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Abstract. Beacon-based Robotic foraging is inspired by nature’s ability
to create efficient explorers and gatherers, and imposes a number of con-
straints on how agents can interact. In decentralized models, the robots
must maintain chains of communication, effectively explore areas, and
start collecting from discovered targets. Previous approaches have used
a beacon-based technique, which is dependent on swarm size to environ-
ment size ratios, and do not have guarantees on finding all targets. This
paper outlines the issues in these approaches and offers solutions to find-
ing targets reliably, robust task allocations, and efficient beacon network.
We verify our techniques by providing metrics of successful swarm size
to environment size ratios, robot congestion improvement, and target
utility independent measurements for gathering.
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1 Introduction

Robotic or automated foraging has become an interesting problem recently and
combines many multi-disciplinary techniques to accomplish its goals. Automated
foraging is given an unknown environment (structure, layout, existing entities,
and desirable resources unknown) and is required to explore this environment to
find targets. The robots are to navigate, map out, and efficiently cover the envi-
ronment so that target collection can be done. Robots must repeatedly deliver
items from discovered targets to the home base.

This continuous foraging is not a trivial problem, especially when there are
no localization techniques. When localization is absent, robots must maintain
a network of communication in some form. We assume no localization method,
and thus we need to make up for this lack of navigational luxury.

The second aspect of foraging, continuous item retrieval, requires orienting
and allocating robots to discovered targets. Some techniques utilize robots to
create static waypoints for the retrieval process for navigation. However, static
waypoints may waste the robots for the retrieval task. For this paper, we assume
that we can feasibly create an optimal static waypoint network for robots to
navigate, thus eliminating the need for mobile networks.
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We look at a beacon based foraging algorithm proposed by Hoff et al. [6],
and its multi-target extension done by Jiao et al. [4]. The approach Hoff et al.
uses two types of agents (the extension uses three) Beacon, Walker (Explorer
in the extension), and Worker (in [4]). The beacons work to map out the area
by creating routes in the environments with themselves. The explorers search
along the currently established network to find targets, or to become beacons to
extend the network, and workers specifically only gather from found targets.

The previous algorithms solves the problem rudimentally, therefore has a
number of fundamental issues such as task allocation (target assignment), con-
gestion, and poorly utilized beacons. We present two algorithms: Rostering for
controlling how robots are assigned to targets for gathering, and NetOpt for bet-
ter utilizing beacons for discovering targets and possible reallocating as workers.

2 Related Work

Many Robotic foraging models are inspired by biological examples such as ants.
Using ants as a primary example, they work in a rather stochastic way which
can coordinate when necessary to accomplish food gathering. Though stochastic
models have been studied in Adler and Gordon [1], we focus on a deterministic
approach using only a minimal amount of random walking.

Below we outline the progression of foraging techniques and analysis that has
proceeded this work. Generally foraging has been concerned with single targets,
with only recently multiple targets becoming a topic of concern.

– Svennebring and Koenig have used visual markings to identify explored ter-
rain [7]. This has the advantage of not necessarily needing additional robots
to maintain mapping information, but physical markings can be unreliable
depending on the material, and the visual identification capabilities of the
robot.

– O’Hara et al. use statically deployed networks in their G.N.A.T.S. system to
create potential fields to guide multi-agent systems perform distributed path
planning [5]. Theirs has the advantage of being able to plan out the network,
but not allowing optimized searching. Specifically, if the network has not been
deployed optimally, or the area has been unexplored, their method will not
work well.

– Barth [2] studied the deployable network, which allows beacons to be placed as
the robots explore. This method has the advantage of having a more dynamic
setup with the mapping data and doesn’t rely on known information about
the environment.

– Hoff et al. proposed two techniques to forage for a single target: A modified
virtual pheromone and a multi-state beacon algorithm [6]. In the multi-state
beacon algorithm, robots can either be a Beacon, an Explorer or a Worker.
Each of these ‘types’ has a different task assigned to it. Robots can switch
between ‘types’ according to instructions in the algorithm to accomplish their
task of finding targets and moving between their targets and the home base.



