
Finding Influential Nodes by a Fast
Marginal Ranking Method

Yipeng Zhang1(B), Ping Zhang2, Zhifeng Bao1, Zizhe Xie3, Qizhi Liu3,
and Bang Zhang4

1 RMIT University, Melbourne, Australia
s3582779@student.rmit.edu.au

2 Wuhan University, Wuhan, China
3 State Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing, China
4 CSIRO, Canberra, Australia

Abstract. The problem of Influence Maximization (IM) aims to find a
small set of k nodes (seed nodes) in a social network G that could max-
imize the expected number of nodes. It has been proven to be #P-hard,
and many approximation algorithms and heuristic algorithms have been
proposed to solve this problem in polynomial time. Those algorithms,
however, either trade effectiveness for practical efficiency or vice versa.
In order to make a good balance between effectiveness and efficiency,
this paper introduces a novel ranking method to identify the influential
nodes without computing their exact influence. In particular, our method
consists of two phases, the influence ranking and the node selection. At
the first phase, we rank the node’s influence based on the centrality of
the network. At the second phase, we greedily pick the nodes of high
ranks as seeds by considering their marginal influence to the current
seed set. Experiments on real-world datasets show that the effectiveness
of our method outperforms the state-of-the-art heuristic methods by 3%
to 25%; and its speed is faster than the approximate method by at least
three orders of magnitude (e.g., the approximate method could not com-
plete in 12 h even for a social network of |V | = 196,591 and |E| = 950,327,
while our method completes in 100 s).

1 Introduction

In this paper we study the Influence Maximization (IM) problem over social net-
works, which is first formulated as a discrete optimization problem by Kempe
et al. [9]. Formally, its goal is to find a set of k nodes (seed nodes) in a social
network G that could maximize the expected number of nodes under a given
stochastic influence model. With the increasing popularity of social media, such
as Facebook and Twitter, the influence maximization problem plays a critical
role in effectively enabling large-scale viral marketing online. In the rest of this
section, we will investigate the literature, identify the existing methods’ draw-
backs, and propose our solution.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Wang et al. (Eds.): ADC 2018, LNCS 10837, pp. 249–261, 2018.
https://doi.org/10.1007/978-3-319-92013-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92013-9_20&domain=pdf

250 Y. Zhang et al.

1.1 Related Work

Independent Cascade (IC) model and Linear Threshold (LT) model are two com-
mon influence models to capture the influence spread process. Under the two
models, Kempe et al. [9] show that IM is NP-hard and present a MC greedy
approximation algorithm (Greedy) guaranteeing that the influence spread is
within (1 − 1/e) of the optimal influence spread. In particular, the core idea
is to calculate the influence of each individual node and take turns to choose the
node maximizing the marginal influence until k nodes are selected. As comput-
ing the exact marginal gain (or the exact expected spread) under both the IC
and LT models is #P-hard [3,4], Greedy tries to estimate the influence spread
by running Monte Carlo (MC) simulations.

However, such a greedy method suffers from two major sources of inefficiency:
(i) it has to repeatedly compute the influence for various seed sets, (ii) it needs to
run a large number of Monte Carlo (MC) simulations to obtain a high-confidence
result. Thereby, a plethora of algorithms are proposed to reduce the computation
overhead [2,12,14], and they can be divided into two main categories.

Approximate Method. Approximate methods mainly focus on how to reduce
the influence computation cost under certain models, while it can also provide
(1 − 1/e − ε)-approximation. For IC and LT models, Leskovec et al. [12] present
a ‘lazy-forward’ optimization for selecting new seeds, which greatly reduces the
number of evaluations on the influence spread of nodes. Under IC model, Tang
et al. [14] and Borgs et al. [2] use a reverse sampling approach to get the approx-
imate influence and thus reduce the number of (MC) simulations greatly. How-
ever, these methods are time-consuming on large networks, e.g., the state-of-the-
art method [14] needs to take four hours to find one seed from a graph G(V,E)
whose |V | = 41.6 ∗ 106 and |E| = 1.5 ∗ 109.

