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Preface

ISC High Performance, formerly known as the International Supercomputing Con-
ference, was founded in 1986 as the Supercomputer Seminar. Originally organized by
Dr. Hans Meuer, Professor of Computer Science at the University of Mannheim and
former director of its computer center, the seminar brought together a group of 81
scientists and industrial partners who shared an interest in high-performance comput-
ing. Since then, the annual conference has become a major international event within
the HPC community and, accompanying its growth in size over the years, the con-
ference has moved from Mannheim via Heidelberg, Dresden, Hamburg, and Leipzig to
Frankfurt. With a 25% increase in the number of research papers submitted to the 2018
meeting over 2017, we project further monotonic growth in overall attendees, which
reached 3,253 registrants in 2017. Their expertise will make ISC High Performance
2018 a powerful and memorable event.

H-P-C’s on a glorious pace;
I-S-C stays on top of the race.
The talks from frontrunners
Will appeal to all comers
And make Frankfurt the happenin’ place!

Beginning in 2007, the scientific component of the conference was strengthened
with selected talks on research results arising within or relevant to the HPC community.
These research paper sessions began as a separate day preceding the conference, and
slides and accompanying papers were made available via the conference website. The
research paper sessions have since evolved into an integral part of the conference, and
the scientific presentations now take place over a period of three days and culminate in
this archival proceedings.

For ISC High Performance 2018, the call for participation was issued in Fall 2017,
inviting researchers and developers to submit original recent work to the Program
Committee. In all, 81 papers were received from authors all over the world. The
research papers Program Committee consisted of 83 members selected from 16
countries. Furthermore, 41 external expert reviewers from the community were invited
to help with specific papers. After initial reviews were in place, a rebuttal process gave
authors an opportunity to respond to reviewers’ questions and help clarify issues the
reviewers might have. To come to a final consensus on the papers for the program and
these proceedings, a face-to-face meeting was held in Frankfurt, where each paper was
discussed. Finally, the committee selected 20 papers for shepherding for publication,
and for presentation in the research paper sessions.

Artificial Intelligence and Machine Learning was introduced as a track in 2018 and
attracted papers touching the intersection of AI and HPC. In some of these, ML is
employed for predicting performance that is difficult to model analytically, but for



which lots of data exist, such as data center workflows. In other papers, HPC comes to
the aid of ML, where single-node memory or performance is insufficient.

As exascale designs are now projected to exceed the originally hoped for maximum
power of 20 MW, the energy efficiency of HPC systems and their components was a
theme that ran through the technical program. Throw in the challenges of heterogeneity
and variability in processing and memory systems, and the increasingly awkward
latencies of I/O and messaging, and one has the ingredients for a technical feast. We
believe that this volume will appeal across a broad range of specializations.

For the past several years, the ISC High Performance conference has presented an
ISC-sponsored award to encourage outstanding research and to honor the overall best
research paper submitted to the conference. Two years ago, this annual award was
renamed the Hans Meuer Award in memory of the late Dr. Hans Meuer, General Chair
of the ISC conference from 1986 through 2014, and a co-founder of the TOP500
benchmark project. From all research papers submitted, the research papers Program
Committee nominated two papers as finalists for the award and, based on the final
presentations during the conference, elected the best paper.

Two award committees selected papers considered to be of exceptional quality and
worthy of special recognition:

– The Hans Meuer Award honors the overall best research paper submitted to the
conference. The two finalists for this award were:

“Compiler-Assisted Source-to-Source Skeletonization of Application Models for
System Simulation” by Joseph Kenny, Samuel Knight, Sébastien Rumley, and
Jeremiah Wilke
“Chebyshev Filter Diagonalization on Modern Manycore Processors and GPGPUs”
by Alan Bishop, Dominik Ernst, Holger Fehske, Georg Hager, Moritz Kreutzer, and
Gerhard Wellein.

– The Gauss Centre for Supercomputing sponsors the Gauss Award. This award is
assigned to the most outstanding paper in the field of scalable supercomputing and
went to:

“On the Accuracy and Usefulness of Analytic Energy Models for Contemporary
Multicore Processors” by Johannes Hofmann, Georg Hager, and Dietmar Fey.

We would like to express our gratitude to all our colleagues for submitting papers to
the ISC scientific sessions, as well as to the members of the Program Committee for
organizing this year’s attractive program.

As a haiku announcing the research papers program put it:
Collective wisdom
Is exponentiated,
Not merely added.

June 2018 Rio Yokota
Michèle Weiland

David Keyes
Carsten Trinitis
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Heterogeneity-Aware Resource Allocation
in HPC Systems

Alessio Netti1(B), Cristian Galleguillos1,2, Zeynep Kiziltan1, Alina Ŝırbu3,4,
and Ozalp Babaoglu1

1 Department of Computer Science and Engineering,
University of Bologna, Bologna, Italy
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3 Department of Computer Science, University of Pisa, Pisa, Italy
alina.sirbu@unipi.it

4 Science Division, New York University Abu Dhabi,
Abu Dhabi, United Arab Emirates

Abstract. In their march towards exascale performance, HPC systems
are becoming increasingly more heterogeneous in an effort to keep power
consumption at bay. Exploiting accelerators such as GPUs and MICs
together with traditional processors to their fullest requires heteroge-
neous HPC systems to employ intelligent job dispatchers that go beyond
the capabilities of those that have been developed for homogeneous sys-
tems. In this paper, we propose three new heterogeneity-aware resource
allocation algorithms suitable for building job dispatchers for any HPC
system. We use real workload traces extracted from the Eurora HPC
system to analyze the performance of our allocators when they are
coupled with different schedulers. Our experimental results show that
significant improvements can be obtained in job response times and
system throughput over solutions developed for homogeneous systems.
Our study also helps to characterize the operating conditions in which
heterogeneity-aware resource allocation becomes crucial for heteroge-
neous HPC systems.

1 Introduction

Motivation. Modern scientific discovery is increasingly being driven by compu-
tation and High-Performance Computing (HPC) systems have come to play a
fundamental role as “instruments” not unlike the microscopes and telescopes of
the previous century [20]. Despite the enormous progress that has been achieved
in processor technologies, we are still far from considering many important prob-
lems “solvable” using a computational approach. These problems include tur-
bulence of fluids in finite domains, combustion hydrodynamics, computational
biology, natural language understanding and modeling of the human brain [1].
c© Springer International Publishing AG, part of Springer Nature 2018
R. Yokota et al. (Eds.): ISC High Performance 2018, LNCS 10876, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-319-92040-5_1
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Future HPC systems will achieve the performance required to solve these prob-
lems through a combination of faster processors and massive parallelism. Yet,
a homogeneous parallelism employing millions of processor cores will result in
power requirements that are unsustainable. Thus, the parallelism has to be
heterogeneous, employing specialized energy-efficient accelerator units such as
GPUs and MICs in addition to the traditional CPUs. In fact, among the top
100 HPCs of the latest Top500 List1 (updated on 06-2017), almost 30% are based
on GPUs and/or MICs.

Traditionally, HPC systems have been used to run compute-intensive jobs
requiring days or even weeks to complete their massive computations. There is
an increasing trend where HPC systems are being used to run “big data work-
loads” consisting of many shorter jobs performing data analytics as data is being
streamed from a monitored system [16,17]. The ability to build predictive models
from streamed data opens up the possibility for acting on the predictions in real
time [15]. Turning this scenario into an effective “on-line control” mechanism
requires intelligent strategies to achieve elevated levels of system performance
with high throughput and low response times so that the predictive models built
from data analytics correspond to recent, rather than a distant, past states of
the monitored system.

The potential to fully exploit the raw computing potential of an HPC system
and deliver it to applications (jobs) is conditional on intelligent system software
making informed decisions to efficiently manage system resources. Among these
decisions, those made by a dispatcher regarding job executions are particularly
important for ensuring high levels of system performance. In an HPC system,
the scheduler component of a dispatcher selects which jobs to run next among
those currently in the wait queue; whereas the allocator component decides
which resources to allocate for running them. While the scheduling aspect of
dispatching has received considerable attention in the literature [5], the alloca-
tion problem has been studied to a lesser extent. Intelligent allocation is particu-
larly important in heterogeneous systems where poor decisions can lead to poor
resource usage and consequently poor performance of critical applications [13].

Related Work. Resource allocation strategies used in many popular HPC
workload management systems [14,22] can be characterized as variations of
well-known memory allocation heuristics such as First-Fit (FF) and Best-Fit
(BF) [19]. In memory allocation, FF chooses the first block of memory that is
large enough to satisfy the request. In an analogous manner, an FF resource allo-
cator chooses the first resource among a list of available resources that satisfies a
job’s request. FF is primarily focused on satisfying a single job request without
any regard for global considerations of resource usage. A BF allocator, on the
other hand, chooses a resource, among a list of available resources, that is able
to satisfy the job’s request while leaving the smallest possible unused capacity.

These simple heuristics can be improved in several ways in an effort to utilize
resources more intelligently so as to improve job response times and system

1 https://www.top500.org/.

https://www.top500.org/
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throughput. In [3], a “lookahead” capability is added to BF, taking into account
the needs of other jobs in the queue. Specifically, resources are allocated to the
current job in a manner such that, if possible, enough resources remain available
for the largest job (requiring the largest amount of resources) in the queue. A
similar idea can be applied to scheduling where a backfilling scheduler [18] selects
short, low-resource jobs to fill the gaps in resource usage left over after scheduling
larger jobs, even if the short jobs are not next in the queue. Large jobs that
cannot be scheduled are blocked and resources are reserved for them. Instead of
considering just one job at a time during the backfilling phase, multiple jobs can
be considered together so that resource usage is improved [18]. In [12], resource
allocation takes into account saturation of shared resources, such as memory
bandwidth, that can cause some jobs to take longer to complete. To make a
suitable allocation that does not reduce system throughput, penalties based on
memory bandwidth saturation are included in the FF allocation heuristic.

The main shortcoming of the allocation strategies described above is that
they were designed for a single resource type such as a CPU and do not consider
characteristics inherent to heterogeneous systems, including different resource
types or different configurations of the same resource type. This limitation can
lead to unbalanced usage and fragmentation of heterogeneous resources, and
cause undesirable delays. For instance, in [4], a dispatcher is presented for the
heterogeneous HPC system Eurora [7] that has GPU co-processors in half of
its nodes and MIC co-processors in the other half. For allocation, however, the
dispatcher uses the simple BF heuristic, sorting the nodes by the total number
of available computing resources, making no distinction between CPUs, GPUs
or MICs. Consequently, with many jobs requesting just CPUs as processing
resources, a simple allocation of computing resources will result in unnecessary
delays for jobs that require GPUs or MICs in addition to CPUs.

In [23] multiple resources (CPU, bandwidth, memory) are considered and
bottleneck resources are identified to obtain fair resource allocation to users.
However, they do not consider systems with resources that are available only
on a subset of all the nodes, such as the GPUs and MICs that characterize
the systems we are analyzing. To the best of our knowledge, no previous work
focusing on resource allocation for heterogeneous HPC systems exists.

Contributions. In this paper, we present several resource allocation algorithms
for heterogeneous systems that adopt different strategies for minimizing wastage
of critical resources, and consequently, minimizing job delays. The algorithms
are based on simple heuristics that exhibit good performance with low compu-
tational overhead, and are general enough to be applied to any heterogeneous
HPC system where critical resources need to be managed efficiently. We eval-
uate our allocators when combined with a suite of different schedulers using a
workload trace collected from the Eurora HPC system. Our experimental results
show that significant improvements can be obtained in job response times and
system throughput compared to standard solutions like FF and BF. Our study
also helps to characterize the operating conditions in which heterogeneity-aware
resource allocation becomes crucial for heterogeneous HPC systems.
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Table 1. Frequency and average duration of all jobs and the three classes CPU-based,
MIC-based and GPU-based in the Eurora workload.

Job class Share Count Average duration
[hh:mm:ss]

All 100% 372320 00:16:08

CPU-based 22.8% 85046 00:47:36

MIC-based 0.7% 2500 00:56:28

GPU-based 76.4% 284774 00:06:23

Organization. The rest of the paper is organized as follows. The next Section
briefly describes the Eurora HPC system, its workload datasets, and the schedul-
ing algorithms we used in conjunction with our allocators for dispatching pur-
poses. In Sect. 3 we introduce our allocation algorithms, while Sect. 4 presents
our experimental evaluation results. Section 5 concludes the paper.

2 HPC System, Data and Job Dispatching

2.1 Eurora and the Workload Dataset

We evaluate our allocation strategies using workload data collected from the
Eurora HPC system [7]. Eurora is a hybrid installation hosted at Cineca2, the
largest datacenter in Italy, that uses a combination of CPUs, GPUs and MICs
to achieve very high energy efficiency. The system consists of 64 nodes, each
equipped with two octa-core CPUs (Intel Xeon E5) and two accelerators. Half of
the nodes have two GPUs as accelerators (Nvidia Tesla Kepler), while the other
half have two MICs (Intel Xeon Phi Knights Corner). The resulting system is
highly heterogeneous, making allocation of resources to jobs nontrivial.

The HPC workload, consisting of almost 400,000 jobs that were run on Eurora
during the time period April 2014–August 2015, has been recorded as a trace
and made available by Cineca. For our study, we classify the jobs in the work-
load based on their duration as short (under 1 h), medium (between 1 and 5 h)
and long (over 5 h). Of all the jobs, 93.14% are short, 6.10% are medium and
0.75% are long. Hence, the workload is quite varied from this point of view. We
further divide jobs into three classes based on the computing resources that they
require: CPU-based jobs use CPUs only, while MIC-based and GPU-based jobs
use MIC or GPU accelerators, respectively, in addition to CPUs. Table 1 shows
statistics for each job class in the workload. We observe that GPU-based jobs
are the most numerous, followed by CPU-based jobs, while MIC-based jobs are
relatively few. In terms of duration, we observe that CPU-based jobs are on aver-
age longer than GPU-based jobs, consuming significantly more resources. This
heterogeneity of job classes increases the difficulty of allocation decisions. Since
CPU-based jobs are longer, they may keep nodes that have accelerators busy
2 https://www.cineca.it/.

https://www.cineca.it/
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for longer periods, during which their accelerators are not available for other
jobs. Given that GPU-based jobs are the most frequent, this can cause bottle-
necks to form in the system, motivating the development of heterogeneity-aware
allocation algorithms to be described in the following sections.

2.2 Scheduling Algorithms in Job Dispatching

In an HPC system, allocation goes hand in hand with scheduling in order to per-
form job dispatching. To test our allocation algorithms, we combined them with
four state-of-the-art scheduling algorithms: Shortest Job First (SJF), Easy Back-
filling (EBF), Priority Rule-Based (PRB), and Constraint Programming Hybrid
(CPH). All these algorithms have been previously applied to Eurora workload
data in [11], where it was shown that accurate prediction of job duration can
improve scheduling performance. In the rest of this section we describe briefly
the schedulers employed.

SJF. At scheduling time, the SJF scheduler selects the shortest job among all
jobs in the queue to be scheduled first. The job is then passed to the allocator
to be granted the required resources. A predicted job duration is used as the job
length to establish an order.

EBF. This scheduling algorithm considers jobs in order of their arrival [21]. If
there aren’t enough available resources in the system for a given job that has
been selected for scheduling, the job is blocked, and a reservation is made for it.
A reservation consists of a starting time (computed using the predicted duration
of running jobs) when enough resources are expected to become available to
start the blocked job. A set of resources, as determined by the allocator, is also
associated with the reservation and will be used for the blocked job at reservation
time. While the blocked job waits for its reserved resources to become available,
the algorithm will schedule shorter jobs that are expected to terminate before
the starting time of the reservation (again based on predicted duration), using
currently unused resources.

PRB. This algorithm sorts the set of jobs to be scheduled according to a priority
rule, running those with higher priority first [6]. In our work, we use priority rules
based on jobs’ urgency in leaving the queue, as introduced by Borghesi et al. in
[4]. To determine if a job could wait in the queue, the ratio between the current
waiting time and the expected waiting time of the job is calculated. The expected
waiting time is computed from data as the average waiting time over a certain
queue. As a tie breaker, the “job demand” is used, which is the job’s combined
resource requirements multiplied by the predicted job duration.

CPH. One of the drawbacks of the aforementioned heuristic schedulers is the
limited exploration of the solution space. Recent results show that methods
based on constraint programming (CP) are able of outperforming traditional
PRB methods [2]. To increase scalability, Borghesi et al. introduce a hybrid
scheduler called CPH [4] combining CP and a heuristic algorithm, which we
use in this paper. CPH is composed of two phases. In the first phase jobs are
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scheduled using CP, minimizing the total job waiting time. At this stage, each
resource type is considered as a unique resource — CPU availability corresponds
to the sum of the available CPUs of all the computing nodes, memory availability
corresponds to the sum of the memory availability of all the computing nodes,
and so on. Due to the problem’s complexity, the search is bound by a time
limit; the best solution found within the limit is the scheduling decision. The
preliminary schedule generated in the first stage may contain some inconsisten-
cies because of considering the available resources as a whole. The second phase
performs resource allocation according to a heuristic in which any inconsisten-
cies are removed. The specific heuristic being used depends on the allocator
component of the dispatcher. If a job can be mapped to a node then it will be
dispatched, otherwise it will be postponed.

2.3 Job Duration Prediction in Job Dispatching

An issue in simulating job dispatching strategies regards what information con-
tained in the workload can be used when making decisions. A specific case is
that of job durations. Since the workload data contains exact job durations, it is
tempting to use them in order to make dispatching decisions. However, in a real
system, exact job durations are not known in advance, so dispatching decisions
cannot be based on this knowledge. Here, we take this into account and use
instead predicted job durations, based on a very simple heuristic that was pro-
posed in [11] and exploits time locality of job durations for individual users that
was observed in the Eurora workload dataset. Specifically, it has been observed
that consecutive jobs by the same user tend to have similar durations, especially
when they have the same profile (job name, resources requested, queue, etc.).
From time to time, a switch to a different duration is observed, which could hap-
pen, for example, when the user changes input datasets or the algorithm itself.
Using this observation, the authors devise a set of rules to apply in order to pre-
dict job durations. They record job profiles for users, and their last durations.
When a new job arrives in the system, they look for a job with the same or sim-
ilar profile, and consider its duration to be also the duration of the new job. If
no past profile is similar enough, the predicted duration is the default wall-time
of the queue where the job is submitted. In case a match is found, the predicted
duration is capped by the maximum wall-time of the queue. Both default and
maximum wall-time values of the queues are part of the configuration of the
dispatcher.

The mean absolute error (MAE) of this heuristic prediction with respect to
the real job duration on the Eurora workload dataset is shown to be 40 min [11].
In the absence of any prediction, users supply dispatchers their own job dura-
tion estimation, which is typically the maximum wall-time of the queue. In the
absence of even this information, the dispatchers use the default wall-time of the
queue. We will refer to this as the wall-time approach. The MAE of the wall-time
approach on the Eurora workload is 225 min [11], which is dramatically worse
than that of the proposed prediction technique. The heuristic prediction there-
fore shows an improvement of 82% over the wall-time approach. We shall note
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that the time locality of job durations for individual users is not specific to the
Eurora workload. It can also be observed in other workload datasets to which
the same heuristic prediction can be applied. An example is the Gaia workload
dataset3 of the University of Luxemburg. We calculated that the MAE of the
wall-time approach is 2918 min, while it is 220 min with our heuristic prediction,
showing an improvement of 93%. The notable improvement over the Eurora
dataset can be explained by the fact that the maximum wall-time values in Gaia
are higher than those of Eurora.

3 Allocation Algorithms

Here we describe the allocation algorithms that we designed and implemented for
heterogeneous HPC systems. We assume that a job is composed of multiple job
units (such as MPI processes), each having the same resource requirement. All
the algorithms are based on the all-requested-computers-available principle [21]:
when an allocator is invoked for job j, nodes in the system are searched sequen-
tially according to a specific order, and the largest number of job units of job j
are allocated while traversing the nodes. The allocation process ends when either
all job units have been allocated, in which case the allocation succeeds, or the list
of nodes is exhausted, in which case the allocation fails. The jobs are ordered as
specified by the scheduler, while the ordering criteria for the nodes is specific to
the allocator. Our algorithms provide custom criteria for node ordering, result-
ing in allocation strategies with different strengths. The algorithms are generic
and provide configuration parameters, hence they do not rely on any specific
system architecture and can be tuned suitably for any heterogeneous system in
consideration. In the following, we call a resource type critical if careless usage
of the respective nodes may cause bottlenecks in the system.

Balanced Heuristic. The main focus of this algorithm is to avoid the frag-
mentation of user-defined critical resource types, like accelerators, by limiting
and balancing the use of the respective nodes. The limiting effect is achieved by
pushing the nodes with critical resources towards the end of the list of available
nodes. In this way, by selecting nodes from the beginning of the list, jobs that do
not need critical resources will not block such resources. The balancing effect is
achieved by interleaving nodes having different types of critical resources, thus
not favoring any of them.

By default, the critical resource types for Eurora are MIC and GPU, but they
can be modified by the user based on the system architecture. The algorithm
works in two phases. First, all nodes in the system are collected in bins: there
is a bin for each critical resource type, and nodes are assigned to a specific bin
according to which of those they currently have available. If they do not have any,
they will be assigned to a special nul bin; conversely, they will be assigned to the
bin for which they have the maximum availability, if multiple critical resources

3 http://www.cs.huji.ac.il/labs/parallel/workload/l unilu gaia/index.html.

http://www.cs.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.html
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Fig. 1. An example of Balanced node ordering on a small system with 8 nodes, each
labeled with an ID and colored according to its corresponding bin.

are present (note that in Eurora, a node has only one type of critical resource).
The bins are then combined in a final node list, which is built as follows: nodes
belonging to the nul bin, which do not have any critical resource, are placed at
the head. The rest of the list is built incrementally by picking a node from the
currently largest bin until they are all empty. An example of Balanced node
ordering in a small system with 8 nodes can be seen in Fig. 1.

This type of reasoning is expected to be beneficial in an architecture like
Eurora, where two continuous blocks of nodes have either GPU or MIC resources
and are thus prone to unbalanced node usage. The Balanced allocator does
not consider the distribution of the resource requirements of jobs submitted to
the system, and assumes that all critical resource types are used uniformly. This
design choice ignores that some resources can become critical at runtime when
the distribution is heavily skewed towards a specific resource type, but at the
same time it increases the algorithm’s robustness against sudden bursts of jobs
requiring that specific resource. While Balanced can be used in any system by
suitably defining the critical resource types that must be protected, it is most
effective on systems that are known to possess multiple critical resource types.

Weighted Heuristic. This algorithm is more general than Balanced as it
is able to detect the critical resources at runtime, as opposed to them being
statically defined by the user, and focuses on avoiding their wastage. It is based
on the popular BF heuristic, which at each allocation time sorts the nodes in
non-decreasing order with respect to the total amount of available resources.
BF can easily waste some resources as it does not distinguish between different
resource types. Weighted is instead aware of heterogeneous resources and adds
lookahead features to allocation to increase the chance of success. For each job
during allocation, it sorts the nodes in non-decreasing order of their ranking. A
node is ranked based on the criticality of its resource types and their availability
after a potential allocation. Consequently, nodes with highly critical resource
types and nodes which will be providing high availability after allocation are
pushed towards the end of the list, in order to be protected against jobs that do
not need such resources, similar to what Balanced does with nodes containing
user-defined critical resources.
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More formally, for a job allocation, after the number of job units that fit
on a certain node is calculated, the impact of the allocation is defined for each
resource type to be the amount of resources still available in the node after such
allocation. We thus have, for each node i and for each resource type k ∈ r, an
impact value impi,k. The impact serves to measure the resource wastage after
allocation in the presence of multiple resource types. The ranking Ri of a node
i is then computed by summing the impi,k of each resource type k available on
node i weighted by wk:

Ri =
∑

k∈r

wk ∗ impi,k wk =
reqk ∗ loadk

capk
(1)

A weight wk is computed at the system level and quantifies the level of crit-
icality of a certain resource type k using three parameters as in Eq. 1. The first
parameter reqk is the average amount requested for k by jobs in the queue. A
highly requested resource type is considered critical. This average is computed
over all jobs in the queue, weighted by the jobs’ duration prediction. Consider-
ing the job duration as well in the average is mostly a fairness consideration,
since most of our schedulers, like SJF, tend to favor shorter jobs. The second
parameter loadk is the load ratio for k, which is the ratio between the amount
of resources used at a certain time and the total resource capacity of the system
for k, assuming that resources assigned to jobs are always used fully [8]. A high
load ratio means low availability, which makes the resource type critical. The
loadk parameter, however, does not consider the total capacity capk which can
influence the criticality of k. We therefore use capk as a normalization factor.

With multiple factors assessing the criticality of resource types, Weighted
is expected to perform well in many scenarios. Weighted is thus more flexible
than Balanced, even though it does not possess its interleaving capability.

Priority-Weighted Heuristic. The Weighted and Balanced allocators are
expected to be most effective in different scenarios, with Balanced performing
better in the presence of bursts of jobs requiring critical resources, and vice versa.
Priority-Weighted is a hybrid strategy, trying to combine the strengths of
both allocators in order to obtain optimal performance. This algorithm extends
Weighted, by adding a new multiplicative parameter pk to wk. Specifically, pk
acts as a bounded priority value, used only for user-defined critical resource types
like in Balanced. For the other resource types, it is assumed to be always equal
to 1. Such a priority value is calculated at runtime in a simple way: starting with
the value 1, every time the allocation for a job requiring a critical resource type
k fails, its priority value pk is increased by 1. Conversely, when the allocation
succeeds, pk is decreased by 1. If a job requires multiple critical resource types,
all the related pk values are affected. The bound of pk is user-defined and is set
to 10 by default.

This solution allows us to take into account the runtime criticality of resources
(like in Weighted) and to protect user-defined critical resources (like in Bal-
anced) in a rather dynamic way by adjusting to the system’s behavior. Various
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other solutions were tried for pk, such as the average number of allocation failures
per job or per allocation time, or the number of jobs in the queue for which allo-
cation has previously failed. Out of all of these, our priority mechanism emerged
to be the best technique, despite its simplicity.

4 Experimental Results

In this section, we present the experimental results obtained by using the Eurora
workload dataset described in Sect. 2.1. All the data available for the Eurora
system has been considered in the experiments. Due to space limitations, we
cannot report tests performed on other systems.

4.1 Experimental Setup

Simulation of the Eurora system along with job submission and job dispatching
were carried out using the open-source AccaSim HPC Simulator [10]. A total of
20 dispatchers were employed, which were obtained by combining the 4 schedul-
ing algorithms (SJF, EBF, PRB, CPH) described in Sect. 2 together with 5
allocation algorithms: the three described in Sect. 3 (B, W, P-W) together with
First-Fit (FF) and Best-Fit (BF). FF and BF are included solely for the purpose
of comparison. Interpreted in the context of Eurora, FF searches the nodes with
available resources in a static order, while BF sorts the nodes in non-decreasing
order of the amount of available resources. The experiments were performed on
a dedicated server with a 16-core Intel Xeon CPU and 8 GB of RAM, running
Linux Ubuntu 16.04. All the dispatchers along with their source code in Python
are available on the AccaSim website.4

In the experiments, we evaluate dispatchers in terms of their impact on job
response times and system throughput, characterized by two metrics. The first
is the job slowdown, a common indicator for evaluating job scheduling algo-
rithms [9], which quantifies the effect of a dispatching method on the jobs them-
selves and is directly perceived also by the HPC users. The slowdown of a job j
is a normalized response time and is defined as slowdownj = (Tw,j + Tr,j)/Tr,j ,
where Tw,j and Tr,j are the waiting time and duration of job j, respectively. A
job waiting more than its duration has a higher slowdown than a job waiting
less than its duration. The second metric is the queue size, which counts the
number of queued jobs at a certain dispatching time. This metric is a measure
of the effects of dispatching on the computing system itself. The lower these two
metrics are, the better job response times and system throughput are.

We also compared the dispatchers in terms of their resource utilization. The
metric we adopt for this purpose is the popular system load ratio [8] which
considers the ratio between the amount of used resources in the HPC system at
a certain time and its total resource capacity, assuming that resources assigned
to jobs are always used fully.

4 http://accasim.readthedocs.io/en/latest/.

http://accasim.readthedocs.io/en/latest/
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Fig. 2. Average slowdown and queue size results over the entire workload dataset using
the CPH scheduler and five different allocators with wall-time (W), data-driven (D)
and real duration (R) predictions for job durations.

4.2 Results over the Entire Workload Dataset

We first discuss the results obtained over the entire workload dataset. All the
dispatchers are run using three different job duration predictions: wall-time (W),
the data-driven prediction heuristic presented in Sect. 2 (D), and real duration
(R). The purpose here is to assess the importance of using data-driven prediction
for response time and throughput of a dispatcher, with respect to crude predic-
tion (wall-time) and best prediction (real duration). Due to lack of space, we
here present only the results related to the CPH scheduler, as it is the best per-
forming among all and is highly representative of the behavior of the schedulers
in conjunction with the allocators in question.

Figure 2 shows the average slowdown over all jobs and average queue size
values over all dispatching times of the CPH scheduler for all available allo-
cators. We make two observations. First, across all allocators, the data-driven
job duration prediction has notable impact on job response times and system
throughput, leading to results better than using the wall-time. Therefore, in the
next sections we only present results using the data-driven job duration pre-
diction for all jobs. Second, we do not note substantial performance variations
among the various allocators. We believe that this could be due to certain time
periods in our workload where the corresponding data does not possess signifi-
cant characteristics for our study. For instance, there could be time periods in
which few jobs are submitted to the system, keeping it in a low utilization state,
or conversely periods in which large amounts of jobs are submitted, overloading
it. In either case, an allocator is not expected to enhance the job response times
and system throughput considerably.
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Table 2. Average slowdown (s) and queue size (q) results for the April 2015 (a) and
April 2014 (b) datasets.

Scheduler Allocator Best gain %
FF BF B W P-W FF BF

s q s q s q s q s q s q s q
CPH 10 4 10 4 7 4 8 4 7 4 30% 0% 30% 0%
SJF 16 5 16 5 10 5 10 5 10 5 37% 0% 37% 0%
EBF 28 5 28 5 18 4 20 4 20 4 35% 20% 35% 20%
PRB 28 5 28 5 21 4 22 4 22 4 25% 20% 25% 20%

(a) April 2015 dataset.

Scheduler Allocator Best gain %
FF BF B W P-W FF BF

s q s q s q s q s q s q s q
CPH 251 57 271 55 238 63 315 82 254 70 5% -10% 12% -12%
SJF 1269 230 1270 229 1266 233 1276 218 1253 216 1% 6% 1% 6%
PRB 1852 615 2023 640 1778 594 1829 627 1910 599 4% 3% 12% 7%
EBF 3004 697 2563 702 2197 619 2378 686 2313 674 26% 11% 14% 12%

(b) April 2014 dataset.

4.3 Results over Specific Time Periods

We now use only the data-driven prediction of job duration. We then restrict
our study to shorter time periods in the workload, such as months, to be able
to understand the operating conditions in which we can benefit from the new
allocators. For this purpose, we extracted the results of the jobs that were sub-
mitted during a certain month after running the experiments once on the entire
workload. Thus, the months never start in an idle state but carry on from the
previous month, like in a real scenario.

Here we present some insights derived by analyzing data from four particular
months. These months are not only interesting due to their peak job submissions,
they are also representative in the sense that their job submission patterns and
the corresponding experimental results are found in other months as well (not
shown in the paper due to space reasons).

Tables 2 and 3 give the average slowdown (s) and queue size (q) of every
dispatcher (composed by a scheduler in the first column and an allocator in the
next 5 columns). For each scheduler, the best allocator result is indicated in
bold, in addition to the best gain obtained in percentage by the new allocators
compared to FF and BF. Figures 3 and 4 demonstrate instead job duration
distributions, for each job class as in Sect. 2.1, as well as job submission patterns
in terms of the total CPU core hours of the submitted jobs in every 30-min time
window of a day. Sudden spikes in the job submission patterns are caused by
the arrival of jobs that either have a high duration or require a large amount
of resources. We do not consider the distributions of the amount of resources
requested by jobs, as no significant differences across months have been observed.
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Fig. 3. Job duration distributions (left) and job submission patterns (right) for the
April 2015 (a) and April 2014 (b) datasets.

Allocation with Moderate Gains. We start with the workloads related to
April 2015 and April 2014 where the new allocators bring about relatively mod-
erate gains in response times and throughput with respect to FF and BF. This
can be immediately witnessed in Table 2. For the April 2015 dataset, while the
slowdown values are reduced between 20% to 37%, the queue size remains the
same with the two best-performing schedulers, CPH and SJF. In the case of the
April 2014 dataset, the gains in slowdown are between 1% and 26%, while the
queue size increases slightly with the best performing scheduler, CPH. Hence,
in all cases we witness an improvement in slowdown, however queue size values
improve only when not using the CPH scheduler.

Analyzing the characteristics of the workload in Fig. 3, we can understand the
reason for having only moderate improvements. The April 2015 dataset contains
3,740 jobs with few of them long (duration >5 h), while the majority are short
(duration <1 h) or medium (1≤ duration ≤5 h). We would therefore expect low
slowdown and queue size values without the need of dedicated allocators. Around
half of the jobs in the workload require only CPU and memory, which do not
need heterogeneity-aware allocators. Moreover, the system is rarely put under
pressure, reducing the importance of complex dispatching algorithms. The only
exception is in the sudden burst towards the middle of the month, in which over
8,000 core hours worth of jobs are submitted to the system in a very short time.
This, however, overloads a small-scale HPC system like Eurora and is hardly
managed by any of the dispatchers.
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Table 3. Average slowdown (s) and queue size (q) results for the September 2014 (a)
and August 2014 (b) datasets.

Scheduler Allocator Best gain %
FF BF B W P-W FF BF

s q s q s q s q s q s q s q
CPH 41 27 42 28 11 11 10 10 8 8 80% 70% 81% 71%
SJF 34 28 29 23 19 20 23 19 14 14 58% 50% 50% 39%
PRB 43 24 47 27 30 16 36 16 40 20 30% 33% 36% 40%
EBF 51 33 48 34 39 19 37 20 53 37 27% 39% 22% 41%

(a) September 2014 dataset.

Scheduler Allocator Best gain %
FF BF B W P-W FF BF

s q s q s q s q s q s q s q
CPH 8 7 7 6 11 7 4 4 7 6 50% 42% 42% 33%
PRB 20 13 22 14 14 10 8 6 5 3 75% 76% 77% 78%
EBF 22 15 26 16 21 15 14 10 18 13 36% 33% 46% 37%
SJF 26 17 32 22 18 14 18 13 15 11 42% 35% 53% 50%

(b) August 2014 dataset.

April 2014 is instead a big dataset of 85,245 jobs, with many more medium
and long jobs compared to the April 2015 dataset. We would expect here high
slowdown and queue size values even with dedicated allocators. The share of jobs
requiring only CPU and memory resources is 30.8%, which is still high compared
to the 22.8% share for the entire workload, reducing the contribution of allocators
specifically designed for heterogeneous systems. In addition, job pressure on the
system is always high, with frequent bursts that amount to more than 1,000
core hours. The main problem in this month seems to be the 5,000-h burst at its
beginning: due to the large size of the workload, the early position of the burst
results in a cascade effect, severely delaying all subsequent jobs.

Allocation with High Gains. We now discuss the datasets related to Septem-
ber 2014 and August 2014 for which significant improvements in response times
and throughput are observed, as can be seen in Table 3. The gains in slowdown
and queue size reach up to 81% and 71% in the September 2014 dataset, and
up to 77% and 78% in the August 2014 dataset, respectively.

September 2014 is a big dataset of 77,786 jobs, while the August 2014 dataset
has medium size with 47,967 jobs. The two datasets, however, share common
traits that help understand the relevant results. As can be seen in Fig. 4, both
datasets contain a high number of short and medium jobs. The number of long
jobs is neither low, as in the case of the April 2015 dataset, nor too high as in the
case of the April 2014 dataset. In addition, unlike the April 2015 and April 2014
datasets, GPU-based jobs constitute the vast majority of the workload. All these
mean that we can expect considerable improvements in slowdown and queue size
values with allocators for heterogeneous systems. Finally, from Fig. 4 we can see
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Fig. 4. Job duration distributions (left) and job submission patterns (right) for the
September 2014 (a) and August 2014 (b) datasets.

that the September 2014 and August 2014 datasets are very bursty, much like
the April 2014 one. Yet in the case of the September 2014 and August 2014
datasets, the bursts are much tamer in intensity, corresponding to the normal
day-night usage cycles present in the HPC system. Moreover, unlike the April
2015 dataset, the system is often put under pressure, but such pressure is not as
high as in the April 2014 dataset.

Comparison of Allocators. So far we have only studied the impact of the new
allocators B, W and P-W in response times and throughput with respect to FF
and BF in an heterogeneous system, but we did not contrast them. To do this, we
show in Fig. 5 job submission patterns in the selected datasets, this time only for
GPU-based jobs. These plots do not show the job pressure on the system, which
we already illustrated in Figs. 3 and 4, but rather demonstrate the distribution
of the jobs requiring accelerator resources over the workloads’ time spans. Such
resources are peculiar to heterogeneous systems and it is interesting to see when
the new allocators behave differently in the presence of jobs requiring them. We
are omitting the distributions for the April 2015 dataset due to its small size
and the small variance in the behavior among the various allocators.

Intuitively, one may expect the W and P-W allocators to perform better than
B since they take into account several resource criticality parameters and can
adapt to different workload characteristics. However, as explained in Sect. 3, the
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(a) April 2014 dataset. (b) September 2014 dataset.

(c) August 2014 dataset.

Fig. 5. Submission patterns of jobs requiring GPUs for the April 2014 (a), September
2014 (b) and August 2014 (c) datasets.

B allocator is more robust than W against sudden bursts of jobs requiring critical
resources, accelerators in this case, due to its simple nature: B always tries to
limit the use of nodes equipped with critical resources, even if they are not
actively needed or they are scarcely used by jobs, resulting in a fairly consistent
behavior. This is reflected in our results. As seen in Table 2, B is consistently
the best performer for the April 2014 dataset which contains several big bursts
of GPU-based jobs (Fig. 5a). In the September 2014 dataset, some bursts of
GPU-based jobs are still present, though less intense compared to those of the
April 2014 dataset (Fig. 5b). In this case, as shown in Table 3, the W or P-W
allocator performs better than B except when used with the PRB scheduler. In
the August 2014 dataset instead, where W and P-W are consistently the best
performers, GPU-based jobs are evenly distributed over most days of the month,
with very few bursts (Fig. 5c).

Overall, B is more suited for extreme scenarios where critical resources must
be protected at all costs and at all times. Otherwise, W and P-W are the best
allocators. The gain offered by P-W over W is less clear. This can be attributed
to the fact that P-W is primarily an hybridization strategy between B and W,
and it can be better or worse than its constituting components depending on
the workload characteristics and the type of scheduler.
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4.4 Resource Utilization

We conclude our evaluation with the resource utilization results. In our analysis,
we first looked at the distribution of the fraction of used resources, as a func-
tion of the fraction of used nodes in the system for all time points, separately
for each resource type and combined for all resource types. The results obtained
over the entire workload, as well on the four individual months are mainly homo-
geneous across all dispatchers and therefore are omitted here. This is still good
news because we can see that the new allocators can improve response times
and throughout without degrading resource utilization with respect to FF and
BF, resulting in the best overall compromise between system performance and
resource utilization. It is worth mentioning however a particular case when con-
sidering the GPU resources for the September 2014 dataset. Looking at the
average distribution over all the nodes and all time points, referred to as system
load ratio previously, the best-performing scheduler CPH has an improvement of
5.95% when resources are allocated with W instead of BF. Similar improvements
are observed when CPH is used with B or P-W. This result may suggest that
heterogeneity-aware allocators can lead to better usage of critical resources.

5 Conclusions

We have presented three allocation algorithms suitable for heterogeneous HPC
systems aimed at intelligent management of critical, accelerator-like resources.
The algorithms are general enough to be applied to any heterogeneous HPC sys-
tem where critical resources need to be managed efficiently, they are based on
simple heuristics that exhibit good performance with low computational over-
head, and they can easily be integrated in live queueing systems (like PBS
or SLURM) as they do not rely on features beyond those found in common
heuristics (like Best-Fit). In order to assess their effectiveness, we modeled the
Eurora HPC system with the AccaSim simulator driven by a real workload trace
extracted from the same system. We conducted extensive evaluation of our allo-
cators by coupling them with different scheduling algorithms and job duration
predictors. We observed up to 81% improvements in average job response times
and 78% in system throughput, compared to common solutions like First-Fit
and Best-Fit. Also, all of the state-of-the-art schedulers we considered together
with our allocators significantly benefited from our algorithms, while no degra-
dation in resource utilization was observed compared to First-Fit and Best-Fit,
thus confirming our algorithms as effective alternatives to them.

Although our study is based on a particular HPC system (Eurora) and its
workload, our results help us to characterize the operating conditions in which
heterogeneity-aware resource allocation becomes crucial for heterogeneous HPC
systems in general. A system may go through different workload types, ranging
from light loads with a small number of jobs requesting few critical resources,
to heavy loads with a high number of jobs requesting large amounts of critical
resources; and the majority of the jobs in the workload may range from being
short, occupying critical resources for short periods, to long, blocking the critical
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resources for long periods of time. In addition, job submission patterns may
fluctuate, keeping the system under different amounts of pressure, ranging from
rare to heavy. We observed that protecting the critical resources is most useful
when (i) the workload contains a significant amount of long jobs requiring critical
resources, without dominating the workload; (ii) the system is under pressure
consistently without sudden peaks in job submission patterns.

As future work, we plan to test our allocation algorithms on data from dif-
ferent heterogeneous architectures. We are also interested in the performance on
a wider set of operating conditions, which can be tested also by employing a
synthetic workload generator. The algorithms can also be improved further. For
instance, allocating nodes fully may cause saturation of shared resources such
as memory, which could result in decreased system performance. We plan to
take this into account and allocate resources in a way that avoids saturation,
something which we do not consider at the moment.
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Abstract. This paper presents refinements to the execution-cache-
memory performance model and a previously published power model
for multicore processors. The combination of both enables a very accu-
rate prediction of performance and energy consumption of contemporary
multicore processors as a function of relevant parameters such as number
of active cores as well as core and Uncore frequencies. Model validation is
performed on Intel Sandy Bridge-EP, Broadwell-EP, and AMD Epyc pro-
cessors. Production-related variations in chip quality are demonstrated
through a statistical analysis of the fit parameters obtained on one hun-
dred Broadwell-EP CPUs of the same model. Insights from the models
are used to explain the performance- and energy-related behavior of the
processors for scalable as well as saturating (i.e., memory-bound) codes.
In the process we demonstrate the models’ capability to identify optimal
operating points with respect to highest performance, lowest energy-
to-solution, and lowest energy-delay product and identify a set of best
practices for energy-efficient execution.

Keywords: Performance modeling · Power modeling
Energy modeling

1 Introduction

The usefulness of analytic performance and power models for modern processors
is undisputed. Here, “analytic” means a simplified description of the interac-
tions between software and hardware, simple enough to identify relevant per-
formance and energy issues but also elaborate enough to be realistic at least
in some important scenarios. There is a large gray area between the extremes
of modeling procedures: Purely analytic, also called first-principles or white-box
models, try to start from known technical details of the hardware and how the
software executes, without additional empirical input such as measured quan-
tities or parameterized fit functions. The other end of the spectrum is set by
c© Springer International Publishing AG, part of Springer Nature 2018
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black-box models that can be constructed from almost zero knowledge; mea-
sured runtime, hardware performance metrics, power dissipation, etc., are used
to identify crucial influence factors for the metrics to be modeled. One can then
use the “trained” system to predict properties of arbitrary code, or play with
parameters to explore design spaces. In either case, the predictive power of the
model enables insight beyond what we would get by just running the code on
the hardware at hand.

Models that are at least partially analytic have several advantages, including:

– Identification of universality : If an analytic model is accurate in several differ-
ent situations (e.g., processors, codes, . . . ), even if the actual parameters are
different, this is an indication of universal behavior. Example: The “energy-
frequency convexity rule” [2] states that, if the performance is linear in the
clock frequency, the function describing the energy to solution versus the core
clock speed has a minimum.

– Identification of governing mechanisms: If a model is built upon a certain
assumption, and the model makes “good” predictions (qualitatively or quanti-
tatively), this is a strong indication (though not a proof) that the assumption
was correct. Example: The roofline model can be quite accurate on multi- and
manycore CPUs, which substantiates the basic assumption that data transfers
and execution overlap.

– Insight via model failure: If an analytic model is “off,” i.e., does not agree with
measurements, this means that its inherent assumptions must be challenged.
This is especially interesting if the model works for some parameter ranges
but not for all of them. Example: The roofline model sometimes fails to pro-
duce accurate performance predictions near the roofline knee or for sequential
code. If one drops the assumption of full overlap between execution and data
transfers, one arrives at the ECM model, which is more accurate in these
situations.

The power dissipation and energy consumption of HPC systems has become
a major concern. Developing a good understanding of the mechanisms behind
it and how code can be executed in the most energy-efficient way is thus of
great interest to the community. Navigating the parameter space of core count,
clock frequencies, and (possibly) supply voltage will surely be insufficient to meet
the challenges of future top-tier parallel computers is terms of power; however,
running the hardware at energy-efficient operating points definitely contributes
to a reduction in operating costs of HPC clusters. Moreover, there is a trend
to employ power capping in order to enable a more accurate tailoring of the
power supply to the needs of the machine, thereby saving a lot of expenses in
the infrastructure. Under such conditions, letting code run “cooler” and knowing
the energy vs. performance trade-offs will directly yield more science (i.e., useful
core hours) per dollar.

This paper is concerned with core- and chip-level performance and power
models for Intel and AMD server CPUs. These models are precise enough
to yield quantitative predictions of energy consumption. In terms of perfor-
mance we rely on the execution-cache-memory (ECM) performance model [5,13]
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(of which the well-known roofline model is a special case), which can deliver
single-core and chip-level runtime estimates for loop-based code on multicore
CPUs. A simple multicore power model [5] serves as a starting point for energy
modeling. Both models are rather qualitative in nature; although the ECM model
is precise on the single core, it is over-optimistic once the memory bandwidth
starts to saturate. The original power model is very approximate and can only
track the rough energy consumption behavior of the processor. In this work we
refine both models to a point where the prediction accuracy for performance
and power dissipation, and thus also for energy consumption, becomes unprece-
dented. This comes at the price of making the models more “gray-box”-like in the
above terminology, i.e., they need more empirical input and fit parameters. How-
ever, the actual choice of functional dependencies is still motivated by white-box
thinking.

This paper is organized as follows: The remainder of this section describes
related work and lists our new contributions. In Sect. 2 we describe the hard-
ware and software setup and our measurement methodology. Section 3 refines
the ECM performance model to yield more accurate predictions for code near
the bandwidth saturation point. In Sect. 4 we extend the simple multicore power
model by refining it for better baseline power prediction and adapt it to the
new processors with dual clock frequency domains (core and Uncore). Section 5
combines the two models and validates the predicted energy consumption. Moti-
vated by the results we give some guidelines for energy optimization in Sect. 6
and conclude the paper with an outlook to future work in Sect. 7.

1.1 Related Work

Energy and performance models on the chip level have received intense interest in
the past decade. The roofline model [15] is still the starting point for most code
analysis activities, but it lacks accuracy and predictive power on the single core
and for saturation behavior. The ECM model [5,13] requires less phenomeno-
logical input but encompasses more details of the underlying architecture than
roofline, yielding better results on the single core. In contrast to the original ECM
model we allow for latency penalty contributions that depend on the memory bus
utilization, making the model accurate across the whole scaling curve.

Energy-performance trade-offs have been studied since the power envelope
of processors became a major concern, but were only treated phenomenologi-
cally [3,12]. Rauber et al. [10] show using a simple heuristic model that the typi-
cal energy minimum versus clock speed observed for scalable code can be derived
analytically. However, they do not have a useful performance model and do not
take saturation patterns due to memory bandwidth exhaustion into account.
Khabi et al. [9] study the energy consumption of simple, scalable compute ker-
nels using a similar underlying power model, but they also lack a performance
prediction. The energy model introduced by Hager et al. [5] includes performance
saturation but is only qualitative and thus allows only rough estimates of energy
consumption, due to the combined shortcomings of the underlying ECM and
power models.
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The consequences of manufacturing variations among processors of the same
type were studied by several authors [8,14], and we do not add to their wis-
dom here; our contribution in this area is to show the relation between fitting
parameters for a specific specimen and the “batch,” yielding insight about the
usefulness of a particular set of parameters.

1.2 Contribution

This paper makes the following contributions: We refine the ECM performance
model to accurately describe the saturation behavior of memory-bound loops
across cores. A previously published multicore power model is extended to
include dual clock domains (core and Uncore) as well as frequency- and core-
dependent baseline power (see Table 1 for a comparison with previous models).
The achieved accuracy in predicting runtime, power, and energy (using both
models combined) with respect to core frequency, Uncore frequency, and num-
ber of active cores is unprecedented. As a result the model can be used to identify
the optimum operating point with respect to performance, energy-efficiency, and
energy-delay product (EDP) in minutes compared to weeks required by empirical
means.1 This is demonstrated with AMD Epyc, Intel Xeon Sandy Bridge, and
Intel Broadwell CPUs. We also identify which of the power model parameters
depend on the code and which do not. A statistical analysis of the variation of
power parameters due to production spread is given for a batch of Intel “Broad-
well” 10-core CPUs, setting the limits for the generality of the power model
fit parameters. Finally, based on the energy modeling results, we identify best
practices for energy-efficient, best-performance, and lowest-EDP execution of
scalable (dgemm) and saturating (stream) code, with special emphasis on the
Uncore clock of the Broadwell CPU, which we identify as a crucial parameter in
energy-aware computing.

Table 1. Comparison of the capabilities of different power models.

Nature of
estimate

Considered
parameters

Applicability

fcore fUncore n Scalable Saturating

Rauber et al. [11] Quantitative � — — � —

Khabi et al. [9] Quantitative � — — � —

Hager et al. [5] Qualitative � — � � —

Proposed model Quantitative � � � � �

1 Consider, e.g., the 18-core Broadwell-EP chip, which offers 17 different Uncore and
12 different CPU core frequencies, for which a total of 3672 measurements (each with
a non-negligible runtime to reach operating temperature equilibrium) are required.
In contrast, setting up the model requires only four, six, and nine measurements on
the AMD Epyc, Intel Sandy Bridge-EP, and Broadwell-EP processors, respectively.
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2 Testbed and Methodology

All measurements were performed on one socket of standard two-socket AMD
Epyc and Intel Xeon servers. A summary of key specifications of the testbed
processors is shown in Table 2. The Sandy Bridge-EP (SNB) and Broadwell-EP
(BDW) chips were selected for their relevance in scientific computing. Along with
their “relatives,” the Ivy Bridge-EP (IVB) and Haswell-EP (HSW) microarchi-
tectures, they make up more than 85% of the systems in the latest top500 list
published in November 2017. In addition, the AMD Zen (EPYC) microarchitec-
ture was selected because it has some potential to become relevant to HPC in
the future and to validate that the models also work on non-Intel hardware.

Table 2. Key specification of test bed machines.

Microarchitecture Sandy Bridge-EP (SNB) Broadwell-EP (BDW) Zen (EPYC)

Chip model Xeon E5-2680 E5-2697 v4 Epyc 7451

TDP 130W 145W 180W

Supported core freqs 1.2–2.7GHz 1.2–2.3GHz 1.2–2.3GHz

Supported Uncore freqs 1.2–2.7GHz 1.2–2.8GHz unknown

Cores/Threads 8/16 18/36 24/48

L1 cache capacity 8× 32 kB 18× 32 kB 24× 32 kB

L2 cache capacity 8× 256 kB 18× 256 kB 24× 512 kB

L3 cache capacity 20MB (8× 2.5MB) 45MB (18× 2.5MB) 64MB (8× 8MB)

Memory configuration 4 ch. DDR3-1600 4 ch. DDR4-2400 8 ch. DDR4-2666

Theor. Mem. Bandwidth 51.2GB/s 76.8GB/s 170.6GB/s

Apart from obvious advances over processor generations such as the increased
core count or microarchitectural improvements concerning SIMD ISA extensions,
major frequency-related changes were made on the HSW/BDW microarchitec-
tures. In contrast to the EPYC microarchitecture, which appears to have a fixed
Uncore2 clock, on the older SNB/IVB microarchitectures the chip’s Uncore was
clocked at the same frequency as CPU cores. On Haswell/Broadwell chips, sep-
arate clock domains are provided for CPU cores and the Uncore. As will be
demonstrated, the capability to run cores and the Uncore at different clock
speeds proves to be a distinguishing feature of the newer designs that has sig-
nificant impact on energy-efficient operation.

The Haswell/Broadwell processors provide a feature called Uncore frequency
scaling that allows chips to dynamically set the Uncore frequency based on the
workload. When this feature is disabled, the Uncore frequency is fixed at the
maximum supported setting. Although not officially documented, a means to

2 The term Uncore refers to all parts of the chip that are not part of the core design,
such as, e.g., shared last-level cache, ring interconnect, and memory controllers.
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manually set the Uncore frequency via a model specific register is supported
by all HSW, BDW, and Skylake processors; starting with version 4.3.0, the
likwid-setFrequencies tool from the likwid tool suite3 provides a convenient
way to manually set the Uncore frequency.

Since previous investigations of the running average power limit (RAPL)
interface indicate that the energy data provided by it is of high quality [4], all
power-related empirical data was collected via RAPL using likwid-perfctr
(also from the likwid tool suite). Representatives from the classes of scalable
and saturating applications for which performance and energy behavior was
investigated were dgemm (from Intel’s MKL, version 16.0.1) and the stream
triad pattern (executed in likwid-bench, again from the likwid tool suite),
respectively. Variance of empirical performance and power data was addressed
by taking each measurement ten times; afterwards, the coefficient of variation4

was used to assess variance, which in no case was higher than 2%. This indicated
that variance was not a problem.

3 Refined ECM Performance Model

The ECM model takes into account predictions of single-threaded in-core exe-
cution time and data transfers through the complete cache hierarchy. These
predictions can be put together in different ways, depending on the CPU archi-
tecture. On all recent Intel server microarchitectures it turns out that the model
yields the best predictions if one assumes no (temporal) overlap of data transfers
through the cache hierarchy and between the L1 cache and registers, while in-
core execution (such as arithmetic) shows full overlap. Scalability is assumed to
be perfect until a bandwidth bottleneck is hit. A full account of the ECM model
would exceed the scope of this paper, so we refer to [13] for a recent discussion.

One of the known shortcomings of the ECM model is that it is rather opti-
mistic near the saturation point [5,13], i.e., it overestimates performance when
the memory interface is nearly saturated. There are several possible explanations
for this effect. For example, it is documented that Intel’s hardware prefetching
mechanism reduces the prefetch distance when the memory bus is near sat-
uration [1], which leads to larger latencies for individual accesses, causing an
additional latency contribution to the data access time in the model. Thus the
assumption that the scaling is linear with unchanged data delay contributions
across all cores until the bandwidth bottleneck is exhausted cannot be upheld in
this simple form. Based on this insight we make the following additional assump-
tions about performance saturation:

– Let u(n) be the utilization of the memory interface with n active cores, i.e.,
the fraction of time in which the memory bus is actively transferring data.
The plain ECM model predicts

3 http://tiny.cc/LIKWID.
4 The coefficient of variation is used to measure the relative variance of a sample. It

is defined as the ratio of the standard deviation σ to the mean μ of a sample.

http://tiny.cc/LIKWID
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Fig. 1. Visualization of memory bandwidth saturation under the refined ECM model.
The white boxes show the average latency penalty T̄P, which grows with with the
utilization u(n).

u(1) =
TL3Mem

TECM
=

TL3Mem

TL3Mem + Tchip
(1)

Here, TL3Mem is the runtime contribution of L3-memory data transfers, and
Tchip quantifies the data delay up to and including the L3 cache (see Fig. 1(a)).
No change to the model is necessary at this level.

– For n > 1, the probability that a memory request initiated by a core hits
a busy memory bus is proportional to the utilization of the bus caused by
the n − 1 remaining cores. If this happens, the core picks up an additional
average latency penalty T̄P (see Figs. 1(b) and (c)) that is proportional to
(n − 1)u(n − 1):5

T̄P(n) = (n − 1)u(n − 1)p0. (2)

Here, p0 is a free parameter that has to be fitted to the data. Hence, we get
a recursive formula for predicting the utilization:

u(n) = min
(

1,
nTL3Mem

TECM + T̄P

)
= min

(
1,

nTL3Mem

TECM + (n − 1)u(n − 1)p0

)
. (3)

The penalty increases with the number of cores and with the utilization, so
it has the effect of delaying the bandwidth saturation.

– The expected performance at n cores is then π(n) = u(n)πBW, where πBW is
the bandwidth-bound performance limit as given, e.g., by the roofline model.
If u(n) < 1 for all n ≤ ncores, where ncores is the number of available cores
connected to the memory interface (i.e., in the ccNUMA domain), the code
cannot saturate the memory bandwidth.

5 For n active cores, the probability of a core’s memory access encountering a busy bus
is u(n − 1); when the bus is busy, the penalty p0, which increases with the number
of cores, is applied.
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Fig. 2. Comparison of original and refined ECM model multi-core estimates to empir-
ical performance data on (a) SNB (p0 = 7.8 cy) and (b) BDW (p0 = 5.2 cy) for the
stream benchmark with a 16GB data set size.

One input for the ECM model is the saturated memory bandwidth, which is
typically determined by a streaming benchmark. There is no straightforward way
to derive the memory bandwidth from core and Uncore clock frequencies, so we
have to measure its dependence on these parameters. Figure 3(a) shows memory
bandwidth versus (Un)core clock frequency on BDW and SNB, respectively. The
measured bandwidth at a particular clock setting is then used together with the
known memory traffic to determine TL3Mem.

In Fig. 2 we show comparisons between the original scaling assumption
(dashed lines) and our improved version (solid lines, open circles) together with
measured performance data (solid circles) on the SNB and BDW chips. The
agreement between the new model and the measurement is striking. It is unclear
and left to future work whether and how p0 depends on the code, e.g., the num-
ber of concurrent streams or the potential cache reuse. Note that the single-core
ECM model is unchanged and does not require a latency correction.

Since there is no closed formula for the ECM-based runtime and performance
predictions due to the recursive nature of the utilization ratio (3), setting up the
model becomes more complicated. We provide a python script for download that
implements the improved multi-core model (and also the power model described
in the following section) at http://tiny.cc/hbpmpy. The single-core model can
either be constructed manually or via the open-source Kerncraft tool [6], which
can automatically derive the ECM and roofline models from C source and archi-
tectural information.

The ECM performance model can be applied to the AMD Epyc architecture,
but its machine model is significantly different from Intel CPUs due to the
presence of strongly overlapping components and the peculiar structure of the
L3 cache. A thorough analysis is left for future work.

http://tiny.cc/hbpmpy


30 J. Hofmann et al.

1.5 2.0 2.5
Uncore frequency [GHz]

0

10

20

30

40

50

60

70
B

an
dw

id
th

 [
G

B
/s

]

SNB
BDW

(a)

0 1 2 3 4 5 6 7 8
Number of Cores

0

25

50

75

100

125

Pa
ck

ag
e 

Po
w

er
 v

ia
 R

A
PL

 [
W

]

DGEMM
STREAM triad
Graph500

f co
re
= 2.

7 G
Hz

f core
= 1.7 GHz

(b)

Fig. 3. (a) Maximum memory bandwidth (measured with stream) versus (Un)core
clock frequency on SNB and BDW. (b) Package power consumption for dgemm (N =
20,000), stream triad (16 GB data set size), and Graph500 (scale 24, edge factor 16)
subject to active core count and CPU core frequency on SNB.

4 Refined Power Model

In [5] a simple power dissipation model for multicore CPUs was proposed, which
assumed a baseline (static) and a dynamic power component, with only the latter
being dependent on the number of active cores: P = Pstatic+nPdyn, with Pdyn =
P1f + P2f

2. Several interesting conclusions can be drawn from this, but the
agreement of the model with actual power measurements remains unsatisfactory:
The decrease of dynamic per-core power in the saturated performance regime,
per-core static power, and the dependence of static power on the core frequency
(via the automatically adjusted supply voltage) are all neglected. Together with
the inaccuracies of the original ECM performance model, predictions of energy
consumption become qualitative at best [16]. Moreover, since the introduction of
the Uncore clock domain with the Intel Haswell processor, a single clock speed
f became inadequate. An improved power model can be constructed, however,
by adjusting some assumptions:

– There is a baseline (“static”) power component for the whole chip (i.e., inde-
pendent of the number of active cores) that is not constant but depends on
the clock speed of the Uncore:6

Pbase(fUncore) = W base
0 + W base

1 fUncore + W base
2 f2

Uncore. (4)

6 On Sandy and Ivy Bridge processors the Uncore is clocked at the same frequency as
the CPU cores and can thus only be set indirectly.
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– As long as there is no bandwidth bottleneck there is a power component per
active core, comprising static and dynamic power contributions:

Pcore(fcore,n) =
(
W core

0 + W core
1 fcore + W core

2 f2
core

)
ε(n)α. (5)

In the presence of a bandwidth bottleneck, performance stagnates but power
increases (albeit more slowly than in the scalable case) as the number of
active cores goes up. We accommodate this behavior by using a damping
factor ε(n)α, where ε(n) is the parallel efficiency at n cores and α is a fitting
parameter.

The complete power model for n active cores is then

Pchip = Pbase(fUncore) + nPcore(fcore,n). (6)

The model fixes all deficiencies of the original formulation, but this comes at
the price of a significant number of fitting parameters. The choice of a quadratic
polynomial for the f dependence is to some extent arbitrary; it turns out that a
cubic term does not improve the accuracy, nor does an exponential form such as
β+γfδ . Thus we stick to the quadratic form in the following. Note that there is a
connection between the model parameters and “microscopic” energy parameters
such as the energy per cache line transfer, per floating-point instruction, etc.,
which we do not use here since they also result from fitting procedures; they also
cannot predict the power dissipation of running code with sufficient accuracy.

The model parameters W ∗
∗ and α have to be determined by fitting proce-

dures, running code with different characteristics. In Fig. 3(b) we show how Pbase

is determined by extrapolating the measured power consumption towards zero
cores at different clock frequencies on SNB (there is only one clock domain on
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Fig. 4. (a) Pbase and (b) Pcore parameters derived from empirical data for different
CPU core/Uncore frequencies on SNB, BDW, and EPYC. The Pcore fit was done for
the dgemm benchmark; stream yields different fitting parameters (see Table 3).
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this architecture). The stream triad, a dgemm, and the Graph500 benchmark
were chosen because they have very different requirements towards the hardware.
In case of stream we ignore data points beyond saturation (more precisely, for
parallel efficiency smaller than 90%) in order to get sensible results. The extrap-
olation shows that the baseline power is independent of the code characteristics,
which is surprising since the Uncore includes the L3 cache, whose power con-
sumption is expected to be a function of data transfer activity. Its variation with
the clock speed can be used to determine the three parameters W base

∗ , as shown
in Fig. 4(a) for all three architectures. In this figure, each data point (circles,
squares, and diamonds) is an extrapolated baseline power measurement for a
different (Un)core frequency. On the EPYC CPU the Uncore frequency is fixed,
resulting in a constant baseline power. Lacking event counters to determine the
exact Uncore frequency, the measured baseline power of 64 W was plotted at the
nominal CPU core frequency of 2.3 GHz. We have also verified that this value
is independent of the core clock. On the BDW CPU, the measurements exhibit
a peculiar change of trend as the frequency falls below 1.7 GHz; a different set
of fit parameters is needed in this regime. We can only speculate that the chip
employs more aggressive power saving techniques at low fUncore.

As for the core power parameters W core
∗ , they do depend on the code as can

already be inferred from the data in Fig. 3(b). In Fig. 4(b) we show the quality of
the fitting procedure for dgemm. The parameter α, which quantifies the influence
of parallel efficiency reduction on dynamic core power in the saturated regime
of stream, can be determined as well. Table 3 shows all fit parameters.

Table 3. Fitted parameters for the power model (4)–(6), using the stream and dgemm
benchmarks. Note that these numbers are fit parameters only; their physical relevance
should not be overstressed.

Microarchitecture SNB BDW EPYC

α 0.4 0.5 0.4

W base
0 [W] 14.62 27.2a/70.8b 64.0

W base
1 [W/GHz] 1.07 −6.45a/−44.1b 0

W base
2 [W/GHz2] 1.02 5.71a/13.1b 0

dgemm W core
0 [W] 1.42 −0.11 1.69

W core
1 [W/GHz] −0.52 −1.46 −1.81

W core
2 [W/GHz2] 1.51 1.47 1.16

stream W core
0 [W] 1.33 0.45 −0.32

W core
1 [W/GHz] 0.80 2.95 3.46

W core
2 [W/GHz2] 1.22 −0.24 −0.40

afUncore ≤ 1.7 GHz bfUncore > 1.7 GHz
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5 Energy Model and Validation

Putting together performance (π) and power (Pchip) estimates, we can now give
predictions for energy consumption. Guidelines for energy-efficient execution as
derived from this data will be given in Sect. 6 below. We normalize the energy
to the work, quantifying the energy cost per work unit:

E =
Pchip(fcore,fUncore,n)

π(fcore,fUncore,n)
(7)

In our case this quantity has a unit of J/flop. Unfortunately, this model is too
intricate to deliver general analytic predictions of minimum energy or EDP and
the required operating points to attain them. Some simple cases, however, can
be tackled. On a CPU with only one clock speed domain (such as SNB), where
fcore = fUncore = f , and assuming that the code runtime is proportional to the
inverse clock frequency, one can differentiate (7) with respect to f and set it to
zero in order to get the frequency for minimum energy consumption. This yields

fopt =

√
W base

0 + nW core
0

W base
2 + nW core

2

, (8)

which simplifies to the expression derived in [5] if we set W core
0 = W base

2 = 0.
The optimal frequency is large when the static power components dominate,
which is plausible (“race to idle”).

We have chosen the SNB, BDW, and EPYC processors for our study because
they are representatives of server CPU microarchitectures that exhibit signifi-
cantly different power consumption properties. The dgemm and stream bench-
marks are used for validation; it should be emphasized that almost all parameters
in the energy and power models (apart from the base power) are code-dependent,
so our validation makes no claim of generality other than that it is suitable for
codes with substantially different characteristics. For stream we constructed
the refined ECM model as described in Sect. 3, while for dgemm we assumed a
performance of 95% of peak, which is quite accurate on all platforms.

To discuss performance and power behavior we use use scatter plots that
show (normalized or absolute) energy consumption versus code performance,7

with some parameter varying along the data set. This can be, e.g., the number
of active cores, a clock frequency, a loop nest tile size, or any other parameter
that affects energy or runtime. In the plots, lines of constant energy cost are
horizontal, lines of constant performance are vertical (e.g., a roofline limit is a
hard barrier), and lines of constant EDP are lines through the origin whose slope
is proportional to the EDP (assuming constant amount of work).

Figure 5 compares model predictions (open circles) and measurements (dots)
for dgemm on the three platforms, with varying number of active cores along
the data sets. In case of SNB (Fig. 5(a)), each of the three data sets is for a
different core frequency (and hence implicitly different Uncore frequency). To
7 Wall clock time can also be used, which essentially mirrors the plot about the y axis.



34 J. Hofmann et al.

0 50 100 150
Performance [GFlop/s]

0

500

1000

1500

2000

2500

E
ne

rg
y 

co
st

 [
pJ

/F
lo

p]

Model estimates
Empirical data

f
core

= 1.2 GHz
f
core

= 1.9 GHz

f
core

= 2.7 GHz

(a)

0 100 200 300 400 500 600
Performance [GFlop/s]

0

500

1000

1500

2000

2500

f
core

= f
Uncore

= 1.2 GHz

f
core

= f
Uncore

= 1.8 GHz

f
core

= f
Uncore

= 2.3 GHz

(b)

0 100 200 300 400 500
Performance [GFlop/s]

0

2000

4000

6000

8000

f
core

= 1.2 GHz

f
core

= 1.8 GHz

f
core

= 2.3 GHz

(c)

Model estimates
Empirical data

Model estimates
Empirical data

Fig. 5. Scatter plots relating performance and energy cost for dgemm with from Intel’s
MKL on the (a) Sandy Bridge-EP processor for N = 40,000, (b) Broadwell-EP proces-
sor for N = 60,000, and (c) Epyc processor for N = 60,000 using different CPU core
counts as well as CPU core and Uncore frequencies on the Broadwell-EP processor.

mimic the SNB behavior on BDW (Fig. 5(b)), we have set the core and Uncore
frequencies to the same value. On EPYC (Fig. 5(c)), the Uncore frequency is
fixed so only the core frequency is varied. The accuracy of the energy model is
impressive, and much improved over previous work. As predicted by the model,
lowest energy for constant clock frequency is always achieved with all cores. The
clock frequency for minimum energy cost at a given number of cores depends
on both parameters: the more cores, the lower the optimal frequency due to
the waning influence of the base power. The spread in energy cost across the
parameter range is naturally larger on BDW and EPYC with their large core
counts (18 and 24 vs. 8). At full chip, all architectures show lowest EDP at the
fastest clock speed. To quantify the model’s quality, Fig. 6 shows a heat map of
the model error with respect to core count and core frequency at fixed Uncore
clock on BDW. The error is never larger than 4%; if one excludes the regions
of small core counts and small core frequencies, which are not very relevant
for practical applications anyway, then the maximum error falls below 2% and
is typically smaller than 1%. Relative errors are even smaller on the SNB and
EPYC processors, whose power saving capabilities are not as advanced as those
of the BDW chip.

It is well known that manufacturing variations cause significant fluctuation
across chips of the same type in terms of power dissipation [7,8]. This poses
problems, e.g., when power capping is enforced because power variations then
translate into performance variations [8], but it can also be leveraged for saving
energy by intelligent scheduling [14]. For modeling purposes it is interesting
to analyze the variation of fitted power model parameters in order to see how
generic these values are. Figures 7 and 8 show histograms of W base

∗ and W core
∗ for
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Fig. 6. Relative model error for DGEMM on the Broadwell-EP processor for different
core counts and CPU core frequencies. The Uncore clock speed was set to the maximum
(2.8 GHz).

dgemm, including Gaussian fits for 100 chips of a cluster8 based on dual-socket
nodes with Intel Xeon Broadwell E5-2630v4 CPUs (10 cores). The data clearly
shows that the accuracy of the power dissipation model can only be achieved for
a particular specimen; however, the general insights are unchanged. It cannot
be ruled out that some of the variation is caused by changes in environmental
conditions across the nodes and CPUs. For example, the typical front-to-back
airflow in many cluster node designs leads to one of the chips getting warmer. The
(weak) bi-modal distribution of W base

0 may be a consequence of this. We have
also observed that chips with a particularly high value of one parameter (e.g.,
W base

2 ) are not necessarily “hot” specimen, because other parameters can be
average or even smaller. These observations underpin our claim that one should
not put too much physical interpretation into the power model fit parameters but
rather take them as they are and try to reach qualitative conclusions, although
the predictions for an individual chip are accurate.

Figure 9 compares the predictions and measurements for the stream triad
with the same frequency settings as in Fig. 5. The saturation bandwidth, which
limits the performance to the right in the plot, was taken from the data in
Fig. 3(a). The SNB and BDW CPUs display the typical bandwidth saturation
pattern exhibited by Intel processors. It can be attributed to the fact that data
transfers in the cache/memory hierarchy do not overlap on these processors.
The EPYC CPU does not have this shortcoming, so a single core is sufficient
to saturate memory bandwidth inside a ccNUMA domain. Lacking saturation
behavior, the plot instead shows the scaling across the chip’s four ccNUMA

8 https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/.

https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/
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domains (corresponding to the four “Zeppelin” building blocks). For all proces-
sors the prediction accuracy is not worse than for dgemm, despite the fact that
the model is now much more complicated due to the saturating performance on
SNB and BDW and the accompanying drop in parallel efficiency beyond the sat-
uration point. A major difference between the SNB and BDW processors strikes
the eye: The waste in energy for core counts beyond saturation is considerably
smaller on BDW (although it is still about 20–25%), and the saturation point is
almost independent of the clock speed. Only the refined ECM model can predict
this accurately; in the original model, the saturation point depends very strongly
on the frequency. At saturation, the energy consumption varies only weakly with
the clock speed, which makes finding the saturation point the paramount energy
optimization strategy. In contrast, on SNB one has to find the saturation point
and choose the right frequency for the global energy minimum. If the EDP is
the target metric, finding the optimal operating point is more difficult. For both
chips it coincides with the saturation point at a frequency that is somewhere
half-way between minimum and maximum.
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Fig. 9. Scatter plots relating performance and energy cost for the stream triad using a
4GB data set for different CPU core counts as well as CPU core and Uncore frequencies
on the (a) Sandy Bridge-EP, (b) Broadwell-EP, and (c) Epyc processors. On BDW,
core and Uncore clock frequencies were set to the same value for this experiment.

In summary, our power model yields meaningful estimates of high quality
with an error below 1% for relevant operating points (i.e., away from saturation
and using more than a single core). In contrast to the work in [7], where the
power/performance behavior was only observed empirically, we have presented
an analytic model based on simplifying assumptions that can accurately describe
the observed behavior.

6 Consequences for Energy Optimization

It is satisfying that our refined ECM and power models are accurate enough to
describe the energy consumption of scalable and bandwidth-saturating code with
unprecedented quality on three quite different multicore architectures. However,
in order to go beyond an exercise in curve fitting, we have to derive guidelines for
the efficient execution of code that are independent of the specific fit parameters
determined for a given chip specimen. As usual, we differentiate between scalable
and saturating code, exemplified by dgemm and the stream triad, respectively.

6.1 Scalable Code

Figure 10(a) shows a scatter plot with two data sets (four and eight cores, respec-
tively) and the core frequency as a parameter for the SNB processor running
dgemm. The highest performance, lowest energy, and lowest EDP observed are
marked with dashed lines. From the energy model and our measurements we
expect minimum energy for full-chip execution at a clock speed which is deter-
mined by the ratio of the baseline power and the f2 component of dynamic power
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(see (8)). For the chip at hand, this minimum is at fopt ≈ 1.4GHz with all cores
and at fopt ≈ 1.7GHz with only four cores. The global performance maximum
(and EDP minimum) is at the highest core clock speed using all cores, as pre-
dicted by the model. Hence, on this chip, where the Uncore and core frequencies
are the same by design, there is only a choice between highest performance
(and, at the same time, lowest EDP) or lowest energy consumption. The latter
is achieved at a rather low clock speed setting using all cores. About 21% of
energy can be saved by choosing fopt, albeit at the price of a 50% performance
loss.
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Fig. 10. (a) Scatter plot relating performance and energy cost for dgemm from Intel’s
MKL for N = 40,000 running on four (half-chip) respectively eight (full-chip) cores
of the Sandy Bridge-EP processor clocked at different CPU core frequencies, i.e., the
core frequency varies along the curves. The energy minimum is exactly at the optimal
frequency predicted by (8). (b) Scatter plot relating performance and energy cost for
dgemm from Intel’s MKL for N = 60,000 running on all cores of the Broadwell-EP
processor clocked at different CPU core frequencies and fixed, maximum Uncore clock
(along the red curve) and at fixed maximum (blue curve) and minimum (green curve)
core frequency with varying Uncore speed. Black arrows indicate the direction of rising
(Un)core clock frequency. (Color figure online)

The situation is more intricate on BDW, where the Uncore clock speed has
a strong impact on the power consumption as well as on the performance even
of dgemm. Figure 10(b) shows energy-performance scatter plots for different
operating modes: Along the red curve the core clock speed is varied at maximum
Uncore clock. This is also the mode in which most production clusters are run
today since the automatic Uncore frequency scaling of the BDW processor favors
high Uncore frequencies. In this case the energy-optimal core frequency is beyond
the accessible range on this chip, which is why the lowest-energy (and highest-
performance) “naive” operating point is at the largest fcore. Starting at this
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point one can now reduce the Uncore clock frequency at constant, maximum
core clock (2.3 GHz) until the slow Uncore clock speed starts to impact the
dgemm performance (blue curve) due to the slowdown of the L3 cache. At
fUncore = 2.1GHz we arrive at the global performance maximum and EDP
minimum, saving about 17% of energy compared to the naive operating point.
At even lower fUncore the performance starts to degrade, ultimately leading to a
rise in energy cost. The question arises whether one could save even more energy
by accepting a performance degradation, just as on the SNB CPU. The green
curve shows the extreme case where the core clock speed is at the minimum
of 1.2 GHz. Here the Uncore frequency cannot be lowered to a point where it
impacts the performance, which thus stays constant, but the energy consumption
goes down significantly. However, the additional energy saving is only about 5%
compared to the case of maximum performance at optimal Uncore frequency.
This does not justify the almost 50% performance loss.

In conclusion, the BDW CPU shows a qualitatively different perfor-
mance/energy trade-off due to its large and power-hungry Uncore. The Uncore
clock speed is the dominating parameter here. It is advisable to set the core clock
speed to a maximum and then lower the Uncore clock until performance starts
to degrade. This is also the point where the global EDP minimum is reached.
For codes that are insensitive to the Uncore (e.g., with purely core-bound per-
formance characteristics), it should be operated at the lowest possible Uncore
frequency setting.

We do not elaborate on the EPYC CPU here because it is strongly dominated
by its constant baseline power. The qualitative behavior per Zeppelin die is no
different from SNB. Using the values from Table 3 one can use (8) to derive
optimal core frequency settings for minimal energy to solution: At 6 cores we
get fopt ≈ 3.3GHz, while at 24 cores we get fopt ≈ 1.9GHz. Indeed, minimum
energy is attained at 2.3 and 1.8 GHz, respectively.

6.2 Saturating Code

A performance saturation point marks an abrupt change in the energy behavior.
The number of cores required to saturate depends on the clock speed(s) of the
chip, so it cannot be assumed that the minimum energy point is always reached
at the same number of cores (as was the case for saturating behavior).

Figure 11(a) shows data for the stream triad code and three different clock
speeds (1.3, 1.8, and 2.7 GHz) on SNB. The number of cores varies from one to
eight along the curves. On this CPU the lowest-energy and highest-performance
operating points are quite distinct; the saturation point with respect to core
count can be clearly identified by the lowest EDP (per core frequency) and
coincides with the highest-performance point with good accuracy. Hence, there
is a simple trade-off between performance and energy, with a performance loss
of 25% for 28% of energy savings (only considering the saturation points). As
mentioned before, using the whole chip is wasteful, especially at a fast clock
speed.
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Fig. 11. Performance vs. energy cost for the stream triad with a 4GB data set using
various core counts as well as core and Uncore frequencies. (a) SNB at three clock
frequencies with varying number of cores along the curves. (b) BDW at three core
frequencies (red/green/blue) and varying Uncore clock speed along the curves. Black:
fixed Uncore frequency (at maximum), varying core clock speed along curve. The num-
ber of cores at each data point on BDW was determined by minimizing the EDP vs.
cores at fixed clock speeds. (Color figure online)

We expect the Uncore clock speed to be important on BDW. In Fig. 11(b) we
thus show in red, green, and blue the plots for three different core clock speeds
(1.2, 1.7, and 2.3 GHz) with the Uncore clock as the parameter along the curves.
At each point, the number of cores was determined by the minimum EDP vs.
active cores at fixed frequencies. As indicated in Fig. 3(a), there is a minimum
Uncore frequency required to saturate the memory interface; Fig. 11(b) shows
that it is largely independent of the core clock. In other words, there is an fcore-
independent fUncore ≈ 2GHz that leads to (almost) maximum performance.
fcore can then be set very low (1.2 GHz) for optimal energy and EDP without
a significant performance loss. Again, a sensible setting of the Uncore frequency
is the best way to save energy on BDW. The black data set shows a typical
operating mode in practice, where the Uncore clock is set very high (or left to
the Uncore frequency scaling) and the core clock is varied. Even with sensible
concurrency throttling, the energy cost only varies by about 10%, whereas opti-
mal parameters allow for additional savings between 27% and 33%. Since the
AMD CPU shows no saturation pattern, its energy model for STREAM is not
qualitatively different from the model for DGEMM on EPYC.

7 Summary and Outlook

By refining known ECM performance and power models we have constructed an
analytic energy model for Intel multicore CPUs that can predict the energy con-
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sumption and runtime of scalable and saturating loop code with high accuracy.
The power model parameters show significant manufacturing variation among
CPU specimen. The Uncore frequency on the latest Intel x86 designs was iden-
tified as a major factor in energy optimization, even more important than the
core frequency, for scalable and saturating code alike. Overall, energy savings of
20–50% are possible depending on the CPU and code type by choosing the opti-
mal operating point in terms of clock speed(s) and number of active cores. If the
energy-delay product (EDP) is the target metric, the scatter plot delivers a sim-
ple yet sufficiently accurate method to determine the point of lowest EDP. We
have also applied the power model to an AMD Epyc 24-core CPU. It was found
that its power dissipation is strongly dominated by a frequency-independent
baseline, making energy optimization much easier. The ECM performance model
can also be applied to this system but requires significant modifications of the
machine model, which would go beyond the scope of this paper and is thus left
for future work.

In light of the advantages of analytic modeling described in the introduction,
our work could identify universality and governing mechanisms: We have shown
that a general, quadratic power dissipation model per clock frequency domain
is sufficiently accurate across multiple architectures, and that load-dependent
latency penalties can describe bandwidth saturation very well. These insights
would not have been possible by merely measuring power and performance for
all relevant parameters.

Our work can be extended in several directions. The refined ECM model
should be tested against a variety of codes to check the generality of the recursive
latency penalty. We have ignored the “Turbo Mode” feature of the Intel and
AMD CPUs, but our models should be able to encompass Turbo Mode if the
dynamic clock frequency variation (depending mainly on the number of active
cores) is properly taken into account. A related problem, the reduction of the
base clock speed when using AVX SIMD instructions on the latest Intel CPUs,
could be handled in the same way. An analysis of the new Intel Skylake-SP server
CPU for its performance and power properties is currently ongoing. It would
furthermore be desirable to identify more cases where the energy model (7) can
yield simple analytic results. Finally, it should be useful to ease the construction
of our improved analytic performance and energy models by extending tools such
as Kerncraft [6].
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T., Knüpfer, A., Resch, M.M., Nagel, W.E. (eds.) Tools for High Performance
Computing 2016, pp. 1–22. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56702-0 1

7. Hofmann, J., Hager, G., Wellein, G., Fey, D.: An analysis of core- and chip-level
architectural features in four generations of intel server processors. In: Kunkel,
J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp.
294–314. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 16

8. Inadomi, Y., Patki, T., Inoue, K., Aoyagi, M., Rountree, B., Schulz, M., Lowen-
thal, D., Wada, Y., Fukazawa, K., Ueda, M., Kondo, M., Miyoshi, I.: Analyzing
and mitigating the impact of manufacturing variability in power-constrained super-
computing. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, pp. 78:1–78:12. ACM,
New York (2015). http://doi.acm.org/10.1145/2807591.2807638
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Abstract. Energy efficiency is a crucial factor in developing large super-
computers and cost-effective datacenters. However, tuning a system for
energy efficiency is difficult because the power and performance are con-
flicting demands. We applied Bayesian optimization (BO) to tune a
graphics processing unit (GPU) cluster system for the benchmark used
in the Green500 list, a popular energy-efficiency ranking of supercomput-
ers. The resulting benchmark score enabled our system, named “kukai”,
to earn second place in the Green500 list in June 2017, showing that BO
is a useful tool. By determining the search space with minimal knowl-
edge and preliminary experiments beforehand, BO could automatically
find a sufficiently good configuration. Thus, BO could eliminate labori-
ous manual tuning work and reduce the occupancy time of the system
for benchmarking. Because BO is a general-purpose method, it may also
be useful for tuning any practical applications in addition to Green500
benchmarks.

Keywords: Bayesian optimization · Energy efficiency
Automatic parameter tuning

1 Introduction

In the field of high performance computing (HPC), various supercomputer rank-
ings have been compiled to promote the development of HPC technologies.
Specifically, the TOP500 and Green500 lists are widely known rankings of super-
computers in terms of their numerical computation performance and energy effi-
ciency of their computations, respectively. However, obtaining the optimal result
for a system often requires time-consuming work by experienced HPC experts.
Furthermore, the whole system, which is a precious computing resource, is used
for a long period to tune parameters for a benchmark. In particular, the energy-
efficiency score used to determine the Green500 ranking has conflicting require-
ments for higher numerical computation performance at the same time as lower
power consumption, making it difficult even for experts to tune parameters for
the benchmark due to its counter-intuitiveness.
c© Springer International Publishing AG, part of Springer Nature 2018
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One approach to address these challenges is to automatically tune parame-
ters for a target benchmark. However, automatic parameter-tuning in the HPC
setting includes the following difficulties. A single execution of benchmarking a
supercomputer system often takes hours, so a parameter-tuning method must be
able to handle the large cost (long execution time) to obtain a single measure-
ment of an objective value. Furthermore, because only one target system exists,
the parameter space cannot be searched in parallel. To cope with these diffi-
culties, we propose applying Bayesian optimization (BO), which is considered
a suitable black-box optimization method for such a problem setting [1]. BO is
typically formulated by a Gaussian process (GP) [2], which leads to a nonpara-
metric data-driven modeling and flexible representation of black-box functions.
To summarize, our motivation is to reduce the tedious part of the tuning process
by BO and let human experts focus on more insightful work.

We measured the Green500 score of our supercomputer system by taking
advantage of automatic benchmark-parameter tuning using BO. We submitted
the resulting score of our system, named “kukai”, in June 2017 and obtained a
good result in the Green500 ranking1: second place with a small difference in
score from the highest ranked system. In this paper, we report on our experiences
and findings of the Green500 measurement based on more extensive experiments
conducted after the Green500 submission using a subset of the system.

The key contribution of the paper is twofold. First, we report how BO can
be successfully applied to the tuning of an HPC system for energy efficiency
in practice. Second, we show that BO can reach the maximum score found by
exhaustive grid search within significantly fewer trials than the grid search.

The rest of the paper is organized as follows: In Sect. 2, we provide related
work to this study. We give an overview of BO in Sect. 3, describe our system
and how we implemented the auto-tuning system in Sect. 4, describe the search
space, i.e., parameters to be auto-tuned, and the search algorithm in Sect. 5,
explain our experimental results in Sect. 6, and discuss what can be learned
from the results in Sect. 7. Finally, we conclude the paper in Sect. 8.

2 Related Work

Because the complexity of computer systems is increasing, the automatic tuning
of system configurations and operating software parameters has evoked strong
interest. Using machine-learning techniques for automatic tuning of parameters
is considered particularly effective when the system is complicated, so the per-
formance model is difficult to predict. We focus on research into the automatic
tuning of HPC systems and cloud computing systems using black-box optimiza-
tion and discuss their relationship with the work conducted in this study.

2.1 OpenTuner

Ansel et al. developed OpenTuner [3], an automatic tuning framework that sup-
ports ensembles of multiple search techniques, such as differential evolution [4].
1 https://www.top500.org/green500/lists/2017/06/.

https://www.top500.org/green500/lists/2017/06/
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They searched for the optimal parameters for HPL [5], one of the most popular
benchmarks for HPC systems, on a single machine with OpenTuner using mini-
mal knowledge of machine specifications and obtained better performance than
the processor vendor’s implementation.

In contrast to the above single machine setting [3], we ran HPL on 80 nodes of
a system consisting of central processing units (CPUs) and graphics processing
units (GPUs), not a single machine. In a large-scale system, the execution time of
the benchmark becomes long, so an efficient search is necessary. We exploited the
knowledge about the HPL parameter tuning that has been accumulated so far
in the HPC field. Then, we tuned the difficult parameters such that even human
experts had to rely on trial and error, using BO. As a result, our system achieved
a high ranking in the Green500 list, showing that BO works in a practical setting.

