
Chapter 18
The Krein–Milman Theorem and Its
Applications

18.1 Extreme Points of Convex Sets

As we remarked earlier, one of the main merits of the functional analysis-based
approach to problems of classical analysis is that it reduces problems formulated
analytically to problems of a geometric character. The geometric objects that arise
in this way lie in infinite-dimensional spaces, but they can be manipulated by using
analogies with figures in the plane or in three-dimensional space. To exploit this anal-
ogy more freely, to understand when it helps, rather than mislead us, we have studied
above many properties of spaces, subspaces, convex sets, compact and weakly com-
pact sets, linear operators, emphasizing each time the coincidences and differences
with the finite-dimensional versions of those objects and properties. In the present
chapter we add to the already built arsenal of geometric tools yet another one: the
study of convex sets by means of their extreme points. Although extreme points are
a direct generalization of the vertices of a polygon or polyhedron, in the framework
of classical geometry this purely geometric concept was not used for general figures.
The study and application of extreme points to problems of geometry (including
finite-dimensional ones), functional analysis, mathematical economics, is one of the
achievements of the bygone 20th century.

18.1.1 Definitions and Examples

Let A be a convex subset of a linear space X . A point x ∈ A is called an extreme
point of the set A if it is not the midpoint of any non-degenerate segment whose
endpoints lie in A. The set of extreme points of the set A is denoted by ext A. That
is, x ∈ ext A if and only if for any x1, x2 ∈ A, if (x1 + x2)/2 = x , then x1 = x2 (and
hence both vectors x1 and x2 coincide with x).

Theorem 1. Let A be a convex subset of a topological vector space X. Then none
of the interior points of the set A is an extreme point of A.
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Proof. Let x ∈ A be an interior point. Then there exists a balanced neighborhoodU
of zero such that x +U ⊂ A. Let y ∈ U \ {0}. Set x1 = x + y, x2 = x − y. Then
x1, x2 ∈ A, (x1 + x2)/2 = x , but x1 �= x2. �

Thus, all extreme points of a set lie on its boundary. Needless to say, this provides
rather incomplete information on the positioning of extreme points. Note that ext A
depends only on the convex geometry of the set A, but does not depend on the ambient
linear space in which A is considered, or on which topology is given on A.

Theorem 2 (examples).

(a) If A is a convex polygon in the plane, then ext A is the set of vertices of A.

(b) If A is a disc, then ext A is its bounding circle.

(c) The set of extreme points of the closed unit ball BH of the Hilbert space H is
the unit sphere SH .

(d) The closed unit ball Bc0 of the space c0 has no extreme points.

Proof. Assertions (a) and (b) are obvious. Let us address (c). By Theorem 1,
ext BH ⊂ SH . Let us establish the opposite inclusion. Let x, x1, x2 ∈ SH and put
(x1 + x2)/2 = x . This means that ‖x1‖ = ‖x2‖ = 1 and ‖x1 + x2‖ = 2. But then,
by the parallelogram equality,

‖x1 − x2‖2 = ‖x1 + x2‖2 − 2‖x1‖2 − 2‖x2‖2 = 4 − 2 − 2 = 0,

and so x1 = x2.

(d) Let us show that no point of Bc0 is an extreme point. Let a = (a1, a2, . . .) ∈
Bc0

. This means that all the coordinates a j are not larger in modulus than 1 and a j →
0 as j → ∞. From the last fact it follows that there exists an n such that |an| < 1/2.
Consider the following vectors x1 and x2, all coordinates of which coincide with
those of a, except for the nth one, where they differ from a by ±1/2:

x1 = (a1, a2, . . . , an−1, an + 1/2, an+1, . . .)

and
x2 = (a1, a2, . . . , an−1, an − 1/2, an+1, . . .).

Then x1 and x2 lie in Bc0
, (x1 + x2)/2 = a, but x1 �= x2. �

The extreme points of a Cartesian product of convex sets admit a simple descrip-
tion.

Theorem 3. Let � be an index set, Xγ , γ ∈ �, be linear spaces, and Aγ ⊂ Xγ be

convex sets. Then ext
(∏

γ∈� Aγ

)
= ∏

γ∈� ext Aγ .

Proof. Let x = (xγ )γ∈� ∈ ∏
γ∈� ext Aγ , i.e., xγ ∈ ext Aγ for all γ ∈ �. Let us

show that x ∈ ext
(∏

γ∈� Aγ

)
. Consider elements y = (yγ )γ∈� and z = (zγ )γ∈� in
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∏
γ∈� Aγ such that (y + z)/2 = x . Then (yγ + zγ )/2 = xγ and yγ , zγ ∈ Aγ . Since

xγ ∈ ext Aγ , it follows that yγ = zγ for all γ ∈ �, and so y = z. This establishes the

inclusion ext
(∏

γ∈� Aγ

)
⊃ ∏

γ∈� ext Aγ .

Now let us establish the opposite inclusion ext
(∏

γ∈� Aγ

)
⊂ ∏

γ∈� ext Aγ .

Let x = (
xγ

)
γ∈�

∈
(∏

γ∈� Aγ

)
\

(∏
γ∈� ext Aγ

)
. Then there is an index γ0 ∈ �

for which xγ0 ∈ Aγ0 \ ext Aγ0 . By definition, this means that there exists elements
yγ0 , zγ0 ∈ Aγ0 , yγ0 �= zγ0 , such that (yγ0 + zγ0)/2 = xγ0 . Now define the elements
y, z ∈ ∏

γ∈� Aγ as follows: for γ �= γ0 put yγ = zγ = xγ , while for the index γ0
take as coordinates precisely the elements yγ0 and zγ0 , respectively. Then y �= z (they

differ in the γ0 coordinate), but (y + z)/2 = x . Therefore, x /∈ ext
(∏

γ∈� Aγ

)
. �

An obvious consequence of this theorem is the following descriptions of the
extreme points of two important n-dimensional bodies.

Corollary 1. The extreme points of the n-dimensional cube [−1, 1]n are precisely
the vectors with all coordinates equal to ±1. �

Let us recall the notationsC1 = {λ ∈ C : |λ| � 1} andT = {λ ∈ C : |λ| = 1} for
the unit disc and the unit circle.

Corollary 2. The set of extreme points of the n-dimensional polydisc (C1)
n is the

skeleton of the polydisc, i.e., the set Tn. �

Exercises

1. In the real space C[0, 1] the closed unit ball has only two extreme points, the
functions f = 1 and g = −1.

2. In the space L1[0, 1] the closed unit ball has no extreme points.

3. For 1 < p < ∞ every element of the unit sphere in the space L p[0, 1] is an
extreme point of the closed unit ball. In other words, L p[0, 1] is a strictly convex
space (see Exercise6 in Subsection12.2.1).

4. Using the preceding exercise and the reflexivity, prove the following result: Let
1 < p < ∞, and let A ⊂ L p[0, 1] be a convex closed subset. Then for any x ∈ X in
A there is a unique closest point to x .

5. Let X , Y be linear spaces and T : X → Y be an injective linear operator. Then
for any convex subset A ⊂ X it holds that T (ext A) = ext T (A).

6. Give an example showing that in the preceding exercise the injectivity assumption
cannot be discarded.



504 18 The Krein–Milman Theorem and Its Applications

7. For any convex compact subset A ⊂ R
2, the set ext A is closed.

8. Give an example of a convex compact subset A ⊂ R
3 whose set of extreme points

is not closed.

