
Chapter 13
Functions of an Operator

One of the most fruitful applications of the aforementioned analogy between opera-
tors and numbers is encountered in the study of differential equations. As it turns out,
the solution of the equation y′ = Ay can be written in the form y = eAt y0 not only
for scalar-valued functions and a numerical parameter A, but also for vector-valued
functions and an operator A, respectively. The apparatus of functions of an operator
was created precisely to enable the free use of such analogies.

13.1 Continuous Functions of an Operator

13.1.1 Polynomials in an Operator

In this subsection we consider operators in an arbitrary complex Banach space X .

Definition 1. Given a polynomial p = a0 + a1t + · · · + antn and an operator
T ∈ L(X), an operator of the form p(T ) = a0 I + a1T + · · · + anT n is called a
polynomial in the operator T .

Let us list some readily verifiable properties of polynomials in operators.

Theorem 1. Let p1, p2 be polynomials, T ∈ L(X), and λ1, λ2 ∈ C. Then

(i) (λ1 p1 + λ2 p2)(T ) = λ1 p1(T ) + λ2 p2(T );

(ii) (p1 p2) (T ) = p1 (T ) p2 (T ).

Further,
(iii) suppose the operators T1, T2 ∈ L(X) commute, and p1, p2 are polynomials.
Then the operators p1(T1) and p2(T2) also commute. �
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344 13 Functions of an Operator

Theorem 2. The operator p(T ) is invertible if and only if the polynomial p does
not vanish at any of the points of the spectrum of the operator T .

Proof. Let t1, . . . , tn be the roots of the polynomial p, i.e., p(t) = an(t − t1) · · ·
(t − tn). Then p(T ) = an(T − t1 I ) · · · (T − tn I ). ByLemma1of Subsection 11.1.2,
the invertibility of a product of commuting operators is equivalent to the simulta-
neous invertibility of its factors. Therefore, the invertibility of the operator p(T ) is
equivalent to the simultaneous invertibility of the factors T − ti I , i.e., to the fact that
none of the roots ti of the polynomial p lie in the spectrum of the operator T . �

Theorem 3 (Spectral mapping theorem for polynomials in an operator). The
spectrum of the polynomial p(T ) consists of the values of the polynomial in the
points of the spectrum of the operator T , i.e., σ(p(T )) = p(σ (T )).

Proof. Let us show that λ ∈ σ(p(T )) if and only λ ∈ p(σ (T )). Indeed, the condition
λ ∈ σ(p(T ))means that the operator p(T ) − λI = (p − λ) (T ) is not invertible. By
the preceding theorem, this is equivalent to the polynomial p − λ vanishing at some
point of the spectrum: there exists a t ∈ σ(T ) such that p(t) = λ. This in turn is
equivalent to the requisite condition λ ∈ p(σ (T )). �

Exercises

1. Let p1, p2 be a pair of coprime polynomials and assume that p1 p2(T ) = 0.
Prove that the whole space X decomposes into the direct sum of its subspaces X1 =
Ker p1(T ) and X2 = Ker p2(T ).

2. By analogy with calculus, introduce the concepts of derivative and differentiabil-
ity for functions f : [0, 1] → E , where E is a Banach space. Verify for differentiable
functions f, g : [0, 1] → E , that ( f + g)′ = f ′ + g′.

3. Let f : [0, 1] → L(X) be a differentiable function. Prove that
d

dt

[
f 2(t)

] =
f ′(t) f (t) + f (t) f ′(t).

4. Prove that if all the values of a function f : [0, 1] → L(X) pairwise commute,
then the values of f and f ′ also commute.

5. For any operator A ∈ L(X), define eA by the formula

eA = 1 + A + 1

2! A
2 + 1

3! A
3 + · · · .

Is it true that if f : [0, 1] → L(X) is a differentiable function, then the function
y = e f (t) is a solution of the differential equation y′ = f ′(t)y?Why is the particular
case y = et A of this formula successfully used for equations y′ = Ay with constant
coefficients A ∈ L(X)?



13.1 Continuous Functions of an Operator 345

6. Suppose that in some basis the matrix of the operator A ∈ L(X) is diagonal.
What will the matrix of the operator p(A), where p is a polynomial, look like in this
basis? How about the matrix of the operator eA?

7. By analogy with the above, define polynomials in the elements of a Banach
algebra A. Prove that all properties of polynomials in an operator considered above
carry over to polynomials in elements of a Banach algebra.

The reader interested in the theory of functions of elements of a Banach algebra
in the general case is referred to W. Rudin’s textbook [38].

13.1.2 Polynomials in a Self-adjoint Operator

From here on till the end of the chapter we will consider only operators in a Hilbert
space.

Lemma 1. Let A, B∈ L(H)be commuting self-adjoint operators. Then‖A+ i B‖ =√‖A2 + B2‖.
Proof. Since A and B commute, their product is a self-adjoint operator. Hence,
〈Ax, Bx〉 = 〈BAx, x〉 is a real number for all x ∈ H . Therefore,

‖(A + i B)x‖2 = ‖Ax‖2 + 2Re (−i)〈Ax, Bx〉 + ‖Bx‖2 = ‖Ax‖2 + ‖Bx‖2,

and so
‖A + i B‖2 = sup

x∈SH
‖(A + i B)x‖2 = sup

x∈SH
(‖Ax‖2 + ‖Bx‖2)

= sup
x∈SH

(〈Ax, Ax〉 + 〈Bx, Bx〉) = sup
x∈SH

〈(A2 + B2)x, x〉 = ∥∥A2 + B2
∥∥ . �

Theorem 1. Let A ∈ L(H) be a self-adjoint operator and p = a0 + a1t + · · · +
antn be a polynomial. Then the operator p(A) has the following properties:

(i) (p(A))∗ = p(A), where p = a0 + a1t + · · · + antn. In particular, if all the coef-
ficients of p are real, then p(A) is a self-adjoint operator.

(ii) ‖p(A)‖ = supt∈σ(A) |p(t)|.
Proof.

(i) (p(A))∗ = a0(I )∗ + a1(A)∗ + · · · + an(An)∗ = p(A).
(ii) Consider first the case of a polynomialwith real coefficients. ByCorollary 2 in

Subsection 12.4.5 and the spectral mapping theorem for polynomials in an operator
(Theorem 3 of Subsection 13.1.1),

‖p(A)‖ = sup
τ∈σ(p(A))

|τ | = sup
τ∈p(σ (A))

|τ |.
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To obtain the required formula, it remains to define τ = p(t) and observe that as
t runs through σ(A), τ runs through p(σ (A)).

Now suppose that the coefficients of the polynomial p have the form a j = u j +
iv j , u j , v j ∈ R. Put p1 = u0 + u1t + · · · + untn and p2 = v0 + v1t + · · · + vntn .
Using the lemma and the case of real polynomials treated above, we have

‖p(A)‖ = ‖p1(A) + i p2(A)‖ =
√

‖p1(A)2 + p2(A)2‖

=
√

‖(p21 + p21)(A)‖ =
√

sup
t∈σ(A)

|(p21 + p21)(t)| = sup
t∈σ(A)

|p(t)|. �

Exercises

1. Give an example of a pair of self-adjoint operators A, B ∈ L(H), for which
‖A + i B‖ 	= √‖A2 + B2‖.
2. Give an example of a pair of commuting self-adjoint operators A, B ∈ L(H), for
which ‖A + i B‖ 	= √‖A‖2 + ‖B‖2.
3. Let A ∈ L(H) be a self-adjoint operator and p1, p2 be polynomials such that
p1(t) = p2(t) for all t ∈ σ(A). Then p1(A) = p2(A).

13.1.3 Definition of a Continuous Function of a Self-adjoint
Operator

Lemma 1. Let K ⊂ R be a compact subset, and let [a, b] be the smallest inter-
val containing K . Then every function f ∈ C(K ) can be extended to a continuous
function on [a, b].
Proof. The set [a, b] \ K can be written as a union of open intervals with endpoints
in K . Now redefine the function f on each such interval (c, d) ⊂ [a, b] \ K by linear

interpolation: f (t) = f (c) + (t − c)
f (d) − f (c)

d − c
. �

Lemma 2. Let K ⊂ R be a compact subset. Then for any function f ∈ C(K ) there
exists a sequence of polynomials (pn) which converges to f uniformly on K .

