
Efficient Recognition of Abelian
Palindromic Factors and Associated

Results

Costas S. Iliopoulos and Steven Watts(B)

Department of Informatics, King’s College London, London, UK
{costas.iliopoulos,steven.watts}@kcl.ac.uk

Abstract. A string is called a palindrome if it reads the same from
left to right. In this paper we define the new concept of an abelian
palindrome which satisfies the property of being abelian equivalent to
some palindrome of the same length. The identification of abelian palin-
dromes presents a novel combinatorial problem, with potential applica-
tions in filtering strings for palindromic factors. We present an algorithm
to efficiently identify abelian palindromes, and additionally generate an
abelian palindromic array, indicating the longest abelian palindrome at
each location. Specifically, for an alphabet of size |Σ| ≤ log2(n) and after
O(n) time preprocessing using O(n + |Σ|) space, we may determine if
any factor is abelian palindromic in O(1) time. Additionally, we may
determine the abelian palindromic array in O(|Σ|n) time. We further
specify the algorithmic complexity when this condition on alphabet size
|Σ| is relaxed.

1 Introduction

The identification of palindromic factors in strings, has been a much studied
area of stringology, due to the interesting combinatorial aspects and the strong
ties with genetic analysis, where palindromes often correspond to significant
structures in DNA [3].

Variations of the palindrome identification problem have been frequently
introduced, for example Karhumäki and Puzynina presented results on k-abelian
palindromes on rich and poor words [2]. Holub and Saari considered the problem
as applied to binary words, investigating the properties of palindromic factors
of binary strings [4].

We introduce our own simple modification to the problem, yet to be explored,
namely abelian palindromes. Though an interesting combinatorial problem in
it itself, an efficient method of detecting abelian palindromes can potentially
provide a filter by which ordinary palindromic factors may be deduced. This
follows from the fact that an ordinary palindrome must necessarily also be an
abelian palindrome, and therefore the search space may be reduced if non abelian
palindromes can be efficiently dismissed.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
L. Iliadis et al. (Eds.): AIAI 2018, IFIP AICT 520, pp. 211–223, 2018.
https://doi.org/10.1007/978-3-319-92016-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92016-0_20&domain=pdf

212 C. S. Iliopoulos and S. Watts

Likewise, the abelian palindromic array may potentially be used to assist in
the calculation of the ordinary palindromic array, for the purpose of performing
a greedy factorisation of a string into ordinary palindromes. This follows from
the fact that the abelian palindromic array provides an upper bound for the
equivalent value in the ordinary palindromic array.

The rest of this paper is organised as follows. In Sect. 2, we present basic
definitions and notation on strings as well as definitions and results on abelian
palindromes. Section 3 presents various data structures and algorithmic tools
used in our final algorithms. In Sect. 4, a detailed implementation of our algo-
rithms are presented, the first being identification of abelian palindromes, the
second being the generation of the abelian palindromic array. Our concluding
remarks are noted in Sect. 5. Additionally, the pseudocode of our implementation
may be found in Sect. 6.

2 Preliminaries

2.1 Basic Terminology

We begin with basic definitions and notation from [1]. Let x = x[0]x[1] . . . x[n − 1]
be a string of length |x| = n over a finite ordered alphabet. We consider the case
of strings over an integer alphabet Σ: each character may be replaced by its
lexicographical rank in such a way that the resulting string consists of integers
in the range {0, . . . , n − 1}. We use ord(x[i]) to refer to the lexicographical
rank of the character x[i]. We use Σ[i] to refer to the ith character of Σ, i.e.
Σ[ord(x[i])] = x[i]. For example, for the alphabet Σ = {a, c, g, t} we have
ord(g) = 2 and Σ[2] = g.

For two positions i and j on x, we denote by x[i . . j] = x[i] . . . x[j] the factor
(sometimes called substring) of x that starts at position i and ends at position j
(it is of length 0 if j < i), and by ε the empty string of length 0. We recall that
a prefix of x is a factor that starts at position 0 (x[0 . . j]) and a suffix of x is a
factor that ends at position n − 1 (x[i . . n − 1]).