2.2 Structured Bayesian Optimization

Dalibard et al. [6] proposed a structured BO method, which integrates the devel-
oper’s knowledge about the behavior of a system as a probabilistic model. This
method is very efficient in terms of the number of samples and converges rapidly.
The authors showed that it could successfully tune the garbage collection param-
eters of Cassandra database software and the scheduling of distributed neural
network training using Tensorflow [7].

However, because the structural probabilistic model is hardcoded, the
probabilistic-model program needs to be modified when the configuration of
the system changes or when a mistake occurs in modeling. In contrast, we use
a GP without domain knowledge and simply restrict the search space; it can be
adjusted relatively easily on the spot even in situations that are not assumed in
advance.

3 Bayesian Optimization

We focus on the problem of optimizing a nonlinear function f(x) over a compact
set X ⊂ R

d.

x∗ = argmax
x∈X

f(x). (1)

BO is a method for optimizing the financially, computationally, or physically
expensive black-box functions, the derivatives and convexity properties of which
are unknown [1,8]. We start with explaining the GP, which is a basic component
of BO, to model a statistical property of black-box functions.

3.1 Gaussian Process

A Gaussian distribution is a distribution over real random vectors fully specified
by a mean vector µ ∈ R

k and covariance matrix Σ ∈ R
k×k. Note that n-

dimensional vector y1:n = (y1, y2, . . . , yn) follows a Gaussian distribution as

y1:n ∼ N (µ, Σ). (2)
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The GP is a distribution over functions f : X → R, completely specified by
a mean function m : X → R and kernel function k : X × X → R

+. We define

m(x1:n) = (m(x1),m(x2), . . . , m(xn))�, (3)

K =

⎡
⎢⎢⎢⎣

k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

⎤
⎥⎥⎥⎦ , (4)

where x1:n = (x1,x2, . . . ,xn).
Let f1:n = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function

values evaluated at n points xi ∈ X . Note that f1:n is a random variable. If for
any positive integer n and finite subset {x1, . . . ,xn} ⊂ X ,

f1:n ∼ N (m(x1:n),K), (5)

then it is defined that function f(·) follows a GP, which is expressed as

f ∼ GP(f |m, k). (6)

By modeling f as a function distributed from a GP, nearby locations have close
associated values, where “nearby” is defined by the kernel of the GP. The smooth-
ness of f is also controlled by the kernel.

With BO, f is typically assumed to be drawn from a GP, and observations
D1:n = {xi, yi}ni=1 are generated by

yi = f(xi) + εi, ε ∼ N (0, ρ2). (7)

The convenient properties of the GP allow us to compute marginal and condi-
tional means and variances in closed form [2]. That is, the predictive distribution
with mean μ and variance σ under the GP can be calculated as

p(y∗|x∗,D1:n,m, k) = N (y∗|μ(x∗;D1:n,m, k), σ2(x∗;D1:n,m, k)), (8)

where

μ(x∗;D1:n,m, k) = k(x∗)�(K + ρ2I)−1(y1:n − m(x1:n)), (9)

σ2(x∗;D1:n,m, k) = k(x∗,x∗) − k(x∗)�(K + ρ2I)−1k(x∗), (10)

k(x∗) = (k(x∗,x1), k(x∗,x2), . . . , k(x∗,xn))�. (11)

The squared exponential kernel is often used:

kSE(x,x′) = θ0 exp

{
−1

2

D∑
d=1

(xd − x′
d)

2

θ2

}
. (12)
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After choosing the form of the kernel function, we must also manage the kernel
parameters that govern its behavior. Snoek et al. [9] developed a fully Bayesian
treatment of the kernel parameters based on slice sampling developed by Murray
and Adams [10]. However, this approach typically requires a higher number of
BO trials. Therefore, we used ρ = 0.001, θ0 = 1, and θ = 0.5 in our experiments,
which were empirically determined in our preliminary experiments. We also used
m(·) = 0, which is a common setting in the GP and indicates that the behavior
is governed by only a kernel function.

3.2 Nonparametric Data-Driven Property of Gaussian Process

The GP has a flexible ability to model black-box functions. When we make
new predictions, we use the predictive mean function μ(x∗;D1:n,m, k) =
Ep(y∗|x∗,D1:n,m,k)[y∗] in (8). We can rewrite the predictive mean function μ in
Eq. (9) as

μ(x∗;D1:n,m, k) =
n∑

i=1

wik(xi, x∗), (13)

where (w1, w2, . . . , wn)� = (K+ρ2I)−1(y1:n−m(x1:n)). This formulation means
that every output yi is weighted to make new predictions y∗ by the kernel-
induced similarity between its associated input xi and to-be-predicted point x∗.
This results in a simple weighted sum to make predictions for new points. The
prediction only depends on the kernel k and observed data D1:n, which means
that the GP regression is equivalent to a nonparametric regression model using
basis functions k. This is why the GP is referred to as a nonparametric Bayesian
model and is suitable for data-driven modeling of black-box functions.

3.3 Acquisition Function

Finding the maximum of f is achieved by generating successive queries
x1,x2, . . . ∈ X . We use the posterior mean and uncertainty of f to find the
next query to observe. The common approach to find the next query is to solve
the alternative optimization problem, the objective function of which is relatively
inexpensive to optimize.

We select the next query by finding the maximum of an acquisition function,
a(x), over a bounded domain in X instead of finding the maximum point of the
objective function f(x). The acquisition function is typically formulated by the
posterior mean and uncertainty to balance exploration and exploitation. That
is, we select the next query xn+1 by

xn+1 = argmax
x

a(x;D1:n,m, k). (14)

Several acquisition functions have been proposed. Močkus et al. [1] proposed
expected improvement (EI):

aEI(x;D1:n,m, k) = EGP(f |D1:n,m,k) [f(x) − max f(x1:n)] , (15)
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where max f(x1:n) = maxi f(xi) and EGP(f |D1:n,m,k)[·] is the expectation over
the GP posterior GP(f |D1:n,m, k).

Srinivas et al. [11] proposed GP-based upper confidence bound (GP-UCB):

aGP-UCB(x;D1:n,m, k) = μ(x;D1:n,m, k) + βσ(x;D1:n,m, k), (16)

where β is a parameter to balance exploration and exploitation.
Contal et al. [12] proposed GP mutual information (GP-MI):

aGP-MI(x;D1:n,m, k) = μ(x;D1:n,m, k) + β(
√

νn(x;m, k) −
√

νn−1(x;m, k)),

(17)

νn(x;m, k) = σ2(x;D1:n,m, k) +
n−1∑
t=1

σ2(x;D1:t,m, k). (18)

In this study, we used GP-MI because it outperformed EI and GP-UCB on
synthetic and real tasks and has a better theoretical guarantee [12], where param-
eter β of GP-MI is theoretically determined in terms of regret minimization.

4 System Setup for Auto-tuning

4.1 GPU Cluster System

We developed a GPU cluster system with 80 compute nodes and submitted
a benchmark result to the TOP500/Green500. Each node in the cluster has
one Intel Xeon E5-2650Lv4 processor (1.7 GHz, 14 cores) with 128-GB DDR4
memory and two NVIDIA Tesla P100 PCIe GPUs. Thus, the entire system has 80
Xeon processors and 160 GPUs in total. All nodes are connected with Mellanox
FDR InfiniBand. In this paper, we report on the experimental results using a
slightly smaller subset (64 nodes) of the cluster system.

We followed the instructions [13] for measuring power consumption during
execution of the benchmark. Power was measured for 16 out of 64 nodes and 1
out of 4 network switches, and the total power was calculated by multiplying
the scaling factor to the measured power.

We used HPL benchmark software [5] optimized for the Tesla P100 GPU pro-
vided by NVIDIA. We ran HPL on Linux with OpenMPI 1.10.7, CUDA 8.0, and
Intel MKL 2017, and GPUDirect RDMA was enabled for better performance.

4.2 Implementation of Auto-tuning Method

The overview of our system used for auto-tuning experiments is shown in Fig. 1.
We developed a few programs to control experiments which are consist of mul-
tiple trials of running the HPL program with different configurations. When
running an experiment, we ran the optimizer on one node, and the optimizer
invoked the benchmark driver many times with different hyperparameter values.
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The benchmark driver simply executes the HPL program in an isolated direc-
tory with the specified hyperparameters, collects the information to calculate
the objective value (energy efficiency in this study), then returns the calculated
objective value to the optimizer. The HPL program runs in a distributed manner
over nodes of the cluster using message passing interface (MPI). In the manage-
ment node, we run the power measurement logger, which continuously records
the measured power values to the power-measurement log file. This log file is
used by the benchmark driver to calculate the energy-efficiency score.

Fig. 1. System overview

The optimizer program executes BO for hyperparameter searches. We imple-
mented the algorithm of BO described in Sect. 3 ourselves, but off-the-shelf
software packages implementing similar algorithms can be obtained, such as
spearmint [14], BayesOpt [15], and GPyOpt [16]. The optimizer can suspend an
experiment at any time and resume it by reading the execution history file. This
feature is useful when problems occur during experiments or when we need to
further improve past experimental results.

The benchmark driver executes HPL and collects the log output from HPL
and the power-measurement logger. From the optimizer point of view, the bench-
mark driver behaves as an objective function, which takes a set of hyperparam-
eter values as inputs and outputs the resulting score of the benchmark as an
objective value. Thus, the benchmark driver hides the details of HPL executions
and power measurements, and this structure effectively separates the responsibil-
ity of each program. Figure 2 shows the flow chart of the coarse-grained behavior
of the benchmark driver.

5 Search Space and Algorithm

5.1 Search Space

In this subsection, we explain how we determine the search space of our experi-
ments. Table 1 lists the major possible parameters in our experimental settings.
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Setup Execution Environment

Generate Input
Parameter File for HPL

Execute HPL

Parse Output Log of HPL

Collect Power-Measurement Data

Calculate Green500 Score

Return Green500 Score
as Objective Value

Fig. 2. Flow chart of benchmark driver

GPU CLK and CPU CLK are the clock frequencies of the GPU and CPU, and
the other parameters from N to SWAP are the input parameters of the HPL
benchmark software [5]. We determined the hyperparameters to be searched
and their ranges in accordance with the literature [17] and preliminary experi-
ments. We also referred to the tuning guide, which is provided by NVIDIA with
the GPU optimized HPL.

The most fundamental parameters of HPL are N and NB. Parameter N
specifies the size of the matrix to be solved, and NB specifies the size of the
block dividing the matrix. In the HPL optimized for the GPU, the optimal N is
within a certain range determined by the memory size of the GPU, and a suitable
NB can be 128 multiplied by a small integer. However, the best combination of
these parameters is determined through trial and error, so we use N and NB for
search parameters. For N, we discretized the candidate values so that they are
a multiple of 256.

Parameters P and Q are also important parameters that affect performance
and determine the allocation of divided matrix blocks for each processor (GPU
in this case). In our system, performance is extremely degraded, regardless of
the value of other parameters, except for a few combinations of P and Q values.
Therefore, by choosing the best combination of P and Q values in advance, we
do not include P and Q for the search space of BO.

GPU CLK greatly affects the energy efficiency of the benchmark. Higher
energy efficiency can be obtained by decreasing GPU CLK, but this also lowers
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Table 1. Tuning parameters

Parameter Range/Choices Transformation Description

N Positive integer linear Matrix size

NB 1–N linear Block size

P, Q P·Q = #Processes Process grid size

NBMIN 1–NB discrete Recursive stopping condition

NDIV Positive integer # of Panels in recursions

PFACT 3 choices # of Panel factorizations

RFACT 3 choices # of Recursive panel factorizations

BCAST 6 choices discrete Broadcast type

DEPTH Positive integer Lookahead depth

SWAP 3 choices Swapping algorithm

GPU CLK 544–1,328 discrete GPU clock frequency (MHz)

CPU CLK 1,200–1,700 discrete CPU clock frequency (MHz)

the Rmax substantially. For this reason, we added GPU CLK to the search space
while specifying a higher value for the lower bound.

Many other parameters can be used for finely controlling the behavior of
the HPL benchmark. For each one, we measured benchmarks independently
and decided to add the parameters of NBMIN and BCAST, which affected per-
formance more than the other parameters. Because BCAST selects one of six
broadcast communication methods, it cannot be mapped continuously to one
dimension. We can generally use one-hot encoding, which means that each value
of a nominal parameter is mapped to a distinct dimension. However, this tends
to increase the dimension of the search space, often degrading the efficiency of
the parameter search significantly. In this case, we could select two methods
showing particularly high performance and assign them to the minimum and
maximum values of one dimension of the search space. Finally, we decided to
use five parameters: N, NB, NBMIN, BCAST, and GPU CLK.

These five parameters are exactly what we used for Green500 submission, but
we found that CPU CLK sometimes affects the energy efficiency more than we
first expected. CPU CLK has a relatively smaller effect on energy efficiency than
other parameters, but it is not small enough to be ignored, in particular, when
optimally tuned. Thus, we also conducted experiments with a set of parameters
with CPU CLK instead of NBMIN. Concretely, the search parameters were: N,
NB, BCAST, CPU CLK, and GPU CLK. We also changed the range of some
parameters. The case in which the search parameters do not contain CPU CLK
is called Case I, and the other is called Case II.

To summarize, we chose five parameters with a restricted range or choices
for the search space of BO, as indicated in the third column in Table 1. This
search space contained 36,864 points in Case I and 291,840 points in Case II. In
our setting, the HPL benchmark was typically executed in about five minutes,
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so a grid search over the entire search space would take more than four months
in the former case and nearly three years in the latter. Because our system is
relatively small, the single run of HPL benchmark required little time. In larger
systems, it takes longer to complete the entire search space.

5.2 Search Algorithm Based on Latin Hypercube Sampling

The acquisition function is easy to evaluate. However, finding the global max-
imum solution of the acquisition function is difficult. Therefore, we generate
candidate settings and query the next setting that maximizes the acquisition
function. We use Latin hypercube sampling to generate candidate settings. Latin
hypercube sampling is a statistical method for generating a sample inspired by
a Latin square experimental design [18]. Latin hypercube sampling prevents the
sample points from clumping together in a sample space; this problem can occur
with purely random points. Because the sample points are spread out over the
entire space, Latin hypercube sampling reduces the simulation’s statistical vari-
ance associated with the finite sample size.

We have to consider one problem in using Latin hypercube sampling for
generating candidate settings. Samples obtained by Latin hypercube sampling
are just those over a hypercube. However, candidate settings have certain con-
straints. For example, some parameters take integer values, while Latin hyper-
cube sampling generates samples over hypercube [0, 1]d ⊂ R

d. Therefore, we
have to transform samples from Latin hypercube sampling into hyperparameter
space. We use the transformation defined by

hi =

{
floor((ui − li + 1) · xi + li) (linear case)
v
(si)
i (discrete case)

, (19)

si = floor(i · ni), (20)

where hi denotes parameters i, xi is a candidate setting generated by Latin
hypercube sampling, ui and li denote parameters for the upper and lower bound
of hyperparameters i, v

(si)
i denotes the value array for parameters i at index si, si

denotes the index for the value array for parameters i, ni denotes the number of
elements in the value array for parameters i, and floor(x) = max{z ∈ Z | z ≤ x}.
We assume that the values of v

(si)
i are arranged monotonically along si for each i.

6 Experimental Results

We conducted two lines of experiments. For Case I, we conducted experiments
whose conditions were similar to those of which we submitted the energy effi-
ciency score to the past Green500 list. For Case II, we also conducted experiments
with five parameters containing GPU CLK and CPU CLK. These experimental
conditions were more difficult even for human experts due to the complex and
irregular dependence on these parameters, so using BO was considered to be
more helpful.
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6.1 Case I: Experiments Using Search Parameters Without
CPU CLK

We conducted ten BO experiments with five search parameters: N, NB, BCAST,
NBMIN, and GPU CLK. In each experiment, the first three trials of bench-
marks were executed with randomly determined parameters. For the other 16
trials, the BO algorithm determined the next parameter values on the basis
of the history of the parameters and the measured values. Figure 3 shows the
cumulative maximum values of energy efficiency over the trials (including tri-
als with random parameter selection) during the ten experiments. The style of
each line indicates a different experiment. As the BO algorithm sought better
energy efficiency, the cumulative maximum value of energy efficiency at each
trial gradually increased. The average and standard deviation of the best values
of energy efficiency obtained in each experiment were 14.18 ± 0.17 GFlops/W,
comparable to those of the top ranked systems in recent Green500 lists. In par-
ticular, the overall best energy efficiency of 14.36 GFlops/W was obtained for
the following configuration: N = 525,312, NB = 384, NBMIN = 8, BCAST = 3,
and GPU CLK = 1,189. Figure 8 in the Appendix shows the individual traces
of energy efficiency (the solid lines) and cumulative best energy efficiency (the
dashed lines) over the trials in the ten experiments. While the peak performances
we found in this setting were lower, one may observe that BO tended to find
good parameters earlier in its searches compared to the searches in Case II. As
we noted in Sect. 5.1, we believe that this is due to smaller search space available
to BO. This is the experimental setting similar to our submission to the past
Green500 list.

Fig. 3. Cumulative maximum energy efficiency for ten experiments (Case I)
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6.2 Case II: Experiments Using Search Parameters with CPU CLK

In Case I, our experimental setting tended to be narrowly focused but extensive
with a larger number of experiments. Because BO found good configurations
early in their searches, the results allowed us to be more confident in applying
BO to a larger search space with a limited number of experiments.

To achieve the full potential of BO, we conducted three BO experiments with
search parameters containing CPU CLK. Specifically, the parameters used were:
N, NB, BCAST, GPU CLK, and CPU CLK. In each experiment, the first three
trials used randomly determined parameters and the successive 32 trials used
the parameters provided from BO.

Figure 4 shows the cumulative maximum values of energy efficiency over trials
during the three experiments, including trials with random parameter selection
(the solid lines). The figure also shows the best value obtained from a grid search
(GS) experiment (the dashed line). The search range of this GS experiment
was almost identical with the BO experiments, but the candidate parameter
values decreased because it took a significantly longer time to search all possible
parameter values of the BO experiments. Although the number of candidate
points was much larger than in Case I, the final scores converged to a relatively
close value and exceeded 15.0 GFlops/W. While we cannot expect BO to obtain
the best configuration without more trials, these final scores we obtained within
35 trials were close to the best value obtained from the GS experiment.

Fig. 4. Cumulative maximum energy efficiency for three experiments (Case II)

Table 2 shows some of the actual parameter values and resulting scores
obtained during the experiments. The top six rows show the configurations with
high energy-efficiency scores, and the bottom six rows show the configurations
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with high Rmax scores. For both energy efficiency and Rmax, we selected the
five highest configurations from the BO experiments and the single highest con-
figuration from the GS experiments. As can be seen from this table, the way
Rmax and energy efficiency depend on the parameters greatly differ. For exam-
ple, NB is likely optimal at the value of 384 for energy efficiency but has no
simple relationship to Rmax.

Table 2. Actual parameter values that exhibit highest energy efficiency and Rmax
scores

Method N NB BCAST GPU CLK CPU CLK Energy efficiency Rmax

BO 483,328 384 1 1,101 1,300 15.30 336.1

485,376 384 3 1,126 1,600 15.27 362.0

486,656 384 1 1,113 1,200 15.08 330.3

483,840 384 1 1,126 1,300 15.06 338.9

486,656 384 1 1,151 1,600 15.04 369.2

GS 524,288 384 3 1,101 1,500 15.58 366.6

BO 515,840 128 3 1,303 1,700 11.82 397.6

495,616 384 3 1,303 1,700 12.89 396.0

522,496 256 3 1,328 1,500 12.57 395.6

505,088 256 3 1,290 1,600 13.17 394.8

552,704 256 3 1,278 1,700 12.77 392.4

GS 524,288 256 3 1,328 1,700 12.40 414.2

Figures 5 and 6 show how the Rmax values and energy-efficiency score
depend on GPU CLK and CPU CLK obtained from the three BO experiments.
As shown in Fig. 5, the highest Rmax values were concentrated in the area
where both GPU CLK and CPU CLK were high. Thus, determining the per-
formance in terms of Rmax is straightforward. However, Fig. 6 indicates that
the highest energy-efficiency score scattered almost throughout the entire range
of CPU CLK.

We analyzed the overall measurement results from the BO and GS experi-
ments. In Table 3, we summarize the relationships between the parameters and
three metrics: Rmax, power, and energy efficiency. In the table, ‘L’ or ‘H’ means
that a lower or higher parameter value was better for the metrics, ‘M’ means
that the parameter values near the median value of the allowed range were bet-
ter, and ‘X’ means that no simple relationships were evident. The results suggest
that NB = 384 works best for energy efficiency and that the lower the GPU CLK,
the better the result. It is difficult to predict these relationships only from the
specifications of the system in advance. Even knowing the relationships, it is
necessary to adjust sensitive parameters by trial and error to obtain the best
value. Thus, BO is considered useful to reduce laborious and time-consuming
work to find the optimal configuration.
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Fig. 5. Rmax, CPU CLK, and GPU CLK (Case II)

Fig. 6. Energy efficiency, CPU CLK, and GPU CLK (Case II)
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Table 3. Qualitative relationships between parameters and metric values

Parameter Rmax Power Energy efficiency

N M L,H L,M

NB X L 384

BCAST 3 X X

GPU CLK H L L

CPU CLK H L X

Figure 7 shows the frequency of values for each parameter that BO tuned.
Consistent with the trend in the parameter providing high energy efficiency
shown in Table 3, BO frequently searched the smaller values of N and GPU CLK,
the broad range of CPU CLK, and NB = 256 and 384.

CPU CLK GPU CLK

N NB

Fig. 7. Frequency of parameter values tuned using BO (Case II)

7 Discussion

As described in Sect. 6, BO could reach near the best value of the GS experiment
within 35 trials under our experimental conditions. In addition, the Green500
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score for using BO was very close to the score of the top system in the official
Green500 ranking.

Although BO worked successfully for our first attempt to enter Green500,
some problems need to be considered. One is guaranteeing the minimum required
performance of Rmax during optimization. According to the ranking rules of
Green500, a system must not be lower than 500th place in the TOP500 ranking
to be included in Green500. As the Rmax measurement is used for this ranking,
we must maintain the minimum performance level of Rmax to ensure the system
ranks in the TOP500. To cope with this challenge, we used a very high value for
the lower limit of the search range of GPU CLK, especially in Case I, because
a lower GPU CLK may reduce Rmax to an unacceptably low value if it is set
too low. Ideally, BO should simultaneously optimize both energy efficiency and
Rmax as objective functions or optimize energy efficiency with constraints such
that Rmax remains above a certain value. This is important for not only rank-
ing benchmarks but also real applications because it makes no sense to pursue
greater energy efficiency if the performance plummets.

The other challenge is handling parameters, the possible values of which are
from nominal categories. The only parameter that had this property among the
selected search parameters was BCAST. We were able to select two effective
values from among six values of BCAST and obtained satisfactory results. In
general, however, choosing appropriate values from three or more nominal cate-
gories is likely to be essential in optimizing benchmarks.

In this study, we reported an application of BO in tuning the energy-efficiency
benchmark, but the performance and energy efficiency of real applications also
need to be tuned. The relationship between parameters and performance in real
applications may be more complicated, but BO is expected to be successfully
applied to real applications, as shown in this study, unless the dimensionality of
the parameters is so high that BO fails to work effectively.

8 Conclusion

We demonstrated that BO is useful for efficiently determining the energy-efficient
configuration of high-performance computing systems. Combining some domain
knowledge and a few preliminary experiments, we could successfully reduce the
search space, and BO eliminated laborious manual tuning work in a practical
setting. Though we showed that BO is an easy-to-use tool for benchmark tuning,
future work remains, for example, a more principled method of determining the
search space and handling multiple constraints/objectives. By resolving these
issues and further improving, we expect BO to become a popular tool for tuning
various HPC systems.

Acknowledgements. We would like to thank Sunao Torii, Kenichi Inaba, Ryo
Sakamoto, Yuki Yamaura and Michiya Hagimoto for their technical contributions, in
particular, for their extensive expertise in liquid immersion cooling, system configura-
tion, and power measurement. Without them, we would be unable to achieve second
place in the Green500 ranking.
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A Individual Traces of Energy Efficiency over Trials in
Each Experiment (Case I)

Fig. 8. Individual traces of energy efficiency over trials in each experiment (Case I)
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Abstract. Multi-component workflows, where one component performs
a particular transformation with the data and passes it on to the next
component, is a common way of performing complex computations.
Using components as building blocks we can apply sophisticated data
processing algorithms to large volumes of data. Because the components
may be developed independently, they often use file I/O and the Parallel
File System to pass data. However, as the data volume increases, file
I/O quickly becomes the bottleneck in such workflows. In this work, we
propose an I/O arbitration framework called DTF to alleviate this prob-
lem by silently replacing file I/O with direct data transfer between the
components. DTF treats file I/O calls as I/O requests and performs I/O
request matching to perform data movement. Currently, the framework
works with PnetCDF-based multi-component workflows. It requires min-
imal modifications to applications and allows the user to easily control
I/O flow via the framework’s configuration file.

Keywords: Multi-component workflow · Workflow coupling
I/O performance · I/O arbitration

1 Introduction

In the past several years, the steady growth of computational power that newly
built High Performance Computing (HPC) systems can deliver allowed humanity
to tackle more complex scientific problems and advance data-driven sciences.

Rather than using the conventional monolithic design, many applications
running in these systems are multi-component workflows in which components
work together to achieve a common goal. Each component performs a particular
task, such as building different physics models or running a model with different
parameters as it is done in ensemble simulation programs. The result of the
computation is then passed to the next component for further processing. A
workflow may also include components for data analytics, in-situ visualization
c© Springer International Publishing AG, part of Springer Nature 2018
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and so on. Components may be either loosely coupled, i.e., by using files to pass
data, or they can use a coupling software.

Such work pipelining allows to build powerful complex programs that perform
sophisticated data processing. The module-based approach can also facilitate the
development of new programs as they can be built fast by combining compo-
nents from previously developed workflows. Many recent research works focus
on tuning HPC systems so that they could run multi-component workflows more
efficiently [1,2]. The I/O bottleneck in such applications is one of the issues that
receives a lot of attention. The faster the component receives the data from the
previous component, the sooner it can start processing it. However, for work-
flows coupled through files, file I/O can become a bottleneck, especially when
they pass large amounts of data.

A motivating real-world application example for this work is an application
called SCALE-LETKF [3]. SCALE-LETKF is a real-time severe weather predic-
tion application that combines weather simulation with assimilation of weather
radar observations. It consists of two components (Fig. 1) — SCALE and LETKF
— that are developed independently. SCALE is a numerical weather prediction
application based on the ensemble simulation; LETKF performs data assimila-
tion of real-world observation data together with simulation results produced by
SCALE.

Fig. 1. SCALE-LETKF

In each iteration, SCALE writes the simulation result to the Parallel File
System (PFS) using the Parallel NetCDF [4] API. The files are subsequently
read by LETKF. After LETKF finishes assimilating the observation data, the
output is written to files which become the input for SCALE in the next iteration.
One of the results from every iteration is also used to predict weather for the
next 30 min on separate compute nodes.

A particular feature of SCALE-LETKF is that it has a strict timeliness
requirement. The target execution scenario is to assimilate the observations
arriving at an interval of 30 s. Therefore, one full iteration of SCALE-LETKF,
including the computations and I/O, must finish within this time period. How-
ever, this requirement quickly becomes hard to fulfill once the amount of file I/O
grows too big.
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One way to overcome this would be to switch from file I/O to some coupling
software. However, this would require rewriting the I/O kernels in both compo-
nents using the API of the coupler as such a software usually requires. This can
be a daunting task for a software as large and complex as SCALE-LETKF.

In this work, we propose a framework called Data Transfer Framework (DTF)
that silently bypasses file I/O by sending the data directly over network and
requires minimal modifications to application source code. Current implemen-
tation of DTF assumes that the workflow components use PnetCDF API for
file I/O. The framework uses the Message Passing Interface (MPI) [5] library
to transfer the data. Applications like SCALE-LETKF can benefit from DTF
because it allows the developers of the application to easily switch from file I/O
to direct data transfer without having to rewrite the I/O code.

The main contributions of this work are:

– We propose a simple data transfer framework called DTF that can be used
to silently replace PnetCDF-based file I/O with direct data transfer;

– Unlike many existing coupling solutions, DTF requires only minimal modi-
fications to the application and does not require modifications of PnetCDF
calls themselves;

– DTF automatically detects what data should be transferred to what processes
transparently for the user, hence, it can be plugged into workflows fast and
with minimal efforts and there is no need to provide a description of I/O
patterns across components;

– Using a benchmark program, we show that the DTF exhibits stable per-
formance under different I/O loads. A test run of DTF with the real-world
workflow application (SCALE-LETKF) shows that the DTF can help multi-
component workflows achieve real-time requirements.

The rest of this paper is organized as follows. In Sect. 2 we present in detail
the design of our data transfer framework and discuss its implementation in
Sect. 3. We present the results of the performance evaluation of the framework
in Sect. 4. In Sect. 5 we overview existing solutions proposed to facilitate the data
movement between the components in multi-component workflows. Finally, we
conclude with Sect. 6.

2 Data Transfer Framework

DTF can be used in workflows in which the components use the PnetCDF library
for file I/O. In this section, we first present some basic concepts of the (P)netCDF
data format that had a direct influence on the design of the DTF. We then
present the general overview of the framework and, finally, discuss in detail how
the data transfer is performed.

We note that from now on we will call the component that writes the file and
the component that reads it as the writer and the reader components, respec-
tively.
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2.1 Parallel NetCDF Semantics

Network Common Data Form [6] is a self-describing portable data format that
supports handling of array-oriented scientific data. The NetCDF library provides
users with an API that allows them to create files conforming to this data format
and to define, store and retrieve the data. Parallel NetCDF (PnetCDF) is, as
the name suggests, a parallel implementation of the NetCDF library. PnetCDF
utilizes the parallel MPI-IO under the hood which allows multiple processes to
share the file.

Before performing I/O, the user must first define the structure of the file, that
is, define variables, their attributes, variable dimensions and dimension lengths.

Once the structure of the file is defined, the user may call PnetCDF’s API
to read or write variables. In a typical PnetCDF call, the user must specify the
file id and variable id, which were assigned by PnetCDF during the definition
phase, specify the start coordinate and block size in each dimension for multi-
dimensional variables, and pass the input or output user buffer.

Similarly to MPI, PnetCDF has blocking and non-blocking API. In non-
blocking I/O, the user first posts I/O requests and then calls a wait function to
force the actual I/O. The purpose of non-blocking calls is to allow processes to
aggregate several smaller file I/O requests into a larger request to improve the
I/O throughput.

2.2 General Overview of DTF

DTF aims to provide users of multi-component workflows with a tool that would
allow them to quickly switch from file I/O to direct data transfer without needing
to cardinally change the source code of the components.

First, the user must provide a simple configuration file that describes the file
dependency in the workflow (example in Fig. 4). It only needs to list the files
that create a direct dependency between two components, i.e. if the components
are coupled through this file. The DTF intercepts PnetCDF calls in the program
and, if the file for which the call was made is listed in the configuration file as
subject to the data transfer, the DTF handles the call accordingly. Otherwise,
PnetCDF call is executed normally.

In order to transfer the data from one component to another, we treat every
PnetCDF read or write call as an I/O request. The data transfer is performed
via what we call the I/O request matching. First, designated processes, called
I/O request matchers, collect all read and write requests for a given file. Then,
each matcher finds out who holds the requested piece of data by matching each
read request against one or several write requests. Finally, the matcher instructs
the processes who have the data to send it to the corresponding process who
requested it. All the inter-process communication happens using MPI. We note
that here we differentiate between the PnetCDF non-blocking I/O requests and
the DTF I/O requests, and we always assume the latter unless stated otherwise.

The I/O patterns of the component that writes to the file and the component
that reads from it may be drastically different, however, dynamic I/O request
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matching makes DTF flexible and allows it to handle any kind of I/O patterns
transparently for the user.

2.3 I/O Request Matching

When the writer component creates a file, matchers that will be handling the
I/O request matching are chosen among its processes. The number of matchers
can be configured by the user or else a default value is set.

I/O reqs
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Step 4. Writer processes 
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to corresponding readers.
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reader component

Process of the 
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Request matcher  process chosen 
among writer processes

Data reqs

Fig. 2. I/O request matching. Request matchers are marked with a red shape outline.
For simplicity, only one reader process is showed to have read I/O requests. (Color
figure online)

When a process calls a read or write PnetCDF function for a file intended for
data transfer, the DTF intercepts this call and, instead of performing file I/O,
it internally creates an I/O request that stores the call metadata. Additionally,
the process may buffer the user data if the DTF is configured to do so. The
metadata consists of:

– varid - the PnetCDF variable id;
– rw flag - read or write request;
– datatype - in case this datatype does not match with the datatype used when

the variable was defined, type conversion will take place;
– start - corner coordinate of the array block;
– count - length of the block in each dimension;
– buffer - pointer to the user buffer.

The request matching process can be divided in four steps (Fig. 2). First, all
the processes of the reader and writer component send all their I/O requests
posted so far to corresponding matching processes (Step 1). Then, a matching
process takes the next read I/O request and, based on the corner coordinate
start of the requested array block and the block size count, searches for match-
ing write requests (Step 2). The I/O pattern of the reader and writer components
are not necessarily identical, therefore, one read request may be matched with
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several write requests, each of them - for a sub-block of the requested array
block. Once a match is found, the matcher sends a message to the writer process
holding the requested portion of data and asks it to send this data to the corre-
sponding reader process (Step 3). Finally, when a writer process receives a data
request from the matcher, it finds the requested data in the memory, copies it
to the send buffer along with the metadata and sends it to the reader (Step 4).
When the reader receives the message, it parses the metadata and unpacks the
data to the user buffer.

For better performance, the requests are distributed among the matching
processes and each matcher is in charge of matching requests for a particular
sub-block of a multi-dimensional variable. The size of the sub-block is determined
by dividing the length of the variable in the lowest (zeroth) dimension by the
number of matching processes. If there is a request that overlaps blocks handled
by different matchers, such a request will be split into several requests for sub-
blocks, and each matcher will match the corresponding part. There is a trade-off
in this approach: On one hand, the matching happens in a distributed fashion,
on the other hand, if there are too many matchers the request may end up
being split too many times resulting in more communication between readers
and writers. Therefore, it is recommended to do some test runs of the workflow
with different number of matchers to find a reasonable configuration for DTF.

3 Implementation

The Data Transfer Framework is implemented as a library providing API to
user programs. To let the DTF intercept PnetCDF calls, we also modified the
PnetCDF-1.7.0 library. The modifications were relatively small and consisted of
around 50 lines of code.

We use the MPI library to transfer the data. To establish the communication
between processes in the reader and writer components, we use the standard MPI
API for creating an inter-communicator during the DTF initialization stage in
both components. This implies that the two components coupled through a file
must run concurrently.

Current version of the DTF implements a synchronous data transfer, meaning
that all the processes in the two components stop their computations to perform
the data transfer and resume only when all the data requested by the reader has
been received. Generally, it is preferable to transfer the data to the reader as
soon as it becomes available on the writer’s side so that the reader could proceed
with computations. However, because the I/O patterns of the two components
may differ significantly, it is hard to automatically determine when it is safe to
start the matching process. Therefore, we require that the user signals to the
DTF when to perform a request matching for a given file by explicitly invoking
a special API function in both components.

To enable the data transfer, the user needs to modify the source code of
all the components of the workflow by adding API to initialize, finalize the
DTF, as well as explicitly invoke the data transfer. However, we believe that
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0th dim 
(k=0)

1st dim 
(k=1)

2nd dim
(k=2)

Fig. 3. An example layout of a
k-d tree to arrange sub-blocks of
a 3-dimensional variable.

[INFO]
ncomp=2 ! number of components
comp_name=“rdr“  ! component name
comp_name=“wrt" 
ioreq_distrib_mode="range“  !divide by dim length
buffer_data=0
[FILE]
filename="restart.nc” 
writer=“wrt“   !component that writes to the file
reader=“rdr“  !component that reads from the file
iomode=“memory" !enable direct transfer

Fig. 4. DTF configuration file

these modifications are rather minimal compared to what traditional coupling
software usually requires.

3.1 Handling of I/O Requests

Depending on the scale of the execution and the I/O pattern, matching processes
sometimes may have to handle thousands of I/O requests. Using a suitable data
structure to arrange the requests in such a way that matching read and write
requests can be found fast is important.

Unless the variable is a scalar, an I/O request is issued for a multi-dimensional
block of data. Such k-dimensional block can be represented as a set of k intervals.
We use an augmented k-dimensional interval tree [7] to arrange these blocks in
such a way that would allow us to find a block that overlaps with a quired block
(read I/O request) in a reasonable amount of time. Figure 3 shows an example
layout of a tree that stores write requests for a 3-dimensional variable. A tree on
each level (k = 0,1,2) arranges intervals of the variable sub-blocks for which a
write request was issued in the corresponding dimension. Each node of the tree
links to the tree in the k + 1 dimension.

Read requests are stored as a linked list sorted by the rank of the reader.
Every time new requests metadata arrives, the matcher updates the request
database and tries to match as many read requests for a given rank as possible.

3.2 User API

The three main API functions provided by the DTF are the following:

– dtf init(config file, component name) - initializes the DTF. The user
must specify the path to the DTF configuration file and state the name of
the current component which should match one of the component names in
the configuration file;

– dtf finalize() - finalizes the DTF;
– dtf transfer(filename) - invokes the data transfer for file filename;
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All the API functions are collective: dtf init() and dtf finalize() must
be invoked by all processes in both components, while dtf transfer() must be
invoked only by processes that share the file.

During the initialization, based on the DTF configuration file, each com-
ponent finds out all other components with whom it has an I/O dependency
and establishes a separate MPI inter-communicator for every such depen-
dency. All the further inter-component communication happens via this inter-
communicator.

A dtf transfer() call should be added after corresponding PnetCDF read-
/write calls in the source code of both, reader and writer components. The call
will not complete until the reader receives the data for all the read I/O requests
posted before dtf transfer() was invoked, therefore, it is user’s responsibility
to ensure that the components call the function in the correct place in the code,
that is, that the writer does not start matching I/O until all the write calls for
the data that will be requested in the current transfer phase have been posted
as well. dtf transfer() function can be invoked arbitrary number of times but
this number should be the same for both components. We note that, because
this function acts like a synchronizer between the reader and writer components,
the recommended practice is to invoke it just once after all the I/O calls and
before the file is closed.

By default, the DTF does not buffer the user data internally. Therefore, the
user should ensure that the content of the user buffer is not modified between the
moment the write PnetCDF call was made until the moment the data transfer
starts. Otherwise, data buffering can be enabled in the DTF configuration file.
In this case, all the data buffered on the writer’s side will be deleted when a
corresponding transfer function is completed.

3.3 Example Program

A simplified example of a writer and reader components is presented
Figs. 5a and b, as well as their common DTF configuration file (Fig. 4). To enable
the direct data transfer it was enough to add three lines of code to each compo-
nent — to initialize, finalize the library and to invoke the data transfer — and
provide a simple configuration file.

4 Evaluation

We first demonstrate the performance of DTF using the S3D-IO1 benchmark
program. Next, we show how the DTF performs with a real world workflow
application—SCALE-LETKF.

S3D-IO [8] is the I/O kernel of the S3D combustion simulation code devel-
oped at Sandia National Laboratory. In the benchmark, a checkpoint file is writ-
ten at regular intervals. The checkpoint consists of four variables—two three-
dimensional and two four-dimensional—representing mass, velocity, pressure,
1 Available at http://cucis.ece.northwestern.edu/projects/PnetCDF/#Benchmarks.

http://cucis.ece.northwestern.edu/projects/PnetCDF/#Benchmarks
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/∗ I n i t i a l i z e DTF∗/
d t f i n i t ( d t f i n i f i l e , ”wrt” ) ;
/∗Create f i l e ∗/
ncmpi create ( ” r e s t a r t . nc” , . . . ) ;
<...>
/∗Write some data ∗/

ncmp i put va ra f l oa t ( . . . ) ;
/∗Write some more data ∗/
ncmp i put va ra f l oa t ( . . . ) ;
/∗Perform I /O reque s t matching ∗/
d t f t r a n s f e r ( ” r e s t a r t . nc” ) ;
/∗Close the f i l e ∗/
ncmpi c lo se ( . . . ) ;
/∗ F ina l i z e DTF∗/
d t f f i n a l i z e ( ) ;

(a) Component writing to file

/∗ I n i t i a l i z e DTF∗/
d t f i n i t ( d t f i n i f i l e , ” rdr ” ) ;
/∗Open the f i l e ∗/
ncmpi open ( ” r e s t a r t . nc” , . . . ) ;
<...>
/∗Read a l l data at once∗/
ncmp i g e t va r a f l o a t ( . . . ) ;
/∗Perform I /O reque s t matching ∗/
d t f t r a n s f e r ( ” r e s t a r t . nc” ) ;
/∗Close the f i l e ∗/
ncmpi c lo se ( . . . ) ;
/∗ F ina l i z e DTF∗/
d t f f i n a l i z e ( ) ;

(b) Component reading from file

Fig. 5. Sample code using the DTF API

and temperature. All four variables share the lowest three spatial dimensions X,
Y and Z which are partitioned among the processes in block fashion. The value
of the fourth dimension is fixed.

We imitate a multi-component execution in S3D-IO by running concurrently
two instances of the benchmark: Processes of the first instance write to a shared
file, processes in the second instance read from it. Each test is executed at least
eight times and an average value of the measured parameter is computed. To
determine the number of matchers necessary to get the best performance for
data transfer, we first execute several tests of S3D-IO varying the number of
matching processes and use the result in the subsequent tests.

In the tests with the direct data transfer, the I/O time was measured in the
following manner. On the reader side, it is the time from the moment the reader
calls the data transfer function to the moment all its processes received all the
data they had requested. On the writer’s side, the I/O time is the time between
the data transfer function and the moment the writer receives a notification
from the reader indicating that it had got all the requested data. The I/O time
also includes the time to register the metadata of the PnetCDF I/O calls and
to buffer the data, if this option is enabled. In all our test cases it so happens
that the writer component always invokes the transfer function before the reader
and, therefore, sometimes it has to wait for the reader to catch up. Hence, by
data transfer time we hereafter assume the I/O time of the writer component
unless stated otherwise as it represents the lowest baseline. The runtime of the
workflow is measured from the moment two components create an MPI inter-
communicator inside the dtf init() function and the moment it is destroyed
in dtf finalize() as these two functions work as a synchronization mechanism
between the reader and writer components.

All the experiments were executed on K computer [9]. Each node has an
8-core 2.0 GHz SPARC64 VIIIfx CPU equipped with 16 GB of memory. Nodes
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are connected by a 6D mesh/torus network called Tofu [10] with 5 GB/s× 2
bandwidth in each link. Compute nodes in K computer have access to a local
per-node file system as well as a global shared file system based on Lustre file
system.

4.1 S3D-IO Benchmark

Choosing the Number of Matching Processes. To get the best perfor-
mance, it is recommended that the user chooses the number of matching pro-
cesses that will perform I/O matching instead of using the default configuration
of one matcher per 64 processes. This number is application-dependent. The
load on a matching process is determined by the number of read and write I/O
requests the process has to match. For example, if all reader and writer processes
perform I/O symmetrically and the size of the variable in the zeroth dimension
divides by the number of matchers, the number of I/O requests one matcher will
have to match roughly equals the number of I/O requests one process generates
multiplied by the number of processes in both components.

Fig. 6. Data transfer time for various
test sizes and number of matching pro-
cesses per component.

Fig. 7. DTF performance for various
file sizes.

Depending on the I/O pattern, increasing the number of matchers does
not always decrease the number of I/O requests per matcher, but it generally
improves the throughput of data transfer. The reason is that rather than waiting
for one matching process to match requests for one block of a multi-dimensional
array, multiple processes can match sub-blocks of it in parallel. Consequently,
the reader may start receiving the data earlier.

To find an optimal number of matchers, we run tests of different sizes—from
32 processes per component up to 1024—with a problem size such that each
process reads or writes 1 GB of data. In each test we then vary the number of
matchers and measure the time to transfer the data. The results in Fig. 6 show
that increasing the number of matchers up to some point improves the transfer
time and then the performance starts decreasing. The reason for this is that
an I/O request for a block of data may be split into several requests for sub-
blocks between multiple matchers and, if the number of matchers is too big, the
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request is over-split and it takes more smaller messages to deliver all the data to
the reader. Based on this result, for our further tests we use the following setting:
for tests with up to 256 processes in one component, each writer process functions
as a matcher, for tests with 512 processes per component—four processes in one
work-group, i.e. 128 matchers in total. Finally, for tests with 1024 processes per
component the work-group size is 16, i.e. there are 64 matchers in total.

Scalability. We first demonstrate how the DTF scales compared to file I/O
(PnetCDF) by measuring the read and write bandwidth for weak and strong
scaling tests. In this test, processes write to a shared file using non-blocking
PnetCDF calls. To measure the I/O bandwidth, we divide the total file size by
the respective read or write I/O time. The results for the strong and weak scaling
are presented on Figs. 8 and 9. The X axis denotes the number of processes in
one component. We point out that the Y-axis is logarithmic in these plots.
Figures 8a and 9a show the total execution time of the coupled workflow.

In all tests each process executes a PnetCDF read or write function four
times—one per variable, i.e. each process generates four I/O requests.

In the strong scaling test, we fix the file size to 256 GB and vary the number
of processes in one component. We note that, due to the node memory in K
computer limited to 16 GB, the results in Fig. 8 start from the test with 32
processes per component. In the weak scaling tests, we fix the size of the data
written or read by one process to 256 MB, thus, in the test with one process per
component the file size is 256 MB, in the test with 1024 processes—256GB.

As we see, DTF significantly outperforms file I/O in all tests. We also notice
that the read bandwidth in all tests with the direct data transfer is always higher
than the write bandwidth. We compute the bandwidth by dividing the size of
the transferred data by the measured transfer time in the respective component.
Thus, the reason for the different bandwidth is the timing when the matching
starts in the reader component relatively to the writer component and is specific
to our chosen test cases. As mentioned before, in our experiments the writer
always entered the data transfer phase before the reader, hence, it sometimes
had to wait for the reader. For this reason, from the writer’s point of view,
the transfer took longer than from the reader’s point of view, hence, the write
bandwidth is lower.

The bandwidth using the data transfer does flatten eventually in the strong
scaling test (Fig. 8b and c), because the size of the data sent by one process
decreases and the overhead of doing the request matching and issuing data
requests starts to dominate the transfer time. In the weak scaling tests in Fig. 9
the data transfer time grows slower as the amount of data to transfer by one
process stays the same and the overhead of the I/O request matching is rela-
tively small. Hence, the total I/O bandwidth increases faster than in the strong
scalability test.
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Fig. 8. Strong scaling of S3D-IO. Y-axis is in logarithmic scale in all plots.

Fig. 9. Weak scaling of S3D-IO. Y-axis is in logarithmic scale in all plots.

DTF Performance Under I/O Load. Other major factors that impact the
data transfer time apart from the number of matching processes are the size of
data to transfer and the total number of I/O requests to be matched. To measure
the former we perform data transfer for files of various sizes while the number of
I/O requests per matcher stays the same. To evaluate the impact of the number
of I/O requests, we fix the file size to 256 GB and increase the number of I/O
requests a matcher process matches by manipulating how the I/O requests are
distributed among matchers. By default, the size of the variable sub-block for
which a matcher process matches read and write requests is defined by dividing
the variable in the zeroth dimension by the number of matchers. An I/O request
is split in the zeroth dimension based on this stripe size and distributed among
the matchers in a round robin fashion. In this experiment, we vary the value of
the stripe size which effectively changes the number of I/O requests each matcher
has to handle.

In both experiments there are 1024 processes per component and there is one
matcher per 16 processes. We also note that two out of four variables in S3D-IO
have the zero dimension length fixed to 11 and 3, respectively. This is smaller
than the number of matchers (64) and results in asymmetrical distribution of
work among matchers. For this reason, in the two experiments, on top of the
average number of I/O requests per matcher, a small group of matchers has to
match approximately 4,000 more I/O requests.

Figure 7 shows the results of the first experiment. The file size was gradually
increased from 8 GB to 2 TB. Each matcher process matched on average 576
requests in every test. We measured the time for actual matching of read and
write requests—it took only around 2% of the whole data transfer time, thus,
we conclude that most of the time was spent on packing and sending the data
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to reader processes. Thanks to the fast torus network in K computer, sending
2 TB of data over network took less than 3 s.

In the second experiment (Table 1) the file size is fixed, i.e. in every test each
process transfers the same amount of data. The matching processes handled from
576 to 16,832 I/O requests, plus the additional requests for some matchers due
to the imbalance. We expect that in this experiment it is the request matching
process that will have the biggest impact on the data transfer time as the number
of requests grow. However, according to the Table 1, the actual request matching
took on average no more than 2–3% of the data transfer time and only in the
test with 16,832 requests per matcher the matching took around 5% of the data
transfer.

Table 1. DTF performance for different number of I/O requests

Average number of I/O
requests per matcher

Data transfer
time (s)

Time to match read and
write requests (s)

576 1.799 0.041

1,088 1.498 0.031

2,144 2.107 0.046

4,224 2.061 0.045

8,448 2.108 0.058

16,832 1.777 0.085

Moreover, we observe that despite the growing number of I/O requests per
matcher, the time to perform the data transfer actually decreases in some cases.
One explanation for this could be that, when we decrease the stripe size by
which the I/O requests are distributed, one matcher becomes in charge of sev-
eral smaller sub-blocks located at a distance from each other along the zeroth
dimension, rather than just one contiguous big sub-block. And this striping may
accidentally align better with the I/O pattern of the program, so the matcher
ends up matching requests for the data that was written by it. Then, instead of
having to forward a data request to another writer process, the matcher imme-
diately can send the data to the reader.

Overall, we conclude that the DTF shows stable performance under increased
load of the amount of data that needs to be transferred as well as the load on
the matching processes.

4.2 SCALE-LETKF

Finally, we demonstrate how DTF performs with a real-world multi-component
application—SCALE-LETKF.

First of all, we explain the I/O pattern of SCALE-LETKF. At the end of
one iteration, each ensemble in SCALE outputs the results to two files: a history
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file and a restart file. At the beginning of its cycle computation, each LETKF
ensemble reads the data from the respective history and restart files. LETKF
only requires a part of the data in the history file for its computations, i.e. it
does not read the whole file. The data transfer function is invoked once per each
of the two files. The tests are performed with one iteration because currently
SCALE-LETKF does not support the multi-cycle execution.

In the chosen test case LETKF assimilates the data from a Phased Array
Weather Radar [11] with a resolution of 500 m. The number of processes par-
ticipating in one ensemble simulation is fixed to nine processes in all tests, the
total number of processes per component is nine multiplied by the number of
ensembles. The DTF is configured so that every process in the ensemble acts as
a matcher. Additionally, the data buffering is enabled in DTF because the I/O
in SCALE happens in several stages and the user buffers are overwritten by the
time the data transfer function is called.

The size of the history and restart file in one ensemble is constant, we change
the total amount of I/O by varying the number of ensembles from 25 to 100.
Table 2 contains the information about the amount of data written and read in
each configuration. In all tests, every ensemble process in SCALE writes 363 MB
of data, out of which LETKF process requires only about one quarter. A SCALE
process generates 255 write requests, LETKF process—31 read request.

Table 2. Cumulative I/O amount in SCALE-LETKF

Number of ensembles Total write size (GB) Total read size (GB)

25 79.78 18.97

50 159.56 37.94

75 239.35 56.91

100 319.13 75.88

Per process 363MB 86.3 MB

Figure 10 shows the execution results of all configurations. Because SCALE-
LETKF has a strict timeliness requirement, we focus on the time it took to
perform the I/O rather than bandwidth. Additionally, we plot the standard
deviation of I/O time between the processes because each ensemble performs
I/O independently from each other.

The results show that the DTF helps to improve the total execution time of
SCALE-LETKF (Fig. 10a) by cutting on the I/O time. In the largest execution
with 100 ensembles, the I/O time was improved by a factor of 3.7 for SCALE
and 10 for LETKF. This improvement is rather modest compared to what we
observed in tests with S3D-IO mostly because SCALE-LETKF, along with its
I/O kernel, is a much more complex application compared to the benchmark.

Apart from the I/O time, we also noticed that, when using the data trans-
fer, the standard deviation decreases significantly compared to when file I/O is
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Fig. 10. SCALE-LETKF performance with DTF and file I/O.

used. This has a positive effect on the overall execution, because after LETKF
has received all the data it performs global communication over all ensemble
processes and smaller deviation in I/O time means that there should be less
waiting for processes in other ensembles.

Finally, we note that SCALE-LETKF is still in the stage of development and
the most recent version does not meet the target time requirement of 30 s per
iteration as can be seen in Fig. 10a. However, we believe that our framework can
be of great use to SCALE-LETKF and similar applications and it can help them
achieve the execution goal by cutting on I/O time.

5 Related Work

A number of works has addressed the data movement problem, the file I/O bot-
tleneck in particular, in multi-component workflows. Different coupling toolkits
have been designed for such workflows [12], especially in Earth sciences [13–15]
applications. Such toolkits often provide not only the data movement feature
but also allow to perform various data processing during the coupling phase,
such as data interpolation or changing the grid size.

For example, DART [16] is a software layer for asynchronous data streaming,
it uses dedicated nodes for I/O offloading and asynchronously transferring the
data from compute nodes to I/O nodes, visualization software, coupling software,
etc. The ADIOS [17] I/O library is built on top of DART and provides additional
data processing functionality. However, both, DART and ADIOS require to use
a special API for I/O. In additional, ADIOS uses its own non-standard data
format for files.

Other coupling approaches include implementing a virtual shared address
space accessible by all the components [18], or using dedicated staging nodes
to transfer the data from compute job to post-process analysis software during
the runtime [19]. In [20], the authors propose a toolkit utilizing the type-based
publisher/subscriber paradigm to couple HPC applications with their analytics
services. The toolkit uses a somewhat similar concept to inter-component data
transferring as proposed in this work, however, they rely on the ADIOS library
underneath which the coupling toolkit was built which includes the description
of the I/O pattern of the components. Additionally, in our work the matching
process is simpler in a way that it takes fewer steps to perform the data transfer.
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Providing support to multi-component executions on a system-level is
another approach to facilitating the inter-component interaction [21,22]. Cur-
rent HPC systems usually do not allow overlapping of resources allocated for
one executable file. Thus, each component in a multi-component workflow ends
up executing on a separate set of nodes and, consequently, the problem of data
movement between the components arises. But, for example, in cloud computing,
several virtual machines can run on the same node and communicate with each
other via shared memory or virtual networking. It has been previously proposed
to use virtualization techniques in HPC as well. For example, in [21], the authors
show that such virtualization can be used in an HPC environment to allow more
efficient execution of multi-component workflows with minimal costs. However,
the virtualization is not yet widely adopted in HPC systems.

The main difference of our solution with the I/O library approaches like
ADIOS is that such libraries usually provide their own I/O API and underneath
that API they can switch between different standard I/O libraries or even per-
form direct data coupling at user’s will. It is assumed that the programmer of
the application used this special API during the development stage. In case the
application originally used a different I/O library, the I/O kernel must be rewrit-
ten. But this may sometimes require a lot of effort, especially when component
applications were developed by a third party. Our goal was to provide a simple
framework that would allow to switch from file I/O to data transfer with minimal
efforts and without having to rewrite the I/O kernels of the workflow compo-
nents. The DTF operates underneath the PnetCDF library which is a popular
I/O library. And while it does not provide as wide functionality as some more
advanced coupling libraries, for cases where a user wants to compose a work-
flow consisting of applications developed relatively independently but all using
PnetCDF for I/O, the DTF can work as a quick plug-in solution for faster cou-
pling. The closest solution that we are aware of is the I/O Arbitration Framework
(FARB) proposed in [23]. However, the framework was implemented for appli-
cations using NetCDF I/O library, that is, it assumes the file-per-process I/O
pattern and a process-to-process mapping of data movement. Moreover, during
the coupling stage in FARB, contents of the whole file were transferred to the
other component’s processes regardless of whether the process actually required
the whole data or not. In our work, we determine at runtime what data needs
to be transferred and only send this data.

6 Conclusion

Multi-component workflows that consist of tasks collaborating with each other
to perform computations are becoming a common type of applications running
in HPC environments. However, because the current HPC systems are often
designed with monolithic applications in mind, it is necessary to determine the
main obstacles that prevent multi-component workflows from running at maxi-
mum performance in these systems and find solutions. One of the most important
issues is the data movement between the components and a number of solutions
have been proposed to date.
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In this work we proposed one such solution—a data transfer framework called
DTF to speed up the data movement between the components in workflows
that use PnetCDF API for file I/O. The DTF intercepts the PnetCDF calls
and bypasses the file system by sending the data directly to the corresponding
processes that require it. It automatically detects what data should be sent
to which processes in the other component through a process of I/O request
matching.

The DTF requires minimal efforts to start using it in a workflow: There is no
need to modify the original PnetCDF calls, rewrite the code using some special
API or provide the description of the I/O pattern of the components. The DTF
only requires that the user compiles the components using our modified version
of the PnetCDF library, provides a simple configuration file listing the files that
need to be transferred and adds a few lines to the components’ source code in
order to enable the data transfer.

Through extensive testing we demonstrated that the DTF shows stable per-
formance under different conditions. However, we believe there is a room for
improving the load balancing of the I/O request matching, in particular, the
way I/O requests are distributed among the matching processes.

Additionally, due to the fact that the current version of SCALE-LETKF does
not support a multi-cycle execution, evaluation of the DTF in such an execution
setting is also left for the future work. However, the results we obtained so far
are promising and should help SCALE-LETKF to achieve its real-timeliness
requirement.
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Abstract. Next-generation supercomputers are expected to consume
tens of MW of electric power. The power is expected to instantaneously
fluctuate between several MW to tens of MW during their execution.
This fluctuation can cause voltage drops in regional power grids and
affect the operation of chillers and generators in the computer’s facil-
ity. Predicting such fluctuations in advance can aid the safe operation of
power grids and facility. Because abrupt fluctuations and a high aver-
age of consumed power are application-specific features, it is impor-
tant to identify an application before job execution. This paper pro-
vides a methodology for classifying executed jobs into applications. By
this method, various statistics for each application such as the number
of executions, runtime, resource usage, and power consumption can be
examined. To estimate the power consumed because of job execution,
we propose a method to predict application characteristics using sub-
mitted job scripts. We demonstrate that 328 kinds of applications are
executed in 273,121 jobs and that the application can be predicted with
an accuracy of approximately 92%.

Keywords: Job analytics · Tracking · Monitoring
Administration tools

1 Introduction

The HPC system is entering an era of the exascale (1018 FLOPS1), and admin-
istrators must seriously consider gaining an understanding of the operations of
the exascale system. A critical issue is power consumption. A next-generation
supercomputer is expected to consume tens of MW of electric power. As of
November 2017, a supercomputer consumes 17.8 MW of electricity [6]. Power
fluctuations instantaneously change from an order of several MW to tens of MW
during job execution. Because such fluctuations cause voltage drops in regional
power grids, the grids are required to be controlled within a facility. Chillers
and generators must also be operated in accordance with the fluctuations, but
such equipment cannot handle rapid fluctuations because of various operational

1 Floating-point Operations Per Second.
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constraints. Predicting such fluctuations in advance can aid in the safe opera-
tion of the power grids and the facilities. Because abrupt fluctuations and a high
average of power consumption are considered application-specific features, it is
important to identify an application before job execution.

Leadership-class supercomputers are generally shared by many projects and
users. Various applications are used for various projects, such as those on molecu-
lar dynamics, earthquake simulation, and machine learning. For the convenience
of the users of supercomputers, frequently used software, such as applications
and libraries, are pre installed in the system. Users can use preinstalled software
and those that have been compiled and installed using the source code by them.
In addition, users also have an option of developing and using their own appli-
cations. However, administrators do not possess sufficient knowledge about the
number of executions and the amount resources consumed for each application
because there is no mechanism for tracking applications.

The power characteristics of such computers are often application-specific. If
we understand the application that is used by the job before execution, we can
predict its power consumption using the power characteristics of the application
that has been executed in the past. Among the jobs that have been executed so
far, we need to identify the corresponding application and predict the subsequent
application of the job to be executed.

In this paper, we propose a methodology for classifying executed jobs into
applications and for predicting applications using job scripts. A job comprises
executable files (i.e., applications). Features that are extracted from executable
files are used to classify the file into various groups, known as application classes.
Using the results of the classifications, various statistics for each application such
as the number of executions, resource usage, performance, language, and com-
piler version can be examined. According to our classification method, executed
jobs and application classes are associated with each other. Therefore, appli-
cation classes can be predicted from job information prior to execution. If we
use job scripts as job information, the prediction method employed will be sim-
ilar to the general supervised learning method using application classes and job
scripts. Considering a job script to be a text makes it a popular text classification
problem.

The application class can be determined at the time of job submission. There-
fore, past power consumption and runtime of the application class can be deter-
mined prior to job execution. This information is considered critical for the
operation of next-generation supercomputers and is useful for job scheduling,
considering the power efficiency and facility operation.

We demonstrate that 328 kinds of applications were executed on the K com-
puter [21] between September 2016 and March 2017 and that the application
class can be predicted from the job script with an accuracy of approximately
92%. The main contributions of our proposed method are summarized as fol-
lows:

– Classifying an executed job into its application class using the feature of the
executable file
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– Predicting the application class from a job script at the time of job submission

The rest of the paper is organized as follows: Sect. 2 provides the research
background and introduces our operation of the supercomputer. Section 3
describes the method of classifying executed jobs into application classes using
features extracted from executable files. Section 4 describes the method of pre-
dicting application classes from job scripts. Section 5 reports the summary of
performance and characteristics of each application class. Related work is dis-
cussed in Sect. 6. Finally, we summarize our research and describe future issues
in Sect. 7.

2 Background

The K computer comprises 82,944 compute nodes and consumes between 10
and 15 MW of power. There are two 5MW generators, which are used for active-
standby configuration. We used electricity supplied by the generators and the
electric power company. When executing high-power jobs, we used both genera-
tors because of the contractual upper limit on the amount of electricity consumed
set by the electric power company. Because the generators were operated manu-
ally, we could not execute high-power jobs without prior notice. If a high-power
job was executed without notice and the electricity exceeded the upper limit,
the high-power job was terminated by an emergency job stopping system that
monitors power consumption.

Figure 1 depicts power consumption for three days when power fluctuations
of 5 MW occurred. In this situation, the operational staff had prior knowledge
that a high-power job would be executed and that the job could be executed
using both generators.

Fig. 1. Power consumption of compute nodes

The exascale system is expected require tens of MW of electric power. This
power is considered to fluctuate in range from several MW to tens of MW. For
future exascale operation, we intend to automate the classification of high-power
jobs and the operation of generators. It is critical to estimate the power consump-
tion of jobs. Because the power characteristics of jobs are often dependent on
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applications, the power consumption is estimated based on the application. In
addition, it is necessary to specify the application that is used by the job before
execution. Therefore, we intend to estimate the application at the time of job
submission and to predict the power consumption using the execution history of
the application.

3 Classifying Jobs

Generally, a job comprises executable files (i.e., applications) and is executed as
an MPI program in HPC systems. Our objective is to identify the applications
that are contained in the corresponding job. Therefore, we initially describe a
method of extracting the features of the executable file from the corresponding
jobs. The features of the executable file are as follows:

– the size of the executable file
– the name of the executable file
– the hash of the executable file
– information contained within the executable file itself

There are some methods for collecting these features from the job. We con-
sidered two methods: One is to provide a wrapper command to launch the MPI
program. A parallel MPI program is launched using a parallel job launcher, such
as mpirun or mpiexec. The wrapper command of the launcher is used to extract
features. The other is to use LD PRELOAD of the environment variable on Linux.
The library is set in LD PRELOAD and will be loaded before any other library.
Thus, the function calls of the executable files can be hooked and their features
can be extracted using the hook functions.

A wrapper can access only the features of the MPI program, whereas
LD PRELOAD also extracts features of programs other than the MPI program.
In our environment, MPI applications are used at almost all instances, and the
wrapper can be implemented with ease. Therefore, the features are collected
using a wrapper program. The extraction process is performed in the back-
ground, and this process has little effect on the execution time of the job. In
addition, the processing time is hidden by the initialization process of the MPI.
These features are saved to files during job execution and are stored in the
database by periodic processing after job completion.

Table 1 shows the information that was extracted from executable files.
Although our system collects these features, we use only hashes and the symbols
outputted nm command. In the succeeding section, we describe the application
classification method based on the hashes and symbols of the executable files.

3.1 Classifying Jobs Using Hashes and Symbols

Even if there are different users or projects, if the hashes of the executable files
are the same, they are considered to use the same executable file, i.e., applica-
tion. In this study, we first classify the executable file using hashes. Many users
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Table 1. Features extracted from executable files

Command Description

nm List symbols from object files

ident Identify RCS keyword strings in files

strings List strings of printable characters in files

ldd Print shared library dependencies

execute jobs by changing the data that is provided for the applications. If a
pre installed software is used by a job, the application can be identified using
hash matching. In this method, the hashes of all the pre installed software are
obtained in advance, which are compared with the hashes that are obtained from
the executable files for the corresponding jobs. However, this method can not be
used for applications that are compiled by users.

The symbols that are extracted using the nm command include function and
variable names. If the symbol sets of the two executable files are observed to
be identical, they can be considered as the same application. Therefore, we can
determine the number of types of applications by classifying the executable files
using symbol sets. Further, we use only function names to perform classification
because the compiler inserts arbitrary symbols for the variable name.

Usually, applications that are observed to be the same may have different
symbol sets. This is because the versions of the applications may be different,
and symbols (or new functions) are added.

Small applications with only one main function are considered identical
applications even if the content of main function is different. Because there
are few HPC applications that have only main function, these applications are
considered as one.

In the method described so far, we compare the hashes or symbol sets with
the perfect match. Therefore, if one function is added to an application, this
application is considered as a new application. From the viewpoint of classify-
ing applications, we intend to neglect minor differences in symbol sets. In the
succeeding section, we describe a classification method using the similarities of
various symbol sets.

3.2 Classifying Jobs Using Similar Symbols

In the previous section, only when the two symbol sets are perfectly matched,
they were considered as the same application. In this section, we describe a
method for considering similar symbol sets to be the same application. The
problem is to determine the ways of defining similarities among symbol sets.
Further, we must also determine the degree of similarity that is required among
these symbol sets to considered the same application.

Figure 2 depicts the classification process of the executable files. Symbols
are extracted from the executable files using the nm command, and the feature
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Paragraph 
Vector Model

Fig. 2. Classification process of executable file

vectors are generated using this symbol set. The paragraph vector model [12]
is used to vectorize symbols. Every executable file is represented as a point in
feature space. If the distance between the points is observed to be small, there is
a high probability that they are the same application. Further, cosine similarity
is used as the distance and is given by the following equation:

cosine similarity =
A ·B
|A||B| =

∑n
i=1 AiBi

√∑n
i=1 A

2
i ·

√∑n
i=1 B

2
i

(1)

Fig. 3. Difference of classification results at various thresholds (Color figure online)

The higher the degree of similarity between the two vectors, the closer the
value of this expression is to 1. The problem is to determine the degree of simi-
larity at which various applications would be considered as the same.
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Figure 3 illustrates that a big threshold of similarity can cause problems
because different applications would be considered as the same. This threshold
has almost the same meaning as the height of the tree in the hierarchical cluster-
ing method. If the similarity threshold is set small, the same original application
would be classified into multiple applications. In this case, because one class con-
tains one application, we do not encounter any problems. However, the number
of application classes increases. It is essential to set a threshold that is as large
as possible and reduce the number of classes.

In the Fig. 3, the application is colored and the optimal value of the threshold
can be estimated. Generally, such colors are not attached to the application.
Thus, we cannot estimate the optimal value. To obtain the optimal threshold,
we consider coloring the application, as depicted in Fig. 3.

An application includes several symbols. Special symbols that only exist in
the designated application are referred to as unique symbols in this paper. If the
unique symbols for each application are determined, the executable files can be
classified into applications in the presence of the unique symbols. However, the
unique symbols of all applications cannot be found because we do not under-
stand the types of applications in the first place. Therefore, we identify specific
applications using the unique symbols and examine the optimal threshold.

3.3 Evaluation of Classification Method

We classified 273,121 executable files that were executed between September
2016 and March 2017 on the K computer. The number of unique hashes and
symbol sets was 42,625 and 6,077, respectively. Thus, the number of applications
is at most 6,077. The presence of several unique hashes indicates that the users
executed jobs by developing their own applications.

Fig. 4. The number of classes per threshold of cosine similarity
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Next, we classified 6,077 executable files into application classes based on
the similarity of symbols. Our classification method was implemented using the
scikit-learn [15] and the gensim [16] libraries, which are used in several text
mining projects. Figure 4 illustrates the number of application classes at various
thresholds of similarity. As the threshold values increased, various applications
were considered to be the same. Therefore, the number of classes observed was
small. If the threshold was equal to 0, the number of classes was 6,077 because of
perfect matches. If the thresholds were 0.1 and 0.2, the number of classes greatly
reduced to 731 and 398, respectively.

To decide on an appropriate threshold value, we selected ten renowned appli-
cations and examined the unique symbols. These applications are depicted in
Table 2. Because there are multiple executable files for each application, the
number of symbols represent the value of an arbitrarily selected executable file.
The value of the maximum threshold indicates that other applications are com-
bined with the target application when the threshold is larger than this value.

Table 2. Well-known applications and their unique symbols

Application # of symbols Unique symbol Max.
threshold

HPCG 409 Z13HPCG Finalizev 0.16

VASP 4,733 vaspxml 0.20

LANS 149 sstkw mod 0.20

FrontFlowRed 1,655 module array fflow 0.27

MODYLAS 751 init md check 0.27

SIESTA 2,554 read chemical types 0.38

GROMACS 8,480 Z9gmx mdruniPPc 0.35

LAMMPS 10,899 ZN9LAMMPS NS6LAMMPSD1Ev 0.40

CPMD 3,886 cpmd 0.42

CP2K 11,595 print cp2k license 0.48

In Table 2, the maximum threshold for each application is observed to vary
substantially from 0.16 to 0.48. Because CP2K [10] has a large threshold, it is not
very similar to other applications. HPCG [7] is observed to exhibit some similari-
ties with other applications. HPCG uses the MPI wrapper library that is used in
other applications. Therefore, the threshold was reduced because the symbol of
this wrapper library became a symbol that could be shared with other applica-
tions. MODYLAS [2] includes 157 BLAS2 functions. MODYLAS is classified in the same
class as other applications using BLAS because approximately 20% functions of
MODYLAS are BLAS library. VASP [11] includes approximately 1,600 FFTW3 library
symbols. FFTW is renowned and is also a pre installed library. Because several

2 Basic Linear Algebra Subprograms.
3 Fastest Fourier Transform library.
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applications use FFTW, these applications and VASP were considered close to each
other in the feature space. Using this result, the executable file can be safely
classified into individual application classes with a threshold of approximately
0.16, and the number of application classes is 504.

3.4 Discussion

To summarize the evaluation, we classified executable files into 42,625 applica-
tion classes by using the hash, into 6,077 classes by using the perfect match
of symbols, and into 504 classes by using the similarity of symbols. We discuss
methods to further improve the classification performance. From the results in
the previous section, the classification performance was not considered as good
because of the shared symbols, such as BLAS and FFTW.

By removing these symbols from the original symbol sets of executable files,
the remaining symbols could well represent the characteristics of the application.
Therefore, we classify jobs by using symbol sets that remove the shared symbols.

Generally, for text classification problems, shared symbols such as “A”,
“THE,” and “THIS” are often eliminated based on the frequency of appearance.
We cannot eliminate symbols based on the frequency of appearance because the
frequency of appearance of symbols is dependent on the number of executions of
applications. Therefore, we compare the symbol sets with different applications
and consider the duplication of both to be the shared symbols. For example,
when symbols of MODYLAS and VASP are compared, the common symbol is con-
sidered a shared symbol. Furthermore, when symbols of MODYLAS and GROMACS
are compared, the same process is repeated. In particular, there is insufficient
knowledge of the application. Therefore, we compare the symbols of the exe-
cutable files having minor similarities.

The number of shared symbols that were extracted using this method was
103,305. When the shared symbols were excluded from the original symbol set
of executable files, the average number of symbols reduced from 3,602 to 1,069.
This means that the application contains many shared symbols that resemble
noise for classification.

Table 3. Result of excluding shared symbols

Application # of symbols Max. threshold

HPCG 82 0.40

VASP 3,299 0.48

LANS 142 0.34

FrontFlowRed 1,603 0.44

MODYLAS 621 0.40

Table 3 displays the classification results when the shared symbols were
excluded. These are five applications having a small threshold and are repre-
sented in Table 2. The value of the maximum threshold was much larger because
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the shared symbols were eliminated. The executable file can be safely classified
into individual application classes having an approximate threshold of 0.34. The
number of application classes of this particular threshold was 279. The applica-
tion class has been reduced from 504 to 279 using this method.

Fig. 5. Similarities between the target application and other executable files

Figure 5 depicts the similarities between the target application and other
executable files. They are sorted in descending order of similarity. HPCG has three
types of executable files, i.e., three hashes and three symbol sets. Regardless
of the presence of shared symbols, HPCG was observed to be clearly separated
from other executable files. By excluding the shared symbols, the classification
performance increased, i.e., the allowable range of the threshold increased from
0.16 to 0.40. VASP contained 16 types of executable files, i.e., sixteen hashes. In
the graph of VASP including shared symbols, the executable file of the fourth
similarity is not VASP. Therefore, it was necessary to set the threshold to 0.2 for
accurate classification. When the shared symbols were exempted, we observed
that VASP and other executables were classified better. VASP was considered to
contain five or six different versions (with similarities of: 1.0, 0.94, 0.86, 0.78,
0.68, and 0.63) from the viewpoint of similarities. If we classify VASP into a single
class, the threshold ranges between 0.37 and 0.48. For example, if the threshold
is 0.37, LANS can be classified with other applications. However, if the threshold
is 0.3, LANS can be classified into a LANS-only class, but VASP would be classified
into two classes.

The proposed classification method can be summarized as illustrated in
Fig. 6. Considering adequate safety, we chose 0.3 to be the threshold, and the
number of application classes was observed to be 328. Therefore, we observe
that up to 328 kinds of applications were executed for seven months on the K
computer.
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Fig. 6. The flow of the proposed classification method of the executable files

4 Predicting Application Class Using Job Scripts

In the previous section, the executed jobs were classified into application classes.
In this section, we describe a method for predicting an application class at the
time of job submission.

Predicting the application before job execution can help predict the job’s
behavior such as electric power consumption, I/O traffic, and runtime. Previ-
ous studies estimate these behaviors from the user, the project, the number of
nodes, job scripts, and so on [14]. We intend to estimate such behaviors from
the application class.

Information about the username, group name, and job script can be used
during job submission. Many job-related features are included in the job script.
Therefore, the application class is predicted using the contents of the job script.
We have observed the jobs and application classes in the previous section. Fur-
ther, we observe that this problem can be solved as a supervised classification
problem.

Fig. 7. The method for predicting an application class using a job script

Figure 7 provides an overview of the method for predicting an applica-
tion class using a job script. This prediction method is similar to the general



92 K. Yamamoto et al.

supervised learning method using job scripts and application classes. Consider-
ing a job script to be a text makes it a popular text classification problem.

4.1 Tokenize of Job Script

Job scripts are considered as text, and feature vectors representing job scripts are
generated. The job script is divided into tokens by symbols such as [ , /, -].
A token comprises two or more letters or numbers. The token of “a.out” is [out]
and the token of “elapse-limit=24:00:00” is [elapse, limit, 24, 00, 00].
The initial and the last 1,000 lines are applied to be the job script. This is because
hundreds of thousands of lines (several tens of MB) of huge job scripts exist in
our data set. Generally, the parameters of the scheduler are written at the head
of the job script, whereas the actual processes of the job are written at the tail
end of the job script. Lines beginning with “#” are comment lines, but they are
not ignored because they may contain certain features. Lines starting with “#PJM”
represent directives to the job scheduler. As in the existing research [14], it is pos-
sible to extract only the parameters using such directive lines. However, we select
a method of extracting features using the entire contents of the job script.

4.2 Prediction Model

We use the paragraph vector model that has been described in the previous
section to predict the application class from the tokens of job scripts. Job scripts
may contain multiple applications. In this paper, to simplify the problem, it is
assumed that one job script executes one application. When a single job script
includes multiple applications, we consider multiple applications as a one series
of application. In this case, we can apply the same prediction method.

4.3 Evaluation

We evaluated the accuracy of prediction using 215,957 job scripts which comprise
the same dataset as described in the previous section. These job scripts have only
one executable file. That is, the job script and its application class correspond
one-to-one. We used a 10-fold cross validation, which is a method for evaluating
machine learning algorithms.

Table 4 displays the predicted accuracy of the application class from the job
script. The threshold of similarity indicates the threshold that was considered for
the classification of the executable files in the previous section. As the thresh-
old increases, the number of classes decreases. Therefore, prediction becomes
easier. If the threshold is small, the number of classes is large, which necessi-
tates accurate prediction. Accuracy was evaluated by modifying the threshold
from 0.1 to 0.3 in increments of 0.05. The evaluation method used was a 10-fold
cross validation. The results illustrate that any threshold can be predicted with
an accuracy of >92%. Even when the threshold was observed to be small, the
accuracy hardly changed. When predicting an application using a job script,
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Table 4. Accuracy of application class

Threshold of similarity # of classes Accuracy

0.10 801 92.5%

0.15 632 92.1%

0.20 491 92.3%

0.25 398 93.5%

0.30 328 93.4%

the prediction accuracy did not change much regardless of the threshold value.
When statistical processing is performed using classified application classes, the
number of classes increases, whereas the number of executions of each class of
applications decreases when the threshold is small. We concluded that it is better
to increase the threshold until sufficient learning data can be collected.

Fig. 8. Number of correct and incorrect predictions per application class

To analyze the incorrect predictions of 7%–8% that occur in the model, we
created a prediction model using all the job scripts and predicted the application
class for all of them. We calculated the number of correct and incorrect predic-
tions for each application class. Figure 8 illustrates top ten application classes for
incorrect predictions. The figure further depicts that there are numerous errors
in the two classes that contain a large number of job scripts. Application class
#12 was executed with 8,068 jobs. This class depicted 3,250 correct and 4,818
incorrect predictions. Further, Application class #103 was executed 5,969 times,
and the prediction error was 2,470. In these two classes, 10,787 predictions failed,
and this number was observed to correspond to 3.4% of all jobs.

Further analysis of classes #12 and #103 is depicted in Fig. 9. While predict-
ing the application class using the class #12 job script, 138 kinds of classes were
predicted excluding class #12, which was the correct class. The major job script
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Fig. 9. Details of incorrect predictions per class

for application class #12 is illustrated in Fig. 10. This job script contained a few
features. The directive lines that begin with PJM and the mpiexec commands
were included in almost all job scripts. Although the name of the executable file
is the only feature, this feature alone is considered insufficient for predicting the
correct application class. Therefore, such featureless job scripts predict various
incorrect application classes (Fig. 10).

Fig. 10. Typical job script of application class #12

Figure 9 depicts that the most incorrect predictions of application class #103
were class #168. Application classes #103 and #168 were actually different ver-
sions of the same application according to our judgment. The distance between
the classes was observed to be greater than the threshold; therefore, they were
classified as different application classes. However, their job scripts were almost
the same; thus, the prediction results of classes #103 and #168 were combined.
There was not much difference in job scripts between the classes. Therefore, it
was difficult to accurately predict these differences.

Because the prediction accuracy can be calculated for each application class,
in addition to the prediction result, its degree of reliability can also be obtained.
Resolving incorrect predictions for poorly featured job scripts is a future work. In
addition to job scripts, users, projects, names of job scripts, and job submission
time may improve prediction accuracy.
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5 Statistics of the Classified Application

In this section, we demonstrate a few statistics of 328 types of applications that
were classified by our proposed method. Figure 11 depicts the resource usage of
the top 200 applications. The top ten applications use 33% of the resources that
were provided to the K computer. Additionally, the top 50 applications accounted
for 76% of the provided resources. Several applications were observed to use most
of the resources. If these applications are optimized, more computations can be
performed using the resources that freed after this optimization. In addition,
tuning the library that was used by these applications had a positive effect on
improving the performance of the application. This ultimately led to the effective
utilization of the computational resources.

Table 5 shows a summary of the top 10 applications of resource usage. The
statistics of the application 1 is given as follows:

Fig. 11. Statistics of each application

Table 5. Statistics of the top 10 applications

Application Node×Hour Counts Projects Nodes FLOPS (%) Power (W)

1 13,050,366 1,815 9 7,865 2.0 128.4

2 11,572,741 6,190 5 634 13.9 126.9

3 10,289,375 2,106 11 9,013 6.0 130.6

4 8,496,869 3,092 7 4,400 0.8 118.2

5 8,416,425 6,543 7 449 4.6 121.6

6 7,737,148 5,459 5 836 2.5 125.3

7 7,485,516 322 3 1,494 12.5 127.1

8 7,394,633 1,098 5 2,972 25.1 135.9

9 7,287,444 13,172 5 1,518 11.9 121.8

10 6,264,331 21,620 1 1,904 24.7 133.7
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– Resource usage: approximately 13 M Node×Hour
– The number of executions: 1,815
– The number of using projects: 9 projects
– The average number of nodes: 7,865
– The percentage of Peak FLOPS: 2.0%
– Average power per node: 128.4 W

The application name is not displayed in this table because our dataset con-
tains private projects and applications. We observed that for a familiar appli-
cation, the application name could be determined from the symbol information
and the job script. Applications developed by the user were indicated by their
application class ID because their name were unknown.

For example, applications #1 and #4 may be optimized from a perspective
of FLOPS. The power consumption of application #4 is lower than that of other
applications. The CPU and memory appear to not be fully operational because
of the I/O wait.

For efficient operation of the facilities, it is useful to obtain electric power
consumption at the time of job submission. It is necessary to predict the power
consumption by deduction via data like the users, the projects, the queues, the
number of nodes, and the limit of elapsed time.

6 Related Work

Various methods have been proposed for predicting job characteristics. Our app-
roach is based on classification of jobs into applications and to predict the appli-
cation. We compare our study with previous studies that have been conducted
on similar subjects.

ALTD [9] and XALT [1] are infrastructural tools to collect job-level and
link-time data of every job. XALT is designed to track the linkage and execution
information for applications that are compiled and executed on the HPC sys-
tem. XALT knows when the executable file was built, who built it, and when the
file was executed. Our work can track executable files as well as XALT. How-
ever, we focus on classifying executable files into applications. In addition to
tracking executable files, our classification method performs feature extraction,
vectorization, and classification of executable files. An improved XALT [4] can
further track external subroutine and function names of the object file. How-
ever, XALT can only collect symbols and does not perform classification like our
work. psacct [20] is an application that monitors user and application activi-
ties widely used on Linux systems. psacct collects information about process
creation time, elapsed time, average memory usage, command name, and so on,
but not features of the executable file. Job schedulers such as TORQUE [18]
and SLURM [22] can be used to monitor HPC systems; however, they can track
only certain characteristics of jobs such as elapsed time, max memory usage and
power consumption. They cannot perform tracking based on the application. Lu
et al. [13] developed a tool to automatically extract compiler and library usage
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using signature-based detection, a common strategy employed by anti-virus soft-
ware to search for known patterns of data within the executable files. We have
also gathered such usage data which can be obtained for each application. But
they cannot gathered it for each executable file.

A number of approaches have been proposed for predicting the power con-
sumption [17,19] and runtime [5] of batch jobs. Borghesi et al. [3] tackled the
prediction of power consumption of a job using the machine learning approach.
The power consumption of a job was predicted using the following features:
user, queue, requested duration, number of requested nodes, number of requested
cores, and so on. Because the content of the job script was not used, the power
consumption of jobs with the same characteristics and different job scripts could
not be predicted. McKenna et al. [14] predicted runtime and I/O traffic using
several machine learning techniques. They also used similar specific features
that were obtained from the job script. However, they did not use the contents
of the job script. Gaussier et al. [8] predicted the runtime of a job using the
machine learning approach and improved backfilling scheduling. Their predic-
tion also obtained a single value. However, power consumption comprises time
series data. It is necessary to determine not only the average power consumption
but also the fluctuations in power for the optimized operation of the exascale
supercomputer. We can obtain the time series data of power consumption for
each application because of the classification of jobs. Furthermore, we can also
obtain the electricity statistics using the data.

A feature of our method involves the classification of jobs from the viewpoint
of the application. Such classification has not been performed so far. In addi-
tion, because the application can be predicted at job submission, using those
classifications will help estimate the power consumption, the runtime, etc.

7 Conclusion and Future Work

In this paper, we proposed a method for classifying jobs and predicting applica-
tions. Using features that were extracted from the executable file, we classified
the executable file into application classes. Using the classification result, we can
obtain statistical information such as resource usage, the number of executions,
power consumption, language, and compiler version for each application. In our
classification method, jobs and application classes were associated. Therefore,
application classes could be predicted from job scripts during job submission.
This prediction method is similar to the general supervised learning method
using job scripts and application classes. Considering a job script to be a text
makes it a popular text classification problem.

The application class can be determined at the time of job submission. There-
fore, the power required and the runtime of the application class can be known
prior to execution from past data. This information is considered to be criti-
cal for the operation of next-generation supercomputers and is useful for job
scheduling, predicting the power efficiency, and optimized facility operation.
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As future work, we plan to implement and evaluate the proposed method
while using the K computer. Additionally, we propose to study the power pre-
diction method of a job using application classes. In the future, we would like to
summarize the usage of each application and try to improve the operations.
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Abstract. The rapid growth in the realized performance of D-Wave Sys-
tems’ annealing-based quantum processing units (QPUs) has sparked a
surge in tools development to deliver the anticipated performance to
application developers. In this survey we describe the tools that are
available, their goals (e.g., performance or ease of use), the programming
abstractions they expose, and their use for application development. The
existing tools confirm the need for interfaces at a variety of points on the
continuum between complexity and simplicity in using the QPU. Most of
the current tools abstract the hardware’s native topology but generally
not using existing interfaces that are familiar to typical programmers.
To date, only a small number of applications have been implemented
for QPUs. Our survey finds that tools provide potentially great leverage
to enable more applications as long as the tools expose the appropriate
abstractions and deliver the anticipated performance.

1 Introduction

Since the first commercial delivery of a quantum-annealing-based processor, a
128-qubit D-Wave One™ system, to Lockheed Martin in 2011 [1], quantum-
computing developers and researchers have made dramatic improvements in the
performance obtained from such systems [2,3]. If the rate of improvement is
sustained through a few more years, future quantum-annealing-based processing
units (QPUs) will deliver performance on certain problems that will overwhelm
the capability of any classical system. With this performance growth, many orga-
nizations that fundamentally depend on a computational advantage are consid-
ering when and how they will deploy the first QPUs that deliver differentiated
performance. Those questions require insight into the types of applications that
will likely benefit from those systems, but they also depend critically on the
software interfaces and tools that will be available to program them.

This paper describes tools that are currently available as of early 2018 for
programming QPUs. This leaves out some tools that have been described but are
c© Springer International Publishing AG, part of Springer Nature 2018
R. Yokota et al. (Eds.): ISC High Performance 2018, LNCS 10876, pp. 103–122, 2018.
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not yet available for routine use. For each tool, we describe its goals, including
its intended audience (e.g., expert vs. novice), its programming abstractions, its
core algorithms and implementation to the extent that those are important to
its users, applications that have been developed based on it—especially those
developed by people other than the tool’s developers—and how the tool is made
available to potential users.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on the native quantum-annealing (QA) programming model,
specifically that of QPUs produced by D-Wave Systems Inc. The paper describes
each tool separately in Sect. 3, compares and contrasts the tools and types of
tools in Sect. 4, presents examples of tool usage in Sect. 5, and finally draws some
conclusions in Sect. 6.

