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Optimal Power Allocation for Downlink
NOMA Systems

Yongming Huang, Jiaheng Wang and Jianyue Zhu

6.1 Introduction

With the popularity of smartphones and Internet of Things, there is an explosive
demand for new services and data traffic for wireless communications. The capacity
of the fourth-generation (4G) mobile communication system is insufficient to satisfy
such ademand in the near future. Thedevelopment of thefifth-generation (5G)mobile
communication system has been placed on the agenda with higher requirements in
data rates, latency, and connectivity [1]. In order to meet the new standards, some
potential technologies, such as massive multiple-input–multiple-output (MIMO) [2],
millimeter wave [3], and ultra densification [4, 5], will be introduced into 5G. Mean-
while, new multiple access technologies, which are flexible, reliable, and efficient in
terms of energy and spectrum, are also considered for 5G communication.

Conventionally, cellular systems have adopted orthogonal multiple access (OMA)
approaches, in which wireless resources are allocated orthogonally to multiple users.
The commonOMA techniques include frequency-division multiple access (FDMA),
time division multiple access (TDMA), code-division multiple access (CDMA), and
orthogonal frequency-divisionmultiple access (OFDMA). Ideally, inOMA, the intra-
cell interference does not exist as result of dedicated resource allocation. Also, for
this reason, the information of multiple users can be retrieved at a low complexity.
Nonetheless, the number of served users is limited by the number of orthogonal
resources, which is generally small in practice. Consequently, it is difficult for OMA
systems to support a massive connectivity.

Recently, non-orthogonal multiple access (NOMA) technologies are developed
and proposed for 5G, which will contribute to disruptive design changes on radio
access and alleviate the scarcity of suitable spectra. By using superposition coding

Y. Huang (B) · J. Wang · J. Zhu
Southeast University, Nanjing 210096, China
e-mail: huangym@seu.edu.cn

J. Wang
e-mail: jhwang@seu.edu.cn

J. Zhu
e-mail: zhujy@seu.edu.cn

© Springer International Publishing AG, part of Springer Nature 2019
M. Vaezi et al. (eds.), Multiple Access Techniques for 5G Wireless Networks
and Beyond, https://doi.org/10.1007/978-3-319-92090-0_6

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92090-0_6&domain=pdf


196 Y. Huang et al.

at the transmitter with successive interference cancellation (SIC) at the receiver,
downlink NOMA allows one (frequency, time, code, or spatial) channel to be shared
bymultiple users simultaneously [6, 7], thus leading to better performance in terms of
spectral efficiency, fairness, or energy efficiency [8]. Therefore, NOMA has received
much attention recently. Its combinations with MIMO and multi-cell technologies
were studied in [9, 10] and [11], respectively. NOMAwas also considered to be used
in, e.g., visible light communication [12] and millimeter wave communication [13].

The principle of NOMA is to implement multiple access in the power domain
[14]. Hence, allocation is critical for NOMA systems. In the literature, there are a
number of works on power allocation for NOMA. In particular [15, 16] focused
on power allocation in a two-user NOMA system and [17–21] investigated power
allocation for multiple users (more than two) sharing one channel, which is referred
as multi-user NOMA (MU-NOMA). There were also some works, e.g., [12, 22–28],
studying the resource allocation problems in multi-channel NOMA (MC-NONA)
systems, where multiple channels are available for NOMA. Different criteria, such
as maximin fairness [18–20, 22], sum rate [15–17, 22, 28–30], and energy efficiency
[21–23, 26], were considered.

This chapter focuses on power allocation for downlink NOMA. We first briefly
review the basic concepts of downlink NOMA transmission and introduce the two-
user NOMA, MU-NOMA, and MC-NOMA schemes. Then, we investigate the opti-
mal power allocation strategies for these NOMA schemes under different perfor-
mance criteria such as the maximin fairness, sum rate, and energy efficiency along
with user weights and quality-of-service (QoS) constraints.We show that the optimal
NOMA power allocation can be analytically characterized in most cases, otherwise
it can be numerically computed via convex optimization methods.

This chapter is organized as follows. Section6.2 introduces the fundamentals of
downlink NOMA and the two-user NOMA,MU-NOMA, andMC-NOMA schemes.
In Sects. 6.3–6.5, we investigate the optimal power allocation for two-user NOMA,
MU-NOMA, andMC-NOMAschemes, respectively. The performance of theNOMA
power allocation strategies is evaluated in Sect. 6.6 via simulations, and the conclu-
sion is drawn in Sect. 6.7.

6.2 Fundamentals of Downlink NOMA

In this section, we review the basic concepts of downlink NOMA transmission in a
single-cell network.1 To begin with, we start from the simplest two-user case, where
a base station (BS) serves two users, namely UE1 and UE2, on the same frequency
band with bandwidth B. The BS transmits a signal sn for user n (UEn , n = 1, 2)with
transmission power pn . The total power budget of the BS is P , i.e., p1 + p2 ≤ P .
Such a simple downlink NOMA system is displayed in Fig. 6.1 [31].

1For multi-cell NOMA, the reader is referred to [11].
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Fig. 6.1 A downlink NOMA system with one base station and two users

Superposition Coding: According to the NOMA principle, the BS exploits the
superposition coding and broadcasts the signal

x = √
p1s1 + √

p2s2 (6.1)

to both users. The received signal at UEn is

yn = hn
(√

p1s1 + √
p2s2

) + zn, (6.2)

where hn = gnd
−ρ
n is the channel coefficient from the BS to UEn , gn follows a

Rayleigh distribution, dn is the distance between the BS and UEn , ρ is the path loss
exponent, and zn is the additive white Gaussian noise with zero mean and variance
σ 2
n , i.e., zn ∼ CN

(
0, σ 2

n

)
.

Successive InterferenceCancellation (SIC): InNOMAsystems, each user exploits
SIC at its receiver. Let Γn = |hn|2 /σ 2

n be the channel-to-noise ratio (CNR) of UEn .
Assume without loss of generality (w.l.o.g.) that the users are ordered by their nor-
malized channel gains as Γ1 ≥ Γ2, i.e., UE1 and UE2 are regarded as the strong and
weak users, respectively. It is expected that more power is allocated to the weak user
UE2 and less power is allocated to the strong user UE1, i.e., p1 ≤ p2 [14, 25]. Then,
UE1 first decodes the message of UE2 and removes it from its received signal, while
UE2 treats the signal of UE1 as interference and decodes its own message.

Achievable Rate: Suppose that the channel coding is ideal and UE1 is able to
decode the message of UE2 successfully. Then, the achievable rates of UE1 and UE2

are given respectively by

R1 = B log (1 + p1Γ1) , R2 = B log

(
1 + p2Γ2

1 + p1Γ2

)
(6.3)
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which are often used as the design objectives of NOMA systems.
Multi-UserNOMA (MU-NOMA): Consider amore general casewhere aBS serves

N ≥ 2 users on the same spectrum,which are indexed byn = 1, . . ., N. The broadcast
signal by the BS is then given by

x =
N∑

i=1

√
pi si (6.4)

and then the received signal at each UEn is given by

yn = hn

N∑

i=1

√
pi si + zn. (6.5)

Similarly, suppose that the users are ordered by their normalized channel gains as

Γ1 ≥ Γ2 ≥ · · · ≥ ΓN (6.6)

and the NOMA protocol allocates higher powers to the users with lower CNRs,
leading to p1 ≤ p2 ≤ · · · ≤ pN . Therefore, UEn is able to decode the message of
UEl for l > n and remove it from the received signal so that UEn is only interfered
by UE j for j < n. Therefore, after SIC, the achievable rate of UEn is

Rn = log

(

1 + pnΓn
∑n−1

j=1 p jΓn + 1

)

