guide for the international 
database (Brese & Tatto, 2012), illustrates the risk of bias if not using weights in 
research with TEDS-M data.

A researcher may be interested in finding out whether there were any circum-
stances that prevented future teachers from focusing on their teacher preparation 
program. Consider, for example, primary mathematics specialists (DPG file, vari-
able TARGETP  =  4) in Germany. The corresponding analysis variables are 
MFA012A, MFA012B, and MFA012C.  The results of this analysis, using 
unweighted versus weighted data, are displayed in Table 17.5. Focusing on the vari-
able MFA012A, if one omitted the final weights, one would conclude that almost 
one in three future teachers in the population of interest had family responsibilities 
(29.8%), while, in actual fact, this is only the case for about one in five students 
(18.7%) once the data are correctly weighted.

 Participation Rates

Non-response adjustments were done in TEDS-M assuming that non-response 
within an adjustment cell occurred completely at random. Of course, this is a strong 
assumption, given that very little or even nothing at all is known about the non- 
responding units and individuals. This is the reason why all ILSAs, and therefore 
also TEDS-M, employ strict standards for participation rates.

The following example illustrates the risk related to non-response and thereby 
shows the importance of high participation rates. Consider a country with an 
average achievement score of 530 points, as shown in Fig. 17.4. If, in such country, 

Table 17.5 Example of incorrect (unweighted) and correct (weighted) analyses

Variable
Unweighted, %  
(Biased estimate)

Weighted, % 
(Unbiased estimate)

MFA012A Yes 29.8 18.7
Had family responsibilities that  
made it difficult to do my best

No 70.2 81.3

MFA012B Yes 18.3 23.3
Had to borrow money No 81.7 76.7
MFA012C Yes 51.1 45.5
Had to work at a job No 48.9 54.5
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all of, and only, the 10% lowest achievers refuse to participate in the survey, the 
average score rises by 13 points—a significant increase leading to misleading 
conclusions.

The TEDS-M quality standards required minimum participation rates for all tar-
get populations of the survey if statistics are to be reported purporting to describe 
characteristics of those populations. The aim of these standards is to ensure that bias 
resulting from non-response is kept within acceptable limits.

For each country, the participation rates are calculated and reported separately 
for each of the four different target populations of TEDS-M. Reports describing the 
results for each target population considered the participation rate for that target 
population only.

The minimum requirement for TEDS-M to publish statistical key data for inter-
national comparisons for each population is

• that the overall (combined) participation rate (weighted or un-weighted) of that 
population is at least 75%

OR

• that the participation rate (weighted or un-weighted) of institutions for the con-
sidered population and the participation rate for individuals within the participat-
ing institutions are both at least 85%.

The intention of the following section is to report the participation rates achieved 
in TEDS-M. Details on the mathematical computations can be found in Dumais and 
Meinck (2013).
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 Sampling Adjudication Outcomes

The adjudication of the data was done for each participating country and each of the 
four TEDS-M survey populations separately, following the recommendations of the 
sampling referees7 and in agreement with all participants of the sampling adjudica-
tion meetings.8

If a country did not meet the required participation rates for one (or more) of the 
populations, statistics were still reported for that country, but the fact of failing the 
requirements is annotated in the international report. This is to point any reader to 
the reduced reliability of the data.

The following adjudication comments were observed in reporting:

 1. Reporting without any annotation—No annotation was made if all participation 
rate requirements were met, the exclusion rate was below 5%, and full coverage 
of the target population was observed.

 2. Annotation because of low participation rates—This comment was added if the 
participation rate was below the requirement but the combined participation rate 
was still above 60%.9

 3. Participation rates clearly below standards, reporting together with other coun-
tries not advisable—This comment was added if the combined participation rate 
dropped below 60% but was still above 30%.

 4. Unacceptable (move to appendix)—This comment was added if the combined 
participation rate dropped below 30%.

A summary of the adjudication outcomes is shown in Table 17.6.
The achieved participation rates are displayed in Table 17.7. Compared to other 

social surveys, the rates are notably high, with most countries meeting the high 
standards in their target populations, underlining the high quality of TEDS-M sur-
vey results. Tables 17.8, 17.9, 17.10, and 17.11 show the expected and the achieved 
sample sizes for each population.

 Estimating Sampling Error in TEDS-M

Surveys with complex designs like TEDS-M, i.e. stratified, unequal probability 
cluster sampling, require special attention when it comes to estimation, especially 
estimation of the sampling error. Both the survey design and the unequal weights 
need to be taken into account to obtain (approximately) unbiased estimates of 

7 Jean Dumais and Marc Joncas, Statistics Canada.
8 Maria Teresa Tatto, Principal Investigator (PI) andTEDS-M Executive Director, Inese Berzina-
Pitcher Coordinator, John Schwille Co-PI, and Sharon Senk Co-PI) as representatives of the inter-
national study center; Sabine Meinck as the representative of the IEA DPC Sampling Team.
9 Annotations were also advised if the exclusion rate exceeded 5% or reduced coverage of the target 
population was observed.
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Table 17.6 Summary of adjudication results

Countries Institutions Teacher educators
Future primary 
teachers

Future lower- 
secondary teachers

Botswana None None None None
Canada (4 
provinces)

Unacceptably low participation rates; data remains un-weighted, and is not 
reported.

Chile None Low participation 
rates, data is 
highlighted to 
make readers 
aware of 
increased 
likelihood of bias.

Combined 
participation rate 
between 60 and 75%.

Combined 
participation rate 
between 60 and 
75%.

Chinese 
Taipei

Exclusion rate 
>5% (very 
small 
institutions 
were 
excluded).

None None None

Georgia None None None Combined 
participation rate 
between 60 and 
75%; An exception 
was made to accept 
data from two 
institutions because, 
in each case, one 
additional 
participant would 
have brought the 
response rate to 
above the 50% 
threshold.

Germany None Low participation 
rates, data is 
highlighted to 
make readers 
aware of 
increased 
likelihood of bias. 
Survey of 
institutions and 
future teachers are 
not connected 
with survey of 
educators.

None None

(continued)
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Table 17.6 (continued)

Countries Institutions Teacher educators
Future primary 
teachers

Future lower- 
secondary teachers

Malaysia Low 
participation 
rates, data is 
highlighted to 
make readers 
aware of 
increased 
likelihood of 
bias.

Low participation 
rates, data is 
highlighted to 
make readers 
aware of 
increased 
likelihood of bias.

None None

Norway None Participation rates 
could not be 
calculated; data 
remains 
un-weighted, and 
is not reported.

Combined 
participation rate 
between 60 and 75%. 
An exception was 
made to accept data 
from one institution 
because one additional 
participant would have 
brought the response 
rate to above the 50% 
threshold. Program 
types ‘ALU’ and 
‘ALU plus Math’ are 
partly overlapping 
populations; analysis 
across program types 
is inappropriate due to 
this overlap.

Participation rates 
low, data is 
highlighted to make 
readers aware of 
increased likelihood 
of bias. Program 
types “ALU”, “ALU 
plus Math”, and 
“Master’s” are partly 
overlapping 
populations, results 
derived from 
analysis across 
program types 
should be conducted 
with care to avoid 
undue overlap of 
populations.

Oman Oman 
provided 
education for 
future 
secondary 
teachers only 
at the time of 
testing.

Oman provided 
education for 
future secondary 
teachers only at 
the time of 
testing.

Not applicable None

Philippines Exclusion rate 
>5% (very 
small 
institutions 
were 
excluded).

None None None

(continued)
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Table 17.6 (continued)

Countries Institutions Teacher educators
Future primary 
teachers

Future lower- 
secondary teachers

Poland Institutions 
with 
consecutive 
programs only 
were not 
covered.

Combined 
participation rate 
between 60 and 
75%; institutions 
with consecutive 
programs only 
were not covered.

Combined 
participation rate 
between 60 and 75%; 
institutions with 
consecutive programs 
only were not covered.

Combined 
participation rate 
between 60 and 
75%; institutions 
with consecutive 
programs only were 
not covered.

Russian 
Federation

Secondary 
pedagogical 
institutions 
were not 
covered.

Secondary 
pedagogical 
institutions were 
not covered.

Secondary 
pedagogical 
institutions were not 
covered.

An unknown 
percentage of 
surveyed future 
teachers were 
already certificated 
primary teachers.

Singapore None None None None
Spain 
(Primary 
education 
only)

None None None Not applicable

Switzerland 
(German 
speaking 
parts)

None Low participation 
rates, data is 
highlighted to 
make readers 
aware of 
increased 
likelihood of bias.

None None

Thailand None None None None
United 
States 
(Public 
Institutions)

None Unacceptably low 
participation 
rates; data 
remains 
un-weighted, and 
is not reported.

An exception was 
made to accept data 
from two institutions 
because, in each case, 
one additional 
participant would have 
brought the response 
rate to above the 50% 
threshold. Items with 
low responses are 
clearly marked.

Combined 
participation rate 
between 60 and 75% 
only; An exception 
was made to accept 
data from one 
institution because 
one additional 
participant would 
have brought the 
response rate to 
above the 50% 
threshold. Items 
with low responses 
are clearly marked.
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Table 17.7 Un-weighted participation rates for institutions, future primary and lower secondary 
teachers and educators

Country

Institutions 
(completion 
of IPQs)

Future primary 
teachers

Future lower 
secondary teachers Educators

IPRI IPRP WPRP CPRP IPRS WPRS CPRS IPRE WPRE CPRE

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Botswana 100 100 86 86 100 88 88 100 98 98
Canada 
(4 provinces)

37 7 69 5 29 72 21 33 79 26

Chile 88 86 79 68 83 76 63 70 77 54
Chinese Taipei 100 100 90 90 100 97 97 100 95 95
Georgia 100 100 77 77 100 67 67 100 97 97
Germany 100 93 82 76 100 81 81 92 61 56
Malaysia 57 96 97 93 86 84 72 73 77 57
Norway 96 81 78 63 73 79 58 Data not processed
Oman 100 Not applicable 100 93 93 100 85 85
Philippines 85 80 91 75a 91 92 83 85 94 80
Poland 86 86 79 68 82 84 69 79 86 68
Russian 
Federation

91 96 94 91 98 94 92 98 92 91

Singapore 100 100 90 90 100 91 91 100 85 85
Spain  
(primary 
education only)

96 90 87 78 Not applicable 92 93 85

Switzerland 
(German  
speaking parts)

94 100 76 76 100 81 81 75 69 52

Thailand 96 98 99 97 98 98 96 93 94 88
USA  
(public 
institutions)

83 85 85a 71 82 84 69 23 59 14

aWeighted participation rate
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sampling error. Failing to do so can lead to severe underestimation of the sampling 
error. While exact formulae exist in theory for such designs, the required computa-
tions become practically impossible as soon as the number of primary units selected 
per stratum exceeds two. Approximate solutions have been proposed over the years 
for handling such cases. An important class of solutions is that of resampling or 
replication. Interpenetrating sub-samples, Balanced Repeated Replication, the 
jackknife, and the bootstrap are the best known examples of replication methods 
(see, for example, Lohr 1999, Rust and Rao 1996, or Wolter 2007 for a review of 
these methods).

The Balanced Repeated Replication (BRR) (McCarthy, 1966), with Fay’s modi-
fication (Fay, 1989; Judkins, 1990), was adopted for the estimation of the sampling 

Table 17.8 Institutions—expected and achieved sample sizes

Countries

Number of 
institutions  
in original 
sample

Ineligible 
institutions

Total number 
of institutions 
providing 
response to the 
IPQ

Number of 
expected IPQs 
within 
participating 
institutions

Number of 
returned IPQs 
within 
participating 
institutions

Botswana 7 0 7 7 7
Canada (4 
provinces)

30 0 11 32 23

Chile 50 10 35 42 38
Chinese 
Taipei

19 0 19 19 19

Georgia 10 0 10 17 17
Germany 16 0 16 51 51
Malaysia 34 4 17 33 20
Norway 47 2 43 43 43
Oman 7 0 7 8 8
Philippines 80 20 51 83 82
Poland 92 1 78 130 125
Russian 
Federation

58 1 52 98 88

Singapore 1 0 1 10 10
Spain 
(primary 
education 
only)

50 0 48 48 48

Switzerland 
(German 
speaking 
parts)

16 0 15 32 28

Thailand 46 0 44 53 51
USA  
(public 
institutions)

60 0 50 136 117
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error of the estimates produced for TEDS-M. A detailed description of the method 
and its application in TEDS-M can be obtained from Dumais and Meinck (2013).

Each of the four TEDS data files, comprising data from the four different popula-
tions, contains two sets of BRR variables. One set refers to the respective final 
institution weight. The second set of BRR variables refers to the respective final 
population weight (final TPU weight, final future teacher weight—primary/second-
ary, final educator weight). These variables have to be used when estimating sam-
pling error and confidence intervals and when performing significance tests. See 
Brese and Tatto (2012) for further details on the handling of variance estimation 
variables.

Table 17.9 Future primary teachers—expected and achieved sample sizes

Countries

Number of 
institutions  
in original 
sample

Ineligible 
institutions

Total number 
of institutions 
participated

Number of 
sampled future 
primary teachers 
in participating 
institutions

Number of 
participating 
future primary 
teachers

Botswana 4 0 4 100 86
Canada  
(4 provinces)

28 0 2 52 36

Chile 50 14 31 836 657
Chinese 
Taipei

11 0 11 1023 923

Georgia 9 0 9 659 506
Germany 15 0 14 1261 1032
Malaysia 28 4 23 595 576
Norway 32 0 26 709 551
Oman Not applicable
Philippines 60 19 33 653 592
Poland 91 0 78 2673 2112
Russian 
Federation

52 1 49 2403 2266

Singapore 1 0 1 424 380
Spain 
(primary 
education 
only)

50 0 45 1259 1093

Switzerland 
(German 
speaking 
parts)

14 0 14 1230 936

Thailand 46 0 45 666 660
USA  
(public 
institutions)

60 0 51 1807 1501
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 Conclusions

The conduct of the TEDS-M study taught us that the implementation of a sound 
random sampling design covering higher education is particularly challenging, but 
not impossible. Key elements where the careful inspection of the structure of all 
participating education systems, and determining common grounds and procedures 
how to address national specifics. This chapter can give valuable guidance to 
researchers wishing to enter similar endeavors.

