
Chapter 6
Normed Spaces

6.1 Normed Spaces, Subspaces, and Quotient Spaces

6.1.1 Norms. Examples

Let X be a linear space. A mapping x �→ ‖x‖ that associates to each element of the
space X a nonnegative number is called a norm if it obeys the following axioms:

(1) if ‖x‖ = 0, then x = 0 (non-degeneracy);

(2) ‖λx‖ = |λ|‖x‖ for all x ∈ X and all scalars λ;

(3) ‖x + y‖ � ‖x‖ + ‖y‖ (triangle inequality).

Conditions (2) and (3) show that a norm is a particular case of a convex functional.
In connection with this we suggest that the reader return to the exercises in Subsec-
tion5.4.1 and examine which of the properties 1–5 of convex functionals hold in the
case of a norm, and also which of the functionals pi in Exercises7–15 are norms.

Definition 1. A linear space X endowed with a norm is called a normed space.

Let us note that if a linear space X is endowed with some norm, then one has a
normed space, but if the same linear space is endowed with another norm, then it
already becomes a different normed space. Below we provide examples of normed
spaces that will be repeatedly encountered in the sequel. The verification of the norm
axioms in these examples is left to the reader.

Examples

1. Let K be a compact topological space.We letC(K ) denote the normed space of
continuous scalar-valued functions on K with the norm ‖ f ‖ = max{| f (t)| : t ∈ K }.
An important particular case of the space C(K ) is the space C[a, b] of continuous
functions on the interval [a, b].
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160 6 Normed Spaces

2. �1 is the space of numerical sequences x = (x1, x2, . . . , xn, . . .) that satisfy
the condition

∑∞
n=1 |xn| < ∞, equipped with the norm ‖x‖ = ∑∞

n=1 |xn|. Since any
sequence can be regarded as a function defined on the set N of natural numbers,
the space �1 is a particular case of the space L1(�,�,μ) studied below in Sub-
section6.1.3: � = N, � is the family of all subsets of N, and μ is the counting
measure.

3. �∞ denotes the space of all bounded numerical sequences with the norm ‖x‖ =
supn |xn|.

4. c0 is the space of all numerical sequences that tend to zero. The norm on c0 is
given in the same way as on �∞.

Definition 2. A mapping x �→ p(x) that associates to each element of the linear
space X a non-negative number is called a seminorm if it obeys the norm axioms (2)
and (3).

Exercises

1. Give an example of a seminorm on R
2 which is not a norm.

2. Give an example of a convex functional on R
2 that is not a seminorm.

3. Let B be a convex absorbing set in the linear space X . Suppose, in addition, that
B is a balanced set, i.e., λB ⊂ B for any scalar λ with |λ| � 1. Then the Minkowski
functional of B (see Subsection5.4.2) is a seminorm.

6.1.2 The Metric of a Normed Space and Convergence.
Isometries

Let X be a normed space. The distance between the elements x1, x2 ∈ X is defined
by ρ(x1, x2) = ‖x2 − x1‖. From the norm axioms is follows that ρ is indeed a metric
on X . Hence, every normed space is simultaneously a metric space, and so all the
notions defined in metric spaces — open and closed sets, compact sets, limit points,
completeness, etc., — also make sense in normed spaces. In particular, a sequence
(xn) of elements of the normed space X converges to the element x if ‖xn − x‖ → 0
asn → ∞. An essential difference in terminologybetweennormed andmetric spaces
shows up in the definition of isometries: in a normed space one additionally requires
that the map in question is linear.

A linear operator T acting from a normed space X to a normed space Y is called
an isometric embedding if ‖T x‖ = ‖x‖ for all x ∈ X .

A bijective isometric embedding is called an isometry. The normed spaces X and
Y are said to be isometric if there exists an isometry between them.



6.1 Normed Spaces, Subspaces, and Quotient Spaces 161

Exercises

1. Suppose the sequence (xn)of elements of a normed space converges to the element
x . Show that ‖xn‖ → ‖x‖ as n → ∞.

2. Consider in the space �1 the elements xn = (nk/(n + 1)k+1)∞k=1. Write in explicit
form the coordinates of x1 and x2. What are the norms of x1 and x2? Calculate the
norms ‖xn‖ for arbitrary n.

3. Show that convergence in C(K ) is the uniform convergence on K . In particular,
convergence in C[a, b] is uniform convergence on [a, b], a type of convergence well
known from calculus.

4. Show that for any a < b the space C[a, b] is isometric to the space C[0, 1].
5. If the compact spaces K1 and K2 are homeomorphic, then the space C(K1) is
isometric to C(K2). Conversely, if C(K1) is isometric to C(K2), then K1 and K2 are
homeomorphic (this converse is far from trivial).

6. Show that in the space �1 the convergence of a sequence of vectors xn = (xkn )
∞
k=1 to

a vector x = (xk)∞k=1 implies the coordinatewise convergence: xkn → xk as n → ∞,
for all k = 1, 2, . . . . On the other hand, coordinatewise convergence does not imply
convergence in �1.

7. The sequence (xn) in Exercise2 above can be regarded as a sequence in �1, and
also as one in c0. What are the norms ‖xn‖ in c0 equal to? Show that the sequence
(xn) converges coordinatewise to 0 and converges to 0 in c0, but does not converge
in �1.

8. Let X be some sequence space. The positive cone in X is defined to be the set of
vectors of X all the coordinates of which are non-negative. Consider the three cases
X = c0, X = �1, and X = �∞. In each of them prove that the positive cone is closed
and convex, and describe its interior and boundary.

6.1.3 The Space L1

Let (�,�,μ) be a (finite or infinite) measure space, E the linear space of all
μ-integrable scalar-valued functions on �, and F the subspace of E consisting of
all functions that vanish almost everywhere. By L1(�,�,μ) we denote the quotient
space E/F . The analogous quotient space L0(�,�,μ) was mentioned in Subsec-
tion5.2.2. To simplify the terminology, one usually says that the elements of the
space L1(�,�,μ) are functions integrable on �, with the understanding that two
functions that coincide almost everywhere are identified. The norm in L1(�,�,μ) is
given by the formula ‖ f ‖ = ∫

�
| f (t)|dμ. An important particular case of the space
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L1(�,�,μ) is the space L1[a, b] of Lebesgue-integrable functions on an interval
[a, b]. In this case � = [a, b], � is the family of all Lebesgue-measurable subsets
of the interval, and μ is the Lebesgue measure.

