
Chapter 16
Topological Vector Spaces

16.1 Supplementary Material from Topology

We have already encountered a very general type of convergence — convergence
along a directed set. We now turn to yet another type, convergence along a filter, and
apply this new technique to the study of compact topological spaces. Throughout this
chapter we will have to frequently deal, within one and the same argument, with sets
as well as some families of subsets. To make it easier to distinguish these objects,
we will denote sets by upper case Roman italic letters A, B, X, Y , and so on, and
use for families Gothic letters A, C, D, F. Of course, the difference here is rather
conventional, since any family of sets is itself a set.

16.1.1 Filters and Filter Bases

Definition 1. A family F of subsets of a set X is called a filter on X if it satisfies the
following axioms:

(i) F is not empty;

(ii) ∅ /∈ F;

(iii) if A, B ∈ F, then A ∩ B ∈ F;

(iv) if A ∈ F and A ⊂ B ⊂ X , then B ∈ F.
Let us note several consequences of the filter axioms:

(v) X ∈ F (follows from (i) and (iv));

(vi) in view of (iii), the intersection of any finite number of elements of a filter is
again an element of that filter; from (ii) we deduce that

(vii) the intersection of any finite number of elements of a filter is not empty.
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432 16 Topological Vector Spaces

An example of a filter is provided by the family Nx of all neighborhoods of a
point x in a topological space X .

Definition 2. A non-empty family D of subsets of a set X is called a filter basis
(also base in the literature) if

(a) ∅ /∈ D, and

(b) for any sets A, B ∈ D there exists a set C ∈ D such that C ⊂ A ∩ B.

Let D be a filter basis. The filter generated by the basis D is the family F of all
sets A ⊂ X such that A contains as a subset at least one element of D.

We leave to the reader to verify that this definition is correct, i.e., that what we
call the filter F generated by the basis D is indeed a filter.

If X is a topological space and x0 ∈ X , and as a basis D we take the family of
all open sets that contain x0, then the filter generated by the basisD is precisely the
filter Nx0 of all neighborhoods of the point x0.

Let us give one more example. Let (xn)∞n=1 be a sequence of elements of the set
X . Then the familyD(xn) of “tails” of the sequence (xn) (i.e., the family of sets of the
form {xn}∞n=N , N ∈ N) is a filter basis. The filter F(xn) generated by the basis D(xn)

is called the filter associated with the sequence (xn).

Theorem 1. Let X, Y be sets, f : X → Y a mapping, and D a filter basis in X.
Then the family f (D) of all images f (A) with A ∈ D is a filter basis in Y .

Proof. Axiom (a) in the definition of a filter basis is obvious. Further, let f (A) and
f (B) be arbitrary elements of f (D), A, B ∈ D. By axiom (b), there exists a C ∈ D,
such that C ⊂ A ∩ B. Then f (C) ⊂ f (A) ∩ f (B), which proves (b) for f (D). �

In particular, if F is a filter on X , then f (F) is a filter basis in Y .

Definition 3. The image of the filter F under the mapping f is the filter f [F] gen-
erated by the filter basis f (F). Equivalently, A ∈ f [F] if and only if f −1(A) ∈ F.

Recall (see Subsection1.2.3) that a family of sets C is said to be centered if the
intersection of any finite collection of members of C is not empty.

Theorem 2. Let C ⊂ 2X be a non-empty family of sets. For the existence of a filter
F such that F ⊃ C (i.e., such that all elements of C are also elements of the filter F)
it is necessary and sufficient that C be a centered family.

Proof. If F is a filter and F ⊃ C, then any finite collection A1, . . . , An of elements of
the family C will consist of elements of the filter F. Hence (property (vii) of filters),⋂n

k=1 Ak 	= ∅. Necessity is thus proved. Conversely, suppose C is a centered family.
Then the familyD of all sets of the form

⋂n
k=1 Ak , where n ∈ N and A1, . . . , An ∈ C,

is a filter basis. Now for F one needs to take the filter generated by the basis D. �
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Definition 4. Let F be a filter on X . A family D of subsets is said to be a basis of
the filter F if D is a filter basis and the filter generated by D coincides with F.

Theorem 3. For the familyD to be a basis of the filterF, it is necessary and sufficient
that the following two conditions be satisfied:

— D ⊂ F;

— for any A ∈ F there exists a B ∈ D such that B ⊂ A.

Definition 5. Let F be a filter on X and A ⊂ X . The trace of the filter F on A is the
family of subsets FA = {A ∩ B : B ∈ F}.
Theorem 4. For the family FA to be a filter on A, it is necessary and sufficient that
all intersections A ∩ B with B ∈ F are non-empty. In particular, FA will be a filter
whenever A ∈ F.

Exercises

1. Prove Theorems3 and 4.

Below we give examples of filters and filter bases. Many of these examples will
be used in the sequel. The reader is invited to verify the corresponding axioms.

2. The Fréchet filter on N: the elements of this filter are the complements of the
finite sets of natural numbers. A basis of the Fréchet filter is provided by the sets
A1 = {1, 2, 3, . . .}, A2 = {2, 3, 4, . . .}, . . . , An = {n, n + 1, n + 2, . . .}, . . ..
3. The neighborhood filter of infinity in a normed space X : the set A ⊂ X lies in
this filter if the set X \ A is bounded.

4. The filter N0
x of deleted (or punctured) neighborhoods of a given point x in a

topolgical space X : a basis of this filter consists of the sets of the formU \ {x}, where
U is a neighborhood of x . For this definition to be correct, it is necessary that the
point x is not isolated.

5. The neighborhood filters of the point +∞ in R: a basis of the filter consists of
the intervals (a,+∞) with a ∈ R.

6. The filter of deleted neighborhoods of the “point” a + 0 inR: a basis of this filter
consists of the sets (a, b) with b ∈ (a,+∞).

7. The statistical filter Fs on N: A ∈ Fs if limn→∞ |A ∩ {1, 2, . . . , n}|/n = 1. Here
|B| denotes the cardinality of the set B.
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8. Let (G,
) be a directed set. The section filter on G is the filter F
, a basis of
which consists of all sets of the form {x ∈ G : x 
 a} with a ∈ G.

Prove that

9. The set of all filters on N is not countable. In fact, the cardinality of this set is
bigger than the cardinality of the continuum.

10. The filters in Execises 3, 5, and 6 have countable bases.

11. The statistical filter (Exercise7) does not have a countable basis.

12. Let (xn)∞n=1 be a sequence in X , and let the function f : N → X act by the rule
f (n) = xn . Then the image of the Fréchet filter from Exercise2 under f is the filter
F(xn) associated with the sequence (xn).

16.1.2 Limits, Limit Points, and Comparison of Filters

Definition 1. Suppose given two filters F1 and F2 on the topological space X . We
say that F1 majorizes F2 if F1 ⊃ F2; in other words, if every element of the filter F2

is also an element of the filter F1.

Example 1. Let (xn)n∈N be a sequence in X , and (xnk )k∈N be a subsequence of
(xn)n∈N. Then the filter F(xnk )

associated with the subsequence majorizes the filter
F(xn) associated with the sequence itself. Indeed, let A ∈ F(xn). Then there exists an
N ∈ N such that {xn}∞n=N ⊂ A. But then also {xnk }∞k=N ⊂ A, that is, A ∈ F(xnk )

.

Definition 2. Let X be a topological space, and F a filter on X . The point x ∈ X is
called the limit of the filter F (denoted x = lim F) if F majorizes the neighborhood
filter of the point x . In other words, x = lim F if every neighborhood of the point x
belongs to the filter F.

The point x ∈ X is said to be a limit point of the filter F if every neighborhood
of x intersects all elements of the filter F. The set of all limit points of the filter F is
denoted by LIM(F).

Example 2. Let (xn)n∈N be a sequence in the topological space X . Then lim F(xn) =
limn→∞ xn , and LIM(F(xn)) coincides with the set of limit points of the sequence
(xn)n∈N.

Theorem 1. Let F be a filter on the topological space X, and D be a basis for the
filter F. Then

(a) x = lim F if and only if for any neighborhood U of the point x there exists an
element A ∈ D such that A ⊂ U.
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(b) If x = lim F, then x is a limit point of the filter F. If, in addition, X is a Hausdorff
space, then the filter F has no other limit points. In particular, if a filter in a
Hausdorff space has a limit, then this limit is unique.

(c) The set LIM(F) coincides with the intersection of the closures of all elements of
the filter F.

Proof. (a) By definition, x = lim F if any neighborhoodU of the point x belongs to
the filter F. In its turn, U ∈ F if and only if U contains some set A ∈ D.

(b) Let x = lim F, and let U be a neighborhood of x . Then U ∈ F, hence any set
A ∈ F intersects U . That is, x ∈ LIM(F).

Further, let x = lim F, y ∈ LIM(F), and let U and V be arbitrary neighborhoods
of the points x and y, respectively. Then U ∈ F, and since any neighborhood of
a limit point intersects all elements of the filter F, U ∩ V 	= ∅. Since the space is
Hausdorff, this is possible only if x = y.

(c) By definition, x ∈ LIM(F) if and only if every element A ∈ F intersects all
neighborhoods of the point x . This is equivalent to x belonging to the closure of
every element A ∈ F. �

Theorem 2. Suppose F1, F2 are filters in the topological space X, and F1 ⊂ F2.
Then:

(i) if x = lim F1, then x = lim F2;

(ii) if x ∈ LIM(F2), then x ∈ LIM(F1). In particular,

(iii) if x = lim F2, then x ∈ LIM(F1).

Proof. (i) F1 majorizes the neighborhood filter Nx of the point x and F1 ⊂ F2,
therefore Nx ⊂ F2.

(ii) Since as the collection of sets increases their intersection decreases, we have
LIM(F2) = ⋂

A∈F2
A ⊂ ⋂

A∈F1
A = LIM(F1). �

Definition 3. Let X be a set, Y a topological space, and F a filter in X . The point y ∈
Y is called the limit of the mapping f : X → Y with respect to the filter F (denoted
y = lim

F
f ), if x = lim f [F]. In other words, y = lim

F
f if for any neighborhood U

of the point y there exists an element A ∈ F such that f (A) ⊂ U .
The point y ∈ Y is called a limit point of the mapping f : X → Y with respect to

the filter F if y ∈ LIM( f [F]), i.e., if any neighborhood of the point y intersects the
images of all elements of the filter F under f .

Example 3. Let X be a topological space, f : N → X , and F be the Fréchet filter
on N (see Exercise2 in Subsection16.1.1). Then lim

F
f = lim

n→∞ f (n).

Theorem 3. Let X,Y be topological spaces, F a filter in X, x = lim F, and f :
X → Y a continuous mapping. Then f (x) = lim

F
f .
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Proof. Let U be an arbitrary neighborhood of the point f (x). Then there exists a
neighborhood V of the point x such that f (V ) ⊂ U . The condition x = lim Fmeans
that V ∈ F. That is, for any neighborhood U of the point f (x) we have found the
required element V ∈ F for which f (V ) ⊂ U . �

Exercises

To avoid complicating the formulations connected with the possible non-uniqueness
of the limit, in the exercises below all the topological spaces are assumed to be
Hausdorff.

1. Let (G,
) be a directed set, X a topological space, f : G → X a mapping, and
F
 the section filter onG (see Exercise8 in Subsection16.1.1). Then lim

F

f = lim

(G,
)
f .

Thus, the limit with respect to a directed set is a particular case of a limit with respect
to a filter.

2. Suppose the subspace A of the topological space X intersects all the elements
of the filter F. Let FA = {A ∩ B : B ∈ F} be the trace of the filter F on A. Then
LIM(FA) ⊂ LIM(F).

3. Let A ∈ F. Then the existence of lim FA in the topology induced on A implies
the existence of lim F and lim FA = lim F.

4. Let lim F = a ∈ A. Then lim FA = a.

5. Let X and Y be topological spaces, andNx be the neighborhood filter of the point
x ∈ X . A mapping f : X → Y is continuous at the point x if and only if the limit
lim
Nx

f exists. If this limit exists, then it is equal to f (x).

