
Chapter 3
Measurable Functions

Measure and integration theory studies above all real-valued functions. To avoid
unnecessary repetition, let us agree that, unless otherwise stipulated, the term “func-
tion” will be used for real-valued functions. Thus, when we say “function f on �”,
we mean that f is a function from � to R. For functions whose range does not lie in
R we will use the term “map” or “mapping”.

The operations on functions will be understood pointwise. For example, f1 + f2
is the function on � given by the rule ( f1 + f2)(t) = f1(t) + f2(t), the function
max{ f, g} is defined as max{ f, g}(t) = max{ f (t), g(t)}, and so on. The limit of a
sequence of functions will also be understood as the pointwise limit.

3.1 Measurable Functions and Operations on Them

In this section (�,�) will be a set endowed with a σ -algebra of its subsets. All
functions, unless otherwise stipulated, will be assumed to be defined on �; the
elements of the σ -algebra � will be referred to as measurable sets.

3.1.1 Measurability Criterion

Definition 1. Let (�1, �1) and (�2, �2)be sets endowedwithσ -algebras of subsets.
A map f : �1 → �2 is said to be measurable if f −1(A) ∈ �1 for all A ∈ �2.

As the definition indicates, measurable maps play in measure theory the same role
that continuous maps do in the theory of topological spaces. Particular examples of
measurable maps are the measurable functions introduced below.
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80 3 Measurable Functions

Definition 2. A function f on � is said to be measurable (more specifically, mea-
surable with respect to the σ -algebra �, or �-measurable), if for any Borel subset
A ⊂ R the set f −1(A) is measurable.

Theorem 1. Let (�1, �1) and (�2, �2) be sets endowed with σ -algebras of their
subsets, and let � be a family of subsets of �2 that generates the σ -algebra �2. In
order for the map f : �1 → �2 to be measurable it is necessary and sufficient that
for any set A ∈ � its preimage f −1(A) lies in the σ -algebra �1.

Proof. If f is measurable, then the preimage of any set A ∈ �2 lies in �1. In partic-
ular, �1 contains the preimages of all sets A ∈ �.

Conversely, suppose that �1 contains all sets of the form f −1(A) with A ∈ �.
We need to show that the preimages of all elements of the family �2 lie in �1. To do
this, we introduce the following family �1 of subsets of the set �2: a set A belongs
to �1 if f −1(A) ∈ �1. It is readily verified that �1 is a σ -algebra and contains all
elements of the family�. Since�2 is the smallest σ -algebra containing�, it follows
that �2 ⊂ �1, as we needed to show. �

Let f : � → R be a function and a ∈ R. Denote f −1((a,+∞)) by f>a , i.e., f>a

is the set of all t ∈ � at which f (t) > a. Since (see Subsection 2.1.2, Proposition2)
the sets (a,+∞) with a ∈ R generate the σ -algebraB of Borel set on R, we obtain
the following simple measurability criterion:

Corollary 1. The function f : � → R is measurable if and only if all the sets f>a

with a ∈ R are measurable. �

Corollary 2. Let (�,�), (�1, �1), and (�2, �2) be sets endowed with σ -algebras
of subsets. Endow, as usual, the Cartesian product �1 × �2 with the σ -algebra
�1 ⊗ �2 (see Subsection2.1.3). Then for any measurable maps f1 : � → �2 and
f2 : � → �2, the map f : � → �1 × �2 given by the rule f (t) = ( f1(t), f2(t)) is
also measurable.

Proof. By definition, the σ -algebra �1 ⊗ �2 is generated by the sets A1 × A2 with
A1 ∈ �1 and A2 ∈ �2. We have f −1(A1 × A2) = f −1

1 (A1) ∩ f −1
2 (A2) ∈ �. �

If we take for � a topological space and for � the σ -algebra B of Borel sets on
�, we obtain a particular case of measurability, Borel measurability:

Definition 3. A function f on the topological space� is said to beBorel measurable
if the preimage f −1(A) of any Borel subset A of the real line is a Borel subset of �.

As an example of a Borel-measurable function one can take any continuous func-
tion. Indeed, for a continuous function f all the sets f>a are open, and hence belong
to the σ -algebra B of Borel sets, i.e., the above measurability criterion applies.

For an arbitrary set A ∈ � we can consider the σ -algebra �A of all measurable
subsets of A. If the restriction of the function f to A is measurable with respect to
the σ -algebra �A, then f is said to be measurable on the subset A.
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Exercises

1. If the function f is measurable, then for any a ∈ R the sets f �=a = {t ∈ � :
f (t) �= a}, f=a = {t ∈ � : f (t) = a}, f�a = {t ∈ � : f (t) � a}, f<a = {t ∈ � :
f (t) < a}, and f�a = {t ∈ � : f (t) � a} are measurable.

2. Let f be a Borel-measurable function on the interval [a, b]. Then the set of
maximum points of f is a Borel set.

3. The set of local maximum points of a Borel-measurable function on the real line
is a Borel set.

4. Let (�1, �1) and (�2, �2) be sets endowed with σ -algebras of subsets, and let
�1 × �2 be endowed with the σ -algebra �1 ⊗ �2. Prove that the projection maps
P1 and P2, which send each element (t1, t2) ∈ �1 × �2 into its coordinates t1 and
t2, respectively, are measurable.

5. Prove the converse of Corollary2: if the map f : � → �1 × �2 given by f (t) =
( f1(t), f2(t)) is measurable, then the maps f1 and f2 are also measurable.