Exercises

1. Show that L1(�,�,μ) is a normed space.

2. Show that for any a < b the space L1[a, b] is isometric to the space L1[0, 1].
3. Show that the space L1[0, 1] is isometric to the space L1(−∞,+∞).

4. Show that the space L1[0, 1] is isometric to the space L1([0, 1] × [0, 1]).
5. The convergence of a sequence of functions in L1(�,�,μ) implies its conver-
gence in measure, but if the measure is not purely atomic (a typical example is
the space L1[a, b]), then convergence in L1(�,�,μ) does not imply convergence
almost everywhere.

6. If (�,�,μ) is a finite measure space and a sequence of integrable functions
converges uniformly on �, then this sequence also converges in L1(�,�,μ).

7. Show that regardless of what norm the space L1[a, b] is endowed with, conver-
gence in this norm cannot coincide with convergence in measure. (Compare with
Exercise6 in Subsection4.3.3.)

8. Consider the positive cone in L1(�,�,μ), that is, the set G of all functions from
L1(�,�,μ) that are almost everywhere greater than or equal to zero. Show that G
is a closed convex set that has no interior points.

9. By analogywith the preceding exercise, consider the positive cone inC(K ). Show
that this set is convex and closed, and describe its interior and boundary.

Let p be a seminorm on the space X . The kernel of the seminorm p is the set
Ker p of all points x ∈ X such that p(x) = 0.

10. Ker p is a linear subspace of X .

11. The expression ρ(x1, x2) = p(x2 − x1) defines a pseudometric on X .

12. Show that for any x ∈ X and any y ∈ Ker p, we have p(x + y) = p(x).

13. The expression ‖[x]‖ = p(x) defines a norm on the quotient space X/Ker p.

Since the expression p( f ) = ∫
�

| f (t)|dμ gives a seminorm on the linear space
E of all scalar-valued μ-integrable functions on �, F = Ker p is the subspace of
E consisting of all functions that vanish almost everywhere, the definition given
above for the space L1(�,�,μ) is a particular case of the construction described in
Exercises10–13 of this subsection.
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6.1.4 Subspaces and Quotient Spaces

A linear subspace Y of the normed space X , equipped with the norm of X , is called
subspace of the normed space X . Hence, any subspace of a normed space is itself a
normed space.

Let Y be a closed subspace of the normed space X , x ∈ X an arbitrary ele-
ment, and [x] = x + Y the corresponding element of the quotient space X/Y . Define
‖[x]‖ = inf y∈Y ‖x + y‖. In other words, ‖[x]‖ is the distance in X from 0 to the set
x + Y . Since Y is a subspace, and hence Y = −Y , the original definition is equivalent
to the following one: ‖[x]‖ = inf y∈Y ‖x − y‖. The geometric meaning of the latter
is that ‖[x]‖ is the distance in X from x to the subspace Y .

Proposition 1. The expression ‖[x]‖ introduced above gives a norm on the space
X/Y .

Proof. Let us verify the norm axioms.

1. Suppose ‖[x]‖ = 0. Then inf y∈Y ‖x − y‖ = 0, and so x is a limit point of the
subset Y . Since Y is closed, x ∈ Y and [x] = Y = [0].

2. Since Y is a subspace, λY = Y for any nonzero scalar λ. We have
‖[λx]‖ = inf y∈Y ‖λx + y‖ = inf y∈Y ‖λx + λy‖ = |λ| inf y∈Y ‖x + y‖ = |λ| · ‖[x]‖.

3. Let x1, x2 ∈ X and ε > 0. By the definition of the infimum, there exist y1,
y2 ∈ Y , such ‖x1 + y1‖ < ‖[x1]‖ + ε and ‖x2 + y2‖ < ‖[x2]‖ + ε. It follows that

‖[x1 + x2]‖ = inf
y∈Y ‖x1 + x2 + y‖ � ‖x1 + x2 + y1 + y2‖

� ‖x1 + y1‖ + ‖x2 + y2‖ � ‖[x1]‖ + ‖[x2]‖ + 2ε,

which in view of the arbitrariness of ε means that the needed triangle inequality
holds.

Henceforth we will always assume that the quotient space of a normed space is
equipped with the norm described above.

Example Let (�,�,μ) be a measure space, X the space of all bounded mea-
surable functions on �, endowed with the norm ‖ f ‖ = supt∈� | f (t)|, and Y the
subspace of X consisting of the functions that vanish almost everywhere. The cor-
responding quotient space X/Y is denoted by L∞(�,�,μ).

Exercises

1. Prove the following formula for the norm in L∞(�,�,μ):

‖ f ‖∞ = inf
A∈�, μ(A)=0

{

sup
t∈�\A

| f (t)|
}

.
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2. Prove the inequality | f | a.e.
� ‖ f ‖∞.

3. Show that ‖ f ‖∞ is equal to the infimum of the set of all constants c such that

| f | a.e.
� c.

4. In the space C[a, b] consider the subspace Y consisting of the constants (i.e.,
constant functions). Show that the norm of the element [ f ] of the quotient space
C[a, b]/Y can be calculated by the formula

‖[ f ]‖ = 1

2

(
max{ f (t) : t ∈ [a, b]} − min{ f (t) : t ∈ [a, b}

)
.

5. The space �1 can be regarded as a linear subspace of c0, though it will not be a
normed subspace of c0: the norm given on �1 does not coincide with the norm on c0.
Show that �1 is not closed and is dense in c0. Show that as a subset of c0, �1 belongs
to the class Fσ .

6. Show that the space c0 of all sequences that converge to zero is closed in �∞.

7. Show that the norm of the element [a] in the space �∞/c0 is calculated by the
formula ‖[a]‖ = lim

n→∞ |an|, where an are the coordinates of the element a ∈ �∞.1

6.2 Connection Between the Unit Ball and the Norm.
L p Spaces

6.2.1 Properties of Balls in a Normed Space

Let X be a normed space, x0 ∈ X , and r > 0. As usual, we denote by BX (x0, r) the
open ball of radius r centered at x0:

BX (x0, r) = {x ∈ X : ‖x − x0‖ < r} .

The unit ball BX in the space X is the open ball of unit radius centered at zero:
BX = { x ∈ X : ‖x‖ < 1 }. The unit sphere SX and closed unit ball BX are similarly
defined as

SX = { x ∈ X : ‖x‖ = 1 }, and BX = { x ∈ X : ‖x‖ � 1 }.

Let us list some of the simplest properties of the objects just introduced.