6. Let X and Y be topological spaces, andN0
x be the filter of deleted neighborhoods

of the point x ∈ X (see Exercise4 in Subsection16.1.1), and suppose x is not an
isolated point. Then the continuity of the mapping f : X → Y at the point x is
equivalent to the condition lim

N0
x

f = f (x).

7. In the topological space X , consider the filter F consisting of all sets that contain
a fixed set A ⊂ X . Then LIM(F) coincides with the closure of the set A.

8. Based on Exercises5 and 6 of Subsection16.1.1, write for a function f of a real
variable the expressions lim

x→+∞ f (x) and lim
x→a+0

f (x) as the limits of the function

with respect to appropriately chosen filters on R.

9. For a function f of a real variable, write the expressions lim
x→∞ f (x), lim

x→a
f (x),

lim
x→a−0

f (x), and lim
x→−∞ f (x) as limits with respect to a filter.
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10. Let F be a filter on the set X . A sequence xn ∈ X is said to be cofinal for the
filter F if F{xn} ⊃ F. If the filter F has a countable basis, then there exists a cofinal
sequence for F.

11. For the statistical filterFs (Exercise7 in Subsection16.1.1) there exists no cofinal
sequence.

12. On the interval [0, 1] consider the filter consisting of all the sets with finite
complement. This filter does not have a countable basis, yet it possesses a cofinal
sequence. (More precisely, any sequence xn ∈ [0, 1] of pairwise distinct numbers is
cofinal for this filter.)

13. Let X be a set, Y a topological space, f : X → Y a mapping, and y = lim
F

f .

If the sequence xn ∈ X is cofinal for the filter F, then f (xn) → y as n → ∞. In
particular, if the filter F on the set X has a countable basis, then there exists a
sequence xn ∈ X such that f (xn) → y as n → ∞.

14. If the filter F on the set X does not possess a cofinal sequence, then there exist
a topological space Y and a mapping f : X → Y , which has a limit y with respect
to F, such that no sequence of the form ( f (xn)), with xn ∈ X , converges to y.

16.1.3 Ultrafilters. Compactness Criteria

In the preceding subsection, we introduced the order relation ⊃ on the family of
filters given on a set X . The next lemma justifies the application of Zorn’s lemma to
the family of filters.

Lemma 1. LetM be a linearly ordered non-empty family of filters given on the set
X, i.e., for any F1,F2 ∈ M, either F1 ⊃ F2, or F2 ⊃ F1. Then the union F of all
filters in the family M is again a filter on X.

Proof. We need to verify that the family of sets F satisfies the filter axioms. The
axioms (i) and (ii) are obvious here, so let us establish that the remaining two are
satisfied.

(iii) Let A, B ∈ F. Then there exist filters F1,F2 ∈ M, such that A ∈ F1 and
B ∈ F2. By hypothesis, one of the filters F1, F2 majorizes the other. Suppose, for
instance, that F2 ⊃ F1. Then both sets A, B lie inF2, and sinceF2 is a filter, it follows
that A ∩ B ∈ F2 ⊂ F.

(iv) Let A ∈ F and A ⊂ B ⊂ X . Then there exists a filter F1 ∈ M such that A ∈
F1. Since F1 is a filter, also B ∈ F1 ⊂ F. �

Definition 1. An ultrafilter on X is a filter on X that is maximal with respect to
inclusion. In detail, the filter A on X is called an ultrafilter if any filter F on X that
majorizes A necessarily coincides with A.
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Zorn’s lemma yields the following existence theorem.

Theorem 1. For any filter F on X there exists an ultrafilter that majorizes it. �

Lemma 2. Suppose A is an ultrafilter, A ⊂ X, and all elements of A intersect A.
Then A ∈ A.

Proof. It is readily seen that when one adds to the family of setsA the set A as a new
element one obtains a centered family of sets. By Theorem2 in Subsection16.1.1,
there exists a filter F which contains all elements of this centered family. We have
that F ⊃ A, andA is an ultrafilter, that is, F = A. On the other hand, by construction,
A ∈ F. Hence, A ∈ A. �

Theorem 2 (ultrafilter criterion). For the filter A on X to be an ultrafilter it is
necessary and sufficient that for any set A ⊂ X, either A itself or X \ A belongs to
A.

Proof. Necessity. Suppose A is an ultrafilter and X \ A /∈ A. Then no set B ∈ A
is entirely contained in X \ A, i.e., every B ∈ A intersects A. Hence, by Lemma2,
A ∈ A.

Sufficiency. Suppose that A is not an ultrafilter. Then there exist a filter F ⊃ A
and a set A ∈ F \ A. By construction, A /∈ A. On the other hand, X \ A does not
intersect A, A ∈ F, and consequently X \ A cannot belong to the filter F, and the
more so not to the filter A, which is smaller than F. �

Corollary 1. The image of any ultrafilter is an ultrafilter.

Proof. Let f : X → Y and let A be an ultrafilter on X . Consider an arbitrary set
A ⊂ Y . Then either f −1(A), or f −1(Y \ A) = X \ f −1(A) belongs to A. It follows
that either A or Y \ A belongs to f [A]. �

Lemma 3. Let A be an ultrafilter on the Hausdorff topological space X and x ∈
LIM(A). Then x = limA. In particular, an ultrafilter can have at most one limit
point.

Proof. LetU be an arbitrary neighborhood of the point x . Then, by the definition of
a limit point, U intersects all elements of A. By Lemma2, U ∈ A. �

Theorem 3 (compactness criteria in terms of filters).For aHausdorff topological
space X, the following conditions are equivalent:

(1) X is compact;

(2) every filter on X has a limit point;

(3) every ultrafilter on X has a limit.

Proof. We will successively establish the equivalence of the listed conditions.
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(1) =⇒ (2). The filter F is a centered family of sets. All the more the family of
closures of the elements of the filter is also centered. Consequently (Theorem1 of
Subsection1.2.3), the intersection LIM(F) of these closures is not empty.

(2) =⇒ (1). Let C be an arbitrary centered family of closed subsets of the space
X . By Theorem2 of Subsection16.1.1, there exists a filter F ⊃ C. Then

⋂
A∈C A ⊃

⋂
A∈F A = LIM(F) 	= ∅.
(2) =⇒ (3). By condition (2), every ultrafilter has a limit point, and by Lemma3

this point is the limit of the ultrafilter.

(3) =⇒ (2). Consider an arbitrary filter F on X and choose (Theorem1) an ultra-
filterA ⊃ F. By (3), the ultrafilterA has a limit x ∈ X . By assertion (iii) of Theorem2
in Subsection16.1.2, x is a limit point of the filter F. �

Corollary 2. SupposeA is an ultrafilter on E, X a topological space, and the image
of the mapping f : E → X lies in a compact subset K ⊂ X. Then there exists the
limit lim

A
f .

Proof. Consider f as a mapping acting from E into K . Since (Corollary 1) f [A]
is an ultrafilter on the compact space K , there exists the limit lim f [A]. But, by
definition, lim

A
f = lim f [A]. �

Exercises

1. Let E be a set and e be an element of E . Verify that the family Ae ⊂ 2E of all
sets containing e constitutes an ultrafilter on E . Ultrafilters of this form are called
trivial ultrafilters.

2. Let E be a set, X a topological space, and e ∈ E . Then f (e) = lim
Ae

f for any

mapping f : E → X .

3. Prove that on any infinite set there exist non-trivial ultrafilters. It is interesting that
to construct an explicit example of a non-trivial ultrafilter is in principle impossible:
such a construction necessarily relies on the Axiom of Choice or on Zorn’s lemma.

4. Let A be an ultrafilter on E . Use induction on n to show that if an element A ∈ A
is covered a finite number of sets: A ⊂ ⋃n

k=1 Ak , then at least one of the sets Ak

belongs to A.

5. Every ultrafilter on a finite set E is trivial.

6. Let A be an ultrafilter on N. Then either A is trivial, or A majorizes the Fréchet
filter.
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7. Let A be an ultrafilter on N which majorizes the Fréchet filter. Then f �→ lim
A

f

is a continuous linear functional on �∞ (recall that sequences f = ( f1, f2, . . .), i.e.,
elements of the space �∞, can be regarded as bounded functions on N with values
in the corresponding field of scalars R or C). Based on this example, show that
(�∞)∗ 	= �1.

8. Let A1, A2 be ultrafilters on N, A1 	= A2. Then there exists an f ∈ �∞ for which
lim
A1

f 	= lim
A2

f .

9. For each set A ⊂ N we denote by UA the family of all ultrafilters on N that have
A as an element. We equip the set βN of all ultrafilters on N with the following
topology: the neighborhoods of the ultrafilter A are all sets UA with A ∈ A, as well
as all the larger sets.More formally: the topology on βN is specified by neighborhood
bases (see Subsection1.2.1); as a neighborhood basis of the element A ∈ βN one
takes the family UA = {UA : A ∈ A}.1 Verify the axioms given in Subsection1.2.1,
the satisfaction of which is necessary for the specification of a topology by means of
neighborhoods.

10. Identify the trivial ultrafilter An , generated by the point n ∈ N, with the point
n itself. Under this identification, N ⊂ βN. Prove that N is a dense subset of the
topological space βN, i.e., βN is separable.

11. Let A be an ultrafilter on N which majorizes the Fréchet filter. For each x =
(x1, x2, . . .) ∈ �∞ define F(x) as the limit with respect to A of the function f given
by f (n) = (x1 + x2 + · · · + xn)/n. Verify that the functional F is invariant under
translations. By this construction you will obtain a proof of the existence of the
generalized Banach limit (see the exercises in Subsection5.5.2) that does not resort
to the Hahn–Banach theorem.

16.1.4 The Topology Generated by a Family of Mappings.
The Tikhonov Product

Suppose that on the set X there is given a family of mappingsF , where the mappings
f ∈ F act in respective (possibly different) topological spaces f (X). For any point
x ∈ X , any finite family of mappings { fk}nk=1 ⊂ F , and any open neighborhoods Vk

of the points fk(x) in the spaces fk(X), respectively, we introduce the sets

Un,{ fk }nk=1,{Vk }nk=1
(x) =

n⋂

k=1

f −1
k (Vk).

1What a splendid thing is the modern system of notations: UA is a familiy of neighborhoods. Each
neighborhood is a set of ultrafilters. Each ultrafilter is a family of sets of natural numbers. Thus,
with one symbol UA we managed to denote a set of sets of sets of sets of natural numbers!
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Recall (Subsection1.2.1) the following fact: Suppose that for each point x ∈ X
there is given a non-empty family Ux of subsets with the following properties:

— if U ∈ Ux , then x ∈ U ;

— if U1,U2 ∈ Ux , then there exists a U3 ∈ Ux such that U3 ⊂ U1 ∩U2;

— if U ∈ Ux and y ∈ U , then there exists a set V ∈ Uy such that V ⊂ U .

Then there exists a topology τ on X for which the families Ux are neighborhood
bases of the corresponding points.

Consequently, on X there exist a topology (possibly not separated) in which the
setsUn,{ fk }nk=1,{Vk }nk=1

(x) constitute a neighborhood basis of the point x , for any x ∈ X .
We denote this topology by σ(X,F). In particular, among the neighborhoods of the
point x ∈ X in the topology σ(X,F) there are all the sets f −1(V ), where f ∈ F
and V is a neighborhood of the point f (x) in the topological space f (X). Therefore,
all the mappings in the family F are continuous in σ(X,F).

Theorem 1. σ(X,F) is the weakest topology on X in which all the mappings
belonging to the family F are continuous.

Proof. Let τ be some topology in which all the mappings in the familyF are contin-
uous. Let us show that any set of the formUn,{ fk }nk=1,{Vk }nk=1

(x) will be a neighborhood
of the point x in the topology τ . This will prove that τ 
 σ(X,F). By hypothe-
sis, all mappings fk : X → fk(X) are continuous in the topology τ . Hence, the sets
f −1
k (Vk) are open neighborhoods of the point x in τ . Therefore, the intersection

Un,{ fk }nk=1,{Vk }nk=1
(x) of such sets is also an open neighborhood of x . �

Definition 1. The topology σ(X,F) is called the topology generated by the family
of mappings F . Another term (justified by the preceding theorem) is that of the
weakest topology in which all the mappings in the family F are continuous.