2 Background

A D-Wave system natively solves a single problem, which is to minimize the
energy of an Ising-model Hamiltonian:

arg min
σ

⎛
⎝

N∑
i=1

hiσi +
N−1∑
i=1

N∑
j=i+1

Ji,jσiσj

⎞
⎠ (1)

given hi ∈ R and Ji,j ∈ R and solving for σi ∈ {−1,+1}. This is sometimes
described as being in polynomial form. An equivalent expression, known as either
a quadratic unconstrained binary optimization (QUBO) or an unconstrained
binary quadratic programming (UBQP)1 has an elegant algebraic representation:

arg min
x

xTQx (2)

in which the Qi,i ∈ R correspond to the hi in Eq. 1, the Qi,j ∈ R (with i < j)
correspond to the Ji,j , and the xi ∈ {0, 1} correspond to the σi. A linear trans-
formation maps between Eqs. 1 and 2. Throughout this paper we use the term
“QUBO” generically to refer interchangeably to Eqs. 1 or 2.

Even this formulation is slightly abstracted, as (a) hi and Ji,j have limited
range, precision, and accuracy, and (b) only a small subset of all possible 1 ≤
i < j ≤ N have an associated Ji,j in the physical topology, which takes the form
of a Chimera graph [5] (a degree-6 graph) in current D-Wave systems.

In fact, no sizable quantum computer provides all-to-all connectivity, much
like interconnection networks in classical computing clusters. As a result, the
problem graph must be embedded into the hardware graph, a process known to
graph theorists as finding a graph minor—essentially a graph isomorphism that

1 Note the possibility of confusion between this definition of unconstrained BQP and
the definition of BQP as bounded-error quantum polynomial time [4], a computa-
tional complexity class. To avoid this confusion, we refer to the problem as a QUBO
throughout this paper.
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allows vertices to be replicated during the mapping. Alas, this problem is NP-
hard so a need for efficient heuristics was called out by many early users [6–8].
To date, existing approaches include

– D-Wave Systems’ minorminer [9] or improved heuristic embedder, which uses
multiple heuristics to try to find a graph minor embedding; the Python-
callable minorminer package has been open sourced; an implementation of
the original heuristic embedder is included in the SAPI library (Sect. 3.1);

– D-Wave Systems’ clique embedder [10,11], which precomputes the maximal-
sized clique or biclique that can be embedded in the Chimera graph (which,
for cliques, is known to be of size

√
2N for N vertices) and embeds problem

graphs into subsets of that maximum clique;
– NCSU and ORNL’s virtual hardware embedder [12,13] introduces a virtual-

hardware abstraction to simplify embedding algorithms and uses this to
exploit bipartite structure in the problem graph for high-speed embedding;

with others known to be under development by the University of Southern Cal-
ifornia’s Information Sciences Institute and D-Wave Systems.

The D-Wave processor exploits quantum effects—superpositioning, entan-
glement, and quantum tunneling—to rapidly find the σ that minimize Eq. 1. In
terminology that is closer to the hardware, each σi is implemented with a qubit
(quantum bit); each hi is implemented with an external field ; and each Ji,j is
implemented with a coupler. In current generation systems, one set of σ can be
returned every QA cycle (1 μs). However, there is no guarantee that the values
returned do in fact correspond to the true minimum. Consequently, it is typical
to sample a large number (e.g., thousands) of possible σ in search of those that
come close to minimizing Eq. 1.

The key programming challenge is to map an arbitrary problem into a list of
hi and Ji,j values so that the problem’s solution corresponds to the Boolean σi

values that minimize Eq. 1. In the rest of this paper, we survey tools that help
programmers express problems in this format.

3 Available Tools

Widely available QA tools are described in this section. They are roughly ordered
from lowest level of abstraction, which equates to a small difference from the
underlying D-Wave system interface, to highest level, which expresses a problem
in an intermediate representation that makes sense to an application developer or
subject-matter expert, with less resemblance to the underlying system interface.

3.1 SAPI (D-Wave Systems)

The Solver Application Programming Interface (SAPI) [14] was, until recently,
the sole interface to a D-Wave system. Its primary goal is to expose the full
power of a D-Wave QPU in a way that enables expert users and tool developers
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to extract the best performance. SAPI’s main abstraction is an instance of a
quantum machine instruction (QMI), which corresponds to the h and J coeffi-
cients in Eq. 1, and the QMI’s accompanying solutions. SAPI exposes functions
to establish a connection to a remote D-Wave system and query its charac-
teristics, to embed a problem graph in the target QPU’s hardware graph, to
execute QMIs either synchronously or asynchronously and retrieve the resulting
solutions, and to correct errors in those solutions via various post-processing
techniques. The SAPI library also provides software simulators that mimic to
varying extents the behavior of the QPU, enabling software development with-
out immediate access to a QPU. SAPI interfaces are provided for the C/C++,
Python®, and MATLAB® programming languages. In practice, many of the
other software packages described here use SAPI at their lowest level for D-
Wave system access.

SAPI includes several functions that provide higher-level functionality, such
as a function that can reduce the size of a QUBO by, for example, recognizing
that two variables will always have the same (or opposite) value and replacing
every instance of one with the other (or its complement). A function for reducing
higher-order interactions of more than two variables to interactions of just two
variables (that can be directly represented in a QUBO) is valuable for mapping
certain problem types to QUBOs.

SAPI has been the programming interface for essentially all benchmark-
ing results published on D-Wave systems to date, including notably Denchev
et al.’s [2], King et al.’s [3] and Andriyash et al.’s [15] results. It has also been used
for many of the applications implemented to date, including satellite schedul-
ing [16,17], database multi-query optimization [18], machine learning [19], circuit
fault detection [20], and SAT filters [21]. SAPI client libraries are available in
binary form to users who have access to a D-Wave system.

3.2 dwave-cloud-client (D-Wave Systems)

The minimal cloud client from D-Wave Systems [22] is an open-source imple-
mentation of a subset of the D-Wave Python SAPI client’s functions. Its intent
is to be an open-source building block for higher-level tools. Like SAPI, its
main abstraction is the QMI. Currently it provides resource discovery and syn-
chronous and asynchronous QMI execution on a D-Wave system via a cloud
interface. Embedding and post-processing, among other features, are not yet
implemented.

3.3 dw (D-Wave Systems)

The dw tool from D-Wave Systems [23] can be viewed as a command-line inter-
face to SAPI. It was initially designed to help new users learn to program a
D-Wave system independently from any particular programming language. The
dw tool lets users build, execute, and view the results of a QMI, all from the
Bash [24] prompt. dw supports a symbolic QUBO format that includes parame-
ters, variables, and assertions. QUBOs defined in this format can be embedded
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directly into a simulator or D-Wave system or can be translated into qbsolv
input, which provides additional useful abstractions (see Sect. 3.11).

dw integrates with a client-based visualization tool, Quantum Apprentice
(Sect. 3.4), which allows one to view, edit, and save QMIs visually. dw is provided
in binary form to D-Wave users as part of D-Wave’s qOp package.

3.4 Quantum Apprentice (D-Wave Systems)

Quantum Apprentice is a graphical tool designed more for acquainting users
with low-level D-Wave QPU behavior than for serious application development.
It is written as a spreadsheet that may be processed by Microsoft Excel™ or
LibreOffice®. The first three sheets let users enter hi and Ji,j values for versions
of Eq. 1 with N = {2, 3, 4}. Each sheet shows all possible values of the σ variables,
with those that minimize Eq. 1 highlighted. This helps users visually determine
if a small subproblem is logically correct.

The remaining sheets present, respectively, a view of the user’s program
loaded onto a Chimera graph and color-coded to distinguish different h and
J values; the QMI as an editable list of coefficients; a current solution as a list of
σi values; and a command interface that lets users save, load, and execute QMIs
on either the hardware or a simulator.

Figure 1 is a screenshot of the first of those, illustrating a simulated 128-
qubit D-Wave system. Node and edge colors indicate the corresponding h and
J coefficients, from highly negative (blue) to highly positive (red). Although it
is not practical to develop a large program node-by-node and edge-by-edge in a
GUI, Quantum Apprentice is useful both for pedagogy and for experimentation
with manual layout of regularly structured problems. Quantum Apprentice is
provided as a spreadsheet to D-Wave users as part of D-Wave’s qOp package.

3.5 QC Ware Platform (QC Ware)

QC Ware Platform is a Python library that supports application development by
providing both simplified access to a QPU and fine-grained, SAPI-level control.
Consistent with that approach, its primary method is callable simply by speci-
fying a few arguments, or callable with numerous processor-specific controls.

In addition to QMI execution, the QC Ware Platform software provides
functionality to convert constrained-optimization problems to a QUBO. The
QC Ware Platform materials describe several examples implemented using the
software, including job-shop scheduling. QC Ware Platform is available as a
binary Python package from QC Ware [25].

3.6 QDK (1QBit)

The Quantum-Ready™ software development kit (QDK) from 1QB Information
Technologies (1QBit™) is a Python library that addresses computationally diffi-
cult combinatorial optimization problems. The focus is on enabling application
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Fig. 1. Quantum Apprentice’s “Chimera” sheet (Color figure online)

development, starting from converting an original problem into QUBO form,
then solving the QUBO and mapping the result back to the original problem.

The primary object types are the polynomial function (reduced to quadratic
form before solution) and the solver (used to find the solution that minimizes the
function). The QDK offers a rich set of options for some system-specific steps,
such as embedding, assigning chain strength,2 and correcting broken chains.3 A
higher-level algorithm layer implements a variety of graph algorithms, including
graph similarity, quasi-k-clique, and clique cover. Applications developed using
QDK include financial portfolio optimization [26] and drug discovery [27]. QDK
is available as a binary Python package from 1QBit [28] (registration required).

3.7 QxLib (QxBranch)

QxLib from QxBranch [29] is a Python library that is intended to foster rapid
prototyping and experimentation in solving problems on QPUs. A key strat-
egy for achieving this is exposing layered software abstractions that make it
easy to map computational problems. The main concepts are symbolic and
numerical representations of QUBOs, for which symbolic representations can
2 Chain strength is the relative strength of couplings between qubits corresponding to

the same problem variable to couplings between qubits corresponding to different
problem variables.

3 A chain is considered broken if its qubits, which correspond to the same problem
variable, are assigned different values.
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be reduced to numerical QUBOs. The QxLib software has a Python interface
with performance-critical components implemented in C++; functions accessing
a D-Wave system call SAPI. Contact QxBranch for QxLib access.

3.8 XACC (ORNL)

The eXtreme-Scale ACCelerator Programming (XACC) software from Oak
Ridge National Laboratory [30] is a programming framework that treats quan-
tum processing units (QPUs), of both quantum-annealing and gate-model archi-
tectures, as accelerators to classical systems. XACC is intended as a heteroge-
neous CPU-QPU programming model analogous to the OpenCL™ specification’s
heterogeneous CPU-GPU (graphics processing unit) programming model [31].

Like OpenCL, the main concepts are the creation of computational ker-
nels targeting accelerators and the execution of those kernels. Kernels may be
expressed in quantum programming languages appropriate for the architecture
being targeted, e.g., QUBOs or higher-order binary optimization problems for
QA-based QPUs. The current XACC software integrates with the Rigetti Quan-
tum Virtual Machine™ (QVM) and Quil compiler [32] and the Scaffold com-
piler [33], which all target gate-model QPUs. XACC also integrates with the
virtual-hardware embedder (Sect. 2) and SAPI (Sect. 3.1) for D-Wave execu-
tion. An application of financial portfolio optimization has been developed using
XACC [34]. XACC is available as open-source software [35].

3.9 bqpsolvers (LANL)

bqpsolvers from Los Alamos National Laboratory [36] comprises a set of tools
with the goal of unifying program development for different Ising processing
units (IPUs).4 Current physical examples of IPUs include QPUs, neuromorphic
processors, and CMOS annealers, among others.

The main abstraction in bqpsolvers is the QUBO. bqpsolvers provides sev-
eral solvers for QUBOs. Inputs and outputs are uniformly expressed in bqpjson,
a JSON format for QUBOs. A helper tool, D-WIG (D-Wave Instance Gener-
ator), generates QUBO problems from a set of parameterized problem classes.
bqpsolvers is available as open-source software [37].

3.10 QMASM (LANL)

QMASM (quantum macro assembler), from Los Alamos National Labora-
tory [38], is a tool that automates some tedious aspects of creating a QMI for a
D-Wave system while limiting the classical processing required to prepare a QMI.
By analogy to a classical macro assembler, its expected audience is programmers
comfortable with a low-level interface.

4 Section 2 mentions the difference between the Ising-model Hamiltonian and the
QUBO. For consistency with the rest of this paper we use QUBO terminology here.
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The central concept in QMASM is the expression of small subproblems as
macros that can be repeatedly instantiated and combined to represent large,
complex problems. QMASM supports qubits referred to by symbolic names,
coupler and external-field values that can be expressed unconstrained by any
hardware restrictions, and the definition and instantiation of macros. Supplied
examples show how to use QMASM to solve circuit-satisfiability problems, imple-
ment sorting networks (which can also be used as permutation generators), and
find shortest paths. QMASM is available as open-source software [39].

3.11 qbsolv (D-Wave Systems)

The qbsolv [40] tool enables users to solve QUBOs that are larger and/or more
densely connected than the target D-Wave system. The programming abstrac-
tion that qbsolv exposes is a QUBO of arbitrary size and connectivity. The
qbsolv algorithm decomposes large QUBOs into smaller ones that can fit on
the underlying system, then combines the individual solutions into a solution to
the original, large QUBO. This capability makes qbsolv useful both directly to
application developers and indirectly as a back end for higher-level tools.

The qbsolv tool includes a tabu solver [41], which can be run either purely
classically or in a hybrid quantum-classical mode. Because qbsolv’s tabu solver
is so fast, it can serve as a performance benchmark against which other QUBO
solvers, including D-Wave systems, can be compared.

Several groups have developed applications with qbsolv, including graph par-
titioning [42], non-negative/binary matrix factorization [43], community detec-
tion [44], traffic-flow optimization [45], refinery scheduling [46], and cluster anal-
ysis [47]. qbsolv is available as open-source software [48].

3.12 ThreeQ (LANL)

ThreeQ [49], from Los Alamos National Laboratory, is a Julia [50] module influ-
enced by JuMP [51] that is intended to enable developers to program QPUs more
easily. The main programming abstraction is the QUBO, to which programs can
add terms using the full flexibility of Julia. The constructed QUBO can then be
solved on a D-Wave system using either SAPI, dw, or qbsolv.

The developers provide examples of solving systems of linear equations and
linear least-squared problems, factoring integers, performing PDE-constrained
optimization, four-coloring maps, and running hydrologic inverse analysis. They
have also published a new non-negative/binary matrix factorization method that
uses ThreeQ [43]. ThreeQ is available as open-source software [52].

3.13 ToQ (D-Wave Systems)

The ToQ tool (pronounced “two Q”) from D-Wave Systems [23] enables subject-
matter experts to express constraint-satisfaction problems for a D-Wave system
at a conceptual level with which they are already comfortable. The primary con-
cept is a collection of assertions that together express the problem. The assertions
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can be on named binary or integer variables. Each assertion is individually evalu-
ated classically, then the set of individual assertions is combined into a complete
QUBO that can then be solved by any of several solvers. The many ToQ exam-
ples provided by its developers include a Sudoku game and the solution of a set
of Diophantine equations. ToQ is provided in binary form to D-Wave customers
and partners as part of D-Wave’s qOp package.

3.14 D-Wave NetworkX (D-Wave Systems)

D-Wave NetworkX from D-Wave Systems [53] is an extension of the NetworkX
graph-analytic package from LANL [54]. Its primary benefit for subject-matter
experts is to extend NetworkX’s graph abstraction for D-Wave execution. It also
makes it easy to generate and visualize graphs corresponding to the current D-
Wave Chimera hardware topology. The existing NP-hard kernels include graph
coloring, minimum vertex cover, maximum independent set, (minimum) maximal
matching, maximum cut, weighted maximum cut, and structural imbalance. A
proto-application using the structural-imbalance kernel analyzes signed social
networks to understand the growth of terrorist networks [55,56].

3.15 edif2qmasm (LANL)

edif2qmasm [57] is a tool from Los Alamos National Laboratory that converts
programs written in Verilog™ [58], VHDL [59], or other hardware-description
languages to QMASM format and from there to QUBOs for execution. The
resulting QUBOs can exploit a quantum processor’s ability to solve for program
inputs as easily as for program outputs. One can use edif2qmasm to easily solve
NP-complete and NP-hard problems by coding up a solution verifier and running
the code “backward” from “the solution is valid” to a set of inputs that constitute
a valid solution.

The main concept is a digital circuit, specified in the EDIF netlist format [60],
which is typical output of hardware-synthesis tools such as the Yosys Open SYn-
thesis Suite [61]. Examples from the developer include integer multiplication/-
factoring and map coloring. edif2qmasm is available as open-source software [57].

4 Discussion

Based on the tool descriptions presented in Sect. 3, this section discusses common
themes across tools and possible directions for future tool development.

4.1 Characterizing Tools by Supported Features and Abstractions

Figure 2 characterizes the tools by a set of features, ranging from closest to the
hardware (bottom) to most distinct from the hardware (top). Colors indicate
the organization that produced the tool. Starting from the hardware up, the
features are
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Fig. 2. Features of the tools described in this paper (Color figure online)

– QMI control—whether the tool enables a knowledgeable user to control the
execution of a QMI in a system-specific way, such as controlling the annealing
schedule on a per-qubit basis or introducing spin-reversal transformations;

– QMI construction—whether the tool enables explicit construction and exe-
cution of a QMI (i.e., defining a QUBO that takes the hardware’s physical
topology and coefficient ranges into account);

– Relaxed problem—whether the tool maintains the basic polynomial form
of Eq. 1 but abstracts away one or more hardware details such as the number
of qubits (N), the available qubits within the range [1, N ] (or even the fact
that qubits are numbered), the valid values for the external fields (hi), the
valid values for the couplers (Ji,j), or the degree of the polynomial (2); and

– Non-polynomial—whether the tool accepts input that bears little or no
resemblance to Eqs. 1 and 2, such as the constraint-satisfaction interface pro-
vided by QC Ware, the graph interface provided by D-Wave NetworkX, and
the hardware-circuit interface provided by edif2qmasm.

4.2 QUBO-Creation/Execution Interfaces

Most of the tools discussed expose interfaces for creating and executing QUBOs,
including SAPI, dwave-cloud-client, dw, QC Ware Platform, QDK, QxLib, bqp-
solvers, QMASM, and ThreeQ. For these tools, the programmer is responsible
for expressing a program in terms of coefficients to Eq. 1. However, there exists
diversity even in this space. For example, SAPI, QDK, and QxLib all support
reducing higher-order unconstrained binary optimization problems (HUBOs) to
QUBOs, which comes at the cost of an increased number of terms required.
As another example of diversity is QC Ware Platform’s support of constrained-
QUBO execution. Of the tools that provide an API, the vast majority bind to
Python as the primary language.
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In discussions with the developers of these tools, we learned that they chose
to implement them primarily to use as building blocks for constructing higher-
level tools. The low-level tools are generally not expected to be used directly by
application developers. One could therefore conclude that a well-implemented
open-source library with layers that vary the degree of program control would
satisfy the needs of many higher-level tools. A common library with multiple
language bindings would require fewer resources community-wide and simplify
the environment for those building higher-level tools. The dwave-cloud-client
tool developed by D-Wave is targeted for this role.

4.3 NetworkX as Common Interface for Graph Analysis

The recent open-source release of D-Wave NetworkX makes it simple for users
of NetworkX, an existing graph-analytic library, to execute problems on a D-
Wave system. Other developers have also created graph-analytic packages tar-
geting D-Wave execution, notably 1QBit’s QDK and LANL’s graph-partitioning
and community-detection work [42]. Making all D-Wave-targeted graph-analytic
functions available via the NetworkX interface will benefit application devel-
opers. (We believe that such commonality could be achieved while preserving
software vendors’ ability to have proprietary libraries.)

4.4 General Optimization Problems

A primary concept for QDK, QxLib, and ThreeQ is the QUBO, which is a
very limited expression of optimization problems (no higher-order terms, no
constraints, only binary result variables). QC Ware Platform and ToQ, in con-
trast, support more general constraint specification, which is then reduced to
a QUBO for execution. Going even further, many subject-matter experts use
sophisticated optimization tools like AMPL [62], GAMS [63], MiniZinc [64], and
Pyomo [65], which can express problems convertible to QUBO form and have
the advantage of familiarity. It appears there is an opportunity to implement
linkages between those higher-level tools and the existing QA tools. Such link-
ages would need to be carefully built with performance in mind, but the benefit
of approaching users via well-known interfaces is considerable.

5 Tool Usage Examples

To give the reader a flavor of the various tools and their associated program-
ming model, we devise a simple problem and discuss how it can be solved by
a representative subset of the tools presented in Sect. 3. Our example problem,
which we call the “threes” problem, can be stated as follows:

How can one configure five light switches, labeled A–E, such that exactly
one of A, B, and C is on, exactly one of B, C, and D is on, and exactly
one of C, D, and E is on?
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With only five Boolean variables, this problem is trivial to solve by hand.
(N.B.: there are three solutions.) However, it lets us examine the programming
approach supported by the various tools.

For setting up the problem we follow the methodology laid out by Pakin [66],
which comprises (1) characterizing solutions, (2) identifying repeated subprob-
lems, (3) manually solving these subproblems in the reverse direction (values to
coefficients), and (4) combining the simple problems into a complex full prob-
lem for D-Wave solution. The key subproblem is “one of three on”. With known
solutions for this subproblem—{off, off, on}, {off, on, off}, and {on, off, off}—we
can solve Eq. 1 for the h and J coefficients. One possible solution, using −1 for
“off” and +1 for “on”, sets all coefficients to 1:

H1_of_3(σx, σy, σz) = σx + σy + σz + σxσy + σxσz + σyσz. (3)

The reader can verify that H1_of_3 is minimized when exactly one of the three
inputs is +1 and the rest are −1. See Pakin [66] for a discussion on how H1_of_3’s
coefficients could have been derived.

The solution to our original problem can be expressed as a sum,

H(σA, σB , σC , σD, σE)
= H1_of_3(σA, σB , σC) + H1_of_3(σB , σC , σD) + H1_of_3(σC , σD, σE)
= σA + 2σB + 3σC + 2σD + σE + σAσB + σAσC + 2σBσC + σBσD

+ 2σCσD + σCσE + σDσE ,

(4)

of subproblem terms for which arg minσ H is the solution being sought.

5.1 SAPI

SAPI provides the lowest-level D-Wave programming interface. Listing 1.1 shows
how SAPI’s Python bindings can be used to minimize H in Eq. 4. As a low-level
API, problems must be made to fit onto the physical topology, which supports
only a subset of the desired quadratic terms, and coefficients must be made to
fit within an acceptable range. Although SAPI provides functions to help with
these tasks, Listing 1.1 is based on a version of Eq. 4 manually mapped to the
hardware-compatible expression,

Hphys = 0.375σ0 + 0.25σ2 + 0.5σ3 + 0.5σ4 + 0.375σ5 + 0.25σ6 + 0.5σ0σ4 − σ0σ5

+ 0.25σ0σ6 + 0.25σ2σ4 + 0.25σ2σ5 + 0.25σ3σ4 + 0.5σ3σ5 + 0.25σ3σ6,
(5)

in which the σ subscripts correspond to physical qubit numbers. Line 16 of List-
ing 1.1 shows the logical-to-physical variable mapping. Note that σC is mapped
to both σ0 and σ5 to help work around the topology’s constraints.
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Listing 1.1. SAPI solution to the “threes” problem (Python bindings)

1 #! /usr/bin/env python
2

3 from dwave_sapi2.remote import RemoteConnection
4 from dwave_sapi2.core import solve_ising
5 import os
6

7 # Establish a remote connection to the D−Wave.
8 url = os.environ["DW_INTERNAL__HTTPLINK"]
9 proxy = os.environ["DW_INTERNAL__HTTPPROXY"]

10 token = os.environ["DW_INTERNAL__TOKEN"]
11 solver_name = os.environ["DW_INTERNAL__SOLVER"]
12 conn = RemoteConnection(url, token, proxy)
13 solver = conn.get_solver(solver_name)
14

15 # Construct the problem.
16 A = 6; B = 3; Cs = [0, 5]; D = 4; E = 2
17 hs = [0]∗7
18 hs[A] = 0.25; hs[B] = 0.5; hs[Cs[0]] = 0.375; hs[Cs[1]] = 0.375; hs[D] = 0.5; hs[E]

= 0.25
19 Js = {(A, Cs[0]): 0.25, (Cs[0], Cs[1]): −1.0, (A, B): 0.25, (Cs[0], D): 0.5, (E, Cs

[1]): 0.25, (B, D): 0.25, (E, D): 0.25, (B, Cs[1]): 0.5}
20

21 # Solve the problem on the D−Wave.
22 answers = solve_ising(solver, hs, Js, num_reads=1000, answer_mode="

histogram", annealing_time=20, postprocess="optimization")
23

24 # Output the answers.
25 soln_set = set()
26 for soln in answers["solutions"]:
27 soln_set.add(tuple([(soln[i]+1)//2 for i in [A, B, Cs[0], D, E]]))
28 for soln in sorted(soln_set):
29 print(soln)

5.2 QMASM

In its simplest form, a QMASM solution to the “threes” problem is merely a
transcription of the coefficients shown in Eq. 4. For example, 3σC can be written
as “C 3”, and 2σAσB can be written as “A B 2”. In fact, the QMASM code shown
in Listing 1.2 is closer to the first part of Eq. 4 in that it lets QMASM accumulate
the coefficient values from the three H1_of_3 terms.
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Listing 1.2. Basic
QMASM solution to the
“threes” problem

1 A 1
2 B 1
3 C 1
4 A B 1
5 A C 1
6 B C 1
7

8 B 1
9 C 1

10 D 1
11 B C 1
12 B D 1
13 C D 1
14

15 C 1
16 D 1
17 E 1
18 C D 1
19 C E 1
20 D E 1

Listing 1.3. QMASM solution to the “threes”
problem using macros

1 !begin_macro 1of3
2 x 1
3 y 1
4 z 1
5

6 x y 1
7 x z 1
8 y z 1
9 !end_macro 1of3

10

11 !use_macro 1of3 $ABC $BCD $CDE
12

13 $ABC.y = $BCD.x
14 $ABC.z = $BCD.y
15 $ABC.z = $CDE.x
16 $BCD.y = $CDE.x
17 $BCD.z = $CDE.y
18

19 A = $ABC.x
20 B = $ABC.y
21 C = $ABC.z
22 D = $BCD.z
23 E = $CDE.z

Listing 1.3 presents an alternative QMASM formulation that defines a 1of3
macro corresponding directly to Eq. 3, instantiates that macro three times (as
$ABC, $BCD, and $CDE), and establishes variable equivalences across instantiations
(e.g., that C, $ABC.z, $BCD.y, and $CDE.x should have equal values).

5.3 ToQ

The ToQ solution to the “threes” problem (Listing 1.4), is fundamentally different
from the SAPI and QMASM solutions in that it is based on constraints rather
than coefficients. Conveniently for “threes”, ToQ includes OneOf, which requires
exactly one of its arguments to be True, as a built-in predicate. Listing 1.4
therefore follows fairly naturally from the problem statement. One catch is that
ToQ performs a substantial amount of classical pre-processing for each assert
clause in the process of constructing a QMI.

5.4 edif2qmasm

A typical edif2qmasm program is based on implementing an inverse problem and
running it “backwards”. Listing 1.5, which solves the “threes” problem, follows
this design pattern. It presents Verilog code that accepts bits A, B, C, D, and E and
returns a valid bit that indicates if the on/off pattern honors the problem-stated
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Listing 1.4. ToQ solution to the “threes” problem

1 bool: @A, @B, @C, @D, @E
2 assert: OneOf(@A, @B, @C)
3 assert: OneOf(@B, @C, @D)
4 assert: OneOf(@C, @D, @E)
5 end:

Listing 1.5. edif2qmasm solution to the “threes” problem (using Verilog)

1 ‘define ONE_OF(X, Y, Z) ((X & !Y & !Z) | (!X & Y & !Z) | (!X & !Y & Z))
2

3 module threes (A, B, C, D, E, valid);
4 input A, B, C, D, E;
5 output valid;
6

7 assign valid = ‘ONE_OF(A, B, C) & ‘ONE_OF(B, C, D) & ‘ONE_OF(C,
D, E);

8 endmodule

constraints. Once processed by edif2qmasm, the code is run by hard-wiring valid
to True and leaving the other variables unbound so that the D-Wave system
will solve for them.

6 Conclusions

We observe the recent rapid rate of improvement in tools for QPUs. Of the 15
tools described in this paper, as of the summer of 2016, seven of them (QC Ware
Platform, XACC, bqpsolvers, ThreeQ, edif2qmasm, dwave-cloud-client, and D-
Wave NetworkX) were not available to users, and an eighth (qbsolv) was not
available in its current open-source version. We should not confuse activity with
accomplishment, but much of this extensive activity appears productive. We
believe that this outburst is akin to the Cambrian explosion, a time when rela-
tive stasis was disrupted by a short period of rapid biological diversification [67].
In the case of QA tools, one clear cause is the increasing availability and per-
formance of QA hardware. We should expect continued rapid evolution of QA
tools and programming methods at least until applications start to deliver dif-
ferentiated performance, at which time users will expect some stability to enable
exploiting that performance.

We also look to aspects of a mature QA tools environment that we lack today.
First is fast and space-efficient embedding algorithms for mapping (relatively
dense) problem graphs onto (sparse) hardware graphs. A second aspect is connec-
tions between today’s relatively low-level tools and more desirable higher-level
interfaces such as AMPL, JuMP, and MiniZinc, which subject-matter experts
are using today to solve problems that may be well-suited for QPUs. The QA
community’s inexperience with tools for QPUs means we poorly understand the
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best methods for converting problems to the QUBO form implemented natively
by today’s commercial QPUs. We expect that methods will first arise by manual
trial and error for a small number of problem types and then be codified into
tools such that the conversion can be computer-aided if not automated. The
range of convertible problem types will also grow over time.

In classical computing, not every problem is suitable for executing on a GPU.
There may be insufficient data parallelism or too little computational intensity,
for instance. Likewise, not every problem is suitable for executing on a QPU.
Figure 3 illustrates some of the reasons: out of all problems, only a subset can
be expressed in terms of Eq. 1. Of those, some require vastly more variables
than contemporary QPU hardware provides. (It is not practical to run a billion-
variable problem when only thousands of qubits are available in hardware.)
Finally, many problems that fit in today’s relatively small quantum comput-
ers are easy to solve classically; there would be little point in migrating such
problems to a QPU. However, looking to the future, as QPUs increase in qubit
counts and connectivity, the inner two regions of Fig. 3 should grow proportion-
ally, implying a greater set of problems that QPUs can potentially accelerate.

Fig. 3. Venn diagram illustrating the class of problems worth executing on a QPU

Despite QPU hardware and tools being largely in their infancy, the rapid
progress in tool development over the last year bodes well for future tools that
will effectively deliver the anticipated performance of quantum processing units
to a great number of applications.
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Abstract. Performance modeling of networks through simulation
requires application endpoint models that inject traffic into the sim-
ulation models. Endpoint models today for system-scale studies con-
sist mainly of post-mortem trace replay, but these off-line simulations
may lack flexibility and scalability. On-line simulations running so-called
skeleton applications run reduced versions of an application that generate
traffic that is the same or similar to the full application. These skeleton
apps have advantages for flexibility and scalability, but they often must
be custom written for the simulator itself. Auto-skeletonization of exist-
ing application source code via compiler tools would provide endpoint
models with minimal development effort. These source-to-source trans-
formations have been only narrowly explored. We introduce a pragma
language and corresponding Clang-driven source-to-source compiler that
performs auto-skeletonization based on provided pragma annotations.
We describe the compiler toolchain, validate the generated skeletons,
and show scalability of the generated simulation models beyond 100K
endpoints for example MPI applications. Overall, we assert that our pro-
posed auto-skeletonization approach and the flexible skeletons it pro-
duces can be an important tool in realizing balanced exascale intercon-
nect designs.

1 Introduction

Simulations require application endpoint models to generate representative traf-
fic or memory patterns. To achieve system scale, endpoint models need to be
as lightweight as possible while still capturing the most important applica-
tion features. Endpoint models can be generally classified as off-line or on-line.
Off-line simulations replay post-mortem traces collected from an existing sys-
tem [15]. The traffic pattern is therefore fixed or requires complicated extrapo-
lation schemes to modify. On-line simulations instead run modified application
codes to generate traffic in the simulator. These modified codes generally consist
of either state machine models (motifs) [12] or skeleton applications [22].
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Accurate conclusions about network provisioning critically depend on end-
point models generating accurate traffic patterns appropriate to the problem
and architecture. The pitfalls here are starkly illustrated by the historical per-
formance progression for the top 3 systems in Fig. 1. Clearly, byte/flop ratios are
decreasing as nodes accelerate more quickly than the network, making off-node
data movement one of the critical performance challenges for exascale [17,20].
However, that trend has been somewhat balanced by the “surface area-to-
volume” decreases in injected traffic for many applications (see below). While
over some time periods performance was driven by number of nodes, recently
increases have mainly been in individual node throughput. Realistic workloads
for testing future machine designs should therefore be a mix of adjusting node
quantity (more nodes, same problem size per node) and node throughput (same
number of nodes, larger problem per node). Without assessing applications over
a range of realistic inputs, erroneous conclusions about network provisioning and
system design might be reached.

Fig. 1. Progression of top 3 systems since 2010 for total number of nodes, node peak
throughput, byte/flop ratios, and system peak throughput. Surface/volume normalizes
the Byte/Flop metric by accounting for the decrease in communication traffic relative
to total throughput, in this case (B/F )2/3

Today endpoint models consist mainly of post-mortem trace replay. These
off-line simulations lack flexibility, and trace collection itself may not be scal-
able. The traces are also often valid only for the exact problem considered, i.e.
executing a stencil code with grid N×N on a 1024 rank system. Characterizing
an application should ideally cover scaling behavior for a range of application
inputs. Trace extrapolation can approximate large-scale traces from small-scale
runs in some cases [14], but is often limited to only “weak scaling” to produce
a larger number of MPI ranks with the same problem per rank. This presents
validation concerns and is not useful for tuning input parameters. In other trace
extrapolations, compute delays are reduced by a constant factor to simulate
hardware acceleration on next-generation hardware. This suffers from two draw-
backs. First, it often assumes a uniform speedup of all compute kernels, which is
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unrealistic. Second, new hardware generations are usually characterized by larger
nodes with more parallelism rather than simply faster cores. Byte/flop ratios for
applications can vary widely with problem size. For Lulesh, e.g., doubling the
problem size per node can decrease the off-node byte/flop ratio by 1.6.

On-line simulations, in contrast, can tune both scale and input parameters.
On-line simulations, however, often rely on custom models written specifically
for simulation, as done in state machine models [12]. Skeleton applications, in
contrast, are regular source code with much of the computation replaced by
delay models. For message-passing applications (MPI), skeletonization requires
two steps. First, MPI calls are emitted to the simulator for modeling in place of a
real network stack (Fig. 2). Second, expensive computation should be replaced by
delay models. Manually eliminating expensive computation, however, currently
requires significant human effort. Scalable skeletons also require removing large
memory allocations that would otherwise exceed the capacity of the simulator’s
hardware.

1) Developer
adds pragmas

3) sim++ src.cpp 
Redirect MPI calls

4) Link to simulator with 
SIM_MPI_X symbols
sim++ -o sim.x -lsim

2) Clang 
source-to-source

Simulation
Endpoint

Model

Original Source Code:
double* big = new double[N];

for (i=0; i < N; ++i){
  expensive_compute();
}

#pragma sim null_variable
double* big = new double[N];

#pragma sim compute
for (i=0; i < N; ++i){
  expensive_compute();
}

Auto-skeletonized 
Source Code:

double* big = nullptr;
 //modeled

 //modeled

Auto-skeletonized 
Object Code:

call modelCompute(N);

Fig. 2. Overview of skeletonization workflow for generating endpoint models from exist-
ing source code. (1) Pragmas are added to describe skeletonization, (2) compiler com-
pletes source-to-source transformation with skeleton source code, (3) code is compiled
with compiler wrapper on top of Clang/GCC, (4) MPI symbols linked to simulator.

Auto-skeletonization via source-to-source transformation of existing appli-
cation source code is highly desirable. A single application source code that is
usable for both actual production runs and simulation improves (1) validation
since the skeleton is directly derived from the real application, and (2) co-design
since any changes made immediately transfer between simulation and actual pro-
duction tests, (3) ease of use since input parameters and system scales can be
flexibly tuned without re-collecting or extrapolating traces. Auto-skeletonization
through source-to-source transformations has only been narrowly explored [22].
Distinguishing between computation blocks that can be safely elided and those
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that are required to reproduce the traffic pattern can be difficult or impossible
at compile-time.

Instead of completely automatic skeletonization, we propose augmenting
source code with skeletonization hints via pragmas. While pragma augmenta-
tion is not fully automatic (Fig. 2), developers with domain-specific knowledge
can annotate existing apps in contrast to the tedious and error-prone task of
manually skeletonizing. In addition, rather than making conservative assump-
tions or highly approximate guesses, a compiler can report specific line numbers
where static analysis fails and hints are required. This creates an almost auto-
matic workflow in which the compiler tells the domain experts exactly where
pragmas are needed.

To achieve this workflow, we describe an approach for user-guided application
skeletonization. We introduce a simple pragma language which provides hints to
a skeletonizing compiler and demonstrate this approach with a toolchain based
on Clang. We provide data-centric pragmas to eliminate expensive memory allo-
cations and execution-centric pragmas to eliminate expensive computation. We
demonstrate the approach for three applications (Lulesh, CoMD, and HPCG).
We show scalability with simulations beyond 100 K endpoints using the Struc-
tural Simulation Toolkit (SST) to provide a parallel discrete event core. We
further perform a performance study for each application that both validates
the correctness of generated skeletons and demonstrates the flexibility of on-line
simulations.

2 Related Work

2.1 Simulators

Numerous simulators have been developed with various accuracy/cost tradeoffs.
On-line simulators usually emulate an API such as MPI [11] and link to applica-
tion code, intercepting function calls to estimate elapsed time. SMPI is a notable
example supporting on-line simulation [8]. Off-line simulators, such as Tracer/-
CODES [15], use time differences between trace communication events to deter-
mine compute delay. Time-independent traces with architecture-independent
hardware counters have been used [9,21] as well as application-specific task
specifications [6]. Time-independent traces provide flexibility in changing trace
replay behavior for different processor or memory architectures, but still capture
a single, fixed problem. Xu explored auto-generating skeletons from traces [26]
without requiring source code transformations.

For estimating communication time, simulators usually model individual
hardware components or use a fixed analytic function to provide timings for the
overall system. Analytic functions often use a simple delay model, and some for-
mulas try to incorporate congestion [14]. Structural simulators simulate discrete
events on each switch and link as messages traverse the network with varying
degrees of accuracy. There are high levels of detail in Booksim [16], packet-level
models in SST/macro [25] and CODES [15], and more coarse-grained models or
flow models in BSIM [24] and SMPI [8].
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2.2 MPI Source-to-Source

There are several studies that involve either source-to-source transformations
of MPI codes or semi-automatic construction of communication skeletons. Guo
et al. used source-to-source transformations of MPI codes to improve commu-
nication overlap [13]. Preissl et al. used the ROSE compiler to perform general
performance optimizations [18]. Strout et al. performed data-flow analysis of
MPI programs, although mainly in the context of automatic differentiation [23].

Sottile et al. explored source-to-source skeletonization of MPI codes using
ROSE [22]. Skeletonization was guided mainly by configuration files with some
supplementary pragmas. The tool performed a def-use analysis to delete all code
that did not affect the parameters inside an MPI call. This skeletonization is
brute force, deleting all code that does not affect MPI function parameters, but
also conservative, preserving all code that affects MPI parameters no matter how
expensive to execute. Compute modeling of removed code was not performed.
The auto-skeletonization approach from Sottile et al. [22] followed a bottom-
up procedure, deriving backwards all code that could affect MPI parameters.
Our approach is top-down and data-centric, labeling large data structures that
should not be allocated. It prioritizes expensive code and memory allocation
removal over conserving MPI call parameters. The consequence is that the MPI
parameters may not be exactly preserved, instead being estimated. While our
approach requires more input, the compiler directs domain experts to the lines
of code where hints are needed and provides a rich set of pragmas.

3 MPI Simulation

The Structural Simulation Toolkit (SST) [19] provides a discrete event simulation
framework that includes element libraries designed for scalable modeling of large
(potentially exascale) systems. Using SST, we aim to achieve scalable, flexible
simulation through (1) lightweight endpoint models, (2) efficient network models,
and (3) brute force parallelization.

The simulator emulates many virtual MPI processes running in a single
physical process. The terms virtual and physical are critical here to distinguish
between the simulated application code and the simulator code itself. Without
skeletonization, our simulator components can act as an MPI emulator. The sim-
ulator provides a minimal MPI middleware implementing the needed semantics
and API bindings. The C/C++ code compiled and linked with the sim++ com-
piler wrapper can then execute as if running on a real platform. To achieve this,
the simulator must emulate three memory regions used by physical processes:

– Heap memory
– Stack memory
– Global variables
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On a real system, the kernel enforces memory separation between MPI ranks.
Virtual MPI ranks, which are encapsulated by lightweight threads, must syn-
thetically enforce memory separation. Virtual ranks can allocate from a common
heap without the risk of sharing private data. Stacks require more work. Instead
of each virtual MPI rank receiving its own kernel thread (pthread), they are
explicitly-managed user-space threads (GNU pth, ucontext, fcontext). Control
is transferred between application threads via context switching to simulate con-
current progress of MPI ranks. Global variables are the most difficult to manage.
Source-to-source transformation must convert all global variables to user-space
thread-local variables.

At some point, application ranks must transfer control to the simulator.
This occurs when emulated bindings, e.g. a call to MPI Send, are emitted to the
simulator instead of an actual MPI implementation. This symbol interception
requires both compile-time and link-time steps. The compiler wrapper includes
a preprocessor which redirects MPI calls to simulator functions:

#define MPI_Send (...) SIM_MPI_Send (...)

The compiler then links against -lsim which provides the simulator’s MPI bind-
ings. Symbol interception can occur at any layer of a software stack (Fig. 3).
While our simulation components provides a minimal MPI implementation, an
existing MPI could run on a simulated uGNI or libfabrics layer.

MPI Application
User Source Code

MPI Runtime

uGNI libfabrics

Hardware Models 
Simulator-only

Symbols to 
intercept

with simulator

Fig. 3. Software stack with possible symbol interception points for the simulator.

Simulation time advances when the application enters an emulated binding.
The thread blocks (context switches), the simulator predicts a time delay, inserts
another event into the event queue, and returns control to the main simulator
thread. After simulation time advances, the main thread context switches back
to the application thread.
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4 Source-to-Source Compiler

4.1 Overview

The auto-skeletonizing compiler has three tasks:

– Remove large memory allocations that would prevent scalable simulation
– Substitute compute-intensive kernels with an accurate delay estimate
– Redirect global variable accesses to thread-private memory

Global variable refactoring occurs automatically, but the remaining two require
domain experts to insert pragmas.

4.2 Introductory Example

To illustrate the basic concept, consider the following code which exchanges
messages, computes, and then exchanges messages again.

...
MPI_Sendrecv (..., size , ...);

#pragma sst compute
for (int i=0; i < N; ++i){
//do work

}
MPI_Sendrecv (..., size , ...);
...

For scalable simulation, we wish to generate the correct traffic pattern with min-
imal complexity in the application endpoint model. The code should be modified
in two ways. First, instead of executing the compute loop, a compute delay model
should be inserted. Second, instead of actually exchanging data in the send/recv,
a network model should estimate the communication delay based on the mes-
sage size. The auto-skeletonizing source-to-source compiler accomplishes both of
these things. It recognizes the pragma, decides to replace the computation, and
estimates a delay model based on the number of operations performed inside
the loop. It then replaces the MPI calls with calls into the simulator. The result
is a lightweight endpoint model generating the correct traffic pattern. We now
review the most important pragmas.

4.3 Data-Driven Pragmas

Marking large data structures that are not critical to control-flow as null types
identifies large memory allocations to elide and provides hints to the compiler
of compute blocks to avoid.

pragma sim null variable. This pragma decorates a variable declaration. An
example can be seen in CoMD:

#pragma sim null_variable
int* nAtoms;
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In most cases, all operations involving the null variable are replaced with com-
pute delay models. However, there may be cases where the compiler may decide
deleting an operation cannot be done automatically since it may affect control
flow, e.g., if the variable is used inside an if-statement. When this occurs, a com-
piler error is thrown flagging where the ambiguity occurs. Another pragma must
then be applied to the conditional to tell the compiler how to proceed. While
the skeletonization process requires user intervention and iteration, the process
is fully-guided by the compiler and therefore straightforward.

pragma sim null type. This applies to C++ class variable declarations. Mem-
ory allocations are eliminated, but specific member functions used for tracking
type size may be kept. Consider an example from Lulesh:

#pragma sim null_type sim:: vector size resize empty
std::vector <Real_t > m_x ; /* coordinates */

Here we wish to indicate the vector is “null” and should not actually allocate
memory or allow array accesses. However, we still wish to track the vector size
and whether it is empty. The first argument to the pragma is a new type name
that implements the “alias” functionality. For std::vector, the compiler auto-
matically provides an alias sim::vector.

namespace sim {
class vector {
public:
void resize(unsigned long sz){

size_ = sz;
}
unsigned long size() const {

return size_;
}
template <class ... Args > void emplace_back(Args ... args){

++size_;
}
bool empty() const {

return size_ == 0;
}

private:
unsigned long size_;

};
}

std::vector is substituted with the new type sim::vector in the code. In this
case, even though the alias vector class provides more functions, we only allow
size, resize, and empty to be called.

pragma sim branch predict. This pragma replaces a branch condition. The
branch predict pragmas are necessary for predicates containing null variables.
Although most uses of this pragma will substitute true or false as the replace-
ment, any arbitrary C++ boolean expression can be used as the replacement.

4.4 Compute Pragmas

pragma sim compute/pragma omp parallel. These compute pragmas sub-
stitute the computations in a decorated scoping block with a basic delay model.
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The compiler can also be configured to automatically use existing OpenMP
pragmas as skeletonization hints. For the current work, static analysis of mem-
ory accesses and arithmetic operations generates a simple delay model for a
coarse-grained processor model that generates a time estimate.

pragma sim loop count. If the sim compute or omp parallel pragma is
applied to an outer loop with one or more inner loops, the compute model static
analysis might fail. This occurs when the inner loop control flow depends on the
actual execution. Any variables declared or modified inside the compute block
are not valid to use in the compute estimate. Only variables in scope at the
beginning of the outer loop are valid.

When the static analysis fails, a corresponding compiler error is thrown. This
usually requires giving a loop count hint. Consider an example from HPCG:

#pragma omp parallel for
for (local_int_t i=0; i< localNumberOfRows; i++) {

int cur_nnz = nonzerosInRow[i];
#pragma sim loop_count 27
for (int j=0; j<cur_nnz; j++) mtxIndL[i][j] = mtxIndG[i][j];

}

The static analysis fails on cur nnz. However, that value is almost always 27.
Thus we can safely tell the compiler to just assume a given loop count.

pragma sim branch predict. When branch predict appears inside a marked
compute block, the argument must be a value between 0 and 1 (or true/-
false). The value informs the static analyzer of the proportion of branches taken.
Because all program logic must be estimated in the skeleton, branch predict
must be used inside such a block when the branch condition is dependent on
variables declared in the same scope. Consider an example from CoMD:

#pragma sim branch_predict areaFraction
if(r2 <= rCut2 && r2 > 0.0){

Inside this compute block, computation depends on whether a particle distance
is less than a cutoff. Based on the way CoMD constructs unit cells and halo
regions, we can estimate the ratio of the particles (and therefore computations)
that are expected within the cutoff.

4.5 Source-to-Source

No changes to an existing make system are required to auto-skeletonize. Installa-
tion of the element library installs compiler wrappers simcc and sim++. Figure 4
shows the compiler auto-skeletonization workflow that is performed automati-
cally by the compiler wrappers. Remapping global variables requires static reg-
istration of special C++ variables, which requires merging a temporary C++
object file into the original target object file (see Fig. 4).

The source-to-source translation occurs through analysis of the Clang
abstract syntax tree (AST). The AST is accessed by registering custom Clang
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example.cc

pp.example.cc

sim.pp.example.cc simGlobals.example.cc

sim.pp.example.o
simGlobals.example.

o

example.o

g++ -E
Preprocess

Compile

g++ -c
Compile

ld -r
Merge

Clang
Source-to-Source

Fig. 4. Source-to-source transformation workflow. These steps occur automatically
through the compiler wrapper. For C source files, g++ can be swapped with gcc.
The underlying compiler is arbitrary and could be gcc or another compiler.

frontend actions with the AST visitor interface. New pragmas can be easily reg-
istered with the Clang preprocessor. The source-to-source can work on most
C++ template code since the Clang frontend provides a visitable AST node for
each implicitly instantiated template function. Type-dependent compute models
can also be constructed for compute pragmas inside template code. This will be
implemented in future versions of the source-to-source translator.

5 Methodology

Lulesh 2.0.3 was downloaded from the Lawrence co-design center [2]. CoMD
reference version 1.1 was downloaded from the Mantevo project [3]. HPCG ref-
erence version 3.0 was download from the HPCG benchmark site [1]. The Clang
4.0 frontend was used for source-to-source transformations and skeleton com-
pilation. Each application takes a basic set of 3–6 input parameters defining
either the total problem size or the problem size per MPI rank. Lulesh is an
explicit shock hydrodynamics code with communication dominated by nearest-
neighbor halo exchanges. CoMD is a lattice-based molecular dynamics code with
communication dominated by cell exchanges of neighboring atoms. HPCG is a
conjugate-gradient solver with multigrid preconditioning.
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An analytic delay model similar to LogP [14] was used for the network. The
processor model also used a simple analytic delay model

ΔT = βB + γfF + γiI. (1)

Here B is the number of bytes used, F is the number of floating-point opera-
tions, and I is the number of integer operations. β is the inverse bandwidth in
seconds/bytes and γ is the inverse frequency in seconds/operation for floating
point and integer arithmetic.

Timings were collected on a Xeon E7-8870 at 2.4 GHz. STREAM benchmarks
showed ∼6 GB/s of single-core memory throughput. For our processor delay
model we therefore use β = 0.16 s/GB and γi = γf = 0.42 ns/Op.

6 Results and Discussion

6.1 Weak- and Strong-Scaling Spider Plots

The skeleton applications should behave as much as possible like the full applica-
tion running on a real system. As a first validation we validate scaling of relative
application runtime (rather than absolute time). Given a set of input parameters
(as they would be given to the real application), compute and communication
times should scale appropriately. For example, given a mesh size 2x larger and
the same number of processors, Lulesh should take 2x longer to run. Similarly,
given the same mesh and 2x the number of processors, Lulesh should run 2x
faster. Using a simple processor model and a contention-free network model, we
ensure that the skeleton apps generate correct weak and strong scaling behavior
from weak and strong scaling inputs (see Appendix for the set of inputs used).
Figure 5 shows spider plots for the skeleton applications with mixed weak and
strong scaling curves. Given weak and strong scaling inputs, the simulator pro-
duces the correct behavior - ideal scaling in this case given the contention-free
machine model. This demonstrates (1) the correctness of the skeletons since cor-
rect scaling behavior is seen and (2) flexibility of the skeletons to generate several
traffic patterns for different application inputs and scales.

(a) (b) (c)

Fig. 5. Spider plot showing weak and strong scaling curves for simulated applica-
tions. Weak and strong scaling inputs to the skeleton application exactly generate the
expected scaling behavior. Shown are (a) Lulesh up to 2M network endpoints, (b)
CoMD up to 65K network endpoints, and (c) HPCG up to 65 K network endpoints.
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6.2 Traffic Pattern Validation

Beyond validating the timing behavior of the skeleton applications, we want to
ensure that the generated traffic patterns are correct. Lulesh and HPCG exactly
generate the correct number, size, and sequence of MPI messages (and thus
generate no interesting figures). CoMD is more complicated. The skeleton appli-
cation creates an approximate traffic pattern based on the average number of
atoms per cell. No computation is ever performed on individual atoms. The exact
CoMD traffic pattern is partially data-dependent, however. Certain border cells
can have partial occupancy with fewer atoms than interior cells. With domain
expertise, this variation in number of atoms communicated can be computed via
tractable (but tedious) mathematical expressions rather than looping through
all atoms. Using pragmas, the code computing the number of atoms to send can
be replaced rather than completely elided. The approximations used in this work
create a minor discrepancy between the exact traffic pattern and the skeleton
traffic pattern (Fig. 6).

KB
Sent

(a) Difference (b) Full Application (c) Skeleton

Fig. 6. Traffic matrix plots (spyplot) for CoMD showing the (a) difference between (b)
full application and (c) skeleton application.

This discrepancy is critical in distinguishing our current approach from pre-
vious auto-skeletonization work [22]. In previous work, every MPI call had to
be exactly preserved. The compiler worked bottom-up from each MPI call to
decide what code was necessary. For CoMD, the traffic pattern depends on
individual atom computations. A naive auto-skeletonizer would therefore pre-
serve every line of code in the application. In our top-down approach, the large
data structures containing atoms are marked null. This then generates compiler
warnings or errors where computation depends on individual atoms. Approxima-
tions are then introduced with pragmas to estimate the number of atoms being
exchanged. This generates an efficient skeleton with approximately correct MPI
calls. Although some point-to-point sends are incorrect by 10–30% in Fig. 6, the
traffic pattern as a whole is preserved. As discussed above, these estimates could
be improved with more domain knowledge of the CoMD application.
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6.3 Simulator Performance

Beyond validating that the simulator produces correct scaling and traffic results,
we want to ensure that skeleton application is consuming minimal amounts of
memory and executing quickly. Performance results for memory usage and tim-
ings are shown in Fig. 7. Even past 100 K endpoints, memory usage is only 20 GB
total for all three applications considered. We note that the total memory usage
for each skeleton app is almost the same. The dominant memory cost is actu-
ally the user-space thread stacks used by the simulator and not heap-allocated
variables within the skeleton apps. Even for large runs (>100 K endpoints), the
simulations finish within a few hours on a single core, showing that no significant
computation is occurring within each application.

Fig. 7. Maximum memory usage (GB) and total simulation wall time for increasing
scales of Lulesh, CoMD, and HPCG skeleton applications.

Another critical performance question for skeleton-driven simulation is the
inherent scalability of the simulation itself as more physical cores are used to
execute the simulation. Parallel discrete event simulation (PDES) is a notoriously
challenging problem [10]. In particular, since the endpoint model is no longer a
basic trace, optimistic PDES is much more challenging. Weak-scaling and strong-
scaling performance of the simulator wall-clock time is shown in Fig. 8 for a
conservative algorithm. The base case (64 cores; 32 K virtual ranks) executes
in 12.9 s. This fails to perfectly weak scale, with the largest run (512 cores;
262 K virtual ranks) taking 19.4 s, but is still an effective scaling of 5.3X with
8X number of cores. For strong-scaling, e.g. working from the base case (64
cores; 262 K virtual ranks) results in speedups of 2.0, 2.8, and 3.8 for 2X, 4X,
and 8X number of cores, respectively. Good speedups are obtained, although far
from ideal. Still, very large (262 K virtual rank) simulations can be performed
in reasonable times when scaled to greater than 500 simulator cores.

Finally, the choice of running skeletons rather than a state machine model
requires context switching between distinct application threads as discussed in
Sect. 3. Minimizing context switching overheads is therefore important for perfor-
mance. We incorporated three different context switching libraries (GNU pth,
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Fig. 8. Scaling of skeletons with parallel discrete event simulator for increasing number
of simulation processes (physical ranks). Lulesh configuration is 5 iterations with weak-
scaling 50 × 50 × 50 box per rank.

fcontext, ucontext) and measured context switch overheads through a bench-
mark that switches 1000 times amongst 1000 user-space threads. The results are
shown in Table 1 for two different systems. While pth and ucontext have sizable
overheads, context switches are very fast with Boost fcontext. Context switching
overheads are therefore negligible with respect to the cost of the simulator itself.

Table 1. Cost per context switch for different threading libraries on Linux (CentOS
7) and Mac OS X (10.11).

Threading CentOS 7 Mac OS X 10.11

fcontext 83ns 54 ns

pth 560ns 1.66µs

ucontext 595ns n/a

6.4 Number of Pragmas

To indicate the amount of work required to skeletonize each application, we count
the number of each type of pragma used in Table 2. As previously discussed, in
our top-down approach skeletonization begins with inserting null type pragmas
to label data structures that should not be allocated. The remaining skeletoniza-
tion is fairly automatic, with the compiler noting exactly where additional hints
are required. While this process is iterative and requires active input from an app
developer, it drastically reduces the development and validation time required
relative to manually generating skeleton or other on-line endpoint models. For
CoMD and HPCG, the number of pragmas is not significantly more than the
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number of pre-existing omp parallel pragmas. Lulesh has more data struc-
tures, but the process is still very quick for someone with domain knowledge of
the application. The whole process in general should be a few hours, not days
or weeks to write an entirely new skeleton app.

Table 2. Number of pragmas in each of the considered example applications.

Pragma Lulesh CoMD HPCG

null type/null variable 48 8 18

replace/init 70 19 14

compute 76 8 13

omp parallel 30 15 17

branch predict 10 2 0

loop count 0 18 2

6.5 Compute Model Accuracy

Although the main goal here is not to demonstrate an accurate compute model,
we assess what accuracy can be obtained by simply counting source code opera-
tions and using the analytic delay estimate from (1). Figures 9, 10 and 11 com-
pare actual timings to the estimates. Actual timings will be highly-compiler
dependent and thus we show a min-max range for -O3 and -O0 optimizations.

Fig. 9. Individual region timers for different kernels in Lulesh. The compute model
is based only on counting floating point/integer operations in the source code. The
simulated delay estimates are compared to two different levels of compiler optimization.

CoMD (Fig. 10) is dominated by a single compute kernel: force. The force
kernel is dominated by compute rather than memory and the estimated delay
is surprisingly accurate. For comparison, Fig. 10 shows timing estimates from a
much smaller kernel. The velocity kernel is much more memory-bound, making
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Fig. 10. Individual region timers for different kernels in CoMD. The compute model
is based only on counting floating point/integer operations in the source code. The
simulated delay estimates are compared to two different levels of compiler optimization.

Fig. 11. Individual region timers for different kernels in HPCG. The compute model
is based only on counting floating point/integer operations in the source code. The
simulated delay estimates are compared to two different levels of compiler optimization.

it harder to estimate. In this case, the compiler actually undercounts the number
of memory accesses leading to the discrepancy.

For HPCG (Fig. 11), the simulation slightly overestimates relative to O3 but
is bracketed above by O0. Lulesh (Fig. 9) shows similar results to HPCG with
O3 and O0 bracketing the simulation estimates. The simulation does underesti-
mate certain Lulesh kernels even with O3. More study is required to determine
if (1) the static analysis is undercounting operations or (2) the basic delay model
fails to account for certain contention effects. For CalcQ (Fig. 9), the square root
function is used extensively. Because the square root code is not available to the
compiler, it cannot estimate the number of flops and omits them. This leads to
the observed underestimate. Additional pragmas could be added with flop/byte
estimates for such functions. Still, despite the limitations of our initial implemen-
tation, the auto-skeletonizing compiler is effective at generating realistic delay
models and, correspondingly, realistic traffic injection.
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6.6 Example Study with Lulesh

We perform an example study that would be difficult with traces, but is straight-
forward with skeleton applications. In particular, we evaluate the performance
and scaling of Lulesh executed in SMP mode (one MPI process per node par-
allelized with OpenMP) and MPI-only mode (one MPI process per core). For
simplicity, we consider a node with 8 cores. The study shown in Fig. 12 requires
both several different application scales as well as different application inputs. In
particular, the SMP problem requires a 40× 40× 40 grid for each MPI process
while the MPI-only problem requires a 20× 20× 20 grid per MPI process. For
the example problem, at 512 cores (64 nodes) both approaches have similar per-
formance, although the SMP approach is slightly faster. The performance gap
increases as scale is increased to 32 K cores (4K nodes), although the effect is
small for the relatively compute-bound Lulesh. Although beyond the scope of the
current work, more detailed analysis would show the performance difference is
due to contention on message injection and extra memory traffic from intranode
MPI messages.

Fig. 12. Simulated runtimes for Lulesh application running 20× 20× 20 grid per core
either in SMP-mode (8 cores per MPI process) or MPI-only mode (1 core per process).

7 Future Work

The two most critical areas for improvement are compute model generation and
skeletonization of more dynamic applications. While compute models are gener-
ated simply from source code operations (abstract syntax tree), more sophisti-
cated models could be generated from either LLVM IR (intermediate represen-
tation) or even assembly. IR can be easily generated from the AST using LLVM
code generators, allowing compute models for loops or other nodes in the AST
to be based on IR [7]. More sophisticated static analysis, particularly for nested
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loops, might also involve polyhedral techniques to better estimate cache traffic
or computational intensity [4].

Because arbitrary source code modifications at the site of a compute-intensive
code region are possible, the source-to-source technique also potentially enables
integration with detailed simulators such as gem5 [5]. To limit computational
cost, a single MPI rank could be run via detailed simulation with the estimated
times for compute-intensive regions being memoized and reused for all other
MPI ranks. While this would involve potentially complicated instrumenting of
the application source code, these modifications can be embedded in the source-
to-source tool and easily reused rather than requiring ad-hoc simulator-specific
instrumentation in the actual source code.

Dynamic applications, e.g. adaptive mesh refinement (AMR), pose new chal-
lenges to the skeletonization process. HPCG, Lulesh, and CoMD have semi-static
traffic patterns which are dominated by the structure of the computation and
not the values stored in the data structures. For an AMR code, the traffic pattern
between refinements will similarly be “static” and compatible with skeletoniza-
tion. For a library like BoxLib [27], the data structures defining the box sizes and
nesting are modest in size compared to the actual element or field data contained
within each box. The actual refinement computation must be replaced with an
approximate model. Previous studies have used coarse-grained box traces [6]. In
contrast to MPI communication traces, the box traces are flexible and can be
immediately used for strong scaling studies. An alternative is to base box refine-
ments on known properties of the input problem. For MiniAMR [3], refinement
is driven by objects pushed through the mesh, which could be approximated by
an analytic function yielding an inexpensive estimate of refinement.

8 Conclusions

This work presents a compiler-assisted approach to generating skeleton applica-
tions directly from existing application source code. Validation of the generated
skeletons is demonstrated by analyzing weak and strong scaling behavior of
the skeleton apps and comparing traffic patterns from skeletons to the parent
application pattern. Having on-line skeleton models for system-level simulation
improves validation, scalability, and flexibility of the simulation. This flexibility
is critical for network-design studies, particularly in understanding the required
balance between compute and network provisioning as problem scales and prob-
lem inputs change. Overall, the auto-skeletonizer’s ease of use and the efficient
execution of skeletons with the parallel simulator should make the presented
tools useful for future network and system design.
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A Appendix

A.1 Strong scaling inputs

Lulesh. All simulations are equivalent to running the SLURM command
srun -n M -N M ./lulesh -s S -i 5 with 1 MPI rank per node and some
number M of MPI ranks. The problem size S is per rank and per dimension, for
a total problem size of S3 per rank. Lulesh requires a cubic number of processors
so each point in the strong scaling curve contains 8x processors from the previous
point. For the first strong scaling curve (1.1B elements) in Figure 5, we ran:
srun −n 64 −N 64 ./ l u l e s h −s 256 − i 5

srun −n 512 −N 512 . / l u l e s h −s 128 − i 5

srun −n 4096 −N 4096 . / l u l e s h −s 64 − i 5

srun −n 32768 −N 32768 . / l u l e s h −s 32 − i 5

CoMD. All simulations are equivalent to running the SLURM command
srun -n M -N M ./comd -e -i I -j J -k K -x X -y Y -z Z -N 5 -n 1
with 1 MPI rank per node and some number M of MPI ranks. Here I, J,K
give the processor grid such that M = I × J × K. Here X,Y,Z give the total
spatial dimensions in Angstrom for the problem, with the total number of atoms
then determined by the default density parameter. −N is the number of steps.
For the first strong scaling curve (2.8B atoms) in Figure 5, we ran:
srun −n 1024 −N 1024 . / comd −e − i 8 −j 8 −k 16 −x 704 −y 704 −z 1408 −N 5

srun −n 2048 −N 2048 . / comd −e − i 16 −j 8 −k 16 −x 704 −y 704 −z 1408 −N 5

srun −n 4096 −N 4096 . / comd −e − i 16 −j 16 −k 16 −x 704 −y 704 −z 1408 −N 5

srun −n 8192 −N 8192 . / comd −e − i 16 −j 16 −k 32 −x 704 −y 704 −z 1408 −N 5

HPCG. All simulations are equivalent to running the SLURM command
srun -n M -N M ./hpcg --nx=X --ny=Y --nz=Z --rt=0 with 1 MPI rank per
node and some number M of MPI ranks. Here X,Y,Z give the problem size per
MPI rank. The rt parameter sets a special quick path mode in HPCG, which
only executes the solve and skips a tuning phase. For the first strong scaling
curve (17B rows) in Figure 5, we ran:
srun −n 1024 −N 1024 . / hpcg −−nx=256 −−ny=256 −−nz=256 −r t=0

srun −n 2048 −N 2048 . / hpcg −−nx=128 −−ny=256 −−nz=256 −r t=0

srun −n 4096 −N 4096 . / hpcg −−nx=128 −−ny=128 −−nz=256 −r t=0

srun −n 8192 −N 8192 . / hpcg −−nx=128 −−ny=128 −−nz=128 −r t=0
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Abstract. Modern distributed computing frameworks for cloud com-
puting and high performance computing typically accelerate job perfor-
mance by dividing a large job into small tasks for execution parallelism.
Some tasks, however, may run far behind others, which jeopardize the job
completion time. In this paper, we present Zeno, a novel system which
automatically identifies and diagnoses stragglers for jobs by machine
learning methods. First, the system identifies stragglers with an unsuper-
vised clustering method which groups the tasks based on their execution
time. It then uses a supervised rule learning algorithm to learn diagnosis
rules inferring the stragglers with their resource assignment and usage
data. Zeno is evaluated on traces from a Google’s Borg system and an
Alibaba’s Fuxi system. The results demonstrate that our system is able
to generate simple and easy-to-read rules with both valuable insights and
decent performance in predicting stragglers.

Keywords: Distributed computing · Straggler diagnosis
Unsupervised clustering · Supervised rule induction

1 Introduction

In cloud computing and high performance computing, a large job is typically
divided into many small tasks for parallel execution in a distributed environment
(see, e.g., [8,22]). In ideal scenarios, maximum parallelism is achieved when all
the tasks of a job (or a stage of a job if the job is composed of different hetero-
geneous stages) complete approximately at the same time. In reality, however,
some tasks run considerably slower than the others, straggling the overall job
completion time. Ananthanarayanan et al. [1] shows that without those strag-
glers in real-world production clusters, the average job completion time would
have been improved by 47% in Facebook’s trace, 29% in Bing’s trace, and 36%
in Yahoo’s trace. Yadwadkar et al. [21] reports that 22–28% of the total tasks
are stragglers in a replay of Facebook’s and Cloudera’s customers’ Hadoop pro-
duction cluster traces. It becomes a practical way for job owners to identify
and diagnose those stragglers so that the performance in a future run can be
improved.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Yokota et al. (Eds.): ISC High Performance 2018, LNCS 10876, pp. 144–162, 2018.
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There are many reasons for a task to become a straggler such as hardware dif-
ferences, prioritized dynamic allocation of constrained resources to tasks running
concurrently on the same server, uneven partition of workloads, data locality,
etc. A diagnosis system to assist job owners to identify the potential causes of
stragglers is not available. Traditionally a wide range of tools and APIs have
been created by the performance analysis community to collect performance
data. Various methods including, e.g., scalable displays of performance data,
interactive visualization of performance data, etc., are proposed to analyze the
far too large and too complex data (see, e.g., [5,6]). However, those methods
still rely on significant manual analysis, which is labor-intensive, error-prone,
and much more time-consuming.

In this paper, we present Zeno1, a novel straggler diagnosis system which can
automatically identify and diagnose stragglers for jobs in distributed computing.
For a completed job, Zeno interacts with the job running framework and its clus-
ter manager to retrieve the execution information, the resource allocation data,
and the resource usage data of its tasks. Based on their execution time, an unsu-
pervised clustering method is employed to group the tasks of the job into clusters,
thereby identifying and labeling the stragglers among them. The task straggler
labels, the resource allocation data, and the resource usage data are then put
into a supervised rule induction algorithm. A simple and easy-to-read rule is
learned as the diagnosis result discovering the interesting and valuable insight
into why the tasks are slow. The job owner can translate the diagnosis result
to actions for performance enhancement. For example, a diagnosis rule of ‘if its
assigned memory is less than γ, then the task will be slow ’ provides the insight
that the stragglers are caused by insufficient memory resource assignment. The
job owner can understand the insight easily and allocate the right amount of
memory to the tasks in the future execution to improve the job performance. A
simple user interface is provided for users to view the analysis results.

Zeno is evaluated on real-world traces from a Google’s Borg system [20] and an
Alibaba’s Fuxi system [23]. Preliminary experimental results indicate that Zeno
is able to generate simple and easy-to-read rules. Not only can the rules discover
valuable insights into why some tasks are slow but also they can predict stragglers
with a decent performance on held-out sets of tasks within the same jobs.

Our contributions are three-fold. First, we propose a novel approach to strag-
gler identification and diagnosis combining unsupervised clustering and super-
vised rule induction. Next, we implement Zeno which, to the best of our knowl-
edge, is the first straggler diagnosis system for distributed computing. Last but
not least, equipped with the new system we identify and diagnose the stragglers
on two publicly-available cluster traces.

The rest of the paper is organized as follows. In Sect. 2 we present the new
machine learning approach to straggler identification and diagnosis. The imple-
mentation of Zeno is described in Sect. 3. Section 4 presents the experimental
results. Related work is reviewed in Sect. 5. Finally, we make a conclusion in
Sect. 6.

1 Zeno was the Greek philosopher who raised the paradox that the quickest runner
can never succeed in overtaking a slow-moving tortoise.
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Fig. 1. Diagram of the machine learning approach.

2 Machine Learning Method for Straggler Diagnosis

We introduce a two-phase machine learning approach to identify and diagnose
stragglers in the distributed computing framework. Figure 1 shows the diagram
of our approach. First, stragglers are identified among the tasks in a job (or in a
stage of a job) using an unsupervised clustering method. Second, a customized
decision stump induction algorithm is designed to learn simple and easy-to-
read rules for straggler inference. The two phases are described in detail in the
following subsections.

2.1 Straggler Identification

The first phase of straggler identification takes the execution time of all the tasks
in a job as the input and identifies a subset of the tasks as the stragglers.

The details of this algorithm are shown in Fig. 2. It employs the k-means
homogeneous clustering method in conjunction with Bayesian information crite-
rion for cluster number selection. Given a certain cluster number, the standard
k-means clustering algorithm [14] runs on the one-dimensional data of the task
execution time. After a random initialization of the cluster membership, the algo-
rithm iterates between two steps. The first step estimates the cluster centroids
using the current cluster membership. The second step resigns the tasks into the
clusters based on their proximities with the centroids. Such an iterative process
continues until no cluster membership reassignment happens in the iteration.

After that, Bayesian information criterion (BIC) [17] is calculated for the
specific cluster number k. The first term of BIC,

−2
n∑

i=1

log[pm(i)
1√

2πσm(i)

e
− (t(i)−tm(i))

2

2σ2
m(i) ],

gives the negative log-likelihood of generating all the execution time data from
the clustering model. The generative model assumes that values in each of the
clusters follow a normal distribution. Lower the negative log-likelihood, more
probable the data is. The second term, 2k log n, gives the complexity of the
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Input the n tasks with execution time t(1),...,t(n)

For k = 1, ...kmax

For task i = 1, ..., n, randomly assign its cluster membership m (i) ∈ {1, ..., k}
Iterate till convergence (no cluster membership reassignment in step 2):

Step 1: calculate the centroids of the clusters with the current members

tj =
∑

i:m(i)=j t(i)
∑

i:m(i)=j 1
, j = 1, ...k

Step 2: reassign the tasks cluster membership
m(i) = argmin

j
|t(i) − tj |, i = 1, ..., n

Calculate the probability of each cluster, the standard deviation of each cluster,
and then Bayesian information criterion (BIC) of the clustering result:
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i:m(i)=j 1

n
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√∑
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m(i) ] + 2k log n

Take the clustering result with the best k minimizing BIC
k∗ = argmin

k
BIC(k)

In the clustering result, if tk∗−1
tk∗ ≤ 90% and

∑
i:m(i)=k∗ 1 ≤ 60% · n, we label the

tasks in the slowest cluster as the stragglers. Otherwise null is output indicating
no straggler identified.

Fig. 2. Straggler identification using k-means clustering and Bayesian information cri-
terion for cluster number selection.

model. The complexity of a model is measured approximately with its prior
probability, where 2k is the total number of parameters involved in describing
the k normal distributions. We choose the best cluster number with the lowest
BIC value, which minimizes the joint objective of the negative log-likelihood and
the model complexity.

Heuristic filtering is further performed in post-processing the corresponding
clustering results. The two slowest clusters are examined. If the task number of
the slowest cluster is lower than a predefined threshold and its mean execution
time is considerably longer than that of the second slowest cluster, we label the
tasks in the slowest cluster as stragglers. The first condition prevents us from
labeling most of the tasks in a job as stragglers when only a small number of the
tasks are fast. The second condition prevents us from labeling tasks as stragglers
which are just a little bit slower.

2.2 Straggler Diagnosis

The second phase of straggler diagnosis is based on a supervised rule induction
method which takes the straggler labels (that is, the output from the first phase
of straggler identification), the resource allocation data, and the resource usage
data of the tasks as the inputs. A rule to infer stragglers based on their resource
allocation and usage is output as the learning result. It is expected that the
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Input the task attributes x(i) = (x(i)
1 , ..., x

(i)
d ) and the straggler label y(i) ∈ {1, −1}

for each of the task i = 1, ..., n
For attribute j = 1, ..., d, enumerate all the atomic conditions Cj = {cj,1, ..., cj,s},
where each atomic condition cj,q is in the form of either ’xj > γ’ or ’xj ≤ γ’

For attribute pair (j, k), j = 1, ..., d, k = j + 1, ..., d, enumerate the
combo of 2 atomic conditions Cj,k = {cj,q ∧ ck,r|cj,q ∈ Cj , ck,r ∈ Ck} ∪
{cj,q ∨ ck,r|cj,q ∈ Cj , ck,r ∈ Ck}

Generate the candidate condition set with both atomic conditions and 2-atomic-
condition combos

C =
⋃

j=1,...d[Cj

⋃
k=j+1,...d Cj,k]

Search through the space C, where for a condition c ∈ C:
Create a rule ’if c, then y = 1’
For task i = 1, .., n:

Use the rule and the task features to determine its straggler label ŷ(i)

Calculate confidence (empirical precision), coverage (empirical recall), and
empirical f-measure of the rule c with on the same dataset

p(c) = P̂ (y(i) = 1|ŷ(i) = 1)
r(c) = P̂ (ŷ(i) = 1|y(i) = 1)

f(c) = 2p(c)r(c)
p(c)+r(c)

Find the rule in the search to maximize the empirical f-measure
c∗ = argmin

c∈C
f(c)

If f(c∗) > θ, (an acceptance threshold, say, e.g., 70%), then output the rule ’if
c∗, then y = 1, else output null indicating a failure in automatically generating
diagnosis result.

Fig. 3. Customized decision stump induction algorithm for straggler diagnosis.

diagnosis rule is able to address why the tasks are slow. This rule helps the job
owner understand the probable causes of the stragglers and perform adjustments
accordingly. In this way, the job performance can be improved in the future run.

The diagnosis rule is customized from the decision stump classifier [11]. A
decision stump is a one-level decision tree that takes a single condition test on
the input attributes of a task and then determines whether the task is a straggler
or not based on the test result. Decision stumps can be easily re-written into
simple rules. The example below shows a rule when the condition test applies to
one attribute only (to which we refer as an ‘atomic condition’):

‘If its assigned memory is no greater than γ, then the task is a straggler.
(Otherwise it is not a straggler.)’

The condition test is further extended to combine two atomic conditions with
the ‘and’ or ‘or’ operator. When the condition test becomes a 2-atomic-condition
combo, a rule looks like the example below:

‘If its CPU rate is no greater than η and its canonical memory usage is
greater than λ, then the task is a straggler. (Otherwise it is not a straggler.)’

The induction algorithm is shown in Fig. 3. For each task, its resource
allocation data and resource usage data are taken to create a feature vector
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x(i) = (x(i)
1 , ..., x

(i)
d ). The straggler label, y(i) ∈ {1,−1}, is the class label to be

predicted by the decision stump classifier. Walking through all the attributes,
all the atomic conditions are enumerated. 2-atomic-condition combos are then
generated by connecting two of the atomic conditions using the ‘and’ and ‘or’
operators. The atomic conditions and the 2-atomic-condition combos form the
entire search space, in which a heuristic grid search is then performed to induce
a decision stump.

For a certain condition being searched, its utility is evaluated on the training
set as follows. We first build a rule using the condition and then apply it to
the training set to predict whether a task is a straggler or not. The rule’s confi-
dence (that is, its empirical precision p(c)) is calculated, which is the number of
true positives versus that of both true positives and false positives. It gives the
likelihood that a straggler identified by the rule is a true straggler on the train-
ing set. The rule’s coverage (that is, its empirical recall r(c)) is also calculated,
which is the number of true positives versus the number of both true positives
and false negatives. It gives the likelihood that a true straggler is identified suc-
cessfully by the rule on the training set. As a higher coverage usually results in
lower confidence (and vice versa), the two metrics are combined with their har-
monic average, the empirical f-measure f(c). The rule with the best f-measure is
selected. To control the output quality, only when the f-measure value exceeds
a predefined threshold, the rule is accepted as the diagnosis result.

The information gain criterion [18], which is commonly used for decision tree
induction, is not used here because in an unbalanced dataset it would more
likely generate rules determining the non-stragglers with high confidence. In the
scenario of straggler diagnosis, the various extent of label distribution imbalance
exists.

Note that the rule is selected based on training data only. It does not guar-
antee its performance on an unseen set of tasks. However, simple classifiers are
more likely to perform similarly on an unseen dataset as they do on the training
samples drawn from the same probability distribution [3]. Our rules are simple
in terms of using atomic conditions and 2-atomic-condition combos. Therefore it
is expected that the rule performs well in explaining the stragglers for different
runs of the same job even if they are not seen in the training data.

3 Implementation of Zeno

We build Zeno upon the proposed method to automatically identify and diag-
nose stragglers for cloud and high performance computing. Figure 4 shows its
architecture which is divided into three parts, the job data preprocessor, the
back-end service for straggler identification and diagnosis, and the web-based
user interface.

Job Data Preprocessor: The job data preprocessor interacts with the cluster
manager and job running frameworks to retrieve and preprocess task information
for straggler identification and diagnosis. Adapters are developed to retrieve the
data from different systems. An adapter discovers the task set of a job and
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Fig. 4. Architecture of Zeno.

extracts the attributes for each of the tasks in the set from the corresponding
system, including the task execution time, the resource allocation data, and the
resource usage data. All the task data extracted for one job are compiled into a
single file. Currently we have developed two non-intrusive adapters preprocessing
the information from Borg system log and Fuxi system log respectively.

Straggler Identification and Diagnosis Service: The backbone of Zeno
is the service to identify and diagnosis stragglers for the jobs. The straggler
identification engine and the straggler diagnosis engine are implemented based
on Sect. 2.

User Interface: Straggler identification and diagnosis results are presented
to users through a web user interface. After the user selects a job, Zeno runs
the analysis immediately and presents the results in two panels on a web page.
Figure 5 shows an example. In the straggler identification panel, a histogram
describes the distribution of execution time of the tasks, where stragglers and
non-stragglers are labeled in different colors. It gives the user a high-level impres-
sion on how many tasks are identified as the straggler and to which extent
they straggle the job performance. Detailed statistics of the non-stragglers and
stragglers execution time are also provided. Figure 5(a) gives an example of the
straggler identification panel. The straggler diagnosis panel shows the straggler
diagnosis result. A simple and easy-to-read rule is highlighted along with its
confidence and coverage. The histogram of task execution time is shown again,
but the tasks are now labeled based on the prediction of the rule. Users are able
to evaluate the empirical performance of the rules straightforwardly. The system
also shows how the tasks are distributed with respect to the attributes involved
in the rule. If the rule comes with a single condition, the task histogram with
respect to the attribute is given. If the rule comes with a combo condition, a
scatter plot of the tasks over the two attributes would show. In either case, strag-
gler and non-straggler tasks are colored differently. Figure 5(b) is an example of
the straggler diagnosis panel with a single condition rule.

Through the web user interface, users are able to understand the diagnosis
result easily. Given the high-level knowledge extracted from a large amount of
low-level data, they are able to translate the result into improvement actions.
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(a)

(b)

Fig. 5. A screenshot of Zeno: (a) the straggler identification panel and (b) the straggler
diagnosis panel.
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4 Experiments

We evaluate Zeno on two production cluster traces from a Google’s Borg system
[20] and an Alibaba’s Fuxi system [23]. In the next several subsections, we first
introduce the two datasets used in experiments. Results of straggler identification
and diagnosis are then presented. After that four case studies are given. Finally,
we perform an objective evaluation of the rule quality in terms of the straggler
prediction performance on held-out sets of tasks within the same jobs.

4.1 Datasets

Google Cluster Trace: Borg [20] is a cluster management system running a
large number of jobs from many different applications across clusters on tens of
thousands of servers in Google. The system supports the concurrent execution
of jobs, process-level isolation for tasks, and dynamic resource allocation. Each
job running in Borg consists of a set of homogeneous tasks which execute the
same binary, request the same resource, and start approximately at the same
time. However, resources assigned for each task depends on its relative priority
to other concurrent tasks on the same computing cell and its resource usage
history.

A representative Borg workload is publicly available2. It is a one-month trace
of a Google production cluster with more than 12000 servers. Job and task
information are logged in the trace. For each task, its resource allocation and
usage data are monitored every five minutes. The values, however, are scaled.

The trace is divided into 500 parts chronically. We use the first 50 parts for
evaluation. Jobs with less than 50 tasks are excluded, as we focus our effort
on jobs with a considerable extent of parallelism. After filtering, 3889 jobs are
selected. We extract the start and end time for all the tasks in each of the jobs
for straggler identification. In straggler diagnosis, we assemble the feature vector
with the resource allocation and usage values of ‘CPU rate’, ‘canonical memory
usage’, ‘assigned memory’3, ‘unmapped page cache’, ‘total page cache’, ‘disk I/O
time’, and ‘local disk space usage’4. Those values are averaged for each of the
tasks across their lifetime.

Alibaba Cluster Trace: Fuxi [23] is a resource management and job schedul-
ing system in Alibaba that handles batch processing workload. Though with a
different set of terminologies, the distributed computing paradigm is similar to
that of Borg: a ‘task’ in Fuxi system contains a set of ‘instances’ which execute
exactly the same binary with the same resource request.

A trace containing the information of a 12-h run on a production cluster with
more than 1000 machines is publicly available5. While the trace also contains
2 https://github.com/google/cluster-data.
3 The attribute is named as ‘assigned memory usage’ in the trace. However, according

to [20] its semantic is the amount of memory assigned, not the amount used.
4 Network utilization, unfortunately, is not available in the trace, which may probably

impact the success rate of straggler diagnosis.
5 https://github.com/alibaba/clusterdata.

https://github.com/google/cluster-data
https://github.com/alibaba/clusterdata
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Table 1. Experimental results on successful identification of stragglers.

Datasets Number of jobs input Number of jobs output Success rate

Google trace 3887 2447 62.92%

Alibaba trace 5138 830 16.15%

services not managed by Fuxi, we extract the relevant information from Fuxi
system in the trace for evaluation. The concepts of ‘tasks’ and ‘instances’ in
Fuxi system are translated to jobs and tasks in our straggler diagnosis system.
Similarly, we filter out the jobs with less than 50 tasks. 5138 jobs are resulted
from the filtering process. Again the start time and end time for tasks in a job
are used for straggler identification. The relevant part of the trace contains much
less information on resource allocation and usage. During straggler diagnosis, the
two attributes, ‘average CPU’ and ‘average memory’, are used to assemble the
feature vector.

4.2 Straggler Identification and Diagnosis

We first perform the experiments of straggler identification. Table 1 shows the
experimental results of straggler identification on the two datasets. For jobs with
stragglers identified in the two traces, Fig. 6 shows the scatter plots correlating
the percentage of stragglers within a job with the percentage of additional time
spent by the stragglers versus the time spent by all the tasks (assuming that
their start time is aligned).

(a) (b)

Fig. 6. Stragglers percentage (x-axis) versus percentage of additional time spent by
the stragglers (y-axis) within individual jobs. (a) Results on Google cluster trace (b)
Results on Alibaba cluster trace.

In the first phase of straggler identification, in Google cluster trace, more than
60% of the 3887 jobs are identified to have straggler tasks. In Alibaba cluster
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trace, about 16% of the 5138 jobs are identified to have straggler tasks. Although
a preliminary examination suggests that jobs in the trace from Alibaba cluster
seem to be impacted less by stragglers, we conjecture that it is because of the
bias to short jobs in a shorter trace. It is very likely that some jobs impacted by
stragglers do not finish in the 12 h so that their information is not included in the
dataset. From the two scatter plots, we see quite a lot of data points scattered
at the left side to the upper left corner of the figure. This indicates that quite
a lot of jobs are impacted by a small portion of stragglers, sometimes to such a
significant extent that more than 80% of the job execution time is devoted solely
to stragglers.

We next perform the experiments of straggler diagnosis. Among 2447 jobs
with stragglers identified in the trace from the Google’s Borg cluster, 820 jobs
with no less than 30 stragglers are chosen for diagnosis. This is because that
smaller number of stragglers (positive samples) may not only pose difficulties
to statistical machine learning method but also impact the objective evaluation
performed in Sect. 4.4. On the much smaller dataset from Alibaba cluster, most
jobs contain very few stragglers. As a result, we take all those jobs with stragglers
identified for diagnosis. This challenges our straggler diagnosis to tackle with
difficult cases of few outliers. Table 2 shows the experimental results of successful
straggler diagnosis on the two datasets.

Table 2. Experimental results on successful diagnosis of stragglers.

Datasets Number of jobs input Number of jobs output Success rate

Google trace 820 417 50.85%

Alibaba trace 830 580 69.88%

From the experimental results, we see that in the two datasets, when the
rule acceptance threshold is 70% (θ in Fig. 3), more than half of the jobs are
automatically diagnosed with simple and easy-to-read rules generated.

4.3 Case Study

We present four case studies of straggler diagnosis using Zeno.

