
Chapter 13
Interleave Division Multiple Access
(IDMA)

Yang Hu and Li Ping

13.1 Overview

The capacity of a multiple access channel was studied in [1, 2]. It can generally
be achieved by random coding together with other techniques, e.g., power control,
linear precoding, and dirty paper coding [3–6]. Random coding does not involve
orthogonality among users so it is inherently non-orthogonal. The sub-optimality
of orthogonal multiple access (OMA) was investigated in [7, 8]. The gain of non-
orthogonal multiple access (NOMA) over OMA was assessed in [9, 10] for both
single-input single-output (SISO) and multiple-input multiple-output (MIMO) sys-
tems. Recently, NOMA has been promoted for improving system fairness [11, 12].

However,many practical systems still belong toOMAcategory. This ismainly due
to complexity concerns. OMA can work with low-cost single-user detection (SUD),
while NOMA may require more complex multi-user detection (MUD). Thus, these
two options entail different trade-off between cost and performance.

Historically, the third-generation (3G) direct-sequence code-division multiple ac-
cess (DS-CDMA) system is non-orthogonal. Normally, only SUD is used in DS-
CDMA to avoid high complexity, which is sub-optimal. The spreading operation in
DS-CDMA reduces rate, so DS-CDMA is not convenient for high-rate applications.
The fourth-generation (4G) orthogonal frequency division multiple access (OFD-
MA) system returns to OMA. OFDMA allows flexibility for resource allocation
over time and frequency, which can bring about noticeable gain.
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Fig. 13.1 Achievable sum-rate of NOMA and OMA under equal energy constraint. Note that the
two strategies have exactly the same performance. SNRsum is the sum signal-to-noise ratio (SNR)
of all users. Complex channels with both slow- and fast-fading factors are considered. Path loss
is based on a hexagon cell with a normalized side length = 1. The minimum normalized distance
between users and the base station is 35/289, corresponding to an unnormalized distance of 35 m
for an LTE cell with radius 289 m. Path loss factor = 3.76 and lognormal fading deviation = 8 dB.
The channel samples are normalized such that the average power gain = 1

Recently, NOMA has been discussed widely for the fifth-generation (5G) [13–
16]. A natural question is whether the possible gain of NOMA can justify its higher
receiver cost. We examine this question using achievable sum-rate below.

In Fig. 13.1, we compare the achievable sum-rate of NOMA and OMAwith equal
energy constraint per frame per user in amulti-user SISO system.We can see NOMA
improves sum-rate when the number of users K increases, but OMA can achieve the
same gain through resource allocation. NOMA has no advantage here since OMA is
capacity achieving in this case.

The situation is slightly different if the energy per frame per user can also be
freely optimized under the sum energy constraint. For example, consider maximizing
sum-log-rate under the proportional fairness criterion [3]. Figure 13.2 illustrates the
related numerical results for K = 2. The sum-rate curves in Fig. 13.2 show that
NOMA is only slightly better than OMA with resource allocation (about 8% gain at
SNRsum = 10 dB).

The advantage of NOMA over OMA seen in Figs. 13.1 and 13.2 is disappointing
compared with many results in the literature. This is mainly for two reasons. First,
comparisonswithOMAwithout resource allocation are not fair as resource allocation
has already been widely used in LTE. Second, a practical signal-to-noise ratio (SNR)
range should be used for comparison. A standard way for this purpose is using the
following approximation of the signal-to-noise-plus-interference ratio (SINR) in a
cellular system [3]:

SINRsum = Psum

βPsum + σ 2
, (13.1)
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Fig. 13.2 Achievable
sum-rate of NOMA and
OMA under sum energy
constraint with proportional
fairness, K = 2. Other
system settings are the same
as those in Fig. 13.1
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wherePsum is the sum received powers of all users in a cell, β a cross-cell interference
factor and σ 2 the noise power. As a rule of thumb, a typical value isβ = 0.6. Then,we
have SINRsum ≤ 2.2 dB. Treating interference as noise and allowing a certain range
of β, we may consider 0–10 dB as a typical range for SNRsum, as used in Figs. 13.1
and 13.2. Clearly, the gain of NOMA is marginal over such a practical SNR range.

Furthermore, NOMAperformancemay deteriorate seriously if a practical forward
error control (FEC) code is used. To see this, consider a successive interference
cancelation (SIC) process with K users in a descendant order of user index k. We
employ an FEC code that can achieve (almost) error-free decoding at SNR = Γ .
Assume that, when we decode for user k, the signals of all users with indexes k ′ > k
have been successfully decoded and subtracted from the received signal. Let qk be
the received power of user k. Then, user k can achieve error-free decoding provided
that

SNRk = qk
∑

k ′<k qk ′ + σ 2
≥ Γ. (13.2a)

For sum-power minimization, qk can be calculated using the following recursion
(with q0 = 0):

qk = Γ ×
(

∑

k ′<k

qk ′ + σ 2

)

. (13.2b)

Ideally, the minimum value for Γ can be found from Shannon capacity R =
log2(1 + Γ ). For a practical code, however, a larger Γ is required to ensure (almost)
error-free decoding. This overhead accumulates during SIC, which can amount to a
considerable loss.

Specifically, we consider a practical rate-1/6 channel coding as an example. It
achieves bit error rate (BER) ≈ 10−5 (approximately error-free) at about SNR =
−3.5 dB with a relatively short block length. There is a 2.35 dB gap compared with
SNR =−5.85 dB calculated from the Shannon formula for Gaussian signaling. Such
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Fig. 13.3 Accumulated loss
in the SIC process
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loss accumulates in the SIC process as shown in Fig. 13.3. The accumulated loss is
roughly 7.4 dB for 12 users.

The problem is more serious for higher rate, as seen from Fig. 13.3 for rate-1/2
coding. Assume the same initial single-user gap of 2.35 dB. The accumulated gap
for six users is 8 dB.

Nevertheless,NOMAis still useful. Inmany situations, it is difficult to establish or-
thogonality due to the lack of centralized control or accurate channel state information
(CSI). Then, we may have to resort to NOMA. In particular, as we will show below,
NOMA based on interleave-division multiple access (IDMA) [17–22] offers robust
and flexible solutions in such environments. IDMA can also recover a considerable
portion of the accumulated loss suffered by SIC as shown in Fig. 13.3. We will use
numerical results to verify these claims. Some of the software used in this chapter are
available at: http://www.ee.cityu.edu.hk/%7Eliping/Research/Simulationpackage/.