18.1.2 The Krein–Milman Theorem

In this subsection we shall prove themain result of this chapter, namely, the existence
of extreme points for any convex compact set.

Definition 1. Let A be a convex subset of a linear space X . The set B ⊂ A is said
to be an extreme subset of the set A if it meets the following requirements:

— B is not empty;

— B is convex;

— for any two points x1, x2 ∈ A, if (x1 + x2)/2 ∈ B, then x1, x2 ∈ B.

Obviously, a subset consisting of a single point x will be extreme if and only if
x is an extreme point. If A is a triangle in the plane, then an example of an extreme
subset B is provided by any side of the triangle.

Lemma 1. Let X,Y be linear spaces, T : X → Y be a linear operator, and A ⊂ X
be a convex subset. Then for any extreme subset B of the set T (A), the set T−1(B) ∩ A
(the complete preimage in A of the set B) is an extreme subset of the original set A.
In particular, the complete preimage in A of any extreme point of the set T (A) is an
extreme subset of A.

Proof. Suppose x1, x2 ∈ A and (x1 + x2)/2 ∈ T−1(B). Then T x1, T x2 ∈ T (A)

and (T x1 + T x2)/2 ∈ B. Since B is an extreme subset of T (A), this means that
T x1, T x2 ∈ B, and so x1, x2 ∈ T−1(B). �

Lemma 2. Suppose A is a convex set, B is an extreme subset of A, and C is an
extreme subset of B. Then C is an extreme subset of A. In particular, an extreme
point of an extreme subset of a set A is an extreme point of A.

Proof. Suppose x1, x2 ∈ A and (x1 + x2)/2 ∈ C . Then, in particular, (x1 + x2)/2 ∈
B. Since B is an extreme subset of A, this implies that x1, x2 ∈ B. But now recalling
that (x1 + x2)/2 ∈ C and C is an extreme subset of B, we conclude that x1, x2 ∈ C ,
as needed. �

Now let us change the setting from arbitrary linear spaces to locally convex topo-
logical vector spaces, and from arbitrary convex sets to convex compact sets.

Lemma 3. Let A be a convex compact set in a topological vector space X, f
a continuous real linear functional on X, and b = maxx∈A f (x). Then the set
M( f, A) = {x ∈ A : f (x) = b} of points x in which f attains its maximum on A is
an extreme subset of A.
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Proof. The set f (A) is an interval [a, b] joining the minimal and maximal values on
A of the functional f . Hence, b is an extreme point of the set f (A). By Lemma 1,
M( f, A) = f −1(b) ∩ A is an extreme subset. �

Lemma 4. Let A be a convex compact subset of a topological vector space X and
M be a centered family of closed extreme subsets of A. Then the intersection D =⋂

B∈M B of all the elements of the familyM is also a closed extreme subset of A.

Proof. The compactness of A ensures that the set D is not empty. Convexity and
closedness are inherited by intersections of sets, so D is convex and closed. Now
let x1, x2 ∈ A and (x1 + x2)/2 ∈ D. Then, in particular, (x1 + x2)/2 ∈ B for any
B ∈ M. Therefore, x1, x2 ∈ B for all B ∈ M, whence x1, x2 ∈ ⋂

B∈M B = D. �

Lemma 5. Let A be a convex compact subset of a separated locally convex topolog-
ical vector space, and suppose A consists of more than one point. Then A contains
a closed extreme subset B such that B �= A.

Proof. Suppose x1, x2 ∈ A and x1 �= x2. Since the dual of a separated locally convex
space separates points, there exists a real continuous linear functional f such that
f (x1) �= f (x2). Hence, f is not identically constant on A, and for the required set
B we can take the set M( f, A) from Lemma 3. �

Theorem 1 (weak formulation of the Krein–Milman theorem).1 Every convex
compact set K in a separated locally convex space has extreme points.

Proof. Consider the family Ext(K ) of all closed extreme subsets of the compact set
K . We equip Ext(K ) with the decreasing order of sets. By Lemma 4, Ext(K ) is
an inductively ordered set. By Zorn’s lemma, there exists a minimal with respect to
inclusion closed extreme subset A of the compact set K . By Lemma 5, A consists
of exactly one point, which is the sought-for extreme point of K . �

Remark 1. For a convex compact set in a non-locally convex separated topological
vector space the assertion of Theorem 1 may fail. A corresponding counterexample
was constructed by Roberts [73].

The next result has numerous applications in linear optimization problems and,
in particular, in problems of mathematical economics.

Theorem 2. Let K be a convex compact set in a separated locally convex space
X, f a continuous real linear functional on X, and b = maxx∈K f (x). Then there
exists a point x ∈ ext K in which f (x) = b. In other words, when searching for the
maximum of a linear functional on a convex compact set, it suffices to consider the
values in the extreme points of the compact set under consideration.

1Mark Krein and David Milman were Odessa mathematicians. For this reason, in contrast to the
theorems of the Lviv school led by Stefan Banach, which became “Ukrainian” only as a result of
post-war geopolitical changes, a Ukrainian patriot like me can be proud that the Krein–Milman
theorem is “genuinely Ukrainian”.
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Proof. By Lemma 3, M( f, K ) = {x ∈ K : f (x) = b} is an extreme subset of the
compact set K , and is closed thanks to the continuity of the functional f . Since the
set M( f, K ) is convex and compact, it has an extreme point x0, and in view of the
definition of M( f, K ), f (x0) = b. It remains to apply Lemma 2: an extreme point
of an extreme subset is an extreme point of the original set. �

The application of Theorem 2 becomes especially effective in the case when the
set K is a finite-dimensional polyhedron. In this case ext K is a finite set, and the
task of calculating the maximum of a linear functional reduces to a finite (admittedly
possibly large) item-by-item examination. This examination can be carried out, in
particular, by means of the famous simplex method of Kantorovich, which these days
is presented in every linear programming textbook.

Lemma 6. Let A and B be convex closed subsets of a locally convex space X. Then
the following conditions are equivalent:

(i) A = B;

(ii) supx∈A f (x) = supx∈B f (x) for any real linear functional f ∈ X∗.

Proof. The implication (i) =⇒ (ii) is obvious. Let us prove the converse implication
(ii)=⇒ (i). Since the sets A and B play symmetric roles, it suffices to prove that A ⊂
B. Suppose this inclusions does not hold. Then there exists a point x0 ∈ A \ B. Since
B is closed, x0 has a neighborhood U such that U ∩ B = ∅. By the geometric form
of the Hahn–Banach theorem, applied to the sets U and B, there exist a continuous
real linear functional on X and a constant a ∈ R such that f (x) � a for x ∈ B
and f (x0) > a. Then supx∈A f (x) � f (x0) > a � supx∈B f (x), which contradicts
condition (ii). �

Theorem 3 (Krein–Milman theorem: complete formulation). Any convex com-
pact set K in a separated locally convex space coincides with the closure of the
convex hull of its extreme points.

