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Abstract. Biomolecular computation is the scientific field focusing on
the theory and practice of encoding combinatorial problems in ordi-
nary DNA strands and applying standard biology lab operations such
as cleansing and complementary sequence generation to them in order
to compute an exact solution. The primary advantage offered by this
computational paradigm is massive parallelism as the solution space
is simultaneously searched. On the other hand, factors that need to
addressed under this model are the DNA volume growth and compu-
tational errors attributed to inexact DNA matching. Biomolecular com-
putation additionally paves the way for two- and three-dimensional self
assemblying biological tiles which are closely linked at a theoretical level
to a Turing machine, establishing thus its computational power. Appli-
cations include medium sized instances of TSP and the evaluation of the
output of bounded fan-out Boolean circuits.
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1 Introduction

The seminal paper [19] is widely known for essentially establishing the field
of quantum computing. However, a lesser known offshoot is biomolecular com-
puting, alternatively known as DNA computing. The founding notions of this
computational paradigm were presented in [2], where it was proposed that regu-

lar DNA strands can represent combinatorial inputs instead of the functions of
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a living organism. Then standard lab operations can be applied to these strands
in order to extract strands containing a solution. As a concrete application, the
TSP was solved exactly through a brute force methodology in a medium sized
graph G = (V,E) in O (|[V| + |E|) elementary operations and O (log|V'|) DNA
strands, indicating the potential of massive parallelism. This was repeated in [32]
with a different algorithmic approach though in the sequence of lab operations,
establishing the fact that novel and efficient algorithms are also necessary in this
computational paradigm.

The primary objective of this survey is to concisely summarize the principles
and notions of the paradigm of biomolecular computing with an emphasis on
the potential for massively parallel computations. The latter may well serve in
the dawn of the big data and 5V era as an unconventional inspiration for the
designers of parallel algorithms or distributed systems.

The remaining of this survery is structured as follows. Section 2 summarizes
the principal concepts of biomolecular computing, the connections to known
computational models, and describes computational applications not examined
elsewhere in this survey. The elementary operations, advantages, and disadvan-
tages of the biomolecular paradigm are explained in Sect.3. The most impor-
tant application, namely TSP, is described in Sect. 4. The parallelism potential
is explored in Sect. 5, while factors working against the computation scale up are
investigated in Sects.6 and 7. The main points are summarized in Sect.8 and
certain conclusions are drawn. Finally, Table 1 summarizes the survey notation.

Table 1. Survey notation.

Symbol Meaning

& Definition or equality by definition

[s], |s] DNA strand s in 5-3 and 3-5 direction respectively
5 Complementary DNA strand of s in 5-3 direction
| Length (number of bases) of DNA strand s

s1 || s2 Strands s1 and s2 match completely

s1 J 82 Strand sz matches to the right side of s1

s1 C s2 Strand so matches to the left side of s

s1 U s2 Strand s2 matches to a middle segment of s;

s1 lf s2 Strands s; and sz do not match

s1Ns2 = k Strands s1 and s2 overlap in k bases

|S| Cardinality of set S

E [X] Mean value of random variable X

Var [X] Variance of random variable X
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2 Previous Work

As stated earlier, the groundwork for the paradigm of biomolecular computing
was laid in [2] followed by [32]. Soon, notions and applications emerged as noted
in the early surveys [40,45,47]. The computational power of the paradigm is
explored in [6,9] and its limits in [18]. The enormous potential for parallelism
is highlighted in [21-24,43]. The notion of self assembly was applied to this
paradigm in [1,31,48]. According to this principle, which is reminiscent of non-
supervised learning, DNA tiles in a test tube given proper mobility conditions
and time can attach themselves to tiles or strands containing fully or partial
complementary sequences without human intervention in two [50,51] or three
dimensions [28]. Issues pertaining to complexity of the biomolecular paradigm
are examined from various viewpoints in [4,29,46].

Another way to examine the potential and the complexity of biomolecular
computation is through the simulation of the operation of sequential, bounded
fan-in Boolean circuits with DNA strands as first shown in [3,36] and described
in detail in the follow up work [39]. Questions regarding the complexity of con-
structing and evaluating the output of such circuits are addressed in [34,35,37],
whereas self assembling circuits are investigated in [38].

Among the algorithmic applications of biomolecular computation are the
brute force parallel solution of k-SAT in [13] and in [5], dynamic programming
on the Cell Matrix architecture [49], and splicing systems [11]. Shortest path
algorithms implemented in biomolecular elementary operations are presented in
[33] and in [42]. Length bounded computing with DNA strands and its connec-
tions to space complexity are explored in [20]. An evolutionary algorithm also
expressed these operations is described in [12].