Proof. Let [a, b]be the smallest interval containing K . Thenby the preceding lemma,
we may assume that f is defined on the whole interval [a, b]. By the Weierstrass
theorem, there exists a sequence of polynomials (pn) which converges uniformly to
f on [a, b]. This sequence (pn) will also converge to f on K , a subset of [a, b]. �
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Lemma 3. (a) Let A be a self-adjoint operator, and let (pn) be a sequence of poly-
nomials which converges uniformly on σ(A). Then the sequence of operators pn(A)

converges in norm.
(b) If the sequences of polynomials (pn) and (qn) converge uniformly on σ(A) to

one and the same limit, then pn(A) and qn(A) also converge to one and the same
limit.

Proof. We use assertion (ii) of the theorem proved in the preceding subsection:

‖pn(A) − pm(A)‖ = sup
t∈σ(A)

|(pn − pm)(t)| → 0 as n,m → ∞.

Since the space of operators is complete, this proves assertion (a). Assertion (b) is
proved in exactly the same way:

‖pn(A) − qn(A)‖ = sup
t∈σ(A)

|(pn − qn)(t)| → 0 as n → ∞. �

Definition 1. Let A be a self-adjoint operator, and f ∈ C(σ (A)) be a continuous
function given on the spectrum of the operator A. The function f of the operator A
is defined as

f (A) = lim
n→∞ pn(A),

where (pn) is an arbitrary sequence of polynomials that converges uniformly on
σ(A) to f .

The relevance of this definition is justified by Lemmas 2 and 3 proved above.

Exercises

1. Deduce Lemma 1 from Tietze’s extension theorem (Theorem 3 in Subsection
1.2.3).

2. Consider in C(σ (A)) the subspace P consisting of all polynomials. Define the
operatorU : P → L(H) by the formulaU (p) = p(A). Verify thatU is a continuous
linear operator. What is the norm of U equal to?

3. Applying the theorem of extension by continuity (Subsection 6.5.1) to the oper-
atorU , extend it to the whole space C(σ (A)). Verify that the equalityU (p) = p(A)

holds not only for polynomials, but also for arbitrary continuous functions.1

1We could have used the extension of the operatorU to C(σ (A)) and defined continuous functions
of the operator A by the equality f (A) = U ( f ). However, such a definition would be unnecessarily
abstract and require additional interpretation.
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13.1.4 Properties of Continuous Functions of a Self-adjoint
Operator

First we will present properties that are obtained by direct passage to the limit from
polynomials to continuous functions of a self-adjoint operator.

Theorem 1. Let A be a self-adjoint operator, f1, f2 ∈ C(σ (A)), and λ1, λ2 ∈ C.
Then

(1) (λ1 f1 + λ2 f2)(A) = λ1 f1(A) + λ2 f2(A), and

(2) ( f1 f2)(A) = f1(A) f2(A).

Further, let f ∈ C(σ (A)). Then

(3) ( f (A))∗ = f (A). In particular, if the function f takes only real values on σ(A),
then f (A) is a self-adjoint operator.

(4) ‖ f (A)‖ = supt∈σ(A) | f (t)|.
Finally,

(5) suppose the operators A and B commute, and let f and g be continuous functions
on the spectra of the operators A and B, respectively. Then f (A) and g(B) also
commute. �

The following property already needs justification.

Theorem 2 (Invertibility criterion). Let f be a continuous function defined on the
spectrum of the self-adjoint operator A. Then for the operator f (A) to be invertible
it is necessary and sufficient that the function f has no zeros on the spectrum of A.

Proof. Suppose first that the function f has no zeros on σ(A). Then g := 1/ f is
also a continuous function, g f = 1 and by assertion (2) of the preceding theorem,
the operator g(A) is the inverse of the operator f (A). Now suppose that f vanishes
at some point t0 ∈ σ(A). Pick a sequence of polynomials (pn) which converges
to f uniformly on σ(A). With no loss of generality, we can assume that pn(t0) = 0
(otherwise,we replace pn(t) by p̃n(t) = pn(t) − pn(t0). ByTheorem2of Subsection
13.1.1, the operators pn(A) are not invertible. Hence, since the set of non-invertible
operators is closed (see the corollary to Theorem 1 of Subsection 11.1.2), the operator
f (A) = limn→∞ pn(A) is also non-invertible.

Theorem 3 (Spectral mapping theorem for continuous functions). Let A be a
self-adjoint operator and f ∈ C(σ (A)). Then σ( f (A)) = f (σ (A)).

Proof. We repeat the argument used earlier for polynomials (Theorem 3 of Sub-
section 13.1.1). The condition λ ∈ σ( f (A)) means that the operator f (A) − λI =
( f − λ)(A) is not invertible. By the preceding assertion, this is equivalent to the
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existence of a point t ∈ σ(A) such that f (t) − λ = 0. In turn, this is equivalent to
the required condition λ ∈ f (σ (A)). �

Theorem 4. Under the conditions of the preceding theorem, if f � 0 on the spec-
trum of the operator A, then f (A) � 0.

Proof. By the spectral mapping theorem, σ(p(A)) ⊂ [0,+∞). It remains to use
Corollary 1 in Subsection 12.4.5. �

Exercises

1. Suppose that in some basis the matrix of the operator A is diagonal. What will
the matrix of the operator f (A), where f is a continuous function, look like in that
basis?

2. Does the definition of the operator eA, given above in Exercise 5 of Subsection
13.1.1, agree with the definition as a continuous function of a self-adjoint operator?

3. Suppose A ∈ L(H) is self-adjoint, f ∈ C(σ (A)), f (A) = ( f (A))∗, and the
function g is continuous on the spectrum of the operator f (A). Prove that g( f (A)) =
(g ◦ f )(A).

13.1.5 Applications of Continuous Functions of an Operator

Theorem 1. The product of two commuting positive operators is a positive operator.

Proof. Let A, B ∈ L(H) be a pair of commuting positive operators. Since the spec-
trum of any positive operator lies on the positive half-line, the function

√
t is con-

tinuous on the spectra of both operators A and B and takes positive values there.
Consequently, the operators

√
A and

√
B are self-adjoint, and by property (5) in

Theorem 1 of Subsection 13.1.4,
√
A and

√
B commute. We have

〈ABx, x〉 = 〈(√
A
√
A
)(√

B
√
B

)
x, x

〉 = 〈(√
A
√
B

)(√
A
√
B

)
x, x

〉

= 〈(√
A
√
B

)
x,

(√
A
√
B

)
x
〉 = ∥∥(√

A
√
B

)
x
∥∥2 � 0. �

Lemma 1. Let A ∈ L(H) be a self-adjoint operator, and let f ∈ C(σ (A)) be such
that f (σ (A)) = {0, 1}. Then f (A) is an orthogonal projector onto a non-trivial (i.e.,
different from {0} and the whole H ) subspace.

Proof. Since the function f satisfies the condition f 2 = f , we have f 2(A) = f (A),
and so the operator f (A) is a projector. Since A is self-adjoint, f (A) is an orthogonal
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projector. Finally, since σ( f (A)) = f (σ (A)) = {0, 1}, f (A) cannot coincide with
the zero operator or with the identity operator. That is, the image f (A) is a nontrivial
subspace. �

Definition 1. LetH = H1 ⊕ H2, A1∈ L(H1), A2 ∈ L(H2). Theoperator A ∈ L(H)

that coincides with A j on the space Hj , j = 1, 2, is called the direct sum of the oper-
ators A1 and A2 with respect to the decomposition H = H1 ⊕ H2, and is denoted by
A = A1 ⊕ A2. In other words, if h1 ∈ H1 and h2 ∈ H2, then (A1 ⊕ A2) (h1 + h2) =
A1h1 + A2h2.

The reader is encouraged to verify on his own that the operator A = A1 ⊕ A2 is
invertible if and only if both operators A1 and A2 are invertible. This readily implies
that σ(A1) ∪ σ(A2) = σ(A1 ⊕ A2).

Theorem 2. Let A ∈ L(H) be a self-adjoint operator whose spectrum is the union
of two disjoint closed sets: σ(A) = K1 ∪ K2. Then the space H admits an orthogonal
direct sum decomposition H = H1 ⊕ H2 into two nontrivial A-invariant subspaces,
and the operator A decomposes into the direct sum A = A1 ⊕ A2 of two operators
A1 ∈ L(H1) and A2 ∈ L(H2), such that σ(A1) = K1 and σ(A2) = K2.