Proof. Let K̃ = conv (ext K ) and consider an arbitrary continuous real linear func-
tional f on X . Then K̃ ⊂ K , and so supx∈K f (x) � supx∈K̃ f (x). By Theorem 2,
supx∈K f (x) � supx∈ext K f (x) � supx∈K̃ f (x). It remains to apply Lemma 6. �

Thus, we can state that a convex compact set not only has extreme points, but there
are “many” such points. For example, if the compact set K is infinite-dimensional,
then the set ext K is infinite. Let us give several corollaries.

Corollary 1. Every convex closed bounded subset of a reflexive space and, in par-
ticular, the closed unit ball, has extreme points. If the space is infinite-dimensional,
then its closed unit ball has infinitely many extreme points.

Proof. It suffices to recall that any convex closed bounded subset of a reflexive space
is weakly compact. �
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This provides another proof of the non-reflexivity of the spaces c0, L1[0, 1], and
C[0, 1]: as we already remarked, in the first two of these spaces the unit ball even
has no extreme points, while the unit ball in C[0, 1] has only two extreme points.

If instead of the weak topology we consider the w∗-topology, we obtain another
corollary.

Corollary 2. Let X be a Banach space. Then any convex w∗-closed bounded subset
of the space X∗ and, in particular, the closed unit ball in X∗, has extreme points.
If the space X is infinite-dimensional, then the closed unit ball in the space X∗ has
infinitely many extreme points. �

For this reason, the spaces c0, L1[0, 1] and C[0, 1] are not just non-reflexive, they
actually are not dual to any Banach space (i.e., they are not isometric to any space
of the form X∗ with X a Banach space).

Exercises

1. Let A = conv B. Then ext A ⊂ B.

2. Let A ⊂ B and x ∈ (ext B) ∩ A. Then x ∈ ext A.

3. Let K be a convex compact subset of a strictly convex Banach space. Then a
farthest from zero point of the compact set K is an extreme point of K .

4. Let X,Y be Banach spaces, T ∈ L(X,Y ), and K a convex compact set in X .
Suppose that ‖T x‖ � C for all x ∈ ext K . Then ‖T x‖ � C for all x ∈ K .

Using the preceding exercise and the description of the extreme points of the
n-dimensional cube, prove the following result:

5. Suppose x1, . . . , xn are elements of the Banach space X and the estimate∥∥∑n
k=1 akxk

∥∥ � C holds for all ak = ±1. Then the same estimate holds for all
ak ∈ [−1, 1].
6. Lindenstrauss–Phelps theorem. In an infinite-dimensional reflexive Banach
space the set of extreme points of the closed unit ball is uncountable.

The closed unit ball of the space c0, regarded as a subset of the space �∞ = �∗
1, is

an example of a closed convex and bounded set in a dual space which has no extreme
points. Therefore, in Corollary 2 the w∗-closedness assumption cannot be replaced
by ordinary closedness. This makes the next result all the more interesting:

7. Let X be a Banach space whose dual X∗ is separable. Then any convex closed
(in norm) bounded subset of the space X∗ has extreme points.
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8. None of the spaces c0, L1[0, 1] and C[0, 1] can be isomorphically embedded in
a separable dual space. In particular, none of these spaces is isomorphic to a dual
space.

9. The set of extreme points of a convex metrizable compact subset of a locally
convex space is a Gδ-set.

10. For every Banach space X , the identity operator I ∈ L(X) is an extreme point
of the ball BL(X).

11. The unit element of any Banach algebra A is an extreme point of the ball BA.

18.1.3 Weak Integrals and the Krein–Milman Theorem
in Integral Form

Let (�,�,μ) be a finite measure space and X be a locally convex space. A function
f : � → X is said to beweakly integrable if for any x∗ ∈ X∗ the composition x∗ ◦ f
is an integrable scalar function and there exists an element x ∈ X such that

∫

�

x∗ ◦ f dμ = x∗(x) (1)

for all x∗ ∈ X∗. In this case the element x is called the weak integral of the function
f , and is denoted by the symbol

∫
�
f dμ. With this notation formula (1) takes on

the form

x∗
(∫

�

f dμ

)
=

∫

�

x∗ ◦ f dμ

and can be interpreted as saying that a continuous linear functional can be brought
under the integral sign.

The weak integral inherits the simplest properties of the ordinary integral:

—
∫
�

a f1 + b f2 dμ = a
∫
�

f1 dμ + b
∫
�

f2 dμ (linearitywith respect to the function);

—
∫
�

f d (aμ1 + bμ2) = a
∫
�

f dμ1 + b
∫
�

f dμ2 (linearitywith respect to themea-

sure);
—

∫
�1��2

f dμ = ∫
�1

f dμ + ∫
�2

f dμ for any disjoint sets �1,�2 ∈ � (additivity

with respect to the integration domain);

Here, in all the three properties, if the integrals on the right-hand side exist, then so
does the integral on the left-hand side.

Let us mention that one of the important properties of the Lebesgue integral,
namely, that integrability on a set implies integrability on all its measurable subsets,
does not hold for the weak integral (see Exercise1 below). The root of this unpleasant
feature is that the weak topology of a space is not necessarily complete. Let us
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examine on some examples how one calculates the weak integral of a vector-valued
function.

Example 1. Let X be the sequence space �p or c0, and e∗
n ∈ X∗ be the coor-

dinate (evaluation) functionals. Let f : � → X be a weakly integrable function.
For each t ∈ � denote by fn(t) the n-th component of the vector f (t): f (t) =
( f1(t), f2(t), . . .). Then, by the definition of the weak integral,

e∗
n

( ∫

�

f dμ

)
=

∫

�

e∗
n ◦ f dμ =

∫

�

fn dμ,

i.e.,
∫
�
f dμ is the vector with the components

(∫
�
fn dμ

)∞
n=1.

Example 2. Let F : � → C[0, 1] be a weakly integrable function. For each t ∈
[0, 1] and each τ ∈ �,wedefine f (t, τ ) = (F(τ ))(t).Using instead of the coordinate
functionals the point evaluation functionals, we obtain the following rule for the
calculation of the function

∫
�
F dμ ∈ C[0, 1]:

(∫

�

F dμ

)
(t) =

∫

�

f (t, τ ) dμ(τ).

As in the scalar case, a function f : � → X is said to bemeasurable if f −1(A) ∈
� for any Borel subset A of the space X . Let us mention one useful sufficient
condition for weak integrability.

Theorem 1. Let (�,�,μ) be a probability space, K a convex compact subset of a
separated locally convex space X, and f : � → K a measurable function. Then the
function f is weakly integrable and

∫
�
f dμ ∈ K.

Proof. Consider the dual pair ((X∗)′, X∗). Since K ⊂ X ⊂ (X∗)′, the compact set
K can be regarded as a subset of the space (X∗)′. Then K will also be compact in
the weaker topology σ((X∗)′, X∗), and so K is a convex σ((X∗)′, X∗)-compact set
in (X∗)′.

Next, we remark that every functional x∗ ∈ X∗ is bounded on K . Consequently,
the composition x∗ ◦ f is a bounded measurable function on �, and hence x∗ ◦ f is
an integrable scalar function. Define a linear functional F : X∗ → C by the formula
F(x∗) = ∫

�
x∗ ◦ f dμ. We claim that F ∈ K . Assuming the contrary, there exists

an element x∗ ∈ X∗ such that Re x∗(s) � 1 for all s ∈ K and Re x∗(F) > 1. Then
Re x∗ ◦ f � 1 everywhere on �, and so

Re x∗(F) = Re F(x∗) =
∫

�

Re x∗ ◦ f dμ � 1.