(6.7)

for n = 1, . . . , N .
Multi-Channel NOMA (MC-NOMA): The frequency band shared by the users

could be viewed as a channel, which may also be a time slot, spread code, or resource
block. In cellular systems, there are often multiple channels available, which leads to
a more general NOMA scheme called multi-channel NOMA (MC-NOMA), where
multiple users share multiple channels. Specifically, in a downlink MC-NOMA net-
work, the BS serves N users through M channels and the total bandwidth B is
equally divided to M channels so the bandwidth of each channel is Bc = B/M . Let
Nm ∈ {N1, N2, ..., NM } be the number of users using channelm form = 1, 2, . . ., M
and UEn,m denotes user n on channelm for n = 1, 2, . . . , Nm . The signal transmitted
by the BS on each channel m can be expressed as

xm =
Nm∑

n=1

√
pn,msn, (6.8)

where sn is the symbol of UEn,m and pn,m is the power allocated to UEn,m . The
received signal at UEn,m is
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yn,m =
Nm∑

i=1

√
pi,mhn,msi + zn,m . (6.9)

It is easily seen that on each channelm is an MU-NOMA scheme. Similarly, assume
w.l.o.g. that the CNRs of the users on channel m are ordered as

Γ1,m ≥ · · · ≥ Γn,m ≥ · · · ≥ ΓNm ,m, (6.10)

which will lead to p1,m ≤ · · · ≤ pn,m ≤ · · · ≤ pNm ,m . Then, the achievable rate of
UEn,m using SIC is

Rn,m = Bc log

(

1 + pn,mΓn,m

1 + ∑n−1
i=1 pi,mΓn,m

)

. (6.11)

The basic idea of NOMA is to implement multiple access in the power domain
[14].Hence, power allocation is the key to achieve the full benefit ofNOMAtransmis-
sion. In the following parts,wewill investigate the optimal power allocation strategies
for different NOMA schemes, including the simplest two-user case, the MU-NOMA
scheme, and the MC-NOMA scheme, under different performance measures.

6.3 Two-User NOMA

In this section, we investigate the optimal power allocation for the two-user NOMA
scheme. Although the two-user scheme is the simplest case of NOMA, the results
and insights obtained in this case will serve the more complicated MU-NOMA and
MC-NOMA schemes.

6.3.1 Optimal Power Allocation for MMF

The NOMA scheme enables a flexible management of users’ achievable rates and
provides an efficient way to enhance user fairness. A widely used fairness metric
is the maximin fairness (MMF), which is achieved by maximizing the worst (i.e.,
minimum) user rate. According to (6.3), the power allocation to achieve the MMF is
given by the solution to the following optimization problem:

TUMMF : max
p1,p2

s.t.

min {R1(p1, p2), R2(p1, p2)}
0 ≤ p1 ≤ p2, p1 + p2 ≤ P

This problem admits a closed-form solution as follows.
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Proposition 1 Suppose that Γ1 ≥ Γ2. Then, the optimal solution to TUMMF is given
by p �

1 = Λ and p�
2 = P − p�

1, where Γl � |hl |2 /σ 2
l and

Λ �
− (Γ1 + Γ2) +

√
(Γ1 + Γ2) 2 + 4Γ1Γ

2
2 P

2Γ1Γ2
. (6.12)

Proof Please refer to the proof of Proposition 1 in [22].

Remark 1 It can be verified that at the optimal point R1(p�
1, p

�
2) = R2(p�

1, p
�
2), i.e.,

UE1 and UE2 achieve the same rate. This indicates that, under the MMF criterion,
the NOMA system will provide absolute fairness for two users on one channel.

To elaborate another important insight, we introduce the following definition.

Definition 1 A NOMA system is called SIC stable if the optimal power allocation
satisfies p1 < p2 on one channel.

Remark 2 In NOMA systems, SIC is performed according to the order of the CNRs
of the users on one channel [14, 25],which is guaranteed by imposing an inverse order
of the powers allocated to the users, i.e., p1 ≤ p2. Specifically, UE1 (the stronger
user) first decodes the signal of UE2 (the weaker user) and then subtracts it from the
superposed signal. Therefore, from the SIC perspective, a large difference between
the signal strengths of UE2 and UE1 is preferred [32]. However, even with the power
order constraint p1 ≤ p2, the power optimization may lead to p1 = p2; i.e., UE1

and UE2 have the same signal strength, which is the worst situation for SIC. In this
case, SIC may fail or has a large error propagation and thus is unstable. Indeed, the
authors in [33] pointed out that the power of the weak user must be strictly larger than
that of the strong user, otherwise the users’ outage probabilities will always be one.
Definition 1 explicitly concretizes such a practical requirement in NOMA systems.

Lemma 1 The NOMA system is SIC stable for TUMMF.

Proof Please refer to the proof of Lemma 1 in [22].

Indicated by Lemma 1, the two-user NOMA system is always SIC stable under the
MMF criterion, as in this case the optimal power allocation always satisfies p�

1 < p�
2.

On the other hand, in the subsequent subsections, we will show that a NOMA system
may not always be SIC stable under different criteria.

6.3.2 Optimal Power Allocation for SR Maximization

In this subsection, we seek the optimal power allocation for maximizing the sum rate
(SR). In SRmaximization, to take user priority or fairness into account, user weights
or quality-of-service (QoS) constraints are often adopted.



6 Optimal Power Allocation for Downlink NOMA Systems 201

6.3.2.1 Weighted SR Maximization (SR1)

According to (6.3), the problem of maximizing the weighted SR (WSR) is given by

TUSR1 : max
p1,p2

W1R1(p1, p2) + W2R2(p1, p2)

s.t. 0 ≤ p1 ≤ p2, p1 + p2 ≤ P

where Wi denotes the weight of UEi for i = 1, 2. Note that TUSR1 is a nonconvex
problem due to the interference between UE1 and UE2. Nevertheless, its optimal
solution can be found as follows.

Proposition 2 Suppose that Γ1 ≥ Γ2, W1 < W2 and P > 2Ω , with

Ω � W2Γ2 − W1Γ1

Γ1Γ2 (W1 − W2)
. (6.13)

Then, the optimal solution to TUSR1 is given by p�
1 = Ω and p�

2 = P − p�
1.

Proof Please refer to the proof of Proposition 2 in [22].

Remark 3 In Proposition 2, the conditions W1 < W2 and P > 2Ω are both to avoid
a failure of SIC. Indeed, if W1 ≥ W2, the solution to TUSR1 is p�

1 = p�
2 = P/2 ;

i.e., the NOMA system is unstable according to Definition 1. SIC may also fail if
P ≤ 2Ω , whichwill lead to p�

1 = p�
2 = P/2 aswell. Therefore, the two-user NOMA

system is SIC stable for theWSRmaximization if and only ifW1 < W2 and P > 2Ω .

6.3.2.2 SR Maximization with QoS (SR2)

Now, we consider maximizing the SR with QoS constraints. In this case, the power
allocation problem is given by

TUSR2 :
max
p1,p2

R1(p1, p2) + R2(p1, p2)

s.t. 0 ≤ p1 ≤ p2, p1 + p2 ≤ P
Ri ≥ Rmin

i , i = 1, 2.

where Rmin
i is the QoS threshold of UEi . The optimal solution to TUSR2 is provided

in the following result.

Proposition 3 Suppose that Γ1 ≥ Γ2, A2 ≥ 2, and P ≥ Υ , with

Al = 2R
min
l , Υ � A2(A1 − 1)

Γ1
+ A2 − 1

Γ2
, 	 � Γ2P − A2 + 1

A2Γ2
. (6.14)

Then, the optimal solution to TUSR2 is given by p�
1 = 	 and p�

2 = P − p�
1.
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Proof Please refer to the proof of Proposition 3 in [22].