Proof. The functions f1 = 1K1 and f2 = 1K2 are continuous on σ(A). Consider
the operators P1 = f1(A) and P2 = f2(A). By Lemma 1, P1 and P2 are othogonal
projectors. Since f1 + f2 ≡ 1 on σ(A), we have P1 + P2 = I . Put H1 = P1(H)

and H2 = Ker P1. Then one has the direct sum decomposition H = H1 ⊕ H2, with
H2 = P2(H) (Theorem 2 of Subsection 10.3.2); moreover, H1 ⊥ H2, because P1 is
an orthogonal projector. Hj is the eigensubspace of the operator Pj corresponding to
the eigenvalue 1. Since a function of an operator commutes with the operator itself
this implies (Theorem 1 of Subsection 11.1.5) that the subspaces Hj are invariant
under A.

We define the sought-for operators A j ∈ L(Hj ), j = 1, 2, as the restrictions of
the operator A to the subspaces Hj . With this definition, we obviously have that
A = A1 ⊕ A2 and σ(A1) ∪ σ(A2) = σ(A) = K1 ∪ K2. To complete the proof, it
remains to verify the inclusions σ(A j ) ⊂ K j , j = 1, 2. By symmetry, it suffices to
consider the case j = 1. Let λ /∈ K1. Consider the function g(t) equal to 1

t−λ
for

t ∈ K1 and to 0 on K2. Then, for every x ∈ H1,

g(A)(A1 − λI )x = g(A)(A − λI )x = f1(A)x = P1x = x .

(Here and below I denotes the identity operator in the whole space, as well as in the
subspaces H1 and H2.)
The subspace H1 is invariant under g(A) (again by Theorem 1 of Subsection 11.1.5);
hence, thanks to commutativity, the last equality means that the restriction of the
operator g(A) to the subspace H1 is the inverse of A1 − λI . Thus, we have shown
thatλ /∈ K1 implies thatλ /∈ σ(A1), which is equivalent to the inclusionσ(A1) ⊂ K1.

�
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Corollary 1. Let λ0 be an isolated point of the spectrum of the self-adjoint operator
A. Then λ0 is an eigenvalue of A.

Proof. Apply the preceding result, taking K1 = {λ0} and K2 = σ(A) \ {λ0}. In this
case σ(A1) = {λ0}, that is (Corollary 3 in Subsection 12.4.5), A1 − λ0 I = 0, and
any element of the subspace H1 provides the required eigenvector. �

Exercises

1. In the last corollary, why can’t the subspace H1 be equal to {0}?
2. The self-adjoint operator A ∈ L(H) is positive if and only if there exists a self-
adjoint operator B ∈ L(H) such that B2 = A.

3. Suppose B � 0 and B2 = A. Then B = √
A.

4. Suppose dim H � 2. Then there exist infinitely many self-adjoint operators B ∈
L(H) such that B2 = I .

13.2 Unitary Operators and the Polar Representation

13.2.1 The Absolute Value of an Operator

Let T ∈ L(H) be an arbitrary operator. Following the analogy with numbers, one
can conjecture that T ∗T will be a positive self-adjoint operator. Let us verify that
this is the case. Since (T ∗T )∗ = T ∗(T ∗)∗ = T ∗T , self-adjointness holds. Positivity
is a consequence of the scalar product axioms: 〈T ∗T x, x〉 = 〈T x, T x〉 � 0. Now
since the operator T ∗T is positive, the function

√
t is continuous on its spectrum,

which enables us to define the absolute value of the operator T as |T | = √
T ∗T .

The absolute value of an operator is a positive operator.

Theorem 1. For any element x ∈ H, ‖|T |x‖ = ‖T x‖. In particular, |T |x = 0 if
and only if T x = 0.

Proof. Indeed,

‖|T |x‖2 = 〈|T |x, |T |x〉 = 〈|T |2x, x〉 = 〈T ∗T x, x〉 = 〈T x, T x〉 = ‖T x‖2. �

For the ensuing material we need the following reformulation.

Theorem 2 (Weak polar representation). Let X be the image of the operator |T |,
and Y the image of the operator T . Then there exists an isometric bijective operator
V ∈ L(X,Y ) such that T = V ◦ |T |. Moreover, the operator V is unique.
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Proof. First, the uniqueness. Let x = |T |(h) be an arbitrary element of the space
X . For the equality T = V ◦ |T | to hold when both terms are evaluated on h, it is
necessary and sufficient that the operator V satisfies the condition V x = Th. Hence,
V is uniquely determined. By the preceding theorem, if the element x admits two
representations x = |T |(h1) = |T |(h2), then ‖Th1 − Th2‖ = 0, i.e., the condition
V x = Th can be taken as the definition of the operator V . As h runs through2 the
entire Hilbert space H , the elements x = |T |(h) and V x = Th run through the entire
spaces X and Y , respectively. Therefore, the operator V is bijective. Finally, V is an
isometry, because ‖V x‖ = ‖Th‖ = ‖ |T |(h) ‖ = ‖x‖. �

Exercises

Calculate the absolute values of the following operators:

1. The multiplication operator Ag ∈ L(H) by a bounded function g: (Ag f )(t) =
g(t) f (t).

2. The right-shift operator Sr ∈ L(�2), acting as Sr (x1, x2, . . .) = (0, x1, x2, . . .);

3. The left-shift operator Sl ∈ L(�2), acting as Sl(x1, x2, . . .) = (x2, x3, . . .).

13.2.2 Definition and Simplest Properties of Unitary
Operators

Acomplex number lying on the unit circle satisfies the equation z · z = 1.Developing
further the analogy between operators and numbers, it is natural to introduce the
corresponding class of operators.

Definition 1. The operator U ∈ L(H) is called unitary if UU ∗ = U ∗U = I . In
other words, the operator U is unitary if it is invertible and U−1 = U ∗.

Theorem 1. Unitary operators preserve the scalar product: 〈Ux,Uy〉 = 〈x, y〉 for
all x, y ∈ H. Consequently, unitary operators preserve orthogonality: if x ⊥ y, then
Ux ⊥Uy.

Proof. Indeed, 〈Ux,Uy〉 = 〈x,U ∗Uy〉 = 〈x, y〉. �

2If one ponders over this generally accepted expression, then one is struck by the disparity with
the picture arising here. Indeed, to “run through” even a domain in the plane, an element requires
considerable effort. It is true that in this case “he” could actually perform this task by moving
along the Peano curve (though in his place I would look for a more interesting activity). As for the
infinite-dimensional case, “running through” the entire space is in fact impossible. Indeed, prove
that a continuous mapping f : [0,+∞) → H cannot be surjective.



13.2 Unitary Operators and the Polar Representation 353

Theorem 2 (Unitarity criterion). An operator is unitary if and only if it is a
bijective isometry.

Proof. LetU be unitary. ThenU is invertible, and hence bijective. Further, ‖Ux‖2 =
〈Ux,Ux〉 = 〈x, x〉 = ‖x‖2, i.e., U is an isometry. Conversely, suppose that U is an
isometry. Then

〈x, x〉 = ‖x‖2 = ‖Ux‖2 = 〈Ux,Ux〉 = 〈x,U ∗Ux〉.

Thus, the quadratic forms of the operators U ∗U and I coincide, hence so do the
operators themselves: I = U ∗U . And since for a bijective operator the notions of
right inverse and left inverse coincide, we conclude that UU ∗ = I , as needed. �

Theorem 3. The spectrum of any unitary operator U lies on the unit circle.

Proof. Since U is isometric, ‖U‖ = ‖U−1‖ = 1. Therefore, if |λ| < 1, then, by the
theorem on small perturbations of an invertible element (Theorem 1 in Subsection
11.1.2), the operator U − λI is invertible, while if |λ| > 1, the invertibility of the
operator U − λI = λ(I − λ−1U ) is guaranteed by the lemma on the invertibility of
small perturbations of the identity element (Lemma 2 in Subsection 11.1.2). There-
fore, U − λI can be non-invertible only if |λ| = 1. �

In Sect. 13.3 we will pursue further the analogy between unitary operators and
numbers of absolute magnitude 1: a chain of exercises culminating in Exercise 23 of
that section will show that every unitary operator U can be represented as U = ei A

with A self-adjoint.