Heuristic Method. In general, heuristic methods are much faster than approx-
imate methods since they only estimate the influence according to some simple
heuristic rules; however, they cannot achieve an approximation ratio guarantee
or a high influence value as approximate methods. In particular, Chen et al. [3]
assume that the influence spread increases with the degree of nodes and present
a degree discount heuristic method. Kimura and Saito [10] propose shortest-path
based influence models and provide efficient algorithms for estimating influence
under these models. Chen et al. [5] utilize the community structure to aggre-
gate the features of nodes to reduce the number of nodes they need to check.
PageRank [13] measures the centrality (or importance) of a node in a network,
which is also used for selecting seeds in Influence Maximization. Chen et al. [3]
show that it can achieve a competitive result compared to other heuristics. How-
ever, the heuristic rule cannot guarantee the effectiveness, thus the performance
of a heuristic method would fluctuate dramatically on different networks.

1.2 Contributions

In this paper, we focus on the influence maximization problem under the IC
model. In order to achieve a better trade-off between efficiency and effectiveness,

Finding Influential Nodes by a Fast Marginal Ranking Method 251

we propose a novel ranking method to select the influential nodes heuristically.
Different from existing heuristic methods, our ranking metric is to measure the
marginal influence of candidates rather than the influence itself. As a result, our
proposed metric can help avoid the high influence overlap of the selected seeds
to some extent, thus leading to a better effectiveness against existing heuristic
measures. In particular, our contributions are summarized as follows.

• We measure the marginal influence of candidates iteratively based on PageR-
ank and Personalized PageRank, and propose a ranking based greedy algo-
rithm, called IRank, to identify the influential nodes. IRank achieves a better
effectiveness on large-scale data than the heuristic methods (without losing
much efficiency), which meets our primary goal of achieving an accurate seed
selection. Meanwhile, its efficiency is at least three orders of magnitude faster
than that of the approximate methods, which usually could not be completed
in reasonable time. E.g., in our experiment, Greedy takes 2.4 h to run in the
Email-Enron dataset at k = 250, while IRank only takes 8 s.

• We conduct a time complexity analysis and find that the computation cost of
Personalized PageRank would increase as the growth of S. Thereby, in order
to reduce the ranking cost, we propose InLocalPush to compute the Person-
alized PageRank incrementally and the cost of InLocalPush is independent
of the size of S.

• We conduct extensive experiments on various real datasets to verify the effi-
ciency, effectiveness and scalability of the proposed method.

2 Problem Formulation

2.1 Preliminaries

Independent Cascade (IC) Model. A social network can be represented by
a (directed and undirected) graph G(V,E), where V and E denote the users
and their friendships respectively. To model the influence between users, we use
a parameter pij (0 ≤ pij ≤ 1) to represent the influence probability of node
vi to vj . Note that, many studies [6,11] show that pij can actually be inferred
from the historical influence cascade data. As this paper only focuses on the seed
selection, we assume that pij is given in advance. The default pij is set as 0.01.

Given a seed set S ⊂ V , the IC model describes the influence spread by a
discrete process as follows. Each node in the IC model has two states, active
and inactive. Initially at time t = 0, we activate the nodes in S, while setting all
other nodes inactive. At a time t > 0, any node vi activated at time (t − 1) has
a single chance to influence each currently inactive neighbor vj independently:
it succeeds with the probability pij and fails with the probability 1 − pij . If vi
succeeds, vj will become active at time t + 1. This process runs until no more
activations are possible. Here, the expected number of nodes activated by the
process is the influence of S.

Let δ(S) denote the expected influence of S under IC model. Chen et al. [3]
show that computing δ(S) is #P-hard by a reduction from the counting problem

252 Y. Zhang et al.

of s-t connectedness [15]. As approximating the probability of s-t connectiv-
ity remains a long-standing open problem, it implies that we cannot expect to
compute or even approximate δ(S) efficiently.