Table 17.10 Future lower secondary teachers—expected and achieved sample sizes

Countries

Number of 
institutions 
in original 
sample

Ineligible 
institutions

Total number 
of institutions 
participated

Number of 
sampled future 
lower secondary 
teachers in 
participating 
institutions

Number of 
participating 
future lower 
secondary 
teachers

Botswana 3 0 3 60 53
Canada  
(4 provinces)

28 0 8 174 125

Chile 50 10 33 977 746
Chinese 
Taipei

21 2 19 375 365

Georgia 6 0 6 116 78
Germany 13 0 13 952 771
Malaysia 7 0 6 462 389
Norway 47 2 33 724 572
Oman 7 0 7 288 268
Philippines 60 7 48 800 733
Poland 28 0 23 355 298
Russian 
Federation

50 1 48 2275 2141

Singapore 1 0 1 431 393
Spain 
(primary 
education 
only)

Not applicable

Switzerland 
(German 
speaking 
parts)

6 0 6 174 141

Thailand 46 0 45 667 652
USA  
(public 
institutions)

59 3 46 726 607
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Chapter 18
Developing Anchor Points to Enhance 
the Meaning of the Mathematical 
and Mathematical Pedagogy Score Scales 
from the TEDS-M Study

Mark D. Reckase

Abstract The Teacher Education and Development Study (TEDS-M), a cross- 
national study of teacher education programs that prepare future primary and sec-
ondary mathematics teachers, included a series of measures of mathematics 
achievement designed to determine what prospective teachers knew and could do 
concerning the mathematics that they would likely teach. One of the goals of the 
study was to report the information about prospective teachers’ knowledge and 
skills in a way that is easy to understand by the numerous audiences for the results 
of the study. The values that are reported are often obtained using an item response 
theory (IRT) model that gives estimates of a location on the latent scale for a hypo-
thetical construct. For any of these numerical values, it is difficult to interpret what 
a person knows or can do. At best, the numbers can be used to order persons or 
groups according to the magnitude of what they know or can do, but not whether 
they have particular capabilities such as being able to solve systems of linear equa-
tions. Meaning was added to the reporting scales by attaching detailed substantive 
descriptors to selected points on the scale called anchor points. The logic and meth-
odology used to add descriptions to anchor points is similar in many ways to meth-
odologies used elsewhere, such as item mapping or scale anchoring. However, there 
are some important differences between the procedure used for TEDS-M and those 
used with other testing programs such as NAEP, TIMSS, and PISA. The purpose of 
this chapter is to describe how the descriptive information was added to the scales 
using the TEDS-M anchor points, and to discuss how the interpretations derived 
from these descriptions differ from those used with other assessment programs.
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Introduction

The TEDS-M study included a series of measures of mathematics achievement 
designed to determine what prospective teachers knew and could do in the subject 
matter that they would likely teach (Tatto et al., 2012). One of the goals of the study 
was to report the information about prospective teachers’ knowledge and skills in a 
way that is easy to understand by the numerous audiences for the results of the 
study. Unfortunately, the numerical values that are typically used to report the 
results of an achievement test do not have any intrinsic meaning. For simple testing 
programs, such as classroom achievement tests, the numerical values are often sim-
ple sums of the scores on all the items. The simplest interpretation is that the score 
indicates how much of what a teacher (or test developer) chooses to put on the test 
is known by the examinee. Interpretations beyond that are challenging without 
information about test specifications, test difficulty, average scores, etc. If parents 
are told that their child obtained a value of 46 on the test, it has little interpretive 
meaning without much additional information and explanation.

For more elaborate testing programs, such as large-scale state assessments and 
international comparison studies, the numerical values that are used to report the 
results of the assessment are even more abstract. Examinees may respond to differ-
ent sets of items, and the test specifications need to be appropriate for multiple 
schools and/or multiple countries (e.g., Watermann & Klieme, 2002). The values 
that are reported are often obtained using an item response theory (IRT) model that 
gives estimates of a location on the latent scale for a hypothetical construct. This 
scale has an arbitrary zero point and an arbitrary unit of measurement (see DeMars, 
2010, for an introduction to IRT). For example, the scale may be set to have a mean 
value for an analysis sample of 0.0 and a standard deviation of 1.0. In this case, the 
value reported for a person might be 1.13, indicating that the person is well above 
average, and the mean for a group might be −0.088, indicating that the group mean 
is slightly below the analysis sample mean. Further, the initial values from the data 
analysis are often transformed to whole numbers to avoid negative values and deci-
mal places. This is done using a linear transformation such as 200x  +  500 and 
rounding to the nearest whole number. The score for the person would be converted 
to 726 (200 × 1.13 + 500) on this scale, and the mean for the group mean to 482 
(200 × −0.88 + 500). On this reporting scale, values are compared to 500 to deter-
mine whether they are above or below average. But, for any of these numerical 
values, it is difficult to interpret what a person knows or can do. At best, the numbers 
can be used to order persons or groups according to the magnitude of what they 
know or can do, but not whether they have particular capabilities such as being able 
to solve systems of linear equations.

The TEDS-M international comparison study (Tatto et al., 2012) assessed the 
preparation of individuals to teach mathematics using the same kind of IRT-based, 
abstract scale as other large-scale assessment programs. To help with the interpreta-
tion of the results of this study, work was done to give substantive meaning to the 
scale so that, when results were reported, those interested in the results could have 
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a reasonable sense of what the numerical values meant in practice. Meaning was 
added to the reporting scales by attaching detailed substantive descriptors to selected 
points on the scale called “anchor points.” The logic and methodology used to add 
descriptions to anchor points is similar in many ways to methodologies used else-
where, such as item mapping or scale anchoring (Beaton & Allen, 1992; Zwick, 
Senturk, Wang, & Loomis, 2001). However, there are some important differences 
between the procedure used for TEDS-M and those used with other testing pro-
grams such as NAEP, TIMSS, and PISA. The purpose of this chapter is to describe 
how the descriptive information was added to the scales using the TEDS-M anchor 
points, and to discuss how the interpretations derived from these descriptions differ 
from those used with other assessment programs.

 Conceptual Framework

A very useful property of IRT models is that once the items used in a testing pro-
gram are calibrated (i.e., the item parameters are estimated), the probability that a 
person at a specified point on the scale defined by the model obtains a particular 
score on a particular item can be calculated. For items that are scored as correct (1 
point) or incorrect (0 points), the location of a person on the scale and the parameter 
estimates for the item can be used to determine the probability of a correct response 
or an incorrect response to the item. If the item has more than two score categories, 
the probability of each score category can be computed. These computed probabili-
ties are considered to be accurate if the IRT model has good fit to the item response 
data for the testing program and the sample size for calibration is large enough to 
yield small errors of estimation for the item parameters.

Once a point on the scale for the IRT model is selected, it is possible to compute 
the probabilities of a correct response for persons at the selected point for each of 
the calibrated items. These probabilities can then be used to identify the items that 
a person at that point on the scale would likely answer correctly, indicating that they 
know the concepts behind the item. The items that the person would most likely 
answer incorrectly can also be identified. For the items with likely incorrect 
responses, the person at the specified point on the scale has some deficiencies related 
to the skills and knowledge needed to respond correctly.

The goal of attaching descriptions to anchor points on the scales is to provide 
verbal descriptions of the skills and knowledge that are needed to answer those 
items that are correct while being careful not to include skills and knowledge that 
are shown to be lacking by the items that are answered incorrectly. Put differently, 
the descriptions are an attempt to provide substantive detail about what a person at 
the point on the IRT scale most likely knows and can do, and what they most likely 
do not know and cannot do.

To produce meaningful descriptions related to a point on the IRT scale, there 
must be sufficient test items in the likely correct (know) and the likely incorrect (do 
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not know) categories to avoid the instabilities and inaccuracies that result from bas-
ing a description on limited information. As the descriptions of skills and knowl-
edge from the test items are developed, the persons writing the descriptions need to 
constantly test the credibility of the description against the full set of items that fall 
into the know and do not know sets.

 Implementation of the Anchor Point Procedure

The Anchor Point Procedure was implemented for the TEDS-M study for tests of 
prospective teachers’ mathematical content knowledge (MCK) and mathematical 
pedagogical content knowledge (MPCK) for teaching at the primary level and sec-
ondary level. Thus, four sets of anchor points and descriptions were produced. The 
test items for the different domains and levels were administered to prospective 
teachers using an incomplete block design, with each prospective teacher taking 
two blocks of items. The overlapping sets of items in the administration design were 
calibrated together using the Rasch model (see DeMars, 2010, for a description of 
the model), so all the items in a domain were on the same scale. Table 18.1 lists the 
number of items that were calibrated for each domain and each level.

When developing the descriptions of anchor points on the score scale used for 
reporting, it was important to select probabilities that give operational definitions 
for what a person at a certain point on the scale can do and cannot do. The literature 
on scale anchoring uses a wide range of probabilities to define “can do,” from .5 to 
as high as .9. Generally, there is no discussion in the literature about a probability 
for “cannot do,” so there was no guidance on the value to be selected for that pur-
pose. One consideration in selecting the values to operationally define these terms 
is to be sure there are enough items that meet these probability requirements to be 
used to develop stable descriptions of the capabilities of a person at an anchor point.

After a careful review of the items related to each of the scales, it was determined 
that using .70 or more as the definition of “can do” would work well. This is also the 
value that is often used for standard setting with the bookmark procedure (Mitzel, 
Lewis, Patz, & Green, 2001). The value selected for the “cannot do” probability was 
.5 or less. This value gave enough items for creating the description and it also took 
into account guessing probabilities for the multiple-choice items.

Table 18.1 Number of items 
for each level and each 
content domain

Level
Content domain
MCK MPCK

Primary 74 32
Secondary 76 27

MCK =  Mathematics Content 
Knowledge, MPCK =  Mathematics 
Pedagogical Content Knowledge
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After selecting the operational definitions for “can do” and “cannot do,” the next 
step was to select the points along the reporting score scale to use for developing 
anchor point descriptions. To do that, points along the Rasch scale at 0.1 intervals 
from −3 to 3 were used to determine the probability of correct response for each 
item. For primary MCK, this resulted in a 61 × 74 matrix of probabilities with each 
row representing a scale point and each column representing an item. The columns 
were ordered from the easiest item to the hardest item. From this matrix, the number 
of items that met the “can do” and “cannot do” criteria for each row could be deter-
mined. From a review of this matrix for the MCK items, it was determined that the 
full set of items would have sufficient “can do” and “cannot do” items to support 
accurate descriptions at two anchor points. These points were at −0.8 and 0.2 on the 
Rasch scale for the primary level and−0.5 and 0.1 for the Rasch scale at the second-
ary level. Because there are fewer MPCK items, they full set of items would only 
support the development of one anchor point for each scale. The anchor point was 
at 0.4 for the Rasch scale for the primary level and 0.0 for the Rasch scale for the 
secondary level.

Note that the anchor points are not based on some predetermined amounts of 
skills and knowledge, but on the criterion of having sufficient items for a well- 
supported description. Therefore, they should not be interpreted as standards of 
performance but rather as descriptions developed to give substantive meaning to 
points on the scale. Figure 18.1 summarizes these initial steps in the procedure for 
selecting anchor points and developing the descriptions.

For the MPCK items at both the primary and secondary levels, the sets of items 
that matched the “can do” requirements and the “cannot do” requirements were 
determined. Each of the “can do” and “cannot do” sets were further divided into 
three subsets for the development of the anchor point description. The three subsets 
of items were (a) example items for use in describing the task to persons working on 
the descriptions, (b) a definition set for developing the initial descriptions of the 
anchor points, and (c) a validity set for use in checking and refining the descriptions. 
Each of the sets of items contained both “can do” and “cannot do” items. The items 
were collected into separate booklets for use in the anchor point description 
workshop.

For the MCK items, the process was more complex because items were needed 
for each of the two anchor points. First the “can do” items were identified for the 
upper anchor point and the “cannot do” items were identified for the lower anchor 

Item 
calibration -

Locate items 
on ability 

scale

Select probability 
of correct 

response (.70 or
above for can do 
items, and .50 or 
below for cannot

 do items)

Identify 
Anchor 

Points on 
ability scale

Identify items 
located above (can 

do items) and 
below (cannot do 

items) anchor 
points

Fig. 18.1 Summary of the initial steps in the anchor point procedure
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point. These items were then set aside to use for the descriptions. Then, from the 
items that were left, the “can do” items were identified for the lower anchor point, 
and the “cannot do” items were identified for the upper anchor point. This process 
gave non-overlapping sets of items for developing the anchor point descriptions. As 
with the MPCK items, the sets for each anchor point were divided into three subsets 
to use as (a) examples, (b) definition sets for initial descriptions of the anchor points, 
and (c) validation sets for refinement of the descriptions.

Once the anchor points and items were identified, the task shifted to developing 
the descriptions of what a person at each anchor point could and could not do. The 
descriptions were developed by mathematicians and mathematics educators from a 
number of universities and organizations from across the United States. Ten persons 
were recruited to work on the primary level anchor point descriptions and 11 were 
recruited to work on the secondary level anchor points. For each level, the partici-
pants were divided into small groups of three or four who initially worked indepen-
dently, but then shared their results at a later point in the process. The primary and 
secondary workshops each took two days.

At the beginning of the workshop sessions, the participants were told to review 
the sets of “can do” and “cannot do” items that they were given and to develop a 
description of a person who responded correctly to the “can do” items and incor-
rectly to the “cannot do” items. They were not to describe the items, but rather they 
were to describe the skills and knowledge of a person who responded to the items 
in the way indicated. They were to think about the person’s deficiencies in skills 
and knowledge that would cause them to provide incorrect responses to the “cannot 
do” items.

As the groups worked on developing the descriptions, they were also told that 
they would later be given new sets of items and would be asked to use their descrip-
tions to predict which items persons at the anchor point would answer correctly or 
incorrectly. Their descriptions would need to be sufficiently detailed to support 
making the predictions.

After each small group completed the first draft of their descriptions, they shared 
their work with the other small groups to determine similarities and differences. 
They were encouraged to revise their descriptions after the discussions to better 
reflect the skills needed to respond to the test items.

Once the groups were satisfied with the descriptions developed with the first set 
of items, they were given a second set of test items called a “validity” set. They were 
not told which items were “can do” or “cannot do” items. Their initial task was to 
predict based on the descriptions that they had written the items that belonged in 
each category. After they made their predictions, they were informed of the actual 
classification of the items and were asked how their descriptions could be revised so 
that they would improve their rate of correct classification. After the groups had 
made revisions based on the information from the validity item sets, there was a 
full-group discussion of the resulting descriptions, with the goal of merging the 
small-group results into a single description. Figure 18.2 summarizes the final steps 
in the procedure.
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 Results

The results of the anchor point process were (a) the selection of two anchor points 
for each of the MCK score scales and one anchor point for each of the MPCK 
scales; (b) the selection of “can do” and “cannot do” sets of items for each anchor 
point; and (c) the development of verbal descriptions of the skills and knowledge 
possessed by persons who were at the anchor points on each scale. The numerical 
values for the anchor points for Primary and Secondary and the MCK and MPCK 
tests are presented in Table 18.2. These values are on the reporting scales for the 
TEDS-M study, which is set to have a mean of 500 and standard deviation of 100 
for the full set of prospective teachers in the study.

The anchor points are more related to the characteristics of the items on the test 
than the capabilities of the prospective teachers because they were selected such 
that there would be sufficient items to support the development of descriptions. For 
the MCK scales, the anchor points are on either side of the overall mean of 500. This 
means that the center of the score distribution, with the highest density of prospec-
tive teachers, is in the region between the two anchor points. For the MPCK scales, 
the single anchor point that was selected is slightly above the mean for the sample 
of prospective teachers.