13.2 Basic Principles of IDMA

Following the advent of turbo and low-density parity-check (LDPC) codes [23–
25], iterative detection techniques were developed in late 1990s for equalization in
multipath channels [26] and MUD in DS-CDMA systems [27–29]. It was shown in
[30] that two independently interleaved code sequences can be separated by iterative
detection. This inspired the IDMA scheme in which users are solely separated by
interleavers [17]. Intuitively, a randomly interleaved code results in a different code.
Thus we may also say that different users in IDMA are separated by different codes.
This follows the basic principle of CDMA, except now the set of codes are generated
by a master code followed by different interleavers. We therefore can regard IDMA
as a special case of CDMA. However, IDMA is fundamentally different from DS-
CDMA. The former does not rely on spreading for user separation and so can avoid
the rate loss suffered by the latter.

In the following, we will start with a graphic model originally presented in [31].
We will show that the primary motivation behind IDMA is to break short cycles,

http://www.ee.cityu.edu.hk/%7Eliping/Research/Simulationpackage/
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since the latter is detrimental for message-passing detection. The same principles
have been successfully used in turbo and LDPC codes.

13.2.1 IDMA Transmitter Principles

Throughout this chapter, we will assume an underlying OFDMA layer that removes
inter-symbol interference (ISI). We will focus on uplink multiple access techniques
built on this OFDMA layer.

Let K be the user number and ck = {ck(j), j = 1, 2, . . . , J } a length-J codeword
generated by users k. The transmitted symbols {xk(j), j = 1, 2, . . . , J } are generated
from {ck(j)} after certain operations, such as spreading, scrambling, interleaving, and
modulations. At the receiver, the received signals {y(j)} are given by

y(j) =
K∑

k=1

hk
√
ekxk(j) + η(j), j = 1, 2, . . . , J , (13.3)

where hk is the channel coefficient for user k, ek the transmitted power of user k
and η(j) an additive white Gaussian noise (AWGN) sample with variance σ 2 per
dimension.

Figure 13.4 illustrates the factor graph representation [32] for (13.3) with K = 2,
J = 8, and the same LDPC coding for all users. A circle in Fig. 13.4 represents a
variable and a square a constraint. Three types of constraints are involved, namely
a square marked with “+” for linear additions in (13.3), a white square for LDPC
coding, and a square marked with “×” for modulation.

Optimal detection for the system in (13.3) typically requires prohibitively high
complexity. Low-cost message-passing detection, similar to that used for LDPC
codes, can be applied instead, as Fig. 13.4 is sparse when K � J . However, short
cylices constitute a problem. To see this, let us call a circle involving m coded
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Fig. 13.4 Factor graph of a NOMA LDPC-coded system where K = 2 and J = 8
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Fig. 13.5 a Factor graph of a two-user IDMA system. bAn equivalence form of (a) with re-shuffled
{ck (j)}. Note that in (a) the interleavers for LDPC coding are the same for both users, while in (b)
they are different

bits as a size-m cycle. An example of a size-4 cycle is shown by the black circles
{c1(1), c1(3), c2(1), c2(3)} in Fig. 13.4. There are a large number of such size-4
cycles in Fig. 13.4. Correlationmay build up along these short cycles duringmessage-
passing detection, which is detrimental to performance [33].

Figure 13.4 can also be used to represent a DS-CDMA system. For example, a
spreading operation involving binary sequence of ±1 can be regarded as a repetition
code plus a scrambling operation of sign changes. Repetition coding can be merged
with FEC coding. Scrambling can be incorporated in function of the modulation
nodes in Fig. 13.4. Note that scrambling does not change the topology of the graph.
The problem of short cycles remains the same with or without scrambling. The same
conclusion applies to other modulation techniques.

Inspired by the success of turbo and LDPC codes [23, 25], the IDMA scheme pro-
posed in [31] employs user-specific interleaving to reduce short cycles in a statistical
sense. This is illustrated by the shuffled edge connections between {ck(j)} and {xk(j)}
in Fig. 13.5a. For example, compared with Fig. 13.4, {c1(1), c1(3), c2(1), c2(3)} no
longer form a size-4 cycle after interleaving in Fig. 13.5a. This is beneficial for
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Fig. 13.6 An MA node.
Here, an inbound message
LLRDEC(xk (j)) is from an
LDPC decoder. An outbound
message LLRESE(xk (j)) is
generated from the MA node.
ESE stands for “elementary
signal estimation” and DEC
for decoder

x1(j)

+
(j)

y(j)

xk(j) xK(j)...

LLRDEC(xk(j))
LLRESE(xk(j))

...

message-passing detection. Similar principles can also be applied to systems involv-
ing convolutional or turbo coding.

Two interleavers are used by each user in Fig. 13.5a, one for LDPC encoding
and one for multiple access. The former is the same for all users, and the latter is
user-specific. We can combine these two interleavers by re-shuffling {ck(j)} for each
user, resulting in Fig. 13.5b. The latter interpretation of IDMA is based on [34].

The advantage of Fig. 13.5b is its simpler implementation. If an interleaver is
random, its shifted version can be approximately regarded as another independent
random interleaver. Thus, Fig. 13.5b can actually be realized by using a shifted
version of an LDPC encoder involving a common underlying interleaver. The users,
in this case, are separated by the amount of shift after the common encoder structure.
Such shifting can be realized with very little cost. We may name such a scheme as
code-shift division multiple access (CsDMA).1 This concept was first discussed in
[35].

Note that the use of interleavers in Fig. 13.5 does not incur any rate loss. This is
a noticeable advantage of IDMA for high-rate applications.

13.2.2 Operations on a Multiple Access Node

We now consider message-passing detection based on Fig. 13.5. For convenience,
we refer to a square marked with “+” in Fig. 13.5 as a multiple access (MA) node.
We will only discuss the operations for such an MA node shown in Fig. 13.6. The
operations for other nodes follow the standard treatments for an LDPC code [25].

Denote byDEC k the decoder for user k.Wedefine twomessages: an inboundmes-
sage LLRDEC(xk(j)) and an outbound message LLRESE(xk(j)) that are, respectively
log-likelihood ratios (LLRs), generated by DEC k and elementary signal estimation

1The underlying code in CsDMA should be properly interleaved. An LDPC code naturally meets
this requirement. Without interleaving, however, the correlation among the consecutive bits in a
convolutional codemay cause a problem inCsDMA.This problemcan be easily avoided by shuffling
the coded sequence.
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(ESE) operations at the jth MA node in Fig. 13.6. The discussions for LLRDEC(xk(j))
follow the standard LDPC decoding principles [25] and so will be omitted. We will
focus on LLRESE(xk(j)) below since its computation is not part of a standard LDPC
decoder.