Remark 4 Similarly, in Proposition 3, the conditions A2 ≥ 2 and P ≥ Υ are to
guarantee the SIC stability. Indeed, if A2 < 2, then	 > P/2 and the optimal solution
will be p�

1 = p�
2 = P/2, which may lead a failure of SIC. At the same time, SIC may

also fail if P < Υ , which will lead to p�
1 = p�

2 = P/2 as well. Therefore, the NOMA
system is SIC stable in this case if and only if A2 ≥ 2 and P ≥ Υ .

According to Proposition 3, if the NOMA system is SIC stable, the optimal solu-
tionwill be p�

1 = 	 and p�
2 = P − p�

1. Hence, we have R2(p�
1, p

�
2) = Rmin

2 , implying
that the user with a lower CNR (i.e., UE2) receives the power to meet its QoS require-
ment exactly, while the remaining power is used to maximize the rate of the user
with a higher CNR (i.e., UE1).

6.3.3 Optimal Power Allocation for EE Maximization

In this subsection, we investigate the optimal power allocation for maximizing the
energy efficiency (EE), which is defined as the ratio between the rate and the con-
sumed power. Similarly, user weights and QoS constraints are considered.

6.3.3.1 Weighted EE Maximization (EE1)

The problem of maximizing the weighted EE is formulated as follows:

TUEE1
a : max

p1,p2
η = W1R1(p1,p2)+W2R2(p1,p2)

PT +p1+p2

s.t.0 ≤ p1 ≤ p2, p1 + p2 ≤ P

where PT is the power consumption of the circuits. Given the fraction form of the
objective, TUEE1

a is more complicated than TUSR1. In the following, we show that
this problem can also be optimally solved.

We introduce an auxiliary variable q with p1 + p2 = q. Then, TUEE1
a can be

equivalently written into

TUEE1
b : max

p1,q
η = W1R1(p1)+W2R2(p1,q)

PT +q

s.t. q ≥ 2p1, q ≤ P

where the rate of UE2 can be expressed as

R2(p1, q) = B log

(
1 + qΓ2

1 + p1Γ2

)
. (6.15)
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To deal with the fractional form, let us introduce the following objective function:

H (p1, q, α) � W1R1(p1) + W2R2(p1, q) − α (PT + q) , (6.16)

where α is a positive parameter. Then, we consider the following problem for given
α:

TUEE1
c : max

p1,q
H (p1, q, α)

s.t. q ≥ 2p1, q ≤ P.

The relation between TUEE1
c and TUEE1

b is stated in the following result.

Lemma 2 ([34, pp. 493–494]) Let H � (α) be the optimal objective value of TUEE1
c

and p�(α) be the optimal solution of TUEE1
c . Then, p�(α) is the optimal solution to

TUEE1
b if and only if H � (α) = 0.

According to Lemma 2, the optimal solution to TUEE1
b can be found by solving

TUEE1
c parameterized by α such that H � (α) = 0. Since H � (α) is monotonic in α,

one can use any line search method, e.g., the bisection method, to find α such that
H � (α) = 0. Then, the left question is how to solve TUEE1

c with given α.

Theorem 1 Suppose that Γ1 ≥ Γ2. Then, TUEE1
c is a convex problem if one of the

following conditions hold

C1 : W1 ≥ W2;
C2 : 1 < W2

W1
≤ (Γ1+Γ1Γ2P)2

(Γ2+Γ1Γ2P)2
.

Proof See Appendix A.

Theorem1 reveals that TUEE1
c is in fact a convex problem if conditionC1 orC2 holds.

Consequently, TUEE1
c can be efficiently solved via convex optimizationmethods. The

optimal solution to TUEE1
c can further be analytically characterized.

Proposition 4 Suppose that Γ1 ≥ Γ2, C2 holds, and P ≥ 2Ω with

Ω = W2Γ2 − W1Γ1

Γ1Γ2 (W1 − W2)
. (6.17)

Then, the optimal solution to TUEE1
c is p�

1 = Ω and

q� =
[
W2B

α ln 2
− 1

Γ2

]P

2Ω

= max

{
2Ω,min

{
W2B

α ln 2
− 1

Γ2
, P

}}
. (6.18)

Proof See Appendix B.
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Remark 5 Similarly, in Proposition 4, the conditions C2 and P > 2Ω are to avoid
a failure of SIC. Although TUEE1

c is convex under C1, condition C1 will lead to
p�
1 = p�

2, which, according to Definition 1, is SIC-unstable.

6.3.3.2 EE Maximization with QoS Constraints (EE2)

Then, we consider maximizing the EE with QoS constraints. In this case, the power
allocation problem is given by

TUEE2
a :

max
p1,p2

R1(p1,p2)+R2(p1,p2)
PT +p1+p2

s.t. 0 ≤ p1 ≤ p2, p1 + p2 ≤ P
Ri ≥ Rmin

i , i = 1, 2.

This problem can be optimally solved following the similar steps as in the previous
subsection.

Specifically, using p1 + p2 = q, TUEE2
a can be equivalently transformed into

TUEE2
b :

max
p1,q

R1(p1)+R2(p1,q)

PT +q

s.t. q ≥ 2p1, q ≤ P
Ri ≥ Rmin

i , i = 1, 2.

Then, we consider the following problem with given α:

TUEE2
c :

max
p1,q

Q (p1, q, α)

s.t. q ≥ 2p1, q ≤ P
Ri ≥ Rmin

i , i = 1, 2

where
Q (p1, q, α) � R1(p1) + R2(p1, q) − α (PT + q) . (6.19)

According to Lemma 2, the optimal solution to TUEE2
b can be found by solving

TUEE2
c for a given α and updating α until the optimal objective value of TUEE2

c ,
denoted by Q�(α), satisfies Q�(α) = 0.

From Theorem 1, under condition C1, the objective of TUEE2
c is concave and

TUEE2
c is a convex problem too. Therefore, TUEE2

c can be efficiently solved. In fact,
the optimal solution to TUEE2

c can also be analytically characterized.

Proposition 5 Suppose that Γ1 ≥ Γ2, A2 ≥ 2, and P ≥ Υ , with

Al = 2
Rmin
l
B , Υ � A2(A1 − 1)

Γ1
+ A2 − 1

Γ2
. (6.20)
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Then, the optimal solution to TUEE2
c is

p�
1 = 1 + q�Γ2 − A2

A2Γ2
, (6.21)

q� =
[
1

α
− A2

Γ1
+ A2 − 1

Γ2

]P

Υ

= max

{
Υ,min

{
1

α
− A2

Γ1
+ A2 − 1

Γ2
, P

}}
.

(6.22)

Proof See Appendix C.

Similarly, it can be verified that the power allocation obtained from TUEE2
c (or

TUEE2
a ) is SIC stable if and only if P ≥ Υ and A2 ≥ 2.

6.4 MU-NOMA

In this section, we consider the more general MU-NOMA scheme, where a BS
serves N ≥ 2 users on the same channel. Similarly, the optimal MU-NOMA power
allocation is investigated under the MMF, SR, and EE criteria with user weights or
QoS constraints.

6.4.1 Optimal Power Allocation for MMF

According to (6.7), the power allocation problem under the MMF criterion is formu-
lated as

MUMMF
a : max

p

s.t.

min
i=1,...,N

{Ri }

0 < p1 < · · · < pN ,
N∑

i=1
pi ≤ P

where p = {pi }Ni=1 denotes the powers allocated to the users. It has been shown in
[20] that, though nonconvex, MUMMF

a is a quasi-convex problem. Thus, the optimal
solution to MUMMF

a can be found by solving a sequence of convex problems.
Specifically, MUMMF

a is equivalent to

MUMMF
b :

max
p,t

t

s.t. 0 < p1 < . . . < pN ,
N∑

i=1
pi ≤ P

Ri ≥ t, i = 1, . . . , N .