Definition 2. A family of mappings F is said to separate the points of the set X if
for any x1, x2 ∈ X , x1 	= x2, there exists a mapping f ∈ F such that f (x1) 	= f (x2).

Theorem 2. Suppose all the spaces f (X), f ∈ F , are Hausdorff. For the topology
σ(X,F) to be Hausdorff it is necessary and sufficient that the family F separates
the points of the set X.

Proof. Sufficiency. Suppose F separates the points of the set X . Then for any
x1, x2 ∈ X , x1 	= x2, there exists an f ∈ F such that f (x1) 	= f (x2). Since f (X) is
a Hausdorff space, there exist disjoint neighborhoods V1 and V2 of the points f (x1)
and f (x2), respectively. The sets f −1(V1) and f −1(V2) are the required σ(X,F)-
neighborhoods that separate the points x1 and x2.

Necessity. Suppose F does not separate the points of X . Then there exist points
x1, x2 ∈ X , x1 	= x2, such that f (x1) = f (x2) for all f ∈ F . Pick an arbitrary
σ(X,F)-neighborhood Un,{ fk }nk=1,{Vk }nk=1

(x1) of the point x1. Since fk(x1) = fk(x2)
for all k = 1, 2, . . . , n, the point x2 will also lie in Un,{ fk }nk=1,{Vk }nk=1

(x1). Thus, in the
described situation σ(X,F) not only is not Hausdorff, it even fails the first separation
axiom. �



442 16 Topological Vector Spaces

Theorem 3. For the filter F on X to converge in the topology σ(X,F) to some
x ∈ X, it is necessary and sufficient that lim

F
f = f (x) for all f ∈ F .

Proof. In view of the continuity in the topology σ(X,F) of all mappings f ∈ F , the
necessity follows from Theorem3 of Subsection16.1.2. Let us prove the sufficiency.
Suppose lim

F
f = f (x) for all f ∈ F . We need to show that every neighborhood of

the formUn,{ fk }nk=1,{Vk }nk=1
(x)will be an element of the filterF. By assumption, lim

F
fk =

fk(x), and so f −1
k (Vk) ∈ F for all k = 1, 2, . . . , n. Since a filter is stable under taking

finite intersections of elements, Un,{ fk }nk=1,{Vk }nk=1
(x) = ⋂n

k=1 f −1
k (Vk) ∈ F. �

Let � be an index set (i.e., a set whose elements will henceforth referred to as
indices). Suppose that to each index γ ∈ � there is assigned a set Xγ . The Cartesian
product of the sets Xγ with respect to γ ∈ � is defined to be the set

∏
γ∈� Xγ

consisting of all mappings x : � → ⋃
γ∈� Xγ with the property that x(γ ) ∈ Xγ for

any γ ∈ �. In the particular case when all sets Xγ are equal to one and the same
set X , the product consists of all functions x : � → X ; then the Cartesian product is
called the Cartesian power and is denoted by X� .

For the values of a function x ∈ ∏
γ∈� Xγ , instead of x(γ ) one uses the notation

xγ . In this notation the element x ∈ ∏
γ∈� Xγ itself is usually written in the form

x = {xγ }γ∈� of an indexed set of values.
For anyα ∈ �, themapping Pα : ∏

γ∈� Xγ → Xα , acting by the rule Pα(x) = xα ,
is called a coordinate projection.

Definition 3. Suppose all Xγ , γ ∈ �, are topological spaces. The Tikhonov topol-
ogy on

∏
γ∈� Xγ is the weakest topology in which all coordinate projections Pα ,

α ∈ �, are continuous. The Cartesian product
∏

γ∈� Xγ , equippedwith the Tikhonov
topology, is called the Tikhonov product.

We note that, obviously, the coordinate projections separate the points of the
product, and so, by Theorem2, a Tikhonov product of Hausdorff spaces is again a
Hausdorff space. Further, Theorem3 yields the following assertion:

Convergence Criterion in a Tikhonov Product. A filter F on
∏

γ∈� Xγ converges
in the Tikhonov topology to an element x = {xγ }γ∈� if and only if xγ = lim

F
Pγ for

all γ ∈ �.
Let us describe the Tikhonov topology explicitly, i.e., describe in more detail the

form that the neighborhoods of the topology generated by a family of maps take
in this particular case. Let x ∈ ∏

γ∈� Xγ ; let N ⊂ � be a finite set of indices, and
Vγ ⊂ Xγ , γ ∈ N , be open neighborhoods of the corresponding points xγ . Define

UN ,{Vγ }γ∈N (x) =
{

y ∈
∏

γ∈�

Xγ : yα ∈ Vα for all α ∈ N

}

.

Theorem 4. The sets of the formUN ,{Vγ }γ∈N (x) form a basis of neighborhoods of the
point x ∈ ∏

γ∈� Xγ in the Tikhonov topology. �
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Theorem 5 (Tikhonov’s theorem on products of compact spaces). Let Xγ , γ ∈ �

be compact topological spaces. Then the Tikhonov product
∏

γ∈� Xγ is also compact.

Proof. We use criterion (3) of Theorem3 in Subsection16.1.3. LetA be an ultrafilter
on

∏
γ∈� Xγ . Since all the spaces Xγ are compact, for each γ ∈ � the coordinate

projection Pγ has a limit. Denote it by yγ = lim
A

Pγ . Then the element y = {yγ }γ∈�

is the limit of the ultrafilter A. �

Exercises

1. In the case where � = {1, 2}, the definition of the Tikhonov product
∏

γ∈� Xγ

coincideswith the definition of the product X1 × X2 of topological spaces introduced
earlier in Subsection1.2.2.

2. A particular case of the Tikhonov product — the Tikhonov power X� of the
topological space X — is the space of all functions f : � → X . Write in explicit
form the neighborhoods of a function f in the Tikhonov topology.

3. Prove that a sequence of functions fn ∈ X� converges in the Tikhonov topology
to a function f if and only if fn(x) → f (x) for all x ∈ X . This justifies yet another
name used for the Tikhonov topology — topology of pointwise convergence.

4. For a particular case of the Tikhonov power— the space [0, 1][0,1] of all functions
f : [0, 1] → [0, 1] —write explicitly the neighborhoods of a function f . Prove that
the set of all polynomialswith rational coefficients is dense in [0, 1][0,1], i.e., [0, 1][0,1]
is a separable space.

A topological space X is said to be sequentially compact if from any sequence of
elements in X one can extract a convergent subsequence.

5. The space [0, 1][0,1], despite being compact, is not sequentially compact (see
Exercise10 in Subsection3.2.2).

A subset A of a topological space X is said to be sequentially dense if for any
x ∈ X there exists a sequence an ∈ A that converges to x . A topological space X is
said to be sequentially separable, if X contains a countable sequentially dense set.

6. A sequentially separable Hausdorff topological space cannot have cardinality
larger than the cardinality of the continuum.

7. The space [0, 1][0,1], despite its separability, is not sequentially separable.
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8. Let Gγ be a topological group. Equip the Tikhonov product
∏

γ∈� Gγ with the
operation {xγ }γ∈� · {yγ }γ∈� = {xγ · yγ }γ∈� . Verify that

∏
γ∈� Gγ is a topological

group.

9. Equip the two-point set {0, 1}with the discrete topology. Prove that the Tikhonov
power {0, 1}N is homeomorphic to the Cantor perfect set.

10. Let X be a fixed set. Identifying each subset A ⊂ X with its characteristic
function 1A, we obtain a natural identification of the family 2X of all subsets of
the space X with the space {0, 1}X of all functions f : X → {0, 1}. Since the two-
point set is a (discrete) compact space, the space {0, 1}X = 2X is compact in the
Tikhonov topology. Describe explicitly the neighborhoods of the set A ⊂ X in the
Tikhonov topology on 2X .

11. The topological space βN defined in Exercise9 of Subsection16.1.3 is a closed
subset of the compact space 22

N

. Hence, βN is compact as well. The space βN is
called the Stone–Čech compactification of the natural numbers.

12. Define the operator T : C(βN) → �∞ by the rule: T ( f ) is the sequence with
coordinates xn = f (An), where An denotes the trivial ultrafilter generated by the
point n ∈ N. Prove that T is a linear bijective isometry. Therefore, the space �∞ is
isometric to the space of continuous functions on a (admittedly rather exotic) compact
space.

16.2 Background Material on Topological Vector Spaces

We have already encountered topologies and the corresponding types of conver-
gence on linear spaces of functions with the feature that the convergence cannot be
described as convergence with respect to a norm. These were, for instance, point-
wise convergence and convergence in measure. Such types of convergence will, with
rare exceptions, be the weak and weak∗ convergence in Banach spaces — the main
objects of study in Chap.17. An adequate language for describing such topologies
and convergences is that of topological vector spaces.

16.2.1 Axiomatics and Terminology

Definition 1. A linear space X (real or complex) endowed with a topology τ is
called a topological vector space if the topology τ is compatible with the linear
structure, in the sense that the operations of addition of elements and multiplication
of an element by a scalar are jointly continuous in their variables.

To avoid treating the real and complex cases separately each time, we will assume
that all spaces are complex, leaving the simpler case of real spaces to the reader for
independent study.
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Let us explain Definition 1 in more detail. Let X be a topological vector space.
Consider the mappings F : X × X → X and G : C × X → X , acting by the rules
F(x1, x2) = x1 + x2 and G(λ, x) = λx . The compatibility of the topology with the
linear structure means that each of the mappings F and G is jointly continuous in its
variables. We will use this continuity step by step to deduce geometric properties of
neighborhoods in the topology compatible with the linear structure.

Theorem 1. Let U be an open set in X. Then

— for any x ∈ X, the set U + x is open;

— for any λ ∈ C \ {0}, the set λU is open.

Proof. Fix x2 = −x and use the continuity of the mapping F(x1, x2) = x1 + x2 in
the first variable when the second variable is fixed. The mapping f (x1) = x1 − x is
continuous in x1, andU + x is the preimage of the open setU under f . Consequently,
U + x is open. The second property is deduced in exactly the same way, using the
continuity of the mapping g(x) = 1

λ
x . �

It follows from Theorem1 that the neighborhoods of an arbitrary element x ∈ X
are the sets U + x with U a neighborhood of zero. Accordingly, the topology τ is
uniquely determined by the family N0 of neighborhoods of zero. For this reason,
further properties of the topology τ will be formulated in the language of neigh-
borhoods of zero. Below Cr will denote the disc of radius r in C centered at zero:
Cr = {λ ∈ C : |λ| � r}.

Let us recall several definitions fromSubsection5.4.2. A subset A of a linear space
X is said to be absorbing if for any x ∈ X there exists an n ∈ N such that x ∈ t A
for all t > n. A subset A ⊂ X is said to be balanced if for any scalar λ ∈ C1 it holds
that λA ⊂ A.

Theorem 2. The family N0 of neighborhoods of zero in the linear space X has the
following properties:

(i) Any neighborhood of zero is an absorbing set.

(ii) Any neighborhood of zero contains a balanced neighborhood of zero.

(iii) For any neighborhood U ∈ N0 there exists a balanced neighborhood V ∈ N0

such that V + V ⊂ U.

Proof. (i) Fix x ∈ X and use the continuity of themapping f (λ) = λx . Since f (0) =
0, continuity at the point λ = 0 means that for anyU ∈ N0 there exists an ε > 0 such
that λx ∈ U for all λ ∈ Cε. Defining t = 1/λ, we see that x ∈ tU for all t > 1/ε.

(ii) Let U ∈ N0. Thanks to the continuity of the mapping G(λ, x) = λx at the
point (0, 0), there exist an ε > 0 and a neighborhood W ∈ N0 such that λx ∈ U
for all λ ∈ Cε and all x ∈ W . Set V = ⋃

λ∈Cε
λW . Let us show that the set V ⊂ U

provides the requisite balanced neighborhood of zero. On one hand, V ⊃ W , whence
V ∈ N0. On the other hand, for any λ0 ∈ C1 we have λ0Cε ⊂ Cε, and so
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λ0V =
⋃

λ∈Cε

λ0λW =
⋃

μ∈λ0Cε

μW ⊂
⋃

μ∈Cε

μW = V ;

this proves that the neighborhood V is balanced.

