
Partition Crossover Evolutionary
Algorithm for the Team Orienteering

Problem with Time Windows

Ibtihel Ghobber(B), Takwa Tlili, and Saoussen Krichen

LARODEC Laboratory, Institut Supérieur de Gestion Tunis,
Université de Tunis, Tunis, Tunisia

takwa.tlili@gmail.com

Abstract. The rapid evolution in tourism domain and new technologies
make the search for the destination and site information for the tourists
very difficult. In operations research field, this problem is modeled as
Tourist Trip Design Problem (TTDP) which is about finding an optimal
path-planning solution for tourists in order to visit multiple Points Of
Interests (POIs). This paper addresses the team orienteering problem
with time windows (TOPTW) that is an extension of TTDP. We apply
for the first time the evolutionary algorithm based on partition crossover
(EAPX) for solving the TOPTW. This approach is tested using a set of
benchmarks then is compared to state-of-the-art algorithms to evaluate
its performance. The results indicate the effectiveness of this method in
solving the TOPTW.

Keywords: Team orienteering problem with time windows
Tourist Trip Design Problem · Partition crossover
Evolutionary algorithm · Meta-heuristics

1 Introduction

Tourists are often confused about selecting the interesting places to visit during
their tour. Since there is a limitation in time and budget, tourists will select
those destinations that have the more attractive Points of Interest (POIs). After
discovering the interesting POIs, tourists decide to determine how many of them
they can visit which path to follow, that fit their visiting time and travel bud-
get limitations. In operations research, seeking for POIs and proposing a tour
plan for tourists is modeled as Tourist Trip Design Problem (TTDP) that have
been studied by numerous researchers. The main objective of this problem is
finding the most interesting POIs that maximize tourist satisfaction, by incor-
porating visiting time limitations, and opening and closing days/hours of each
POI. Gavalas et al. (2014) classified TTDP into two variants. The first is the
single tour TTDP variants that aim to find a single path between nodes that
maximizes the profit and minimizes the travel cost while the second variants

c© Springer International Publishing AG, part of Springer Nature 2018
M. Mouhoub et al. (Eds.): IEA/AIE 2018, LNAI 10868, pp. 200–211, 2018.
https://doi.org/10.1007/978-3-319-92058-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92058-0_19&domain=pdf


Partition Crossover Evolutionary Algorithm for the TOP 201

are the multiple tour TTDP which are characterized by determining a multi-
ple POIs that the tourists need to visit with taking into account their visiting
time. We focus on an extension of multiple tour TTDP which is the Team Ori-
enteering Problem with Time Windows (TOPTW). This problem aims to find
the optimal trip that respects tourists travel time and POIs’ time windows and
maximize their satisfaction which corresponds to maximize the total collected
profit from each POI. Since the TOPTW is demonstrated as an NP-hard prob-
lem Vansteenwegen et al. (2009a) many meta-heuristic approaches are proposed
in the literature to tackle it. Montemanni and Gambardella (2009) develop ant
colony optimization (ACO) for solving TOPTW. This approach integrates ant
colony system (ACS) algorithms which are based on a computational paradigm
inspired by real ant colonies. It has two elements as follows. The construction
phase in which feasible solutions are produced. The local search algorithm used
to take down each solution generated in the construction phase to a local opti-
mum. A very fast iterated local search (ILS) meta-heuristic is introduced by
Vansteenwegen et al. (2009a) to deal with the TOPTW instances where it based
on two steps as follows. The first is the insertion step attempts to add new visits
to a tour. The second is the shake step is used to liberate local optima. The total
average gap is only 1.8% compared to the ACS.

The main contribution of this paper is to present an evolutionary algorithm
based on the partition crossover technique for solving the TOPTW. As noted
that this algorithm has proved its performance in solving routing optimization
problem. Herein, we detail its different steps and give its pseudo code. To validate
the proposed model, we test a set of TOPTW benchmark instances. A compar-
ative study is held to show the competitiveness of the proposed approach.

This paper is structured as follows. In Sect. 2, we define the TOPTW statement
and propose its mathematical formulation. The proposed evolutionary algorithm
based on partition crossover (EAPX) for TOPTW is explained in Sect. 3. In Sect. 4,
computational experiments are provided. Section 5 summarizes the paper.

2 Problem Description

In e-tourism, the TOPTW is characterized by a set of POIs, where each point
is associated with a profit which denotes its importance value for the tourist, a
visit duration and a time window, as well as a travel time between each pair of
POIs. The main goal this problem is to find a fixed number of disjoint routes
from the starting node to the ending POI that respect a set of constraints.