1In Soviet times, one of the Kharkiv newspapers published a paper on the fulfillment of the pro-
duction plan by highly productive workers (“peredoviks”), entitled “The [production] norm is not
a limit!”. The last assertion above can be considered as a counterexample to this assertion.
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— The unit ball is an open set, while the unit sphere and the closed unit ball are
closed sets.

— BX (x0, r) = x0 + r BX .

— BX is a convex absorbing set (see Exercise2 in Subsection5.4.2).

— BX is a balanced set, i.e., for any scalar λ such that |λ| � 1, we have λBX ⊂ BX .

— For any x0 ∈ X and r > 0, the linear span of the ball BX (x0, r) coincides with
the whole space X .

Exercises

1. Prove that the closure of the open ball BX (x0, r) in a normed space is the closed
ball BX (x0, r). Compare with Exercise10 in Subsection1.3.1.

2. The spaceof numerical rows x = (x1, x2, . . . , xn)with thenorm‖x‖ = ∑n
k=1 |xn|

is denoted by �n1; the analogous space of rows with the norm ‖x‖ = supn |xn| is
denoted by �n∞. The spaces �n1 and �n∞ are finite-dimensional analogues of the spaces
�1 and �∞. Construct in the coordinate plane the unit balls of the spaces �21 and �2∞.
Exhibit an isometry between these two spaces.

3. Construct in the three-dimensional coordinate space the unit balls of the spaces
�31 and �3∞. Show that these normed spaces are not isometric.

4. Nested balls principle. Let X be a complete normed space, and Bn = BX (xn, rn)
be a decreasing (with respect to inclusion) sequence of closed balls. Show that the
intersection

⋂∞
n=1 Bn is not empty. (In contrast to the nested sets principle, here one

does not assume that the diameters of the balls tend to zero, but neither does one
assert that the intersection consists of a single point.)

5. Give an example of a completemetric space inwhich the assertion of the preceding
exercise is not true.

6.2.2 Definition of the Norm by Means of a Ball.
The Spaces L p

Let B be a convex absorbing set in the linear space X . Recall (see Subsection5.4.2)
that the Minkowski functional of the set B is the function on X given by the formula
ϕB(x) = inf

{
t > 0 : t−1x ∈ B

}
.

Theorem 1. Let B be a convex, absorbing, balanced set in the space X which also
has the following algebraic boundedness property: for each x ∈ X \ {0} there exists
an a > 0 such that ax /∈ B. Then the Minkowski functional ϕB gives a norm on X.
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Proof. The fact that ϕB is a convex functional was already established in Subsec-
tion5.4.2. Since the set B is balanced, ϕB(λx) = ϕB(|λ|x) = |λ|ϕB(x) for all x ∈ X
and all scalarsλ, i.e.,ϕB is a seminorm. Finally, if x ∈ X \ {0}, then thanks to the alge-
braic boundedness there exists an a > 0 such that ax /∈ B. Hence, ϕB(x) � 1

a > 0,
which establishes the non-degeneracy of the Minkowski functional. �

Let (�,�,μ) be a (finite or not) measure space, and p ∈ [1,∞) a fixed number.
We denote by L p(�,�,μ) the subset of the space L0(�,�,μ) of all measur-
able scalar-valued functions on � consisting of the functions for which the integral∫
�

| f (t)|pdμ exists. Here, as in the case of the space L0(�,�,μ), functions in
L p(�,�,μ) that are equal almost everywhere are regarded as one and the same

element. For f ∈ L p(�,�,μ), we put ‖ f ‖p = (∫
�

| f (t)|pdμ
)1/p

.

Theorem 2. L p(�,�,μ) is a linear space, and ‖·‖p is a norm on L p(�,�,μ).

Proof. Consider the set Bp ⊂ L p(�,�,μ) consisting of all functions for which∫
�

| f (t)|pdμ < 1. Let f, g ∈ Bp and λ ∈ [0, 1]. Since the function |x |p is convex
on R, for any t ∈ � we have the numerical inequality

|λ f (t) + (1 − λ)g(t)|p � λ| f (t)|p + (1 − λ)|g(t)|p.

Integrating this inequality we conclude that λ f + (1 − λ)g ∈ Bp, and so Bp is
a convex set. It is readily verified that the set Bp is balanced and algebraically
bounded. From the fact that Bp is convex and balanced and the obvious equality
L p(�,�,μ) = ⋃∞

n=1 nBp it follows that L p(�,�,μ) is a linear space and Bp is
an absorbing set in L p(�,�,μ) (Exercise1 in Subsection5.4.2). Consequently, the
Minkowski functional of the set Bp is defined on L p(�,�,μ) and gives a norm on
this linear space. It remains to observe that ‖·‖p coincides with ϕBp . Indeed, for any
f ∈ L p(�,�,μ), 1

t f ∈ Bp if and only if t > ‖ f ‖p, i.e., ‖ f ‖p = ϕBp ( f ). �

In what follows, L p(�,�,μ) will be regarded as a normed space equipped with
the norm ‖·‖p. Important particular cases are the spaces L p[a, b] (i.e., the case
� = [a, b] with the Lebesgue measure) and the spaces �p, where the role of � is
played by N, � = 2N, and μ is the counting measure (the measure of a set is the
number of its elements). Since every function defined on the set N of natural num-
bers can be regarded as a sequence, �p is usually defined as the space of numerical
sequences x = (xk)k∈N that satisfy the condition

∑∞
k=1 |xk |p < ∞, equipped with

the norm ‖x‖p = (∑∞
k=1 |xk |p

)1/p
.

Exercises

1. Suppose the linear space X is endowed with two norms, ‖·‖1 and ‖·‖2, and let B1

and B2 be the corresponding unit balls. Then B1 ⊂ B2 if and only if the inequality
‖·‖1 � ‖·‖2 holds in X .
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2. Suppose the linear space X is endowed with three norms, ‖·‖1, ‖·‖2, ‖·‖3, and
let B1, B2, and and B3 be the corresponding unit balls. Suppose ‖·‖3 is expressed in
terms of ‖·‖1 and ‖·‖2 as ‖x‖3 = max{‖x‖1, ‖x‖2}. Then B3 = B1 ∩ B2.

3. �p, regarded as a set, increases with the growth of p, while for fixed x the norm
‖x‖p decreases with the growth of p.

4. The set �0 of terminating (finitely supported) sequences (i.e., sequences in which,
starting with some index, all terms are equal to 0) is dense in �p for any p ∈ [1,∞).