PageRank (PR). Let D and A be the degree matrix and the adjacency matrix
of a graph G(V,E) respectively. Given a subset S ∈ V , PageRank [13] can be
described by the following equation:

pr(α, π) = απ + (1 − α) pr(α, π)W (1)

where pr(α, π) is the pagerank vector of G, α is a constant in (0, 1] called
the teleportation constant, π is a uniform distribution of V , and W is equal to
(I + D−1A).

Personalized PageRank (PPR). A PageRank vector whose distribution π is
concentrated on a smaller set of (targeted) nodes is called Personalized PageRank
vector [1,7]. Therefore, Personalized PageRank is more generalized than PageR-
ank and can be also described by Eq. 1. Given a target set S, we denote the
Personalized PageRank vector of S as pr(α, S). Since our focus is to maximize
the influence spread in social networks, please find more details of PageRank
and Personalized PageRank in [1,7,13].

2.2 Problem Definition and Our Framework

Based on the IC model, we present the formal problem definition of IM as below.

Definition 1. Given a social network G(V,E) and a budget k, the problem of
influence maximization is to find a k-size set S in V , such that S can maximize
the expected influence spread δ(S).

By Definition 1, our goal is to maximize the objective function δ(S) heuris-
tically. As described in Sect. 1.1, PageRank is a good heuristic method for IM
but far behind the MC greedy in term of effectiveness [3]. The main bottleneck
is that the top-k ranking nodes can have large influence overlaps. It leads to the
case that the influence of the union of seeds is much less than the sum of the
influence of each seed.

In order to further improve the effectiveness of the current heuristic methods
without sacrificing much efficiency degrade, we propose a ranking based greedy
method to avoid selecting seeds with high overlaps. Given an initial seed set
S = φ, the core idea of our method is to select the influential nodes ranking by
their marginal influence to S iteratively. Let Rs(v) (v ∈ V) denote the ranking
of the marginal influence of v to S. We note that the marginal influence can
be decided by two parts: (1) the influence of v and (2) the overlap between v
and S. According to this observation, we introduce a hybrid metric (as shown in
Eq. 2) to measure Rs(v) by considering both parts aforementioned. In particular,
the metric is represented by a linear combination of two items: the first item
is PageRank (PR) of v which measures v’s influence; the second item is the
Personalized PageRank (PPR) of v (to S) which measures the overlap of v and
S (in Sect. 3.1).

Finding Influential Nodes by a Fast Marginal Ranking Method 253

Table 1. Notations

Symbol Description

G(V, E) The social network

pij The immediate influence from vi to vj

δ(S) The exact influence of S under the IC model

Rs(v) The marginal ranking of v (to S)

3 Our Solution

3.1 Influential Node Selection by Marginal Influence Ranking

In this section, we first introduce the ranking based algorithm called IRank and
then present our ranking strategy. Important notations are presented in Table 1.

Algorithm 1 describes how our method works. It first initializes S = φ
(line 1.3). In each iteration, IRank computes Rs(v) for each v ∈ V \S and
picks the node with the highest ranking into S (lines 1.4 to 1.6). Here,
CalMagRank(G,S) is used to compute Rs(v) for ∀v ∈ V \S (line 1.5). The
algorithm repeats this process k times, and then returns S as the final solution.
Our ranking metric of Rs(v) is defined as:

Rs(v) = r(v) − λrs(v) (2)

where r(v) is to capture v’s influence; rs(v) is to capture the overlap of v and S;
and λ is a given parameter to balance the two items.

The Measurement of r(v). Chen et al. [3] have shown that the nodes with the
high influence usually have high PageRank values, which indicates that PageR-
ank is a good indicator to measure the influence of nodes. Therefore, we compute
r(v) for each v ∈ V by the PageRank of v.

The Measurement of rs(v). In general, most individuals tend to trust the
person who is important to their trusted ones. Given a seed set S and a candidate
v ∈ V \S, it indicates that the audiences of S tend to be influenced by v if v is
very important to S, which implies that the influence overlap of v and S should
be large. As a result, we compute rs(v) by the Personalized PageRank of v to S
(Step 2), since PPR reflects the importance of v to S [1].

In this paper, we choose two most important algorithms, PageRank [13] and
LocalPush [1], to compute the PR and PPR respectively. As PageRank is well-
known, we only discuss how LocalPush works.