Case 1: The first case comes from Alibaba cluster trace. Among all the 580 jobs
which succeed in straggler diagnosis, 405 jobs (close to 70%) are diagnosed to be
caused by low CPU usage with empirical f-measure no less than 90%. Figure 7(a)
shows the screenshot of the diagnosis result for a typical job. Due to the space
limitation, we only show the diagnosis panel in the case studies. Among all the
475 tasks in the job, 99% of them finish within 90 s while the remaining 1%
straggler tasks do not complete until the 156th second. Zeno diagnoses that a
task becomes a straggler if its CPU usage is less than a threshold, suggesting
that the stragglers are not able to obtain enough CPU resource to run as fast as
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(a) (b)

(c) (d)

Fig. 7. System screenshots of the four case studies: (a) stragglers caused by low CPU
usage; (b) stragglers caused by high resource usage of both CPU and memory; (c)
stragglers caused by insufficient memory assignment; and (d) stragglers caused by data
locality

the others. During a visit to Alibaba to present Zeno, we were told by Alibaba
Cloud Team that the CPU resource of the batch jobs in its clusters is overly
throttled in quite a few cases, thus confirming the explanation of the stragglers
diagnosed by Zeno. In those cases, the job owners are able to get the hint that
performance can be improved by fine-grain resource allocation and reservation.
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Case 2: The second case study from Alibaba cluster trace is more complex.
As shown in Fig. 7(b), about half of the tasks impede the completion of the
job. Though the rule generated in straggler diagnosis incorrectly labels a very
small portion of the tasks, it shows that most of the stragglers consume high CPU
usage as well as high memory usage. In the scatter plot, most of the stragglers sit
in the quadrant of high CPU and memory usage. The pattern strongly suggests
that the uneven partition of the workload is the root cause for the stragglers.
Similar cases are observed in some of the jobs in Google cluster trace as well.
To mitigate the stragglers in the job or similar jobs, the job owner may consider
explicit data partition or re-examine the partition if it has already been done.

Case 3: In Google cluster trace, we find a few cases of the stragglers caused
by insufficient resource assignment. In a typical example shown in Fig. 7(c), the
diagnosis rule states that insufficient memory assignment causes the stragglers,
significantly impacting the completion of the job. It is further illustrated by
the task histogram of ‘assigned memory’ used by the rule. In the histogram,
two patterns of memory assignment are identical in shape but have distinct
peak values. They are clearly labeled in different colors according to whether
the tasks are stragglers or non-stragglers. We conjecture that the job is for in-
memory processing so that an insufficient memory assignment results in the swap
of the data being processed (see, e.g., [22]). To improve job performance, the job
owner may co-work with the cluster administrators for an explicit reservation
and assignment of enough memory for the tasks.

Case 4: The case is observed in our lab environment on a small cluster with 3
servers. A Spark [22] job, collaborative filtering based on alternative least squares
for a movie recommendation system, runs on top of the Hadoop YARN [19]
cluster manager with the default configuration. It reads the GroupLens dataset6

from HDFS, a local distributed file system. Default Spark task attributes are
used in Zeno as the task features. In one of the job stages which shows the final
recommendation data frame, Zeno identifies the stragglers within the tasks of
this stage and suggests that data locality is the cause of the stragglers7. Few ‘rack
level’ tasks run far behind the other tasks with the data locality of ‘process level’.
By looking into the detail of this stage, we confirm that the ‘rack level’ straggler
tasks read intermediate computing frame from other nodes while the ‘process
level’ tasks read from the same executor instance. To improve job performance,
the job owner needs to resolve the data locality issue, probably with a better
task scheduling or with more data replicas.

Summary: The case studies here show the effectiveness of Zeno in identifying
and diagnosing stragglers for jobs running in large scale production clusters.
The diagnosis results discover valuable insights into why tasks become strag-
glers. Based on different insights discovered, performance improvement in future
runs of the jobs relies on job owners (sometimes with the help from cluster

6 https://grouplens.org/datasets/.
7 The same conclusion can be reached if the network usage of the tasks (rather than

the default Spark task attributes) is monitored and used for diagnosis.

https://grouplens.org/datasets/
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administrators) to translate the diagnosis results to improvement actions, e.g.,
explicit data partition, explicit resource reservation in some forms of service level
agreement, etc.

4.4 Rule Quality Evaluation

As we are not able to recover the full job information from the public trace, it
is difficult to judge subjectively on whether those rules truly cast light on the
causes of the stragglers. Instead, we use the objective metrics, the performance in
predicting stragglers in a held-out set of tasks, to evaluate the quality of the rules
automatically generated. The goal is to understand how well Zeno’s straggler
diagnosis algorithm is able to correlate the task slow-down with an appropriate
pre-condition in a specific job run. A good performance indicates that the rule
is able to predict stragglers well on unseen data in the similar context including,
e.g., the same job or similar jobs, the same or similar scheduling context.

We design our experiments as follows. For each of the jobs which are success-
ful in automatic straggler diagnosis, we divide its tasks evenly into 20 mutually
exclusive parts. We then rerun the rule induction algorithm for 20 times. Each
time we take 19 of the 20 parts for rule induction and use the remaining part
for straggler prediction. With the 20-fold cross-validation, we are able to retain
a close-to-original dataset with a similar size for rule induction and at the same
time utilize all the tasks in evaluating the performance of the rules. Rule qual-
ity evaluation is performed on Google dataset only, in which each of the jobs
contains at least 30 stragglers so that each of the 20 parts contains at least one
or two stragglers. Most jobs from Alibaba dataset contain very few stragglers.
Therefore they are not eligible to be used for rule quality evaluation.

To rate the quality of the rules induced, we use the standard metrics of
f-measure on test data, which is derived from precision and recall. Precision
indicates how likely an identified straggler is a true straggler and recall indicates
how likely a true straggler gets identified. As the harmonic average of precision
and recall, f-measure balances the two metrics, penalizing the bias to either of
the two. In computing the final evaluation score, we first calculate the f-measure
for each job and then compute the average score across all the jobs with the
same weight.

We first compare our method with several other rule-based classifiers:

1. a default rule stating that all the tasks are stragglers, which results in 100%
recall along with a low precision;

2. decision stumps with atomic conditions only, but not 2-atomic-condition com-
bos;

3. standard one-level decision trees, (that is, decision stumps using the tradi-
tional measurement, information gain, to select the test condition); and

4. two-level decision trees8.
8 In most cases, a two-level decision tree is equivalent to two rules in inferring strag-

glers, each with two test conditions connected with the ‘and’ operator. Note that in
such cases, a two-level decision tree is more complex than the customized decision
stump since two rules are involved.
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Table 3. Performance of predicting stragglers using rules induced.

Method Average f-measure

The default rule: any task is a straggler 30.92%

Decision stumps with atomic conditions 73.77%

One-level decision trees 65.70%

Two-level decision trees 76.14%

Customized decision stumps 78.62%

Table 4. Comparing with other classifiers which are not human-readable.

Method Average f-measure

k-nearest neighbor classifiers 74.79%

Logistic regression with L2 regularization 76.87%

Random forests 82.65%

Customized decision stumps 78.62%

Table 3 shows the straggler prediction performance of the customized decision
stumps as well as the rules induced by the other baseline methods. As we see
from the experimental results, the customized decision stumps achieve an average
f-measure close to 80%, outperforming the other baselines.

Decision stumps using atomic conditions beat one-level decision trees. It indi-
cates that using empirical f-measure as the criterion to select the best condition
is more appropriate than using information gain. Decision stumps using both
atomic conditions and 2-atomic-condition combos outperform that using only
atomic conditions, indicating that it is rewarded to consider a slightly more
complex condition.

Our decision stump approach is also compared with other machine learning
algorithms9 including k-nearest neighbors [2], logistic regression with L2 regu-
larization [15], and the random forest [4]. Classifiers resulted from these learning
algorithms are not readable and cannot be understood from the human perspec-
tive.

We use the same experimental setting of 20-fold cross-validation with the
same data split. Table 4 shows the experimental results from the comparative
study. As we see from the table, in predicting the stragglers for the 417 jobs,

9 We have also used the well-recognized state-of-the-art classifier, support vector
machine [7]. We have used SVMLight (http://svmlight.joachims.org/) and LibSVM
(https://www.csie.ntu.edu.tw/∼cjlin/libsvm/), the two main-stream tools. We have
tried the linear kernel and the radius basis function kernel. None of the combinations
produces satisfactory results, probably due to the various extent of imbalanced and
noisy nature across different jobs, which may require fine-tuning the soft margin
parameter for each of the jobs. As a result, we do not report out the results in the
paper.

http://svmlight.joachims.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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the decision stumps induced by our method perform comparably well with the
classifiers resulted from those commonly-used machine learning algorithms. Due
to the robustness against noise in training data, random forests perform the
best. However, they cannot be used as the straggler diagnosis results as the
knowledge extracted by the random forests are not human-readable. This is a
common problem shared by the non-rule-based learning algorithms including k-
nearest neighbors, logistic regression, support vector machines, etc. By contrast,
customized decision stumps induced by our learning algorithm are easy-to-read,
and therefore are well-suited to be presented as the results of automatic straggler
diagnosis.

Finally, we use more rigid thresholds for rule acceptance in rule induction.
Instead of setting the parameter θ in Fig. 3 to the default value of 70%, we test
two alternative values, 75%, and 80%.

Again, in the experiment we use the same setting of 20-fold cross-validation
for rule quality evaluation. Table 5 shows the experimental results on the num-
ber of jobs successful diagnosed as well as the quality of the rules induced. As
we see from the results, with more rigid thresholds, fewer jobs are successfully
diagnosed. However, the performance of the rules gets improved. With the rigid
threshold of 80%, our method is still able to diagnose a decent portion (more
than 30%) of the jobs with the average f-measure close to 85%.

Table 5. Results using more rigid thresholds in rule acceptance: lower success rate but
better performance in straggler prediction.

Thresholds Number of jobs output Success rate Average f-measure

70% 417 50.85% 78.62%

75% 344 41.95% 81.11%

80% 247 30.12% 84.84%

5 Related Work

Cloud computing and high performance computing frameworks typically mon-
itor task completion status and launch backup tasks for stragglers during job
execution (see, e.g., [8,22]). However, they do not provide post analysis and do
not help diagnose the stragglers to prevent them from happening in the future
execution of the same job or similar jobs. When backup tasks are launched for
stragglers, the job performance has already been impacted.

In traditional straggler identification performed either offline or online with
intrusive monitoring, the typical criterion is to compare the task’s execution
time (or progress) with a threshold calculated based on the median value within
all the tasks (see, e.g., [1,9]). However, the portion of the stragglers depends on
how popular the cause manifests. Moreover, the extent that they impede the
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completion of a job depends on the severity of the cause. Using a predefined
criterion based on the median value is not likely to fit different cases. The offline
straggler identification approach proposed by us is able to accommodate different
scenarios, e.g., in the case studies presented in Sect. 4.3, while a median-based
threshold will fail at least in one of them. [16] proposes a dynamic threshold
calculation for straggler identification. The work targets to optimize speculative
execution with task replication based on the quality of services, task execution
progress, and cluster resource usage. Its objective is completely different from
ours.

Data-driven methods (see, e.g., [10,21]) are proposed to model task exe-
cution performance or categorize stragglers. Those methods target to improve
automatic resource allocation. The models are not human-readable. Directly
applying the methods in a complicated cloud or high performance computing
environment is difficult due to various factors that a scheduler may consider.
Furthermore, the problem of the uneven partition of workload and that of data
locality cannot be addressed by automatic resource allocation with those meth-
ods. Given that the models are not human-readable, one cannot use the methods
to identify those problems.

There are few studies on the post-execution diagnosis of stragglers. Gar-
raghan et al. [9] diagnoses the root-causes of stragglers in a production cluster.
However, the diagnosis is done manually with significant effort.

Offline analysis available in standard computing frameworks is limited. Those
frameworks provide APIs to retrieve performance data and other runtime infor-
mation for post analysis. There are also a wide range of tools for scalable display
and interactive visualization of performance data to analyze the far too large and
too complex data (see., e.g., [5,6]). While those tools rely on significant manual
analysis which is labor-intensive, error-prone, and much more time-consuming,
Zeno is automated. Zeno is also complementary to those tools in terms of extract-
ing high-level knowledge from a large amount of low-level data.

Cluster managers, e.g., YARN [19], Quincy [12], Borg [20], have different
focus. They provide resource isolation and allocation based on usages, job pri-
orities, and fairness. They do not provide answers to which tasks are stragglers
within a job or to why those tasks are slower. They help cluster administrators
more in terms of cluster utilization efficiency while Zeno helps job owners more
in terms of job execution efficiency.

6 Conclusion

In this paper we have presented Zeno, a straggler diagnosis system which auto-
matically identifies and diagnoses straggler tasks for jobs running in a distributed
environment. Zeno employs an unsupervised clustering method for straggler
identification and uses a customized decision stump induction algorithm in strag-
gler diagnosis. The rules generated by Zeno help users discover insights into why
some tasks are slow and what can be done to improve the job performance. In
future work, we plan to extend Zeno for real-time straggler analysis during task
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execution. Although the extension may close the loop of automatic performance
improvement, our current focus relies on human as part of the loop.
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Abstract. To support the portability of efficiency when bringing an
application from scientific computing to a new HPC system, autotuning
techniques are promising approaches. Ideally, these approaches are able
to derive an efficient implementation for a specific HPC system by apply-
ing suitable program transformations. Often, a large number of imple-
mentations results, and the most efficient of these variants should be
selected. In this article, we investigate performance modelling and predic-
tion techniques which can support the selection process. These techniques
may significantly reduce the selection effort, compared to extensive run-
time tests. We apply the execution-cache-memory (ECM) performance
model to numerical solution methods for ordinary differential equations
(ODEs). In particular, we consider the question whether it is possible to
obtain a performance prediction for the resulting implementation vari-
ants to support the variant selection. We investigate the accuracy of the
prediction for different ODEs and different hardware platforms and show
that the prediction is able to reliably select a set of fast variants and,
thus, to limit the search space for possible later empirical tuning.

Keywords: Performance model · ECM model
Performance prediction · Variant selection · Multicore

1 Introduction

Applications from scientific computing typically need to be adapted to the char-
acteristics of a specific HPC (high-performance computing) platform to achieve
a high efficiency. A high efficiency typically requires the use of program optimiza-
tion techniques, such as loop unrolling or loop tiling, for the compute-intensive
inner kernels of the application. This involves the selection of suitable param-
eter values, such as loop unrolling factors or tile block sizes. The use of such
techniques may significantly increase the overall efficiency, but typically requires
a large effort from the application programmer, including a large number of
c© Springer International Publishing AG, part of Springer Nature 2018
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runtime tests with different implementation variants. Moreover, the best imple-
mentation variant selected for one HPC platform may not be the best imple-
mentation variant for a new HPC platform and to find a good implementation
variant for the new platform may again require a large programming effort.

To support the selection of efficient implementation variants, offline and
online autotuning techniques have been developed for different application areas.
Offline approaches are suitable if the execution behaviour of the application
mainly depends on the size of the input data and other properties of the input
data only play a minor role. This is, e.g., the case for dense linear algebra prob-
lems, and many examples for offline approaches come from this area, including
ATLAS [1] and PHiPAC [2]. Online approaches are required if properties of the
input set play an important role for the execution behaviour, as it is, e.g., the
case for sparse linear algebra problems or particle codes. Examples for online
approaches are Active Harmony [3] and Periscope [4].

The challenge for autotuning is the selection of a suitable implementation
variant from a potentially large number of possible variants. The implementa-
tion variants can be compared by runtime experiments, but this can be quite
time consuming. An alternative is the use of performance prediction using ana-
lytical approaches. To be suitable, the performance prediction must be accurate
enough to clearly distinguish the performance of the different implementation
variants and to order the implementation variants such that the order analyti-
cally determined corresponds to the order which would result by runtime tests.

To explore whether such a performance modelling approach is suitable, we
investigate the approach for a complex example from numerical analysis. In
particular, we consider the usage of the execution-cache-memory (ECM) per-
formance model and apply the model to compute performance predictions for
explicit solution methods for ODE systems. These solution methods compute a
numerical approximation for the solution by performing a series of time steps
one after another [5]. Each time step consists of the computation of a fixed num-
ber of stage vectors which are then combined to the next approximation vector
for the unknown solution. Overall, these methods exhibit a complex loop struc-
ture, which can be modified by loop transformations such as loop interchange,
unrolling, or tiling, yielding a large set of implementation variants. It is not a
priori clear, which of the resulting implementation variants leads to the small-
est execution time on a given multi-core system. The performance behaviour of
these implementation variants depends on the organization of the computations
and the memory accesses within each time step, but also on the characteristics
of the ODE system to be solved.

A performance modelling approach can be used in the offline phase to ana-
lytically estimate the execution time of different implementation variants and to
build a set of candidate variants that can then be tested further in the online
phase. As a representative class of explicit ODE methods, we use a class of iter-
ated Runge-Kutta (iterated RK, IRK) methods, which possess a complex loop
structure leading to a high number of possible implementation variants. To apply
the tools available for the ECM model, we split the time-step code of the ODE
solver into a number of kernels and assemble the overall prediction by putting
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together the predictions of the individual kernels. This yields for each variant a
quantitative prediction of the time needed to execute a single time step. Taking
into account that performance models always include an abstraction of the real
hardware and introduce a prediction error, we do hope, however, that the model
is accurate enough to allow a qualitative ranking of different implementation
variants. Such a ranking information can be useful for an autotuning approach,
e.g., by helping the autotuning driver during the online phase to decide which
variants to test next or which variants to discard.

The contribution of this paper is (i) to apply the ECM model to a complex
numerical method with complicated runtime behaviour, (ii) to perform a detailed
experimental analysis to assess the accuracy of the prediction for different set-
tings (ODE system and hardware architecture), (iii) to discuss the applicability
in the context of autotuning. The rest of the paper is organized as follows: Sect. 2
discusses related work. Section 3 gives an overview of the ECM model. Section 4
describes the computational structure of the ODE solution method and Sect. 5
applies the ECM model. Section 6 describes the experimental evaluation and
Sect. 7 concludes the paper.

2 Related Work

Many modelling approaches to estimate the optimal performance of codes and
to validate the effectiveness of applied optimizations techniques exist. Roughly
two categories can be distinguished: black box models that rely on statistical
methods and machine learning to describe and predict performance behaviour
based on observed data like hardware performance metrics [6,7], and white box
models that use simplified machine models to describe the interaction of code and
hardware [8,9]. In this paper, we focus on a white box model, the ECM model
[10,11], which can provide a single-core performance and scaling prediction for
loop kernels, and apply it to time-step-oriented explicit ODE methods.

The biggest challenge for autotuning is the selection of a suitable implemen-
tation variant or of a pool of suitable variants from a potentially large number of
possible variants. Thus, optimizing that selection process is of vital importance
for autotuning, for which many approaches have been proposed. The above men-
tioned modelling approaches can be used to filter out slow variants by giving
performance estimations for variants without actually having to run the code.
Next to the performance prediction through modelling, there are many other
means to support the quest for the most suitable implementation variant by
reducing the potentially large search space of possible variants. Search strategies
like exhaustive sampling [2], line search [1], hill climbing [3] or evolutionary algo-
rithms [4] can be used to selectively scan through the space of possible variants
and evaluate promising variants. Further, heuristic-based search tree pruning
methods [12,13] or machine learning techniques [14,15] can be used to reduce
the search space.

There are many numerical methods for the solution of ODE IVPs. Next
to the classical explicit and implicit RK and multi-step methods [5], a broad
range of methods exploiting parallelism exists, e.g., iterated RK methods [16,17],
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waveform relaxation methods [18], and peer two-steep methods [19]. In this
paper, we focus on a class of IRK methods, more precisely, a class of explicit
predictor corrector (PC) methods of RK type. In this paper, we use this class
as a representative example to investigate the applicability of the ECM model
to the general class of time-step-oriented explicit ODE methods.

3 ECM Performance Model

The ECM performance model is an analytic performance model which predicts
the number of CPU cycles required to execute a given number of loop iterations
on a multi- or many-core chip. The estimation includes contributions from the
in-core execution time Tcore and the data transfer time Tdata. Tcore is defined as
the time spent executing instructions in the core under the assumption that all
data is in the L1 cache. Tdata describes the time required to transfer all data
from its location in the cache-memory hierarchy to the L1 cache. Further, the
model assumes that single-core performance scales linearly with the cores until
a shared bottleneck is saturated and names the core count necessary to saturate
that bottleneck. This count is called the loop’s performance saturation point.

Modern core designs consist of multiple execution units each dedicated to
perform certain work: data transfer operations, arithmetic operations, etc. The
model assumes that all instructions are scheduled independently to the ports of
the units and that, thus, in-core execution time Tcore is determined by the unit
that takes the most cycles to execute its instructions. Besides, other architecture-
specific constraints for Tcore might apply, e.g. the four micro-op per cycle retire-
ment limit for Intel Xeon cores. Data transfer times are initially modelled by
the model as a function of bandwidth with latency effects neglected. The con-
tributions of each level in the cache-memory hierarchy (TL1L2, TL2L3, TL3Mem)
are determined depending on the amount of transferred cache lines (CLs). Tdata

comprises all necessary data transfers in the memory hierarchy required to trans-
fer data to the L1 cache and back. E.g., for data coming from the L3 cache and
under the no-overlap hypotheses for data transfer, we get:

TL3
data = TL1L2 + TL2L3. (1)

To obtain a prediction T level
ECM of the single core execution time, the in-core

execution and data transfer times must be combined. Therefore, the ECM model
determines which of the runtime contributions can overlap with each other. TOL

is the part of the core execution that overlaps with the data transfer time and
TnOL the part that does not. The in-core execution time Tcore and the total cycle
prediction for data from a particular memory level T level

ECM are defined as:

Tcore = max(TOL, TnOL), (2)

T level
ECM = max(TOL, TnOL + T level

data ). (3)

These predictions can be gained automatically using kerncraft [20], which is
a loop kernel analysis and performance modelling toolkit capable of analysing
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loop kernels of particular codes (streaming, stencil or dense linear algebra) using
predictions based on the ECM model and static code analysis. So far, kerncraft
has been effectively applied to kernels having streaming and stencil patterns [20].

kerncraft provides its prediction by combining a parameter file describing
machine characteristics and information from the loop kernel code (i.e. in-core
execution cycles and data traffic between different memory hierarchies). Specific
machine information (e.g. data transfer rates, cache sizes, . . . ) are obtained using
simple benchmarks of the likwid bench microbenchmarking framework [21], that
are carried out once per target machine. For a given kernel, kerncraft automat-
ically compiles and extracts assembly instructions which are then analyzed by
the Intel Architecture Code Analyzer [22] to estimate the in-core execution cycles
(TOL, TnOL). kerncraft provides two options to analyze the data traffic: (a) SIM
mode (b) LC mode. SIM mode is a general mode that is applicable to all kern-
craft-capable kernels. In this mode a cache-simulator is used to count accesses,
misses and hits occurring within different cache hierarchies. The LC mode can
only be used with relatively simple kernels and basically works on analytical
models and layer condition estimates [11].

In this work, we apply kerncraft to a group of more complex loop kernels:
explicit ODE methods. Compared to the kernels evaluated previously, our codes
consist of not perfectly nested loops and may contain conditions (depending on
the ODE to be solved). As this is not supported by the used version of kerncraft
(0.6.4), simplifications of our codes were necessary. We limited us to simpler ODE
systems (few boundary points, consistent access pattern(s) for inner points) and
split our codes into several kerncraft-capable loop kernels. Further, we used
kerncraft ’s SIM mode to estimate the data traffic, since some of the kernels
were too complex to be analyzed with the LC mode.

4 Application Example: ODE Solvers

In this paper, we consider IRK methods as a representative example of the
general class of explicit ODE methods to investigate the applicability of the ECM
model to this general class. Within each time step, the IRK methods exhibit a
four-dimensional loop structure, which enables loop transformations, such as
loop interchange, loop tiling, and loop unrolling. This leads to a potentially
large number of possible implementation variants with potentially highly varying
performance characteristics, depending on (a) the target hardware, (b) the ODE
system to be solved, (c) the number of stages of the selected base ODE method,
and (d) the selected compiler and its flags. Hence, a reliable performance model
would be of great value to either directly select the best variant or to preselect
a set of candidate variants for an autotuning procedure.

4.1 Computational Structure of IRK Methods

IRK methods are based on s-stage implicit RK methods [23] and belong to the
class of one-step methods, i.e., in each time step tκ, a new approximation yκ+1 is
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computed directly from the previous approximation yκ. An implicit RK method
with coefficient matrix A = (aij) ∈ IRs,s, weight vector b = (bi) ∈ IRs, node
vector c = (ci) ∈ IRs, and order p is used as base method (corrector method).
As initial approximation (predictor), we choose:

Y
(0)
l = yκ, l = 1, . . . , s. (4)

Then, the corrector method is applied a fixed number of m = p − 1 times:

k = 1, . . . ,m:

Y
(k)
l = yκ + hκ

s∑

i=1

aliF
(k−1)
i , l = 1, . . . , s (5a)

with F
(k−1)
i = f(tκ + cihκ,Y

(k−1)
i ), (5b)

where f is the given right-hand-side function (RHS) of the ODE system to be
solved. The output approximation yκ+1 is then obtained by:

yκ+1 = yκ + hκ

s∑

i=1

biF
(m)
i , (6)

For efficient step size control, an error vector can be computed by:

e = hκ

s∑

i=1

bi

(
F

(m)
i − F

(m−1)
i

)
. (7)

Based on the difference between the norm of e and a user-defined tolerance,
time steps can be accepted or rejected, and the step size can be increased or
decreased.

4.2 Selected Implementation Variants

The implementation of the computations in (5) leads to a nested four-
dimensional loop structure which iterates over:

1. the corrector steps (k = 1, . . . ,m),
2. the argument vectors Y

(k)
l (l = 1, . . . , s),

3. the summands of
∑s

i=1 aliF
(κ−1)
i (i = 1, . . . , s),

4. the system dimension (j = 1, . . . , n).

For the development of generally applicable implementation variants, the
evaluation of one component of the RHS function fj

(
tκ + cihκ,Y

(k−1)
i

)
must

be assumed to depend on all components of the argument vector Y
(k−1)
i from

the previous corrector step. This requires the corrector steps to be computed one
after another, i.e., the k-loop has to be the outermost loop. All other loops (l-,
i-, and j-loop), however, are independent of each other and fully permutable.
Thus, we can apply loop transformations such as interchange, fusion, fission
and/or tiling. This also implies that IRK methods have the potential to exploit
parallelism across the ODE system (j-loop) and the stages (l-loop and i-loop).
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1 barrier();
2 for (l = 0; i < s; ++l) // Predictor step
3 for (j = 0; first <= last; ++j) F[l][j] = f(j, ..., y);
4 barrier();
5 for (k = 0; k < m; ++k) { // Corrector steps
6 Y = LC(F, y, A, h)
7 barrier();
8 for (l = 0; l < s; ++l)
9 for (j = first; j <= last; ++j) F[l][j] = f(j, ..., Y[l]);

10 barrier(); }
11 for (i = 0; i < s; ++i) // Approximation
12 for (j = first; j <= last; ++j) dy[j] += b[i] * F[i][j];
13 for (j = first; j <= last; ++j) y[j] += h * dy[j]; // Update

Listing 1. Basic IRK implementation.

In this article, we consider OpenMP implementation variants written in C. All
variants used focus on parallelism across the ODE system, i.e., the n equations
of the ODE system are partitioned among all p threads using a blockwise distri-
bution. Thus, each thread is assigned a block of ≈n/p consecutive components.
The independence of the stages is exploited, however, by reducing the number
of global synchronizations (barriers) to only two per corrector step.

To explore the applicability of the ECM model, we apply the model to a
specific base implementation (Listing 1). This implementation separates the lin-
ear combination of Eq. (5a) and the evaluations of the RHS functions (Eq. (5b))
into two phases and applies barrier operations to ensure that the two phases do
not overlap. It uses two s × n matrices to store F (k) (F) and Y (k) (Y) and two
n-vectors for the input/output approximation y (y) and the difference between
the input and the output approximation yκ+1 − yκ (dy). In addition, one s × s
matrix and two s-vectors are required for the coefficients A, b, c of the corrector
method. To simplify the analysis, step control is not yet considered.

As the l-loop, i-loop and j-loop are fully permutable, there are six possible
implementations of the linear combination (LC(...)). Different loop permuta-
tions lead to variants with a high spatial locality and a high potential for SIMD
vectorization by the compiler or to variants that enable temporal reuse of argu-
ment vector components in write operations corresponding to updates of the
sum

∑s
i=1 aliF

(k−1)
i in (5), but which also reduce the spatial locality.

5 Application of the ECM Model

We use the ECM model to derive runtime predictions θε of the time required to
execute a single time step of different variants ε ∈ [Aijl, Ailj, Ajil, Ajli, Alij, Alji]
of the base implementation. In particular, we apply the kerncraft tool to obtain
θε. Therefore, ε is split into several smaller loop kernels that are then analysed
with kerncraft .

The used version of kerncraft (0.6.4) does not support conditional statements
inside loop kernels. Hence, we have to decide whether we limit the analysis to the
inner points of the grid(s) of the ODE system used ignoring all boundary points
or if we consider all points independently. The first approach could result in an
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underestimation of the prediction if the computation of the boundary points is
much more expensive and the system size is not big enough to hide that. However,
this approach is less time-consuming as less kerncraft runs are required to obtain
θε. Thus, it would be suitable for the online phase of an autotuning procedure. In
contrast, the second approach might yield more accurate and reliable predictions,
even for complex RHSs, but is only feasible in non time-sensitive contexts, e.g.
the offline phase. A combination of both approaches is conceivable as well. In
this paper, we focus on ODE systems applicable to the first approach.

5.1 Runtime Prediction

We predict the runtime θε required to execute a single time step of an IRK imple-
mentation variant ε as:

θε =
∑

λ

φλ + tsync, (8)

where φλ is the kernel runtime prediction of a particular loop kernel λ of ε. Term
tsync factors in the synchronization costs of the threads executed τ . The runtime
prediction φλ of kernel λ is defined as:

φλ =
ζλ

f · min(τ, σλ)
, (9)

where f is the CPU frequency of the target machine, σ the saturation point of
kernel λ and ζλ the kernel prediction of λ. The kernel prediction ζλ yields the
number of cycles required to execute kernel λ:

ζλ =
αλβλ

δ
, (10)

where αλ is defined as the number of cycles required to execute one CL of data
and, thus, corresponds to the result of the ECM model prediction (Eq. (3)). To
obtain ζλ, αλ is multiplied by the number of iterations executed βλ and divided
by the number of data elements δ fitting into one CL (e.g., eight doubles (each
eight bytes) per CL on our target platforms). That division is necessary to take
into consideration that αλ is already per CL. As a simplification to our formula,
we assume that δ yields the same value for all caches.

5.2 Variants ε of the Base Implementation

The runtime prediction θε of a variant ε of the base implementation is obtained by
assembling its single kernel runtime predictions φλ according to (9). Depending
on the used permutation of the LC, five (jil, jli, lji) or six loop kernels (ijl, ilj,
lij) are needed to model these variants. All variants differ in their LC kernel(s),
but share the remaining kernels: Pre, RHS, Appr, Upd.

In this section, we limit us to discussing variant Alji, whose loop kernels
are described in Listings 2 to 5. The predictor step (lines 2–3 in Listing 1) is
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handled by kernel Pre, which executes a RHS-dependent number of operations
in each loop iteration. In total, Pre comprises βPre = s · n loop iterations. The
computation of the output approximation (lines 11–12) is covered by kernel Appr
and comprises βAppr = s · n iterations. The update of y (line 13) is captured by
kernel Upd, which executes βUpd = n iterations. The k-loop over the corrector
steps (lines 5–10) cannot be captured by a single kernel as its loop structure is
not perfectly nested. Instead, multiple kernels need to be considered: LC (line
6), RHS (lines 8–9). Kernel LC lji captures the LC required to determine the
argument vector Y of the RHS function evaluation. The i-loop is unrolled and,
thus, the kernel comprises only βLC lji = m·s·n iterations. Kernel RHS evaluates
the RHS function. It executes βRHS = m · s · n iterations. By substituting the
single kernel predictions ζ of Alji into our formula we get:

θAlji =
n

f · δ
(

s · αPre

min(τ, σPre)
+ m · s(

αLC lji

min(τ, σLC lji)
+

αRHS

min(τ, σRHS)
)

+
s · αAppr

min(τ, σAppr)
+

αUpd

min(τ, σUpd)
) + tsync. (11)

Remark: When a non-perfectly nested loop is split into several kernels, a pre-
diction error may be introduced, because the split loop structure may have a
different reuse pattern. In the following experimental evaluation, we will show
that this error is acceptable for our application.

1 for (l = 0; l < s; ++l)
2 for (j = 0; j < n; ++j) F[l][j] = f(..., y);

Listing 2. Loop kernel Pre/RHS.

1 for (l = 0; l < s; ++l)
2 for (j = 0; j < n; ++j) {
3 for (i = 0; i < s; ++i) Y[l][j] += A[l][i] * F[i][j]; // Unrolled
4 Y[l][j] = Y[l][j] * h + y[j]; }

Listing 3. Loop kernel LC lji.

1 for (i = 0; i < s; ++i)
2 for (j = 0; j < n; ++j) dy[j] += b[i] * F[i][j];

Listing 4. Loop kernel Appr.

1 for (j = 0; j < n; ++j) y[j] += h * dy[j];

Listing 5. Loop kernel Upd.

6 Experimental Evaluation

In this section, we present an experimental evaluation of our prediction formula
by applying it to the IRK implementation variants considered using different
test problems and hardware platforms.
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6.1 Experimental Setup

// Constants: N12
N12 * (y[j-N] + y[j-1] - 4 * y[j] + y[j+1] + y[j+N];

Listing 6. Kernel code fragment of H2D.

// Constants: Uop, R, eta, Uthr, C
((Uop - y[j]) * R - (eta * ((y[j-1] - Uthr) * (y[j-1] - Uthr)

- (y[j-1] - y[j] - Uthr) * (y[j-1] - y[j] - Uthr)))) / C;

Listing 7. Kernel code fragment of IC.

// Constants: dz, dz2, c
// z = (j + 1) * dz; t = (dz - 1.0) * (z - 1.0) / c;
// a = 2.0 * (z - 1.0) * t / c; b = t * t;
(a * y[j+1] - y[j-1]) / (2.0 * dz) + (y[j-1] - 2.0 * y[j] + y[j+1] * b / dz2)

- k * y[j] * y[j+N]; // 1. PDE
- k * y[j+N] * y[j-1]; // 2. PDE

Listing 8. Kernel code fragments of MEDAKZO.

// Constants: diff
// x = y[j] ; a = y[j+N]; b = y[j+2N];
// u = (x - 0.7) * (x - 1.3); v = u / (u + 0.1);
-10000.0 * (b + x * (a + x * x)) + diff * (y[j+1] - 2.0 * x + y[j-1]); // 1. PDE
b + 0.07 * v + diff * (y[j+N+1] - 2.0 * a + y[j+N-1]); // 2. PDE
(1.0 - a * a) * b - a - 0.4 * x + 0.035 * v

+ diff * (y[j+2N+1] - 2.0 * b + y[j+2N-1]); // 3. PDE

Listing 9. Kernel code fragments of CUSP.

Test Problems. We consider four sparse ODE systems as test problems which
exhibit different characteristics regarding their execution time (compute-bound,
memory-bound, mixed behaviour) and are therefore suitable for the investiga-
tion of our prediction formula. Sparse ODE systems have the property that the
runtime is less dominated by the evaluation of the RHS function (only few com-
ponents need to be touched) and, thus, there is need for autotuning the LC.
Most large and sparse ODE systems tend to have some regular access pattern
and, thus, should be quite accurately predictable by our formula. Even if the
prediction would not be as accurate for more complex sparse ODE systems, still
the majority of the runtime will be spent in the LC, thus mitigating the less
accurate prediction of the RHS. Listings 6 to 9 show the codes used to replace
the RHS function f(...).

– H2D is the 2d heat equation and describes the distribution of heat in a
given region over time. Its ODE system is derived from a PDE by a second
order discretization on a N × N grid and has the dimension n = N2. H2D is
memory-bound due to the growth of its access distance N with increasing n.
In the worst case, loading the required elements of y takes three single cache
loads (i − N , i − 1 to i + 1, i + N).
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Table 1. Overview of the target platforms considered.

Name HSW IVB

Microarch. Haswell EP Ivy-Bridge EP

CPU Intel Xeon E5-2630 v3 Intel Xeon E5-2660 v2

Clock (GHz) 2.4 GHz 2.2 GHz

Cores(Thr.) 8(16) 10(20)

L1 cache 32 kB (data) 32 kB (data)

L2 cache 256 kB 256 kB

L3 cache 20 MB (shared) 25 MB (shared)

CL size 64 B 64 B

Instruction throughput per cycle

LOAD/STORE 2/1 1/1/2

ADD/MUL/FMA 1/2/2 1/1/-

– IC is the electric circuit model of an inverter chain [24] and describes a
traversing signal through a chain of N concatenated inverters. Its ODE system
has the dimension n = N . IC is compute-bound due to the expensive DIV
operation.

– MEDAKZO is the medical Akzo Nobel problem [25] and describes the pen-
etration of radio-labeled antibodies into a tissue that has been infected by a
tumor. Its ODE system is derived from two 1d PDEs by the method of lines
and has the dimension n = 2N . The number of cycles required to evaluate the
ODE components differs between components derived from the first (memory-
bound) and second PDE (compute-bound). The implementation used first
stores all N components of the first PDE followed, then all N components of
the second by the second PDE’s N components.

– CUSP combines Zeeman’s “cusp catastrophe” model for the nerve impulse
mechanism with the van der Pol oscillator [23]. Its ODE system is derived
from three 1d PDEs and has the dimension n = 3N . The first PDE is memory-
bound, while the other two PDEs are compute-bound. As for MEDAKZO,
the implementation used stores all N components of the first PDE, then all
N components of the second PDE, then all N components of the last PDE.

Hardware. The runtimes predicted by our formula are evaluated using runtime
experiments on two different hardware platforms, which are described in Table 1.

– HSW is a Intel Xeon E5-2630 v3 2.4 GHz Haswell-EP processor with an
experimentally measured load only bandwidth of 51 GB/s.

– IVB is a two-socket Intel Xeon E5-2660 v2 2.2 GHz IvyBridge-EP processor
with ten cores per socket. The load only bandwidth per socket is 46 GB/s.

On both platforms the codes used in our experiments are compiled with the Intel
C/C++ compiler and compiler flags -O3, -xHost and -fno-alias set.
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Fig. 1. Kernel predictions ζ of the loop kernels considered for varying n on HSW. (a),
(b) Loop kernels Appr, Upd, LC*. (c) Loop kernels of the RHS.
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Fig. 2. Kernel predictions ζ of the loop kernels considered for varying n on IVB. (a),
(b) Loop kernels Appr, Upd, LC*. (c) Loop kernels of the RHS.

Test Configuration. We test our IRK implementation variants on a broad
range of system dimensions n = N2 (N ∈ [400, 2000]) using a Radau IIA method
(s = 4 stages, order p = 7) that applies m = 6 corrector steps per time step.

6.2 Kernel Predictions ζ

In this section, we present the kernel predictions ζ obtained for the single loop
kernels. These predictions ζ are required to assemble runtime predictions θ
for combinations of different IRK implementations and test problems and are
depicted for both target platforms in Figs. 1 and 2. These figures are set up as
follows: (a) and (b) give predictions ζ for those loop kernels that do not contain
a RHS function call f(...). Specifically, this includes kernels Appr and Upd
and the various LC kernels. For these kernels, ζ must be computed only once
in an autotuning procedure that supports multiple test problems. (c) gives pre-
dictions ζ for the RHS kernels of the various test problems considered. Each of
these figures shows the dimension n of the ODE system on the x axis and ζ in
cycles per CL (cy/CL) on the y axis.

RHS-Independent Loop Kernels. Figure 1(a) gives kernel predictions ζ for
Appr and Upd on HSW. A step shape is visible for both kernels, which indicates
that both are bandwidth-bound. By comparing these steps with the cache limits
given it can be observed that these steps approximately correspond to levels of
HSW’s memory hierarchy. E.g., all data of Appr fit into the L2 cache for small
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n (� 1.0 ·104), while the next step marks the range in which data is loaded from
the L3 cache (n � 4.0 · 105). For bigger n (some) data have to be fetched from
memory and the memory bandwidth measured is taken into account as well. In
this transition area it can be seen that the predictions fluctuate first. Depending
on n and, thus, the amount of data fetched from memory the predicted data
transfer time between the L3 cache and memory differs slightly. In Fig. 1(a) and
(b) ζ is shown for the kernels of the LC. A step shape can be observed for all
kernels and these steps also correspond to levels of HSW’s memory hierarchy.
Further, there are once more fluctuations in the transition area between the L3
cache and memory. All kernels are data-intensive on the complete range of n.

Figure 2 gives ζ for the RHS-independent kernels on IVB. All kernels again
exhibit a step shape and the predictions fluctuate in the transition area. However,
compared to HSW we obtain higher cy/CL values for all kernels. The main reason
for this is that HSW has a higher memory and cache bandwidth than IVB. In
addition, IVB’s lower instruction throughput per cycle also contributes towards
the fact. Further, the steps are shifted to the left due to IVB’s larger L3 cache.

RHS-Dependent Loop Kernels. Figures (c) show ζ for the kernels of the
different test problems on HSW (Fig. 1) and IVB (Fig. 2). The memory-bound
kernels (H2D, MEDAKZO2, CUSP1 ) exhibit the step shape already seen in
previous figures. However for the remaining compute-bound kernels, this char-
acteristic curve progression is not observable, but rather a continuous course
over n. In these kernels the constant share of TOL dominates (3) for the range
of n considered in our experiments and, thus, we obtain a constant ζ.

Reuse of Kernel Predictions. The ability to reuse already obtained kernel
predictions ζ to give runtime predictions θ for new test problems or additional
variants is an advantage of our prediction-based methodology compared to vari-
ant sampling. While variant sampling makes it necessary to run all newly added
variants or when switching the test problem even requires to rerun all available
variants, our methodology only has to provide ζ for changed or new kernels.
These new ζ can then, together with the known ζ of the unchanged kernels, be
used to assemble θ. E.g. when switching from H2D to IC a single kerncraft run
to obtain ζ for IC’s RHS kernel suffices, while sampling would need to rerun all
six variants. Besides, prediction reuse can also be exploited when adding further
variants. E.g. new variants could be derived by fusing kernels Appr and Upd
(Listings 4 and 5) into a single kernel. With our methodology only an extra
kerncraft run is needed to compute θ for these new variants.

Further, the step shape of memory-bound kernels allows to give kernel predic-
tions for a step’s complete range of n by a single kerncraft run. Therefore, only
transition points between steps need to be identified. As these points correspond
to levels of the memory hierarchy, this could be done using a kernel’s working
set sizes for the different levels of the memory hierarchy. For compute-bound
kernels, a single kerncraft run suffices as the kernel prediction stays constant
over n.
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6.3 Quality of Runtime Prediction θ

We validate our runtime prediction θ by comparing runtimes predicted by our
formula with actual runtimes measured on the target platforms. In particular,
we benchmark the runtimes of the single loop kernels and use them to assemble
a total runtime for each implementation variant considered as the sum of the
products of the single kernel runtimes and the β values introduced by (10). We
measure sequential runtimes (τHSW = τIVB = 1; tsync = 0) with hyper-threading
disabled and fixed clock speeds (fHSW = 2.4 GHz; fIVB = 2.2 GHz).

The obtained results are presented in Figs. 3, 4, 5, 6, 7, 8, 9 and 10. In (a)
and (b), θ and the runtime composition of the kernels measured are shown,
respectively. Both figures plot the system dimension n on the x axis and the
normalized runtimes (time per step divided by n) on the y axis. Figure (c)
shows the percentaged deviation of θ from the runtime measured.

HSW. Figure 3 depicts the quality of θ for test problem H2D on HSW. It can
be observed that the ranking predicted (a) corresponds to the ranking measured
(b). Implementation variants Ajil, Ajli are the most performant variants, fol-
lowed by variants Alji and Aijl, with Alij and Aijl being the slowest. Except for
some smaller n (� 1.0 · 106), our predictions are in general too optimistic. Some
deviations can be explained by fluctuations of the memory bandwidth. Our pre-
diction formula uses a fixed predetermined bandwidth value, while this value
fluctuates slightly in each run during kernel benchmarking. Further, deviations
between single runs have to be factored in as well. This leads to a prediction
error that is observable in (c). However, the deviations stay within a 25% range
and are roughly constant for n � 2.0 · 106.
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Fig. 3. Comparison of the runtime predicted with measured for varying n of H2D on
HSW. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged deviation.

The same ranking predicted as for H2D can be observed for IC (Fig. 4).
The predictions are, however, more accurate. Besides Aijl and Alij, no variant
is off more than 5% for n � 3.0 · 106. In general, the deviations stay within a
20% range for n � 0.5 · 106. Similar observations can be made for MEDAKZO
(Fig. 5), where the deviations stay within a 15% range over the complete range
of n. CUSP (Fig. 6) is the only test problem for which we obtain too pessimistic
predictions. Yet, the ranking predicted still corresponds to the ranking measured
and the predictions are not more off than for other test problems.
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Fig. 4. Comparison of the runtime predicted with measured for varying n of IC on
HSW. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged deviation.
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Fig. 5. Comparison of the runtime predicted with measured for varying n of
MEDAKZO on HSW. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged
deviation.
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Fig. 6. Comparison of the runtime predicted with measured for varying n of CUSP on
HSW. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged deviation.

IVB. Figures 7, 8, 9 and 10 give the results on IVB. The same ranking predicted
as on HSW can be observed. However, the prediction are in general no longer
too optimistic for all variants. For H2D (Fig. 7) the predictions for variants Alij,
Ailj, Ajil, Ajli are too pessimistic. Compared to the results on HSW, on IVB
the predictions for H2D are more off. The deviations stay within a 20% range
and are approximately constant for n � 2.0 · 106. Similar observations can be
made for IC (Fig. 8), MEDAKZO (Fig. 9) and CUSP (Fig. 10). The deviation
stays in a constant 20% range for n � 2.0 ·106 for IC. For the more complex test
problems, our predictions are of similar quality (approximately 20% off).
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Fig. 7. Comparison of the runtime predicted with measured for varying n of H2D on
IVB. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged deviation.
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Fig. 8. Comparison of the runtime predicted with measured for varying n of IC on
IVB. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged deviation.
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Fig. 9. Comparison of the runtime predicted with measured for varying n of
MEDAKZO on IVB. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged
deviation.
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Fig. 10. Comparison of the runtime predicted with measured for varying n of CUSP
on IVB. (a) Predicted. (b) Measured (benchmarks). (c) Percentaged deviation.
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6.4 Quantitative Ranking of Implementation Variants

A reliable quantitative ranking of implementation variants can be an excellent
instrument inside an autotuning approach to filter out slow variants during the
offline phase without actually running them. However, an unreliable ranking
might have the opposite effect and lead to the dismissal of performant variants
or the time-consuming execution of slow variants during the online phase.

In this section we validate the quantitative ranking of variants obtained by
the runtimes predicted. Therefore, we compare the runtimes predicted for the
test problems given with runtimes of IRK implementation code. Measurements
were done on a single socket of both target platforms using a fixed number of
threads (τHSW = 8; τIVB = 10), fixed clock speeds (fHSW = 2.4 GHz; fIVB = 2.2
GHz) and hyper-threading disabled. Costs of the 2(m + 1) synchronizations
barriers needed were benchmarked (tsync HSW = 9.0·10−6 s, tsync IVB = 1.2·10−5

s) on both platforms for the given number of threads.
Figures 11 and 12 show the runtime ratio of the best implementation variant

to the other variants and to the obtained runtime predictions of those variants
for the different test problems on both target platforms. The x axis plots the
system dimensions n and the y axis the runtime ratio. A ratio >1 means that a
variant is by that ratio slower than the best one, while a ratio <1 means that it
is faster. Ideally, the order of the graphs of the runtimes predicted reflects the
order of the graphs of the runtimes measured. If such a pattern can be observed
for a combination of platform and problem we can conclude that our prediction
formula gives a good quantitative ranking of the variants for that configuration.

HSW. Figure 11 gives the obtained quantitative rankings on HSW. Our pre-
diction leads us to the correct order of variants for H2D (a) for n � 1.0 · 106

demonstrating that our quantitative ranking is applicable for that range of that
configuration. However, we can not provide a reliable ranking for smaller n. The
same observation can be made for IC (b), MEDAKZO (c) and CUSP (d) as well.

IVB. On IVB (Fig. 12) the same conclusions can be drawn. Our prediction can
provide a reliable ranking for n � 1.0 · 106, while it fails to do so for smaller n.

Performance Loss. Figure 13 depicts the percentaged performance loss sus-
tained by executing the predicted best variant instead of the experimentally
evaluated best variant. These figures plot the system dimension n on the x axis
and the percentaged performance loss on the y axis. Ideally, the performance
loss is 0, i.e. our prediction selected the proper variant.

On HSW (a) the performance loss is marginal (about 1% maximum) for
n � 2.0 · 106. Because runtimes and predictions of the two best variants are
fairly close (Fig. 11), minor measurement inaccuracies in the small times mea-
sured can already lead to the selection of the wrong variant. These losses are,
however, insignificant as both variants are practically equally performant. For
smaller n, for which we can not provide a reliable ranking, the performance
losses are considerably higher. Similar observations can be made on IVB. Here,
the maximum performance loss for n � 1.5 · 106 is slightly higher than on HSW.
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Fig. 11. Quantitative ranking of variants by the runtime ratio regarding the best vari-
ant for varying n on HSW. (a) H2D. (b) IC. (c) MEDAKZO. (d) CUSP.
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Fig. 12. Quantitative ranking of variants by the runtime ratio regarding the best vari-
ant for varying n on IVB. (a) H2D. (b) IC. (c) MEDAKZO. (d) CUSP.
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Fig. 13. Percentaged performance loss comparing the performance of the predicted best
variant versus the experimentally evaluated best variant for varying n and different test
problems. (a) HSW. (b) IVB.
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7 Conclusion and Future Work

We have successfully applied the ECM model to a representative class of explicit
ODE methods and, thus, have shown that the ECM model leads to qualitative
good predictions for this kind of methods.

In particular, we have determined ECM model predictions for different
implementation variants of IRK methods on different target platforms for a
bandwidth-bound, a compute-bound and two mixed (bandwidth- and compute-
bound) ODE systems. We have combined those predictions with a cost estimate
of the synchronization mechanism of the variants and defined a formula that
predicts the time required to execute a time step for a particular combination of
variant, ODE system and target platform. Using the predicted times, we have
been able to specify a performance ranking of the variants for each particu-
lar combination. Finally, we have validated our predictions by comparing our
ranking with actual runtimes measured on different target platforms.

Our future work includes investigations of additional implementation variants
of IRK methods. In particular, we want to apply our formula to more complex
variants using loop tiling and pipeline-like loop structures with stepsize control.
In addition, we plan to validate our predictions on additional target platforms
(Intel Skylake and Intel Xeon Phi) and intend to study the accuracy of our
predictions for more complex ODE systems.

Acknowledgments. This work is supported by the German Ministry of Science and
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mer (RRZE) are gratefully acknowledged.
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Abstract. Parallel I/O hardware and software infrastructure is a key
contributor to performance variability for applications running on large-
scale HPC systems. This variability confounds efforts to predict applica-
tion performance for characterization, modeling, optimization, and job
scheduling. We propose a modeling approach that improves predictive
ability by explicitly treating the variability and by leveraging the sensitiv-
ity of application parameters on performance to group applications with
similar characteristics. We develop a Gaussian process-based machine
learning algorithm to model I/O performance and its variability as a
function of application and file system characteristics. We demonstrate
the effectiveness of the proposed approach using data collected from the
Edison system at the National Energy Research Scientific Computing
Center. The results show that the proposed sensitivity-based models
are better at prediction when compared with application-partitioned or
unpartitioned models. We highlight modeling techniques that are robust
to the outliers that can occur in production parallel file systems. Using
the developed metrics and modeling approach, we provide insights into
the file system metrics that have a significant impact on I/O performance.

Keywords: I/O performance variability · Parallel file systems
Machine learning · Robust Gaussian process regression

1 Introduction

I/O performance variability is a critical concern on modern HPC platforms
because it often leads to an overall decrease in system utilization and pro-
ductivity. The ability to model I/O performance and its variability allows for
more accurate prediction of application I/O performance at runtime as well as
application- and system-level optimizations to proactively mitigate performance
variability. I/O performance models could therefore be leveraged to make more
efficient use of the I/O subsystem, a crucial shared resource on HPC systems.
However, no well-established method exists for modeling I/O variability on HPC
c© Springer International Publishing AG, part of Springer Nature 2018
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platforms, in part because of the increasingly large-scale and complex (in terms
of number of hardware and software components) I/O subsystem designs that
such platforms employ.

Several approaches have been employed to address I/O performance model-
ing, ranging from analytical to empirical models, which lately have focused on
machine learning-based approaches. Although several researchers have developed
machine learning-based I/O performance models (see Sect. 5 for a summary), the
critical issue of modeling performance variability has received little attention.
In this paper, we develop a new modeling approach that explicitly treats I/O
performance as a random variable, and we adapt a particular class of machine
learning algorithms to model the I/O performance and its variability as a func-
tion of application and file system characteristics. We illustrate the effectiveness
of our modeling and learning approaches with data obtained on a production
Lustre file system over a five-month period. The key contributions of the paper
are threefold. (1) We propose a sensitivity-based modeling approach that com-
putes the sensitivity of application parameters on I/O performance and groups
applications with similar characteristics automatically. (2) We tailor a Gaussian
process model to predict I/O performance and its variability as a function of
application and file system characteristics; our approach can effectively handle
the outliers in the data without manual intervention and has higher predic-
tive accuracy than out-of-the-box high-performing machine learning algorithms.
(3) Using the developed model, we provide insights into the Lustre file system
parameters that can explain I/O performance variability. We empirically show
that the load on storage server CPUs, imbalance across the OSTs, and system-
wide background reads and writes are the important factors contributing to I/O
performance and its variability on an exemplar production system.

2 Modeling Methodology

The wide variety of application patterns and the significant variability in applica-
tion performance evidenced on parallel file systems necessitate careful treatment
of the predictive modeling of applications employing shared parallel file systems.
To that end, we study three modeling approaches: global, application-based, and
sensitivity-based.

In the global modeling approach, the I/O time φ on a given platform can
be modeled as

φ = f(α, ζ, ω), (1)

where α represents a set of observable parameters that describe application char-
acteristics, ζ represents a set of observable parameters that describe file sys-
tem and/or I/O characteristics, and ω represents unobservable parameters that
remain unchanged and/or uncontrolled. The performance modeling problem is
to find a function f that models the relationship between φ and the parameters
(α, ζ). Given the unobservable nature of ω, we treat it as a (possibly multivari-
ate) hidden random variable. The central idea behind this formulation is that
for the same values of parameters in α and ζ, we can observe variability in φ; we



186 S. Madireddy et al.

attribute this variability to the hidden random variable ω and model its effect in
f . Therefore, for a given input parameter values in (α, ζ), the function f should
provide a prediction (as in any other typical modeling approaches) as well as
distributional information (such as standard deviation, quantiles) that captures
the variability in φ.

In the application-based modeling approach, for each application z we
build a model as follows:

φz = fz(αz, ζz, ω), (2)

where αz and ζz are specific to a given application. The disadvantage of this
approach is that a model built for one application may not be as generalizable
to other applications.

In the sensitivity-based modeling approach, we build separate models
based on the impact of the application parameters in α and file system param-
eters in ζ on φ. Formally, we have

φs = fs(αs, ζs, ω), (3)

where αs ⊆ α , ζs ⊆ ζ denote a subset s of parameters that are selected based on
some sensitivity of parameters in α, ζ on φ. The key idea behind this approach
stems from the fact that a sensitivity-based subset results in a parameter-space
and file system-space partition. Applications with similar characteristics will
have similar sensitivity, and they are grouped in the same partition. In contrast
to application-based modeling, the number of models does not grow with the
number of applications, and a model built for a sensitivity-based subset can be
generalized to another application that has similar characteristics.

The sensitivity computation is crucial to the effectiveness of the sensitivity-
based models. We leverage the feature importance capability of extremely ran-
domized trees regression (ETR), a high-performing supervised learning algo-
rithm [12,13]. ETR builds a number of decision trees, each of which is built on a
random subsample of training data. Each tree is built by recursively splitting the
training data into subgroups on a subsample of training data. At any recursive
step, the best split is given by the split on a parameter p′ ∈ (α, ζ) that gives the
maximal reduction in output variance. These splits give rise to a tree where each
parent node represents a split. Consequently, the most sensitive parameters are
selected for the split in the beginning of the recursion because they produce the
most variance in the output. The frequency of each parameter in the splits and
the split depths are aggregated from each tree to compute the overall importance
of the parameter p′.

A limitation of this approach is that when integer- or real-valued parameters
emerge as the most sensitive parameters, the number of partitions can become
large. Therefore, we partition only the categorical parameters; the regression
models (introduced below) that build within each partition are chosen for their
ability to efficiently handle sensitive numeric (i.e., noncategorical) variables.

These three modeling approaches have been motivated by the fact that I/O
performance behavior of certain applications can be similar while the others
can be drastically different. The global modeling approach represents the case
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where all application behave similarly and can be represented by using a single
model. The application-based modeling approach represents the case where all
applications behave differently and individual predictive models are required for
each application. On the other hand, the sensitivity-based modeling approach
aims to find an ideal grouping of the applications such that subset of similar
applications can be represented using by a single model.

It would be interesting to consider the temporal aspect of data and use a time
series-based modeling approach. However, our objective is to capture the I/O
performance variability of an application (or application group) as a function of
the system-wide traffic. Hence we use the modeling approaches described above.
Moreover, the experiments carried out at different times (described in Sect. 3)
are to capture a different system-wide traffic signature.

2.1 Gaussian Process Regression

The functional relationship described in each of the three modeling approaches
can be obtained by using regression methods. Several machine learning
approaches have been adopted in the literature for regression. They include
the generalized linear model, support vector machines, and neural networks [4]
that are designed to obtain the best function whose response matches with the
experimental data, which then can be used for predictions. There are tree-based
approaches such as the extremely randomized trees [12] and the eXtreme Gra-
dient Boosting [6] which predicts the target value as an average of predictions
from an ensemble of trees fit to experimental data. On the other hand, there are
probabilistic methods that learn a probability distribution over possible func-
tions where the main advantage is the principled manner of quantifying the
uncertainty of knowledge about the true function based on the observed data.
These methods also provide distributional estimates (e.g., probability intervals)
that quantify the variability in the predictions. Gaussian process regression [4]
is a popular probabilistic method widely used in literature, especially in domain
where the prediction and its uncertainty are important. For this reason, we chose
the Gaussian process (GP) regression as the method of preference in this work.

Gaussian processes are probability distributions over functions; see Fig. 1
for an illustration. GP regression uses training data to update a specified prior
distribution in order to produce a posterior distribution from which functions
can be drawn. To perform prediction at an input x, one uses the value of these
functions at x to obtain a distribution (and therefore any statistic, such as mean
or standard deviation).

GP regression uses a covariance form to assume that similar inputs will have
similar φ values. In this way, training points that are near an arbitrary input x
are informative about the prediction of φ(x). Because of its flexibility and gen-
eralizability, here we use a Matern family covariance function [30] parametrized
by θf . Many popular covariance functions (e.g., exponential, Gaussian) can be
derived as a special case of this family; we set the hyperparameter ν = 5/2,
which controls the smoothness of the resulting posterior functions.



188 S. Madireddy et al.

Fig. 1. Illustration of GP. First plot shows the function samples from a prior distribu-
tion (Gaussian distribution of mean and standard deviation of 0 and 1, respectively).
Training forces the function samples to pass near the training data points, resulting in
posterior distribution of functions and small prediction intervals near observed data.
The third and fourth plots show the 95% probability interval for predictions using
GP-Gaussian and Student-t in the presence of outliers.

To apply GPs to model the relationship between I/O time (φ) and the param-
eters (α, ζ) of application and file system, we reformulate Eq. 1 as

φ = f(α, ζ) + ε, (4)

where ε represents a stochastic error term and x = {α, ζ}. Training is performed
by making an assumption on the distributional form to represent ε in order to
derive a likelihood function (parametrized by θl). A common choice for the distri-
bution of ε (and hence the likelihood) is Gaussian, which has the benefit that the
marginal likelihood (weighted average of likelihood over function distributions
sampled from the prior) is available through closed-form analytical expressions.
Consequently, a derivative-based mathematical optimization algorithm can be
used to find the best values for the model parameters (θl, θf ) that maximize the
likelihood.

A limitation of the Gaussian likelihood is that it cannot effectively handle
outliers (i.e., observations that deviate strongly from the rest) [11]. Such outliers
occur often in I/O performance data due, for example, to failing hardware sub-
component, abnormal I/O traffic, and/or failed monitoring instrumentation. To
overcome this limitation, we also consider a Student-t distribution, which has a
higher probability content far away from the mean as compared to the Gaussian
distribution [11].

The impact of outlier on the GP predictive distributions with Gaussian
and Student-t likelihoods is illustrated in third and fourth plots in Fig. 1. The
Student-t distribution is a probability distribution parametrized by a scale
parameter σ, degrees of freedom (κ), and θl = {σ, κ}. As κ → ∞, the Student-
t distribution approaches the Gaussian distribution. In contrast to a Gaussian
distribution, the Student-t posterior distribution and the marginal likelihood
distributions do not have a closed form. For this reason, we employ a varia-
tional inference method that transforms the problem of approximating the pos-
terior into an optimization problem that seeks to minimize the Kullback-Leibler



Machine Learning Based Parallel I/O Predictive Modeling 189

distance between the assumed distribution and the posterior [4,18]. The poste-
rior predictive density in this case is estimated by using a weighted average of
the likelihood distribution over a range of function distributions sampled from
the variational distribution. This distribution cannot be computed analytically;
hence a numerical integration procedure is used to evaluate it.

To calculate the median and credible intervals of this distribution, we adopt
an importance nested Mont Carlo sampling-based algorithm MultiNest [10]. It is
an iterative sampling algorithm that generates random samples from an arbitrary
probability distribution for which direct sampling is often difficult, similar to the
posterior predictive distribution in our case. These samples are used to estimate
the sample median and credible intervals of predictions.

3 Data Collection and Modeling Parameters

The GP regression for various modeling approaches described in Sect. 2 requires
training data. In this section, we describe the parameters in the set α, ζ and the
(training) data collection methodology.

The data for this study were obtained on Edison, a Cray XC30 system at
the National Energy Research Scientific Computing Center over a period of
approximately five months (Feb 14 to July 11, 2017). Edison consists of 133,824
compute cores, 357 TB of memory, and a 7.56 PB disk storage on a Lustre file
system. The storage is built by using Cray Sonexion 1600 Lustre appliances and
consists of three file systems: Scratch 1 and 2 with 2.1 PB of storage and Scratch
3 with 3.2 PB of storage, which results in a maximum aggregate bandwidth of
168 GB/s. I/O monitoring data were continuously collected on Edison by using
the methods described in [22], particularly those provided by the Darshan [28]
and Lustre monitor tools (LMT) utilities. We note that the I/O monitoring
data available on a given production HPC platform are dictated by capabilities
provided by system vendors and facility operators and is not easily modified.
Several researchers have recognized the need to integrate metrics from disparate
components into a unified framework to facilitate analysis [3,22], but it is still
a work in progress. Hence we utilize this particular method to collect data and
then use the data to derive parameter values related to application-level I/O
characteristics, system-wide file system activity, available file system capacity,
and job scheduler activity.

All the application groups considered in this work involve either a standalone
write or a read I/O. The timestamps corresponding to the start of the first write
(read) I/O operation (T s) and the end of the last write (read) I/O operation
(T e) for a given application are obtained from Darshan. We define the I/O time
(φ) for an application z as φz = T s

z − T e
z .

3.1 Application-Specific Parameters

Data related to two different benchmarks have been collected. They are IOR
(Interleaved Or Random), a widely used I/O benchmark to measure the
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performance of a parallel file system [23], and HACC (Hardware Accelerated
Cosmology Code), a cosmology application that generates checkpoints by using
a POSIX file-per-process strategy [15].

The IOR benchmark is configured to run 8 instances (executed sequentially)
that correspond to the combination of two possible options for each of the three
configuration parameters shown in Table 1. The HACC benchmark uses a single
motif (POSIX file-per-process), but we vary the operation type and file system
options in the same manner as described for IOR. Each of the 12 total benchmark
permutations is run on 128 nodes and 2,048 MPI processes, with the POSIX
file-per-process instances producing 2,048 GiB of I/O and the MPI-IO instances
producing 512 GiB of I/O. This configuration is similar to the one used by
Lockwood et al. [22]. Each of these 12 instances is run multiple times over a five-
month period. The summary statistics for their I/O time is shown in Table 2. We
treat each instance as an application group; each is representative of a common
production application workload on large-scale HPC systems.

Table 1. IOR benchmark configuration options

Configuration Option 1 Option 2

I/O Motif POSIX file per proc MPI-IO shared file

I/O Operation Reads Writes

File system Scratch 1 Scratch 2

Table 2. Application statistics

Application group Data
count

Mean Std. dev Application group Data
count

Mean Std. dev

IOR-Read-Posix-
Scratch1

66 60.70 30.54 IOR-Read-Posix-
Scratch2

60 60.19 9.26

IOR-Read-MPIIO-
Scratch1

69 55.30 30.70 IOR-Read-MPIIO-
Scratch2

61 49.51 21.95

IOR-Write-Posix-
Scratch1

74 67.42 6.35 IOR-Write-Posix-
Scratch2

62 84.26 17.54

IOR-Write-MPIIO-
Scratch1

56 61.27 70.34 IOR-Write-MPIIO-
Scratch2

68 56.28 36.42

HACC-Read-
Posix-Scratch1

88 57.60 6.37 HACC-Read-
Posix-
Scratch2

75 64.73 15.60

HACC-Write-
Posix-Scratch1

74 67.50 6.54 HACC-Write-
Posix-
Scratch2

48 91.39 55.00

In this case, the application characteristics (categorical variables) represented
by αz are {I/O Motif, I/O Operation, Benchmark} and the file system character-
istic represented by ζz is {File system}. Since αz, and ζz are binary parameters, a
particular application group has a constant value of αz, ζz. For example, an IOR
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with file per process write I/O on scratch 1 can be represented as αz = {0, 1, 0}
and ζz = {0}. Hence the application-based modeling approach needs to build 12
separate models.

3.2 File System-Specific Parameters

The data on the state of the file system are obtained from the Lustre Monitoring
Tool (LMT). LMT data represent overall file system activity across time inter-
vals without knowledge of which applications produced the I/O activity. LMT
collects several counters related to the object storage servers (OSS) and meta
data servers (MDS) at a 5-s granularity and reports them as a time series. The
LMT measurement does not provide all information required for modeling. For
example, total system-wide background read and write traffic data is not part
of the LMT measurement and needs to be calculated by aggregating data from
each storage server. Therefore, we define additional parameters and compute the
corresponding values from the LMT measurement.

Let T1, . . . , Tn−1 be the LMT output time stamps between T s and T e for a
particular application that belongs to an application group, and let Δ be the
granularity of LMT measurement such that

T0 ≤ T s < T1 = T0 + Δ < . . . < Tn−1 < T e ≤ Tn.

For i = 0, . . . , n and j = 1, . . . , No (where No is the number of object storage
targets (OSTs)), we let Rj

i and W j
i denote, respectively, the system-wide read

and write bandwidths seen by an OST j as reported by LMT at the end of
interval i (i.e., at time Ti). We define the total system-wide background read
and write volumes as

ψW = Δ

No∑

j=1

n∑

i=1

W j
i − FW , ψR = Δ

No∑

j=1

n∑

i=1

Rj
i − FR, (5)

where FW and FR are, respectively, the aggregate data written and read by the
application.

Each of the OSTs can potentially have a different contribution to the I/O
performance depending on factors such as their fullness, incoming requests, and
I/O scheduling policy. To characterize this variation in performance, we intro-
duce a parameter called “lag time” (η), which is defined as the time from when
the first OST drops below the threshold to the time when all the OSTs cease
doing I/O above that threshold. Figure 2 shows the write bandwidth seen by all
the OSTs and the corresponding lag time calculation for a particular application.
We found that a threshold value of 0.1 GiB/s was appropriate for this purpose.

However, optimal threshold value in general could depend on the amount of
background workload on the file system. This situation can be addressed by using
tools such as lltop1 that have the ability to associate the file system traffic with
the application it originates from, thus increasing the reliability of the metric.
1 https://github.com/jhammond/lltop.

https://github.com/jhammond/lltop
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A more informative metric would be the lag time relative to I/O time; hence
we use “% lag time (ηpct)”.

Fig. 2. Top: write bandwidth (GiB/s) as a function of time for each of the 24 OST
during the runtime of a particular application. The shaded region indicates the time
between the start and end of the application as reported by Darshan, and the vertical
black lines indicate T s and T e. The horizontal dashed line indicates the threshold
used to calculate the lag time. Bottom: The time for which each of the OST’s write
bandwidth is above the threshold.

Based on the thresholding, the amount of time spent by each OST doing I/O
can be estimated. The OST that has the longest time (i.e., the slowest OST) is
the one that defines the end of the write/read phase and hence directly affects
the I/O time.

In addition, we leverage several other parameters from [22], which are
described below:

Average OSS CPU Load (νC
avg), Maximum OSS CPU Load (νC

max) are given
by:

νC
avg =

1
nNo

No∑

j=1

n∑

i=1

Lj
i , νC

max = max
i∈{1,No},j∈{1,n}

Lj
i , (6)

where L is the percentage of the time spent by the CPU cores on the individ-
ual object storage servers doing work observed at a 5-s granularity. The corre-
sponding value for the metadata server average MDS CPU load (νM

avg) is defined
similarly as νC

avg.
The fullness of an OST is known to be a contributing factor to I/O perfor-

mance on Lustre file systems [22]. On Edison, the percentage fullness of each
OST is recorded every fifteen minutes. The data obtained at the closest times-
tamp preceding the start of the application (T s) are used to calculate the average
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% OST fullness (Γavg) and maximum % OST fullness (Γmax):

Γavg =

∑No

j=1 Dj
used∑No

j=1 Dj
total

× 100, Γmax =
Nomax
j=1

Dj
used

Dj
total

× 100, (7)

where Dj
used, Dj

total are the used and total disk volume, respectively, on OST j.
Several other parameters related to the metadata server were collected by

using LMT and used in this study. These parameters were calculated as the
aggregate over the “n” intervals in which a particular application was active.
The parameters used are the number of file open operations (βopens), number
of file close operations (βcloses), number of “getattr” and “setattr” operations
(βgetattr, βsetattr), number of unlink operations (βunlink), number of rmdir oper-
ations (βrmdir), number of rename operations (βrename), and number of mkdir
operations (βmkdir).

The information from the job scheduler is used to identify the number of
concurrent jobs that were active during the execution of a particular job of
interest (Njobs). Information on the different components of the OSS is also
collected to make sure that there are no offline or failed-over components. The
reported values at timestamp Ti for write/read bandwidth and/or CPU load is
zero for a few time intervals. We discarded all jobs from our study that executed
during these time intervals because they represent monitoring data loss rather
than system behavior.

A subset of the file system-specific parameters is chosen for modeling by
removing the parameters that provide redundant information. This analysis is
done by calculating the Spearman correlation between the parameters and choos-
ing only one among the set of parameters that have high correlation among
them. The file system-specific parameters selected by using this procedure are
Γavg, νC

avg, Njobs, ηpct, ψW , ψR, νM
avg, βattrs, βxattr, βmkdirs, βopens, βrenames,

βrmdirs, and βunlinks.

4 Results and Discussions

The data for different modeling approaches are obtained as follows. For the global
model, the data from the 12 application groups are combined without the binary
application parameters, which is then used to build one predictive model. The
application-based models, consists of 12 predictive models, one for each applica-
tion group. For the sensitivity-based models, we applied ETR on the full data
to group the the categorical application and file system parameters. The result-
ing subgroups are shown in Fig. 3. The full data in the first level are split on
the I/O motif (API) into the MPI-IO and POSIX subgroups. The corresponding
box plots for the I/O time in these two groups are shown in Fig. 4. The plots
show a significant difference between the I/O time between the subgroups. In
the second level, the MPI-IO subgroup is not split further because none of the
binary variables has high relative importance. However, the POSIX sub-group is
further split into the POSIX-write and POSIX-read subgroups. In the third level,
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Fig. 3. Sensitivity-based modeling approach in which the data are hierarchically parti-
tioned into subgroups based on the relative importances obtained by using extra trees
regression at each level

while the POSIX-read subgroup is not split further, the POSIX-write is split on
the file system into POSIX-write-scratch1 and POSIX-write-scratch2 sub-
groups. The partitioning approach does not progress to the next level because
there are no binary variables with high importance in the subgroups at this
level. In summary, the four subgroups of data obtained from ETR are MPI-IO,

Fig. 4. Box plots for I/O time between the two subgroups obtained after splitting the
data based on I/O motif (API) (left) and I/O operations (right). The plots show the
median value, box with 25% and 75% quantile values as well as the whiskers that
extend to 1.5 interquartile range. The outliers are not shown in the figure.
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where all the application groups that were configured to run MPI-IO shared file
I/O motif irrespective of other configurations or application choice; POSIX-read,
where all the application groups that were configured to run the POSIX file-per-
process I/O motif with a read I/O operation irrespective of other configurations
or application choice; POSIX-write-scratch1, where all the application groups
that were configured to run the POSIX file-per-process I/O motif with a write
I/O operation which utilize the Scratch 1 file system irrespective of the appli-
cation, and POSIX-write-scratch2, where all the application groups that were
configured to run POSIX file-per-process I/O motif with a write I/O operation
that utilizes the Scratch 2 file system irrespective of the application choice.

4.1 Evaluation Metrics

To evaluate the predictive accuracy of the three modeling approaches, we use
k-fold cross validation. The data set is divided into k subsets; one of the subsets
is used as the test set, and the other k − 1 subsets are put together to form a
training set. We set k to 30 in order to have sufficient observations to perform
statistical tests and calculate summary statistics. For each modeling approach,
we compare GP with Student-t likelihood (GP-Student-t) with that of Gaussian
likelihood (GP-Gaussian) in order to analyze the impact of outliers (using the
implementation in GPFlow [26]). We include ETR [12] and XGBoost (XGB)
regression [6] as candidates for high-performing machine learning algorithms
and generalized linear regression (GLM) [4] as the baseline. An implementation
of these approaches in Scikit-learn [27] was utilized for inference.

The predictive accuracy of each algorithm is evaluated using two metrics:
mean squared error (MSE) and mean log posterior density (MLPD). MSE mea-
sures the mean of the squares of the errors between the target value and model
prediction; thus a lower value of MSE indicates better predictive accuracy and
MLPD measures the mean of the logarithm of all target value densities evalu-
ated using the posterior predictive distribution of the model; thus a higher value
of MLPD indicates better predictive accuracy. The MLPD metric is calculated
for GP-Student-t, GP-Gaussian by using the posterior predictive distribution
described in Sect. 2, while that for GLM is calculated by using the mean and
variance of prediction evaluated after fitting the model. MLPD could not be
calculated for the ETR and XGB algorithms, so they are omitted in the results
discussed later in this section.

The predictive accuracy between any two algorithms was compared by using
the Mann-Whitney U test [25]. This is a nonparametric statistical test used to
test the hypothesis that the 30-fold cross validation results from one approach
are larger (or smaller) than those in the other at a statistical significance level
of 0.05.

4.2 Comparing Modeling Approaches

Table 3 shows the 5% and 95% quantiles of MSE and MLPD obtained from 30-
fold cross validation. Results also include the case where the sensitivity-based
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Table 3. Comparison of the predictive accuracy of the global, application-based, and
sensitivity-based models using the median (5% quantile, 95% quantile) values of the
MSE and MLPD error metrics obtained by using 30-fold cross-validation.

App Group Measure GLM ETR XGB GP-Gaussian GP-Student-T

Global MSE 145.97(69.75,1740.88) 70.78(31.46,1538.52) 129.14(41.97,1616.71) 147.59(22.75,1885.64) 28.20(9.00,2688.67)
MLPD -3.91(-5.1,-3.54) – – -3.69(-7.92,-3.24) -3.11(-9.20,-2.97)

Application-
based

MSE 265.13(86.26,4243.25) 75.41(15.76,1526.58) 76.04(23.15,2128.45) 70.17(14.35,1662.33) 28.26(7.19,1975.75)
MLPD -3.31(-4.43,-2.89) – – -3.32(-121.39,-2.77) -2.92(-10.80,-2.47)

Sensitivity-
based

MSE 253.1(88.19,2673.41) 50.76(14.01,1182.13) 69.77(22.26,1361.53) 55.27 (20.71,858.42) 18.96(7.41,2096.71)
MLPD -3.69(-4.38,-3.3) – – -3.21(-6.97,-2.84) -2.81(-8.38,-2.55)

Sensitivity-
based

(no lagtime)
MSE 228.92(98.38,1773.37) 95.6(28.33,1280.67) 105.89(28.73,1461.78) 95.01(30.4,1161.2) 27.22(9.53,2267.73)
MLPD -3.72(-4.6,-3.39) – – -3.61(-7.57,-3.13) -3.05(-8.51,-2.77)

model is fit to the data in the subgroups but without including the lag time
metric (ηpct) as an input parameter. This experiment is carried out because ηpct
measures the imbalance between the OSTs, which is not a file system parameter
that can be observed directly from monitoring tools and can only be calculated
after the completion of a particular application run. Hence, we compare this
with the other three modeling approaches in order to determine its utility.

From the median values of the MSE, for all the algorithms except GLM, we
observe that the predictive accuracy for the sensitivity-based model is higher
than that of the global and application-based models. The median of MSE using
GP-Student-t for the sensitivity-based model is 18.96, while that of the global
and application-based models are 28.20 and 28.26, respectively. The median of
MLPD, shows a trend in predictive accuracy similar to that of MSE, with GP-
Student-t having the best predictive accuracy among all algorithms.

For GLM, all three modeling approaches have poor performance. The predic-
tive accuracy using median values of the MSE and MLPD of the sensitivity-based
model without ηpct is better than the global model but worse than the sensitivity-
based model with ηpct included. Although the accuracy degrades without ηpct,
the sensitivity-based model obtains accuracy values that are better than those
of the global model.

Table 4 shows the Mann-Whitney U Test results comparing the 30-fold CV
results for the sensitivity-based model with the other two approaches. The results
show that the predictive accuracy of sensitivity-based model is better than the
global model using the MLPD metric for GP-Student-t but cannot be distin-
guished from the application-specific model at a statistical significance level of
0.05.

4.3 Comparing Learning Algorithms for Sensitivity-Based Models

Table 5 shows the median, 5%, and 95% quantiles of the two error metrics
of the five different algorithms for the four subgroups MPI-IO, POSIX-read,
POSIX-write-scratch1, and POSIX-write-scratch2. Table 6 shows the results
of the statistical test.

We observe that GP-Student-t obtains medians of MSE and MLPD that are
better than the others. For MPI-IO, the statistical test shows that the predictive
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Table 4. Statistical significance using Mann-Whitney U test w.r.t sensitivity-based
model (bold font indicates that the sensitivity-based model is significantly better than
the respective models at a p-value of 0.05) for global and application-based models.

App Group Measure GLM ETR XGB GP-Gaussian GP-Student-t

Global model MSE 9.42e−01 7.89e−02 9.55e−03 5.27e−02 1.89e−01

MLPD 9.95E−01 – – 9.99E−01 2.91E−03

Application-based MSE 1.55e−01 2.645e−01 5.96e−01 5.38e−01 1.77e−01

MLPD 1.07E−03 – – 7.32E−01 5.84E−01

Table 5. Comparison of the predictive accuracy of the sensitivity-based models using
the median (5% quantile, 95% quantile) values of the MSE and MLPD error metrics
obtained using 30-fold cross-validation

App Group Measure GLM ETR XGB GP-Gaussian GP-Student-t

MPI-IO
MSE 383.07(105.08,1599.29) 98.46(17.58,2400.51) 191.16(31.77,1547.83) 89.88(25.72,2199.95) 21.67(4.00,5398.86)
MLPD -4.39(-5.11,-3.74) – – -3.89(-9.12,-3.62) -3.23(-8.39,-3.04)

POSIX-read
MSE 48.5(11.05,324.41) 15.16(3.35,601.74) 28.65(6.61,147.49) 9.79(3.31,121) 9.00(2.47,109.49)
MLPD -3.36(-4.3,-2.62) – – -2.54(-4.6,-2.19) -2.48(-4.65,-2.23)

POSIX-write-
scratch1

MSE 14.72(1.96,221.43) 7.16(1.36,183.97) 13.34(2.72,173.41) 8.98(2.87,198.61) 8.32(2.54,209.74)
MLPD -2.76 (-4.11,-1.74) – – -2.63(-7.67,-2.41) -2.51(-5.86,-2.06)

POSIX-write-
scratch2

MSE 184.68(48.55,10532) 43.87 (3.99,3449.99) 36.01(6.44,6116.55) 31.55(3.21,1311.98) 22.60(1.89,2514.48)
MLPD -4.03(-5.9,-3.36) – – -3.71(-7.25,-2.76) -3.09(-6.64,-2.66)

accuracy of GP-Student-t is significantly better than the other algorithms; for
POSIX-read, it is significantly better than GLM, ETR, and XGB but indistin-
guishable from GP-Gaussian. For POSIX-write-scratch1, GP-Student-t can-
not be distinguished from the rest; for POSIX-write-scratch2, GP-Student-t
is significantly better than GLM but cannot be distinguished from the remain-
ing three algorithms; for MPI-IO, GP-Student-t is significantly better than the
others because this subgroup has a significant number of outliers. GP-Student-t
is indistinguishable from the other algorithms for POSIX-write-scratch1 since

Table 6. Statistical significance using Mann-Whitney U test w.r.t GP-Student-t (bold
font indicates that GP-Student-t is significantly better than the respective algorithm
at a p-value of 0.05) for sensitivity-based models

App group Measure GLM ETR XGB GP-Gaussian

MPI-IO MSE 1.79E−05 2.54E−03 1.13E−03 5.57E−04

MLPD 1.33E−04 – – 1.59E−04

POSIX-read MSE 2.17E−05 4.27E−02 1.95E−02 4.91E−01

MLPD 1.79E−05 – – 6.47E−01

POSIX-write-scratch1 MSE 1.93E−01 6.73E−01 1.93E−01 3.47E−01

MLPD 4.43E−01 – – 9.28E−02

POSIX-write-scratch2 MSE 2.63E−05 4.03E−01 2.05E−01 1.32E−01

MLPD 5.56E−04 – – 9.28E−02
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this particular subgroup did not have any outliers. POSIX-read has a small num-
ber of outliers; hence the overall predictive accuracy is not significantly different
from GP-Gaussian. In the case of MPI-IO, the 95% quantile value of MSE using
GP-Student-t is larger than that of the other algorithms. An explanation for
this is that GP-Student-t model identified a large number of outliers, in which
case the error metric comparing the model prediction and the observed outliers
is large. This drives the 95% quantile to larger values. A similar trend is shown
by MLPD.

The GP-Student-t and GP-Gaussian models provide a probability distribu-
tion at every prediction point of interest; hence, distributional information can be
calculated in addition to the point estimates (mean) at these prediction points.
Figure 5 show the mean and 90% probability interval for each of the predictions
as well as the comparison between the observed and predicted target values using
the GP-Gaussian and the GP-Student-t algorithms, respectively, using the data
from POSIX-read subgroup. For clarity, the results are shown only for subset of
input parameters (that have the highest feature importances). The comparison
of the prediction values and their uncertainties between GP-Gaussian and GP-
Student-t (Fig. 5) show the robustness of the latter approach to the outliers in
the data

4.4 Insights from Sensitivity-Based Model Using GP-Student-t

To provide insights on the impact of application and file system parameters
on the I/O performance, we study their importances for each sensitivity-based
subgroup. We built a predictive model for each subgroup, and analyzed the
relative parameter importance for all 14 input features. The relative importances
are obtained by comparing the inverse of the length scale hyperparameters (one
for each parameter) in the covariance function. This is obtained after the GP-
Student-t model is trained on the data [4].

The results are shown in Fig. 6(b). For the MPI-IO subgroup, the %lag
time (ηpct) and system-wide background writes (ψW ) emerge as the top two
parameters; for POSIX-read and POSIX-write-scratch2, we observe average
OSS CPU load (νC

avg) and %lag time (ηpct) as important parameters; For
POSIX-write-scratch1, the important parameters are system-wide background
reads (ψR) and average MDS CPU load (νM

avg).
We note that the average OSS CPU load (νC

avg) has high importance for
POSIX-write-scratch1 but not for POSIX-write-scratch2. A possible reason
is that there are two straggler OSTs on the scratch 2 file system that consistently
end up as the ones that spend the longest time doing I/O (as shown in Fig. 6(a)).
We also observe that the corresponding OSS CPUs experience maximum load at
the same time. This behavior is nonexistent for the scratch 1 file system, where
the OST behavior and the OSS CPU behavior are more balanced and hence the
average OSS CPU load does not have high importance.

The system-wide background writes (ΨW ) have the highest relative feature
importance for MPI-IO, indicating that the background traffic is a major factor
driving the I/O time variability.
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Fig. 5. Model prediction of I/O time (φ) and uncertainty shown with respect to aver-
age OSS CPU load (νavg), percentage lag time (ηpct), system-wide background writes
(ψW ), and observed I/O time for POSIX-read (a) using GP regression with Gaussian
likelihood; (b) using GP regression with Student-t likelihood. GP-Gaussian suffers from
outliers, but GP-Student-t identifies outliers and ignores them automatically.
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Fig. 6. (a) Histogram plot showing the frequency with which a particular OST ends
up spending the longest time doing I/O when a POSIX file per process application is
run on the Scratch 1 and Scratch 2 file systems; (b) relative feature importances for
all the input parameters using Gaussian process regression with Student-t likelihood
for MPI-IO, POSIX-read, POSIX-write-scratch1, and POSIX-write-scratch2 models.

Overall, the average OSS CPU load (νC
avg), % lag time (ηpct), and system-wide

background reads (ΨR) and writes (ΨW ) emerge as important parameters. These
factors are either the root causes or surrogate to another unmeasured factor. For
example, %lag time is an indicator of the skewness in the OSTs, but exactly what
factors caused this is unknown. Moreover, we observe that I/O time (φ) decreases
with the increase in νC

avg, but the exact reason is not known (Fig. 5). However,
the importances of the system-wide background reads and writes indicates that
performance depends on other applications and interference.

We note that the relative importances and hence the most important features
obtained here are specific to the sensitivity-based groups and the period in which
the data was collected and hence can potentially be different for other sensitivity-
groups/data combination.

5 Related Work

A common approach for I/O performance prediction is analytical modeling,
where I/O experts use the system and application knowledge to develop pre-
dictive models. Lee and Katz [21] developed analytical models of disk arrays to
approximate their utilization, response time, and throughput. Barker et al. [1]
used analytical performance models for two applications to predict their per-
formance for new storage system deployment. Kuo et al. [20] studied the I/O
contention between applications run concurrently and developed analytical mod-
els for application runtime in the concurrent and standalone cases. Given the
complexity of the state-of-the-art file systems, however, developing analytical
models is often time consuming and insufficient to obtain expected predictive
accuracy [7]. To address this gap, several researchers have focused on developing
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empirical and machine learning approaches for modeling the I/O performance.
Kunkel et al. [19] used decision trees to build an I/O performance model and used
it optimize ROMIO data sieving. Behzad et al. [2] developed a semi-empirical
approach to model the performance of MPI-IO operations. Isaila et al. [17] com-
bined analytical and machine learning approaches for modeling the performance
of ROMIO collectives. Xie et al. [31] developed microbenchmarks to characterize
storage system write performance, identified the most important input parame-
ters, and developed machine learning-based models. In all these analytical and
empirical approaches, however, the I/O performance is treated as a deterministic
quantity, and the variability is not taken into account.