(iii) Thanks to the continuity of the mapping F (x1, x2) = x1 + x2 at (0, 0), for
any neighborhood U ∈ N0 there exist neighborhoods V1, V2 ∈ N0 such that V1 +
V2 ⊂ U . Then based on item (ii) we choose the requisite balanced neighborhood V
of zero so that V is contained in the neighborhood V1 ∩ V2. �

We invite the reader to prove the converse result:

Theorem 3. Suppose the systemN0 of neighborhoods of zero in a topology τ on the
linear space X satisfies the conditions (i)–(iii) in Theorem2, and for every point x ∈
X the system Nx of neighborhoods of x is obtained from N0 by parallel translation
by the vector x. Then the topology τ is compatible with the linear structure. �

Remark 1. In view of the balancedness property, the condition V + V ⊂ U of item
(iii) of Theorem2 can be rewritten as V − V ⊂ U .

Theorem 4. For a topological vector space X to be Hausdorff it is necessary and
sufficient that the system N0 of neighborhoods of zero satisfies the following condi-
tion: for any x 	= 0 there exists a U ∈ N0 such that x /∈ U.

Proof. Suppose x 	= y. Then x − y 	= 0 and there exists a neighborhood U ∈ N0

which does not contain x − y. Pick a neighborhood V ∈ N0 such that V − V ⊂ U .
Then the neighborhoods x + V and y + V are disjoint: assuming the contrary, i.e.,
that there exists a point zwhichbelongs to both x + V and y + V ,wehave z − x ∈ V ,
z − y ∈ V , and so x − y = (z − y) − (z − x) ∈ V − V ⊂ U . �

Exercises

1. A balanced set in C is either the whole set C, or a disc (open or closed) centered
at zero, or, finally, consists only of zero.

2. Replacing λ ∈ C1 by λ ∈ [−1, 1], formulate the analogue of being a balanced set
for real spaces. Prove for real spaces the analogue of Theorem2.

3. Describe the balanced sets in R.

4. Suppose the topology τ on the linear space X is compatible with the linear struc-
ture and satisfies the first separation axiom: every point is a closed set. Then the
topology τ is Hausdorff.
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5. Every topological vector space is also a topological groupwith respect to addition.

6. Prove that the discrete topology (namely, all sets are open) on C is compatible
with the additive group structure, but not with the linear structure.

Verify that the spaces listed below are topological vector spaces.

7. The space L0(�,�,μ) of measurable functions on a finite measure space,
equipped with the topology of convergence in measure (Subsection3.2.2). The stan-
dard neighborhood basis of the function f is provided by the sets of functions
{g ∈ L0(�,�,μ) : μ{t : |g(t) − f (t)| > δ} < ε}, δ, ε > 0. In this space, as usual,
functions that coincide almost everywhere are identified: without this convention,
the space would not be separated.

8. Any normed space with the topology defined by its norm.

9. Any Tikhonov product
∏

γ∈� Xγ of topological vector spaces Xγ , with the linear
operations defined coordinatewise: a{xγ }γ∈� + b{yγ }γ∈� = {axγ + byγ }γ∈� .

10. Any linear subspace of a topological vector space, equipped with the induced
topology.

Other natural examples will be given in Subsection16.3.2. Prove that in a topo-
logical vector space:

11. The interior and closure of a convex set are convex.

12. The closure of any linear subspace is a linear subspace.

13. Any neighborhood of zero contains a balanced open neighborhood of zero.

14. Any neighborhood of zero contains a balanced closed neighborhood of zero.

Any metrizable topological vector space satisfies the first countability axiom:
every point has a countable neighborhood basis. For Hausdorff topological vector
spaces the converse is also true. The reader will obtain the proof by solving the
following chain of exercises.

Suppose X is a Hausdorff topological vector space and the family of neighbor-
hoods of zero of the space X has a countable basis. Then:

15. There exists a neighborhoods basis {Vn} of zero consisting of balanced open sets
that satisfy the condition Vn+1 + Vn+1 ⊂ Vn , n = 1, 2, . . . .

16. Denote by D the set of dyadic rational numbers in the segment (0, 1]. For
each r ∈ D, r < 1, write its dyadic fraction expansion: r = ∑n(r)

k=1 ck(r)2
−k , where

ck(r) ∈ {0, 1}, and n(r) can be arbitrarily large, and define U (r) = ∑n(r)
k=1 ck(r)Vk .

For r � 1, put U (r) = X . Then all the sets U (r) are balanced, open, and satisfy
U (1/2n) = Vn , n = 1, 2, . . ., and U (r) +U (s) ⊂ U (r + s) for all r, s ∈ D.
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17. For each x ∈ X , put θ(x) = inf{r ∈ D : x ∈ U (r)}. Then the quantity θ is sym-
metric: θ(−x) = θ(x), and satisfies the triangle inequality θ(x + y) � θ(x) + θ(y)
for all x, y ∈ X .

18. The function ρ(x, y) = θ(x − y) is a metric on X . The topology defined by the
metric ρ coincides with the original topology of the space.

16.2.2 Completeness, Precompactness, Compactness

To work successfully with topological vector spaces, we need to define analogues
of the basic notions that are used in the setting of normed spaces. Since in general
a topological vector space is not metrizable, we need to renounce the language of
sequences and use instead the language of neighborhoods and filters befitting our
general situation.

Definition 1. A filter F on X is called a Cauchy filter if for any neighborhood U of
zero there exists an element A ∈ F such that A − A ⊂ U . Such an element A is said
to be small of order U .

Theorem 1. If the filter F has a limit, then F is a Cauchy filter.

Proof. Suppose lim F = x and U ∈ N0. Pick a V ∈ N0 such that V − V ⊂ U . By
the definition of the limit, there exists an A ∈ F such that A ⊂ x + V . Then A − A ⊂
(x + V ) − (x + V ) ⊂ V − V ⊂ U . �
Theorem 2. Let F be a Cauchy filter on a topological vector space X and x a limit
point of F. Then lim F = x.

Proof. Let x +U be an arbitrary neighborhood of the point x , with U ∈ N0. Pick a
neighborhood V ∈ N0 with V + V ⊂ U and a set A ∈ F, small of order V : A − A ⊂
V . By the definition of a limit point, the sets A and x + V intersect, i.e., there exists
a point y ∈ A ∩ (x + V ). Then

x +U ⊃ x + V + V ⊃ y + V ⊃ y + A − A ⊃ y + A − y = A.

Hence, the neighborhood x +U contains an element of F, and so x +U ∈ F. �
Definition 2. A set A in a topological vector space X is said to be complete2 if any
Cauchy filter on X that contains A as an element has a limit which belongs to A. In
particular, a topological vector space X is said to be complete if every Cauchy filter
on X has a limit.

2Here again the already mentioned terminological confusion is widespread. The current term is
introduced to generalize the notion of complete metric space. Equally successfully one could have
called complete a set whose linear span coincides with the space X (a term used in the theory of
linear spaces) or, by analogy with the theory of normed spaces, call a set complete if its linear span
is dense in X . We thus obtain identically named notions which however have nothing in common.
The relevant meaning must be figured out from the context.
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Theorem 3. Let X be a subspace of a topological vector space E and A ⊂ X a
complete subset of X. Then A is also complete as a subset of the space E.

Proof. Let F be a Cauchy filter in E which contains A as an element. Then, in
particular, X ∈ F, i.e., the trace FX on X of the filterF is a filter. Next, FX is a Cauchy
filter on X which contains A as an element. Hence, in view of the completeness of
A in X , the filter FX has in X a limit a ∈ A. The same point a is the limit of the filter
F in E . �

Theorem 4. Every complete subset A of a Hausdorff topological vector space X
is closed. In particular, if a subspace of a Hausdorff topological vector space is
complete in the induced topology, then this subspace is closed.

Proof. Suppose the point x ∈ X belongs to the closure of the set A. We need to show
that x ∈ A. Consider the familyD of all intersections (x +U ) ∩ A, whereU ∈ N0.
All such intersections are non-empty, and D obeys all axioms of a filter basis. The
filter F generated by the basis D majorizes the filter Nx of all neighborhoods of the
point x , and so lim F = x . In particular, F is a Cauchy filter. By construction, our
complete set A is an element of the filter F. Hence, by Definition 2, F must have a
limit in A. Since the limit is unique, x ∈ A, as we needed to prove. �

Definition 3. A set A in a topological vector space X is called precompact if for
any neighborhood U of zero there exists a finite set B ⊂ X such that A ⊂ B +U .
Such a set B is called, by analogy with an ε-net, a U-net of the set A.

Theorem 5. For a set A of a Hausdorff topological vector space X to be compact
it is necessary and sufficient that A be simultaneously precompact and a complete
set in X.

Proof. Necessity. Let A be a compact set andU be an arbitrary open neighborhood of
zero in X . The neighborhoods of the form x +U with x ∈ A form an open cover of
the compact set A, hence there exists a finite subcover x1 +U, x2 +U , …, xn +U ,
with xk ∈ A. The set B = {x1, x2, . . . , xn} is aU -net of the set A. This establishes the
precompactness of the compact set A. Now let us prove the completeness. Suppose
F is a Cauchy filter in X which contains A as an element. Then the trace FA on A
of the filter F is a filter in the compact topological space A, so FA has a limit point
a ∈ A. The same point is then a limit point for F. But a limit point of a Cauchy filter
is the limit of that filter. Therefore, F has a limit, and lim F = a ∈ A.

Necessity. Let A be a complete precompact set in X . Let us prove that every
ultrafilterA on A has a limit. Consider the filter Ã, given already not on A, but on the
entire space X , forwhichA is a filter basis: B ∈ Ã if and only if B ∩ A ∈ A. Using the
ultrafilter criterion (Theorem2 in Subsection16.1.3), it is readily verified that Ã is an
ultrafilter.We claim that Ã is aCauchyfilter. Indeed, letU ∈ N0. Pick a neighborhood
V ∈ N0 such that V − V ⊂ U . Let B = {x1, x2, ..., xn} be the corresponding V -net
of the precompact set A. Since the sets x1 + V , x2 + V , …, xn + V form a finite
open cover of the element A of the ultrafilter Ã, one of these sets, say, x j + V , will be
an element of Ã (Exercise4 of Subsection16.1.3). But x j + V is small of order U :
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(x j + V ) − (x j + V ) = V − V ⊂ U.

Thus, Ã is a Cauchy filter, A ∈ Ã, and A is a complete set in X . Therefore, there
exists lim Ã ∈ A. The same element will also be the limit in A of the filter A, the
trace of the filter Ã on A (Exercise4 of Subsection16.1.2). �

Definition 4. Let X be a topological vector space. We say that the neighborhood
U ∈ N0 of zero absorbs the set A ⊂ X if there exists a number t > 0 such that
A ⊂ tU . The set A ⊂ X is said to be bounded if it is absorbed by every neighborhood
of zero.

Theorem 6. The family of bounded subsets of a topological vector space X enjoys
the following properties:

(a) If A ⊂ X is bounded, then for any neighborhood U ∈ N0 there exists a number
N > 0 such that A ⊂ tU for all t � N.

(b) The union of any finite collection of bounded sets is a bounded set.

(c) Every finite set is bounded.

(d) Every precompact set in X is bounded.

Proof. (a) Let V ∈ N0 be a balanced neighborhood which is contained in U . Pick
N > 0 such that A ⊂ NV . Then for every t � N we have A ⊂ NV = t ((N/t)V ) ⊂
tV ⊂ tU .

(b) Let A1, A2, . . . , An be bounded sets, and U be a neighborhood of zero. By
(a), for each of the sets Ak there exists a number Nk ∈ N such that Ak ⊂ tU for all
t > Nk . Put N = max1�k�n Nk . Then for any t � N all inclusions Ak ⊂ tU hold
simultaneously, that is,

⋃n
k=1 Ak ⊂ tU .