Let y be a string of length m with 0 < m ≤ n. We say that there exists an
occurrence of y in x, or, more simply, that y occurs in x, when y is a factor of
x. Every occurrence of y can be characterised by a starting position in x. Thus
we say that y occurs at the starting position i in x when y = x[i . . i + m − 1].

We denote the reverse string of x by xR as the string obtained when reading
x from right to left, i.e. xR = x[n − 1]x[n − 2] . . . x[1]x[0]. We say a string x is a
palindrome when x = xR.

We make use of the bit-wise exclusive or (XOR) operation between two
binary strings x and y of the same length |x| = |y|, denoted x ⊕ y. This adheres
to the standard definition of XOR on two binary strings, i.e. z[i] = (x[i] +
y[i]) (mod 2) where z = x ⊕ y. We may similarly apply the XOR operation to
integers, x, y ∈ Z by converting x and y to their respective binary equivalents,
performing the XOR operation, and converting the binary result into an integer.
For example, given x = 5, y = 11 we have x ⊕ y = 5 ⊕ 11 = 0101 ⊕ 1011 =
1110 = 14.

Efficient Recognition of Abelian Palindromic Factors 213

2.2 Abelian Palindromes

The concept of abelian strings relates to the idea of disregarding the order of
appearance of characters in a string, and concerning ourselves only with the
number of occurrences of each character within the string. With this in mind,
we wish to define the concept of an abelian palindrome. To facilitate this, we
must first recall the definition of a Parikh Vector.

Definition 1. The Parikh vector P(T) of a string T over the alphabet Σ, is a
vector of size |Σ| which enumerates the number of occurrences of each character
of the alphabet in T . If the character c ∈ Σ has ordinality i = ord(c) in the
lexicographical ordering of the alphabet Σ, then P(T)[i] stores the number of
occurrences of c in T .

We say that two strings T1 and T2 are abelian equivalent denoted T1 ≈p T2

if and only if they have the same Parikh vector, i.e. are permutations of each
other.

For example, the string T1 = accgta has the Parikh vector P(T1) =
(2, 2, 1, 1). The string T2 = gactcac has the same Parikh vector and thus
T1 ≈p T2. We may now define the concept of an abelian palindrome.

Definition 2. A string T is an abelian palindrome if and only if there exists
some palindrome P such that P ≈p T .

Note that in general, a string T will more easily satisfy the abelian palin-
dromic property over the palindromic property. This comes as a direct result of
Lemma 1, which follows clearly from Definition 2.

Lemma 1.

T palindromic =⇒ T abelian palindromic (1)
T not abelian palindromic =⇒ T not palindromic (2)

Proof. Assume T is palindromic, choose P = T . Therefore we have P = T ≈p T .
Thus T is abelian palindromic and Statement 1 is proven. Statement 2 follows
as the contrapositive of Statement 1. ��

3 Tools

3.1 Initial Observations

We wish to efficiently identify abelian palindromic factors within a string. To
enable this, we define some further concepts and auxiliary data structures.

From Definition 2, it is clear that whether a string T is an abelian palindrome
is dependant on the values in its Parikh vector P(T), specifically the number of
values that are odd or even. We use |P(T)| to refer to the total number of values
in P(T), and further use |(P(T))|odd and |(P(T))|even to refer to the number of
odd and even values in P(T) respectively. This notation allows us to succinctly
describe the defining quality of an abelian palindrome in Lemma 2.

214 C. S. Iliopoulos and S. Watts

Lemma 2. T abelian palindromic ⇐⇒ 0 ≤ |(P(T))|odd ≤ 1.

Proof. We refer to the length of T as n. We call Tl = T [0 . .
n − 1
2 − 1�] the left

half of T and Tr = T [�n − 1
2 + 1
 . . n − 1] the right half of T . Note that if n is

even, T = Tl Tr. If n is odd, T = Tl c Tr where c = T [n − 1
2]. For an ordinary

palindrome P , it is clear that if a character s occurs m times in Pl it must
correspondingly occur m times in Pr, to preserve the palindromic property of P .