The constraint Ri ≥ t can be rewritten into



206 Y. Huang et al.

pi ≥ 2t − 1

Γi

⎛

⎝
i−1∑

j=1

p jΓi + 1

⎞

⎠ . (6.23)

Hence, for fixed t , MUMMF
b is a linear program (LP) and can be efficiently solved

by a number of LP solvers. Then, one can exploit the bisection method to search the
optimal t . Note that the optimal solution to MUMMF

b for fixed t can be analytically
characterized if there is no power order constraint.

Proposition 6 In the absence of power order constraint, the solution to MUMMF
b is

given by

pi = 2t − 1

Γi

⎛

⎝
i−1∑

j=1

p jΓi + 1

⎞

⎠ , i = 1, · · · , N . (6.24)

Proof Please refer to the proof of Theorem 1 in [20].

The solution in (6.24) implies that all users achieve the same data rate equal to t .
Hence, in this case, the NOMA system will provide absolute fairness for all users.
Note that, however, the solution in (6.24) is obtained without the power order con-
straint. One may wonder if this solution is still optimal if the power order constraint
is not omitted. The following result provides a sufficient condition to characterize
the optimality of (6.24).

Theorem 2 The solution in (6.24) is optimal for MUMMF
b if P ≥ χ , where χ =

∑N
i=1

2N−i

Γi
.

Proof See Appendix E.

Theorem 2 indicates that the power order constraints can be omitted under some
conditions. In this case, the solution in (6.24) is indeed optimal for MUMMF

b . On
the other hand, it is unknown if the solution in (6.24) is optimal if the condition in
Theorem 2 is not satisfied. Nevertheless, in this case, one can always numerically
solve the linear problem MUMMF

b for fixed t .

6.4.2 Optimal Power Allocation for SR Maximization

In this subsection, we investigate the SR maximization problems in MU-NOMA
systems with user weights or QoS constraints.

6.4.2.1 Weighted SR Maximization (SR1)

The weighted SR maximization for MU-NOMA is formulated as
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MUSR1
a :

max
p

Rsum =
N∑

i=1
Wi Ri

s.t.
N∑

i=1
pi ≤ P

p1 ≤ p2 ≤ · · · ≤ pN .

Unlike MUMMF
a for MMF, MUSR1

a in its original form is neither a convex nor quasi-
convex problem,making it difficult to solve it.Nevertheless,we show thatMUSR1

a can
be transformed into a convex problem via a linear transformation of the optimization
variables.

Introduce the following variable transformation: qi = ∑i
j=1 p j for i = 1, 2, . . .,

N; and conversely pi = qi − qi−1 for i = 2, . . ., N and p1 = q1. In this way, we have
R1 = log (q1Γ1 + 1) and

Ri = log

⎛

⎝
∑i

j=1 p jΓi + 1
∑i−1

j=1 p jΓi + 1

⎞

⎠ = log

(
qiΓi + 1

qi−1Γi + 1

)
= log (qiΓi + 1) − log

(
qi−1Γi + 1

)

(6.25)
for i = 2, . . ., N. Therefore, the weighted sum rate can be expressed as

N∑

i=1

Wi Ri = W1 log (q1Γ1 + 1) +
N∑

i=2

Wi
(
log (qiΓi + 1) − log

(
qi−1Γi + 1

)) =
N∑

i=1

fi (qi ) ,

(6.26)
where

fi (qi ) = Wi log (qiΓi + 1) − Wi+1 log (qiΓi+1 + 1) (6.27)

for i = 1, . . ., N − 1 and fN (qN ) = WN log (qNΓN + 1). The power constraint∑N
i=1 pi ≤ P is equal to qN ≤ P. The power order constraint p1 ≤ p2 ≤ · · · ≤ pN

is equal to q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1. Consequently, problem MUSR1
a can be

equivalently transformed into the following problem:

MUSR1
b :

max
q

∑N
i=1 fi (qi )

s.t. qN ≤ P
0 ≤ q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1

Then, the following result identifies the convexity of MUSR1
a (or MUSR1

b ).

Theorem 3 MUSR1
a (or MUSR1

b ) is a convex problem if one of the following condi-
tions hold for i = 1, . . ., N − 1:

T1 : Wi ≥ Wi+1;
T2 : 1 <

Wi+1

Wi
≤ (Γi+ΓiΓi+1P)2

(Γi+1+ΓiΓi+1P)2
.

Proof Please refer to the proof of Theorem 1 in [17].

Remark 6 Theorem 3 indicates that MUSR1
a (or MUSR1

b ) is a convex problem under
some conditions of the user weights. From T1, if the user weights are in the same
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order as the channel gains, i.e., W1 ≥ W2 ≥ · · · ≥ WN , then the objective function
is concave and the problem is convex. Note that this situation includes the most
common sum rate as a special case. On the other hand, the user weights can also be
in the inverse order of the channel gains, i.e.,W1 ≤ W2 ≤ · · · ≤ WN , but in this case
the ratio between Wk+1 and Wk cannot be too large according to T2. Consequently,
one can find the optimal power allocation via standard convex optimization methods,
e.g., the interior point method.

6.4.2.2 SR Maximization with QoS (SR2)

Then, we consider the SR maximization problem with QoS constraints for MU-
NOMA, which is given by

MUSR2
a :

max
p

N∑

i=1
Ri

s.t.
N∑

i=1
pi ≤ P, p1 ≤ p2 ≤ · · · ≤ pN

Ri ≥ Rmin
i , i = 1, . . . , N

Similarly, although MUSR2
a is nonconvex in its original formulation, it can be trans-

formed into a convex problem.
In particular, we exploit the same variable transformation: qi = ∑i

j=1 p j for i =
1, 2, . . ., N. Then, MUSR2

a is transformed into

MUSR2
b :

max
q

∑N
k=1 gi (qi )

s.t. qN ≤ P
(a1 − 1) /Γ1 ≤ q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1

qi−1 ≤ aiqi − εi , i = 2, . . . , N

where
gi (qi ) = log (qiΓi + 1) − log (qiΓi+1 + 1) (6.28)

for i = 1, . . ., N − 1 and gN (qN ) = log (qNΓN + 1), ai = 2−Ri and εi =
(1 − ai ) /Γi . According to condition T1 in Theorem 3, the objective in MUSR2

b is
concave and thus MUSR2

b is a convex problem. Therefore, MUSR2
b can also be effi-

ciently solved via convex optimizationmethods.Moreover, we show that if the power
order constraint p1 ≤ p2 ≤ · · · ≤ pN is absent, the optimal solution to MUSR2

b can
be analytically characterized.

Proposition 7 Suppose that P ≥ ∑N
i=1 ϕi , where ςi = 2Ri − 1/Γi ,

ϕi =

⎧
⎪⎨

⎪⎩

ς1, i = 1

max

{

ϕi−1, ςi

(

1 + Γi

i−1∑

j=1
ϕ j

)}

, i = 2, . . . , N
(6.29)
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and the power order constraint is absent in MUSR2
a and MUSR2

b . Then, the solution
to MUSR2

b is

q̃i =
{
ai+1q̃i+1 − εi+1, k = 1, . . . , N − 1

P, k = N
(6.30)

and the solution to problem MUSR2
a is

p̃i =
{
q̃1, k = 1

(1 − ai ) q̃i + εi , k = 2, . . . , N .
(6.31)

Proof Please refer to the proof of Proposition 3 and Lemma 2 in [17].