(c)Any single-point set is bounded, since every neighborhood of zero is an absorb-
ing set. It remains to use assertion (b).

(d) Let A be precompact in X and U be a neighborhood of zero. Pick a balanced
neighborhood V ∈ N0 such that V + V ⊂ U . By the definition of precompactness,
there exists a finite set B ⊂ X such that A ⊂ B + V . By (c), one can find a number
N > 1 such that B ⊂ NV . Then A ⊂ B + V ⊂ NV + V ⊂ N (V + V ) ⊂ NU . �

Exercises

1. Let F be a Cauchy filter in a topological vector space X . Suppose the filter F1

majorizes F and x = lim F1. Show that x = lim F.

A sequence (xn) of elements of a topological vector space X is called a Cauchy
sequence if the filter F(xn) generated by the sequence (xn) is a Cauchy filter. Prove
that:
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2. (xn) is a Cauchy sequence if and only if for any U ∈ N0 there exists a number
N ∈ N such that xn − xm ∈ U for all n,m ≥ N .

3. (xn) is a Cauchy sequence if and only if for every U ∈ N0 there exists a number
N ∈ N, such that xn − xN ∈ U for all n ≥ N .

4. Suppose the topological vector space X has a countable basis of neighborhoods
of zero, and every Cauchy sequence in X has a limit. Then X is a complete space.

5. Suppose the complete topological vector space X has a countable basis of
neighborhoods of zero Un , n ∈ N, and the neighborhoods Un are chosen so that
Un+1 +Un+1 ⊂ Un . Pick in each set Un one element xn ∈ Un . Then show that the
series

∑∞
n=1 xn converges.

6. Extend Banach’s theorem on the inverse operator (if T : X → Y is linear, bijec-
tive, and continuous, then T−1 is continuous) to the case where X and Y are complete
metrizable topological vector spaces.

7. Prove the completeness of the space L0(�,�,μ) of all measurable functions on
a finite measure space, equipped with the topology of convergence in measure.

A metric ρ on a linear space X is said to be invariant if ρ(x, y) = ρ(x − y, 0)
for any x, y ∈ X . Suppose the topology τ of the topological vector space X is given
by an invariant metric ρ. Then:

8. The sequence (xn) ⊂ X is Cauchy in the topology τ if and only if it is Cauchy in
the metric ρ.

9. The completeness of the topological vector space (X, τ ) is equivalent with the
completeness of the metric space (X, ρ).

10. The precompactness of a set A in (X, τ ) is equivalent to the precompactness of
A in the metric ρ.

11. Warning: the boundedness of a set A in (X, τ ) is not equivalent to the bound-
edness of A in the metric ρ. More precisely, boundedness in (X, τ ) implies ρ-
boundedness, but the converse is not true. As an example consider X = R with
the natural topology, and introduce an invariant metric by the formula ρ(x, y) =
arctan|x − y|. Then A = R is a ρ-bounded set, but obviously A is not a bounded
subset of the topological vector space R.

Let Xγ , γ ∈ � be topological vector spaces. We equip the space X = ∏
γ∈� Xγ

with the Tikhonov topology and the coordinatewise-defined linear operations. As
usual, denote by Pγ : X → Xγ , γ ∈ �, the coordinate projectors. Prove that

12. The set A ⊂ X is bounded if and only if all images Pγ (A) ⊂ Xγ are bounded.

13. The set A ⊂ X is precompact if and only if all the images Pγ (A) ⊂ Xγ are
precompact.
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14. For the closedness and compactness of a set A in the Tikhonov product the
analogous criteria are no longer valid. Give examples showing this in the space
X = R × R.

15. A filter F in X = ∏
γ∈� Xγ is a Cauchy filter if and only if Pγ (F) are Cauchy

filters in the corresponding spaces Xγ .

16. If all Xγ , γ ∈ �, are complete spaces, then the space X = ∏
γ∈� Xγ is also

complete.

Consider the space RN, equipped with the Tikhonov product topology. RN can be
regarded as the space of all infinite numerical sequences x = (x1, x2, . . .). A neigh-
borhood basis of zero is provided by the setsUn,ε = {x ∈ R

N : max1�k�n |xk | < ε}.
Prove that:

17. InRN there exists a countable neighborhood basis of zero, i.e.,RN is metrizable.

18. A metrization of the space RN (under another commonly used name Rω) was
proposed in Exercise11 of Subsection1.3.1. Verify that the metric from that exercise
generates the Tikhonov product topology on R

N.

19. Convergence inRN is equivalent to coordinatewise (or componentwise) conver-
gence.

20. R
N is a complete topological vector space.

21. Aset A ⊂ R
N is bounded if andonly if there exists an elementb = (b1, b2, . . .) ∈

(R+)N that majorizes all elements of A: for any a = (a1, a2, . . .) ∈ A, the estimate
|an| � bn holds for all n ∈ N.

22. In RN the classes of bounded sets and precompact sets coincide.

23. Regard the sets Bc0
and B�1

, i.e., the closed unit balls in the spaces c0 and �1, as
subsets of the space RN. Are these sets bounded in R

N? Closed in R
N? Precompact

in RN? Compact in RN?

16.2.3 Linear Operators and Functionals

Throughout this subsection X and E will be topological vector spaces.

Theorem 1. A linear operator T : X → E is continuous if and only if it is contin-
uous at the point x = 0.

Proof. A continuous operator is continuous at all points, in particular, at zero.
Conversely, suppose the operator T is continuous at zero. Let us show that T
is continuous at any point x0 ∈ X . Let V be an arbitrary neighborhood of the
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point T x0 in E . Then V − T x0 is a neighborhood of zero in E . By assumption,
T−1(V − T x0) is a neighborhood of zero in X . Thanks to the linearity of the opera-
tor, T−1(V ) ⊃ T−1(V − T x0) + x0, i.e., T−1(V ) is a neighborhood of x0. �

Definition 1. The linear operator T : X → E is said to be bounded if the image
under T of any bounded subset of the space X is bounded in E .

Theorem 2. Any continuous linear operator T : X → E is bounded.

Proof. Let A be a bounded subset of X . We need to prove that the set T (A) is
bounded. Let V be an arbitrary neighborhood of zero in E andU a neighborhood of
zero in X such that T (U ) ⊂ V . Using the boundedness of A, pick an N > 0 such
that A ⊂ tU for all t > N . Then T (A) ⊂ tT (U ) ⊂ tV for all t > N . �

As we will show below, it is quite possible that two different topologies τ1 
 τ2
on X (for instance, the strong and weak topologies of a normed space) generate one
and the same system of bounded sets. In this case the identity operator, regarded as
acting from (X, τ2) into (X, τ1), will be bounded, but discontinuous.

Theorem 3. Suppose the operator T : X → E takes some neighborhood U of zero
in the space X into a bounded set. Then T is continuous.

Proof. Suppose T (U ) is a bounded set. For any neighborhood V of zero in E ,

there exists a t > 0 such that T (U ) ⊂ tV . Then
1

t
U ⊂ T−1(V ), i.e., T−1(V ) is a

neighborhood of zero in X . �

Next, we consider continuity conditions for linear functionals.

Theorem 4. For a non-zero linear functional f on a topological vector space X,
the following conditions are equivalent:

(i) f is continuous;

(ii) the kernel of the functional f is closed;

(iii) the kernel of the functional f is not dense in X;

(iv) there exists a neighborhood U of zero for which f (U ) is a bounded set.

Proof.
(i) =⇒ (ii). The preimage of any closed set is closed; in particular, Ker f = f −1(0)
is a closed set.

(ii) =⇒ (iii). If the kernel is closed and dense in X , then Ker f = X , i.e., f ≡ 0.

(iii) =⇒ (iv). Suppose Ker f is not dense. Then there exist a point x ∈ X and a
balanced neighborhood U of zero such that (U + x) ∩ Ker f = ∅. This means that
the functional cannot take the value − f (x) at any point y ∈ U . Therefore, f (U ) is a
balanced set of complex numbers which does not coincide with the whole complex
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plane ((− f (x) /∈ f (U )). It follows that f (U ) is a disc centered at zero (in the real
case it would be an interval in R symmetric with respect to zero).

(iv) =⇒ (i). This implication was already established in Theorem3. �

As in the case of normed spaces, for a topological vector space X we denote by
X∗ the set of all continuous linear functionals on X .3 The geometric form of the
Hahn–Banach theorem admits a generalization to topological vector spaces.

Theorem 5 (Hahn–Banach separation theorem for topological vector spaces).
Let A and B be disjoint non-empty convex subsets of a real topological vector space
X and let A be open. Then there exist a functional f ∈ X∗ \ {0} and a scalar θ ∈ R

such that f (a) < θ for all a ∈ A and f (b) � θ for all b ∈ B.

Using the connection between a linear functional and its real part (Subsec-
tion9.1.1), one can obtain a version of the theorem for a complex space, replacing
the conditions above by Re f (a) < θ for all a ∈ A and Re f (b) � θ for all b ∈ B.

Proof. As in the case of normed spaces (Subsection9.3.2), the theorem reduces to
the following particular case: Let A ⊂ X be an open convex neighborhood of zero
in X , and let x0 ∈ X \ A. Then there exists a functional f ∈ X∗ \ {0} such that
f (a) � f (x0) for all a ∈ A.
In this last case the Minkowski functional ϕA of the set A is a convex functional

(Subsection5.4.2). Consider the subspaceY = Lin{x0} and a linear functional f onY
with the property that f (x0) = ϕA(x0). Then onY the linear functional f ismajorized
by the convex functional ϕA (see the proof of the lemma in Subsection9.3.2).

Now using the analytic form of the Hahn–Banach theorem (Subsection5.4.3) we
extend f to the entire space X with preservation of the linearity and the majorization
condition f (x) � ϕA(x). By the definition of the Minkowski functional, ϕA(a) � 1
for alla ∈ A, whence f (a) � ϕA(a) � 1on A. Since x0 /∈ A,ϕA(x0) � 1.Therefore,
f (a) � 1 � ϕA(x0) = f (x0) for all a ∈ A.
Further, since f (x0) � 1, f is not identically equal to zero. By Lemma5 in Sub-

section9.3.1, which generalizes with no difficulty to topological vector spaces, the
strict inequality f (a) < f (x0) holds for all a ∈ A. This means that the kernel Ker f
does not intersect the non-empty open set A − x0. Hence, Ker f cannot be dense,
and the functional f is continuous. �

Finally, let us generalize to finite-dimensional topological vector spaces properties
of finite-dimensional normed spaces already known to us.

Theorem 6. Let X be aHausdorff topological vectors space, with dim X = n. Then:

(a) Every linear functional on X is continuous.

3Often, in textbooks on topological vector spaces, the symbol X∗ is used to denote the set of all
linear functionals on X , while the set of continuous linear functionals is denoted by X ′. We will
do exactly the opposite, in order to preserve the compatibility with the notations from the theory of
normed spaces the reader is already familiar with.
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(b) For any topological vector space E, every linear operator T : X → E is con-
tinuous.

(c) X is isomorphic to the n-dimensional Hilbert space �n2 .

(d) X is complete.

Proof. First note that for fixed n the implications (a) =⇒ (b) =⇒ (c) =⇒ (d) hold
true. Indeed, (a)=⇒ (b), because ifwe choose in X a basis {xk}nk=1 with the coordinate
functionals { fk}nk=1, the operator T can be represented in the form

T (x) = T

( n∑

k=1

fk(x)xk

)

=
n∑

k=1

fk(x)T xk .

Thus, the calculation of T (x) reduces to calculating the scalars fk(x) (this action is
continuous due to assumption (a)), multiplying by them the constant vectors T xk ,
and summing the resulting products. But by the axioms of a topological vector space,
multiplication by a scalar and taking the sum are continuous operations.

(b) =⇒ (c). Both spaces X and �n2 have the same dimension n, and so there exists
a linear bijection T : X → �n2. Both T and T−1 are continuous by condition (b).

Finally, (c) =⇒ (d) thanks to the completeness of the space �n2.