Exercises

1. Under what conditions on the function g will the multiplication operator Ag ∈
L(L2[0, 1]), (Ag f )(t) = g(t) f (t), be unitary?

2. Show that for every closed subset K of the unit circle there exists a unitary
operator U such that σ(U ) = K .

3. Suppose the operator U ∈ L(H) is an isometric embedding (i.e., ‖Ux‖ = ‖x‖
for all x ∈ H ) with dense image. Then U is unitary.

13.2.3 Polar Decomposition

A polar decomposition of the operator T is a representation of the operator as T =
U A, where U is a unitary operator and A is a positive self-adjoint operator. That is,
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the polar decomposition of an operator is the analogue of the polar decomposition
for complex numbers, z = ei arg z · |z|. In contrast to the scalar case, for operators
such a decomposition is not always possible. To find conditions for the existence of
the polar decomposition, we regard it as an equation in the unknown operators U
and A.

So, suppose thatU and A are solutions of the equation T = U A with the required
properties. Then T ∗ = AU ∗ (we used the self-adjointness of A) , and thanks to the
unitarity of U , we have T ∗T = A2. Extracting the square root, we obtain the value
of one of the unknowns:

A = |T |.

To determine the second unknown, we have the equation T = U ◦ |T |. How does
this condition differ from the analogous condition on the operator V in Theorem
2 of Subsection 13.2.1? Only by the fact that the operator U needs to be defined
not merely on the subspace X = |T |(H), but on the whole space H , with preser-
vation of the isometry and bijectivity properties that the operator V enjoyed. Let
us examine when such an extension is possible. To formulate the result, we need
to define more precisely what the dimension of a Hilbert space means. For a finite-
dimensional space, the dimension was defined as the number of elements in a basis
of the space. Generalizing this definition to the infinite-dimensional case, the dimen-
sion of a Hilbert space is the cardinality of an orthonormal basis of the space (see
Exercise 7 in Subsection 12.3.4). Two Hilbert spaces have the same dimension if and
only if they are isomorphic (Exercise 12 in Subsection 12.3.5).

Lemma 1. Let X,Y be linear subspaces of the space H, and V ∈ L(X,Y ) be a
bijective isometry. Then the following conditions are equivalent:

(1) the mapping V can be extended to a unitary operator U ∈ L(H).

(2) dim X⊥ = dim Y⊥, where the dimensions may be finite or infinite.

Proof. (1) =⇒ (2). Since on X the operators U and V coincide, U (X) = Y . By
Theorem 1 of Subsection 13.2.2, a unitary operator preserves orthogonality, and
so U (X⊥) = Y⊥. In view of the injectivity of the operator, this yields the required
equality of the dimensions.

(2) =⇒ (1). With no loss of generality, we can assume that the subspaces
X and Y are closed (otherwise we extend the operator V by continuity to the
closure of the subspace X ). Thanks to the equality of dimensions, there exists a
bijective isometry W : X⊥ → Y⊥. Given an arbitrary x ∈ H , we decompose it as
x = x1 + x2, with x1 ∈ X and x2 ∈ X⊥. Now define the requisite operator U by the
rule Ux = V x1 + Wx2. �
Theorem 1. For the existence of a polar decomposition of the operator T it is
necessary and sufficient that the equality of dimensions

dimKer T = dimKer T ∗

holds.



13.2 Unitary Operators and the Polar Representation 355

Proof. By the last lemma above and the arguments that precede it, the required
necessary and sufficient condition is the equality dim(|T |(H))⊥ = dim(T (H))⊥. To
reduce this condition to the one in the lemma, we observe that (T (H))⊥ = Ker T ∗.
On the other hand, self-adjointness implies that (|T |(H))⊥ = Ker|T |. In turn, by
Theorem 1 of Subsection 13.2.1, Ker|T | = Ker T . �

Let us mention several useful sufficient conditions for the existence of the polar
decomposition.

Corollary 1.

1. For the operator T to admit a polar decomposition it is sufficient that T be
invertible.

2. Let T be a normal operator, i.e., T commutes with T ∗. Then T admits a polar
decomposition.

3. Let T be a scalar+ compact operator. Then T admits a polar decomposition.

Proof.

1. If T in invertible, then so is T ∗. Consequently, dim Ker T = dimKer T ∗ = 0.

2. Ker T = Ker |T | = Ker
√
T ∗T = Ker

√
T T ∗ = Ker |T ∗| = Ker (T ∗).

3. This follows from the Fredholm theorem (see Exercise 2 in Subsection 11.3.3).

Exercises

1. Prove that any operator T ∈ L(H) is representable, and in fact in a unique way,
as T = A + i B, where A and B are self-adjoint operators. Moreover, the operator T
will be normal if and only if A and B commute. The stated representation serves as
the starting point of one of the ways of constructing functions of a normal operator
(see [4]).

2. Show that the operator T is normal if and only if it admits a polar decomposition
T = U A with commuting operators A and U .

3. Show that if an operator T has a non-commuting polar decomposition, then T is
not normal.

4. Describe the operators for which the polar decomposition is unique.

5. Justify the following fact that was already used, without drawing attention to
it, in the present subsection: if two positive operators A and B satisfy the equality
A2 = B2, then A = B. Does this assertion remain true if we discard the positivity
assumption? Where specifically did we use this fact?
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13.3 Borel Functions of an Operator

Using the fact that any continuous function can be approximated by polynomials, we
were able to construct continuous functions of a self-adjoint operator. Belowwe show
that functions of a self-adjoint operator can also be defined in a considerably more
general situation, namely, for any boundedBorel-measurable function. The construc-
tion is based on the possibility of unique extension of linear functionals from the space
of continuous functions to the wider space of bounded Borel-measurable functions.

Let A ∈ L(H) be a fixed self-adjoint operator and K be its spectrum.
Given two arbitrary elements x, y ∈ H , define the linear functional Fx,y ∈ C(K )∗

by the formula Fx,y( f ) = 〈 f (A)x, y〉. Clearly, in addition to the linearity in f , the
following relations, characteristic of bilinear forms, hold: Fa1x1+a2x2,y = a1Fx1,y +
a2Fx2,y and Fy,x = Fx,y . It is also readily verified that ‖Fx,y‖ � ‖x‖ · ‖y‖; indeed,

|Fx,y( f )| = |〈 f (A)x, y〉| � ‖ f (A)‖ · ‖x‖ · ‖y‖ = ‖ f ‖ · ‖x‖ · ‖y‖.

By the theorem on the general form of continuous linear functionals on the space
C(K ), there exists a regular Borel charge σx,y on K such that

Fx,y( f ) =
∫

K

f dσx,y .

Since the indicated correspondence between functionals on C(K ) and charges is
a bijective isometry, the relations for functionals written above remain valid for
charges:

‖σx,y‖ � ‖x‖ · ‖y‖, σa1x1+a2x2,y = a1σx1,y + a2σx2,y, and σy,x = σ x,y .

Definition 1. Let f be a bounded Borel function on K , and σx,y be the Borel charges
defined above. Define the operator f (A) by the equality

〈 f (A)x, y〉 =
∫

K
f dσx,y .

In view of the theorem in Subsection 12.4.1 (with a change in the order of factors)
the above definition is correct: the expression on the right-hand side of the equality
is a continuous bilinear form.

Note that the last definition is consistent with the definition of a continuous func-
tion of an operator (i.e., the two definitions give the same result), and many of the
properties of continuous functions of an operator listed in Subsection 13.1.4 remain
valid in the more general situation.

Theorem 1. For bounded Borel functions on K the following relations hold:

1. (λ1 f1 + λ2 f2)(A) = λ1 f1(A) + λ2 f2(A);
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2. ( f1 f2)(A) = f1(A) f2(A);

3. ( f (A))∗ = f (A). In particular, if on σ(A) the function f takes only real values,
then f (A) is a self-adjoint operator.

Proof. Property 1. follows from the linearity of the integral.
To verify property 3, we use the relation σy,x = σ x,y :

〈( f (A))∗x, y〉 = 〈x, f (A)y〉 = 〈 f (A)y, x〉
=

∫

K

f dσ y,x =
∫

K

f dσx,y = 〈 f (A)x, y〉.

