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Abstract. This paper presents the Random Neural Network in a Deep Learning
Cluster structure with a new learning algorithm based on the genetics according
to the genome model, where information is transmitted in the combination of
genes rather than the genes themselves. The proposed genetic model transmits
information to future generations in the network weights rather than the neurons.
The innovative genetic algorithm is implanted in a complex deep learning
structure that emulates the human brain: Reinforcement Learning takes fast local
current decisions, Deep Learning Clusters provide identity and memory, Deep
Learning Management Clusters take final strategic decisions and finally Genetic
Learning transmits the information learned to future generations. This proposed
structure has been applied and validated in Fintech; a Smart Investment appli-
cation: an Intelligent Banker that performs Buy and Sell decisions on several
Assets with an associated market and risk. Our results are promising; we have
connected the human brain and genetics with Machine Learning based on the
Random Neural Network model where biology; similar as Artificial Intelligence
is learning gradually and continuously while adapting to the environment.

Keywords: Genetic learning � Deep Learning clusters
Reinforcement Learning � Random Neural Network � Smart Investment
Fintech

1 Introduction

Biology is gradually and continuously learning while adapting to the environment using
genetic changes to generate new complex structures in organisms [1], the current
structure of the organisms defines the type and level of future genetic variation that will
provide a better adaption to the environment or increased reward to a goal function.
Random genetic changes have more probability to be successful in organisms that
change in a systematic and modular manner where the new structures acquire the same
set of sub goals in different combinations; therefore they not only remember their reward
evolution but also generalize goal functions to successfully adapt future environments
[2]. The adaptations learned from the living organisms affect and guide evolution even
though the characteristics acquired are not transmitted to the genome [3], however, its
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gene functions are altered and transmitted to the new generation; this enables learning
organisms to evolve much faster.

The genome is the genetic material of an organism; it consists of 23 pairs of
chromosomes (1-22, X and Y) for a human cell formed of genes (approximately 21,000
in total) that code for a molecule that has a function or instruction to make proteins [4],
furthermore genes are formed of base pairs (approximately 3 billion in total). The DNA
is a double helix formed by the combination of only four nucleotides (cytosine [C],
guanine [G], adenine [A] or thymine [T]) where each base pair consists of the com-
bination of two nucleoids G-C and A-T. The genetic code is formed of codons, a
sequence consisted of three nucleotides or three-letter words. Proteins that have similar
combination of base pairs tend to have a related functionality determination of protein
functions from genetic sequences [5].

Successful Machine Learning and Artificial Intelligence models have been purely
based on biology emulating the structures provided by nature during the learning,
adaptation and evolution when interacting with the external environment. Neural net-
works and deep learning are based on the brain structure which is formed of dense local
clusters of same neurons performing different functions which are connected between
each other with numerous very short paths and few long distance connections [6]. The
brain retrieves a large amount of data obtained from the senses; analyses the material
and finally selects the relevant information [7] where the cluster of neurons special-
ization occurs due to their adaption when learning tasks.

This paper proposes a new genetic learning algorithm on Sect. 3 based on the
genome and evolution; where the information transmitted to new generations is learned
when interacting and adapting to the environment using reinforcement and deep
learning respectively. Information in the proposed genetic algorithm is transmitted in
the network weights through the different combinations of four different nodes (C,
G, A, T) rather than the value of nodes themselves where the output layer of nodes
replicates the input layer as the genome. This innovative genetic algorithm is inserted in
a complex deep learning structure that emulates the human brain on Sect. 4: Rein-
forcement Learning takes fast local current decisions, Deep Learning clusters provide
identity and memory, Deep Learning Management Clusters takes final strategic deci-
sions and finally Genetic Learning transmits the information learned to future gener-
ations. This innovative model has been applied and validated in Fintech, a Smart
Investment application on Sect. 5; an Intelligent Banker that performs Buy and Sell
decisions on several assets with an associated market and risk. The results shown on
Sect. 6 are promising; the Intelligent Banker takes the right decisions, learns the
variable asset price, makes profits on specific markets at minimum risk and finally it
transmits the information learned to future generations.