The main assertion (a) is proved by induction on n. For n = 0 the space X reduces
to {0}, and so the assertion is trivial. Let us perform the step n → n + 1. Suppose
dim X = n + 1 and f is a non-zero linear functional on X . Then Ker f is an n-
dimensional space. By the induction hypothesis, and using the already established
implications (a)=⇒ (b)=⇒ (c)=⇒ (d), we conclude that Ker f is a complete space.
Therefore, Ker f is closed in X , and, by Theorem4, the functional f is continuous.

�

Exercises

1. Suppose the space X has a countable neighborhood basis of zero. Then every
bounded linear operator T : X → E is continuous.

2. Let X be a topological vector space, Y ⊂ X a subspace, and q : X → X/Y the
quotient mapping. Define a topology τ on X/Y as follows: the set U ⊂ X/Y is
declared to be open if q−1(U ) is an open set. Verify that:

— the topology τ is compatible with the linear structure;

— τ is the strongest among all topologies on X/Y in which the quotient mapping
q is continuous;
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— if the subspace Y is closed, then the space X/Y is separated, even when the
initial space X is not separated;

— in the case of normed spaces, the topology τ coincides with the topology given
by the quotient norm.

3. Prove the following generalization of Theorem5 from Subsection11.2.1: if in a
Hausdorff topological vector space X there exists a precompact neighborhood of
zero, then X is finite-dimensional.

4. On the example of the identity operator in RN, show that the sufficient condition
for continuity proved in Theorem3 is not necessary.

5. Where in the proof of Theorem6 of Subsection16.2.3 was the assumption that the
space is separated used? Will the theorem remain valid if the separation assumption
is discarded?

16.3 Locally Convex Spaces

16.3.1 Seminorms and Topology

Definition 1. A topological vector space X is said to be locally convex if for any
neighborhood U of zero there exists a convex neighborhood V of zero such that
V ⊂ U . In other words, the space X is locally convex if the neighborhood system
N0 of zero has a basis consisting of convex sets.

Theorem 1. Every convex neighborhood U of zero contains a convex balanced
open neighborhood of zero. In particular, in a locally convex space there exists a
neighborhood basis of zero consisting of convex balanced open sets.

Proof. Let V ⊂ U be an open and balanced neighborhood of zero. Then conv V ⊂
U . Let us show that conv V is a convex balanced and open neighborhood of zero.
Convexity is obvious. Further, conv V ⊃ V , and hence conv V is a neighborhood of
zero. Let us verify that conv V is balanced. Take λ ∈ C1, i.e., |λ| � 1. Then λV ⊂ V
(since V is balanced), and λ conv V = conv(λV ) ⊂ conv V . Finally, let us verify
that conv V is open. Since V is an open set and the operations of multiplication by
non-zero scalars and taking the sum of sets leave the class of open sets invariant,
all sets of the form

∑n
k=1 λkV with n ∈ N, λk > 0, and

∑n
k=1 λk = 1, are open. The

conclusion follows from the fact that conv V is a union of sets of the form
∑n

k=1 λkV .
�

Recall (Definition2 in Subsection6.1.1) that a function p : X → R is called a
seminorm if p(x) � 0, p(λx) = |λ|p(x) for any x ∈ X and any scalar λ, and p(x +
y) � p(x) + p(y) for all x, y ∈ X . A seminorm differs from a norm by the fact that
p(x)may be equal to zero for some non-zero elements x ∈ X . See also Exercises10–
13 in Subsection6.1.3.
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As in the case of a norm, the unit ball of the seminorm p is the set Bp = {x ∈
X : p(x) < 1}. The set Bp is convex and balanced. The seminorm p can be recov-
ered from its unit ball by means of the Minkowski functional: p(x) = ϕBp (x) (see
Subsection5.4.2).

Theorem 2. A seminorm p on a topological vector space X is continuous if and
only if Bp is a neighborhood of zero.

Proof. Bp = p−1(−1, 1) is the preimage of an open set. If p is continuous, then this
preimage is open. Conversely, suppose that Bp is a neighborhood of zero, and let us
show that the seminorm p is continuous. Thus, given any x ∈ X and any ε > 0, we
need to find a neighborhoodU of the point x such that p(U ) ⊂ (p(x) − ε, p(x) + ε).
Such a neighborhood is provided byU = x + εBp. Indeed, any point y ∈ U has the
form y = x + εz, where p(z) < 1. Hence, by the triangle inequality, p(x) − ε <

p(y) < p(x) + ε. �

Definition 2. Let G be a family of seminorms on a linear space X . Denote by DG

the collection of all finite intersections of sets r Bp, where p ∈ G and r > 0. The
locally convex topology generated by the family of seminorms G is the topology τG
on X , in which a neighborhood basis of zero is DG , and a neighborhood basis of a
point x ∈ X is, correspondingly, the collection of sets x +U with U ∈ DG .

A familyG of seminorms is said to be non-degenerate if for any x ∈ X \ {0} there
exists a p ∈ G such that p(x) 	= 0.

Theorem 3. I.LetG bea family of seminormsona linear space X. Then the topology
τG generated by the family G is compatible with the linear structure and is locally
convex.
II. The topology τG is separated if and only if the family of seminorms G is non-
degenerate.
III. The topological vector space X is locally convex if and only if its topology is
generated by a family of seminorms.

Proof. I. Since a ball of a seminorm is a convex balanced and absorbing set and
these properties are inherited by finite intersections, a neighborhood basis of zero
DG consists of convex balanced absorbing sets. Further, for any U ∈ DG we have
V = (1/2)U ∈ DG , and thanks to convexity, V + V ⊂ U . Thus, we have verified
conditions (i)–(iii) of Theorem3 in Subsection16.2.1. The proof of the fact that
the conditions ensuring the existence of the topology given by families of open
neighborhoods are satisfied is left to the reader. The compatibility of the topology
with the linear structure follows from Theorem4 of Subsection16.2.1.

II. The characterization of the separation property follows from Theorem4 of
Subsection16.2.1.

III. Let X be a locally convex space. By Theorem1, X has a neighborhood basisD
of zero that consists of convex balanced open sets. Then as the elements of the sought-
for family of seminorms one takes the seminorms whose unit balls are precisely the
elements of the basis D. �
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Theorem 4. Let X be a topological vector space and f be a linear functional on
X. Then for f to be continuous it is necessary and sufficient that there exists a
continuous seminorm p on X such that | f (x)| � p(x) for all x ∈ X.

Proof. Suppose f is continuous. Then p(x) = | f (x)| is the required seminorm.
Conversely, suppose that | f (x)| � p(x), and p is a continuous seminorm. Then f
is bounded on the neighborhood Bp of zero. �

Theorem 5 (Hahn–Banach extension theorem in locally convex spaces). Let f
be a continuous linear functional given on a subspace Y of a locally convex space
X. Then f can be extended to the entire space X with preservation of linearity and
continuity.

Proof. By assumption, the set U = {y ∈ Y : | f (y)| < 1} is an open neighborhood
of zero in Y . By the definition of the topology induced on a subspace, there exists
a neighborhood V of zero in X such that U ⊃ V ∩ Y . Since the space X is locally
convex, one can take for the neighborhood V the unit ball of some continuous semi-
norm p given on X . By construction, for any y ∈ Y , if p(y) < 1, then y ∈ U and
| f (y)| < 1. That is, | f (y)| � p(y) everywhere on Y .

Now, like for normed spaces, one needs to argue separately for the real and
complex cases. If f is a real functional, then by the analytic form of the Hahn–
Banach theorem, f can be extended to the entire space X with preservation of the
inequality f (x) � p(x). Replacing x by−x , we also obtain the inequality− f (x) �
p(x). Therefore, | f (x)| � p(x), and the extended functional f is continuous. In the
complex case, the extension can be performed so that the condition Re f (x) � p(x)
is preserved on the entire space X . Taking for x the element e−iarg f (x)x , we arrive
again at the inequality | f (x)| � p(x), which establishes the continuity on X of the
functional f . �

Remark 1. A set of linear functionals E ⊂ X ′ will separate the points if and only
if for every x 	= 0 there exists an f ∈ E such that f (x) 	= 0. Indeed, if the set E
separates the points, then, in particular, E separates x from 0. Conversely, if x 	= y
are arbitrary points, then x − y 	= 0. A functional f ∈ E for which f (x − y) 	= 0
will separate the points x and y.

Corollary 1. The set X∗ of all continuous linear functionals on a Hausdorff locally
convex space X separates the points of X.

Proof. For any x 	= 0 there exists a linear functional f onLin {x} such that f (x) 	= 0.
It remains to extend f to X by means of the Hahn–Banach theorem. �

Exercises

1. On the example of the family of seminorms G consisting of a single norm, ver-
ify that the locally convex topology τG generated by the family of seminorms G
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(Definition 2) does not coincide with the topology σ(X,G) generated by the family
of mappings G (Subsection16.1.4). Moreover, σ(X,G) is not compatible with the
linear structure.

2. Let G be a family of seminorms, and F be the family of all functions of the form
fx (y) = p(x + y), with p ∈ G and x ∈ X . Then τG = σ(X, F).

3. A sequence xn ∈ X converges to x ∈ X in the topology τG if and only if p(xn −
x) → 0 as n → ∞ for all p ∈ G.

4. Verify that the spaces listed below are indeed separated locally convex spaces,
and describe the convergence of sequences in them. Prove the completeness and
metrizability of the spaces in the first three examples. Is the fourth space metrizable?
Complete?

— The space H(D) of holomorphic functions in a domain (i.e., connected open
subset) D ⊂ C, equipped with the locally convex topology generated by the
family of all seminorms of pK ( f ) = maxz∈K | f (z)|, where K is a compact
subset of D.

— The space C∞[0, 1] of all infinitely differentiable functions on [0, 1], equipped
with the locally convex topology generated by the family of seminorms pn( f ) =
maxt∈[0,1] | f (n)(t)|, n = 0, 1, 2, . . ..

— The space C∞(0,+∞) of all infinitely differentiable functions on (0,+∞),
equipped with the topology generated by the family of seminorms pn( f ) =
maxt∈(n−1,n) | f (n−1)(t)|, n ∈ N.

— An infinite-dimensional linear space X , equipped with the strongest locally con-
vex topology, i.e., the topology generated by the family of all seminorms on X .

5. Any Tikhonov product of locally convex spaces is locally convex.

6. Any subspace of a locally convex space is locally convex.

7. Any quotient space of a locally convex space (see Exercise2 in Subsection16.2.3)
is locally convex.

8. Show that ifU is a balanced set and f is a linear functional such that Re f (x) � a
for all x ∈ U , then also | f (x)| � a on U .

9. Applying the geometric form of the Hahn–Banach theorem to a set U and an
open neighborhood V of the point x0, prove the following corollary: Let U be a
closed, balanced, and convex subset of a Hausdorff locally convex space X and let
x0 ∈ X \U . Then there exists a continuous linear functional f such that | f (y)| � 1
for all y ∈ U and | f (x0)| > 1.

10. A series
∑∞

k=1 xk in a locally convex space X is said to be absolutely convergent
if

∑∞
k=1 p(xk) < ∞ for any continuous seminorm p on X . Prove that in a complete

locally convex space every absolutely convergent series converges.
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11. The space L0[0, 1] with the topology of convergence in measure is not a locally
convex space. Moreover, any convex closed neighborhood of zero in L0[0, 1] coin-
cides with the entire space. In particular, the only continuous linear functional on
L0[0, 1] is the functional identically equal to zero.

16.3.2 Weak Topologies

Definition 1. Let X be a linear space, X ′ its algebraic dual (i.e., the space of all
linear functionals on X ), and E ⊂ X ′ a subset. The weak topology on X generated
by the set of functionals E is the weakest topology in which all functionals from E
are continuous. This topology is a particular case of the topology defined by a family
of mappings (Subsection16.1.4). Accordingly, we denote it by the same symbol
σ(X, E).

Let us explain this definition inmore detail. For any finite collection of functionals
G = {g1, g2, . . . , gn} and any ε > 0, define

UG,ε =
⋂

g∈G
{x ∈ X : |g(x)| < ε} =

{

x ∈ X : max
g∈G |g(x)| < ε

}

.