24 C. Sanford and J. Oh

Explorers explore the area for their target and have a chance to become
beacons under the right circumstances. Beacons transmit information across
the network of robots, and workers move between the base and the target
using the beacon network. The algorithm assumes that the robots spawn
out of the base one by one over a period. The first robots to spawn quickly
become Beacons marking the location of the base. As more robots spawn
out of the base, they begin to explore the map, indexing themselves based
on the cardinality of Beacon robots in their vicinity. Over time the robots
will spread out and create a network of beacons, and once the robots locate a
target, they can use that network of beacons to move to and from the base and
targets. These beacon type robots index themselves in two ways, ascending
and descending from the home base. This creates a network which can relay
information to the robots and also serves to create a path for the robots to
follow once they find their target (food). Once the ‘food’ has been found some
robots transition into worker types and move up the indexed beacons until
they gather the ‘food’ and then return it to the home base. The algorithms
handle dynamic foraging as with Barth’s beacon setup and allow parameter
tuning with the beacon based approach. We focus on an extension to the
beacon method and analyze some of its parameter tunings.

– Jiao et al. provide an extension to Hoff’s beacon based algorithm to deal with
multiple targets [4]. The changes create the network into a tree like structure
branching to each target and allow for workers to individually select targets
to work with. The algorithm suffers from problems such as congestion and
low beacon utilization, also present in Hoff’s, but provides an initial effort to
deal with multiple targets.

The above algorithms take advantage of storing mapping information some-
where and use this information to navigate without localization. Our approach
will not use localization techniques, such as GPS, either; our algorithm relies on
local communication for distributing navigation information as well as coordi-
nating resource gathering.

Both Hoff’s [6] and Jiao’s [4] algorithms suffer three fundamental problems
which will be addressed by our optimizations.

1. Target allocation: We need to ensure that targets have an adequate num-
ber of workers allocated when discovered. Since worker allocation is done
via probability parameters (Pr(Explorer → Worker) = wprob), robots can
often be allocated too quickly to early targets or not quickly enough and most
explorers become beacons.

2. Robot congestion: There tend to be too many robots converging to a tar-
get that can impede robots motion. This happens due to no control flow or
coordination done between robots assigning themselves to targets.

3. Beacon optimization: The previous algorithms can use beacons inefficiently
and lack the ability to reuse beacons when not being utilized.
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3 The Rostering Technique

The multi-target extension [4] does not make any guarantees about target allo-
cation, often having workers flock to the first target found, and any subsequent
targets have little or no gathering workers. The parameter tuning for this algo-
rithm does not add any guarantees to it as well, and thus needs more control.
Due to the same occurrence, too many workers flocking to one target causes
traffic congestion impeding the traffic of mobile robots and slowing down the
gathering process. Lastly, beacons are not necessarily allocated optimally, either
not heading towards a target, or deploys themselves nearby other beacons when
the network could spread out further.

We propose the rostering algorithm to help with both target allocation and
robot congestion, with beacon optimization handled in a later section. To elab-
orate on what these issues entail, we need to see what happen when targets
are found. As soon as a target is found, the cardinality information will prop-
agate across the network and will be broadcasted to explorers. Explorers will
check to become a worker at each iteration at a fixed problem probability
(P (Exp → Worker) = wprob), and if wprob of too large most of the explorers
will quickly become workers. Large probabilities (wprob ≥ 0.001) will lead to
explorers becoming workers far too quickly and prevents further exploration.

To remedy both congestion and target allocation we propose the rostering
algorithm that can control the number of robots going between different targets.
Taking advantage that beacons already broadcast target information, they now
use a new structure to allocate robots to particular targets shown below.

class RosteringRobot extends Robot {
map<target, set<Robot>> roster;

}

The structure assigns for each target a set of robots to work on it. When
a beacon broadcasts its cardinality information, it will also broadcast roster
openings, and nearby explorers can choose to join in on these rosters. As these
rosters fill up, they are broadcasted throughout the network to maintain a global
structure. To use this structure when an explorer hears an open roster with a
given fixed probability, it will assign itself to a target on that roster. To prevent
too many robots assigning themselves to a specific target every robot has a
maximal roster size that it will ignore. This maximal amount is fixed before the
foraging starts and is done as such since global synchronization of these decisions
is costly. This process is demonstrated below.
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function RosteringExplorer()
Let robots ← set of nearby robots;
Let bcasts ← set of heard broadcasts;
Let targets ← set of nearby targets;
Let map ← ⋃

m∈bcasts m;
if (targets �= ∅ and ∃t ∈ targets,map[t] �= START ) or |bcasts| = 1 then

type ← BEACON ;
else if |keys(map)| > 0 and open roster() then

With the probability of p, type ← WORKER
assignSelfToRoster();

else
RandomWalk();