These anchor points are not standards of performance. There was no attempt to 
determine whether they define what is good enough for new teachers. They are 
intended to give information about the meaning of points on the scales so there 
would be content meaning associated with the abstract numerical values on the 
scale.

Verbal descriptions were developed for each of the anchor points—six descrip-
tions in all were produced—two for each MCK scale and one for each MPCK scale. 
The full descriptions along with short excerpts of the items that were used to gener-

Subsets of items selected:
1. Training set

2. Definition set
3. Validity set

Anchor point 
description workshop 

(after training, the 
definition set is used to 
develop anchor point 

descriptions)

Validation process 
(using descriptions 

to predict 
performance on the 

validity set and 
refine descriptions)

Fig. 18.2 Summary of the final steps in the anchor point procedure

Table 18.2 Anchor points on 
the MCK and MPCK scales

MCK MPCK

Primary 431 544
516

Secondary 490 509
559
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ate the descriptions are provided in the Appendix to this chapter. These descriptions 
refer to performance of persons who are located at specific points on the MCK and 
MPCK scales. They do not describe performance over the range of the scale between 
two points or above the higher anchor point. Prospective teachers who scored higher 
than an anchor point would have greater competence than the description indicates. 
Those scoring below a point would have more deficiencies. The descriptions associ-
ated with the anchor points on the scales allow richer interpretations of the scores 
than the numerical values alone.

An example of the kinds of information that the participants in the workshops 
would use to develop the descriptions is the following item pair (see Fig. 18.3). 
Prospective teachers could answer part 1 of this item with greater than a .70 prob-
ability, but they had less than a .50 probability of responding correctly to part 2. 
The anchor point descriptions that resulted from this were that prospective teachers 
were likely to “Solve word problems involving ratios of whole numbers (See 
Released Item MFC604A1) or sums of consecutive integers”, but were not likely to 
“Solve a word problem with a more complex linguistic or logical structure or one 
in which the choice of variable is not obvious. (See Released Item MFC604A2)”. 
Information from many pairs of items were used to develop the descriptions in the 
Appendix.

 Discussion

The descriptions provided in the Appendix give much more detail than is typically 
seen in descriptions attached points on IRT-score scales. The reason for the differ-
ence is the need to include nuances in the descriptions to account for the “cannot 
do” aspect of performance as well as the “can do” aspect. Further, typical descrip-
tions related to score scales use simple declarative sentences without any qualifying 
words. For example, the statement might say “can solve problems with fractions.” 

                1. [Peter], [David], and [James] play a game with marbles. They have 198 marbles 
altogether. [Peter] has 6 times as many marbles as [David], and [James] has 2 times as many 
marbles as [David]. How many marbles does each boy have?

                    2.  Three  children  [Wendy],  [Joyce]  and  [Gabriela]  have  198  zeds  altogether. 
[Wendy] has 6 times as much money as [Joyce], and 3 times as much as [Gabriela]. How many
zeds does each child have?

Solve each problem.

The following problems appear in a mathematics textbook for <lower secondary school>.

Fig. 18.3 Algebra Items MCF604A1 and MCF604A2
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This type of statement is unqualified, suggesting that a person at a point on the scale 
can solve all possible problems with fractions. In contrast to the typical statement, 
the description for Anchor Point 1 at the primary level is “able to solve some prob-
lems with fractions.” This subtle difference suggests that the more difficult prob-
lems with fractions do not have a high probability of being solved by a person at this 
point. In other words, there are limits to that person’s capabilities with fractions. 
Similar limitations are frequently included in the anchor point descriptions. For 
example, people at the primary Anchor Point 2 can find areas and perimeters of 
simple figures instead of all figures. These nuances were included because of the 
need to make predictions of performance on the validity sets of items. When the 
statements are left without qualifiers, they imply a higher level of performance than 
is actually observed.

For the primary and secondary MCK item sets, it was possible to give descrip-
tions to two anchor points that were 0.6 to 1.0 unit apart, respectively, on the Rasch 
scale. The result is that detailed information is provided about persons whose scores 
fall between the two anchor points: They know more than people at the lower point 
description do, and less than those at the upper point description. For example, at .6 
on the Primary MCK scale, teachers can solve some problems with fractions, but at 
1.0 on that scale they are competent using fractions. As they acquire the skills and 
knowledge needed to move the .4 points on that scale, they are refining their capa-
bilities to use fractions to solve problems.

It would be helpful to have more anchor points spaced along the IRT scale, but 
describing the capabilities at more points would require more test items that are well 
spread in difficulty. Further, those items would need to be calibrated using the IRT 
model, requiring more data acquired through either more testing time or more 
examinees. For the TEDS-M project, obtaining more data was not possible because 
of practical constraints present in the countries at the time of the study. Testing time 
could not be extended beyond one hour, and acquiring larger samples was either 
impossible or very expensive.

Deciding to select anchor points and develop the descriptions came fairly late in 
the TEDS-M study. This was because of the innovative nature of the full project and 
the complexities of working with multiple countries. Until the full set of data was 
collected, it was not possible to determine how many anchor points could be sup-
ported. Future studies can take advantage of what was learned during the TEDS-M 
study to plan for the use of anchor points and descriptions as part of the reporting 
process. Early planning would allow for more detailed reporting based on more 
anchor points and refined descriptions.

The anchor point description approach described here helps to give enhanced 
meaning to the score scale, so that the particular skills and knowledge acquired by 
a prospective teacher can be described. The approach is more nuanced than previous 
scale anchoring procedures because it considers both what a person at a point on the 
scale is likely to be able to do and what they are unlikely to be able to do. This 
should improve the interpretation of results of studies like TEDS-M.
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 Appendix1

 Anchor Point Descriptions for the Mathematics Content 
Knowledge Assessment of Future Primary Teachers

Anchor Point 1 Future teachers of primary school mathematics at Anchor Point 1 
are successful at performing basic computations with whole numbers, understand 
properties of operations with whole numbers, and are able to reason about related 
concepts such as odd or even numbers. They are able to solve some problems with 
fractions. Future teachers at this Anchor point are successful at visualizing and 
interpreting 2-dimensional and 3-dimensional geometric figures, and can solve sim-
ple problems about perimeter. They can also understand straightforward uses of 
variables and the concept of equivalence, and can solve problems involving simple 
expressions and equations.

Future teachers at Anchor Point 1 are able to apply whole number arithmetic in 
simple problem-solving situations, however they tend to over-generalize and have 
difficulty solving abstract problems and those requiring multiple steps. They have 
limited understanding of the concept of least common multiple, the number line, and 
the density of the real numbers. Their knowledge of proportionality and multiplica-
tive reasoning is weak. They have difficulty solving problems that involve coordi-
nates and problems about relations between geometric figures. Future teachers at this 
Anchor point can make simple deductions, but they have difficulty reasoning about 
multiple statements and relationships among several mathematical concepts.

Anchor Point 2 Future teachers at Anchor Point 2 are successful at the mathemati-
cal tasks at Anchor Point 1. In addition, future teachers at Anchor Point 2 are more 
successful than future teachers at Anchor Point 1 at using fractions to solve story 
problems, and recognize examples of rational and irrational numbers. They know 
how to find the least common multiple of two numbers in a familiar context, and can 
recognize that some arguments about whole numbers are logically weak. They are 
able to determine areas and perimeters of simple figures, and have some notion of 
class inclusion among polygons. Future teachers at Anchor Point 2 also have some 
familiarity with linear expressions and functions.

However, while future primary teachers at Anchor Point 2 can solve some prob-
lems involving proportional reasoning, they have trouble reasoning about factors, 
multiples, and percentages. They are unable to solve problems about area of obtuse- 
angled triangles involving coordinate geometry. They do not recognize applications 
of quadratic or exponential functions, and have limited skills in algebraic 
reasoning.

1 The anchor point descriptions were taken from Appendix Q of the TEDS-M Technical Report, 
Tatto (2013).
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Overall, future teachers at Anchor Point 2 do well on items testing “knowing,” 
and on standard problems about numbers, geometry, and algebra classified as 
“applying,” but they are not able to answer problems that require more complex 
reasoning in applied or non-routine situations.

Some specific examples of items at Anchor Point 1 and Anchor Point 2 follow.

Anchor Point 1 Following are examples of items on which future primary teachers 
at Anchor Point 1 answered successfully at least 70% of the time.

• Reason about fractions to interpret simple numerical statements relating to a 
word problem.

• Identify the least likely outcome for a simple random experiment involving frac-
tions with different denominators.

• Determine whether subtraction and division are commutative and addition is 
associative. (See released items MFC202A, B & C)

• Interpret a diagram of a pan balance to determine the mass of an unknown quan-
tity. (See released item MFC303) Determine whether the results of particular 
operations with even or odd numbers are odd or even. Recognize a net for a tri-
angular based prism. (See released item MFC501)

• Interpret a bar chart and some verbal clues to solve a problem about the number 
of items sold. (See released item MFC502A)

• Identify common rational numbers. (See released item MFC503B)

The following are examples of items on which future teachers at Anchor Point 1 
answered successfully less than 50% of the time.

• Determine whether subtraction of whole numbers is associative. (See released 
item MFC202D.)

• Identify the correct Venn diagram to illustrate the relation between four types of 
quadrilateral. (See released item MFC204)

• Understand that there are an infinite number of decimal numbers between two 
given numbers. (See released item MFC304)

• Find a linear algebraic rule to describe a general situation illustrated by a dia-
gram. (see released item MFC308)

• Find the area of a triangle drawn on a grid. (See released item MFC408)
• Identify an algebraic representation of a numerical relationship between three 

consecutive even numbers.

Anchor Point 2 Following are examples of items on which future teachers at 
Anchor Point 2 perform successfully at least 70% of the time.

• Identify the truth of a statement about the solvability of a word problem involv-
ing proportional reasoning.

• Determine whether subtraction of whole numbers is associative. (See released 
item MFC202D.)

• Determine the area of a walkway around a rectangular pool. (See released item 
MFC203)
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• Interpret Venn diagrams representing relationships between quadrilaterals. (See 
released item 204)

• Identify the solution to a word problem involving a rate and requiring some pro-
portional reasoning. (See released item 206A)

• Recognize whether some story problems correctly model the subtraction of two 
fractions.

• Identify the difference between the perimeter and area of a rectangle drawn on 
dot paper.

• Indicate whether π and 49  are rational or irrational. (See released items 
MFC503A & C.)

• Identify a future term in a linear rule represented visually. (See released item 
MFC508)

Following are examples of items on which future teachers at Anchor Point 2 
answered successfully less than 50% of the time.

• Use proportional reasoning to interpret numerical statements involving percent-
age relating to a word problem.

• Identify the true probability statement relating to a game involving two dice. (See 
released item MFC106)

• Write a correct statement about the reflection image of the point with coordinates 
(a, b) over the x-axis.

• Identify a set of geometric statements that uniquely define a square.
• Describe properties of the function defined by the ratio of the area and circumfer-

ence of a circle
• Identify whether -

3

2
 is rational or irrational. (See released item MFC503D)

• Determine the conditions for which one linear algebraic expression is greater 
than or equal to another. (See released item MFC509)

• Compare lengths on a cube and a cylinder with common dimensions. (See 
released item MFC 513)

 Anchor Point Descriptions for the Mathematics Pedagogical 
Content Knowledge Assessment of Future Primary Teachers

Anchor Point Future primary teachers at this Anchor Point are able to recognize 
the correctness of a teaching strategy for a particular concrete example, and are able 
to evaluate students’ work when the mathematics content is conventional or typical 
of primary grades. They are able to identify the arithmetic elements of single-step 
story problems that influence their difficulty. (See released item MFC505).

While future primary teachers at the primary MPCK Anchor point have some 
ability to interpret student solution methods, identify the skills inherent in a task and 
identify student difficulties, they may not be able to articulate them as clearly and 
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concisely as more able future teachers. (See released item MFC502B). Similarly, 
future teachers at this Anchor Point can partially identify and compare the attributes 
of the graphical representations of young children but not as well as their more able 
counterparts. (See released item MFC410).2

However future teachers at this Anchor Point may not know how to use concrete 
representations to support students’ learning (See released item MFC312), and may 
not recognize how a student’s thinking is related to a particular algebraic representa-
tion (See released item MFC108). They may not sufficiently understand some mea-
surement or probability concepts in order to reword or design a task. (See released 
item MFC307B).

Future teacher at this Anchor Point may not know why a particular teaching 
strategy would make sense (See released item MFC513), whether a strategy can be 
generalized to a larger class of problems, or if it will always work. They may be 
unaware of common misconceptions and unable to conceive useful representations 
of numerical concepts. (See released items MFC208A & B)

 Anchor Point Descriptions for the Mathematics Content 
Knowledge Assessment of Future Secondary Teachers

Anchor Point 1 Future teachers of lower secondary school mathematics who per-
form at Anchor Point 1 know concepts related to whole numbers, integers, and 
rational numbers, and can compute with them. They also can evaluate algebraic 
expressions and solve simple linear and quadratic equations, particularly those that 
are solvable by substitution or trial and error. They are familiar with standard geo-
metric figures in the plane and space, and can identify and apply simple relations in 
plane geometry. They are also able to interpret and solve more complex problems in 
number, algebra, and geometry if the context or the problem type is a commonly 
taught topic in lower secondary schools.

However, future teachers at anchor point 1 have difficulty describing general 
patterns, solving multi-step problems if they have complex linguistic or mathemati-
cal relations, and relating equivalent representations of concepts. They tend to 
over- generalize concepts, and do not have a good grasp of mathematical reasoning. 
In particular, they do not consistently recognize faulty arguments or are able to jus-
tify or prove conclusions.

Anchor Point 2 Future teachers who perform at Anchor Point 2 perform success-
fully at all the mathematics problems in Anchor Point 1. In addition, they seem to 
have a more robust notion of function, especially of linear, quadratic, and exponen-
tial functions, are better able to read analyze and apply abstract definitions and 

2 MFC410 and MFC502B are examples of where future teachers at the Anchor point have been 
awarded partial credit for their responses thereby indicating some proficiency.
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 notation, and have greater ability to make and recognize simple arguments, than a 
future lower secondary teacher at Anchor Point 1. They also know some definitions 
and theorems from university level courses such as calculus, abstract algebra, and 
college geometry, and can apply them in straightforward situations.

However, future teachers at Anchor Point 2 usually are not consistently success-
ful in solving problems stated in purely abstract terms, or with problems containing 
foundational material such as axiomatic systems in geometry. Additionally, they 
make errors in logical reasoning, such as not attending to all conditions of defini-
tions or theorems and confusing the truth of a statement with the validity of an argu-
ment, and are unable to recognize valid proofs of more complex statements. Even 
though they may be able to make some progress in constructing a mathematical 
proof, future teachers performing at anchor point 2 are not generally successful at 
completing mathematical proofs.