For simplicity, let us first assume binary phase-shift keying (BPSK) modulation
xk(j) = ±1 for all k. We define LLRESE(xk(j)) by the following LLR for xk(j):

LLRESE (xk(j)) = log
Pr (y(j)|xk(j) = +1)

Pr (y(j)|xk(j) = −1)
, (13.4)

where y(j) and xk(j) are defined in (13.3). Assume that η(j) in (13.3) is Gaussian with
mean μ(j) = E(η(j)) and variance v = Var(η(j)). (For simplicity, we will assume
that v is not a function of j. We will explain the rationale for this assumption later.)
For a single-user system with K = 1 in (13.3), the conditional probabilities in (13.4)
are given by

Pr (y(j)|x1(j) = ±1) =
exp

(

− (y(j)−(μ(j)±h1
√
e1))

2

2v

)

√
2πv

, (13.5)

so

LLRESE (x1(j)) = 2h1
√
e1
y(j) − μ(j)

v
. (13.6)

For K > 1, the problem is much more complicated. We need to consider all possible
combinations of {xk(j)}. The exact result is the maximum likelihood (ML) estimator
[36] below:

LLRESE (xk(j)) = log

∑
i Pr

(
y(j)|xk(j) = +1,X i

∼k(j)
)
Pr

(
X i

∼k(j)
)

∑
i Pr

(
y(j)|xk(j) = −1,X i

∼k(j)
)
Pr

(
X i

∼k(j)
) , (13.7)

where X i
∼k(j) is one among all 2K−1 possibilities of the set {x1(j), x2(j), . . . ,

xk−1(j), xk+1(j), . . . , xK (j)} (since xk ′(j) ∈ {−1,+1},∀k ′). In (13.7), Pr(
y(j)|xk(j) = ±1,X i

∼k(j)
)
can be computed similarly to (13.5) and Pr

(
X i

∼k(j)
)
can be

computed frommessages {LLRDEC(xk(j))}. Following [25], we define LLRDEC(xk(j))
by an LLR:

LLRDEC (xk(j)) = log
Pr (xk(j) = +1)

Pr (xk(j) = −1)
. (13.8)

We can obtain Pr(xk(j) = ±1) by solving (13.8) together with Pr(xk(j) = +1) +
Pr(xk(j) = −1) = 1. Then,

Pr
(
X i

∼k(j)
) =

∏

k ′=1,k ′ �=k

Pr (xk ′(j)). (13.9)
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The complexity of ML is O(2K ) for BPSK, which increases exponentially with K .
For a higher order modulation with anM -point constellation, the complexity of ML
is O(MK ). This can be a serious problem in practice.

Gaussian approximation (GA) is a low-cost alternative. We rewrite (13.3) as

y(j) = hk
√
ekxk(j) + ζk(j), (13.10a)

where

ζk(j) = y(j) − hk
√
ekxk(j) =

K∑

k ′=1,k ′ �=k

hk ′
√
ek ′xk ′(j) + η(j) (13.10b)

is the distortion (including interference-plus-noise) with respect to user k. From
the central limit theorem, we apply GA to ζk(j) in (13.10b) and assume ζk(j) ∼
N (μk(j),Var(ζk(j))). Now we can treat (13.10a) as a single-user system. For sim-
plicity, we assume a real channel. (Wewill discuss a complex channel in Sect. 13.5.2.)
Then, we have

Pr (y(j)|xk(j) = ±1) =
exp

(

− (y(j)−(μk (j)±hk
√
ek ))

2

2Var(ζk (j))

)

√
2πVar(ζk(j))

. (13.11)

Substituting (13.11) into (13.4) and evaluating μk(j) via (13.10b), we have the
following ESE operations for the jth MA node in Fig. 13.6. (We will discuss the
generation of Var(ζk(j)) in (13.12c) later in (13.13).)

ESE operations

(i) E(xk(j)) = Pr(xk(j) = +1) − Pr(xk(j) = −1), (13.12a)

(ii) μk(j) =
K∑

k ′=1

hk ′
√
ek ′E(xk ′(j)) − hk

√
ekE(xk(j)), (13.12b)

(iii) LLRESE (xk(j)) = 2hk
√
ek
y(j) − μk(j)

Var(ζk(j))
. (13.12c)

The following are some details related to the ESE operations.

• Initially, there is no decoder feedback, and we can set E(xk(j)) = 0 in (13.12a) for
∀k, j.

• GA is approximate. However, we observed a very good performance based on GA.
• The summation in (13.12b) can be shared by all users. The cost per information
bit per user is independent of the number of users K .

• The principles of GA for higher-order modulations (such as quadrature phase-
shift keying (QPSK)) and complex channels can be derived similarly. Related
discussions will be shown in Sect. 13.5.2.
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We now discuss the evaluation of Var(ζk(j)) involved in (13.12c). From (13.10b),

Var(ζk(j)) =
K∑

k ′=1

|hk ′ |2ek ′Var(xk ′(j)) − |hk |2ekVar(xk(j)) + σ 2. (13.13a)

We observed that the system performance is not sensitive to Var(ζk(j)). Therefore,
we take the following approximation

Var(ζk(j)) ≈
K∑

k ′=1

|hk ′ |2ek ′vk ′ − |hk |2ekvk + σ 2 (13.13b)

based on the following assumption

Var(xk(j)) = 1 − (E(xk(j)))
2 ≈ vk ,∀j. (13.13c)

To evaluate vk in (13.13c), we can simply compute a few samples of Var(xk(j)) and
take their average. In practice, computation for each Var(xk(j)) can be implemented
using a look-up table. We observed that the required number of samples is small, so
the related cost is negligible.

From the above discussions, the total cost for the ESE operations is
(approximately) four additions and two multiplications per chip per iteration. (Some
operations, such as hk

√
ek and 2hk

√
ek/Var(ζk(j)), can be precalculated and need

not be repeated for every j. The related cost is negligible.)

13.2.3 Overall IDMA Receiver

Now return to an overall IDMA system in Fig. 13.5. We divide the receiver into an
ESE module and K DEC modules. The operations in the ESE module is based on
(13.12). Consider two types of schedules below.

• Serial schedule: In each iteration, operations are carried out as follows:
ESE for user 1, DEC for user 1, ESE for user 2, DEC for user 2, . . .

As an example, ESE for user 1 means running (13.12) for every j with k fixed to
1. The LLRs generated in (13.12) are then fed to DEC for user 1. Then, {μ1(j)}
and v1 are updated based on the DEC outputs and the process continues to user 2.

• Parallel schedule: In each iteration, operations are carried out as follows:
ESE for all users in parallel, then
DEC for all users.

In the above, in each iteration, (13.12) is run through every pair of j and k. After
the ESE operations, the outputs are fed to the K local DECs. Then, the K DECs
are run in parallel. Afterward, {μk(j)} and vk are updated simultaneously for all k.
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Fig. 13.7 Performance of
IDMA with GA in AWGN
channels
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Note that in the parallel schedule, the value of the summation in (13.12b), that is
generated using the results of the previous iteration, remains the same for all users
in one iteration. In the serial schedule, this summation is updated user-by-user. We
noticed that serial scheduling converges slightly faster than the parallel one.