Then, a natural question is when the solution in Proposition 7 is indeed optimal with
the power order constraint. The answer is given below.

Theorem 4 The solution in (6.31) is optimal for problem MUSR2
a with the power

order constraint if T3: Rmin
2 ≥ 1 and

Rmin
i ≥ log

(
2 − 2−Rmin

i+1

)
, i = 3, . . . , N . (6.32)

Proof Please refer to the proof of Theorem 2 in [17].

Corollary 1 Condition T3 in Theorem 4 holds if Rmin
i ≥ 1 for i = 2, . . ., N.

Theorem 4 indicates that the power order constraint can be omitted without loss of
optimality if the QoS thresholds of the last N − 1 users are not small. Corollary
1 specifies that the QoS thresholds are only required to be no less than 1bps/Hz,
which is usually satisfied in practice. Therefore, for the SR maximization with QoS
constraints, the optimal power allocation is given by Proposition 7 in practical MU-
NOMA systems.

6.4.3 Optimal Power Allocation for EE Maximization

In this subsection, we investigate the EE maximization for MU-NOMA systems.

6.4.3.1 Weighted EE Maximization (EE1)

The EE maximization with user weights in an MU-NOMA system is formulated as

MUEE1
a :

max
p

η =
∑N

i=1 Wi Ri

PT +∑N
i=1 pi

s.t.
N∑

i=1
pi ≤ P

p1 ≤ p2 ≤ · · · ≤ pN .
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To address this problem, we follow the similar steps for MUSR1
a to simplify MUEE1

a .
Specifically, using the variable transformation: qi = ∑i

j=1 p j for i = 1, 2, . . ., N,
MUEE1

a can be reformulated as

MUEE1
b :

max
q

η =
∑N

k=1 fi (qi )
PT +qN

s.t. qN ≤ P
0 ≤ q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1

where fi (qi ) is defined in (6.27).
Then, we introduce the following objective function:

H (q, α) �
N∑

i=1

fi (qi ) − α

(

PT +
N∑

i=1

pi

)

(6.33)

and consider the following problem parameterized by α:

MUEE1
c :

max
q

H (q, α)

s.t. qN ≤ P
0 ≤ q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1.

According to Lemma 2, the optimal solution to MUEE1
b can be found by solving

MUEE1
c with α chosen such that H � (α) = 0, where H � (α) is the optimal objective

value of MUEE1
c . The desirable α can be found via a line search method by exploring

the monotonicity of H � (α). To solve MUEE1
c , we provide the following result.

Theorem 5 Given Γ1 ≥ Γ2 ≥ · · · ≥ ΓN , MUEE1
c is a convex problem if T1 or T2 in

Theorem 3 holds for i = 1, . . ., N − 1.

Proof Please refer to the proof of Theorem 1 in [17].

Theorem 5 indicates that, under the same condition in Theorem 3,MUEE1
c is a convex

problem. Therefore, one can efficiently compute its optimal solution via optimization
tools, e.g., the interior method.

6.4.3.2 EE Maximization with QoS Constraints (EE2)

Then, we focus on maximizing EE with QoS constraints for MU-NOMA and the
corresponding optimization problem is given by

MUEE2
a :

max
p

η =
∑N

i=1 Ri

PT +∑N
i=1 pi

s.t.
N∑

i=1
pi ≤ P

p1 ≤ p2 ≤ · · · ≤ pN
Ri ≥ Rmin

i , i = 1, . . . , N .
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By using the same variable transformation: qi = ∑i
j=1 p j for i = 1, 2, . . ., N,

MUEE2
a can be transformed into

MUEE2
b :

max
q

η =
∑N

k=1 gi (qi )
PT +qN

s.t. qN ≤ P
(a1 − 1) /Γ1 ≤ q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1

qi−1 ≤ aiqi − εi , i = 2, . . . , N

where gi (qi ) is given in (6.28). Similarly, we introduce the following objective func-
tion

Q (q, α) �
N∑

k=1

gi (qi ) − α

(

PT +
N∑

i=1

pi

)

, (6.34)

and consider the problem parameterized by α:

MUEE2
c :

max
q

Q (q, α)

s.t. qN ≤ P
(a1 − 1) /Γ1 ≤ q1 ≤ q2 − q1 ≤ · · · ≤ qN − qN−1

qi−1 ≤ aiqi − εi , i = 2, . . . , N .

Similarly, to obtain the optimal solution toMUEE2
b , one can solveMUEE2

c for given
α and search α such that the optimal objective value of MUEE2

c satisfies Q�(α) = 0,
for whichwe refer the reader to the previous subsection. To solveMUEE2

c , we provide
the following result.

Proposition 8 Suppose that P ≥ ∑N
i=1 ϕi , where ςi = 2Ri − 1/Γi and

ϕk =

⎧
⎪⎨

⎪⎩

ς1, i = 1

max

{

ϕi−1, ςi

(

1 + Γi

i−1∑

j=1
ϕ j

)}

, i = 2, . . . , N
, (6.35)

then MUEE2
c is feasible and convex.

Proof Please refer to the proof of Theorem 1 and Proposition 3 in [17].

Proposition 8 indicates that if the power budget of BS is not too small, MUEE2
c can

be solved by convex optimization methods, e.g., the interior point method.

6.5 MC-NOMA

In this section, we consider the MC-NOMA scheme, where multiple users share
multiple channels. In this case, the resource optimization includes power alloca-
tion and channel assignment. However, the joint optimization results in a mixed
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integer problem and finding its solution requires exhaustive search [35], which causes
prohibitive computational complexity. Therefore, in practice, power allocation and
channel assignment are often separately and alternatively optimized [26, 28, 35].
In this section, we focus on seeking the optimal power allocation for given channel
assignment.

Note that using SIC at each user’s receiver causes additional complexity, which is
proportional to the number of users on the same channel. Thus, in the multi-channel
case, each channel is often restricted to be shared by two users [25, 26, 36], which is
also beneficial to reduce the error propagation of SIC. In this section, we would also
like to focus on this typical situation. In this case, suppose w.l.o.g. that the CNRs of
UE1,m and UE2,m are ordered as Γ1,m ≥ Γ2,m . Then, the rates of UE1,m and UE2,m

on channel m are given, respectively, by

R1,m = Bc log
(
1 + p1,mΓ1,m

)
, R2,m = Bc log

(
1 + p2,mΓ2,m

p1,mΓ2,m + 1

)
. (6.36)

6.5.1 Optimal Power Allocation for MMF

In MC-NOMA systems, the power allocation problem under the MMF criterion is
given by

MCMMF
a : max

p1,p2
s.t.

min
m=1,...,M

{
R1,m(p1,m, p2,m), R2,m(p1,m, p2,m)

}

0 ≤ p1,m ≤ p2,m,m = 1, . . . , M,
M∑

m=1
p1,m + p2,m ≤ P

where p1 = {p1,m}Mm=1 and p2 = {p2,m}Mm=1. Note that MCMMF
a is a nonconvex prob-

lem. To address it, we first introduce auxiliary variables q = {qm}Mm=1, where qm
represents the power budget for channel m with p1,m + p2,m = qm . Suppose that
the channel power budgets {qm}Mm=1 are given. Then, MCMMF

a is decomposed into a
group of subproblems and each subproblem is same with TUMMF in the two-user
case with P replaced by qm .

With given channel power budget qm , the optimal power allocation for the two
users on channel m has been provided in Proposition 1. We can use this result to
further optimize the power budgets {qm}. According to MCMMF

a and TUMMF, the
corresponding power budget optimization problem is

MCMMF
b :

max
q

min
m=1,...,M

f MMF�
m (qm)

s.t.
M∑

m=1
qm ≤ P, q ≥ 0

where f MMF�
m (qm) is the optimal objective value of TUMMF for each channel m.