One thing to note is the assignSelfToRoster() procedure; The explorer
broadcasts a message and if a beacon hears this message the algorithm will func-
tion correctly. To see how this works we look at the modified beacon procedure
below.

function RosterBeacon()
Beacon();
Broadcast roster
Let bcasts ← set of heard broadcasts;
Let bots ← set of nearby robots;
for t ∈ knownTargets() do

if t �∈ keys(roster) then
roster[t] = {};

for (t �→ assigned) ∈ roster do
roster[t] = roster[t] ∪ assigned;

First note that it does what the multi-target beacons do by using the Bea-
con procedure by Jiao et al. [4]. It first updates its roster list as necessary for
initialization. Secondly it listens to all broadcasts; These broadcasts now contain
roster information and more important roster information from workers. Within
these broadcast if there is a worker assigned to a target it doesn’t know about,
the beacon will add the worker to the list of known workers. In practical situa-
tions this broadcast will most likely be more than just a simple procedure call for
an explorer, and its possible workers can continue to broadcast this information
for a short time before stopping to guarantee the information is heard entirely.

We should note that this doesn’t guarantee a certain amount of workers will
be allocated, usage of a high assignment probability will guarantee assignments,
but the rostering may allow assignments of higher than the desired value. How-
ever, as long as network latency is low and a good probability is chosen, then
the actual assignment population will be very close the desired amount.
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4 Rostering Experimental Analysis

We want to analyze how the rostering technique improves performance. We mea-
sure a few different factors, such as congestion improvements, the number of tar-
gets found, and average time lost due to congestion. These metrics represent vital
issues that are present in the multi-target extension; the multi-target extension
suffered from the lack of ability to find all the targets in a given environment,
which can be undesirable when different targets represent different needs. The
multi-target extension can also suffer from the congestion issue due to the lack
of control in sending robots to particular targets; Specifically, too many robots
converge to the first target found.

For these experiments we will be maintaining a few fixed parameters; time,
an import factor to allow robots to work, is measured in no specific units and
the speed of robots is constant, relative to those units. We also fix the size of
the population as 100 robots. This value was chosen through experimentation on
finding the disc shape of the robots coverage area and chose an appropriate target
location distribution similarly described by Jiao et al. [4]. Lastly, we provide the
worker assignment bound to be 5.

Fist we will compare how we improve upon congestion; We compare perfor-
mance by measuring the average time lost on each trip for each worker. This is
done by computing the minimal time required to reach the target (given a known
maximal speed of each robot) and find the difference between each trip time that
minimal time, we then average these trip times for each robot to compute the
average time loss for each robot. We compare our rostering algorithm against the
multi-target hoff algorithm with two different probability parameters on worker
conversion.

Fig. 1. Congestion metrics

Figure 1 shows the cumulative probabilities of a particular average time loss.
The x-axis represents the average time loss for robots, and the y axis represents
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the probability of having at least X average lost time. By definition, as X → 0
Y → 1 and X → ∞ as Y → 0. So we choose a significant section of the data to
display. Our experimental setup has that the minimal amount of time required
to direct move to each target is at most 20 units of time. Figure 1 shows the
improvement of our algorithm compared to the original multi-target. Specifically
for some chosen values, we have the following values:

Fig. 2. Sample results of congestion

Figure 2 demonstrates some of the results of improvement. For X = 10 Not
much improvement is demonstrated (at most 27%). However, as X increases we
start seeing at most 52% improvements. Qualitatively we can view the simu-
lations and check that robots are assigned correctly, but here we have better
quantified demonstrations on how well the rostering approach helps deal with
traveling time and improves congestion conditions.