Summarizing, the objective function of the TOPTW (1) seeks to maximize
the total collected profit from each visited POI which corresponds to the max-
imization of tourist’s ratings, depends on their preferences and considers the
following constraints.

– The trip starts and ends at the hotel.
– Every POI is visited at most once.
– The total trip time is limited by Tmax.
– Each visit starts with a POI’s time windows [Oi, Ci].



202 I. Ghobber et al.

2.1 Mathematical Formulation

The TOPTW involves a set of POIs, where each POI is associated with a score
Si a service time Ti and a time window [Oi, Ci]. For the depot vertex, which
corresponds to the hotel e0 represents O0 represents the the starting time to
depart from the hotel and C0 the arrival to it, as shown in the Fig. 1. This
problem can be modeled as a graph G = (V,A), where V = {1, . . . , n} is the
set of POIs and A = {(i, j)|i, j ∈ V, i �= j} is the set of arcs that connect the
POIs. Given m the number of tours. The starting location POI 1 and the end
destination POI n of every tour are fixed. The travel time from POI i to POI
j is denoted by tij. In this problem, not all locations can be visited since the
total travel time is limited by a given time budget Tmax and each POI can be
visited at most once.

Fig. 1. The TOPTW illustration

Furthermore, the TOPTW uses the following parameters and decision vari-
ables.

The TOPTW objective function aims to determine m routes of maximum
total collected scores (1).

MaxZ(X) =
m∑

d=1

n−1∑

i=2

Si yid (1)

A number of constraints to be respected in the TOPTW can be as stated by
(Vansteenwegen et al. 2009b; Cura 2014). These constraints are either (1) Rout-
ing constraints or (2) Time constraints detailed as follow.



Partition Crossover Evolutionary Algorithm for the TOP 203

Sets and parameters

V The total number of POIs

m The number of tours

Si The score of POI i

Ti The service time of POI i

[Oi, Ci] The time window of POI i: The visit of POI i can only start during this
time window

tij The travel time from POI i to POI j

uid The position of location i in tour d

αir The departure time from the location, which is at position r of tour d

Tmax The maximum total travel time

Decision variables

xijd =

{
1 if in path d, a visit to vertex i is followed by a visit to vertex j

0 otherwise

yid =

{
1 if vertex i is visited in path d

0 otherwise

1. Routing constraints

m∑

d=1

n−1∑

j=2

x1jd =
m∑

d=1

n−1∑

i=2

xind = m (2)

m∑

d=1

ydk ≤ 1, k = 2, . . . , n − 1 (3)

n−1∑

i=1

xikd =
n−1∑

j=2

xkjd = ykd, k = 2, . . . , n − 1, d = 1, . . . ,m (4)

2 ≤ uid ≤ n, i = 2, . . . , n; d = 1, . . . ,m (5)
uid − ujd + 1 ≤ (n − 1)(1 − xijd), i = 2, . . . , n; d = 1, . . . ,m (6)

While the TOPTW can be considered as a vehicle routing problem, a set of
routing requirements are taken into account. The constraints (2) guarantee
that each tour starts from location 1 and ends at location n. Each POI is
visited only once, ensured by Eq. (3). The continuity in a tour is needed in
constraints (4) which guarantee that if a POI is visited in a given tour, it is
preceded and followed by exactly one other POI in the same tour. The last
routing constraints (5) and (6) are about preventing subtours.



204 I. Ghobber et al.

2. Time constraints

n−1∑

i=1

⎛

⎝Tiyid +

n∑

j=2

tijxijd

⎞

⎠ ≤ Tmax, d = 1, . . . , mα1d = T1 (7)

α1d = T1, d = 1, . . . , m (8)

αrd = max

⎡

⎣

⎛

⎝α(r−1)d +
n∑

i=2

n−1∑

j=1

{
tijxjidyid if uid = r

0 otherwise

⎞

⎠
n∑

i=1

{
Oiyid if uid = r

0 otherwise

⎤

⎦

(9)

+

n∑

i=1

{
Tiyid if uid = r

0 otherwise
, r = 2, . . . , n; d = 1, . . . , m (10)

Ci ≥
m∑

d=1

n∑

r=2

{
yid(αrd − Ti) if uid = r

0 otherwise
, i = 1, . . . , n (11)

The TOPTW’s time restrictions are described as the constraints (7) which
guarantee that each tour is completed within a given time limit. The departure
time from the first POI is calculated as shown in the constraint (8), moreover,
the departure time from the POI r of tour d is given by the Eq. (10). Finally,
the time window is defined by Eq. (11).