5. If p1 < p, then the set �p1 is dense in the space �p.

6. Let B be a convex, absorbing, balanced, and algebraically bounded set in the
normed space X . Endow X with the norm defined by the Minkowski functional of
B. In order for the unit ball of this norm to coincide with B it is necessary and
sufficient that B have the following property: for every x ∈ B, there exists an ε > 0,
such that (1 + ε)x ∈ B.

7. For 1 � p < ∞, the set of bounded functions is dense in L p[a, b].
8. For 1 � p < ∞, the set of continuous functions is dense in L p[a, b].
9. For 1 � p < ∞, the set of all polynomials is dense in L p[a, b].
10. For 1 � p < ∞, the set of continuous functions satisfying the condition
f (0) = 0 is dense in L p[0, b].
11. The set of continuous functions is not dense L∞[a, b].

6.3 Banach Spaces and Absolutely Convergent Series

A Banach space is a complete normed space, i.e., a normed space in which every
Cauchy sequence converges. Banach spaces constitute the most important class of
normed spaces: they are the spaces most often encountered in applications, and
many of the most important results of functional analysis revolve around the notion
of Banach space.2

6.3.1 Series. A Completeness Criterion in Terms of Absolute
Convergence

Let (xn) be a sequence of elements of the normed space X . The partial sums of
the series

∑∞
n=1 xn are the vectors sn = ∑n

k=1 xk . If the partial sums of the series

2At least in the opinion of the author of these lines, who specializes in the theory of Banach spaces.
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∑∞
n=1 xn converge to an element x , the series is said to converge and the element x

is called the sum of the series. The equality
∑∞

n=1 xn = x is the generally adopted
short way of writing that “the series

∑∞
n=1 xn converges and its sum is equal to x”.

The series
∑∞

n=1 xn is called absolutely convergent if
∑∞

n=1 ‖xn‖ < ∞.

Proposition 1 (Cauchy convergence criterion for series). For the series
∑∞

n=1 xn
of elements of a Banach space X to converge it is necessary and sufficient that∥
∥
∑m

k=n xk
∥
∥ → 0 as n,m → ∞.

Proof. Convergence of a series is equivalent to convergence of the sequence of its
partial sums sn . In turn, in a complete space convergence of a sequence is equivalent
to the sequence being Cauchy. It remains to note that sm − sn = ∑m

k=n+1 xk . �

Proposition 2. Suppose the series
∑∞

n=1 xn of elements of the Banach space X
converges absolutely. Then the series

∑∞
n=1 xn converges.

Proof. Since the numerical series
∑∞

n=1 ‖xn‖ converges,∑m
k=n ‖xk‖ → 0 as n,m →

∞. Consequently, ‖∑m
k=n xk‖ �

∑m
k=n ‖xk‖ → 0 as n,m → ∞. To complete the

proof, it remains to apply Proposition 1. �

Proposition 3. Let X be normed space that is not complete. Then in X there exists
an absolutely convergent, but not convergent series.

Proof. Since X is not complete, there exists a Cauchy sequence vn ∈ X which does
not have a limit. By the definition of a Cauchy sequence, ‖vn − vm‖ → 0 as n,m →
∞. It follows that there exists an n1 ∈ N such that ‖vn − vm‖ < 1

2 for all n,m � n1.
Analogously, pick an n2 � n1 such that ‖vn − vm‖ < 1

4 for all n,m � n2. Continuing
this argument, we obtain an increasing sequence of indices n j such that ‖vn − vm‖ <
1
2 j for all n,m � n j . Then for the sequence vn j it holds that

‖vn2 − vn1‖ <
1

2
, ‖vn3 − vn2‖ <

1

4
, . . . , ‖vn j+1 − vn j ‖ <

1

2 j
, . . . .

Now we define the sought-for series
∑∞

j=1 x j by x1 = vn1 , x2 = vn2 − vn1 , …,
x j = vn j − vn j−1 , and so on. The constructed series is absolutely convergent:
∑∞

j=2 ‖x j‖ < 1
2 + 1

4 + · · · = 1. At the same time, its partial sums are equal to vn j ,
and so they form (see Exercise1 in Subsection1.3.3) a divergent sequence. �

Propositions 2 and 3 provide the following characterization of complete normed
spaces.

Theorem 1. For the normed space X to be complete it is necessary and sufficient
that every absolutely convergent series in X be convergent. �
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6.3.2 Completeness of the Space L1

Sobriety is a life norm …

True, but is life complete with this norm?3

We begin by proving a reformulation of Levi’s theorem, essentially stated above
in Exercise3 of Subsection4.4.3.

Lemma 1. Suppose the series
∑∞

n=1 fn of functions from L1 = L1(�,�,μ) con-
verges absolutely in the normof this space. Then the series

∑∞
n=1 fn converges almost

everywhere to an integrable function f and ‖ f ‖ �
∑∞

n=1 ‖ fn‖.
Proof. By the definition of the norm in L1, the absolute convergence means that∑∞

n=1

∫
�

| fn|dμ < ∞. By Levi’s theorem, the series
∑∞

n=1 | fn| converges almost
everywhere to an integrable function g, and

∫
�
g dμ = ∑∞

n=1

∫
�

| fn|dμ. Denote
the set of measure 0 in the complement of which

∑∞
n=1 | fn| converges by A. For

each point t ∈ � \ A, the numerical series
∑∞

n=1 fn(t) converges absolutely to some
number f (t). Thus, we defined on � \ A (i.e., almost everywhere on �) a function
f , and the series

∑∞
n=1 fn converges to f at all points of �\A. Extend f to the

set A by 0. The function f is measurable on � \ A, being the pointwise limit of a
sequence of measurable functions; moreover, f has an integrable majorant, namely,
the function g. Hence, f is integrable and

∫

�

| f |dμ �
∫

�

g dμ =
∞∑

n=1

∫

�

| fn|dμ. �

Theorem 1. L1 is a Banach space.

Proof. We use the theorem of the preceding subsection, i.e., the completeness crite-
rion in terms of absolute convergence. Suppose the series

∑∞
n=1 fn of L1-functions

converges absolutely. By the preceding lemma,
∑∞

n=1 fn converges almost every-
where to an integrable function f .We claim that the series

∑∞
n=1 fn converges to f in

the normof the space L1. Indeed, ‖ f − ∑k
n=1 fn‖ = ‖∑∞

n=k fn‖ �
∑∞

n=k ‖ fn‖ → 0
as k → ∞. �

Exercise

Prove the completeness of the space L p.

The completeness of the space L p will be established later, in Chap.14, by an
indirect argument. Nevertheless, the reader will profit from finding a direct proof of
this fact.