Using Proposition 1, we obtain
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f MMF�
m � Bc log

⎛

⎝
Γ2,m − Γ1,m +

√(
Γ1,m + Γ2,m

)
2 + 4Γ1,mΓ 2

2,mqm

2Γ2,m

⎞

⎠ . (6.37)

Then, we show that MCMMF
b has a closed-form solution.

Theorem 6 The optimal solution to MCMMF
b is given by

q�
m =

(
Z (λ) Γ2,m + Γ1,m

)
(Z (λ) − 1)

Γ1,mΓ2,m
, ∀m, (6.38)

where

Z (λ) � X +
√

X2 + Bc

2λ
∑M

m=1 1/Γ1,m

, X �
∑M

m=1

(
Γ2,m − Γ1,m

)
/
(
Γ1,mΓ2,m

)

4
∑M

m=1 1/Γ1,m

,

(6.39)
and λ is chosen such that

∑M
m=1 q

�
m = P.

Proof Please refer to the proof of Theorem 1 in [22].

Consequently, the optimal MC-NOMA power allocation under the MMF criterion is
fully characterized by Theorem 6 and Proposition 1. It follows from (6.38) that q�

m

is monotonically decreasing in λ, so the optimal λ satisfying
∑M

m=1 q
�
m = P can be

efficiently found via a simple bisection method.

6.5.2 Optimal Power Allocation for SR Maximization

In this subsection, we investigate the SRmaximization problemwith weights or QoS
constraints in MC-NOMA systems.

6.5.2.1 Weighted SR Maximization (SR1)

With given channel assignment, the problem of maximizing the weighted sum rate
is formulated as the following power allocation problem:

MCSR1
a :

max
p1,p2

M∑

m=1

(
W1,m R1,m(p1,m, p2,m) + W2,m R2,m(p1,m, p2,m)

)

s.t. 0 ≤ p1,m ≤ p2,m,m = 1, . . . , M,
M∑

m=1

(
p1,m + p2,m

) ≤ P

To solve it, similarly we introduce auxiliary variables q = {qm}Mm=1 that represent the
power budgets on each channel m with p1,m + p2,m = qm . Then, MCSR1

a is decom-
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posed into a group of subproblems, where each subproblem is the same with TUSR1

except P replaced by qm and its solution has been provided in Proposition 2.
Next, we further optimize the power budget qm for each channel m. According

to Remark 3, to guarantee that the NOMA system is SIC stable, it is reasonable to
assume that qm ≥ Θm > 2Ωm and P ≥ ∑M

m=1 Θm for some positiveΘm . Then, from
MCSR1

a and TUSR1, the corresponding power budget optimization problem is given
by

MCSR1
b :

max
q

M∑

m=1
f SR1�m (qm)

s.t.
M∑

m=1
qm ≤ P, qm ≥ Θm, ∀m

where f SR1�m (qm) is the optimal objective value of each subproblem. Using Proposi-
tion 2, we obtain

f SR1�m (qm) = W1,m log
(
1 + ΩmΓ1,m

) + W2,m log

(
qmΓ2,m + 1

ΩmΓ2,m + 1

)
. (6.40)

It is easily seen that f SR1�m (qm) is a concave function, so MCSR1
b is a convex problem,

whose solution is provided in the following result.

Theorem 7 The optimal solution to MCSR1
b is given by

q�
m =

[
W2,m Bc

λ
− 1

Γ2,m

]∞

Θm

, (6.41)

where λ is chosen such that
∑M

m=1 q
�
m = P.

Proof The solution to MCSR1
b is given by the well-known waterfilling form.

Consequently, the optimal power allocation for the weighted sum rate maximization
in MC-NOMA systems is jointly characterized by Theorem 7 and Proposition 2
under the SIC stability.

6.5.2.2 SR Maximization with QoS (SR2)

Now, we consider maximizing the SR with QoS constraints. In this case, the power
allocation problem is given by

MCSR2
a :

max
p1,p2

M∑

m=1

(
R1,m(p1,m, p2,m) + R2,m(p1,m, p2,m)

)

s.t. 0 ≤ p1,m ≤ p2,m,m = 1, . . . , M,
M∑

m=1
(p1,m + p2,m) ≤ P

Rn,m ≥ Rmin
n,m, n = 1, 2, m = 1, . . . , M.
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We use the similar method to address MCSR2
a . By introducing the power budget qm

on each channel m, MCSR2
a decomposes into several subproblems and each of them

has the same structure as TUSR2. Thus, the optimal solution to each subproblem is
given in Proposition 3 with P replaced by qm .

Then, we focus on optimizing the power budget qm for each channel. Similarly,
according to Remark 4, to guarantee the NOMA system is SIC stable, we assume that
qm ≥ Υm and P ≥ ∑M

m=1 Υm . According to MCSR2
a and TUSR2, the corresponding

power budget optimization problem is as follows

MCSR2
b : max

q

s.t.

M∑

m=1
f SR2�m (qm)

M∑

m=1
qm ≤ P, qm ≥ Υm, ∀m

where f SR2�m (qm) is the optimal objective value of each subproblem and given by

f SR2�m (qm) = Bc log

(
A2,mΓ2,m − A2,mΓ1,m + Γ1,mΓ2,mqm + Γ1,m

A2,mΓ2,m

)
+ Rmin

2,m .

(6.42)
Since f SR2�m (qm) is a concave function, MCSR2

b is a convex problem, whose solution
is also given in a waterfilling form.

Theorem 8 The optimal solution to MCSR2
b is given by

q�
m =

[
Bc

λ
− A2,m

Γ1,m
+ A2,m

Γ2,m
− 1

Γ2,m

]∞

Υm

, (6.43)

where λ is chosen such that
∑M

m=1 q
�
m = P.

Proof The proof is simple and thus omitted.

Therefore, the optimal power allocation for the SR maximization with QoS con-
straints in MC-NOMA systems is jointly characterized by Proposition 3 and
Theorem 8.

6.5.3 Optimal Power Allocation for EE Maximization

In this subsection, we investigate the optimal power allocation for maximizing the
EE with weights or QoS constraints in MC-NOMA systems.
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6.5.3.1 EE Maximization with Weights (EE1)

With given channel assignment, the problem of maximizing the weighted EE is
formulated as the following power allocation problem:

MCEE1
a : max

p1,p2

∑M
m=1

(
W1,m R1,m(p1,m, p2,m) + W2,m R2,m(p1,m, p2,m)

)

PT + ∑M
m=1

(
p1,m + p2,m

)

s.t. 0 ≤ p1,m ≤ p2,m,m = 1, . . . , M,

M∑

m=1

(
p1,m + p2,m

) ≤ P.

The difficulties in solving MCEE1
a lie in its nonconvex and fractional objective. In

the following, we will show that this problem can also be optimally solved.
We use the similar trick to address this problem, i.e., introducing the auxiliary vari-

ables {qm}Mm=1 with p1,m + p2,m = qm for each channel m. Then, MCEE1
a is decom-

posed into a group of subproblems. Each subproblem is the same with TUSR1 except
P replaced by qm , and thus, its solution is provided in Proposition 1.