The contradiction we reached means that F ∈ K . By construction, x∗(F) =∫
�
x∗ ◦ f dμ for all x∗ ∈ X∗, i.e., F is the weak integral of the function f . �
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Theorem 2 (Krein–Milman theorem: integral form). Let K be a convex compact
subset of a separated locally convex space X and x ∈ K. Then there exists a regular
Borel probability measure μ on ext K, the closure of the set of extreme points of K ,
such that ∫

ext K
I dμ = x;

here I denotes, as usual, the identity mapping and the integral is understood in the
weak sense.

Proof. Recalling the theorem on the general form of linear functionals on the space
of continuous functions, we see that the set M( ext K ) of all regular Borel proba-
bility measures on the compact set ext K can be regarded as a subset of the space
C( ext K )∗. Moreover, M( ext K ) is the intersection of the closed unit ball of the
space C(ext K )∗ (i.e., of a convex w∗-compact set) with the w∗-closed set {F ∈
C(ext K )∗ : F(1) = 1}. As such, M( ext K ) is a convex w∗-compact subset of
C(ext K )∗.

By the preceding theorem, for each measure μ ∈ M(ext K ) there exists the weak
integral

∫
ext K I dμ. Consider the operator T : X∗ → C(ext K )∗ which sends each

functional x∗ ∈ X∗ into its restriction to ext K . Let us calculate the action of the
adjoint operator T ∗ : C(ext K )∗ → X∗∗ on the elements of the set M( ext K ). For
any measure μ ∈ M(ext K ) and any x∗ ∈ X∗ we have

〈T ∗μ, x∗〉 = 〈μ, T x∗〉 =
∫

ext K

x∗ dμ = x∗
⎛
⎝

∫

ext K

I dμ

⎞
⎠ ,

i.e.,

T ∗μ =
∫

ext K

I dμ.

Therefore, now our task is reduced to proving the equality

T ∗(M( ext K )) = K .

The inclusion T ∗(M( ext K )) ⊂ K was proved in the preceding theorem. Let
us prove the opposite inclusion T ∗ (

M(ext K )
) ⊃ K . Denote by δx the probability

measure supported at the point x . Then for any x ∈ ext K we have

T ∗δx =
∫

ext K

I dδx = x,

i.e., T ∗(M(ext K )) ⊃ ext K . Further, T ∗ (
M( ext K )

)
is a convex closed set, being the

image of the convexw∗-compact setM( ext K ) under thew∗-continuous operator T ∗.
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Therefore, T ∗(M( ext K )) ⊃ conv(ext K ); but, by Theorem3 of Subsection18.1.2,
conv(ext K ) = K . �

Let us remark that in the metrizable case the measure μ that represents the ele-
ment x can be selected so that it is supported on the set of extreme points itself,
rather than on its closure. Then the integral representation of the element x takes
the form x = ∫

ext K I dμ. The proof of this theorem due to G. Choquet and various
generalizations thereof can be found in Phelps’ monograph [34].

Another, quite fruitful research direction is connected with the consideration of
a narrower set than ext K , namely, the set of strongly exposed points. In terms of
such points it was possible to characterize the spaces in which the Radon–Nikodým
theorem is valid. Results on this theme, as well as many other interesting branches
of the geometry of Banach spaces, can be found in the monographs [3, 12].

Exercises

1. On the interval [0, 1] pick a sequence (Δn), n ∈ N, of pairwise disjoint subin-
tervals. Let en , n ∈ N, denote the standard basis of the space c0. Define the func-
tion f : [0, 1] → c0 as follows: if the point t lies in none of the intervals Δn , put
f (t) = 0; if t lies in an odd-indexed interval Δ2n−1, put f (t) = (1/|Δ2n−1|)en;
finally, if t lies in an even-indexed interval Δ2n , put f (t) = −(1/|Δ2n|)en . Ver-
ify that the function f is weakly integrable on [0, 1] with respect to the Lebesgue
measure λ and

∫
[0,1] f dλ = 0. At the same time, on the subset Δ = ⋃∞

n=1 Δ2n−1

the function f is not weakly integrable: otherwise, we would have the equality∫
Δ
f dλ = (1, 1, 1, . . .), but there is no such element in c0.

2. Prove the following theorem of Carathéodory: If K ⊂ R
n is a convex compact

set, then every element x ∈ K admits a representation x = ∑n+1
j=1 a j x j , where x j ∈

ext K , a j � 0, and
∑n+1

j=1 a j = 1.

3. BasedonChoquet’s theorem formulated above, prove that if the convexmetrizable
compact set K in a locally convex space has a countable number of extreme points,
then every element x ∈ K admits a series expansion x = ∑∞

n=1 anxn , where xn ∈
ext K , an � 0, and

∑∞
n=1 an = 1.

4. If one removes the requirement that the set of extreme points in countable, the
assertion of the preceding exercise may fail. Provide a counterexample.

18.2 Applications

18.2.1 The Connection Between the Properties
of the Compact Space K and Those of the Space C(K )

The space C(K ) is more convenient to study than the compact space K , because the
elements of a function space can be manipulated more freely than the points of a
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topological space. Indeed, in contrast to the points of the compact space K , functions
on K can be added and multiplied by scalars; the topology on C(K ) is given by a
norm, and so one can speak about Cauchy sequences, completeness, convergence of
series, and so on. However, all these advantages would depreciate if in the passage
from K to C(K ) part of the information about the original compact space is lost.
Below we will show that actually no such loss occurs and all the properties of the
compact space K can be recovered from the properties of the space C(K ).

As usual, we will identify the continuous functionals on C(K ) with the regular
Borel charges that generate them. In particular, δx (the probability measure supported
at x) can be regarded as the functional on C(K ) which acts as 〈δx , f 〉 = ∫

K f dδx =
f (x), i.e., as the evaluation functional at the point x .
A bit more terminology. The support of the regular Borel charge σ is defined to be

the support of the measure |σ | (see Subsection8.1.2). As in the case of measures, the
support of a charge σ is denoted by supp σ . Clearly, supp δx = {x}, and if supp σ =
{x}, then σ = λδx , where λ is a non-zero scalar.

For any Borel-measurable bounded function g on K and any Borel charge σ , we
denote by g × σ the Borel charge given by

(g × σ)(A) =
∫

A
g dσ .

The functional defined by the charge g × σ acts by the rule

〈g × σ, f 〉 =
∫

K
f g dσ .

The operation thus introduced enjoys the natural properties of a product:

— 1 × σ = σ ;

— (g + h) × σ = g × σ + h × σ ;

— (gh) × σ = (hg) × σ = h × (g × σ);

— g × (ν + σ) = g × ν + g × σ .

— Finally, the norm of the charge g × σ is calculated by the formula

‖g × σ‖ =
∫

K
|g| d|σ |.

Theorem 1. The set of extreme points of the closed unit ball of the space C(K )∗
coincides with the set of charges of the form λδx , where x ∈ K and |λ| = 1.