3A joke from the times of the Gorbachev anti-alcoholism campaign in Soviet Union, 1985–1990.
Quoted from a toast given by Ya.G. Prytula at the banquet for the International Conference on
Functional Analysis and its Applications dedicated to the 110th anniversary of Stefan Banach, May
28–31, 2002, Lviv, Ukraine.
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6.3.3 Subspaces and Quotient Spaces of Banach Spaces

Let X be a Banach space. A linear subspace Y ⊂ X , equipped with the norm of X ,
is called a subspace of the Banach space X if Y is closed in X . Hence, a subspace
of a Banach space is itself a Banach space. As the reader had undoubtedly noticed,
the meaning of the term “subspace” depends on where this subspace is considered.
Since a Banach space is simultaneously a metric as well as a linear and normed
space, the term “subspace” is somewhat overloaded. For this reason we emphasize
once again that in Banach spaces subspaces will be tacitly understood to be closed
linear subspaces. If for some reasonwe need to consider a non-closed linear subspace,
we will state explicitly that the subspace is not closed.

Theorem 1. Let X be a Banach space and Y be a subspace of X. Then the quotient
space X/Y is also a Banach space.

Proof. Let xn ∈ X be such that the corresponding equivalence classes form an abso-
lutely convergent series:

∑
n ‖[xn]‖ < ∞. By the completeness criterion, we need to

prove that the series
∑

n [xn] converges to some element of the quotient space. To
this end we pick in each class [xn] a representative yn such that ‖yn‖ � ‖[xn]‖ + 1

2n .
Then

∑
n yn is an absolutely convergent series in X , which in view of the complete-

ness of X means that the series
∑

n yn converges in X to some element x . We claim
that

∑
n[yn] = [x]. Indeed,

∥
∥
∥
∥
∥
[x] −

n∑

k=1

[xk]
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
[x] −

n∑

k=1

[yk]
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
[x −

n∑

k=1

yk]
∥
∥
∥
∥
∥

�
∥
∥
∥
∥
∥
x −

n∑

k=1

yk

∥
∥
∥
∥
∥

→ 0

as n → ∞. �

Exercises

12. Let X be a Banach space, and let xn ∈ X be a fixed sequence of nonzero
vectors. We introduce the space E of all numerical sequences a = (an)

∞
1 for

which the series
∑∞

n=1 anxn converges. We endow the space E with the norm
‖a‖ = sup{‖∑N

n=1 anxn‖ : N = 1, 2, . . .}. Verify that E is a Banach space.

13. Let X be a Banach space, Y a nontrivial subspace of X (i.e., Y is closed and
Y 	= X ). Prove that Y is nowhere dense in X .

14. Show that a Banach space cannot be represented as a countable union of non-
trivial subspaces.

15. Show that a Hamel basis of an infinite-dimensional Banach space is not count-
able.
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16. LetP be the space of all polynomials (of arbitrarily large degree) with real coef-
ficients, equipped with the norm ‖a0 + a1t + · · · + antn‖ = |a0| + |a1| · · · + |an|. Is
P complete?

17. Denote by {en}∞1 the standard basis of the space �1: e1 = (1, 0, 0, . . .), e2 =
(0, 1, 0, . . . ),….Show that for everya = (an)∞1 ∈ �1 the series

∑∞
n=1 anen converges

to a. Is the convergence absolute?

18. Consider in �∞ the sequence {en}∞1 from the previous exercise. What are the
partial sums of the series

∑∞
n=1 en equal to? Does this series converge to the element

x = (1, 1, . . .) ∈ �∞? Describe the elements a = (an)∞1 ∈ �∞ for which the series∑∞
n=1 anen converges to a. For which a will the convergence be absolute?

19. Prove that the space L∞(�,�,μ) is complete.

20. Prove that in each of the spaces L p(�,�,μ) with 1 � p � ∞, the subspace of
finite-valued measurable functions is dense.

21. The space �p with 1 � p < ∞ is separable, whereas �∞ is not separable.

6.4 Spaces of Continuous Linear Operators

6.4.1 A Continuity Criterion for Linear Operators

Definition 1. Let X and Y be normed spaces. A linear operator T : X → Y is said
to be bounded if it maps bounded sequences into bounded sequences. In other words,
if xn ∈ X and supn ‖xn‖ < ∞ imply supn ‖T xn‖ < ∞.

Themain purpose of this subsection is to prove that for a linear operator continuity
and boundedness are equivalent.

Theorem 1. Let X and Y be normed spaces. For a linear operator T : X → Y the
following conditions are equivalent:

(1) T is continuous;

(2) T maps sequences that converge to zero into sequences that converge to zero;

(3) T maps sequences that converge to zero into bounded sequences;

(4) T is bounded.

Proof. The implications (1) =⇒ (2) =⇒ (3) ⇐= (4) are obvious: indeed, condition
(2), i.e., the continuity of the operator at zero, is a particular case of condition (1);
condition (3) follows from (2) as well as from (4), because sequences that converge
to zero are bounded. Now let us prove the converse implications.
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(2) =⇒ (1). Suppose the sequence of vectors xn ∈ X converges to the vector
x ∈ X . Then xn − x → 0 asn → ∞, so by condition (2),T xn − T x = T (xn − x) →
0 as n → ∞. That is, convergence of xn to x implies convergence of T xn to T x .

(3) =⇒ (2). We proceed by reductio ad absurdum. Suppose condition (2) is not
satisfied: there exists a sequence (xn) in X which converges to zero, but such that
T xn does not converge to zero. Then one can extract from (xn) a subsequence,
denoted (vn), for which infn ‖T vn‖ = ε > 0. Consider the vectors wn = 1√‖vn‖vn .
The sequence wn still converges to 0, but ‖Twn‖ � ε√‖vn‖ → ∞, which contradicts
condition (3).

(3) =⇒ (4). Suppose condition (4) is not satisfied: there exists a bounded
sequence (xn) in X such that supn ‖T xn‖ = ∞. Then one can extract from (xn)
a subsequence, denoted (vn), for which ‖T vn‖ → ∞. Consider the vectors wn =

1√‖T vn‖vn . The sequence (wn) already converges to 0, but ‖Twn‖ = √‖T vn‖ → ∞,
which contradicts condition (3). �

Exercises

1. Let X and Y be normed spaces, T : X → Y a continuous linear operator. Then
Ker T = T−1(0) is a closed linear subspace in X . (N.B.!) This is a simple yet impor-
tant fact, and in the sequel will be used without further clarifications.

2. The image (range) of a continuous operator is not necessarily closed. Examine this
in the case of the integration operator T : C[0, 1] → C[0, 1], (T f )(t) = ∫ t

0 f (τ )dτ .