Then, we concentrate on searching the optimal power budget qm for each channel.
Similarly, to guarantee the NOMA system is SIC stable, it is assumed that qm ≥
Θm > 2Ωm and P ≥ ∑M

m=1 Θm for some positive Θm . According to Proposition 1
and MCEE1

a , the power budget optimization problem is formulated as

MCEE1
b : max

q
η(q) �

∑M
m=1 f SR1�m (qm)

PT + ∑M
m=1 qm

(6.44)

s.t.
M∑

m=1

qm ≤ P, qm ≥ Θm, ∀m

where f SR1�m (qm) is given in (6.40). Although f SR1�m (qm) is a concave function,
MCEE1

b is nonconvex due to the fraction form. To solve it, we introduce the fol-
lowing objective function:

H(q, α) �
M∑

m=1

f SR1�m (qm) − α

(

PT +
M∑

m=1

qm

)

=
M∑

m=1

(
R̃1,m + W2,m log

(
qmΓ2,m + 1

ΩmΓ2,m + 1

))
− α

(

PT +
M∑

m=1

qm

)

, (6.45)

where R̃1,m � W1,m log
(
1 + ΩmΓ1,m

)
and α is a positive parameter. Then, we con-

sider the following convex problem with given α:
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MCEE1
c :

max
q

H (q, α)

s.t.
M∑

m=1
qm ≤ P, qm ≥ Θm, ∀m.

According to Lemma 2, the optimal solution to MCEE1
b can be found by solving

MCEE1
c with given α and then updating α until H � (α) = 0. Hence, we first solve

MCEE1
c with given α, whose solution is provided in the following result.

Theorem 9 The optimal solution to MCEE1
c is

q�
m =

[
W2,m Bc

α + λ
− 1

Γ2,m

]∞

Θm

, (6.46)

where λ is chosen such that
∑M

m=1 q
�
m = P.

Proof The solution is obtained by exploiting the KKT conditions of MCEE1
c .

After the optimal solution toMCEE1
c is obtained,we shall find anα such that H � (α) =

0. Since H � (α) is monotonic in α, one can use the bisection method to find α.
Thereby, the optimal power allocation for the weighted EE maximization in MC-
NOMA systems is provided Proposition 2 and Theorem 9.

6.5.3.2 EE Maximization with QoS (EE2)

In this part, we considermaximizing the EEwithQoS constraints. The corresponding
power allocation problem is given by

max
p1,p2

∑M
m=1

(
R1,m

(
p1,m, p2,m

) + R2,m
(
p1,m, p2,m

))

PT + ∑M
m=1

(
p1,m + p2,m

)

MCEE2
a : s.t. 0 ≤ p1,m ≤ p2,m,m = 1, . . . , M,

M∑

m=1

(p1,m + p2,m) ≤ P

Rl,m ≥ Rmin
l,m , l = 1, 2, m = 1, . . . , M.

We can use the similar method to solve MCEE2
a . Briefly, we also adopt {qm}Mm=1

with p1,m + p2,m = qm and decompose MCEE2
a into a group of subproblems, whose

solution is coincided with TUSR2 and provided in Proposition 3.
Next, we optimize the channel power budget qm for each channel. First, we assume

that qm ≥ Υm and P ≥ ∑M
m=1 Υm to guarantee the SIC stability. Then, according to

Proposition 3 and MCEE2
a , the power budget optimization problem is given by
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MCEE2
b : max

q
η(q) �

∑M
m=1 f SR2�m (qm)

PT + ∑M
m=1 qm

s.t.
M∑

m=1

qm ≤ P, qm ≥ ϒm, ∀m

where f SR2�m (qm) is given in (6.42). To solve MCEE2
b , we introduce the objective

function parameterized by α:

Q(q, α) �
M∑

m=1

f SR2�m (qm) − α

(

PT +
M∑

m=1

qm

)

=
M∑

m=1

(
W1,m log

(
A2,mΓ2,m − A2,mΓ1,m + Γ1,mΓ2,mqm + Γ1,m

A2,mΓ2,m

)
+ Rmin

2,m

)

−α

(

PT +
M∑

m=1

qm

)

, (6.47)

and formulate the following problem with given α:

MCEE2
c :

max
q

Q (q, α)

s.t.
M∑

m=1
qm ≤ P, qm ≥ ϒm, ∀m.

Then, from Lemma 2, we shall solve MCEE2
c , which is a convex problem since

Q(q, α) is concave in q. The optimal solution to MCEE2
c is provided below.

Theorem 10 The optimal solution to MCEE2
c is

q�
m =

[
W1,m Bc

λ + α
− A2,m

Γ1,m
+ A2,m

Γ2,m
− 1

Γ2,m

]∞

ϒm

, (6.48)

where λ is chosen such that
∑M

m=1 q
�
m = P .

Proof The solution is obtained by exploiting the KKT conditions of MCEE2
c .

Then, we can exploit the bisectionmethod to find an α such that the optimal objective
value of MCEE2

c satisfies Q�(α) = 0. Consequently, the optimal power allocation for
the EE maximization with QoS constraints in MC-NOMA systems is obtained by
using Theorem 10 and Proposition 3.
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6.6 Numerical Results

This section evaluates the performance of the optimal power allocation investigated
in this chapter. In simulations, the BS is located in the cell center and the users
are randomly distributed in a circular range with a radius of 500 m. The minimum
distance between users is set to be 40m, and theminimum distance between the users
and the BS is 50 m. Each channel coefficient follows an i.i.d. Gaussian distribution
as g ∼ CN (0, 1) and the path loss exponent is ρ = 2. The total power budget of the
BS is P = 41 dBm and the circuit power consumption is PT =30 dBm. The noise
power is σ 2 = BN0/M , where the bandwidth is B = 5 MHz and the noise power
spectral density is N0 = −174 dBm.

First, we evaluate the performance of the proposed optimal power solutions for
two-user NOMA (N = 2) and MU-NOMA (N = 6) systems. The user weights sat-
isfy Wi+1/Wi = 0.5 for i = 1, . . ., N − 1 and the QoS thresholds to be Rmin

i = 2
bps/Hz for i = 1, . . ., N. In addition, we compare the NOMA schemes with OFDMA
and the DC (difference of two convex functions) approach in [26], where the power
allocation is optimized via waterfilling and via DC programming, respectively.

Figure6.2 shows theminimum user rates of the two-user NOMAandMU-NOMA
schemes using the optimal power allocation under the MMF criterion and the min-
imum user rate of the OFDMA scheme for different total power budgets and user
numbers. The minimum user rate in the NOMA system is higher than that in the
OFDMA system especially in the two-user case, implying that NOMA provides
better fairness than OFDMA.
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Fig. 6.2 Minimum user rate for different number of users versus BS power
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Fig. 6.3 Sum rate versus BS power

In Fig. 6.3 the left subfigure shows the weighted sum rate and the right subfigure
shows the sum rate with QoS constraints. Here, in each subfigure, we compare the
proposed methods with the OFDMA scheme and the NOMA scheme using DC pro-
gramming in the two-user case. While NOMA outperforms OFDMA, NOMA with
the optimal power allocation also achieves a higher sum rate than the DC approach,
as the DC approach generally leads to a suboptimal power allocation. Meanwhile,
as expected, the (weighted) sum rate increases with the user number, implying the
potential ofNOMA. InFig. 6.4, the similar phenomenon canbeobserved, i.e.,NOMA
using the optimal power allocation outperforms OFDMA as well as the (suboptimal)
DC approach in terms of energy efficiency.

Then, we show the performance of the optimal power allocation in MC-NOMA
systems. The user weights are set to be W1,m = 0.9 and W2,m = 1.1 for ∀m and
the QoS thresholds are set to be Rmin

l,m = 2 bps/Hz for l = 1, 2, ∀m. In Fig. 6.5, we
compare the joint resource allocation (JRA) method, which uses the optimal power
allocation and the matching algorithm [22, 26] for channel assignment, with the
exhaustive search (ES), which provides the jointly optimal solution but has high
complexity. We set the number of users N = 6 and the power budget of the BS
ranges from 2 to 12 W. From Fig. 6.5, the performance of JRA is very close to the
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Fig. 6.4 Energy efficiency versus BS power
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globally optimal value and the maximum gap is less than 5%. Therefore, the optimal
power allocation method along with efficient (suboptimal) matching algorithm is
able to achieve near-optimal performance with low complexity.