Some specific examples of items that future lower secondary teachers were suc-
cessful at solving at Anchor Points 1 and 2 follow.

Anchor Point 1 Following are examples of items on which future lower secondary 
teachers at this Anchor Point are successful at least 70% of the time.

• Solve a simple linear or quadratic equation and identify the smallest set of num-
bers to which the solution belongs.

• Solve word problems involving ratios of whole numbers (See Released Item 
MFC604A1) or sums of consecutive integers.

• Determine if angles in a triangle are congruent using given information.
• Determine the number of lines of symmetry in a regular polygon (See Released 

Items MFC808A1, A2, B1, and B2)
• Determine whether a given translation or reflection maps one figure to another.

The following are examples of items on which future teachers at Anchor Point 1 are 
successful less than 50% of the time.

• Solve a word problem with a more complex linguistic or logical structure or one 
in which the choice of variable is not obvious. (See Released Item MFC604A2)

• Generalize patterns involving linear and non-linear growth.
• Determine whether a given composite of transformations maps one figure to 

another.
• Solve equations in one variable and describe the solution set in the coordinate 

plane or space. (See Released Item MFC705A & B)
• Write a proof of a statement about the sum of two functions. (See released item 

MFC711)
• Identify an appropriate definition for a function that is continuous at a point.
• Identify consequences of replacing a particular axiom in geometry.
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Anchor Point 2 Following are examples of items on which future teachers at 
Anchor Point 2 are successful at least 70% of the time.

• Solve problems about properties of angles or triangles.
• Determine if the relation “is similar to” satisfies the reflexive, symmetric, and 

transitive properties.
• Identify a situation that is modeled by an exponential function. (See released 

Item MFC710 A, B & C)
• Identify consequences of replacing a particular axiom in geometry.
• Make some progress toward solving a problem about conditional probability.
• Write part of a proof related to the sum of two functions. (See released item 

MFC711)
• Recognize that a particular algebraic argument about the divisibility of a square 

of any natural number is a valid proof. (See released item MFC802B)

Following are examples of items on which future teachers at Anchor Point 2 are 
successful less than 50% of the time.

• Determine properties of absolute value.
• Find solutions to equations in the set of complex numbers or integers modulo 6.
• Interpret standard deviation when distributions are presented visually.
• Determine whether statements about abstract concepts are equivalent.
• Work with foundational materials such as axiomatic systems in geometry.
• Write a complete proof about the sum of two functions. (See Released Item 

MFC711)
• Solve problems about combinations. (See Released Item MFC804)

 Anchor Point Descriptions for the Mathematics Pedagogical 
Content Knowledge Assessment of Future Secondary Teachers

Anchor Point Future teachers who are at the Anchor Point on the Mathematics 
Pedagogical Content Knowledge scale have a variable range of knowledge of the 
lower secondary curriculum and of planning for instruction. For instance, they know 
prerequisite knowledge and steps for teaching a derivation of the quadratic formula 
(See Released Item MFC 712A, B, C & D) and can determine consequences of 
moving the concept of square root from the lower secondary to the upper secondary 
school mathematics curriculum. However, they have difficulty deciding what would 
be a helpful mathematics concept to use in a proof about isosceles triangles.

They also have some skill in enacting school mathematics. Future teachers at this 
Anchor Point can sometimes correctly evaluate students’ mathematical work. For 
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example, they can determine whether a student’s diagram satisfies certain given 
conditions in geometry, and they can recognize a student’s correct prose argument 
about divisibility of whole numbers. (See Released Item MFC709A).

However, they cannot identify the correct solution to a trigonometry problem, 
and cannot consistently apply a rubric with descriptions of three performance levels 
to evaluate students’ solutions to a problem about linear and non-linear growth.

Future teachers at this Anchor Point are successful at analyzing students’ errors 
when the students’ work involves single step or short explanations, but they are less 
successful at identifying or analyzing errors in more complex mathematical situa-
tions. For instance, future teachers at this level can identify an error in misreading a 
histogram (See Released Item MFC806B), but cannot explain why one word prob-
lem is more difficult for students than another (See Released Item MFC604B).

In general, future teachers’ own depth of mathematical understanding seems to 
influence their ability to interpret students’ thinking or to determine appropriate 
responses to students. Because future teachers at this level lack a well-developed 
concept of the meaning of a valid mathematical argument, they have difficulty eval-
uating some invalid arguments. In particular, they do not recognize that examples 
are not sufficient to constitute a proof (See Released Item MFC709B). They also are 
not able to recognize whether certain word problems correctly exemplify expres-
sions involving the division of fractions.
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Chapter 19
Examining Sources of Gender DIF 
in Mathematics Knowledge of Future  
Teachers Using Cross-Classified IRT Models

Liuhan Sophie Cai and Anthony D. Albano

Abstract Research on differential item functioning (DIF) has focused traditionally 
on the detection of effects. However, recent studies have investigated potential 
sources of DIF, in an attempt to determine how or why it may occur. This study 
examines variability in item difficulty in math performance that is accounted for by 
gender, referred to as gender DIF, and the extent to which gender DIF is explained 
by both person predictors (opportunity to learn [OTL]) and item characteristics 
(item format). Cross-classified multilevel IRT models are used to examine the rela-
tionships among item difficulty, gender, OTL, and item format. Data come from the 
U.S. cohort of an international study of future math teachers, the Teacher Education 
and Development Study in Mathematics.

 Introduction

Gender differences in math performance have been studied widely on many differ-
ent populations. Results of large-scale assessments such as the Programme for the 
International Student Assessment  (PISA) and the Trends in International 
Mathematics and Science Study (TIMSS) indicate consistently higher average 
math scores for male students across countries (Else-Quest, Hyde, & Linn, 2010). 
The Teacher Education and Development Study in Mathematics (TEDS-M) is an 
international study of teacher preparation programs and candidates that utilized 
different instruments than did PISA or TIMSS.  TEDS-M tested the math 
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proficiency of future primary and lower-secondary school teachers. We were inter-
ested to see whether the same gendered results from PISA and TIMSS would also 
manifest in TEDS-M.  Gender difference in math performance is of interest to 
many countries. An examination of measurement invariance of math assessments 
is necessary before any comparison of the test-level performance is carried out. 
Policy reforms and teaching practices may be informed by results from these 
assessments. Score comparability and measurement invariance over person sub-
groups is essential (Meredith, 1993). Measurement invariance is a statistical prop-
erty that is achieved for an assessment when item parameters do not vary 
meaningfully across person groups and person parameters do not vary meaning-
fully across time points or measurement conditions (Rupp & Zumbo, 2006). 
Differential item functioning (DIF), a special case of measurement invariance, is 
the result of lack of item parameter invariance (Hambleton, Swaminathan, & 
Rogers, 1991). Significant amounts of DIF in an assessment can invalidate score 
interpretations and compromise test fairness.

DIF results when variables other than the construct of interest have an influence 
on performance (Ackerman, 1992). An item is said to be free of DIF if all individu-
als with the same underlying ability or construct have equal probability of answer-
ing the item correctly, regardless of group membership (Hambleton et al., 1991). 
DIF detection involves the identification of items impacted by these extraneous 
variables. Numerous DIF analysis and detection techniques have been developed to 
examine invariance in both person and item parameters, including ones based on 
contingency tables (e.g., Holland & Thayer, 1988), regression models (e.g., 
Swaminathan & Rogers, 1990), item response theory models (IRT, e.g., Thissen, 
Steinberg, & Wainer, 1993), multidimensional models (e.g., Roussos & Stout, 
1996), structural equation models (e.g., Muthén, Kao, & Burstein, 1991), and mul-
tilevel models (e.g., Cheong, 2006; Kamata, 2001).

Traditionally, research on DIF has focused on the detection of biased assessment 
items (Kim, Cohen, Alagoz, & Kim, 2007). However, studies recently have investi-
gated how and why DIF may occur. Improvements in statistical modeling tech-
niques have made it possible to explore additional covariates as potential sources of 
DIF by measuring the extent to which these covariates account for variability in 
item difficulty parameters.

The present study uses data from TEDS-M to examine the overall variability of 
item difficulty parameters in math performance that is accounted for by gender. This 
variability in item difficulty parameters by gender is referred to as lack of measure-
ment invariance by gender or gender DIF. This study then investigates the extent to 
which gender DIF can be explained by both person predictors (i.e., opportunity to 
learn [OTL]) and item characteristics (i.e., item format). A cross-classified multi-
level IRT model framework is used to examine the relationships among item diffi-
culty, gender, OTL, and item format.

The following section first reviews previous work on the implementation of a 
multilevel item response model for testing item difficulty parameter invariance and 
how the model can be extended to explore sources of DIF. Previous research on 
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gender performance in math at both the test level and the item level is reviewed. 
The section ends with a summary of research on OTL, and the research questions 
that guided this study.

 Literature Review

 Modeling Parameter Variance

A variety of methods have been developed to investigate DIF. These methods typi-
cally involve multiple statistical tests for individual items or each pair of focal and 
reference groups. A limitation of using multiple statistical tests is the expected 
increase in false positives (Longford, Holland, & Thayer, 1993). Compared to the 
traditional DIF detection procedures, the logistic mixed model is more economical 
as it can detect DIF within an omnibus test, rather than by targeting individual items. 
DIF can be interpreted via significant interactions between item difficulty (at the 
item level) and group membership (at the person level). Sources of DIF can be 
explained by modeling item or person covariates through exploratory mixture model 
analysis (Cohen & Bolt, 2005; Van den Noortgate & De Boeck, 2005).

Previous research has demonstrated the formulation of traditional IRT models as 
multilevel logistic models (e.g., Adams, Wilson, & Wu, 1997; Kamata, 2001). In the 
basic one-parameter IRT or Rasch model (Rasch, 1960), the log-odds of correct 
response to item i for person j are modeled as
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Here, Yij represents the scored response of person j to item i (1 = correct, 0 = incor-
rect). Item responses are modeled as a logistic function of the difference between 
person ability θj and item difficulty bi. This model can also be reformulated as a 
cross-classified multilevel model with random person and random item effects (Van 
den Noortgate, De Boeck, & Meulders, 2003):
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In this two-level model, item responses are the level-one unit and persons and 
items are both level- two units. Thus, item responses are considered to be nested 
within persons and items, which are assumed to be random samples from popula-
tions of items and persons. The log-odds of correct response are modeled as a sum-
mation of the random item and person parameters u0i and u0j with γ0 representing the 
estimated log- odds of correct response for a person of average ability on an item of 
average difficulty.
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The baseline model in Eq.  19.2 is only a descriptive model. Item and person 
covariates can be incorporated into the model to examine DIF and its potential 
sources (Van den Noortgate & De Boeck, 2005). DIF can first be tested by allowing 
group effects to vary over items at level two (see examples below). When group 
main effect and item-by-group interaction effects are included in the model, the 
random effects of group over items represent the residual DIF. The model can be 
further extended by adding item predictors or person characteristics to explain the 
DIF. If the item or person covariates explain the DIF effects, one would expect that 
the group main effect on the additional item or person covariates would differ from 
zero and the variance of the random group effects over items would decrease.

 Gender

Gender effects in math achievement have been studied for decades. Researchers are 
especially interested in understanding and mitigating the underrepresentation of 
women in science, technology, engineering, and mathematics (STEM) disciplines 
(Hyde, Lindberg, Linn, Ellis, & Williams, 2008). Men are reported to achieve higher 
math scores than women in national and international large-scale assessments (e.g., 
Baker & Jones, 1993; Beller & Gafni, 1996; Gallagher & Kaufman, 2005; Gamer & 
Engelhard Jr., 1999). Meanwhile, research has consistently reported math and read-
ing achievement parity between genders in early grades, with increasing male 
advantages in math and female advantages in reading achievement as students move 
up through the grades (e.g., Willingham & Cole, 1997).

A considerable amount of research has documented the gender gap in mathemat-
ics performance at the overall test level. Hyde, Fennema, and Lamon (1990) con-
ducted a meta-analysis on gender effects on math performance. A weighted mean 
effect size of 0.15 was found from over 100 studies. This small effect size indicated 
that, overall, males outperformed females by a small but not negligible amount. The 
study also reported that starting from high school to college, the gender discrepancy 
favoring male students emerged in the area of complex problem solving and geom-
etry, but no gender differences existed in arithmetic or algebra performance.

A more recent meta-analysis reported similar findings. Lindberg, Hyde, Petersen, 
and Linn (2010) examined 242 studies of gender math performance from 1990 to 
2007 and found small gender variations in mean math achievement. However, the 
gender gap was not found to decline from 1990 to 2007. Performance differences 
favoring males peaked during high school, with an effect size of 0.23, and declined 
among college students. Furthermore, no gender variations in performance on dif-
ferent math content domains or depth of knowledge were found. In the same paper, 
Lindberg et al. (2010) conducted another meta-analysis using large national data 
sets collected after 1990  in the United States. The data sets yielded an average 
weighted effect size of 0.07, indicating a small male advantage in mean math per-
formance in the United States.
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Gender effects at the item level have been researched on different dimensions 
such as item difficulty, item format, and math content domain. Penner (2003) exam-
ined the relationship between gender differences and item difficulty in math items 
using the 1995 TIMSS data set. The study showed a general pattern of a male advan-
tage on easy math items and an increasing male advantage on more difficult math 
items. Other studies also have found significant gender-by-item difficulty interac-
tions. Bielinski and Davison (1998) studied the minimum competency math test 
outcomes and found that easy items tended to be easier for female students than 
male students, while harder items tended to be harder for female students than male 
students. The significant negative correlations (−.47 and −.43) between gender dif-
ferences in item difficulty, and in item difficulty estimated on the overall samples 
over the two studies, indicated that as item difficulty increased, the male advantage 
also increased. To extend their previous study, Bielinski and Davison (2001) used 
three national data sets and reported a similar phenomenon: Math tests with harder 
items generally favored men, and this gender variability grew in late adolescence.

Additional research has revealed that item format, most often expressed as either 
multiple choice (MC) or constructed-response (CR), is related to gender DIF; how-
ever, findings are inconsistent. Taylor and Lee (2012) analyzed state math tests by 
using the POLYSIBTEST DIF procedure and a Rasch procedure to explore gender 
DIF based on item format. Both procedures showed the same direction of DIF 
effects, where MC items favored male students and CR items favored female stu-
dents. Other studies have found similar results (e.g., Becker, 1990; DeMars, 1998; 
Gamer & Engelhard Jr., 1999). In contrast, Liu and Wilson (2009) examined item 
format and gender effects in math assessments using a multidimensional Rasch 
model. The results suggested no measurable gender differences on traditional MC 
items. However, a male advantage was found on CR items, though the effect sizes 
were small. The largest gender gap was found for complex MC items (an unconven-
tional item format) where male students significantly outperformed female students 
with an effect size of 0.19.