6. Show that every monotone function on the real line is Borel measurable.

7. Let f be a Borel-measurable function on the interval [a, b]. Then the set of
maximum points of f is a Borel set.

8. Let f be a measurable function on �. Prove that the functions | f |, sign f , f +,
and f − are measurable.

9. If the function f is measurable, then λ f is measurable for any λ ∈ R.

10. Let the function f be measurable on �. Then f is measurable on any subset
A ∈ �.

11. Suppose that � can be written as the union of two measurable subsets A and B,
and the function f is measurable on both A and B. Then f is measurable on �.

12. Give an example of a bijective measurable map f : �1 → �2 whose inverse is
not measurable.

13. Let g : R → R be a continuous function and A be a Lebesgue-measurable set
in R.

(a) Is the set g(A) necessarily Borel measurable?

(b) Lebesgue measurable?

(c) Can the set g−1(A) be not Lebesgue measurable?

14. Let g : R → R be a continuous function and A be an open subset of R. Then
g(A) is a Borel set. Moreover, g(A) is an Fσ -set.
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15. Let g : R → R be a continuous function and A be a Borel set in R. Can the set
g(A) be not Borel?

16. Let (�,�,μ) be a measure space. Two measurable functions f and g on �

are said to be equimeasurable, if μ( f>a) = μ(g>a) for all a ∈ R. Show that if f
and g are equimeasurable then μ( f −1(A)) = μ(g−1(A)) for any Borel set A of real
numbers.

3.1.2 Elementary Properties of Measurable Functions

Theorem 1. Let (�1, �1), (�2, �2), and (�3, �3) be sets endowed with σ -algebras
of subsets, and let f : �1 → �2 and g : �2 → �3 be measurable maps. Then the
composition g ◦ f : �1 → �3 is also a measurable map.

Proof. Let A ∈ �3. Then g−1(A) ∈ �2, and so (g ◦ f )−1(A) = f −1(g−1(A)) ∈ �1,
as needed. �

Corollary 1.

1. Suppose the function f : � → R is measurable and the function g : R → R is
Borel measurable. Then the composition g ◦ f is also measurable.

2. In particular, if f : � → R is measurable and g : R → R is continuous, then
g ◦ f is measurable.

3. Suppose the functions f1, f2 : � → R aremeasurable, and the function g : R2 →
R of two variables is continuous. Then the function f (t) = g( f1(t), f2(t)) is
measurable.

Proof. Only item 3 requires a proof. Consider the planeR2 = R × R, endowed with
the σ -algebra of Borel sets, or, which is the same, with the product of the σ -algebras
of Borel sets on the line R. By Corollary2 in the preceding subsection, the function
F : � → R

2 defined by the rule F(t) = ( f1(t), f2(t)) is measurable. It remains to
note that f = g ◦ F and apply the preceding theorem. �

Theorem 2. The class ofmeasurable functions on (�,�) enjoys the following prop-
erties: if the functions f and g are measurable, then so are the functions f + g, f g,
max{ f, g}, and min{ f, g}. Moreover, the functions | f |, sign f , f + = max{ f, 0},
f − = (− f )+, and λ f with any λ ∈ R are measurable. If f does not vanish at any
point, then the function 1/ f is measurable.

Proof. The functions g1 (x, y) = x + y and g2 (x, y) = xy of two variables are con-
tinuous, and so are the functions max{x, y} and min{x, y}. By item 3 of the last
corollary, this implies that the functions f + g, f g, max{ f, g}, and min{ f, g} are
measurable. The continuity of the functions |t |, t+, t−, and λt , in conjunction with
item 2 of the preceding corollary, guarantee the measurability of the functions | f |,
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f +, f −, and λ f . The measurability of the function sign f follows from item 1 of
the same corollary and the Borel measurability of the function sign t . Finally, if f
does not vanish at any point, then the function 1/ f can be represented as the compo-
sition of the measurable function f : � → R \ {0} (where R \ {0} is endowed with
the σ -algebra of Borel sets), and the continuous — and hence Borel-measurable —
function 1/t : R\{0} → R. �

Theorem 3. Suppose the sequence ( fn) of measurable functions converges point-
wise to a function f , i.e., for any t ∈ �, fn(t) → f (t) as n → ∞. Then f is a
measurable function.

Proof. Fix a number a ∈ R. The value of the function f at the point t ∈ � is larger
than a if and only if there exist a rational number r ∈ Q and a number n ∈ N such
that for anym > n it holds that fm(t) > a + r . Translating this statement into the lan-
guageofmeasure theory,weconclude that f>a =⋃

r∈Q(
⋃∞

n=1

⋂∞
m=n+1 ( fm)>a+r ∈�.

�
Applying this theorem to the sequence of partial sums of a series we obtain the

following statement.

Corollary 2. If a series of measurable functions converges pointwise, then its sum
is a measurable function. �

Exercises

1. Prove directly that if the functions f and g are measurable, then for any a ∈ R

the set ( f + g)>a belongs to �. According to the criterion in the preceding section,
this will provide another proof of the measurability of the sum of two measurable
functions.

2. Express the sets (max{ f, g})>a and (min{ f, g})>a in terms of the analogous sets
for the functions f and g.

3. If the functions f and g are measurable, then the sets of points t ∈ � in which
f = g, f �= g, f > g, and f < g, respectively, are measurable.