6.4.2 The Norm of an Operator

The norm of the linear operator T , acting from the normed space X into the normed
space Y , is defined as

‖T ‖ = sup
x∈SX

‖T x‖.

Proposition 1. Let ‖T ‖ < ∞. Then ‖T x‖ � ‖T ‖ · ‖x‖ for any x ∈ X.

Proof. For x = 0 the inequality holds trivially. Now let x 	= 0. Since x/‖x‖ ∈ SX ,
we have ‖T (x/‖x‖)‖ � ‖T ‖. Therefore, ‖T x‖ = ‖x‖ · ‖T (x/‖x‖)‖ � ‖T ‖ · ‖x‖,
as claimed. �

Proposition 2. Let X and Y be normed spaces. For a linear operator T : X → Y
the following conditions are equivalent:
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(1) T is bounded;

(2) ‖T ‖ < ∞;

(3) there exists a constant C > 0 such that ‖T x‖ � C‖x‖ for all x ∈ X.

Proof. (1) =⇒ (2). Suppose ‖T ‖ = ∞. Then for any positive integer n there exists
a vector xn ∈ SX such that ‖T xn‖ > n. The sequence (xn) is bounded, and the images
of its terms tend in norm to infinity. This contradicts condition (1). The implication
(2) =⇒ (3) was proved in Proposition 1 (with C = ‖T ‖). It remains to show that
(3) =⇒ (1). Let xn ∈ X be a bounded sequence: ‖xn‖ � K for some constant K .
Then, by condition (3), ‖T xn‖ � CK for all n. Hence, the operator T maps bounded
sequences into bounded sequences, as we needed to prove. �

Remark 1. If condition (3) of the preceding theorem is satisfied, then

‖T ‖ = sup
x∈SX

‖T x‖ � sup
x∈SX

C‖x‖ = C.

That is, if ‖T x‖ � C‖x‖ for all x ∈ X , then ‖T ‖ � C . This observation is often
used in the estimation of norms of operators.

Remark 2. In the literature one encounters quite a few equivalent definitions of the
norm of an operator:

— ‖T ‖ = supx∈BX
‖T x‖;

— ‖T ‖ = supx∈BX
‖T x‖;

— ‖T ‖ = supx∈X\{0}
‖T x‖
‖x‖ ;

— ‖T ‖ is the infimumof all constantsC � 0 such that the inequality ‖T x‖ � C‖x‖
is satisfied for all x ∈ X .

The verification of the equivalence of these definitions is left to the reader.
We let L(X,Y ) denote the space of all continuous linear operators acting from

the normed space X into the normed space Y . L(X,Y ) is naturally endowed with
linear operations: if T1, T2 ∈ L(X,Y ) are operators and λ1, λ2 are scalars, then
the operator λ1T1 + λ2T2 ∈ L(X,Y ) acts according to the rule (λ1T1 + λ2T2) x =
λ1T1x + λ2T2x . We described above how to introduce a norm on L(X,Y ) — the
norm of the operator, but it remains to verify that the norm axioms are indeed
satisfied.

Proposition 3. The space L(X,Y ) of continuous operators is a normed space.

Proof. Let us verify the norm axioms (Subsection6.1.1).
1. Suppose ‖T ‖ = 0. Then the operator T is equal to 0 on all elements of the unit

sphere of the space X , which in view of its linearity means that T is equal to zero on
the entire space X .
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2. ‖λT ‖ = sup
x∈SX

‖λT x‖ = |λ| sup
x∈SX

‖T x‖ = |λ| ‖T ‖.

3. Let T1, T2 ∈ L(X,Y ) and x ∈ X . By Proposition 1,

‖(T1 + T2)x‖� ‖T1x‖ + ‖T2x‖ � ‖T1‖ · ‖x‖ + ‖T2‖ · ‖x‖ = (‖T1‖ + ‖T2‖) · ‖x‖.

By Remark1, this yields the needed triangle inequality: ‖T1 + T2‖ � ‖T1‖ + ‖T2‖.
�

The norm of an operator is an important concept that will be frequently used in
our text. For this reason the reader who has no experience working with norms is
strongly advised to seriously pay attention to the exercises given below.

Exercises

1. Let T ∈ L(X,Y ) and x1, x2 ∈ X . Then ‖T x1 − T x2‖ � ‖T ‖ · ‖x1 − x2‖.
2. Let T1, T2 ∈ L(X,Y ) and x ∈ X . Then ‖T1x − T2x‖ � ‖T1 − T2‖ · ‖x‖.
3. Let X ,Y , Z be normed spaces, T1 ∈ L(X,Y ), T2 ∈ L(Y, Z). Prove themultiplica-
tive triangle inequality for the composition of operators: ‖T2 ◦ T1‖ � ‖T2‖ · ‖T1‖.
4. Let X be a Banach space, (xn)

∞
1 a bounded sequence in X , and {en}∞1 the standard

basis in the space �1 (see Exercise6 in Subsection6.3.3). Define the operator T :
�1 → X by the formula Ta = ∑∞

n=1 anxn , for any element a = (an)∞1 of the space
�1. Show that T is a continuous linear operator, T en = xn , and ‖T ‖ = supn ‖xn‖.
Show that any continuous linear operator T : �1 → X can be described as indicated
above.

5. Let X be a normed space and X1 a closed subspace of X . Show that the quotient
map q of the space X onto the space X/X1 (see Subsection5.2.2) is a continuous
linear operator. Calculate the norm ‖q‖. Show that q(BX ) = BX/X1 .

6. Let X and Y be normed spaces, and T : X → Y a linear operator. Prove that
the injectivization T̃ of the operator T (see Subsection5.2.3) is a continuous linear
operator and ‖T̃ ‖ = ‖T ‖.
7. In the setting of the preceding exercise, suppose that T (BX ) = BY . Show that in
this case T̃ is a bijective isometry of the spaces X/Ker T and Y .

8. Let P be the space of all polynomials, as in Exercise5 in Subsection6.3.3, and
let Dm : P → P be the m-th derivative operator. Verify that Dm is a linear operator
and calculate its norm. Is Dm a continuous operator?

9. Equip the linear space P of polynomials with the norm ‖a0 + a1t + · · · +
antn‖1 = ∑n

k=0 k! |ak |. Denote the resulting normed space by P1. Is them-th deriva-
tive operator Dm : P1 → P1 continuous? What is its norm?
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10. Let X and Y be normed spaces and T : X → Y be a bijective linear operator.
Show that the operator T is an isometry if and only if ‖T ‖ = ‖T−1‖ = 1.