We first show that if T is an abelian palindrome, the number of odd values in
the Parikh vector |(P(T))|odd can not exceed 1 by contradiction. Let us assume
that |(P(T))|odd > 1. In this case, we have at least 2 different characters s1, s2 ∈
Σ with an odd number of occurrences in T . For any permutation of the characters
in T , at least one of these two characters must have all its occurrences contained
entirely within Tl and Tr, and we call this character s. The character s therefore
occurs 2m times in T where m is the number of occurrences of s in Tl. Therefore s
has an even number of occurrences, which leads us to a contradiction. Therefore
we conclude that 0 ≤ |(P(T))|odd ≤ 1.

We now show that we can always form a palindrome from a permutation of
T when 0 ≤ |(P(T))|odd ≤ 1. In the notation below we use PR

l to represent the
reversal of Pl.

Let us assume |(P(T))|odd = 0. In this case, P(T) contains only even values.
We distribute the characters evenly to form an even length palindrome P such
that P ≈p T as follows (with braces under characters indicating the number of
repetitions of that character):

Pl = Σ[0]
︸︷︷︸

1
2P(T)[0]

Σ[1]
︸︷︷︸

1
2P(T)[1]

. . . Σ[|Σ| − 1]
︸ ︷︷ ︸

1
2P(T)[|Σ|−1]

P = Pl PR
l

Now let us assume |(P(T))|odd = 1. In this case, P(T) contains a single odd
entry corresponding to some character c = Σ[i]. We distribute the characters
evenly, placing the character c at the centre, to form an odd length palindrome
P such that P ≈p T as follows:

Pl = Σ[0]
︸︷︷︸

1
2P(T)[0]

. . . Σ[i − 1]
︸ ︷︷ ︸

1
2P(T)[i−1]

Σ[i + 1]
︸ ︷︷ ︸

1
2P(T)[i+1]

. . . Σ[|Σ| − 1]
︸ ︷︷ ︸

1
2P(T)[|Σ|−1]

Σ[i]
︸︷︷︸

1
2 (P(T)[i]−1)

P = Pl Σ[i] PR
l

Thus we have shown that 0 ≤ |(P(T))|odd ≤ 1 is both a necessary and suffi-
cient condition for T to be an abelian palindrome. Therefore Lemma 2 follows.

��

Efficient Recognition of Abelian Palindromic Factors 215

3.2 Prefix Parity Integer Array

We aim to describe a new data structure that will prove useful in recognising
palindromic factors, beginning with some new definitions.

Lemma 2 provides us with a useful criterion by which we can seek longest
abelian palindromes. We first provide some additional definitions which will
prove useful.

Definition 3. A prefix Parikh vector Pi(T) of a string T is the Parikh vector
of the ith prefix of T :

Pi(T) = P(T [0 . . i]) for 0 ≤ i ≤ n − 1

Definition 4. A parity vector P(T) of a string T over the alphabet Σ is a bit
vector of length Σ which indicates the parity (even or odd) of the number of
occurrences of each character of Σ in T (0 indicates even, 1 indicates odd):

P(T)[i] = P(T)[i] (mod 2)

Definition 5. A prefix parity vector Pi(T) of a string T is the parity vector of
the ith prefix of T :

Pi(T) = P(T [0 . . i]) for 0 ≤ i ≤ n − 1

Definition 6. A parity integer P̂(T) of a string T over the alphabet Σ is a
decimal integer representing the value of the parity vector P(T) when interpreted
as a binary number, with the order of magnitude of each bit determined by the
lexicographical order of the alphabet Σ:

P̂(T) =
|Σ|−1
∑

i=0

2i × P(T)[i]

Definition 7. A prefix parity integer P̂i(T) of a string T is the parity integer
of the ith prefix of T :