A question arises whether it is helpful if multiple inner DEC iterations are carried
out between two consecutive ESE iterations. For example, with the serial schedule,
we can run multiple LDPC decoding iterations for one user before going to the
next user. We observed that such inner iterations are generally unnecessary. For
fixed overall cost, better performance is achieved without inner iterations. However,
slipping some inner or outer iterations may lead to reduced complexity.

Intuitively, we can treat an IDMA system in Fig. 13.5 as a generalized code system
on a graph (where an MA node is just for a special type of constraint). The inner-
iteration method means more iterations on some parts of the graph for LDPC coding
constraints. Such uneven message-passing process does not help in general.

For comparison of overall cost, let us consider a K-user TDMA system in which
LDPCdecoding is individually carried out for each user. The only difference between
SUD for such a TDMA system and MUD for IDMA is the ESE operations. As we
have seen above, the cost of the extra ESE operations is quite moderate. Thus, an
IDMA receiver involving (13.12) has only moderately higher complexity than SUD
for corresponding TDMA systems with the same number of users.

Figure 13.7 shows an example of a four-user IDMA system in AWGN channels.
A rate-1/2 LTE turbo code with 1200 information bits per user is used, followed by
a rate-1/8 repetition code and QPSK modulation. We can see that iterative detection
nearly converges with about ten outer iterations between ESE and DECs with one
inner-iteration. Here, one inner-iteration means running each component decoder
once in a turbo decoder. We can also run multiple iterations in each turbo decoder
within each outer iteration. The result of five inner iterations is shown in Fig. 13.7.
We can see that multiple inner iterations can only offer marginal improvement on
performance, even though at considerably higher overall cost.
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Figure 13.7 also shows the result with user-specific scrambling by spreading each
coded bit with a random binary sequence of +1 and −1 before modulation. No
user-specific interleaving is used in this case. It is seen that interleaving offers better
performance than scrambling. This is due to the short cycle problem as explained
earlier.

13.2.4 Performance Evaluation Through SNR Evolution

We now outline an SNR evolution technique [17] for tracking IDMA performance.
Similar techniques have been successfully applied to turbo and LDPC codes [25]
and more recently to AMP algorithms [37]. This analysis method also provides the
basis of power allocation for IDMA performance optimization in the next section.

Figure 13.8a is a so-called protograph [38] representation of Fig. 13.5, in which
each circle represents a vector and each edge represents a vector connection. Rela-
tively thick lines are used in Fig. 13.8a to distinguish it from Fig. 13.5. The messages
LLRDEC,k and LLRESE,k in Fig. 13.8a are LLR sequences generated by the coding
and MA constraints, respectively.

We will use the following SNR-variance relationship to characterize the behavior
of the system in Fig. 13.8a. Recall (13.10a): yk(j) = hk

√
ekxk(j) + ζk(j). We define

the average SNR for user k as

SNRk ≡ E
(|hk√ekxk(j)|2

)

E(Var(ζk(j)))
= |hk |2ek

E(Var(ζk(j)))
. (13.14)

From (13.13), we have

E(Var(ζk(j))) =
K∑

k ′=1,k ′ �=k

|hk ′ |2ek ′vk ′ + σ 2. (13.15)
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Fig. 13.8 a Protograph representation of Fig. 13.5. b Evolution characterization for (a)
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Since LLRDEC,k is the output of DEC k with input LLRESE,k characterized by SNRk ,
we can write vk as a function vk = ψ(SNRk). Here for simplicity, we assume that
all users employ the same LDPC code and therefore have the same ψ(·). (Note that
the re-shuffling operation in Fig. 13.5b has no effect on ψ(·).) Combining this with
(13.14) and (13.15), we have the following recursion to characterize an iterative
IDMA detector:

SNR(t)
k = |hk |2ek

∑K
k ′=1,k ′ �=k |hk ′ |2ek ′v(t)

k ′ + σ 2
≡ φk

(
v(t)
1 , . . . v(t)

k−1, v
(t)
k+1, . . . v

(t)
K

)
,

(13.16a)

v(t)
k = ψ

(
SNR(t−1)

k

)
, (13.16b)

where t is an iteration index. The initialization is v(0)
k = 1,∀k, implying no infor-

mation from DECs. In general, there is no closed form expression for ψ(·), but it
can be obtained by simulating a single-user APP decoder in an AWGN channel with
specified SNRs. Using {SNR(T )

k } in the final iteration in (13.16), we can estimate the
BER by a function

BERk = g
(
SNR(T )

k

)
, (13.17)

where g(·) can be obtained through simulation of DECs [17].

13.2.5 Superposition Coded Modulation (SCM)

The above IDMA scheme involves multiple signal streams from different users. We
may simply allocate these signal streams to a single-user. Such scheme is referred to
as superposition coded modulation (SCM) [39, 40].

We define a standard QPSK constellation as SQPSK = {00 → (+1,+1), 01 →
(+1,−1), 10 → (−1,+1), 11 → (−1,−1)}. Figure 13.9a is a 16-ary scheme
formed by superimposing SQPSK and a scaled version of SQPSK with a scaling factor of
2 and a 45◦ phase shift [39]. Figure 13.9b is a 64-ary scheme formed by superimpos-
ing SQPSK and two scaled versions of SQPSK with, respectively, scaling factors of 1.18
and 1.10 plus 60◦ and 120◦ phase shifts. From the central limit theorem, the SCM
signaling is more Gaussian-like when the number of streams is large. This can offer
the so-called shaping gain as analyzed in [41, 42]. It has been proved that, among
all possible signaling methods, an SCM constellation achieves the minimum mean
squared error (MMSE) bound; that is, it minimizes the function ψ(·) in (13.16b) for
a fixed underlying binary decoder. The details are discussed in [39].
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Fig. 13.9 a A 16-ary SCM signaling by superimposing two streams of QPSK constellations. b A
64-ary SCM signaling by superimposing three streams of QPSK constellations

13.3 Power Control for IDMA

At a relatively low sum-rate, such as less than 1 in a complex channel, IDMA with
a GA receiver works well with equal received power. At a higher sum-rate, unequal
power control is required. The situation is similar to power control for SIC in (13.2),
except that iterative detection makes the problem more complicated.