The core idea of LocalPush is to compute a pair of distributions p and e with
the following property.

pr(α, S) = p + pr(α, e) (3)

If p and e are two distributions with this property, Andersen et al. [1] indicate
that p is close to the PPR vector p(α, S) when each element of pr(α, e) is suffi-
ciently small. Note that, this claim is true because of the Linearity property of
PPR which is discovered by Jeh and Widom [8].

254 Y. Zhang et al.

Fig. 1. An example of LocalPush

Algorithm 1. IRank(G, k)
1.1 Input: a graph G(V, E) and k
1.2 Output: a set S
1.3 S ← φ
1.4 for i ← 1 to k do
1.5 Invoke CalMagRank(G, S) to rank nodes in V \S.
1.6 Select the node with the highest ranking and add it into S.

1.7 return S

To obtain the PPR vector pr(α, S), LocalPush computes the p of Eq. 3
according to the following process. Each node v ∈ V is assigned a pair of param-
eters: an approximate ranking p(v) and a residue e(v). Given a target set S as
shown in Fig. 1a. Figure 1b shows how to initialize vectors p and e. Each p(v)
which ∀v ∈ V is initialized by 0; and e(v) = 1 if v ∈ S, otherwise e(v) = 0. p (e)
is the distribution of the approximate rankings (residues) of V . Note that, e are
corresponding to pr(α, e) of Eq. 3. LocalPush maintains p and e by applying a
series of push operations. Each push operation takes an arbitrary node v, moves
an α fraction of the value from e(v) into p(v), and then spreads the remaining
(1−α) fraction value to v’s neighbors. Let dv be the degree of v, each neighbor u
of v receives (1−α)e(v)/dv value from v and add it into e(u). LocalPush returns
p as the PPR vector of S when each element of e is less than a threshold ε.

Algorithm 2 is to compute Rs(v) for ∀v ∈ V \S. In this algorithm, we use
PageRank(G) [13] and LocalPush(G,S) [1] to compute r(v) (PR) and rs(v)
(PPR) respectively. It is worth noting that r(v) is independent of S and does
not change during the whole iterative process. Therefore, during implementation,
we can store it in an n-dimension vector to avoid redundant computations.

The Time Complexity Analysis. The complexity of Algorithm 2 is deter-
mined by PageRank and LocalPush. Suppose PageRank should be terminated
after a constant number of iterations. In each iteration, PageRank needs to tra-
verse G and updates the ranking of each node, thus it takes O(m + n) time.
Moreover, the time complexity of LocalPush is the same as the PageRank at
the worst case. Therefore Algorithm 2 takes O(m + n) time. As Algorithm 1
invokes CalMagRank k times and k is a small constant, the complexity of IRank
is O(m + n).

Finding Influential Nodes by a Fast Marginal Ranking Method 255

Algorithm 2. CalMagRank
2.1 Input: a graph G(V, E), a set S and λ
2.2 Output: a vector R
2.3 Initialize two vectors r and rs.

/* PageRank(G) algorithm is used to compute the pagerank in [13]. */

2.4 Compute r by PageRank(G).
/* LocalPush(G, S) algorithm is used to compute the PPR in [1]. */

2.5 Compute rs by LocalPush(G, S).
2.6 R = r − λrs
2.7 return R

Algorithm 3. InLocalPush(G, v, rs)
3.1 Input: a graph G(V, E), a node v and an n-dimension vector r
3.2 Output: a vector R
3.3 Initialize a vector rv.

/* LocalPush(G, S) algorithm is used to compute the PPR in [1]. */

3.4 rv ← LocalPush(G, v).
3.5 R ← rv + rs
3.6 return R

4 Optimization

Incremental PPR Computation. According to Algorithm 1, when a new
seed is added into S, IRank has to update Rs(v) for each node by calling Cal-
MagRank. As mentioned above, as PR can be stored for reusing, the efficiency
of IRank is mainly decided by LocalPush. To accelerate our method, we modify
LocalPush to an incremental method (called InLocalPush) to further reduce the
computation cost. In this section, we first show how InLocalPush works and then
explain why it can reduce the cost.