4. Let ( fn) be a pointwise bounded sequence of measurable functions. Then the
functions f = supn fn and g = limn→∞ fn are also measurable.

5. Let A denote the set of all differentiability points of the function f on the line
(see Exercise13 in Subsection2.1.2). Show that the function f ′ is Borel-measurable
on A.

6. Identify in the standard way the field C of complex numbers with the plane R2,
and endow C with the σ -algebra of Borel subsets of the plane. A measurable map
f : � → C is called a measurable complex-valued function. Prove that f : � → C

is measurable if and only if the real-valued functions Re f and Im f are measurable.
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7. Prove the following properties of complex-valued functions:

(1) if the functions f and g are measurable, then so is their sum f + g;

(2) if the function f is measurable, then so is λ f for any λ ∈ C;

(3) if the functions f and g are measurable, then so is their product f g;

(4) if the function f is measurable, then | f | is a measurable real-valued function.

3.1.3 The Characteristic Function of a Set

Let � be a set and A be a subset of �. The characteristic function of the set A
is the function 1A on � equal to 1 on A and equal to zero on the complement
� \ A of A. Alternative notations found in the literature are χA and IA. We note
that the last notation is most frequently encountered in probability theory, where
the characteristic function of a set is called the indicator of that set, and the term
“characteristic function” is used for a completely different object. Of course, it would
be reasonable, in the notation for the characteristic function, to account not only for
the set A, but also for the ambient set �. For instance, one and the same set A of real
numbers can be regarded as a subset of an interval in one situation, and as a subset of
the real line in another. In the first case the function 1A is defined on the interval, and
in the second on the real line, and the same symbol is used in both situations. This
slight ambiguity does not have unpleasant consequences: here, like in many other
situations, a function defined on a subset is tacitly extended to the ambient set by
zero.

The properties listed in Exercises1–5 below will be used in the sequel, and for
this reason the reader is advised to pay close attention to them.

Exercises

1. Let (�,�) be a set endowedwith aσ -algebra of subsets, and A ⊂ �. The function
1A is measurable if and only if the set A is measurable.

2. 1A∪B = max{1A,1B}.
3. 1A∩B = min{1A,1B} = 1A · 1B .

4. If the sets A and B are disjoint, then 1A�B = 1A + 1B .

5. Let A = ⊔∞
n=1 An . Then 1A = ∑∞

n=1 1An .

6. Let (An) be a sequence of sets. Then lim
n→∞1An is the characteristic function of a

set A, called the upper limit of the sequence (An). Express the set A in terms of the
sets An by means of the usual operations of union and intersection.
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7. Consider the set 2N of all subsets of the natural numbers with the topology
described inExercise7 of Subsection1.4.4.Verify that a sequence of sets converges in
this topology if and only if the characteristic functions of the sets converge pointwise
to the corresponding characteristic function.

3.1.4 Simple Functions. Lebesgue Approximation
of Measurable Functions by Simple Ones.
Measurability on the Completion of a Measure Space

Let (�,�) be a set endowed with a σ -algebra. A function f on � is called simple
if it can be represented as f = ∑∞

n=1 an1An , where An ∈ � is a disjoint sequence of
sets and an are numbers. Since the sets An are disjoint, the series

∑∞
n=1 an1An does

not merely converge pointwise: for any point t ∈ � all the terms of the series, except
possibly for one (with the index n for which t ∈ An), vanish at t . On each of the sets
An the function f is equal to the constant an , and f (t) = 0 in the complement of
the union of all An . Simple functions are also called countably-valued functions or,
in more detail, countably-valued measurable functions. This terminology is justified
by the following assertion.

Theorem 1. The function f is simple if and only if it is measurable and the set of
its values (i.e., its image, or range) is at most countable.

Proof. The measurability of a simple function f = ∑∞
n=1 an1An can be verified

directly (the preimage of any set under f is a finite or countable union of some of
the sets An); alternatively, one can refer to the measurability of the sum of a series
of measurable functions. Further, f (�) ⊂ {an}∞n=1 ∪ {0}, which shows that the set
of all values of f is at most countab le. Conversely, suppose f is measurable and
the set M of its values is at most countable. Then for any t ∈ M , the set f −1(t) is
measurable and f = ∑

t∈M t1 f −1(t). �
If the set of values of a simple function is finite, then the function is said to be

finitely-valued.

Theorem 2. The classes of finitely-valued and countably-valued functions are stable
under taking sums and products, as well as the maximum and the minimum of two
functions.

Proof. We already know that the listed operations preserve measurability. Now let
f and g be two functions on �, and let f (�) and g(�) be their images. If f (�) and
g(�) are finite (countable), then the sets

f (�) + g(�) = {t + r : t ∈ f (�), r ∈ g(�)}

and
f (�) · g(�) = {t · r : t ∈ f (�), r ∈ g(�)}
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are finite (respectively, countable). The assertion of the theorem follows from the
fact that the images of the functions f + g, f g, max{ f, g}, and min{ f, g} lie in
f (�) + g(�), f (�) · g(�), f (�) ∪ g(�), and f (�) ∪ g(�), respectively. �

Measurable functions can have a rather complicated structure. For this reason, to
facilitate the study of their structure one uses approximations ofmeasurable functions
by simple functions.