13.3.1 Transmitted and Received Power Minimization

Denoting the received powers by

qk = |hk |2ek . (13.18)

We combine (13.16a) and (13.16b) into a compact form as

SNR(t)
k = qk

∑K
k ′=1,k ′ �=k qk ′ψ

(
SNR(t−1)

k ′

)
+ σ 2

,∀k. (13.19)

Let
∑

ek and
∑

qk be, respectively, sum transmitted power and sum received power.
We can minimize them, respectively. The latter is simpler since the channel gains
{|hk |2} are not involved. The following Remark establishes a connection between
these two problems [7, 9, 43].
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Remark 1 Assume that {q∗
k} is a minimizer for

∑
qk . Then, {e∗

k = q∗
k/|hk |2} is a

minimizer for
∑

ek provided that {q∗
k} and {|hk |2} have the same order, i.e., q∗

k ≤ q∗
k ′

if |hk |2 ≤ |hk ′ |2.
Based on Remark 1, we can first find the minimizer {q∗

k} for
∑

qk . We then re-
label {q∗

k} such that it has the same order as {|hk |2}. Then, the minimizer for
∑

ek
can be obtained as {e∗

k = q∗
k/|hk |2}.

Incidentally, Remark1 implies that a user with a higher channel gain should be
assigned a higher transmitted power and vice versa. Next, we focus on minimizing
{qk}.

13.3.2 Feasible Profile

We now impose an SNR requirement Γ after T iterations. This SNR requirement
can be equivalently translated into a BER requirement through (13.17). We write the
received power optimization problem as follows.

minimize
∑

qk , (13.20a)

subject to SNR(t)
k = qk

∑K
k ′=1,k ′ �=k qk ′ψ

(
SNR(t−1)

k ′

)
+ σ 2

,∀k, (13.20b)

SNR(T )

k ≥ Γ,∀k. (13.20c)

The problem in (13.20) is non-convex. We will outline two searching techniques for
this problem. For convenience, we will call {qk} a feasible profile if it ensures the
constraints in (13.20b) and (13.20c).

Incidentally, it is interesting to compare (13.2a) and (13.20b). In (13.20b),

qk ′ψ
(
SNR(t−1)

k ′

)
represents the residual interference from user k ′ after soft can-

celation. Such terms disappear in (13.2a) for decoded users due to the error-free
assumption and hard cancelation.

13.3.3 Greedy Search

We first set T = 1, i.e., only one iteration. Assume that approximate error-free de-
coding can be achieved at a sufficiently large SNR in the single-user case. We can
construct an initial feasible profileQ = {qk} according to (13.2). The sum-power for
such aQ is typically large.

We next consider a general T . Starting from the above initial Q, we search for
a minimum value for each qk individually to achieve (13.20c), while keeping other
elements inQ unchanged. This involves a one-dimensional search, so its complexity
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is affordable. Let the search result be q∗
k . We then update qk ← qk − ε(qk − q∗

k) in
Q, where ε is a damping factor (e.g., ε = 0.5). We repeat the above process for all
k iteratively. We observed reasonably good performance of this simple method for a
relatively small K .

13.3.4 Approximate Linear Programming Method

Inspired by the linear program technique for LDPC code design [25], we can use the
approximate technique below for a large K . The key idea is to transform the problem
of finding the power for each user into finding the number of users on different given
power levels, which makes the problem convex [44, 45].

Let us quantize the received power into M + 1 discrete values: {q(m),m =
0, 1, . . . ,M } with q(m − 1) < q(m). The received powers of all users are selected
from {q(m)}.We partitionK users intoM + 1 groups according to their power levels.
Let λ(m) be the number of users assigned with power level q(m) and z(m) be the
total power of these λ(m) users. As such,

∑

m

λ(m) = K, (13.21a)

z(m) = λ(m)q(m) (13.21b)

and the sum received power

∑

k

qk =
∑

m

λ(m)q(m) =
∑

m

z(m). (13.21c)

Denote by SNR(m) the SNR for the users in the mth group with power q(m). Define

I =
∑

m

z(m)ψ(SNR(m)) + σ 2, (13.22)

which is the total interference power (including noise) after soft cancelation. When
K is large, (13.20b) can be approximated as

SNR(m)(t) = q(m)

I (t) − q(m)ψ
(
SNR(m)(t−1)

) ≈ q(m)

I (t)
, (13.23)

where I (t) denotes the value of I at the tth iteration. Using (13.22) and (13.23), we
have the update rule

I (t) =
∑

m

z(m)ψ

(
q(m)

I (t−1)

)

+ σ 2. (13.24)
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Fig. 13.10 IDMA with EPC
and UPC in AWGN
channels. Rate-1/3 turbo
coding followed by rate-1/2
repetition coding is used for
each user. Information length
of each user is 1200. QPSK
modulation. Sum-rate = 1, 2,
and 4 for K = 3, 6, and 12,
respectively
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Equation (13.24) characterizes the evolution of the total interference at each iteration.
If iterative detection converges, I (t) should be lower than I (t−1). Equivalently, we can
write the convergence condition as

∑

m

z(m)ψ

(
q(m)

I

)

+ σ 2 ≤ (1 − δ)I , Imin ≤ I ≤ Imax. (13.25)

where 0 < δ < 1 is a decay factor that controls the convergence speed. Imax and Imin

specify the total interference at the beginning and end of the iterative detection. In
summary, we re-formulate the optimization problem as,

minimize
∑

z(m), (13.26a)

subject to
∑

m

z(m)ψ

(
q(m)

I

)

+ σ 2 ≤ (1 − δ)I , Imin ≤ I ≤ Imax, (13.26b)

z(m) ≥ 0,∀m. (13.26c)

The above optimization problem is linear with respect to {z(m)}. Hence, it can be
resolved by linear programming. More details can be found in [44, 45].

Figure 13.10 is an example to illustrate the necessity of unequal power control
(UPC). We can see that UPC improves the system performance for all the three cases
of K = 3, 6, and 12 compared with equal power control (EPC). Particularly, when
K = 12, the IDMA system does not work at all with EPC, but works well with UPC.
The gap between IDMA with UPC and capacity is about 3.7 dB for K = 12.

Compared with the 12-user example in Fig. 13.3, we can see that IDMA recovers
about 3.7 dB relative to the loss incurred by SIC. This is impressive, but there is
definitely room for improvement. The gap towards capacity can potentially be further
narrowed usingmore sophisticated techniques, such as curve-matching-based degree
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sequence optimization [46, 47], spatial coupling [48–57], or more sophisticated
modulations [58].

A criterion called overloading, which represents the user capacity in a NOMA
system, is used to assess the system performance in the recent literature. Figure 13.10
demonstrates that IDMAcan offer very high overloadingwith centralized power con-
trol. In the next section, wewill discuss IDMA techniques to achieve high throughput
without centralized power control.

13.4 Random Access via IDMA

13.4.1 Limitations of Conventional Systems

A conventional uplink system with centralized control involves a connection setup
procedure before data transmission. The overhead incurred by this procedure is not
serious for services with long-lasting connections since it can be amortized across the
connection duration. One of themain tasks envisaged for the next 5G cellular systems
is to support machine-type communication (MTC) which is characterized by short
and sporadic data communication. In this case, the cost of establishing centralized
control can be substantial.