InLocalPush is inspired by the following theorem introduced in [8].

Theorem 1. Given two sets S, S′ ⊆ V , and S ∩ S′ = φ. Let T = S ∪ S′, we
have:

pr(α, T) = pr(α, S) + pr(α, S′) (4)

Let Si be the seed set that is generated by IRank in the first ith iteration and
Si+1 = Si ∪ v. According to Theorem 1, we have pr(α, Si+1) = pr(α, Si) +
pr(α, v). As pr(α, Si) is already obtained in the previous iteration, we only need
to compute pr(α, v) to obtain pr(α, Si+1) rather than computing pr(α, Si+1)
directly. It actually indicates that S can be computed incrementally.

Based on Theorem 1, we introduce InLocalPush to compute PPR incremen-
tally, which is shown as Algorithm 3. Besides G, it has two extra input param-
eters, a node v and a vector rs. When rs = pr(α, Si), InLocalPush returns the
PPR vector of Si+1 as the result.

256 Y. Zhang et al.

A Comparison of LocalPush and InLocalPush. Recall the description of
LocalPush in Sect. 3.1, given a target set S, LocalPush initializes the two distri-
butions p and e (according to S) and continues pushing the residues from e to
p until each element of e is smaller than ε. Therefore, the cost of LocalPush is
determined by the number of push operations. Intuitively, when ε is fixed, the
larger the total residues are, the more push operations are needed to ensure the
residue of each element in e small enough. As the sum of residues equals the
cardinality of S, the cost of LocalPush should raise with the increase of the size
of S. On the other hand, InLocalPush computes pr(α, S) incrementally and its
cost is independent of the size of S. It implies that InLocalPush should be faster
than LocalPush when |S| is large, and thus Algorithm 2 can be benefited by
replacing LocalPush by InLocalPush (line 3.4)1.

Fig. 2. A running example of IRank (λ = 1)

Example 1. Figure 2 gives a running example of IRank for the instance of
G(V,E) in Fig. 1a. We initialize S = φ, and assume λ = 1 and k = 2. At
Step 1, Rs(v), r(v) and rs(v) for each node v ∈ V are listed in the left table.
Note that, Rs(v) = r(v) and rs(v) = 0 since the PPR of φ equals to 0. According
to this table, v5 is selected into S since it has the largest influence rank in this
step. At Step 2, we update the rank of each v ∈ V \S and show the result in the
right table. Therefore, v6 is the optimal candidate and added into S. Since k = 2,
IRank stops and returns {v5, v6} as the final result.

5 Experiments

In this section, we conduct four sets of experiments to evaluate: the impact of λ
in effectiveness, the effectiveness, the efficiency, and the scalability of our method
in real-life datasets.

1 This modification also needs to vary the input parameters of Algorithm 2 from
(G, S, λ) to (G, v, λ, rs).

Finding Influential Nodes by a Fast Marginal Ranking Method 257

Table 2. Statistics of datasets

Datasets Type #Vertices #Edges

Email-Enron Undirected 36,692 183,831

Gowalla Undirected 196,591 950,327

Twitter Directed 11,316,811 85,331,846

Table 3. Parameter setting.

Parameter Values

k 10, 20, 30, . . . , 240, 250

p 0.01, 0.02, . . . , 0.09, 0.1

λ 1300, . . . ,1350, . . . , 1400

5.1 Experimental Setup

Datasets. We use three real datasets, Email-Enron, Gowalla and Twitter.
Email-Enron and Gowalla are two benchmark datasets that are obtained from
http://snap.stanford.edu; Twitter is downloaded from http://socialcomputing.
asu.edu/. All of them are social network datasets. The statistics of those datasets
are shown in Table 2.

Algorithms. We compare our method against three algorithms: MC based
greedy [9] (Greedy), Pagerank [13] (PR) and DegreeDiscount [3] (DD). To verify
the effectiveness and efficiency of all algorithms, for each selected seed set, we
run MC simulation 20000 times on the network

Setup. All algorithms are implemented using Java. and take the average of the
influence spread as the benchmark. All experiments are conducted on a computer
with two Intel(R) Xeon(R) E5630 3.0 GHZ processors and 48 GB RAM, running
Ubuntu 10.04.