Proof. First let us show that charges of the form δx are extreme points of the set
BC(K )∗ . Since the ball is balanced, this will imply that also λδx ∈ ext BC(K )∗ when-
ever |λ| = 1. So, assume ν1, ν2 ∈ BC(K )∗ and (ν1 + ν2)/2 = δx . Then (ν1({x}) +
ν2({x}))/2 = δx ({x}) = 1. Since both numbers |ν1({x})|, |ν2({x})| are not larger
than 1, this means that ν1({x}) = ν2({x}) = 1. This in turn means that beyond the
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point x the charges ν1 and ν2 vanish, since otherwise their norms would be strictly
larger than 1. That is, ν1 = ν2 = δx .

Now let us show that if the charge σ ∈ BC(K )∗ is not concentrated at a single point
of the compact space K , then it cannot be an extreme point of the unit ball. Indeed,
suppose supp σ contains two distinct points x �= y. Surround these points by disjoint
neighborhoods U and V . By the definition of the support, the numbers |σ |(U ) and
|σ |(V ) are different from zero. Let ε = min{|σ |(U ), |σ |(V )}. Consider the function

g = ε

|σ |(U )
1U − ε

|σ |(V )
1V

and the charges

σ1 = (1 − g) × σ and σ2 = (1 + g) × σ.

Since |g| � 1, we have |1 ± g| = 1 ± g. Further, by construction,
∫
K g d|σ | = 0.

Consequently,∫

K
|1 ± g|d|σ | =

∫

K
d|σ | ±

∫

K
g d|σ | =

∫

K
d|σ | = ‖σ‖ � 1.

Hence, σ1, σ2 ∈ BC(K )∗ . At the same time,

σ1 + σ2

2
= σ

and

‖σ1 − σ2‖ = 2
∫

K
|g|d|σ | = 4ε �= 0;

therefore, the charge σ cannot be an extreme point of the unit ball. �

Suppose we are given a Banach space X and we are told that X = C(K ) for some
compact space K , but not what this compact space is. Can we recover K from the
space X? By the preceding theorem, to this end we need to look at the extreme points
of the ball BX∗ .

Let us introduce several definitions and notations. The set ext BX∗ will be regarded
as a subspace of the topological space (X∗, σ (X∗, X)), i.e., we equip ext BX∗ with the
w∗-topology. Further, we introduce on ext BX∗ the following equivalence relation:
x∗ ∼ y∗ if x∗ = λy∗ for some scalar λ with |λ| = 1. The equivalence class of the
element x∗ ∈ ext BX∗ is the pair of points±x∗ in the real case, and the circle passing
through x∗, i.e., [x∗] = {λx∗ : |λ| = 1}, in the complex case. We denote the set
of equivalence classes into which ext BX∗ decomposes by K̃ (X), and denote by q
the quotient mapping q : ext BC(K )∗ → K̃ (X). We equip K̃ (X) with the strongest
topology with respect to which q is w∗-continuous. That is to say, a set A ⊂ K̃ (X)

is declared to be open in K̃ (X) if q−1(A) is w∗-open in ext BX∗ . Note that K̃ (X) is
a Hausdorff topological space. Indeed, if x∗, y∗ ∈ ext BX∗ and [x∗] �= [y∗], then the
functionals x∗ and y∗ are linearly independent. Hence, the kernel of any of them is not
included in the kernel of the other, and so there exists an element x ∈ Ker y∗ \ Ker x∗.
Multiplying x by a scalar, one can ensure that x∗(x) = 1. Then the points [x∗], [y∗] ∈
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K̃ (X) are separated by the neighborhoodsU = {[s∗] ∈ K̃ : |s∗(x)| > 1/2} and V =
{[s∗] ∈ K̃ : |s∗(x)| < 1/2}.
Theorem 2. Let X = C(K ) for some compact space K . Then K is homeomorphic
with the topological space K̃ (X) constructed above.

Proof. Define the mapping δ : K → ext BX∗ by the formula δ(t) = δt . For any func-
tion f ∈ C(K ) we have 〈δ(t), f 〉 = f (t), which depends continuously on t . Since
ext BX∗ is equipped with the w∗-topology, this means that the mapping δ is continu-
ous. Then, as a composition of continuous mappings, the mapping j : K → K̃ (X),
j = q ◦ δ, is also continuous. Since j (t) = [δt ], Theorem 1 guarantees that the map-
ping j is bijective. But any bijective continuous mapping of a compact space onto a
Hausdorff space is a homeomorphism. �

Corollary 1. If for two compact spaces K1 and K2 the spaces C(K1) and C(K2)

are isometric, then the spaces K1 and K2 are homeomorphic. �

Theorem 3. The space C(K ) is separable if and only if the compact space K is
metrizable.

Proof. Suppose C(K ) is separable. Then (Corollary4 in Subsection17.2.4) the w∗-
topology is metrizable on the ball BC(K )∗ . The compact space K is homeomorphic
to the subset {δt : t ∈ K } of the ball BC(K )∗ , equipped with the w∗-topology (the
homeomorphism is provided by the mapping t �→ δt ). Hence, K is metrizable.

Conversely, suppose K is a compact metric space. Then for each n ∈ N there
exists a cover of the compact space K by balls Un,1,Un,2, . . . ,Un,m(n) of radius
1/n. Denote by ϕn,1, ϕn,2, . . . , ϕn,m(n) a partition of unity subordinate to the cover
Un,1,Un,2, . . .Un,m(n) (see Subsection15.1.3). Let us prove that the system of ele-
ments {ϕn, j : n = 1, . . . ,∞, j = 1, . . . ,m(n)} is complete in C(K ). This in turn
will establish the desired separability of the space C(K ).

Thus, let f ∈ C(K ). For each ε > 0, pick an n ∈ N such that for any t1, t2 ∈ K ,
if ρ(t1, t2) < 1/n, then | f (t1) − f (t2)| < ε. Next, in each set Un, j pick one point
tn, j and consider the following linear combination fε of the functions ϕn, j :

fε = f (tn,1)ϕn,1 + f (tn,2)ϕn,2 + · · · + f (tn,m(n))ϕn,m(n).

Weclaim that‖ f − fε‖<ε. Indeed, for any t ∈K wehave f (t) = ∑m(n)
j=1 f (t)ϕn, j (t).

Consequently,

| f (t) − fε(t)| �
m(n)∑
j=1

| f (t) − f (tn, j )|ϕn, j (t).

In the last sum, if ϕn, j (t) �= 0, then t ∈ Un, j , and so | f (t) − f (tn, j )| < ε. Continuing
the estimate, we conclude that

| f (t) − fε(t)| <

m(n)∑
j=1

εϕn, j (t) = ε. �
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Remark 1. Jumping ahead, we observe that in the last part of the proof of Theorem 3,
the separability of the space C(K ) is an easy consequence of the Stone–Weierstrass
theorem. But in our opinion the explicit procedure of approximating a function by a
partition of unity is instructive in itself.

Exercises

1. Verify that for any Borel-measurable bounded function g on K and any regular
Borel charge σ , the charge g × σ is regular (hint: consider first the case g = 1A, then
the case of finitely-valued functions, and finally use the approximation of a bounded
function by finitely-valued functions).

2. Verify all the properties, listed at the beginning of the subsection, of the operation
g × σ of multiplying a regular Borel charge by a bounded Borel function.

3. The fact that the spaces C(K1) and C(K2) are isomorphic does not necessarily
imply that the compact spaces K1 and K2 are homeomorphic. Example: K1 = [0, 1]
and K2 = [0, 1] ∪ {2}.