It remains to verify property 2. The equality ( f1 f2)(A) = f1(A) f2(A) is already
known to hold for continuous functions. Threfore, for f1, f2 ∈ C(K ) we have the
equality of bilinear forms

〈( f1 f2)(A)x, y〉 = 〈 f1(A)( f2(A)x), y〉. (1)

Using the definition of the charges σx,y , we recast (1) as
∫

K

f1 f2 dσx,y =
∫

K

f1 dσ f2(A)x,y .

Since the integrals above are equal for any continuous function f1, theywill also be
equal for any bounded Borel-measurable function.3 Going in the opposite direction,
we deduce that the equality (1) again holds not only for a continuous, but also for an
arbitrary bounded Borel function f1. Rewriting (1) in the form

〈( f1 f2) (A)x, y〉 = 〈 f2(A)x, f 1(A)y〉
and using the definition, we conclude that for any bounded Borel function f1 the
equality of integrals

∫

K

f1 f2dσx,y =
∫

K

f2dσx, f 1(A)y (2)

is valid for any continuous function f2. Extending equality (2) to the more general
class of bounded Borel-measurable functions and passing again to bilinear forms, we
see that relation (1) is valid for all bounded Borel-measurable functions f1 and f2.
The coincidence of the bilinear forms implies the coincidence of the corresponding
operators. Thus, the required mutiplicativity relation is proved. �

The remaining properties of continuous functions of operators discussed in Sub-
section 13.1.4 are not fully valid for Borel functions. The main reason for this is that
two different functions, f1, f2, that coincide almost everywhere with respect to all
charges σx,y , generate the same operator: f1(A) = f2(A).

3To prove this, take a measure μ that dominates the variations of both charges figuring in the
equality; represent the Borel function as the limit of a μ-almost everywhere convergent sequence
of uniformly bounded continuous functions and apply the dominated convergence theorem.
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Theorem 2 (Sufficient conditions for invertibility). If the bounded Borel function
f is separated away from 0 on σ(A) (i.e., there exists an ε > 0 such that | f (t)| � ε

for all t ∈ σ(A)), then the operator f (A) is invertible.

Proof. The operator
1

f
(A) is the inverse to f (A). �

Theorem 3 (Spectralmapping theorem for boundedBorel functions of an oper-
ator). The spectrum of a function of an operator is contained in the closure of the
image of the spectrum of the original operator: σ( f (A)) ⊂ f (σ (A)).

Proof. Let λ /∈ f (σ (A)). Then the function f − λ satisfies the conditions of the
preceding theorem. Hence, the operator ( f − λ)(A) = f (A) − λI is invertible, i.e.,
λ /∈ σ( f (A)). The theorem is proved. �

Theorem 4 (Estimate of the norm of a function of an operator). Let f be a
bounded Borel function on K = σ(A). Then

‖ f (A)‖ � sup
t∈σ(A)

| f (t)|.

Proof. We use the condition |σx,y |(K ) = ‖σx,y‖ � ‖x‖ · ‖y‖ and the estimate of the
integral through the variation of the charge (Theorem 4 in Subsection 8.4.5) to obtain

‖ f (A)‖ = sup
x,y∈SH

|〈 f (A)x, y〉| � sup
x,y∈SH

∫

σ(A)

| f | d ∣∣σx,y

∣∣ � sup
t∈σ(A)

| f (t)|. �

Theorem 5. Let ( fn) be a monotonically increasing uniformly bounded sequence of
real-valued Borel functions on K = σ(A) that converges at each point to the function
f . Then the sequence of operators ( fn(A)) converges pointwise to the operator f (A).

Proof. The operators fn(A) form a monotone bounded sequence. By Theorem 2 of
Subsection 12.4.4, there exists the pointwise limit of the sequence fn(A), which we
denote by T . To establish the claimed equality f (A) = T , we compare the bilinear
forms of the operators:

〈T x, y〉 = lim
n→∞〈 fn(A)x, y〉 = lim

n→∞

∫

σ(A)

fn dσx,y =
∫

σ(A)

f dσx,y = 〈 f (A)x, y〉.

Here we used the Lebesgue dominated convergence theorem. �

Discontinuous Borel functions of an operator can be calculated, rather than using
the (quite abstract) definition, by using approximation (in one sense or another) by
continuous functions. For example, if the bounded Borel function f on σ(A) is
representable as the pointwise limit of an increasing sequence ( fn) of continuous
functions,4 the last theorem enables us to calculate f (A) as the pointwise limit of the
sequence ( fn(A)). For more details on such an approach to functions of an operator,
we refer to the exercises below.

4Such a representation is possible only for lower-semicontinuous functions.
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Exercises

1. Suppose the operators A and B commute. Then each of them commutes with the
bounded Borel functions of the other.

2. Suppose the operators A and B commute, and let f and g be Borel functions
on the spectra of the operators A and B, respectively. Then the operators f (A) and
g(B) also commute.

3. Suppose that in some basis the matrix of the self-adjoint operator A is diagonal.
If f is a bounded Borel function, what will the matrix of the operator f (A) look like
in that basis?

4. Describe the functions of the multiplication operator Ag by a bounded function
g: Ag ∈ L(L2[0, 1]), (Ag f )(t) = g(t) f (t).

Definition. We say that the sequence of operators An ∈ L(H) form converges5 to
the operator A ∈ L(H) if the corresponding bilinear forms converge:

〈Anx, y〉 → 〈Ax, y〉 as n → ∞

for all x, y ∈ H . Notation: An
form−−→ A.

5. Pointwise convergence of operators implies form convergence.

6. Let {en}∞1 be an orthormal system in H . Then the operators An , acting by the
formula Anx = 〈x, e1〉en , form converge to 0, but do not converge pointwise.

7. If An
form−−→ A, then ‖A‖ � supn ‖An‖ < ∞.

8. If An
form−−→ A, Bn

form−−→ B, and a, b ∈ C, then aAn + bBn
form−−→ aA + bB.

9. If An
form−−→ A and B ∈ L(H), then AnB

form−−→ AB and BAn
form−−→ BA.

10. If An
form−−→ A, then A∗

n
form−−→ A∗. Does the analogous property hold for pointwise

convergence?

11. Provide an example in which An
form−−→ A and Bn

form−−→ B, but AnBn does not
form converge to AB.

Let A ∈ L(H) be a self-adjoint operator and K be its spectrum.TheBorelmeasure
μ on K is said to be a control measure of the operator A if all the charges σx,y

generated by the operator A are absolutely continuous with respect to μ.

5The generally accepted name for this type of convergence of operators is “weak pointwise con-
vergence”, because in this case Anx weakly converge to Ax for all x ∈ H . The meaning of word
“weakly” here is “when evaluated by every continuous linear functional”. We will speak a lot about
weak convergence and weak topology in Chap.17.
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12. For any self-adjoint operator in a separableHilbert space H there exists a control
measure. Hint: choose a sequence of pairs (xn, yn) that is dense in SH × SH . Define
the control measure by the formula μ = ∑∞

n=1
1
2n

∣∣σxn ,yn

∣∣.

13. Let A ∈ L(H)be a self-adjoint operator and K be its spectrum.Letμbe a control
measure for A, and let ( fn) be a uniformly bounded sequence of Borel functions on

K which converges μ-almost everywhere to f . Then fn(A)
form−−→ f (A).

14. Let A ∈ L(H) be a self-adjoint operator and K be its spectrum. Then for any
bounded Borel function f on K there exists a sequence ( fn) of continuous functions

on K such that fn(A)
form−−→ f (A).

The next chain of exercises will enable the reader to construct on her/his own a
theory of functions of a unitary operator. Throughout this part U will denote a fixed
unitary operator and S the spectrum of U .

The main difference compared to the case of self-adjoint operators is that the
polynomials are not dense in the space of continuous functions on the unit circle: the
closure of the set of polynomials in the uniform metric contains only the boundary
values of functions analytic in the unit disc. For instance, the function 1/z does not
belong to this closure.

15. Find the distance of the function 1/z to the set of polynomials in the space of
continuous functions on the unit circle.

To circumvent this difficulty, we introduce the set of generalized polynomials,
which also include negative powers of the indeterminate:

P∗ = {p ∈ C(S) : p(z) =
n∑

k=−n

akz
k}.