Mendes-Barnett and Ercikan (2006) used the data of 12th-grade students’ math 
exams to investigate the relationship between gender DIF and math content domain. 
Using differential bundle functioning analyses, they found that individual geometry 
items exhibited high DIF, especially those that used visuals. In the content area of 
computation, items with no equations were found to favor female students, while 
algebra items favored male students. Becker (1990) found that algebra items were 
more difficult for women than men, but suggested no significant difference between 
mean difficulties of women and men for arithmetic and geometric items. Conversely, 
in examining the math section of the SAT, Harris and Carlton (1993) found that after 
controlling for mean ability, men performed better on geometry items, while women 
performed better on algebra items. Among items showing DIF, eight out of 15 items 
came from geometry and measurement in favor of men, but none were from algebra. 
On the other hand, nine out of 16 items came from algebra in favor of women. Men 
also were found to have significant advantages in number and computation, data 
analysis, and proportional reasoning.
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Differential course taking by gender is a potential explanation for male advan-
tages in math performance (Meece, Parsons, Kaczala, & Goff, 1982). Beginning in 
high school, female students tend to take fewer advanced math and science courses 
in which students are trained intensively in problem-solving skills. However, in the 
United States, the gender gap in course enrollment is disappearing gradually. Gender 
differences in patterns of interest could be a factor that explains course choice 
 variations (Su, Rounds, & Armstrong, 2009). In addition, parents’ and teachers’ 
expectation discrepancy in math ability among males and females can play an 
important role in students’ course choices (Jacobs, DavisKean, Bleeker, Eccles, & 
Malanchuk, 2005; Eccles, 1994). Wiseman (2008) suggested that gender parity was 
achieved only when there was equity in enrollment, access to resources, and OTL 
for both males and females. Likewise, Else-Quest et al. (2010) concluded that cross-
national variability in differential math performance by gender was associated with 
country- level disparity in opportunity structures for females. Gender equity in 
school enrollment, women’s share of research jobs, and women’s parliamentary 
representation were found to contribute to variability in gender distinction in math 
performance.

 Opportunity to Learn

The concept of OTL was first introduced by the International Association for the 
Evaluation of Educational Achievement (IEA) in the 1960s in relation to differential 
math performance across countries (McDonnell, 1995). Husén (1967) described 
OTL in the context of testing as the opportunity to study a particular topic or learn 
how to solve a particular type of problem presented by the test. He argued that the 
likelihood of answering test items correctly would decrease subsequently if students 
have not had opportunities to learn the pertinent topics. The concept of OTL has 
evolved since this early work. OTL has been subsequently defined as the content 
coverage of knowledge, specifically the topics being taught, the relative emphasis 
on different aspects of a subject, and students’ achievements on the relatively impor-
tant aspects of the subject (Travers & Westbury, 1989). Differential OTL is reflected 
in the deviation from the opportunities a student is supposed to have, as established 
by curriculum at national, state, or district levels, from the educational opportunities 
a student actually is provided in class (Floden, 2002). The distinctions in OTL defi-
nitions suggest that OTL can be measured in various ways.

OTL has been used primarily to make cross-national comparisons. McDonnell 
(1995) suggested that OTL should be considered to ensure fairness when making 
performance comparisons. Through the examination of math textbooks and their 
use in lower-secondary classrooms, Haggarty and Pepin (2002) found that learners 
from different countries were provided with different types of math knowledge and 
were offered different levels of OTL in math. Research has also shown that, in inter-
national contexts, countries with higher levels of OTL outperform those with lower 
levels of OTL (e.g., Mullis, Martin, & Foy, 2008).
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OTL also has been researched at the individual level. Boscardin et al. (2005) used 
hierarchical linear modeling to investigate the impacts of various OTL variables on 
student outcomes in English and algebra. The first level in the model was the student 
level, where individual students were the unit of analysis. Students were nested within 
teachers at level two. Findings suggested that teacher expertise in these two content 
areas was positively correlated with student performance. Moreover, content cover-
age, as an indicator of OTL, also was found to have a consistently positive relation-
ship with outcomes from the algebra and English assessments. Specifically, with one 
more week spent on relevant content, there was an expected increase of 0.85 in alge-
bra test scores. One additional week covering English resulted in an increase of 1.59 
points on the English test. Additionally, Blömeke, Suhl, Kaiser, and Döhrmann (2012) 
found that among future primary teachers, OTL in math not only had a strong positive 
effect on math performance, but also a significant effect on math pedagogical content 
knowledge, presumably by mediating the effects of OTL in math pedagogy.

Relatively fewer studies have addressed the relationship between OTL and per-
son grouping variables with respect to item performance. Albano and Rodriguez 
(2013) used hierarchical generalized linear modeling to investigate parameter 
invariance over covariates at the student level. Item responses were nested within 
students. Gender and OTL were both examined as potential sources of variability in 
item difficulty parameters. A two-level model was used, where gender was the per-
son group covariate at level two and OTL was the person covariate at the same level. 
Future secondary teachers from three TEDS-M countries (Germany, Singapore, and 
the United States) were examined. For the Singapore cohort, item difficulty did not 
differ significantly by gender. In Germany, controlling for mean ability, items func-
tioned in favor of men. The inclusion of OTL impact effects and item-by-OTL inter-
action effects did not reduce the number of items showing gender DIF, though some 
items did function differentially by OTL; thus, OTL was not found to be a source of 
DIF in Germany. For the U.S. cohort, the best-fitting model included main effects 
for items, gender, and OTL, and the two-way interaction effects of item-by-gender 
and item-by-OTL. Difficulty estimates for eight out of 22 items were found to vary 
by gender when OTL was not included in the model. These items were initially 
identified as exhibiting gender DIF. When OTL main effect and item-by-OTL inter-
action effects were introduced to the model, the mean proportion correct was esti-
mated to increase by 0.15 logits for a one-unit increase in OTL. When these effects 
were introduced, three out of eight items were no longer found to display gender 
DIF. These results were taken to indicate that person-level OTL can mediate the 
relationship between item difficulty and gender. Thus, differential OTL may partly 
contribute to differential math performance by gender.

Burkes (2009) used multilevel-DIF methodology to examine item performance 
differences across two socioeconomic status (SES) groups. Results of the study 
revealed that eight out of 71 items exhibited DIF, all of which favored students with 
higher SES. However, when item difficulties and DIF effects for SES were modeled 
at the classroom level as a function of OTL, only one item still exhibited DIF. Because 
of unequal OTL, the seven items were systematically more difficult for students 
with lower SES. This study indicated that classroom-level OTL differences were the 
source of SES-based DIF.
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 Summary

Previous research has demonstrated the use of multilevel cross-classified models for 
examining covariates such as item and person characteristics as sources of variation 
in item difficulty parameters across multiple levels of nested data. Previous research 
also indicates that gender effects in mathematics are related to variables such as 
course-taking (e.g., Meece et  al., 1982), educational resources (e.g., Else-Quest 
et al., 2010), and item characteristics (e.g., Taylor & Lee, 2012). The purpose of this 
study is to use cross-classified models to examine the extent to which item difficulty 
on a math test varies by gender, item format, and OTL. This is realized by address-
ing three main research questions: (a) How does item difficulty on a math test differ 
by gender conditional on overall ability in a sample of future teachers? (b) To what 
extent does item format explain variability in item difficulty by gender? (c) To what 
extent does OTL explain variability in item difficulty by gender? These questions 
were examined using data from TEDS-M an international and comparative study of 
future mathematics teachers.

 Method

 Data

Data for this study came from TEDS-M future lower-secondary teachers. The target 
population was defined as future teachers in the final year of their teacher education 
programs who would be eligible to teach mathematics in secondary schools (Tatto 
et  al., 2008). Future secondary teachers from 15 countries participated in the 
TEDS-M study. The analyses in this study were conducted using the U.S. cohort, 
which contained data from 475 students (69% female, 31% male).

The TEDS-M study measured future teachers’ mathematics content knowledge 
(MCK) and mathematics pedagogical content knowledge (MPCK) as the outcomes 
at the end of secondary teacher education. The assessment was administered in a 
standardized and monitored test session with a 60-minute completion time. The 
present study used scored item responses from the MCK assessment. The MCK 
assessment contained a total of 76 items. Item formats were MC (multiple-choice 
and complex multiple-choice) and CR (constructed-response). There were 58 MC 
and 18 CR items. Each item fell into one of the four domains: number (27 items), 
geometry (23), algebra (22), and data (four).

In TEDS-M, OTL was measured at both the individual and program levels. This 
study used individual OTL, which was defined as future teachers’ occasion to learn 
about particular topics during the course of their teacher education. OTL in tertiary 
math topics was considered to be most relevant to secondary education. Tertiary 
OTL was based on the future secondary teachers’ responses to whether they had the 
opportunity to learn 19 topics in four key areas: (a) geometry (e.g., axiomatic 
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 geometry or analytic geometry), (b) discrete structures and logic (e.g., linear alge-
bra or number theory), (c) continuity and functions (e.g., multivariate or advanced 
calculus), and (d) probability and statistics (e.g., distributions).

Descriptive statistics for proportion correct scores on the MCK items and OTL 
by gender are provided in Table 19.1. The proportion correct was .10 higher among 
men. Also, in terms of OTL, men (M = 13.03, SD = 3.25) had a higher mean than 
women (M = 11.33, SD = 4.06), t(340.29) =  − 4.80, p < .05. The difference in OTL 
indicated that, overall, men had studied 1.6 more math topics than women. Women 
were found to have higher correlations between proportion correct and OTL than 
men. These descriptive statistics suggest that item level performance may be a func-
tion of gender, and that OTL may moderate the relationship between gender and 
performance.

Table 19.2 contains descriptive statistics for average proportion correct by gen-
der and item format. The mean proportion correct on MC and CR items were .08 
and .17 higher for men than women. Overall, both men and women performed bet-
ter on MC than CR items. The preliminary findings indicate that item format may 
influence the item-level performance for men and women in different ways.

 Models

In this study, model fit was compared for each model, with one model considered to 
be a reduced form of the subsequent model. Chi-squared likelihood ratio (χ2) tests 
were conducted to test the appropriateness of more complex models. AIC (Akaike 
information criterion) and BIC (Bayesian information criterion) were also used to 
understand model fit. If the χ2 was statistically significant and AIC was reduced for 

Table 19.1 Descriptive statistics by gender

Prop correct OTL

Gender N M SD M SD r

F 325 .56 .14 11.33 4.06 .52
M 149 .66 .13 13.03 3.25 .39

Note: Prop correct is the proportion correct score across the set of items administered to a student. 
r is the correlation between proportion correct and OTL

Table 19.2 Descriptive statistics by gender and format

Prop correct (MC) Prop correct (CR)

Gender N M SD M SD

F 325 .60 .13 .43 .22
M 149 .68 .13 .60 .21

Note: Prop correct is the proportion correct score across items with different formats
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a more complex model in comparison to another, then the additional terms in that 
model were considered statistically significant. BIC provided supplemental fit 
information. In some cases, this model fit comparison approach was used to deter-
mine statistical significance for sets of parameters. Thus, individual effects were 
tested as needed using two-sided Wald tests with an alpha level of .05.

The baseline Model M0 in Eq. 19.2 includes random effects for both items and 
people. Since the means of both residual terms are set to 0, the intercept represents 
the mean difficulty for a person with mean ability, or the estimated log-odds of a 
correct response for an average person on an average item. The larger the estimated 
value, the easier items would be for an average person. Model M1 includes a main 
effect for gender, where Genderj equals 0 if person j belongs to the reference group 
women, and 1 if person j belongs to the focal group men:

 0 1 0 0 .ij j i jGender u uh g g= + + +
 

(19.4)

In this model, γ0 estimates the mean performance for women, and γ1 estimates the 
difference in mean performance for men compared to women. Thus, mean perfor-
mance for men is expressed as (γ0 + γ1). The residual terms u0i and u0j still represent 
the random item and person effects.

Model M2 examines gender impact and item-by-gender interaction effects:

 0 1 1 0 0 .ij j i j i jGender u Gender u uh g g= + + + +
 

(19.5)

The residual term u0i now represents the random item effects for women, and u1i 
estimates the overall differential item effects for men compared to women. This 
model is used to examine gender DIF. Variance in u1i is taken as evidence of uniform 
DIF effects over gender groups. The random effects u0i and u1i can also be corre-
lated. A positive correlation indicates that after controlling for the overall perfor-
mance of all the people, the items with higher difficulty are harder for men. Item or 
person covariates would be included to explore DIF sources only if overall gender 
DIF is detected in Model M2.

Model M3 examines format impact and gender-by-format interaction effects. 
Formati is 0 if item i is MC, and is 1 if item i is CR. Format is added to the model as 
an item covariate to determine whether it contributes to DIF:

 

h g g g gij j i j i

i j i

Gender Format Gender Format
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1 0 ++ u j0 .  

(19.6)

γ0 now estimates the mean MC performance for women, and γ1 estimates the differ-
ence in MC performance for men. γ2 estimates the difference in CR performance 
compared to MC performance for women, and the interaction term γ3 then esti-
mates the difference in CR performance for men. This model can be used to exam-
ine how the inclusion of item format as an item covariate influences the gender DIF 
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effects (u1i). A statistically significant gender-by-item format interaction and/or a 
reduction in the variance of u1i would provide evidence that item format contributes 
to the explanation of gender DIF.

Model M4 includes an OTL main effect, where the grand mean-centered OTL 
(OTLj) is added to the model as a person covariate:
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g
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+
0 1 2 3
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(19.7)

The terms from Eq.  19.6 are now estimated while controlling for the impact of 
OTL. The additional term γ4 estimates the effect of OTL on performance, control-
ling for gender and item format. Model M5 then investigates OTL impact and item- 
by- OTL interaction effects:
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(19.8)

where u2i estimates OTL effects at the item level. If the item-by-OTL interaction 
effects are significant and variance in the gender DIF effects su i0

2  is reduced, there 
is evidence that OTL contributes to the explanation of DIF.

Model M6 examines two-way interaction effects between gender and OTL:
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where γ5 estimates the extent to which the overall impact of OTL differs between 
men and women, or the extent to which the overall gender effect differs by 
OTL. Finally, Model M7 adds the three-way interaction effects between items, gen-
der and OTL:

 

h g g g g

g g
ij j i j i

j

Gender Format Gender Format

OTL Gende

= + + + +

+
0 1 2 3

4 5 rr OTL u Gender u OTL

u Gender OTL u u

j j i j i j

i j j i j

+ + +

+ +
1 2

3 0 0 ,
 

(19.10)

where u3i estimates whether gender DIF for all items depends on OTL, or whether 
the impact of OTL at the item level differs by gender.

Models were fit sequentially based on significance. First, M2 was compared to 
M1, providing evidence of gender DIF.  Starting from M3, if the inclusion of a 
covariate significantly improved model fit and reduced DIF, this covariate remained 
in subsequent models; if the covariate did not improve fit or contribute to the expla-
nation of DIF, it was omitted from subsequent models.
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 Results

Models were fit using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) 
in the statistical environment R (R Development Core Team, 2015). Table 19.3 con-
tains results for fixed and random effects. Table 19.4 contains model fit results.