Finally, steps regarding the implementation of a DNA computer are given in
[25,26,41,44], although these proposals vary. DNA operations can be also sim-
ulated over Neo4j with properties in edges corresponding to physical or chem-
ical DNA properties in an approach similar to the one presented in [30] for
implementing persistent data structures. Concerning software, a fully functional
graphical computing environment for biomolecular computation is described in
[10]. It also includes DNA C, a C variant which is a combination of the C con-
structs pertaining to integers with an extension implementing the fundamental
operations of biomolecular computing. The exclusion of floating point arith-
metic should not come as a surprise, since biomolecular computation is discrete
in nature and has been so far applied only in combinatorial problems. Nonethe-
less, should the need arise, floating point numbers can be approximated fairly
well by rationals or by continued fractions. For instance, the golden ratio ¢ is
represented by the infinite fraction®

p=l+—"— (1)
1+
1+

14+...
1 OEIS sequence A000012.
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3 Paradigm Notions

3.1 Definition

Knowledge transfer and inspiration between computer science and biology has
been fruitful. This relationship has already resulted in bioinformatics, connec-
tomics, and computational biology. One of them, with direct reference to the
everyday laboratory handling of DNA strands, is the paradigm of biomolecular
computation which can be formally defined as

Definition 1. Biomolecular computing is the art and science of using DNA
strands as computational medium to appropriately encode candidate solutions to
(possibly intractable for a Turing machine) combinatorial problems and using
standard biological laboratory techniques in order to select an exact solution.

From Definition 1 follows that any DNA encoding corresponds strictly to
candidate solutions of a combinatorial problem and not to the design and func-
tions of a living being. Also, the difference from the fields of bioinformatics and
computational biology should be clear. Although the inspiration, terminology,
and implementation are biological, the paradigm is definitiely computational as
the objective is to codify and efficiently solve instances of intractable, at least
under the conventional Turing machine model, combinatorial problems.

3.2 Abstract DNA Operations

Under the biomolecular computation paradigm the elementary operations
applied to the DNA strands in the test tube are the following.

— Initialize (Tp): Crate a test tube T containing each admissible candidate
solution for a combinatorial problem according to a probability distribution,
usually the uniform one.

— Copy(Tp, T1): Copy the contents of Ty to the tube of T;.

— Merge(Ty, T1): Mix the contents of Ty and T} to Tp.

— Detect(T)): Examine whether Tj is empty.

— Select(Ty, sg): Extract sg, if present, from Tj.

— Extract(¢): Extract strands of length /.

— Cleavage(sg, 0g): Slice so according to the shorter template strand oy.

— Anneal(sp): Create double DNRA strands from a single one.

— Denature(sg): Create single DNA strands from a double one.

— Ligate(Tp): Create bonds between double strands inside tube Tp.

The basic storage unit in this paradigm is the test tube which may contain a
fixed volume of DNA strands. The latter are not necessarily of the same type. In
fact, the opposite is quite common as the tube contains the results of a sequence
of lab operations applied to a set of candidate solutions. It is only after the end of
these operations where the solution, if any, to the instance at hand is extracted
and cultivated that a test tube may contain only copies of a single strand.
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4 TSP

Perhaps the most well known biomolecular algorithm is the one shown in algo-
rithm 1 for solving TSP for a graph G = (V, E). Notice this is a brute force
method which can be used among others to discover community structure in
graphs as in [15,27]. However, this approach could not be a basis for heuristic
techniques such as those in [16,17]. The primary characteristic of algorithm 1
is that all paths of length j are created in j steps. Assume that each vertex is
encoded with b, and each edge with b, bases. Each vertex vy has a unique coding
s, in DNA bases, while the edge (v;,v;) is encoded as the concatenation of §;
and s;.

Algorithm 1. TSP expressed in biomolecular operations

Require: tubes Ty, T, with encoded vertices; tube T, with encoded edges
Ensure: a Hamilton circle is found

1: initialize (7))

2: for j — 1 to |V] do
3 merge(To, Te)

4 merge(To, T,)

5. ligate(Tp)
6
7
8
9

: end for

: extract(|V| (by + be))
: denature(T))

: return detect(7o)

5 Parallelism

Theoretically, the biomolecular computation paradigm can be reduced to sim-
ulating a CREW PRAM, a version of RAM with P > 1 processors and M
memory locations where multiple processors can read the same memory address
but only one can write any given time at a given memory address. The CREW
PRAM operation set LOAD, READ, WRITE as well as the memory configu-
ration of this machine can be simulated by a sequence of biomolecular opera-
tions as shown in [46] through a sequence of successive configurations of length
O (log (PM)) each. Starting from a random configuration, mixing a sequence of
admissible configurations, at the expense of a multiplicatively growing volume,
finally yields one superconfiguration of concatenated configurations representing
a desired sequence of computation, assuming that one can be found. By repeat-
edly applying cleavage operations, the individual configurations are extracted.

Another way to quantify the actual parallelism offered by the biomolecular
paradigm is to use Amdahl’s law as a benchmark

1
(1—70)4-%’

1>

I 0<v<1 (2)
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where I is the actual speedup, 7o is the parallelizable part of the task, and s is
the speedup of that part. Thus, the size of the parallelizable part plays a crucial
role and essentially defines how much can be actually sped up as for infinite s
1
I—

I — (3)

6 Error Free Computations

6.1 Overview

Errors in the biomolecular computation can be classified into two broad cate-
gories. The first source of errors lies in the encoding of candidate solutions as
there can be partial DNA matches which may eventually create false final solu-
tions, in other words creating false positives. Moreover, the elementary opera-
tions described above may not be executed with absolute sucess due to a number
of factors. This might create depending on the nature of the operations involved
either false positives or false negatives.