18.2.2 The Stone–Weierstrass Theorem

In this subsection we make acquaintance with an exceptionally beautiful, and at the
same time, very useful generalization of Weierstrass’ theorem on the approximation
of functions by polynomials. This generalization, devised by M.H. Stone, is appli-
cable to functions defined not only on an interval, but also on an arbitrary compact
space. The proof given below is due to de Branges (L. de Branges, 1959). The appli-
cation of the same idea of proof to an even more general result, namely Bishop’s
theorem, can be found in the book [38].

Theorem 1. Suppose the linear subspace X of the space C(K ) has the following
properties:

(a) 1 ∈ X;

(b) if f, g ∈ X, then f g ∈ X (in other words, X is a subalgebra of the algebra
C(K ));

(c) for any function f ∈ X, its complex conjugate f also belongs to X;

(d) for any t1, t2 ∈ K, t1 �= t2, there exists a function f ∈ X such that f (t1) �= f (t2)
(i.e., X separates the points of the compact space K ).

Then the subspace X is dense in C(K ).

Proof. Suppose the assertion of the theorem is false, i.e., the subspace X is not
dense in C(K ). Then the annihilator X⊥ ⊂ C(K )∗ does not reduce to 0. Recall that
X⊥ is a w∗-closed subspace in C(K )∗ and hence, by Alaoglu’s theorem, BX⊥ =
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BC(K )∗ ∩ X⊥ is a w∗-compact set. By the Krein–Milman theorem, the ball BX⊥ has
an extremepoint ν. Obviously, ν ∈ SX⊥ , that is, ‖ν‖ = 1.Wenext study the properties
of this regular Borel charge ν and show that they are intrinsically contradictory.

We begin with several useful remarks on the properties of the sets X and X⊥:

(i) If f ∈ X , then Re f ∈ X and Im f ∈ X (this follows from condition (c) and
the formulas Re f = ( f + f̄ )/2 and Im f = ( f − f̄ )/(2i)).

(ii) If f ∈ X and η ∈ X⊥, then f × η ∈ X⊥, where × is the operation introduced
in the preceding subsection. Indeed, for any g ∈ X the product f g also lies in X ,
and hence is annihilated by the charge η. We have 〈 f × η, g〉 = 〈η, f g〉 = 0, and
so f × η ∈ X⊥.

(iii) Ifη ∈ X⊥, then supp η contains at least two distinct points. Indeed, if supp η =
{t}, then η = aδt with a ∈ C \ {0}. But then 〈η,1〉 = a �= 0, i.e., η /∈ X⊥.

Now let us return to the charge ν ∈ SX⊥ , a candidate for the role of an extreme
point of the ball BX⊥ . We use property (iii) above. Let t1, t2 ∈ supp ν and t1 �= t2. By
condition (d), there exists an f ∈ X such that f (t1) �= f (t2). Then either Re f (t1) �=
Re f (t2), or Im f (t1) �= Im f (t2). By property (i), Re f, Im f ∈ X . Therefore, f can
be assumed to be a real-valued function: otherwise one can replace it by Re f or by
Im f . Further, adding to f a large positive constant one can ensure that that f is
positive, and then multiplying by a small positive factor we obtain a function whose
values lie in the interval (0, 1). Thus, we proved that there exists a function f ∈ X
such that f (t1) �= f (t2) and 0 < f (t) < 1 for all t ∈ K .

Let us introduce the auxiliary charges ν1 = f × ν and ν2 = (1 − f ) × ν. Then

‖ν1‖ =
∫

K
f d|ν|, ‖ν2‖ =

∫

K
(1 − f )d|ν|,

and both numbers are different from zero because, by construction, the functions f
and 1 − f do not take the value 0. Further,

‖ν1‖ + ‖ν2‖ =
∫

K
d|ν| = 1.

We have the obvious equality

‖ν1‖ ν1

‖ν1‖ + ‖ν2‖ ν2

‖ν2‖ = ν,

the geometric meaning of which is as follows: the vector ν ∈ BX⊥ is an interior
point of the segment that joins the vectors ν1

‖ν1‖ ∈ BX⊥ and ν2
‖ν2‖ ∈ BX⊥ (the fact that

the charges ν1 and ν2 lie in the subspace X⊥ follows from property (ii)). Since by
our assumption ν is an extreme point of the ball BX⊥ , the endpoints of the segment
must coincide with ν: ν1

‖ν1‖ = ν2
‖ν2‖ = ν. In particular, ν1 = ‖ν1‖ ν, i.e., ( f − ‖ν1‖) ×

ν = 0. Recalling the formula for the norm of a charge, we get that
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∫

K

∣∣ f − ‖ν1‖
∣∣ d|ν| = 0.

In view of the continuity of the function f, the last equality means that f (t) = ‖ν1‖
for all t ∈ supp ν (Theorem2 of Subsection8.1.2). We arrived at a contradiction with
the condition f (t1) �= f (t2). �

Exercises

Deduce from the Stone–Weierstrass theorem that:

1. The set of polynomials is dense in C(K ), for any compact subset K of R (in
particular, when K = [a, b]). Recall that this fact was used in Subsection13.1.3 to
construct functions of a self-adjoint operator.

2. The set of polynomials in n variables is dense in C(K ), where K is any compact
subset of Rn .

3. The set of “two-sided” polynomials of the form
∑n

k=−n akz
k , n ∈ N, is dense in

the spaceC(T) of continuous functions on the unit circleT = {z ∈ C : |z | = 1} (we
used this fact earlier to construct functions of an unitary operator).

Consider the half-line [0,+∞], i.e., the one-point compactification of the half-
line [0,+∞). The neighborhoods of finite points of [0,+∞] are defined as usual;
the neighborhoods of +∞ are the complements of the bounded sets. Show that:

4. In the described topology [0,+∞] is compact.

5. The space C[0,+∞] coincides with the space of continuous functions f (t) on
[0,+∞) that have a limit as t → +∞.

6. The set of exponential functions e−at with a ∈ [0,+∞) is a complete system of
elements in C[0,+∞].

18.2.3 Completely Monotone Functions

An infinitely differentiable function f on [0,+∞) is said to be completely mono-
tone if (−1)n f (n)(t) � 0 for all n = 0, 1, 2, . . . and all t ∈ [0,+∞). In particular,
to be completely monotone the function f must be non-negative ( f (t) � 0), non-
increasing ((−1) f ′(t) � 0), and convex ( f ′′(t) � 0). A typical example of a com-
pletely monotone function is f (t) = e−t . A well-known theorem of S.N. Bernstein2

2Kharkiv is a city that hosted many famous mathematicians. Sergei Natanovich Bernstein not only
worked for a period of time in Kharkiv, he spent a major part of his life there, exerting an invaluable
influence on the formation of the Kharkiv mathematical school.
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asserts that any completely monotone function can be uniquely represented in the
form

f (x) =
∞∫

0

e−t xdμ(t), (1)

where μ is a finite regular Borel measure on the half-line. In other words, every
completely monotone function is in a sense a combination of exponentials. Dif-
ferentiating under the integral sign one can readily verify that any function of the
form (1) is completely monotone, and thus Bernstein’s theorem provides a complete
description of the class of completely monotone functions.