 Gender

In the baseline Model M0, the intercept was estimated at 0.44 logits (see Table 19.3); 
thus, the probability for an average student to give a correct response on an average 
item was .61. The student variance term indicated that, for a student with an ability 
of one standard deviation lower and one standard deviation higher than the average 
ability, the expected probabilities of giving a correct answer to an item with average 
difficulty were .45 and .75, respectively, as calculated from the anti-logs of 
0 44 0 43. .-( )  and 0 44 0 43. .+( ) . The size of the item variance indicated that for 

a student with an average ability, the probabilities of answering an item correctly 
with a difficulty of one standard deviation lower or one standard deviation higher 
than the average difficulty were .36 and .81, which were the anti-logs of 
0 44 1 01. .-( )  and 0 44 1 01. .+( ) .

Both M1 and M2 were found to have significantly better model fit over the previ-
ous models. As shown in Table 19.3 for M2, the gender effect, which represented 
the difference between women and men in mean performance, was 0.52 logits 

Table 19.3 Estimates of the parameters

Parameter Notation M0 M1 M2 M3 M4 M5 M6

Fixed
  Intercept γ0 0.44 0.28 0.27 0.50 0.55 0.55 0.55
  Gender γ1 0.52 0.52 0.40 0.25 0.30 0.30
  Format γ2 −0.98 −0.98 −1.00 −1.00
  Gender*Format γ3 0.50 0.09 0.34 0.34
  OTL γ4 0.52 0.09 0.09
  Gender*OTL γ5 −0.003
Random

  Student
0

2

jus 0.43 0.38 0.38 0.38 0.27 0.28 0.28

  Item
0

2

ius 1.01 1.01 1.14 0.97 0.97 1.02 1.02

  Gender*Item
1

2

ius 0.17 0.12 0.13 0.09 0.09

  OTL*Item
2

2

ius 0.005 0.005
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(z = 6.11, p < .001). The log-odds of correct response for women was 0.27 and for 
men was 0.79, corresponding to predicted probabilities of correct response of .57 
and .69. Additionally, the probability of correct response varied over students and 
items (

0

2

jus  = 0.38 and 
0

2

ius  = 1.14). Conditional on the same ability, the overall 
item difficulty varied between women and men (

1

2

ius  = 0.168). The improvement of 
M2 over M1 in model fit ( c 2

2  = 68.92, p < .001), with reduced AIC and BIC, indi-
cated the presence of statistically significant item by gender interaction effects, 
where items tended to show gender DIF. The negative correlation of the random 
effects u0i and u1i indicated that, controlling for overall performance, more difficult 
items were harder for women.

 Gender and Item Format

The next step was to examine whether item format was a source of DIF. By incor-
porating item format as a covariate, the model fit was significantly improved for M3 
over M2 ( c

2
 = 20.13, p < .001) with decreased AIC and BIC. As shown in Table 19.3 

for M3, the mean MC performance for women was 0.50 logits. Men’s mean MC 
performance was 0.40 logits higher. The corresponding predicted probabilities were 
.62 and .71 for women and men. Women performed worse in CR items than MC 
items by 0.98 logits. Moreover, the significance of the interaction term (γ3 = 0.50, 
z = 3.97, p < .001) indicated that compared to women’s performance on CR items, 
men outperformed by 0.50 logits, meaning that CR items favored men more than 
MC items regardless of the fact that men outperformed women in MC items. More 
importantly, regarding the reduction of DIF effects, not only were the interaction 
effects between gender and item format significant, but the variance of gender DIF 
(

1

2

ius ) was also reduced after the item covariate was introduced. The proportion of 
gender DIF effects across all the items explained by item format was .29 (= 0.17–
0.12/0.17), suggesting that item format contributed to DIF. Because the magnitude 
of DIF effects was still relatively large, analysis continued with item format remain-
ing in subsequent models.

Table 19.4 Model fit results

Model df AIC BIC Log Likelihood χ2 χ2 df p

M0 3 26627 26651 −13310
M1 4 26528 26560 −13260 100.62 1 <.001
M2 6 26463 26512 −13226 68.92 2 <.001
M3 8 26447 26511 −13216 20.13 2 <.001
M4 9 25640 25712 −12811 808.96 1 <.001
M5 12 25458 25554 −12717 188.49 3 <.001
M6 13 25460 25564 −12717 0.02 1  .880
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 Gender, Item Format, and OTL

M4 and M5 additionally examined OTL impact and item-by-OTL interaction 
effects. Both models fit significantly better than the previous ones (see Table 19.4). 
However, M6 was not found to improve model fit over M5 ( c

2
 = 0.02, p = .88); 

AIC and BIC values both increased. The interaction effects between gender and 
OTL were not significant (γ5 = −0.003, z = −0.15, p = .88). Thus, M5 was retained 
as the final model. As indicated in the last column (M5) in Table 19.3, the main 
effect of OTL was significant (γ4 = 0.09, z = 8.32, p < .001), indicating that a one-
point increase in OTL (one additional math topic being studied) corresponded to an 
increase of 0.09 logits in math performance, holding other variables constant. The 
improvement of M5 over M4 ( c

2
 = 188.49, p < .001), with reduced AIC and BIC, 

revealed that item-by-OTL interaction effects were significant; the random interac-
tion term (

2

2

ius  = 0.005) showed that item difficulty varied over different levels of 
OTL. DIF was explained in part by OTL; in addition to a statistically significant 
main effect for OTL, the effect of OTL varied in a statistically significant way over 
items. Most importantly, the variance over items between the gender groups (

1

2

ius ) 
was reduced from 0.12 to 0.09. The proportion of gender DIF that was explained by 
OTL was .25 (=0.12 − 0.09/0.12). Even though the interaction term between gender 
and OTL was found not to be significant, OTL mediated the relationship between 
item difficulty and gender. Therefore, for the U.S. cohort, it was concluded that both 
item format and OTL contributed to some extent to gender DIF.

 Discussion

This study was designed primarily to describe the relationships between mathemat-
ics item difficulty, gender, item characteristics (specifically item format) and person 
characteristics (specifically OTL) within the U.S. cohort of the TEDS-M data set. 
The study demonstrated how cross-classified models can be used to examine both 
item and person covariates as potential sources of uniform DIF. Results from this 
study also provide information about how future secondary teachers’ math perfor-
mance is influenced by gender, item format, and OTL.

Results from the final Model M5 indicated that, overall, men tended to have 
higher mean math performance than women. Men outperformed women by 0.30 
logits. The predicted mean proportion correct for women and men were .63 and .70, 
respectively. Thus, gender discrepancies in math performance existed in this study. 
The gender effect in this study is consistent with the findings from other research, 
where male advantages in standardized math tests have been reported (e.g., 
Langenfeld, 1997; Liu & Wilson, 2009). Math performance also tended to be higher 
on MC items than CR items; future teachers performed better on MC items than CR 
items by 1.00 logit. In addition, the interaction term indicated that, although women 
performed worse than men on both formats, the discrepancy between genders was 
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even larger on CR items, with an advantage for men. These results are consistent 
with the previous finding that men have an advantage in MC items, but the results 
contradict the finding of a female advantage on CR items (e.g., Beller & Gafni, 
2000; Bolger & Kellaghan, 1990).

When OTL increased, math performance tended to improve. A one-unit increase 
in OTL resulted in an increase of 0.09 logits in math performance. In other words, 
with one more topic studied among the four topics that OTL measures, there was an 
estimated increase in performance of 0.09 logits. The relationship between OTL and 
mean performance is in line with the positive correlations reported in Table 19.1 and 
in previous studies (e.g., Wang & Goldschmidt, 1999).

A DIF effect for gender was defined as the differential item effects of belonging 
to a specific group. Results indicated the presence of gender DIF effects. Effects 
were examined in an omnibus test where no specific DIF items were identified. The 
results indicated that throughout the 76 items, there were some items that func-
tioned differently between the gender groups. Conditioned on overall ability, more 
difficult items favored men more than women. Thus, it was evident that gender DIF 
existed.

Item format was tested to determine whether it was associated with gender 
DIF. Future teachers’ overall math performance on the two item formats depended 
on what gender group they belonged to. The magnitude of gender DIF across all the 
items was significantly reduced after the covariate item format was incorporated. 
The proportion of gender DIF effects explained by item format was .29. Results 
from the literature (e.g., Taylor & Lee, 2012) have confirmed the finding that item 
format was associated with gender DIF.

This study also revealed that with different levels of OTL, items functioned dif-
ferentially. Furthermore, the inclusion of OTL resulted in a significant reduction of 
random gender effects over items. The conclusion was that OTL mediated the rela-
tionship between item difficulty and gender for some DIF items. Nevertheless, the 
interaction between gender and OTL did not improve model fit; thus, the relation-
ship between OTL and overall performance did not differ significantly by gender. 
These results supported the findings of Albano and Rodriguez (2013) and Cheong 
(2006), where OTL was found to be related to DIF.

This study is an extension of the original study of Albano and Rodriguez (2013), 
who examined differential mathematics performance due to gender and OTL using 
hierarchical generalized linear modeling where person effects were viewed as ran-
dom and item effects as fixed. To investigate DIF sources, the present study used 
cross-classified multilevel models, in which both item and person effects were 
treated as random. Item-level and person-level covariates were then estimated 
simultaneously. In addition to using OTL as the person-level covariate, this study 
examined how item format could potentially explain variability in item difficulty 
and moderate the relationship between gender and item difficulty.

This study demonstrates the application of cross-classified multilevel models in 
educational research. The cross-classified multilevel model is a flexible tool for 
explaining potential DIF sources related to item and person characteristics. This 
approach results in more economical models, where DIF can be detected within an 
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omnibus test. This approach can be helpful in creating and adapting appropriate 
measurement tools when constructing or translating items. Moreover, with respect 
to person characteristics, researchers can take variables such as OTL into account 
and thus improve DIF detection and estimation. By doing so, the validity of group 
comparisons can be improved.

There are some limitations to the approach demonstrated in this study. Inadequate 
sample size may have resulted in a lack of precision when estimating complex 
model terms (e.g., gender-by-OTL interaction effects). A lack of power limits the 
possibility of incorporating more covariates that could potentially explain variabil-
ity in item difficulty by gender. Also, the measure of OTL only accounted for self- 
reported exposure to certain math content. Other important factors in measuring 
OTL, such as hours in class, quality of teachers’ feedback, and level of cognitive 
demand, are not included in the instrument, which can be problematic. Future stud-
ies should seek larger sample sizes and consider more comprehensive measures of 
OTL.

Additionally, important item features such as item content domain and cognitive 
subdomain could be explored as potential sources of gender DIF. Past research has 
shown that men and women tend to adopt different strategies when responding to 
certain problem characteristics (e.g., Bolger & Kellaghan, 1990; DeMars, 2000). 
Studies also have indicated that content and cognitive skills required in items are 
related to gender DIF in math (e.g., Gierl, Bisanz, Bisanz, & Boughton, 2003; Harris 
& Carlton, 1993). Furthermore, a third level of data nesting (e.g., institution level) 
could be incorporated to examine social and/or psychological context effects (e.g., 
Entwisle, Alexander, & Olson, 1994; Van den Noortgate & De Boeck, 2005). Future 
work could examine other important covariates at the item and person levels while 
also incorporating additional levels of nesting.
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Chapter 20
Standing the Test of Time: Validating 
the TEDS-M Knowledge Assessment Against 
MET II Expectations

Edward A. Silver and Jillian P. Mortimer

Abstract We report the results of a post hoc validation study in which publicly 
released TEDS-M knowledge assessment items for elementary teachers were vali-
dated against the specifications for teacher knowledge found in the Mathematical 
Education of Teachers II (MET II) report. The validation was based on the expert 
judgments of two authors of the MET II report. Raters reported a suitable match 
between specific MET II mathematical content and mathematical practice expecta-
tions for almost all TEDS-M items. Inter-rater agreement was very high regarding 
mathematical content expectations, but much lower for mathematical practices. 
Expert ratings indicated that TEDS-M released items mapped to some but not all 
MET II content domains. The findings suggest strong content validity for TEDS-M 
items in some respects though not in others.

Introduction

Because test scores are often used to make claims about the attributes of test-takers 
that go beyond what is observable in assessments, close examination of the plausi-
bility of such claims is necessary. In relation to claims about educational assess-
ment, an argument-based approach to validity is used to evaluate plausibility (Kane, 
2013). Along with reliability and fairness, validity is generally regarded as one of 
the most critical features of any educational assessment (AERA, APA, & NCME, 
1999; Pellegrino, Chudowsky, & Glaser, 2001).

E. A. Silver (*) · J. P. Mortimer 
University of Michigan, Ann Arbor, MI, USA
e-mail: easilver@umich.edu; jbpet@umich.edu

TEDS-M and the study contained in this chapter were supported by funding provided by a grant 
from the National Science Foundation Award No. REC – 0514431 (M.T. Tatto, PI). Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the author(s) 
and do not necessarily reflect the views of the National Science Foundation.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92144-0_20&domain=pdf
mailto:easilver@umich.edu
mailto:jbpet@umich.edu


564

One component of an argument for the validity of an assessment is the alignment 
between the assessment and a set of content standards (AERA, APA, & NCME, 
1999; Ananda, 2003; Case, Jorgensen, & Zucker, 2004; Resnick, Rothman, Slattery, 
& Vranek, 2003; Webb, 1997). This is similar to what Messick (1989) referred to as 
content validity. Expert judgments about what a test item measures or the content 
domain covered by a test are usually made during test development or soon after, 
often by subject matter experts involved in the development of the test. Typically, 
these judgments involve examining the test items in relation to a test specification 
framework or a set of learning outcomes that the test is intended to assess.

Although expert review of test content to determine alignment is a well- 
established and almost universally followed procedure for assessments in academic 
content subject areas such as mathematics, the adequacy of this kind of judgment- 
based validity evidence has received some criticism (e.g., Guion, 1977). In particu-
lar, when the experts making the judgments are also involved in the test development 
process, the process tends to be highly subjective, and it has a strong confirmatory 
bias (Kane, 2001). Moreover, even when done well, the expert judgments during the 
test development process or shortly thereafter can be made quite a long time before 
the results of an assessment are reported. To the extent that public or professional 
views of the content domain of interest may be altered during the intervening period, 
the validity evidence provided by the original expert review is no longer current and 
is weakened as an argument for the validity of interpretations from the assessment.

While recognizing the important role of expert review during, or shortly after the 
test development process, we argue that it might be useful to examine the validity 
argument for an assessment at multiple time points. In particular, post hoc reviews 
might be useful after the release of assessment results and prior to the revision of an 
assessment for subsequent administration. We argue that these subsequent reviews 
could and should be based on views of the content domain of interest that differ 
from the views that applied during the original content validity review process. In 
this way, the examination of content validity of a test can be refreshed and updated 
to enhance the validity of the interpretations of performance on the test.