6.4.3 Pointwise Convergence

Theorem 1. Suppose X and Y are normed spaces, Tn : X → Y is a linear operator,
and the limit limn→∞ Tnx exists for all x ∈ X. Then the map T : X → Y given by
the recipe T (x) = limn→∞ Tnx is a linear operator.

Proof. Indeed,
T (ax1 + bx2) = lim

n→∞ Tn(ax1 + bx2)

= a lim
n→∞ Tn(x1) + b lim

n→∞ Tn(x2) = aT (x1) + bT (x2). �

Definition 1. A sequence of operators Tn : X → Y is said to converge pointwise to
the operator T : X → Y if T x = limn→∞ Tnx for all x ∈ X .

Theorem 2. Suppose the sequence of operators Tn ∈ L(X,Y ) converges point-
wise to the operator T : X → Y and supn ‖Tn‖ = C < ∞. Then T ∈ L(X,Y ) and
‖T ‖ � C.

Proof. The estimate ‖T x‖ = limn→∞ ‖Tnx‖ � C‖x‖ holds for all x ∈ X . �

Theorem 3. If the sequence of operators Tn ∈ L(X,Y ) converges to the operator
T in the norm of the space L(X,Y ), then it also converges pointwise to T .

Proof. Indeed,

‖Tnx − T x‖ = ‖(Tn − T )x‖ � ‖Tn − T ‖ · ‖x‖ → 0 as n → ∞. �

Exercises

1. Let X = C[0, 1], Y = R, and let the operators Tn ∈ L(X,Y ) act as Tn( f ) =
f (0) − f (1/n). Calculate the norms of Tn .

2. Pointwise convergence does not imply convergence in norm. Example: the
sequence of operators from the preceding exercise tends to 0 pointwise, but not
in norm.

3. The following general fact is known (Josefson and Nissenzweig, [55, 72], see
also [47]): On any infinite-dimensional normed space there exists a sequence of
linear functionals that converges to 0 pointwise, but not in norm. Give corresponding
examples in all infinite-dimensional normed spaces you know.
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4. Under the assumptions of Theorem2, show that ‖T ‖ � limn→∞‖Tn‖. In other
words, the norm on L(X,Y ) is lower semicontinuous with respect to pointwise
convergence.

5. Introduce on L(X,Y ) a topology in which convergence coincides with pointwise
convergence.

6.4.4 Completeness of the Space of Operators. Dual Space

Theorem 1. Let X be a normed space and Y a Banach space. Then L(X,Y ) is a
Banach space.

Proof. We use the definition. Suppose the operators Tn ∈ L(X,Y ) form a Cauchy
sequence: ‖Tn − Tm‖ → 0 as n,m → ∞. Then for any point x ∈ X the values
Tnx form a Cauchy sequence in the complete space Y , because ‖Tnx − Tmx‖ �
‖Tn − Tm‖ · ‖x‖ → 0 as n,m → ∞. Hence, for any x ∈ X the sequence (Tnx) has
a limit. Define the operator T : X → Y by the rule T x = limn→∞ Tnx . By Theorem1
of the preceding subsection, the operator T is linear. Since every Cauchy sequence is
bounded, Theorem2 of the preceding subsection shows that T ∈ L(X,Y ). It remains
to verify that T = limn→∞ Tn in the norm of the space L(X,Y ). Since the sequence
Tn is Cauchy, for any ε > 0 there exists a number N (ε) such that ‖TN − TM‖ < ε

for all M > N > N (ε). Then for any point x of the unit sphere SX of X it also
holds that ‖TN x − TMx‖ < ε for M > N > N (ε). Letting here M → ∞ in the last
inequality, we obtain ‖TN x − T x‖ < ε. Now if in the left-hand side of this inequal-
ity we take the supremum over x ∈ SX , we get ‖TN − T ‖ � ε for N > N (ε), i.e.,
T = limn→∞ Tn , as needed. �

The dual (or conjugate) space of the normed space X is the space X∗ of all
continuous linear functionals on X , equipped with the norm ‖ f ‖ = supx∈SX | f (x)|.
In other words, if X is a real space, then X∗ = L(X,R), while if X is a complex
space, X∗ = L(X,C). SinceR andC are complete spaces, the theorem above shows
that the space X∗ is complete, regardless of whether the space X itself is complete
or not. The space X∗ will also be referred to simply as the dual of X .

As was the case with the norm of an operator (see Remark2 in Subsection 6.4.2),
there are other standard definitions for the norm of a functional. We provide one of
them that is specific for functionals rather than for general operators.

Remark 1. Let X be a real normed space, and let f ∈ X∗. Then ‖ f ‖ = supx∈SX f (x).

Proof. We use the symmetry of the sphere: x ∈ SX if and only if −x ∈ SX . Hence,
supx∈SX f (x) = supx∈SX f (−x). Consequently,

‖ f ‖ = sup
x∈SX

| f (x)| = sup
x∈SX

max{ f (x),− f (x)}

= max

{

sup
x∈SX

f (x), sup
x∈SX

f (−x)

}

= sup
x∈SX

f (x). �
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Exercises

1. Let X be a real normed space, and f ∈ X∗. Then ‖ f ‖ = supx∈BX
f (x).

2. Let X be a complex normed space, and f ∈ X∗. Then ‖ f ‖ = supx∈SX Re f (x).

3. On the space �∞ of all bounded numerical sequences x = (x1, x2, . . .), equipped
with the norm ‖x‖ = supn |xn|, define the functional f by the formula f (x) =∑∞

n=1 anxn , where a = (a1, a2, . . . ) is a fixed element of the space �1. Show that
‖ f ‖ = ∑∞

n=1 |an|.
4. On the space C[0, 1] consider the linear functional F defined by the rule
F(x) = ∫ 1/2

0 x(t) dt − ∫ 1
1/2 x(t) dt . Show that ‖F‖ = 1 and that |F(x)| < 1 for all

x ∈ SC[0,1]. This example shows that the supremum in the definition of the norm of
a functional (or operator) is not necessarily attained.

6.5 Extension of Operators

In this section we consider several simple yet useful conditions under which a con-
tinuous operator can be extended from a subspace of a normed space to the entire
ambient space.

6.5.1 Extension by Continuity

Theorem 1. Let X1 be a dense subspace of the normed space X, Y a Banach space,
and T1 ∈ L(X1,Y ). Then the operator T1 admits a unique extension T ∈ L(X,Y ).