Parameter Setting. Table 3 shows the settings of all parameters, and the
default one is highlighted in bold. In all experiments, we vary one parameter
while the rest parameters are kept default unless specified otherwise. Note that,
these networks do not capture the influence between the nodes explicitly. There-
fore, we assume that the influence probability for each pair of neighboring nodes
is 0.01, that is pij = 0.01 for ∀vi,∀vj ∈ V , eij ∈ E.

Impact of λ. As we described in Sect. 3.1, λ is used to balance r(v) and rs(v). In
LocalPush, the sum of e(v) and p(v) equal to 1. Moreover, in these two vectors,
the node that is the start point has the main part of possibility; it leads to a
consequence that r(v) is much bigger than rs(v). Therefore, we need a big λ
for balance purpose. Figure 3 shows the influence of our method in Email-Enron
and Gowalla by varying λ from 1,300 to 1,400. In both datasets, we find that the
performance of IRank first increases as the growth of λ and then drops notably
when λ is larger than 1360. It implies that our metric gets a good balance at
λ = 1350 and thus we choose λ = 1350 as the default value.

5.2 Effectiveness

We study how the influence spread is affected by varying k. Figure 4a shows
that Greedy achieves the best performance, and it is followed by IRank, PR and
DD. IRank is only at most 9% less than Greedy. Comparing to PR and DD
respectively, IRank is 6.5% and 24.9% better at most. The reason is that, both

http://snap.stanford.edu
http://socialcomputing.asu.edu/
http://socialcomputing.asu.edu/

258 Y. Zhang et al.

Fig. 3. Effectiveness of varying λ

Fig. 4. Effectiveness of varying seed number k

PR and DD select the seeds according to the influence rank, and the influential
nodes may have a high influence overlap between them. Clearly, the high overlap
should diminish the total influence spread significantly. In contrast, IRank can
avoid this issue because it is based on measuring the marginal influence.

Figure 4b reports the results for Gowalla dataset. After running 8 h, Greedy
can only get 8 candidate nodes. As Greedy is too slow to complete in 12 h, we
omit it. When k is small, IRank and PR have similar influence spread and both
of them outperform DD by 10%. Note that when k increases, the influence of
PR drops down and is close to that of DD, which is different to the observation
in Fig. 4a; while IRank still beats PR and DD by around 8%. It indicates that
PR is sensitive to k and its performance fluctuates in different datasets.

Figure 5 shows the results of increasing influence spread with increasing p.
In Email-Enron dataset, although IRank is worse than Greedy by 6.6%, it is
still much better than PR and DD. For example, at p = 0.01, the influence of
PR is 93.5% of that of IRank, while the influence of DD is only 79.8% of that
of IRank. In the Gowalla dataset, Fig. 5b shows that the influence spread of all
seed sets as expected turns out to be a linear growth as the increasing of p. It is
because that a higher influence possibility should increases influence spread of
S. The performance of all algorithms is very close and IRank is slightly better

Finding Influential Nodes by a Fast Marginal Ranking Method 259

Fig. 5. Effectiveness of varying p

than the two heuristics by 5.4% and 6.8% respectively. It indicates that IRank
is very robust to p and always better than PR and DD during the varying of p.

5.3 Efficiency

Figure 6 presents the efficiency results when k varies from 10 to 250. In Fig. 6a, we
can see that Greedy is feasible to run in the Email-Enron dataset and takes 2.4 h
at k = 250. In contrast, IRank only takes 8 s, which significantly outperforms
Greedy by three orders of magnitude. We note that the running time of IRank
and DD are proportional to the seed size k. For example, IRank and DD only
take 1.2 and 0.05 s respectively at k = 10. However, when k = 250, their running
time both increase one order of magnitude and are 8.0 and 0.73 s respectively.
In contrast, the running time of PR does not change because its ranking process
is independent of k. It indicates that when k is large, PR is more scalable than
IRank and DD, although its influence spread is lower than the others.