Theorem 3. Let f be a measurable function on �. Then for any ε > 0 there exists
a simple function fε � f which at all points differs from f by at most ε. Moreover,
if f � 0, then fε can also be chosen to be non-negative, and if f is bounded, then
for fε one can take a finitely-valued function.

Proof. For each integer n introduce the number tn = nε and the intervals Δn =
[tn, tn+1). Denote the set f −1(Δn) by An . Some of the sets An may be empty. In
particular, if f � 0, then all the An with index n < 0 are empty. Further, if f is
bounded in modulus by some constant C , then all the An with |n| > (C/ε) + 1 are
empty. The sets An are pairwise disjoint, their union is the whole �, and on An

the values of the function f satisfy the inequalities tn � f (t) < tn+1. We define the
function fε so that its value on An is equal to the corresponding tn: fε = ∑∞

n=1 tn1An .
The function fε defined in this way enjoys all the properties stated in the theorem.

Indeed, on each An we have tn = fε(t) � f (t) < tn+1, i.e., f (t) − ε < fε(t) � f (t)
at all points t ∈ �. If f � 0, then fε cannot take negative values tn: the sets An that
correspond to negative tn will be empty. If f is bounded, then all the An , except for
a finite number of them, will be empty, and so fε will be finitely-valued. �

Corollary 1. For anymeasurable function f there exists a non-decreasing sequence
f1 � f2 � · · · of simple functions which converges uniformly to f . If, in addition,
f is non-negative (bounded), then the functions fn can be chosen to be non-negative
(respectively, finitely-valued).

Proof. We use the preceding theorem and chose a simple function f1 such that
0 � f − f1 � 1. The function f − f1 is measurable and non-negative, so by the
preceding theorem there exists a simple non-negative function g1 which satisfies
the inequalities 0 � f − f1 − g1 � 1/2. Put f2 = f1 + g1. Then f1 � f2 and 0 �
f − f2 � 1/2.The function f − f2 is againmeasurable andnon-negative, and soone
can approximate it by a simple function g2: 0 � f − f2 − g2 � 1/3. Naturally, we
define the function f3 as f2 + g2. Continuing this process, we obtain an increasing
sequence of simple functions satisfying the conditions 0 � f − fn � 1/n, which
ensures that the sequence converges uniformly. Ensuring that the additional non-
negativity or finite-valuedness requirements in the statement of the corollary are
satisfied presents no difficulty. �

The proof of the next result is based on the fact that measurable functions can be
approximated by simple ones.
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Theorem 4. Let (�,�,μ) be a measure space and (�,�′, μ) be its completion.
Then for any �′-measurable function f on �, there exists a �-measurable function
g that coincides with f almost everywhere.

Proof. First we will prove this assertion for simple functions. Let f = ∑∞
n=1 an1An ,

where the sets An belong to the σ -algebra �′ and are disjoint. In each of the sets
An we choose a subset Bn ∈ � for which μ(An \ Bn) = 0 (see Exercise3 in Sub-
section2.1.5). Then g = ∑∞

n=1 an1Bn is the sought-for function. Now let f be an
arbitrary �′-measurable function, let ( fn) be a sequence of simple �′-measurable
functions that converges pointwise to f , and finally let gn be �-measurable func-
tions that coincide almost everywhere with the corresponding fn . Denote by A ⊂ �

the negligible set in the complement of which fn = gn for all n = 1, 2, . . .. By the
definition of negligible sets, there exists a �-measurable set B of null measure such
that B ⊃ A. Consider the full-measure set C = �\A. The functions gn · 1C are �-
measurable, converge on C to f , and vanish in the complement of C . That is, the
functions gn · 1C converge pointwise to g = f · 1C , and, by Theorem3 of Subsec-
tion3.1.2, this limit function is �-measurable. It remains to observe that g = f
almost everywhere, since the set B where this equality can fail is negligible. �

Exercises

1. The function fε figuring in the statement of Theorem3 can be chosen so that
fε(�) ⊂ f (�).

2. Let X be ametric space endowedwith theσ -algebra ofBorel sets, and let f : � →
X be a measurable map. Then the following conditions are equivalent:

— for every ε > 0 there exists a countably-valued map fε : � → X such that
ρ( f (t), fε(t)) � ε for all t ∈ �;

— the set f (�) is separable.

3. In the setting of the preceding exercise, the following conditions are equivalent:

— for every ε > 0, there exist a finitely-valued measurable map fε : � → X such
that ρ( f (t), fε(t)) � ε for all t ∈ �;

— the set f (�) is precompact.

4. The map fε in the two preceding exercises can be chosen so that it will satisfy
fε(�) ⊂ f (�).

5. Show that for every Lebesgue-measurable function f on the interval one can
find an equimeasurable decreasing function f̃ (for the definition of equimeasura-
bility, see Exercise 16 in Subsection3.1.1). This function f̃ is called a decreasing
rearrangement of the function f .
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3.2 Main Types of Convergence

In this section (�,�,μ) will be a fixed finite measure space, and the functions f ,
fn , and all the others will be assumed, unless otherwise stipulated, to be defined on
�, measurable, and real-valued.

3.2.1 Almost Everywhere Convergence

The sequence of functions ( fn) is said to converge almost everywhere to the function
f (written fn

a.e.−→ f ) if the set of all points t ∈ � at which the numerical sequence
fn(t) does not converge to f (t) as n → ∞ is negligible.
We note the following elementary properties of almost everywhere convergence,

the verification of which is left to the reader.