6.2 Encoding

Concerning the solution encoding, an obvious approach might be to choose an
encoding with controllable redundancy (. Namely, each bit of information is
expressed with oy = 1 + [y bits in total and on average. Thus, the ratio pg of
original to redundant information is

A 1 1
PO Bo ap —1
For instance, in a graph problem with |V if each vertex normally requires
[log |[V'|] bits to encode, then it would require oy times as much.

Regarding the number of false negatives or false positives, it can be argued
that it is proportional to the partial matches of DNA strings. While there is
a case where an intended match of two DNA strands s; and s, fails, strand
mismatches denoted by s; |f so can be considered accurate for the most part.
On the contrary, partial matches either from left or from right are with high
probability indicators of failed operations, especially if the two strands overlap
in only a few bases. For a single biomolecular step in the same test tube Ty, let

<1 (4)

u = |sy | sof
up (k) = |s1 082,81 Nsa = ki
up (k) = |s1C s2,81Ns2 = Kk
U = |81 U 89|
Uy = [s1 |f s (5)
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denote respectively the number of DNA perfect matches, right and left matches
in k bases, middle matches and no matches. Thus, in a single biomolecular step
the ratios of true matches Q1 and true mismatches Q~ are

+ 4 U+ Um
@ = |2 2]
U+ Uy, +Zur(k:) +Zul (k)
k=1 k=1
Ot — (6)
o+ > up (k) + Yy (k)
k=1 k=1

Another way to assess the reliability of a sequence of ng biomolecular oper-
ations is the following. Let m; be the success probability of each operation. The
success probability 7 by the product rule, assuming operation independence,
is

ot 2 Hﬂk:m...ﬂ'no (7)
Thus, if 1 < 7, < pg, then the following bounds can be derived
e Mok2 < 7T+ < e oML (8)

Perhaps a more accurate way to assess the average value of 71 is to consider
the geometric mean of the sequence

e E
o no no ng

= (Hwk> = i1 (H <1+le>> y TR = M1+ 7k 9)
k=1 k=1 =

6.3 Trials

3

Due to the nature of the actual biological operations, they are not always exe-
cuted with abolute correctness. This can be attributed to a number of reasons
including the age, technology, and condition of lab equipment, the chemistry and
quantity of DNA strands themselves, the nature of bonds between strands, and
lab conditions such as radiation and electomagnetic pulses of various frequences.
As a result, a strand encoding an invalid solution can emerge from the test tubes
or a strand containing the solution can be missed in them [7,8].

The geometric distribution models sequences of test outcomes where the
probability of success is pg. Its probability mass function is defined as

prob{X = k} 2po(1—po)*, keZ* (10)

The interpretation of X is that it models the number of failed attempts of an
experiment before the single successful outcome of that experiment. The mean
value of this distribution is readily calculated in equation (11).

+oo
1-— .
E[X] £ Y kprob{X = k} = Topo — closit(1—po) (11)
k=0
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The logit () function is the inverse of the sigmoid function extensively used
to train deep recurrent and tensor stack networks [14] expresses the logarithm
of the odds of a single Bernoulli trial. Also is a special case of a link function
to the generalized linear model and leads to the logistic regression, commonly
found in deep learning applications.

The variance of X is its mean value scaled by the success probabilty pg. This
is coherent with intuition, since the larger pg, the fewer attempts are required
to achieve success and the number of failed attempts will be close to zero.

Var [X] £ +f(k—E[X])2pro1o{X YR e EIXT gy
k—0 Do Do

7 Volume Considerations

The major practical limitation of biomolecular computation is the volume neces-
sary to represent each candidate solution. This is limited not only by the volume
of the test tube, but also by the encoding which, in turn, implies a redundancy
rate to ensure higher operation success probabilites. If V[ is the hard limit for
the test tube volume, aq the encoding redundancy factor, n is the number of
candidate solutions, and ¢y the solution length, then

1 _1
Vo (13)

Vo > (aonfo)l-i_e s n < —— 0
aoplo

where € is a constant which depends on a number of diverse factors such as
lab temperature and tube technology. If a biomolecular computation requires
Jo steps to complete, then the required volume grows exponentially. Then, the
above limit should be modified as

1 1
n< VT (14)

8 Conclusions

This survey explores the foundations, applications, and limits of biomolecular
computation which represents an alternative computational paradigm. The lat-
ter is based on the handling of potentially very long strands of ordinary DNA
using standard biology lab operations such as annealing, generating a comple-
mentary strand, selecting a strand, or concatenating two strands. These strands
do not codify the inner workings of any living organism. Instead, they contain
a suitably selected representation of a computational problem. By selecting an
appropriate representation of an input instance, a plethora of various output
instances are created by a series of biological operations. Although a fraction
of the abovementioned output instances may contain incomplete operations and
must be removed by cleansing operations, their majority will contain with high
probability a solution.
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