3 Evolutionary Algorithm Based on Partition Crossover
(EAPX)

To solve the TOPTW we propose a new approach named EAPX. It includes the
following three main steps. The first phase is the initial population used for the
construction the initial solution while the second phase is a local search method
used for the improvement of the solutions found in the first phase and partition
crossover method for the production of the new generation. All these phases are
more detailed in the following subsections. A flowchart depicting the proposed
meta-heuristic is given in the Fig. 2.

3.1 Initial Population

The algorithm starts with generating the initial solution Sol0 using of the both
the petal algorithm (PA) and diversity. The petal is designed for building the
first half of the initial population. Its description is presented by Ryan et al.
(1993), where the nodes are radially numbered about the depot and each petal
is formed by a list of radially successive nodes. A feasibility of the petal is proved
only if the total travel time does not exceed the imposed time limit Tmax, which
corresponds to latest arrival time to the depot and the nodes’ time windows
not violated. In this case, we propose a random order of node for each petal.
Moreover, the second half of the initial solution is produced by diversity. Another
solution is built from each individual of the initial solution with considering a
random number of nodes swaps in each sub-route. Our population is formed



Partition Crossover Evolutionary Algorithm for the TOP 205

Fig. 2. A flowchart for the proposed EAPX meta-heuristic.

by two TOPTW solutions, constitute the twins. Therefore, each twin includes
different sub-routes, which integrates a number of homogeneous petals. In order
to find locally optimal solutions, we implement the 2-OPT operator method,
used for decreasing the tour travel cost. This technique works on tour crossing
over itself and reordered to find local optima tour.

3.2 Local Search

Given the initial population generated by the petal and diversity, a local search
algorithm is proposed to improve the performance of the solution S. In this
method, we implement many operations which, are detailed as follows. It starts
with an arbitrary solution to the TOPTW then attempts to find a better solution
by incrementally replacing two scheduled nodes within a route this process is
done by the Swap operator. In this case, different combinations are processed for
selecting the best nodes. The fitness value is calculated by the total profit. If the
change produces a better solution, an incremental change is made to the new



206 I. Ghobber et al.

solution, repeating until finding the solution that maximizes the fitness of each
individual with no further improvements can be found. According to Whitley
et al. (2009), the recombination of two local optimum solutions by the PX results
usually in local optima produced child.

3.3 Partition Crossover for TOPTW

The reproductive process of our proposed approach is done by the partition
crossover (PX) operator. The basic idea of this procedure is to recombine the
local optima solutions with considering that each TOPTW twin of the produced
solution is divided into a number of subroutes formed by the same nodes for
each subtour. In this case, for each subtour, the order of the applied procedure
can be explained as follows. First, the two parent solutions are chosen from the
TOPTW solutions for constructing the graph G. Second, the constructed graph
G is partitioned into subgraphs by deleting the common arcs between these
two solutions. The identification of the linked components is executed by the
Breadth first algorithm. Finally, the two offsprings are produced from the two
parent solutions by recombining them.

3.4 Illustrative Example

For the problem with 23 POIs and m = 3 tours a sample solution is shown
in the Fig. 3. This example is the result of the local search operator applied
after generating the initial population where we present an undirected graph
G with 23 POIs and the starting point labeled by 0. The first twin presents
the solution 1 by the dashed red line the solution 2 corresponds to the second

Fig. 3. An illustrative example including 23 POIs and 3 tours (Color figure online)



Partition Crossover Evolutionary Algorithm for the TOP 207

solution is shown by the solid blue line. In this case, the routes for the solu-
tion 1 in each tour are respectively m1 = {0, 1, 9, 8, 7, 11, 4, 5, 6, 12, 3, 2, 10, 0},
m2 = {0, 14, 17, 15, 18, 16, 13, 0}, and m3 = {0, 23, 20, 22, 19, 21, 0} while for the
solution 2 are presented as follows: m1 = {0, 1, 10, 9, 8, 12, 7, 6, 11, 5, 4, 3, 2, 0},
m2 = {0, 14, 13, 17, 18, 15, 0}, and m3 = {0, 22, 23, 19, 21, 20, 0}. After applying
the partition crossover method the new generated offspring are showed in the
Fig. 4 where the new routes of the first constructed offspring are respectively
m1 = {0, 1, 10, 9, 8, 7, 11, 4, 5, 6, 12, 3, 2, 0}, m2 = {0, 14, 17, 15, 18, 16, 13, 0},
and m3 = {0, 23, 20, 22, 19, 21, 0}. The routes of each tour for the second
offspring are detailed as follows: m1 = {0, 1, 10, 9, 8, 7, 11, 4, 55, 6, 12, 3, 2, 0},
m2 = {0, 14, 13, 17, 18, 15, 0}, and m3 = {0, 22, 23, 19, 21, 20, 0}.