Yildiz et al. [32] investigated root causes of I/O interference and demon-
strated that interference results from the interplay between several components
in the I/O stack. Several approaches have been proposed to mitigate I/O per-
formance variability. Dorier et al. [8], for example, proposed a middleware called
Damaris, which attempts to reduce the I/O performance variability by offloading
I/O to dedicated compute resources; the authors reported that this approach can
achieve higher throughput compared with collective I/O and in turn successfully
reduces the I/O variability. Son et al. [29] proposed to mitigate I/O performance
variability by selecting an optimal set of storage servers to write data identified
by runtime probing of the file system servers. Lofstead et al. [23] observed that
I/O performance variability can also arise from inter application interference and
proposed an approach that adaptively coordinates the inter application I/O to
make a balanced use of the file system that potentially reduces variability. Dorier
et al. [9] proposed a framework called CALCioM that aims to mitigate the I/O
performance variability by enabling the applications to communicate with other
concurrent applications to coordinate their I/O; the author demonstrated the
potential of this approach to reduce contention between application and in turn
reduce I/O performance variability. The I/O performance variability has also
been reported and studied in the context of clustered storage system [14] and
local storage stacks [5]

Inacio et al. [16] used statistical approaches to analyze the variance in I/O
time. They found that the environment (system configuration) used to run the
applications explained 71.02% of the performance variability, while stripe count
and I/O strategy was the next major ones. However, their study did not involve
any concurrent applications that cause I/O interference on a small test cluster.
Supervised learning was used in our previous work [24] to analyze the relation-
ship between application performance variability and system-wide I/O activity.
All these works focus on analyzing the I/O performance variability. Here, we
explicitly model and develop GP regression to capture the variability.

6 Conclusions

From the modeling perspective, we developed and studied three approaches to
model the I/O performance as a function of observable parameters that describe
the application and file system I/O characteristics. A particularity of the model-
ing approach is the explicit notion of I/O performance variability due to the
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presence of a multivariate random variable that describes unobservable I/O
parameters.

We demonstrated that the sensitivity-based modeling approach, which lever-
ages importance of application and file system parameters, offers significant
improvements to accuracy compared with the global model. It also offers similar
and in some cases better accuracy compared with the application-based model
without the need for models to be generated for each application, thus mak-
ing this approach more readily generalizable. From the algorithmic viewpoint,
we developed robust Gaussian process regression-based predictive models that
automatically reduce the effect of outliers in the data. We compared this app-
roach with other commonly used machine learning approaches using two error
metrics MSE and MLPD, which are based on point estimate and the entire
probability distribution of predictions, respectively. We showed that the robust
approach obtains better predictive accuracy especially in the presence of outliers.

The models developed by using the sensitivity-based approach and robust
Gaussian process regression can be used to gain detailed insights into metrics
that explain the I/O performance variability for each of the subgroups. This app-
roach not only confirms that system-wide background traffic (reads and writes)
are one of the major source of I/O performance variability but also provides a
systematic approach to predict the I/O performance as a function of the back-
ground traffic and to quantify the uncertainty (obtain credible intervals) in the
prediction. This information can assist system administrators in scheduling jobs
informed by the system-wide background traffic load and can provide users with
the time bounds on the expected runtime of their job. The end users can uti-
lize this information directly: to dynamically schedule their application’s check-
pointing informed by the state of the file system. Application sub-groups can be
scheduled/handled differently in order to optimize the I/O resources: applica-
tions with a low but constant I/O volume can be scheduled so that they do not
contend with applications that produce short bursts of heavy I/O.

Although this approach is demonstrated only for a small set of applications
and on a specific file system (Lustre) in this work, it can readily extended to
other applications and file systems by identifying similar metrics on a different file
system (as illustrated in [22]) and by creating more sensitivity-based subgroups
as required.

We intend our future work to include (1) augmenting data with a diverse
set of applications and I/O characteristics, run on multiple file systems, (2)
developing a global model that has the robustness properties of the GP-Student-
t and the predictive accuracy of sensitivity-based model, and (3) integrating the
proposed approach with the I/O monitoring tools (Darshan, LMT, etc.) and
providing real-time feedback.
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Abstract. “ARTED” is an advanced scientific code for electron dynam-
ics simulation which has been ported to various large-scale parallel sys-
tems including the “K” Computer, the ex-fastest supercomputer in the
world, and many other MPP and cluster systems.

In this paper, we describe ARTED’s code optimization and perfor-
mance evaluation applied to a large-scale cluster with Intel’s latest many-
core processor, KNL (Knights Landing), based on past research regard-
ing porting ARTED to the KNC (Knights Corner) coprocessor. Code
optimization for dominant computation has been thoroughly carried out
in KNL to achieve the highest performance with detailed optimization
such as memory access, vectorization for the AVX-512 instruction set,
cache utilization, etc. For further tuning, we investigated various KNL-
dedicated techniques such as combining MCDRAM/DDR4 memories and
parallel vector summation.

After detailed performance tuning on each core to achieve up to 25%
of theoretical peak in the kernel part with 3-D stencil computation, we
evaluated the application performance on the full system (25 PFLOPS
of theoretical peak) of the KNL cluster “Oakforest-PACS” which is the
largest KNL-based cluster in the world using the Intel Omni-Path Archi-
tecture. It shows excellent weak scaling with a dominant Hamiltonian
performance of up to 4 PFLOPS (16% efficiency of the system) in dou-
ble precision irrespective of simulation size as well as reasonable strong
scaling on material simulations requiring high degree of parallelism.

1 Introduction

The many-core architecture promises to be a new generation of high performance
processors, providing a large number of cores on a chip to achieve an aggregated
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performance with relatively simple control of each core rather than increasing
the CPU clock frequency, and providing highly functional multiple cores to save
on total power consumption of the chip to achieve a higher FLOPS-Watt ratio.
Intel’s Xeon Phi processor series is today’s representative many-core proces-
sor and is the most currently promoted standalone self-bootable CPU using
the KNL (Knights Landing) architecture based on the previous KNC (Knights
Corner) coprocessor, which is implemented as an accelerator card. The perfor-
mance of a KNL CPU is not solely based on the number of cores, but also by
highly enhanced SIMD instructions and high bandwidth on-chip memory named
MCDRAM. Therefore, when we port any scientific code, it is necessary to tune
the originally developed code for the ordinary Xeon CPU to fit the architectural
characteristics of KNL.

In December, 2016, the Joint Center for Advanced HPC (JCAHPC) [22],
under cooperation with the University of Tsukuba and the University of
Tokyo, started the full operation of the world largest-scale KNL cluster1 called
“Oakforest-PACS” with 8,208 nodes and a theoretical peak performance of 25
PFLOPS. The system ranked in sixth position of the TOP500 list on November
2016 in its first appearance, achieving a Linpack performance of 13.55 PFLOPS.
Many-core architecture systems have entered a new era by utilizing the KNL
CPU to provide a standalone system to replace ordinary commodity CPU clus-
ters, especially for highly-computational and memory-bounded applications.

Studies have been conducted on the development of an electron dynamics
simulation code, named “ARTED”, for use in various large-scale parallel systems
including the “K” Computer [20], which was the world’s fastest supercomputer
with a theoretical peak performance of 10 PFLOPS. The purpose of the applica-
tion is to enhance research progress in optoelectronics, which is at the frontier of
computational science. The application contributes to optical material sciences
under international collaboration allowing atto-second (10−18 s) time-scale sim-
ulations for identifying the ultra-fast dynamics of an electron [17,18].

By implementing the application on the latest supercomputers, we expect
that users will be able to study material sciences with high-resolution and
fine-grained time-scale simulations. To achieve the much higher performance
required for the next generation of material sciences, the ARTED code was
optimized specifically for large-scale heterogeneous accelerated clusters with the
KNC coprocessor [16].

As a novel contribution to the research fields for the application, our purpose
in this paper is to achieve the best performance on a many-core based standalone
cluster based on KNL. The remainder of this paper is structured as follows. First,
we describe related work in Sect. 2, and then introduce the overview of our target
code ARTED in Sect. 3. Section 4 introduces our target system Oakforest-PACS.
Section 5 briefly introduces the application porting on KNL from a KNC-based
system, and we evaluate the performance. After describing additional perfor-
mance tuning for KNL in Sect. 6, its performance is evaluated and discussed

1 There are several larger KNL-based MPPs such as the Cray XC40 series; however
Oakforest-PACS is still the largest cluster.
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on the full configuration of the Oakforest-PACS system in Sect. 7. Finally, we
conclude the paper in Sect. 8.

2 Related Work

As an open source software based on ab-initio TDDFT (Time-Dependent Den-
sity Functional Theory), OCTPUS [3,24] has been widely utilized. It incorpo-
rates parallelization by dividing the spatial region as well as the orbitals. Using
OCTOPUS, calculations of a system composed of 4,096 compute nodes (16,384
processor cores) using BlueGene/P at the Rechenzentrum Garching Academie of
the Max Planck Society, Germany, have been reported [3]. “GCEED” is another
real-time real-space DFT code which has been reported using large-scale compu-
tations of up to 7,920 compute nodes (63,360 processor cores) on the K Computer
[4]. As another challenge for a large-scale simulation, Sequoia BlueGene/Q at
LLNL recorded an actual performance of approximately 8.75 PFLOPS using
98,304 compute nodes (1,572,864 processor cores) [5]. These studies present the
performance of multi-core processors with up to 16 cores per node.

NERSC reported a performance evaluation with the KNL processor on 15
real applications [6]. The application performance bounds MCDRAM memory
bandwidth by straightforward porting to KNL from Xeon codes. In several appli-
cations, OpenMP overhead degrades the performance, so they improved the
OpenMP parallelized codes. TACC reported the performance evaluation of two
mini-application suites and two real applications under KNL [7]. KNL provides
a four-mesh network mode on a chip; however, they claimed that the perfor-
mances differed slightly with different network modes. [8] evaluated 4-D stencil
computation performance in the “Wilson-Dslash operator” of lattice quantum
chromodynamics. The study achieved up to 505 GFLOPS performance under
MCDRAM with four threads per core, and the kernel achieved 221 GB/s band-
width. [9] proposed temporal wave-front tiling for stencil computation that is
an extended algorithm of temporal blocking. They achieved approximately 800
GFLOPS for 3-D stencil computation under cache-mode with the proposed algo-
rithm regardless of MCDRAM capacity limit.

The KNL stand-alone cluster system is 0.16 Byte/FLOP with the actual
bandwidth of MCDRAM, while the K Computer provides well-balanced com-
puting resources at 0.5 Byte/FLOP with the theoretical bandwidth of DRAM.
Therefore, achievable performance under a many-core system is much lower than
the traditional multi-core system. The KNL system achieved insufficient perfor-
mance in the latest high-performance Linpack results [23] in spite of computing
bottlenecks, where “Trinity” at LANL, “Cori” at LBNL, and Oakforest-PACS,
achieved approximately 32%, 50%, and 54% efficiency of theoretical peak per-
formance, respectively. As a novel contribution to the research fields for the
application, our biggest challenge in this paper is to achieve the best perfor-
mance for a world-class KNL system considering the large difference between
theoretical and actual performance.
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3 ARTED: Electron Dynamics Simulator

3.1 Overview

The ARTED simulator is a simulation program that describes electron dynamics
in matters induced by a pulsed electric field based on ab-initio TDDFT. The
program was developed at the Center for Computational Sciences, University of
Tsukuba [1], has already been released as open-source software, and the entire
implementation has been published at [25]2.

Fig. 1. ARTED computation fields (3-D Maxwell + 3-D TDKS equation)

ARTED targets light-matter interactions, in particular ultrafast phenomena
induced by laser pulses that are one of the current topics in optical science.
ARTED has two simulation modes: “single-cell” and “multi-scale”. The single-
cell mode treats electron dynamics in a unit cell of crystalline solids solving the
TDKS (Time-Dependent Kohn-Sham) equation, a basic equation of TDDFT.
This calculation may be carried out on small computer clusters. The multi-
scale mode treats coupled dynamics of light electromagnetic fields and electron
dynamics simultaneously. The former is described by Maxwell’s equation while
the latter is by the TDKS equation which requires large-scale parallel systems
such as the K Computer. In this paper, we evaluate the performance of multi-
scale simulations on a large-scale KNL cluster.

Figure 1 shows the multi-scale model and coordinate system. The electro-
magnetic fields of the pulsed light are described by a vector potential AR(t)
that satisfies Maxwell’s equation,

1
c2

d2

dt2
AR(t) + ∇R × ∇R × AR(t) = −4πe

c
JR({uRkb}; t), (1)

where JR({uRkb}; t) is the electric current that is calculated from the Bloch
orbitals uRkb(r, t) as described below. Maxwell’s equation is solved using the

2 Currently, an open-source optoelectronics application package named “SALMON”
[26] is partly based on ARTED.
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FDTD (Finite Difference Time-Domain) method, preparing a three-dimensional
Cartesian grid system for the macroscopic coordinate R, as shown in the left-part
of Fig. 1.

In microscopic (less than nanometer) scale, electron dynamics is described
by TDDFT. At each macroscopic grid point R, we prepare Kohn-Sham (Bloch)
orbitals, uRkb(r, t), which describe electron dynamics in a unit cell of a crystalline
solid. As the typical optical wavelength is much longer than the typical spatial
scale of electron dynamics, we assume that the electronic system at each macro-
scopic grid point R may be treated as infinitely periodic. The TDKS equation
for Bloch orbitals uRkb(r, t) is given by

i�
∂

∂t
uRkb(r, t) = hKS

R (r, t)uRkb(r, t), (2)

where the coordinate r describes microscopic motion of electrons in a unit cell, k
is the crystalline wave number, and b is the orbital index. hKS

R is the Kohn-Sham
Hamiltonian operator given by

hKS
R (r, t) = − �

2

2m

{
∇r + ik +

ie

�c
AR(t)

}2

+ VR(r, t). (3)

We solve the TDKS equation using a three-dimensional Cartesian grid for r,
as shown in the right-part of Fig. 1. We solve Eqs. (1) and (2) simultaneously
for a given initial condition where the electronic system at each R grid point is
prepared in the ground state. An incident light wave, which is described by the
vector potential AR(t), is set in a vacuum region at the initial time.

We call this scheme the Maxwell-TDDFT multi-scale simulation. Because
microscopic electron dynamics calculations must be carried out at a number of
macroscopic grid points R simultaneously, the calculation is large-scale even for
a one-dimensional problem in coordinate R. We here report on 2-D Maxwell and
3-D TDDFT simulations.

The computation of a single wave-space domain involves fitting to a single
node for both performance and memory capacity. 3-D stencil computation is
applied to every wave band, and a sufficient degree of parallelism is obtained
in total. Actually, we do not apply domain decomposition for a 3-D stencil com-
putation to avoid communication overhead in the halo region. A stencil com-
putation arises by operating a Hamiltonian of the wave function. The number
of time steps in the time-development loop is quite large, within the range of
10,000–100,000 steps depending on the required time-scale [2], and optimization
of the stencil computation is the most crucial in this code. ARTED is a suit-
able application for large-scale parallel systems because the communication time
scale is in microseconds while the computation time scale is in milliseconds, as
described in Sect. 6.2

3.2 Implementation and Parallelization

ARTED has four parameters related to computational complexity: a macroscopic
grid point, Bloch wave number k, band number, and space lattice for representing
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the wave function of electrons. A wave function is represented by an array of (NZ,
NK, NB, NLx, NLy, NLz). NZ denotes the number of macroscopic grid points,
NK denotes the Bloch wave number k, NB denotes the size of the band, and
(NLx, NLy, NLz) denote the size of the three-dimensional space lattice. The total
size of a 3-D space is also denoted as NL (=NLx × NLy ×NLz). The electron
dynamics field (TDKS equation) is modeled by a three-dimensional array (NK,
NB, NL). NZ indicates the size of the electromagnetic field (Maxwell equation),
and it relates only to a weak scaling performance.

Fig. 2. Parallelization scheme

In multi-scale simulation, we consider how to parallelize the computation
in a hybrid manner using MPI and OpenMP as shown in Fig. 2. If the size of
the TDKS equation fits a single node resource (especially memory capacity and
computation performance), we can select a simple parallelization scheme, that
is, MPI distribution is applied to the Maxwell equation only. This scheme is
called “one-stage parallelization” as shown in Fig. 2-(1), and it computes the
closed TDKS equation on a node and communication requires only the Maxwell
equation. Otherwise, we should apply MPI distribution to both Maxwell and
TDKS equations. This scheme is called “two-stage parallelization” as shown
in Fig. 2-(2), and computes a TDKS equation by multi-node using an MPI sub-
communicator; therefore communication is required in both stages. A single node
has a macroscopic grid point (a single TDKS equation) when executing with
two-stage parallelization.

In one-stage parallelization, a node has one or more macroscopic grid points
and it solves a large number of TDKS equations. In a TDKS equation with
two-stage parallelization, only the Bloch wave number k (NK) is distributed to
processes using MPI because this is the largest parameter for the computation
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domain; note that which of the two methods to use depends on the physical
target material.

The domain with NK/NP× NB is then parallelized by OpenMP threads,
where NP denotes the number of MPI processes. Each MPI process computes
the space domain (NL) with the amount of NK/NP ×NB. The time-development
on a stencil computation is then executed iteratively. Here, the most important
aspect is that we do not apply domain decomposition on the space, which is the
most popular parallelization in ordinary stencil computation. The space domain
size (NL) is relatively small compared with the wave counts (NK and NB),
and thus it is inefficient to distribute it to multiple threads or processes. As a
result, there is no data exchange for a 3-D space lattice in the halo region. Each
OpenMP thread computes a space lattice (NL) independently and sequentially.
Hence, the degree of parallelism of stencil computation in an OpenMP thread
is NK/NP × NB. This hybrid parallelization minimizes the communication and
synchronization overhead because we can compute the Bloch wave number and
wave bands independently in a single time step. Therefore, we can focus on the
optimization of the many-core processors for the sequential computation in a
thread and for OpenMP thread scheduling.

A space lattice of the computation field is represented by a double-precision
complex (double-complex) value, and it computes a 25-point stencil with a peri-
odic boundary condition on the Hamiltonian computation. Here, the memory
bandwidth requested is 2.68 Byte/FLOP without cache utilization. Therefore,
the performance is strongly bounded by the memory bandwidth, and the cache
hit ratio is critical for performance improvement.

4 Evaluation Environment: KNL Cluster Oakforest-PACS

The KNL cluster Oakforest-PACS appeared on the TOP500 List in November
2016 (first-time entry) where it was ranked No. 6 in the world and No. 1 in Japan
[23]. It provides 25 PFLOPS of theoretical peak performance in double precision
FP as well as 13.55 PFLOPS of Linpack performance, exceeding that of the
K Computer, the former fastest Japanese supercomputer. It employs the KNL
processor as the CPU of a computation node and is also equipped with Intel’s
Omni-Path Architecture as the interconnection network. On December 2016, the
JCAHPC [22] cooperating with the University of Tsukuba and the University of
Tokyo began the test-running phase with full system size, and official operations
began on April 2017.

As a generic KNL-based PC cluster system, Oakforest-PACS is the largest
system in the world. The system is implemented by Fujitsu Co. Ltd. with an
originally designed mother board and high-density chassis. Each node is equipped
with a single socket of the Intel Xeon Phi 7250 (KNL) with 3.05 TFLOPS of
peak performance, and the number of nodes is 8,208. Table 1 lists the basic
specifications of the system.

In this paper, we utilize up to 8,192 nodes, which correspond to 99.8% of
the full system size. ARTED is one of the largest-scale real applications on
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Table 1. Basic specification of Oakforest-PACS system

CPU Intel Xeon Phi 7250 with 68 cores, 1.4 GHz
base clock

# of nodes 8,208

Memory 16 GB of MCDRAM and 96 GB of DDR4-2400

Actual bandwidth 490+ GB/s of MCDRAM, 90+ GB/s of
DDR4-2400

Chip configuration Quadrant with Flat or Cache memory mode

Interconnect Intel Omni-Path Architecture with 100 Gbps
link

Network topology Full bisection bandwidth of Fat-Tree

File system Lustre with 26 PB by DDN SFA7700X,
500 GB/s bandwidth

File cache Burst Buffer with 940 TB by DDN IME14K,
1,560 GB/s bandwidth

Cooling Water colling for CPU and Air cooling for
others

Power consumption Max.: 4.2 MW (including cooling)

Operating system CentOS 7 and McKernel (developed by
RIKEN)

Oakforest-PACS so far. To exploit real scientific results through this challenge,
we run multiple jobs on this system size, and the longest job execution time is
approximately 8 h. The file I/O request of the ARTED code is quite small so we
did not rely on the Burst Buffer feature.

We evaluate the performance with two materials using multi-scale simulation
as shown in Table 2, computing different parallelization models. The data sets
are provided from real simulation problems of the actual target materials, which
are scientifically important. These simulations contribute to the laser processing
of materials [19]; the interaction between an ultra-short pulse laser and a thin
film of silicon or graphite. Regarding the performance evaluation, we choose the
data sets that are possible to run only on the full-system Oakforest-PACS to

Table 2. Evaluated materials

Graphite Silicon

MPI procs/macro-grid 8 –

Macro-grids/MPI proc – 1–4

Total # of macro-grid (NZ) 1,024 32,768

# of wave count (NK×NB) 7,928× 16 83 × 16

Size of 3-D real-space (NL) 26 × 16 × 16 163
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contribute to real computational material sciences. Graphite is computed using
two-stage parallelization with 8 MPI processes per macroscopic grid point. One-
stage parallelization is applied to the silicon simulation, and we evaluate 1–4
macroscopic grid points per MPI process.

5 Porting to KNL

A study on porting the ARTED code to the first-generation Intel Xeon Phi
many-core coprocessor, KNC, is described in [16] as our previous study. In this
section, we discuss this work briefly to clarify the study presented in this paper.
Then we introduce additional tuning at the core-level followed by a performance
comparison at the chip-level.

5.1 Summary of Tuning for KNC

A 25-point stencil computation was implemented using explicit vectorization of
the C-language (“Explicit” vectorized) for the KNC accelerator processor after
optimizing the automatic vectorization of the Fortran90 compiler (“Compiler”
vectorized). In particular, the Z-dimension (unit-stride) memory access should
be optimized to decrease the memory pressure. An alignr instruction (con-
catenated shift) is used for implementation of unit-stride memory access with-
out gather because the instruction performance is very low in each processor
[10]. This implementation updates four grid points to fit to the SIMD operation
length. Our approach is optimized to a periodic boundary condition based on
Intel’s report [11]. Whereas [11] avoids a periodic boundary condition, [16] covers
both situations (with and without such condition).

The index calculation for a periodic boundary condition requires an integer
remainder operation, and performance is degraded by this operation because this
instruction on Xeon Phi processors is extremely slow compared with the Xeon
CPU. When a field size is a power of 2, we can replace this operation with a
logical AND instruction. The KNC performance of a stencil computation with a
remainder operation is only 65% of a logical AND for a masking operation. With
Explicit vectorization, we apply a table lookup instead of a remainder operation
to avoid limiting the size to a power of 2. This method is slower than a logical
AND, but it is still faster than using a remainder operation.

5.2 Converting to AVX-512 from IMCI

Our code has already been vectorized with IMCI (Initial Many-Core Instruc-
tion) to achieve high performance on KNC. We will tune the code for higher
performance on both KNC and KNL considering the execution latency, register
utilization, etc. The computation environment such as L1 cache size and SIMD
length is the same between KNC and KNL. Here we focus on the conversion of
the IMCI vectorized code into the AVX-512 instruction set, which is provided
with KNL, Skylake-SP, and later Intel CPUs. The instruction format, such as
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four arithmetic operations, is basically the same in both IMCI and AVX-512
except for shuffle, permute, and other special instructions. In the unaligned load
instruction, whereas IMCI requires two instructions be sent between cache lines,
AVX-512 only issues one instruction as like as AVX. Our implementation requires
that a few instructions and operations be replaced for execution under AVX-512
with 5–10 lines of inline functions.

#ifdef __AVX512F__
/* Intrinsics for KNL and AVX -512 processors */
#define _mm512_storenrngo_pd _mm512_stream_pd
#elif __MIC__
/* Intrinsics for KNC */
inline __m512i _mm512_loadu_si512(int const* v) {

__m512i w = _mm512_loadunpacklo_epi32(w, v + 0);
return _mm512_loadunpackhi_epi32(w, v + 16);

}
#endif

Fig. 3. Schematic of code conversion to AVX-512 from IMCI with preprocessor

These modifications can be made easily with preprocessor directives as shown
in Fig. 3. This figure shows an example of replacing the non-temporal store
instruction and unaligned load instruction with preprocessor directives. The
AVX512 or MIC macro symbol is defined by the compiler when compil-

ing for AVX-512 provided processors or KNC, respectively. Our explicit vec-
torization code for KNL is implemented based on KNC-optimized code with
applied preprocessor directives, and we further optimized it for KNL. An AVX-
512 instruction set consists of several separate subsets and some generations of
processors do not support all subsets. Our implementation only requires a com-
mon subset (named the AVX-512F instruction set), which is supported by all
types of processors that include the AVX-512 feature.

In our target system, it is recommended to use 64 cores per node because
Xeon Phi 7250 enables 34 Tiles (1 Tile = 1 pair of cores) out of 36 total Tiles for
a total core count of 68 [14]. It is desirable to maintain four cores in reserve to
support the operating system, interrupt handling, etc. Additionally, our target
system is equipped with the tickless-kernel which provides no OS interruption
to cores except for core 0. We think that execution with up to 64 cores is the
best practice because of cache pollution of the L2 cache, which is shared by each
Tile, and because a number with power of 2 is easy to understand and handle.

5.3 Additional Optimization and Performance Comparison

Table 3 shows the performance impact of hyper-threading technology under KNL
for the single-cell simulation of silicon. We constantly set the number of OpenMP
threads per KNL as 256 (four threads per core) which is always achievable to
provide the best performance in our application based on pre-evaluations. KNC
always takes 240 OpenMP threads (four threads per core with 60 cores) in the
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same manner. The entire computation (time-development part) has the low run-
to-run deviation of less than 3% regardless of the number of compute nodes.
Therefore, we show the fastest case of results in all performance evaluation.

Table 3. Performance impact of KNL hyper-threading

Threads/core Total threads Rel. performance

1 64 1.00

2 128 2.06

3 192 2.91

4 256 3.44

Fig. 4. Performance results of the stencil computation (fastest case)

Initially, we evaluate the stencil computation performance on KNL with var-
ious memory modes as shown in Fig. 4-(a) when executing the single-cell mode
with silicon material. KNL provides three configurations for MCDRAM (high
bandwidth, small capacity) and DDR4 memory (low bandwidth, large capac-
ity): Flat-mode (separates as NUMA memory), Cache-mode (MCDRAM is the
last-level cache) and Hybrid-mode (MCDRAM is divided into NUMA memory
and last-level cache). For maximizing the memory bandwidth, we should com-
bine MCDRAM and DDR4; however, controlling data placement is extremely
complicated. If the data size per node is less than the MCDRAM capacity, we
believe that it is the best to use MCDRAM only.

In Fig. 4-(a), the Flat-MCDRAM case allocates all of the application data
to MCDRAM, whereas the Flat-DDR4 case uses only DDR4 memory and
MCDRAM is not used in the application. When the data size fits to MCDRAM
capacity, even cache-mode is expected to achieve a performance comparable with
that of Flat-MCDRAM3.
3 This is not exactly correct, as MCDRAM is used for the direct-map cache in cache-

mode, where line conflicts between different arrays may occur.
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Fig. 5. Strong scaling evaluation to compare KNC and KNL (fastest case)

Each thread computes a Hamiltonian using thread-local working arrays. A
thread copies the working set from global arrays on MCDRAM or DDR4 before
computing the Hamiltonian, which we refer to as a “domain” hereafter. A domain
is small enough to fit to the L2 cache size, so that the computation is always per-
formed in the cache. Then the performance difference between Flat-MCDRAM
and Flat-DDR4 is relatively low, where the impact is caused by the memory
bandwidth available to move data to the L2 cache.

For the advanced optimization, we apply software prefetch instructions on
KNC and KNL. Our implementation is optimized by a spatial locality, and the
data in registers are fully utilized in the computation. Here, the software prefetch
instructions are issued for the required data at the next iteration after issuing a
load instruction during the current iteration. A stencil domain is aligned to a 64-
byte block, which is identical to the cache line size, and the code always prefetches
the next cache line. Figure 4-(b) shows the software prefetch impact described
by the delta performance for the silicon material. The performance in KNL is
degraded by a software prefetch, whereas the KNC performance is improved by
up to 60 GFLOPS. In several cases, KNL does not require the manual insertion
of the software prefetch owing to the improved hardware prefetcher, an advanced
feature from KNC [8]. The computation data size of silicon is 64 KB per domain
and may not spill out from the L2 cache on each Tile.

We compared the performance of the case with one KNC card and one KNL
processor, corresponding to the single-node performance of the COMA cluster
with KNC coprocessor card [16] and Oakforest-PACS. The COMA system con-
sists of 393 nodes, and it equips two IVB (Ivy-Bridge) Xeon E5-2670v2 CPUs
and two KNC 7110P cards as accelerators on each node [21].

Figure 4-(c) shows the stencil computation performance with KNC and KNL.
“KNC (PDSEC)” represents the performance of our previous implementation
[16] and KNC represents our additional tuning with software prefetching and
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instruction-level tuning, which is 1.39x faster than previous code. KNL achieves
2.56x the performance of a KNC card. Finally, KNL achieves a performance
of 758.4 GFLOPS corresponding to 24.8% of theoretical peak, which implies a
large degree of thread level parallelism and relatively low sequential execution.
It should be noted that the theoretical peak performance of KNL is actually
impossible to reach due to frequency control by the processor itself to maintain
the TDP, where the AVX-512 instructions cannot always run with 100% speed.
Therefore, a sustained performance at a quarter of theoretical peak performance
is very high. Because we optimized the KNL version based on the KNC-optimized
code, the optimization of KNC strongly assists further optimization on KNL.

Figure 5 shows the overall performance under strong scaling for the single-cell
simulation of silicon. In this comparison, a wave function array parameter is set
to (NK, NB, NL) = (243, 16, 4096 = (16, 16, 16)). We show the performance com-
parison with up to 128 nodes only due to the available resource limit of COMA,
where two KNC cards are used. On COMA, we evaluated IVB-only (Xeon only),
KNC-only (through Private mode execution of KNC), and Symmetric mode exe-
cution where IVB and KNC cooperate using MPI. KNL achieves a comparable
or higher performance in the Symmetric mode of two KNCs and two IVBs, and
the KNC-only execution is slower than IVB-only. While KNC requires high par-
allelism for the application, KNL can achieve acceptable performance even with
relatively low parallelism. Therefore, KNL can more easily fit traditional CPU
applications than KNC.

5.4 Performance Analysis

We estimated the achievable performance using KNC and KNL based on a mem-
ory bandwidth bottleneck. Figure 6 shows a roofline model analysis with L2 cache
bandwidth [15], and a dot plot shows the actual performance of KNC or KNL,
respectively. Our stencil computation is strongly impacted by the L2 cache band-
width because the domain size per two cores fits the L2 cache capacity, where
silicon size is 64 KB per domain. KNL follows the roofline model, whereas KNC
reaches only 70% of estimated performance.

Table 4. Profiling result with Intel VTune

Vectorization Memory # of

Thread

Perf.

[GFLOPS]

Max

BW [GB/s]

SIMD

Inst./Cycle

Backend

Bound

[%]

L2 Hit

Bound

[%]

L2 Miss

Bound

[%]

Explicit MCDRAM 64 458.1 273.5 0.454 45.6 15.0 8.7

128 723.9 0.335 61.5 24.3 8.0

192 744.8 0.222 74.3 22.1 7.7

256 772.3 0.179 80.3 30.1 11.4

DDR4 128 417.8 83.2 0.135 80.8 12.6 6.2

Compiler MCDRAM 256 555.3 154.2 0.161 80.0 43.8 9.6

DDR4 128 371.2 82.7 0.158 76.4 21.6 6.1
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Fig. 6. Roofline analysis with L2 cache bandwidth

We profile the performance metrics under KNL with the Intel VTune profiler,
as shown in Table 4. “Compiler” represents the performance of the vectorization
by Intel’s compiler. “Explicit” represents our explicit vectorization code based
on the [16] implementation. Note that the profiling region does not match with
the previous section. Hamiltonian operation includes the stencil computation
and pseudo-potential (physical intuition) computation; therefore, we analyze the
metrics without the physical intuition computation. An input data (stencil com-
putation domain) size is set to 2 GB. The metrics are defined as follows:

Perf.
Computation performance. (FLOP count from the source code.)

Max BW
Maximum attained memory bandwidth.

SIMD Inst./Cycle
FPU utilization of the code.

Backend Bound
Instruction pipeline’s stalled cycles.

L2 Hit Bound
Typically, L2 access latency in cycles.

L2 Miss Bound
Ratio of cycles spent handling L2 misses to all cycles.

Percentage metrics show the ratio of total execution cycles in analytical areas.
In MCDRAM memory mode, the explicit vectorization has higher SIMD

execution (involving the FPUs) efficiency than the compiler vectorization; how-
ever, it does not affect the overall performance because the code is basi-
cally memory bandwidth bounded. Moreover, the explicit vectorization code
attains 273.5 GB/s of bandwidth while the compiler vectorization attains only
154.2 GB/s.
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L2 cache access is a considerable overhead in performance, whereas data
reutilization improves performance more than the compiler vectorization.
Another serious performance bottleneck is caused by the instruction pipeline stall
when waiting for the completion of SIMD instructions. Hyper-threading achieves
good performance of the application as shown in Table 3; however, “Backend
Bound” (the number of instruction pipeline stalled cycles) becomes a dominant
problem with increasing number of hyper-threads per core. We consider that this
problem is caused by frequently issued SIMD operations by multiple threads that
overload the physical FPU.

In conclusion, we confirmed that the most serious performance bottleneck
in our implementation is caused by physical FPU overload although memory
bandwidth also remains a performance problem. For additional improvement
of the performance, the application requires reduction of the number of SIMD
operations, the enhancement of cache reutilization, and L2 cache latency hiding.

6 Further Performance Tuning

6.1 Utilization of MCDRAM and DDR4 Memories

In Fig. 4-(a), we show the stencil computation performance on a KNL with var-
ious memory modes. The MCDRAM-only mode is the best for memory band-
width bottlenecked applications, which maximizes the performance of real-world
scientific applications. However, MCDRAM has a low 16 GB capacity on a chip,
whereas DDR4 memory capacity is larger (96 GB per node). We should com-
bine MCDRAM and DDR4 memories to fully utilize the computing resources on
KNL clusters. As a simple strategy, application uses MCDRAM as a “scratch-
pad cache”, which is deemed as the user-handled cache-mode as follows. An
application allocates all data to DDR4, and the working set data (the domain)
are manually copied to MCDRAM before the computation. After completing
the computation, results data in the working set are manually written back to
DDR4. Explicit cache managing is a difficult problem for users because they
should search for the best size of cache-block; however, the dominant computa-
tion part of our target application behaves the same as this strategy naturally
using the original code.

Figure 7 shows the entire code performance when the data of a problem
exceeds MCDRAM capacity. Flat-DDR4 and Flat-MCDRAM means that all
data is allocated on DDR4 or MCDRAM, respectively. Flat-DDR4+MCDRAM
combines DDR4 and MCDRAM to be used as main memory and a scratchpad
cache, respectively. We can successfully expand the computation fields on the
application to naturally move data between DDR4 and MCDRAM. Cache-mode
performance is also nearly comparable with Flat-DDR4+MCDRAM because
each thread computes a Hamiltonian under thread-local working memory (its
domain) as described in the previous section. However, Flat-DDR4+MCDRAM
performance slightly exceeds that of Cache-mode as shown in Fig. 4. We think
this is because the nature of the direct-mapping feature of Cache-mode causes
line conflicts.
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Fig. 7. Entire code performance of different memory modes (fastest case)

6.2 Parallel Vector Summation for Many-Core Processor

In the TDKS part, the code computes the electron current density for coupling
using Maxwell’s equation. It is performed by a vector summation using the
following formula where Zu denotes the wave function:

il = 1, 2, . . . , NL

rhoil =
NK∑
ik=1

NB∑
ib=1

cib,ik|Zuil,ib,ik|2

The equation is the summation of the vectors with NL (real space domain
length) over NK×NB times (the number of wave domains). Here, we con-
sider the OpenMP parallelization strategies. The formula is very simple, but
difficult to parallelize because of the dependency of the innermost loop (named
“First-approach”). This parallelization causes expensive overhead by the implicit
thread synchronization at the end of the innermost loop on a many-core pro-
cessor, and it drastically degrades performance. From OpenMP 3.0, we can
maximize the degree of parallelism combining collapse and reduction clauses
(named “OpenMP-suitable”). If the reduction clause with a vector variable
does not achieve enough performance, we can implement a manual summation
into the OpenMP parallelized loop (named “Manual-summation”). In Manual-
summation, we apply an algorithm based on traditional parallel binary-tree
reduction [12], which is also effective on modern GPUs [13].

Figure 8 shows the performance results of vector summation with 32 KNL
nodes, that is, the evaluation simulates the vector summation performance of the
single-cell simulation where strong scaling is difficult to achieve. First-approach
causes heavy overhead by the implicit synchronization in OpenMP. However,
OpenMP-suitable achieves higher performance but saturates at 128 threads per
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Fig. 8. Various implementation performances of parallel vector summation (fastest
case)

node (2 threads per core). On the other hand, Manual-summation reduces the
overhead up to 30x compared with First-approach. This result shows that the
OpenMP reduction clause may not be optimized to a vector summation on a
many-core processor. The MPI communication is negligible in the ARTED exe-
cution, so this vector summation in OpenMP parallelization is more important
than MPI.

While tuning reduced the vector summation cost from the 100 to the 1 ms
order, scaling of the entire code execution time is 10–100 ms per iteration, the
same as First-approach, as described in the next section. This result implies that
performance tuning is required in every detail of the entire code for efficient
execution on a many-core processor.

7 Performance Evaluation and Discussion on the
Full-System of Oakforest-PACS

Lastly, we evaluate the large-scale problem performance with the full-system
of Oakforest-PACS. Table 5 shows the evaluated configuration. The application
uses MCDRAM only, where DDR4 memory is used by system services such as
the operating system. Our application perfectly achieves very good weak scaling,
while strong scaling shows different results for silicon and graphite, as shown in
Fig. 9. In the weak scaling results, the entire performance is scaled up to 4
PFLOPS with 16% of theoretical peak when executing on the full-size system
with 8,192 nodes. We investigated why the performance degradation on strong
scaling of graphite occurs and found that there is a 20 to 30% difference in the
execution times of different computation nodes.

Figure 10 shows the variations between the fastest and slowest nodes for the
same computation amount, where the breakdown shows that the Hamiltonian
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Table 5. Evaluated configuration on Oakforest-PACS

# of MPI processes 1 process/node (up to 8,192 processes)

# of OpenMP threads 256 threads/process

Memory mode Flat-mode with MCDRAM only

Fig. 9. Performance scaling results for the full-system of Oakforest-PACS (fastest case)

Fig. 10. Entire code breakdown with normalized elapsed time per iteration

computation time causes the dominant differences. Because all the computa-
tion nodes are synchronized at the MPI Allreduce barrier, this performance
difference seriously impacts the total performance of ARTED. Note that the
computation load of all nodes is perfectly fair in our code.

We think that the root cause of this oddity exists in the Intel Turbo Boost
mechanism for AVX-512 instructions. This technology adjusts the processor
clock frequency dynamically to achieve the highest performance as long as the
processor remains within its TDP limit under current temperature. It is known
that when using KNL, it is difficult to remain within the TDP limit when AVX-
512 instructions are operated continuously, which may reduce the clock frequency
automatically according to the computation load and processor temperature. We
observed that such a performance variant occurs randomly, regardless of the node
location in Oakforest-PACS.
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Such a dynamic frequency adjustment as that in Intel Turbo Boost is impor-
tant to balance the performance and power consumption under temperature. It
is especially important in many-core architectures because the number of tar-
get cores is quite large. However, our experiment makes it clear that a large
scale parallel execution encounters such a problem on a non-algorithmic variant
affecting the execution time for each node. It is difficult to avoid such a problem
with fixed size task allocation applied to nodes as that which takes place with
ARTED. The best way to avoid the issue may be by introducing dynamic load
balancing; however, this may be considered in future work.

8 Conclusion

In this paper, we presented the performance of an electron dynamics simulation
code, named “ARTED”, as a real-scientific application on a large-scale KNL clus-
ter, “Oakforest-PACS”. Our purpose was to achieve high sustained performance
on a many-core base cluster from the basic code tuned to KNC coprocessors.

We focused on how to port the application for KNL from KNC-based opti-
mization and considered additional tuning for many-core processor dedicated
techniques. As the most time-consuming part, the stencil code with Hamiltonian
computation was successfully implemented on KNL with a minor change regard-
ing the KNC-optimized version with 512-bit SIMD instructions. We achieved a
performance of 758.4 GFLOPS per node for the 3-D stencil kernel, which corre-
sponds to 24.8% of theoretical peak. This result indicates that the code tuning
for KNC has had a positive impact on KNL.

For the performance evaluation on Oakforest-PACS, we used up to 8,192
nodes which correspond to 99.8% of the system. Our application achieved very
good weak scaling on the dominant Hamiltonian computation, up to 4 PFLOPS
with 16% of theoretical peak. The paper demonstrated that the application is
scalable on a world-class KNL system using our performance tuning.

We also showed that there are differences among nodes where the computa-
tion time differs up to approximately 20%, even for the same amount of compu-
tation. We think that it is caused by the Turbo Boost mechanism and dynamic
frequency control by the hardware to maintain the TDP. Such a problem is more
serious on many-core processors than ordinary multi-core processors.

We hope our results contribute significantly to the optoelectronics sciences
with KNL-adapted ARTED and the large-scale KNL cluster, Oakforest-PACS.
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Abstract. With energy-efficient architectures, including accelerators
and many-core processors, gaining traction, application developers face
the challenge of optimizing their applications for multiple hardware fea-
tures including many-core parallelism, wide processing vector-units and
on-chip high-bandwidth memory. In this paper, we discuss the develop-
ment and utilization of a new application performance tool based on
an extension of the classical roofline-model for simultaneously profil-
ing multiple levels in the cache-memory hierarchy. This tool presents
a powerful visual aid for the developer and can be used to frame the
many-dimensional optimization problem in a tractable way. We show
case studies of real scientific applications that have gained insights from
the Integrated Roofline Model.

Keywords: Performance models
Application performance measurement · Roofline · Knights landing

1 Introduction

As HPC systems move towards exascale computing, the growing complexity in
processor micro-architecture makes it more and more challenging to develop per-
formance and energy-efficient applications. As an example, the Intel many-core
Xeon Phi processor architecture has introduced a large number of relatively low-
frequency cores per chip with additions of on-package high-bandwidth memory
and wide vector units. It offers increased computing power for algorithms that
can leverage high parallelism and vectorization, at a lower energy cost. Although
optimizing (e.g. more parallelism) applications is beneficial on most platforms, a
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metric is required to guide application developers in their performance optimiza-
tion efforts so that applications can be optimized for the correct performance
bounds. Guiding users through this optimization process is a challenge that many
HPC facilities around the world are facing as they transition their communities
to energy-efficient architectures.

As the Mission HPC facility for the United States Department of Energy’s
(DOE) Office of Science, the National Energy Research Scientific Computing
Center (NERSC), located at Lawrence Berkeley National Lab, is addressing this
challenge with its broad user community of over 6000 users from 600 projects
spanning a wide range of computational science domains. NERSC recently
deployed the Cori system — a Cray XC-30 system comprising over 9600 Xeon-
Phi 7250 processors (code-named “Knights Landing” or KNL for short).

Each KNL processor includes 68 cores running at 1.4 GHz (1.2 GHz for AVX
code) and capable of hosting four HyperThreads (272 HyperThreads per node).
Each core has a private 32 KB L1 cache and two 512-bit wide vector processing
units. Each pair of cores (called a “tile”) shares a 1 MB L2 cache and each
node has 96 GB of DDR4 memory and 16 GB of on-package high bandwidth
(MCDRAM) memory.

Users are transitioning to this system from NERSC’s Edison system that con-
tains roughly 5000 nodes with a more traditional dual-socket Xeon (Ivy-Bridge)
architecture. When transitioning from Edison to Cori, users are faced with a
number of important changes: the “many-core” nature of Cori, the increased
vector widths (512-bit) provided with the AVX-512 instruction set, and changes
to the cache-memory hierarchy including the lack of an L3 cache but addition
of an on-chip 16 GB fast-memory (MCDRAM) memory layer that can be con-
figured as a transparent cache. In order to effectively optimize an application
for KNL, users therefore need to know which of these hardware features should
be targeted in order to reach the largest gains. And practically, they need to
know when to stop: i.e. when they’ve reached the expected performance for
their application on the architecture.

The Roofline model [1] is a visually-intuitive performance model used to
bound the performance of applications running on multiple architectures. Rather
than using percent-of-peak estimates, the Roofline model can be used to quanti-
tatively compare the performance of an application to the performance bounds,
or ceilings, set by the architecture of the compute platform. The Roofline model
combines this information into a simple performance figure that can be used to
determine both algorithmic and implementation limitations of an application.

The Roofline model characterizes an application’s performance in gigaflops
per second (GFLOPS) as a function of its arithmetic intensity (AI). AI is the
ratio of floating-point operations performed to the bytes transferred from cache
or memory during execution. This performance number can be compared against
the bounds set by the peak compute performance and the cache/memory band-
width of the system to determine what is limiting performance. The measure-
ment of AI can be done in multiple ways, based on different levels of the memory
hierarchy of modern computer systems. In literature, the Roofline model is often
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labeled by the level of memory its AI is measured from. The most well-known
flavors of Roofline are the Cache-Aware Roofline Model (CARM) that measures
the AI presented to the cache hierarchy [2,3] and the classical Roofline model
that measures the DRAM AI (AI after filtering by the cache hierarchy) [1].

Over the past few years, the utility of the Roofline performance model for
guiding and tracking application optimizations has been demonstrated [4]. How-
ever, these efforts have been limited in a couple of ways: gathering Roofline data
was cumbersome and limited in practice to a few code regions manually desig-
nated by the programmer and, secondly, data from only one level of the cache-
memory hierarchy is typically gathered, while many applications have complex
dependencies on the entire hierarchy.

In this paper, we discuss the benefits of an Integrated Roofline Model (IRM)
that collects the AI from all available levels of the memory hierarchy, and present
a tool, Intel R© Advisor, that automates the data collection and visualization in
a user friendly fashion. The novelty of this work with regards to [2,3] is the
new performance analysis method that uses memory traffic between all levels
of the memory hierarchy simultaneously and the demonstration of a tool for
automating the data collection. In CARM, one has a single AI (that is usually
close to the L1 AI) and can estimate effective memory bandwidth by comparing
observed performance to the L1, L2, ..., DRAM ceilings. Thus, if one observes
performance between the L2 and L3 ceilings, one can conclude that the average
memory bandwidth is somewhere between the L2 and L3 bandwidths. Unfortu-
nately, CARM does not actually calculate the attained memory bandwidth at
each level nor does it identify which level might be a performance bottleneck.
To that end, we developed and implemented a hierarchical roofline formulation
with a unique AI for each memory level and used a cache simulator to accurately
calculate the data movement between each level of the memory hierarchy. With
this information we can calculate at which level of the memory hierarchy the
dominant data movement occurs and the degree to which bandwidth at that
level is overprovisioned. An example that illustrates these improvements will be
shown in Sect. 4.2. Integration of this technology into a performance tool has
allowed it to be applied to full applications, linked to source and assembly, and
visualized using the well-known Roofline formulation. It allows us to automat-
ically determine whenever CPU or a given level of memory hierarchy are the
primary bottlenecks in terms of throughput and expose it in a visually-intuitive
manner.

The remainder of the paper is organized as follows: In Sect. 2 we discuss the
implementation of the Integrated Roofline Model in the Intel Advisor tool. In
Sect. 3, we show case studies of how real science application performance is char-
acterized using the Integrated Roofline Model. In Sect. 4, we demonstrate two
examples where the Integrated Roofline Model has been used to highlight the
effects of optimizations on applications and to demonstrate application perfor-
mance differences of the KNL and Intel Xeon (Haswell generation) architectures
that are present in a smaller data-partition on Cori.
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2 Intel Advisor Roofline: Underlying Design
and Methodology

Three measurements from an application are needed for roofline analysis: the
number of floating-point operations executed, the number of bytes transferred
from memory and the execution time. In this section we discuss the measure-
ments implemented in Intel Advisor to collect the data required to build the
IRM [3,5,6].

In order to measure memory traffic and attribute it to the loops and functions
of the application, we use binary instrumentation and cache simulation. We
process all memory arguments of the executed instructions; the CARM traffic
is obtained by adding their sizes, while feeding their sizes and addresses to the
cache simulator provides the numbers for other levels of the memory hierarchy.
The cache simulator is configured according to the actual hardware properties
including individual caches, cache capacities, as well as core and socket counts.

The traffic for each memory level is defined as a number of bytes transferred
between corresponding component and lower (closer to the CPU core) cache
or the core itself. The only exception is L1 cache — where we count the total
number of bytes accessed by CPU instructions instead, producing approximately
the same arithmetic intensity as in the CARM. The difference is caused by the
instructions that access memory by bypassing the cache subsystem, e.g., non-
temporal stores used to store data not expected to be reused.

We attribute traffic to the instruction that caused it — and, afterwards, group
it by loops and functions adding the numbers for corresponding instructions. For
example, if a load causes a cache miss and in order to place the new line in cache
it is required to evict the line modified earlier, storing it to the next level of
the memory hierarchy, the store traffic is attributed to this load instruction.
This may sound counter intuitive, but note that to correctly place the loop on
the Roofline chart we need to measure the traffic generated while the loop was
executing, thus even if it evicts cache lines modified by a preceding loop nest,
corresponding store traffic should be taken into account.

Note that all transfers besides “L1 traffic” values are actually done in cache
line units, which also affects the traffic. For example, if an instruction loads one
byte and the load causes a cache miss and is eventually served by DRAM, we
will measure one byte of L1 traffic, and the traffic defined by the cache line size
(64 bytes on most modern CPUs) for all other caches and DRAM. This may
lead to “L1” arithmetic intensity being larger than L2 or even DRAM, while the
opposite is true for the code with good cache line reuse.

We also count the number of floating-point operations using binary instru-
mentation, analyzing floating-point instructions. For vector instructions, this
enables us to accurately count the number of elements actually processed, i.e.,
properly account for masked vector instructions, noting that instructions can also
involve several FLOPs (e.g. for FMA instructions). By implementing a time, traf-
fic and FLOP measurement workflow in Intel Advisor it became possible to fully
automate Roofline characterization not only for individual loops or functions,
but for full applications.
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The binary instrumentation by its nature causes significant overhead. The
overhead varies based on the application (see Table 1). In general, the better the
application is using the CPU resources, the higher is the influence of instrumen-
tation and cache simulation logic. Particularly, the overhead is usually higher for
the code with good cache locality because simulation code, besides consuming
computational resources, evicts application data from the cache, increasing cache
miss rate; if most accesses from the application are served by DRAM anyway,
the impact is lower. The overhead is also affected by the other factors, such as
the use of Hyper-Threading or thread synchronization pattern.

Note that in order to correctly measure the execution time of the program
and individual loops, memory traffic estimation is done in a second analysis pass.
So time is measured in first separate pass, using a low-overhead non intrusive
time sampling technique, and therefore cache simulation overhead does not affect
the execution time (seconds) and final FLOP/s measurements representativeness
and accuracy.

Table 1. Cache simulation overhead for the applications in the paper

Name XGC1 VASP fwi2d SW4 CoMD GPP BIGSTICK

Overhead 37× 21× 21× 23× 8× 9× 18×

Performance counters were used to validate the cache simulation results prior
to this work. We used different compute kernels and benchmarks for validation
and the discrepancy was found to be within 10% on average. We chose to use
cache simulation, since, even though core (and offcore response matrix) counters
can be used to measure read traffic from DRAM, writes to DRAM (caused by
dirty lines evictions from LLC) are not measured. Note that although there is
an OFFCORE REQUEST bit corresponding to writebacks, it refers to write-
backs from L2 to LLC. Counting writes from LLC to DRAM would require
an additional OFFCORE RESPONSE type. Furthermore, measuring traffic on
loop/function boundaries requires source/binary instrumentation that may dis-
tort PMU measurements (especially for small inner loops). Also, in parallel code,
it only makes sense on parallel region boundaries. Thus, it would not be possible
to deep-dive inside the parallel regions and measure roofline data for inner loops
or functions.

In this paper we use the following techniques available to analyze Roofline
data generated by Intel Advisor. First, Intel Advisor’s interactive GUI is utilized
to explore Roofline charts directly (Fig. 2). Secondly, the Intel Advisor command
line interface or Intel Advisor Python customization API ([7]) can be used to
implement custom extension of Intel Advisor; this approach was used in this
paper to generate custom Integrated Roofline charts shown in the article (e.g.
see Fig. 1).
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3 Application Characterization Case Studies

In this section, we show the utility of the roofline model for assessing the perfor-
mance of scientific applications that routinely run on NERSC systems. Real-life
scientific applications often feature complex algorithms that may be very diffi-
cult to analyze analytically. For demonstration of the integrated roofline method
on a simple analytic benchmark, the reader is encouraged to refer to [8,9]. The
applications analyzed in this paper are summarized in Table 2.

Table 2. General characteristics of the application evaluated in this paper. Note, “BW”
stands for memory bandwidth

Name XGC1 VASP fwi2d SW4 CoMD GPP BIGSTICK

Domain Magnetic

Fusion

Materials

Science

Geo-physics Geo-

dynamics

Poly-

crystalline

Materials

Material

Science

Nuclear

Physics

Motif PIC DFT + CG FD Stencils FD Stencils MD DFT CI

Release upon

request

paid closed open source open source

[10]

open source upon

request

MPI � � � � � �
OpenMP � � � � � � �
LOC 100 k 470 k 2K 87 k 4K 400 91 k

Perf. bound Gather/

Scatter,

Compute

BW, latency BW BW,

Compute

BW BW BW

3.1 XGC1

XGC1 (X-point Gyrokinetic Code) [11] is a fusion plasma physics gyrokinetic
particle-in-cell (PIC) code originally from Princeton Plasma Physics Laboratory
(PPPL). It is one of the codes selected for the US exascale computing project
(ECP). It is primarily used to study turbulence in the edge region of tokamak
fusion plasmas — essential for the success of future fusion reactors.

The main unique feature of XGC1 is its use of unstructured meshes to sim-
ulate the whole tokamak volume. The mesh is decomposed over MPI ranks
into poloidal planes that are connected via a field-following mapping. Within
a poloidal plane, particles are decomposed over both MPI ranks and OpenMP
threads. XGC1 uses kinetic ions and electrons, and uses a sub-cycling scheme
for the electron motion that is the most time-consuming part of the simulation.
In a typical production run on Cori, roughly 70–80% of the total CPU time is
spent in the electron push kernel [12].

Within the electron push kernel, communication between threads is only
needed roughly every 50 electron time steps. The electron push algorithm
uses a 4th order Runge-Kutta scheme to integrate the gyrokinetic equation of
motion [11]. The computation has a high flop to byte ratio, but CPU time is
dominated by indirect memory accesses and latency from gather/scatter instruc-
tions due to the random motion of particles across the grid. This is a typical
feature of PIC codes and is exacerbated in XGC1 by the unstructured mesh.
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We run XGC1 on a single KNL node in quad-cache mode for an artificially
small problem size, to make data collection with Advisor feasible. The mesh
consists of 7500 nodes in a single axisymmetric plane and the number of particles
is 25,000 per thread, 1.6 million total. We run the code for two ion time steps
with 50 electron sub-cycles per time step, without collisions, using 16 MPI ranks
and 4 OpenMP threads per rank. The Advisor data is collected on rank 0 only.

The five most time-consuming loops of XGC1 are shown on the Roofline chart
in Fig. 1. All the loops shown are called from the electron push kernel, which
dominates the ion push by a factor 50 in call volume. The loops all have good
cache locality in the L2 cache, shown by a large increase in AI from LLC to L2,
and the highest-performing loops also have good L1 locality, while the rest have
only moderate L1 locality. The kernels clearly are not bandwidth bound, with
the possible exception of bicub mod:295 being bound by the L1 bandwidth. It
also is worth noting that the DRAM traffic within these loops is too small to be
measured by Advisor. That is, the loops are fully running from cache. The loops
are vectorized and do not fall clearly into either bandwidth or compute bound
regimes. Our hypothesis is that they are bound by cache throughput which
is specific to the load instruction. This has been confirmed by instruction set
analysis which shows gather/scatter instructions are generated in the loops. Our
conclusion is the high-performing loops are bound by L1 instruction throughput
and the lower-performing loops by L2 throughput. One could measure a memory
bandwidth roofline for gather/scatter instructions to present the more realistic
performance bound in the roofline model, this is planned for future work.

Fig. 1. XGC1 Roofline figure for Cori (KNL) in a quad-cache configuration. The sym-
bols represent different loops and the colors of the markers represent AI’s of the loops
measured from different memory levels. The memory bandwidth ceilings are similarly
colored. That is, points of a given color should be compared against the memory ceil-
ing of the same color. Although bicub mod attains near L1 roofline performance, most
other kernels are well-below the L2 and scalar add rooflines. (Color figure online)
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3.2 Fwi2d

Fwi2d (full waveform inversion) is a seismic imaging code from the Paris School
of Mines (MinesParisTech) used to obtain subsurface images from low frequency
wave velocity fields. This is critical for successful exploration and reservoir delin-
eation in oil and gas exploration, but such algorithms can be used for civil
engineering as well. FWI is a computationally-intensive process that requires
propagating waves using time (or frequency) domain wave equation solvers. We
consider here a second-order wave equation and we are using a time domain
finite difference (TDFD) approach based on explicit finite difference schemes
in time (4th order) and space (8th order) with a quasi-Newton (with L-BFGS
algorithm) optimization scheme for the model parameters update. The stencil in
use to compute the derivatives has an extremely strong impact on the flop per
byte ratio, on the memory accesses, and finally on the implementation efficiency.
Those algorithms are also known as time reversal techniques that need cross cor-
relation of a forward propagating field and a backward propagating field. This
method usually leads to heavy I/O to keep snapshots of the forward wavefields.
In the present isotropic acoustic 2D implementation of FWI, we keep the snap-
shots in memory for simplicity. The main advantage of a 2D implementation is
to quickly evaluate new features such as more complicated wave equations, new
cost functions, finite-difference stencils or boundary conditions and evaluation
of new memory hierarchies in the context of snapshot management. This tech-
nique is popular due to its simple stencil based implementation on a Cartesian
grid and its natural parallelization in the shot domain, e.g. the parallelization
is achieved through standard MPI seismic shot distribution and OpenMP for
domain decomposition within the PDE loop.

In the example runs, we try to understand OpenMP scalability and the per-
formance impact of absorbing boundary condition that potentially impact data
alignment and vectorization. As presented on Figs. 2 and 3, we can analyze the
data movement between memory levels for each loop. Since the number of FLOPs
is the same between those levels, any move comes from a change in the number
of bytes transferred. The amplitude of the horizontal movement of each dot is
indicative of potential bottlenecks. For example, the triangles on Fig. 3 are very
close for the L1, L2 and L3 levels (blue, green, yellow) and far to the right for
the DRAM to LLC traffic (red triangle). This demonstrates that data resides
in the cache and is not impacted by DRAM bandwidth. A look at the vector-
ization analysis will then give some recommendations on how to improve the
performance (we ultimately want those triangles against the roofline). Another
interesting behavior is visible with the blue and green diamonds of Fig. 3 where
we do not have any data traffic between DRAM-LLC and LLC-L2 levels (no yel-
low or red diamonds). The increase in data movement between L1 and registers
demonstrates a possible issue with vectorization and data alignment.

Using the multi-level Roofline view for all functions and loops is a nice com-
panion to vectorization analysis in order to characterize a full application at
the function/loop levels on a given platform or when moving from one machine
to another generation. To illustrate this, we performed tests on a dual-socket
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Fig. 2. fwi2d Intel Advisor 2018 “Roofline” view screen-shots. These two pictures rep-
resent the data traffic between L1 and register (top left) and between L1 and L2
(bottom right). As the number of FLOPs remains constant between the pictures, we
can see that several functions/loops have the same volume of bytes transferred while
some other points suffer from cache misses that strongly increase the data traffic.

Fig. 3. Roofline for Fwi2d using 1 MPI rank of 40 OpenMP threads running on a
dual socket Skylake server. Selected loops are from the stencil routines and boundary
conditions. We can see, the data movement between memory levels is very different
for each loop and each of the loops is not bounded by the same level, i.e. by the same
bandwidth. This is one of the key features of the multi-level view. (Color figure online)
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server using Intel R© Xeon R© Gold 6148 processors codenamed Skylake with 20
cores running at 2.4 GHz and 192 GB of DDR3–2667 DRAM, leading to a stream
triad bandwidth of about 200 GB/s. This architecture is different from the KNL
processor of the Cori system, corresponds to the latest Xeon architecture, and
contains a number of enhancements (AVX512 instruction set and larger cache
sizes). In some cases, applications may need to be optimized for the new cache
hierarchy. In fwi2d this is reflected in the need to reshape the cache block sizes
to fit L2 and benefit from its bandwidth. More details are available at [13].

3.3 VASP

The Vienna Ab-initio Simulation Package (VASP) [14,15] is a widely used mate-
rials science application, supporting a wide range of electronic structure methods,
from Density Functional Theory (DFT) to many-body perturbation approaches
(GW and ACFDT). VASP solves a set of eigenvalue and eigenfunction (wave-
funtion) pairs for the many-body (electrons) Schrödinger equation iteratively
within a planewave basis set (Fourier space). VASP computation consists of
many independent 3D FFTs, matrix-matrix multiplications, matrix diagonal-
izations, and other linear algebra methods, such as Gram-Schmidt orthogonal-
ization, Cholesky decomposition, and matrix inversion. Therefore VASP heavily
depends on optimized mathematical libraries.

VASP was written in Fortran and parallelized with MPI. To exploit more
energy-efficient processors like Intel KNL, the VASP developers have added
OpenMP directives to the code recently to address increased on-node parallelism.
In the hybrid MPI+OpenMP VASP code, the bands are distributed over MPI
tasks, and the coefficients of the bands are distributed over OpenMP threads,
either explicitly via OpenMP directives, or implicitly via the use of threaded
libraries like FFTW or LAPACK/BLAS3. To exploit wider vector units, VASP
employs OpenMP SIMD constructs using both explicit loop-level vectoriza-
tion via omp simd and sub-routine/function vectorization through omp declare
simd. To effectively vectorize the nested function calls and complex loop struc-
tures mixing scalar and vector code that compilers often fail to auto-vectorize,
the code employs a combination of user-defined high-level vectors together with
OpenMP SIMD loop vectorization. More details about the OpenMP implemen-
tation and SIMD optimizations in VASP can be found in [16].

Figure 4 shows the four most time consuming loops in the hybrid
MPI+OpenMP VASP (code path: hybrid functional calculation with the damped
iteration scheme) on the roofline chart for Cori KNL. VASP was run with four
KNL nodes in quad-cache using 64 MPI tasks and 8 OpenMP threads per task
(16 MPI tasks per node). Note, the performance data is collected on rank 0 and
the flops are normalized to full node by simply multiplying the relevant values
by the number of MPI tasks per node. The benchmark used is a 256-atom Sil-
icon supershell with a vacancy. The hybrid MPI+OpenMP VASP (last commit
10/16/2017) was compiled with the Intel compiler (2018.0.128) and was linked
to the MKL, ELPA (2016.05.004), and Cray MPICH (8.6.0) libraries.
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Figure 4 shows that the performance of the most time consuming loops (each
of them accounting for 4–6% of the total execution time) are well below the
scalar add peak. Except the loop, apply gfac exchange , being MCDRAM band-
width bound, the dots for the rest of the loops are well below the corresponding
level’s memory bandwidths, indicating they are neither compute or bandwidth
bound but likely latency bound. Advisor detected inefficient memory access pat-
terns and assumed dependencies in these loops. The large separation between the
MCDRAM and DRAM arithmetic intensities is indicative that the working set
fits well in the MCDRAM cache. Note that the four most time consuming loops
shown in the figure are not the ones that execute the most floating-point calcu-
lations. VASP executes most of the floating-point calculations via the BLAS and
FFT routines in MKL whose performances, being closer to or above the double
precision vector peak, result in a shorter execution times.

Fig. 4. VASP Roofline for KNL. The four most time consuming loops are shown in
the chart. Except the loop, apply gfac exchange , which appears to be the MCDRAM
bandwithd bound, the rest of the loops are neither compute or bandwidth bound.

3.4 BIGSTICK

BIGSTICK [17] implements the parallel Configuration Interaction (CI) method
(widely used to solve the nuclear many body problem) using Fortran 95 and
MPI+OpenMP. Perhaps the greatest challenges in efficient implementation and
execution of the CI method is its immense memory and data movement require-
ments. In CI, the non-relativistic many-body nuclear Schrödinger equation is
cast as a very large sparse matrix eigen-problem with matrices whose dimen-
sion can exceed ten billion. With typical sparsity (between 1 and 100 nonze-
ros per million matrix elements) such large-scale sparse matrix eigen-problems
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place high demands on memory capacity and memory bandwidth. To reduce the
memory pressure, BIGSTICK reconstructs nonzero matrix elements on the fly.
As a results, the memory requirements, compared with the stored matrix app-
roach, is reduced 10–100×. To further reduce memory requirements, BIGSTICK
may be run in a hybrid MPI+OpenMP mode. Figure 5 shows the Roofline for
BIGSTICK on KNL using 1 MPI process of 64 threads. The data set used is
b10nmax4 (10B), an ab initio calculation that has five protons and five neutrons
(10B); the designation Nmax = 4 describes the model space and signifies the
maximum excitation in units of harmonic oscillator energies. Generally speak-
ing, two interrelated factors drive down both AI and performance — high-stride
memory access patterns and a lack of vectorization. However, the large DRAM
AI suggests the MCDRAM cache is effectively capturing the working set.

Fig. 5. Roofline for BIGSTICK on KNL for 1 MPI process with 64 OpenMP threads.
The low performance is due to high stride data access without vectorization.

3.5 SW4

SW4 [18] is a block-structured, finite difference code that implements substantial
capabilities for 3D seismic modeling. SW4 is parallelized with MPI and has
performance kernels (SW4Lite) threaded with OpenMP.

Figure 6 shows the Roofline model for SW4 running with 8 processes of 8
threads on KNL in quad-cache. The performance of four of the kernels are
directly tied to MCDRAM bandwidth, while the fifth, rhs4sg rev, dominates
the runtime, underperforms its MCDRAM limit, but exceeds the scalar FMA
performance. L1, L2, and MCDRAM(LLC) AIs are widely separated indicating
multiple levels of locality and reuse distances. Note, we do not show DRAM AI
as the problem size completely fits in MCDRAM.
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Fig. 6. SW4 running with 8 MPI ranks of 8 threads on KNL in quad-cache. Observe
four kernels are strongly tied to MCDRAM(LLC) bandwidth.

The rhs4sg rev and addsgdfort indrev are the most time consuming routines
in the project. Nearly 80% of the computation time is spent in these routines.
From the Fig. 6, we can observe that both these routines are optimized efficiently
and since there are sizable gaps between L1, L2 and LLC, it indicates that there
is reuse in all three levels of cache. We do not show the DRAM data in Fig. 6,
since the problem size shown fits completely in the MCDRAM.

4 Guided Optimization Case Studies

4.1 CoMD

CoMD [19–22], a proxy/mini application developed at Los Alamos National
Laboratory (LANL), was designed to mimic the workloads of ddcMD [23] and
Scalable Parallel Short-range Molecular Dynamics (SPaSM) [23] and is a mate-
rial science application for performing molecular dynamics (MD) simulation on
polycrystalline materials. MD algorithms are classified as N-body problems with
an approximate complexity of O(n2) or lower. The two types of force calcula-
tions implemented in CoMD (typically the bottleneck of MD algorithms) is the
Leonard Jones (LJ) and Embedded Atom Model (EAM). CoMD is implemented
in C with MPI and OpenMP.

Initial observations showed that the LJ force kernel strongly dominates
the run time. Therefore, for the purpose of demonstrating the viability of the
Roofline approach, we will focus on the LJ force kernel.

Figure 7(left) shows out-of-the-box CoMD performance on KNL compared
to a two-socket Haswell node (thread concurrencies greater than 64 indicate
oversubscription). Data provided by Intel Advisor, Fig. 7(right), shows that the
LJ kernel dominates the run time and has substantial L2 and MCDRAM data
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Fig. 7. (Left) Out-of-the-box CoMD LJ-Force on KNL generally underperforms
Haswell (oversubscription beyond 64 threads). (Right) Roofline analysis of CoMD on
KNL shows the LJ kernel dominates the run time and has high data locality. Note,
HyperThreading on Haswell only supports 64 simultaneous threads.

locality. However, it clearly shows that there is a great deal of L1 data movement
(much lower L1 AI). Advisor noted the lack of vectorized loops, unaligned data,
and non-unit stride stores. Therefore, the conclusion from the roofline analysis
was the performance is not bound by memory bandwidth, since good locality is
achieved, and optimization efforts on KNL should focus on leveraging the vector
instructions to reach higher compute ceilings.

After several optimization sessions with the goal of improving the data and
thread level parallelism, Fig. 8 shows approximately 30% improvement in the LJ-
force kernel performance on both KNL and HSW. The modernization effort in
CoMD for the LJ-force kernel includes improving vectorization via simd clauses,
branch hints for simd, simdized functions, alignment, compiler hints, and data
structure transformations. However, the roofline performance figure indicates
that work remains to bridge the remaining performance gaps.

Fig. 8. (Left) Optimized CoMD LJ-Force on KNL and Haswell. (Right) Roofline anal-
ysis of optimized CoMD on KNL. Note, HyperThreading on Haswell only supports 64
simultaneous threads.
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4.2 BerkeleyGW (GPP)

BerkeleyGW [24] is a material science application that predicts the excited-state
properties of a wide range of materials. GPP [25] is a proxy code for BerkeleyGW,
written in Fortran90 and parallelized with OpenMP. It calculates the electron
self-energy using the common General Plasmon Pole (GPP) approximation [26].
The computation represents the work an individual MPI task would perform in
a much larger calculation (typically spanning hundreds or thousands of nodes).
The code implements several nested loops, where the innermost loop iterates
over the longest dimension of arrays. For a small BerkeleyGW problem, with
512 electrons (bands) and 32,768 plane wave basis elements, the innermost loop,
for example at line 303 in the code [25], must read/write 2 MB of data for each
outer iteration. As this 2 MB working set doesn’t fit into the L2 cache on either
Haswell or KNL, a cache-blocking strategy is deployed.

Using 32 threads on the Cori/Haswell nodes and 64 threads on the Cori/KNL
nodes (quad-cache), Fig. 9 shows that this core computational loop is MCDRAM-
bound on KNL and L3-bound on Haswell, since there is essentially no difference
between the LLC, L2 and L1 AI’s. This means that data is being streamed from
the LLC and there is no reuse of data in L1 or L2. Table 3 shows that when
one applies cache blocking, the LLC AI improves by 3×, which is due to the
fixed trip count of three for loop iw. Likewise, Fig. 9 shows significant separation
appears between the L2 and LLC AI’s after cache blocking - meaning reuse out
of L2 has been achieved. The GFLOPS/s performance has improved by 16–18%,
lower than 3×, because there are divide, shuffle and unpack instructions involved
in the innermost loop.

Fig. 9. Integrated Roofline for GPP on Haswell (top) and KNL (bottom) before (left)
and after (right) cache blocking. Observe the lack of differentiation for L2 and L3 AI’s
in the left figures for loop at line 303.
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Table 3. Integrated roofline AI and performance for GPP on Haswell and KNL with
and without cache blocking. Observe the 3× increase in LLC AI.

gppKernel.f90:303 Haswell KNL

Original Cache blocked Original Cache blocked

L1+NTS AI 0.31 0.31 0.64 0.64

L2 AI 0.46 0.62 0.51 0.69

LLC AI 0.46 1.40 0.56 1.71

DRAM AI 3.31 3.44 26.45 26.83

GFLOPS/s 148.57 172.48 242.55 287.28

Tables 3 and 4 show that the (single) AI obtained from CARM is exactly the
same as the L1 AI obtained in the Integrated Roofline Modeling (n.b., CARM
GFlop/s is different as it was collected in a separate run that resulted in a slightly
different run time). While the CARM Roofline approach, in Fig. 10, can show the
upward movement of the performance through optimization, it fails to provide
any information on which level of cache this optimization has affected, whereas
in the Integrated Roofline (Fig. 9), the increase of LLC AI clearly indicates that
data has been blocked to L2 and traffic between L2 and LLC has been reduced.

Table 4. CARM Roofline AI and performance for GPP on Haswell and KNL with and
without cache blocking.

gppKernel.f90:303 Haswell KNL

Original Cache blocked Original Cache blocked

CARM AI 0.31 0.31 0.64 0.64

GFLOPS/s 147.60 169.83 250.88 290.03

5 Related Work

The literature is filled with many performance models and tools specialized for
varying levels of detail and different bottlenecks. Whereas the Integrated Roofline
presented in this paper includes all levels of the cache hierarchy, the original
Roofline model [1] focused on only a single level at a time (e.g. DRAM). As
accurately measuring data movement can be a hard problem (hence the cache
model used in the Integrated Roofline), the Cache-Aware Roofline Model [2]
transforms the problem by fixing arithmetic intensity at the L1 and infers locality
based on the position of performance relative to bandwidth ceilings.

Whereas, Roofline presents an idealized machine that can perfectly overlap
computation with L1, L2, and DRAM data movement, many real processors may
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Fig. 10. CARM Roofline for GPP on Haswell (left) and KNL (right) before (cyan) and
after (magenta) cache blocking. (Color figure online)

not be able to realize this. To that end, the Execution-Cache-Memory Model was
developed [27] to more accurately capture how specific processor microarchitec-
tures fail to perfectly overlap communication and computation.

Rather than modeling the cache hierarchy, tools like PAPI [28] and LIK-
WID [29] can directly read the hardware performance counters that record var-
ious compute and data movement events. Unfortunately, performance counter
tools are only as good as the processor vendor’s implementation of the underly-
ing performance counters. Where the counters are inaccurate, incomplete (e.g.
failing to incorporate masks when counting vector flops), or simply missing, tools
will not provide the requisite data. Additionally, such tools often rely on coarse-
grained sampling techniques that are error-prone on short loops or are other-
wise challenged in attribution. The latter, attribution (i.e. which loop caused
the data movement observed on a shared uncore counter), is a direct motiva-
tor for out cache simulator based approach. Nevertheless, performance counter
sampling incurs minimal performance impact and thus enables full-application
instrumentation at scale.

When performance falls out of the throughput-limited regime, overheads and
inter-process communication can dominate an application’s performance char-
acteristics. To that end, depending on message size, messages per synchroniza-
tion point, and the performance of the underlying communication layer, the
LogP or LogGP models may be more appropriate [30,31]. For single-node runs
where there is no inter-process communication, models like LogCA [32] should
be adapted to incorporate the overhead of OpenMP parallelization.

Whereas our tool is nominally geared for analyzing threaded single-process
executions, other tools like TAU [33] or HPCToolkit [34] are more adept at inte-
grating and analyzing highly-concurrent, distributed-memory performance char-
acteristics to identify communication or computational load imbalance. Similarly,
when running on Cray supercomputers, one may use CrayPat [35] to instrument
and analyze performance. In addition to timings, CrayPat provides access (via
PAPI) to the underlying performance counters in order to measure cache, memory,
and floating-point performance. Nevertheless, neither PAPI, LIKWID, CrayPat,
TAU, or HPCToolkit have an underlying performance model that can be used for
performance analysis rather than simply performance instrumentation.
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6 Summary and Outlook

We have shown in this paper that utility of an “Integrated” Roofline Model
approach for evaluating and guiding the optimization of application performance.
This novel approach, as implemented in the latest Intel Vector Advisor tool via
an included cache simulator, provides simple to understand visual indication of
which (if any) level of the cache-memory limits performance and the amount of
data-reuse present in each. For example, for a given loop or function, the visual
separation of the four plotted points corresponding to AI’s from L1, L2, LLC,
and DRAM corresponds directly to cache-reuse. We observe that the effect of
cache-blocking optimizations can be easily visualized in this manner.

The integration with Intel Advisor enables the automated collection of inte-
grated roofline information, not just for simplistic kernels but for real, large-scale
applications with multiple bottlenecks. It effectively combines the process of col-
lecting a profile and analyzing the performance limiters of the hotspots into a
single step. The result is the presentation of actionable performance data for all
the top hotspots in an application.

At LBNL and LANL, this information is used to inform code teams which
viable optimization paths are available to them and which KNL architectures
features they should target. For example, if an application bandwidth bound in
certain cache or memory layer, it isn’t likely very profitable to tackle improved
vector code generation — but adding a layer of cache blocking or tiling (e.g. in
the KNL MCDRAM) would likely enable greater performance.

In many cases, even with the increased granularity of information provided
by all four points in the Integrated Roofline Model, it isn’t always immediately
clear what the performance limiter of an application is. For example, none of the
measure performance points may lie clearly on one of their respective ceilings. In
practice what we have found, is the Roofline model, and IRM in particular, are,
however, always great tools for starting or framing a conversation with facility
users around performance. Asking the question “why are my performance points
not on their ceilings” nearly always leads to fruitful investigation whereby the
code teams learns something new and deeper about their application — well
beyond using walltime to profile an application alone.

In many cases, the answer to the above quoted question is related to the
fact that the ceilings for each level of the cache-memory hierarchy are based
on streaming (unit-stride) access patterns, but real applications often exhibit
strided or random memory access patterns. It is straightforward to empirically
compute “effective” ceilings for such access patterns (which are typically lower
than unit-stride access patterns) but we leave a detailed discussion of extending
the utility of the Roofline model in this way to a future work.

In addition, one may, in principle, add additional levels (and corresponding
performance points) to the Integrated Roofline Model corresponding to data
accessed from off-node (e.g. via MPI communication), from I/O during execu-
tion, or other limiters of in-core performance (e.g. floating-point divides). This
is important not only for applications that are communication or I/O bound,
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but also for applications that depart from the multiply-add idiom that modern
architectures are optimized for. This is a fruitful avenue for future work.
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Abstract. Imbalance among components of large scale parallel simu-
lations can adversely affect overall application performance. Software
induced imbalance has been extensively studied in the past, however,
there is a growing interest in characterizing and understanding another
source of variability, the one induced by the hardware itself. This is
particularly interesting with the growing diversity of hardware platforms
deployed in high-performance computing (HPC) and the increasing com-
plexity of computer architectures in general. Nevertheless, characterizing
hardware performance variability is challenging as one needs to ensure a
tightly controlled software environment.

In this paper, we propose to use lightweight operating system ker-
nels to provide a high-precision characterization of various aspects of
hardware performance variability. Towards this end, we have developed
an extensible benchmarking framework and characterized multiple com-
pute platforms (e.g., Intel x86, Cavium ARM64, Fujitsu SPARC64, IBM
Power) running on top of lightweight kernel operating systems. Our ini-
tial findings show up to six orders of magnitude difference in relative
variation among CPU cores across different platforms.

Keywords: Performance variation · Performance characterization
Lightweight kernels

1 Introduction

Since the end of Dennard scaling, performance improvement of supercomputing
systems has primarily been driven by increasing parallelism. With no end in
sight to this trend, it is projected that exascale systems will reach multi-hundred
million-way of thread level parallelism [1], which by itself poses a crucial challenge
in efficiently utilizing these platforms. Further complicating things, the majority
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of current large-scale parallel applications follow a lock-step execution model,
where phases of computation and tight synchronization alternate and imbalance
across components can lead to significant performance degradation. Additionally,
unpredictable performance also complicates tuning, as it becomes difficult to tell
apart performance differences induced by platform variability from the result of
the tuning effort.

Although performance variability is a well-studied problem in high-perfor-
mance computing (HPC), for the most part variability has historically been
induced by either operating system or application software. For example, it has
been shown that interference from the system software (a.k.a., OS jitter or OS
noise) can have an adverse impact on performance [2–5]. This has led to sev-
eral efforts in lightweight operating systems [6–8] that reduce OS jitter, as well
as work in parallel runtimes that attempt to balance load dynamically across
processors at runtime [9,10]. However, exascale computing is driving a separate
trend in hardware complexity and diversity that may further complicate the
issue. With the increasing complexity of computer architecture and the grow-
ing diversity of hardware (HW) used in HPC systems, variability caused by the
hardware itself [11] may become as problematic as software induced variability.
Examples of causes for hardware induced variability include differences between
SKUs of the same model due to process variation [12] during manufacturing, the
impact of shared resources in multi/many-core systems such as shared caches
and the on-chip network, or performance variability due to thermal effects [13].

While system software induced variability can be addressed by, for instance,
lightweight operating system kernels [7,14–16], HW variability is a latent
attribute of the system. As of today, there is little understanding of how the
degree of hardware induced variability compares to that induced by software,
and whether or not this difference varies across different architectures. One of
the primary issues with precisely characterizing hardware performance variabil-
ity is that measurements of hardware variability need to be made in such a
fashion that eliminates software induced variability as much as possible, but
making this differentiation is challenging on large scale HPC systems due to the
presence of commodity operating system kernels. For example, a recent study
investigated run-to-run variability on a large scale Intel Xeon Phi based system
[11], but because of the Linux software environment, it is currently difficult to
attribute all of the variability exclusively to the hardware platform.

In this paper, we provide a solution to this problem by designing a perfor-
mance evaluation framework that leverages lightweight operating system kernels
to eliminate software induced variability. With this technique we systematically
characterize hardware performance variability across multiple HPC hardware
architectures. We have developed an extensible benchmarking framework that
stresses different HW components (e.g., integer units, FPUs, caches, etc.) and
measures variability induced by these components. Given that variability is a key
measure of how well an architecture will perform for large scale parallel work-
loads, our work is a key step towards understanding the capabilities of new and
emerging architectures for HPC applications and to help HPC architects and
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programmers to better understand whether or not the magnitude of variability
induced by the hardware is an issue for their intended workloads.

This paper focuses on per-core performance variation with limited memory
usage, i.e., limiting working set sizes so that they fit into first level caches.
The results provided here constitute our first steps towards a more comprehen-
sive characterization of the HW performance variability phenomenon, including
measurements that involve simultaneous usage of multiple cores/SMT threads,
higher level caches, the memory subsystem, as well as comparison across multi-
ple SKUs of particular CPU models. Specifically, this paper makes the following
contributions:

– We propose a benchmarking framework for systematically characterizing
different aspects of hardware performance variability running on top of
lightweight kernel operating systems.

– Using the framework we provide a comprehensive set of measurements on per-
core run-to-run hardware performance variability comparing Intel Xeon, Intel
Xeon Phi, Cavium ThunderX (64 bit ARM), Fujitsu FX100 (SPARC-V9) and
IBM BlueGene/Q (PowerISA) platforms.

– We use our performance evaluation framework to highlight a number inter-
esting architectural differences. For example, we find that some workloads
generate six orders of magnitude difference between variability on the FX100
and the Xeon Phi platforms. We also demonstrate that the fixed work quan-
tum (FWQ) test [17], often used for OS jitter measurements is not a precise
instrument for characterizing performance variability.

The rest of this paper is organized as follows. We begin with related work
in Sect. 2. We provide background information on lightweight kernels and the
architectures we investigated in Sect. 3. We describe our approach in Sect. 4
and provide measurements and performance analysis in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Related Work

Performance variability is an age-old problem in high-performance computing,
with a plethora of research efforts over the past several decades detailing its
detrimental impacts on tightly coupled BSP applications [18]. There are many
diverse sources of variability, ranging from contention for cluster level resources
such as interconnects [19] and power, to “interference” from operating system
daemons [4,5], or intrinsic application properties that make it challenging to
evenly balance data and workload a priori – for example, when application
workload evolves and changes during runtime.

To mitigate these classes of variability, the HPC community has generally
leveraged two strategies: (1) lightweight operating systems that reduce kernel
interference by eliminating daemons and other unnecessary system services,
and (2) parallel runtimes that provide mechanisms to respond to variability
by, for example, balancing load [9,10,13], or by saving energy by throttling
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power [20,21] on the portions of the system less impacted by the particular
source of variability.

Despite these efforts, there are indications that performance variability is
poised to increase not only as a function of system software and algorithmic
challenges, but also as a function of intrinsic hardware characteristics. With
architectures continuing to trend towards thousand-way parallelism with het-
erogeneous cores and memory technologies, other architectural resources such
as buses, interconnects, and caches are shared among a large set of processors
that may simultaneously compete for them. While it is possible that parallel
runtimes can address the resulting variability to some degree, recent research
results indicate that today’s runtimes are not particularly well suited to this
type of hardware variability [22]. Thus, we believe there is a need for a per-
formance evaluation framework that can precisely quantify the extent to which
intrinsic hardware variability exists in an architecture.

As we mentioned earlier, multiple studies have investigated performance vari-
ation at the level of an entire distributed machine, however, none of them utilized
lightweight kernels to clearly distinguish software and hardware sources [11,18].
It is also worth noting that the hardware community has been aware of some
of these issues, for example, Borkar et al. showed the impact of voltage and
temperature variations on circuit and microarchitecture [23].

3 Background

3.1 Lightweight Kernels

Lightweight kernels (LWKs) [16] tailored for HPC workloads date back to the
early 1990s. These kernels ensure low operating system noise, excellent scalability
and predictable application performance for large scale HPC simulations. Design
principles of LWKs include simple memory management with pre-populated
mappings covering physically contiguous memory, tickless non-preemptive (i.e.,
co-operative) process scheduling, and the elimination of OS daemon processes
that could potentially interfere with applications [15]. One of the first LWKs
that has been successfully deployed on a large scale supercomputer was Cata-
mount [14], developed at Sandia National laboratories. IBM’s BlueGene line of
supercomputers have also been running an HPC-specific LWK called the Com-
pute Node Kernel (CNK) [7]. While Catamount has been developed entirely
from scratch, CNK borrows a significant amount of code from Linux so that
it can better comply with standard Unix features. The most recent of Sandia
National Laboratories’ LWKs is Kitten [8], which distinguishes itself from their
prior LWKs by providing a more complete Linux-compatible environment. There
are also LWKs that start from Linux and modifications are done to meet HPC
requirements. Cray’s Extreme Scale Linux [24,25] and ZeptoOS [26] follow this
path. The usual approach is to eliminate daemon processes, simplify the sched-
uler, and replace the memory management system. Linux’ complex code base,
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however, can be prohibitive to entirely eliminate all undesired effects. In addi-
tion, it is also difficult to maintain Linux modifications with the rapidly evolving
Linux source code.

Recently, with the advent of many-core CPUs, a new multi-kernel based
approach has been proposed [6,27–29]. The basic idea of multi-kernels is to run
Linux and an LWK side-by-side on different cores of the CPU and to provide OS
services in collaboration between the two kernels. This enables the LWK cores
to provide LWK scalability, but also to retain Linux compatibility.

As we will see in Sect. 4, from this study’s perspective the most impor-
tant aspect of multi-kernel systems is the LWK’s jitterless execution environ-
ment, which enables us to perform HW performance variability measurements
with high precision. Note that several of the aforementioned studies considering
lightweight kernels have investigated the jitter induced by the Linux kernel and
thus we intentionally do not include results from Linux measurements in this
work.