2 Related Work

Artificial Neural Networks have been applied to make financial predictions. Leshno
et al. [8] evaluate the bankruptcy prediction capability of several neural network models
based on the firm’s financial reports. Chen et al. [9] uses Artificial Neural Networks for a
financial distress prediction model. Kara et al. [10] apply an Artificial Neural Network to
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predict the direction of Stock Market index movement. Guresen [11] evaluates the
effectiveness of neural network models in stock market predictions. Zhang et al. [12]
analyse Artificial Neural Networks in bankruptcy prediction. Kohara et al. [13] inves-
tigate different ways to use prior knowledge and neural networks to improve multi-
variate prediction ability. Sheta et al. [14] compares Regression, Artificial Neural
Networks and Support Vector Machines for predicting the S&P 500 Stock Market Price
Index. Tung et al. [15] includes Artificial Neural Networks and Fuzzy Logic for market
predictions. Pakdaman et al. [16] use a feed forward multilayer perceptron and an Elman
recurrent Network to predict a company’s stock value. Iuhasz et al. [17] create a hybrid
system based on a multi Agent Architecture to analyse Stock Market behaviour to
improve the profitability in a short or medium time period investment. Nicholas et al.
[18] examine the use of neural networks in stock performance modelling.

Several survey papers haven been published. Bahrammirzaee [19] presents a
comparative survey of Artificial Intelligence Applications in Finance: Artificial Neural
Networks, Expert System and hybrid intelligent systems. Coakley et al. [20] reviews
the use of Artificial Neural Networks in Accounting and Finance including modeling
issues and guidelines. Fadlalla et al. [21] analyses the applications of Neural Networks
in Finance. Huang et al. [22] reviews the use of neural networks in finance and
economics forecasting. Li et al. [23] summarize different applications or artificial
intelligence technologies in several domains of business administration including
finance, retail, manufacturing and management consultancy.

Machine learning has been applied to solve nonlinear models in continuous time in
economics and finance by Duarte [24] and forecasting the volatility of asset prices by
Stefani et al. [25]. Deep Learning has also recently incorporated in long short term
memory Neural Networks for financial market predictions by Fischer et al. [26] and
Hasan et al. [27].

Genetic Algorithms have been proposed as method to increase learning. Arifovic
[28] analyses genetic algorithms in inflationary economies. Kim et al. [29] uses a
genetic Algorithm to feature discretization in artificial neural networks for the pre-
diction of stock market index. Ticona et al. [30] applies a hybrid model based on
Genetic algorithm and Neural Networks to forecast Tax Collection. Hossain et al. [31]
present a Genetic Algorithm based Deep Learning Method. Tirumala [32] and David
et al. [33] review of the latest deep learning structures and evolutionary algorithms that
can be used to train them.

3 The Random Neural Network Genetic Deep Learning
Model

3.1 The Random Neural Network

The RNN [34–36] represents more closely how signals are transmitted in many bio-
logical neural networks where they travel as spikes or impulses, rather than as analogue
signal levels. The RNN is a spiking recurrent stochastic model for neural networks. Its
main analytical properties are the “product form” and the existence of the unique network
steady state solution. The Random Neural network has been Genetics [37–46] (Fig. 1).
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3.2 The Random Neural Network with Multiple Clusters

Deep Learning with Random Neural Networks is described by Gelenbe and Yin [47–
49]. This model is based on the generalized queuing networks with triggered customer
movement (G-networks) where customers are either “positive” or “negative” and cus-
tomers can be moved from queues or leave the network. G-Networks are introduced by
Gelenbe [50, 51]; an extension to this model is developed by Gelenbe et al. [52] where
synchronised interactions of two queues could add a customer in a third queue (Fig. 2).

3.3 Deep Learning Management Cluster

The Deep Learning management cluster was proposed by Serrano et al. [53–56]. It
takes management decisions based on the inputs from different Deep Learning clusters.