Fig. 4. A TOPTW solution presentation after applying PX (Color figure online)

4 Computational Experiments

The experimentation is designed to evaluate the performance of the EAPX
in solving the TOPTW, using the benchmark instances. We first describe the
TOPTW benchmark dataset. Then, we detail the results obtained from the
experimentation and assess the effectiveness of the algorithm using a compara-
tive study.

4.1 Experimental Setup

The EAPX was coded in Java language and running Windows 10. The exper-
iments were run on a personal computer Hp equipped with Intel Pentium,
1,90 GHz CPU and 4 GB of RAM. In this case, for each instance of the bench-
mark, the EAPX is executed for 30 runs where its execution ends with best



208 I. Ghobber et al.

TOPTW solutions and there is no improvement to be added. The parameters of
the proposed algorithm are the number of generation NG = 50 and the number
of individuals in half of the population N = 50.

4.2 Results and Discussion

In order to evaluate the performance of the EAPX approach in solving TOPTW,
the obtained results are compared to the following methods.

(1) Iterated Local Search (ILS) (Vansteenwegen et al. 2009a) and
(2) Granular Variable Neighborhood Search Based on Linear Programming

(GVNS) (Labadie et al. 2012).
(3) Artificial Bee Colony (ABC) (Cura 2014).

Tables 1 and 2 summarize respectively the results of EAPX and the compari-
son with ILS, GVNS, ABC, and GRASP-ELS for Solomon instances and Cordeau
instances. In these tables, the first column describes the instance name, the sec-
ond column contains the number of tours, and the third column gives the best-
known solution (BKS) for the TOPTW. The following columns report respec-
tively for each algorithm the value of the best profit, and the Gap (Sect. 4.2).

Gap =
BKS − EAPX

BKS
∗ 100%

As seen in the Table 1 EAPX reaches the BKS in the following instances:
c-100, r101, r102, r105 and rc107. The average gap between EAPX result and
the best-known solution is only 1.39%. For 13 instances of Solomon the optimal
solution of EAPX is known and for the other instances are close to the best
known. Compared to ILS, GVNS, and ABC, the EAPX outperforms in Solomon
instances better than Cordeau instances. The Fig. 5 shows the results noted in
Table 1 where the curve shows the obtainment results of the BKS and EAPX for
Solomon instances.

As reported in Table 2, EAPX reaches the best-known solution only in two
instances are pr06, pr10. It appears that EAPX under performs in Cordeau
instances compared to ILS, GVNS, and ABC while the total average gap is
2.54%. Then, based on the obtained results, we can conclude that the perfor-
mance of EAPX in solving TOPTW instances and the quality of the solution
is proved. Our proposed approach is able to produce a good solution to the
TOPTW.



Partition Crossover Evolutionary Algorithm for the TOP 209

Table 1. EAPX vs state-of-the art algorithms (Solomon instances)