The second metric we want to look at for improvement is the number of
targets found. In Jiao et al. they had looked at how many targets were found
when varying the worker conversion parameter and had demonstrated that while
the parameter can be tweaked to do better often, it will cripple the ability to
do the retrieval. Here we look at the distribution of targets found for the hoff
multi-target and the rostering approach. Our setup is similar to that of Jiao
et al. [4], where the simulation will last for 600 units of time each.

Figure 3a and b shows the distribution of targets found for one of the better
and worse case scenarios for the base multi-target algorithm. We note that the
number of targets found does not exceed seven, even in the best-case scenario.
This also is the worst case scenario for converting workers for gathering.

We want to see the performance increase for using this for finding new tar-
gets; Since when workers are converted very quickly in the original multi-target
algorithm, the number of workers for exploration decreases dramatically and
instantaneously. We then take the rostering approach with p = 0.01. Here we do
not vary the probability, as we want to see how much the performance improves
due to a fewer worker conversions. Figure 3c demonstrates the performance.

As demonstrated, the performance does not increase by a large amount, but it
does so comparatively to experiments with similar parameterization. The multi-
target algorithm with p = 0.0001 performs similarly. However, we should note
that is because no gathering is being done (generally, only a few robots become
workers), whereas the rostering approach almost all targets will have workers and
early targets are essentially guaranteed at least five gathering workers (this is due
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to the high probability with worker conversion). So while the target distribution
has not improved by much, it does improve slightly with more guarantees on
gathering.

Fig. 3. Rostering comparison

5 Network Optimizaiton

In this section, we attempt to resolve the issue of how effectively the beacons are
used. There are two focus areas: Beacon placement and beacon recycling. Both
in Hoff’s and the multi-target extension, beacon placement is not effective: Often
there are two beacons almost right next to each other due to the condition for
becoming a beacon. Secondly, we design an algorithm for reusing the beacons,
which is non-existent in the previous two algorithms. We assume that the robots
can check the distance between beacons by using infrared detection or similar
methods. For this section, we use the term NetOpt to denote the extended
algorithm using these two methods.

First, we consider the minimal distance checking which is a minor exten-
sion to the algorithm; This check is inspired by other techniques that mimic
the molecular model–a technique that seeks to find a spread equilibrium for the
robots to perform a coverage of the map as in Batalin [3]. The area coverage
problem is a subproblem of foraging, though in general, it is not necessary to
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cover the entire environment in foraging. Batalin’s algorithm creates an equilib-
rium by treating the robots as molecules and uses distance checks. Our algorithm
does indeed use distance checks, but instead of creating an equilibrium it forces
the robots to spread out farther and thus covering more region. This addition to
the algorithm is straight forward and is captured in the following modification
to the Explorer procedure from the multi-target algorithm.

function MinDistExplorer()
Let robots ← set of nearby robots;
Let beacons ← set of nearby beacons;
Let bcasts ← set of heard broadcasts;
Let targets ← set of nearby targets;
Let map ← ⋃

m∈bcasts m;
if (targets �= ∅ and ∃t ∈ targets,map[t] �= START ) or |bcasts| = 1 then

Let D = {dist(b, this) : b ∈ beacons}
if ∀d ∈ D, d < MAX DIST then

type ← BEACON ;

else if |keys(map)| > 0 then
With the probability of p, type ← WORKER;

else
RandomWalk();

MAX DIST is a configurable constant for all robots; We use the constant
as a fixed ratio of the physical detection distance. This check maintains the
desired properties of the multi-target extension and ensures that new beacons
will not cluster around a target and only become beacons if they detect exactly
one beacon.

Secondly, we’ll look at beacon recycling beacons that are not used or used
inefficiently. One problem with the previous beacon-based methods is that when
beacons are placed, they will always be there, thereby creating un-utilized bea-
cons. We want to be able to identify unused and viable beacons to be recycled.
One property of the network we will use for this is that our network is a tree-like
structure, and captured more succinctly in the following theorem.

Theorem 1. Given a configuration of the beacon network N , then any beacon
which does not detect a larger nest cardinality can be removed without discon-
necting the network.