By analogy with the case of ordinary polynomials, we put

p(U ) =
n∑

k=−n

akU
k .

16. Verify that the mapping p �→ p(U ) enjoys the linearity and multiplicativity
properties.

17. Establish an invertibility criterion for the operator p(U ). Prove the spectral
mapping theorem.

A generalized polynomial p(z) = ∑n
k=−n akz

k is said to be symmetric,6 if a−k =
ak for all indices k.

6This term is used by convention and has nothing to do with the symmetric polynomials of several
variables.
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18. Prove that a symmetric polynomial takes only real values on the unit circle.
Conversely, if S is an infinite subset of the unit circle and the polynomial p takes
only real values on S, then p is symmetric.

19. For any generalized polynomial p on the unit circle, the functions Re p and
Im p are symmetric polynomials.

20. Prove that every real-valued continuous function on the unit circle can be arbi-
trarily well approximated in the uniform metric by symmetric polynomials.

21. Prove that a symmetric polynomial of a unitary operator is a self-adjoint oper-
ator. Deduce for this case the formula ‖p(U )‖ = supt∈σ(U ) |p(t)|.
22. From this point on, the entire scheme for constructing functions of a self-adjoint
operator carries over with no modifications to functions of a unitary operator. Verify
this!

23. Prove that every unitary operator U can be represented as U = ei A, where A
is a self-adjoint operator. (Hint: Pick a branch f of the argument on the unit circle.
Take f (U ) for A.) Is this representation unique?

24. Suppose the generalized polynomial p takes on the unit circle T only positive
values. Then there is another generalized polynomial g such that p(z) = |g(z)|2 for
all z ∈ T.

13.4 Functions of a Self-adjoint Operator and the Spectral
Measure

13.4.1 The Integral with Respect to a Vector Measure

Suppose given a set �, an algebra � of subsets of �, and a Banach space X . A map-
pingμ : � → X is called an X -valued measure if it has the finite additivity property:
μ(D1 ∪ D2) = μ(D1) + μ(D2) for all disjoint subsets D1, D2 ∈ �. Measures with
values in Banach spaces are also called vector measures.

The basic case we will be dealing with is that of complex scalars. The real case
is practically identical.

Example. Let X = C
n be the space of rows. Then every X -valued measureμ can

be written as μ(D) = (μ1(D), μ2(D), . . . , μn(D)), where μ j are finitely-additive
complex charges.

We define the integral of a scalar function with respect to a vector measure by
analogy with how we proceeded in Sect. 4.2 for the ordinary integral. The difference
here is not only that we are dealing with a vector measure, but also that the measure
is only finitely — and not countably — additive. For this reason, in all definitions
we will work only with finite partitions of sets into subsets.
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So, letΔ ∈ � and f : Δ → C be a function. Let D = {Δk}nk=1 be a finite partition
of the set Δ into subsets Δk ∈ �, and T = {tk}n1 be a collection of marked points.
The integral sum of the function f on the set Δ with respect to the pair (D, T ) is the
vector

SΔ( f, D, T ) =
n∑

k=1

f (tk)μ(Δk) ∈ X.

The element x ∈ X is called the integral of the function f on the set Δ with
respect to the vector measure μ (notation: x = ∫

Δ
f dμ) if for any ε > 0 there exists

a finite partition Dε of the set Δ such that for any finite partition D refining Dε

and any choice of marked points T for D, it holds that ‖x − SΔ( f, D, T )‖ � ε. The
function f : Δ → C is said to be integrable on the set Δ with respect to the measure
μ, or μ-integrable, if the corresponding integral exists.

In other words, the function f is integrable on Δ if its integral sums have a
limit along the directed set of finite partitions with marked points, analogous to that
described in Subsection 4.1.3.

Let us list, with no proofs, a number of simple properties of the integral.

(1) Linearity in the function: if the functions f and g are integrable on Δ and
a, b are scalars, then the function a f + bg is also integrable, and

∫
Δ

(a f + bg)dμ =
a

∫
Δ
f dμ + b

∫
Δ
g dμ.

(2) Set additivity: if Δ1 ∩ Δ2 = ∅ and f is integrable on both sets Δ1 and Δ2,
then f is integrable on their union, and

∫
Δ1

f dμ + ∫
Δ2

f dμ = ∫
Δ1�Δ2

f dμ.

(3) The characteristic function of any set Δ ∈ � is integrable, and
∫
�
1Δ dμ =

μ(Δ).

(4) For any collection {Δk}n1 of measurable subsets and any collection of
scalars {ak}n1 the step function f = ∑n

k=1 ak1Δk is integrable, and
∫
�
f dμ =∑n

k=1 akμ(Δk).

(5) Let G ∈ L(X,Y ) be a continuous linear operator and μ : � → X be an
X -valued measure. Then the composition G ◦ μ is a Y -valued measure. Every μ-
integrable function f is also (G ◦ μ)-integrable, andG

(∫
Δ
f dμ

) = ∫
Δ
f d(G ◦ μ).

13.4.2 Semivariation and Existence of the Integral

Definition 1. Let μ : � → X be a vector measure. For each Δ ∈ � we define the
semivariation of the measure μ on the set Δ, denoted by ‖μ‖(Δ), as the supremum
of the quantity

∥∥∑n
k=1 akμ(Δk)

∥∥ over all finite partitions {Δk}nk=1 of the set Δ into
measurable subsets and all finite collections of scalars {ak}nk=1 that satisfy the con-
dition |ak | � 1. We define ‖μ‖ = ‖μ‖(�). The measure μ is said to be bounded if
‖μ‖ < ∞. Throughout the remaining part of this subsection the measure μ will be
assumed to be bounded.
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Lemma 1. For any bounded function f on the set Δ ∈ �, any finite partition
D = {Δk}nk=1 of Δ into subsets Δk ∈ �, and any collection T = {tk}n1 of marked
points tk ∈ Δk , one has the estimate

‖SΔ( f, D, T )‖ � ‖μ‖(Δ) · sup
t∈Δ

| f (t)|.

Proof. Denote supt∈Δ| f (t)|byM andak = f (tk)/M . Since |ak |�1, k = 1, 2, . . . , n,
the required estimate follows:

∥∥
∥∥∥

n∑

k=1

f (tk)μ(Δk)

∥∥
∥∥∥

= M

∥∥
∥∥∥

n∑

k=1

akμ(Δk)

∥∥
∥∥∥

� M‖μ‖(Δ) = ‖μ‖(Δ) · sup
t∈Δ

| f (t)|. �

Letting the integral sums converge to the integral, we obtain the following
assertion.

Theorem 1. The inequality
∥∥∥∥

∫

Δ

f dμ

∥∥∥∥ � ‖μ‖(Δ) · sup
t∈Δ

| f (t)|

holds for all bounded integrable functions f on Δ. �
By analogy with Subsection 4.3.2 we prove the following uniform limit theorem.

Theorem 2. Let f and fn be scalar-valued functions on Δ and μ be a bounded
vector measure. Suppose that the functions fn are μ-integrable on Δ and the
sequence ( fn) converges uniformly on Δ to f . Then f is integrable and

∫
Δ
f dμ =

limn→∞
∫
Δ
fn dμ.

Proof. Let xn = ∫
Δ
fndμ. The sequence (xn) is Cauchy: indeed,

‖xn − xm‖ =
∥∥
∥
∥

∫

Δ
( fn − fm)dμ

∥∥
∥
∥ � sup

t∈Δ

‖ fn(t) − fm(t)‖ · ‖μ‖(Δ) → 0 as n,m → ∞.

Denote the limit of the sequence xn by x . Fix ε > 0 and choose an n ∈ N such that
supt∈Δ ‖ fn(t) − f (t)‖ < ε/(3‖μ‖(Δ)) and ‖x − xn‖ < ε/3. Further, let Dε be a
partition such that, starting with Dε, we have ‖xn − SΔ( fn, D, T )‖ � ε. Then for
any partition D � Dε and any collection of marked points T corresponding to D,

‖x − SΔ( f, D, T )‖ � ‖x − xn‖ + ‖xn − SΔ( fn, D, T )‖
+ ‖SΔ( fn − f, D, T )‖ � ε

3
+ ε

3
+ ε

3
= ε.