Fig. 6. Efficiency of varying seed number k

The observation is also verified in Gowalla dataset and its result is shown
in Fig. 6b. Note that Greedy is out of this test since Gowalla is too large to

260 Y. Zhang et al.

run Greedy. We can see that the result in Gowalla are similar to that in Email-
Enron. In particular, the running time of DD ranges from 0.21 to 2.7 s when k
varies from 10 to 250, and PR only takes 3.4 s since its cost is independent of k.
Although IRank is slower than PR and DD around one order of magnitude, it
is able to finish within 100 s.

5.4 Scalability

This experiment is to evaluate the scalability of the algorithms in large scale
network Twitter. Figure 7a and b show the influence spread and the running time
respectively. The result of Fig. 7a is consistent with the previous experiments that
the effectiveness of IRank is better than that of PR and DD. Moreover, we can
see the influence spread of IRank is relatively stable when k is varying. As shown
in Fig. 7b, the runtime of both IRank and DD increases with the increase of k;
although IRank is slower than DD, it still can handle million-sized graphs well.

Fig. 7. Efficiency and effectiveness for Twitter

6 Conclusions

This paper introduces a ranking based method called IRank for the problem
of Influence Maximization. In order to achieve a better trade-off between effec-
tiveness and efficiency, we first rank the marginal influence based on PageRank
and Personalized PageRank and use a ranking based greedy algorithm to select
the influential nodes according to the rank iteratively. Moreover, the analysis
show that the computation cost of Personalized PageRank would increase as the
growth of S. To further reduce the cost, we accelerate IRank by computing Per-
sonalized PageRank incrementally and propose an incremental PPR algorithm
InLocalPush. Empirical studies on a large real-world network show that IRank
achieves a better effectiveness than the heuristic methods, which meets our pri-
mary goal of achieving an accurate seed selection. Meanwhile, its efficiency is at
least three orders of magnitude faster than that of the approximate method.

Finding Influential Nodes by a Fast Marginal Ranking Method 261

Acknowledgement. This work is partially supported by the ARC (DP170102726,
DP180102050), NSF of China (61728204, 91646204), and China National Key Research
and Development Program (2016YFB1000700).

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: FOCS, pp. 475–486. IEEE (2006)

2. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 946–957. SIAM (2014)

3. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: SIGKDD, pp. 1029–1038. ACM (2010)

4. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks
under the linear threshold model. In: ICDM, pp. 88–97. IEEE (2010)

5. Chen, Y.-C., Peng, W.-C., Lee, S.-Y.: Efficient algorithms for influence maximiza-
tion in social networks. Knowl. Inf. Syst. 33(3), 577–601 (2012)

6. Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. In: SIGKDD, pp. 1019–1028. ACM (2010)

7. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm
for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

8. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279.
ACM (2003)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: SIGKDD, pp. 137–146. ACM (2003)

10. Kimura, M., Saito, K.: Tractable models for information diffusion in social net-
works. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006). https://doi.org/10.
1007/11871637 27

11. Kurashima, T., Iwata, T., Takaya, N., Sawada, H.: Probabilistic latent network
visualization: inferring and embedding diffusion networks. In: SIGKDD, pp. 1236–
1245. ACM (2014)

12. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: SIGKDD, pp. 420–429. ACM
(2007)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab (1999)

14. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity
meets practical efficiency. In: SIGMOD, pp. 75–86. ACM (2014)

15. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

https://doi.org/10.1007/11871637_27
https://doi.org/10.1007/11871637_27

	Finding Influential Nodes by a Fast Marginal Ranking Method
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Problem Formulation
	2.1 Preliminaries
	2.2 Problem Definition and Our Framework

	3 Our Solution
	3.1 Influential Node Selection by Marginal Influence Ranking

	4 Optimization
	5 Experiments
	5.1 Experimental Setup
	5.2 Effectiveness
	5.3 Efficiency
	5.4 Scalability

	6 Conclusions
	References

