
DistClusTree: A Framework for
Distributed Stream Clustering

Zhinoos Razavi Hesabi1(B), Timos Sellis2, and Kewen Liao2

1 School of Computer Science and IT, RMIT University, Melbourne, Australia
zhinoos.razavi@rmit.edu.au

2 Department of Computer Science and Software Engineering,
Swinburne University, Hawthorn, VIC, Australia

{tsellis,kliao}@swin.edu.au

Abstract. In this paper, we investigate the problem of clustering dis-
tributed multidimensional data streams. We devise a distributed cluster-
ing framework DistClusTree that extends the centralized ClusTree app-
roach. The main difficulty in distributed clustering is balancing com-
munication cost and clustering quality. We tackle this in DistClusTree
through combining spatial index summaries and online tracking for effi-
cient local and global incremental clustering. We demonstrate through
extensive experiments the efficacy of the framework in terms of commu-
nication cost and approximate clustering quality.

1 Introduction

Classical clustering algorithms are mainly designed for static datasets while any-
time clustering of massive data streams is highly demanded in modern dis-
tributed data acquisition systems. Continuously changing data distributions
raises a challenge: new data should be able to efficiently locate its cluster, and
the clustering structure should be updated incrementally in a continuous online
manner, that is, the structure is reorganized once the distribution with new
data significantly invalidates the older organization. Further, in the setting of
distributed clustering, updating master clustering via communications and its
entire reorganization become far more challenging.

Hence, the problem we target to solve is on optimizing the lifecycle of dis-
tributed stream clustering – how can we build, organize, track, and update
high quality summaries/approximations of clusters in an effective and efficient
manner?

ClusTree [8] is one state-of-the-art centralized multidimensional stream clus-
tering approach that leverages spatial index and microclusters together as hier-
archical summaries of clusters. It achieves effective and efficient anytime cluster-
ing. However, for a distributed framework, communication cost is often the main
bottleneck and the quality of global clustering is paramount. Hence, the focus
of the study is to track and balance these criteria in our proposed DistClusTree
framework while in terms of the clustering quality performing no worse than
c© Springer International Publishing AG, part of Springer Nature 2018
J. Wang et al. (Eds.): ADC 2018, LNCS 10837, pp. 288–299, 2018.
https://doi.org/10.1007/978-3-319-92013-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92013-9_23&domain=pdf

DistClusTree: A Framework for Distributed Stream Clustering 289

ClusTree. Specifically, the new framework DistClusTree defines the effectiveness
of global clustering at a central site as a cost function of communication and
degree of cluster approximation. This means the framework is able to monitor
changes in local sites and strategically send updates to the central site. In this
way, communication is only triggered between local sites and the central site
whenever the quality of clustering degrades beyond a threshold.

To the best of our knowledge, this is the first attempt of a distributed mul-
tidimensional stream clustering framework that combines index data structure
for summarizing and maintaining local microclusters, and online tracking for the
monitoring and maintenance of global clustering.

As a summary, our main contributions of the paper are as follows:

– We extend ClusTree into a distributed framework DistClusTree.
– We propose adaptable solutions to select local microcluster summaries to be

sent to the central site. The central site then refines the quality of clustering
according to real-time network traffic and degree of privacy.

– We model the monitoring and maintenance of distributed clustering as online
tracking and extend a 1-to-1 multidimensional online tracking scheme into
m-to-1 (m local sites with one central site).

– We demonstrate through extensive experiments the performance of our frame-
work in balancing communication cost and clustering quality.

2 Related Work

Due to space limit, here we only briefly review the typical distributed cluster-
ing algorithms related to our work. In [2], two types of continuous distributed
clustering algorithms were proposed: local and global. The algorithm is formu-
lated based on k-center clustering algorithm. The main objective in k-center is to
minimize the maximum radius/diameter of the clusters. In their local solutions,
each local site builds and keeps its local model, and only updates are sent to the
central site. In their global algorithm, a global model is created iteratively in
a central site by message passing between local sites and the global site. Then
the global model is sent to all local sites and in this way all sites have the same
view of the clustering model. Local sites insert their data points into the global
clustering and continuously send their updates to the central site. The central
site decides whether it needs to recompute the global model and sends the new
clusters to the local sites. As in most of the distributed clustering settings, dis-
tributed clustering results are compared with their centralized counterpart.