P̂i(T) = P̂(T [0 . . i]) for 0 ≤ i ≤ n − 1

Definition 8. The prefix parity integer array P̂A(T) of a string T of length n is
an integer array of length n, which contains the value of P̂i(T) at each position
i:

P̂A(T)[i] = P̂i(T)

The prefix parity integer array P̂A(T) (example: see bottom of Fig. 1) is the
key to identifying longest abelian palindromes in a string T . To observe this, we
note that the Parikh vector of a factor of T can be determined by evaluating the
difference between the two prefix Parikh vectors at the start and end indexes of
the factor. The parity vector and parity integer of a factor can also be determined
in a similar way, by employing the bit-wise exclusive or (XOR) operation. We
summarise these observations in Lemma 3.

216 C. S. Iliopoulos and S. Watts

Fig. 1. Example of prefix Parikh vectors, prefix parity vectors and prefix parity inte-
gers.

Lemma 3. Given a string T :

P(T [i . . j]) = Pj(T) − Pi−1(T) (1)
P(T [i . . j]) = Pj(T) ⊕ Pi−1(T) (2)

P̂(T [i . . j]) = P̂j(T) ⊕ P̂i−1(T) (3)

Proof. Given a factor F = T [i . . j] we have T [0 . . j] = T [0 . . i − 1]F . Therefore
it follows that P(T [0 . . j]) = P(T [0 . . i − 1]) + P(F) =⇒ P(F) = P(T [0 . . j]) −
P(T [0 . . i − 1]). Thus Statement 1 is proven.

Statement 2 follows from Statement 1 by observing that the truth table for
the XOR operator is analogous to the parity table for the subtraction operator
(when we interpret 0 as even, 1 as odd):

− even odd ⊕ 0 1

even even odd 0 0 1

odd odd even 1 1 0

Note that subtraction (mod 2) and XOR are both commutative operations,
and therefore the order of operations is unimportant for both tables.

Efficient Recognition of Abelian Palindromic Factors 217

Statement 3 is simply an alternative formulation of Statement 2 in the form
of parity integers instead of parity vectors. ��

Given P̂A(T), it now becomes simple to verify whether a factor T [i . . j] is an
abelian palindrome, i.e. 0 ≤ |P(T [i . . j])|odd ≤ 1.

Lemma 4. Given a text T over the alphabet Σ, the following holds:

T [i . . j] abelian palindromic ⇐⇒ P̂j(T) ⊕ P̂i−1(T) ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1}

Proof. The lemma follows from the application of previously defined lemmas.
We use brackets under runs of characters to indicate the length of that run of
characters:

T [i . . j] is abelian palindromic

⇐⇒
Lem. 2

0 ≤ |P(T [i . . j])|odd ≤ 1

⇐⇒ |P(T [i . . j])|odd = 0 ∨ |P(T [i . . j])|odd = 1

⇐⇒
Def. 4

P(T [i . . j]) = 0 . . . 0
|Σ|

∨ P(T) ∈ {0 . . . 0
|Σ|−1

1 , 0 . . . 0
|Σ|−2

10 , . . . , 1 0 . . . 0
|Σ|−1

}

⇐⇒
Def. 6

P(T [i . . j]) = 0 ∨ P̂(T) ∈ {20, 21, 22, . . . , 2|Σ|−1}

⇐⇒
Lem. 3

P̂j(T) ⊕ P̂i−1(T) ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1}

��
Lemma 4 immediately leads us to Lemma 5, which allows us to identify the

longest factor of a string T starting at i which is abelian palindromic.

Lemma 5. Given a text T over the alphabet Σ, the longest abelian palindromic
factor of T occurring at position i is T [i . . j] where j satisfies the following:

j = max{j′ : P̂j′(T) ∈ M(T, i)}
M(T, i) = {P̂i−1(T) ⊕ k : k ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1}}

For a given string T and position i, we call M(T, i) the match set.