The family of sets UG,ε with G = {g1, g2, . . . , gn} ⊂ E and ε > 0 constitutes a
neighborhood basis of zero in the topologyσ(X, E). For an arbitrary element x0 ∈ X ,
a neighborhood basis is provided by the sets of the form

⋂

g∈G
{x ∈ X : |g(x − x0)| < ε} = x0 +UG,ε.

This shows that σ(X, E) is the locally convex topology generated by the family of
seminorms pG(x) = maxg∈G |g(x)|, where G runs over all finite subsets of the set
E . For this topology to be separated it is necessary and sufficient that the set of
functionals E separates the points of the space X .

As we already remarked in Subsection16.1.4, a filter F on X converges in the
topology σ(X, E) to the element x if and only if lim

F
f = f (x) for all f ∈ E . In par-

ticular, this convergence criterion is also valid for sequences: xn → x in the topology
σ(X, E) if f (xn) → f (x) for all f ∈ E .

We begin our more detailed study of weak topologies with a lemma that was
proposed earlier as an exercise on the subject “functionals and codimension” (Sub-
section5.3.3, Exercise16). Here, for the reader’s convenience, we provide a direct
proof.

Lemma 1. Let f and { fk}nk=1 be linear functionals on X such that Ker f ⊃⋂n
k=1 Ker fk . Then f ∈ Lin{ fk}nk=1.
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Proof. We use induction on n. The induction base is n = 1. If f1 = 0, then Ker f ⊃
Ker f1 = X , i.e., f = 0. Now let f1 be a non-zero functional. Then Y = Ker f1 is a
subspace in X . Therefore, there exists a vector e ∈ X \ Y , such that Lin{e,Y } = X .
Let a = f (e) and b = f1(e). The functional f − (a/b) f1 vanishes on Y as well as
at the point e. Hence, f − (a/b) f1 vanishes on the whole space X = Lin{e,Y }, i.e.,
f ∈ Lin{ f1}.
Step n → n + 1. We introduce the subspace Y = ⋂n

k=1 Ker fk . The condition
Ker f ⊃ ⋂n+1

k=1 Ker fk may be interpreted as saying that the kernel of the restriction
of the functional f to Y contains the kernel of the restriction of the functional fn+1 to
Y . Therefore (by the case n = 1), there exists a scalar α such that f − α fn+1 vanishes
on the whole space Y = ⋂n

k=1 Ker fk . That is, Ker( f − α fn+1) ⊃ ⋂n
k=1 Ker fk . By

the induction hypothesis, f − α fn+1 ∈ Lin { fk}nk=1, i.e., f ∈ Lin { fk}n+1
k=1. �

Lemma 2. Let Y be a subspace of the linear space X, let f ∈ X ′, and suppose there
exists an a > 0 such that | f (y)| � a for all Y . Then f (y) = 0 for all y ∈ Y .

Proof. Suppose that there exists an y0 ∈ Y such that f (y0) 	= 0. Then for the element
y = (2a/ f (y0))y0 ∈ Y one has | f (y)| = 2a > a, a contradiction. �

We are now ready to describe the functionals that are continuous in a weak
topology.

Theorem 1. A functional f ∈ X ′ is continuous in the topology σ(X, E) if and only
if f ∈ Lin E. In particular, if E ⊂ X ′ is a linear subspace, then the set (X, σ (X, E))∗
of all σ(X, E)-continuous functionals on X coincides with E.

Proof. By the definition of the topology σ(X, E), all elements of the set E are
σ(X, E)-continuous functionals. Hence, linear combinations of such functionals
are also continuous. Conversely, suppose the functional f ∈ X ′ is continuous in the
topology σ(X, E). Then there exist a finite set of functionalsG = {g1, g2, . . . , gn} ⊂
E and an ε > 0 such that on the neighborhoodUG,ε = {x ∈ X : maxg∈G |g(x)| < ε}
all values of the functional f are bounded in modulus by some number a > 0. The
same number will also bound the values of f on the subspace Y = ⋂n

k=1 Ker gk ⊂
UG,ε. By Lemma2, the functional f vanishes on Y , which in turn means (Lemma1)
that f ∈ Lin{gk}nk=1 ⊂ Lin E . �

Exercises

1. Prove the equality of topologies σ(X,Lin E) = σ(X, E).

2. The Tikhonov topology (topology of coordinatewise convergence) on R
N coin-

cides with the weak topology generated by the family E = {e∗
n}n∈N of coordinate

functionals. What is
(
R

N
)∗

equal to?
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3. Let E ⊂ X ′ be a subspace. Then the topology σ(X, E) has a countable neighbor-
hood basis of zero if and only if the linear space E has an at most countable Hamel
basis.

4. Suppose that on X there exists a norm that is continuous in the topology σ(X, E).
Then the space X is finite-dimensional.

5. Every set that is bounded in the topology σ(X, E) is precompact in this topology.

6. Kolmogorov’s theorem: If in the topological vector space X there exists a
bounded neighborhood U of zero, then the system of neighborhoods of zero has
the countable basis {(1/n)U }n∈N. In particular, if this bounded neighborhood U is
convex, then the topology of the space can be given by a single seminorm (a single
norm, if the space is assumed to be separated).

7. Let X be an infinite-dimensional linear space and let the family of functionals E ⊂
X ′ separate points. Then none of the σ(X, E)-neighborhoods of zero is a σ(X, E)-
bounded set.

8. The space X = c0 is not complete in the topology σ(X, X∗).

9. General result: no infinite-dimensional Banach space X is complete in the topol-
ogy σ(X, X∗).

16.3.3 Eidelheit’s Interpolation Theorem

Lemma 1. Let X be a topological vector space and Y ⊂ X a closed subspace of
finite codimension. If the functional f ∈ X ′ is discontinuous, then the restriction of
f to Y is also discontinuous.

Proof. We use the properties of quotient spaces of topological vector spaces given in
Exercise2 of Subsection16.2.3. Suppose, by contradiction, that the restriction of the
functional f to Y is continuous. Then Ỹ = Y ∩ Ker f is a closed subspace of finite
codimension. By the definition of the codimension, the quotient space X/Ỹ is finite-
dimensional. Define the functional f̃ on X/Ỹ by the rule f̃ (q(x)) = f (x), where
q : X → X/Ỹ is the quotient mapping. Since the space X/Ỹ is finite-dimensional, f̃
is continuous on X/Ỹ . Therefore, f is continuous, being the composition of f̃ and
the quotient mapping q. �

Lemma 2. Let X be a topological vector space, and f ∈ X ′ a discontinuous func-
tional. Then for any scalar a the hyperplane f=a = {x ∈ X : f (x) = a} is dense
in X.

Proof. The fact that the kernel of f is dense is guaranteed by Theorem4 of Sub-
section16.2.3. The hyperplane f=a is obtained from Ker f by parallel translation by
any fixed vector y ∈ f=a . �
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Theorem 1. (M. Eidelheit [52]). Let X be a complete locally convex subspace,
the topology of which is given by a sequence of seminorms p1 � p2 � p3 � · · · .
Suppose that the sequence of linear functionals fn ∈ X∗ has the following property:
for any n ∈ N, the functional fn is discontinuouswith respect to the seminorm pn (i.e.,
discontinuous in the topology generated by the single seminorm pn), but is continuous
with respect to pn+1, and so also continuous with respect to all seminorms pk with
k > n. Then for any sequence of scalars an there exists an element x ∈ X such that
fn(x) = an, n = 1, 2, . . . .

Proof. We construct the required element x ∈ X as the sum of a series
∑∞

k=1 xk , the
elements of which satisfy the following conditions:

(a) pn(xn) � 1

2n
;

(b) fn
(∑n

k=1 xk
) = an;

(c) fn(xk) = 0 for k > n.

Condition (a) guarantees the absolute convergence of the series
∑∞

k=1 xk (seeExer-
cise10 in Subsection16.3.1). Indeed, if p is a continuous seminorm, then its unit ball
contains one of the balls of the seminorms pn . Hence, starting with somem, the esti-
mate p � Cpn holds for alln � m. Consequently,

∑∞
k=m p(xk) < C

∑∞
k=m pk(xk) <

∞. This shows that the element x = ∑∞
k=1 xk exists. The conditions (b) and (c) ensure

that fn(x) = an .
Hence, all we need (if not in general in life, at least in the setting of this proof)

is to construct a sequence (xn) with the properties (a)–(c). The construction will be
carried out recursively.

The functional f1 is discontinuous with respect to the seminorm p1; hence, the
hyperplane X1 = {y ∈ X : f1(y) = a1} is p1-dense in X . In particular, X1 intersects
the ball B1 = {y ∈ X : p1(y) < 1/2}. Now as x1 we take any element of the set
X1 ∩ B1.

Next, suppose the vectors x1, . . . , xn−1 are already constructed; let us construct xn .
Consider the finite-codimensional subspace Y = ⋂n−1

k=1 Ker fk . Since the functionals
fk are pn-continuous for k < n, Y is a pn-closed subspace. By Lemma1, the restric-
tion of the functional fn toY is discontinuouswith respect to the seminorm pn . There-
fore, the hyperplane Xn = {y ∈ Y : fn(y) = an − ∑n−1

k=1 fn(xk)} is dense in Y with
respect to the seminorm pn+1. It follows that the ball Bn = {y ∈ Y : pn(y) < 2−n}
intersects the hyperplane Xn . For xn we take an arbitrary element of Xn ∩ Bn . The
fact that the vector xn belongs to Bn , Xn , andY guarantees the fulfillment of condition
(a), (b), and (c), respectively. �

Let us give a couple of exampleswhich demonstrate how the interpolation theorem
just proved applies in problems of mathematical analysis.

Theorem 2. For any sequence of scalars an, n = 0, 1, 2, . . ., there exists an infinitely
differentiable function x(t) on the interval [0, 1] such that x(0) = a0, x ′(0) = a1,…,
x (n)(0) = an,… .
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Proof. Observe that the natural approach to give the solution in the form of a Taylor

series x(t) = ∑∞
n=0

an
n ! t

n fails: if an tends rapidly to infinity, then the radius of

convergence of the Taylor series will be equal to zero. The interpolation theorem,
however, provides a very economical solution to the problem.

In the space C∞[0, 1] of infinitely differentiable functions on [0, 1], consider the
sequence of seminorms p0 � p1 � p2 � · · · given by

p0 = 0, p1(x) = max
t∈[0,1]|x(t)|, p2(x) = max{p1(x), p1(x ′)}, . . . ,

pn(x) = max{p1(x), p1(x ′), . . . , p1(x (n−1))}, . . . ,

and the sequence of functionals

f0(x) = x(0), f1(x) = x ′(0), . . . , fn(x) = x (n)(0), . . . .

The chosen sequence of seminorms gives on C∞[0, 1] the topology of uniform
convergence of functions and all their derivatives. In this topology the spaceC∞[0, 1]
is complete. Further, | fn(x)| � pn+1(x), i.e., the functional fn is continuous with
respect to pn+1.However, there is no constantC such that the inequality | fn| � Cpn is
satisfied, as one can readily verify by substituting into the inequality, say, the sequence
of functions xm(t) = sin(πmt). All the conditions of Theorem1 are satisfied, so it
remains only to apply it. �
Theorem 3. For any sequence of scalars (an), n = 1, 2, . . ., there exists a function
x(z) such that x(n) = an for all n.

Proof. In the space H(C) of entire functions consider the sequence of seminorms
p1 ≤ p2 ≤ · · · , pn(x) = max|z|�n−1 |x(z)|, and the functionals fn(x) = x(n). This
sequence of seminorms gives the topology of uniform convergence on compact sets,
in which the spaceH(C) is complete. Again, as in the preceding theorem, | fn(x)| �
pn+1(x),whereas there is noC such that | fn| � Cpn (substitute the functions xm(z) =
zm). And again, the sought-for function x(z) is obtained by applying Theorem1. �

A slightly more general variant of the interpolation theorem above and its appli-
cation to the moment problem can be found in B. M. Makarov’s work [70].