Therefore, f is integrable and
∫
Δ
f dμ = x . It remains to recall that, by construction,

x = lim
n→∞

∫

Δ

fn dμ. �
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Theorem 3. Let μ : � → X be a bounded vector measure and Δ ∈ �. Then every
bounded measurable function f is integrable on Δ.

Proof. The function f can be represented as the limit of a uniformly convergent
sequence fn of finitely-valued functions (Corollary 1 in Subsection 3.1.4). Since any
finitely-valued measurable function is integrable, it remains to apply Theorem 2 on
uniform limit. �

We have provided the basic definitions and simplest properties of vector measures
that are required for the theory of operators. To simplify the exposition, we did not
aim at maximal generality in definitions and statements. The theory of vector mea-
sures is itself an extensive domain of functional analysis, rich in deep results and
applications. For an introduction to the theory of vector measures we refer to the
monograph of J. Diestel and J.J. Uhl [13].

Exercises

1. Prove that for real-valued charges the semivariation coincides with the variation
of the charge familiar from Definition 1 in Subsection 7.1.1.

2. Verify that the expression ‖μ‖ = ‖μ‖(�) gives a norm on the spaceM(�,�, X)

of all bounded X -valued measures on �. Prove that the normed space M(�,�, X)

is complete.

3. A vector measure is bounded if and only if its range (set of all its values) is
bounded.

4. Prove that if a vector measure is given on a σ -algebra and is countably-additive,
then it is bounded.

5. Let � be a σ -algebra, μ : � → X be a vector measure, and let μ be weakly
countably-additive (i.e., x∗ ◦ μ be a countably-additive charge for every x∗ ∈ X∗),
then μ is also countably-additive in the ordinary sense.

Let (�,�, ν) be a space with (ordinary finite scalar-valued positive) measure.We
say that the vector measure μ : � → X is absolutely continuous with respect to ν if
μ(Δ) = 0 for all sets Δ ∈ � such that ν(Δ) = 0.

6. Prove that if the vector measure μ : � → X is countably-additive on the
σ -algebra � and absolutely continuous with respect to ν, then for any ε > 0 there
exists a δ > 0 such that ‖μ‖(Δ) < ε for all Δ ∈ � with ν(Δ) < δ.

7. Under the conditions of the preceding exercise, the following analogue of the
dominated convergence theorem holds true: If the uniformly bounded sequence ( fn)
of measurable functions converges ν-almost everywhere to the function f , then∫
�
f dμ = limn→∞

∫
�
fn dμ.
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8. Suppose the vector measure μ : � → X is countably-additive on the σ -algebra
�. Then on � there exists a scalar-valued measure ν with respect to which μ is
absolutely continuous.

13.4.3 The Spectral Measure and Spectral Projectors

Let A ∈ L(H) be a fixed self-adjoint operator, and let B be the σ -algebra of Borel
sets on its spectrum σ(A).

Definition 1. The spectralmeasureof theoperator A is the vectormeasureμA : B →
L(H) defined by the rule μA(Δ) = 1Δ(A).

We note that using the term “measure” here is correct, since 1Δ1 + 1Δ2 = 1Δ1∪Δ2

for any pair of disjoint sets Δ1 and Δ2.

Lemma 1. Let f = ∑n
k=1 αk1Δk be a finitely-valued Borel function on σ(A). Then

f (A) = ∫
σ(A)

f dμA.

Proof. Indeed,

∫

σ(A)

f dμA =
n∑

k=1

αkμA(Δk) =
n∑

k=1

αk1Δk (A) = f (A). �

Theorem 1. The spectral measure of any self-adjoint operator A is bounded, and
‖μA‖(Δ) � 1 for all Borel subsets Δ ⊂ σ(A).

Proof. By definition, ‖μA‖(Δ) = sup
∥∥∑n

k=1 akμA(Δk)
∥∥, where the supremum is

taken over all finite partitions {Δk}nk=1 of the set Δ into Borel subsets and all finite
collections of scalars {ak}nk=1 that satisfy the condition |ak | � 1.Consider the function
f = ∑n

k=1 ak1Δk . By Theorem 4 of Sect. 13.3,

∥∥∥∥∥

n∑

k=1

akμA(Δk)

∥∥∥∥∥
= ‖ f (A)‖ � sup

t∈σ(A)

| f (t)| = sup
1�k�n

|ak | � 1. �

Theorem 2 (Main identity for the spectral measure). For every bounded Borel
function f on σ(A),

f (A) =
∫

σ(A)

f dμA.

Proof. For finitely-valued functions the required relation was proved in Lemma 1
above. Now let f be a bounded Borel function and let the sequence ( fn) of finitely-
valued functions converge uniformly to f on σ(A). Then
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‖ fn(A) − f (A)‖ = ‖( fn − f )(A)‖ � sup
t∈σ(A)

|( fn − f )(t)| → 0 as n → ∞,

i.e., fn(A) → f (A). On the other hand, by the uniform limit theorem (Theorem 2
of Subsection 13.4.2),

fn(A) =
∫

σ(A)

fn dμA →
∫

σ(A)

f dμA as n → ∞.

The theorem is proved. �

Corollary 1. A = ∫

σ(A)

t dμA(t). �

If an operator has a complete system of eigenvectors (i.e., the matrix of the oper-
ator is diagonalizable), then the structure of the operator becomes clear once its
eigenvectors are calculated. For operators that are often encountered in various prob-
lems, it proves quite reasonable to carry out this work of calculating the eigenvalues
and eigenvectors, even if not simple, so that subsequently the results of this inves-
tigation could be applied whenever needed. The spectral measure and the integral
decompositions with respect to this measure play for self-adjoint operators the same
role as the eigenvector expansions do for diagonalizable operators.

Exercises: Properties of the Spectral Measure

1. All values of the spectral measure are orthogonal projectors (called spectral
projectors).

2. μA (σ (A)) = I .

3. If the operator T commutes with A, then the spectral projectors of the operator
A commute with T .

4. The image of every spectral projector is an invariant subspace of A.

5.
∫

σ(A)

f1 dμA ·
∫

σ(A)

f2 dμA = f1(A) f2(A) = ( f1 f2)(A) =
∫

σ(A)

( f1 f2) dμA; in

particular, μA(D1)μA(D2) = μA(D1 ∩ D2).

6. Wenote that the last property looks rather unusual: say, for a regular scalar-valued
Borel charge μ on a compact space it can be satisfied (prove this as an exercise) only
if μ is a probability measure concentrated at a single point.

7. Denote by X the image of the operator μA(D). Prove that σ(A|X ) ⊂ D.

8. The point λ ∈ σ(A) is an eigenvalue of the operator A if and only ifμA({λ}) 	= 0.



13.4 Functions of a Self-adjoint Operator and the Spectral Measure 367

9. The spectral measure of an operator with infinite spectrum does not possess the
countable additivity property in the sense of norm convergence. At the same time,
pointwise countable additivity does hold.

10. Let A be a diagonalizable operator. Prove that for any set D ⊂ σ(A) the image
of the projector μA(D) is the closure of the linear span of the set of eigenvectors of
A associated to the eigenvalues that lie in D.

11. Let Abethemultiplicationoperator inL2[0, 1]bythefunctiong(t)= t :(A f )(t)=
t f (t). Show that for any set D ⊂ σ(A) the image of the projectorμA(D) is the set of
all functions from L2[0, 1] that vanish identically in the complement of D.

12. Prove that the operator μA({0}) is the orthogonal projector onto the kernel of
the operator A.

13. Prove that the set of invertible operators in L(H) is connected.

13.4.4 Linear Equations

If T ∈ L(H) is an invertible operator and y ∈ H , then the problem of solving the
equation T x = y is equivalent to the same problem for the equation T ∗T x = T ∗y,
where T ∗T , as we know, is a positive self-adjoint operator. For non-invertible T
possessing a polar decomposition T = U A with A � 0, the equation T x = y is
equivalent to Ax = U ∗b. These are some of the reasons why the most important
linear equations in Hilbert space are of the form Ax = b, where A ∈ L(H) is a given
positive operator, b ∈ H is a given element, and x ∈ H is the unknown. So, in this
subsection we consider linear equations with a positive self-adjoint operator A. As
in the previous subsection, μA denotes the spectral measure of A.

Lemma 1. Denote by P the orthogonal projector μA(σ (A) \ {0}). Then P A = A.