Proof. For a fixed i, the longest T [i . . j] which is abelian palindromic is found
by determining the largest j, such that i and j satisfy the condition in Lemma
4. We may derive the match set M(T, i) from this condition by employing the
fact that XOR is commutative:

218 C. S. Iliopoulos and S. Watts

P̂j′(T) ⊕ P̂i−1(T) ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1}

⇐⇒ ∃k ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1} such that P̂j′(T) ⊕ P̂i−1(T) = k

⇐⇒ ∃k ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1} such that P̂j′(T) = P̂i−1(T) ⊕ k

⇐⇒ Pj′(T) ∈ {P̂i−1(T) ⊕ k : k ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1}} = M(T, i)

Thus for a given i, the largest j′ satisfying the above condition gives us the
j corresponding to the largest abelian palindromic factor T [i . . j]. ��

3.3 Rightmost Array

We describe a simple data structure that will prove useful for identifying longest
abelian palindromes (Fig. 2).

Definition 9. The rightmost array R(A) of an integer array A of length n
over the alphabet {0, . . . , n − 1} stores at position i the index of the rightmost
occurrence of the integer i in A. If there is no occurrence of i in A then A[i] = −1.
Formally stated:

R(A)[i] = k ⇐⇒ A[k] = i ∧ A[k′] �= i ∀ k′ > k

R(A)[i] = −1 ⇐⇒ A[k] �= i ∀k

Fig. 2. Example of rightmost array.

4 Algorithms

4.1 Abelian Palindromic Factor Recognition

Abelian Palindromic Factor Recognition
Input: A string T of length n.
Output: A function F : {0 . . n − 1} × {0 . . n − 1} → {true, false} where
F (i, j) returns true if T [i . . j] is abelian palindromic and false if T [i . . j] is
not abelian palindromic, in O(1) time.

Efficient Recognition of Abelian Palindromic Factors 219

Our algorithm to generate a function recognising abelian palindromic factors,
relies on the construction of the prefix parity integer array P̂A(T). As shown in
Lemma 4, we are able to determine if T [i . . j] is abelian palindromic by evaluating
the truthfulness of the expression P̂j(T) ⊕ P̂i−1(T) ∈ {0} ∪ {20, 21, . . . , 2|Σ|−1}.

Given P̂A(T), this expression may be evaluated in O(1) time for a given
i and j. This follows from the fact that XOR is a constant time operation.
Additionally, we may check if an integer is a power of 2 in constant time by
employing the (mod 2) operation.

It is important to note, that these operations are constant time under the
assumption that their arguments do not exceed the maximum word size w of the
computer implementation used. If we assume that the alphabet size is bounded
by the logarithm of n, then this assumption holds, i.e. |Σ| ≤ log2(n). Alterna-
tively, the limitation on |Σ| need not depend on n, and may instead be expressed
in terms of the word size w of a machine. If the word size is w, we may assume
these operations are constant for an alphabet size |Σ| ≤ w. For a larger |Σ|, the
expression in Lemma 4 may be evaluated in O(|Σ|

w) time.
We now consider the construction of P̂A(T). It is possible to construct the

array directly while maintaining a single instance of P̂i(T), by Lemma 6.

Lemma 6.

P̂A(T)[0] = 2ord(T [0])

P̂A(T)[i] = P̂A(T)[i − 1] + (2Pi(T)[ord(T [i])] − 1) × 2ord(T [i]) 0 < i ≤ n − 1

Proof. The case for P̂A(T)[0] is trivially true. We note that P̂A(T)[i] = P̂i(T)
is an integer representation of Pi(T) interpreted as a binary string. Pi(T) and
Pi−1(T) differ by a single bit flip, corresponding to the character encountered at
T [i]. Therefore by Definitions 6 and 7, P̂i(T) and P̂i−1(T) will accordingly differ
by a single power of 2, specifically 2ord(T [i]).

Whether 2ord(T [i]) should be added or subtracted is dependant on the current
parity of the character T [i]. This is determined by Pi(T)[ord(T [i])], with 1
corresponding to addition (+1) and 0 corresponding to subtraction (−1).