A. If fn
a.e.−→ f and fn

a.e.−→ g, then f
a.e.= g.

B. If fn
a.e.−→ f and fn

a.e.= gn , then gn
a.e.−→ f .

C. If fn
a.e.−→ f , gn

a.e.−→ g, and fn
a.e.
� gn , then f

a.e.
� g.

D. If G : R
2 → R is a continuous function, fn

a.e.−→ f and gn
a.e.−→ g, then

G ( fn, gn)
a.e.−→ G ( f, g). This implies, in particular, the theorems on the limit

of a sum and of a product.

Almost everywhere convergence plays an important role in the theory of the
Lebesgue integral. Under relatively mild additional assumptions (see Subsection4.4)
the integral of the limit function can be calculated as the limit of the integrals of
the terms of the sequence. Moreover, almost everywhere convergence is in many
respects far more convenient to work with than the usual pointwise convergence.
First of all, it is a more general type of convergence, so it is easier to verify. Next,
here, as in general when one deals with properties that hold almost everywhere, we
can ignore the behavior of functions on negligible sets. For example, for a piecewise-
continuous or for a monotone function it is not at all necessary to define the values
in discontinuity points, as they have no influence whatsoever on almost everywhere
convergence! On the other hand, almost everywhere convergence has an essential
drawback: this convergence is not generated by a metric or topology, so there is no
natural way of defining a “rate of convergence” for it. Let us give an example of a
problem where this drawback shows up.

Definition 1. Let X and Y be two families of measurable functions on �. We say
that X is a.e. dense in Y (dense in the sense of almost everywhere convergence) if
for any f ∈ Y there exists a sequence ( fn) of elements of the family X such that
fn

a.e.−→ f .
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Theorem 1. Suppose that X is a.e. dense in Y and Y is a.e. dense in Z. Then X is
a.e. dense in Z. �

This natural property is important not only from the point of view of the inner
harmony of the theory of almost everywhere convergence, but also from the point
of view of applications. For instance, it enables one to show that the family of
continuous functions on an interval is a.e. dense in the family of all Lebesgue-
measurable functions on that interval. Although these results can be established
using only the definition of almost everywhere convergence, devising such proofs
is far from simple (we invite the reader to have a try at it!). If, on the contrary, the
convergence had been given by some topology, the problem would have been rather
trivial (see Exercise4 in Subsection1.2.1). Fortunately, here the following subtle
idea comes to the rescue. As it turns out, the space of measurable functions carries
a topology for which the notion of denseness of a subset coincides precisely with
a.e. denseness, though the convergence in it (the so-called convergence in measure)
is not equivalent to almost everywhere convergence. The study of this topology and
the corresponding type of convergence is addressed next.

3.2.2 Convergence in Measure. Examples

Let a and ε be strictly positive numbers, f a measurable function. We denote by
Ua,ε( f ) the set of all measurable functions g for which μ (|g − f |>a) < ε. (Here, as
earlier, the symbol h>a stands for the set of all points t ∈ � at which h(t) > a). The
topology of convergence in measure on the space of all measurable functions on � is
the topology in which a neighborhood basis of f is provided by the setsUa,ε( f )with
a, ε > 0. Accordingly, a sequence of functions ( fn) is said to converge in measure

to the function f (written fn
μ−→ f ) if for any a > 0,

μ (| fn − f |>a) → 0 as n → +∞.

Theorem 1. Convergence in measure enjoys the following properties:

A. fn
μ−→ f if and only if fn − f

μ−→ 0.

B. If fn
μ−→ f and fn

μ−→ g, then f
a.e.= g.

C. If fn
μ−→ f and fn

a.e.= gn, then gn
μ→ f .

Proof. Properties A and C are obvious. We prove property B. Let A be the set
of all points t ∈ � at which f (t) �= g(t), and An the set of all points t ∈ � at
which | f (t) − g(t)| > 1/n. Since A = ⋃

n∈N An , it suffices to show thatμ(An) = 0
for all n. For any k ∈ N, at each point t ∈ An either | f (t) − fk(t)| > 1/(2n), or
|g(t) − fk(t)| > 1/(2n). Hence, if we denote by Bn,k the set of all points at which
| f (t) − fk(t)| > 1/(2n), and by Cn,k the set of all points where |g(t) − fk(t)| >

1/(2n), then An ⊂ Bn,k ∪ Cn,k . By the definition of convergence in measure, for
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fixed n and k → ∞, the measures of the sets Bn,k and Cn,k tend to 0. Hence, μ(An)

can only be 0. �

Theorem 2. Let X be a family of measurable functions on �. Then every point in
the closure of X in the topology of convergence in measure is the limit of a sequence
of elements of X that converges in measure.