3.2 Growing Architectural Diversity in HPC

Over the course of the past two decades, the majority of HPC systems have
deployed clusters of homogeneous architectures based on the Intel/AMD x86
processor family [30], reflecting the overall dominance and ubiquity of x86 for
heavy duty computational processing during this period. Architects and appli-
cations programmers have largely been successful at gleaning maximum perfor-
mance from these processors by extensively tuning and optimizing key mathe-
matical libraries, as well as leveraging low latency, high bandwidth interconnects
to allow workloads to scale well with the number of machines. Based on the large
body of effort in this space, a critical mass developed around the x86 ecosystem,
which fueled further development and productivity for many generations of HPC
systems.

However, the exascale era has brought a new set of problems, stemming from
the end of Dennard scaling and increasing power and energy concerns, which are
driving a shift away from solely commodity x86 servers towards a more diverse
set of chip architectures and processors. On the one hand, to continue to provide
increasing levels of parallelism, chip architectures have turned to heterogeneous
resources. This can be seen with many-core processors, such as Intel Xeon Phi,
now deployed on several large supercomputers [30]. Furthermore, the emergence
of heterogeneous processors has created a need for other types of heterogeneous
resources; for example, high bandwidth memory devices are provided alongside
DDR4 on Intel Xeon Phi chips to provide the requisite bandwidth needed by the
many cores.

At the same time, a renewed focus on power and energy efficiency has caused
the HPC community to consider a wider set of more energy efficient processor
architectures. Due to its widespread use in mobile devices where power efficiency
has long been a key concern, ARM processors are seen as one candidate archi-
tecture, with several research efforts demonstrating energy efficiency benefits for
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Table 1. Summary of architectures.

Platform/Property Intel Ivy
Bridge

Intel KNL Fujitsu
FX100

Cavium
ThunderX

IBM
BG/Q

ISA x86 x86 SPARC ARM PowerISA

Nr. of cores 8 64 + 4 32 + 2 48 16 + 2

Nr. of SMT threads 2 4 N/A N/A 4

Clock frequency 2.6 GHz 1.4 GHz 2.2 GHz 2.0 GHz 1.6 GHz

L1d size 32 kB 32 kB 64 kB 32 kB 16 kB

L1i size 32 kB 32 kB 64 kB 78 kB 16 kB

L2 size 256 kB 1 MB x 34 24 MB 16MB 32 MB

L3 size 20480 kB N/A N/A N/A N/A

On-chip network ? 2D mesh ? ? Cross-bar

Process technology 22 nm 14 nm 20 nm 28 nm 45 nm

HPC workloads [31,32], as well as indications that ARM chips are on a simi-
lar performance trajectory as x86 chips before they started to gain adoption in
HPC systems in the early 2000s [33]. Other processors with RISC-based ISAs,
such as SPARC’s SPARC64 processors used in Fujitsu’s K-computer [34], present
potential energy-efficient options for HPC.

Whether focusing on diversity in ISAs or heterogeneity of resources within
a specific architecture, it is clear that the HPC community is facing a range of
architectural diversity that has largely not existed for the past couple of decades.
In this paper, we carefully examine some of the key architectural differences
across a set of architectures, with a focus on the consistency of their performance
characteristics. While others have performed performance comparisons across
these architectures for HPC [33] and more general purpose workloads [31], we
focus on the extent to which performance variability arises intrinsically from the
architecture.

3.3 Architectures

While our framework is configurable to measure both core-specific as well as core-
external resources, in this paper we present a detailed analysis of key workloads
utilizing only core-local resources. In each of these architectures, this includes
L1/L2 caches, as well as the arithmetic and floating point units of the core. We
study these resources to understand how and if different processor architectures
generate variability in different ways.

Table 1 summarizes the architectures used in our experiments. We went to
great lengths to cover as many different architectures as we could, given the
condition that we needed to deploy a lightweight kernel. We used two Intel
platforms, Intel Xeon E5-2650 v2 (Ivy Bridge) [35] and Intel Xeon Phi Knight’s
Landing [36]. We also used Fujitsu’s SPARC64 XIfx (FX100) [37], which is the
next generation Fujitsu chip after the one deployed in the K Computer. ARM has
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been receiving a great deal of attention for its potential in the supercomputing
space during the past couple of years. We used Cavium’s ThunderX CP [38] in
this paper to characterize a processor implementing the ARM ISA. Finally, we
also used the BlueGene/Q [39] platform from IBM.

Some of these platforms suite multi-kernels by design offering CPU cores
separately for OS and application activities. The KNL is equipped with 4 OS
CPU cores, leaving 64 CPUs to the application, while the FX100 and BG/Q
have 2 OS cores and provide 32 and 16 application cores, respectively. This is
indicated by the plus sign in Table 1. Except FX100 and ThunderX, all platforms
provide symmetric multithreading. The cache architecture also exhibit visible
differences across platforms. For example, the KNL has 1 MB of L2 cache on
each tile (i.e., a pair of CPU cores), which makes the overall L2 size 34 MBs.
Except Intel’s Ivy Bridge, all architectures provide only two levels of caches. We
couldn’t find publicly available information regarding the on-chip network for
all architectures, we left a question mark for those.

4 Our Approach: Lightweight Kernels to Measure HW
Performance Variability

To provide a high precision characterization of hardware performance variability
we need to ensure that we have absolutely full control over the software envi-
ronment in which measurements are performed. We assert that Linux is not an
adequate environment for this purpose. The Linux kernel is designed with general
purpose workloads in mind, where the primary goal is to ensure high utilization
of the hardware by providing fairness among applications with respect to access
to underlying resources.

4.1 Drawbacks of Linux

While Linux based operating systems are ubiquitous on supercomputing plat-
forms today, the Linux kernel is not built for HPC, and many Linux kernel
features have been identified as problematic for HPC workloads, ranging from
variability in large page allocation and memory management [40], to untimely
preemption by kernel threads and daemons [5], and to unexpected delivery of
interrupts from devices [41]. Generally speaking, these issues arise from the Linux
design philosophy, which is to highly optimize the common case code paths with
“best effort” resource management policies that minimize average case perfor-
mance but that sacrifice worst-case performance. This is in contrast to the poli-
cies used in lightweight kernels that attempt to converge the worst and average
case behavior of the kernel so as to eliminate software induced variability.

While the behavior of the Linux kernel can be optimized to some degree for
HPC workloads via administrative tools (e.g., cgroups, hugeTLBfs, IRQ affini-
ties, etc.) and kernel command line options (e.g., the isolcpus and nohz full
arguments), the excessive number of knobs renders this process error prone and
the complexity of the Linux kernel prohibits high-confidence verification even
for a well-tuned environment.
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Fig. 1. Overview of the IHK/McKernel architecture.

4.2 IHK/McKernel and CNK

Because of these issues, we instead rely on lightweight operating system kernels
introduced in Sect. 3. Specifically, we used the IHK/McKernel [42], [6] lightweight
multikernel in this study on all architectures except the BlueGene/Q where
we took advantage of IBM’s proprietary lightweight kernel [7]. While not the
primary contribution of the paper, this work involved significant efforts related
to porting IHK/McKernel to multiple platforms, in particular support for the
ARM architecture.

The overall architecture of IHK/McKernel is shown in Fig. 1. What makes
McKernel suitable for this purpose is that we have full control over OS activities
in the LWK. For example, there are no timer interrupts or IRQs from devices,
there is no load balancing across CPUs and anonymous memory is mapped
by large pages. All daemon processes, device driver and Linux kernel thread
activities are restricted to the Linux cores. On the other hand, the multi-kernel
structure of McKernel ensures that we can run standard Linux applications
and it also makes multi-platform support considerably easier as we can rely on
Linux for device drivers. As for BlueGene/Q, CNK provides a similarly controlled
environment, although it is a standalone lightweight kernel that runs only on
IBM’s platform.

5 Performance Analysis

Previous studies on software induced performance variation relied on the FWQ
and FTQ benchmarks to capture the influence of the system software stack
on application codes. We hypothesize that simple benchmarks kernels like
FWQ/FTQ or Selfish are insufficient to capture hardware performance varia-
tion. The full extent of hardware performance variation can only be observed
when the resources which cause these variations are actually used. For basically
empty loops which perform almost no computation this premise is not true. We
propose a diverse set of benchmark kernels which exercise different functional
units and resources as well as their combinations in an effort to reveal sources
of hardware performance variation.
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5.1 Benchmark Suite

Our benchmark suite currently consists of eight benchmark kernels and four sub-
kernels. We selected our kernels from well-known algorithms such as DGEMM
and SHA256, Mini-Apps, and micro benchmarks.

FWQ. To test our hypothesis we have to include FWQ in our benchmark suite
to provide a baseline. The FWQ benchmark loops for a pre-determined amount
of times. The only computation is the comparison and increment of the loop
counter.

DGEMM. Matrix multiplication is a key operation used by many numerical
algorithms. While special algorithms have been devised to compute a matrix
product, we confine ourselves to näıve matrix multiplication to allow compilers
to emit SIMD instructions, if possible. Thus, the DGEMM benchmark kernel is
intended to measure hardware performance variation for double-precision float-
ing point and vector operations.

SHA256. We use the SHA256 algorithm to exert integer execution units to
determine if hardware performance variation measurably impacts integer pro-
cessing.

HACCmk. HACCmk from the CORAL benchmark suite is a compute-intensive
kernel with regular memory accesses. It uses N-body techniques to approximate
forces between neighboring particles. We adjusted the number of iterations for
the inner loop to achieve shorter runtimes. We are not interested in absolute
performance, but rather the difference of performance for repeated invocations.

HPCCG. HPCCG, or High Performance Computing Conjugate Gradients, is a
Mini-App aimed at exhibiting the performance properties of real-world physics
codes working on unstructured grid problems. Our HPCCG code is based on
Mantevo’s HPCCG code. We removed any I/O code, notably printf() statements,
and timing code so that only raw computation is performed by the kernel.

MiniFE. MiniFE like HPPCG is a proxy application for unstructured implicit
finite element codes from Mantevo’s benchmark suite. We also removed or dis-
abled code related to runtime measurement, output, and logfile generation so
our measurement is not disturbed by I/O operations.

STREAM. We include John McCalpin’s STREAM benchmark to assess vari-
ability in the cache and memory subsystems. In addition we also provide the
STREAM-Copy, STREAM-Scale, STREAM-Add, and STREAM-Triad as sub-
kernels.

Capacity. The Capacity benchmark is intended to measure the performance
variation of cache misses themselves. The Capacity benchmarks does so by touch-
ing successive cache lines of a buffer that is twice the size of the cache to under
measurement.

For most of the benchmarks the input parameters adjust the problem size
and thus benchmark runtime. As discussed below, we decouple problem size
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and benchmark runtime so that we can adjust problem size and benchmark
runtime independently. While our benchmarking framework allows to configure
benchmarks for arbitrary problem sizes, in this study we focus on problem sizes
that fit into the L1 caches of our architectures. The idea is to eliminate or at least
minimize the impact of the memory subsystem and shared resources beyond the
L1 cache when we attempt to measure the performance variation of execution
units. We adjust the working set to 90% of the L1 data cache size, except for the
Capacity benchmark, where we set the working set to twice the L1 data cache
size.

We repeat a benchmark multiple times to fill a fixed amount of wallclock
time with computation. A fixed time goal, in contrast to a fixed amount of
work, allows us to dynamically adjust the amount of work to the performance of
each platform and keep the total runtime of the benchmarks manageable. This
is possible, because we are not interested in the absolute performance of each
architecture but rather how performance varies between benchmark runs.

We select a benchmark runtime of 1 s to balance overall runtime and still have
a long enough benchmark runtime to have meaningful results. After selecting the
wallclock time, the benchmark suite performs a preparation run to estimate the
number of times a benchmark has to be repeated to fill the requested amount of
runtime with computation, which we call rounds.

We use architecture-specific high-resolution tick counters for performance
measurement. For x86 64, we use the Time Stamp Counter with the rdtscp
instruction. On AArch64 we use the mrs instruction to read the Virtual Timer
Count register, CNTVCT EL0, which is accessible from userspace. SPARC64
offers a TICK register, which we read with the rd %%tick-mnemonic. On the
BlueGene/Q we use the GetTimeBase() inline function, which internally reads
the Time Base register of the Power ISA v.2.06.

Timing measurements using architecture-specific high resolution timers
are the lowest-level software-only measurements possible. We have considered
employing performance counter data to narrow down sources of variability, but
ultimately decided against it for the following reasons: (1) equivalent perfor-
mance counters are not available on all architectures, (2) performance counters
also vary between models of a single architecture, and (3) performance counter
are occasionally poorly documented and/or do not work as documented. Nev-
ertheless our framework has performance counter support for selected architec-
tures, which we utilize to verify cache behavior. We plan to extend performance
counter support to all architectures in the future.

Our benchmark suite is designed to run benchmarks on physical or SMT
cores. Cores can be measured either in isolation by measuring core after core or
a group of cores at once. The isolation mode is intended to measure core-local
sources of variation, while the group-mode allows to measure variation caused
by sharing resources between cores. Examples of interesting groups include all
SMT-threads of a physical core, the first SMT-thread of all physical cores, or all
SMT-threads of a processor. We restrict ourselves to measurements of all SMT-
threads in isolation-mode in this first study of hardware performance variation.
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Note that during the measurement of a core in isolation-mode all other cores in
the system are idle.

To obtain a measure of performance variation we repeat a benchmark 13
times and discard the first three iterations as warm-up. We use the remaining
ten measurements of each SMT thread to determine the performance variation.
We use two measures of variation in the study. The first measure normalizes the
variation to the median performance of each core, the second to the minimum
runtime measured for each core. We use the median-based measure when plotting
performance variation for all cores of a machine. Given a vector x, let x̃ be the
median of x. We visualize the variation by plotting the result of

(x − x̃)/x̃ ∗ 100.

Since this measure is based on the median variation might be positive as well as
negative.

To reduce the variation of a single core into a single number, we calculate

maxx/minx ∗ 100 − 100

which yields the highest observed variation as percentage of the minimal observed
runtime. Because the variations we observed between cores exhibited high fluc-
tuation we decided against reducing the result to a single number, for example
calculating a mean or average. Instead, we aim to preserve not only the minimal
and maximal variation observed for each architecture, but also how the mea-
sured variations are distributed. Therefore, we present the measured variations
in the form of a violin plot.

5.2 Results

We begin our evaluation by substantiating our claim that “empty loop bench-
marks” such as FWQ are not suitable to measure hardware performance varia-
tion. In Fig. 2 we plot the measured variation of each SMT core of our 2-socket
x86 64 Intel Ivy Bridge E5-2650 v2 platform with FWQ and HPCCG. We set the
working set size of HPCCG to 70% of the L1 data cache size (32 KiB). We use
the median-based variation, described in the previous paragraph, i.e. for each
core we plot ten dots showing the percentage of variation from the median of
each core.

The plot shows 30 of 32 SMT threads, because the two SMT threads of the
first physical core run Linux, while the rest of the cores execute the benchmark
under the McKernel lightweight kernel.

We turned the TurboBoost feature off, selected the performance governor,
and set the frequency to the nominal frequency of 2.6 GHz. We additionally
sampled the performance counters for L1 data cache and L1 instruction cache
misses and confirmed that both benchmarks experience little to no misses.

Nevertheless all cores show significantly more variation under HPCCG than
under FWQ. The difference cannot be accounted to cache misses, because even
cores that show no data or instruction cache misses exhibit increased variation
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Fig. 2. Performance variation of FWQ and HPPCG on a dual-socket Intel E5-2650 v2.

under HPCCG. In particular cores one to seven and 16 to 29 experience neither
instruction cache nor data cache misses under HPCCG.

After motivating the need for a diverse benchmark suite, we begin our com-
parison of performance variation. Because of the high dynamic range of perfor-
mance variations within some architectures as well as across architectures we
chose to plot the variation on a logarithmic scale. We keep the scale constant for
all following plots to ease comparison between benchmarks. Lower values signify
lower variation. Within a plot all violins are normalized to have the same area.
The width of the violin marks how often different cores exhibited the same or at
least a similar amount of variation. The height of the violins is a measure of how
variation between cores fluctuates; a tall violin indicates that some cores show
little to no variation and other cores exhibit high variation. In contrast a small
or flat violin is the result of cores having similar or even equal variation.

We treat CPUs as black boxes because CPU manufacturers and chip design-
ers are not likely to share their intellectual property (i.e., chip designs and archi-
tectures), which are required to exactly pinpoint the sources of variability. We
have considered using performance counters to narrow down sources of variabil-
ity but dropped the idea due to the problems with performance counters iterated
in the previous subsection.

First we present our results for the FWQ benchmark, plotted in Fig. 3. The
small violins in Fig. 3 already indicate very low variation. A lot of measurements,
particularly for the FX100 and BlueGene/Q systems, show no variation at all,
i.e. we measured the same number of cycles. Because zero values become negative
infinity on a logarithmic scale, we clipped the values at 0.5 × 10−7% to avoid
distortion of the plots caused by non-plottable data.

Nevertheless the plot clearly shows KNL with the highest variation of all
platforms, while BlueGene/Q and FX100 show the lowest variation. To help the
reader to put these variation measurements into perspective we note that the
higher end of the ThunderX violin at 10−6% corresponds to a “variation” of a
single cycle.

Next we analyze the results of the STREAM benchmark in Fig. 4. STREAM
contains memory accesses as well as few arithmetic operations in its instruc-
tion mix. Although the working set is small enough to fit in the L1-cache we
still see cache misses on architectures where we have support for performance
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Fig. 3. Hardware performance variation under the FWQ benchmark.

Fig. 4. Hardware performance variation under the STREAM benchmark.

counters. The observed variation increases for all architectures dramatically. The
STREAM benchmark seems to have the least impact on variation on the Thun-
derX platform, where the variation only increases by one order of magnitude.

The Capacity benchmark is similar to the STREAM benchmarks, but here
the memory subsystem has to deal only with a single data stream (Fig. 5). No
computation is performed on the data, but the working set size is twice the size of
the L1 data cache to intentionally and deterministically cause L1 cache misses.
While the FX100 experiences little variation, the variation on the ThunderX
platform increases substantially. The KNL platform shows very similar results
for both the STREAM and Capacity benchmarks (Figs. 4 and 5).

We found that the different architectures exhibited diverse behaviour for
the SHA256 benchmark. Despite the same L1 cache size and associativity, we
observed no L1 data misses on the ThunderX platform but approximately 150k
misses on the Intel Ivy Bridge platform. We decided to include the results as-
is because we consider cache implementation details also micro-architecture-
specific. Another reason is that the number of L1 misses on Ivy Bridge show
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Fig. 5. Hardware performance variation under the Capacity benchmark.

little variation themselves. The wide base of the violins on FX100 and ThunderX
already indicate that a lot of cores experience no variation at all, while Ivy
Bridge performs significantly worse and KNL shows an order of magnitude more
variation still.

We expected the BlueGene/Q to be among the lowest variation platforms
but our measurements do not reflect that. At this point we can only speculate
that the 16 KiB L1 data cache and the only 4-way set associativity of the L1
instruction cache have influence on the performance variation. We reduced the
cache fill level to 80% so that auxiliary data such as stack variables have the
same cache space in 32 KiB and 16 KiB caches, but we could not measure lower
cache miss number of lower performance variation (Fig. 6).

Fig. 6. Hardware performance variation under the SHA256 benchmark.

DGEMM is the first benchmark using floating point operations. This bench-
mark confirms the low variation of the FX100 and ThunderX platforms and the
rather high variation of the Ivy Bridge, KNL and BlueGene/Q platforms. We
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saw high numbers of cache misses on the Ivy Bridge platforms and therefore
reduced the cache pressure to 70% fill level. We saw stable or even zero cache
miss numbers for all cores of the Ivy Bridge platform, but variation did not
improve (Fig. 7).

Fig. 7. Hardware performance variation under the DGEMM benchmark.

HACCmk has a call to the math library function pow, while Ivy Bridge
and KNL instruction sets have pow vector instructions, we are not aware of such
vector instruction on the FX100 and ThunderX platforms. FX100 and ThunderX
show two orders of magnitude higher variation; 10−4% corresponds to 100 cycles
on the ThunderX platform. KNL and Ivy Bridge are more deterministic in the
variation the exhibit, which results in “flatter” violins (Fig. 8).

Fig. 8. Hardware performance variation under the HACCmk benchmark.

HPCCG is the only benchmark where the BlueGene/Q shows a variation
close to our expectations (Fig. 9). We also highlight that while the variation on
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the FX100 and ThunderX platforms show a reduction in their variation com-
pared to DGEMM, Ivy Bridge and KNL show increased variation for this bench-
mark. We confirmed on both the Ivy Bridge and ThunderX platforms that no
L1 data cache misses occur (Figs. 7 and 9).

Fig. 9. Hardware performance variation under the HPCCG benchmark.

Fig. 10. Hardware performance variation under the MiniFE benchmark.

The MiniFE benchmark solves the same algorithmic problem as HPCCG. We
expected similar results to HPCCG but our expectation was not confirmed by our
measurements. The FX100 and ThunderX platforms show increased variation
compared to HPCCG, while the Ivy Bridge and KNL platforms exhibit slightly
lower variation (Figs. 9 and 10).

6 Conclusion and Future Work

With the increasing complexity of computer architecture and the growing diver-
sity of hardware used in HPC systems, variability caused by the hardware has
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been receiving a great deal of attention. In this paper, we have taken the first
steps towards a high-precision, cross-platform characterization of hardware per-
formance variability. To this end, we have developed an extensible benchmark-
ing framework and characterized multiple compute platforms (e.g., Intel x86,
Cavium ARM64, Fujitsu SPARC64, IBM Power). In order to provide a tightly
controlled software environment we have proposed to utilize lightweight kernel
operating systems for our measurements. To the best of our knowledge, this is
the first study that clearly distinguishes performance variation of the hardware
from its software induced counterparts. Our initial findings focusing on CPU
core local resources show up to six orders of magnitude difference in relative
variation among CPUs across different platforms.

In the future, we will continue extending our study focusing on higher levels
of caches, the on-chip network, the memory subsystem, etc., with the goal of
providing a complete characterization of the entire hardware platform.
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Abstract. Data movement is considered the main performance con-
cern for exascale, including both on-node memory and off-node network
communication. Indeed, many application traces show significant time
spent in MPI calls, potentially indicating that faster networks must be
provisioned for scalability. However, equating MPI times with network
communication delays ignores synchronization delays and software over-
heads independent of network hardware. Using point-to-point protocol
details, we explore the decomposition of MPI time into communication,
synchronization and software stack components using architecture sim-
ulation. Detailed validation using Bayesian inference is used to identify
the sensitivity of performance to specific latency/bandwidth parameters
for different network protocols and to quantify associated uncertainties.
The inference combined with trace replay shows that synchronization and
MPI software stack overhead are at least as important as the network
itself in determining time spent in communication routines.

1 Introduction

As high performance computing (HPC) systems are pushed to greater scales, the
compute throughput of nodes has grown rapidly. Bandwidth/throughput ratios
for network/compute performance have not been maintained [37], leading to con-
cern that off-node interconnects may become severe bottlenecks [7,30]. Choos-
ing the relative provisioning of network/compute is a critical step in any system
procurement. Application traces can be a useful mechanism to understand per-
formance on existing systems and extrapolate performance to next-generation
systems [21]. For many HPC systems, message passing (MPI) is the dominant
network runtime [1]. Understanding MPI performance is therefore critical to the
problem of network design. In order to properly understand MPI application
performance, however, it is necessary to disambiguate the effects of the network
hardware itself from properties of the application and underlying communication
library. If an application spends significant time waiting for message completion,
c© Springer International Publishing AG, part of Springer Nature 2018
R. Yokota et al. (Eds.): ISC High Performance 2018, LNCS 10876, pp. 269–288, 2018.
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the cause may be that the network is under-provisioned relative to compute.
However, observed delays may also be caused by synchronization mismatches
between sender and receiver. MPI delays may also be in the system software
rather than the time spent traversing network links and switches.

Full system architecture simulation has proven useful to analyze performance
details. System simulation is robustly suited to explore design options that would
be too costly or impractical to test on real systems or test beds. These design
studies can include scaling system size, tuning system bandwidth/latency param-
eters, or even implementation of parallel algorithms. A discrete event simulator
allows access to arbitrary performance counters or statistics while also impos-
ing a perfectly synchronized global clock across the virtual system. Simulation
therefore provides a level of omniscience lacking on physical systems.

In this work, decompositions of communication protocols are defined to allow
precise attribution of application delays to network hardware, system software,
and synchronization. A trace replay endpoint model and a detailed MPI software
stack which was modified for detailed accounting of protocol timing has been
used in conjunction with a hierarchy of full scale network models to perform
system-scale simulation. Bayesian inference was used to quantify uncertainties
and validate the most accurate model against a production software stack run-
ning on physical hardware (OpenMPI running over an Intel Omni-Path network).
This simulation framework was used to collect communication decompositions
for a suite of applications representing typical workloads for HPC systems run
by the U.S. Department of Energy. This suite is representative of applications
currently being used in codesign activities and system acceptance testing. These
simulations demonstrate that performance degradation which would typically
be attributed to poor network performance is often dominated by other factors
instead. The analysis approach presented here is not necessarily limited to sim-
ulation. Adding this capability to real MPI implementations would allow deeper
insight into application performance, provided the requisite precision in system
clocks can be obtained.

2 Prior Work

2.1 Detailed MPI Performance Analysis

MPI profiling tools collect information about a running MPI application and
provide post-mortem, or in some cases, live analysis. The information collected
varies with how the application is tooled, and may include MPI call times, param-
eters, system counters, or hand-flagged portions of code. The MPI standard
includes PMPI, which profilers use to intercept MPI calls at the point of invo-
cation and record statistics including the time, communication pattern, and call
arguments. Despite PMPI’s wide adoption by tracing libraries, it does not pro-
vide insight into what the application or the underlying MPI layer does between
MPI calls. PERUSE was an early effort to improve trace support in MPI that
introduced callbacks for profiling tools to track state changes in the underlying
implementation [25]. PERUSE was not accepted into the MPI standard, how-
ever, and MPI 3.1 introduced a different API called the MPI Tool Interface
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(MPI T), which exposes internal MPI runtime structures [1]. MPI T is a recent
standard, and is still undergoing adoption by profiling tool developers. The new
API has still been used in recent research to profile MPI implementation mem-
ory overhead [19], create MPI-oriented software performance counters [13], and
perform runtime introspection and application auto-tuning [35].

Of the numerous MPI trace collection tools, ScoreP adoption has grown
considerably in recent years. It wraps the MPI compiler to instrument trace
collection, and can generate event traces of MPI, OpenMP, CUDA, and PAPI
counters [3]. The OTF2 format is compatible with a number of visualization tools
[27], including Vampir [6], OpenSpeedShop [2], and Tau [4]. Trace visualization
tools for OTF2 have the potential to show the culprits of communication barrier
bottlenecks, but they suffer two shortcomings. Firstly, while a trace visualizer
can elucidate cases where specific ranks enter into a collective late, they generally
cannot visualize operations that occur in an MPI call. Secondly, compute nodes
on HPC systems often have clock skews of several hundred milliseconds [24],
which may ruin temporal alignment of communication barriers in trace files.

2.2 Network Architecture Simulation

Rather than profiling production runs, simulation of HPC systems is a com-
mon tool for performance analysis [10,21,22,29]. For estimating communication
time, simulators can model packet or flit arbitration on individual components
or they may use a simple delay function. The most popular delay-based model
is LogP and its related models, with some variants incorporating congestion
effects [17]. There are high levels of detail in Booksim [23], packet-level models
in SST/macro [47] and CODES [20], and more coarse-grained models or flow
models in BSIM [44] and SMPI [12]. Beyond simply simulating network traffic,
many simulators also provide middleware implementing MPI semantics within
the simulator, allowing different protocols or collective algorithms to be tested.
CODES [20] implements some MPI semantics and has a separate collectives
library. SMPI contains a fairly complete MPI implementation with flexible col-
lectives [12]. SST/macro provides a nearly complete MPI 3.0 implementation
for 2-sided and collective functions [47]. Most simulators can replay MPI traces,
although SMPI and SST/macro emphasize on-line skeleton apps as simulation
drivers.

Typically, performance studies have focused on evaluating time to solution
for given workloads and network hardware configurations rather than delineating
sources of performance degradation in the software stack. Casanova et. al. used
piecewise linear regressions to account for MPI point-to-point protocols in a flow-
based model [9]. Using an analytical model, Hoefler et al. examined the impact
of system noise, an external cause of synchronization issues, on application per-
formance [18]. Likewise, Totoni et al. used packet-level network simulations to
examine noise impacts [46]. Yoga and Chabbi have used simulation to prototype
communication protocol and hardware extensions that allow source code attri-
bution and detailed tracking of network flows [48]. Their focus was on hardware
events rather than application and protocol performance.
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2.3 Uncertainty Quantification

While some form of validation is common for network simulators, detailed uncer-
tainty quantification (UQ) is more difficult and therefore less common. In this
work, the UQ approach consists of two main ingredients, (a) Forward model-
ing: Polynomial Chaos machinery for surrogate model construction and global
sensitivity analysis, and (b) Inverse modeling: a Bayesian approach for calibrat-
ing the simulation model – or its surrogate – given experimental data. Both
approaches are fairly well established in the UQ community. Synthetic, surro-
gate approximations have been employed in various computationally intensive
studies, such as design optimization [34], reliability analysis [43] and, more rel-
evantly, global sensitivity analysis [38,43]. Previous work did apply similar UQ
methods to an earlier version of the highest-accuracy model used in this study.
This work examined collective performance on Cray XE6 architectures [47].

3 MPI Implementations

3.1 Point-to-point Protocols and Synchronization

We wish to disambiguate what portion of observed MPI times is due to net-
work delays and what portion is due to synchronization mismatches between
MPI ranks or system software overheads. How to appropriately define synchro-
nization depends on the exact protocol used for messages. Here we use three
protocols modeled after those used on Cray Gemini and Aries systems [33] and
validated against OpenMPI over OmniPath (see Sect. 5.1). Protocols distinguish
small, medium, and large messages. These cutoffs are usually tunable, but the
maximum small message is often 1–4 KB while the maximum medium message is
8–64 KB depending on the implementation (e.g. OpenMPI vs MPICH) and the
underlying transport. Small messages are sent directly into preallocated mail-
boxes on the receiver (Fig. 1). The send completes immediately, provided there
are sufficient mailbox credits. The receive completes immediately (after a mem-
copy from mailbox into buffer) if the message has already arrived. Synchro-
nization delays can only occur on the receiver side since the sender completes

MPI_Send
Immediate

Return

Send Eager
Header

Header Arrives 
in Mailbox
Copy to 

Destination
Bu er

MPI_Recv

Bu er

Time

Tsend

TPostRecv

TSync

Fig. 1. Illustration of mailbox protocol for small messages. The sender returns immedi-
ately after copying into buffer. Receiver completes as soon as payload arrives, copying
from mailbox buffer into recv array. TSend and TPostRecv from Eq. (1) are shown. The
receiver sees a synchronization delay (ΔTsync)
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MPI_Send
Immediate

Return

RDMA Get

Register 
Eager Bu er

Bu er

MPI_Recv

Bu er

Send RDMA 
Header

TPostRecv

Tsend

Time

Fig. 2. Illustration of eager RDMA protocol for medium messages. The sender returns
immediately after copying into send buffer. Upon receiving RDMA header, receiver
selects buffer to receive RDMA get. Receiver completes as soon as RDMA get finishes,
copying from buffer into receive array. TSend and TPostRecv from Eq. (1) are shown.
The sender completes immediately (eager). The receiver sees only network delays, not
synchronization.

immediately. For the receiver, any time gap between posting the receive and the
send beginning is due to synchronization, not a network delay - see Eq. (2).

Medium messages also use an eager protocol, but using an intermediate
RDMA buffer (Fig. 2). The sender copies into a temporary buffer in pinned mem-
ory and sends a coordination header to the receiver. The sender then completes
immediately. Once the header is received (regardless of whether a corresponding
MPI Recv was posted), the receiver performs an RDMA get into its own tempo-
rary buffer in pinned memory. Upon completion of the RDMA get (and posting
of matching receive), the payload is copied from the temporary buffer into the
receive buffer. Synchronization is defined the same way as the mailbox protocol,
and again can only occur on the receiver.

ACK
Returns

RDMA Get

MPI_Recv

Send RDMA 
Header

RDMA Done
Recv Returns

ACK

MPI_Send

Time

Tsend

TPostRecv

TSync

Fig. 3. Illustration of rendezvous RDMA protocol for large messages. The sender must
wait for receiver synchronization. Data is transferred via zero-copy RDMA get. Receiver
completes as soon as RDMA get finishes. Sender completes as soon as RDMA ack is
received. TSend and TPostRecv from Eq. (1) are shown. In this case, the sender sees a
synchronization delay (ΔTsync).

Large messages use a zero-copy rendezvous protocol (Fig. 3). The sender pins
its buffer and then sends a coordination header to the receiver. After both the
receive is posted and the coordination header is received, the receiver pins its
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buffer and posts an RDMA get directly from the remote buffer into the local
buffer. The receiver completes when the RDMA get completes. The sender com-
pletes after it receives an ACK from the receiver that the operation is complete.
Synchronization for the receiver is the same as in the eager and mailbox proto-
cols. In the rendezvous protocol, the sender can also see synchronization delays.
The time gap between the send beginning and posting the receive will contribute
to the total observed MPI_Send time, but does not arise from a network delay.

Memcopy operations and RDMA pinning are not included in synchronization
and are included as a distinct “MPI Stack” category. In Eq. (1), TSend is the time
after all local buffer operations have completed. In the same way, TPostRecv is
the time before all local buffer operations have started.

ΔTsync(sender) = max(0, TPostRecv − TSend) (1)
ΔTsync(recver) = max(0, TSend − TPostRecv) (2)

These quantities clearly require a precisely synchronized clock between sender
and receiver to accurately compute.

For non-blocking calls with deferred waits, the definitions must be amended
slightly. Synchronization (and network) delays are not counted until the
sender/receiver begins waiting:

ΔTsync(sender) = max(0, TPostRecv − TWaitSend) (3)
ΔTsync(recver) = max(0, TSend − TWaitRecv) (4)

Synchronization definitions easily generalize for collectives. Each collective is
a sequence of point-to-point sends implementing a spanning tree [45]. Synchro-
nization delays for collectives are therefore a sum over individual operations.

4 Methodology

4.1 Experimental Methodology

As the simulation framework and highest accuracy network model used in this
study have been previously validated for collective operations on Cray XE6 archi-
tectures [47], the validation component of this work focused on improving the
accuracy of the software stack component of the model using point-to-point oper-
ations. Parameterization and validation of the network model was performed on
a cluster utilizing a 24-port Intel Omni-Path 100 Series Edge Switch. The switch
was fully populated with one compute node per port, with each node contain-
ing two Intel Xeon E5-2683V4 processors with 16 cores each and a base clock
rate of 2.10 GHz. An MPI benchmark was run on two nodes within this cluster
to generate throughputs for message sizes ranging from 256 to 1,048,576 bytes.
After a warmup period, the source node sends messages of increasing size in
repeated windows to the same destination node. The total number of repeats
for each size decreases from 2,560 messages for the smallest size to 40 messages
for the largest size. Each run of the application produces an average throughput
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value for each of 18 message sizes. 100 runs of the benchmark were completed
to gauge runtime variability. These experimental data were then used as input
for uncertainty quantification.

4.2 Simulation

The Structural Simulation Toolkit (SST) [36] was used as a discrete event core
for combining our simulation components: PISCES, MACRELS, and DUMPI
trace replay [5]. The following application traces were generated or obtained
from the NERSC DOE mini-app characterization website [31]:

Simulation MPI Ranks

AMR Boxlib 1728

CESAR Nekbone 1024

Geometric multigrid 10648

GTC 16384

MiniDFT 1920

miniPIC 1024

The long-running DFT and GTC traces were truncated to 33% and 10%,
respectively. Simulations were run with a hierarchy of network models in order
to analyze various congestion and synchronization effects. The PISCES model
(Packet-flow Interconnect Simulation for Congestion at Extreme Scale), is a
packet-level model which breaks up network flows into coarse-grained packets.
While large packet sizes are typically used to improve simulation efficiency, pack-
ets are allowed to share bandwidth when their paths intersect. This bandwidth
sharing approximates the interleaving of finer-grained flow control units (FLITs)
and reduces the errors associated with coarse-grained packets.

MACRELS (Message passing AnalytiC REally Lightweight Simulation) is an
analytic network model with low computational cost. MACRELS approximates
communication similarly to the LogP family of analytic network models [17].
Network delays assume an analytic function of the form

Δt = α + βN (5)

with communication time Δt, communication latency α, inverse bandwidth β,
and message size N. Although network contention is ignored, it is modeled on
injection/ejection with messages being constrained to arrive in-order and seri-
alizing when two messages depart or arrive at the same time. Since MACRELS
is driven by the same fairly detailed endpoint models as PISCES, analysis of
low level features such as MPI protocol overheads is still possible. Comparing
MACRELS with PISCES for a given workload provides insight into both the
importance of congestion in network modeling and into the subtle interplay
between network congestion and application synchronization effects.
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A third set of simulation results, termed “Compute Only”, shows application
performance for a theoretical system with zero latency and infinite bandwidth
in the network as well as zero MPI software overheads (Δt = 0 for all messages).
This probes the limit of performance as MPI time can only be attributed to
inherent application load balance and associated synchronization issues.

Each trace was simulated on a canonical dragonfly topology [26] consisting
of 48-switch groups (connected all-to-all) with a concentration of 4 nodes per
switch. Up to eight intergroup connections were allowed per switch (with a max-
imum of one link to each group per switch). Minimal routing was chosen in order
to generate worst case network congestion and thereby derive pessimistic val-
ues for network delays. PISCES (with minimal routing) and MACRELS should
therefore estimate lower and upper bounds on network performance. Using a
hierarchy of models rather than a single set of high accuracy simulations should
provide both a better understanding of performance issues and more information
about the reliability of the simulation data.

One MPI task was simulated per network endpoint (node) simulating a
MPI+X execution model. While MPI traces were collected on the NERSC Edi-
son platform with one MPI rank per core, we wish to understand internode MPI
performance rather than intranode. Compute times from the DUMPI trace were
therefore sped up by a factor of ten to represent the same application executing
with thread-level parallelism on a state of the art multi-core processor. Applica-
tions run in MPI-only mode with one process per core will obviously have very
different network characteristics. The procedure outlined here could be extended
to validate and calibrate intranode MPI protocols and simulation models.

The set of parameters used for simulation is detailed later in Sect. 5.1 in
Table 1. The latency and bandwidth parameters are separated into those affect-
ing network performance and those affecting performance of the system soft-
ware stack. Memory bandwidth, although a hardware parameter, is important
for CPU operations in the MPI stack (memory copies) as shown in Figs. 1, 2
and 3.

4.3 Uncertainty Quantification

The overall high-level workflow for the UQ analysis is shown in Fig. 4. In the next
section, we proceed to demonstrate the results of surrogate-enabled calibration
to arrive at a full probabilistic description of input parameters as informed by
the collected experimental data. Full mathematical details of the UQ procedure
are delayed until the appendix. Here we give a conceptual overview.

The first step is surrogate construction. Running the full inference using
the simulator directly is too expensive since >100K samples must be visited
in a Monte Carlo procedure. Instead, a polynomial surrogate suitable for fast
generation of Monte Carlo samples is constructed. The surrogate is built by
collecting simulator results over a multidimensional sparse grid and fitting to a
multi-dimensional polynomial.

While the resulting surrogate polynomial has some inaccuracies, previous
work has shown that accuracy is sufficient for parameter calibration; in fact the



The Pitfalls of Provisioning Exascale Networks 277

Inverse
modeling

Forward
modeling

f(λ)

Simulation

fs(λ)

Surrogate

Likelihood D = {yi}

Experiments

Posterior p(λ|D)

Prior p(λ)

(a) (b)

Fig. 4. (a) The UQ workflow employs polynomial chaos machinery for surrogate con-
struction and global sensitivity analysis (forward modeling), and Bayesian inference
with Markov Chain Monte Carlo (MCMC) for parameter calibration (inverse model-
ing). (b) Refinement from a prior distribution (all parameter values in a reasonable
range equally likely) to a well-defined posterior distribution with small uncertainty.

surrogate-related errors are incorporated in the likelihood function for calibra-
tion. In the next step, the space of allowed parameter values (prior ranges) is
explored. Each point in parameter space is a set of latencies/bandwidths that
produces corresponding simulator output that can be compared to experimental
values. The procedure searches for a maximum likelihood set of parameters while
also quantifying the associated certainties. This is illustrated schematically in
Fig. 4b where the prior distribution is updated into a posterior distribution with
a well-defined maximum posterior value (which in the current context coincides
with the maximum likelihood value), but also includes corresponding uncertainty
information.

5 Results

5.1 Simulator Validation

Before we can accurately partition MPI times into contributions from network,
MPI software stack, and synchronization, we must first validate the simulation
framework. Validation here focuses on the more detailed PISCES model. The
critical simulation parameters are displayed in Table 1. At issue is (1) what cali-
brated values to use for trace replay and (2) whether the chosen simulation is able
to reproduce MPI point-to-point throughputs from OpenMPI over OmniPath
(see Sect. 4.1). In particular, we wish to assign uncertainties and sensitivities to
individual pieces of the simulation models.

We can improve the efficiency of inference by examining the parameter sen-
sitivities in Fig. 5. The inference procedure is problem-agnostic, but sensitivities
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Buffer Sizes/Protocols
Mailbox Eager Rendezvous

1. 256B 7. 6KB 13. 64KB
2. 512B 8. 8KB 14. 96KB
3. 1KB 9. 12KB 15. 128KB
4. 2KB 10. 16KB 16. 256KB
5. 3KB 11. 32KB 17. 512KB
6. 4KB 12. 48KB 18. 1MB

Fig. 5. The sensitivity to model parameters of each simulated point-to-point send
(buffer size ID). The table provides the message size and protocol which corresponds
to each buffer size ID. Shifts between communication protocols based on buffer sizes
are clearly observed in the model parameter sensitivities.

help double-check the physical intuition and make the parameter inference as
efficient as possible. Different parameters are more critical for different pro-
tocols. For example, some parameters are size-independent (post delays, pin
latency) while others are size-dependent (bandwidth). As the size of message sent
increases, sensitivity to bandwidth parameters increase. For mailbox protocols
(1–6), header post delays are the most critical. RDMA is not performed. Some
sensitivity to memory bandwidth appears for larger buffers. For eager RDMA
protocols (7–12), RDMA post delays become important. The two memory copies
(sender-size and receiver-side) dominate any network delays from injection or
link bandwidth. For rendezvous protocols (13–18), zero-copy is used so memory
bandwidth is no longer critical. While the eager protocol assumes reusable tem-
porary buffers, rendezvous buffers must be registered for each zero-copy transfer.
Thus RDMA pinning parameters appear in 13–18.

Figure 6 shows the prior distribution for the point-to-point send benchmark.
Plotted here is the full sweep of simulator outputs if the complete prior range
(Table 1) for each parameter is scanned. These are plotted along with the 100
experimental trials for each send buffer size. This demonstrates the inherent
experimental variance and prior uncertainty in the simulation assuming any
combination of parameter values within the prior range is equally likely. The
inference procedure refines the prior distributions based on these discrepancies
to yield the posterior distribution in Fig. 6. After parameter calibration, the
posterior distribution demonstrates the remaining uncertainty and discrepancies
between simulation and experimental results.

It is important to distinguish simple parameter fitting from the detailed cal-
ibration here. Any single data point can be reproduced by fitting parameters.
However, fitting all data points together is only possible if the simulator is accu-
rate. Data point 1 in Fig. 6 will “move” the prior parameters towards one set of
posterior parameters that exactly reproduce the experiment. Exactly reproduc-
ing data point 8, however, may require different parameters from data point 1.
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Fig. 6. Prior and posterior distributions of point-to-point send throughputs. The mark-
ers indicate output values from experimental trials. Buffer size ID specifies the message
size as defined in Fig. 5.

Table 1. Breakdown of parameters used in simulated trace replay showing maximum
likelihood parameters derived from inference. The prior range illustrates the “rea-
sonable” values for each parameter visited during the inference. Maximum likelihood
parameters are constrained to land within the prior range.

Parameter Max likelihooda Prior range Type

Injection bandwidth (GB/s) 13.04 8.0–16.0 Network

Link bandwidth (GB/s) 12.47 10.0–15.0 Network

Memory bandwidth (GB/s) 11.20 8.0–15.0 System software

Post Header Delay (us) 0.36 0.1–1.5 System software

Post RDMA Delay (us) 0.88 0.5–2.0 System software

RDMA Pin Latency (us) 5.43 1.0–7.0 System software

RDMA Pin Delay Per Page (ns) 50.50 1.0–100.0 System software

Hop Latencyb (ns) 100 n/a n/a
aMaximum likelihood is peak of full 7-dimensional multivariate likelihood function.
Values will differ slightly from the peaks in the marginal distributions in Fig. 7.
bThis is an aggregate parameter accounting for the zero-load switch and link latency.
In initial calibrations, it had little effect on the final result and was instead fixed
at a nominal value.
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This conflict in “best fit” amongst the individual data points creates the uncer-
tainty in the posterior distribution. Additional uncertainty comes from the exper-
iment itself.

Despite discontinuities and irregular shape, the simulation is able to almost
exactly reproduce the experimental results in Fig. 6 after parameter calibration.
The detailed calibration also shows that the simulator is reproducing individ-
ual pieces of the protocol, not just total throughputs. After calibration, each
parameter has a definitive maximum posterior value (Fig. 7), with the excep-
tion of the per page memory pinning delay. This pin delay parameter has little
effect on the final results and therefore is unconstrained. This is consistent with
the sensitivities in Fig. 5. If a parameter were either not important or not accu-
rately modeled, the posterior distribution would be unconstrained (i.e. have large
uncertainties). In trace replay, injection and link bandwidth will contribute to
network delays while the remaining parameters measure events in the MPI soft-
ware stack. The validation therefore supports our assertion that MPI times are
accurately decomposed into network, software stack, and synchronization.

Fig. 7. Marginal Probability Density Functions (PDFs) from the Bayesian inference for
each model input parameter. Peaks indicate parameters have well-defined values that
accurately reproduce experiment. The flat distribution for pin delay per page indicates
the simulation is not sensitive to this parameter.

5.2 Application Analysis

Figure 8 presents the simulated time decompositions for each examined appli-
cation using the PISCES, MACRELS and Compute Only models. Looking at
the most accurate PISCES simulations, the most striking observation is that for
four of the six applications the network delay time is largely overwhelmed by the
combination of MPI stack and synchronization times. The communication delays
are only comparable to these hidden delays for DFT and GTC, yet even in these
cases the network delays are smaller. The size of the network delays ranges from
83% of the combined hidden delays for DFT, the application in which commu-
nication is most significant, to only 4.1% for Multigrid. Clearly, attributing all
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(a) AMR (b) DFT

(c) GTC (d) Multigrid

(e) Nekbone (f) PIC

Fig. 8. Decomposition of simulated runtimes for application trace replays. Each
trace was simulated with (A) the congestion-aware packet model PISCES, (B) the
congestion-free flow-level analytic model MACRELS, and (C) a compute-only simula-
tion with all network delays set to zero. Decompositions demonstrate that the large
fraction of time spent performing MPI operations are often due to MPI stack overheads
or synchronization due to load/performance imbalance.

time spent in MPI operations to network delays would lead to erroneous under-
standing of performance bottlenecks. For Multigrid in particular, extra network
provisioning would make almost no performance difference.
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Comparison of the PISCES and MACRELS decompositions illustrates the
significance of network congestion in application performance. For most of
the applications, the simulations which take into account network congestion
(PISCES) are almost identical to the simulations that don’t (MACRELS). GTC
is the only application showing a significant amount of network time attributable
to congestion; with the MACRELS model network time for Sendrecv operations
drops by a factor greater than ten and the corresponding total time drops by
21%. This discrepancy will shrink when adaptive routing (such as UGAL) is
used. Here we instead use minimal packet routing (PISCES) and contention-free
flow models (MACRELS) to establish lower and upper bounds on network per-
formance. For the rest of the applications, MACRELS total times differ from
PISCES by less than four percent. Despite lacking contention, MACRELS can
result in longer simulation times than PISCES. MACRELS assumes in-order
message arrival and exclusive access to injection links by each flow. Because
PISCES flow control allows multiple messages to “multiplex” across injection/e-
jection links, simulation times can be lower when contention is not a major
factor.

Compute Only simulations only include application computation time, with
MPI stack overhead eliminated and the network parameterized such that net-
work operations are instantaneous. Compute Only simulations were included to
rule out any possibility that network effects themselves were prolonging synchro-
nization times in any significant way. This measures the inherent synchroniza-
tion properties of the parallel algorithm. Some subtle or counterintuitive effects
can occur as the model changes from PISCES to MACRELS to compute-only.
In MACRELS, e.g., network delays can “hide” synchronization delays between
ranks. Suppose Rank 0 and Rank 1 have a 1ms synchronization mismatch in
the compute-only case. If Rank 0 is delayed 1ms by other communication before
posting the receive from Rank 1, Ranks 0 and 1 will now be synchronized and
the 1ms will be perceived as a network delay in Rank 0 instead. This occurs
in Multigrid, e.g., where synchronization delays increase when communication
delays are set to zero.

The majority of the applications do show a decrease in synchronization delays
when communication is made instantaneous. GTC and Nekbone are the outliers.
Nekbone stands out as the total time drops by 59% between the PISCES and
Compute Only models. While the Allreduce operations in Nekbone don’t cause
any significant congestion in the simulation, they nevertheless generate a great
deal of MPI stack overhead and communication delays. Nekbone shows a very
poor parallel efficiency on the baseline architecture and would benefit greatly
from improvements to the interconnect network and MPI stack overhead.

Though all applications in the examined workload spend at least nine percent
of the total time outside of useful computation, the resulting communication
delay is not entirely due to the network. The network delay itself is under three
percent for AMR, Multigrid and PIC. The overwhelming measure of inefficiency
for these applications is due to inherent synchronization issues, and improving
the network will have a minimal impact on performance. With total time spent in
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network delays of seven and thirteen percent, respectively, DFT and GTC occupy
a middle ground in which moderate performance improvements could be made
by improving the network. Nekbone is unique among these applications in that
communication, MPI stack, and synchronization each have significant impacts
on performance and represent useful targets for performance improvement.

6 Conclusion

Managing the costs of network design and network provisioning is a serious chal-
lenge in any machine procurement. Application traces can support an evidence-
based design, allowing the proper provisioning of networks to meet application
requirements. Properly attributing application trace data to physical processes in
the machine is critical, however, for properly selecting a design. This work demon-
strates the utility of combining application trace replay with architecture simula-
tion and Bayesian inference to understand expected application performance. The
decomposition of execution time into network delays, software stack overhead, and
inherent synchronization shows that not all time spent in MPI operations is equiv-
alent. Even though all applications show significant time spent in MPI routines,
this does not necessarily equate to insufficient network throughput.

Under the system conditions assumed in this study, applications such as
Multigrid and PIC are almost entirely bound by imbalance (either load imbal-
ance or system noise) leading to poorly synchronized communication. No
improvements to the network would yield meaningful performance improvements
for such applications. Conversely, applications such as Nekbone show very signif-
icant performance degradation due to communication delays, but also commu-
nication library overheads. Thus network provisioning alone would not entirely
alleviate communication bottlenecks. The combination of detailed network and
endpoint models with low-level instrumentation of simulations provides a pow-
erful framework for disambiguating the individual causes of observed MPI times.
As such, it provides a useful tool in system design by focusing improvements to
have the biggest performance impact.
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A Uncertainty Quantification

Consider the experimental data described in Sect. 4.1, collected as R = 100 repli-
cas for N = 18 message sizes. The data set is denoted as D = {y

(r)
i }r=1,...,R

i=1,...,N .
The goal is to tune the M = 7 parameters λ = (λ1, . . . , λM ) of the simulation
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model with vector output f(λ) = (f1(λ), . . . , fN (λ)), to match with the data
fi(λ) ≈ yi. Bayesian inference is employed to arrive at a probabilistic represen-
tation of model input parameters. The Bayesian method is well-suited to work
with noisy, heterogeneous data, as well as efficiently incorporate prior, expert-
based information with experimental data [8,39].

The parameter calibration relies on Bayes’ formula, which in the present
context reads as

p(λ|D)
︸ ︷︷ ︸

Posterior

∝ p(D|λ)
︸ ︷︷ ︸

Likelihood

p(λ)
︸︷︷︸

Prior

(6)

The prior probability density function (PDF) encapsulates prior information
about the input parameters λ = (λ1, . . . , λM ). In the current setting, we are
given the ranges [am, bm] of possible values for each λm, for m = 1, . . . , M , and
employed uniform priors on [am, bm] accordingly.

The proportionality constant in Eq. (6) is typically difficult to compute and
is not necessary if one’s goal is to sample from the posterior PDF. Samples
from the latter are obtained via Markov chain Monte Carlo (MCMC), which
builds a Markov chain that has the posterior PDF as its stationary distribu-
tion [14,16]. The key component of the Bayes’ formula is the likelihood function
LD(λ) = p(D|λ) that encodes the fit of the model with parameter settings λ to
the observed data D. In order to construct the likelihood function, one needs to
assume a noise model of the experiments compared to the simulation outputs as
follows. Specifically, an independent Gaussian noise is assumed:

LD(λ) =
N
∏

i=1

1
σi

√
2π

exp
(

− (fi(λ) − μi)2

2σ2
i

)

, (7)

where μi = 1
R

∑R
r=1 y

(r)
i and σ2

i = 1
R

∑R
r=1(y

(r)
i − μi)2 are the sample mean and

variance of the experimental data over R = 100 replicas, correspondingly.
Besides obtaining samples from the posterior PDF, the maximum a posteriori

(MAP) value of λ is of interest. It is defined as λMAP = argmaxλp(λ|D) and, for
the current work coincides with the maximum likelihood (ML) estimate λML,
since uniform prior PDF p(λ) = const is employed.

Note that in order to achieve a sufficient number of posterior λ-samples,
one is required to evaluate the model f(λ) many – usually between 10,000 and
100,000 – times. In the current work, model evaluation corresponds to running
the simulation benchmark. Even for benchmarks running quickly (5–10s), cali-
bration becomes expensive - particularly if it must be repeated as the model is
changed to correct errors. For this purpose, it is common to pre-build a surrogate
model fs(λ) ≈ f(λ) that is computationally inexpensive to evaluate. Specifically,
we built a surrogate model that has a polynomial form

fs(λ) =
K−1
∑

k=0

skΨk(λ), (8)

where Ψk(λ) = Lk(λ̃) are multivariate Legendre orthogonal polynomials, scaled
to inputs λ̃ ∈ [−1, 1], and defined as products of univariate Legendre polynomials
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Lk(λ̃) =
∏M

j=1 Lkj
(λ̃j). The polynomial expansion (8) is truncated at total order

K = 4, i.e.
∑M

j=1 kj ≤ K, leading to K = (M + P )!/M !/P ! = 330 terms.
The form (8) is a special case of Polynomial Chaos expansions, which are con-
venient for uncertain quantity representations, propagation and moment esti-
mation [15,28]. The surrogate model coefficients are found by a least-squares
regression using a set of 2465 simulations of f(λ), selected at 4-th order sparse
quadrature locations [32,40], for sufficient coverage of the 7-dimensional param-
eter space. Note that we also extract leave-one-out (LOO) error measure of the
surrogate model [11], compared to the simulation f(λ), and augment the likeli-
hood variance σ2

i in Eq. (7) accordingly.
Due to orthogonality of the basis polynomials in Eq. (8), one can extract

sensitivity coefficients, or Sobol indices, analytically [42]. This procedure is also
called global sensitivity analysis or variance-based decomposition, since each sen-
sitivity index is interpreted as the fractional reduction of the output variance if
one fixed the corresponding parameter [41]. More specifically, we employ the total
sensitivity index that accounts for total effect of the given parameter including
all interactions with other parameters.

As the sensitivity results in Sect. 5.1 suggest, model input parameters and
outputs are conveniently divided into sensitivity based subgroups. We took
advantage of such structure in order to accelerate MCMC and make the pos-
terior sampling as efficient as possible. Namely, the first six outputs (Mailbox)
are dominated by Post Header Delay (λ4), while the next six (Eager) are most
sensitive to Memory Bandwidth (λ2) and Post RDMA Delay (λ5), and the last
group (Rendezvous) mostly depends on Injection Bandwidth (λ1), Link Band-
width (λ3) and RDMA Pin Latency (λ6). Note that the last parameter, RDMA
Pin Delay Per Page (λ7) has relatively little effect on any of the outputs, and
the corresponding posterior PDF coincides with the prior PDF. In order to take
advantage of the group-sensitive structure, we split the data into three subgroups
D = {D1,D2,D3}, and simplify the likelihood of the Bayes’ formula as

p(D|λ1, . . . , λ7) ≈ p(D1|λ4) p(D2|λ2, λ5) p(D3|λ1, λ3, λ6) (9)

With such reformulation and independent uniform priors p(λ) =
∏M

i=1 p(λi)
for M = 7, instead of one 7-dimensional MCMC we arrived at three differ-
ence MCMC sampling procedures, with 1, 2 and 3 dimensions respectively, and
the corresponding MCMC chains were much more efficiently sampled. We note
that the missing λ’s in each of the three product terms in (9) are set to their
nominal values without losing accuracy due to the low sensitivity towards the
corresponding group of outputs.
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Abstract. In this paper we explore network topologies suitable for
future exascale systems that need to support over fifty thousand end-
points. With the increased necessity to use optics at higher link speeds,
some of the more traditional topologies, such as Tori and Fat-Trees,
become prohibitively expensive at such large scale. We identify two cost
efficient hierarchical topologies, one a canonical Dragonfly, and one a
variant of the Dragonfly topology that we call Megafly. Megafly is an
indirect hierarchical topology with high path diversity, flexible taper-
ing options and an abundance of possible system design points. We
describe and analyze the Megafly topology to understand its key fea-
tures and advantages, when compared to the Dragonfly. Additionally,
we define a Megafly tapering scheme that enables a good balance of
system performance versus cost. Our evaluation shows that the Megafly
topology achieves equal or better throughput than the Dragonfly on a
variety of traffic patterns, while requiring only half of the virtual channels
for deadlock-free routing. Megafly also provides better fairness, which is
shown in the evaluation of synchronizing traffic patterns, such as neigh-
bor exchanges. We also showcase the design flexibility and cost vs. per-
formance trade-offs of Megafly in a mini case study that illustrates the
challenges of building a high performance fabric topology.

1 Introduction

Interconnection networks are a critical component of system design as they
enable communication between discrete endpoints. Large systems often contain
tens of thousands of endpoints, with future exascale systems expected to consist
of over fifty thousand endpoints. A network topology defines the count and lay-
out of network switches and cables that connect those endpoints. Choosing the
topology that maximizes the network performance while staying within the cost
and power constraints is a key design challenge.

Recently, the Dragonfly topology [18] has established itself as a cost-effective
solution for large scale systems containing tens of thousands of nodes. Dragonfly
c© Springer International Publishing AG, part of Springer Nature 2018
R. Yokota et al. (Eds.): ISC High Performance 2018, LNCS 10876, pp. 289–310, 2018.
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Fig. 1. Hop count for candidate
topologies with radix-48 switches.

Fig. 2. Megafly has more possible
design points than a canonical 1-D
Dragonfly.

draws on its hierarchical design to reduce cabling costs, and it leverages adaptive
routing to provide applications with good performance. A design premise for the
Dragonfly is that the local group can be constructed using cheaper electrical
cables, while optical cables are used for longer global links. The attractiveness of
this design has been confirmed by its adoption in PERCS [4] and Cascade [10]
systems.

However, with constant increase in link speeds between generations, the reach
of copper cables has been reduced, and their price has increased to accommo-
date the necessary improvements in signal integrity. In the exascale system time
frame, we expect to use links with speeds of 50G or 100G per lane, with most of
the links being optical. A good example for this constraint is the Tofu2 intercon-
nect [2], a 6-D torus topology that should be suitable for short copper cables, yet
2/3 of the links have to be optical even with 25G per lane speeds. The expected
high ratio of optical vs. copper links highlights the network diameter (i.e. the
number of network hops) as the key driver of the network cost.

We consider several topologies, with their hop counts (i.e. diameter) shown in
Fig. 1 for different system sizes with 48 port switches. The tori are good topolo-
gies that fit neighbor exchange problems well, but with increased link speeds,
most of their links need to be optical, making them prohibitively expensive at
large scale. Dragonflies [18] are typically defined to have a Flattened Butterfly
[17] (most often 1-D or 2-D) topology inside each group, with groups globally
connected all-to-all. The 1-D Dragonfly is interesting because it can reach our
target 50,000 endpoint scale with only 3 hops, while the 2-D Dragonfly would
require 5 hops, assuming radix-48 switches. Fat Tree [20] topology is known to
perform well for all kinds of traffic patterns, but to reach our desired scale, with
same radix-48 switches, it would have to be a 4-level fat tree, which is also pro-
hibitively expensive. Megafly is our name for a derivative of a 1-D Dragonfly,
where the group is a butterfly topology (i.e. the group topology has not been flat-
tened). Variants of this topology have previously been used in the Black Widow



Megafly: A Topology For Exascale Systems 291

system [24] and other clusters [22]. This topology has also recently been men-
tioned under the name of Dragonfly+ in [8], and then published under the same
name in [25]. We decided to keep our own, more distinct, Megafly name because
Megafly is fundamentally an indirect topology, unlike the canonical Dragonflies,
with Flattened Butterfly groups, that are all direct topologies. The indirect
nature of Megafly is central to all of its many benefits over the direct Dragonfly
topology, which we discuss in detail in this paper.

Topologies that are notably missing from our list of options in Fig. 1 are
the diameter-2 topologies such as Slim Fly [5], or Orthogonal Fat Trees [28].
These lower diameter networks are generally cheaper, but the maximum number
of ports per switch ASIC (i.e. the switch radix) has not yet reached a point
where 2-hop topologies can support large systems with over fifty thousands of
endpoints. Additionally, those topologies do not have an obvious building block
(such as a Dragonfly/Megafly group) that can be reused across multiple systems
of different sizes, making them impractical.

In this paper we identify the direct 1-D Dragonfly and the indirect Megafly
topologies as the most likely candidates for an exascale system, since they are
both 3-hop topologies, and can be built with the fewest number of optical links
per endpoint. Throughout the paper we directly compare the 1-D Dragonfly
(with all-to-all group topology) to the Megafly topology in their adaptive routing
performance, tapering capabilities, and their cost vs. performance trade-offs.

While the Dragonfly topology has been well studied, the Megafly topology
has not yet been extensively analyzed or evaluated, beyond the Dragonfly+ work
[25]. We analyze the Megafly topology in Sect. 3 to show why its indirect nature
leads to larger scale, and prove that the Megafly topology is the largest and
highest path diversity 3-hop hierarchical topology one can build. We also show
that the indirect Megafly group topology offers flexible tapering options, beyond
the capabilities of a Dragonfly, enabling fine grained cost vs. performance trade-
offs. In the Megafly group we can also define “up” and “down” local links that go
from and towards the switches with nodes on them. This distinction of up-links
and down-links enables deadlock-free routing in Megafly that requires only half of
the virtual channels compared to the Dragonfly. Although routing requires fewer
virtual channels, the adaptive routing primitives used by a Megafly are largely
the same as those used by a Dragonfly. Consequently, a Megafly topology can
be built using existing switches that already support a Dragonfly.

Another advantage of Megafly is the increased number of minimal paths
between groups, when compared to a 1-D Dragonfly. Increasing path diversity
leads to higher average throughput, better fairness, and improved robustness
against failures, while also providing additional design flexibility for large sys-
tems. Figure 2 shows possible design points for the Megafly and 1-D Dragonfly
topologies using radix 48 switches. Each line in the figure corresponds to design
points with a different number of links between any two groups. It is common
to use multiple links between groups (e.g. x4 links) to achieve good bisection
bandwidth when the total number of global ports in a group is several times
larger than the total number of groups. We see in Fig. 2, that for a fixed system
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size between 21k and 42k endpoints, there are only two possible global bisection
bandwidths (i.e. design points) one can achieve with a Dragonfly, compared to
between 8 and 11 Megafly design points (depending on the exact number of
endpoints). In addition, there are critical system sizes at which maximum global
bisection drops sharply due to the decrease in the maximum number of global
links between groups. This decrease is more pronounced in the 1-D Dragonfly
topology, although it is present in the Megafly as well. The number of endpoints
is typically a fixed constraint in a large system design, and Megafly’s flexibility
enables extracting the highest network performance at any budget.

Increased Megafly path diversity also leads to better network fairness. Net-
work fairness is particularly important for applications with synchronizing pat-
terns, where the slowest node can determine the performance of the entire appli-
cation. We evaluate the fairness of the Megafly and the Dragonfly, as well as
their average throughput for several traffic patterns in a mini case study that
highlights system design advantages of the Megafly topology in Sect. 6.

2 Background

Throughout the paper we evaluate the throughput of uniform random, random
permutation and tornado synthetic patterns. A random permutation, or some-
times called static permutation, is a pattern where each node sends packets to
exactly one other randomly chosen node. This is different from uniform ran-
dom pattern where the target node randomly changes with every new packet.
A tornado pattern is a particular permutation instance where each node com-
municates exclusively with the node that is located at some fixed offset away
from it. In hierarchical topologies, such as a Dragonfly or a Megafly, a tornado
pattern typically implies an offset that is a multiple of the group size, thus cre-
ating the worst case scenario with adverse hot-spots. These synthetic patterns
are good first indicators of the topology and the routing algorithm performance.
We augment those simple patterns with application proxy patterns in Sect. 6.

Our approach of measuring random permutation performance is similar to the
Effective Bisection Bandwidth (EBB) metric previously used in [12]. To compute
the EBB metric, authors first select a random bisection cut in the network,
then randomly pair up nodes, one from each half, that communicate exclusively
with each other. The resulting traffic pattern of such an EBB measurement is a
random permutation, and consequently our random permutation results reflect
the Effective Bisection Bandwidth metric.

In addition to the topology construction itself, the effectiveness of adaptive
routing [18,26] is critical to the overall performance of modern topologies, such
as those described later in this section (e.g. Dragonfly [18], Slim Fly [5]), but also
Megafly. While not crucial for randomized traffic, adaptive routing is required
for good performance on adversarial traffic patterns, such as tornado, where
all nodes in a group communicate exclusively with nodes in one other group.
Significant work has been devoted to improving the performance of Dragonfly
adaptive routing [15,29], and Megafly topology can leverage most of those recent
advances just as well.
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2.1 Dragonfly

Since the introduction of high-radix switches [19], multiple 3-hop topologies have
been proposed [17,18], with Dragonfly [18] generally accepted as the most cost
efficient way to build large scale systems. Dragonfly is a hierarchical topology,
globally connected all-to-all and locally connected with a Flattened butterfly.
Under its broadest definition, Dragonfly could include any hierarchical topology
(including Megafly), but we consider the canonical Dragonfly to have a Flattened
butterfly group topology. The Flattened butterfly group can be 1-D (equivalent
to an all-to-all topology), as first described in the original Dragonfly paper [18],
but the group topology can also be a higher dimensional Flattened butterfly,
such as a 2-D Flattened butterfly used in the NERSC Cori system [3]. We call
these topologies 1-D and 2-D Dragonflies. An example of a 2-D Dragonfly is
drawn in Fig. 3.
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Fig. 3. Example of a 2-D Dragonfly. Only two groups are shown. Each router R also
connects to the nodes (not shown in figure).

Furthermore, a balanced canonical 1-D Dragonfly is one where the number
of global channels connected to each router is equal to the number of nodes
(sometimes referred to as processors), and the number of routers in a group
is equal to twice the number of nodes on a router. This is expressed in the
Dragonfly paper [18] as a = 2p = 2h, with radix of the router adding up to:
r = p+h+(a−1). They define p as the number of nodes (processors) connected
to each router; h is the number of global links on each router; and a is the number
of routers in each group. We can expand this definition to a 2-D Dragonfly with
a1 routers in a row (x-dimension) and a2 routers in each local group column
(y-dimension). The balanced 2-D Dragonfly requires a1 = a2 = 2p = 2h, with
router radix adding up to: r = p+h+(a1−1)+(a2−1). While the 2-D Dragonfly
generally has larger local groups, we need to reduce the number of nodes and
global links connected to each router to stay within the constraints of a given
router radix (e.g. 48 or 64 ports). Maintaining the balance is not a necessary
requirement, but imbalance generally results in a wasted capacity on some links.
As long as the wasted capacity is on the cheap copper links, some imbalance can
usually be tolerated.
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It is important to note that this imbalance is not a property of the Dragonfly
topology, but of all topologies in general, including the Megafly. We generally
prefer balanced designs for best performance on arbitrary traffic patterns, but
we also often trade off some of that performance for cost reduction by tapering
the network, thus introducing some imbalance. Tapering refers to reducing the
available bandwidth at different levels of the topology hierarchy, compared to the
aggregate injection bandwidth. For example, a Dragonfly group may have a · p
units of injection bandwidth, but it may break the h = p balance requirement
and instead have only 3/4 of the global links (i.e. h = 0.75p). This is referred to
as a 75% global taper.

Throughout the paper we compare the Megafly topology directly to the
canonical 1-D Dragonfly (both balanced and tapered variants). We do so under
two constraints: (1) copper cable length is limited to about 2 m; and (2) changing
the board and rack design between topology variants is prohibitively expensive.
These two constraints may be specific to our needs, but we believe they are
general enough to apply to most exascale design exercises. The Dragonfly topol-
ogy itself provides many flexible design options in general, but under our specific
constraints we find that only a handful of 1-D Dragonfly variants meet our needs.

In particular, one can taper the Dragonfly quite effectively at local and global
level by changing the number of nodes/processors (p) and global links (h) on
each router. For example, with radix-48 routers, a canonical balanced topology
would likely have 12 nodes and 12 global links per router, and 24 routers in each
group (a = 24; p = 12;h = 12). An alternative, tapered, 1-D Dragonfly could be
built with 16 nodes and 8 global links per router, and 24 routers in each group
(a = 24; p = 16;h = 8). This alternative Dragonfly has 50% global taper and 67%
local taper. Many other configurations can also be constructed to exactly match
the design needs. However, this design breaks our rule number two. In particular,
changing the number of nodes connected to each router would severely impact
the design of the compute board, as well as the rack design because of cooling
and power provisioning. Megafly, on the other hand, provides local and global
tapering options by simply adding or removing cables, so the tapering decision
can be done very late in the design process, possibly when the cost of the optical
cables can be much better estimated.

The 2-D Dragonfly enables larger local groups, thus providing more path
diversity, and many more design and tapering options. While these topologies
have worked well in the past [3], we found that due to our constraint number
one, which limits the copper cable length to about 2 m, the added local dimen-
sion would have to be connected with optical cables. With that constraint in
mind, the additional 2 hops in the 2-D Dragonfly are both optical hops, roughly
tripling the number of optical links required, compared to the 1-D Dragonfly.
Similar issue arises when analyzing tori, as shown in Fig. 1 with the hop count
comparison between topologies. In addition to the increased number of optical
links, 2-D Dragonfly generally requires more routers to reach the same num-
ber of nodes, because fewer nodes can be connected to each router, so that it
can accommodate the links in the additional local dimension. These factors all
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impact the overall cost of the network. In fact, we found that using our simple
cost model (described in Sect. 5), the cost of a full size 2-D Dragonfly would
be over 80% higher than the same size 1-D Dragonfly. Again, this is because
the number of optical links increases by about 3x, and the number of routers
increases by about 50%, depending on the exact arrangement of the 2-D Flat-
tened butterfly group.

Given these constraints, we find the design space of the usable Dragonfly
topologies quite limited to a few 1-D canonical Dragonfly options, and we may
refer to those simply as Dragonfly in the rest of the paper. This realization
motivated our work on the Megafly topology which offers more design points
without compromising performance, and it meets our design constraints.

2.2 Diameter Two Topologies

Two-hop topologies promise to be a low cost solution, but they are inherently
limited in the scale they can reach. For example, 2-level Fat trees [20] are
extremely popular in today’s datacenters, but they are limited in the maxi-
mum number of nodes they can connect to r2/2, where r is the switch radix.
This makes them suitable only for small systems. Prior work has pushed the
scale boundaries of diameter two topologies, with a good review given in [16].
Orthogonal Fat trees [28] scale up to approximately r3/4, and Slim Fly [5] scales
to approximately r3/8, for radix r switches.

For diameter two topologies to be universally feasible, they require a higher
number of ports per router than is available today. Although high-radix switch
architectures have been proposed [19] and implemented [24], there are significant
design and packaging challenges limiting further scaling. Current trends are to
use growing switch bandwidth to increase the port bandwidth in every switch
generation rather than increasing the port count. As a result, the highest radix
routers available today are in the 48 to 64 port range, which is not enough to
support a two-hop topology at the scale of the largest HPC systems (e.g. Sunway
TaihuLight with 40,960 nodes [9,27]).

There are other challenges and inflexibilities of two-hop networks that make
them unappealing for practical system design. For example, Orthogonal Fat trees
are the largest 2-hop topology, but it is yet to be proven they can be built at
low cost, given the global nature of all inter-switch cables. As a comparison, the
same size Dragonfly or Megafly requires only half of the global cables due to
its hierarchical design. In addition to scale and packaging challenges, both Slim
Fly and Orthogonal Fat Tree design points depend on the existence of prime
numbers in the desired range, and it is unclear if and how they could be tapered
to fit into budget constraints.

3 Megafly Topology

In this section we describe the 3-hop Megafly topology and analyze its features.
The construction of Megafly has already been given in [25], under the name
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Fig. 4. Example Megafly topology. Fig. 5. Single Megafly group diagram.

of Dragonfly+. We summarize the construction and provide a more detailed
analysis focused on the underlying reasons that enable Megafly to reach very
large scale. All comparisons to a Dragonfly topology also assume a 3-hop 1-D
Dragonfly, with all-to-all connections within the groups, and global all-to-all
between groups.

3.1 Description

Megafly is a hierarchical topology, and it is constructed out of multiple groups
connected by global links. The global links are expected to be formed by long
optical cables, and groups are expected to be densely packed, with physical
packaging discussed more in Sect. 5. An example Megafly is shown in Fig. 4, with
individual groups connected all-to-all at the global level. Each group can have
one or more global links connecting it to every other group. We use multiple links
between groups to maintain good bisection bandwidth when the total number of
global ports in a group is several times larger than the total number of groups.
The exact switch pairs connected by global cables have traditionally been left
unspecified in hierarchical topology definitions [18,25], with the only requirement
being that each group has the same number of global connections to every other
group. These global link arrangements have been studied separately in [7,11],
and in our simulations we chose to randomize the global connections for both
Megafly and Dragonfly to avoid any unintended artifacts introduced by one
specific arrangement.

Within each group (shown in Fig. 5), switches are divided into node switches
that connect directly to nodes, and global switches that connect directly to other
groups over global links. Global switches do not have any nodes attached to them,
thus establishing Megafly as an indirect topology. Within a group, each node
switch connects directly to all global switches, and each global switch connects
to all node switches. However, there are no connections made between any two
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node switches or any two global switches. Therefore, the underlying graph of a
Megafly group is a complete bipartite graph. Figure 5 shows a balanced complete
bipartite graph, but in the general case the number of global and node switches
does not need to be the same.

We claim that the described Megafly group is the largest group possible, for
a balanced 3-hop hierarchical topology and a fixed switch radix. We consider a
topology balanced if it is not tapered, i.e. if aggregate node injection bandwidth
can be supported by local and global bandwidth. The benefit of a large group is
in the maximum scale the topology can reach, but it also increases the available
path diversity. Therefore, maximizing the size of the group also maximizes the
path diversity in the topology.

Claim 1. A Megafly group is the largest possible group for any balanced 3-hop
hierarchical topology.

Proof. To form a 3-hop hierarchical topology, any node in the group must be
at most 1 network hop (counting only hops between switches) away from every
global link leaving that group. Conversely, each global link must be at most
1 network hop away from reaching every node in the group. Let’s assume there is
a switch with both node and global links connected to it. Such a switch must also
directly connect to all other switches in the group to guarantee 1-hop distance
between nodes and globals. If that is the case, however, the maximum number
of switches in the group is limited to r − 1, where r is the switch radix. This is
necessary to accommodate the switch that is connected to all other switches, in
addition to at least one global link and at least one node. A balanced complete
bipartite graph (i.e. a Megafly group) has r vertices/switches, and is therefore
larger than any non-bipartite graph that contains a switch connected to both
global and node links. Additionally, a complete bipartite graph of diameter 2
is also a bipartite Moore graph [23], which makes it the largest bipartite graph
possible for a given degree and diameter. Therefore, a balanced Megafly group
has the most possible switches, and as a corollary the most nodes and global
links of all 3-hop hierarchical networks.

The combination of large node count and large global link count in each
group yields a large total node count for the Megafly topology. With switch
radix r, the number of nodes in a Megafly group is given by (r/2)2, which is
two times larger than a Dragonfly group built out of the same radix switches.
Additionally, in a balanced topology, the number of global links in a group is
the same as the number of nodes, and the maximum group count is one larger
than the global link count, given by ((r/2)2 + 1). Therefore, the maximum total
number of nodes in a Megafly is (r/2)2 · ((r/2)2 + 1), which is about four times
larger than a Dragonfly given by ((r/2)(r/4)) · ((r/2)(r/4) + 1).

Although theoretically interesting, such high node counts are not yet relevant,
even for the largest systems. However, this scale allows smaller systems to be
built with more links between any two groups. Since a Megafly group is 2x
larger than a Dragonfly group it has 2x more global links leaving each group,
and, at the same time, the Megafly topology would have 2x fewer groups to
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reach the same system size. This multiplies to give Megafly four times as many
global links between any two groups in an equal size system, therefore increasing
path diversity. Trading off scale for path diversity is not unique to Megafly, but
Megafly is better positioned to take advantage of it due to its large inherent
scale. In fact, most of the advantages of Megafly arise from the ability to trade
its large scale for increased path diversity.

3.2 Analysis

We define a topology graph where vertices are network switches, and edges are
links between switches. In a direct topology, all of the switches/vertices also
have some number of nodes attached to them, however for simplicity reasons
we do not include the nodes in the topology graph. If the topology is balanced,
the number of attached nodes is equal to the graph degree divided by graph
diameter. Since the nodes are not included in the topology graph, they do not
contribute to the graph degree either, but we do have to consider them when
calculating the switch radix because they do consume ports on each switch. As
a result, the radix of the switches that form the topology is equal to the degree
of the underlying graph plus the number of nodes connected to each switch.
Direct 3-hop topologies (e.g. Dragonfly, 3-D Flattened butterfly) have topology
graphs of diameter 3. There is a known upper bound, called the Moore bound
[23], limiting the overall graph size for a given degree and diameter. The Moore
bound for 3-hop direct topologies is given in Fig. 6, together with hypothetical
topologies derived from the largest known graphs approaching the Moore bound,
as found in [23].

Megafly is an indirect topology, and its underlying graph does not need to be
a diameter-3 graph for the topology to still be a 3-hop topology. In particular,
two global switches can be more than 3 hops away, and indeed, they are 5 hops
away in the general case. If one were to route from one global switch to another
global switch (see Figs. 4 and 5), the general route would first go “down” to a
node switch, then “up” to a global switch with a link to the destination group,
then “across” a global link, and finally “down” and “up” local links in the
destination group to reach the target global switch. This adds up to 5 hops (2
local + 1 global + 2 local). However, since global switches do not have any nodes
attached to them, routes never start or finish at global switches, and Megafly is
still a 3-hop topology, because all node switches are at most 3-hops away from
each other. This advantage of an indirect topology is shown in Fig. 6, as Megafly
is within 60% of the Moore bound for direct topologies, and thus capable of
larger scale than any other known 3-hop topologies.

As already mentioned, the large scale of Megafly translates into multiple
minimal paths for smaller systems, and this path diversity is critical to achieving
high performance and fairness. If we compare equivalent size Dragonfly and
Megafly topologies, each Megafly group has four times as many minimal paths
to other groups. This is the result of a Megafly group having twice as many
global links, along with twice as many nodes. Because there are 2x more nodes, a
Megafly topology needs only half of the groups to reach the same size, resulting in
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Fig. 6. Comparison of maximum node
counts for 3-hop networks.

Fig. 7. Minimal routing performance
with random permutation traffic.

four times more paths between any pair of groups. While minimal path diversity
increases by a factor of four, minimal bandwidth per node increases by a factor
of two because the number of nodes per group is doubled.

We perform a simulation study of the impact of increased bandwidth and
minimal path diversity on random permutation traffic, with primary focus on
throughput fairness of minimal routing. Minimal routing performance is impor-
tant for traffic that cannot be adaptively routed (e.g. traffic requiring ordering),
and it also establishes a lower bound for adaptive routing performance. Adap-
tive routing and other traffic patterns are studied in Sect. 4. Simulation results
for minimal routing on Megafly and Dragonfly topologies built out of 48 port
switches are shown in Fig. 7. In particular, we simulate 83k node and 41.5k node
topologies. At the larger size, the Dragonfly topology has only one minimal path
between any pair of groups, and for the smaller size there are two minimal paths
between groups. Equivalent size Megaflies have four and eight minimal paths
between groups, respectively.

Results in Fig. 7 show that Megafly significantly outperforms Dragonfly
topology at either size. The x-axis shows percentile of nodes that achieve at
least the throughput given on the y-axis. For example, median throughput can
be read from the graph at the 50th percentile value. The median node in Megafly
has about 0.2 higher throughput than the median node in Dragonfly, which is
about a 50% increase. Average throughput is difficult to read directly out of the
graph, but Megafly reaches about 0.14 higher average throughput than the same
size Dragonfly, or about a 30% throughput increase. Another interesting com-
parison to make is that only about 43% of nodes see more than 0.5 throughput
in the 41.5k Dragonfly, while almost 70% of nodes see more than 0.5 throughput
in the 41.5k Megafly. Megafly’s minimal routing provides higher throughput,
which means there is less congestion in the fabric and thus, decreased need for
non-minimal adaptive routing. Although not studied here, one can also reason
that adaptive routing is more effective at improving fairness when there are fewer
poorly performing nodes, as is the case with Megafly.
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In conclusion, the increased scale of the indirect Megafly topology translates
to more minimal path diversity that provides better throughput and improved
fairness.

4 Routing Evaluation

We distinguish between minimal, valiant and adaptive routing in Megafly. Mini-
mal routing traverses the fewest possible links between the source and the desti-
nation (up to 3 network hops), but it is susceptible to link congestion with adver-
sarial traffic patterns (e.g. tornado traffic). To alleviate this congestion concern,
valiant routing randomizes all traffic by first routing minimally to a randomly
chosen intermediate router (called root), then routing minimally from the root
to the destination. Performance of valiant routing is consistent across all traffic
patterns, but each packet consumes twice as many network resources compared
to minimal routing, thus limiting the overall throughput to 50%. Adaptive rout-
ing chooses between minimal and valiant algorithms based on some congestion
metric so that well behaved traffic is routed minimally and adversarial patterns
use valiant routing [15,26].

Routing principles and adversarial patterns of Megafly are similar to Drag-
onfly, since they are both hierarchical topologies. In this section we evaluate
Megafly performance using existing Dragonfly routing algorithms that are imple-
mented in switches supporting the Dragonfly topology.

Minimal routing in a Megafly takes up to three hops (two local and one
global), similar to a Dragonfly, but it can be made deadlock-free with just one
virtual channel. Even though two local links are traversed, one of them is always
taken in the up direction, and the other in the down direction. Consequently, min-
imal routing in Megafly is deadlock free without requiring extra virtual channels
(VCs) for deadlock avoidance. This is a significant advantage over the Dragonfly
topology which requires 2 VCs for deadlock-free minimal routing.

Adaptive routing is used to avoid congestion in Megafly, analogous to how it
is used in a Dragonfly. We evaluate a variant of Progressive Adaptive Routing
[15] that is similar to an algorithm that has been implemented in practice [10]
for Dragonfly topologies. The adaptive routing algorithm uses output queue
occupancy to choose between minimal and non-minimal paths, with a 2:1 bias
towards the minimal path.

Megafly routing performance was evaluated using a flit based simulator [14],
and compared to a similarly sized Dragonfly. Simulated topologies are made
of 24 port switches, which results in a 73 group Dragonfly with 72 nodes per
group for a total of 5256 nodes, and a 37 group Megafly with 144 nodes per
group for a total of 5328 nodes. We did not choose a specific global link arrange-
ment, instead we randomized the order of global links in each group. This global
link randomization was applied to both Megafly and Dragonfly topologies, and
is intended to remove any performance artifacts resulting form a group pair
repeatedly appearing on the same switch in other groups.

Simulation results are shown in Fig. 8. The left column shows results for
minimal routing, the middle column for valiant routing, and the right column
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Fig. 8. Simulation results for 5.3k Megafly vs. Dragonfly topologies. Top row: latency
vs. offered load; bottom row: accepted load vs. offered load. Left column: minimal
routing; middle column: valiant routing; right column: adaptive routing.

for adaptive routing. The top row are latency results and the bottom row shows
results for average accepted load. Megafly has 4x more bandwidth between any
two groups, but the groups are 2x larger than Dragonfly, resulting in 2x more
minimal throughput per node for any Megafly group pair. This directly translates
into 2x higher tornado minimal routing throughput, and a significant increase in
permutation minimal routing throughput (bottom left subfigure in Fig. 8). The
increase in minimal routing throughput carries over into adaptive routing, and
simulation results show higher throughput for the permutation traffic pattern
(bottom right subfigure in Fig. 8).

Latency results are shown in the top row of Fig. 8. Latency is largely a reflec-
tion of when the bandwidth graph saturates, with an interesting pattern appear-
ing in adaptive routing with tornado traffic, where latency initially increases,
then stabilizes before finally saturating. This has been observed multiple times
in a Dragonfly [15,18], and is an artifact of adaptive routing favoring minimal
paths under low congestion. All of the permutation results are averages across
multiple permutations with different random seed values. Error bars are also
plotted for all permutation pattern plots, but they are generally too small to be
visible in Fig. 8, except at a few latency points.

5 System Considerations

In this section we consider practical system implications of the topology, in
particular tapering and packaging. Tapering allows us to adjust the amount of
bisection bandwidth to balance it against cost or application requirements. At
the same time, physical packaging of the system can make or break the budget,
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with long optical cables being an order of magnitude more expensive than short
copper cables. We find that Megafly offers good flexibility and it can be built in
a compact and cost efficient way.

5.1 Tapering

To simplify how we reason about tapering, we propose organizing global switches
into slices, as shown in Fig. 9. Each slice contains one or more global switches and
all links (local and global) that are connected to each of those global switches.
The set of all switches in each slice connects to all other groups in the system.
Consequently, each slice provides full connectivity between all groups. Since each
node switch connects to every global switch in a group, each slice provides full
connectivity between all node switches, and thus all nodes. Note that a node
switch is not a part of a particular slice, and this distinction between node and
global switches makes slices, as we define them, incompatible with a Dragonfly.

Global tapering can be used to reduce the number of expensive optical links.
For example, if a system is globally tapered to 75%, that implies only 75% of
the global cables are required, thus reducing cost and energy requirements. Such
a global tapering approach can be equally effective in Dragonfly and Megafly
topologies.

Fig. 9. Tapering Megafly to 50%/75% global/local by using local slices.

In addition to global tapering, Megafly can also be locally tapered by reducing
the number of local cables, which we call local tapering. Global and local tapering
can be combined in a balanced way by removing entire slices, which tapers both
local and global bandwidth evenly. This method of tapering by removing switches
is limited to indirect topologies because removed switches can not have any nodes
attached to them, and as such is not available on a Dragonfly.