Thus the mapping 2b − 1 where b ∈ {0, 1} is the most recently flipped bit
b = Pi(T)[ord(T [i])], indicates the appropriate addition (+1) or subtraction
(−1). ��

With this iterative equation for P̂A(T), we now have all the tools necessary
to efficiently determine abelian palindromic factors and solve the problem as
stated. We formalise the result in Theorem 1.

220 C. S. Iliopoulos and S. Watts

Theorem 1. Given a string T of length n over the alphabet Σ, after O(n) time
preprocessing and O(n + |Σ|) space, we may perform queries to determine if
T [i . . j] is abelian palindromic in O(1) time when |Σ| ≤ log2(n).

Additionally with no constraint on the size of Σ, with O(|Σ|
w n) time prepro-

cessing we may perform such queries in O(|Σ|
w) time, where w is the computer

word size.

Proof. By using Lemma 6 we may iteratively construct P̂A(T)[i] from P̂A(T)[i−1]
in O(1) time at each step, while maintaining the Σ-sized data structure Pi(T),
resulting in a total time complexity O(n) and space complexity O(n + |Σ|) to
construct P̂A(T).

By evaluating the expression on P̂A(T) in Lemma 4, we may then determine
if T [i . . j] is abelian palindromic. Evaluating this expression may be performed
in O(1) time when the number of bits required to store P̂i(T) is no larger than a
single computer word w, i.e. when |Σ| ≤ log2(n) ≤ w. In general, P̂i(T) may be
stored in |Σ| bits, requiring � |Σ|

w
 words to store, and thus a multiplying factor
of O(|Σ|

w) time is required for all operations involving P̂i(T), both when con-
structing P̂A(T) and when evaluating the expression in Lemma 4, corresponding
to a single query. ��

4.2 Abelian Palindromic Array Algorithm

Abelian Palindromic Array
Input: A string T of length n.
Output: An array P of size n such that A[i] stores the length of the longest
abelian factor of T occurring at position i, i.e. as a prefix of T [i . . n − 1].

Our algorithm to generate the abelian palindromic array makes use of The-
orem 1 and the rightmost array described in Definition 9. We also make use of
Lemma 7.

Lemma 7. The abelian palindromic array P of a string T satisfies:

P [i] = max{R(j) : j ∈ M(T, P̂A(T)[i])}

Where M is the match set as described in Lemma 5.

Proof. Lemma 5 indicates that the longest abelian palindromic factor occurring
at i is T [i . . j] where j is the index of the rightmost prefix parity integer with a
value contained in the match set M(T, i).

Efficient Recognition of Abelian Palindromic Factors 221

By Definition 9, this rightmost j can be found by taking the largest value
obtained when querying the rightmost array with every member of the match
set. ��
Theorem 2. Given a string T of length n over the alphabet Σ, we may deter-
mine the abelian palindromic array of T in O(|Σ|n) time and O(n + |Σ|) space,
when |Σ| ≤ log2(n).

Proof. Via the proof in Theorem 1 we are able to calculate the prefix parity
integer array P̂A(T) in O(n) time and with O(n + |Σ|) space.

Since |Σ| ≤ log2(n), we know all values of R(A)[i] ∈ {−1, 0, . . . , n − 1}.
Therefore the rightmost array R(P̂A(T)) may be calculated in O(n) time, by
parsing P̂A(T) from right to left and storing any new values encountered. Full
details are available in the pseudocode in Sect. 6.

We now apply Lemma 7, which enables us to determine the longest abelian
palindromic factor occurring at i by performing |Σ| constant time queries. Thus
a total of O(|Σ|n) constant time queries are required, and the total time com-
plexity to generate the abelian palindromic array is O(|Σ|n). ��

5 Conclusion

We have presented two algorithms, the first for recognising whether or not a
factor is abelian palindromic, and the second for generating an array which
provides the length of the longest abelian palindromic factor at each position in
a string.