In this chapter, we report an example of a post hoc review of the mathematics 
knowledge assessment developed for and used in the Teacher Education and 
Development Study in Mathematics (TEDS-M). In doing so, we illustrate what a 
post hoc validation process might look like and how it might be valuable both in 
interpreting the findings of TEDS-M and in revising the TEDS-M knowledge 
assessment for future use. We used The Mathematical Education of Teachers II 
(MET II) report (Conference Board of the Mathematical Sciences, 2012) as the 
referential framework for this post hoc validity analysis.

Across the world there is large-scale consensus about the mathematics needed by 
secondary school teachers of mathematics; namely, the equivalent of an undergradu-
ate mathematics minor or major. But there is far less consensus regarding the knowl-
edge needed by elementary school teachers of mathematics. In some countries, the 
expectations are similar to those for secondary school mathematics teachers but in 
other countries far less mathematics would be expected. For this reason, we focused 
our attention on the TEDS-M assessment of elementary teachers of mathematics.

We chose the MET II report because it is one of the most recent in a long line of 
efforts to specify what mathematics teachers need to know to be well prepared to 
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teach at the elementary and middle-grades level, and because it was created and 
published under the auspices of the Conference Board of Mathematical Sciences 
(CBMS), which is a consortium of mathematics professional organizations. Thus, 
we view MET II to be a strong, contemporary representation of the mathematical 
sciences community’s view of the mathematical knowledge needed by elementary 
and middle-grades teachers. As such, and because the TEDS-M assessment was cre-
ated and used prior to the publication of the MET II document, we judged the MET 
II report to be a reasonable choice as a referential framework for a post hoc valida-
tion of the TEDS-M mathematics knowledge assessment.

 Methods

 Representations of Teacher Knowledge

Teacher Education and Development Study in Mathematics (TEDS-M) The 
TEDS-M assessment was developed, with the support of the International 
Association for the Evaluation of Educational Achievement (IEA), by the research 
centers at Michigan State University (MSU) and the Australian Council for 
Educational Research (ACER), along with national research coordinators (NRCs) 
in 17 participating countries between 2006 and 2011 (Tatto, 2013). The goal of 
TEDS-M was to learn more about how primary and lower-secondary teachers are 
prepared to teach mathematics and the impact of teacher education programs in 
various countries. To achieve this goal, the researchers drew representative samples 
of teacher preparation institutions, teacher educators, and future teachers from 17 
countries, including over 15,000 primary pre-service teachers, over 9,000 lower- 
secondary pre-service teachers, and around 5,000 teacher educators in 500 pre- 
service teacher education institutions (Tatto, 2013).

TEDS-M includes a variety of measures of factors that are thought to influence 
future teachers’ mathematical knowledge. In this study, we focus on the mathematics 
content knowledge and mathematics pedagogical content knowledge assessment for 
elementary teachers that was administered near the end of the teacher preparation pro-
grams in participating countries. TEDS-M identified three categories for each assess-
ment item: knowledge type (content knowledge or pedagogical content knowledge), 
content domain (number, geometry, data or algebra) and process (reasoning, knowing, 
enacting, curriculum/planning, or applying). Figure 20.1 shows examples of the types 
of questions asked within each knowledge type, content domain, and process.

The assessment consisted of 124 items, from which a subset of 34 items was 
publicly released. We used only the publicly released items for the analysis reported 
in this paper. The released items were chosen to be “representative of the different 
domains in the test and to represent the different types of items used” (M. T. Tatto, 
personal communication, January 23, 2015). Table 20.1 shows the percent of items 
in the complete TEDS-M assessment and the percent of released items that were 
categorized by the TEDS-M staff with respect to content domain, sub-domain or 
process, knowledge type, item format, and mathematical level.
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Validity Evidence for TEDS-M Items While constructing the knowledge assess-
ment items, creators of the TEDS-M assessment went through a process to ensure 
content validity: “At each stage of the item development process, expert panels 
examined the content validity and appropriateness of the items. These reviews took 
into consideration clarity, correctness, cultural relevance, classification within the 
framework of domains and subdomains, relevance to teacher preparation, and cur-
ricular level” (Tatto et al., 2008, p. 35). Items were piloted in 11 countries, and deci-
sions to include or exclude items were made based on item statistics as well as 
instances of translation-related problems (Tatto, 2013).

The Mathematical Education of Teachers II (MET II) The MET II document 
was developed by a team of U.S. mathematicians and mathematics educators to 
inform faculty involved in teacher education, including those in university mathe-

Fig. 20.1 Examples of TEDS-M assessment items categorized by knowledge type, content 
domain and process

Item,

Knowledge 

Type,

Content 

Domain,

Process
MFC 204

MCK

Geometry 

Knowing

Three students have drawn the following Venn diagrams showing the relationships between four 

quadrilaterals:

Which student’s diagram is correct?

A.

B.

C.

[Tian] 1 

[Rini] 2

[Mia] 3 

MFC208A

MPCK

Number

Enacting

[Jeremy] notices that when he enters 0.2 × 6 into a calculator his answer is smaller than 6, and when he enters 6 

÷ 0.2 he gets a number greater than 6. He is puzzled by this, and asks his teacher for a new calculator!

(a) What is [Jeremy’s] most likely misconception?

MFC308

MCK

Algebra

Applying

A square table can seat four people, one on each side. When 5 square tables are placed side by side, as shown 

below, 12 people can sit around them, 5 on each side and 2 on the ends.

How many people can sit around n square tables when they are placed side by side? Write your answer to the 

problem in terms of n.

The following problem was given to children in <primary> school

The graph shows the number of pens, pencils, rules, and erasers sold by a store in one week. 

Rectangles (RE), Parallelograms (PA), Rhombuses (RH), and Squares (SQ).
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matics departments, and policy makers about the mathematical knowledge needed 
by teachers in the elementary, middle, and secondary grades (CBMS, 2012). This 
updated version of the MET II document was prompted in part by the adoption of 
the Common Core State Standards (CCSS) by most states. The MET II document 
identifies items of content knowledge, each called an essential idea (EI), that teach-
ers of mathematics at different grade-level ranges should know. In the document, it 
is argued that, in addition to knowing EIs associated with specific mathematics con-
tent, teachers at all grade levels should know the Common Core State Standards for 
Mathematical Practice (SMPs), which relate to processes such as problem solving, 
reasoning, and communication.

In this study, we used only the MET II EIs for elementary and middle-grades 
teachers. Although this study only considers the TEDS-M assessment for elemen-
tary pre-service teachers, we included the expectations for both levels because the 

The names of the items are missing from the graph. Pens were the item most often sold. Fewer erasers than any 
other item were sold. More pencils than rulers were sold.  

How many pencils were sold?

A. 40

B. 80

C. 120

D. 140

MFC505 

MPCK 

Number 

Curriculum

/Planning

A <Grade 1> teacher asks her students to solve the following four story problems, in any way they like, 

including using materials if they wish.

Problem 1: [Jose] has 3 packets of stickers. There are 6 stickers in each pack. How many stickers does [Jose] 

have altogether? �

Problem 2: [Jorgen] had 5 fish in his tank. He was given 7 more for his birthday. How many fish did he have 

then?

Problem 3: [John] had some toy cars. He lost 7 toy cars. Now he has 4 cars left. How many toy cars did [John] 

have before he lost any?�

Problem4: [Marcy] had 13 balloons. 5 balloons popped. How many balloons did she have left?

The teacher notices that two of the problems are more difficult for her children than the other two.

Identify the TWO problems which are likely to be more DIFFICULT to solve for <Grade 1> children. 

Problem _______ and Problem _______

Fig. 20.1 (continued)
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TEDS-M assessment was created to meet international norms and was designed to 
stretch beyond the specifics required within the target grade span. MET II identified 
six mathematical knowledge domains for elementary teachers (Counting & 
Cardinality, Operations & Algebraic Thinking, Number & Operations in Base Ten, 
Number & Operations-Fractions, Measurement & Data, and Geometry) and six 
domains for middle-grades teachers (Ratio & Proportional Relationships, The 
Number System, Expressions & Equations, Functions, Geometry, and Statistics & 
Probability). Within each domain, MET II specified one or more EIs. Table 20.2 
shows the number of EIs in each domain as specified by MET II. Note that Geometry 
has more EIs than other domains because there are geometry domains for both ele-
mentary teachers and middle-grades teachers, and we have collapsed these into one 
geometry domain with all the corresponding EIs, thereby reducing the total number 
of domains from 12 to 11.

Table 20.1 Percent of items in the primary assessment as compared to the released item set by 
item characteristic

All primary assessment items 
(%)

Released primary assessment items 
(%)

Content domain
Number 35.5 29.4
Geometry 28.2 23.5
Algebra 26.6 35.3
Data 9.7 11.8
Sub-domain
Applying 22.6 23.5
Enacting 18.5 11.8
Knowing 33.9 44.1
Reasoning 11.3 2.9
Curriculum/Plan 13.7 17.6
Knowledge dimension
MCK 67.7 70.6
PCK/MPCK 32.3 29.4
Item format
Multiple choice 23.4 44.1
Complex multiple 
choice

61.3 26.5

Constructed response 15.3 29.4
Mathematical level
Novice 24.2 38.2
Intermediate 46.0 32.4
Advanced 29.8 29.4
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 Expert Raters

To explore the content validity of the TEDS-M elementary knowledge assessment 
with respect to the MET II EIs, we solicited the judgments of two experts in math-
ematics education who were among the authorship team for the MET II document; 
one was a mathematics teacher educator, and one was a mathematician.

 The Rating Task

The raters worked independently. Each rater was given the released TEDS-M 
assessment items, descriptions of the MET II EIs for elementary and middle-grades 
teachers with a naming convention that we created, a list of the SMPs, and a record-
ing tool. For each TEDS-M assessment item the raters were asked to identify, if 
possible, both a MET II EI and an SMP that best fit the item.

For the EI assignment, raters were given the list of all 42 of the MET II EIs and 
asked to choose one, if any, that best fit each TEDS-M item. The MET II EIs were 
organized by domain so that there was a domain at the top of each column in the 
recording tool and a drop-down list of the EIs that fell under the corresponding 
domain as well as an “Other” option, which was intended for use in cases when a 
rater judged that an assessment item fell under a particular domain but did not fit 
with any of the specific EIs listed for that domain in the MET II document. Also, if 
a rater determined that additional EIs corresponded to an item, the rater could iden-
tify any secondary EIs in the “Notes” column in the recording tool.

For the SMP assignment, raters were given a list of the eight SMPs and asked to 
choose one, if any, that best fit each TEDS-M item. As with the EIs, if a rater deter-
mined that additional SMPs corresponded to an item, the rater could identify any 

Table 20.2 Frequency of EIs 
in each MET II domain MET2 domain

Number of EIs 
within domain

Counting and cardinality 1
Operations and algebraic thinking 3
Number and operations in base ten 3
Number and operations-fractions 4
Measurement and data 4
Geometry 8
Ratio and proportional relations 5
The number system 5
Expressions and equations 3
Functions 2
Statistics and probability 4
Total 42
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secondary SMPs in the “Notes” column in the recording tool. Because the SMPs 
were not organized by domain, there was no “Other” option for the SMP 
assignment.

This process yielded at most one EI and one SMP as the primary EI and SMP for 
each rater for each TEDS-M assessment item. For some items, secondary EIs or 
SMPs might also be identified by a rater.

Each rater completed this task individually, and the identity of the other rater was 
not revealed until after the ratings were completed. Following some preliminary 
analyses, we conducted follow-up interviews with individuals that were intended to 
help us understand expert raters’ thinking regarding select items, specifically items 
they identified as Other within a particular domain and items where they identified 
more than one EI or SMP. Then we conducted a follow-up discussion with both rat-
ers to explore items on which the expert raters disagreed, assigning different EIs or 
SMPs to assessment items. The goal of these discussions was not to have the raters 
come to a consensus but to understand how different thinking about the mathemati-
cal content of assessment items or about the meaning of MET II EIs or SMPs could 
result in different ratings.

 Inter-Rater Agreement

To assess inter-rater agreement we used Cohen’s kappa (Banerjee, Capozzoli, 
McSweeney, & Sinha, 1999). This measure determines the amount of agreement 
between two raters with a correction for the expectation that some of the agreement 
is expected purely by chance. Because of differences in the ways in which EIs and 
SMPs could be matched with items, we separated these judgments in our examina-
tion of the strength of agreement between the raters.

MET II Essential Idea Agreement Agreement between raters regarding the MET 
II EIs could reasonably be based on one or more of three different pairwise compari-
sons: identical agreement, domain agreement, and secondary agreement.

Identical agreement refers to those instances when the raters assigned the same 
MET II EI as the primary classification for an item. Domain agreement refers to 
those instances when the raters differed regarding the specific EI but assigned as the 
primary classification a different EI from the same MET II content domain.

An example of domain agreement is shown below in Fig. 20.2. Though raters 1 
and 2 did not assign the same EI to item MFC308, both agreed that EIs within the 
MET II domain Expressions and Equations (EAE) mapped to the item. Rater 2 
chose EAE1, which is described as “viewing numerical and algebraic expressions 
as ‘calculation recipes,’ describing them in words, parsing them into their compo-
nent parts, and interpreting the components in terms of a context” (CBMS, 2012, 
p. 42), while rater 1 selected EAE2, which is described as “examining lines of rea-
soning used to solve equations and systems of equations” (CBMS, 2012, p. 42).
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Secondary agreement refers to those instances when raters disagreed regarding 
the primary EI but were in agreement when a secondary assignment was consid-
ered. An example of Secondary agreement for item MFC108 is shown below in 
Fig. 20.3. Expert rater 1 assigned FUN1—“examining and reasoning about func-
tional relationships represented using tables, graphs, equations, and descriptions of 
functions in words. In particular, examining how the way two quantities change 
together is reflected in a table, graph, and equation” (CBMS, 2012, p. 43)—to the 
item, and expert rater 2 assigned EAE1 to the item. These EIs are neither identical 
nor drawn from the same domain, but expert rater 2 also indicated FUN1 as a sec-
ondary assignment for the item. This was coded as an instance of secondary 
agreement.

SMP Agreement We similarly calculated instances of rater agreement for SMPs, 
except that the category of domain agreement was not applicable to SMPs because 
they are not organized based on domains. Thus, we calculated only identical agree-
ment and secondary agreement.

 Representation of MET II EIs in the TEDS-M Knowledge 
Assessment

Following the agreement calculations, we examined the representation of the differ-
ent MET II EIs within the released TEDS-M items. We first grouped all of the EIs 
by domain to give a more succinct and manageable picture of the representation of 
the kinds of content included in the EIs. Then we counted the number of times 
expert raters assigned an EI from each domain to a TEDS-M assessment item.

MFC308. A square table can seat four people, one on each side. When 5 square tables are placed side by side, as 

shown below, 12 people can sit around them, 5 on each side and 2 on the ends.

       How many people can sit around n square tables when they are placed side by side? Write your answer to the

problem in terms of n.  