Instance m BKS EAPX ILS GVNS ABC

Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

c101 10 1810 1810 0.0 1720 5.0 1754 3.1 1786 1.3

c102 10 1810 1810 0.0 1790 1.1 1794 0.9 1810 0.0

c103 10 1810 1810 0.0 1810 0.0 1810 0.0 1810 0.0

c104 10 1810 1810 0.0 1810 0.0 1810 0.0 1810 0.0

c105 10 1810 1810 0.0 1770 2.2 1810 0.0 1782 1.5

c106 10 1810 1810 0.0 1750 3.3 1806 0.2 1786 1.3

c107 10 1810 1810 0.0 1790 1.1 1810 0.0 1784 1.4

c108 10 1810 1810 0.0 1810 0.0 1810 0.0 1792 1.0

c109 10 1810 1810 0.0 1810 0.0 1810 0.0 1810 0.0

r101 19 1458 1458 0.0 1441 1.2 1432.2 1.8 1457.4 0.0

r102 17 1458 1458 0.0 1450 0.5 1441.2 1.2 1455.4 0.2

r103 13 1458 1430 1.9 1450 0.5 1446.6 0.8 1455 0.2

r104 9 1458 1410 3.3 1402 3.8 1418.2 2.7 1437.8 1.4

r105 14 1458 1458 0.0 1435 1.6 1441.6 1.1 1458 0.0

r106 12 1458 1433 1.7 1411 1.2 1437.6 1.4 1458 0.0

r107 10 1458 1440 1.2 1431 1.9 1435 1.6 1452 0.4

r108 9 1458 1440 1.0 1430 1.9 1441.8 1.1 1451.8 0.4

r109 11 1458 1410 3.3 1432 1.8 1433.4 1.7 1449.4 0.6

r110 10 1458 1432 1.8 1419 2.7 1433.4 1.7 1449 0.6

r111 10 1458 1410 3.3 1410 3.3 1430.2 1.9 1449.8 0.6

r112 9 1458 1430 1.92 1418 2.7 1434.4 1.6 1448 0.7

rc101 14 1724 1632 5.3 1724 0.0 1690.2 2.0 1705.2 1.1

rc102 12 1724 1689 2.0 1718 0.3 1685 2.3 1705.2 1.1

rc103 11 1724 1686 2.2 1724 0.0 1709 0.9 1721 0.2

rc104 10 1724 1689 2.0 1724 0.0 1718 0.3 1723.4 0.2

rc105 13 1724 1640 4.9 1719 0.3 1689.8 2.0 1716 0.5

rc106 11 1724 1689 2.0 1716 0.5 1690.6 1.9 1706 1.0

rc107 11 1724 1724 0.0 1724 0.0 1718.4 0.3 1724 0.0

rc108 10 1724 1684 2.3 1719 0.3 1713 0.6 1720.6 0.2



210 I. Ghobber et al.

Fig. 5. Analysis of computational results for Solomon instances

Table 2. EAPX vs state-of the art algorithms (Cordeau instances)

Instance m BKS EAPX ILS GVNS ABC

Cost Gap (%) Cost Gap (%) Cost Gap(%) Cost Gap (%)

pr01 3 657 603 8.2 608 7.5 608.4 7.4 617.4 6.0

pr02 6 1220 1192 2.3 1180 0.3 1198.8 1.7 1203.8 1.3

pr03 9 1788 1663 4.9 1738 2.8 1760.8 1.5 1764.6 1.3

pr04 12 2477 2400 3.1 2428 2.0 2467.4 0.4 2474.2 0.1

pr05 15 3351 3347 0.1 3297 1.6 3351 0.0 3351 0.0

pr06 18 3671 3671 0.0 3650 0.6 3670.6 0.0 3670.6 0.0

pr07 5 948 903 4.7 909 4.1 935 1.4 931.4 1.8

pr08 10 2006 1974 1.6 1984 1.1 2004.6 0.1 2006 0.0

pr09 15 2736 2724 0.4 2729 0.3 2736 0.0 2736 0.0

pr10 20 3850 3850 0.0 3850 0.0 3850 0.0 3850 0.0

5 Conclusion

In this paper, we have proposed a new solution for the team orienteering prob-
lem with time windows using the EAPX method. This algorithm employs the
generation of the initial population, the local search operator, and the partition
crossover method. Besides, we have investigated the performance of the EAPX
using a comparative study with state of the art methods. The experimental
results have shown the effectiveness of this meta-heuristic in solving TOPTW
benchmark instances. The proposed approach performs, on good average com-
pared to state-of-the-art algorithms and it reached the best known solutions.



Partition Crossover Evolutionary Algorithm for the TOP 211

References

Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem
with time windows. Comput. Ind. Eng. 74, 270–290 (2014)

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: A survey on algorithmic
approaches for solving tourist trip design problems. J. Heuristics 20(3), 291–328
(2014)

Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: The team orienteering problem
with time windows: an LP-based granular variable neighborhood search. Eur. J.
Oper. Res. 220(1), 15–27 (2012)

Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering prob-
lems with time windows. Found. Comput. Decis. Sci. 34(4), 287 (2009)

Ryan, D.M., Hjorring, C., Glover, F.: Extensions of the petal method for vehicle route-
ing. J. Oper. Res. Soc. 44(3), 289–296 (1993)

Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated local
search for the team orienteering problem with time windows. Comput. Oper. Res.
36(12), 3281–3290 (2009a)

Vansteenwege, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for
tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger, M. (eds.)
Metaheuristics in the Service Industry, vol. 624, pp. 15–31. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00939-6 2

Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover for
the traveling salesman problem. In: Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, pp. 915–922. ACM (2009)

https://doi.org/10.1007/978-3-642-00939-6_2

	Partition Crossover Evolutionary Algorithm for the Team Orienteering Problem with Time Windows
	1 Introduction
	2 Problem Description
	2.1 Mathematical Formulation

	3 Evolutionary Algorithm Based on Partition Crossover (EAPX)
	3.1 Initial Population
	3.2 Local Search
	3.3 Partition Crossover for TOPTW
	3.4 Illustrative Example

	4 Computational Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion
	References