The proposed algorithms are both dependant on a new data structure called
the prefix parity integer array, requiring O(n) time to compute for a string with
an alphabet size |Σ| ≤ log2(n). Additional complexity is required to determine
the longest abelian palindromic factor for each position, namely O(|Σ|n) time.

The main improvement in this work, would be to remove the need for the
current requirement that |Σ| ≤ log2(n), in order to obtain our current best
complexity time. This appears to be a reasonable goal.

222 C. S. Iliopoulos and S. Watts

6 Pseudocode

Algorithm. Abelian Palindromes
1: function getPrefixParityIntegerArray(T, Σ)
2: n = |T |
3: σ = |Σ|
4: A = integer array of length n filled with 0 � stores final result
5: B = integer array of length σ filled with 0 � stores powers of 2
6: B[0] = 1
7:
8: for i = 1 to σ − 1 do
9: B[i] = 2 × B[i − 1]
10: end for
11:
12: P = boolean array of length σ filled with 0
13: prev = 0
14:
15: for i = 0 to n − 1 do
16: if P[ord(T [i])] == 1 then � ord is the 0-indexed lexicographical order
17: A[i] = prev − B[ord(T [i])]
18: else
19: A[i] = prev + B[ord(T [i])]
20: end if
21:
22: P[ord(T [i])] = not P[ord(T [i])] � not 1 = 0, not 0 = 1
23: prev = A[i]
24: end for
25:
26: return A
27: end function

Algorithm. Abelian Palindromes
1: function getRightmostArray(A)
2: n = |A|
3: R = integer array of length n filled with -1 � stores final result
4:
5: for i = n − 1 to 0 do � parses A from right to left
6: if R[A[i]] == −1 then
7: R[A[i]] = i
8: end if
9: end for
10:
11: return R
12: end function

Efficient Recognition of Abelian Palindromic Factors 223

Algorithm. Abelian Palindromes
1: function getMatchSet(x, n)
2: M = integer array of length n + 1 filled with 0 � stores final result
3:
4: for i = 0 to n − 1 do
5: M [i] = x ⊕ 2i � XOR operation
6: end for
7:
8: M [n] = x
9:
10: return M
11: end function

Algorithm. Abelian Palindromes
1: function getAbelianPalindromicArray(T, Σ)
2: n = |T |
3: σ = |Σ|
4: A = getPrefixParityIntegerArray(T, Σ)
5: R = getRightmostArray(A)
6: P = integer array of length n filled with 0 � stores final result
7:
8: for i = 0 to n − 1 do
9: M = getMatchSet(A[i − 1], σ) � A[−1] defined as 0
10:
11: rightmostMatch = −1
12:
13: for each match in M do
14: if R[match] > rightmostMatch then
15: rightmostMatch = R[match]
16: end if
17: end for
18:
19: if rightmostMatch > i − 1 then
20: P [i] = rightmostMatch − i + 1
21: else
22: P [i] = 0
23: end if
24: end for
25:
26: return P
27: end function

References

1. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

2. Karhumäki, J., Puzynina, S.: On k -abelian palindromic rich and poor words. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 191–202. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 17

3. Subramanian, S., Chaparala, S., Avali, V., Ganapathiraju, M.K.: A pilot study on
the prevalence of DNA palindromes in breast cancer genomes. BMC Med. Genomics
9(3), 73 (2016)

4. Holub, Š., Saari, K.: On highly palindromic words. Discrete Appl. Math. 157(5),
953–959 (2009)

https://doi.org/10.1007/978-3-319-09698-8_17

	Efficient Recognition of Abelian Palindromic Factors and Associated Results
	1 Introduction
	2 Preliminaries
	2.1 Basic Terminology
	2.2 Abelian Palindromes

	3 Tools
	3.1 Initial Observations
	3.2 Prefix Parity Integer Array
	3.3 Rightmost Array

	4 Algorithms
	4.1 Abelian Palindromic Factor Recognition
	4.2 Abelian Palindromic Array Algorithm

	5 Conclusion
	6 Pseudocode
	References