3.4 Genetic Learning Algorithm Model

The proposed Genetic learning algorithm is based on the auto encoder presented by
Gelenbe and Yin [47–49] based on two instances of the Network shown on Fig. 3, the
auto encoder models the genome as it codes the replica of the organism that contains it.
Network 1 is formed of U input neurons and C clusters and Network 2 has C input
neurons and U clusters. The organism is represented as a set of data X which is a U
vector X Є [0, 1]U. The proposed Genetic learning algorithm fixes C to 4 neurons that
represent the four different nucleoids G, C, A and T and it also fixes W1 to generate 4
different types of neurons rather than random values.

Fig. 1. The Random Neural Network

Fig. 2. Clusters of Neurons
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Network 1 encodes the organism, it is defined as:

• q1 ¼ ðq11; q12; . . .; q1uÞ, a U-dimensional vector q1 Є [0, 1]U that represents the
input state qu for neuron u;

• W1 is the U � C matrix of weights w�
1 u; cð Þ from the U input neurons to the

neurons in each of the C clusters;
• Q1 ¼ ðQ1

1;Q
1
2; . . .;Q

1
cÞ, a C-dimensional vector Q1 Є [0, 1]C that represents state qc

for the cluster c where Q1 = f(W1X).

Network 2 decodes the genome, as the pseudo inverse of Network 1, it is defined as:

• q2 ¼ ðq21; q22; . . .; q2cÞ, a C-dimensional vector q2 Є [0, 1]C that represents the input
state qc for neuron c with the same value as Q1 ¼ ðQ1

1;Q
1
2; . . .;Q

1
cÞ;

• W2 is the C � U matrix of weights w�
2 u; cð Þ from the C input neurons to the

neurons in each of the U cells;
• Q2 ¼ ðq21; q22; . . .; q2uÞ, a U-dimensional vector Q2 Є [0, 1]U that represents the state

qu for the cell u where Q2 = f(W2Q
1) or Q2 = f(W2 f(XW1)).

The learning algorithm is the adjustment of W1 to code the organism X into the four
different neurons or nucleoids and then calculate W2 so that resulting decoded
organism Q2 is the same as the encoded organism X:

min X�f W2f XW1ð Þð Þk k s:t:W1 � 0 ð1Þ

Following the Extreme Learning Machine on [57]; W2 is calculated as:

W2 = pinv f XW1ð Þð ÞX ð2Þ

Where pinv is the Moore-Penrose pseudoinverse:

pinv(x) = xTx
� �

xT

Fig. 3. Genetic Learning Algorithm
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4 Smart Investment Model

The Smart Investment model, called “GoldAI Sachs”, combines there different learn-
ings: Reinforcement Learning, Deep Learning and Genetic Learning. “GoldAI Sachs” is
formed of clusters of Intelligent Bankers that take local fast local binary decisions “Buy
or Sell” on a specific assets based on Reinforcement Learning through the interactions
and adaptations with the environment where the Reward is the profit made. Each Asset
Banker has an associated Deep Learning cluster that memorizes asset identity such as
price and reward properties. Asset bankers are dynamically clustered to different
properties such as investment reward, risk or market type and managed by a Market
Banker Deep Learning Management Cluster that selects the best performing Asset
Bankers. Finally, a CEO Banker Deep Learning Management Cluster manages the
different Bankers and takes the final investment decisions based on the Market Reward
and associated Risk prioritizing markets that generate more reward at a lower Risk as
every banker would do. This approach enables decisions based on shared information
where Intelligent Bankers work collaborative to achieve a bigger reward (Fig. 4).

4.1 Asset Banker Reinforcement Learning

The Reinforcement Learning algorithm is used to take fast binary investment decisions
“Buy or Sell”, it is based on Cognitive Packet Network presented by Gelenbe [11–15].
The Intelligent Banker is formed of two interconnected neurons “q0 or Buy” and “q1 or
Sell” where the investment decision is taken according to the neuron that has the
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maximum potential. The state q0 and q1 is the probability that it is excited [11–15],
these quantities satisfy the following system of non linear equations:

q0¼
kþ ð0Þ

r 0ð Þ þ kð0Þ q1¼
kþ ð1Þ

r 1ð Þ þ kð1Þ ð3Þ

where:

kþ 0ð Þ = q1w
þ
10 þ K0 kþ 1ð Þ = q0w

þ
01 þ K1

k� 0ð Þ = q1w
�
10 þ k0 k� 1ð Þ = q0w

�
01 þ k1

r 0ð Þ = wþ
01 þ w�

01 r 1ð Þ = wþ
10 þ w�

10

ð4Þ

On the above equations, wþ
ij is the rate at which neuron i transmits excitation spikes

to neuron j and w�
ij is the rate at which neuron i transmits inhibitory spikes to neuron j

in both situations when neuron i is excited. Ki and ki are the rates of external excitatory
and inhibitory signals respectively (Fig. 5).

The Reward R is based on the economic profit that the Asset Bankers achieve with
the decisions they make, successive measured values of the R are denoted by Rl,
l = 1, 2… these are used to compute the Predicted Reward:

PRl ¼ aPRl�1 þ 1� að ÞRl ð5Þ

where a represents the investment reward memory.
If the observed measured Reward is greater than the associated Predicted Reward;

Reinforcement Learning rewards the decision taken by increasing the network weight
that point to it, otherwise; it penalises it.

5 Experimental Results

“GoldAI Sachs” is evaluated with eight different assets to assess the adaptability and
performance of our proposed Smart Investment solution for eleven days. The assets are
split into the Bond Market with low risk and slow reward and the Derivative Market
with high risk and fast reward. Experiments are carried with very reduced memory
a = 0.1 where the Reinforcement Learning is first initialized with a Buy Decision
(Fig. 6).

Fig. 5. Asset Banker Reinforcement Learning
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5.1 Asset Banker Reinforcement Learning Validation

Table 1 represents the Profit that each Asset Banker makes when buying or selling 100
Assets for 11 days with the Maximum Profit, the number of winning decisions against
the losing ones and the number of buy decisions against the sell.

The Profit made in assets that start downwards such as Asset 2, Asset 4, Asset 6 and
Asset 8 is worse than the upwards ones because the Asset Bankers are initialized with a
buy decision. The Reinforcement Learning Algorithm adapts very quickly to variable
asset prices.

Bond Market

Derivative Market
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1 6 11
0

11

5

Asset 8

Day Day Day Day

DayDayDayDay

Price Price Price Price

PricePricePricePrice

Fig. 6. “GoldAI Sachs” Smart Investment Model assets

Table 1. Asset Banker Reinforcement Learning Validation

Asset Profit Maximum Profit Win Loss Buy Sell

1 1000 1000 10 0 10 0
2 800 1000 9 1 1 9
3 600 600 6 0 10 0
4 300 500 4 1 6 4
5 2000 2000 8 0 4 6
6 1200 2000 6 2 4 6
7 1600 2000 9 1 6 4
8 800 2000 7 3 4 6
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5.2 Market Banker Deep Learning Management Cluster Validation

The profits the Market Bankers can make are shown in Tables 2 and 3. The Market
Bankers take market decisions rather than individual asset decisions form the Asset
Bankers. Market Bankers invests 400 assets which is the combination of the four Asset
Bankers purchasing power.

5.3 CEO Banker Deep Learning Management Cluster Validation

Table 4 represents the CEO Banker, “AI Morgan” profits at different Risks ratios with a
total of investment of 800 assets. A risk value b = 0.2 represents 640 assets in the Bond
Market and 160 is the Derivative Market whereas a risk value b = 0.8 is 160 assets in
the Bond Market and 640 in the Derivative Market respectively.