Proof. The equality1σ(A)\{0}(t) · t = t holds everywhere on σ(A). It remains to plug
the operator A in it. �

Corollary 1. For the equation Ax = b to be solvable it is necessary that the ele-
ment b satisfies the condition Pb = b.

Proof. Indeed, if Ax = b for some x ∈ H , then Pb = PAx = Ax = b. �

If one observes that the operator Q = I − P = μA({0}) is the orthogonal pro-
jector onto the kernel of the operator A, the condition Pb = b can be written in the
more familiar form b⊥Ker A.

Lemma 2. Let ( fn) be a non-decreasing sequence of bounded Borel functions which
converge pointwise on the set σ(A) \ {0} to the function 1/t . Then the sequence of
operators (A fn(A)) converges pointwise to the operator P from the preceding lemma.

Proof. Apply Theorem 5 of Sect. 13.3. �
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Theorem 1. Let ( fn) be a non-decreasing sequence of bounded Borel functions that
converges pointwise on σ(A) \ {0} to the function 1/t , and let b ∈ H be an element
which satisfies the condition Pb = b. Then for the solvability of the equation Ax = b
it is necessary and sufficient that the sequence of elements ( fn(A)(b)) converges. In
this case, the limit of the sequence will be one of the solutions of the equation.

Proof. Suppose the equation Ax = b is solvable and let x0 be a solution. Then,
by Lemma 2, fn(A)(b) = fn(A)(Ax0) = A fn(A)x0 → Px0, so the convergence is
proved. Conversely, suppose the sequence fn(A)(b) converges to some element x0.
Then by the same lemma, Ax0 = limn→∞ A fn(A)(b) = Pb = b. �

We note that if the operator A is injective, then P = I and the condition Pb = b
is automatically satisfied. Further, if the operator A is invertible, then 0 does not
lie in the spectrum of A and the function 1/t is continuous on σ(A). Accordingly,
one can take for ( fn) a uniformly convergent sequence of polynomials, and the
rate of convergence of the elements fn(A)(b) to a solution will be estimated by
the rate of convergence of the polynomials fn (in this case no monotonicity of the
sequence ( fn) is required). If the operator is given by an explicit expression, then
the polynomials in this operator can also be written explicitly. Therefore, in the case
of an invertible operator A, Theorem 1 provides a completely feasible method for
solving the equation Ax = b approximately. Needless to say, the lower the degree
of the polynomial, the easier is to compute its value on an operator. Hence, here the
most appropriate approach is to take as fn the best approximation polynomials of
the function 1/t on σ(A).

In the case of an non-invertible operator the problem of finding approximate
solutions to the equation Ax = b is considerablymore difficult. This problembelongs
to the class of so-called ill-posed problems: arbitrarily small perturbations of the
right-hand side can make the problem unsolvable, or strongly modify its solution.
Since in approximate calculations all the initial data are usually also known only
approximately, this issue is quite crucial. Help in solving this problem can come
from exploiting a priori information about the solution which is not contained in
the equation. In so doing, in any case the accuracy of the solution depends on the
magnitude of the error in the right-hand side of the equation, and letting n → ∞ in
the sequence ( fn(A)(b)) does not lead to convergence to the solution. Moreover, as a
rule, the approximating sequence approaches the solution only up to some moment,
after which its behavior is in no way related to the true solution. Using the a priori
information in order to find a reasonable step in the approximation is one of the
available ideas for regularizing an ill-posed problem. For details on this subject one
can consult the monograph by A. Tikhonov and V. Arsenin [41].

Exercises

1. What property of the spectrum of the operator A ensures the existence of a
sequence ( fn) satisfying the conditions of Lemma 2 and Theorem 1?
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2. Using Exercises 7 and 8 of Subsection 13.4.2 and the pointwise countable addi-
tivity of the spectral measure (Exercise 9 in Subsection 13.4.3), replace the mono-
tonicity condition in Theorem 1 by the condition that the sequence t fn(t) is uniformly
bounded on the spectrum of the operator A.

3. Let μ : � → X be a vector measure. The set D ∈ � is said to be negligible with
respect to the measure μ if ‖μ‖(D) = 0. Is the set D being μ-negligible equivalent
to the equality μ(D) = 0? Does the answer change if μ is the spectral measure of a
self-adjoint operator?

4. Prove Theorem 1 when pointwise convergence of the functions fn is replaced by
convergence almost everywhere with respect to the measure μA.

5. Is the set of noninvertible operators in L(H) connected?

Comments on the Exercises

Subsection 13.1.1

Exercise 1. Use the following algebraic result: if p1, p2 is a pair of coprime poly-
nomials, then there are polynomials q1, q2 such that p1q1 + p2q2 = 1. Substituting T
one obtains p1(T )q1(T ) + p2(T )q2(T ) = I . For every x ∈ X one gets the decompo-
sition x = x1 + x2, where x1 = p1(T )q1(T )x and x2 = p2(T )q2(T )x . It remains to
show that x1 ∈ Ker p2(T ), x2 ∈ Ker p1(T ) and that Ker p2(T ) ∩ Ker p1(T ) = {0}.

Exercise 5. For the differentiation formula (e f (t))′ = f ′(t)e f (t) to hold, it is nec-
essary that all values of the function f pairwise commute. In particular, this condition
is satisfied when f (t) = t A, where A ∈ L(X) is a fixed operator. In this case the
differential equation y′ = f ′(t)y becomes the equation with the constant operator
coefficient y′ = Ay.

Subsection 13.1.5

Exercise 3. By assumption, B2 = A, and so B commutes with A. Then B also
commutes with

√
A. We have (B − √

A)(B + √
A) = B2 − A = 0. Define the sub-

space X ⊂ H as the closure of the image of the operator B + √
A. The equality

(B − √
A)(B + √

A) = 0 means that on X the operator B − √
A is equal to zero. It

remains to show that B − √
A is equal to zero on X⊥. Since B + √

A is self-adjoint,
the orthogonal complement of its image is its kernel: X⊥ = Ker(B + √

A). Again
due to the commutativity, Ker(B + √

A) is an invariant subspace for the operators
B and

√
A. Since B and

√
A are positive operators and since on X⊥ the operator

B + √
A vanishes, it follows that B = √

A = 0 on X⊥ (Exercise 5 in Subsection
12.4.4). Therefore, B − √

A is indeed the zero operator on X⊥.
Another way to solve this exercise is to apply Exercise 3 of Subsection 13.1.4 to

the operator B and the functions f (t) = t2 and g(t) = √
t .
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Subsection 13.2.3

Exercise 1. See the related Exercise 10 in Subsection 12.4.3.

Exercise 5. See Exercise 3 in Subsection 13.1.5 and its solution. This fact was
used at the very beginning of the subsection to pass from the equality T ∗T = A2 to
the equality A = |T |.

Section 13.3

Exercise 1. Use the fact that this property has already been established for con-
tinuous functions of an operator.

Exercise 2. By Exercise 1 in this subsection, A also commutes with g(B). Apply-
ing again Exercise 1, but now to the operators g(B) and A, we obtain the required
assertion.

Subsection 13.4.2

Exercise 5. This classical Orlicz–Pettis theorem can be found, for example, in
[13, p. 22].

Exercise 8. See [13, p. 14].

Subsection 13.4.3

Exercise 1. The equality (1Δ)2 = 1Δ means that μA(Δ) is a projector; thanks to
self-adjointness, μA(Δ) is an orthogonal projector.

Exercise 3. Use Exercise 1 of Sect. 13.3.

Exercise 4. Apply Exercise 3 and Theorem 1 of Subsection 11.1.5.

Exercises 7 and 8. Argue as in Theorem 2 of Subsection 13.1.5.

Exercises 9. The pointwise countable additivity follows from Theorem 5 of
Sect. 13.3.

Exercise 13. Let T ∈ L(H) be an invertible operator and T = ei A|T | be its polar
decomposition (see Subsection 13.2.3 and Exercise 24 in Sect. 13.3). Define the con-
tinuous curve F : [0, 1] → L(H) by the formula F(t) = eit A|T |. This curve passes
only through invertible operators and connects the operator |T | to the operator T .
Further, the curve G : [0, 1] → L(H) given by the formula G(t) = (1 − t)|T | + t I
connects |T |with the identity operator. Hence, in the set of invertible operators every
operator can be joined to the identity operator by a continuous curve.
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