Random access is decentralized, in which each user makes an individual decision
to transmit data packets. This avoids the overhead of connection setup, but the packets
from different users may collide. In a conventional random-access scheme, such as
ALOHA [59], colliding packets are discarded, which reduces throughput. For this
reason, such techniques cannot satisfy the demand of high spectral efficiency in 5G
cellular systems.

In a fading channel, the received powers of different users may form a feasible
profile defined in Sect. 13.3.2, even without centralized control. This is captured in
the multi-packet reception (MPR) model [60, 61]. Most existing MPR techniques
rely on channel fading to form feasible profiles. Such a passive approach achieves
limited throughput gain. In what follows, wewill discuss an active approach based on
the power control technique. The main idea is to optimize the probability of forming
a feasible profile through decentralized power control at the transmitters.

13.4.2 Random IDMA with Decentralized Power Control

13.4.2.1 Problem Formulation

Recall from Sect. 13.3.2, a feasible received power profile {qk} can be formed by
centralized control. Without centralized control, however, it is difficult to guarantee
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this. A randomized power control (RPC) technique [62–67] is discussed below to
handle this difficulty.

The principles of RPC are as follows. Let {Q(l), l = 1, 2, . . . ,L} (L is the maxi-
mum level index) be a set of pre-defined power levels and {P(l), l = 1, 2, . . . ,L} a
set of related probabilities. Upon a packet arrival, each user randomly draws a power
levelQ(l) with probability P(l) and uses it to transmit. Different users act individually
and so their transmissions may collide. However, as long as their received powers
{qk} form a feasible profile, their signals can still be recovered. Our aim is to optimize
the probability that {qk} form a feasible profile.

Mathematically, {qk} defined above are the realizations of an underlying random
variable. The random variable is characterized by a probability mass distribution
{P(l)}. Each qk is independently drawn by a user from the support {Q(l)}. Once the
distribution is given, there is no need for centralized control.

13.4.2.2 Type-2 Collisions

The problem formulated above turns out to be difficult when K is large. So far, we
have no general solution. We will discuss a sub-optimal technique below.

We say that a collision is of type-M if it involvesM active users. Let Q(0) = 0 be
an element in {Q(l)}. In RPC, a user will not transmit if its selected power is Q(0).
The related P(0) is equivalent to the back-off probability in 802.11 Wi-fi systems.
Intuitively, collisions are dominated by type-2 ones when P(0) is sufficiently large.
Therefore, we will focus on type-2 collisions.

We consider a type-2 collision involving user i and user j.We define the union of all
possible feasible profiles of the received power pair {qi, qj} as a feasible region. The
collision is resolvable if {qi, qj} falls in this region. Figure 13.11a shows an example
of the feasible region for SICwith ideal coding and decoding. The areamarked by “A”
in Fig. 13.11a is formed by all possible {qi, qj} that meets the following conditions
(see (13.2)):

SNRj = qj
qi + σ 2

≥ Γ, (13.27a)

SNRi = qi
σ 2

≥ Γ. (13.27b)

The area marked by “B” in Fig. 13.11a is formed similarly by changing decoding
order. The value of Γ here is determined by the Shannon capacity R = log2(1 + Γ ).
Any power pair in the feasible region is resolvable by SIC.2

Figure 13.11b is an example of an IDMA system involving two LDPC-coded
users with coding rate 0.5 per user. The receiver can achieve BER ≤ 10−5 in the
feasible region, which is regarded as approximately error-free. The border of this
feasible region is obtained using simulation.

2Figure 13.11a is for R < 1. If R ≥ 1, the feasible region is divided into two disjoint sub-regions A
and B symmetric to the 45◦ line qi = qj [63].
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Fig. 13.11 Feasible regions for a a two-user ideally coded system with SIC, and b a two-user
LDPC-coded IDMA system

Each of the two feasible regions in Fig. 13.11 is bounded by four curves qi =
Q(1), qj = φ(qi), qj = Q(1) and qi = φ(qj). Here, the function φ(·) is determined by
(13.27a) taking mark of equality (for Fig. 13.11a) or by simulation (for Fig. 13.11b).
Q(1) is the minimum power for successful single-user transmission. We construct the
set {Q(l)} as follows:

Q(l) =

⎧
⎪⎨

⎪⎩

0, l = 0,

Q(1), l = 1,

φ(Q(l−1)), l > 1.

(13.28)

For {qk} randomly selected from {Q(l)}, we have the following situations:
Case 1: All {qk} are zeros. In this case, throughput is zero.
Case 2: Only one element in {qk} is nonzero. The transmission of the only active

user will be successful.
Case 3: Exactly two elements in {qk}, say qi and qj, are nonzero. This is a type-2

collision. It can be shown that {qi, qj} falls in the feasible region (so collision is
resolvable) provided that qi �= qj.

Case 4: More than two elements in {qk} are nonzero. For simplicity, such events
are regarded as unresolvable, which is a pessimistic assumption.

Based on the above cases, we can find an optimized probability set {P(l)} for a K
user system. For convenience, we assume that the packets of all users arrive inde-
pendently, following the Bernoulli process with parameter λ. The system throughput
is then given by

T = T1 + T2. (13.29)

In (13.29), T1 is the throughput related to transmissions without collision:
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T1 =
K∑

k=1

Ck
Kλk(1 − λ)(K−k)C1

k (1 − P(0))(P(0))k−1

=Kλ(1 − P(0))(1 − λ + λP(0))K−1,

(13.30)

where Ck
Kλk(1 − λ)(K−k) is the probability of k users among total K users having

packets to transmit andC1
k (1 − P(0))(P(0))k−1 the probability of only one user among

these k users transmitting with nonzero power. Also in (13.29), T2 is the throughout
related to type-2 collisions. From case 3 above, a type-2 collision is unresolvable
only if the two transmitting users are using the same received powers. Therefore, we
have

T2 =2
K∑

k=2

Ck
Kλk(1 − λ)(K−k)C2

k

(

(1 − P(0))2 −
∑

l>0

(P(l))2

)

(P(0))k−2

=K(K − 1)λ2(1 − λ + λP(0))K−2

(

(1 − P(0))2 −
∑

l>0

(P(l))2

)

,

(13.31)

where (1 − P(0))2 − ∑

l>0
(P(l))2 is the probability that two active users transmit with

different received powers.
We further consider an average transmitted power constraint q̄ for each user. In

AWGN channels with unit channel power gain, the constraint is given by

∑

l≥0

Q(l)P(l) ≤ q̄. (13.32)

Under such power constraint, we can search for {P(l)} thatmaximize the throughputT
in (13.29). It can be verified that the problem is convex if P(0) is fixed. The treatments
for fading channels are somewhatmore complicated. The details can be found in [63].