Proof. Since the subspace X1 is dense, for any x ∈ X there exists a sequence of
vectors xn ∈ X1 which converges to x . Then (T1xn) is a Cauchy sequence in Y :

‖T1xn − T1xm‖ � ‖T1‖ · ‖xn − xm‖ → ∞ as n,m → ∞.

Denote the limit of this sequence by T x . Then

‖T x‖ = lim
n→∞ ‖T1xn‖ � ‖T1‖ lim

n→∞ ‖xn‖ = ‖T1‖ · ‖x‖.

Note that T x does indeed depend only on x , and not on the choice of the sequence
xn: if x ′

n ∈ X1 is some other sequence that converges to x , then ‖T1xn − T1x ′
n‖ �

‖T1‖ · ‖xn − x ′
n‖ → 0 as n → ∞, and so the sequences (T1xn) and (T1x ′

n) have
the same limit. Hence, for every x ∈ X we defined a map T : X → Y by the rule
T x = limn→∞ T1xn , where xn ∈ X1 form a sequence that converges to x . It remains
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to show that T is the sought-for operator. Let us verify that the operator T is linear.
Let x1, x2 ∈ X , xn1 , x

n
2 ∈ X1, xn2 → x2, xn1 → x1 as n → ∞. Then

T (a1x1 + a2x2) = lim
n→∞ T1(a1x

n
1 + a2x

n
2 )

= a1 lim
n→∞ T1x

n
1 + a2 lim

n→∞ T1x
n
2 = a1T x1 + a2T x2

for all scalars a1, a2. Thanks to the already established inequality ‖T x‖ � ‖T1‖ · ‖x‖,
the operator T is continuous, i.e., T ∈ L(X,Y ). This proves the existence of the
extension. Its uniqueness follows from the fact that two continuous functions which
coincide on a dense set coincide everywhere. �

Exercises

1. In the argument above we skipped the verification of the fact that the operator
T is an extension of the operator T1. Complete this step.

2. Show that under the conditions of the preceding theorem ‖T ‖ � ‖T1‖.
3. Let X and Y be normed spaces, X1 ⊂ X be an arbitrary subspace, and T ∈
L(X,Y ) be an extension of the operator T1 ∈ L(X1,Y ). Show that ‖T ‖ � ‖T1‖.
4. Combining Exercises2 and 3 above, show that under the assumptions of Theo-
rem1, ‖T ‖ = ‖T1‖.
5. Give an example of a continuous function which is defined on a dense subset
of the interval [0, 1], but which cannot be extended to a continuous function on the
whole interval.

6. Show that every continuous linear operator is a uniformly continuous mapping.
Deduce the main theorem of the present subsection from the theorem, given in
Subsection1.3.4, on the extension of uniformly continuous mappings. Moreover,
the linearity of the extended operator can be deduced from the uniqueness of the
extension.

6.5.2 Projectors; Extension from a Closed Subspace

Let X1 be a subspace of the normed space X . The operator P ∈ L(X, X) is called a
projector onto X1 if P(X) ⊂ X1 and Px = x for all x ∈ X1.

Theorem 1. For a subspace X1 of the normed space X, the following conditions
are equivalent:



6.5 Extension of Operators 179

(1) in X there exists a projector onto X1;

(2) for any normed space Y , any operator T1 ∈ L(X1,Y ) extends to an operator
T ∈ L(X,Y ).

Proof. (1) =⇒ (2). Define T ∈ L(X,Y ) by the rule T x = T1(Px).

(2) =⇒ (1). Take Y = X1 and define T1 ∈ L(X1,Y ) by the rule T1x = x . Let
T ∈ L(X,Y ) be an extension of the operator T1. Since in our case Y ⊂ X , we can
regard T as an operator from X to X . We have T (X) ⊂ Y = X1, and T x = T1x = x
for all x ∈ X1. Hence, T is the required projector onto X1. �

Exercises

1. Provide the details of the proof of the implication (1) =⇒ (2) in the preceding
theorem.

2. Let X1 be a subspace of the normed space X and P ∈ L(X, X) be a projector
onto X1. Then P(X) = X1 = Ker(I − P) and the subspace X1 is closed in X .

3. Suppose that under the conditions of the preceding exercise X1 	= {0}. Then
‖P‖ � 1.

4. For a subspace X1 of the normed space X the following conditions are equivalent:

— in X there exists a projector P onto X1 with ‖P‖ = 1;

— for any normed space Y , any operator T1 ∈ L(X1,Y ) extends to an operator
T ∈ L(X,Y ) with ‖T ‖ = ‖T1‖.

5. Let X = �31 (see Exercise2 in Subsection6.2.1 for the definition), and let X1 be
the subspace consisting of all elements for which the sum of their coordinates is
equal to zero. Show that in X there is no projector P onto X1 with ‖P‖ = 1.

Comments on the Exercises

Subsection6.1.2

Exercise1. Since ‖x‖ = ρ(0, x), the result follows from the continuity of the dis-
tance (Subsection1.3.2).

Exercise5. See Subsection18.2.1.
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Subsection6.2.2

Exercise3. See Theorem2 in Subsection14.1.2.

Exercise7. Let g ∈ L p[a, b]. Consider the sequence of truncations

gn = min{n,max{g,−n}}.

The sequence of functions |gn − g|p converges almost everywhere to zero and admits
the integrable majorant |g|p. Hence, by the Lebesgue dominated convergence theo-
rem, ‖gn − g‖p → 0 as n → ∞.

Exercise8. By the preceding exercise, it suffices to show that any bounded func-
tion f ∈ L p[a, b] can be approximated in the metric of L p by continuous functions.
By Exercise6 in Subsection3.2.3, there exists a sequence of continuous functions
( fn) that converges to f a.e. With no loss of generality we can assume that all fn
are bounded in modulus by the same constant C as f (otherwise we replace fn by
the truncations f̃n = min {C,max { fn,−C}}). The convergence of ‖ fn − f ‖p to 0
follows from the Lebesgue dominated convergence theorem.

Subsection6.4.2

Exercise 5. [x] ∈ q(BX ) ⇐⇒ ∃y ∈ BX : [y] = [x] ⇐⇒ ‖[x]‖ < 1 ⇐⇒ [x] ∈
BX/X1 .

Exercise 6.

‖T̃ ‖ = sup
[x]∈BX/X1

‖T̃ [x]‖ = sup
[x]∈q(BX )

‖T̃ [x]‖

= sup
x∈BX

‖T̃ [x]‖ = sup
x∈BX

‖T x‖ = ‖T ‖.
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