A distributed extension of the Expectation Maximization (EM) algorithm
called CluDistream is proposed in [12]. The authors introduced a framework for
clustering distributed data streams in the presence of noisy and incomplete data.
The underlying distribution of data has been learnt by maximizing the likelihood
of the data clusters. Local sites monitor the current model till they could not
describe a new chunk of data. Then a clustering is performed to account for the
changing data distribution. In this way, they reduced communication cost by

290 Z. Razavi Hesabi et al.

just sending updates from local sites to the central site. In [5], centralized den-
sity based clusterings algorithm (DBSCAN) [3] was extended to the distributed
model. Each local site performs a clustering on its own data and sends its repre-
sentatives to the central site. Local representatives are grouped into each other
to represent the final clustering in the global site. The work shows that the
results of clustering in centralized and distributed model are significantly close
to each other. There are some other works that have addressed clustering dis-
tributed data streams such as [6,7] and there is a recent survey [9] on distributed
clustering of ubiquitous data streams.

3 Preliminaries

In this section we explain in more detail: (i) the ClusTree approach adopted for
local clustering in DistClusTree; (ii) the underlying R-tree data structure in which
local cluster summaries are stored and maintained.
ClusTree- ClusTree is introduced in [8] as a stream clustering algorithm with
the ability of anytime clustering. ClusTree consists of two phases: online and
offline. In the online phase, it collects summary of data in the form of a vector
of number of data points (N), linear sum (LS), and Squared Sum (SS) of data
points – the Cluster Feature Vector (CFV) considered as a microcluster. Storing
these summaries instead of raw data helps to save space. Also, these summaries
are sufficient to compute statistical parameters such as mean, variance, centroid,
radius, diameter for further off-line clustering. Updating CFVs is easy and com-
putationally fast because of their additivity and subtractive properties. ClusTree
uses an index tree data structure, essentially an R-tree, to maintain collected
summary statistics (i.e. the microclusters). The idea is to build a hierarchy of
microclusters at different levels of granularity. This data structure accelerates
the process of searching the right microclusters for inserting new data points
as they arrive. When a new data point arrives, it descends the index tree till
arriving the leaf node which contains a microcluster that has the minimum dis-
tance to the inserted data point. From time to time microclusters are transfered
to a disk to be kept for further offline processing. For example a data partition
clustering like k-means or DBSCAN is performed on microclusters to form final
clusters in an offline phase. The outputs of the offline phase are macroclusters
whose size is relatively small compared to the entire data stream.
R-tree- ClusTree leverages an R-tree [4] data structure to maintain the col-
lected summary statistics of data (i.e., CFVs) online. R-tree is a tree data struc-
ture used as a spatial index. R-tree clusters multidimensional data based on
their proximity. It represents nearby data objects with their minimum bounding
boxes in different levels of the tree. The main goal of this data structure is to
group adjacent data objects and represent them with their Minimum Bounding
Rectangle (MBR) in the next higher level of the tree. Since all data objects
fall within this MBR, a query can be answered if it intersects any bounding
rectangle. Aggregation/Summarization of objects occurs at the higher levels of
the tree while the root represents aggregation of all data objects. From a clus-
tering point of view, descending the tree reduces within-cluster sum of squares

DistClusTree: A Framework for Distributed Stream Clustering 291

error. The within-cluster sum of squares measures the variability of the data
points within each cluster. Usually a cluster with a small sum of squares is more
compact than a cluster that has a large sum of squares. This translates to an
increased granularity of clustering at the leaf level of the tree where data objects
are indexed. This can also be seen as an increasingly coarser approximation of
data distribution as we move up in the tree.

4 DistClusTree

In the framework, m local sites are distributed in a network and each of them
receives and incrementally clusters a continuous stream of data, possibly with an
infinite length. A master/central site instead clusters and maintains the union
of the local site data to produce the final global clustering result. We are partic-
ularly interested in devising mechanisms that allow local sites to communicate
with the central site efficiently. Leveraging summarized but still informative data
to be sent to the central site for global clustering instead of sending the actual
massive data points is a key approach to reduce communication cost and pre-
serve privacy. Moreover, a communication can be triggered between local sites
and the central site every time a new data object arrives at each local site so as
to update clusters maintained at the central site. This poses an expensive com-
munication rounds of O(n), where n is the total number of arrived data points.
Therefore, a plausible way to balance the communicate cost and clustering qual-
ity is to trigger communication periodically and only send the selected updated
summaries/representatives to the central site. Our studies shows the choice of
proper local representatives has a significant impact on communication cost and
central clustering result. The representatives form a summary of local models at
a given time snapshot. The summary is sent to the central site and kept being
locally updated as new data points (stream snapshots) arrive.