Local level of tapering can be adjusted independently of the global tapering,
as long as local bandwidth is same or higher than global available bandwidth.
A scheme for local tapering is shown in Fig. 9, where a special local slice is
introduced to increase the amount of local bandwidth. This local slice requires
only half of the switches of a regular slice, because all of the switch ports are
used to connect local cables. Requiring only half of the switches for reclaiming
each slice’s local bandwidth leads to cost and energy savings.
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Fig. 10. Cost and energy models for global/local tapering
of Megafly, and global tapering of Dragonfly.

Table 1. Parameters for
cost and energy models.

Local link cost 1

Global link cost 10

Switch cost 100

Power per port 2.8W

The ability to remove switches, and the attached links, from the topology
without reducing the number of endpoints leads to significant savings in cost
and power of tapered Megafly topologies. We create a cost model based on rough
estimates shown in Table 1. Large systems are custom made and any attempt at
estimating exact dollar cost for all topology variants is futile, so we instead focus
on representative ratios. We find that global optical links are generally 10x more
expensive than local or node links that are either formed using copper cables or
even copper traces on a low-loss circuit board. At the same time, a high radix
switch ASIC cost is about an order of magnitude more expensive than one global
optical link. Our energy model is equally simple, and it only assumes 2.8W of
power usage per switch port, which is in line with assumptions used in [1,5].

Even with these simple cost and energy models, Fig. 10 clearly shows the
benefits of combined global and local tapering compared to a full size system,
or to a Dragonfly-style global tapering. For example, our models show that
75%/75% global/local tapered Megafly costs about the same as the 50% globally
tapered Dragonfly, and it also uses less power.

5.2 Packaging

We envision densely packaging Megafly groups to enable some of the node and
local links to be formed out of short copper cables, depending on signal integrity
requirements. Inter-group connections are formed using long optical global cables
that are significantly more expensive.
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The main challenge in packaging a Megafly group, compared to a Dragonfly,
is that the group size is doubled, and the number of nodes connected to a single
node switch is doubled. We alleviate the latter problem by decoupling node
packaging from switches completely. Instead, we propose building a Megaswitch,
which contains all switches of a single group. A megaswitch is constructed out
of two kinds of boards: node switch boards containing one or more node switches
and global switch boards containing one or more global switches. Several of each
board kind are stacked together, with node switch boards placed orthogonally
to global switch boards. This design enables the butterfly connectivity needed
for the Megafly group, as shown in Fig. 5, where each node switch connects to
each global switch, and vice versa.

Fig. 11. Example cabinet layout.

We estimate a Megaswitch to fit within half a cabinet, as shown in Fig. 11.
All of the node links of Megaswitch are exposed at the front of the cabinet, and
the global links are at the back (not shown in Fig. 11). The rest of the cabinet
containing the Megaswitch and its neighboring cabinets are packed with node
blades. We envision densely packing cabinets together to reduce the cabling cost
of connecting node blades with node switches, and to possibly enable the use of
copper cables depending on signal integrity constraints. Each of the links shown
in Fig. 11 is a bundle of cables connecting all of the nodes in a blade to the
corresponding switch. As shown in the same figure, we can stage this “T” design
throughout the entire row. At each edge of the row, half of the cabinet is left
unpopulated, and this space can be used for power and cooling equipment. While
some cooling equipment is necessary in each rack, we envision bringing cooled
water from the outside into an intermediate unit which can be shared between
several racks to amortize cost and space.

By containing all local links inside a Megaswitch, we expect to limit the
length of required cables and enable most cables to be of the same length, further
reducing cost. Assuming cabinets are packed closely together, the longest cable
needs to reach about half of the cabinet height. This is better than co-locating
switches with nodes which forces all-to-all connectivity between blades. In this
all-to-all configuration the longest cable needs to reach almost the entire height
of the cabinet, and most cables are of different lengths.
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6 Case Study

In this mini case study we illustrate the flexibility of the Megafly topology in
real system design. Our objective is to build a 8192 node system with radix
32 routers. We chose these parameters to keep our simulation size manageable,
but any conclusions we make are directly applicable to larger system sizes with
higher radix routers because maximum number of endpoints scales evenly with
r3 for all of the topologies we consider: 1-D Dragonfly, Megafly, 3-level Fat Tree
and Slim Fly. We are also on a tight budget, and we are willing to consider up to
50% of bisection bandwidth reduction if that leads to significant cost savings.

We consider building a 3-level Fat Tree as we know it performs well under
a variety of traffic patterns, but under our cost model the 3-level Fat Tree is
1.9x more expensive than the fully provisioned Dragonfly or Megafly. Even if we
taper the Fat Tree to 50% of bandwidth, it still comes out more expensive than
the fully provisioned Dragonfly or Megafly, therefore we abandon the Fat Tree.
We also consider building a Slim Fly, which promises to be a cheaper option, but
Slim Fly does not scale beyond approximately 4k nodes with radix 32 routers,
so we abandon that topology as well. Again, we come to the conclusion that the
1-D Dragonfly and the Megafly are our best options.

Fig. 12. Performance and cost of tapered Megafly (global/local) and Dragonfly (global)
across multiple traffic patterns.

The system size of 8192 nodes is near optimal for both Megafly and Dragonfly
topologies. With radix 32 routers, Megafly group size is 256 nodes, and Dragonfly
group size is 128 nodes, leading to a system size of 32 Megafly groups or 64
Dragonfly groups, which is only one group shy of optimal for both topologies.
We simulate all design points of Dragonfly and Megafly, using a variety of traffic
patterns in search of a good cost vs. performance trade-off.

Workloads. Each topology design point is evaluated on six traffic patterns: uni-
form random, permutation, tornado, 2D neighbor, 4D neighbor and transpose.
Uniform random, permutation and tornado are the same synthetic patterns that
were used in routing algorithm evaluation. Neighbor and transpose patterns are
intended to simulate real application behavior as found in stencil kernels or in
distributed 3D FFT implementations.
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To ensure fair evaluation, we map the neighbor pattern to nodes using a sub-
volume randomization technique, similar to [6,13]. A sub-volume of 32 nodes is
always packed together and mapped to a minimum number of switches in the
same group, which efficiently uses local bandwidth available within each group.
However, different sub-volumes are randomized across the entire topology to
efficiently use all of the available global bandwidth. Traffic is generated as a
permutation pattern in each dimension of the neighbor exchange, but the ratio
of traffic local to the sub-volume vs. traffic leaving the sub-volume is carefully
controlled. In the 2D neighbor pattern we set 81% of traffic to be local to the
sub-volume, which is intended to closely mimic a 4 point neighbor exchange.
Similarly, in the 4D neighbor pattern 56% of traffic is local, resembling an 8 point
4D exchange. The transpose pattern assumes no locality, and it is constructed
as 64 superimposed static permutations, which is similar to matrix transpose
behavior in 2D pencil decompositions used for 3D FFTs [21].

We implement both synchronizing and non-synchronizing versions of the traf-
fic patterns. The synchronizing versions exchange messages between the neigh-
bors and then wait for those messages to complete, while the non-synchronizing
patterns continuously generate traffic. For synchronizing traffic we report run
time, while for the non-synchronizing case we measure steady state throughput.

Results. The simulation results for all six workloads are combined into a single
performance metric through a geometric mean. Cost for each of the tapered
topologies is calculated using the simple model described in Sect. 5. Cost vs.
performance for all of the design points is given in Fig. 13.

Figure 13 illustrates the flexibility of the Megafly topology, as it shows
15 possible Megafly design points compared to only 2 possible Dragonfly options.
Megafly enables finer grained tapering because of its scalability, but it addition-
ally enables semi-independent tapering at the global and local level. In the same
figure we draw the Pareto frontier which connects topologies for which there are
no other topologies that are cheaper and higher performing at the same time.
Neither of the Dragonfly topologies are on this Pareto frontier, implying that
there is always a cheaper and higher performing Megafly. While this is very true
for the 50% tapered Dragonfly, we do note the fully provisioned Dragonfly is
very close in cost and performance to the fully provisioned Megafly.

We analyze further, in Fig. 12, both Dragonfly topologies, as well as the
Megafly topologies with either similar performance or similar cost to the Drag-
onfly variants. We observe that tapered Megafly topologies perform similarly or
better than their Dragonfly counterparts across all workloads. We also notice
neighbor patterns perform very well, even with some local taper, because a sig-
nificant portion of the traffic ends up being local to a single switch, and is thus
not affected by taper at any level. Transpose pattern is global bandwidth limited,
and behaves very similarly to uniform random.

Overall, we find the Megafly topology to offer much more flexibility in the
cost vs. performance trade-off space than Dragonfly, and any design point on
the Pareto frontier shown in Fig. 13 is a good choice.
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Fig. 13. Pareto frontier of cost vs. geo-mean performance for tapered Megafly
(global/local) and 1-D Dragonfly (global) variations. In general, there are more possible
Dragonfly variations, but we find that only these two fit our constraints, as discussed
in Sect. 2.

Fairness Evaluation. Network fairness is another important metric that
impacts application performance. In particular, applications with synchroniza-
tion patterns are affected when some nodes are slow to complete their commu-
nication, because other nodes must wait on them. We implement synchronizing
versions of the neighbor exchange and the transpose patterns described ear-
lier in this section. All stencil (i.e. neighbor) patterns exchange 8 kB messages
between immediate neighbors before synchronizing, while the Transpose pattern
exchanges 1.6 kB messages to keep the simulation runtime manageable. We sim-
ulate the synchronizing patterns on a Dragonfly and a Megafly with 8k endpoints
and 50% global taper. Global taper does not necessarily mean there is a reduced
number of global links, it can also be viewed as an increase in local bandwidth
to better support neighbor patterns. A timing diagram of an example 4D stencil
is shown in Fig. 14.

In the timing diagram, the three simulated communication phases (shown in
red) are broken up by two computation phases (shown in blue). Compute time
is fixed to 10,000 cycles. The simulation is run for three iterations, instead of
running to convergence like in the earlier bandwidth experiments. The pattern
starts with an empty network, and the network is again emptied (or mostly
emptied) during the computation phases. This behavior mimics the applications
better than measuring bandwidth in the steady state. One can see in Fig. 14 that
Megafly performs better on average, but it also has fewer, and smaller outliers,
indicating better fairness.
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Fig. 14. Timing diagram for 3 iter-
ations of a 4D neighbor pattern; 8k
endpoints with 50% taper. Showing
communication (red) and computation
(blue) phases. (Color figure online)

Fig. 15. Communication times for syn-
chronizing patterns on 8k Dragonfly
and Megafly with 50% global taper.

We ran similar experiments for a 2D, 3D, 4D stencil neighbor exchanges and
a transpose pattern. All of the results are shown in boxplot format in Fig. 15. We
see that for all patterns Megafly has better median times, but also better worst
case times (indicated by the max whisker on the boxplot), and better variability
(indicated by the height of the boxplot).

7 Conclusion

In this paper we identify two 3-hop network topologies as the most likely
candidates for future exascale systems based on their cost advantages over
other topologies: a 1-D Dragonfly, and a Megafly. Furthermore, we show that
Megafly has better path diversity, compared to a 1-D Dragonfly, leading to bet-
ter throughput, better fairness, and more possible design points. For cost and
power driven designs, Megafly offers global and local tapering options with the
ability to trade off bisection bandwidth for cost savings. We show the benefits
of tapering flexibility through a mini case study in Sect. 6.

Routing in Megafly, both minimal and adaptive, largely leverages existing
routing algorithms developed for the Dragonfly. Therefore, Megafly can be built
out of existing switches that already support Dragonfly. However, minimal rout-
ing in a Megafly requires only a single virtual channel, compared to two virtual
channels needed for deadlock avoidance in a Dragonfly topology.
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Abstract. Several benchmark suites, which provide a wide spectrum of
applications in relevant domains, have been proposed and widely used
in the computer architecture community. In the majority of them, a
shared-memory based communication model is assumed for communica-
tion among tasks/threads of an application. Yet, most of the works in the
context of Network-on-Chip (NoC) architectures use these benchmarks
as a basis for their experiments. Nevertheless, NoC architectures enable
message passing communication that is not exploited by the applications
in current benchmark suites. In this paper, we propose a technique for
converting the trace of memory references generated by the execution
of a shared memory based multi-threaded program to the trace of com-
munication messages that would be obtained if the same program would
have been designed to use message passing. The proposed technique is
applied to a set of representative benchmarks belonging to SPLASH-2
and PARSEC benchmark suites.

Keywords: Simulation · Message passing · NoC
Trace transformation

1 Introduction

The Network-on-Chip (NoC) design paradigm [3,11], based on a modular packet-
switched mechanism, is currently seen as the most effective solution to address
the scalability limitation of manycore architectures. The design of NoC based
systems involves several aspects, such as the partitioning and mapping of the
application to the cores, the selection of an appropriate interconnection topology,
together with an appropriate routing scheme for dispatching the packets among
the nodes, and an optimized allocation of the limited hardware resources (e.g.,
buffer sizes, and flit width).

The assessment of NoC based systems, which integrate tens if not hundreds
of cores, by performing a low-level (e.g., RTL) simulation evaluation and/or a
full system simulation [5,18] of the whole NoC architecture, is an extremely time-
consuming approach that makes unfeasible an exhaustive exploration of all the
c© Springer International Publishing AG, part of Springer Nature 2018
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design alternatives. Thus, the evaluation, test, and verification of different design
choices is often achieved by means of techniques operating at a higher level of
abstraction, where the different components and functionalities are characterized
in terms of area, timing, and power. In this regard, high level cycle-accurate NoC
simulators [6,13,16] are widely used to quickly get an estimation of the target
requirements/objectives, such as power and energy consumption, communication
delay, and throughput [12]. When using this kind of simulators, a fundamental
role is played by the workload, both in terms of application tasks being run and
input data fed into the network. While several studies in literature rely on the use
of synthetic traffic patterns, these are often characterized by specific statistical
properties only (e.g., packet injection rate) and do not accurately model other
important aspects of real traffic scenarios, including, communications bursts,
dynamically changing hotspots, data-dependency, irregular packet generation
rates, etc.

To overcome such limitations, different benchmark suites [4,24] were pro-
posed with the aim of including a set of applications representative of new
emerging workloads for massively parallel architectures. These include several
areas which are gaining attraction in the field, such as financial analysis, com-
puter vision, pattern recognition, data mining, and synthesis. An key aspect of
the source code implementing all these application benchmarks is that they all
assume a traditional shared memory mechanism in order to exchange data among
the different processing elements. NoC architectures can implement such shared
memory communication mechanism, e.g., using node-specific private cache and
coherence protocols. Nevertheless, especially in the perspective of thousands-
nodes sized networks, a message passing mechanism based on the direct exchange
of data packets between nodes would probably be a more appropriate and scal-
able choice [23,26]. Unfortunately, modifying the huge amount of benchmarks
sources would be a not worthy effort, especially because it would involve a new
whole cycle of testing/debugging of the applications which took years to stabilize
and consolidate.

In this paper, we propose a technique to transform execution traces of the
shared memory accesses into a set of corresponding message passing data flows,
together with a statistical characterization of the packets that would be required
to implement the exchange of those messages. The basic idea is that, starting
from a sequence of shared memory based traces, where the exchange of data is not
expressed explicitly, a spatial and temporal analysis can be performed to detect
matching read/writes that semantically correspond to an information exchange.
Further, the detected data exchanges are clustered in order to “packetize data”,
obtaining the sequence of packets that would be needed according to actual NoC
parameters, such as packets length and flit size. The whole process results in two
fundamental advantages as compared to the original traces:

– All the implicit communications based on shared memory are transformed
into corresponding set of messages, packetized with the appropriate source
destination pairs, amount of data and timing.
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– Time-consuming and resource-hungry real traces simulations are replaced by
simulation of traffic patterns that, although synthetic, are still realistic in
terms of statistical properties, having been characterized from the packetiza-
tion of real traces.

The conversion of a shared memory based trace into a message passing based
trace is realized by means of a set of Perl scripts integrated into the Graphite
Multicore Simulator platform [18] and are publicly available as open source
software.

The paper is organized as follows: Sect. 2 summarizes some similar/previous
efforts in literature, highlighting the main differences when compared to the pro-
posed one. In Sect. 3 a formal description of the proposed technique is presented,
together with a complete overview of the design flow into which we imagine the
use of trace transformation approach. Finally, in Sect. 4 we concretely apply
the technique to two of the most representative benchmark suites for multi-
core processing, evaluating the level of message passing orientation detected by
transforming the traces of each application.

2 Related Work

Several works in literature address the problem of generating more realistic NoC
traffic scenarios by processing and augmenting simulation traces. In particular,
some works focus their attention on the removal of prefixed timings of traditional
trace-driven simulations by adding information about temporal dependencies.
Authors of Netrace [9], propose a tool and a methodology for processing traces
of caches and memory accesses in order to capture dependencies between net-
work messages. In [19] authors introduce an abstract model of a “transmission
event” to discover dependencies using a temporal ordering of the same events.
While embedding dependencies into traces certainly improves accuracy, on the
other side it makes traces a lot more complex, both in terms of storage and
processing required while performing the trace-driven simulation. To tackle this
problem, authors of Attackboard [10] propose the use of bloom filters to create
tables for storing dependency patterns at each router, avoiding the storage of
cyclic/recurrent dependencies. Other works aim at modifying existing full sys-
tem simulators in order to achieve a time affordable trace-driven simulation. For
example, authors of [14] propose an extension of the Garnet [1] that generates
approximate dependencies dynamically.

Several approach propose the use of traffic generators to avoid the simulation
of IP cores and obtain a significant speedup in simulation time. Deterministic
traffic generators, such as [17], are essentially a replay of the original traffic
where events are annotated in order to be replicated in future simulation. While
accurate, they have a prefixed length and do not allow input-dependent traffic
generation.

On the other side, stochastic traffic generators use traces to build a model
of the traffic. Authors of [15] present a framework to process traces generated
by message passing applications modeled as acyclic task graphs: the resulting
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task generators are then used to feed NoC architectures emulated on a FPGA.
Task generators are also proposed in [21], where traffic phases are automati-
cally detected in order to replicate the stochastic behaviour of a specific parallel
application.

While the approach proposed in this work belongs to the field of the stochas-
tic traffic generators, it still differentiates from the previous proposal for some
features we consider quite relevant. A first difference is that multiple memory
accesses are not considered as multiple events, but they are temporally ordered
and then aggregated so that the appropriate number of packetized messages is
considered: this allows to generate a packet injection rate that realistically syn-
thesizes the traffic for a specific time range and a given data flow. Another
notable difference is that the proposed approach does not generate packets
related to communications between traditional elements of a shared memory
paradigm, e.g., interaction between L1 cache and memory controllers, shared
L2 caches, packets sent for applying coherence protocols, read/writes to shared
area in main memory, and so on. Instead, what is generated is a set packets that
would be exchanged between source/destination pairs, according to a message
passing mechanism where nodes cooperate to the computational effort by explic-
itly sending each other the required data, without relying on some underlying
shared repository of values. Finally, concerning the detection of dependencies,
in our approach they are only taken into account when imply a temporal data-
dependency between a couple of cores. On the other side, functional dependen-
cies are not being considered, since the final aim is not to provide a faster full-
system functional simulation, but to generate traces suitable for a higher level
simulation.

3 Memory Trace Transformation

In this section, we describe the procedure for converting the trace of mem-
ory accesses generated during the execution of parallel shared memory based
applications to a correspondent trace of messages that would be generated if a
message passing communication model is used. Several design space exploration
strategies [2,22] use a communication graph as main input for modeling the
communication characteristics of an application. Thus, in this section, we show
how to derive the communication graph starting from the message passing based
trace file.

3.1 Converting a Shared Memory Trace to a Message Passing Trace

The basic idea for converting a shared memory based transaction to a mes-
sage passing transaction is shown in Fig. 1. Let us consider the case shown in
Fig. 1(a). At time ts, core s stores vs bytes of information to memory address a of
the shared memory. At time td, core d loads vd bytes of information from mem-
ory address a of the shared memory. We convert such shared memory based
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(a)

(b)

Fig. 1. Converting subsequent store and load transactions at the same memory address
(a) to a core-to-core communication (b).

(a)

(b)

Fig. 2. Converting subsequent multiple store and load transactions at the same memory
address (a) to core-to-core communication (b).

transaction to a message passing based transaction like shown in Fig. 1(b) in
which core s sends vd bytes of information to core d at time ts.

Figure 2 shows the case of multiple stores in which the same core s stores
vs1, vs2, . . . , vsN , bytes of information to the same memory address a at times
ts1, ts2, . . . , tsN , respectively. Then, at time td, core d loads vd bytes of infor-
mation from memory address a. In this case, we convert such shared memory
based transaction to a message passing based transaction like shown in Fig. 2(b)
in which core s sends vd bytes of information to core d at time tsN .
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Formally, the translation of a shared memory trace to a message passing
trace can be defined as follows. Let T (SM) = {T (SM)

i , i = 1, 2, . . . , N} be the
trace of memory references generated by the execution of a program. A generic
pattern of a shared memory based trace is a 5-tuple

T
(SM)
i :: =

〈
t
(SM)
i , c

(SM)
i , a

(SM)
i , o

(SM)
i , v

(SM)
i

〉

where t
(SM)
i is the starting time of the transaction, c(SM)

i is the core that gen-
erates the transaction, a(SM)

i is the memory address, o(SM)
i is the transaction

type, and v
(SM)
i is the data volume of the transaction. The transaction type can

be either store (s) or load (l).
Starting from the shared memory based trace T (SM) we can generate a mes-

sage passing based trace T (MP ) = {T (MP )
i , i = 1, 2, . . . ,M} where T

(MP )
i is a

4-tuple
T

(MP )
i :: =

〈
t
(MP )
i , s

(MP )
i , d

(MP )
i , v

(MP )
i

〉

where t
(MP )
i is the starting time of the communication, s(MP )

i and d
(MP )
i are

the source and destination cores of the communication, respectively, and v
(MP )
i

is the data volume of the communication.
Specifically, let T (SM)

i be a generic pattern of the shared memory based trace.
If exists a j > i such that:

o
(SM)
i = s ∧ o

(SM)
j = l ∧ (1)

a
(SM)
i = a

(SM)
j ∧ (2)

c
(SM)
i �= c

(SM)
j . (3)

then, a communication T
(MP )
k can be generated as follows:

t
(MP )
k :: = t

(SM)
i (4)

s
(MP )
k :: = c

(SM)
i , d

(MP )
k :: = c

(SM)
j (5)

v
(MP )
k :: = v

(SM)
j (6)

Conditions (1) and (2) assure the spatial and temporal dependency between the
i-th and j-th transactions. That is, both the store and load transactions must
act to the same memory address and the store transaction must precede the load
transaction. Condition (3) dicates that the cores involved in the load and store
transactions must be different. If all the aforementioned conditions are satisfied,
the resulting communication T

(MP )
k is such that its starting time corresponds to

the time of the store transaction t
(SM)
i [Relation (4)], its source and destination

cores correspond to the core of the store transaction and the core of the load
transaction, respectively [Relation (5)], and its data volume corresponds to the
data volume of the load transaction [Relation (6)].
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The above formulation does not cover the case of multiple stores as illustrated
in Fig. 2. The extension to this case can be operated by selecting the greatest j
that satisfies Conditions (1–3). That is, let

jmax = max{j : conditions (1−3)}
then,

T
(MP )
k =

〈
t
(SM)
i , c

(SM)
i , c

(SM)
jmax

, v
(SM)
jmax

〉

Based on Condition (2), a communication is generated when the address of
the store and the load transactions correspond. Actually, a communication can
also be generated when the address of the load and store transaction differ by
a certain amount. A store transaction at address a

(SM)
i of v(SM)

i bytes, involves
all the memory locations from address a

(SM)
i to address a

(SM)
i + v

(SM)
i − 1.

Thus, if the address of a load transaction falls into that memory address range,
a communication should be generated. Based on this, the above formulation is
updated by replacing Condition (2) with Condition (7)

a
(SM)
j ∈ MRi (7)

where MRi = {a(SM)
i , a

(SM)
i + 1, . . . , a(SM)

i + v
(SM)
i − 1}.

3.2 Generating the Communication Graph

Most of application specific optimization techniques proposed in literature in
the different contexts, including, design space exploration [2], routing algo-
rithms [20], mapping techniques [22], etc., require a communication graph rather
than a communication trace as input. A communication graph CG = G(V,E)
is a direct graph where V is the set of nodes of the network (e.g., cores),
and E is the set of communications among nodes. A communication graph
is usually annotated with traffic volume information. For each communication
commi = (vs, vd) ∈ E, vs, vd ∈ V , the function vol(commi) returns the total
amount of information transferred from node vs to node vd.

It is straightforward obtaining the communication graph starting from the
message passing based trace, T (MP ). In fact, V corresponds to the set of cores
that appear in T (MP ) as source or destination core:

V = {c : ∃ 〈·, c, ·, ·〉 ∈ T (MP ) ∨ ∃ 〈·, ·, c, ·〉 ∈ T (MP )}
E corresponds to the set of communications in T (MP ):

E = {(cs, cd) : ∃ 〈·, cs, cd, ·〉 ∈ T (MP )}
and the volume function vol for a communication (cs, cd) is built by summing
up the volume information for each communication (cs, cd) in T (MP ):

vol ((cs, cd)) =
∑

〈·,cs,cd,v〉
v
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Fig. 3. Communications among cores in freqmine application

An example of communication graph for PARSEC’s freqmine application is
shown in Fig. 3. Since there are only a few cores sharing data among themselves
during the whole simulation, this application is particularly useful for giving
a clear example of communication graph. In particular, only 7 out of 64 cores
communicate each other with communications from node 3 to nodes 4, 5, and 6
dominating in terms of traffic volume. Please also notice how the traffic volume
information has been pictorially represented by varying the thickness of the edges
of the communication graph.

3.3 Proposed Design Flow

The proposed design flow is illustrated in Fig. 4. Overall, it is divided into
two main phases, namely, system-level simulation and network simulation.
System-level simulation is performed by means of a multicore simulator (e.g.,
Graphite [18]) on shared memory based applications like those collected in
widespread benchmark suites, including, SPLASH-2 [24] and PARSEC [4]. This
phase is a time consuming part of the design flow, especially as the number of
cores of the multi/manycore architectures to be simulated increases. However,
it is a one-time-effort and the generated shared memory trace file is the input of
the second phase of the design flow. In the second phase, the proposed technique
(highlighted in gray in the figure) is used for generating the message passing
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Fig. 4. The proposed design flow.

based trace file along with a communication graph which summarizes the topo-
logical and statistical characteristics of the application. The outcome of this step
depends on some network related parameters, namely, packet size and flit size,
which are inputs for the proposed technique. Finally, either the message passing
based trace file or the communication graph can be used as stimulus for the NoC
simulator (e.g., Noxim [6]) used for obtaining communication performance and
power figures in different scenarios [7,8]. It should be noted that, the second
phase of the design flow can be seen as the core of a design space exploration
loop in which the network related parameters are made to vary for generating
the different NoC configurations to be assessed without the need of performing
a time consuming system level simulation.
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4 Experimental Results

We selected 19 applications from PARSEC [4] and SPLASH-2 [24] multithreaded
benchmark suites as shown in Table 2. Each of them has been simulated in
Graphite Multicore Simulator [18] with simsmall input set. The simulated sys-
tem is a 64-core chip-multiprocessors (CMP), where each core has its own private
two-level caches and the memory coherence is achieved using a limitLESS direc-
tory scheme. Table 1 shows the parameters chosen for carrying out the collection
of traces. Please notice that all the parameters not mentioned in the table have
been left to their default values: these include, for example, physical parame-
ters only affecting energy/power figures, or low-level micro-architectural aspects
which are not in the current scope of investigation (e.g., assembly instruction
delays, pipeline).

Table 1. Configuration parameter used for the multi-core simulation with Graphite.

Parameter Value

L1I (size, block, assoc) 64 B, 16 KB, 4

L1D (size, block, assoc) 64 B, 32 KB, 4

L2U (size, block, assoc) 64 B, 512 KB, 8

Flit width 64

No.m of flits/port buffer 4

4.1 Message Passing Orientation

The shared memory trace file generated by the execution of the applications
in Table 2 has been converted to a message passing trace file as described in
Sect. 3 and the percentage of communication among cores has been computed
and plotted in Fig. 5.

The percentage of communication among cores measures the fraction of com-
munications that can be realized by means of message passing rather than shar-
ing memory. Thus, an high percentage value is an indication that the application
would benefit of message passing as it would drastically reduce the pressure on
the memory subsystem. As it can be seen, the variance among the different
applications is quite relevant, depending on characteristics such as paralleliza-
tion model, data sharing, synchronization, etc. Let us consider, for example, the
application radiosity for computing the light distribution in a scene containing
polygonal patches. Since the radiosity of each polygon is computed as a function
of all the other polygons radiosities, there is a computational interdependency
among the application threads which eventually translates into a good oppor-
tunity for adopting message passing mechanisms, as shown in Fig. 5. On the
other side, a counterexample is represented by blacksholes, a well known finan-
cial application for computing the prices of a portfolio of options. In this case
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Table 2. Overview of applications used in the experimental analysis.

Program Application domain Suite

barnes High-performance computing SPLASH-2

blackscholes Financial analysis PARSEC

canneal Engineering PARSEC

cholesky High-performance computing SPLASH-2

dedup Enterprise storage PARSEC

ferret Similarity search PARSEC

fft Signal processing SPLASH-2

fluidanimate Animation PARSEC

fmm High-performance computing SPLASH-2

freqmine Data mining PARSEC

lu contiguous High-performance computing SPLASH-2

lu non contiguous High-performance computing SPLASH-2

ocean contiguous High-performance computing SPLASH-2

ocean non contiguous High-performance computing SPLASH-2

radiosity Graphics SPLASH-2

radix General SPLASH-2

raytrace Graphics SPLASH-2

streamcluster Data mining PARSEC

vips Media processing PARSEC

volrend Graphics SPLASH-2

water-nsquared High-performance computing SPLASH-2

the portfolio is split into a number of work units equal to the number of threads,
and then such units are processed concurrently, without any requirement for
cooperation among cores.

4.2 Validation

For the sake of validation, we considered a JPEG encoder [25], from which
we derived two multithread implementations, namely, a shared memory based
implementation (JPEGsm) and a message passing based implementation
(JPEGmp). We apply the proposed technique to the memory reference trace
file generated by the execution of JPEGsm to obtain the trace of messages.
Then, we compare the trace of messages with the actual messages generated by
JPEGmp. We consider a 4 × 4 mesh based NoC and input images of 512 × 512
pixels. The image is divided into 4 regions of 128×128 pixels where each of them
is assigned to 4 parallel threads implementing the level shift, DCT, quantiza-
tion, and entropy encoding tasks, respectively. Both in JPEGsm and JPEGmp,
the aforementioned tasks are executed in a pipeline fashion at a macro-block
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Fig. 5. Percentage of communications among cores.

Fig. 6. Communication flows for JPEGsm and JPEGmp.

granularity and based on a the producer-consumer model. In JPEGsm, the four
threads fetch a macro-block from the memory, perform their specific task, and
write back the modified macro-block into memory. In JPEGmp, the macro-block
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is manipulated by a core and then sent to the next core implementing the subse-
quent pipeline stage by means of send communication primitive. Figure 6 shows
the communication flows for JPEGsm and JPEGmp. We have instrumented the
Graphite Multicore Simulator to trace NoC messages generated during the exe-
cution of the application (JPEGmp). Then, the trace has been used to derive
the communication graph of the application. Then, this communication graph
has been compared with the one generated by the proposed technique applied to
the memory reference trace file generated by the execution of JPEGsm. The two
communication graphs resulted equivalent in terms of communication topology
(i.e., they feature the same communicating pairs) but slight differ in terms of
the total number of exchanged packets (about 3%). This difference is due to
the mechanism, adopted by Graphite to initialize and allocate resources in the
bootstrap phase, which implies further memory accesses that are not shown in
Fig. 6.

5 Conclusions

In this paper, we have presented a technique for generating a trace of commu-
nication messages starting from the trace of memory references obtained by the
simulation of a multi/many core architecture executing shared memory based
applications. The proposed technique is based on detecting whether a specific
memory transaction might be translated into a message that can be exploited
by a message based communication model. The paper formally provides all the
conditions that a memory transaction must adhere to be translated into a corre-
spondent communication message among with the specific attributes of the mes-
sage, including, message generation time and message size. A tool implementing
the proposed technique is released and publicly available as open source soft-
ware. Such tool, tailored to be used in tandem among with Graphite and Noxim
simulation platforms, is useful for predicting the expected communication perfor-
mance and power metrics of current applications implemented with traditional
shared-memory based communication model in the case in which they would be
converted for exploiting the native message based communication model of NoC
based architectures.
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Abstract. Chebyshev filter diagonalization is well established in quan-
tum chemistry and quantum physics to compute bulks of eigenval-
ues of large sparse matrices. Choosing a block vector implementation,
we investigate optimization opportunities on the new class of high-
performance compute devices featuring both high-bandwidth and low-
bandwidth memory. We focus on the transparent access to the full
address space supported by both architectures under consideration: Intel
Xeon Phi “Knights Landing” and Nvidia “Pascal”/“Volta.” After a thor-
ough performance analysis of the single-device implementations using the
roofline model we propose two optimizations: (1) Subspace blocking is
applied for improved performance and data access efficiency. We also
show that it allows transparently handling problems much larger than
the high-bandwidth memory without significant performance penalties.
(2) Pipelining of communication and computation phases of successive
subspaces is implemented to hide communication costs without extra
memory traffic. As an application scenario we perform filter diagonaliza-
tion studies for topological quantum matter. Performance numbers on
up to 2048 nodes of the Oakforest-PACS and Piz Daint supercomput-
ers are presented, achieving beyond 500Tflop/s for computing 102 inner
eigenvalues of sparse matrices of dimension 4 · 109.

1 Introduction and Related Work

Stacked memory technologies such as HBM2 and MCDRAM have boosted the
attainable main memory bandwidth by a factor of five to six compared to con-
ventional multicore systems. Soon after the commercial availability of these tech-
nologies, four out of the ten most powerful supercomputers were equipped with
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the new fast memories (see the TOP500 [2] list as of November 2017). Typ-
ically holding 16 GiB of data, the size of stacked memories is still very lim-
ited and hierarchical concepts have been implemented, offering additional large
DDR4 memory spaces. The two major players as of today, Intel with its “self-
hosted” Xeon Phi “Knights Landing” (KNL) series and Nvidia with its “Pascal”
(P100) and “Volta” (V100) GPGPUs, implement these hierarchical concepts in
different ways. While the KNL is directly connected to the DDR4 partition, the
Nvidia GPGPUs access the large host node memory through the PCIe interface.
However, both architectures are capable of transparently addressing the com-
plete (slow and large) memory on a node, thereby offering easy access to large
data sets.

The computation of bulks of eigenvalues of large sparse matrices is very data
intensive, both in terms of bandwidth demands (i.e., low computational inten-
sity) and data set sizes. Subspace projection using polynomial filters based on
the Chebyshev iteration is an efficient approach for the computation of extremal
and interior eigenvalues in quantum physics and quantum chemistry. Application
areas include inner eigenvalue problems in the context of modeling graphene or
topological insulator materials [22,23] or electronic structure calculations based
on density functional theory [5,29]. Beyond eigenvalue computations, Cheby-
shev polynomials can be used as acceleration techniques for linear solvers (see,
e.g., [6,21]) in various application areas (e.g., power flow modeling [11,16,17]).
Moreover, the closely related kernel polynomial method (KPM) (see [27] for a
review on KPM and its relation to Chebyshev polynomials) also relies on evalu-
ating those polynomials to calculate spectral properties of sparse matrices, such
as the density of states [7,9].

From a computational perspective, the evaluation of Chebyshev polynomi-
als is a simple series of vector operations and sparse matrix-vector multiplica-
tions (SpMV). It allows for kernel fusion to increase the computational inten-
sity [13]. Global communication can be avoided or limited to a single invocation
for the full-degree polynomial. In the above application scenarios the polyno-
mial is usually evaluated for multiple vectors and the algorithm can be reformu-
lated to use blocks of vectors. This further increases the computational inten-
sity and pushes the corresponding sparse matrix-multiple-vector multiplication
(SpMMV) towards regular data access [13]. We emphasize that the benefits of
SpMMV have been known for a long time [10] but have only recently gained
renewed interest (see, e.g., [3,4,18]).

Performance modeling, code optimization strategies, and parallel scalabil-
ity studies have been presented for KPM [13] and Chebyshev filter diagonaliza-
tion [20]. These investigations were performed on two Pflop/s-class supercomput-
ers: the SuperMUC-Phase2 system1, which is based on the Intel Xeon Haswell,
and the first phase of the Piz Daint supercomputer2 (Cray XC30), using Intel
Xeon Sandy Bridge processors and Nvidia K20 GPGPUs.

1 https://www.lrz.de/services/compute/supermuc/systemdescription/.
2 http://www.cscs.ch/computers/piz daint.

https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.cscs.ch/computers/piz_daint
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1.1 Contribution

This paper extends existing work towards the new class of supercomputers using
compute nodes that feature both high- and low-bandwidth memory and trans-
parent access to the full memory address space of a node. The systems under
consideration are phase two of Piz Daint and the Oakforest-PACS3 system, rep-
resenting the Nvidia P100-based accelerator and the standalone Intel Xeon Phi
approach, respectively. As of November 2017 these supercomputers were ranked
in positions 3 and 9 of the TOP500 list.

Table 1. Key architectural features of the two compute devices. The slow memory
partition uses DDR4 memory technology on both systems. FP64 CUDA units are
counted as cores on the GPGPUs.

KNL Tesla P100 Tesla V100

Vendor Intel Nvidia Nvidia

Model Xeon Phi 7250 P100 PCIe 16GB V100 PCIe 16GB

Codename Knights Landing Pascal Volta

Cores 68 (66 used) 1792 2560

Clock frequency [MHz] 1400 1328 1380

Peak performance [Tflop/s] 3 4.7 7

L2 cache capacity [MiB] 34 4 6

Fast memory technology MCDRAM HBM2 HBM2

Fast memory capacity [GiB] 16 16 16

Slow memory capacity [GiB] 96 64 64

We first investigate the attainable bandwidth within the compute nodes,
focusing on the usage modes for accessing the low-bandwidth partitions. Con-
cerning the transparent use of the low-bandwidth memory, the tighter hardware
integration allows much faster access to large data sets on the KNL. Then we
report on efforts porting and optimizing the code for the new compute device
architectures and analyze the attainable performance levels and hardware bot-
tlenecks if the working set data fits into the high-bandwidth memory. Our block
vector implementation (i.e., storing all ns vectors in a consecutive array) and
the simplicity of the algorithm allow for a straightforward implementation of
subspace blocking strategies. We perform these in three directions: (1) We block
for optimal compute performance, i.e., the computation of the Chebyshev fil-
ter polynomial is restricted to a subset of nb vectors at a time. (2) We show
that the subspace blocking is adequate to enable the efficient use of transparent
DRAM data access for large problems. (3) We interchange the original order
of polynomial evaluation in combination with a pipeline strategy and demon-
strate that overlapping of communication and computation between successive
subblocks of size nb can be realized, avoiding the redundant memory transfers of

3 http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html.

http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html
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standard communication hiding mechanisms in SpMMV. We investigate these
approaches using scalable test cases (sparse matrices) from eigenvalue compu-
tations for topological insulator simulations together with realistic parameter
settings for the filter diagonalization algorithm. We also show that these kinds
of computations fit very well to this new class of supercomputers.

As our library is available as open-source software, our implementations
and approaches can be easily adapted by the large community using numerical
methods that involve the evaluation of Chebyshev polynomials of large sparse
matrices.

1.2 Hardware Testbed

The two supercomputers considered in the present work harness non-standard
compute devices to bring forth their massive computational power. The Piz Daint
system consists of 5,320 nodes, each equipped with an Intel Xeon E5-2690v3
compute node hosting one Nvidia Tesla “Pascal” (P100) GPGPU. Oakforest-
PACS features 8,208 compute nodes, each with a self-hosted Intel Xeon Phi
7250 “Knights Landing” manycore CPU. In addition we present single-device
performance data for a Nvidia V100 GPGPU in order to demonstrate a poten-
tial shift of hardware bottlenecks and the general performance benefits of the
architectural update.

In Table 1 we summarize the key features of the KNL, the P100, and the
V100. From a high-level point of view, these architectures have similar memory
organization and key performance figures. However, technical implementations
(e.g., SIMD vs. SIMT execution, slow memory organization) and programming
approaches (e.g., access to slow memory) are substantially different. As we focus
in this work on large data sets and ways to use the slow memory, a more extensive
evaluation of the different memory modes and the respective attainable data
access rates is provided in the next section. Finally, the network structure of
both supercomputers is briefly discussed in Sect. 4.

Memory Subsystems and Operating Modes. A crucial difference between
both architectures is their basic operating mode. KNL is self-hosted, i.e., every-
thing, including the operating system and management processes, runs on the
compute device. The processor features a large partition of slow DDR4 mem-
ory and a small partition of fast MCDRAM memory. It can be configured such
that each of them is visible to the programmer as a separate ccNUMA domain
(“flat mode”). If both domains should be used, the programmer explicitly needs
to specify the data location and, if required, copy data between the domains.
Another operating mode uses MCDRAM as a transparent cache for the DDR4
memory (“cache mode”). In this case all memory requests go to the MCDRAM;
if data is not available there it will be loaded from DDR4 memory transpar-
ently to the MCDRAM and delivered to the processing units. No explicit data
management is required by the programmer.

The P100/V100 GPGPU is installed as an accelerator via PCI-Express. The
device itself only contains the fast HBM2 memory. In case the data sets exceed
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Fig. 1. Memory access modes on P100/V100 (top) and KNL (bottom): Explicit man-
agement (left) of the full memory vs. transparent access (right) to the full memory.

its capacity, the host memory has to be used. This can be done via explicit
CUDA calls that copy data between host and GPGPU. The Pascal architecture
is the first to support a transparent view to device memory and full host memory.
Similar to the cache mode on KNL, this “Unified Memory” feature enables trans-
parent data transfers between the host and the device (“managed mode”). Pro-
grammers need to allocate data with a special function (cudaMallocManaged()).
Data transfers between host and GPGPU is then managed automatically by the
Page Migration Engine (PME).

The memory subsystems and operating modes are illustrated in Fig. 1. For
data sets fitting into the fast memory partitions, the operating modes on the
left are preferred and data should be transferred via path (1) or (4). If the
data set exceeds 16 GiB, KNL offers the cache mode which corresponds to path
(6). Explicit transfers via path (1) + (2) can be used on P100/V100 but require
explicit coding of the data transfers by the programmer. This can be avoided
using the managed mode, i.e., data path (3), which provides a transparent view
of the complete address space of the host and the GPGPU.

In order to get estimates for achievable performance we investigate attain-
able bandwidth numbers for accessing large consecutive data sets, which is the
typical memory access scenario for the application considered in this work. We
use the STREAM benchmark [19] and adapt it to the different memory access
modes. Appropriate data set sizes are chosen to measure the different bandwidth
paths shown in Fig. 1, i.e., for transparent access to the slow memory we use data
sets larger than the fast memories. The measurements for all relevant data path
combinations are shown in Table 2. On all three architectures the highest band-
width is naturally attained when using the fast memory only. Access speed to the
slow memory component is substantially higher on the KNL owing to its on-chip
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Table 2. Memory bandwidth in Gbyte/s for different operating modes as illustrated
in Fig. 1 using the STREAM benchmark. On the P100 pinned memory was used for
the explicit data access (“DDR4-HBM2 explicit”).

Mode Copy Scale Add Triad

KNL MCDRAM (4) 466 468 481 489

DDR4 (5) 81 81 85 85

DDR4-MCDRAM cache (6) 60 60 60 59

P100 HBM2 (1) 542 542 556 557

DDR4-HBM2 explicit (1) + (2) 13 13 12 12

DDR4-HBM2 managed (3) 3 2 3 3

V100 HBM2 (1) 788 792 832 831

DDR4-HBM2 explicit (1) + (2) 13 13 12 12

DDR4-HBM2 managed (3) 5 5 5 5

DDR4 memory controllers, while host memory access on P100/V100 is limited
by the capabilities of the PCIe 3.0× 16 interfaces. For explicit slow memory
access approximately 75% of the maximum uni-directional PCIe bandwidth can
be attained on the P100/V100. However, the bandwidth for transparent access
(“managed mode”; path (3) in Fig. 1) breaks down to 2–3 Gbyte/s (5 Gbyte/s)
on P100 (V100) in our benchmarks, which may severely restrict the use of this
mode in real world applications. The PCIe models of P100 and V100 use the
same PCIe 3.0 × 16 interface, and have the same explicit transfer bandwidth.
However, V100 does improve the on-demand paging mechanism and improves
the transparent access bandwidth significantly. The overall low transfer rates
may be caused by the PME, which handles all remote page faults generated by
the GPGPU and tries to consolidate them into consecutive PCIe data transfers.
An analysis of the “Host to Device Transfers” using the Nvidia profiler shows
that the average transfer size granularity even for simple kernels like STREAM
is in the order of 40 KiB.

In summary, the transparent access to large consecutive data sets in the slow
memory on the P100 (V100) is ten to twenty times slower, while the access to
the fast memory is 25% (80%) faster than on the KNL. In absolute numbers, the
V100 improves on P100 in both fast memory and transparent system memory
bandwidth by about 50%.

1.3 Software Testbed

All computations were carried out using (real or complex) double precision data.
Index values are 4-byte integers. The CUDA toolkit in version 8.0.44 was used
for P100 and in version 9.1.85 for V100.4 The respective cuBLAS version was

4 No relevant performance differences were observed between CUDAv8 and CUDAv9
on V100.
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employed as a baseline implementation. The benchmark code for the bandwidth
baseline tests on Nvidia GPGPUs is available at https://github.com/te42kyfo/
cuda-benches. All in-cache and unified memory GPGPU bandwidth benchmark
numbers reported in this paper were measured using this code. The Intel C
Compiler (ICC) version 17.0.1 was used for KNL with the corresponding MKL
and MPI versions. On Piz Daint we used Cray MPICH 7.5.0.

The performance numbers we present for the Chebyshev Filter Diagonaliza-
tion kernel are median values from ten consecutive runs applying the full filter
polynomial. Before the actual measurements, one additional warmup run was
performed on the assigned set of nodes. No error bars are given for the perfor-
mance results because the variations were small (≤5%). In order to limit the
impact of OS noise, only 66 out of 68 cores were used on the KNL nodes. This
is recommended practice on Oakforest-PACS.

2 Chebyshev Filter Diagonalization

We investigate Chebyshev Filter Diagonalization (ChebFD) as a representative
algorithm for large-scale and efficient eigenvalue computations. Filter diagonal-
ization is frequently used to find a set of inner eigenstates of a sparse matrix H
in a given search interval of eigenvalues. It uses a window function approximated
by a polynomial filter of degree np to project a subspace of ns search vectors
to a given search interval of eigenvalues. A comprehensive description of this
method is given in [20]. The computational core of ChebFD is the application of
the polynomial filter together with the computation of the Chebyshev moments.
This is shown in Algorithm 1 for a formulation with block vectors. Basic numer-
ical operations involved in the filter application kernel (lines 7–13) are a SpMV
involving a large sparse matrix H and a series of scaled vector addition ker-
nels (i.e., BLAS1 kernels). These kernels can be formulated as a single SpMMV
operation involving special scaling factors and offset computations (line 9). In
lines 10/11 the Chebyshev moments are computed; they are used to monitor
the number of eigenstates in the search interval, which is not known a priori.
Finally, in line 12 the “filtered vector” is updated. As the polynomial filter of
degree np is applied independently to ns search vectors, a block formulation as
indicated in Algorithm1 can be used. In particular, the block variant of SpMV,
i.e., the SpMMV kernel, is favorable in terms of computational intensity since
the matrix data (H) has to be loaded only np times instead of np × ns times if
the full filter polynomial is applied separately to each vector in the SpMV. Note
that the block formulation of the vector kernels does not impact their computa-
tional efficiency as ns BLAS1 type operations are still involved, e.g., in line 10
ns independent dot products are computed.

The full filter diagonalization algorithm requires orthogonalization of the
ns “filtered vectors” in the block vector X after applying the filter above and
before restarting the procedure. A rank-revealing technique such as SVQB [25]
or TSQR [8] is used in the orthogonalization step, but as its contribution to the
overall runtime is typically small for reasonably large filter polynomial degrees
np we do not include it in the performance analysis.

https://github.com/te42kyfo/cuda-benches
https://github.com/te42kyfo/cuda-benches
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Algorithm 1. Application of the ChebFD polynomial filter to block vectors.
1: U := u1, . . . , uns � define block vector
2: W := w1, . . . , wns � define block vector
3: X := x1, . . . , xns � define block vector
4: U ← (αH + β1)X � spmmv()

5: W ← 2(αH + β1)U − X � spmmv()

6: X ← g0c0X + g1c1U + g2c2W � baxpy()+bscal()

7: for p = 3 to np do
8: swap(W, U)
9: W ← 2(αH + β1)U − W

10: ηp ← 〈W, U〉
11: μp← 〈U, U〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

� chebfd op(H, U, W, X)

12: X ← X + gpcpW
13: end for

At this point we must emphasize that performance numbers presented in [20]
use the ChebFD formulation presented here, while in [13] only the Chebyshev
moments have been computed, i.e., Algorithm 1 without line 12.

2.1 Physical Application and Problem Setting

We have chosen the computation of a bulk of central eigenstates of a topological
insulator as a test case for our performance study. Such applications are of cur-
rent interest in quantum physics research. The model Hamiltonian [24] describing
the topological insulator acts on a discrete 3D lattice of size Nx × Ny × Nz car-
rying four degrees of freedom per site. The matrix formulation leads to a sparse
matrix of size n = 4 × Nx × Ny × Nz with an average of nnzr = 13 complex
double precision non-zero elements per matrix row (denoted by “Topi-Nx-Ny-
Nz”). The matrices have several subdiagonals leading to a structure similar to
3D stencil. Please see [13,20] for more details on the model Hamiltonian and its
mapping to a sparse matrix. Relevant problem parameter settings in topological
insulator research are matrix dimensions of n = 106, . . . , 108 and search spaces
of n = 102, . . . , 103. In terms of algorithmic efficiency it has been shown in [20]
that high polynomial degrees (np ≈ 103) deliver best results.

3 Node-Level Implementation and Performance Analysis

The compute kernels and implementation alternatives discussed in the following
are available for download at https://bitbucket.org/essex/ghost. As paralleliza-
tion approaches we use OpenMP for KNL (and CPU architectures) and CUDA
for Nvidia GPGPUs. Best performance on the KNL for our application is typi-
cally achieved with four OpenMP threads per core.

https://bitbucket.org/essex/ghost
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3.1 Implementation

The structure of the ChebFD algorithm presented in Algorithm1 can easily be
mapped to a series of vector operations (of BLAS1 type) and a SpMMV. All ven-
dors provide highly optimized library routines for these. However, calling those
routines results in redundant data transfers for the involved block vectors. As dis-
cussed in [13,20] it is possible to fuse all operations in the p-loop of Algorithm 1
to a single algorithm-specific kernel (chebfd op(H,U,W,X))and perform all
computations on the three block vectors (U,W,X) once they are in the cache
or register. While this strategy allows for minimum data transfer, the tailored
kernels become very bulky and complex. In particular, for GPU architectures the
resulting CUDA kernel requires manual architecture-specific tuning as demon-
strated in [13] for the Nvidia K20.

Another important issue to consider is the storage format of the block vec-
tors. Here, a row-major approach is beneficial which drives the irregular access
pattern of the SpMV towards streaming access as ns consecutive block vector
elements are loaded for a single matrix element. Moreover row-major storage
also enables SIMD/SIMT vectorization along the block vector elements and a
simple compressed row storage (CRS) format can be used to store the matrix
on all architectures.

On KNL, the implementation is done via AVX512 compiler intrinsics. The
rather bulky nature of the kernel, together with the use of complex arithmetic,
prevents efficient vectorization of high-level code from the compiler and necessi-
tates the use of compiler intrinsics.

On the P100 we started with the KPM implementation for the K20m pre-
sented in [13]. Extending this kernel by the update of the “filtered” block vector
(line 12 in Algorithm 1) is straightforward but does not change the computa-
tional bottlenecks, which were the reductions required in the dot products. Here
a new feature of the Pascal architecture is employed: atomic additions using dou-
ble precision numbers can increase the performance of the reduction operation
for Chebyshev moments (ηp, μp).

3.2 Performance Measurement

In Fig. 2, we present the performance levels which can be achieved on the
KNL and P100/V100 architectures and demonstrate the need for optimized
algorithm-specific kernels. For these tests we used working sets that completely
fit into the high-bandwidth memory. We find that a tuned implementation of the
chebfd op() kernel (labeled “GHOST”) outperforms implementations based on
a minimum set of standard library calls (SpMMV and BLAS1) typically by 50%.
It is interesting to note that our manual implementation of those standard calls
(“GHOST-nofuse”) can even outperform the latest vendor-tuned implementa-
tions (MKL and cuBLAS/cuSPARSE), the reason being that GHOST provides
highly optimized row-major variants of all block vector kernels used. Achiev-
ing approximately 10% of their peak performance, the three compute devices
outperform a standard CPU-based compute node by factors of up to 4–7.
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Fig. 2. ChebFD performance for the Topi-128-64-64 matrix with np = 500 using differ-
ent implementations. Maximum performance of a compute node with two Intel Xeon
E5-2697v3 processors (Haswell) is shown for reference (data taken from [20]). Note the
different y axis scaling of the V100 results.

3.3 ChebFD Polynomial Filter Application Subspace Blocking

In agreement with published results for CPUs and previous-generation Nvidia
GPGPUs [13,20] we find that performance saturates (P100/V100) or even
decreases (KNL) at an intermediate block vector size of ns = 32. To enable
optimal performance levels for the large values of ns required by the above appli-
cation scenario, subspace blocking for the block vectors needs to be employed.
Introducing a factor nb (≤ns), the application of the filter can be restricted to
a sufficiently small vector block (holding nb vectors) to achieve optimal per-
formance. The corresponding implementation is shown in Algorithm2. Though
simple, this code transformation has strong implications for the row-major data
layout of the block vectors. Row-major ordering now must also be restricted to
blocks containing nb vectors while the blocks are stored column-wise (see Fig. 3).
We are now free to choose the vector block size independently of our baseline
application, thus we will restrict the following performance analysis to vector
blocks of size nb.
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Algorithm 2. ChebFD polynomial filter application blocking. Here, ns is
assumed to be a multiple of nb for simplicity.
1: for b = 0 to ns/nb − 1 do
2: Ub := ubnb , . . . , u(b+1)nb

3: Wb := wbnb , . . . , w(b+1)nb

4: Xb := xbnb , . . . , x(b+1)nb

5: for n = 3 to np do
6: swap(Wb, Ub)
7: chebfd op(H, Ub, Wb, Xb)
8: end for
9: end for

Fig. 3. Block vector layout for ns = 16, choosing nb = 2 for filter application (sub-
space) blocking. Pairs of blocks of width nb will later be used for subspace pipelining
(see Sect. 4.2). The zigzag arrows indicate the storage order of the vector elements in
memory.

3.4 Performance Analysis

We choose the Roofline performance model [28] to investigate the quality of our
implementations and to detect the current hardware bottlenecks:

P ∗ = min (Pmax; I(nb) × b) . (1)

This model assumes that the attainable performance is either limited by in-core
execution (Pmax) or by data transfer (I(nb) × b), where b is the main memory
bandwidth (see Table 2 for typical values) if data comes from main memory. The
arithmetic intensity of the ChebFD scheme for the Topi test case as a function
of nb is given by [20]:

I(nb) =
146

260/nb + 80
Flops
Byte

nb→∞≈ 1.83
Flops
Byte

. (2)
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This intensity value is calculated as the average numerical workload and mini-
mum data traffic for applying one matrix row. The first term in the denominator
(260/nb Byte) represents the matrix data traffic: As we have double complex
entries, 20Byte per matrix entry (using 4Byte indices) are required. In average
one row has 13 entries and we expect to reuse the row entries for each of the nb

block vector entries. The minimum data traffic for the three vectors involved in
chebfd op(H,U,W,X) accounts for 80Byte of data traffic, as U is read only
(see lines 9–12 in Algorithm 1).

Combining (1) and (2), and assuming the attainable main memory band-
widths as given by the STREAM Scale benchmarks (see Table 2), we expect a
performance increase when going from nb = 4 to nb = 128 as follows: 540Gflop/s
to 960Gflop/s on P100, 797Gflop/s to 1410Gflop/s on V100, and 470Gflop/s
to 836Gflop/s on KNL. The measurements fall short of this expectation by a
factor of 2–3 as seen in Sect. 3.2. Two possible reasons can account for this effect:
Either there is an on-chip bottleneck or the memory bandwidth is saturated but
the actual memory traffic is larger than the assumed minimum.

Choosing an intermediate value of nb = 32, we investigate the actual data
transfer volumes and attained data transfer rates in more detail. In Table 3 we
present data volumes measured with the Nvidia profiler [1] and likwid-perfctr [26]
for the P100/V100 and the KNL5, respectively. For P100 and KNL we find that
the actual memory memory bandwidth rates using MCDRAM and HBM2 are
far off the maximum attainable numbers presented in Table 2. Moreover, the
write data volume matches our assumption underlying (2) very well (two vector
blocks each of size n × ns × 16Byte need to be written to main memory). On
the other hand, the measured read data volume is substantially higher than our
model assumption, indicating that the right hand vector block involved in the
spMMV is reloaded on the P100/V100 (KNL) approximately four (five) times
(see [14] for modeling right hand vector access). Since the block vector chunks
are always loaded consecutively, latency effects are not expected to be the reason
for the low memory bandwidth utilization on P100 and KNL.

P100. The Nvidia profiler identifies the high L1/TEX cache utilization as pri-
mary hardware bottleneck which operates at more than 3 TB/s bandwidth.
Caching right hand side vector elements and warp broadcasts for reusing the
matrix elements across ns threads may cause this pressure. This is different
from previous results for the K20 presented in [20], where the TEX cache uti-
lization was also high, but performance was limited by the reduction operations
required in lines 10 and 11 of Algorithm1. This bottleneck has been removed
using the new atomic additions (see above).

V100. Contrary to the P100 and KNL results, the measured HBM bandwidth
in Table 3 of V100 matches its STREAM benchmark value. The V100’s L1/TEX
5 Due to the absence of suitable tools, measurements were not conducted on the

Oakforest-PACS system but on an Intel Xeon Phi 7210 with 64 cores and the same
amount of L2 cache.
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Table 3. Transferred data volume for memory subsystem components and a single
ChebFD iteration with the Topi-128-64-64 matrix (n = 2.1 × 106) and nb = 32. The
second row shows minimum data transfers as assumed in the calculation of I(nb).
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Fig. 4. Bandwidth scaling of L2 cache and MCDRAM on KNL using vector update
benchmark explained in the text. L2 measurements were run in throughput mode using
data sets fitting into the thread-local L2 cache.

cache bandwidth has been increased by a factor of four (13.6 Tbyte/s according
to the in-cache benchmarks referenced in Sect. 1.3), thereby shifting the bottle-
neck to the HBM interface. Indeed, according to the Nvidia profiler, the L1/TEX
cache has only medium utilization. Consequently we find a performance gain of
2× from P100 to V100, which is higher than the boost in attainable main mem-
ory bandwidth. Considering the increased data traffic from the right-hand sides
(comparing minimum and measured data volume numbers in Table 3) in (1) we
expect a performance of 823 Gflop/s, which is actually achieved.

KNL. Reliable in-cache data traffic volume measurements were not available
for the KNL architecture at the time of writing. Therefore we substantiate our
expectation that the performance bottleneck is in-core by a brief scalability
analysis of the device architecture and of our code on one KNL.
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Fig. 5. OpenMP scaling of ChebFD performance for Topi-128-64-64 matrix with np =
10/100/500 for 1–4/8–24/32–64 cores and nb = 16 on one KNL.

In Fig. 4 we show attainable bandwidth values and scalability of MCDRAM
and L2 when running a simple DAXPY kernel. As the L2 cache segments are
shared by two cores and we only perform local L2 cache accesses we find perfect
scalability across the segments. On contrary, the MCDRAM bandwidth shows
the typical saturation behavior even if only one thread per core is run. How-
ever, our ChebFD implementation scales well across the device and also benefits
substantially from using all SMT threads (see Fig. 5), indicating that neither
MCDRAM nor L2 access are the limiting factor. Thus, we identify the in-core
execution of the code to be the bottleneck.6

In summary, we find that all three architectures can achieve approximately
10% of their theoretical peak performance, but only the V100 is able to fully
leverage its available memory bandwidth. On KNL and P100, in-cache and in-
core bottlenecks prevent full memory bus utilization despite manually optimized
kernels.

3.5 Subspace Blocking and Large Problems

Often in real world filter diagonalization applications the available main memory
is the limiting factor as one typically aims at large physical problem sizes (n)
and a large number of inner eigenstates (ns) at the same time. Thus, the size
of the high bandwidth memory can easily restrict the accessible problem space
and may require (massive) parallelization to provide the required main memory
space. As described in Sect. 1.2, the two architectures under consideration in this
work address this problem and allow for a transparent access to large but slow
memory regions located in the host node (P100/V100) or in a separate DDR4
domain (KNL). We now investigate the transparent memory access mechanisms

6 The identification of the respective bottleneck is ongoing but probably pointless as
this architecture line will not be continued by Intel.
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Fig. 6. ChebFD performance versus polynomial degree np for the Topi-128-64-64
matrix with ns = 512 and nb = 64 (128) on KNL (P100/V100).

provided on both architectures, i.e., the “managed mode” on P100/V100 and
the “cache mode” on KNL, to use those large memory spaces implicitly.

As we have demonstrated in Table 2, the transfer rates of transparent data
accesses to the slow memories are very low. In our case, the time (i.e., the work to
be done on the device) between two accesses to the slow memory is determined
by the polynomial filter degree np: As shown in Algorithm 2, a local working set
of nb vectors is loaded to the high-bandwidth memory and then reused np − 3
times. Thus the data access to slow memory may be amortized if np is large
enough. Indeed we observe no significant impact of the low-bandwidth memory
access for an overall working set of ≈60 GiB beyond np � 500 on P100/V100
and np � 100 on KNL (see Fig. 6). The different behavior is expected due to
the much lower transparent access bandwidth on the P100/V100 (see Table 2).
At small np, the performance advantage of V100 over P100 can be attributed to
the higher transparent access bandwidth on V100 (see Table 2).

As discussed in Sect. 2.1, algorithmic efficiency requires high polynomial
degrees np � 100, which matches the demands of both architectures to achieve
high single device performance for large data sets on the two architectures under
consideration.

4 Large-Scale Performance

In this section we present scaling results on both supercomputers using data
sets fitting into the fast memory of both devices. The Oakforest-PACS nodes
are operated in “flat” mode. Distributed-memory parallelization is done using
the GHOST library [15], which supports heterogeneous parallel execution using
an MPI+X approach (currently, X ∈ {OpenMP,CUDA}). On Piz Daint we
run one MPI process per host node and on Oakforest-PACS we use one MPI
process and 264 OpenMP threads per KNL node (66 cores). We employ the
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standard data-level parallelization approach for ChebFD: Matrix elements and
vector data are distributed across the MPI processes, each process working with
a contiguous set of matrix rows and the corresponding part of the block vectors.
The communication pattern is determined by the sparsity pattern of the matrix,
and communication of remote block vector elements to local buffers must be
performed before the process-local chebfd op is applied As the matrix structure
is reminiscent of a 3D stencil, nearest-neighbor communication dominates and
leads to easy load balancing and a well-controlled communication volume.

The Cray-proprietary interconnect of Piz Daint uses a dragonfly network
topology. Oakforest-PACS is based on Intel Omni-Path with a full fat-tree net-
work built on 48-port leaf switches and 768-port spine switches. As these net-
works should provide sufficient bandwidth for nearest-neighbor communication,
no optimized mapping of MPI ranks to the topology was done.

4.1 Weak Scaling

The weak scaling experiments are based on the problem scaling used in [20]. A
subdomain of 128×64×64 is assigned to each process, corresponding to the Topi-
128-64-64 problem considered so far. For scaling out we run 2 × n2

scal processes
(nscal = 1, 2, 4, 8, 16) on a lattice with fixed z dimension that is quadratic in x and
y, i.e., Topi-(128×nscal)-(64×2×nscal)-64 for a given nscal. As long as the commu-
nication time is small compared to the actual computation, which is the case for
our choice of parameters, a simple communication scheme (“vector mode,” see
Algorithm 3), can be used: Data exchange using non-blocking MPI (lines 4 and
5) is separated from the process-local computation (chebfd op(H,Ub,Wb,Xb)).
The weak scaling performance results for both systems are shown in Fig. 7 for
up to 2048 nodes. The communication overhead introduced by the vector mode is
visible for two and eight nodes because communication sets in first in the y direc-
tion at nscal = 1 and then additionally in the x direction at nscal = 2. From eight
nodes onward we see perfect scaling since per-node communication and compu-
tation times stay constant. Based on the single-node performance the systems
achieve a parallel efficiency of 85% (Oakforest-PACS) and 60% (Piz Daint) at
2048 nodes, which compares to 73% obtained on the SuperMUC-Phase2 system
on 512 nodes in a previous publication [20]. The lower efficiency of Piz Daint can
be attributed to the transfer of vector data over the PCIe bus (even though our
implementation uses GPUdirect communication avoiding an intermediate copy of
communication data in the host memory) and the high single-node performance.
Still Piz Daint provides best absolute performance, achieving 514 Tflop/s at 2048
nodes. The underlying numerical problem considered here is the computation of
approximately 100 inner eigenvalues (≤ns) of a matrix of dimension n = 4 · 109.

4.2 Strong Scaling and Subspace Pipelining

Sparse linear algebra problems often show limited strong scalability because
the computation time per process decreases faster than the corresponding com-
munication time. Our vector mode implementation, which was acceptable with
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Algorithm 3. Blocked application of the ChebFD polynomial filter with explicit
and non-overlapping data exchange (“vector mode”).
1: for b = 0 to ns/nb − 1 do
2: for p = 3 to np do
3: swap(Wb, Ub)
4: init communication(Ub)
5: finalize communication(Ub)
6: chebfd op(H, Ub, Wb, Xb)
7: end for
8: end for
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(a) Oakforest-PACS (KNL) with nb = 16.

1 2 8 32 128 512 2048
Number of nodes

10
3

10
4

10
5

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

ε = 0.6

(b) Piz Daint (P100) with nb = 64.

Fig. 7. Weak scaling of ChebFD in “vector mode” with matrices ranging from Topi-128-
128-64 (two nodes) to Topi-2048-2048-64 (2048 nodes). The parallel efficiency at 2048
nodes is indicated (see the text for details on problem scaling). (ns = 128, np = 500)

weak scaling and rather large per-node problem sizes, must thus be improved by
explicitly overlapping communication with computation. A typical approach to
this problem is to do local computations (i.e., handle matrix elements which only
access local vector elements) while communicating the non-local vector elements
and then doing the remaining work with the just-received data, updating the
partial results [12]. This implementation needs to update the local result vector
twice and thus increases the main memory data traffic. Modifying the subspace
blocking scheme introduced in Sect. 3.3 towards pipelining of computation and
communication steps of successive filter applications as presented in Algorithm 4
offers an interesting alternative.

Instead of calculating the full polynomial for a given block of ns vectors, the
polynomial degree for the full block vector is increased step by step. The inner
loop runs over the full block vector and the computation on the current sub-
block can be overlapped with the communication required for the next subblock.
This strategy avoids the overhead of writing the result vector twice, maintain-
ing the same computational intensity as the non-MPI code. As long as nb/ns

is sufficiently large and asynchronous communication is supported by the MPI
implementation, the communication should be effectively hidden. A comparison
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Algorithm 4. Blocked application of the ChebFD polynomial filter with
pipelined communication and computation (“pipelined mode”).
1: for p = 3 to np do
2: swap(W, U)
3: init communication(U0)
4: finalize communication(U0)
5: for b = 0 to ns/nb − 2 do
6: init communication(Ub+1)
7: chebfd op(H, Ub, Wb, Xb)
8: finalize communication(Ub+1)
9: end for

10: chebfd op(H, Uns/nb−1, Wns/nb−1, Xns/nb−1)
11: end for

of vector mode and subspace pipelining for strong scaling on Oakforest-PACS
is given in Fig. 8 for the Topi-128-128-64 problem (n = 4 × 106). As expected,
the benefit of subspace pipelining increases as the number of processes goes up
because the communication becomes more relevant. A maximum speed-up with
respect to vector mode of 50% could be observed in this test. Note that the
speed-up of communication-hiding approaches in SpMV is limited to a factor of
two. Further increasing the processor count will diminish the benefit of subspace
pipelining as we reach the completely communication-bound regime.
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Fig. 8. Strong scaling ChebFD performance for the Topi-128-128-64 matrix with ns =
128, np = 500 and nb = 16 on Oakforest-PACS, comparing pipelined and vector
communication modes.

On Piz Daint subspace pipelining did not show any benefits. With low-
level experiments we have checked that non-blocking MPI communication using
GPUdirect does not overlap with GPU computation (Cray is currently investi-
gating this problem).
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Summary

This work has investigated performance properties and subspace blocking opti-
mization techniques for a Chebyshev filter diagonalization (ChebFD) algorithm
on the Intel Xeon Phi (“Knights Landing”), the Nvidia P100 (“Pascal”), and the
Nvidia V100 (“Volta”) architectures. Our block vector implementation achieves
approximately 10% of the theoretical peak performance and is not memory
bound on the former two architectures, while it exhausts the high-bandwidth
memory interface on the V100. We have demonstrated that subspace blocking
with a sufficiently large polynomial filter degree enables efficient use of the com-
plete node-level address space (i.e., high-bandwidth and low-bandwidth mem-
ory) transparently without impacting the node performance even if the working
set exceeds the high-bandwidth memory size by far. Subspace blocking can be
further extended towards a pipelining of the communication and computation
phase in the filter application, which allows for simple communication hiding.
All these optimizations enabled a scaled performance of more than 0.5 Pflop/s
on 2048 nodes of Piz Daint for computing approximately 100 inner eigenvalues of
a large sparse matrix (dimension 4 ·109) originating from a quantum mechanical
model of a topological insulator material.

Though this study has focused on using ChebFD in the context of inner eigen-
value computations for highly relevant topological quantum matter, the basic
strategies presented can be applied to many applications evaluating Chebyshev
polynomials of large sparse matrices and should be of interest for block formu-
lations of iterative solvers in sparse linear algebra.

Acknowledgments. This work was funded by DFG SPP1648 through the ESSEX-II
project and by a grant from the Swiss National Supercomputing Centre (CSCS) under
project ID d35. We gratefully acknowledge the access to the Oakforest-PACS super-
computers at JCAHPC (University of Tokyo) and inspiring discussions with Andreas
Alvermann, Bruno Lang, and Jonas Thies. H.F. and G.W. are thankful for the hospi-
tality of Los Alamos National Laboratory.

References

1. NVIDIA Profiler. http://docs.nvidia.com/cuda/profiler-users-guide
2. TOP500 Supercomputer Sites, June 2017. http://www.top500.org
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Abstract. Graph algorithms are hard to parallelize, as they exhibit
varying degrees of parallelism and perform irregular memory accesses.
Graph coloring is a well studied problem, that colors the vertices of a
graph, such that no adjacent vertices have the same color. This is a
necessity for a large number of applications that require a coloring with
few colors in near-linear time. In this work, we propose a simple and fast
parallel graph coloring algorithm, well suited for shared memory architec-
tures. Our algorithm employs Hardware Transactional Memory (HTM)
to detect coloring inconsistencies between adjacent vertices, and exploits
Read-Copy-Update (RCU) to enable high performance and ensure cor-
rectness.

We evaluate our algorithm on an Intel Haswell server using large-scale
synthetic and real-world graphs, chosen to vary in terms of density and
structure. With 14 threads, we achieved a geometric-mean speedup of
4.35 and a maximum speedup of 11.44.

1 Introduction

Graph coloring assigns colors to vertices such that each vertex has a different
color from its neighbors. The algorithm is used in many real world applications
such as scheduling of conflicting jobs [1,2], register allocation [3], sparse-matrix
computations [4,5], machine learning (to select non-similar samples that form an
effective training set), chromatic scheduling [6] of data graph computations. The
case of chromatic scheduling is illustrative: It colors the data graph and then
schedules the vertices of the same color in parallel (independent vertices). The
PageRank algorithm is a good real-life example of a data graph computation. In
this example, chromatic scheduling processes the colors serially, but updates all
PageRanks of vertices of the same color in parallel. Hence, it is vital to compute
a coloring with few colors (high coloring quality), as it enables more parallelism.
However, minimizing the number of colors is a NP-complete problem [7].

A greedy coloring algorithm (GREEDY) [1] is a typical graph algorithm that
records the colors of the neighborhood of a vertex v and assigns the minimum
legal color to v. With a straightforward parallelization of GREEDY, coloring
conflicts may arise when two parallel threads assign the same color to adjacent
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vertices. To deal with this problematic case, recent works [8–10] proposed two
additional phases: a conflict detection phase, which detects coloring inconsisten-
cies between adjacent vertices, and a conflict resolution phase, which resolves
the detected coloring inconsistencies. Nevertheless, these two additional phases
may introduce significant performance overhead, since they result in traversing
the graph more than once.

In this work, we parallelize GREEDY by combining Read-Copy-Update
(RCU) [11] with Hardware Transactional Memory (HTM). The RCU technique,
a technique used to implement scalable concurrent data structures, is here to
ensure correctness and enable high performance, while the HTM mechanism
detects and resolves coloring inconsistencies between adjacent vertices. HTM
seems a promising approach to provide performance gains, if the processing
threads access the same memory location rarely. Graph coloring, and generally
several graph algorithms have complex data dependencies and perform irregu-
lar memory accesses. When parallelizing them, multiple threads access different
cache lines without interfering with each other too many times. Therefore, we
argue that HTM is a good candidate support mechanism to design parallel algo-
rithms for irregular problems.

To summarize, in this paper, we make the following contributions:

– We leverage HTM on graph coloring to detect and resolve coloring inconsis-
tencies between adjacent vertices.

– We exploit RCU to reduce the transaction footprint (consequently achieve
high performance), and ensure correctness. To the best of our knowledge,
this is the first work that applies a technique proposed for concurrent data
structures to a graph algorithm.

– We compare our algorithm with state-of-the-art graph coloring algorithms
using large scale (both synthetic and real-world) graphs. Our evaluation
reveals that by combining HTM with RCU, we are able to successfully expose
high levels of parallelism in graph coloring.

2 Background

2.1 Hardware Transactional Memory (HTM)

Transactional Memory (TM) is a synchronization mechanism that allows a trans-
action, namely a group of instructions, to be executed atomically. The system
tracks the read memory locations in the transaction’s read-set and the written
ones in the write-set. If the read- and write-sets do not conflict with memory
accesses from other threads, the transaction commits. Otherwise, the transaction
aborts and none of its memory writes becomes visible to other threads.

Hardware Transactional Memory (HTM) is an implementation of TM in
hardware. Nowadays, HTM is available on many modern processors such as Intel
Haswell [12] (and successors) and IBM Power8 [13]. Besides conflict aborts due
to concurrent memory accesses, an HTM transaction may suffer from capacity
aborts, due to the bounded size of the hardware buffers that store the read- and
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write-sets, or it may fail due to other reasons such as cache line evictions, inter-
rupts and/or unsupported instructions. Finally, the current HTM implementa-
tions are best-effort HTMs and provide no guarantees that any transaction will
eventually commit inside the transactional path. It is thus the programmer’s
responsibility to provide an alternative path of execution that uses no transac-
tions, i.e., a non-transactional fallback path.

2.2 Read-Copy-Update (RCU)

Read-Copy-Update [11] is a synchronization technique that is used to implement
scalable concurrent data structures [14–16] by providing asynchronized traver-
sals. In RCU, threads first read and copy parts of the data structure they intend
to update, modify their local copy and replace the old version of the data struc-
ture with their new modified version. This replacement is performed in a single
atomic step, such that other threads observe either the old or the new version of
the data. However, while a thread modifies its private copy, the affected parts of
the data structure copied privately may be modified by other threads. Therefore,
before installing its new modified version of the data structure, the thread has
to validate that all the affected parts have remained unchanged since they were
read. If this validation succeeds, the thread then installs the copy in the data
structure. The validation and the installation of the private copy also need to
be performed atomically, to guarantee that the structure remains consistent.

2.3 The GREEDY Algorithm

The Algorithm
Algorithm 1 presents the pseudocode of a sequential, greedy coloring algorithm
[1] (GREEDY). Considering an undirected graph G = (V,E), the neighborhood
N(v) of a vertex v ∈ V is defined as: N(v) = {u ∈ V : (v, u) ∈ E} and the
degree of a vertex is defined as the number of its neighbors: deg(v) = |N(v)|.
In each step, GREEDY selects an uncolored vertex v, records the colors of v′s
neighbors in a forbidden set of colors, and colors the vertex v with the minimum
legal color. This scheme will produce at most Δ+1 colors, where Δ is the degree
of the graph G that can be denoted as: Δ = maxv∈V {deg(v)}.

Algorithm 1. GREEDY(G)

1 Input: Graph G=(V,E)

2 for v ∈ V
3 for u ∈ N(v)
4 forbidden = forbidden ∪ {u.color}
5 v.color = minColor(forbidden)

Parallelizing GREEDY
A straightforward parallel version of GREEDY can be achieved by distributing
the vertices of the graph to the processing threads. However, due to crossing
edges, the coloring subproblems assigned to threads are not independent and the
algorithm may terminate with an invalid coloring. Specifically, a race condition
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arises when two threads that examine adjacent vertices, assign them the same
color. The algorithm implies that when a thread updates the color of a vertex, the
forbidden set of colors has not changed. As a result, the nature of this algorithm
imposes that the reads to the colors of the neighborhood of a vertex v have to
be executed atomically with the write-update to v’s color.

Algorithms 2 and 3 describe two parallelization schemes for GREEDY pro-
posed in [8] and [9,10], respectively. The processing threads first speculatively
color the vertices, then they detect coloring inconsistencies and resolve them
either serially, Sequential-Solve (SS), or in an iterative way, Iterative-Solve (IS).
IS is widely used in shared memory architectures [9], as well as in distributed
systems [10]. However, both of these algorithms perform two additional steps:
the conflict detection and the conflict resolution phases.

Algorithm 2. Sequential-Solve(G)

1 Input: Graph G=(V,E)

2 //speculative coloring

3 //(Phase 1)

4 for v ∈ V do in parallel

5 assign the min legal

6 color to v

7 //detect conflicts (Phase 2)

8 for v ∈ V do in parallel

9 for u ∈ N(v)

10 if v.color==u.color and v<u

11 store{v}
12 //resolve conflicts (Phase 3)

13 color vertices sequentially

Algorithm 3. Iterative-Solve(G)

1 Input: Graph G=(V,E)

2 U = V

3 while U �= ∅
4 //speculative coloring

5 //(Phase 1)

6 for v ∈ U do in parallel

7 assign the min legal color to v

8 //R: set of vertices

9 //to be re−colored

10 R = ∅
11 //detect conflicts (Phase 2)

12 for v ∈ U do in parallel

13 for u ∈ N(v)

14 if v.color==u.color and v<u

15 R = R ∪ v

16 U = R

In SS, Algorithm 2, the speculative coloring (Phase 1) and the conflict detec-
tion phase (Phase 2) are parallelized, while the conflict resolution phase (Phase
3) is serial. There are two implicit barriers, one after Phase 1 and one after Phase
2. In case that a coloring conflict arises, only one of the involved neighbors needs
to be recolored (line 10). When the number of conflicts is low, the algorithm
scales well. However, as the number of threads increases and the graph becomes
more dense, more conflicts arise, which will be resolved in a serial way. Finally,
the SS algorithm traverses the graph at least two times (Phase 1 and Phase 2)
and, as we show later in the evaluation part, these traversals introduce significant
performance overhead.

The IS algorithm, Algorithm 3, resolves the coloring inconsistencies in an
iterative way. Similarly to SS, IS has two implicit barriers (Phase 1 and Phase
2), and it also traverses the graph at least two times. In IS, when two vertices u
and v obtain the same color, the programmer has to explicitly define only one
of them to be recolored (line 14), by choosing the vertex with the smaller ver-
tex id, to ensure forward progress. Otherwise, these adjacent vertices may always
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obtain the same color, if they are processed by different threads. The program-
mer has to explicitly define forward progress in the code, so that the algorithm
terminates. Furthermore, the iterative process of fixing coloring conflicts may
introduce new conflicts, and thus, IS may need additional iterations to fix them.
The authors in [9] notice empirically that only a few iterations of the algorithm
are required to produce a valid coloring. However, the more iterations needed,
the more synchronization barriers are introduced in the execution and the more
traversals on the vertices of the graph are performed, which remarkably degrade
scalability.

3 Our Approach

3.1 General Concept and Design

Our approach parallelizes GREEDY by employing HTM as a synchronization
mechanism to deal with the race condition that arises when two threads examine
two adjacent vertices. Compared to SS and IS, our algorithm traverses the graph
only once, since it omits the conflict detection and conflict resolution phases by
employing HTM. The motivation to introduce HTM in this algorithm comes
from three observations:

– HTM is aligned with the nature of the algorithm: GREEDY requires
atomicity between the reads to the colors of the neighborhood of a vertex v
and the write to v’s color. Since the aim of HTM is to allow a block of code
to be executed atomically, the mechanism employed for synchronization will
fit with the nature of the algorithm.

– HTM can detect conflicts: HTM can detect coloring conflicts that arise
due to crossing edges. Supposing that we enclose the reads to the colors of
the neighborhood of a vertex v and the write to v’s color within a single
transaction. When two threads attempt to update (write) the colors of two
adjacent vertices using two different transactions, the HTM mechanism will
detect a read-write conflict, since a running transaction attempts to write the
read-set of another running transaction. Figure 1 explains how HTM detects
coloring conflicts. When a thread T1 attempts to color the vertex v, the
running transaction has the vertex v in its write-set and the adjacent vertices
u, z in its read-set. Similarly, when a thread T2 attempts to color the vertex
u, the transaction’s write-set includes the vertex u and read-set includes the
vertex v. HTM will detect a read-write conflict either on vertex v or on u,
since T1 attempts to write the read-set of T2, and visa versa. As a result, it
will abort one of these transactions, while the other will commit.

– HTM can resolve conflicts: In case of n conflicting transactions, HTM will
abort n-1 running transactions and will commit only one of them. Therefore,
in contrast to IS, when a coloring conflict arises between two running transac-
tions, there is no need to explicitly define a resolution policy for it. HTM will
commit one of the two running transactions and will abort the other. Thus,
HTM chooses the vertex to be recolored according to its conflict resolution
policy.
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Fig. 1. HTM detects coloring inconsistencies.

However, the current best-effort HTM implementations do not guarantee
forward progress, and need a non-transactional fallback path. The most common
practice is to retry a transaction for a given amount of times (threshold), and
if it fails to commit, it fall backs to the acquisition of a lock that allows only a
single thread to enter the critical section in a coarse-grained manner. To achieve
this, the lock has to be added to the transaction’s read set so that, when the
lock is acquired by a thread (write to the lock variable), the remaining threads
will be aborted and wait until the lock is released.

The straightforward approach to parallelize GREEDY would be to enclose
within a single transaction the whole block of code of each iteration of the main
for loop (lines 3–5 in Algorithm1). However, this implementation results to a
large transaction footprint causing two main problems: (a) the transaction sets
are large, increasing the probability of capacity abort and (b) the duration of the
transaction is too long, increasing the probability of abort due to time interrupt.
Note that, when the duration of a transaction exceeds the scheduling quantum,
the scheduler schedules out the processing thread and the transaction aborts.
Moreover, the longer the transactions last and the larger their sets are, the
probability for a conflict abort between running transactions becomes higher.
As a result, in this work, we exploit the RCU technique [11] to reduce the
transaction footprint, by enclosing within the transaction only the necessary
data and computations, and ensure correctness at the same time. Our solution
is described in more detail in the next paragraph.

3.2 Implementation Details

In an attempt to reduce the transaction footprint, we noticed that, in the
straightforward parallelization of GREEDY, there is no need to include inside
the transaction all the neighbors of the considered vertex v. Therefore, we can
omit from the transaction the following groups of v’s neighbors:

1. The colored neighbors: The race condition in the algorithm arises when
two threads attempt to color two adjacent vertices concurrently. Therefore,
coloring conflicts may arise between uncolored neighbors. In our approach,
once a vertex obtains color, its color will be included at the forbidden set of
colors of its neighboring uncolored vertices and will not cause any conflict in
later rounds. Hence, we safely omit the colored vertices from the transaction.
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2. The neighbors assigned to the same thread as v: Since each thread
colors the vertices assigned to it sequentially, coloring conflicts cannot arise
between adjacent vertices assigned to the same thread. Therefore, we can
omit from the transaction the neighbors assigned to the same thread as the
considered vertex. Given that a set of vertices (assigned to a thread) can be
represented as a range of vertex ids, it is straightforward to implement this
optimization in the code.

Fig. 2. The graph is partitioned between threads T1 and T2. When T1 attempts
to color the vertex C, the only necessary neighbor that has to be included in the
transaction is the vertex V.

To summarize, we only include in the transaction the uncolored vertices
assigned to another thread. For instance, in Fig. 2, the white vertices represent
uncolored vertices, while the graph is partitioned between threads T1 and T2.
In this scenario, thread T1 attempts to color the vertex C. According to our
optimizations, we omit from the transaction the neighboring vertices assigned
to T1 as well as the colored vertices assigned to T2. Thus, the transaction will
only contain the neighboring vertex V.

As a result, to achieve a smaller transaction footprint, we enclose within
the transaction only the necessary neighbors, and we also omit the calculations
needed to compute the minimum legal color. Each loop iteration of GREEDY
is separated in two phases. In the first phase, we read the forbidden colors of
the neighbors, and compute a speculative color for the considered vertex. In
the second phase, we execute the transaction, which includes only the necessary
neighbors described previously, and assigns the speculative color to the consid-
ered vertex. However, while a thread computes a speculative color for a vertex v,
one of its neighbors may have changed color, and a conflict may arise. Therefore,
as RCU imposes, before updating v’s color (installation part), a validation step
is needed to be executed in an atomic way with the installation part.

Our approach, htm rcu, is described in Algorithm 4. Each thread, for each
vertex v, reads and copies locally the colors (READ-COPY, line 6) of v’s neigh-
bors, and computes a speculative color for the vertex v. It also records in a
check list (lines 8–9) the necessary neighbors to be validated. If check list is
empty (there are no neighbors to be validated), the transaction can be omit-
ted. Otherwise, both the validation step and the update-store to v’s color are
enclosed within a single HTM transaction (VALIDATE-UPDATE, lines 16–28).
The validation step ensures that the speculative color computed is valid to be
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assigned to vertex v. If the validation step fails, the current thread re-attempts
to find another color for the considered vertex (lines 27–30).

In concurrent data structures [11], to ensure consistency, the validation step
in RCU checks if the affected parts of the structure have remained unchanged,
such that modifications performed by other threads are not discarded. We modify
the RCU validation step and adapt it to our specific graph algorithm. Htm rcu
does not check if the affected neighboring vertices have remained unchanged
(have not changed their coloring state). In the meantime, another thread may
have colored a neighboring vertex with a different color from the speculative
computed and in this case, the validation step should succeed. Therefore, we
only need to validate, if the coloring state of the affected neighbors conflicts
with the speculative color computed (line 19). In this way, we extract more
parallelism, since concurrent threads that assign different colors to neighboring
vertices, will not cause validation failure. We also reduce the number of retries
to color a specific vertex (the validation step fails fewer times).