Table 2. Bond Market Banker Profits

Day Total Asset
Banker

Bond
Market

I Maximum
Asset

Maximum
Market

I

2 0 400 400.00% 200 400 100.00%
3 200 400 100.00% 200 400 100.00%
4 200 400 100.00% 200 400 100.00%
5 200 400 100.00% 200 400 100.00%
6 300 400 33.33% 300 400 33.33%
7 200 400 100.00% 400 400 0.00%
8 400 400 0.00% 400 400 0.00%
9 400 400 0.00% 400 400 0.00%
10 400 400 0.00% 400 400 0.00%
11 400 400 0.00% 400 400 0.00%
Total 2700 4000 48.15% 3100 4000 29.03%

Table 3. Derivative Market Banker Profits

Day Total
Asset
Banker

Derivative
Market

I Maximum
Asset

Maximum
Market

I

2 0 800.0 400.00% 800 800.0 400.00%
3 1000 1200 20.00% 1000 1200 20.00%
4 1000 1200 20.00% 1000 1200 20.00%
5 800 800 0.00% 800 800 0.00%
6 400 0 −100.00% 400 0 −100.00%
7 −400 −800 100.00% 400 800 100.00%
8 0 800 800% 800 800 0.00%
9 1000 1200 20.00% 1000 1200 20.00%
10 1000 1200 20.00% 1000 1200 20.00%
11 800 800 0.00% 800 800 0.00%
Total 5600 7200 28.57% 8000 8800 10.00%
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5.4 Genetic Algorithm Validation

The Genetic Algorithm validation for the four different Nucleoids (C, G, A, T) during
the 11 different days is shown in Table 5 with the Genetic Algorithm Error.

6 Conclusions

This paper has presented a new learning Genetic Algorithm based on the Genome
where the information is transmitted in the network weights rather than the neurons.
The algorithm has been incremented in an Smart Investment model that simulates the
human brain with reinforcement learning for fast decisions, deep learning to memorize
properties to create asset identity, deep learning management clusters to make global
decisions and genetic to transmit learning into future generations.

Table 4. CEO Banker Profits

Day Risk b = 0.2 Risk b = 0.5 Risk b = 0.8 Max profit
B D Total B D Total B D Total

2 640 320 960 400 800 1200 160 1280 1440 1440
3 640 480 1120 400 1200 1600 160 1920 2080 2080
4 640 480 1120 400 1200 1600 160 1920 2080 2080
5 640 320 960 400 800 2800 160 1280 1440 1440
6 640 0 640 400 0 400 160 0 160 640
7 640 −320 320 400 −800 −400 160 −1280 −1120 320
8 640 320 960 400 800 1200 160 1280 1440 1440
9 640 480 1120 400 1200 1600 160 1920 2080 2080
10 640 480 1120 400 1200 1600 160 1920 2080 2080
11 640 640 1280 400 800 1200 160 1280 1440 1440
Total 6400 2880 9280 4000 7200 11200 1600 11520 13120 15040

Table 5. Genetic Algorithm Validation

Day Error Nucleoid-C Nucleoid-G Nucleoid-A Nucleoid-T

2 3.05*10E−31 0.2048 0.3893 0.6295 0.9268
3 5.85*10E−31 0.2026 0.3861 0.6263 0.9259
4 6.78*10E−32 0.2025 0.3859 0.6262 0.9259
5 1.17*10E−31 0.2029 0.3865 0.6267 0.9260
6 4.44*10E−31 0.2033 0.3870 0.6272 0.9262
7 1.29*10E−31 0.2049 0.3894 0.6296 0.9269
8 3.61*10E−31 0.2031 0.3868 0.6271 0.9261
9 2.96*10E−31 0.2021 0.3852 0.6255 0.9257
10 6.90*10E−31 0.2020 0.3851 0.6254 0.9256
11 1.36*10E−31 0.2023 0.3856 0.6259 0.9258
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In the Smart Investor Model, “GoldAI Sachs” Asset Banker Reinforcement
Learning Algorithm takes the right investment decisions; with great adaptability to
asset price changes whereas Asset Banker Deep Learning provides asset properties and
identity. Market Bankers success to increase the profit by selecting the best performing
Asset Bankers and the CEO Banker, “AI Morgan” increases the profits considering the
associated market risks, prioritizing low risk investment decision at equal profit.
Genetic learning algorithm has a minimum error and it exactly codes and encodes the
CEO Banker, “AI Morgan”.

Future work will validate our model in a Fintech cryptocurrency environment with
real market values. In addition the relevance of memory in investment with its optimum
value will be analyzed.

Appendix: Smart Investment Model - Neural Schematic
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