In essence, DistClusTree consists of four stages: (1) Continuous local clus-
tering; (2) Extracting local representatives; (3) Distributed microcluster track-
ing; and (4) Maintaining global clusters. These are described in detail in the
following.

1- Continuous Local Clustering. Every local site clusters its data incremen-
tally with the ClusTree approach. Summaries of data are collected as CFV s and
maintained dynamically in an R tree. In this way micro-clusters are maintained
in various levels of the tree and in different resolutions (i.e. coarser microclusters
are located in higher levels of the tree). Therefore, the root node in the ClusTree
contains the broadest view of all microclusters at the current snapshot, while
the leaf nodes include all of the fine-grained micro-clusters. Such hierarchically
summarized organization is shown in Fig. 1.

2- Extracting Local Representatives. To extract local representatives, we
propose two simple but effective and adaptable approaches: Naive-DistClust and
DistClust.
Naive-DistClust- Local representatives from different levels of the tree are
extracted regularly (i.e. at every ΔT time period) to be communicated to the

292 Z. Razavi Hesabi et al.

1

1

root node is a ball containing all created
micro-clusters at the current snapshot

Fig. 1. The local ClusTree summary in
DistClusTree (source [10]).

Observer S

f(t) = Sequence of values

Tracker T

Approximate f(t) within
error threshold of the

value f(t)

Fig. 2. One-to-one online
tracking.

central/global site. This approach is adjustable based on the network traffic (i.e.
the frequency of data arrivals), degree of privacy, and required quality of central
clustering. Depending on traffic and required quality of clustering, local sites can
send created micro-clusters at different levels of the tree to the central site. For
maximum quality, local sites should send all created micro-clusters at their leaf
level. While in a heavily loaded network (e.g., peak hours), more compressed
trees (i.e. at most the root level) with some sacrifice of clustering quality can be
sent to the central site. This translates to reducing the overall communication
cost by sending more coarse local micro-clusters from higher levels of the tree to
the central site.

DistClust- A further way to reduce communication cost is for every tree node
only sending statistical summaries of its contained microclusters to the central
site. For example, in an R-tree only with 3-fan outs (i.e. the number of entries in
each node where each entry represents one summarized micro-cluster), at level
1 (considering level 0 as the root level), we have 3 subtrees each containing 3
micro-clusters. This means we have 9 micro-clusters in total at level 1. Instead
of sending all these 9 entries to the central site, we could choose to send only the
median of the entries from each node, thereby reducing communication cost to
one-third. Next, we discuss in detail how local representatives (i.e. the selected
microclusters) are tracked and sent with an on-line tracking algorithm.

3- Distributed Microcluster Tracking. We first give a brief introduction
on online tracking and then illustrate how we formulate the global clustering in
DistClusTree as an online tracking problem. In the conventional online tracking,
a pair of observer and tracker communicates with each other. Observer observes
values of a function f over time and keeps inform the tracker these values time
to time as shown in Fig. 2. However, determination of a strategy that minimizes
communication cost is the main issue in online tracking problems. A naive solu-

DistClusTree: A Framework for Distributed Stream Clustering 293

tion is that observer sends every observed value to the tracker. This leads to a
heavy communication. To minimize the communication cost, an error threshold
is generally introduced. This means observers only communicate with the tracker
whenever a value of f(tnow) exceeds a predefined error threshold Δ from the last
communicated value f(tlast). We extend the multidimensional one-to-one online
tracking framework presented in [11] that only works when there is an observer
and a tracker. It is not designed for the distributed m-to-one communication
where there are multiple observers and a central tracker. The one-to-one online
tracking algorithm divides the entire tracking period into rounds and denotes
Aopt as the offline optimal algorithm. A round is started by initializing a set
S = S0 which contains all possible points that might be sent by Aopt in its last
communication. In a while loop, a median of S is calculated and sent to the
tracker. If ‖f(tnow) − f(tlast)‖ ≥ βΔ, where β = 1/(1 + ε) and Δ represents the
threshold error, then S is updated as S ← S ∩ Ball(f(tnow)),Δ), where f(tnow)
is the center of Ball and Δ is its radius in d-dimensional space. A round is ter-
minated when S becomes empty. The online tracking algorithm is represented
in Algorithm 1.