6.7 Conclusion

In this chapter, we discussed a promising multiple access technology, i.e., NOMA,
for 5G networks and focused on the key problem of power allocation in NOMA
systems. We have investigated the optimal power allocation for different NOMA
schemes, including the two-userMU-NOMA, andMC-NOMAschemes.Theoptimal
power allocation was derived under different performance measures, including the
maximin fairness, weighted sum rate, and energy efficiency, wherein user weights
or QoS constraints were also considered. We showed that in most cases the optimal
NOMA power allocation admits an analytical solution, while in other cases it can be
numerically computed via convex optimization methods.

Appendix

A. Proof of Theorem 1

Since the constraints in TUEE1
c are all linear, it suffices to investigate the concavity

of H (p1, q, α). The second-order derivative of H (p1, q, α) with respect to p1 is

∂2H

∂p21
= 1

ln 2

(
Υ Θ

(p1Γ1 + 1)2 (p1Γ2 + 1)2

)
, (6.49)

where Υ = √
W2BΓ2 (p1Γ1 + 1) + √

W1BΓ1 (p1Γ2 + 1) and Θ = √
W2B

Γ2 − √
W1BΓ1 + √

BΓ1Γ2 p1
(√

W2 − √
W1

)
. Given Γ1 ≥ Γ2, if W1 ≥ W2, then

∂2H
∂p21

≤ 0. On the other hand, with q ≤ P and if C2 holds, we have

√
W2BΓ2 − √

W1BΓ1 + √
BΓ1Γ2 p1

(√
W2 − √

W1

)√
W2BΓ2 − √

W1BΓ1 +
(√

W2 − √
W1

)√
BΓ1Γ2P ≤ 0,

(6.50)

also implying ∂2H
∂p21

≤ 0. Following the similar manner, it can be verified that ∂2H
∂q2 ≤ 0,

∂2H
∂q∂p1

= 0 and ∂2H
∂p1∂q

= 0. Therefore, the Hessian matrix

(
∂2H
∂p21

∂2H
∂q∂p1

∂2H
∂p1∂q

∂2H
∂q2

)

is a negative semidefinite matrix, indicating that H (p1, q, α) is a concave in (p1, q).



6 Optimal Power Allocation for Downlink NOMA Systems 223

B. Proof of Proposition 4

The Lagrange of TUEE1
c is given by

L = W1R1(p1) + W2R2(p1, q) − α (PT + q) + μ (q − 2p1) − λ (q − P) (6.51)

with Lagrange multipliersμ and λ ≥ 0. According to Theorem 1, TUEE1
c is a convex

problem under condition C1 or C2. Therefore, its optimal solution is characterized
by the following Karush–Kuhn–Tucker (KKT) conditions:

∂L

∂p1
= W1BΓ1

ln 2 (1 + p1Γ1)
− W2BΓ2

ln 2 (1 + p1Γ2)
− 2μ = 0, (6.52)

∂L

∂q
= W2BΓ2

ln 2 (1 + qΓ2)
− α + μ − λ = 0, (6.53)

μ (q − 2p1) = 0, (6.54)

λ (q − P) = 0. (6.55)

According to Definition 1, if p1 = q/2, then the NOMA system is SIC-unstable.
Therefore, from (6.54), considering the SIC stability, we have μ = 0. Hence, from
(6.52) we obtain the optimal p�

1 = Ω . It follows from (6.55) that if q < P , then
λ = 0. Then, from (6.53) we obtain

2Ω ≤ q = W2B

α ln 2
− 1

Γ2
< P. (6.56)

On the other hand, if q = P , then from (6.53) we have

λ = W2BΓ2

ln 2 (1 + PΓ2)
− α ≥ 0, (6.57)

which leads to
W2B

α ln 2
− 1

Γ2
≥ P. (6.58)

Therefore, the optimal q is given by q� =
[
W2B
α ln 2 − 1

Γ2

]P

2Ω
.
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C. Proof of Proposition 5

The Lagrange of TUEE2
c is given by

L = R1(p1) + R2(p1, q) − α (PT + q) + μ (q − 2p1) − λ (q − P) (6.59)

+ σ1

(
p1 − A1 − 1

Γ1

)
+ σ2 (1 + qΓ2 − A2 − A2 p1Γ2) ,

where μ, λ, σ1, and σ2 are the Lagrange multipliers. The optimal solution is charac-
terized by the following KKT conditions:

∂L

∂p1
= BΓ1

ln 2 (1 + p1Γ1)
− BΓ2

ln 2 (1 + p1Γ2)
− 2μ + σ1 − σ2A2Γ2 = 0, (6.60)

∂L

∂q
= BΓ2

ln 2 (1 + qΓ2)
− α + μ − λ + σ2Γ2 = 0, (6.61)

μ (q − 2p1) = 0, (6.62)

λ (q − P) = 0, (6.63)

σ1

(
p1 − A1 − 1

Γ1

)
= 0, (6.64)

σ2 (1 + qΓ2 − A2 − A2 p1Γ2) = 0. (6.65)

In (6.62), considering the SIC stability, we have q > 2p1 and hence μ = 0. Note
that σ2 	= 0. To see this, if σ2 = 0, according to (6.60), we have

BΓ1

ln 2 (1 + p1Γ1)
− BΓ2

ln 2 (1 + p1Γ2)
+ σ1 = 0 (6.66)

which, however, does not hold since BΓ1
ln 2(1+p1Γ1)

− BΓ2
ln 2(1+p1Γ2)

+ σ1 > 0withΓ1 ≥ Γ2.
We consider two cases: (1) σ1 	= 0, σ2 	= 0; and (2) σ1 = 0, σ2 	= 0. First, if σ1 	=

0, σ2 	= 0, the optimal solution can be easily obtained as

p�
1 = 1 + q�Γ2 − A2

A2Γ2
, q� = Υ (6.67)

from (6.64) and (6.65). Then, if σ1 = 0, σ2 	= 0, according to (6.60) and (6.61), we
have

A2Γ2

(1 + qΓ2)
+

(
1

1/Γ1 + p1
− 1

1/Γ2 + p1

)
= (α + λ) A2. (6.68)
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From (6.65), we obtain p1 = 1+qΓ2−A2

A2Γ2
, which along with (6.68) leads to

q� = 1

α + λ
− A2

Γ1
+ A2 − 1

Γ2
. (6.69)

It follows from (6.63) that if q < P , then λ = 0. From (6.69), we obtain

ϒ ≤ q = 1

α
− A2

Γ1
+ A2 − 1

Γ2
< P. (6.70)

On the other hand, if q = P , then from (6.53) we have

λ = Γ1Γ2

A2Γ2 − (A2 − 1) Γ1 + PΓ2Γ1
− α ≥ 0, (6.71)

which leads to
1

α
− A2

Γ1
+ A2 − 1

Γ2
≥ P. (6.72)

Therefore, optimal q is given by q� =
[
W2B
α ln 2 − 1

Γ2

]P

ϒ
.

D. Proof of Theorem 2

Let qi = ∑i
j=1 p j , then qN = P and pi = 2t−1

Γi

(∑i−1
j=1 p jΓi + 1

)
can be trans-

formed into qi = qi−12t + 2t−1
Γi

. Thus, we obtain P = qN = ∑N
i=1

(2t−1)2(N−i)t

Γi
≥ χ ,

implying t ≥ 1 and pi ≥ pi−1 for i = 2, . . . , N . Therefore, this solution satisfies the
power order constraint.
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