The representation (1) calls forth a natural association with the Krein–Milman
theorem in integral form. The first proof of Bernstein’s theorem based on this analogy
was proposed by Choquet. Below we provide a sufficiently detailed sketch of this
proof, leaving its implementation to the reader. A detailed exposition can be found
in the short book [34, Chapter2].

Theorem 1. If the function f : [0,+∞) → R admits a representation (1), where μ

is a finite regular Borel measure, then this representation is unique.

Proof. Consider μ as a functional on C[0,+∞]. Formula (1) says that we are given
the values of this functional on the exponentials e−at : 〈μ, e−at 〉 = f (a). By Exer-
cise6 of Subsection 18.2.2, the set of exponentials e−at witha ∈ [0,+∞) is complete
in C[0,+∞]. Hence, a continuous functional is uniquely determined by its values
on this set. �

In the space C∞(0,+∞) of infinitely differentiable functions on the open half-
line, equipped with the standard topology generated by the seminorms pn( f ) =
maxt∈(n−1,n) | f (n−1)(t)|, n ∈ N, consider the set K of all completely monotone func-
tions bounded above by 1. Note that the functions f ∈ K are defined on the open
half-line, but thanks to their monotonicity and boundedness they have limits at 0 and
∞, and consequently can be considered to be defined also at these two points.

Theorem 2. The set K is convex and compact in C∞(0,+∞).

Proof. The convexity and closedness are verified directly. Since C∞(0,+∞) is a
Montel space (Subsection 16.3.4), to establish the compactness of K it suffices to
verify that K is bounded. Now boundedness follows from the following estimate
of the n-th derivative of f ∈ K , the proof of which by induction on n is left to the
reader:

sup
a�t<∞

| f (n)(t)| � a−n2n(n+1)/2

for any a ∈ (0, 1) and any n = 0, 1, 2, . . . . �

Theorem 3. Suppose the continuous function f : (0,+∞) → R satisfies for all
x, y ∈ (0,+∞) the functional equation
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f (x + y) = f (x) f (y). (2)

Then f is an exponential function of the form f (x) = ax .

Proof. Take for a the value f (1). Substituting into (2) x = 1 and y = 1, we obtain
f (2) = a2. Further, if we fix x = 1 and take successively y = 2, 3, . . ., we obtain the
equality f (n) = an . Taking in (2) x = y = n/2, we conclude that f (n/2) = an/2.
Now taking successively x = y = n2−k , we obtain the formula f (x) = ax for all
dyadic-rational numbers. To all the remaining positive real values x the equality
f (x) = ax is extended by continuity. �
Theorem 4. The set of extremepoints of the compact set K introducedabove consists
of the functions e−at , a ∈ [0,+∞), and the null function.

Proof. Let f ∈ ext K . Then fix y > 0 and consider the auxiliary function u(x) =
f (x + y) − f (x) f (y). The reader will be able to verify that the two functions
f1 = f + u and f2 = f − u lie in K . Since the extreme point f can be written
as f = ( f1 + f2)/2, it follows that u = 0. This establishes that f satisfies the func-
tional equation (2), and hence that f is an exponential function. But any exponential
function that lies in the set K is either 0, or a function of the form e−at .

Now let us show that indeed all the functions indicated in the statement of the
theorem lie in ext K . The fact that the functions 0 and 1 lie in ext K follows from
the condition 0 � f (t) � 1 that we imposed on all f ∈ K . Further, at least one of
the functions e−a0t with 0 < a0 < ∞ is an extreme point. Otherwise, the set ext K
would consist only of the functions 0 and 1 and, by the Krein–Milman theorem, the
compact set K = conv ext K would consist only of constants. Now for any b ∈ (0, 1)
the linear operator T which sends each function f (x) into the function f (bx) maps
K bijectively onto K . Therefore, the operator T maps extreme points into extreme
ones; in particular, the function e−a0bt is an extreme point. Since b is arbitrary, this
shows that e−at ∈ ext K for all 0 < a < ∞. �

To complete the proof of Bernstein’s theorem, consider the bijective mapping
F : [0,+∞] → ext K defined by the rule F(0) = 1, F(+∞) = 0, and F(a) = e−at

for 0 < a < ∞. The reader will readily verify that the mapping F is continuous.
Hence, ext K , being the image of a compact set under a continuous mapping, is a
closed set. To conclude, F is a continuous bijective mapping of a compact set into a
compact set, and hence a homeomorphism.

Let f : [0,+∞) → R be a completely monotone function. With no loss of gen-
erality, one can assume that f ∈ K : this is readily achieved via multiplication by a
factor. By the Krein–Milman theorem in integral form, there exists a regular Borel
probability measure ν on ext K such that

f =
∫

ext K

I dν. (3)

Define the measure μ on [0,+∞] to be the preimage of ν under the mapping F :
μ(A) = ν(F(A)). Changing the variables in (3) yields
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f =
∫

[0,+∞]
F(t) dμ(t).

Since F(+∞) = 0, the point +∞ can be removed from the integration domain:

f =
∫

[0,+∞)

F(t) dμ(t).

Finally, applying to both sides of this equality the evaluation functional δx at the
point x , we obtain the requisite representation (1):

f (x) = 〈δx , f 〉 =
∫

[0,+∞)

〈δx , F(t)〉 dμ(t) =
∫

[0,+∞)

e−t x dμ(t). �

18.2.4 Lyapunov’s Theorem on Vector Measures

We begin this subsection with the “children’s” cake-cutting problem. Bart and Todd
want to divide a cake in a fair way. The problem is that different parts of the cake
have different gastronomical and aesthetical values: some part has marzipan, another
candied peel, one carries a chocolate figurine, and so on. An ever bigger issue is the
individuality of the children: theymay estimate differently the desirability of one and
the same piece of the cake. The standard approach to solving this cutting problem
goes as follows: Bart cuts the cake into two pieces that from his point of view are
equal, and Todd chooses for himself the part that appeals more to him. In this way
Bart is convinced that he received exactly one half of the cake, and Todd thinks
he received no less than a half. This approach is completely satisfactory as long as
Todd does not start bragging that he got a much better part, and Bart is not envious
and starts a fight. To avoid such troubles and keep the peace between friends, it is
desirable to cut the cakes into two parts such that the parts will be exactly equal from
the point of view of Bart, as well as that of Todd. Is this possible? To answer this
question, we need a “mature” formulation.3

Thus, let � be a set (our cake), � a σ -algebra of subsets of � (the pieces into
which one can cut the cake), and μ1, μ2 finite countably-additive measures (for each
A ∈ � the quantityμ1(A) (respectively,μ2(A)) is the “value” that Bart (respectively,
Todd) assigns to the cake piece A).4 Now the problem reads: is there a set A ∈ �

such that μ1(A) = 1
2μ1(�) and also μ2(A) = 1

2μ2(�)? These measures μ1 and μ2

must also be required to be non-atomic: if some part of the cake cannot be cut into

3Here simply replacing Bart by Dr. Bartholomew Simpson and Todd by Prof. Todd Flanders is not
sufficient to make the formulation “mature”.
4In principle, μ1 and μ2 could also be charges, if some pieces of the cake do not seem appealing to
one of the two friends, i.e., have negative value for him.
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smaller pieces and both children like very much precisely that part, then the problem
is not solvable.