1. Let P = Ball(f(tnow), βΔ);
2. while (ωmax(p)) ≥ εΔ do

Let g(tnow) be the centroid of P ;
send g(tnow) to tracker;
wait until ‖f(tnow) − g(tlast)‖ ≥ βΔ
S ← S ∩ Ball(f(tnow), Δ)
end

Algorithm 1. One round of
d-dimensional tracking

Fig. 3. Convex set P is covered by
Ball(f(tnow, βΔ).

We model our clustering algorithm based on the above online tracking algo-
rithm. First we show how we can keep track of micro-clusters assuming there is
one local site and one central site, and then we extend our algorithm from one
local site to multiple local sites as shown in Fig. 4 (i.e., distributed) that they
communicate with a central site in a synchronous mode. We explain with the
Definition 2 and Lemma 4 from [11] below to illustrate our tracking model.

Definition 2 (Directional Width). For a set P of points in Rd, and a unit
direction μ, the directional widths of P in direction μ is ωµ(P) = maxp∈P 〈μ, p〉−
minp∈P 〈μ, p〉, where 〈μ, p〉 is the standard inner product.

For simplicity, suppose a given set of points form a convex set P , and the centroid
of P is the intersection of hyperplanes that divide P into two equal parts. This
convex set has minimum and maximum directional width as ωmin(p), ωmax(p),
respectively.

294 Z. Razavi Hesabi et al.

Lemma 4. For any convex set P , if H is any supporting hyperplane of P at
p ∈ ∂P , that is, H contains p and P is contained in one of the two halfspaces
bounded by H. Then there is a ball B with radius βΔ such that H is tangent
to B at p and B contains P as shown in Fig. 3.

Global
Clustering

Remote
Site 1

Remote
Site 2

Remote
Site m

Micro-Clusters Micro-Clusters Micro-Clusters

Data stream Data stream Data stream

.

Central Site

Fig. 4. The global DistClusTree framework.

Local site acts as an observer that sends an approximation of created micro-
clusters to a central site at different time snapshots. Assume that error thresh-
old Δ is determined based on the maximum distance between centroids of two
clusters at two consecutive snapshots of ti and ti+1, where Cti = f(tlast) and
Cti+1 = f(tnow) are the centroids of previous and current root node. According
to [11], a convex set P in our local ClusTree is a set of microclusters taken at
snapshot tnow. Based on Lemma 4, a ball containing P is the root node at snap-
shot tnow. Following this, we initialize P with the root node, and then centroid
of the current root (i.e. as a representative of all microclusters) is computed as
g(tnow) and sent to the tracker. In the next snapshot, if the absolute euclidean
distance between the centroid of the previous root node and the current root
node is within the predefined error threshold, then there is no communication.
Otherwise, the intersection of two roots (two balls) is computed. If the maximal
directional width of this intersection is greater than βΔ, then a communication
between local site and the central site is triggered and the centroid of the inter-
section is sent to the central site. Otherwise, this round is finished and the next
new round is triggered. Different scenarios that may happen between the last
communicated root node and the new root node at two different snapshots of t1
and t2 are presented in Fig. 5 (a–c).

4- Maintaining Global Clusters. For simplicity, we only enhance the tracking
framework from 1-to-1 to m-to-1 sites in a synchronous manner. Each local site

DistClusTree: A Framework for Distributed Stream Clustering 295

Fig. 5. Different scenarios to trigger a communication between a local site and a central
site to update the global clustering.

keeps track of its local representatives in periodical time snapshots and if any
threshold breaking occurs at a local site, then this site simply sends its updates
to the central site along with all other updates from other local sites. As depicted
in Fig. 4, local sites communicate with a central site if f1(t1) − f1(t2) are within
some error threshold. After sending updates to the central site, central site does
a global clustering using k-means over the union of all received microclusters
from local sites. Local sites incrementally send their updates to the central site
to keep global clusters updated. By receiving regular updates, the central site
incrementally keep global clusters updated.