Proof. We use here the idea of Exercise6 of Subsection1.2.1. Let f be a point in the
closure of the set X . Note that the neighborhood Ua,ε( f ) increases with the growth
of a, as well as with the growth of ε. Consider the neighborhoodsUn = U1/n,1/n( f ).
Clearly, U1 ⊃ U2 ⊃ · · · and together the sets Un constitute a neighborhood basis
of f (if Ua,ε( f ) is an arbitrary neighborhood of f , then Ua,ε( f ) ⊃ Un for n >

max {1/a, 1/ε}). By the definition of the closure, all sets X ∩Un are non-empty.
Pick in each set X ∩Un an element fn . Then ( fn) is the sought-for sequence of
elements of the set X that converges in measure to f . �

Example 1 (sliding hump). In the interval [0, 1] consider the subintervals In,k =
[ k−1

2n , k
2n ],n = 0, 1, 2, . . ., k = 1, . . . , 2n . Forfixedn, the intervals In,k , k = 1, . . . , 2n ,

cover the whole interval [0, 1]. Now consider the sequence of functions f1 = 1[0,1],
f2 = 1[0,1/2], f3 = 1[1/2,1], …, f2n+k = 1In,k , …. For each a > 0, the set of points
x ∈ [0, 1] where | f2n+k(x)| > a is either empty (if a � 1), or coincides with In,k .
Since the lengths of the intervals In,k tend to zero when n → ∞, the sequence ( fn)
tends to zero in measure (with respect to the Lebesgue measure). At the same time,
the sequence ( fn) does not tend to zero at any point, since every point of the interval
[0, 1] belongs to infinitely many intervals In,k . This example allows one to get a
feeling for the meaning of the convergence in measure, and at the same time shows
that convergence in measure is not equivalent to almost everywhere convergence.

Exercises

1. In the preceding example, find a subsequence of the sequence ( fn) that tends to
0 at every point.

2. Why are the sets | fn − f |>a in the definition of convergence in measure measur-
able?

3. Verify that our definition of convergence in measure is correct, i.e., that conver-
gence in the topology of convergence inmeasure is indeed equivalent to the condition
appearing in the definition.

4. If fn
μ−→ f , gn

μ−→ g, and fn
a.e.
� gn , then f

a.e.
� g.
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5. On the segment [0, 1] consider the sequence of functions gn(x) = xn . Show that
gn

μ−→ 0 (in the sense of the Lebesgue measure). Does this sequence converge to
zero pointwise? Almost everywhere?

6. Flesh out the proof of Theorem2.

7. μ (| f − h|>a) � μ
(| f − g|> a

2

) + μ
(|g − h|> a

2

)
for any measurable functions

f, g, h and any a > 0.

8. Let fn
μ−→ f and gn

μ−→ g. Then fn + gn
μ−→ f + g.

9. By definition, ( fn) is a Cauchy sequence in the sense of convergence in measure
if μ(| fn − fm |>a) → 0 as n,m → ∞. Prove that any sequence that converges in
measure is a Cauchy sequence in the above sense.

10. The sequence of functions sin(πnx) on [0, 1] does not tend in measure to any
function; moreover, it does not contain a subsequence that converges in measure.

11. Let fn be an increasing sequence of functions and let fn
μ−→ f . Then fn

a.e.−→ f .

12. The expression ρ( f, g) = infa∈(0,+∞)

{
a + μ(| f − g|>a)

}
is a pseudometric

that generates the topology of convergence in measure.

13. Another example: the pseudometric d( f, g) = inf
{
a > 0 : μ(| f − g|>a) � a

}

also gives the topology of convergence in measure.

14. Let (�,�,μ) be a finite measure space and let the measure μ be purely atomic.
Then for functions on� convergence in measure is equivalent to convergence almost
everywhere. If μ is not purely atomic, then these two types of convergence are not
equivalent.

3.2.3 Theorems Connecting Convergence in Measure
to Convergence Almost Everywhere

Definition 1. The upper limit of a sequence of sets (An) is the set lim An =⋂∞
n=1

⋃∞
k=n Ak .

Another commonly used name for the same object is the limit superior, with the
corresponding notation lim supn→∞ An . That our use of the terms “upper limit” or
“limit superior” is natural will become clear once Exercise 6 in Subsection3.1.3 is
solved.

Lemma 1 (on the upper limit of a sequence of sets). Let An ∈ � and A∞ =
lim An. Then

(i) μ(A∞) � limμ(An). In particular, ifμ(A∞) = 0, thenμ(An) → 0 as n → ∞.

(ii) If
∑∞

n=1 μ(An) < ∞, then μ(A∞) = 0.
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Proof. Consider the sets Bn = ⋃∞
k=n Ak . Then A∞ = ⋂∞

n=1 Bn . Since the sets Bn

form a decreasing chain,

lim
n→∞ μ(Bn) = μ(A∞). (3.1)

To prove assertion (i), it remains to note that Bn ⊃ An , andμ(Bn) � μ(An). Further,
if

∑∞
n=1 μ(An) < ∞, thenμ(Bn) �

∑∞
k=n μ(Ak) → 0 as n → ∞, which in view of

(3.1) yields assertion (ii). �

We note that in probability theory the assertion (ii) of the preceding lemma is
known as the “Borel–Cantelli lemma”.

Theorem 1 (Lebesgue). Convergence almost everywhere implies convergence in
measure. Precisely, if f, fn are measurable functions on � and fn → f almost

everywhere, then fn
μ−→ f .

Proof. By hypothesis, the set D of all points at which fn does not converge to f
is negligible (of measure zero). Fix a > 0. Consider the sets An = | fn − f |>a and
A∞ = lim An . By the definition of the upper limit, A∞ = ⋂∞

n=1

⋃∞
k=n Ak , i.e., A∞

is the set of all points t ∈ � with the property that for any n ∈ N there exists a k > n
such that | fn(t) − f (t)| > a. Hence, A∞ ⊂ D and μ(A∞) = 0. By the preceding
lemma, μ(An) → 0 as n → ∞, i.e., μ (| fn − f |>a) → 0 as n → ∞. �

Lemma 2. Let fn be measurable functions, and an and εn be positive numbers such
that an → 0 as n → ∞ and

∑∞
n=1 εn < ∞. Moreover, suppose that fn satisfy the

condition μ
(| fn|>an

)
< εn. Then fn

a.e.−→ 0.