Figure 13.12 shows two examples, one for an ideally coded system and the other
for an LDPC-coded IDMA system [63]. Conventional ALOHA is included as a
reference. We can see that the RPC-based scheme can offer noticeably throughput
gain compared with ALOHA.

It is proved in [63] that the {Q(l)} in (13.28) forms an optimal support for the
decentralized power control when K = 2. It is sub-optimal for K > 2, but it can still
provide excellent performance gain, as seen in Fig. 13.12.

As a short summary, we can treat collisions as NOMA cases. A conventional
scheme, such as ALOHA, treats such NOMA cases as failures. The discussions in
this section aim at optimizing the probability of successful detection in such NOMA
cases.
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Fig. 13.12 Performance comparison of RPC and ALOHA in a an ideally coded system and b an
LDPC-coded IDMA system. Rayleigh fading channel with averaged power gain 1 for all users.
Same power constraint for RPC and ALOHA

13.5 IDMA in MIMO Systems

13.5.1 Multi-User Gain in MIMO Systems

MIMO is a wireless technology employing multiple transmit and receive antennas
[68–74]. Multi-user gain refers to the advantage of allowing a large number of users
to transmit simultaneously over the same time and same frequency inMIMO [10, 75].
This is illustrated in Fig. 13.13 by the potential sum-rate capacity gain for a single-
cell system. Perfect CSI is assumed in Fig. 13.13. The curves apply to both up- and
downlinks following the duality principle [3, 76, 77]. We can see that multi-user
gain is very attractive. The potential gain is in the order of tens of times. Diversifying
power overmore users, i.e., increasingK , is a very effectiveway to increase sum-rate.

Fig. 13.13 Achievable
sum-rate of ZF under perfect
CSI. The number of antennas
at the base station is 64.
Single antenna assumed is
for each user. Other system
parameters are the same as
those in Fig. 13.1
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Figure 13.13 also includes the performance of zero-forcing (ZF) with proper
power allocation. ZF is an OMA technique [75]. Different users are divided into
different orthogonal subspaces in ZF, which avoids interference among users. It is
seen from Fig. 13.13 that, with accurate CSI, ZF can offer very good multi-user
gain. Since the gap between ZF and capacity is small, any further gain by NOMA is
limited. In this case, OMA via ZF can be preferred for its low-cost SUD receiver.

However, in practice, we usually do not have reliable CSI to establish spatial or-
thogonality initially. ZF performance deteriorates seriouslywhenCSI is not accurate.
In the following, we will see that NOMA via IDMA offers a solution to the problem.

13.5.2 Iterative Maximum Ratio Combining (I-MRC)

Wefirst extend the GA-based detection technique in Sect. 13.2.2 toMIMO. Consider
amulti-user uplink systemmodelwithNBS antennas at the base station. For simplicity,
we assume a single antenna at each user. The IDMA principle discussed in Sect.
13.2.1 can be directly used here. We assume perfect CSI first and will return to the
CSI estimation problem later.

The received signal at time j is written as

y(j) =
K∑

k=1

hk
√
ekxk(j) + η(j), (13.33)

where y(j) is anNBS × 1 signal vector received at base station antennas, hk anNBS × 1
complex channel coefficient vector, ek the transmitted power of user k, xk(j) a symbol
transmitted from user k, and η(j) an NBS × 1 vector of complex AWGN with mean
0 and variance σ 2 = N0/2 per dimension.

Maximum ratio combining (MRC) is a common strategy for MIMO systems. An
MRC estimator is defined in a symbol-by-symbol form as

x̂k(j) = hHk y(j). (13.34)

Substituting (13.33) into (13.34),

x̂k(j) = λkxk(j) + ξk(j), (13.35a)

where λk ≡ ‖hk‖2√ek = hHk hk
√
ek is a scalar and

ξk(j) ≡
K∑

k ′=1,k ′ �=k

hHk hk ′
√
ek ′xk ′(j) + hHk η(j) (13.35b)
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is an interference (from {xk ′(j), k ′ �= k} to xk(j)) plus noise term. MRC does not
involve matrix inversion and so has low cost. However, interference is a problem for
MRC, especially when K is large. Iterative GA technique can alleviate this problem.
Similar as that in Sect. 13.2.2, we approximate ξk(j) in (13.35b) by a Gaussian
random variable. We assume that the real and imaginary parts of xk(j) carry two bits
of information in the QPSK modulation. Similar to (13.12), the real part of xk(j) can
be estimated as

LLRESE (Re(xk(j))) = 2λk

Var
(
Re

(
ξk(j)

))Re
(
x̂k−E

(
ξk(j)

))
. (13.36)

The mean and variance in (13.36) are updated as

E
(
ξk(j)

) = hkH
(

K∑

k ′=1

hk ′
√
ek ′E(xk ′(j)) − hk

√
ekE(xk(j))

)

, (13.37a)

Var
(
Re

(
ξk(j)

))

=
K∑

k ′=1

Var
(
Re

(
hHk hk ′

√
ek ′xk ′(j)

)) − Var
(
Re

(‖hk‖2 √
ekxk(j)

)) + ‖hk‖2 σ 2.

(13.37b)

Some detailed computation techniques for (13.37) can be found in [75]. The imag-
inary part of xk(j) can be estimated similarly. We call the above process iterative
MRC (I-MRC).

Figure 13.14 illustrates the effectiveness of I-MRC [75]. We consider three dif-
ferent settings:

(i) K = 1 and sum-rate Rsum = 5 with five signal streams (each stream with rate 1)
assigned to the sole user using the SCM principle discussed in Sect. 13.2.5,

(ii) K = 8 and Rsum = 16 with two streams per user, and
(iii) K = 8 and Rsum = 24 with three streams per user.

For K = 1, all the signal streams see the same channel so there is no spatial diver-
sity among them, which results in poor performance. IncreasingK from 1 to 8 results
in drastically enhanced rate or reduced power or both in Fig. 13.14. Figure 13.14 is
a compelling evidence for multi-user gain: allowing more concurrent transmitting
users is more efficient than increasing single-user rate.

13.5.3 Data-Aided Channel Estimation (DACE)

Wenow consider the CSI acquisition problem.Many factorsmay affect CSI accuracy
in MIMO. In particular, the correlation among the pilots used by different users can
lead to the pilot contamination problem [78].
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Fig. 13.14 Multi-user gain for K = 8 with I-MRC. Rayleigh fading. NBS = 64. Equal transmitted
power is assumed for different users. Power control is used for the streams assigned to the same
user. The power allocation levels are obtained through heuristic search. Rate-1/2 turbo coding and
information length = 1200 for each stream. QPSK modulation. A codeword is transmitted over ten
resource blocks. Each resource block contains 180 symbols experiencing the same fading conditions

IDMA with data-aided channel estimation (DACE) [17, 79–83] technique can be
used to improve CSI accuracy. The basic principle of DACE is as follows. Recall that
a key difference between pilot and data is that the former is known at the receiver,
while the latter is not. Therefore, if a data symbol is known, it can be used as a pilot.
Furthermore, partial information of a data symbol, such as its mathematical mean,
can also be used to refine the channel estimates. Such partial information is readily
available in an IDMA receiver (as given in (13.8)).