5 Experiments

We implement DistClusTree under Massive Online Analysis (MOA) [1] and eval-
uated the distributed algorithms based on a synthetic dataset. The dataset is
generated using Gaussian distribution with varying number of attributes and
classes. Data points are randomly and equally divided among sites and for the
central clustering, we use the union of the local points. Our experiments focus
on clustering quality and the communication cost of distributed clustering con-
sidering their dependency on different parameters such as number of sites, the
accuracy ε, granularity of local representatives and runtime of distributed clus-
tering in comparison with centralized clustering. To assess our framework, we
ran ClusTree on each local site and then collected all representatives of local
sites w.r.t the demanded granularity of local clusterings (i.e., different levels of
local trees) and then performed a global clustering on these representatives. We
executed all the experiments on the same machine and reported all the results
as average of 10 runs of our algorithms. We compare clustering quality of our
distributed clustering (i.e., DistClusTree) against its centralized counterpart, i.e.
ClusTree. As mentioned in [5], different studies have evaluated their algorithms
based on characteristics of their distributed clustering algorithm in variety of
ways and the majority of studies compares their proposed distributed clustering
algorithm against their centralized counterpart [9]. Therefore, we compared the

296 Z. Razavi Hesabi et al.

result of our distributed clustering algorithms to a central clustering of the n
data points when all n data points are clustered using ClusTree in local sites and
applying k-means on top of the microclusters created at leaf level of the tree.

Clustering quality - We measure quality of clustering by defining Mean
Squared Error (MSE), and also using within-cluster sum of squares error. As
the baseline, firstly we sent all microclusters created at the leaf level to the cen-
tral site and applied k-means to calculate cluster centroids. Secondly we sent
microclusters of each level of the local trees and find cluster centroids for each
level using k-means. To calculate MSE, we take the average of euclidean distances
between cluster centroids obtained from the last level of tree in ClusTree (i.e.,
centralized model) and every level of the local trees (DistClust/Naive-DistClust).
As it can be seen in Fig. 6(A), MSE is reduced by descending tree since micro-
clusters with smaller within cluster sum squared error are located at the lower
level of the tree which impacts on quality of clustering in the central site. We
compared MSE of k = 5 centroids at different levels of the tree for both Dist-
Clust and Naive-DistClust. In the latter, we send all created microclusters from
different levels of trees while in DistClust we only send a mean of microclusters
of each node of tree. That is the reason MSE between ClusTree and NaiveClust
is less than MSE between ClusTree and DistClust. The MSE difference between
both distributed algorithms is getting higher at the lower levels of tree since gran-
ularity increases at the bottom levels and sending less microclusters impacts on
calculating right centroids and consequently on clustering quality. We ran the
experiments with 3 number of fans out at each node of R-tree as referring to [8],
3 fans out is the best number of entries (#microclusters at each node) in terms
of space and distance computation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L1 L2 L3 L4 L5 L6 L7

M
ea

nS
qu

ar
eE

rr
or

(M
SE

)

(A) Levels of tree

Naïve-3sites
DistClust-3sites

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L1 L2 L3 L4 L5 L6 L7

M
ea

nS
qu

ar
ed

Er
ro

r(
M

SE
)

(B) Levels of tree

5-sites
10-Sites
50-sites

Fig. 6. (A) Comparison of clustering quality of Naive-DistClust and DisClust with
ClusTree on different levels of tree, when number of sites = 6 and number of entries = 3;
(B) MSE comparison of varying number of sites: 5, 10, 50.

On the other hand, as you can see in Fig. 6, MSE is reduced by descending the
tree. The reason is that purity of microclusters at lower levels of tree is increased
which causes to reduce MSE between cluster centroids obtained from upper and
lower levels of the tree. We test our framework for different numbers of sites 5,

DistClusTree: A Framework for Distributed Stream Clustering 297

10, and 50. Although in all plots in Fig. 6(B) MSE is reduced by descending the
tree, reducing number of sites reduces quality of clustering because we send less
micro-clusters which impacts on final quality of clustering at the central site.

Communication cost - We calculated communication cost in terms of num-
ber of transfered microclusters from each level of the tree as communication
ratio = (compressedtree/uncompressedtree) × numberofsites.

In our formula, communication ratio is calculated as the ratio of compressed tree
to uncompressed tree. Uncompressed tree is a full multi-way tree with maximum
number of levels. Maximum number of level is predefined by the user or local
memory limit. Compressed tree is a full multi-way tree with less number of levels
compared to the uncompressed one. The lowest communication ratio is the ratio
of the minimum number of levels (maximum compression, i.e., root level of tree)
to the maximum number of levels. Communication ratio also depends on the
number of entries in each node. For instance, in a 3-way full tree, level 0 which
is root level has 1 node, level 1 has 3 nodes, level 2 has 9 nodes and in general
for n-multi-way tree, the number of node in level n is calculated as mn, where
m represents number of ways in the tree.