Algorithm 4. htm rcu(G)

1 Input: Graph G=(V,E)

2 for v ∈ U do in parallel

3 RETRY:

4 forbidden = ∅
5 for u ∈ N(v) do

6 forbidden = forbidden ∪ u.color // track forbidden colors

7 // the uncolored neighbors assigned to another thread

8 if(isUncolored(u) && belongs(u) != thread id)

9 check list = check list ∪ u
10 end for

11 spec color=compute color(forbidden) // the min legal color

12 // if check list is empty, we omit the validation step

13 if check list == ∅
14 v.color = spec color

15 else

16 BEGIN TM

17 check = 1

18 for u ∈ check list do // validate neighbors

19 if u.color == spec color

20 check = 0

21 break

22 end if

23 if check == 1 //validation succeeds

24 v.color = spec color // update the speculative color

25 END TM

26 end if

27 else // validation fails

28 END TM

29 goTo RETRY // find another color

30 end else

31 end else

32 end for
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Finally, to record the forbidden colors efficiently, we implement a bitwise repre-
sentation for the color set (forbidden), as proposed in [17]. Generally, this app-
roach provides a trade-off between memory and execution time. It may require
multiple traversals of the neighboring list, but it has very low memory cost for the
representation of the forbidden set of colors, a trade-off that is clearly relevant
for a memory bound graph algorithm.

3.3 Progress and Correctness

Htm rcu has progress and finally terminates, since each thread attempts to color
a specific vertex a limited number of retries. A thread re-attempts to find another
color for its vertex v, when validation fails. However, this can only happen a
bounded number of times. The validation step fails when a neighbor has obtained
the same color as the speculative computed for v. In the worst case, validation
will fail deg(v) times, where deg(v) is the degree of the vertex v. When all v’s
neighbors are colored, the validation step will be omitted (lines 13–14). There-
fore, each thread attempts to color a specific vertex at most (deg(v) + 1) times.

Secondly, the computed coloring of htm rcu is valid. There are two race con-
ditions under which a coloring conflict may arise. First, while a thread computes
the speculative color k for its vertex v, another thread has just colored a neigh-
bor u with the same color k. In this case, the validation step of the first thread
will fail, since the neighbor u has just obtained color k. Then, the first thread
will retry to find another color for vertex v. The second race condition arises
when two threads attempt to color (write) two neighbors with the same color k
within two different transactions. In that case, since the read-set of the transac-
tion includes the colors of the neighbors, HTM will notice a read-write conflict
and one of these transactions will abort, while the other will commit. When the
aborted transaction retries, its validation step fails, since now there is a neighbor
colored with color k (committed transaction). The current thread will retry to
find another color for its vertex. Consequently, our algorithm handles correctly
these two race conditions and it will eventually terminate with a valid coloring.

4 Evaluation

4.1 Experimental Setup

For our experiments we used a 2-socket Intel Haswell server with an Intel Xeon
E5-2697 v3 processor with 28 physical cores and 56 hardware threads. The pro-
cessor runs at 2.6 GHz and each physical core has its own L1 and L2 caches
of sizes 32 KB and 256 KB, respectively. Each socket includes a shared 35 MB
L3 cache. We statically pin software threads to hardware threads and enable
hyperthreading only on 56-threaded executions, unless otherwise stated.

Our evaluation includes the following implementations:

– GREEDY: The serial GREEDY algorithm.
– SS: The algorithm presented in Algorithm 2 parallelized with OpenMP 4.0.
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– IS: The algorithm presented in Algorithm 3 parallelized with OpenMP 4.0.
– lock naive: A fine grained locking implementation. Each vertex is associated

with a lock and when updating a vertex all its neighbors are locked. To avoid
deadlocks, the locks of the vertex’s neighborhood are acquired from the lowest
to the highest vertex id, to impose a global order of locks. Lock naive is used
as a baseline for our evaluation.

– lock rcu: A variant of our algorithm using locks instead of transactional
memory. Specifically, prior to the validation step, the current thread acquires
only the locks of the neighboring vertices in the check list and validates their
colors. If the validation succeeds, the thread assigns the speculative color,
releases the locks and proceeds to another vertex. If the validation fails, the
thread releases the locks and re-attempts to find another color for the vertex.
Similarly with lock naive, we avoid deadlocks by locking vertices ordered by
their unique ids.

– htm rcu: Our scheme employing HTM. Each transaction can be retried up to
50 times, before resorting to the non-transactional fallback path. The non-
transactional path is a coarse-grain lock solution for the critical section (lines
16–28 in Algorithm 4).

All implementations color the vertices in the order they appear in the input
graph. Our graph suite includes large-scale graphs, both synthetic and real-

Table 1. Our graph suite. The parameters for the generation of R-MAT graphs are:
(i) RMAT1 (A = 0.45, B = C = 0.15, D = 0.25) and (ii) RMAT2 (A = 0.57, B = C = 0.19,
D = 0.05). degmax and degavg are the maximum and the average degree (|E|/|V |) of
the graph respectively, while the last column shows the ratio of the standard deviation
of the vertex degrees to the average degree.

Graph Source GraphID V E degmax degavg
std(deg(v))

degavg

Random-5M× 100M Generated Rnd-1 5M 100M 79 20 1.01

Random-5M× 200M Generated Rnd-2 5M 200M 137 40 1.02

Random-5M× 500M Generated Rnd-3 5M 500M 274 100 1.10

RMAT1-5M× 100M Generated Rmt1-1 5M 100M 3558 20 2.84

RMAT1-5M× 200M Generated Rmt1-2 5M 200M 7062 40 2.93

RMAT1-5M× 500M Generated Rmt1-3 5M 500M 17707 100 3.60

RMAT2-5M× 100M Generated Rmt2-1 5M 100M 441585 20 26.80

RMAT2-5M× 200M Generated Rmt2-2 5M 200M 884287 40 30.26

RMAT2-5M× 500M Generated Rmt2-3 5M 500M 2210899 100 43.43

com-Orkut [18] Real-1 3M 117M 33313 38.14 12.51

soc-Live-Journal1 [18] Real-2 4M 68M 22889 14.24 12.01

sx-stackoverflow [18] Real-3 2M 63M 194806 24.41 54.57

dbpedia-link [19] Real-4 18M 172M 632558 9.43 38.99

youtube-u-growth [19] Real-5 3M 9M 91751 2.91 120.25

USA-road.D [20] Real-6 23M 58M 18 2.44 1.27
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world graphs, chosen to cover a wide range of density and structure (working
sets ranging from 120 MB to 3.89 GB). We use the term irregular graphs for
those graphs in which vertices have highly varying degrees (e.g. RMAT2 graph
family), while those with similar degrees are qualitatively referred to as regular
graphs. Their characteristics are presented in Table 1.

4.2 Scalability

Figures 3, 4, 5 and 7 present the time elapsed by all implementations in our
synthetic and real world graphs. The single-threaded execution of htm rcu is
close to the serial GREEDY execution. When only one thread is used, htm rcu
does not perform any additional work from the serial solution.

Overall, all implementations scale well on regular graphs, but exhibit limited
scalability on irregular ones. On irregular graphs, the lock-based implementa-
tions acquire too many locks in high degree vertices, while htm rcu exhibits
many capacity aborts. In SS and IS algorithms, irregular graphs result to an
increased number of coloring conflicts, which in the former, are resolved serially,
and in the latter, introduce many synchronization points.

Htm rcu outperforms all other implementations and has the lowest overhead.
The single-threaded executions of the lock-based implementations, lock naive
and lock rcu, exhibit high overhead due to per vertex locks. On the other hand,
SS and IS traverse the graph at least two times and thus, their single-threaded
executions have increased performance overhead compared to GREEDY. In some
graphs like Real-5 and Real-6, the single-threaded executions of SS and htm rcu
are approximately the same. We believe this is due to the memory footprint
of these graphs which may fit in the cache hierarchy. Therefore, the speedups
achieved in those two schemes are quite similar.

Table 2 presents the geometric mean of execution times and the number of
colors (lower is better) on our graph suite for all implementations in single-
threaded and multiple-threaded executions. Htm rcu exhibits the lowest execu-
tion time, being 1.56 times faster than SS, and 1.76 times faster than IS, in case
of the maximum capacity of our machine (56 threads). However, when passing

Table 2. The geometric mean of execution times in seconds (T) and the number of
colors (C) on our graph suite using one thread, all cores of one socket, two sockets and
the maximum capacity of our machine (hyperthreading enabled).

T1 C1 T14 C14 T28 C28 T56 C56

GREEDY 3.82 85.81 - - - - - -

SS 6.06 85.81 1.28 89.71 0.87 91.37 0.74 94.33

IS 5.79 85.81 1.40 89.53 0.99 91.70 0.84 93.84

lock naive 7.65 85.81 3.13 88.17 2.43 88.39 2.33 89.34

lock rcu 5.47 85.81 1.53 88.27 1.14 89.28 1.09 90.53

htm rcu 4.08 85.81 0.88 89.38 0.57 90.41 0.48 90.83
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Fig. 3. The scalability achieved of all implementations in Random graphs. The hori-
zontal line represents the serial GREEDY execution. Notice the differences in the y-axis
range between the figures.

from one to two sockets of our machine, htm rcu has little performance improve-
ment due to hyperthreading and NUMA effects. We further comment on these
effects in the next paragraph. Concerning the coloring quality, the results do not
change significantly among different parallelization schemes of GREEDY, while
the coloring quality becomes slightly worse as the number of threads increases.

Overall, Fig. 6 summarizes the speedup achieved by htm rcu over the serial
GREEDY algorithm when using all cores of one socket, two sockets, and all
the available hardware threads of the system (i.e. employing hyperthreading).
In case of the maximum capacity of our machine (hyperthreading enabled), the
geometric mean of the speedup achieved on our graph suite is 8.03. In Random
graphs, which are the most regular graph family, htm rcu achieves a near lin-
ear speedup. Increasing the irregularity of the graph, i.e. RMAT family, results
in less speedup. Specifically, on RMAT2 graphs, htm rcu performs poorly due
to excessive capacity aborts. Generally, high degree vertices will always cause
capacity aborts (full hardware buffers) and cannot be validated inside the trans-
actional path. We intend to further experiment with these graphs in future work.
Finally, the real world graphs have low serial execution times (Fig. 7), apart from
Real-4, and thus, there is not enough space to achieve high speedup.
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Fig. 4. The scalability achieved of all implementations in our Rmat1 graphs. The
horizontal line represents the serial GREEDY execution. Notice the differences in the
y-axis range between the figures.

4.3 Analysis of Execution Behavior

We further investigate the scalability of htm rcu by analyzing its HTM behavior.
Figure 8 presents the abort ratio (the number of aborts divided by the number
of attempted transactions), and Fig. 9 presents the type of aborts for a synthetic
and a real world graph. In 14 + 14 threaded execution, we have pinned all threads
on the same socket enabling hyperthreading, while in 28-threaded execution,
threads are pinned on both sockets of our machine (hyperthreading disabled).

In one-socket executions (up to 14 threads), htm rcu exhibits a low num-
ber of capacity aborts, apart from the highly irregular graphs like RMAT2. In
14-threaded execution, the geometric mean of the capacity abort ratio on our
graph suite is 0.81%. Secondly, in one-socket executions, the number of con-
flict aborts is also quite low. When using 14 threads, the geometric mean of
the conflict abort ratio in all our graphs is 0.13%. Threads work concurrently
without interfering with each other frequently, and causing conflict aborts. We
believe this is due to the complex data dependencies and irregular memory access
patterns of this graph algorithm. Consequently, the HTM mechanism seems to
expose high levels of parallelism in GREEDY.
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Fig. 5. The scalability achieved of all implementations in our Rmat2 graphs. The
horizontal line represents the serial GREEDY execution. Notice the differences in the
y-axis range between the figures.

Fig. 6. The speedup achieved by htm rcu over GREEDY on our graph suite when
using all cores of one socket, two sockets, and all the available hardware threads of the
system.
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Fig. 7. The scalability achieved of all implementations in our real graphs. The horizon-
tal line represents the serial GREEDY execution. Notice the differences in the y-axis
range between the figures.

As shown in Fig. 9, when a specific type of aborts increases, lock aborts
(aborts due to lock acquired) increase, too. When the execution exhibits a
high number of conflict or capacity aborts, the predefined limit of retrying a
transaction is exceeded frequently. Then, the corresponding thread falls back
to the non-transactional path, acquiring the lock and provoking lock aborts to
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all other threads. Moreover, since the lock is just a variable in the code, some
conflict aborts are caused by writes in this lock variable. Thus, a part of lock
aborts is counted as conflict aborts in our measurements.

When using both sockets of our machine (28-threads in Fig. 9), we notice
that the number of conflicts aborts increases due to the NUMA effect. The
NUMA effect extends the duration of the transaction and thus, the probability
of conflict abort between running transactions becomes too strong. The HTM
mechanism is not NUMA friendly, as also discussed in [21]. On the other hand,
when we pin the software threads on the same socket enabling hyperthreading
(14 + 14 threads in Fig. 9), the number of capacity aborts increases excessively.
The hyperthreading pair of threads shares the HTM resources (buffers, memory,
etc.). Each thread can now access less data within its transaction. As a result,
capacity aborts arise more frequently. Finally, in case of the maximum capacity
of our machine (hyperthreading enabled), conflict aborts increase due to the
NUMA effect, capacity aborts due to limitations to the shared HTM resources
between the hyperthreading pair of threads, and lock aborts due to the raise
of conflict and capacity aborts. Therefore, in all graphs, htm rcu exhibits high
abort ratio in 56-threaded execution (Fig. 8).

Fig. 8. Abort ratio exhibited by htm rcu on our graph suite.

To summarize, htm rcu achieves high performance in one-socket executions,
since it exhibits a low number of capacity and conflict aborts. We successfully
reduce the transaction footprint significantly, and extract high levels of paral-
lelism employing HTM. However, the scalability degrades due to NUMA and
hyperthreading effects. The NUMA effect results to a significant increase in the
number of conflict aborts, while hyperthreading to an increase in the number of
capacity aborts. We aim to further explore this behavior in future work.

Finally, we measured the number of failures in the validation step (due to
coloring conflicts) as well as the number of neighbors included in the transaction
for each vertex. The validation step fails very few times (less than 0.01%) for all
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Fig. 9. The number of each type of aborts as well as the abort ratio of each n-thread
execution for (a) a synthetic graph and (b) a real world graph.

of our graphs and executions. The worst case was the 56-threaded execution on
Rmt1-3 graph, where it failed 485 times on 5 million vertices (0.0097%). On the
other hand, the neighbors included in the transaction in case of using all cores
of one socket (14 threads) is on average 56% on our graph suite. Generally, our
transaction includes 20%–70% of neighboring vertices. This percentage increases
as the number of threads increases, since partitioning a graph to more threads
results to more crossing edges.

5 Related Work

Researchers have explored parallel graph coloring algorithms in both shared
memory and distributed systems. Gebremedhin and Manne [8] proposed a par-
allelization of GREEDY for shared memory architectures (SS algorithm). Sim-
ilarly, Boman et al. [10] proposed the iterative IS algorithm and adapted it to
distributed systems, while Catalyurek et al. [9] evaluated IS in shared memory
systems. Rokos et al. [22] improved the IS algorithm, devising a more optimistic
algorithm with less thread synchronization. We intend to compare htm rcu with
this improved version of IS in future work. Finally, Deveci et al. [17] presented
an edge-based approach for graph coloring that is better suited to GPUs.

Jones and Plassmann [23] proposed a parallel algorithm (JP) which is based
on independent sets. In each iteration, an independent set of vertices is selected
and can be colored concurrently. JP often takes longer to run than GREEDY, as
it does more work, and may need a large number of synchronization points. In
this work, we mainly focus on parallelizing the GREEDY algorithm to evaluate
the applicability of HTM on a typical and well studied graph algorithm. Htm rcu
employs HTM to extract parallelism and runs with a low thread synchronization
overhead (no barriers needed). On the other hand, the main advantage of JP
is that it can support different vertex orderings. A vertex ordering defines the
order in which the algorithm has to color the vertices to improve the coloring
quality of the graph (fewer colors). Hasenplaugh et al. [24] implemented JP for
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multicore architectures and proposed new vertex orderings (largest-log-degree-
first and smallest-log-degree-last).

Recent works also employ TM for synchronization purposes to parallelize
efficiently graph algorithms. Nikas et al. [25] exploit it to parallelize Dijk-
stra’s algorithm implementing a helper threading scheme to extract parallelism,
Kang and Bader [26] to compute minimum spanning forests of sparse graphs.
We also incorporate the RCU technique on a graph algorithm. So far, RCU has
only been applied to concurrent Binary Search Trees, either balanced [27] or
unbalanced [14,15], to provide asynchronized traversals, while Siakavaras et al.
[16] combined RCU with HTM to allow multiple updaters to modify different
parts of the data structure concurrently. In this work, we exploit RCU to reduce
the transaction footprint and thus, design a scalable graph algorithm.

6 Conclusions and Future Work

In this paper, we employ HTM to efficiently parallelize GREEDY, a typical
graph coloring algorithm. HTM detects coloring conflicts and resolves them with-
out demanding any effort by the programmer. However, the HTM mechanism
restricts the size of the transaction sets (read- and write-set), as well as the dura-
tion of the transaction. To reduce the transaction footprint, we pair HTM with
RCU, a technique proposed for concurrent data structures. We exploit RCU to
enclose within the transaction only the necessary data and computations. To
the best of our knowledge, this is the first work that adopts a technique pro-
posed for concurrent data structures to implement a scalable and efficient graph
algorithm.

Our experimental results show that: (a) we successfully reduce the transac-
tion footprint, since htm rcu exhibits a low number of capacity aborts and (b)
we extract high levels of parallelism, since htm rcu exhibits a low number of
conflict aborts. Considering the low number of conflict aborts, we conclude that
threads do not interfere with each other frequently and thus, HTM exposes high
levels of parallelism in GREEDY. Given that graph algorithms generally have
similar characteristics (i.e. complex data dependencies and irregular memory
access patterns), we argue that several graph algorithms can scale efficiently on
multiple threads with the aid of HTM. As future work, we will investigate the
applicability of HTM on other graph algorithms and irregular applications.

Moreover, we aim to further experiment with the NUMA effect, as well as
with hyperthreading, and attempt to implement a NUMA-aware policy in our
algorithm, which will be based on judicious partitioning of our data structures.
We also intend to incorporate different vertex orderings on htm rcu to improve
the produced coloring quality, as well as to design hybrid approaches to address
the highly irregular graphs. In a hybrid approach, the high degree vertices will
be colored within a non-transactional path, since they always cause capacity
aborts. Finally, to show the importance of coloring on a real application, we will
exploit graph coloring as a part of a more complex workflow, as for example
implementing chromatic scheduling to speed up the PageRank algorithm.
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Abstract. We present a study in Distributed Deep Reinforcement
Learning (DDRL) focused on scalability of a state-of-the-art Deep Rein-
forcement Learning algorithm known as Batch Asynchronous Advantage
Actor-Critic (BA3C). We show that using the Adam optimization algo-
rithm with a batch size of up to 2048 is a viable choice for carrying out
large scale machine learning computations. This, combined with careful
reexamination of the optimizer’s hyperparameters, using synchronous
training on the node level (while keeping the local, single node part of
the algorithm asynchronous) and minimizing the model’s memory foot-
print, allowed us to achieve linear scaling for up to 64 CPU nodes. This
corresponds to a training time of 21min on 768 CPU cores, as opposed
to the 10 h required when using a single node with 24 cores achieved by
a baseline single-node implementation.

Keywords: Distributed computing · Reinforcement learning
Deep learning · Atari games · Asynchronous computations

1 Introduction

Gradient descent optimization is an indispensable element of solving many real-
world problems including but not limited to training deep neural networks
[14,19]. Because of its inherent sequentiality it is also particularly difficult to
parallelize [17]. Recently a number of advances in developing distributed ver-
sions of gradient descent algorithms have been made [11,15,36,38,39]. However,
most of them deal with relatively simple variants of the algorithm, for which
using larger batch sizes and increasing the learning rate (step size) often yield
satisfactory results.
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In the case of tasks encountered in Deep Reinforcement Learning these simple
optimization procedures are often insufficient and so more advanced algorithms
such as RMSProp [34] and Adam [18] are used more often [2,6,20,22,26]. How-
ever, these have not yet been subject to extensive formal analysis or even tests
in largely distributed settings. This is crucial since the usual tasks of training
models for reinforcement learning are often extremely computationally expen-
sive [22]. Therefore distributed training is gaining more and more traction in the
supervised learning community. Devising efficient ways of distributing advanced
variants of SGD has the potential to speed up the progress of the entire field.

As our benchmarking task we chose the Atari 2600 emulator [8] provided
by the OpenAI Gym framework [10] and the wide variety of games it offers.
Atari games are considered a viable benchmark for testing deep reinforcement
learning algorithms [2,6,26]. The early attempts to develop agents that would
efficiently play Atari games were presented in [21]. This algorithm required as
much as 8 days of training on a GPU [20] to reach a level that surpassed a casual
human player. Later developments of the Asynchronous Advantage Actor-Critic
(A3C) algorithm [20] reduced the learning time to several hours. Because of the
work presented in [2] a version of this algorithm optimized for Intel R© CPUs was
already publicly available. A brief discussion of the single-node version of the
algorithm is presented in Sect. 2.1.

In this work we present a distributed version of this algorithm that achieves
linear scaling for the tested games for configurations of up to 64 nodes (see Fig. 8).
This allowed us to reduce the training time from roughly 10 h to around 20min
while preserving the original accuracy of the models obtained. For a comparison
with other similar implementations we refer the reader to Table 3.

Our contribution applies and extends the recent advances [11,15] in dis-
tributed supervised learning to the field of reinforcement learning. Sections 2.2,
2.3, 2.4 and 2.5 report on the design choices we made and the results they
yielded. We also make our source code available for anyone who would like to
reproduce or improve upon our results. Detailed instructions about running the
experiments are also provided1.

1.1 Related Work

While distributed machine learning has recently been a topic of extensive
research, it has mainly focused on supervised learning. For an in-depth review
of scalability of modern supervised learning approaches, we refer the reader to
[17]. This work also lists common problems with various approaches to dis-
tributing various gradient descent optimization procedures. The pitfalls iden-
tified include the communication overhead arising from the necessity to share
the weight updates between the nodes. The authors concluded that using larger
batches and step sizes had the potential to solve this problem but resulted in
less accurate models.

1 The source code along with game-play videos can be found at: https://github.com/
deepsense-ai/Distributed-BA3C.

https://github.com/deepsense-ai/Distributed-BA3C
https://github.com/deepsense-ai/Distributed-BA3C
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Relation to [11]. Research done in [11] delves more into the architectural
aspects of distributed learning, by proposing to abandon the asynchronous design
in favor of a synchronous one. It also makes detailed arguments about the prob-
lem of “stale gradients”, which prevents the asynchronous paradigm from scal-
ing beyond several nodes. We set out to verify these claims by performing our
reinforcement learning experiments using both synchronous and asynchronous
training in Sect. 2.3. For a survey of the various asynchronous gradient descent
procedures we refer the reader to [9,16].

Relation to [15]. Work done in [15] focuses on large-scale supervised learning.
It showed that a setup with many machines working concurrently can effectively
speed up the training by a large margin. As a result of parallelizing multiple
GPUs and using appropriate learning rates for effectively larger batches, training
Resnet-50 on Imagenet was completed in 1 h. The work [15] also showed that
using very large batch sizes requires rethinking the optimization algorithms used.
In [15] authors focused on the SGD with momentum optimizer which often
works very well in supervised learning [33]. Our work attempts to apply similar
principles to the Adam optimizer which we found more suitable for reinforcement
learning tasks. The details can be found in Sect. 2.4.

The authors of [38] recognized the need to modify the optimization pro-
cedures in order to better utilize the distributed settings. The modification
proposed a novel procedure called “Layer-wise Adaptive Rate Scaling”, which
enabled efficient training of supervised learning models with batch size of up to
32768. Deploying this algorithm to the task of training large convolutional nets
in [39] yielded extremely competitive training times of 24min, as opposed to 1 h
achieved without these modifications in [15].

An interesting approach to reducing the communication overhead by ternar-
izing the gradients was recently proposed in [36]. This is a part of larger research
aiming at gradient quantization i.e., reducing the precision of the communicated
values [4,27]). A related approach is gradient sparsification, i.e. refraining from
the exchange of small gradients, see e.g., [3,32]). However, both quantization and
sparsification drastically change the flow of training of a neural model. Since
Reinforcement Learning training is already quite complex, we refrained from
employing these methods. Still, they certainly should be considered in future
DDRL experiments.

To date, only limited formal research has been done in optimizing and par-
allelizing targeted strictly at reinforcement learning procedures. Notable works
in this domain include [23], which focused on reducing the long training times
observed in [22]. A significant speedup (by an order of magnitude [23]) and
higher game scores were achieved. This was done using large resources of up to
130 nodes, by applying the Asynchronous SGD paradigm to the model developed
in [22] in a manner similar to the work focusing on supervised learning presented
in [12].

Further work in [20] applied the asynchronous paradigm to the policy opti-
mization methods, resulting in the Asynchronous Advantage Actor-Critic algo-
rithm (A3C). These experiments used the relatively low computing power of a
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16-core CPU. The work in [2] sought to optimize a more efficient batched variant
of this algorithm for use with commodity Intel R© Xeon CPUs by employing the
Math Kernel Library. A GPU-based version of this algorithm has also been pre-
sented in [6]. None of these works explicitly dealt with communication overheads
in distributed policy optimization.

Significant computing resources were used in the work presented in [28] to
develop AlphaGo – a program for playing the game of Go. This work was based
on a combination of reinforcement learning, supervised learning and tree search
methods. The authors reported using configurations of up to 1920 CPUs and
280 GPUs for testing the algorithm which provided a significant improvement
in the quality of the results achieved. It is also mentioned that the training of
the policy network was done using 50 GPUs for one day [28].

Further work in [30] focused on achieving better results without using super-
vised learning and handcrafted features. Computationally, the training utilized
the synchronous paradigm with 64 GPU workers and 19 parameter servers, using
a total batch size of 2048. For optimization the Momentum SGD optimizer with
learning rate annealing was used. Recently this work has been further extended
in [29] where the authors presented a general algorithm able to achieve expert
level also in chess and shogi. Notably the training was completed in 24 h and a
relatively large batch size of 4096 was used.

Recently a novel algorithm called Proximal Policy Optimization (PPO) was
proposed in [26]. Notably it also uses the Adam optimizer on which we focused in
this work and achieved promising scores in Atari games. A distributed version of
this algorithm was used in [7], where the authors used 4 GPUs, Adam optimizer
and batch size of 5120. Further examination of PPO in a distributed setup
appears as a promising area of future research.

A different approach to distributing reinforcement learning has recently been
presented in [24]. In this work the parallelization was applied to an evolution
strategy (ES), which is a direct search method. This property enables efficient
exchange of information between the workers since they only have to communi-
cate scalar values. Because of that the algorithm is especially easy to distribute
since the communication costs of sharing the gradient updates don’t apply to
this scheme. When training a 3D humanoid to walk the authors reported linear
scaling for up to 1440 CPU cores [24, p. 8]. After 1 h of training agents for Atari
games on 720 CPUs evolution strategies were able to achieve scores comparable
to the ones achieved by A3C (which was trained for 24 h with a single CPU) [24,
p. 7].

Detailed analysis of Deep Reinforcement Learning on a single machine with
multiple GPUs was recently published in [31]. The authors reported using a
batch size of up to 2048 and utilizing 8 GPUs for various Deep RL algorithms.
Impressive training times (under 10min) are also reported.

2 Distributed BA3C Implementation

For all our experiments we used the Batch Asynchronous Advantage Actor-Critic
algorithm implemented in [37] and later modified in [2]. A similar algorithm was



374 I. Adamski et al.

also described in [6]. We will not elaborate on its properties here but rather focus
on explaining the details behind implementing it on multiple parallel machines.
A good description of the single-node version of this algorithm can be found in
[2]. Here we are using multiple clustered CPUs and each of them individually
performs the BA3C algorithm. The individual nodes maintain a shared copy of
the model through the use of special nodes called parameter servers, which store
the model weights. Table 1 presents the hyperparameters of the algorithms, which
were specifically tuned to achieve lowest training times during our research. Some
of the hyperparameters are omitted and for those we assume the default values
used in [2]. Detailed description of the hyperparameters describing the Adam
optimizer is presented in Sect. 2.4.

Table 1. Hyperparameters of the distributed BA3C implementation

Symbol Default value Description

n 64 Number of CPU nodes used for the distributed training
c 12 Number of cores in each worker CPU
η 0.001 Learning rate (step-size)
bs 32 Number of data-points in each training batch (on each node)
ps 4 Number of nodes responsible for holding the model

parameters
n_sim 10 Number of atari simulators used simultaneously on one worker
ε 10−8 Constant used for numerical stability in the Adam optimizer
β1, β2 0.8, 0.75 Decay rates of the running averages used in Adam optimizer

2.1 BA3C Background

The BA3C design on a single node focuses on parallel interactions of multiple
agents with game environments, that produce experience data later aggregated
into mini-batches used for training. We call an “agent” an instance of the model
interacting with the outside environment, in our context the Atari 2600 emulator.

The interaction with an Atari game is attained via OpenAI Gym [10] pro-
viding the model with input of RGB image pixels and enabling the agents to
act upon any state of the game. On a single machine, n_sim simulators of the
Atari environment are running concurrently and an agent plays one game on
each of them. Each consecutive frame_hist frames from the game count as one
state. For each state of the game a policy query is sent to the prediction thread,
which then feeds the input image to the neural net, outputting a respective
behavioral guideline. The action performed is then gathered together with the
state it was acted on and the reward it received from that action. This tuple cre-
ates a data-point. Then, bs data-points are assembled into a mini-batch, that is
back-propagated through the neural net giving gradients, later used to perform
gradient descent on a cost function.
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2.2 Architecture

Let us suppose that we are using n workers. Each of the n workers possesses
a copy of the BA3C algorithm, which will parallelize the training among its c
cores. As aforementioned, a tuple of state, action and reward constitutes a single
data-point, and a mini-batch of bs of those data-points is then used to compute
the gradients which are synchronously gathered from all the workers, averaged
and applied to the weights through the Adam optimizer. All the weights are
located in ps different parameter servers, each of which stores 1/ps of the model’s
parameters (4 convolution layers and 3 fully connected layers). The parameter
servers then send the updated parameters back to the workers, which then again
play the games and the process goes on until a satisfactory model is achieved.

Fig. 1. Our approach to distributed learning. The figure shows the synchronous training
architecture which was our final choice.

2.3 Synchronous vs Asynchronous Training

Background on Gradient Descent Optimization. Training deep neural
networks usually involves gradient descent optimization. This is convenient since
the gradient of the model with respect to some chosen loss function can be easily
obtained by backpropagation [19]. Gradient descent is an iterative algorithm
that in each iteration attempts to modify the model’s parameters θ in order
to achieve a lower value of the cost function J(θ,x) for some training data x.
Given the gradient gt of the cost function w.r.t. the model parameters θ (which
can be obtained from the backpropagation procedure) the basic update rule for
obtaining the new values of parameters at time step t given the old values θt−1

can be written as:

θt = θt−1 − λgt, (1)

where the λ parameter controls the learning rate (step size).
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Numerous improvements to this scheme have been proposed. For a broad
overview of different approaches we refer the reader to [19]. Of the recent
improvements the RMSProp [34] and Adam [18] procedures are widely used
in Reinforcement Learning [2,6,20,22,26]. In the course of our experiments we
found that Adam performs better on our task and therefore we will not elaborate
on RMSProp further. A brief description of Adam optimizer is given in Sect. 2.4.

An important decision that largely influences the outcome of the model’s
performance is the way of parallelizing the work of multiple nodes. Data paral-
lelism in gradient descent algorithms can be done in two ways: synchronously or
asynchronously. We have found that when using a large number of distributed
nodes, these two approaches produce completely different results.

Asynchronous Training. In the asynchronous approach, each of the workers,
after collecting a mini-batch of data points, computes gradients and then uses
them to perform weight updates. The weights of the model reside in parameter
servers, which receive gradients from the workers and send the updated copy of
the current model to each training instance. Therefore each individual worker
updates the commonly shared parameters of the model without delay as soon
as it completes computing its gradient. This has several advantages, one is that
compared to a single machine implementation our model is guaranteed to per-
form k times as many updates, if we are using k workers. Another is that because
workers do not need to wait for others to finish but rather apply updates con-
tinuously, we are utilizing a lock-free paradigm that helps make the most of the
processing power at our disposal.

However, the pure asynchronous approach possesses also other characteristics
that could impede the learning and prevent convergence. One such disadvantage
is called stale gradients [11]. It arises when a worker updates the weights using
gradients that are outdated with regard to the current model. This is guaranteed
to happen because during the time that the worker was processing the data and
computing the gradients, the model has been updated several times by other
nodes and now, when the worker applies the gradients, it will do so with respect
to the model that is out-of-date. This is shown in the Fig. 2.

Fig. 2. A diagram representing gradient staleness - a systematic flaw related to asyn-
chronous training with many workers.
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Fig. 3. Typical asynchronous training attempt, 64 workers.

Synchronous Training. The synchronous training architecture is visualized
in Fig. 1. One of the workers (called a chief worker) is special in a sense that
it’s responsible for aggregating the gradients from all the others. A “regular”
worker no longer posseses the power to update the model on its own – it can
only compute its gradient estimate and send it to the chief worker. Once enough
gradients from the workers are accumulated, the chief worker updates the weights
and sends the new them to the parameter servers. The new weights are then sent
to other workers and a new training iteration begins. This ensures that all the
workers always have an up-to-date copy of the model weights, which solves the
stale gradients problem.

The side effect of this procedure is the increase of the effective batch size used
for performing a single update. Although we are not able to linearly increase the
speed of model updates with the number of workers as in the asynchronous
design, we expect the updates that are made to be more accurate since the
gradient estimate is done using a larger batch size. This might in turn allow for
larger step sizes to be used, which can hopefully compensate for the updates
being less frequent and provide speed up. Importantly, synchronous training
removes the problem of gradient staleness, as no worker computes gradients on
an obsolete model, because updates are performed only after all of the workers
compute their individual gradients.

The fact that we need to wait for all the workers can cause delays. This
arises whenever, for various reasons, some of the workers may be lagging behind
others in assembling their batches and computing gradients. We call this the
slow stragglers problem. Since the synchronous design imposes waiting for all the
workers’ gradients to perform a weight update, the effective time it takes for an
update to occur is the time it takes the slowest worker to assemble his batch
and compute the gradients. Therefore, reducing the number of gradients that we
need to wait for to make an update could significantly reduce the influence of the
slow stragglers. Detailed analysis of this phenomenon presented in [11] confirms
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that waiting for around 90% of gradients as opposed to all of them significantly
improves the training times.

Another key fact that needs to be addressed when discussing synchronous
training is the large effective batch size2 it tends to create. Since we are using
n mini-batches of data-points from every worker and then averaging them, we
are virtually using a single batch of size n × bs to perform a single update. This
may indicate the need to adjust other hyperparameters of the algorithm such as
the learning rate. We revisit this issue in Sect. 2.4.

With the slow stragglers problem removed, the synchronous approach is much
more intuitive and reasonable – it does not risk gradient staleness and the weight
updates that are made are much more accurate and less noisy. Making just one
update for all the workers working on a model assures that the nodes are work-
ing collectively and efficiently upon a goal, whereas the asynchronous learning
strategy seems rather chaotic and unstructured.

We performed a series of experiments to determine which paradigm is better
in our use case. We found that asynchronous training causes large instabilities in
the learning process. One of such experiments is shown in the Figs. 3a and b. In
this experiment the learning was proceeding correctly until after about 50min
the online score3 dropped suddenly to zero. This coincided with a large spike
in the total training loss visible in the Fig. 3b. We suspect it is caused by the
stale gradients. We did not encounter this phenomenon when using synchronous
training, therefore we have chosen to work with the synchronous architecture.

2.4 Optimizer Changes

Background on Adam Optimizer. Adam optimizer was first described in
[18] and can be thought of as extension of the works presented in [13,34]. It
maintains the exponentially decaying running averages mt and vt of all the
previous gradients and squared gradients:

mt = β1mt−1 + (1 − β1)gt, (2)

vt = β2vt−1 + (1 − β1)g2t (3)

2 We use the term effective batch size to denote the number of training samples partic-
ipating in a single weight update. In synchronous training this is equal to the local
batch size on each node multiplied by the number of workers required to perform an
update. In asynchronous training effective batch size is equal to the local batch size.

3 By online score we refer to the scores obtained by the agent during training. By
contrast an evaluation score would be a score obtained during the test phase. These
scores can differ substantially, because while training the actions are sampled from
the distribution returned by the policy network (this ensures more exploration). On
the other hand, during test time the agent always chooses the action that gives the
highest expected reward. This usually yields higher scores, but using it while training
would prevent exploration.
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It then perform bias correction to define m̂t = mt/(1− βt
1) and v̂t = vt/(1− βt

2)
and gives the final weight update for parameter θ at timestep t as:

θt = θt−1 − η
m̂t√
v̂t + ε

(4)

Instead, many implementations (including TensorFlow [1]) use less clear but
more efficient formulation:

ηt = η

√
1 − βt

2

1 − βt
1

, (5)

θt = θt−1 − ηt
mt√
vt + ε̂

(6)

The ε̂ in the Eq. 6 and ε in Eq. 4 are added for numerical stability, not to
divide by 0 in the first timestep.

This means that the algorithm in this formulation has 4 hyperparameters
that need tuning: the learning rate η, the decay factors for the running averages:
β1 and β2 and ε̂. Next section provides insight into how these might need to be
modified when transitioning from a single-node to a multi-node configuration.

Increasing the Learning Rate. Using very large batches that result from
utilizing a large number of workers in the synchronous paradigm poses some
challenges on the selection of optimizer hyperparameters. This problem is espe-
cially severe when distributing an algorithm that already had its hyperparame-
ters chosen carefully.

Research on large scale distributed SGD by [15] has addressed this problem
by deploying the linear scaling rule: when multiplying the mini-batch size by k,
multiply the learning rate by k. However this was done using much simpler SGD
with momentum optimizer. We on the other hand have experimented with mul-
tiple optimizers and have found that only Adam [18] and occasionally RMSProp
[34] have brought about positive results in the asynchronous design.

With Adam optimizer, using the linear scaling rule did not yield any positive
results. We found that increasing the learning rate made the training highly unsta-
ble and often resulted in the model learning how to play well only to later abruptly
forget and score 0 until the end (see Fig. 4). We settled on using η = 0.001 (the
same as in the single-node version), as it was the largest value for which we did
not experience large instabilities.

Apart from the learning rate some of the other default optimizer parameters
also needed examination. Moving to a synchronous distributed setup requires a
re-thinking of how exactly momentum accumulation and learning rate adaptiv-
ity are impacted by the batch size.

Modifying the ε parameter. Curiously enough, some implementations can be
found that manipulate this variable so that it no longer serves the mere purpose
of avoiding numerical instability (see e.g. the implementation of BA3C in [37]).
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Fig. 4. Experiment with a learning rate η = 0.002. 64 nodes, synchronous training,
local batch size of 64, total batch size of 4096. Increasing the learning rate for the
Adam optimizer from 0.001 to 0.002 causes large instabilities clearly visible on the
online score plot (Fig. a) and the total training loss plot (Fig. b)

Through experiments we found that for some tasks setting the ε parameter of
the optimizer to much lower values (e.g. 10−8 instead of 10−3) can yield much
better training times. A comparison of online scores for two similar experiments
with different epsilon values is shown in the Fig. 5. It is important to note that
this positive effect when using smaller ε was observable only when using large
effective batch sizes (i.e., 512 and more). For smaller effective batch sizes using
a lower ε did not produce positive results.

Table 2. Number of network
parameters when considering dif-
ferent number of neurons in the
fully connected layer.

Hidden
neurons

Network
weights

% of initial
setup

256 538 119 100%
128 332 295 61%
64 229 383 43%
32 177 927 33%
16 152 199 28%

This is understandable since a high ε
value significantly constrains the ability of the
Adam optimizer to automatically adapt the
learning rate to the variance of the gradi-
ents. We suspected that averaging more data
points through the use of synchronous data
parallelism reduced the variance of the gradi-
ent estimate to the point that the algorithm
could be allowed more freedom in automati-
cally adapting the learning rate based on the
noise estimations.

Based on these experiments we decided to
change the default value of the ε hyperparam-
eter from 10−3 to 10−8. This significantly sped up the training for some games
(such as Breakout and Boxing). However, we cannot claim this effect is universal,
e.g., it made training for Atari Pong slower. The results cited for this game in
Sect. 3 were obtained with ε = 10−3.
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Fig. 5. Two experiments of training agents for Breakout on 64 nodes with different
ε parameter values. Figure a and c show an experiment where ε = 10−3 was used.
Figure b and d show training with ε = 10−8. The most important difference lies at the
beginning of the training. This is visible in the closer views presented in the bottom
row. Lower values of ε seem to give a significant speedup at this stage. Note that the
vertical axis shows online score.

Other Hyperparameters. Motivated by the research in [15] we decided that
we should optimize Adam’s decay factors β1, β2 to the very large batch that we
are using. This did not turn out to be an easy task - with the Adam optimizer
update policy being quite complicated, choosing β1 and β2 for the effective batch-
size analytically was difficult. The results of our experiments do not support any
gains from using different values of these parameters; however we are leaving it
to the community to try and find the factors that work best for a distributed
setup.
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2.5 Communication Overhead

Fig. 6. Data points per second for models
with different number of hidden neurons in
the fully connected layer. Each experiment
was repeated 5 times and results were aver-
aged. Experiments were run with 32 workers
and 4 parameter servers.

In data parallelized synchronous gra-
dient descent procedures the nodes
have to transmit roughly 2n mul-
tiplicities of the size of the model
(where n is the number of workers)
during a single training step [17].
Our initial model architecture con-
sisted of approximately half a million
weights stored as 32-bit floats. Thus,
when using 64 workers we needed to
send ≈ 263MB of data during every
iteration.

Importantly, if all nodes have
roughly the same processing speed
and synchronous training is being
used then all this communication
occurs at approximately the same
time. This is because in a gradient
descent training the communication
cannot be easily overlaid with computation to maximally utilize both network
bandwidth and compute power (see [17] for details). This further reduces the
scaling capabilities.

Fig. 7. Data points per second for different
numbers of parameter servers. Each experi-
ment was repeated 5 times and the results
were averaged. 32 workers, 332 k parameters,
local; batch size set to 4. The conclusion is
that after some point there’s no more gains
to be achieved by adding more parameter
servers.

In our experiments we measured
the speed of our algorithm by calcu-
lating the number of training exam-
ples backpropagated through our
model every second. In next section
we will refer to this speed as data
points per second.

Changing the Model. One way to
reduce network communication is to
shrink the model. In the initial archi-
tecture most weights (≈76%) were
in a single fully connected layer that
follows the last convolution layer
(see [2] for the details about the
exact neural model used). The rela-
tion between number of neurons in
this layer and the processing speed
is shown in Fig. 6. Although all of
the tested architectures were able to
achieve decent results, we decided to use 128 neurons since this setup was able to
learn as fast and stable as the initial architecture, while having only ≈61% of its
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weights (see Table 2). Despite the fact that further reduction of the model size
accelerated data processing, smaller networks were taking more time to reach
corresponding scores.

Adding More Parameter Servers. Adding more parameter servers, each
storing only fraction of model weights, causes data sent through the network to
be distributed into more nodes. This leads to more optimized network usage (see
Fig. 7 for details).

3 Results

Synchronous training allowed us to use more workers and avoid instabilities
common in the asynchronous paradigm. By reducing model size and adding
more parameter servers we could better utilize network communication which
led to the possibility of further increase in the number of workers. As a result we
were able to train models to reach 300 points in Breakout in 21 ± 2 min using
64 workers (each consisting of 12 physical cores, i.e. using 768 cores in total).

3.1 Scaling

We compared times it took to reach a predetermined score in Atari Breakout
for different number of workers. The reference was reaching a mean score of 300
points or higher for 50 consecutive games played. This is considered vastly better
than a human tester (see [22] for data on detailed human performance for this
game). The results are shown in Fig. 8.

Experiment settings: Each of the 64 workers had 12 CPU cores. We used
4 parameter servers for storing model weights. Model trained had 128 hidden
neurons in the fully connected layer described in Sect. 2.3. Every experiment
was repeated 10 times and results were averaged. Additionally we have plotted a
theoretical linear speedup. This line represents the theoretical time that should
be achieved when using n times more computing power in reference to a single
node experiment.
Learning rate: All experiments used the learning rate of 10−3.
Optimizer’s hyperparameters: In all experiments optimizer’s hyperparame-
ters were: ε = 10−8, β1 = 0.8, β2 = 0.75.
Batch size: In experiments with 32 and 64 workers batch size was set to 32,
because smaller batches caused too much network communication overhead. For
the rest of experiments the per-worker batch size was set, so that the effective
batch size equaled n × bs = 512.
Evaluation: Every 1000 steps the model played 50 games and the mean score
was saved. During the games the model parameters were frozen. By step we
mean single global update performed by the chief worker.
Baseline: As a baseline we have chosen the single node setup (i.e. using a single
12-core CPU). To be comparable with effective batch sizes on multiple nodes, a
relatively large batch size of 512 was chosen. This baseline achieves the solving
score in mean time of 14.2 h.
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Fig. 8. Red plot shows mean time to reference score of 300 points ± standard devia-
tion for Breakout. Green plot shows theoretical linear speedup in reference to 1 node
experiment. Notice that the real performance of our configuration is consistent with
the expected values for a wide number of workers. For 64 workers the communication
overheads start to inhibit further scaling. Notice that the mean time to achieve a mean
score of 300 in Atari breakout is 21min when using 64 workers. (Color figure online)

3.2 Training Times

In this section we present example learning curves for various Atari games. The
plots show mean and max scores from evaluation games. Each game was played
on the 64 worker setup (Fig. 9).

3.3 Comparison with Other Solutions

The most notable similar work in optimizing Atari games training for speed is
presented in [6]. The results presented there were achieved by a hybrid GPU-
CPU algorithm called GA3C which is a flavor of A3C focusing on batching
the data points in order to better utilize the massively parallel nature of GPU
computations. This is similar to the single node algorithm called BA3C [2] which
we used as a starting point for this work.

Comparing the training curves included in [6] for 3 common games tested in
both works (Boxing, Breakout, SpaceInvaders) shows that our implementation
is much faster and achieves as good or better scores4 (see Table 3). Importantly
our experiments used 64 CPU nodes of 12 cores each, while the experiments

4 It is important to note that the scores achieved by different implementations are not
directly comparable and should interpreted cautiously. For future comparisons we’d
like to state that the evaluation scores presented by us in this work are always mean
scores of 50 consecutive games played by the agent. Unless otherwise stated they’re
evaluation scores achieved by choosing the action giving the highest future expected
reward.
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Fig. 9. Score vs time plots for different games in the final setup.

presented in [5] were all single node. However the results show that using dis-
tributed computations on CPU clusters is a viable alternative for using GPUs,
even when training convolutional neural networks.

Table 3. Algorithm performance in 6 selected games. Best stable score and time (in
hours) to achieve it are given. The data are based on the best reported results found
in the training plots in [2,6,20].

Game DDRL A3C GA3C [6] BA3C [2] A3C [20]

BeamRider 14900 (2.7 h) 3000 (24 h) – 15000 (15 h)
Breakout 350 (0.5 h) 350 (21 h) 400 (15h) 500 (11 h)
Boxing 98 (0.5 h) 92 (2h) – –
Pong 20 (4 h) 18 (1h) 17 (24 h) 20 (8h)
Seaquest 1832 (0.5 h) 1706 (24 h) 1840 (24h) 2300 (24 h)
SpaceInvaders 650 (0.5 h) 600 (24 h) 700 (24h) 1400 (15 h)

4 Conclusions and Future Work

We presented a detailed description of our experiments with large scale Dis-
tributed Deep Reinforcement Learning (DDRL). Detailed motivation behind all
the important design choices was given in Sects. 2.2, 2.3, 2.4 and 2.5. We also pro-
vided some empirical information about tuning the Adam optimizer to perform
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well when using large training batches that arise in synchronous data paral-
lelism. Our key experimental results described in Sect. 3 involve being able to
train agents for playing Atari games in minutes rather than hours on clusters of
commodity CPUs.

Extending this work to other RL algorithms, most notably those presented
in [25,26,35] would provide a natural extension to this work. Also developing a
framework for distributed RL training that is independent of the algorithm itself
would certainly be a valuable contribution.

Given the results reported in [39] testing the Intel R© Xeon PhiTM architecture
on distributed RL training would also be an interesting experiment.

On a wider scale, further research on adaptive optimization algorithms, most
notably those presented in [13,18,34] in the context of training with large batch
sizes seems to be necessary to further reduce training times both in supervised
and reinforcement learning.
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Abstract. As chip multi-processors (CMPs) are becoming more and
more complex, software solutions such as parallel programming models
are attracting a lot of attention. Task-based parallel programming mod-
els offer an appealing approach to utilize complex CMPs. However, the
increasing number of cores on modern CMPs is pushing research towards
the use of fine grained parallelism. Task-based programming models need
to be able to handle such workloads and offer performance and scalabil-
ity. Using specialized hardware for boosting performance of task-based
programming models is a common practice in the research community.

Our paper makes the observation that task creation becomes a bottle-
neck when we execute fine grained parallel applications with many task-
based programming models. As the number of cores increases the time
spent generating the tasks of the application is becoming more critical
to the entire execution. To overcome this issue, we propose TaskGenX.
TaskGenX offers a solution for minimizing task creation overheads and
relies both on the runtime system and a dedicated hardware. On the run-
time system side, TaskGenX decouples the task creation from the other
runtime activities. It then transfers this part of the runtime to a spe-
cialized hardware. We draw the requirements for this hardware in order
to boost execution of highly parallel applications. From our evaluation
using 11 parallel workloads on both symmetric and asymmetric multicore
systems, we obtain performance improvements up to 15×, averaging to
3.1× over the baseline.

1 Introduction

Since the end of Dennard scaling [13] and the subsequent stagnation of CPU clock
frequencies, computer architects and programmers rely on multicore designs to
achieve the desired performance levels. While multicore architectures constitute
a solution to the CPU clock stagnation problem, they bring important chal-
lenges both from the hardware and software perspectives. On the hardware side,
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multicore architectures require sophisticated mechanisms in terms of coherence
protocols, consistency models or deep memory hierarchies. Such requirements
complicate the hardware design process. On the software side, multicore designs
significantly complicate the programming burden compared to their single-core
predecessors. The different CPUs are exposed to the programmer, who has to
make sure to use all of them efficiently, as well as using the memory hierar-
chy properly by exploiting both temporal and spatial locality. This increasing
programming complexity, also known as the Programmability Wall [9], has moti-
vated the advent of sophisticated programming paradigms and runtime system
software to support them.

Task-based parallelism [3,6,7,22] has been proposed as a solution to the
Programmability Wall and, indeed, the most relevant shared memory program-
ming standards, like OpenMP, support tasking constructs. The task based model
requires the programmer to split the code into several sequential pieces, called
tasks, as well as explicitly specifying their input and output dependencies. The
task-based execution model (or runtime system) consists of a master thread and
several worker threads. The master thread goes over the code of the application
and creates tasks once it encounters source code annotations identifying them.
The runtime system manages the pool of all created tasks and schedules them
across the threads once their input dependencies are satisfied. To carry out the
task management process, the parallel runtime system creates and maintains a
Task Dependency Graph (TDG). In this graph nodes represent tasks and edges
are dependencies between them. Once a new task is created, a new node is added
to the TDG. The connectivity of this new node is defined by the data dependen-
cies of the task it represents, which are explicitly specified in the application’s
source code. When the execution of a task finalizes, its corresponding node is
removed from the TDG, as well as its data dependencies.

This task-based runtime system constitutes of a software layer that enables
parallel programmers to decouple the parallel code from the underlying paral-
lel architecture where it is supposed to run on. As long as the application can
be decomposed into tasks, the task-based execution model is able to properly
manage it across homogeneous many-core architectures or heterogeneous designs
with different core types. A common practice in the high performance domain is
to map a single thread per core, which enables the tasks running on that thread
to fully use the core capacity. Finally, another important asset of task-based
parallelism is the possibility of automatically managing executions on accelera-
tors with different address spaces. Since the input and output dependencies of
tasks are specified, the runtime system can automatically offload a task and its
dependencies to an accelerator device (e.g., GPU) without the need for specific
programmer intervention [8]. Additional optimizations in terms of software pre-
fetching [21] or more efficient coherence protocols [20] can also be enabled by
the task-based paradigm.

Despite their advantages, task-based programming models also induce com-
putational costs. For example, the process of task creation requires the traversal
of several indexed tables to update the status of the parallel run by adding the



TaskGenX: A Hardware-Software Proposal for Accelerating Task Parallelism 391

1 ...

2 // task_clause

3 memalloc (&task , args , size);

4 createTask(deps , task , parent , taskData );

5 ...

Listing 1.1. Compiler generated pseudo-code equivalence for task annotation.

1 void createTask(DepList dList , Task t,

2 Task parent , Data args) {

3 initAndSetupTask (task1 , parent , args);

4 insertToTDG(dList , task1);

5 }

Listing 1.2. Pseudo-code for task creation.

new dependencies the recently created tasks bring, which produces a certain
overhead. Such overhead constitutes a significant burden, especially on architec-
tures with several 10’s or 100’s of cores where tasks need to be created at a very
fast rate to feed all of them. This paper proposes the Task Generation Express
(TaskGenX) approach. Our proposal suggests that the software and hardware are
designed to eliminate the most important bottlenecks of task-based parallelism
without hurting their multiple advantages. This paper focuses on the software
part of this proposal and draws the requirements of the hardware design to
achieve significant results. In particular, this paper makes the following contri-
butions beyond the state-of-the-art:

– A new parallel task-based runtime system that decouples the most costly
routines from the other runtime activities and thus enables them to be off-
loaded to specific-purpose helper cores.

– A detailed study of the requirements of a specific-purpose helper core able to
accelerate the most time consuming runtime system activities.

– A complete evaluation via trace-driven simulation considering 11 parallel
OpenMP codes and 25 different system configurations, including homo-
geneous and heterogeneous systems. Our evaluation demonstrates how
TaskGenX achieves average speedups of 3.1× when compared against cur-
rently use state-of-the-art approaches.

The rest of this document is organized as follows: Sect. 2 describes the task-
based execution model and its main bottlenecks. Section 3 describes the new
task-based runtime system this paper proposes as well as the specialized hard-
ware that accelerates the most time-consuming runtime routines. Section 4 con-
tains the experimental set-up of this paper. Section 5 describes the evaluation
of TaskGenX via trace-driven simulation. Finally, Sect. 6 discusses related work
and Sect. 7 concludes this work.
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2 Background and Motivation

2.1 Task-Based Programming Models

Task-based parallel programming models [3,6,7,22], are widely used to facili-
tate the programming of parallel codes for multicore systems. These program-
ming models offer annotations that the programmer can add to the applica-
tion’s sequential code. One type of these annotations is the task annotations
with dependency tracking which OpenMP [1] supports since its 4.0 release. By
adding these annotations, the programmer decomposes the application into tasks
and specifies the input and output data dependencies between them. A compiler
is responsible to translate the annotations into code by adding calls to the pro-
gramming model’s runtime system. The runtime system consists of software
threads and is responsible for the efficient execution of the tasks with respect to
the data dependencies as well as the availability of resources.

When the compiler encounters a task annotation in the code, it transforms
it to the pseudo-code shown in Listing 1.1. Memalloc is performing the memory
allocation for the task and its arguments. Next is a runtime call, which is the
createTask, responsible for the linking of the task with the runtime system. At
this point a task is considered created and below are the three possible states of
a task inside the runtime system:

– Created: A task is initialized with the appropriate data and function pointers
and it is inserted in the Task Dependency Graph (TDG). The insertion of
a task in the TDG implies that the data dependencies of the tasks have
been identified and the appropriate data structures have been created and
initialized.

– Ready: When all the data dependencies of a created task have been satisfied,
the task is ready and it is inserted in the ready queue where it waits for
execution.

– Finished: When a task has finished execution and has not been deleted yet.

The runtime system creates and manages the software threads for the exe-
cution of the tasks. Typically one software thread is being bound to each core.
One of the threads is the master thread, and the rest are the worker threads. The
master thread starts executing the code of Listing 1.1 sequentially. The alloca-
tion of the task takes place first. What follows is the task creation, that includes
the analysis of the dependencies of the created task and the connection to the
rest of the existing dependencies. Then, if there are no task dependencies, which
means that the task is ready, the task is also inserted in the ready queue and
waits for execution.

Listing 1.2 shows the pseudo-code for the task creation step within the run-
time. The createTask function is first initializing the task by copying the cor-
responding data to the allocated memory as well as connecting the task to its
parent task (initAndSetupTask). After this step, the task is ready to be inserted
in the TDG. The TDG is a distributed and dynamic graph structure that the
runtime uses to keep the information about the current tasks of the application.
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1 void insertToTDG(DepList dList , Task t) {

2 if( dList is empty ) {

3 readyQ ->push(t);

4 return;

5 }

6 Dependency entry;

7 for( d in dList ) {

8 entry = depMap[d.address ()];

9 if(entry ==NULL) depMap.add(entry , t);

10 if(d.accessType () == "write ")

11 entry.addLastWriter(t);

12 if(d.accessType () == "read") {

13 entry.addReader(t);

14 entry.lastWriter()->addSuccessor(t);

15 }

16 }

17 }

Listing 1.3. Pseudo-code for TDG insertion

The insertion of a task in the TDG is done by the insertToTDG function. This
function takes as arguments a list with all the memory addresses that are to be
written or read by the task (dList), and the task itself. Listing 1.3 shows the
pseudo-code for the TDG insertion. If for a task the dList is empty (line 2), this
means that there are no memory addresses that need to be tracked during the
execution; thus, the task is marked as ready by pushing it to the ready queue
(line 3). Each entry of dList contains the actual memory address as well as the
access type (read, write or read-write). The runtime keeps a distributed unified
dependency tracking structure, the depMap where it stores all the tracked mem-
ory addresses together with their writer and reader tasks. For each item in the
dList the runtime checks if there is an existing representation inside the depMap
(line 8). If the memory address of an entry of the dList is not represented in
the depMap, it is being added as shown in line 9. If the address of a dList item
exists in the depMap, this means that a prior task has already referred to this
memory location, exhibiting a data dependency. According to the access type of
d, the readers and the writers of the specific address are updated in the depMap
(lines 10–15).

To reduce the lookup into the depMap calls, every time the contents of a
memory address are modified, the tasks keep track of their successors as well as
the number of predecessors. The successors of a task are all the tasks with inputs
depending on the output of the current task. The predecessors of a task are the
tasks whose output is used as input for the current task. When a read access is
identified, the task that is being created is added to the list of successors of the
last writer task, as shown on line 20 of Listing 1.2.

As tasks are executed, the dependencies between them and their successors
are satisfied. So the successor tasks that are waiting for input, eventually become
ready and are inserted to the ready queue. When a task goes to the finished
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Fig. 1. Master thread activity for Cholesky as we increase the number of cores.

state, the runtime has to perform some actions in order to prepare the successor
tasks for execution. These actions are described in Listing 1.4. The runtime first
updates the depMap to remove the possible references of the task as reader or
writer (line 2). Then, if the task does not have any successors, it can safely be
deleted (line 3). If the task has successors, the runtime traverses the successor list
and for each successor task it decreases its predecessor counter (lines 5–6). If for a
successor task its predecessor counter reaches zero, then this task becomes ready
and it is inserted in the ready queue (lines 7–8). The runtime activity takes place
at the task state changes. One state change corresponds to the task creation, so
a task from being just allocated it becomes created. At this point the runtime
prepares all the appropriate task and dependency tracking data structures as
well as inserts the task into the TDG. The second change occurs when a task
from being created it becomes ready ; this implies that the input dependencies of
this task are satisfied so the runtime schedules and inserts the task into the ready
queue. The third change occurs when a running task finishes execution. In this
case, following our task states, the task from being ready it becomes finished ;
this is followed by the runtime updating the dependency tracking data structures
and scheduling possible successor tasks that become ready. For the rest of the
paper we will refer to the first state change runtime activity as the task creation
overheads (Create). For the runtime activity that takes place for the following
two state changes (and includes scheduling and dependence analysis) we will use
the term runtime overheads (Runtime).

2.2 Motivation

Figure 1 shows the runtime activity of the master thread during the execution
of the Cholesky1 benchmark on 8, 16, 32, 64 and 128 cores2. The execution time
represented here is the wall clock time during the parallel region of the bench-
mark. Each one of the series represents a different runtime overhead from the
1 Details about the benchmarks used are in Sect. 4.
2 The experimental set-up is explained in Sect. 4.
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1 void task_finish(Task *t) {

2 depMap.removeReaderWriter(t);

3 if(t->successors.empty ()) delete t;

4 else {

5 for( succ in t->successors ) {

6 succ.decreasePredecessors ();

7 if(succ.numPredecessors == 0)

8 readyQ ->push(succ);

9 }

10 }

11 }

Listing 1.4. Pseudo-code for task finish runtime activity.

ones described above. The percentage of time spent on task creation is increas-
ing as we increase the number of cores. This is because the creation overhead
is invariant of core count: the more we reduce the application’s execution time
by adding resources the more important this step becomes in terms of execution
time. In contrast, the task execution time percentage is decreased as we increase
the number of cores because the computational activity is being shared among
more resources. One way to reduce the task creation overhead is by introducing
nested parallelism. In this programming technique, every worker thread is able
to generate tasks thus the task creation is spread among cores and its overhead is
reduced. However, not all applications can be implemented with this paralleliza-
tion technique and there are very few applications using this scheme. Runtime
decreases as we increase the number of cores because this activity is also shared
among the resources. This is because this part of the runtime takes place once
the tasks finish execution and new tasks are being scheduled. So the more the
resources, the less the runtime activity per thread, therefore less activity for the
master thread.

Our motivation for this work is the bottleneck introduced by task creation as
shown in Fig. 1. Our runtime proposal decouples this piece of the runtime and
accelerates it on a specialized hardware resulting in higher performance.

3 Task Generation Express

In this paper we propose a semi-centralized runtime system that dynamically
separates the most computationally intensive parts of the runtime system and
accelerates them on specialized hardware. To develop the TaskGenX we use
the OpenMP programming model [1]. The base of our implementation is the
Nanos++ runtime system responsible for the parallel execution and it is used in
this paper as a replacement of the entire OpenMP’s default runtime.

Nanos++ [5] is a distributed runtime system that uses dynamic schedul-
ing. As most task-based programming models, Nanos++ consists of the master
and the worker threads. The master thread is launching the parallel region and
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creates the tasks that have been defined by the programmer3. The scheduler of
Nanos++ consists of a ready queue (TaskQ) that is shared for reading and writ-
ing among threads and is used to keep the tasks that are ready for execution.
All threads have access to the TaskQ and once they become available they try
to pop a task from the TaskQ. When a thread finishes a task, it performs all
the essential steps described in Sect. 2.1 to keep the data dependency structures
consistent. Moreover, it pushes the tasks that become ready to the TaskQ.

3.1 Implementation

TaskGenX relieves the master and worker threads from the intensive work of
task creation by offloading it on the specialized hardware. Our runtime, apart
from the master and the worker threads, introduces the Special Runtime Thread
(SRT). When the runtime system starts, it creates the SRT and binds it to the
task creation accelerator, keeping its thread identifier in order to manage the
usage of it. During runtime, the master and worker threads look for ready tasks
in the task ready queue and execute them along with the runtime. Instead of
querying the ready queue for tasks, the SRT looks for runtime activity requests
in the Runtime Requests Queue (RRQ) and if there are requests, it executes
them.

Figure 2 shows the communication infrastructure between threads within
TaskGenX. Our system maintains two queues; the Ready Task Queue (TaskQ)
and the Runtime Requests Queue (RRQ). The TaskQ is used to keep the tasks
that are ready for execution. The RRQ is used to keep the pending runtime
activity requests. The master and the worker threads can push and pop tasks to
and from the TaskQ and they can also add runtime activity to the RRQ. The
special runtime thread (SRT) pops runtime requests from the RRQ and executes
them on the accelerator.

1 void SRTloop () {

2 while( true ) {

3 while(RRQ is not empty)

4 executeRequest( RRQ.pop() );

5 if( runtime.SRTstop () ) break;

6 }

7 return;

8 }

Listing 1.5. Pseudo-code for the SRT loop.

When the master thread encounters a task clause in the application’s code,
after allocating the memory needed, it calls the createTask as shown in
3 Nanos++ also supports nested parallelism so any of the worker threads can poten-

tially create tasks. However the majority of the existing parallel applications are not
implemented using nested parallelism.
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Fig. 2. Communication mechanism
between master/workers and SRT threads.

Fig. 3. SoC architecture including
three types of cores: out of order, in-
order and RTopt.

Listing 1.2 and described in Sect. 2.1. TaskGenX decouples the execution of
createTask from the master thread. To do so, TaskGenX implements a wrap-
per function that is invoked instead of createTask. In this function, the run-
time system checks if the SRT is enabled; if not then the default behaviour takes
place, that is, to perform the creation of the task. If the SRT is enabled, a Cre-
ate request is generated and inserted in the RRQ. The Create runtime request
includes the appropriate info to execute the code described in Listing 1.2. That
is, the dependence analysis data, the address of the allocated task, its parent
and its arguments.

While the master and worker threads are executing tasks, the SRT is looking
for Create requests in the RRQ to execute. Listing 1.5 shows the code that the
SRT is executing until the end of the parallel execution. The special runtime
thread continuously checks whether there are requests in the RRQ (line 3). If
there is a pending creation request, the SRT calls the executeRequest (line 4),
which extracts the appropriate task creation data from the creation request and
performs the task creation by calling the createTask described in Listing 1.2.
When the parallel region is over, the runtime system informs the SRT to stop
execution. This is when the SRT exits and the execution finishes (line 5).

3.2 Hardware Requirements

As described in the previous section, TaskGenX assumes the existence of special-
ized hardware that accelerates the task creation step. The goal of this paper is
not to propose a detailed micro-architecture of the specialized hardware; instead
we sketch the high-level hardware requirements for the TaskGenX set-up, in
the hope to be an insightful and useful influence for hardware designers. The
SRT is bound to the task creation accelerator and executes the requests in
the RRQ. Previous studies have proposed custom accelerators for the runtime
activity [12,15,18,19,25,26]. These proposals significantly accelerate (up to three
orders of magnitude) different bottlenecks of the runtime system4. These special
purpose designs can only execute runtime system activity.

4 Section 6 further describes these proposals.
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Table 1. Evaluated benchmarks and relevant characteristics

Application Problem

size

#Tasks Avg task

CPU cycles

(thousands)

Per task overheads

(CPU cycles)

Measured

perf. ratio

r Parallel model

Create All Deps +

Sched

Cholesky

factorization

32K 256 357 762 753 15221 73286 58065 3.5 10.34 Dependencies

32K 128 2829058 110 17992 58820 40828 83.74

QR

factorization

16K 512 11 442 518 570 17595 63008 45413 6.8 0.01 Dependencies

16K 128 707 265 3 558 21642 60777 39135 3.11

Blackscholes Native 488 202 348 29141 85438 56297 2.3 42.87 Data-parallel

Bodytrack Native 329 123 383 9 505 18979 9474 4.2 12.70 Pipeline

Canneal Native 3 072 002 67 25781 50094 24313 2.0 197.01 Unstructured

Dedup Native 20 248 1 532 1294 9647 8353 2.7 0.43 Pipeline

Ferret Native× 2 84 002 29 088 38913 98457 59544 3.6 0.68 Pipeline

Fluidanimate Native 128 502 16 734 30210 94079 64079 3.3 0.91 Data-parallel

Streamcluster Native 3 184 654 161 6892 13693 6801 3.5 21.91 Data-parallel

As an alternative, in our envisioned architecture we propose to have a gen-
eral purpose core that has been optimized to run the runtime system activity
more efficiently. The runtime optimized (RTopt) core can be combined with
both homogeneous or heterogeneous systems and accelerate the runtime activ-
ity. Figure 3 shows the envisioned architecture when RTopt is combined with an
asymmetric heterogeneous system. This architecture has three core types that
consist of simple in-order cores, fast out-of-order cores and an RTopt core for
the SRT. RTopt can optimize its architecture, having a different cache hierarchy,
pipeline configuration and specialized hardware structures to hold and process
the SRT. As a result, the RTopt executes the SRT much faster than the other
cores. The RTopt can also execute tasks, but will achieve limited performance
compared to the other cores as its hardware structures have been optimized for
a specific software (the SRT).

To evaluate our approach we study the requirements of the RTopt in
order to provide enough performance for TaskGenX. Based on the analysis by
Etsion et al. [15], there is a certain task decode rate that leads to optimal utiliza-
tion of the multicore system. This rule can be applied in the case of TaskGenX
for the task creation rate, i.e., the frequency of task generation of the runtime
system. If the task creation rate is higher than the task execution rate, then for
a highly parallel application the resources will always have tasks to execute and
they will not remain idle. To achieve a high task creation rate, we can acceler-
ate the task creation cost. Equation 1 shows the maximum optimal task creation
cost, Copt(x) in order to keep x cores busy, without starving due to task creation.

Copt(x) = avg. task duration/x (1)

If Cgp is the cost of task creation when it is performed on a general purpose
core, then the RTopt has to achieve a speedup of r = Cgp/Copt(x) to achieve full
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utilization of the system. Section 4.2 performs an analysis based on these require-
ments for the evaluated applications. As we will see in Sect. 4.2, a modest and
implementable value of r = 16× is enough to significantly accelerate execution
on a 512-core system.

Finally, if TaskGenX executes on a regular processor without the RTopt core,
the SRT is bound to a regular core without any further modification. In this
scenario, applications will not significantly benefit from having a separate SRT.

4 Experimental Methodology

4.1 Applications

Table 1 shows the evaluated applications, the input sizes used, and their char-
acteristics. All applications are implemented using the OpenMP programming
model. We obtain Cholesky and QR from the BAR repository [4] and we use the
implementations of the rest of the benchmarks from the PARSECSs suite [10].
More information about these applications can be found in [10,11]. As the num-
ber of cores in SoCs is increasing, so does the need of available task paral-
lelism [24]. We choose the input sizes of the applications so that they create
enough fine-grained tasks to feed up to 512 cores. The number of tasks per
application and input as well as the average per-task CPU cycles can be found
on Table 1.

4.2 Simulation

To evaluate TaskGenX we make use of the TaskSim simulator [16,23]. TaskSim
is a trace driven simulator, that supports the specification of homogeneous or
heterogeneous systems with many cores. The tracing overhead of the simulator is
less than 10% and the simulation is accurate as long as there is no contention in
the shared memory resources on a real system [16]. By default, TaskSim allows
the specification of the amount of cores and supports up to two core types in
the case of heterogeneous asymmetric systems. This is done by specifying the
number of cores of each type and their difference in performance between the
different types (performance ratio) in the TaskSim configuration file.

Our evaluation consists of experiments on both symmetric and asymmet-
ric platforms with the number of cores varying from 8 to 512. In the case of
asymmetric systems, we simulate the behaviour of an ARM big.LITTLE archi-
tecture [17]. To set the correct performance ratio between big and little cores,
we measure the sequential execution time of each application on a real ARM
big.LITTLE platform when running on a little and on a big core. We use the
Hardkernel Odroid XU3 board that includes a Samsung Exynos 5422 chip with
ARM big.LITTLE. The big cores run at 1.6 GHz and the little cores at 800 MHz.
Table 1 shows the measured performance ratio for each case. The average per-
formance ratio among our 11 workloads is 3.8. Thus in the specification of the
asymmetric systems we use as performance ratio the value 4.
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Fig. 4. Speedup of TaskGenX compared to the speedup of Baseline and Base-
line+RTopt for each application for systems with 8 up to 512 cores. The average results
of (a) show the average among all workloads shown on (a) and (b)

To simulate our approaches using TaskSim we first run each application/in-
put in the TaskSim trace generation mode. This mode enables the online tracking
of task duration and synchronization overheads and stores them in a trace file.
To perform the simulation, TaskSim uses the information stored in the trace file
and executes the application by providing this information to the runtime system.
For our experiments we generate three trace files for each application/input com-
bination on a Genuine Intel 16-core machine running at 2.60 GHz.

We modify TaskSim so that it features one extra hardware accelerator (per
multicore) responsible for the fast task creation (the RTopt). Apart from the task
duration time, our modified simulator tracks the duration of the runtime over-
heads. These overheads include: (a) task creation, (b) dependencies resolution,
and (c) scheduling. The RTopt core is optimized to execute task creation faster
than the general purpose cores; to determine how much faster a task creation
job is executed we use the analysis performed in Sect. 3.2.

Using Eq. 1, we compute the Copt(x) for each application according to their
average task CPU cycles from Table 1 for x = 512 cores. Cgp is the cost of
task creation when it is performed on a general purpose core, namely the Create
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column shown on Table 1. To have optimal results for each application on systems
up to 512 cores, Cgp needs to be reduced to Copt(512). Thus the specialized hard-
ware accelerator needs to perform task creation with a ratio r = Cgp/Copt(512)×
faster than a general purpose core.

We compute r for each application shown on Table 1. We observe that for
the applications with a large number of per-task CPU cycles and relatively small
Create cycles (QR512, Dedup, Ferret, Fluidanimate), r is very close to zero,
meaning that the task creation cost (Cgp) is already small enough for optimal
task creation without the need of a faster hardware accelerator. For the rest
of the applications, more powerful hardware is needed. For these applications
r ranges from 3× to 197×. Comparing r to the measured performance ratio of
each application we can see that in most cases accelerating the task creation on
a big core would not be sufficient for achieving higher task creation rate. In our
experimental evaluation we accelerate task creation in the RTopt and we use the
ratio of 16× which is a relatively small value within this range that we consider
realistic to implement in hardware. The results obtained show the average results
among three different traces for each application-input.

5 Evaluation

5.1 Homogeneous Multicore Systems

Figures 4a and b show the speedup over one core of three different scenarios:

– Basel ine: the Nanos++ runtime system, which is the default runtime without
using any external hardware support

– Baseline+RTopt : the Nanos++ runtime system that uses the external hard-
ware as if it is a general purpose core

– TaskGenX : our proposed runtime system that takes advantage of the opti-
mized hardware

We evaluate these approaches with the TaskSim simulator for systems of 8 up to
512 cores. In the case of Baseline+RTopt the specialized hardware acts as a slow
general purpose core that is additional to the number of cores shown on the
x axis. If this core executes a task creation job, it executes it 16× faster, but as
it is specialized for this, we assume that when a task is executed on this core
it is executed 4× slower than in a general purpose core. The runtime system
in this case does not include our modifications that automatically decouple the
task creation step for each task. The comparison against the Baseline+RTopt is
used only to show that the baseline runtime is not capable of effectively utilizing
the accelerator. In most of the cases having this additional hardware without the
appropriate runtime support results in slowdown as the tasks are being executed
slower on the special hardware.

Focusing on the average results first, we can observe that TaskGenX con-
stantly improves the baseline and the improvement is increasing as the number
of cores is increased, reaching up to 3.1× improved performance on 512 cores.
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This is because as we increase the number of cores, the task creation overhead
becomes more critical part of the execution time and affects performance even
more. So, this becomes the main bottleneck due to which the performance of
many applications saturates. TaskGenX overcomes it by automatically detect-
ing and moving task creation on the specialized hardware.

Looking in more detail, we can see that for all applications the baseline has
a saturation point in speedup. For example Cholesky256 saturates on 64 cores,
while QR512 on 256 cores. In most cases this saturation in performance comes
due to the sequential task creation that is taking place for an important per-
centage of the execution time (as shown in Fig. 1). TaskGenX solves this as it
efficiently decouples the task creation code and accelerates it leading to higher
speedups.

TaskGenX is effective as it either improves performance or it performs as
fast as the baseline (there are no slowdowns). The applications that do not
benefit (QR512, Ferret, Fluidanimate) are the ones with the highest average
per task CPU cycles as shown on Table 1. Dedup also does not benefit as the
per task creation cycles are very low compared to its average task size. Even if
these applications consist of many tasks, the task creation overhead is considered
negligible compared to the task cost, so accelerating it does not help much.

This can be verified by the results shown for QR128 workload. In this case, we
use the same input size as QR512 (which is 16K) but we modify the block size,
which results in more and smaller tasks. This not only increases the speedup of
the baseline, but also shows even higher speedup when running with TaskGenX
reaching very close to the ideal speedup and improving the baseline by 2.3×.

Fig. 5. Canneal performance as we modify r; x-axis shows the number of cores.

Modifying the block size for Cholesky, shows the same effect in terms of
TaskGenX over baseline improvement. However, for this application, using the
bigger block size of 256 is more efficient as a whole. Nevertheless, TaskGenX
improves the cases that performance saturates and reaches up to 8.5× improve-
ment for the 256 block-size, and up to 16× for the 128 block-size.

Blackscholes and Canneal, are applications with very high task creation over-
heads compared to the task size as shown on Table 1. This makes them very
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sensitive to performance degradation due to task creation. As a result their per-
formance saturates even with limited core counts of 8 or 16 cores. These are
the ideal cases for using TaskGenX as such bottlenecks are eliminated and per-
formance is improved by 15.9× and 13.9× respectively. However, for Canneal
for which the task creation lasts a bit less than half of the task execution time,
accelerating it by 16 times is not enough and soon performance saturates at 64
cores. In this case, a more powerful hardware would improve things even more.
Figure 5 shows how the performance of Canneal is affected when modifying the
task creation performance ratio, r between the specialized hardware and general
purpose. Using hardware that performs task creation close to 256× faster than
the general purpose core leads to higher improvements.

Streamcluster has also relatively high task creation overhead compared to
the average task cost so improvements are increased as the number of cores is
increasing. TaskGenX reaches up to 7.6× improvement in this case.

The performance of Bodytrack saturates on 64 cores for the baseline. How-
ever, it does not approach the ideal speedup as its pipelined parallelization tech-
nique introduces significant task dependencies that limit parallelism. TaskGenX
still improves the baseline by up to 37%. This improvement is low compared to
other benchmarks, firstly because of the nature of the application and secondly
because Bodytrack introduces nested parallelism. With nested parallelism task
creation is being spread among cores so it is not becoming a sequential overhead
as happens in most of the cases. Thus, in this case task creation is not as critical
to achieve better results.

5.2 Heterogeneous Multicore Systems

At this stage of the evaluation our system supports two types of general pur-
pose processors, simulating an asymmetric multicore processor. The asymmetric
system is influenced by the ARM big.LITTLE architecture [17] that consists of
big and little cores. In our simulations, we consider that the big cores are four
times faster than the little cores of the system. This is based on the average
measured performance ratio, shown on Table 1, among the 11 workloads used in
this evaluation.

In this set-up there are two different ways of executing a task-based appli-
cation. The first way is to start the application’s execution on a big core of the
system and the second way is to start the execution on a little core of the system.
If we use a big core to load the application, then this implies that the master
thread of the runtime system (the thread that performs the task creation when
running with the baseline) runs on a fast core, thus tasks are created faster than
when using a slow core as a starting point. We evaluate both approaches and
compare the results of the baseline runtime and TaskGenX.

Figure 6 plots the average speedup over one little core obtained among all
11 workloads for the Baseline, Baseline+RTopt and TaskGenX. The chart shows
two categories of results on the x axis, separating the cases of the master thread’s
execution. The numbers at the bottom of x axis show the total number of cores
and the numbers above show the number of big cores.
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Fig. 6. Average speedup among all 11 workloads on heterogeneous simulated systems.
The numbers at the bottom of x axis show the total number of cores and the numbers
above them show the number of big cores. Results are separated depending on the type
of core that executes the master thread: a big or little core.

The results show that moving the master thread from a big to a little core
degrades performance of the baseline. This is because the task creation becomes
even slower so the rest of the cores spend more idle time waiting for the tasks
to become ready. TaskGenX improves performance in both cases. Specifically
when master runs on big, the average improvement of TaskGenX reaches 86%.
When the master thread runs on a little core, TaskGenX improves performance
by up to 3.7×. This is mainly due to the slowdown caused by the migration of
master thread on a little core. Using TaskGenX on asymmetric systems achieves
approximately similar performance regardless of the type of core that the mas-
ter thread is running. This makes our proposal more portable for asymmetric
systems as the programmer does not have to be concerned about the type of
core that the master thread migrates.

5.3 Comparison to Other Approaches

As we saw earlier, TaskGenX improves the baseline scheduler by up to 6.3× for
512 cores. In this section we compare TaskGenX with other approaches. To do
so, we consider the proposals of Carbon [19], Task Superscalar [15], Picos++ [26]
and Nexus# [12]. We group these proposals based on the part of the runtime
activity they are offloading from the CPU. Carbon and Task Superscalar are
runtime-driven meaning that they both accelerate all the runtime and schedul-
ing parts. The task creation, dependence analysis as well as the scheduling,
namely the ready queue manipulation, are transferred to the RTopt with these
approaches. These overheads are represented on Table 1 under ALL. For the
evaluation of these approaches one RTopt is used optimized to accelerate all
the runtime activities. The second group of related designs that we compare
against is the dependencies-driven, which includes approaches like Picos++ and
Nexus#. These approaches aim to accelerate only the dependence analysis part
of the runtime as well as the scheduling that occurs when a dependency is sat-
isfied. The RTopt in this case is optimized to accelerate these activities. For
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example, when a task finishes execution, and it has produced input for another
task, the dependency tracking mechanism is updating the appropriate counters
of the reader task and if the task becomes ready, the task is inserted in the
ready queue. The insertion into the ready queue is the scheduling that occurs
with the dependence analysis. These overheads are represented on Table 1 under
Deps+Sched.

Fig. 7. Average improvement over baseline; x-axis shows the number of cores.

Figure 7 shows the average improvement in performance for each core count
over the performance of the baseline scheduler on the same core count. Runtime
represents the runtime driven approaches and the Deps represents the dependen-
cies driven approaches as described above. X-axis shows the number of general
purpose cores; for every core count one additional RTopt core is used.

Accelerating the scheduling with Runtime-driven is as efficient as TaskGenX
for a limited number of cores, up to 32. This is because they both accelerate task
creation which is an important bottleneck. Deps-driven approaches on the other
hand are not as efficient since in this case the task creation step takes place on
the master thread.

Increasing the number of cores, we observe that the improvement of the
Runtime-driven over the baseline is reduced and stabilized close to 3.2× while
TaskGenX continues to speedup the execution. Transferring all parts of the run-
time to RTopt with the Runtime-driven approaches, leads to the serialization of
the runtime. Therefore, all scheduling operations (such as enqueue, dequeue of
tasks, dependence analysis etc.) that typically occur in parallel during runtime
are executed sequentially on the RTopt. Even if RTopt executes these operations
faster than a general purpose core, serializing them potentially creates a bot-
tleneck as we increase the number of cores. TaskGenX does not transfer other
runtime activities than the task creation, so it allows scheduling and dependence
analysis operations to be performed in a distributed manner.

Deps driven approaches go through the same issue of the serialization of the
dependency tracking and the scheduling that occurs at the dependence analysis
stage. The reason for the limited performance of Deps compared to Runtime is
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that Deps does not accelerate any part of the task creation. Improvement over the
baseline is still significant as performance with Deps is improved by up to 1.5×.

TaskGenX is the most efficient software-hardware co-design approach when
it comes to highly parallel applications. On average, it improves the baseline by
up to 3.1× for homogeneous systems and up to 3.7× for heterogeneous systems.
Compared to other state of the art approaches, TaskGenX is more effective on a
large number of cores showing higher performance by 54% over Runtime driven
approaches and by 70% over Deps driven approaches.

6 Related Work

Our approach is a new task-based runtime system design that enables the accel-
eration of task creation to overcome important bottlenecks in performance. Task-
based runtime systems have intensively been studied. State of the art task-based
runtime systems include the OpenMP [1], OmpSs [14], StarPU [2] and Swan [27].
All these models support tasks and maintain a TDG specifying the inter-task
dependencies. This means that the runtime system is responsible for the task
creation, the dependence analysis as well as the scheduling of the tasks. However,
none of these runtime systems offers automatic offloading of task creation.

The fact that task-based programming models are so widely spread makes
approaches like ours very important and also gives importance to studies that
focus on adding hardware support to boost performance of task-based runtime
systems. Even if their work focuses more on the hardware part of the design,
their contributions are very relative to our study as we can distinguish which
parts of the hardware is more beneficial to be accelerated.

Carbon [19] accelerates the scheduling of tasks by implementing hardware
ready queues. Carbon maintains one hardware queue per core and accelerates
all possible scheduling overheads by using these queues. Nexus# [12] is also a dis-
tributed hardware accelerator capable of executing the in, out, inout, taskwait
and taskwait on pragmas, namely the task dependencies. Unlike Carbon and
Nexus, TaskGenX accelerates only task creation. Moreover, ADM [24] is another
distributed approach that proposes hardware support for the inter-thread com-
munication to avoid going through the memory hierarchy. This aims to provide
a more flexible design as the scheduling policy can be freely implemented in
software. These designs require the implementation of a hardware component
for each core of an SoC [28]. Our proposal assumes a centralized hardware unit
that is capable of operating without the need to change the SoC.

Task Superscalar [15] and Picos++ [26] use a single hardware component to
accelerate parts of the runtime system. In the case of Task superscalar, all the
parts of the runtime system are transferred to the accelerator. Picos++ [26] is a
hardware-software co-design that supports nested tasks. This design enables the
acceleration of the inter-task dependencies on a special hardware. Swarm [18]
performs speculative task execution. Instead of accelerating parts of the runtime
system, Swarm uses hardware support to accelerate speculation. This is different
than our design that decouples only task creation.
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Our work diverges to prior studies for two main reasons:

– The implementation of prior studies requires changes in hardware of the SoC.
This means that they need an expensive design where each core of the chip
has an extra component. Our proposal offers a much cheaper solution by
requiring only a single specialized core that, according to our experiments,
can manage the task creation for 512-core SoCs.

– None of the previous studies is aiming at accelerating exclusively task creation
overheads. According to our study task creation becomes the main bottleneck
as we increase the number of cores and our study is the first that takes this
into account.

7 Conclusions

This paper presented TaskGenX, the first software-hardware co-design that
decouples task creation and accelerates it on a runtime optimized hardware. In
contrast to previous studies, our paper makes the observation that task creation
is a significant bottleneck in parallel runtimes. Based on this we implemented
TaskGenX on top of the OpenMP programming model. On the hardware side,
our paper sets the requirements for the RTopt in order to achieve optimal results
and proposes an asymmetric architecture that combines it with general purpose
cores.

Based on this analysis we evaluate the performance of 11 real workloads using
our approach with TaskSim simulator. Accelerating task creation, TaskGenX
achieves up to 15.8× improvement (Cholesky128) over the baseline for homoge-
neous systems and up to 16× (Blackscholes) on asymmetric systems when the
application is launched on a little core. Using TaskGenX on asymmetric systems
offers a portable solution, as the task creation is not affected by the type of core
that the master thread is bound to.

We further showed that for some cases like Canneal where task creation
needs to be accelerated as much as 197× in order to steadily provide enough
created tasks for execution. However, even by using a realistic and implementable
hardware approach that offers 16× speedup of task creation, achieves satisfactory
results as it improves the baseline up to 14×.

Comparing TaskGenX against other approaches such as Carbon, Nexus,
Picos++ or TaskSuperscalar that manage to transfer different parts of the run-
time to the RTopt proves that TaskGenX is the most minimalistic and effective
approach. Even if TaskGenX transfers the least possible runtime activity to the
RTopt hardware it achieves better results. This implies that TaskGenX requires
a less complicated hardware accelerator, as it is specialized for only a small part
of the runtime, unlike the other approaches that need specialization for task
creation, dependency tracking and scheduling.

We expect that combining TaskGenX with an asymmetry-aware task sched-
uler will achieve even better results, as asymmetry introduces load imbalance.
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