Proof. Denote by D the set of all points where fn does not tend 0, and set
An = | fn|>an , Bn = ⋃∞

k=n Ak , A∞ = lim An = ⋂∞
n=1 Bn . Let t ∈ � be an arbitrary

point such that fn(t) does not tend to zero. For any n ∈ N, there exists k � n such
fk(t) > ak , that is, t ∈ Bn . Hence, D ⊂ Bn for all n, and D ⊂ A∞. At the same time,∑∞

n=1 μ(An) <
∑∞

n=1 εn < ∞ by hypothesis. Applying assertion (ii) of the lemma
on the upper limit of sequence of sets, we conclude that μ(D) � μ(A∞) = 0. �

Theorem 2 (F. Riesz). Any sequence of measurable functions that converges in
measure contains a subsequence that converges almost everywhere.

Proof. Suppose that fn
μ−→ f . Fix an, εn > 0, such that the conditions of the pre-

ceding lemma are satisfied, and choose an increasing sequence of indices mn such
that μ

(| fmn − f |>an

)
< εn . By Lemma2, fmn − f

a.e.−→ 0, hence fmn

a.e.−→ f . �
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Theorem 3 (convergence in measure criterion). The sequence of measurable
functions ( fn) converges in measure to the function f if and only if any subse-
quence of the sequence ( fn), in its turn, contains a subsequence that converges to f
almost everywhere.

Proof. Suppose fn
μ−→ f . Then each subsequence of the sequence ( fn) also con-

verges in measure, so by the preceding theorem, it contains a subsequence that
converges to f almost everywhere. Conversely, suppose that fn does not converge
in measure to f . Then there exist a, ε > 0 and a subsequence (gn) of ( fn) such
that none of the functions gn lies in the neighborhood Ua,ε( f ). It follows that the
subsequence (gn) does not contain subsequences that converge in measure to f ,
and hence, by Theorem1, neither does it contain subsequences that converge almost
everywhere to f . �

Corollary 1. If G : R2 → R is a continuous function, fn
μ−→ f and gn

μ−→ g,

then G ( fn, gn)
μ−→ G ( f, g). In particular, it follows that fn + gn

μ−→ f + g and

fngn
μ−→ f g.

Proof. Use the preceding criterion and the corresponding properties of convergence
almost everywhere. �

Corollary 2 (Theorem1 in Subsection3.2.1). Let X, Y and Z be sets ofmeasurable
functions on �. If X is a.e. dense in Y and Y is a.e. dense in Z, then X is a.e. dense
in Z.

Proof. By Theorem1, in the topology of convergence in measure X is dense in Y
and Y is dense in Z . Therefore (Exercise4 of Subsection1.2.1), X is dense in Z in
the topology of convergence in measure. Hence, by Theorem2 of Subsection3.2.2,
the set X is sequentially dense in Z in the sense of convergence in measure, i.e., for
any f ∈ Z there exists a sequence ( fn) of elements of the set X such that fn

μ−→ f .
It remains to apply Theorem2. �

Exercises

1. Solve Exercise 4 in Subsection3.2.2 based on the results obtained in the current
subsection.

2. Let ( fn) be a Cauchy sequence in the sense of convergence in measure (see
Exercise 9 in Subsection3.2.2). Then ( fn) contains a subsequence that converges
almost everywhere.

3. If a sequence of measurable functions is Cauchy in the sense of convergence in
measure, then it has a limit in the same sense.
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4. Suppose that in some space X of measurable functions on a finite measure space
almost everywhere convergence coincides with convergence in some topology τ

on X . Then in X almost everywhere convergence coincides with convergence in
measure.

5. Almost everywhere convergence in the space of all measurable functions on an
interval cannot be given by a topology.

6. The subset of all continuous functions is a.e. dense in the space of all measurable
functions on an interval.

7. Let (An) be a decreasing chain of sets. Then lim An = ⋂∞
n=1 An andμ( limAn) =

limn→∞ μ(An).

8. For any increasing chain of sets An it also holds thatμ( lim An) = limn→∞ μ(An),
because in this case lim An = ⋃∞

n=1 An .

9. Give an example in which μ( lim An) �= lim
n→∞ μ(An).

10. A point t ∈ � belongs to lim An if and only if t belongs to infinitely many of
the sets An .

11. Consider the functions fn = 1(n,∞) on R. Verify that fn converge almost every-
where onR to 0 but does not converge inmeasure. This example shows thatTheorem1
does not extend to σ -finite measure spaces.

12. Let (�,�,μ) be aσ -finitemeasure space, then any sequence ( fn) ofmeasurable
functions on � that converges in measure to a measurable function f contains a
subsequence that converges to f almost everywhere. In other words, Theorem2
remains valid in σ -finite measure spaces.

3.2.4 Egorov’s Theorem

The functions gn(x) = xn on the interval [0, 1] provide a typical example of a
sequence that converges at each point, but does not converge uniformly. At the same
time, the convergence can be improved if one removes an arbitrarily small neigh-
borhood of the point 1: on the remaining interval [0, 1 − ε] the convergence will
already be uniform. A similar situation arises in the theory of power series: a series
converges to its sum uniformly not in the entire disc of convergence, but in any disc
of a slightly smaller radius. These facts are particular cases of the following very
general result.