Exercises

1. Verify the correctness of the definition of the functional f̃ in the proof of Lemma1,
namely, that if q(x) = q(y), then f (x) = f (y). That is, that f̃ (qx) = f (x) depends
on qx , but not on x .

2. Let t1, . . . , t j be a finite collection of distinct points of the interval [0, 1], and
{an,k}n∈N∪{0},k∈{1,..., j} be numbers. Show that there exists a function x ∈ C∞[0, 1]
such that x (n)(tk) = an,k for all n ∈ N ∪ {0} and k ∈ {1, . . . , j}.
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3. Let zn ∈ C be an arbitrary collection of points (“interpolation nodes”). The fol-
lowing conditions are equivalent:

— for any sequence of scalars an , n = 1, 2, . . ., there exists an entire function x(z)
such that x(zn) = an for all n;

— zn 	= zm for n 	= m, and |zn| → ∞ as n → ∞.

4. For any sequence of scalars an , n = 1, 2, . . ., and any sequence of indices m1 <

m2 < m3 < . . . , there exists a “lacunary" entire function x(z) of the form x(z) =∑∞
k=1 bkz

mk such that x(n) = an for all n ∈ N.

A sequence xn of elements of a topological vector space X is said to be ω-linearly
independent if for any sequence of scalars bn , the equality

∑∞
k=1 bkxk = 0 implies

that all bn are equal to zero. The Erdős–Straus theorem (P. Erdős, E.G. Straus, 1953)4

asserts that in a normed space from any linearly independent sequence one can extract
an ω-linearly independent subsequence.

5. Suppose that the topological vector space X carries a continuous norm. Then from
any linearly independent sequence in X one can extract an ω-linearly independent
subsequence.

6. Consider the vectors x1 = (1, 2, 3, . . . , n, . . .), x2 = (12, 22, 32, . . . , n2, . . .),
x3 = (13, 23, 33, . . . , n3, . . .),…in the space RN. This sequence is linearly indepen-
dent, but it contains no ω-linearly independent subsequence. (Use Exercise4 above.)

7. The Bessaga–Pełczyński theorem (C. Bessaga, A. Pełczyński, 1957). If a com-
plete metrizable locally convex space X admits no continuous norm, then X contains
a real subspace isomorphic to R

N.

8. Deduce from the three preceding exercises that for a complete metrizable locally
convex space X the following conditions are equivalent:

— from any linearly independent sequence in X one can extract an ω-linearly
independent subsequence;

— there exists a continuous norm on X .

4During the preparation for publication of the second volume of his monograph [40], I. Singer
discovered a gap in the original proof of Erdős and Straus. He distributed a letter to other specialists
in the theory of bases, asking for an alternative proof of the result. Such proofs were obtained
by P. Terenzi and at about the same time by V.I. Gurariı̆, who back then, in 1980, was an active
participant in our Kharkiv seminar on the theory of Banach spaces. I have nostalgic memories about
those times: in the spring of 1980 I was a third-year student, and this was the first “mature” problem
to which I devoted serious thought. The example in Exercise6 — the fruit of this pondering — was
later mentioned by Singer in his monograph. One can imagine how proud I was for discovering this
example …It is amusing that I published this observation only after 10 years and a bit [56].
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16.3.4 Precompactness and Boundedness

Definition 1. A topological vector space space X is said to belong to the Montel
class (or to be a Montel space) if any closed bounded set in X is compact.

By Riesz’s theorem, a normed space is Montel only if it is finite-dimensional. At
the same time, many of the topological vector spaces arising naturally in problems of
analysis are Montel, despite being infinite-dimensional. In this subsection we shall
give examples of Montel space. The name “Montel class” comes fromMontel’s the-
orem, which establishes a compactness criterion in the spaceH(D) of holomorphic
functions. In modern complex analysis courses this theorem serves as the basis for
the proof of Riemann’s theorem on the existence of conformal maps (the Riemann
mapping theorem).

Definition 2. Let A, B be subsets of the linear space X . We say that the set A is
B-precompact (and write A ≺c B) if for any ε > 0 there exists a finite set Q such
that A ⊂ εB + Q.

If X is a normed space, then a subset A ⊂ X is precompact if and only if A ≺c BX .
A subset A of the topological vector space X is precompact if and only if A ≺c U
for all neighborhoods U of zero in the space X .

Theorem 1. The relation ≺c between subsets of a linear space X has the following
properties:

(a) if A ≺c B and A1 ⊂ A, then A1 ≺c B;

(b) if A ≺c B and B ⊂ B1, then A ≺c B1;

(c) if A ≺c B and t > 0, then A ≺c t B;

(d) if A1 ≺c B and A2 ≺c B, then A1 ∪ A2 ≺c B;

(e) if A ≺c B, Y is a linear subspace, and T : X → Y is a linear operator, then
T (A) ≺c T (B);

(f) if A1 ≺c B, A2 ≺c B, and B is a convex set, then A1 + A2 ≺c B;

(g) if A ≺c B and B − B ⊂ U, then A ≺c U; moreover, for any ε > 0 there exists
a finite set Q such that Q ⊂ A and A ⊂ εU + Q;

(h) let A ≺c B, B a convex balanced set, Y a linear space, T : Y → X a linear
operator, and A ⊂ T (Y ). Then T−1(A) ≺c T−1(B).

Proof. Properties (a)–(e) are obvious. Let us prove the remaining properties.

(f) Fix ε > 0. Let Q1, Q2 ⊂ X be finite sets for which A1 ⊂ (ε/2)B + Q1,
and A2 ⊂ (ε/2)B + Q2. Then A1 + A2 ⊂ (ε/2)B + (ε/2)B + Q1 + Q2. Thanks to
convexity, (1/2)B + (1/2)B ⊂ B, and hence A1 + A2 ⊂ εB + Q1 + Q2. It remains
to note that the set Q1 + Q2 is finite.

(g) By hypothesis, there exists a finite set Q1 ⊂ X such that A ⊂ εB + Q1. Let us
introduce a mapping f : Q1 → A with the property that for any q ∈ Q1, if q + εB
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intersects A, then f (q) ∈ (q + εB) ∩ A. We claim that A ⊂ εU + f (Q1), i.e., that
f (Q1) can be taken as the required set Q. Indeed, for every a0 ∈ A there exists a
q ∈ Q1 such that a0 ∈ q + εB. For this vector q the sets q + εB and A intersect (a0
is one of the intersection points), and so f (q) ∈ (q + εB) ∩ A. We have

a0 ∈ q + εB = f (q) + εB + (q − f (q)) ⊂ f (q) + εB − εB ⊂ f (q) + εU.

(h) Since, by property (c), A ≺c (1/2)B and (1/2)B − (1/2)B ⊂ B, the property
(g) proved above says that for any ε > 0 there exists a finite set Q ⊂ A such that A ⊂
εB + Q. Then Q ⊂ T (Y ), and we can construct a mapping f : Q → Y such that
T ( f (q)) = q for all q ∈ Q. Let us show that T−1(A) ⊂ εT−1(B) + f (Q). Let y ∈
T−1(A). Then T (y) ∈ A, and there exist a b ∈ B and a q ∈ Q such that T (y) = q +
εb. Since T ( f (q)) = q, we have T (y − f (q)) = εb, i.e., (y − f (q))/ε ∈ T−1(B).
Consequently, y = ε(y − f (q))/ε + f (q) ∈ εT−1(B) + f (Q). �
Theorem 2. Suppose X is a complete topological vector space and for every neigh-
borhood U of zero there exists a neighborhood V of zero such that V ≺c U. Then X
belongs to the Montel class.

Proof. In view of the completeness of the space X , it suffices to prove that every
bounded subset A ⊂ X is precompact (Theorem5 in Subsection16.2.2). So, let A
be bounded andU be an arbitrary neighborhood of zero. By hypothesis, there exists
a neighborhood of zero V with V ≺c U . By the definition of boundedness, A ⊂ nV
for n large enough. By items (a) and (c) in the preceding theorems, A ⊂ nV ≺c nU ,
that is, A ≺c U . �
Example 1. The spaceH(D) of holomorphic functions on a domain D ⊂ C belongs
to the Montel class.

To verify this, we use Theorem2. Let U be an arbitrary neighborhood of zero
in H(D). Recalling the definition of the topology on H(D) (Exercise4 in Sub-
section16.3.1), we may assume that U is the unit ball of the seminorm pK ( f ) =
maxz∈K | f (z)|, where K is a compact subset of D, and without loss of generality we
may assume that K is a finite union of closed disks. Consider a rectifiable contour
� ⊂ D which includes K in its interior; denote by K1 the compact set which includes
K and has � as its boundary, and by V the unit ball of the seminorm pK1 . We show
that V ≺c U . Let δ = min{|z − ζ | : z ∈ K , ζ ∈ �}, and l be the length of the contour
�. By the Cauchy integral formula for the derivative, for any function f ∈ V and
any z ∈ K we have

| f ′(z)| � 1

2π

∣
∣
∣
∣

∫

�

f (ζ )dζ

(z − ζ )2

∣
∣
∣
∣ � 1

2π

pK1( f )

δ2
l � l

2πδ2
.

Thus, the first derivatives of the functions in the family V are uniformly bounded on
K . Further, the family V itself is bounded in modulus on K (and even on the larger
compact set K1) by 1. By Arzelà’s theorem, V is precompact if regarded as a subset
of C(K ).
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Now consider the operator T : H(D) → C(K ) which maps each function into
the restriction of the function to K . The fact that we just proved can be formulated
as follows: the set T (V ) is precompact in C(K ). In other words, T (V ) ≺c BC(K ).
Since T−1(BC(K )) = U , item (h) of Theorem1 shows that V ≺c U . �

Example 2. The space C∞[0, 1] belongs to the Montel class.
Recall that the topology of the spaceC∞[0, 1] is given by the family of seminorms

pn( f ) = maxt∈[0,1] | f (n)(t)|, n = 0, 1, 2, . . .. Denote the unit ball of the seminorm
pn by Bn . A neighborhood basis of zero is provided by the sets rUn , where r >

0, and Un = ⋂n
k=0 Bk = { f ∈ C∞[0, 1] : maxk=0,1,...,n maxt∈[0,1]| f (k)(t)| < 1}. By

Theorem2, to justify our example it suffices to show that Un+1 ≺c Un for all n =
0, 1, 2, . . .. We proceed by induction on n.

n = 0. Consider the identity embedding operator T : C∞[0, 1] → C[0, 1]. The
set T (U1) (which coincides with U1) consists of infinitely differentiable functions
that obey the conditions | f (t)| < 1 and | f ′(t)| < 1 for all t ∈ [0, 1]. By Arzelà’s
theorem, T (U1) is precompact in C[0, 1], i.e., T (U1) ≺c BC[0,1]. According to item
(h) of Theorem 1, U1 ≺c T−1(BC[0,1]) = U0.

n→n+1. SupposeUn+1≺cUn . Consider the integrationoperatorG : C∞[0, 1] →
C∞[0, 1], (G f )(t) = ∫ t

0 f (τ )dτ . By item (e) of Theorem1, G(Un+1) ≺c G(Un).
Since G(Un) ⊂ Un+1, we deduce that

G(Un+1) ≺c Un+1. (1)

On the other hand, since every function f ∈ Un+2 can be represented as f (t) =
f (0)+∫ t

0 f ′(τ )dτ ,where f ′ ∈Un+1, and | f (0)| < 1,wehaveUn+2 ⊂ A + G(Un+1),
where A consists of constants smaller than 1 in modulus. Condition (1) combined
with the obvious condition A ≺c Un+1 (A is a one-dimensional bounded set) allows
us to apply assertion (f) of Theorem2:Un+2 ⊂ A + G(Un+1) ≺c Un+1, as we needed
to prove.

Exercises

1. Show that C∞(0,+∞) is a Montel space.

2. Every linear space X equipped with the strongest locally convex topology is a
Montel space. Moreover, in such a space every bounded set is finite-dimensional.

3. Any Tikhonov product of Montel spaces is a Montel space.

4. Any closed subspace of a Montel space is itself a Montel space.
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