We compare communication cost of different levels of the tree for different
number of entries at each node of the R-tree. In Fig. 7, we compare the commu-
nication cost for two different number of entries, 3 and 4 in our two proposed
distributed clustering algorithms. By sending median of microclusters at each
node in DistClust, we reduce communication cost to 1/k, where k is the number
of entries. We reduce communication cost to one third with Distclust for the
choice of three entries in all levels of tree. This reduction is obvious in the lower
levels of the tree where more granular microclusters are required.

Fig. 7. (a) Effect of number of entries on communication cost; (b) Communication cost
of DistClust for different number of sites when number of entries = 3.

Figure 7(b) represents the communication cost in terms of number of micro-
clusters for 3,50 and 100 sites. The number of entries in all 3 experiments has
been set to 3 and the height of tree is 11. As it can be clearly seen that com-
munication cost depends on the number of sites and different levels of the tree.
To have more granular clusters we need to send microclusters at the lower level
of tree causing to increase communication cost exponentially. While by sending

298 Z. Razavi Hesabi et al.

representatives from upper levels of trees we reduce communication cost sig-
nificantly and still have good quality clustering as demonstrated in the above
experiments.

Effect of error threshold Δ - We evaluated the effect of varying error thresh-
old on communication cost. Error threshold is the difference between centroid
of the new microcluster at snapshot ti and the previous transmitted at snap-
shot ti−1. As error threshold is increased the communication cost is decreased
since we send less number of updates to the central site by increasing euclidean
difference between centroids of previous and current snapshots. The communi-
cation cost at the lower levels of the tree is higher than the upper levels of tree
as shown in Fig. 8 for L1 as root level and level 6. However, increasing error
threshold reduces quality of clustering.

Fig. 8. Effect of different Δ values on
communication cost, level 1 and 6, 10
sites.

Fig. 9. Runtime for central and dis-
tributed clustering with varying num-
ber of sites.

Runtime - In Fig. 9, the runtime of DistClusTree is shown. As number of sites
are increasing, the distributed approach performs much better than a single
clustering algorithm applied to the complete data set of 200k data points.

6 Conclusion

We extended ClusTree into DistClusTree, a comprehensive distributed framework
for stream clustering. The framework leverages both spatial index summaries
and online tracking for balancing communication cost and clustering quality.
We demonstrated in experiments that DistClusTree efficiently produces clusters
as good as its centralized version. DistClusTree is able to reduce communica-
tion cost significantly and it is easily configurable in practice according to the
requested clustering quality. For future work, we plan to carry out more insight-
ful theoretical analysis and justification of DistClusTree.

DistClusTree: A Framework for Distributed Stream Clustering 299

References

1. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

2. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: continuous
clustering of distributed data streams. In: 2007 IEEE 23rd International Conference
on Data Engineering, pp. 1036–1045, April 2007

3. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters a density-based algorithm for discovering clusters in large spatial
databases with noise. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press
(1996)

4. Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14.
ACM (1984)

5. Januzaj, E., Kriegel, H.-P., Pfeifle, M.: Towards effective and efficient distributed
clustering. In: Workshop on Clustering Large Data Sets ICDM, pp. 49–58 (2003)

6. Kargupta, H., Huang, W., Sivakumar, K., Johnson, E.: Distributed clustering using
collective principal component analysis. Knowl. Inf. Syst. 3, 2001 (1999)

7. Klusch, M., Lodi, S., Moro, G.: Distributed clustering based on sampling local
density estimates. In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence, IJCAI 2003, pp. 485–490. Morgan Kaufmann Publishers Inc.,
San Francisco (2003)

8. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The clustree: indexing micro-clusters
for anytime stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011)

9. Rodrigues, P.P., Gama, J.: Distributed clustering of ubiquitous data streams. Wiley
Interdisc. Rev. Data Mining Knowl. Disc. 4(01), 38–54 (2014)

10. White, D.A., Jain, R.: Similarity indexing with the SS-tree. In: Proceedings of
the Twelfth International Conference on Data Engineering, pp. 516–523, February
1996

11. Yi, K., Zhang, Q.: Multidimensional online tracking. ACM Trans. Algorithms
(TALG) 8(2), 12 (2012)

12. Zhou, A., Cao, F., Yan, Y., Sha, C., He, X.: Distributed data stream clustering:
a fast EM-based approach. In: 2007 IEEE 23rd International Conference on Data
Engineering, pp. 736–745, April 2007

	DistClusTree: A Framework for Distributed Stream Clustering
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 DistClusTree
	5 Experiments
	6 Conclusion
	References