DACE can be used jointly with I-MRC, which involves iterations of the following
two operations [75]:

(a) using both pilots and partially decoded data information to refine CSI, and
(b) using improved channel estimates to refine data estimation by I-MRC.

The advantages ofDACEare twofolds: (i)WithDACE, the estimated data is gradually
used for channel estimation. Pilot energy can be greatly reduced since only very
coarse CSI is required initially. (ii) Data sequences are typically much longer than
pilots and correlation is low among them. Therefore, DACE is robust against the
pilot contamination problem. Such problem is typically caused by the correlation
among the pilot sequences re-used in neighboring cells. Without DACE, longer pilot
sequences will be required to reduce such correlation. Thus, DACE also reduces the
time overhead related to pilots.

I-MRC and DACE can be naturally combined in an overall iterative process.
After MRC and decoding operations in each iteration, partially detected data are
used to refine channel estimates that are in turn used for MRC and decoding in the
next iteration. This is referred to as I-MRC-DACE. Figure 13.15 compares BER
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Fig. 13.15 Performance comparison of aZF and b I-MRC-DACEwith differentβ values. Rayleigh
fading. NBS = 64 and K = 16. Rate-1/3 turbo coding and information length = 1312 for each user.
QPSK modulation. Each codeword is divided into 12 sections, and each section is transmitted
over a resource block (including 16 pilot symbols). Different users in a cell are assigned different
orthogonal pilots. These pilots are repeated for users in different cells. The pilot and data symbols
have the same average power

performance for ZF and I-MRC-DACE, in which β is the cross-cell interference
factor defined in (13.1). A larger β indicates a more serious pilot contamination
problem due to more severe interference among the pilots. From Fig. 13.15, we can
see that I-MRC-DACE noticeably outperforms ZF. The difference becomes very
significant when β is large (e.g., β ≥ 0.6).

IDMA is a natural choice for I-MRC-DACE since it is beneficial for iterative
detection. Note that Fig. 13.5 can also be used to characterize IDMA in MIMO
systems, if each scalar y(j) in Fig. 13.5 is replaced by its vector counterpart y(j) in
(13.33). The discussions on short cycles in Sect. 13.2.1 are still applicable after such
replacement.

IDMA also allows a superimposed pilot scheme that can reduce the power over-
head and rate loss. The related discussions can be found in [83–86].

13.6 Prospective Applications of IDMA in 5G Systems

Various approaches have been proposed recently for 5G radio link under LTE, in-
cluding IDMA [87], RSMA [88], IGMA [89], PDMA [90] and SCMA [91, 92]. In
the following, we will show that these schemes all share, explicitly or implicitly, the
basic principle of IDMA.

We first represent these different schemes using a unified protograph framework.
Assume that N resource blocks (RBs) defined in LTE are available for transmission.
We label the observations from these RBs by {y(1), y(2), . . . , y(N )}.

Figure 13.16 shows a scheme in which each user transmits on all available RBs
as illustrated for two system settings: (a) three users over two RBs, and (b) six users
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Fig. 13.16 Protograph representations of DS-CDMA and IDMA with a three users over two RBs,
and b six users over four RBs

over four RBs. This can be realized by transmitting replicas of each xk over multiple
RBs. Alternatively, we may use a low-rate code to generate each xk . Each xk can be
segmented into several blocks, with each block transmitted over an RB. The latter
approach can potentially provide higher coding gain [93]. We may also use different
modulations for the bits on different RBs, as for SCMA [92].

Incidentally, bothDS-CDMAand IDMAcan be represented using the protographs
in Fig. 13.16. They are distinguished by the absence or presence of user-specific
interleaving within each RB. RSMA [88] is a DS-CDMA scheme. However, user-
specific interleaving is stated as an option for RSMA. If this option is used, it is
equivalent to IDMA. The advantage of this option can be seen in Fig. 13.7.

Alternatively, each user can transmit over only some of the available RBs. This
is referred to as sparse coding in [91]. Figure 13.17 shows an example for sparse
coding. IGMA,PDMA, andSCMAall involve such treatment.Note that symbol-level
interleaving as in Fig. 13.5a is not explicitly seen in Figs. 13.16 and 13.17. If such
underlying interleaving is not used, size-4 cycles can be a problem in Fig. 13.16.
Sparse coding in Fig. 13.17 avoids this problem. Clearly, sparse coding leads to
user-specific edge connections between users and RBs. It has the same effect as
symbol-level interleaving; they both reduce short cycles.

With sparse coding, each user does not fully occupy all RBs. This may cause
problem for decentralized grant-free [13] or random-access applications, where each
user determines its activity individually. In these cases, the number of active users,
denoted by Kactive, is a random variable. When Kactive is small, sparse coding may
lead to inefficient use of the available RBs and so low power efficiency. This implies
poor scalability of user numbers. On the other hand, an IDMA system in Fig. 13.16
based on symbol-level interleaving does not have this problem, since all available
RBs are fully used for any value of Kactive.
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Also, multi-user gain inMIMO is determined by the number of users concurrently
transmitting in each RB. Therefore, sparse coding may not be an efficient option in
MIMO (especially in massive MIMO).

Figure 13.18 compares IDMA and SCMA in quasi-static Rayleigh fading chan-
nels. The channels remain unchanged within each transmission. Both schemes are
with six users, two receiver antennas, sum-rate = 3 and equal transmitted power per
user. A rate-1/2 LTE turbo code is used followed the following transmitter structures:

• IDMA is with a length-2 spreading and QPSK modulation.
• SCMA is based on Fig. 13.17 with the 16-point modulation in [92].

We can see fromFig. 13.18 that the two schemes have similar performance. However,
SCMA in Fig. 13.18 is based onML, while IDMA based on GA. The latter has much
lower complexity.
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13.7 Summary

Wehave shown that the real attractiveness ofNOMAis in systemswithout centralized
control or without accurate CSI. It is difficult or too costly to establish orthogonality
in such channels, so we have to resort to NOMA. Iterative processing holds the key;
interference can be gradually resolved and CSI can be gradually refined through
iterative processing. IDMA is a simple implementation technique for NOMA. The
features of IMDA can be seen from its sparse graphic representation. The interleaved
edge connections in IDMA facilitate iterative processing at the receiver. We have
demonstrated that IDMA can offer significant performance gain in random access
and MIMO systems. IDMA also offers lower detection complexity compare with
other alternatives.
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