This theorem tells us that beacons only need to check this condition in broad-
casts to determine if they are a leaf beacon. More explicitly the two condition
we check for are:

1. Is the beacon a leaf?
2. Is the beacon allocated as an initial beacon for a target?
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The first condition is just the leaf condition; the second is to make sure
that no beacon that has found a target will leave the network. When a beacon
decides to leave and become an explorer, it may use the beacon network to
navigate back to the nest and restart its search. The decision on whether or not
to recycle oneself for each leaf beacon depends highly on the knowledge given
the region; We assume the most general case where the targets can be placed
in an arbitrary distribution, so our beacons wait a fixed amount of time before
recycling themselves.

Care must be taken for this process; if a beacon was to leave the network when
an explorer was nearby, then its possible that the explorer will become loose the
sight of the network. This could happen only with the minimal distance checks
algorithm. Without minimal distance checks, the leaf-time being checked against
should not be incremented when there are explorers within range. Otherwise,
explorers can just end up replacing that beacon immediately and can stunt the
growth of the network.

6 NetOpt Experimental Analysis

NetOpt is designed to improve target finding performance, so in this section,
we provide insight on the improvements that NetOpt brings on the distribution
of targets found. We keep the same setup as in the rostering experiments and
apply NetOpt with rostering simultaneously. Figure 4a shows the distribution of
targets found using the NetOpt addition to the algorithm.

As can be seen, NetOpt provide a large improvement, reaching targets found
that the previous two algorithms could not achieve, as well as being able to
maintain a centered distribution about more than 70% of targets found. While
this shows a vast improvement given some of the resources available, one might
question the performance should requirements change in robot population and
gathering necessities.

Figure 4d shows the performance with only 50 robots and five workers. The
distribution is less spread but has much better performance than the original.
Next, we take the previous setup and decrease the worker factor to show how
much performance can increase by reducing the worker count. Figure 4b shows
the distribution by reducing the worker bound to 2, thereby allowing for more
explorers. A large percentage still find only four targets, but vastly less find less.
Shifting much of the distribution towards five and six targets found. Though
neither of these still find all ten targets.

On the other side of the spectrum, we provide a better scenario for our robots
by increasing the population to 125. Figure 4c shows the results with a worker
bound of 5. With only a 25% increase in population the performance increases
drastically from the 100-5 configuration. Though ten targets are not guaranteed,
the performance increase is noticeable.
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Fig. 4. NetOpt Comparisons

7 Future Work

Our algorithm does demonstrate nice improvements on the old ones but still
only works under certain assumptions. To reiterate some of these assumptions:

1. Local communication for global knowledge;
2. Random walking is sufficient to eventually reach all targets;
3. Quantity of robots is enough to fulfill the previous.

Having no localization is the requirement that forces to have a beacon net-
work; Though the beacon network is not necessary, local communication and
connectivity are important in general. The other two requirements are what
allows to make the simplifying tests of allowing beacons to remain static once
they have positioned themselves. Future work would be to address these con-
straints which could allow for more dynamic beacons. Our NetOpt algorithm
handles recycling beacons once they have found themselves to be not helpful,
but if targets existed much farther past the random walk trajectory, then even
the NetOpt algorithm would do very poorly.

The other issues are related to how exploration is done; since our algorithm
uses random walking, it may travel to already explored regions. Since a global
localization is not employed there would need to be a way to maintain rela-
tive regions of exploration to each beacon, and communicate desired regions of
unexplored areas.
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8 Conclusions

Foraging algorithms have been explored by many researchers and have taken var-
ious approaches. Statistical models have been developed through the inspiration
from biological foragers such as ants. More deterministic approaches have been
developed assuming both localization and lack of localization methods. These
older methods focused more on single target foraging, whereas the more recent
work considers a multi-target extension.

Our work solves a number of problems with the multi-target extension. The
older algorithms suffered from many defects, specifically the naive probability
parameterization leading to the lack of ability to effectively control exploration
and target item delivery, congestion due to uncontrolled worker conversion, and
lack of guarantees on gathering properties.

We demonstrate the efficacy of our work in a few ways. We develop a way of
measuring congestion which was absent in previous work. We continue the mea-
surements from older work that computes the distribution of targets found, and
demonstrate the improvements from older work. We also outline the assumptions
that facilitate these metrics as well as allow the algorithm to perform well. We
presented an algorithm to utilize beacon robots more effectively, consequently
improving the exploration capability. Lastly outlining what needs to be accom-
plished to break away from these assumptions for future work.
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