Item Expert rater 1 Expert rater 2

MFC308 EAE2 EAE1

Fig. 20.2 Example of domain agreement

20 Standing the Test of Time: Validating the TEDS-M Knowledge Assessment…



572

 Results

 The Ratings Task

In 100% of cases the raters were able to assign either a MET II EI or a rating of 
Other within a domain (e.g., Functions Other) to TEDS-M items. Additionally, 
expert raters were able to assign SMPs to TEDS-M items in 82% of the cases. When 
assigning EIs to TEDS-M assessment items, the raters assigned 16 of the possible 
42 EIs, and these 16 EIs were drawn from nine of the 11 MET II content domains. 
For six items, raters assigned a domain but designated Other rather than any of the 
specific EIs associated with the domain.

We examined the strength of agreement between the raters in assigning EIs to the 
TEDS-M items. On 56% of the items, the two raters assigned the identical EI as 
primary, and on an additional 32% of the items, they assigned EIs as primary from 
within the same MET II content domain. There was only one instance of secondary 
agreement for the EIs, so we eliminated that from further consideration in our anal-
ysis of results. Cohen’s kappa for domain-level (i.e., identical EI assignment or 
assignment of EIs within the same domain) inter-rater agreement was .86; adding 
secondary inter-rater agreement boosted Cohen’s kappa to .89.

We also examined the strength of agreement between the raters in assigning 
SMPs to the TEDS- M items. On 21% of the items, the two raters assigned the iden-
tical SMP as primary, and on an additional 21% of the items, they had secondary 
agreement on an SMP assignment. Cohen’s kappa for SMP inter-rater agreement 

MFC108. [Amy] is building a sequence of geometric figures with toothpicks by following the pattern shown below. 

Each new figure has one extra triangle. Variable t denotes the position of a figure in the sequence.

In finding a mathematical description of the pattern, [Amy] explains her thinking by saying:

Variable n represents the total number of toothpicks used in a figure. Which of the equations below best represent 

[Amy’s] statement in algebraic notation?

A. n = 2t + 1 
B. n = 2(t + 1) – 1 

C. n = 3t – (t – 1) 
D. n = 3t + 1 – t 

Notes

Expert rater 1 FUN1

Expert rater 2 EAE1 Also related to FUN1

Fig. 20.3 Example of secondary agreement
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(either primary or secondary) was .33. Landis and Koch (1977) offer guidelines for 
interpreting Cohen’s kappa: values <0 indicate no agreement, values between  
.00–.20 indicate slight agreement, .21–.40 indicate fair agreement, .41–.60 indicate 
moderate agreement, .61–.80 indicate substantial agreement, and .81–1.00 indicate 
almost perfect agreement. Using these guidelines, the inter-rater agreement for the 
MET II EIs can be categorized as almost perfect agreement and for the SMPs as fair 
agreement. This aligns with the raters’ own reports in the follow-up interviews that 
the SMPs were more challenging to assign both because they were not as well 
specified as the EIs, and, in many instances, more than one SMP could be seen as 
related to an item depending on the approach taken to solve a task. The uncertainty 
of interpretation and multiplicity of possibly applicable practices might also be 
reflected in the relatively frequent incidence of secondary agreement for the SMPs, 
as compared to secondary agreement for the EIs.

 Rater Agreement with Respect to Item Characteristics

Table 20.3 shows the percent agreement between the raters in their EI assignments, 
either identical agreement or domain agreement, with respect to the dimensions of 
item variation identified by the TEDS-M assessment creators (content domain, pro-
cess, knowledge type, item format, and mathematical level). As reported above, the 
overall percentage of items on which the raters had identical agreement was roughly 
twice that of the items on which they had domain agreement. As the data presented 
in Table 20.3 show, this ratio was not observed uniformly for all item characteris-
tics. For instance, raters frequently had identical agreement in assigning EIs for 
TEDS-M items classified as Geometry or Data, but raters were not as likely to have 
identical agreement for items classified within the domains of Number or Algebra. 
Also, with respect to the TEDS-M process classifications of items, raters were more 
likely to reach domain agreement for items classified as “knowing” than was the 
case for items within other process categories. Some variations can also be seen in 
regard to knowledge type or item format categories.

 Representation of MET II EI Domains in the TEDS-M 
Knowledge Assessment

Ratings indicated considerable variation in the representation of the MET II domains 
within the TEDS-M items. Table 20.4 shows the number of times an EI from each 
domain was used in assigning EIs to TEDS-M assessment items.

EIs in the domains of Measurement and Data, The Number System, and 
Expressions and Equations were assigned more than 15 times each. Overall, EIs 
from these domains comprise 71% of the ratings. In contrast, EIs from the other 
domains were used infrequently, with EIs from Counting and Cardinality and 

20 Standing the Test of Time: Validating the TEDS-M Knowledge Assessment…



574

Table 20.3 Percent agreement in assigning EIs by item characteristics

Identical agreement (%) Domain agreement (%)

Content domain
Number (10 items) 30.0 60.0
Geometry (8 items) 75.0 12.5
Algebra (12 items) 50.0 41.7
Data (4 items) 75.0 0.0
Process
Applying (8 items) 62.5 25.0
Enacting (4 items) 75.0 0.0
Knowing (15 items) 40.0 53.5
Reasoning (1 items) 100.0 0.0
Curriculum/Plan (6 items) 66.7 16.7
Knowledge type
MCK (24 items) 50.0 41.7
MPCK (10 items) 70.0 10.0
Item format
Multiple choice (15 items) 60.0 26.7
Complex multiple choice (9 items) 44.4 55.6
Constructed response (10 items) 60.0 20.0
Mathematical level
Novice (13 items) 61.5 30.8
Intermediate (11 items) 54.5 27.3
Advanced (10 items) 50.0 40.0

Table 20.4 Frequency of EI 
assignment by MET II 
content domain

MET II domain
EI assignment 
frequency

Counting and cardinality 0
Operations and algebraic thinking 2
Number and operations in base ten 6
Number and operations-fractions 0
Measurement and data 16
Geometry 5
Ratio and proportional relations 4
The number system 17
Expressions and equations 15
Functions 1
Statistics and probability 2
Instances where no EI was assigned 0
Total 68
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Number and Operations-Fractions not being assigned at all. The omission of EIs 
related to Counting and Cardinality may be explained by the relative simplicity of 
items that would likely fall into this domain. However, fractions are foundational in 
mathematics at the elementary grades and are exceptionally difficult for students.

Domain agreement occurred in four of the nine domains in which raters assigned 
EIs to items: Geometry, Ratio and Proportional Relations, The Number System, and 
Expressions and Equations. Table 20.5 gives more details about these four domains 
and the way they were treated within the raters’ judgments.

As the leftmost column indicates, the domains of The Number System and 
Expressions and Equations generated judgments of domain agreement much more 
frequently than did the domains of Geometry and Ratio and Proportional Relations. 
This variation in frequency of assignment corresponds roughly to the variation in 
frequency data provided in the center column showing the total number of times that 
the raters assigned EIs from each domain to TEDS-M released items. These data 
seem to suggest that the set of released TEDS-M test items may over-represent cer-
tain EIs within the MET II domains of The Number System and Expressions and 
Equations in comparison with the representation for the domains of Geometry and 
Ratio and Proportional Relations.

Nevertheless, the ratio of items where domain agreement occurred to the number 
of items where EIs from the domain were assigned was similar for these four 
domains. In particular, the Geometry domain contains eight different EIs, and so 
one might expect there to be more opportunities for domain agreement than in the 
case of The Number System domain with only five EIs. However, this was not the 
case. It is unclear whether this is due to the small number of items that were assigned 
EIs from the Geometry domain or because the Geometry EIs were more distinct and 
thus easier to assign unambiguously.

An examination of the specific EIs that were assigned in domains where domain 
agreement occurred more than once could provide information about the distinc-
tiveness, or lack of distinctiveness, among the different EIs. The four instances of 
domain agreement that occurred in The Number System (TNS) all occurred on a 
four-part task where one rater assigned TNS5 and the other assigned TNS Other. 
This likely shows that the item may not have been an exact fit to TNS5 but was at 
least related to The Number System domain, rather than suggesting a lack of dis-
tinctiveness among EIs in The Number System domain.

Table 20.5 Domains for which “domain agreement” occurred

Domain
Number of Items with 
domain agreement

Frequency of assignment 
of EIs from domain

Number of EIs 
within domain

Geometry 1 5 8
Ratio and 
proportional 
relations

1 4 5

The number system 4 17 5
Expressions and 
equations

5 15 3

20 Standing the Test of Time: Validating the TEDS-M Knowledge Assessment…



576

In the five instances of domain agreement in Expressions and Equations there 
was more variation in the items and in the EIs assigned. For instance, in three cases 
one rater assigned EAE1: “Viewing numerical and algebraic expressions as ‘calcu-
lation recipes,’ describing them in words, parsing them into their component parts, 
and interpreting the components in terms of a context” (CBMS, 2012, p. 42), and 
the other rater assigned EAE2: “Examining lines of reasoning used to solve equa-
tions and systems of equations” (CBMS, 2012, p. 42). The three items where EAE1 
and EAE2 were assigned all required the test taker to write an equation or identify 
an equation that could be used to represent a particular mathematical situation. It 
makes sense that either of these two EIs could fit reasonably with such tasks, as both 
an understanding of the parts of the equation and the reasoning used to create and 
solve the equation are necessary.

 Discussion

The results of this study demonstrate that it is both feasible and useful to conduct a 
post hoc examination of the validity argument for a mathematics assessment. Our 
expert raters had no prior affiliation or association with the TEDS-M mathematics 
knowledge assessment, and they were deeply familiar with the more recently pub-
lished MET II recommendations regarding mathematical knowledge needed for 
teaching. They were able to complete the validation exercise without any reported 
difficulty.

Regarding the substance of their judgments concerning the mathematics content 
assessed by TEDS-M, they assigned MET II essential ideas to almost all of the 
TEDS-M items, and they did so with a generally high degree of agreement using the 
criterion of total agreement. This was noted for all the dimensions of variation iden-
tified by TEDS-M, including content domain, mental process, knowledge type, item 
format, and mathematical level. Thus, the overall findings offer a resoundingly affir-
mative response to the central validation question of interest: Do the TEDS-M items 
assess mathematical knowledge that is important for teachers to know as judged by 
contemporary standards?

Is total agreement a reasonable criterion to use? The extent of agreement would 
certainly be much lower if we used the criterion of identical agreement, but we think 
that would be an unreasonably restrictive criterion for the purposes of this study. 
Given that we are conducting a post hoc validation study, rather than a matching of 
test items to its own design framework or to a set of pre-specified objectives, we 
think that a less restrictive criterion is in order. The measure of total agreement 
reflects well the extent to which the raters judged TEDS-M items to be tied to essen-
tial ideas within the MET II content domains, and we take this to be a strong indica-
tor of content validation for the purposes of this study.

Though the findings are generally quite supportive with regard to the validity of 
inferences from TEDS-M mathematics knowledge assessment items about the MET 
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II essential ideas, there were two findings that were at least somewhat discordant. 
One was the finding regarding the spotty coverage of MET II content domains, and 
the other was the finding regarding the standards for mathematical practice.

The raters’ judgments revealed unevenness of the correspondence between 
TEDS-M items and MET II content domains. To the extent that one expects the 
TEDS-M assessment to be used to make valid inferences about teacher knowledge 
across the full spectrum of mathematics content knowledge for elementary school 
teachers, this finding raises some doubts. Raters judged very few items to be related 
to EIs in the domain of statistics and probability, and the raters judged no items as 
corresponding to EIs in the MET II domain of Number & Operations-Fractions. 
Because these two domains are foundational in elementary mathematics education, 
this finding suggests a need for further examination to determine whether it is attrib-
utable simply to omissions in the selection of publicly released items, or, instead, it 
reveals a limitation in the content coverage of the TEDS-M assessment.

The full set of TEDS-M items was not available to us to extend our analysis and 
probe this issue more deeply, but the TEDS-M project leaders provided us with 
descriptions of all the assessment items. The descriptions of several items (none of 
which were in the set of released items) suggested that they were likely to assess 
aspects of fraction knowledge. Because these items were not part of our study, we 
cannot be certain that our raters would have associated these items with MET II EIs 
related to fractions, so it is unclear how this information should affect interpretation 
of reported results from the TEDS-M mathematics assessment. Nevertheless, the 
evidence of potentially spotty coverage of MET II content domains in the TEDS-M 
assessment items should be useful to those who might wish to revise the assessment 
for future use.

Regarding the standards for mathematical practice, to which the MET II report 
refers but does not specify in detail, we found that the expert raters did map these 
onto TEDS-M items with great frequency. They associated SMPs with more than 
80% of the TEDS-M items, but they did so with far less inter-rater agreement. They 
agreed in less than half of the cases where they assigned one or more SMPs to a 
TEDS-M item. On the one hand, it is notable that the expert raters assigned an SMP 
to more than 80% of the assessment items, especially because test items typically 
provide little opportunity for mathematical processes to emerge. On the other hand, 
it is equally noteworthy that they seldom agreed with each other about which SMP 
was associated with a particular item.

It is not possible for us to know from the data collected in this study why there 
was so much variation between the raters in assigning SMPs to items, but we specu-
late that this finding may have less to say about the validity of the TEDS-M assess-
ment and more to say about a lack of clarity, even among experts in the field, about 
the precise meaning of the SMPs. Alternately, it is possible that raters made differ-
ent judgments about the ways in which test takers would approach TEDS-M items, 
and this led them to expect distinct solution pathways for items that were in turn 
associated with different SMPs. More investigation of the possible ramifications of 
this finding is needed.
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 Coda

We began this chapter by arguing the potential value of post hoc examination of the 
validity argument for an educational assessment. We reported herein such an analy-
sis of the mathematics knowledge assessment developed for and used in the 
TEDS-M study. In this chapter, we illustrated how a post hoc validation study might 
be conducted and how the findings might be interpreted in reasonable ways to pro-
vide valuable information both for those who wish to interpret the findings of 
TEDS-M in light of contemporary views of the mathematical knowledge needed by 
elementary teachers and for those who might wish to revise the TEDS-M knowl-
edge assessment for future use.

Beyond the possible value of a study like this for purposes of post hoc validation, 
we would argue that this kind of cross-framework comparison could be broadly use-
ful to the field. Given the proliferation of different conceptualizations and assess-
ments of the knowledge needed to teach mathematics from professional 
organizations, state and national policy entities, and scholars of teacher education, a 
careful examination of the similarities and differences among different representa-
tions of this knowledge seems useful to inform both researchers and teacher 
educators.

A clear conceptualization of what teachers need to know to be successful teach-
ers of mathematics would allow researchers to better study this knowledge and the 
ways in which it affects students. Understanding the similarities and differences 
among these different conceptualizations would give teacher educators more guid-
ance in deciding what to teach pre-service and in-service teachers in order to posi-
tively impact students. The study reported here is a specific example of what we 
hope will be a larger-scale effort to accumulate and integrate across disparate views 
of the mathematical knowledge needed by elementary school teachers.
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