Theorem 1 (Egorov’s theorem). Suppose that fn
a.e.−→ f on �. Then for every

ε > 0 there exists a set A = Aε ∈ � with μ(A) < ε, on the complement of which
( fn) converges uniformly to f .



3.2 Main Types of Convergence 95

Proof. Fix an, εn > 0 such that an → 0 as n → ∞ and
∑∞

n=1 εn < ε. Consider the
sets Am,n = | fm − f |>an and Bm,n = ⋃∞

k=m Ak,n . For fixed n, the sets Bm,n form a
chain decreasingwithm, andμ

(⋂∞
m=1 Bm,n

) = 0 (since
⋂∞

m=1 Bm,n is included in the
negligible set D consisting of all points atwhich fn does not tend to f ). Consequently,
μ(Bm,n) → 0 asm → ∞. Now for each n pick an indexmn such thatμ(Bmn ,n) < εn .
Let us prove that A = ⋃∞

n=1 Bmn ,n is the required set. First, μ(A) �
∑∞

n=1 εn < ε.
Further, � \ A ⊂ � \ Bmn ,n , that is, for every k > mn the set Ak,n = | fk − f |>an
does not contain points of � \ A. It follows that supt∈�\A | fk(t) − f (t)| � an for
k > mn , which establishes the uniform convergence on � \ A. �

Exercises

1. Use Exercise 6 in Subsection3.2.3 and Egorov’s theorem to obtain the following
result: Luzin’s theorem. For any Lebesgue-measurable function f on the interval
[a,b] and any ε > 0 there exists a measurable set A with μ(A) < ε, such that the
restriction of f to [a, b]\A is continuous.

2. Show that in the statement of Luzin’s theorem the set A can be chosen to be open.

3. In the statement of Egorov’s theorem, can the condition μ(A) < ε be replaced
by μ(A) = 0? What about the analogous question for Luzin’s theorem?

4. In the statement of Egorov’s theorem, can the sequence fn , which converges
almost everywhere, be replaced by a sequence which converges in measure?

5. Where in Egorov’s theorem did the measurability of the involved functions play
a role?

Comments on the Exercises

Subsection3.1.1

Exercise2. Denote the supremum of the values of the function f on [a, b] by m.
Then the set of maximum points of f coincides with f=m .

Exercise3. Write all intervals with rational endpoints as a sequence (an, bn),
n ∈ N, and denote the set of points of “true” maximum of the function f on (an, bn)
by Mn . The sought-for set of local maxima of f coincides with

⋃∞
n=1 Mn .

Exercise4. Take as (�1, �1) the interval [0, 1] endowed with the σ -algebra of
Lebesgue-measurable sets, and take for (�2, �2) the same intervalwith theσ -algebra
of Borel sets, and for f the identity map.
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Exercise13. (a) No (even for the function g(x) = x).

(b) No. Let g be the Cantor staircase (Subsection2.3.6), extended to (−∞, 0) by
0, and to (1,+∞) by 1. Let B ⊂ [0, 1] be a set that is not Lebesgue measurable.
With no loss of generality, we may assume that B consists only of irrational points
(otherwise one can replace B by B \ Q). As the required A take g−1(B). Then A is a
subset of the Cantor set, whence λ(A) = 0, so A is Lebesgue measurable. However,
f (A) = B is not measurable.

(c) It can. To produce an example, one needs to come up with a continuous strictly
monotone function which maps some set of positive measure into a set of measure 0.

Exercise14. One needs to represent A as the union of a sequence of compact sets
and recall that the image of a compact set under a continuous map is again compact.

Exercise15. It can. The author is not aware of a simple example. A set that is the
image of a Borel set under a continuous map is called an analytic set, or a projective
set of class 1. The existence of an analytic set that is not Borel is a particular case of
TheoremVI in §38 of the monograph [25, vol. 1].

Subsection3.2.3

Exercise6. Continuous functions can be used to approximate characteristic func-
tions of intervals; linear combinations of characteristic functions of intervals can in
turn be used to approximate characteristic functions of open sets; then characteristic
functions of open sets to approximate characteristic functions of arbitrary Lebesgue-
measurable sets; then linear combinations of characteristic functions of measurable
sets (i.e., finitely-valued functions) to approximate simple functions; and finally, sim-
ple functions to approximate arbitrarymeasurable functions. An analogous statement
will be proved in a considerably more general situation in Subsection8.3.3.

Exercise12. Write � as a disjoint union of sets �m , m = 1, 2, . . ., of finite mea-
sure. Successively applying on each set �m the theorem asserting that from any
sequence that converges in measure one can extract an almost-everywhere conver-
gent subsequence, we construct an infinite sequence of sets of indices N ⊃ N1 ⊃
N2 ⊃ N3 ⊃ · · · such that on each of the sets �m the sequence { fn}n∈Nm converges
almost everywhere. Picking a diagonal subsequence nm (i.e., one for which n1 ∈ N1,
n2 ∈ N2 and n2 > n1, n3 ∈ N3 and n3 > n2, and so on), we obtain a subsequence fnm
which converges almost everywhere on each set � j , i.e., converges almost every-
where on � = ⊔∞

j=1 � j .

Subsection3.2.4

Exercise1. In a more general situation Luzin’s theorem will be proved in
Subsection8.3.3.
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