The following theorem of A.A. Lyapunov (1940) shows that the problem has a
solution, and in fact not only for two, but also for any finite number of cake lovers.
The importance of the theorem is of course not restricted to the fact that it allows
a fair cake cutting, regardless of the great importance and applied character of the
cake problem. The proof provided below, which uses extreme points, was proposed
by Lindenstrauss in 1966.

Theorem 1. Let μ1, . . . , μn be countably-additive non-atomic real charges on the
σ -algebra �. Define the vector measure μ : � → R

n by the formula μ(A) =
(μ1(A), . . . , μn(A)). Then the set μ(�) of all values of the measure μ is convex
and compact in Rn.

Proof. Consider the scalar-valued measure ν = |μ1| + · · · + |μn|, with respect to
which all charges μk are absolutely continuous. We use the Radon–Nikodým
theorem and denote the derivative dμk/dν by gk . Then gk ∈ L1(�,�, ν) and
μk(A) = ∫

A gk dν for all A ∈ �. Consider the operator T : L∞(�,�, ν) → R
n ,

acting by the rule

T f =
(∫

�

f g1 dν, . . . ,

∫

�

f gn dν

)
.

The set μ(�) of all values of the vector measure μ we are interested in coincides
with the image under the operator T of the set of functions 1A with A ∈ �.

The space L∞(�,�, ν) will be regarded as the dual to L1(�,�, ν). Then each
of the expressions

∫
�
f gk dν is a w∗-continuous with respect to f functional on

L∞(�,�, ν), and therefore the operator T is w∗-continuous. Now in L∞(�,�, ν)

consider the setW of functions f that satisfy the condition 0 � f � 1 ν-a.e. ThenW
coincides with the closed ball centered at f = 1/2 and of radius 1/2. By Alaoglu’s
theorem, the set W is w∗-compact. Moreover, W is convex. Thus, T (W ) is a convex
compact subset ofRn . Let us show that T (W ) = μ(�). This will complete the proof
of the entire theorem.

Since the functions 1A with A ∈ � lie in W , and the values of the measure μ are
vectors of the form T (1A), we have μ(�) ⊂ T (W ). Let us establish the opposite
inclusion. Let x ∈ T (W ) be an arbitrary element; T−1(x) is a w∗-closed subset,
hence T−1(x) ∩ W is a w∗-compact set. Let f ∈ ext (T−1(x) ∩ W ). We claim that
f takes a.e. the value 0 or 1, i.e., f = 1A for some set A ∈ �. Because of the equality
x = T ( f ) = T (1A), this will establish the requisite inclusion T (W ) ⊂ μ(�).

Consider the set A = {t ∈ � : 0 < f (t) < 1}. We need to show that ν(A) = 0.
Suppose this is not the case. Define

An =
{
t ∈ � : 1

n
< f (t) < 1 − 1

n

}
.
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By our assumption, the union of the sets An is not negligible, so ν(An) �= 0 for some
n ∈ N. Then the subspace L∞(An) ⊂ L∞(�,�, ν) of functions with support in An

is infinite-dimensional (here in all arguments we use the fact that the measure ν is
non-atomic). Since T is a finite-dimensional operator, it cannot be injective on an
infinite-dimensional space. Hence, there exists a non-zero element g ∈ SL∞(An) such
that Tg = 0. Then both elements f ± 1

n g lie in T−1(x) ∩ W , which is impossible
because f is an extreme point. �

As the next example will show, the direct extension of Lyapunov’s theorem to
measures with values in an infinite-dimensional space fails.

Example 1. On the interval [0, 1] define the measure μ with values in L2[0, 1] by
the formula μ(A) = 1A. This measure is non-atomic and countably additive. At the
same time, the set μ(B) of all values (the range) of the vector measure μ is not
convex: 0, 1 ∈ μ(B), but the function identically equal to 1/2 does not belong to
μ(B).

Using the fact that for any infinite-dimensional Banach space X there exists an
injective operator T : L2[0, 1] → X , one can readily establish the existence of an
X -valued non-atomic Borel measure on [0, 1] with non-convex range. Such a mea-
sure can be given by the formula μ(A) = T (1A). Nonetheless, infinite-dimensional
analogues of the Laypunov theorem do exist, albeit in a weakened form: such gener-
alizations state that the closure μ(�) of the set of values, rather than the range μ(�)

itself, is convex.

Definition 1. The Banach space X is said to have the Lyapunov property if for
any set �, any σ -algebra � on �, and any non-atomic countably-additive measure
μ : � → X , the set μ(�) is convex.

The same Example 1 above shows that Hilbert spaces do not have the Lyapunov
property. At the same time (see [61]), the spacesc0 and �p with p ∈ [1, 2) ∪ (2,+∞)

enjoy the Lyapunov property. Thus, with the Lyapunov property we run into a para-
doxical situation: with respect to this property, Hilbert spaces are worse than the
(rather badly behaved for other problems and, in particular, non-reflexive) space c0.

Under additional restrictions on the measure, the community of spaces to which
the weaker analogue of the Lyapunov theorem extends widens. For instance, if one
considers only measures of bounded variation, then according to a theorem of Uhl
(see the last chapter of the book [13], and also the paper [60]), the convexity of the
set μ(�) will hold for non-atomic measures taking values in any space with the
Radon–Nikodým property (a class of Banach spaces that includes, in particular, all
the reflexive spaces).
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Comments on the Exercises

Section18.1.2

Exercise6. See [66]. As shown in [48], the set of extreme points of the closed unit
ball of a reflexive space is not just uncountable, it cannot even have the “small balls
property” (concerning this property, see the exercises of Subsection11.2.1).

Exercise7. See [3, Corollary5.12 and Proposition5.13].

Exercise9. See [34, P. 15].

Exercise10.The solutiongivenherewas communicated to us byDirkWerner. Sup-
pose that for some operator T ∈ L(X) it holds that ‖I ± T ‖�1. Then ‖I ∗ ± T ∗‖�1,
and for any x∗ ∈ ext BX∗ we have ‖x∗ ± T ∗x∗‖ � 1. By the definition of an extreme
point, this means that T ∗x∗ = 0. Thus, we have proved that T ∗ maps into 0 all
extreme points of the ball BX∗ , and so T ∗ = 0. Consequently, T = 0, too.

Exercise11. Use the previous exercise and Exercise6 of Subsection11.1.1.

Section18.2.1

Exercise3. By Milyutin’s theorem (see the monograph [33]), if K1 and K2 are
uncountable metrizable compact spaces, then the spaces C(K1) and C(K2) are iso-
morphic. For the concrete case K1 = [0, 1] and K2 = [0, 1] ∪ {2} the corresponding
isomorphism ofC[0, 1] andC(K2) can be given without appealing to the highly non-
trivial Milutin’s construction. Namely, one finds in C[0, 1] a subspace X isomorphic
to c0 (for any sequence of functions fn ∈ SC[0,1] with disjoint supports, X = Lin{ fn}
is a subspace of C[0, 1] isometric to c0), then one represents C[0, 1] as a direct sum
of the form X ⊕ Y , writingC(K2) = Lin{1{2}} ⊕ C[0, 1] = Lin{1{2}} ⊕ X ⊕ Y , and
finally one proves (using the shift operator) that Lin{1{2}} ⊕ X is isomorphic to c0,
and thus is isomorphic to X .
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